
5.61 Fall 2017 
Problem Set #5 Solutions 

1. Phase Ambiguity 

When one uses â, â† and N b operators to generate all Harmonic Oscillator wavefunctions and 
calculate all integrals, it is easy to forget what the explicit functional forms are for all of 
the ψv(x). In particular, is the innermost (near x−) or outermost (near x+) lobe of the ψv � � 

† 2−1/2 balways positive? Use â = x ˜− i bp ̃ to show that the outermost lobe of all ψv(x) is 

always positive, given that 
ψv(x) = [v!]

−1/2(a ˆ†)vψ0(x) 

and that ψ0(x) is a positive Gaussian. Apply x̂ and −ip ̂to the region of ψ0(x) near x+(E0) 
to discover whether the region of ψ1(x) near x+(E1) is positive or negative. 

Solution: 
We know that 

ψv(x) = [v!]
−1/2(a ˆ†)vψ0(x) (1.1) 

And plugging in for â† gives us 

ψv(x) = [v!]
−1/2(2−1/2[x b̃− ibp̃)vψ0(x) (1.2) 

or, after putting the momentum operator into position space � � ��v 
∂ 

ψv(x) = [v!]
−1/2 2−1/2 bx ˜− } ψ0(x). (1.3) 

∂x 

For large values of x, the bx ˜ operator should give a large, positive value. The derivative of 
a positive gaussian in this region should be negative and very small (and will contribute 
positively due to the negative sign in the equation). And the ψ0 itself is defined as a positive 
gaussian and is therefore positive over all space. Therefore, because all terms are positive 
for very large x values, the far right lobe should be positive. 
A Note about Phase Ambiguity 

† bWhen one uses â, â and N operators to generate all Harmonic Oscillator wavefunc-
tions and calculate all integrals, it is easy to forget what the explicit functional forms 
are for all of the ψv(x). In particular, is the innermost (near x−) or outermost (near � � 
x+) lobe of the ψv always positive? Use â† = 2−1/2 x b̃− ibp ̃ to show that the outer-

most lobe of all ψv(x) is always positive, given that 

ψv(x) = [v!]
−1/2(a ˆ†)vψ0(x) 

and that ψ0(x) is a positive Gaussian. Apply x̂ and k − ip ̂to the region of ψ0(x) near 
x+(E0) to discover whether the region of ψ1(x) near x+(E1) is positive or negative. 



2. Anharmonic Oscillator 

The potential energy curves for most stretching vibrations have a form similar to a Morse 
potential 

−βx]2 −βx −2βx]. VM (x) = D[1 − e = D[1 − 2e + e 

Expand in a power series � � 
7 2 − β3 VM (x) = D β2 x x 3 + β4 x 4 + . . . . 
12 

In contrast, most bending vibrations have an approximately quartic form 

1 
VQ(x) = kx2 + bx4 . 

2 

Here is some useful information: � �3/2 } 
x ˆ3 = (a ˆ + a ˆ†)3 

2µω � �2 

x ˆ4 = 
} 

(a ˆ + a ˆ†)4 

2µω 

ω = (k/µ)1/2 [radians/second] 

(k/µ)1/2 

ω e = [cm−1 if c = 3.0 × 1010 cm/second] 
2πc 

(a ˆ + a ˆ†)3 = a ˆ3 + 3( N b + 1)a ˆ + 3 N ba ˆ† + a ˆ†3 

(a ˆ + a ˆ†)4 = a ˆ4 + a ˆ2[4 N b − 2] + [6 Nb2 + 6 N b + 3] + a ˆ†2(4 N b + 6) + a ˆ†4 bN = a ˆ†â. 

The power series expansion of the vibrational energy levels is � � 
Ev = hc ωe(v + 1/2) − ωex̃(v + 1/2)2 + ωeỹ(v + 1/2)3 . 

Hint: The goal of this problem is to relate information about the potential surface (i.e. D 
and β) to information about the energy level pattern we can obtain experimentally (i.e. ω̃, 
ω̃x̃, etc.). We make these connections via perturbation theory. 

A. For a Morse potential, use perturbation theory to obtain the relationships between (D, β) 
and (ωe, ωex̃, ωeỹ). Treat the (a ˆ + â†)3 term through second–order perturbation theory and 
the (a ˆ + â†)4 term only through first order perturbation theory. 
[HINT: you will find that ωey ̃= 0.] 

Solution: 
We can interpret a Morse potential as a perturbation of a perfect harmonic oscillator. These 
perturbations are the higher order terms in the power expansion of the potential. Considering 
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p
only the terms of order 4 or less and defining ω0 = 2Dβ2/m, we have 

2 p
H(0) mω0

2 
2 = + x (2.1) 

2m 2 

H(1) 3 β4 4 = −Dβ3 x +
7D 

x . (2.2) 
12 

The zero-order energies are those for a harmonic oscillator with frequency ω0 

E(0) = }ω0(v + 1/2) (2.3) v 

To calculate the first-order corrections it’s necessary to rewrite the perturbation term H(1) 

in terms of raising and lowering operators. 

H(1) 3 4 β4 = −Dβ3 x +
7D

x (2.4) 
12 � �3/2 � �2 } 7D } †)3 β4 †)4 = −Dβ3 (a ˆ + a ˆ + (a ˆ + a ˆ (2.5) 

2mω0 12 2mω0 

}3/2D1/4β3/2 7}2β2 
†)4 = − (a ˆ + a ˆ†)3 + (a ˆ + a ˆ (2.6) 

29/4m3/4 96m 
(1) 

The first-order corrections are the integrals Hv,v . In the equation above, the cubic term 
has selection rules Δv = ±3, ±1, and so it will not contribute to the first-order corrections. 
Expanding the quartic term and keeping only those parts that have a selection rule Δv = 0 
(i.e. those terms which have two â’s and two â†’s), we arrive at 

7}2β2 Z 
E(1) = H(1) = dxψ? [6 Nb2 + 6 N b + 3]ψv (2.7) v v,v v 96m 

7}2β2 

= (6v 2 + 6v + 3) (2.8) 
96m 
7}2β2 

= (v 2 + v + 1/2) (2.9) 
16m 
7}2β2 7}2β2 

= (v + 1/2)2 + . (2.10) 
16m 64m 

The second-order term is a bit more complicated. We will make the simplification of only 
considering the second-order contributions from the cubic term in the potential (this is 
reasonable because in real systems quartic terms are generally an order of magnitude smaller 
than cubic terms). The second order correction to the energies is � � 2 � (1) �

0X �Hv ,v � 
E(2) 
v = (2.11) 

(0) (0) 
v0 6 Ev − Ev0 =v 

where 

}3/2D1/4β3/2 Z 
Hv

(1) 
,v = −

29/4m3/4 
dxψv0 (a ˆ + a ˆ†)3ψv (2.12) 0

}3/2D1/4β3/2 Z 
= − dxψv0 [a ˆ3 + 3( N b + 1)a ˆ + 3 N ba ˆ† + a ˆ†3]ψv. (2.13) 

29/4 3/4 m
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v 

The selection rules for this integral are Δv = ±1, ±3. Evaluating it in the second-order 
correction sum yields 4 terms: � � 

}3D1/2β3 3 − 3v 3 3 − 3v1 (v 2 + 2v) 3v 3(v 2 + 3v + 1) (v3 + 6v2 + 11v + 6) 
E(2) = + + + 

29/2 3/2 m }ω0 3 1 −1 −3 
(2.14) 

−}2β2 

= [−12v 2 − 12v − 5] (2.15) 
32m 
3}2β2 

= [v 2 + v + 5/12] (2.16) 
8m 
3}2β2 }2β2 

= (v + 1/2)2 + . (2.17) 
8m 6m 

Okay! Now we’ve done the hard work, let’s make the final connections. First let’s add up 
all of the perturbation corrections to the energy levels: 

= E(0) + E(1) + E(2) Ev (2.18) v v v � � � � 
7}2β2 7}2β2 3}2β2 }2β2 

= [}ω0(v + 1/2)] + (v + 1/2)2 + + (v + 1/2)2 + (2.19) 
16m 64m 8m 6m 

53 }2β2 13 }2β2 

= + }ω0(v + 1/2) + (v + 1/2)2 (2.20) 
192 m 16 m 

Compare this to the “dumb” (i.e. a priori un-insightful) power series expansion of the energy 
levels (which we would measure experimentally), 

Ev = hc[ω̃(v + 1/2) − ω̃x̃(v + 1/2)2 + ω̃ỹ(v + 1/2)3 + . . . ] (2.21) 

Matching powers of (v + 1/2), we can determine the following relations between the exper-
imentally determined molecular constants (ω̃, ω˜˜x . . . ) and the potential curve parameters 
(the information we actually care about). 

hcω ˜ = }ω0 (2.22) 

13 }2β2 

−hcω̃x ˜ = (2.23) 
16 m 

hcω̃y ̃= 0 (2.24) 

B. Optional Problem 
For a quartic potential, find the relationship between (ωe, ωex̃, ωeỹ) and (k, b) by treating 
(a ˆ + â†)4 through second–order perturbation theory. 

Solution: 
We approach the quartic bending potential in the same manner as above. First we find the 
perturbation theory expressions for the energy levels and manipulate them to be a power 
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series in (v +1/2), and then compare this to the experimental power series expansion of the 
vibrational energy levels. 

= H(0) Our Hamiltonian H + H(1), where 

p2 mω2 

H(0) 2 = + x (2.25) 
2m 2 

H(1) 

� 
} 

�2 
†)4 = bx4 = b (a ˆ + a ˆ (2.26) 

2mω p
with ω = k/m. 
Our zero order energies are those of H(0) (a harmonic oscillator) 

E(0) = }ω(v + 1/2). (2.27) v 

The first order corrections will use the same expression as part 2.A. 

E(1) 

� 
} 

�2 

= b (6v 2 + 6v + 3) (2.28) v 2mω � �2 � �2 
b } b } 

= (v + 1/2)2 + . (2.29) 
24 mω 96 mω 

The second order correction will require a sum over states. The selection rules for the terms 
in this sum are (excluding Δv = 0) Δv = ±2, ±4, leading to four non–zero terms � �4 � 

E(2) } (v)(v − 1)(v − 2)(v − 3) (v − 1)(v)(4v − 2) 
v = b2 + (2.30) 

2mω 4}ω 2}ω � 
(v + 2)(v + 1)(4v + 6) (v + 4)(v + 3)(v + 2)(v + 1) 

+ + (2.31) 
−2}ω −4}ω � � 

b2}3 9 13 
= − v 3 + v 2 + v + 3 (2.32) 

4m4ω5 2 2 � � 
b2}3 11 3 

= − 
4ω5 

(v + 1/2)3 + 3(v + 1/2)2 + (v + 1/2) + (2.33) 
4m 4 4 

Summing our zero-order energies with the first- and second-order corrections yields � � � � 
1 b}2 3 b2}3 11 b2}3 

Ev = − + }ω − (v + 1/2) (2.34) 
2ω2 4ω5 4ω5 16 m 16 m 16 m� � 

1 b2}2 3 b2}3 

+ − (v + 1/2) (2.35) 
2ω3 4ω5 24 m 4 m� � 
1 b2}3 

+ (v + 1/2)3 (2.36) 
4 m4ω5 

As before, the molecular constants from the empirical energy level power series in (v + 1/2) 
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are related to the potential parameters by matching powers: 

11 b2}3 

hcω ˜ = }ω − 
4ω5 

(2.37) 
16 m

1 b}2 3 b2}3 

−hcω̃x ˜ = − (2.38) 
2ω2 4ω5 24 m 4 m

1 b2}3 

hcω̃y ̃= . (2.39) 
4ω5 4 m

Note that when we treat the quartic term up through second-order perturbation theory it 
contributes to the linear, quadratic, and cubic terms in the (v +1/2) power series. The first-
order correction only contributes to the quadratic term (and all contribute to the constant 
offset). 

3. Perturbation Theory for Harmonic Oscillator Tun-
neling Through a δ–function Barrier 

V (x) = (k/2)x 2 + Cδ(x) (3.1) 

where C > 0 for a barrier. δ(x) is a special, infinitely narrow, infinitely tall function centered 
at x = 0. It has the convenient property that Z ∞ 

δ(x)ψv(x)dx = ψv(0) (3.2) 
−∞ 

where ψv(0) is the value at x = 0 of the vth eigenfunction for the harmonic oscillator. Note 
that, for all v = odd, Z ∞ 

δ(x)ψodd(x)dx = 0 
−∞ 

(3.3) 

A. 
(i) The {ψv} are normalized in the sense Z ∞ 

|ψv|2 dx = 1 (3.4) 
−∞ 

What are the units of ψ(x)? 

Solution: 
The normalization for the zero-order wavefunctions is given as Z ∞ 

|ψv|2dx = 1. (3.5) 
−∞ 

The right-hand side is dimensionless, so |ψv|2dx must be dimensionless as well, implying that 
|ψv|2 has units of reciprocal length [`−1], so ψv has units of [`−1/2]. 

5.61 Fall 2017 Problem Set #5 Solutions Page 6 



(ii) From Eq. (3.2), what are the units of δ(x)? 

Solution: 
The δ function is defined by Z ∞ 

δ(x)ψv(x)dx = ψv(0). (3.6) 
−∞ 

Therefore, δ(x)ψv(x)dx must have the same dimensions as ψv(x) itself. That means that 
δ(x)dx is dimensionless, so δ(x) has dimensions of `−1 . 

(iii) V (x) has units of energy. From Eq. (3.1), what are the units of the constant, C? 

Solution: 
The perturbed harmonic oscillator potential is given as 

V (x) = (k/2)x 2 + Cδ(x). (3.7) 

`−1Cδ(x) must have units of energy [m`2t−2]. We know that δ(x) has units of , so C must 
have units of [m`3t−2]. 

B. In order to employ perturbation theory, you need to know the values of all integrals of 
Hb (1) 

Hb (1) ≡ Cδ(x) (3.8) Z +∞ 

H(1)ψvψv0 (x) b (x)dx = Cψv0 (0)ψv(0) (3.9) 
−∞ 

H(0)ψvb (x) = }ω(v + 1/2)ψv(x). (3.10) 

(1) (2) 
Write general formulas for Ev and Ev (do not yet attempt to evaluate ψv(0) for all even–v). 
Use the definitions in Eqs. (3.11) and (3.12). 

E(1) = H(1) 
v vv (3.11) � �2 

(1) X Hvv0 

E(2) 
v = (3.12) 

(0) (0) 
v0 6 Ev − Ev0 =v 

Solution: 
All ψv(x) with v odd are anti-symmetric functions with a node at x = 0, so (

(1) 0 v or v0 odd 
Hv ,v = (3.13) 0

Cψv0 (0)ψv(0) v and v0 even 
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The corrections to the energy levels are (
0 v odd 

E(1) = H(1) 
v vv = (3.14) 

Cψv(0)
2 v even � �2 

(1) 
0X Hv ,v 

E(2) 
v = (3.15) 

(0) (0) 
v0 6 Ev − Ev0 =v (
0 v odd 

= P (3.16) 0 v even (Cψ 0 (0)ψv (0))2 

0
v v even =v v 6 }ω(v−v0) 

C. The semi-classical amplitude of ψ(x) is proportional to [vclassical(x)]−1/2 where vclassical(x) 
is the classical mechanical velocity at x 

vclassical(x) = pclassical(x)/µ = 
1
[2µ(Ev − V (x))]1/2 . (3.17) 

µ h i1/2 
2}ω(v+1/2) At x = 0, vclassical(0) = 

µ . The proportionality constant for ψ(x) is obtained 

from the ratio of the time it takes to move from x to x + dx to the time it takes to go from 
x−(Ev) to x+(Ev), which is 1/2 of the period of oscillation. 

dx/vclassical(0) 
ψ(0)2dx = 

τv/2 
2dx 2ωdx 

= = 
vclassical(0)(h/}ω) 2πvclassical(0) � �1/2 
(ω/π) 

ψv(0) ≈ for even-v 
vclassical(0) 

(1) (2) 
Use this semi-classical evaluation of ψv(0) to estimate the dependence of Hvv and Hvv0 on 
the vibrational quantum numbers, v and v0 . 

Solution: 
A semi-classical argument estimates the amplitude of the even–v wavefunctions at the origin 
to be 

ψv(0) ≈ 

vclassical(0) = 

� �1/2 
(ω/π) 

, where 
vclassical(0) � �1/2 
2}ω(v + 1/2) 

(3.18) 

(3.19) 
µ � �1/4 
ωµ ⇒ ψv(0) ≈ . (3.20) 

hπ(v + 1/2) 

Note that the amplitude at x = 0 decreases as vclassical increases, as expected. 
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We can now estimate the value of the integrals of the perturbation term � �1/2 
ωµ 

H(1) 
vv = Cψv(0)

2 ≈ C (3.21) 
hπ(v + 1/2) � �1/2 

(1) ωµ 
Hv ,v = Cψv0 (0)ψv(0) ≈ C (3.22) 0

hπ(v + 1/2)1/2(v0 + 1/2)1/2 

0 −1/2 0 We note that the diagonal terms (v = v), are ∝ v and the off-diagonal terms (v 6= v) 
0v)−1/4 are ∝ (v . 

D. Make the assumption that all terms in the sum over v0 (Eq. 3.12) except the v, v + 2 
(0) (1) (2) 

and v, v − 2 terms are negligibly small. Determine Ev = Ev + Ev + Ev and com-
ment on the qualitative form of the vibrational energy level diagram. Are the odd–v lev-

(0) 
els shifted at all from their Ev values? Are the even–v levels shifted up or down rela-

(0) 
tive to Ev ? How does the size of the shift depend on the vibrational quantum number? 

Solution: 
Making the assumption that only the v0 = v − 2, v, v + 2 terms are non-negligible, we can 
calculate the perturbed energy levels of the v–even states. 

= E(0) + E(1) + E(2) Ev (3.23) v v v � �1/2 � � 
ωµ 1 1 1 ≈ }ω(v + 1/2) + C + + 

hπ(v + 1/2)1/2 (v + 1/2)1/4 (v − 3/2)1/4 (v + 5/2)1/4 

(3.24) 

(Note: the 1/(v − 3/2)1/4 term does not occur for v = 0). 
The selection rules on the perturbation term do not affect the v-odd levels at all. The v-
odd levels remain unperturbed. The v-even levels are all shifted up. The size of the shift 
decreases approximately as v−1/2, decreasing slowly with increasing v. 

E. Estimate E1 − E0 and E3 − E2. Is the effect of the δ–function barrier on the level pattern 
increasing or decreasing with v? 

Solution: 
Since the shifts in the energy levels decreases as ∼v−1/2, the shifts in the level differences 
will go down by ∼v−3/2 . Therefore we expect the E1 − E0 difference to be larger than the 
E3 − E2 difference. 
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F. Sketch (freehand) the superposition state, Ψ(x, t = 0) = 2−1/2[ψ0(x) + ψ1(x)]. Predict 
the qualitative behavior of Ψ?(x, t)Ψ(x, t). 

Solution: 
The time-dependence of this two-level superposition state’s probability distribution 

Ψ?(x, t)Ψ(x, t) will exhibit oscillations at the frequency corresponding to the two-level energy 
difference ω − (E1 − E0)/}. As this motion causes the wavepacket to move back and forth 
through the barrier, this oscillation frequency is called the tunneling frequency. 

G. Compute hx̂it for the coherent superposition state in part F. Recall that Z 
xv+1,v = (some known constants) ψv+1(a ˆ + a ˆ†)ψvdx. 

Solution: 
To compute hxit, we need expressions for the perturbed wavefunctions in terms of the zero-
order harmonic oscillator wavefunctions 

(1) X H 0
= ψ(0) v ,v 

+ (3.25) ψv v (0) (0) 
v0 6 Ev − Ev0 =v 

Odd-v wavefunctions are unperturbed, so ψ1 = ψ1
(0) 
, but we do need to calculate the energy 

of the perturbed ground state 

(1) X H 0 (0) v ,0 (0) 
= ψ + ψ (3.26) 0 ψ0 0 (0) (0) v

0 0 v 6 0 =0 E − Evh i 
ωµ C 

(0) }π(1/2)1/2(5/2)1/2 
(0) 

= ψ0 + ψ2 + . . . (3.27) 
−2}ω 

(0) (0) 
= ψ0 + C2ψ2 + . . . (3.28) 
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We can now calculate the expectation value of x s Z 
1 } � 

(0)? (0)? +iE0t/} (0)? +iE1t/} 
� 

hx̃i = dx [ψ + C2ψ + . . . ]e + ψ e (3.29) t 0 2 1 2 2µω � � 
(0) (0) −iE0t/} (0) −iE1t/} (a ˆ + a ˆ†) [ψ + C2ψ + . . . ]e + ψ e (3.30) 0 2 1 s Z 

1 } h 
(0)? (0) +i(E1−E0)t/} (0)? (0) −i(E1−E0)t/} = dx C22

1/2ψ ψ e + ψ ψ e (3.31) 1 1 0 0 2 2µω i 
(0)? (0) +i(E1−E0)t/} (0)? (0) +i(E0−E1)t/} + ψ ψ e + C22

1/2ψ ψ e (3.32) 1 1 2 2 

+ orthogonal terms (3.33) s 
} 

= (1 + C22
1/2) cos(ω10t), where ω10 = (E1 − E0)t/} (3.34) 

2µω 

The value of ω10 will be ≈ ω plus additional perturbation corrections as determined in 
part 3D. Note that the motion remains sinusoidal (why is this always true for a two-level 
superposition state?). 

H. Discuss what you expect for the qualitative behavior of hx̂it for the v = 0, 1 superposition 
vs. that of the v = 2, 3 superposition state. How will the right↔left tunneling rate depend 
on the value of C? 

Solution: 
The tunneling rate for a superposition of two adjacent states will be proportional to the 
energy difference between them. As we saw in parts 3.D and 3.E, the difference in energy 
of the v = 0 and v = 1 level is smaller than the difference in energy between the v = 2 
and v = 3 states (because lower–v states are pushed up more). Therefore the v = 0, 1 
superposition will have a slower tunneling rate. Increasing the barrier height by increasing 
C will decrease the tunneling rates. It pushes up each even-v state closer to the unperturbed 
odd-v state above it. For example, the v = 0, 1 states will be closer together in energy and 
a superposition state of them will tunnel at a slower rate. 
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4. Perturbation Theory for a Particle in a modified 
infinite box 

Hb (0) 2/2m + V (0)(x) = p ̂

V (0)(x) = ∞ x < 0, x > a 

V (0)(x) = 0 0 ≤ x ≤ a 

b = V 0(x) H(1) 

a − b a + b 
V 0(x) = 0 x < , x > 

2 2 

V 0(x) = −V0 
a − b a + b 

< x < , V0 > 0 
2 2 

where a > 0, b > 0, and a > b. 

A. Draw V (0)(x) + V 0(x). 

Solution: 

V (x) 
x = 0 x = a 

0 a (a − b)/2 (a + b)/2 

6 

0 
−V0 

(0) (0) 
B. What are ψn (x) and En ? 

Solution: 
(0) (0) 

ψn and En are the familiar PIB wavefunctions and energy levels: r � � 2 nπ 
ψ(0) 
n = sin x (4.1) 

a a 
2h2 n

E(0) 
n = 

2 
(4.2) 

8ma
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C. What is the selection rule for non-zero integrals Z 
H(1) H(1)ψ(0) dxψ(0) b= ? nm n m 

Solution: 
The perturbation integrals are Z 

H(1) = nm H(1)ψ(0) dxψ(0) b
n m (4.3) Z 

= V 0(x)ψ(0) dxψ(0) 
n m (4.4) 

Without evaluating any further, we can determine the selection rules for these integrals. 
We require that the integrand is symmetric (or has a symmetric part). Since V 0(x) is a 

(0) 
symmetric function relative to the center of the box, this requires that the product of ψn 

(0) 
and ψm must be symmetric. This requires that n and m are either both even or both odd. 

D. Use 
1 

sin A sin B = [cos(A − B) − cos(A + B)] 
2 

and Z 
1 

dx cos Cx = sin Cx 
C 

(0) (1) (2) 
to compute En = En + En + En for n = 0, 1, 2, and 3 and limiting the second-order 
perturbation sums to n ≤ 5. 

Solution: 
We will now explicitly calculate the perturbation integrals in order to evaluate the first and 
second-order corrections to the energy levels. 
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H(1) dxψ(0) V 0(x)ψ(0) = (4.5) nm n m 

Z
Z a+b 

2 

= (−V0)ψ(0) dxψ(0) 
n m (4.6) 

a−b 
2 r �r Z � � � a+b 

2 nπ 2 mπ 2 

= −V0 dx sin x sin x (4.7) 
a−b a a a a 
2 Z � �� � a+b 

2 nπ mπ 2 

= −V0 dx sin x sin x (4.8) 
a a−b a a 

2 Z a+b � � � � �� 
2 −V0 (n − m)π (n + m)π 

= dx cos x − cos x (4.9) 
a a−b a a 

2 � � � � ⎡ ⎤ a+b 
2 (n−m)π (n+m)π sin x sin x −V0 a a 

− ⎣ ⎦ (4.10) = 
π n − m n + m 

a−b 
2 

The first-order corrections are equal to these integrals when n = m. For n = 1, 2, 3, they are � � 
(1) sin bπ/a 

E1 = −V0 b/a + (4.11) 
π � � 

(1) sin 2bπ/a 
E2 = −V0 b/a − (4.12) 

2π � � 
(1) sin 3bπ/a 

E3 = −V0 b/a + (4.13) 
3π 

The second-order corrections are equal to the sum 

X 
��� (1) 
Hmn 

��� 2 

E(2) 
n = (4.14) 

(0) (0) 
m6 En − Em =n 

Limiting the infinite sum to m ≤ 5 and remembering our selection rule for the perturbation 
integrals, we obtain ���H(1) 

31 

��� 2 ���H(1) 
51 

��� 2 

(2) 
E ��� ���

= + + . . . (4.15) 
−8h2/8ma2 2 1 −24h2/8ma

2 
(1) 

H42 (2) 
E2 ��� ���

= + . . . (4.16) 
−12h2/8ma2 ��� ��� 2 2 

(1) (1) 
H

= 
2 
+ 

2 
+ . . . , (4.17) 

H13 53 (2) 
E3 +8h2/8ma −16h2/8ma
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where 
���H(1) 

mn 

��� 2 
is evaluated from Eq. (4.10). 

E. Now reverse the sign of V0 and compare the energies of the n = 0, 1, 2, 3 levels for V0 > 0 
vs. V0 < 0. 

Solution: 
The effect of switching the sign of V0 will change the perturbation from being a “well in the 
box” to a “hill in the box”. We expect the energies to be perturbed upward. This can easily 
be seen by the form of the first-order corrections in Eqs. (4.11)-(4.13). Switching the sign 
of the perturbation will simply switch the sign of the first order corrections. 
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