
  Formula Sheet 
The differential equation 

ẍ+ γẋ+ ω0
2 x = f cos(ωt + φ) (1) 

Has the general solutions; 

γ −( γ 
2 )t 

2 
< ω0 : X(t) = A1e cos(ω0t + β) + Xp(t) (2) 

γ −( γ 

= ω0 : X(t) = (A1 + A2t) e 2 )t + Xp(t) (3)
2 
γ −Γ+t −Γ−t> ω0 : X(t) = A1e + A2e + Xp(t) (4)
2 

with 
Xp(t) = A(ω) cos(ωt − δ(ω) + φ) (5) 

and r r 
γ2 γ γ2 

ω0 = ω2 − Γ± = ± − ω2 (6)0 04 2 4 q
A(ω) = f/ (ω2 − ω2)2 + (γω)2 tan(δ(ω)) = γω/(ω0

2 − ω2) (7)0 

Idealized relations for voltage/emf across circuit elements: 
Q

1. Capacitor: VC = 
C 

2. Resistor: VR = IR 
dI 

3. Self Inductance: VL = L 
dt 

∂2Ψ 2 2ΨClassical Scalar Wave Equation in 3-D: = v r
∂t2 

The plane wave solution is: Ψ(~r, t) = A cos (~k · ~r ± ωt + φ) 
cos (kr ± ωt + φ)

The spherical wave solution is: Ψ(~r, t) = A 
r 

∂2Ψ ∂2Ψ2Classical Wave Equation in 1-D: = v
∂t2 ∂x2 

The standing wave solution is: Ψ(x, t) = A cos ( ω x + φx) cos (ωt + φt)v 

The progressive wave solution is: Ψ(x, t) = f(t ± x )v r 
T √ 1 F0

2 

For String: v = Z = Tµ hP i = 
µ 2 Z r 
κ √ ∂P 

For Sound: v = Z = κρ κ = −V 
ρ ∂V r 

√k 
For Torsion: v = Z = kI 

I r 
1 L 1 V 2 

For Transmission Line: v = √ Z = hP i = 0 

LC C 2 Z 

ω ∂ω 
vphase = = νλ vgroup = 

k ∂k 
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2Z1 Z1 − Z2
For a displacement wave on a string: T = R = 

Z1 + Z2 Z1 + Z2 

2Z2 Z2 − Z1
For a voltage wave on a transmission line: T = R = 

Z1 + Z2 Z1 + Z2 

ρ ~ ~ ~ ~ ~r · E = F = q(E + ~v × B)
�0 

~ ~r · B = 0 UE =
1 
�0E

2 

2 

∂B~ 1 ~ ~ B2r× E = − UB = 
∂t 2µ0 

~ ~∂E~ E × B ~ ~ ~ ~r× B = �0µ0 + µ0J S = 
∂t µ0 

∂2 ~ ~E 1 S2 ~Electromagnetic wave in vacuum: = r E Radiation Pressure: 
∂t2 µ0�0 c 

|E| 1 
For a progressive wave solution in vacuum: = c = √ |B| µ0�0 

Radiation due to the acceleration of charge: 

~q~a⊥(t
0) r̂ × E |r|~ ~E(~r, t) = − B = t0 = t − 

4π�0rc2 c c 

2q a2(t0)
Total radiated power from accelerated charge (Larmor formula): P (t) = 

6π�0c3 

Boundary conditions at the surface of a perfect conductor (for time-varying fields): Ek = 0 and B⊥ = 0. 

√ √ c 
For most dielectrics (KM ≈ 1): n = KE KM ≈ KE vphase = 

n 
Snell’s law: n1 sin θ1 = n2 sin θ2 

Reflection and transmission of electromagnetic waves at normal incidence: 

n1 − n2
Ereflected = Eincident 

n1 + n2 

2n1
Etransmitted = Eincident 

n1 + n2 

For interference from N slits where a separation d between two slits, 

sin2( Nπ d sin θ)λI(θ) = I0 
sin2( π d sin θ)λ 

Diffraction intensity from a slit of width D, 

sin2 ( π D sin θ)λI(θ) = I0 
( π D sin θ)2 
λ 

Rayleigh’s criterion for resolution: Diffraction peak of one images falls on the first minimum of the diffraction 
pattern of the second image. 
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For a periodic function with period Λ � � � �∞ ∞X XA0 2πx 2πx 
f(x) = + An cos n + Bn sin n 

2 Λ Λ 
n=1 n=1 

with Z Λ Z Λ � � Z Λ � � 
2 2 2πx 2 2πx 

A0 = f(x)dx An = f(x) cos n dx Bn = f(x) sin n dx 
Λ Λ Λ Λ Λ0 0 0 

Trigonometric identities: 

sin(A + B) = sin A cos B + cos A sin B 

cos(A + B) = cos A cos B − sin A sin B � � � � 
1 1 

sin A + sin B = 2 sin (A + B) cos (A − B)
2 2 � � � � 
1 1 

cos A + cos B = 2 cos (A + B) cos (A − B)
2 2 � � � � 
1 1 

sin A − sin B = 2 cos (A + B) sin (A − B)
2 2 � � � � 
1 1 

cos A − cos B = −2 sin (A + B) sin (A − B)
2 2 

jθ e = cos θ + j sin θ 

Some useful integrals: �Z L Lnπx mπx for m = n2sin ( ) sin )dx = 
L L 0 for m =6 n0 �Z L Lnπx mπx for m = n2cos ( ) cos )dx = 
L L 0 for m =6 n0 Z 

sin (ax) x cos (ax) 
x sin (ax)dx = − + C 

a2 a Z 
cos (ax) x sin (ax) 

x cos (ax)dx = + + C 
a2 a 
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∂Ax ∂Ay ∂Az~ ~ ~div A = r · A = + + 
∂x ∂y ∂z 

x̂ ŷ ẑ
∂ ∂ ∂ 

�������� ∂x ∂y ∂z 
Ax Ay Az 

�������� ~ ~ ~curl A = r× A = 

� �� 
∂2Ax ∂2Ax ∂2Ax ∂2Ay ∂2Ay ∂2Ay ∂2Az ∂2Az ∂2Az r 2 ~A = x̂+ ŷ + ẑ+ + + + + + 
∂x2 ∂y2 ∂z2 ∂x2 ∂y2 ∂z2 ∂x2 ∂y2 ∂z2 

Physical constants: 

e 

e −1 

π 

c 

= 

= 

= 

= 

2.718 

0.3679 

3.1416 

3.0 × 108 m/s 

��� 
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
PHYSICS DEPARTMENT 

Physics 8.03: Vibrations and Waves 

Exam 1 

FAMILY (Last) Name 

GIVEN (First) Name 

Student ID Number 

Recitation Section: 
(check one) 

� R01 TR 10 Prof. Jarillo-Herrero 
� R02 TR 11 Prof. Jarillo-Herrero 
� R03 TR 1 Prof. Weinberg 
� R04 TR 2 Prof. Weinberg 

Instructions: 

1. Do not remove any pages of the exam, except the formula sheet.

2. This is a closed book exam.

3. Do all SIX (6) problems.

4. SHOW ALL WORK. Print your name on each sheet.

5. CALCULATORS, BOOKS, COMPUTERS and CELL PHONE are NOT ALLOWED.

Points: 

Problem Maximum Score Grader 
Problem 1: 16 
Problem 2: 16 
Problem 3: 16 
Problem 4: 16 
Problem 5: 18 
Problem 6: 18 
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Problem 1: 16 Points 

Figure 1: A perfectly conducting waveguide. 

The electric field for a TE mode in an infinitely long (in the x direction) perfectly conducting rectangular 
waveguide (a < b) is given by; 

~E(x, y, z, t) = E0 cos(ky y + φy) cos(kxx − ωt)ẑ (8) 

(1.a) 

(4pts) Find ky and φy that satisfy the boundary conditions. 

(1.b) 

(4pts) Write down the dispersion relation for this mode of the waveguide. 

(1.c) 

(4pts) What is the lowest frequency that will propagate in this mode? 

(1.d) 

~(4pts) What is the magnetic field B(x, y, z, t) associated with the electric field of this mode? 
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Problem 2: 16 Points 

Figure 2: A system of coupled oscillators. 

The figure above shows a system of masses. The mass of 2m is connected to an immobile wall with a 
spring of constant 2k, while the mass of m is connected to an immobile wall with a spring of constant k. 
The masses are then coupled to each other with an elastic band of length L, under tension T = 2kL. The 
masses are constrained to move in the x direction only. At equilbrium the masses have the same x position 
and the springs are uncompressed. There is no friction or gravity. The displacements from equilibrium are 
small enough (x1, x2 � L), so that the tension in the band stays constant. 

(2.a) 

(5pts) Write down the coupled differential equations describing the displacement of the masses from 
equilibrium {x1, x2}. 

(2.b) 

(7pts) Find the normal mode frequencies of the system. 

(2.c) 

(4pts) On the two figures included on the next page sketch the normal modes of the system, be sure to 
clearly indicate both the magnitude and direction of the motion of the masses. 
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Problem 3: 16 Points 

(3.a) 

(5pts) An optical fiber consists of a solid rod of material with index of refraction nf surrounded by a 
cylindrical shell of material with index nc. Find the largest angle θ so that a wave incident on the solid rod 
from air with index na remains in the solid rod (express your answer in terms of nf , nc, and na ). 

Figure 3: An optical fiber. 

(3.b) 

(4pts) Unpolarized light propagating in vacuum reflects off the surface of a liquid with index n. The 
reflected ray strikes a screen 25cm away at a height of 20cm and is observed to be 100% polarized. What is 
is n? 

(3.c) 

(7pts) Consider a medium in which waves propagate with a dispersion relation 

ω2 = ω0
2 + A2k2 (9) 

where ω is the wave (angular) frequency, k is the wave number, and ω0 and A are real constants. 
(i) What is the range of frequencies ω for which waves can propagate? 
(ii) Compute vphase and vgroup. Make a carefully labeled sketch of each as a function of ω in the plots below. 

Figure 4: Plot the phase/group velocity 
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Problem 4: 16 Points 

A monochromatic beam is incident on N slits, which results in a intensity pattern as a function of angle 
on a screen some distance away as shown in the figure below. Each slit has a width D and the distance 
between the centers of the slits is d. The distance between the screen and the slits is very large. 

Figure 5: Interference pattern due to N slits. 

From the pattern deduce the following: 

(4.a) 

(6pts) The number of slits N on which the beam is incident. Explain your reasoning. 

(4.b) 

(6pts) The ratio d/D. Explain your reasoning. 

(4.c) 

(4pts) Now suppose that the width of the slits is reduced to ∼ 0, while the intensity of the monochromatic 
beam is increased so that the intensity of the central maximum is unchanged. On top of the plot (showing 
the original intensity pattern in dashed lines) on the next page, draw the resulting intensity pattern. 
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Figure 6: Plot the resulting intensity pattern as D → 0. 
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Problem 5: 20 Points 

A string of length 2L with mass density µ is placed under tension T and is fixed at both ends. At time 
t = 0, the displacement of the string is zero everywhere but it is struck so that a transverse velocity is 
imparted to a section of the string. The intial conditions of the string are (a � L); 

y(x, t = 0) = 0 (10) ⎧ ⎨ v0 : L − a ≤ x < L 
ẏ(x, t = 0) = −v0 : L ≤ x < L + a (11)⎩ 

0 : elsewhere 

Figure 7: The intial transverse velocity of the string at time t = 0. The initial displacement is zero 
everywhere. 

(5.a) 

(3pts) Using the plot (Figure #8) provided on the next page, sketch the first three normal modes of 
vibration for this string, regardless of whether or not they are excited. 

(5.b) 

(10pts) What is the amplitude of the n-th normal mode after the string is struck? What is the lowest 
unexcited mode? 

(Problem continues on the next page.) 
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Figure 8: Plot the first three normal modes. 

(5.c) 

(5pts) Sketch the displacement of the string at time t = L 
2 

p
µ 
T in the plot below. 

Figure 9: Plot the displacement of the string. 
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Problem 6: 18 Points 

Figure 10: An oscillating charge. 

A charged particle of mass M and charge +Q is attached to the end of a spring of spring constant k. 
The spring lies along the x-axis and the equilibrium point is at the origin. The particle is displaced from 
equilibrium by a distance A in the x direction, and released at t = 0. Assume that the size of the particle is 
much smaller than A, so it can be treated as a point charge and that the damping rate is very small. 

(6.a) 

(4pts) Calculate the electric field radiated by the particle along an arbitrary direction in the x − z plane, 
at a distance R, where R � A. 

(6.b) 

(4pts) Calculate the total time averaged power radiated by the particle. 

(6.c) 

(6pts) Assuming that the power radiated does not change appreciably as a function of time, give a simple 
rough estimate of the time it will take for the particle to decrease its amplitude of oscillation to 1/e of its 
initial value. Is this assumption realistic? 

(6.d) 

(4pts) A more refined estimate can be obtained using that dA/dt = (dA/dE) × (dE/dt), and using the 
average power radiated over a given cycle for dE/dt. Use this to calculate the time it will take the particle 
to decrease its oscillation amplitude to 1/e of its initial value. 
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