
5.61 Fall 2017 
Problem Set #8 Solutions 

1. LCAO-MO for H+
2 

In class, we discussed the MO picture of H+ and found simple solutions for the energies of the σ 2 
and σ∗ orbitals in terms of a few integrals. After significant effort, these integrals can all be worked 
out: � � 

S −R = e 1 + R + 
1 
R2 

3 � � 
−R H12 = e 

1 
R 
− 

1 
2 
− 

7 
R − 

6 
1 
R2 

6 � � 
1 

ε = − −2R + e 1 + 
1 

2 R 

A. Plot (rough sketch is OK) these functions as a function of the distance, R, between the two 
hydrogen nuclei. Which terms decay most quickly with distance? Note that ε is the average energy 
of a 1s electron on hydrogen atom A. Why is this energy not exactly equal to the energy of a 
hydrogen 1s electron? 

Solution: The overlap, interaction, and energy integrals are plotted as a function of internuclear 
distance, R, in Figure 2. Inspecting the curves, we see that the overlap integral S is repulsive, while 
the interaction H12 and energy ε integrals are attractive, and ε decays most quickly with distance 
(∼ e−2R). This quantity represents the average energy of an electron in a single 1s orbital centered 
on one H atom. It increases as R→ 0 because it includes the energy of the nuclear electrostatic 
repulsion (∼ R−1). 
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Figure 2. The R–dependence of the overlap S, interaction H12, and energy ε integrals of H+
2 . 
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B. Plot the energies of the σ and σ∗ orbitals as a function of R. What is the equilibrium bond 
length for H+ at this level of approximation? What is the binding energy? Compare these to the 2 
experimental values of 1.06 ˚ How does the sum of the MO energies, A and 2.8 eV , respectively. 
E0 + E0 vary with distance? 

Solution: 

The one-electron MO energy eigenvalues obtained by solving the variational problem are 

ε + H12 ε − H12 
Eσ = Eσ∗ = . (1.1) 

1 + S 1 − S 

These energies (minus the energy of the 1s electron at infinite separation) are plotted as a function 
of R in Figure 3. 
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Figure 3: The MO energies of H+ as a function of internuclear distance R. 2 

The equilibrium bond length for H+ in this model is found by finding the minimum of Eσ(R). Using 2 
the above expressions and finding the root of the equation dEσ/dR = 0 (must be done numerically, 
e.g. with Mathematica’s FindRoot), yields Re = 249 a.u. = 1.32 Å. The binding energy at R = 2.49 
a.u. is −(Eσ(2.49) − Eσ(∞)) = 0.5648 − 1/2 = 0.0648 = 1.76 eV . These are in the ballpark of the 
experimental values of 1.06 Å, and 2.8 eV. 

The sum of Eσ(R) and Eσ∗ (R) (which corresponds to one non-interacting electron in each MO) 
reach limiting values of −1 as R → ∞ and ∞ as R → 0. Both limits make sense. The former 
corresponds to two independent electrons in hydrogen 1s orbitals (each with energy −1/2). In the 
latter case, we expect internuclear repulsion to dominate. 
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C. In other chemistry classes, you may have been taught that the strength of a chemical bond 
is proportional to the overlap of the atomic orbitals involved. Based on your results above, how 

? When does it break down? accurate is this approximation for H+
2

Solution: 

To investigate the relationship between the overlap S and the binding energy BE(R)= −(Eσ(R) − 
1/2), we can make a parametric plot of the two quantities, as shown in Figure 4. We see that, for 
small overlap (S < 0.3), the binding energy is indeed roughly proportional to S. However, this 
intuitive idea completely breaks down for S > 0.3. The reason is that the overlap in H+

2 is correlated 
with the internuclear distance, and so repulsive effects are built into the overlap dependence. In 
general, all else being equal, we still expect binding energy to scale roughly with increasing overlap. 
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Figure 4. Dependence of binding energy on overlap integral. 
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2. Matrix Mechanics 

In class we discussed matrix mechanics, which we will use increasingly often in the remainder of 
the course. The following problems provide practice in the mechanics of the use of matrix notation. 
Suppose ψ and φ are wavefunctions composed of a linear combination of three orthonormal basis 
functions ψ1, ψ2, and ψ3: 

√ 
ψ = 2ψ1 − 3ψ3 √ 
φ = i 2ψ1 + ψ2 

A. How would we express ψ and φ in matrix mechanics? That is, what are the vectors ψ and φ? 

Solution: 

Given the orthonormal functions {ψ1, ψ2, ψ3}, we define the following two wavefunctions: 
√ 

ψ = 2ψ1 − 3ψ3 √ 
φ = i 2ψ1 + ψ2 

In vector notation, the two wavefunctions are represented by column vectors. Each element of the 
vector corresponds to the coefficient of the basis function. ⎛ ⎞ ⎛ √ ⎞ 

2 i 2 
ψ = ⎝ 0√ 

⎠ , φ = ⎝ 1 ⎠ (2.1) 
3 0 

B. What are ψ† and φ†? 

Solution: The † operator takes the conjugate transpose: � √ � � √ � 
ψ† φ† = 2 0 − 3 , = −i 2 1 0 (2.2) 

(Notice that the † operator converts column vectors to row vectors.) 

C. Normalize ψ and φ. 

Solution: 
√ 

† To normalize a vector ~v, we take ~v → ~v/|~v|, where |~v| ≡ ~v · ~v is the norm or magnitude of ~v. 
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Applying normalization to our two wavefunctions yields ⎛ ⎞ 
2 � √ � 

ψ†ψ = 2 0 − 3 ⎝ 0 ⎠ = 4 + 0 + 3 = 7 (2.3) √ 
− 3 
√ 

→ ψnormalized = ψ/ 7 (2.4) ⎛ √ ⎞ 
−i 2 � √ � 

φ†φ = +i 2 1 0 ⎝ 1 ⎠ = 2 + 1 + 0 = 3 (2.5) 
0 

√ 
→ φnormalized = φ/ 3 (2.6) 

D. Compute the inner products ψ† · φ and φ†ψ. Do you notice any relationship between these two 
numbers? 

Solution: 

The inner products of the two wavefunctions are ⎛ √ ⎞ 
−i 2 � √ � √ √ 

ψ†φ = ⎝ 2 0 − 3 1 ⎠ = −i2 2 + 0 + 0 = −i2 2 
0 ⎛ ⎞ 
2 � √ � √ √ 

φ†ψ = ⎝ +i 2 1 0 0 ⎠ = +i2 2 + 0 + 0 = +i2 2 √ 
− 3 

(2.7) 

(2.8) 

We note that in general, ψ†φ = (φ†ψ)∗ . 

E. Are ψ and φ orthogonal? 

Solution: 

Two wavefunctions are orthogonal if their inner (dot) product is zero. In part D we computed 
non-zero inner products, so these states are not orthogonal. 

F. From the information given, can you tell which wavefunction has more nodes? 

Solution: 
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NO. This can be made rigorous by scaling the wavefunctions and switching labels around. Convince 
yourself that we have insufficient information to make any claims comparing the nodes of either 
wavefunction. 

G. For each of the following eleven matrices, decide whether the matrix could or could not represent 
the Hamiltonian for this system. For matrices that could not be the Hamiltonian, explain why not. � �� �� �� � 

1 −1 −1 −1 1 i 0 1 
−1 2 −1 −2 i 2 0 0 ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ 

1 0 0 1 0 −i 1 2 2 i 0 0 ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ 0 1 0 0 2 0 0 −1 1 0 1 0 
0 0 1 i 0 3 0 0 3 0 0 −2i ⎛ ⎞⎛ ⎞⎛ ⎞ 
1 −1 0 0 1 −i 1 1 1 0 0 0 ⎜ ⎟⎜ ⎟⎜ ⎟ −1 2 0 0 −i 2 0 0 0 2 0 0 ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ 0 0 −3 0 1 0 1 0 0 0 1 0 
0 0 1 −1 1 0 0 2 0 0 0 3 

Solution: 

The only condition for a valid Hamiltonian is that it is a Hermitian matrix such that H = H† = (H∗)T . 
The matrices that satisfy this requirement are 1, 2, 5, 6, 9, and 11. Matrices 3, 4, 7, 8, and 10 are 
non–Hermitian. 

3. This problem deals with the Hückel MO theory of π–conjugated 
systems 

To answer each question, you will need to construct the Hückel MOs for each of the molecules 
pictured, divide them into sets of occupied and unoccupied orbitals, and determine the relevant 
properties, such as ground state energy, bond order, etc. 

NOTE: For all parts A–D we take α = αC = −11.2 eV and β = βCC = −0.7 eV. 

A. Determine the ionization potential of benzene [IP = E(B+)−E(B)]. Compare this to the IP of 
hexatriene. Which molecule, B+ or B, holds its outermost electron most tightly? 

Benzene 

Versus 
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Hexatriene 

Solution: 

The arbitrary numbering scheme I will use for this problem is 

5 

4 

3 

2 

1 

6 

Versus 

1 

2 

3 

4 

5 

6 

Let’s build the Hückel MO Hamiltonian from the 6 carbon atoms. The differences between benzene 
and hexatriene are only connectivity: ⎞ ⎛ ⎞ ⎛ 

α β 0 0 0 β α β 0 0 0 0 

Hbenzene = 

⎜⎜⎜⎜⎜⎜⎝ 

β α β 0 0 0 
0 β α β 0 0 
0 0 β α β 0 
0 0 0 β α β 

⎟⎟⎟⎟⎟⎟⎠ 

Hhexatriene = 

⎜⎜⎜⎜⎜⎜⎝ 

β α β 0 0 0 
0 β α β 0 0 
0 0 β α β 0 
0 0 0 β α β 

⎟⎟⎟⎟⎟⎟⎠ 

(3.1) 

β 0 0 0 β α 0 0 0 0 β α 

We now substitute α and β with the values above and find the eigenvalues of each Hamiltonian 
numerically. The eigenvalues of Hbenzene (in eV) are 

Eµ = {−12.6, −11.9, −11.9, −10.5, −10.5, −9.8} (3.2) 

and the eigenvalues of Hhexatriene are 

Eµ = {−12.5, −12.1, −11.5, −10.9, −10.3, −9.9} (3.3) 

The ionization potential in this model is simply the energy of the HOMO of the ground state of 
each molecule (this is the orbital from which the electron is ejected). Since there are 6 π–electrons, 
we can fill the three lowest MOs and the HOMO will be the third lowest. Therefore, the IP of 
benzene is 11.9 eV, and the IP of hexatriene is 11.5 eV. and we conclude that benzene holds 
its HOMO electrons tighter. Experimental values are 9.24384 ± 0.00006 eV and 8.30 ± 0.02 eV, 
respectively, which agree with the trend predicted by the Hückel theory. What are some reasons 
the experimental values are systematically lower in magnitude? 
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B. Compare the total energies of the two 10-electron conjugated systems below. Which one is more 
stable? How do you explain this? 

Versus 

Solution: 

This problem is another straightforward application of Hückel theory. My numbering scheme will 
be 

6 

5 

4 

3 7 

2 8 

1 9 

10 
Versus 

The two Hückel Hamiltonians for the cyclic and linear systems are (with zeroes omitted) 

1 

10 

⎞ ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

α β β 
β α β 

β α β β 
β α β 

β α β 
β α β 

β α β 
β β α β 

β α β 
β β α 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

Hcyclic = (3.4) 
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⎞ ⎛ 

Hlinear = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

α β 
β α β 

β α β 
β α β 

β α β 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(3.5) 
β α β 

β α β 
β α β 

β α β 
β α 

Finding the eigenvalues of these Hamiltonians numerically yields (in eV): 

Eµ = {−12.8, −12, 4, −12.1, −11.8, −11.5, −10.9, −10.7, −10.0, −9.9, −9.7} (3.6) cyclic 

Eµ = {−12.5, −12, 4, −12.1, −11.8, −11.4, −11.0, −10.6, −10.3, −10.0, −9.9} (3.7) linear 

The ground state of each molecule has 10 electrons in the first 5 MOs. Summing these MO energies 
yields 

EGS 
cyclic = 2(−12.8) + 2(−12.4) + 2(−12.1) + 2(−11.8) + 2(−11.5) = −121.2eV (3.8) 

EGS 
linear = 2(−12.5) + 2(−12.4) + 2(−12.1) + 2(−11.8) + 2(−11.4) = −120.4eV (3.9) 

We predict the cyclic structure to be more stable by roughly 0.8 eV, presumably due to “aromatic-
ity”. 

C. What is the bond order of the selected bond in the molecule below? How do you rationalize 
this result in terms of resonance structures? 

&%
'$ 

Solution: 

This molecule is 

6 
7 '$ 5 

3 1 
4 

2 &% 
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Note that carbon 7 does not participate in the π network, being completely saturated. There is no 
aromatic cyclic structure: the π system runs along carbons 1-2-3-4-5-6. Thus, in terms of Hückel 
theory, this problem is identical to hexatriene, which we solved above in part A. I’ve numbered this 
molecule so that we can use the same Hamiltonian, Hhexatriene, without needing to permute any 
rows or columns. However, in this problem, we are interested in the bond order of the 2-3 bond, 
thus we will need the normalized eigenvector for each MO energy eigenvalue. Calculating these 
with a computer algebra program yields: ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ 

0.23 −0.42 0.52 0.52 −0.42 −0.23 

1 ~c = 

⎜⎜⎜⎜⎜⎜⎝ 

0.42 
0.52 
0.52 
0.42 

⎟⎟⎟⎟⎟⎟⎠ 

, 2 ~c = 

⎜⎜⎜⎜⎜⎜⎝ 

−0.52 
−0.23 
0.23 
0.52 

⎟⎟⎟⎟⎟⎟⎠ 

, 3 ~c = 

⎜⎜⎜⎜⎜⎜⎝ 

0.23 
−0.42 
−0.42 
0.23 

⎟⎟⎟⎟⎟⎟⎠ 

, 4 ~c = 

⎜⎜⎜⎜⎜⎜⎝ 

−0.23 
−0.42 
0.42 
0.23 

⎟⎟⎟⎟⎟⎟⎠ 

, 5 ~c = 

⎜⎜⎜⎜⎜⎜⎝ 

0.52 
−0.23 
−0.23 
0.52 

⎟⎟⎟⎟⎟⎟⎠ 

, 6 ~c = 

⎜⎜⎜⎜⎜⎜⎝ 

0.42 
−0.52 
0.52 
−0.42 

⎟⎟⎟⎟⎟⎟⎠ 

0.23 0.42 0.52 −0.52 −0.42 0.23 

Our expression for the bond order between atoms i and j involves a sum over each MO (indexed 
by µ), X 

µ ∗ µ Oij = nµ (c ) cj , (3.10) i 
µ 

where nµ is the number of electrons in the µth orbital. For our molecule, there are 6 π–electrons, 
so the first three MOs have 2 electrons each (i.e. n1 = n2 = n3 = 2). Evaluating the sum for atoms 
2 and 3 gives us X 

µ µ O23 = nµ(c2 ) 
∗ c3 = 2(0.42)(0.52)+2(−0.52)(−0.23)+2(0.23)(−0.42) = 0.44+0.24−0.19 = 0.49. 

µ 

(3.11) 
Remember that this is the bond order contribution only from the π–network. The σ–framework 
adds an additional bond order, yielding a total bond order ≈ 1.5. It’s useful to note that the first 
two MOs are bonding in nature (add positively to the bond order sum), while the third MO is 
anti-bonding with respect to carbons 2 and 3 (adds negatively to the bond order sum). If we were 
to plot the MOs, we would see a node between atoms 2 and 3 in the third MO. 

In terms of resonance structures, the partial bond order makes sense. We can arrow-push to form 
a di-radical species (on 1 and 6) that has a double bond between carbons 2 and 3. The “average” 
bond order over all resonance structures is then about 1.5, in agreement with Hückel theory. 
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1 

D. Plot the HOMO and LUMO for each molecule below. Is there anything about these orbitals 
that might tell you about the relative degree of conjugation between the pair of substituents in the 
meta (left) and para (right) positions? 

Solution: 

This problem asks us to compare the MOs of two different structural isomers of benzene with 
π–conjugated substituents. My numbering scheme is as follows: 

5 5 

6 

9 

4 6 4 10 

10 1 3 8 

2 7 

8 

9 2 7 
The Hückel Hamiltonians for these isomers are 

3 

⎞ ⎛ 
α β 
β α β 

β α β β 
β α β 

β α β 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

Hmeta (3.12) = 
β α β 

β α β 
β β α β 

β α β 
β α 

α β 
β α β 

β α β β 
β α β 

β α β 

⎞ ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

Hlinear (3.13) = 
β α β β 

β α β 
β β α 
β α β 

β α 

There are 10 π–electrons, so the lowest 5 MOs will be filled in the electronic ground state. The 5th 

lowest MO is the HOMO and the 6th lowest MO is the LUMO. The eigenvectors corresponding to 
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the 55h and 6th lowest MOs for the two isomers are: ⎞ ⎛ ⎞ ⎛ −0.43 0.43 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

−0.26 
0.26 
0.43 
0 

−0.43 
0 

−0.26 
0.26 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

6 , ~c meta = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

−0.26 
−0.26 
0.43 
0 

−0.43 
0 

0.26 
0.26 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

5 (3.14) ~c = meta 

0.43 −0.43 ⎞ ⎛ ⎞ ⎛ −0.47 0.48 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

−0.26 
0.34 
0.22 
−0.22 
−0.34 
0.22 
−0.22 
0.26 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

6 , ~c = para 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.26 
−0.34 
0.22 
0.22 
−0.34 
0.22 
0.22 
−0.26 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

5 (3.15) ~c = para 

0.47 0.47 

Plotting the approximate wavefunctions for these orbitals gives us: 

Page 10

In each case, the HOMO orbital has a bonding interaction within the substituents and an anti-
bonding interaction between the substituents and the ring. The LUMO has an anti-bonding in-
teraction within the substituents and bonding interaction between the substituents and the ring. 
Examining the magnitude of the eigenvector elements closely, we see that the bonding character in 
the meta substituents is slightly weaker than than in the para substituents 
(0.43 × 0.26 = 0.11 < 0.47 × 0.26 = 0.12). 

5.61 Fall 2017 Problem Set #8 Solutions Page 12 



4. It is straightforward to extend Hückel Theory to deal with π 
systems containing elements other than carbon and hydrogen. 

A. First, let us consider including heteroatoms such as nitrogen instead of carbon inside of conju-
gated rings. To use the Hückel prescription, we simply need α values for C and N and β values for 
CC and CN bonds. We already know that α(C) = 11.2 eV and β(CC) = –0.7 eV . Which of the 
following possible values for α(N) and β(CN) are most reasonable and why? 

α(N) = −10.2 eV β(CN) = −0.65 

α(N) = −11.2 eV β(CN) = −0.70 

α(N) = −12.2 eV β(CN) = −0.75 

Solution: 

Since N is a more electronegative atom than C, αN should be more negative, indicating that it 
binds its valence electrons more strongly. We will choose αN − −12.2 eV. Different values of βCN 

could be argued for and against. The CN bond distance in pyridine shortens by only a few percent 
compared to benzene; however, the N atomic radius is only a few percent smaller than C. I’ll 
consider these effects to roughly cancel out, so that the nearest-neighbor interactions are about the 
same, i.e. βCN = −0.7 eV. Valid arguments can be made to justify other choices of βCN. 

B. Use the parameters you chose in part A to compute the π MOs of pyridine. Compare your 
results to what you find for benzene. Do you notice any differences? What is the partial charge on 
nitrogen in this approximation? Does this make sense? 

Versus 

N 

Solution: 

We build the Hückel matrices in the same way as problem 3. Diagonal terms representing orbital 
energies on N will use αN , and CN off-diagonal terms will use βCN nearest neighbor interactions. 
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The Hamiltonian for pyridine is ⎞ ⎛ 

Hbenzene = 

⎜⎜⎜⎜⎜⎜⎝ 

αN βCN 0 0 0 βCN 

βCN α β 0 0 0 
0 β α β 0 0 
0 0 β α β 0 
0 0 0 β α β 
βCN 0 0 0 β α 

⎟⎟⎟⎟⎟⎟⎠ 

(4.1) 

The MO eigen-energies for pyridine are: 

E = {−12.94, −12.19, −11.9, −10.77, −10.5, −9.89} 

Comparing these (and their eigenvectors, not shown) to benzene, we make the following observa-
tions: 

1. The lowest energy MO is lower in energy, due to the stronger electronegativity of N. 

2. Only one of each pair of degenerate MOs is brought down in energy. This is because one of 
each pair has a node through the N atom; in the limits of Hückel theory, this MO will not be 
affected at all by changes at these sites. 

3. The low energy MOs have the largest density on the N atom (we have broken the rotational P symmetry of the molecule). This is consistent with N’s greater electronegativity pulling in 
µ |2) is calculated i the electron density towards it. The partial charge on N (qi = +1 − nµ|cµ 

to be ∼ −0.49. 

C. We can also use Hückel theory to understand how substituents, like a fluorine atom, will affect 
the π orbitals. Toward this end, we can assume that a fluorine atom will lower the average energy 
of the carbon it is attached to by 0.2 eV. Thus a CH carbon will have α(C) = −11.2 eV while a CF 
carbon will have β(C)−11.4 eV . Use this parameterization to compute the MOs of 1-fluorobenzene. 
What is the charge on the substituted carbon? 

Solution: 

We will perform a similar calculation with 1-fluorobenzene. As fluorine deshields the carbon nucleus, 
we take αC = −11.4 eV for carbons that have CF bonds. We will assume β remains the same as 
for benzene. After building the Hamiltonian matrix and calculating its eigenvectors, we find the 
partial charge on the fluorinated carbon to be −0.11, i.e. the fluorine effectively pulls more electron 
density onto its C atom. 
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D. You are attempting a partial fluorination of pyridine. You want to selectively fluorinate two of 
the carbons, while leaving the others untouched. Which sites will the fluorines prefer? To answer 
this question, compute the energies of all six of the difluorinated isomers below. Which has the 
lowest energy? How do you rationalize your result? 

N F 

N F N F 

F 

F 

F 
N 

F 
N F N 

F F 

F 

F 

Solution: 

We now compare the energies of the six possible di-substituted fluorobenzenes. For each, we build 
the Hamiltonian matrix, calculate the eigenenergies, occupy these MOs with the 6 π electrons 
and then sum the one-electron energies of the occupied orbitals to find the energy of the ground 
electronic state. The energies (in eV) of the six isomers are: 

E2,5 = −74.446 

E2,4 = −74.423 

E2,3 = −74.441 

E2,6 = −74.409 

E3,4 = −74.455 

E3,5 = −74.492 

Hückel theory predicts that the 3,5- and 3,4-difluorobenzene compounds will be the most stable 
isomers. We could justify this result by noting that these two are the only two isomers not to have 
a fluorine atom ortho to the N atom, indicating that the increased π-electron density associated 
with fluorinated carbons would interact unfavorably with the increased π–electron density on the 
electronegative N. 
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