Assignments are to be submitted to Gradescope by 24:00.

The following theorem (typically, but not always, covered in 18.100) will be useful.

Theorem (Arzela-Ascoli). Let $f_n \in C([a, b])$, $n \in \mathbb{N}$, such that

- there exists $B \ge 0$ such that for all $n \in \mathbb{N}$, $||f_n||_{\infty} \le B$,
- the sequence $\{f_n\}_n$ is equi-continuous: for all $\epsilon > 0$ there exists $\delta > 0$ such that if $|x-y| < \delta$, then for all $n \in \mathbb{N}$, $|f_n(x) f_n(y)| < \epsilon$.

Then there exists a subsequence $\{f_{n_j}\}_j$ converging in C([a, b]).

1. Let $\{f_n\}_n$ be a sequence of continuously differentiable functions on [0, 1] such that

$$B := \sup_{n} \left[\|f_n\|_2 + \|f'_n\|_2 \right] < \infty.$$

(a) Prove that for all $n \in \mathbb{N}$, $||f_n||_{\infty} \leq B$. *Hint*: Prove for all $x, y \in [0, 1]$,

$$|f_n(x)| \le |f_n(y)| + ||f'_n||_2.$$

Now integrate in $y \in [0, 1]$.

- (b) Prove that for all $n \in \mathbb{N}$ and $x, y \in [0, 1]$, $|f_n(x) f_n(y)| \leq B|x y|^{1/2}$.
- (c) Prove that there exists a subsequence $\{f_{n_j}\}_j$ converging in $L^2([0,1])$.
- 2. Let $K \in C([a, b] \times [a, b])$ and define

$$Tf(x) = \int_a^b K(x, y) f(y) dy, \quad f \in L^2([a, b]).$$

Prove that $T \in \mathcal{B}(L^2([a, b]))$, and for every bounded sequence $\{f_n\}_n$ in $L^2([a, b])$, the sequence $\{Tf_n\}_n$ has a subsequence $\{Tf_{n_j}\}_j$ converging in $L^2([a, b])$. [This proves that T is a compact operator.]

3. Recall, from Assignment 8, the Sobolev space $H^{s}(\mathbb{T})$ of order $s \geq 0$:

$$H^{s}(\mathbb{T}) := \left\{ f \in L^{2}([-\pi,\pi]) \mid ||f||_{H^{s}(\mathbb{T})} < \infty \right.,$$
$$||f||^{2}_{H^{s}(\mathbb{T})} := \sum_{n \in \mathbb{Z}} (1+|n|^{2})^{s} |\hat{f}(n)|^{2}.$$

Prove that if s > 0 and $B \ge 0$, the set

$$K = \{ f \in H^s(\mathbb{T}) \mid ||f||_{H^s(\mathbb{T})} \le B \}$$

is a compact subset of $L^2([-\pi,\pi])$. [This proves that the inclusion $\iota: H^s(\mathbb{T}) \to L^2(\mathbb{T})$ is a compact operator when s > 0.] 4. Let $\{A_{ij}\}_{i,j=1}^{\infty}$ be a bi-sequence of complex numbers such that

$$\sum_{i} \sum_{j} |A_{ij}|^2 := \lim_{N \to \infty} \sum_{i=1}^{N} \left(\sum_{j=1}^{\infty} |A_{ij}|^2 \right) < \infty.$$

For $a = \{a_j\}_j \in \ell^2$, define a sequence $Ta = \{(Ta)_i\}_i$ by

$$(Ta)_i := \sum_j A_{ij} a_j$$

- (a) Prove that $T \in \mathcal{B}(\ell^2)$ and $||T|| \leq \left(\sum_i \sum_j |A_{ij}|^2\right)^{1/2}$.
- (b) For $n \in \mathbb{N}$, define the *n*-th truncation of T via

$$(T_n a)_i = \begin{cases} \sum_{j=1}^n A_{ij} a_j & \text{if } i = 1, 2, \dots, n\\ 0 & \text{if } i = n+1, n+2, \dots, \end{cases} \quad a \in \ell^2.$$

Prove that $T_n \in \mathcal{B}(\ell^2)$ is a finite rank operator and $\lim_{n\to\infty} ||T - T_n|| = 0$. [According to a theorem proved in class, this shows that T is a compact operator.]

5. For $a = \{a_k\} \in \ell^2$, we define the *left shift operator*

$$La = \{a_2, a_3, a_4, a_5, \ldots\},\$$

and the right shift operator

$$Ra = \{0, a_1, a_2, a_3, \ldots\}.$$

- (a) Is L or R a compact operator? Why or why not?
- (b) Prove that R has no eigenvalues.
- (c) Prove that $\operatorname{Spec}(R) = \{\lambda \in \mathbb{C} \mid |\lambda| \le 1\}.$
- (d) Prove that the set of eigenvalues of L is given by $\{\lambda \in \mathbb{C} \mid |\lambda| < 1\}$, and determine the corresponding eigenspaces. *Hint*: As evident from the definitions, $La = \lambda a$ if and only if for all $k \in \mathbb{N}$, $a_{k+1} = \lambda a_k$. Now solve this recursive equation.
- (e) Prove that $\operatorname{Spec}(L) = \{\lambda \in \mathbb{C} \mid |\lambda| \le 1\}.$
- 6. (Do not turn in.) Given $f \in L^2([0,1])$, define

$$Tf(x) = \int_0^x f(t)dt, \quad x \in [0, 1].$$

(a) Prove that $T \in \mathcal{B}(L^2([0, 1]))$ and T is a compact operator. *Hint*: Use Cauchy-Schwarz to prove that

$$\forall x \in [0,1], \quad |Tf(x)| \le ||f||_2,$$

$$\forall x, y \in [0,1], \quad |Tf(x) - Tf(y)| \le ||f||_2 |x - y|^{1/2}.$$

These estimates alone suffice to prove that $T \in \mathcal{B}(L^2([0, 1]))$, and in conjunction with Arzela-Ascoli they can be used to prove T is a compact operator.

- (b) In the next two parts, we will show that T has no eigenvalues. Suppose that $f \in L^2([0,1])$ and Tf = 0. Prove that for all $a, b \in [0,1]$ with a < b, we have $\int_a^b f(t)dt = 0$. Conclude that $\int_0^1 f(t)\overline{\chi(t)}dt = 0$ for all simple functions in $L^2([0,1])$, and thus, f = 0. [Thus, T is injective, and zero is not an eigenvalue of T.]
- (c) Suppose that $\lambda \in \mathbb{C}$, $\lambda \neq 0$. Prove that if $(T \lambda I)f = 0$, then f is continuously differentiable and

$$f - \lambda f' = 0, \quad f(0) = 0.$$

Conclude that f = 0. [Thus, $T - \lambda I$ is injective, and λ is not an eigenvalue of T.]

18.102 / 18.1021 Introduction to Functional Analysis Spring 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.