Assignments are to be submitted to Gradescope by 24:00. The following is necessary for the first two problems.

Theorem. Let $E \subset \mathbb{R}$ be measurable, and let $h_n \in L^1(E)$, $n \in \mathbb{N}$, such that $\int_E |h_n| \to 0$ as $n \to \infty$. Then there exists a subsequence $\{h_{n_j}\}_j$ such that for almost every $x \in E$, $\lim_{j\to\infty} h_{n_j}(x) = 0$.

Proof. Let $j \in \mathbb{N}$. Then

$$m(\{x \in E \mid |h_n(x)| \ge 2^{-j}\}) = \int_{\{|h_n| > 2^{-j}\}} 1 \le 2^j \int_{\{|h_n| > 2^{-j}\}} |h_n| \le 2^j \int_E |h_n| \to 0,$$

as $n \to \infty$. Thus, there exists a sequence of integers $n_1 < n_2 < n_3 < \cdots$ such that for all $j \in \mathbb{N}$,

$$m(\{x \in E \mid |h_{n_j}(x)| \ge 2^{-j}\}) \le 2^{-j}$$

Let $E_j = \{x \in E \mid |h_{n_j}(x)| \geq 2^{-j}\}$, and $F := \bigcap_{k=1}^{\infty} \left(\bigcup_{j=k}^{\infty} E_j\right)$. Then $m\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_j m(E_j) \leq \sum_j 2^{-j} = 1 < \infty$, so by continuity of Lebesgue measure

$$m(F) = \lim_{k \to \infty} m\left(\bigcup_{j=k}^{\infty} E_j\right)$$
$$\leq \lim_{k \to \infty} \sum_{j=k}^{\infty} m(E_j)$$
$$\leq \lim_{k \to \infty} \sum_{j=k}^{\infty} 2^{-j}$$
$$= \lim_{k \to \infty} 2^{-k+1} = 0.$$

One can then easily check that for all $x \in E \setminus F = \bigcup_{k=1}^{\infty} \left(\bigcap_{j=k}^{\infty} (E \setminus E_j) \right)$, we have $\lim_{j \to \infty} |f_{n_j}(x)| = 0$, and thus $\{x \in E \mid \lim_{j \to \infty} |f_{n_j}(x)| \neq 0\} \subset F$ (a set of measure zero) proving the theorem.

Definition. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function such that

- for all $x \in \mathbb{R}$, $\varphi(-x) = \varphi(x)$ and $\varphi(x) \ge 0$,
- if |x| > 1 then $\varphi(x) = 0$,
- $\int_{\mathbb{R}} \varphi(x) dx = \int_{-1}^{1} \varphi(x) dx = 1.$

For $\epsilon > 0$, we define $\varphi_{\epsilon}(x) = \frac{1}{\epsilon}\varphi(\frac{x}{\epsilon})$, and note $\int_{\mathbb{R}} \varphi_{\epsilon}(x) dx = 1$. The family of functions $\{\varphi_{\epsilon}\}$ is called a *a* family of mollifiers.

For problems 1 and 2, the arguments used in showing convergence of Fourier series in $L^2([-\pi,\pi])$ might be useful.

1. Let $g \in C(\mathbb{R})$ with the property that there exists R > 0 such that if |x| > R then g(x) = 0. Note that this implies g is uniformly continuous on \mathbb{R} . For $\epsilon > 0$, define

$$g_{\epsilon}(x) := \int_{\mathbb{R}} \varphi_{\epsilon}(x-y)g(y)dy = \int_{\mathbb{R}} \varphi_{\epsilon}(z)g(x-z)dz.$$

- (a) Prove that g_{ϵ} is infinitely differentiable and if $|x| > R + \epsilon$ then $g_{\epsilon}(x) = 0$.
- (b) Prove that $||g_{\epsilon} g||_{\infty} \to 0$ as $\epsilon \to 0^+$.
- (c) Let $f \in L^2(\mathbb{R})$ and $\delta > 0$. Prove that there exists an infinitely differentiable function h with the property that there exists S > 0 such that if |x| > S then h(x) = 0 and

$$\|f-h\|_2 < \delta.$$

This shows that the subspace of smooth, compactly supported functions is dense in $L^2(\mathbb{R})$.

2. For $f \in L^2(\mathbb{R})$ and $\epsilon > 0$, we define

$$f_{\epsilon}(x) = \int_{\mathbb{R}} \varphi_{\epsilon}(x-y) f(y) dy.$$

- (a) Prove that for all $f \in L^2(\mathbb{R})$, $||f_{\epsilon}||_2 \leq ||f||_2$. *Hint:* First prove the inequality for all continuous functions in $L^2(\mathbb{R})$. Now let $f \in L^2(\mathbb{R})$ and $f_n \in C(\mathbb{R}) \cap L^2(\mathbb{R})$, $n \in \mathbb{N}$, such that $||f_n - f||_2 \to 0$. By the estimate for continuous functions, the sequence $\{(f_n)_{\epsilon}\}_n$ is a Cauchy sequence in $L^2(\mathbb{R})$, so there exists $g \in L^2(\mathbb{R})$ such that $||(f_n)_{\epsilon} - g||_2 \to 0$ as $n \to \infty$. Prove that for all $x \in \mathbb{R}$, $|(f_n)_{\epsilon}(x) - f_{\epsilon}(x)| \to 0$ as $n \to \infty$, and use the Theorem above to conclude $g = f_{\epsilon}$. Finally, conclude $||f_{\epsilon}||_2 \leq ||f||_2$.
- (b) Prove that for all $f \in L^2(\mathbb{R})$, $||f_{\epsilon} f||_2 \to 0$ as $\epsilon \to 0^+$.
- 3. Let *H* be a Hilbert space. Suppose that $P \in \mathcal{B}(H, H)$ is a projection and for all $u, v \in H$, $\langle Pu, v \rangle = \langle u, Pv \rangle$. Prove that $W := \text{Range}(P) = \{Pu \mid u \in H\}$ is a closed subspace of *H* and $P = \Pi_W$.
- 4. Let H be a Hilbert space, and let $C \subset H$ be a closed convex subset.
 - (a) Prove that for all $u \in H$ there exists a unique element $v \in C$ such that

$$||u - v|| = \inf_{w \in C} ||u - w||.$$

We denote this element in C by $v = P_C u$.

(b) Let $u \in H$ and $v \in C$. Prove that $v = P_C u$ if and only if for all $w \in C$

$$\operatorname{Re}\langle u - v, w - v \rangle \le 0. \tag{(\dagger)}$$

Hint: To show that $v = P_C u$ implies (†), let $w \in C$, and for $t \in [0, 1]$, $w(t) = (1-t)v + tw \in C$. Then

$$||u - v||^2 \le ||u - w(t)||^2, \quad t \in [0, 1].$$

Now expand this out, cancel terms and send $t \to 0^+$.

- 5. Let $\{h_k\}_k$ be a sequence of non-negative real numbers.
 - (a) Prove that $C = \{\{b_k\}_k \in \ell^2 \mid |b_k| \le h_k \text{ for all } k\}$ is a closed convex subset of ℓ^2 .
 - (b) For $a = \{a_k\}_k \in \ell^2$, compute $P_C a = \{(P_C a)_k\}_k$.

18.102 / 18.1021 Introduction to Functional Analysis Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.