18.404/6.840 Lecture 14

(midterm replaced lecture 13)

Last time:

- TIME(t(n))

-P = U, TIME(n")
-PATH € P

Today: (Sipser §7.2 —§7.3)
- NTIME(t(n))

- NP

- P vs NP problem

- Dynamic Programming

- Polynomial-time reducibility

Quick Review

Defn: TIIVIE(t(n)) = {B| some deterministic 1-tape TM M decides B
and M runs in time 0(t(n))}
Defn: P = U, TIME(n%)
= polynomial time decidable languages

PATH = {(G, s, t)| G is a directed graph with a path fromsto t }
Theorem: PATH € P

HAMPATH = {{G, s, t)| G is a directed graph with a path fromstot
that goes through every node of G }

HAMPATH € P?
[connection to factoring]

Nondeterministic Complexity

In a nondeterministic TM (NTM) decider, all branches halt on all inputs.

Defn: An NTM runs in time t(n) if all branches halt within t(n) steps
on all inputs of length n.

Computation tree

Defn: NTIME(t(n)) = {B| some 1-tape NTM decides B for NTM on input w.
and runs in time 0(t(n)) }

Defn: NP = U, NTIME(n%)
= nondeterministic polynomial time decidable languages

* |nvariant for all reasonable nondeterministic models AA AA
* Corresponds roughly to easily verifiable problems

all branches halt
within t(n) steps

HAMPATH € NP

Computation of
M on (G, s, t)

Theorem: HAMPATH € NP A
Proof: /(xk\ .

Guess
“Oninput (G, s, t) (Say G has m nodes.) N bits of v,

1. Nondeterministically write a sequence

: J
%...,@ofm nodes. /(>\ }

Guess
bits of v,

[Acceptif v =s I
Uy =t
each (v;, v;41) is an edge

and no v; repeats. />\ Guess
3.\QReject if any condition fails.” J : bits of vy,

Check
Uy

COMPOSITES € NP

Defn: COMPOSITES = {x| x is not prime and x is written in binary}
= {x| x = yz forintegers y,z > 1, x in binary}

Theorem: COMPOSITES € NP

Proof: “Oninput x
1. Nondeterministically write y where 1 < y < x.
2. Accept if y divides x with remainder 0.
Reject if not.”

Note: Using base 10 instead of base 2 wouldn’t matter because can convert in

polynomial time. k
Bad encoding: write number k in unary: 1% =111---1, exponentially longer.

Theorem (2002): COMPOSITES € P
We won’t cover this proof.

Intuition for P and NP

NP = All languages where can verify membership quickly
P = All languages where can test membership quickly

Examples of quickly verifying membership:
- HAMPATH: Give the Hamiltonian path.
- COMPOSITES: Give the factor.
The Hamiltonian path and the factor are called short certificates of membership.

Check-in 14.1 @ P
Let HAMPATH be the complement of HAMPATH.

So(G,s,t) € HAMPATH if G does not have a Hamiltonian path from s to t.

Is HAMPATH € NP?
(a) Yes, we can invert the accept/reject output of the NTM for HAMPATH.
(b) No, we cannot give a short certificate for a graph not to have a Hamiltonian path.

(c) Idon’t know.
Check-in 14.1

Recall Acpg

Recall: Acpe = {{G,w)| Gisa CFGandw € L(G)}

Theorem: Acp; is decidable

Proof: Dj_cpc = “Oninput (G, w) Chomsky Normal Form (CNF):
1. Convert G into Chomsky Normal Form. A — BC
2. Try all derivations of length 2|w| — 1. B—b
3. Accept if any generate w. Reject if not. Let’s always assume G is in CNF.

Theorem: Acp; € NP

Proof: “Oninput (G, w)
1. Nondeterministically pick some derivation of length 2|w| — 1.
2. Accept if it generates w. Reject if not.

Attempt to show Aqp; EP

Theorem: Acp; €EP
Proof attempt:
Recursive algorithm C tests if G generates w, starting at any specified variable R.
C ="“Oninput (G,w,R)
1. For each way to divide w = xy and for each rule R = ST
2. Use(Ctotest(G,x,S)and(G,y,T)
3. Accept if both accept
4. Reject if none of the above accepted.”
Then decide Acpg by starting from G’s start variable.

C is a correct algorithm, but it takes non-polynomial time.
(Each recursion makes O (n) calls and depth is roughly log n.)

Fix: Use recursion + memory called Dynamic Programming (DP)
Observation: String w of length n has 0(n?) substrings w; --- w;
therefore there are only 0(n?) possible sub-problems (G, x, S) to solve.

8

DP shows Aqg; €EP

Theorem: Ap; €EP
Proof : Use DP (Dynamic Programming) = recursion + memory.
D = “Oninput (G, w, R)
1. For each way to divide w = xy and for each rule R = ST)
2. UseDtotest (G,x,S)and (G,y,T)
3. Accept if both accept ~ same as before
4. Reject if none of the above accepted.”
Then decide Acpg by starting from G’s start variable.

Check-in 14.2
Total number of calls is O(n?) so time used is polynomial. Suppose B is a CFL.

Does that imply that B € P?
(a) Yes
(b) No.

Alternately, solve all smaller sub-problems first: “bottom up”

Check-in 14.2

Acpe € P & Bottom-up DP

Theorem: Acp; EP
Proof : Use bottom-up DP.
D = “Oninput (G, w)
1. For each w; and variable R } Solve for substrings
Solve (G, w;, R) by checking if R = wj; is a rule. of length 1
2. Fork = 2,...,n and each substring u of w where |u| = k and variable R
Solve (G, u, R) by checking for each R = ST and each division u = xy
if both (G, x,S) and (G, y, T) were positive.
3. Accept if (G,w,S) is positive where S is the original start variable.
4. Reject if not.”

Total number of calls is 0(n?) so time used is polynomial.

Often, bottom-up DP is shown as filling out a table.

Solve for substrings of length k
by using previous answers for
substrings of length < k.

Satisfiability Problem

Defn: A Boolean formula ¢ has Boolean variables (TRUE/FALSE values)

and Boolean operations AND (A), OR (V), and NoT ().

Defn: ¢ is satisfiable if ¢ evaluates to TRUE for some assignment to its variables.

Sometimes we use 1 for True and O for False.

Example: Llet ¢ = (x Vy)A(XVY) (Notation: X means —x)
Then ¢ is satisfiable (x=1, y=0)

Defn: SAT = {(¢)| ¢ is a satisfiable Boolean formula}

Theorem (Cook, Levin 1971): SAT € P —» P=NP
Proof method: polynomial time (mapping) reducibility

Check-in 14.3
Is SAT € NP?
(a) Yes.

(b) No.

(c) Idon’t know.

(d) No one knows.

Check-in 14.3

Polynomial Time Reducibility

Defn: A is polynomial time reducibleto B (A <p B) if A<, B
by a reduction function that is computable in polynomial time.

Theorem: If A <p B and B €P then A €P. —1

7

f is computable in polynomial time

decidable

Idea to show SAT € P — P=NP
Analogy with Aqy

Quick review of today

NTIME(t(n)) and NP

HAMPATH and COMPOSITES € NP
P versus NP question

Acpg € P via Dynamic Programming
The Satisfiability Problem SAT

Polynomial time reducibility

MIT OpenCourseWare

18.404) / 18.4041) / 6.840] Theory of Computation
Fall 2020

For information about citing these materials or our Terms of Use, visit:

https://ocw.mit.edu/
https://ocw.mit.edu/terms

