Assignments are to be submitted to Gradescope by 24:00.

1. Let $M \subset \ell^{\infty}$ be the subspace

$$M = \left\{ a = \{a_k\}_k \in \ell^\infty \mid \lim_{k \to \infty} a_k \text{ exists } \right\}.$$

(a) Define $u: M \to \mathbb{C}$ via

$$u(a) = \lim_{k \to \infty} a_k, \quad a \in M.$$

Prove that u is a bounded linear functional on M.

(b) By the Hahn-Banach theorem, there exists $v \in (\ell^{\infty})'$ such that $v|_M = u$. Prove that there is no $b = \{b_k\}_k \in \ell^1$ such that for all $a \in \ell^{\infty}$

$$v(a) = \sum_{k=1}^{\infty} a_k b_k.$$

Hint: Towards a contradiction, suppose that there exists $b = \{b_k\}_k \in \ell^1$ such that for all $a \in \ell^\infty$, $v(a) = \sum_k a_k b_k$, and consider $v(e_n)$ where $e_n = \{\delta_{nk}\}_k \in \ell^\infty$.

- 2. Suppose that V and W are normed vector spaces and $T \in \mathcal{B}(V, W)$.
 - (a) Define $T^{\dagger}: W' \to V'$ by

$$T^{\dagger}f := f \circ T, \quad f \in W'.$$

Prove that $T^{\dagger} \in \mathcal{B}(W', V')$ and $||T^{\dagger}|| = ||T||$. T^{\dagger} is called the *adjoint* or *transpose* of T.

Hint: First show that $||T^{\dagger}|| \leq ||T||$. To show the reverse inequality, let $x \in V$ with ||x|| = 1. A corollary of the Hahn-Banach theorem proved in lecture provides an element $f \in W'$ such that ||f|| = 1 and f(Tx) = ||Tx||. Use this fact to show that $||Tx|| \leq ||T^{\dagger}||$.

(b) Let $1 \le p \le \infty$. For $a = \{a_k\}_k$, define the *right shift* of a to be the sequence

$${Ra}_k := \{0, a_1, a_2, a_3, \ldots\}.$$

Prove that $R \in \mathcal{B}(\ell^p, \ell^p)$ and compute ||R||.

(c) Let $1 \le p < \infty$ and 1/p + 1/q = 1. Recall from Assignment 1 that we can identify $(\ell^p)'$ with ℓ^q via "pairing": $f \in (\ell^p)'$ if and only if there exists $b \in \ell^q$ such that for all $a \in \ell^p$

$$f(a) = \sum_{k=1}^{\infty} a_k b_k,$$

and moreover, $||f|| = ||b||_q$. With this identification of $(\ell^p)'$ with ℓ^q , compute $\{(R^{\dagger}b)_k\}_k$ in terms of $b = \{b_k\}_k \in \ell^q$. For example, if $b = e_1 = \{1, 0, 0, \ldots\}$, then for all $a \in \ell^p$

$$(R^{\dagger}e_1)(a) := \sum_{k=1}^{\infty} (Ra)_k (e_1)_k = (Ra)_1 = 0 = \sum_{k=1}^{\infty} a_k \cdot 0,$$

so $R^{\dagger}e_1 = \{0\}_k = 0 \in \ell^q$.

3. Let $E \subset \mathbb{R}$ and $x \in \mathbb{R}$. Prove that if $E + x := \{y + x \mid y \in E\}$, then

$$m^*(E+x) = m^*(E).$$

[Thus, outer measure is translation invariant.]

4. This exercise shows that every open set can be written as a countable union of open intervals. Let $U \subset \mathbb{R}$ be an nonempty open set. For $x \in U$, define

$$a_x := \inf\{a \in \mathbb{R} \mid (a, x] \subset U\}, \quad b_x := \sup\{b \in \mathbb{R} \mid [x, b) \subset U\}.$$

- (a) Prove that for all $x \in U$, $(a_x, b_x) \subset U$.
- (b) Prove that if $x, y \in U$ and $y \in (a_x, b_x)$ then $(a_y, b_y) = (a_x, b_x)$.
- (c) Prove that

$$U = \bigcup_{q \in U \cap \mathbb{Q}} (a_q, b_q).$$

Hint: Recall that \mathbb{Q} is dense in \mathbb{R} : for all real numbers c < d there exists $r \in \mathbb{Q}$ such that c < r < d.

18.102 / 18.1021 Introduction to Functional Analysis Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.