




5.61 Fall 2017 
Problem Set #7 Solutions 

1. Hydrogenic Systems.

In each of the following cases, state which of the two quantities is larger. Justify your answers. You 
do not need to do any integrals here. Some equations on page 333 of McQuarrie might be helpful. 

A. The average value of r for a 2s electron versus a 2p electron.

Solution: 

The average value of hri is larger for a 2s electron than a 2p electron.
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B. The average value of 1/r for a 2s electron versus a 2p electron.

Solution:〈
1
r

〉
is Z

4a0
for both the 2s and 2p cases. We can confirm this since we have derived an expression for〈

1
r

〉
from the virial theorem in Question 4, and have proved that it is independent of the ` value.

C. The average value of r for a 2s electron in He+ versus a 1s electron in H.

Solution:

〈r〉
+
for 2s He+ is 3a0 and for 1s Hydrogen it’s 3

2a0. It makes sense that 〈r〉 of the electron in the
He 2s would be double the distance (on average) than that of the 1s electron.

D. The average value of r for a 3d electron in Fe25+ versus a 1s electron in C5+.

Solution:

〈r〉 for the 3d electron of Fe25+ is ≈ 0.4a0, whereas for the 1s electron of C5+ it is 0.25a0. It is
expected that, although the nucleus of Fe25+ has a larger positive charge and would therefore pull
its electron in the 3d shell closer, it’s still not as close to the nucleus as the 1s electron of C5+.



E. The number of radial nodes in an 8g orbital versus the number of angular nodes in an 8g orbital.

Solution: 

The number of radial nodes is given as n − ` + 1 while the number of angular nodes is given by `.
Therefore 8g has 3 radial nodes and 4 angular nodes. 

F. The spacing between the radial nodes for a 14s orbital versus the spacing between the radial
nodes for a 16d orbital.

Solution: 

Both have the same number of nodes, but in general since the 16d electron will have a larger hri
value, we can expect that the node spacing should be larger for this case. 

NOTE: Atomic properties such as the relative n` orbital energies, En`, and radii, hr , atomicnin`
ionization energy and electron affinity, and the dependence of these properties on electron con-
figuration are explained by the systematic shielding of the +Z nuclear charge experienced by an 
electron in the n` atomic orbital by all of the electrons in the other occupied n0`0 atomic orbitals. 
One computes the effective nuclear charge experienced by an electron in the n` orbital due to 
shielding by all of the other electrons in the electronic configuration, Zeff (configuration). This n` 
effective nuclear charge is inserted in the standard hydrogenic formulas for orbital energy, En`, 
orbital radius, hrin`, and other integer powers of r, hrnin`. The Periodic Table is explained by 
shielding ! A table of these inter-orbital shielding effects, sometimes known as Burns’ rules, is given 
in a paper by Gerald Burns, “Atomic Shielding Parameters,” J. Chem. Phys. 41, 1521-1522 (1964), 
https://doi.org/10.1063/1.1726113. 

2. Spin 3/2 Periodic Table

Consider a universe where the electron has spin 3/2 instead of spin 1/2. 

A. Draw the periodic table (up to Hafnium) in this alternate universe.

Solution: If the electron were to have s = 3/2, then there would be four possible ms values, 
ms = +3/2, +1/2, −1/2, −3/2, instead of the usual two. This means that each atomic orbital can
be occupied by four electrons and still satisfy the Pauli exclusion principle (anti-symmetrization). 
s–orbitals can hold 4, p–orbitals can hold 12, etc. We build up the periodic table in the same way 
we are used to, adding electrons to shells as we go. The modified table (up to Hf) is shown in 
Figure 1. 
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5.61 Fall 2012 Pset 7 Solutions Bryan Changala

1 Spin 3/2 Periodic Table

a.
If the electron were to have s = 3/2, then there would be four possible ms values,
ms = +3/2,+1/2,−1/2,−3/2, instead of the usual two. This means that each atomic
orbital can be occupied by four electrons and still satisfy the Pauli exclusion principle /
antisymmetrization. s-orbitals can hold 4, p-orbitals can hold 12, etc. We build up the
periodic table in the same way we are used to, adding electrons to shells as we go. The
modified table (up to Hf) is shown in Figure 1.

That the 3d block should come after the 4s block isn’t obvious (and may even not

I II III IV (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) (XII) (XIII) (XIV) (XV) (I) (II) (III) (IV) V VI VII VIII IX X XI XII XIII XIV XV XVI

1 H He Li Be

2 B C N O F Ne Na Mg Al Si P S Cl Ar K Ca

3 Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

4 Rb Sr Y Zr Nb Mo Te Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf

p block
(XVI)

s block d block

Figure 1: One reasonable ordering for a spin-3/2 periodic table.

be the case for a spin 3/2 table). In the real table, this occurs because e-e repulsion is
significantly reduced for 4s electrons (which are much further from the core electrons),
than for 3d electrons. Even though the one-electron orbital energy for 4s levels is higher
than 3d levels, this reduction in e-e repulsion in many-electron atoms causes the reorder-
ing. We assume the same trend will exist here.

b.
The analog of the ”noble gases” would be those with complete n-shells, namely Be, Ca,
Kr, and Hf. With regards to the ”alkali earth metals,” we could argue that any element
with an incomplete s-shell would count, which includes groups I-III. You might argue
that only (ns)1 configurations should count, in which case you consider only group I
elements. In the real table, there is no ambiguity because the only incomplete s-shells
have 1 electron anyway. Carbon is still in the second period, along with elements with
Z = 5− 20 (B through Ca).

c.
Since each MO can also be filled with 4 electrons now, the bond order of He2 would be
4(!) O2, on the other hand, now has a bond order of 0 (the two σ and two σ∗ orbitals
from the O 1s and 2s orbitals are all completely filled with 16 electrons). You should be
realizing just how important the electron’s spin is in determing the chemical structure
and patterns of the universe.
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That the 3d block should come after the 4s block isn’t obvious (and may not even be true for a spin 
3/2 table). In the real table, this lower energy for 4s rather than 3d occurs because e-e repulsion 
is significantly reduced for 4s electrons (which are much further from the core electrons), than for 
3d electrons. Even though the one-electron orbital energy for 4s levels is higher than 3d levels, 
this reduction in e-e repulsion in many-electron atoms causes the reordering. We assume the same 
trend will exist here. There are 3 radial nodes for 4s and zero radial nodes for 3d. 

B. Which elements would be “noble gases”? Which would be alkaline earth elements? Which 
elements would be in the same period as carbon? 

Solution: 

The analog of the “noble gases” would be those with complete n–shells, namely Be, Ca, Kr, and Hf. 
With regard to the “alkaline earth metals,” we could argue that any element with an incomplete 
s–shell would count, which includes groups I-III. You might argue that only (ns)1 configurations 
should count, in which case you consider only group I elements. In the real table, there is no 
ambiguity because the only incompletely filled s–shells have 1 electron anyway. For S = 3/2, 
carbon is in the second period, along with elements with Z = 5 − 20 (B through Ca). 

C. What would the bond order of He2 be in this universe? What about O2? 

Solution: 

Since each MO can also be filled with 4 electrons now, the bond order of He2 would be 4(!). O2, 
on the other hand, now has a bond order of 0 (the two σ and two σ∗ orbitals from the O 1s and 2s 
orbitals are each completely filled with 16 electrons). You should be realizing just how important 
the electron’s spin is in determining the chemical structure and patterns of the universe. 

D. What would the equivalent of the octet rule be in this alternate universe? 

[NOTE: you could spend a lot of time answering this last question. It is intended to be fun. When 
it stops being fun, your answer is long enough.] 
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Solution: 

The octet rule is based on having complete n-shells. It should be clear that the simplest analog in 
the spin 3/2 table is the “hexadectet” rule, i.e. n = 2 and 3 orbitals prefer to have 16 electrons in 
their outer shells (4 in s and 12 in p). 
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3. Rydberg States of a Many-Electron Atom.

The subject of this problem is potassium, which has a closed-shell ion-core: 

K(1s 22s 22p 63s 23p 6)n ∗ ` 

The ionization energy (in cm−1 units) from the “4s” electronic ground state is 35009.78 cm−1 . The 
Rydberg constant for K is < = 109737.32cm−1 .

A. Why is it reasonable to ignore the anti-symmetrization requirement for Rydberg states of this
19 electron atom?

Solution: 

We approximate the K atom as a K+ core and an electron. As the K+ core is complete (all filled 
shells), anti-symmetrization between the core and the single valence electron has a negligible effect, 
so we ignore it. 

B. Consider three consecutive members of the ns, np, and nd Rydberg series:

n s-series n p-series n d-series

8 31764.95 cm−1 40 34934.97 cm−1 9 33572.11 cm−1 

9 32648.17 cm−1 41 34938.72 cm−1 10 33851.76 cm−1 

10 33214.39 cm−1 42 34942.20 cm−1 11 34056.90 cm−1 

∗ Compute n ∗-values for all 9 of the tabulated energy levels. Do the n levels increase in steps of 
∼1.00?

Solution: 

We are provided with excitation energies from the ground state. To convert to energies under 
ionization, we use En ∗ = Eionization − Estate. We combine this with

< 
En∗ = − .∗2 n 

Thus 

Plugging in the tabulated values, 

ns n* δs np n* δp ns n* δs 

8 5.815 2.185 40 38.300 1.700 9 8.737 0.263 
9 6.817 2.183 41 39.297 1.703 10 9.735 0.265 
10 7.818 2.182 42 40.297 1.703 11 10.731 0.269 
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n∗ =

√
<

Estate − Eionization
.

http:35009.78


∗ C. The quantum defects, δ`, are defined as n − n . Compute the approximately n-independent 
quantum defects for the s, p, and d series of K. 

Solution: 

∗ See above table. δ` = n − n . We see that the defect for ns is about 2.2, for np is about 1.7, and 
for nd is about 0.3. 

D. Suggest a reason why δs � δp > δd. 

Solution: 

s orbitals penetrate further into the inner core than orbitals with higher angular momentum. From 
this we expect δs � δp � δd ≈ 0. 

∗ E. The n values you have determined from real spectroscopic data may be considered “experi-
mentally measured.” But the tabulated integer n quantum numbers are not measured. They are 
inferred from some sort of physical argument. Can you suggest what this argument is? 

[HINT: the lowest s, p, and d states of K are called 4s, 4p, and 3d.] 

Solution: 

The quantum defects above are correct, even down to the 4s, 4p, and 4d states, to within 0.1. We 
∗ don’t record n because, to an excellent approximation, it increases in steps of 1. 

4. Two Electron Wavefunctions: Spin. 

For two electrons, the total z component of the spin angular momentum for the system is 

b b + bSz, total = Sz1 Sz2 

while the total spin operator is given by � �2 � �2 � �2 
Sb2 Sb2 S2 S2 b + b b + b b + btotal = x, total + by, total + bz, total + Sx1 Sx2 + Sy1 Sy2 + Sz1 Sz2 
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A. Show that both

ψαβ =

∣∣∣∣ ∣∣∣∣1√
2

1
1
sα
sα

(1)
(2)

2
2
sβ
sβ

(1)
(2)
≡ √1

2
(2sα(1)2sβ(2)− 2sβ(1)1sα(2))

and

ψβα =
1
∣∣∣∣ ∣∣∣∣√

2

1
1
sβ
sβ

(1)
(2)

2
2
sα
sα

(1)
(2)
≡ √1

2
(1sβ(1)2sα(2)− 2sα(1)1sβ(2))

are antisymmetric.

Show also that ψαβ and ψβα are eigenfunctions of Ŝz, total. What are the eigenvalues in each case?

Solution:

Ψαβ =
1√
2

[1sα(1)2sβ(2)− 2sβ(1)1sα(2)]

switching 1 and 2 by the P̂12 permutation operator

1
P̂12Ψαβ = √

2
[1sα(2)2sβ(1)− 2sβ(2)1sα(1)]

= −√1
2

[2sβ(2)1sα(1)− 1sβ(1)1sα(2)]

= −Ψαβ.

This indicates that Ψαβ is anti-symmetric:

1
Ψβα = √

2
[1sβ(1)2sα(2)− 2sα(1)1sβ(2)]

switching 1 and 2 by P̂12

P̂12Ψβα =
1√
2

[1sβ(2)2sα(1)− 2sα(2)1sβ(1)]

= −√1
2

[2sα(2)1sβ(1)− 1sβ(2)2sα(1)]

= −Ψβα.

This indicates that Ψβα is anti-symmetric.

Now the eigenvalue for Ψαβ:

Ŝz, total = Ŝ + Ŝ(z
Ŝ

1

z1 +

z

Ŝ

2

z2

)
ΨαβŜz, totalΨαβ =

=
1√
2

[
Ŝz1{1sα(1)2sβ(2)− 2sβ(1)1sα(2)}+ Ŝz2{1sα(1)2sβ(2)− 2sβ(1)1sα(2)}

]
=

1√
[(

}
2

)
1sα(1)2sβ(2)−

(
−}

2

)
2sβ(1)1sα(2)

+

2(
−}

2

)
1sα(1)2sβ(2)−

(
}
2

)
2sβ(1)1sα(2)

]
= 0
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Now the eigenvalue for Ψβα:

Ŝz, totalΨβα =
(
Ŝz1 + Ŝz2

)
Ψβα

=
1√
2

[
Ŝz1{1sβ(1)2sα(2)− 2sα(1)1sβ(2)}+ Ŝz2{1sβ(1)2sα(2)− 2sα(1)1sβ(2)}

]
=

1√
[(
−}

2

)
1sβ(1)2sα(2)−

(
}
2

)
2sα(1)1sβ(2)

+

2(
}
2

)
{1sβ(1)2sα(2)−

(
−}

2

)
2sα(1)1sβ(2)

]
= 0

This indicates that both Ψαβ and Ψβα are eigenfunctions of Ŝz, total, both with eigenvalues of 0.

B. Show that, while ψαβ and ψβα cannot be written in the form ψspaceψspin, the combinations of
ψαβ ± ψβα can both be cast in the form ψspaceψspin.

Solution:

Ψαβ =
1√
2

[1sα(1)2sβ(2)− 2sβ(1)1sα(2)]

=
1√
2

[(1s(1)2s(2)α(1)β(2))− (2s(1)1s(2)β(1)α(2))]

6= ΨspinΨspace

Ψβα =
1√
2

[1sβ(1)2sα(2)− 2sα(1)1sβ(2)]

=
1√
2

[(1s(1)2s(2)β(1)α(2))− (2s(1)1s(2)α(1)β(2))]

6= ΨspinΨspace.

However

Ψαβ + Ψβα =
1√
2

[1sα(1)2sβ(2)− 2sβ(1)1sα(2) + 1sβ(1)2sα(2)− 2sα(1)1sβ(2)]

=
1√
2

[{1s(1)2s(2)α(1)β(2)} − {2s(1)1s(2)β(1)α(2)}

+ {1s(1)2s(2)β(1)α(2)} − {2s(1)1s(2)α(1)β(2)}]

=

=

1√
2
{1s(1)2s(2)− 2s(1)1s(2)}{α(1)β(2) + β(1)α(2)}

1√
2

Ψspace ·Ψspin.
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Similarly,

Ψαβ −Ψβα = √1
2

[1sα(1)2sβ(2)− 2sβ(1)1sα(2)− 1sβ(1)2sα(2) + 2sα(1)1sβ(2)]

=
1√
2

[{1s(1)2s(2)α(1)β(2)} − {2s(1)1s(2)β(1)α(2)}

− {1s(1)2s(2)β(1)α(2)}+ {2s(1)1s(2)α(1)β(2)}]

=
1

=

√
2
{1s(1)2s(2) + 2s(1)1s(2)}{α(1)β(2)− β(1)α(2)}

1√
2

Ψspace ·Ψspin.

C. Verify that the total spin operator can be re-written in terms of raising and lowering operators:

Ŝ2
total = Ŝ1

2 + Ŝ2
2 + 2Ŝ1z Ŝ2z +

(
Ŝ1+Ŝ2− + Ŝ1−Ŝ2+

)
.

Solution:

Ŝ2
total = (Ŝ1 + Ŝ2)(Ŝ1 + Ŝ2) = Ŝ1

2 + Ŝ1Ŝ2 + Ŝ2Ŝ1 + Ŝ 2
2

= Ŝ1
1 + Ŝ2

2 + 2(Ŝ1Ŝ2)

= Ŝ1
2 + Ŝ2

2
y[(1+ 2(Ŝx1Ŝx2 + Ŝ Ŝy2 + Ŝz1Ŝz2)

= Ŝ1
2 + Ŝ2

2 + 2Ŝz1Ŝz2 + 2
Ŝ+1 + Ŝ−1

2

Ŝ+2 + Ŝ−2

2

)
+

(
Ŝ+1 − Ŝ−1

2i

Ŝ+2 − Ŝ−2

2i

)]
= Ŝ1

2 + Ŝ2
2 + 2Ŝz1Ŝz2 +

1

2

[
Ŝ+1Ŝ+2 + Ŝ+1Ŝ−2 + Ŝ−1Ŝ+2 + Ŝ−1Ŝ−2 − Ŝ+1Ŝ+2 + Ŝ+1Ŝ−2

+Ŝ−1Ŝ+2 − Ŝ−1Ŝ−2

]
= Ŝ1

2 + Ŝ2
2 + 2Ŝz1Ŝz2 + (Ŝ+1Ŝ−2 + Ŝ−1Ŝ+2)
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total. That is to say, show that neitherD. Show that neither ψαβ nor ψβα is an eigenfunction of Ŝ 2

of these wavefunctions is a total spin eigenstate.

Solution:

Ŝ 2
totalΨαβ =

[
Ŝ1

2 + Ŝ2
2 + 2Ŝz1Ŝz2 + Ŝ+1Ŝ−2 + Ŝ−1Ŝ+2

]
Ψαβ

Ŝ1
2Ψαβ =

3

4
} 2Ψαβ Ŝ2

2 3

4
Ψαβ = } 2Ψαβ

2Ŝz1Ŝz2Ψαβ = √2
2
Ŝz1

[(
−}

2

)
1sα(1)2sβ(2)−

(
}
2

)
2sβ(1)1sα(2)

]
= −√}

2

[(
}
2

)
1sα(1)2sβ(2) +

(
−}

2

)
2sβ(1)1sα(2)

]
= −}

2

2

Ψαβ

Ŝ+1Ŝ−2Ψαβ = √1
2
Ŝ+1

[
0− }

√
3

4
+

1

4
2sβ(1)1sβ(2)

]
√

3

4
= −√}

2
· } +

1

4
2sα(1)1sβ(2)

= − }√
2

2
2sα(1)1sβ(2)

Ŝ−1Ŝ+2Ψαβ = √1
2
Ŝ−1

[
}
√

3

4
+

1

4
1sα(1)2sα(2) + 0

]

=
}

=

√
2
· }1sβ(1)2sα(2)

} 2

√
2

1sβ(1)2sα(2)

Therefore, summing over all the terms gives

Ŝ 2
totalΨαβ = }2Ψαβ +

}2

√
2

[1sβ(1)2sα(2)− 2sα(1)1sβ(2)]

= }2[Ψαβ + Ψβα]

total

Repeating similar steps for Ψβα gives

Ŝ 2
totalΨβα = }2[Ψαβ + Ψβα].

Therefore, neither Ψαβ nor Ψβα is an eigenfunction of Ŝ 2 .



2 

5.61 Fall 2017 Problem Set #7 Solutions Page 11 

E. Finally, show that the combinations ψαβ ± ψβα are eigenfunctions of both Ŝz, total and Ŝ 2
total.

Solution:

Ŝz, total

Ŝ 2
total

1√
2

(Ψαβ ±Ψβα) = √1
2

(0± 0) = 0

1√
2

(Ψαβ + Ψβα) = √}
2

2 [(Ψαβ + Ψβα + Ψαβ + Ψβα)

= 2}2 1√
2

(Ψαβ + Ψβα)

]
Ŝ 2

total

1√
2

(Ψαβ −Ψβα) = √}
2

2
(Ψαβ + Ψβα −Ψαβ −Ψβα)

= 0

F. Note that ψαβ, ψβα, and ψαβ ±ψβα are all degenerate states within the non-interacting electron
picture. Comment on why your work above shows that ψαβ ± ψβα are more realistic eigenstates of
the Hamiltonian.

Solution:

We note that Ŝ 2 and Ŝz correspond to the magnitude squared of the spin and its projection onto
the z–axis, and therefore it would be more realistic if our wavefunctions are eigenfunctions of these
operators. Since √1

2
(Ψαβ + Ψβα) and √1

2
(Ψαβ − Ψβα) are in fact eigenfunctions of our operators,

they are more realistic than either Ψαβ or Ψβα (which are not eigenfunctions of Ŝ 2 and Ŝz.

5. Independent Particle Model.

The following concern the independent particle mode. You may find the following set of Coulomb
and exchange integrals useful (energies in eV):

J1s1s = 17.0 Z J1s2s = 4.8 Z K1s2s = 0.9 Z J2s2s = 3.5 Z

J1s2p = 6.6 Z K1s2p = 0.5 Z J2s2p = 4.4 Z K2s2p = 0.8 Z

J2pi,2pi = 3.9 Z J2pi,2pk = 3.5 Z K2pi,2pk = 0.2 Z i 6= k
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A. Using the independent particle model discussed in class, what is the energy difference between
the 1s2px2 configuration and the 1s22s2 configuration? How do you justify your result?

Solution:

We are asked to calculate the enregy difference between a 1s22p2
x and a 1s22s2 configuration. Let’s

compute the energy for each using the independent particle model

E[1s22p2
x] =

∑
i

Ei +

i>j∑
i,j

J̃ij − K̃ij

= 2E1s + 2E2p

+ J̃1sα,1sβ + J̃1sα,2pxα + J̃1sα,2pxβ + J̃1sβ,2pxα + J̃1sβ,2pxβ + J̃2pxα,2pxβ

K K K K K− ˜1sα,1sβ − ˜1sα,2pxα − ˜1sα,2pxβ − ˜1sβ,2pxα − ˜1sβ,2pxβ − K̃2pxα,2pxβ

= 2E1s + 2E2p + J1s,1s + 4J1s,2p + J2pi,2pi − 2K1s,2p (5.1)

E[1s22s2] = 2E1s + 2E2s + J1s,1s + 4J1s,2s + J2s,2s − 2K1s,2s (5.2)

⇒ ∆E = 4(J1s,2p − J1s,2s) + (J2pi,2pi − J2s,2s)− 2(K1s,2p −K1s,2s)

= Z[4(6.6− 4.8)− (3.9− 3.5)− 2(0.5− 0.9)]

= +7.6Z eV (5.3)

B. What is the energy difference between the ground state of Lithium and the spin polarized
1s↑2s↑2pz↑ state? Is this energy about the size you expected?

Solution:

E[1s22s1] = 2E1s + E2s + J1)s1s + 2J1s2s −K1s2s

= −Z
2

2
(

2

12
+

1

22
(27.2 eV ) + Z(17.0 + 2 · 4.8− 0.9)

= −32(9/8)(27.2) + 3(25.7) = −198.3 eV (5.4)

(
1

2E[1s↑2s↑2p↑x] = E1s + E s + E2p)+ J1s2s + J1s2p + J2s2p −K1s2s −K1s2p −K2s2p

= −Z
2

2

12
+

2

22
(27.2 eV ) + Z(4.8 + 6.6 + 4.4− 0.9− 0.5− 0.8)

= −32(3/4)(27.2) + 3(13.6) = −142.8 eV (5.5)

⇒ ∆E = −142.8 + 198.3 = 55.5 eV (5.6)

Consulting the NIST Atomic Spectra Database [physics.nist.gov/cgi-bin/ASD], we find that the
high-spin 1s2s2p state lies 57.469 eV above the ground state. Our IPM prediction is remarkably
close given we’ve only included first order e-e repulsion corrections!
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C. Use the IPM To compute the ionization potential of B (Boron): IP = E(B+) − E(B). Compare
your boron result with the ionization potential of Lithium within the IPM. Does this agree with
periodic trends?

Solution:

No solution given.

D. Finally, compare the ionization potentials computed in part C. with the experimental results
[IP(Li) = 5.4eV, IP(B) = 8.3eV] and the answer you would have gotten if you had assumed that
the electrons do not interact.

Solution:

First, we calculate the ionization energy of Be:

E[Be→ 1s22s2] = 2E1s + 2E2s + J)1s1s + 4J1s2s + J2s2s − 2K1s2s

= −Z
2

2
(

2

12
+

2

22
(27.2 eV ) + Z(17.0 + 4× 4.8 + 3.5− 2× 0.9)

= −42(5/4)(27.2) + 4(37.9) = −392.4 eV (5.7)

E[Be+ → 1s22s] = 2E1s + E2s + J1)s1s + 2J1s2s −K1s2s

= −Z
2

2
(

2

12
+

2

22
(27.2 eV ) + Z(17.0 + 2× 4.8− 0.9)

= −42(9/8)(27.2) + 4(25.7) = −386.8 eV (5.8)

⇒ IE = ∆E = −386.8 + 392.4 = 5.6 eV (5.9)

Now, we do the same for Li. Note the ground state for Li is the same as Be+ with Z = 4→ Z = 3.

E[Li→ 1s22s] = −32(9/8)(27.2) + 3(25.7) = −198.3 eV (5.10)

E[Li+ → 1s2] = 2E1s + J1s)1s
= −Z

2

2
(

2

12
(27.2 eV ) + Z(17.0) = −193.8 eV (5.11)

⇒ IE = ∆E = −193.8 + 198.3 = 4.5 eV (5.12)

The experimental IEs for Be and Li are 9.32 and 5.39 eV, respectively (NIST ASD). Though the
IPM values are significantly off in magnitude, they reproduce the correct periodic trend: elements
in the same period have increasing IEs from left to right.

In the absence of e-e interactions, the IEs would be the energies of the vacated one-electron orbitals.
In each case this is a 2s orbital. The energy for Be would be 42/2(22)× 27.2 = 54.4 eV and for Li,
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32/2(22)× 27.2 = 30.6 eV. These values are extremely high! Even though the IPM predictions are
not quantitatively correct, we see that they do account for the majority of the effects caused by e-e
interactions.

E. Within the IPM, what is the energy difference between a closed shell 1s22s22p2
x configuration

and a high spin 1s22s↑2p↑x2py
↑2pz
↑ configuration for carbon? Does this agree with your intuition?

Solution: Our final problem is comparing closed-shell and high-spin configurations for carbon,
Z = 6.

E[1s22s22p2
x] = 2E1s + 2E2s + 2E2p

+ J1s1s + 4J1s2s + 4J1s2p + J2s2s + 4J2s2p + J2px2px

− 2K − 2K1s)2p − 2K2s2p

= −Z
2

2

1(s2s
2

12
+

4

22
(27.2 eV ) + Z(83.2)

= 969.6 eV (5.13)

E[1s22s↑2p↑x2py
↑2pz
↑] = 2E1s + 1E2s + 3E2p

+ J1s1s + 2J1s2s + 6J1s2p + 3J2s2p + 3J2pi2pk

+K
2

1s2(s − 3K1s2)p − 3K2s2p − 3K2pi2pk

= −Z
2

2

12
+

4

22
(27.2 eV ) + Z(84.5)

(5.14)= −961.8 eV

⇒ E[high spin]− E[closed shell] = ∆E = 7.8 eV. (5.15)

This agrees with our chemical intuition, where we expect closed shell configurations to be the most
stable.
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