
8.03 Lecture 11

We have discussed the motion of a massive string extensively. This time we will give more examples
which can be described by the wave equation. “Longitudinal waves”:

Change in volume (∆V ):
A(ψ(x+ ∆x, t)− ψ(x, t)) ≈ A∂ψ

∂x
∆x

Pressure difference (∆P ):

−ψP (x+ ∆x, t) + ψP (x, t) ≈ −∂ψP
∂x

∆x

*Question: How we do we relate pressure and volume?
(1) Ideal gas law

PV = nRT ⇒ V ∝ P−1

Not quite right because this assume T is constant, which is not true in a sound wave.
(2) The compression is actually adiabatic meaning that there is almost no heat flowing in or out
of the volume. The time scale of the heat flow is longer than the scale of the oscillation

PV γ = constant

Consider: small vibration
ψP << P0 and ∆V << V0

Where ψP is the change in pressure with respect to P0
Before:

P0V
γ

0 = C

After:
(P0 + ∆P )(V0 + ∆V )γ = C



C = (P0ψP )V γ
0

(
1 + ∆V

V0

)γ
C ≈ (P0ψP )V γ

0

(
1 + γ∆V

V0

)
C ≈ P0V

γ
0 + γ∆V V γ−1

0 P0 + ψPV
γ

0 + γ∆V ψPV γ−1
0

Where we ignore the last term because it is small. Because the first term is also equal to C, the
two middle terms should add to zero; rearranging:

ψP = −γP0
V0

∆V

Plug in the expression we got before for

ψP = −γP0A∆x
V0

∂ψ

∂x

Because ∆V = A∆x∂ψ∂x And we get

ψP = −γP0
∂ψ

∂x

Now we know how to related the pressure change ψP and the displacement ψ
ψ(x, t): displacement of the air with respect to the equilibrium position x
ψP (x, t): “displacement” or change in pressure with respect to the room pressure, P0
Force acting on this volume of air:

Ftotal = ∆P ·A = −A∂ψP
∂x

∆x

Where we have used our expression for the change in pressure ∆P from page 1.
Mass: ∆m = ρ ·A · ∆x
*Newton’s law F = ma

ρA∆xψ̈ = −A∆x∂ψP
∂x

ρψ̈ = ∂ψP
∂x

= γP0
∂2ψ

∂x2

⇒ ψ̈(x, t) = γP0
ρ

∂2ψ(x, t)
∂x2

This is the wave equation with velocity

vp =
√
γP0
ρ

Adiabatic index: γ
*First law of thermodynamics:

dU + δW = δQ
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Where U is the internal energy, W is the work done by the system and Q is the heat supplied to
the system. For an adiabatic process we have

dU + δW = 0
δW = PdV

U = αnRT

= αPV

dU = α(V dP + PdV ) = −δW = −PdV
(α+ 1)PdV = −αV dP
dP

P
= −

(
α+ 1
α

)
dV

V
= −γ dV

V
γ ≡ α+ 1

α

PV γ = constant

Where α is defined as the the number of degrees of freedom divided by 2. For a monatomic gas
(which has 3 translational degrees of freedom) α = 3/2 and γ = 5/3. For a diatomic gas (which as
3 translational and 2 rotational degrees of freedom) α = 5/2 and γ = 7/5

Air at sea level: P0 ≈ 105 kg/ms2

Air density: ρ = 1.2 kg/m3

⇒ speed of sound: vp = 342 m/s
Experimentally: vp = 343 m/s at 70◦ F −→ very nice agreement!
What have we learned?

1. The speed of sound increases if we use a monatomic gas to replace a diatomic gas (air) because
γ increases. If the wavelength is fixed, there is a higher frequency.

2. The fact that they are described by wave equation:

(a) ω = vpk

(b) Normal modes:

ψ(x) =
∞∑
m=1

Am sin(kmx+ αm) sin(ωmt+ βm)

(c) km, αm: determined by boundary conditions
(d) Am, βm: determined by initial conditions

Example: an audio analyzer recorded the following energy versus frequency:
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(i) Which configuration gave rise to this power spectrum?

Boundary condition for a closed end: ψ = 0 air can go nowhere :)
Boundary condition for an open end:

∂ψ

∂z
= 0

Pressure has to be equal to the room pressure

Recall
ψ(x) = Am sin(kmx+ αm) sin(ωmt+ βm)

(A):
ψ(0) = 0 , ψ(L) = 0

From the boundary conditions we get:

sin(αm) = 0
⇒ αm = 0

sin(kmL) = 0

⇒ km = mπ

L

⇒ ωm = mπv

L

(B):

ψ(0) = 0 ,
∂ψ(L)
∂z

= 0
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Again we get αm = 0 and from the second condition:

cos(kmL) = 0

⇒ km = (m− 1/2)π
L

⇒ ωm = (m− 1/2)πv
L

(C):
∂ψ(0)
∂z

= 0 ,
∂ψ(L)
∂z

= 0

cos(αm) = 0

⇒ αm = π

2
sin(kmL+ π/2) = 0

⇒ km = mπ

L

⇒ ωm = mπv

L

(ii) Normal modes: Amplitude:

(iii) How long does it take for this (or any arbitrary) amplitude to reappear? ⇒ 2π/ω1
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(iv) What about pressure? In each normal mode?

ψP = γP0
∂ψ

∂x

(v) Drive the organ

ψ(0) = 0 , ψ(L) = D cos(ωdt)

kd = ωd
vp

decided by the dispersion relation ω = v · k

ψ(x) = Ad sin(kdx+ α) cos(ωdt)

ψ(0) = 0 ⇒ α = 0
ψ(L) = D cos(ωdt)
⇒ Ad sin(kdL) = D

Ad = D

sin(kdL)

ψ(x) = D

sin(kdL) sin(kdx+ α) cos(ωdt)

When kd = (m− 1/2)π/L ⇒ resonance! (Huge amplitude!)
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