
5.61 Fall 2017 
Problem Set #6 Solutions 

1. Harmonic Oscillator Subjected to Perturbation by an Electric 
Field 

This problem is related to the example discussed in Lecture #19 of a harmonic oscillator perturbed 
by an oscillating electric field. An electron is connected by a harmonic spring to a fixed point at 
x = 0. It is subject to a field–free potential energy 

1 
V (x) = kx2 . 

2 

The energy levels and eigenstates are those of a harmonic oscillator where 

]1/2 ω = [k/me

Ev = }ω(v + 1/2) 

ψv(x) = (v!)
−1/2(a ˆ†)vψv=0(x). 

Now a constant electric field, E0, is applied and V (x) becomes 

V (x) = 
1 
kx2 + E0ex (e > 0 by definition). 
2 

Note on dipole interactions and signs: 

The interaction energy of a charge q located at position x in a uniform DC electric 
field E0 is aways 

H = −µE0 = −E0qx. 

Note the negative sign! This means that when a dipole, ~µ = q~x, points along the same di-
rection as an electric field, there is a favorable interaction (i.e. negative interaction energy). 

For an electron, q = q − ≡ −e, where e is the elementary charge and is strictly e

positive, making the electron’s charge negative. Therefore, an electron in a field in the +x 
direction has an interaction expressed as 

~H = −µ~ · E0 = −E0qe− x = −E0(−e)x = +E0ex. 

As the electron’s position x increases, its interaction energy with the field increases (assum-
ing E0 > 0, i.e. the field points in the +x direction). This makes physical sense: we know 
from 8.02 that an electron likes to go away from the direction that the field points (and 
positive charges like to go toward the direction of the field). 
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You are going to approach this problem two ways: 

(i) by a simple and exact way first, and then

(ii) by perturbation theory.

0 A. Solve for xmin, V (xmin), and V (x0) where x = x−xmin for this harmonic oscillator in a constant 
electric field. Is the system still a harmonic oscillator? What is ω for this oscillator? 

Solution: 

The total potential, including the interaction with the electric field is 

mω2
2 V (x) = x + E0ex. (1.1) 

2 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

Thus, we see that the system is still harmonic! All we have done is to shift the minimum position 
and minimum energy, but the potential is still quadratic. The harmonic frequency ω remains 
unchanged. 

B. Write an expression for the energy levels as a function of the strength of the electric field.

Solution: 

Since the potential now is a harmonic oscillator with frequency ω and a constant offset, we can 
easily write down the energy levels: 

Ev = }ω(v + 1/2) − 
E2 2 

0 e .
2mω2 (1.8) 
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We find its minimum to be

dV

dx
= mω2x+ E0e = 0

⇒ xmin =
E0e

mω2
,

V (xmin) =
mω2

2

E0
2e2

m2ω2
− E0

2e2

mω2

=
E0

2e2
.

2mω2

Defining the displacement from the minimum x′ = x− xmin, we arrive at

V (x′) =
mω2

2

(
x′ − E0e

mω2

)2

+ E0e

(
x′ − E0e

mω2

)
=
mω2

2
x′

2 − E0
2e2

2mω2
.



Try not to mix up the fact that we use the letter E for both energy and electric field (an unfortunate, 
but common convention!). Note that the electric field strength only shifts the offset of each level. 
The spacing between levels (}ω) remains unchanged. 

C. One definition of the polarizability, α, is the second derivative of the energy with respect to the
electric field

d2Ev 
αv = − . 

dE0
2 

What is the value of αv? Is it v–dependent? 

Solution:

The polarizability for the vth level is given by

αv = −d
2Ev
dE0

2 (1.9)

= − d2

dE0
2

(
}ω(v + 1/2)− E0

2e2

2mω2

)
(1.10)

= +
e2

. (1.11)
mω2

This value is independent of v, so each level has the same polarizability.

D. Another definition of the polarizability is

µ(E0)− µ(E = 0) = αE0

where µ is the electric dipole moment. Using this definition of α, what is µ(E0)?

Solution:

A second (and in this circumstance equivalent) definition of α is

µv(E0)− µv(E = 0) = αvE0, (1.12)

which let’s us solve for µv(E0), the dipole moment of state v as a function of field strength.
Substituting our known expressions from above, we get

µv(E0)−
(
−e 〈x〉v,Ek=0

)
=

e2

mω2
E0 (1.13)

µv(E0)− 0 = −exmin (1.14)

µv(E0) = −exmin. (1.15)
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This makes physical sense. The electric field pulls the oscillator to a new equilibrium position xmin. 
The dipole moment of the state is always qx. For the oscillator, the expectation value of x is the 
minimum position for any state, yielding our result −exmin. 

E. Now let’s approach this problem by perturbation theory. The zero-order energies and wavefunc-
tions are those of the harmonic oscillator at E0 = 0. The perturbation term is

H(1) b = E0ex̂

where x̂ is the usual harmonic oscillator displacement coordinate. If � �1/2 

x̂ = 
} 
2µω 

(â + â †), 

write a general formula for all of the non-zero 
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xv′,v ≡
∫
dxψv

?
′ x̂ψv

integrals.

Solution:

We now treat the problem as a perturbation of a harmonic oscillator with perturbation term

Ĥ(1) = E0ex̂, (1.16)

where

x̂ =

(
}

2mω

)1/2

(â + â†) (1.17)

xv′,v =

Non-zero integrals that involve x̂ can be readily evaluated:∫
dxψv

?
′ x̂ψv (1.18)

=

(
}

2mω

)1/2 ∫
dxψv

?
′(â + â†)ψv (1.19)

=

(
}

2mω

)1/2 ∫
vdxψ?′
(
v1/2ψv−1 + (v + 1)1/2ψv+1

)
(1.20)

⇒ xv+1,v =

(
}

2mω

)1/2

(v + 1)1/2 (1.21)

xv−1,v =

(
}

2mω

)1/2

v1/2 (1.22)



(1) 
F. Using the value you found for xv0,v write all of the E0–dependent values for and then 0v ,v H
compute the energy levels of the harmonic oscillator perturbed by an electric field, where 

= E(0) + E(1) + E(2)Ev v v v 

b

and the perturbed wavefunctions are 

= ψ(0) + ψ(1) ψv . v v 

Solution:

We can now evaluate integrals of the perturbation term:

Ĥ
(1)
v′,v = E0exv′,v (1.23)

=


E0e

( }
2mω

)1/2
(v + 1)1/2 v′ = v + 1

E0e
( }
2mω

)1/2
v1/2 v′ = v − 1

0 else

(1.24)

Using these values, we evaluate the first and second order corrections to the energies

Ev = Ev
(0) + Ev

(1) + Ev
(2). (1.25)

The first order term is a diagonal (v′ = v) integral of the perturbation term

Ev
(1) = Ĥ

(1)
v′,v (1.26)

= 0 for all v. (1.27)

We see that there is strictly no first order shift to the energies. Now we move onto the second order
correction

Ev
(2) =

∑
v′

∣∣∣Ĥ(1)
v′,v

∣∣∣2
Ev

(0) − Ev′
(0)

(1.28)

=

∣∣∣Ĥ(1)
v−1,v

∣∣∣2
Ev

(0) − Ev
(0)
−1

+

∣∣∣Ĥ(1)
v+1,v

∣∣∣2
Ev

(0) − Ev
(0)
+1

(1.29)

=

E0
2e2}v
2mω

}ω
+

E0
2e2}(v+1)
2mω

−}ω
(1.30)

=
E0

2e2

2mω2
(v − v − 1) (1.31)

=
E0

2e2

2mω2
. (1.32)

The perturbed energies are thus

Ev = Ev
(0) + Ev

(1) + Ev
(2) (1.33)

= }ω(v + 1/2)− E0
2e2

2mω2
. (1.34)
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Note that the second-order perturbation theory expression matches the exact result from part B.

(1)
Let’s now compute ψv , the correction to the zero-order wavefunctions. We begin with the definition
of the first order correction

ψ(1)
v =

∑
v′ 6=v

Ĥ
(1)
v′,v

Ev
(0) − Ev′

(0)
ψ
(0)
v′ . (1.35)

=
Ĥ

(1)
v−1,v

Ev
(0) − Ev

(0)
−1

ψ
(0)
v−1 +

Ĥ
(1)
v+1,v

Ev
(0) − Ev

(0)
+1

ψ
(0)
v+1 (1.36)

= E0e

(
}

2mω

)1/2
(
v1/2

}ω
ψ
(0)
v−1 +

(v + 1)1/2

−}ω
ψ
(0)
v+1

)
(1.37)

=

(
E0

2e2

2m}ω3

)1/2 (
v1/2ψ

(0)
v−1 − (v + 1)1/2ψ

(0)
v+1

)
. (1.38)

G. Using
d2Ev
dE0

2 compute the polarizability, αv. Is the polarizability v–dependent? Does αv agree

with the value you obtained in part C?

Solution:

Re-evaluating the polarizability, we obtain

α =
d2Ev
dE0

2 (1.39)

=
e2

, (1.40)
mω2

exactly the result we obtained earlier. Everything is thus far consistent.

H. Using the
{
ψ
(1)
v

}
, compute µv using

µv = e

∫
dxψv

?x̂ψv

where the ψv here are the perturbed ψv. Is µ v–dependent? Should it be v–dependent? Does it
agree with the result you obtained in part D?

Solution: Using the perturbed wavefunctions, let’s calculate the induced dipole moment of each
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state µv

µv = q 〈x〉v = −e
∫
dx
(
ψ(0)?
v + ψ(1)?

v

)
x̂
(
ψv
(0) + ψv

(1)
)

(1.41)

= −e
(

}
2mω

)1/2 ∫
dx
(
ψ(0)?
v + ψ(1)?

v

)(
â + â†

)(
ψv
(0) + ψv

(1)
)

(1.42)

= −e
(

}
2mω

)1/2( E0
2e2

2m}ω3

)1/2

(2v − 2(v + 1)) (1.43)

= E0
e2

mω2
= −exmin. (1.44)

Once again, the perturbation theory result agrees with the exact result.

¬

2. Some Short Answer Questions

A. Evaluate the following integrals for ψJM eigenfunctions of J2 and Jz. (i)
∫
ψ∗22

(
Ĵ+
)4
ψ2,−2dτ

Solution:

∫
ψ∗22

(
Ĵ+

)4
ψ2,−2dτ =

∫
ψ∗22
√

2(2 + 1)− (−2)(−2 + 1)(Ĵ+)3ψ2,−1dτ (2.1)

=

∫
ψ∗22
√

2(2 + 1)− (−2)(−2 + 1)
√

2(2 + 1)− (−1)(−1 + 1)(Ĵ+)2ψ2,0dτ (2.2)

=

∫
ψ∗22
√

2(2 + 1)− (−2)(−2 + 1)
√

2(2 + 1)− (−1)(−1 + 1) (2.3)

×
√

2(2 + 1)− (0)(0 + 1)(Ĵ+)ψ2,1dτ (2.4)

=

∫
ψ∗22
√

2(2 + 1)− (−2)(−2 + 1)
√

2(2 + 1)− (−1)(−1 + 1) (2.5)

×
√ √

2(2 + 1)− (1)(1 + 1)ψ22dτ (2.6)

= 4× 6×

2(2 + 1)− (0)(0 + 1)
√ √ √

6×
√

4

∫
ψ∗22ψ22dτ (2.7)

= 24 (2.8)

(ii)
∫
ψ∗33

(
Ĵ+
)4
ψ2,−1dτ

Solution:
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+ (2.9)Ĵ3ψ2,−1 = Cψ2,2

for some constant C. One more application of Ĵ+ annihilates this state

Ĵ+ψ2,2 = 0 (2.10)

so ∫
ψ∗3,3Ĵ

4
+ψ2,−1dτ = 0. (2.11)

(iii)
∫
ψ∗33

(
Ĵ+
)4
ψ3,−3dτ

Solution:

Ĵ4
+ψ3,−3 = Cψ3,1 (2.12)

for some constant C. This is orthogonal to ψ3,3 so∫
ψ∗3,3Ĵ

4
+ψ3,−3dτ = 0. (2.13)

B. Which of the following operators commutes with Ĥ = 1
2kx

2 + p̂2

2µ?

(i) a†

Solution:

No.
H[ ̂, â†] = [}ω(N̂ + 1/2), â†] = [}ω[N̂ , â†] = }ω 6= 0. (2.14)

(ii) a†a

Solution:

Yes. This operator is N̂ , which surely commutes with Ĥ = }ω(N̂ + 1/2).



(iii) aa† 

Solution: b bYes. This operator is N + 1, which surely commutes with H. 

(iv) aaaa†a†a† 

Solution: bYes. Let this operator be called A. 

H bÂψv = (v + 1)(v + 2)(v + 3) Hbψv = }ω(v + 1/2)(v + 1)(v + 2)(v + 3)ψv (2.15) 

and 
A ˆHbψv = Â}ω(v + 1/2)ψv = }ω(v + 1/2)(v + 1)(v + 2)(v + 3)ψv (2.16) 

which implies that 
H b ˆ A ˆ bA = H. (2.17) 

C. Is Lb+ = Lbx + iLby Hermitian? 

Solution: 

No b† Lb† − iLb† b − ib b bL = = Lx Ly = L− 6= L+. (2.18) + x y 

D. Is 2−1/2[ψLML + ψLML−1] an eigenfunction of Lb+? Explain. 

Solution: bNo. L+ produces a linear combination of ML + 1 and ML states, which cannot be the given state 
because it contains no ML − 1 state. 

3. Anharmonic Oscillator 

The potential energy curves for most stretching vibrations have a form similar to a Morse potential 
(x is displacement from equilibrium, written as Q in lecture). 

−βx]2 −βx −2βx]. VM (x) = D[1 − e = D[1 − 2e + e 
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Expand in a power series 

3 4 VM (x) = D[β2 x 2 − β3 x +
7 
β4 x + . . . ]. 

12 

In contrast, most bending vibrations have an approximately quartic form 

4 VQ(x) = 
1 
kx2 + ax . 
2 

Here is some useful information: � �3/2 } †)3 x ˆ3 = (a ˆ + a ˆ
2µω � �2 } †)4 x ˆ4 = (a ˆ + a ˆ
2µω 

ω = (k/µ)1/2 

(k/µ)1/2 

ω ˜ = 
2πc 

†)3 † †3 (a ˆ + a ˆ = a ˆ3 + 3( N b + 1)a ˆ + 3 N ba ˆ + a ˆ
†)4 4 †4 (a ˆ + a ˆ = a ˆ + a ˆ2[4 N b − 2] + [6 Nb2 + 6 N b + 3] + a ˆ†2(4 N b + 6) + a ˆbN = a ˆ†â. 

The power series expansion of the vibrational energy levels is 

Ev = hc[ω̃(v + 1/2) − ω̃x̃(v + 1/2)2 + ω̃ỹ(v + 1/2)3]. 

A. For a Morse potential, use perturbation theory to obtain the relationships between (D, β) and 
(ω̃, ˜x, ˜y). Treat the (ˆ a †)3 term through second-order perturbation theory and the (ˆ †)4 ω˜ ω˜ a + ˆ a + a ˆ
term only through first-order perturbation theory. 

[HINT: you will find that ω̃y ̃= 0.] 

Solution: 

We can interpret a Morse potential as a perturbation of a perfect harmonic oscillator. These 
perturbations are the higher order terms in the power series expansion of the potential. Considering p
only the terms of order 4 or less and defining ω0 = 2Dβ2/m, we have 

2 p mω2 

H(0) 0 2 = + x (3.1) 
2m 2 

H(1) 3 β4 4 = −Dβ3 x +
7D 

x . (3.2) 
12 

The zero-order energies are that for a harmonic oscillator with frequency ω0 

E(0) = }ω0(v + 1/2) (3.3) v 
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To calculate the first-order corrections it’s necessary to rewrite the perturbation term H(1) in terms
of raising and lowering operators.

H(1) = −Dβ3x3 +
7D

12
β4x4 (3.4)

= −Dβ3
(

}
2mω0

)3/2

(â + â†)3 +
7D

12
β4
(

}
2mω0

)2

(â + â†)4 (3.5)

= −}3/2D1/4β3/2

29/4m3/4
(â + â†)3 +

7}2β2

96m
(â + â†)4 (3.6)

The first-order corrections are the integrals Hv
(1)
,v . In the equation above the cubic term has selection

rules ∆v = ±3,±1, and so it will not contribute to the first-order corrections. Expanding the quartic
term and keeping only those parts that have a selection rule ∆v = 0 (i.e. those terms which have
two â’s and two â†’s), we arrive at

Ev
(1) = Hv

(1)
,v =

7}2β2

96m
(3.7)

=
7}2β2

96m
(3.8)

=
7}2β2

16m

∫
dxψv

?[6N̂2 + 6N̂ + 3]ψv

(6v2 + 6v + 3)

(v2 + v + 1/2) (3.9)

=
7}2β2

16m
(v + 1/2)2 +

7}2β2

64m
. (3.10)

The second-order term is a bit more complicated. We will make the simplification of only considering
the second-order contributions from the cubic term in the potential (this is reasonable because in
real systems quartic terms are generally an order of magnitude smaller than cubic terms). The
second order correction to the energies is

Ev
(2) =

∑
v′ 6=v

∣∣∣H(1)
v′,v

∣∣∣2
Ev

(0) − Ev′
(0)

(3.11)

where

Hv′
(1)
,v = −}3/2D1/4β3/2

29/4m3/4

∫
(3.12)

= −}3/2D1/4β3/2
∫ dxψv′(â + â†)3ψv

dxψv′ [â
3 + 3(N̂ + 1)â + 3N̂ â† + ̂ 3]ψv. (3.13)

29/4m3/4

The selection rules for this integral are ∆v = ±1,±3. Evaluating it in the second-order correction



B. (Optional Problem) For a quartic potential, find the relationship between (ω̃, ˜x, ˜y) and (k, b)ω˜ ω˜
by treating (a ˆ + a ˆ†)4 through second-order perturbation theory.

Solution: 

We approach the quartic bending potential in the same manner as above. First we find the per-
turbation theory expressions for the energy levels and manipulate them to be a power series in 
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sum yields 4 terms:

Ev
(2) =

}3D1/2β3

29/2m3/2

1

}ω0

[
(v3 − 3v2 + 2v)

3
+

3v3

1
+

3(v3 − 3v2 + 3v + 1)

−1
+

(v3 + 6v2 + 11v + 6)

−3

]
(3.14)

=
−}2β2

32m
(3.15)

=
3}2β2

8m

[−12v2 − 12v − 5]

[v2 + v + 5/12] (3.16)

=
3}2β2

8m
(v + 1/2)2 +

}2β2

6m
. (3.17)

Okay! Now we’ve done the hard work, let’s make the final connections. First let’s add up all of the
perturbation corrections to the energy levels:

Ev = Ev
(0) + Ev

(1) + Ev
(2) (3.18)

= [}ω0(v + 1/2)] +

[
7}2β2

16m
(v + 1/2)2 +

7}2β2

64m

]
+

[
3}2β2

8m
(v + 1/2)2 +

}2β2

6m

]
(3.19)

=
192

53 }2β2

m
+ }ω0(v + 1/2) +

13

16

}2β2

m
(v + 1/2)2 (3.20)

Compare this to the “dumb” (i.e. a priori un-insightful) power series expansion of the energy levels
(which we would measure experimentally),

Ev = hc[ω̃(v + 1/2)− ω̃x̃(v + 1/2)2 + ω̃ỹ(v + 1/2)3 + . . . ] (3.21)

Matching powers of (v+ 1/2), we can determine the following relations between the experimentally
determined molecular constants (ω̃, ω̃x̃ . . . ) and the potential curve parameters (the information
we actually care about).

hcω̃ = }ω0 (3.22)

−hcω̃x̃ =
13

16

}2β2

m
(3.23)

hcω̃x̃ = 0 (3.24)
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(v + 1/2), and then compare this to the experimental power series expansion of the vibrational
energy levels.

Our Hamiltonian H = H(0) +H(1), where

p2

2m

mω2

(2H(0) = + x2 (3.25)

H(1) = bx4 = b
}

2mω

)2

(â + â†)4 (3.26)

with ω =
√
k/m.

Our zero order energies are those of H(0) (a harmonic oscillator)

Ev
(0) = }ω(v + 1/2). (3.27)

The first order corrections will use the same expression as part 3.A (Eqs. 3.8–3.10).

Ev
(1) = b

(
}

2mω

)2

(6v2 + 6v + 3) (3.28)

=
3

2
b

(
}
mω

)2

(v + 1/2)2 +
3

8
b

(
}
mω

)2

. (3.29)

The second order correction will require a sum over states. The selection rules for the terms in this
sum are (excluding ∆v = 0) ∆v = ±2, ±4, leading to four non–zero terms

Ev
(2) = b2

(
}

2mω

)4 [(v)(v − 1)(v − 2)(v − 3)
+

(v − 1)(v)(4v − 2)
(3.30)

+

4}ω
(v + 2)(v + 1)(4v + 6)

−2}ω
+

2}ω
(v + 4)(v + 3)(v + 2)(v + 1)

−4}ω

]
(3.31)

= − b2}3

4m4ω5

[
v3 +

9

2
v2 +

13

2
v + 3

]
(3.32)

= − b2}3

4m4ω5

[
(v + 1/2)3 + 3(v + 1/2)2 +

11

4
(v + 1/2) +

3

4

]
(3.33)

Summing our zero-order energies with the first- and second-order corrections yields

Ev =

[
3

8

b}2

m2ω2
− 3

16

b2}3

m4ω5

]
+

[
}ω − 11

16

b2}3

m4ω5

]
(v + 1/2) (3.34)

+

[
3

2

b}2

m2ω2
− 3

4

b2}3

m4ω5

]
(v + 1/2)2 (3.35)

−
[

1

4

b2}3

m4ω5

]
(v + 1/2)3 (3.36)

As before, the molecular constants from the empirical energy level power series in (v + 1/2) are



related to the potential parameters by matching powers: 

11 b2}3 

hcω ˜ = }ω − 
4ω5 (3.37) 

16 m
3 b}2 3 b2}3 

−hcω̃x ˜ = − (3.38) 
2ω2 4ω5 2 m 4 m
b2}3 

hcω̃y ̃= − . (3.39) 
1 

4ω5 4 m

Note that when we treat the quartic term up through second-order perturbation theory it con-
tributes to the linear, quadratic, and cubic terms in the (v + 1/2) power series. The first-order 
correction only contributes to the quadratic term (and both contribute to the constant offset). 
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4. Semi–Classical Treatment of H–Atom–Like Systems

The radial part of the H-atom Hamiltonian includes the effective potential

V`(r) = −1

r
+
`(`+ 1)

2r2
.

The eigenfunctions and eigenvalues of this radial problem are obtained from a 2nd order differential
equation for χn,`(r) = rRn,`(r)

−}2

2µH

d2

dr2
− V`(r)

[ ]
χn,`(r) = En,`χn,`(r).

You are going to understand this problem using a semi-classical approximation, without actually
solving the differential equation.

A. For a 1-dimensional problem (OK to choose ` = 0), where n = 0 is the quantum number for the
lowest energy level, what is the relationship between n and the number of internal nodes?

Solution:

If ` = 0, n = number of nodes

B. The de Broglie relationship, λ = h/p, may be generalized to a system where p is dependent on
r, via the classical mechanical definition of p(r)

p(r) = [2m(En` − V`(r))]1/2 = h/λ(r).

Thus the semi-classical wavelength is

λ(r) = h[2m(En,` − V`(r))]−1/2.

The following integral equation enables you to compute the number of semi-classical wavelengths
between the turning points of the V`(r) at energy En,`:

1

h

∫ r+(En,`)

r−(En,`)
pEn,`

(r)dr = # of wavelengths.

Justify this equation by reference to an infinite box of width a.

Solution:

En =
n2h2

8ma2

Between turning points, V = 0

p =
√

2mEn =

√
2mn2h2

8ma2
=
nh

2a
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1

h

nh

2a

∫ a/2

−a/2
dr =

nha

2ha
=
n

2
= # of wavelengths

C. If the lowest energy level has quantum number n = 0 and ψn=0(r) has zero internal nodes, then
how many internal nodes does the ψn=4(r) function have?

4 nodes

How many wavelengths fit between the turning points of V`(r) at En=4?

Solution:

There are four nodes, therefore the wavefunction must cross the r–axis 4 times, leading to 5
2

wavelengths. Since n actually starts with 0 in this case, n = 4, corresponds to the 5th energy
level. Therefore, the number of wavelengths matches with the formula derived in part B. Below
is a qualitative picture (node spacing, magnitude of wavefunction, and the wavefunction as r → 0
and r →∞ are not depicted in this cartoon).

D. There is a semi-classical quantization rule (corrected for tunneling of the wavefunction into the
classically forbidden E < V`(r) regions)∫ r+(En)

r−(En)
pE(r)dr =

h

2
(n+ 1/2)

∣
dE E

that tells you

(i) The energy of the nth level (by iterating E until the quantization condition is satisfied);

(ii) how many energy levels lie at or below whatever value of E you choose;

and (iii) what is the density of states, dn ∣ , or

n(E + dE)− n(E − dE)

2dE
.

Use the semi-classical quantization condition to find the energy levels of a harmonic oscillator. (You
have to evaluate a do-able integral.)



E. What does the generalized de Broglie definition of λ(r) tell you about the locations of nodes for
` = 0 of the H atom?
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Solution:

p(x) =
√

2m(En − V (x)) (4.1)

V (x) =
1

2
kx2 =

1

2
mω2x2 (4.2)

Plugging Eq. (4.2) into Eq. (4.1)

p(x) =

√
2m

(
En −

1

2
mω2x2

)
.

Turning points are when En = V (x) = 1
2mω

2x2

x+ =

√
2En
mω2

; x− = −
√

2En
mω2

∫ x+(En)

x−(En)
pEn(x)dx =

∫ √
2En
mω2

−
√

2Em
mω2

√
2m

(
En −

1

2
mω2x2

)
dx

=

∫ √
2En
mω2

−
√

2En
mω2

√
2mEn

(
1− mω2x2

2En

)
dx

Let y2 =
mω2x2

2En
−→ dy =

√
mω2

2En
dx

∫ x+(En)

x−(En)
pEn(x)dx =

2En
ω

∫ 1

−1

√
1− y2dy =

Enπ

ω
.√

1− y2 is the top half of the unitNote: The above integral was evaluated by recognizing that
circle, and then simply dividing the area of a unit circle by 2.

∫ x+(En)

x−(En)
pEn(x)dx =

Enπ

ω
=
h

2

(
n+

1

2

)
En = }ω

(
n+

1

2

)
.

These are the same energy levels that we have previously calculated using operator algebra for the
harmonic oscillator.
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(i) Compute the r value of the innermost internal node in χn,`(r) for ` = 0, n = 10 and n = 20,
where

E10s =
−hc<H

102
, <H = 109679 cm−1.

This will show you that the innermost nodes for all n & 6 members of any n` Rydberg series occur
at approximately the same value of r.

Solution:

λ(r) =
h√

2m(En` − V`(r)

Using atomic units, let } = me = 4πε0 = e− = 1. Replace λ with 2r and V`(r) with − r
1 :

2r =
2π√

2
(
En` + 1

r

)
4r2 =

(2π)2

2
(
En` + 1

r

)(
8r2 En` +

1

r

)
= (2π)2

8En`r
2 + 8r − (2π)2 = 0

r =
−8±

√
64 + 32En`(2π)2

16En`

Ens =
−hc<H
n

=
1

2n2

r =
−1±

2√
1 + π2 1

n2

1
n2

1
n2 � 1 when n ≥ 6, therefore we can take a Taylor series expansion of our radical

r =
−1±

(
1 + 1

2π
2 1
n2

)
1
n2

=
π2

2
a0

Note that, because we were able to take a Taylor expansion, the radical due to the large energy
denominator n does not appear in our final answer for the position of the first node. We can
therefore conclude that the position of the first node is approximately independent of n, when
n ≥ 6.

(ii) For 10s, sketch the locations of all of the internal nodes. Which nodes are closest together and
which are the furthest apart?



Solution: 

10s will have 9 total nodes. We have already calculated the position of the first node. To determine 
the position of the second node, we must set λ = r. 

Clearly, node spacing increases with node number. 

www w w w w w w 
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r =
2π√

2
(
En` + 1

r

)
r2 =

(2π)2

2
(
E + 1

r

)( n`)
1

2r2 En` + = (2π)2
r

2En`r
2 + 2r − (2π)2 = 0

r =
−1±

√
1 + 8π2 1

n2

1
n2

rsecond node =
−1±

(
1 + 4

2π
2 1
n2

)
1
n2

= 2π2a0

rthird node =
−1±

(
1 + 9

2π
2 1
n2

)
1
n2

=
9

2
π2a0
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The next sequence of questions (parts F through J) are optional. They will lead you to estimate
the amplitudes of the lobes of |ψn`(r)|2 between each pair of adjacent nodes.

F. The classical mechanical oscillator period for each n` level may be estimated from

τn,` =
h

.
En+1/2,` − En−1/2,`

Estimate the oscillation period for the 10s state.

Solution:

τn` = h

(
10.52

−hc<H
+

9.52

hc<H

)
=

500

c<H
= 152 fs.

G. Derive the time required for a classical electron to travel from the (n − 1)th to the (n + 1)th

internal node with reference to the equations below:

r of the nth node is denoted as r[n]

λ
(
r[n]
)

=
h

p
(
r[n]
)

ν
(
r[n]
)

= p
(
r[n]
)/
me

∆t[n] =
λ
(
r[n]
)

ν
(
r[n]
) .

Solution:

∆t[n] =
λ(r[n])

v(r[n])
=

hme

p(r[n])2
=

h

2 (En` − V`(r))

H. The probability of finding a classical particle moving at positive velocity between the (n− 1)th

and (n+ 1)th nodes is
∆t[n]

τn,`
.

(tλ∗

bilit
n,`(

y

r

.

)λn,`(

Estimate

r) is

ψ

an
∗ (osc

r[

i

n]

)llatory

ψn,`
(f
r[n]
)unction,

and

osc

ψ

il

n,`

la

r[

ing

n]

)∣∣b.etween 0 and twice the node–to–node proba-

n,`

∣∣
Solution:



Solution 

No solution given. 
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ψ∗n`
(
r[n]
)
ψn`

(
r[n]
)
∝

∆t[n]

2τn`
=
En+ 1

2
` − En− 1

2
`

2(En` − V`(r))

I. How would you use the results that you have derived here to estimate the expectation value of
rk for any value of k [HINT: a sum of each node-to-node region]〈

rk
〉

=

∫ ∞
−∞

ψ∗n,`r
kψn,`dr?

Solution

No solution given.

J. For non-hydrogenic atoms, it is possible to replace the Rydberg equation (integer-n) by

En∗,` = −hc<
n∗2`

∗
`

∗
`

n = n− δ`

where δ` is the “quantum defect.” n can be determined empirically from

E∞ − En∗` =
hc<
n∗2`

n∗ =

[
hc<

E∞ − En∗`

]1/2
and

[En∗` − En∗`−1] ≈
2hc<(
n∗`
)3 .

Are these semi-classical equations sufficient to approximate the expected values of all properties of
all Rydberg states of all atoms?



 
 

 
 
 

 
 

 
 
 

  
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

5.61 Physical Chemistry 
Fall 2017 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



