5.61 Fall 2017 Problem Set #4 Solutions

1 Survival Probabilities for Wavepacket in Harmonic Well

Let $V(x) = \frac{1}{2}kx^2$, $k = \omega^2 \mu$, $\omega = 10$, $\mu = 1$.

A. Consider the three term t = 0 wavepacket

$$\Psi(x,0) = c\psi_1 + c\psi_3 + d\psi_2.$$

Choose the constants c and d so that $\Psi(x, 0)$ is both normalized and has the largest possible negative value of $\langle x \rangle$ at t = 0. What are the values of c and d and $\langle x \rangle_{t=0}$?

Solution:

We begin by determining $\Psi^*(x,0)\Psi(x,0)$ as follows (assuming real coefficients in the case of a harmonic oscillator)

$$\Psi^{*}(x,0)\Psi(x,0) = (c^{*}\psi_{1}^{*} + c^{*}\psi_{3}^{*} + d^{*}\psi_{2}^{*})(c\psi_{1} + c\psi_{3} + d\psi_{2})$$

$$= c^{2}|\psi_{1}|^{2} + c^{2}|\psi_{3}|^{2} + d^{2}|\psi_{2}|^{2}$$

$$\int \Psi^{*}(x,0)\Psi(x,0)dx = c^{2} + c^{2} + d^{2}$$

$$1 = 2c^{2} + d^{2}$$

(1.1)

Now we must compute $\langle x\rangle$ at t=0 in order to determine the value of the constants at which it is most negative

$$\int \Psi^*(x,0) x \Psi(x,0) dx = c^2 \int \psi_1^* x \psi_1 dx + c^2 \int \psi_1^* x \psi_3 dx + cd \int \psi_1^* x \psi_2 dx + c^2 \int \psi_3^* x \psi_1 dx + c^2 \int \psi_3^* x \psi_3 dx + cd \int \psi_3^* x \psi_2 dx + cd \int \psi_2^* x \psi_1 dx + cd \int \psi_2^* x \psi_3 dx + d^2 \int \psi_2^* x \psi_2 dx$$

Due to the selection rules, the above equation reduces to

$$\int \Psi^*(x,0) x \Psi(x,0) dx = cd \left[\int \psi_1^* x \psi_2 dx + \int \psi_3^* x \psi_2 dx + \int \psi_2^* x \psi_1 dx + \int \psi_2^* x \psi_3 dx \right]$$

By converting x to ladder operator form, the integrals can be easily evaluated, giving the following

values

$$\int \psi_1^* x \psi_2 dx = \sqrt{2} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2}$$
$$\int \psi_3^* x \psi_2 dx = \sqrt{3} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2}$$
$$\int \psi_2^* x \psi_1 dx = \sqrt{2} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2}$$
$$\int \psi_2^* x \psi_3 dx = \sqrt{3} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2}$$

As a result, we find that

$$\langle x \rangle = 2cd \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\sqrt{2} + \sqrt{3}).$$

We can now use our relationship in Eq. (1.1) as follows:

$$1 = 2c^2 + d^2$$
$$d = \pm \sqrt{1 - 2c^2}$$

We choose the positive result as is the case for constants of a harmonic oscillator, and plug this into our equation for $\langle x \rangle$ as follows:

$$\langle x \rangle = 2c\sqrt{1-2c^2} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\sqrt{2}+\sqrt{3}).$$

We now minimize the above equation with respect to the constant c, in order to determine the extremum of x, and consequently the minimum value of x:

$$0 = \frac{d\langle x \rangle}{dc} = \left[2\sqrt{1 - 2c^2} + c(1 - 2c^2)^{-1/2}(-4c) \right] \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\sqrt{2} + \sqrt{3})$$
$$\sqrt{1 - 2c^2} = \frac{2c^2}{\sqrt{1 - 2c^2}}$$
$$c = \pm \frac{1}{2}$$
$$d = \frac{1}{\sqrt{2}}$$

We find that if we use the c = 1/2,

$$\langle x \rangle = \frac{1}{\sqrt{2}} \left(\frac{\hbar}{2\mu\omega} \right)^{1/2} (\sqrt{2} + \sqrt{3})$$

and that if we use c = -1/2

$$\langle x \rangle = -\frac{1}{\sqrt{2}} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\sqrt{2} + \sqrt{3})$$

5.61 Fall 2017

Problem Set #4 Solutions

Since the question asks for the constants that give the largest possible negative value of $\langle x \rangle_{t=0}$, our final answer is

$$\begin{split} \langle x \rangle_{t=0} &= -\frac{1}{\sqrt{2}} \left(\frac{\hbar}{2\mu\omega} \right)^{1/2} (\sqrt{2} + \sqrt{3}) \\ c &= -\frac{1}{2} \\ d &= \frac{1}{\sqrt{2}}. \end{split}$$

Note that we could also hve chosen $c = \frac{1}{2}$ and $d = -\frac{1}{\sqrt{2}}$.

B. Compute and plot the time-dependences of $\langle \hat{x} \rangle$ and $\langle \hat{p} \rangle$. Do they satisfy Ehrenfest's theorem about motion of the "center" of the wavepacket?

Solution:

Given $\langle x \rangle_{t=0}$, we know the form of $\langle x \rangle$ only has terms x_{12}, x_{32}, x_{21} , and x_{23} , where we define

$$x_{nm} = \int \psi_n^* x \psi_m dx.$$

Therefore, we can determine $\langle x \rangle$ as follows:

$$\begin{aligned} \langle x \rangle &= \int \Psi^*(x,t) x \Psi(x,t) dx \\ &= -\frac{1}{2\sqrt{2}} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} \left[\sqrt{2}e^{-i(\overline{E}_2 - \overline{E}_1)t/\hbar} + \sqrt{3}e^{i(\overline{E}_3 - \overline{E}_2)t/\hbar} \right. \\ &+ \sqrt{2}e^{i(E_2 - E_1)t/\hbar} + \sqrt{3}e^{-i(E_3 - E_2)t/\hbar} \end{aligned}$$

In the case of the HO, if we define (as per the lecture notes)

$$\omega = \frac{\Delta E}{\hbar} = \frac{E_2 - E_1}{\hbar} = \frac{E_3 - E_2}{\hbar}.$$

We find (utilizing Euler's formula)

$$\langle x \rangle = -\frac{1}{\sqrt{2}} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\sqrt{2} + \sqrt{3}) \cos \omega t.$$

Evaluating \hat{p} leads to (neglecting all zero terms as a result of selection rules)

$$\begin{split} \langle \hat{p} \rangle &= \int \Psi^*(x,t) \hat{p} \Psi(x,t) dx \\ &= -\frac{1}{2\sqrt{2}} \left[\int \psi_1^* \hat{p}_x \psi_2 dx e^{-i\omega t} + \int \psi_3^* \hat{p}_2 \psi_2 dx e^{i\omega t} \int \psi_2^* \hat{p}_x \psi_1 dx e^{i\omega t} + \int \psi_2^* \hat{p}_x \psi_3 dx e^{-i\omega t} \right] \end{split}$$

To compute $\langle \hat{p} \rangle$ further, we note the ladder operator relationship

$$\hat{p} = i \left(\frac{\hbar\mu\omega}{2}\right)^{1/2} (\hat{a}^{\dagger} - \hat{a}).$$

The integrals can be evaluated as follows:

$$\int \psi_1^* \hat{p} \psi_2 dx = -i\sqrt{2} \left(\frac{\hbar\mu\omega}{2}\right)^{1/2}$$
$$\int \psi_3^* \hat{p} \psi_2 dx = i\sqrt{3} \left(\frac{\hbar\mu\omega}{2}\right)^{1/2}$$
$$\int \psi_2^* \hat{p} \psi_1 dx = i\sqrt{2} \left(\frac{\hbar\mu\omega}{2}\right)^{1/2}$$
$$\int \psi_2^* \hat{p} \psi_3 dx = -i\sqrt{3} \left(\frac{\hbar\mu\omega}{2}\right)^{1/2}$$

Therefore

$$\begin{aligned} \langle \hat{p} \rangle &= -\frac{1}{2\sqrt{2}} \left(\frac{\hbar\mu\omega}{2} \right)^{1/2} \left[i\sqrt{2}(e^{i\omega t} - e^{-i\omega t}) + i\sqrt{3}(e^{i\omega t} - e^{-i\omega t}) \right] \\ &= \frac{1}{\sqrt{2}} \left(\frac{\hbar\mu\omega}{2} \right)^{1/2} (\sqrt{2} + \sqrt{3}) \sin\omega t \end{aligned}$$

Ehrenfest's theorem states

$$\frac{d\left\langle x\right\rangle}{dt} = \frac{\left\langle \hat{p}\right\rangle}{\mu}.$$

We can in fact verify this by taking the time derivative of $\langle x \rangle$ as follows:

$$\frac{d\langle x\rangle}{dt} = \frac{d}{dt} \left[-\frac{1}{\sqrt{2}} \left(\frac{\hbar}{2\mu\omega} \right)^{1/2} (\sqrt{2} + \sqrt{3}) \cos \omega t \right]$$
$$= \frac{\omega}{\sqrt{2}} \left(\frac{\hbar}{2\mu\omega} \right)^{1/2} (\sqrt{2} + \sqrt{3}) \sin \omega t$$
$$\mu \frac{d\langle x\rangle}{dt} = \frac{1}{\sqrt{2}} \left(\frac{\hbar\mu\omega}{2} \right)^{1/2} (\sqrt{2} + \sqrt{3}) \sin \omega t$$
$$= \langle \hat{p} \rangle.$$

In order to plot the time-dependance of $\langle x \rangle$ and $\langle \hat{p} \rangle$, we first normalize both by the factor

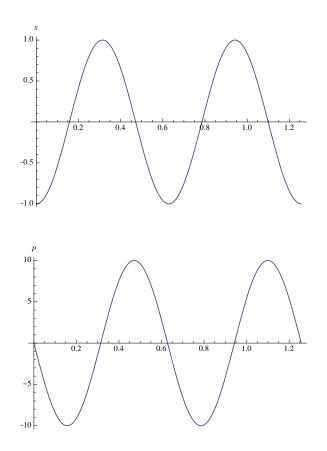
$$\frac{1}{\sqrt{2}} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\sqrt{2} + \sqrt{3}).$$

This gives us

$$\bar{\hat{x}} = -\cos\omega t = -\cos 10t$$
$$\bar{\hat{p}} = \mu\omega\sin\omega t = 10\sin 10t$$

Problem Set #4 Solutions

Below is a plot of Expectation Values of x and p over time:



C. Compute and plot the survival probability

$$P(t) = \left| \int dx \Psi^*(x,t) \Psi(x,0) \right|^2.$$

Does P(t) exhibit partial or full recurrences or both?

Solution:

$$\begin{split} \Psi^*(x,t) &= c \Psi_1^*(x,t) e^{iE_1t/\hbar} + c \Psi_3^*(x,t) e^{iE_3t/\hbar} + c \Psi_2^*(x,t) e^{iE_2t/\hbar} \\ \Psi(x,t) &= c \Psi_1(x,t) e^{-iE_1t/\hbar} + c \Psi_3(x,t) e^{-iE_3t/\hbar} + c \Psi_2(x,t) e^{-iE_2t/\hbar} \\ \int \Psi^*(x,t) \Psi(x,0) dx &= |c|^2 e^{iE_1t/\hbar} + |c|^2 e^{iE_2t/\hbar} + |d|^2 e^{iE_2t/\hbar} \\ \left| \int \Psi^*(x,t) \psi(x,0) dx \right|^2 &= \frac{1}{16} + \frac{1}{16} e^{i\omega_{31}t} + \frac{1}{8} e^{i\omega_{21}t} + \frac{1}{16} e^{-i\omega_{31}t} + \frac{1}{16} \\ &\quad + \frac{1}{8} e^{-i\omega_{32}t} + \frac{1}{8} e^{-i\omega_{21}t} + \frac{1}{8} e^{i\omega_{32}t} + \frac{1}{4} \\ &= \frac{3}{8} + \frac{1}{8} \cos 2\omega t + \frac{1}{2} \cos \omega t. \end{split}$$

Where we define (in the case of a Hamiltonian Operator)

$$\omega = \omega_{21} = \omega_{32} = \frac{\omega_{31}}{2} = \frac{\Delta E}{\hbar}$$

It is clear that the survival probability exhibits both partial and full recurrences, with full recurrence defined as

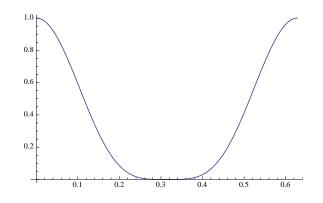
$$\omega t_{\text{full rec}} = 2\pi$$

 $t_{\text{full rec}} = \frac{2\pi}{\omega} = \frac{\pi}{5}.$

Partial recurrence is defined as:

$$2\omega t_{\text{par rec}} = 2\pi$$
$$t_{\text{par rec}} = \frac{\pi}{\omega} = \frac{\pi}{10}.$$

The survival probability is plotted below.



D.

Plot $\Psi^*(x, t_{1/2})\Psi(x, t_{1/2})$ at the time $t_{1/2}$, defined as one-half the time between t = 0 and the first full recurrence. How does this snapshot of the wavepacket look relative to the $\Psi * (x, 0)\Psi(x, 0)$ snapshot? Should you be surprised?

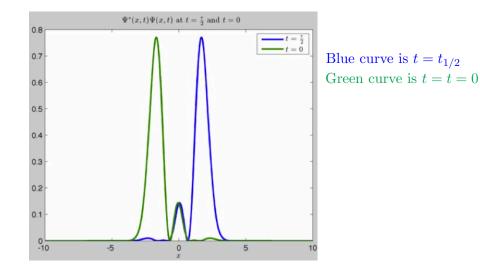
Solution:

$$\Psi^*(x,t)\Psi(x,t) = \frac{1}{4}\psi_1^2 + \frac{1}{4}\psi_3^2 + \frac{1}{2}\psi_2^2 + \frac{1}{2}\psi_1\psi_3(\cos 2\omega t) \\ - \frac{1}{\sqrt{2}}\psi_1\psi_2(\cos \omega t) - \frac{1}{\sqrt{2}}\psi_1\psi_3(\cos \omega t)$$

We can determine $\Psi^*(x, t_{1/2})\Psi(x, t_{1/2})$ and $\Psi^*(x, 0)\Psi(x, 0)$ where $t_{1/2} = \frac{\pi}{10}$.

$$\Psi^*(x,t_{1/2})\Psi(x,t_{1/2}) = \frac{1}{4}\psi_1^2 + \frac{1}{4}\psi_3^2 + \frac{1}{2}\psi_2^2 + \frac{1}{2}\psi_1\psi_3 + \frac{1}{\sqrt{2}}\psi_1\psi_2 + \frac{1}{\sqrt{2}}\psi_2\psi_3$$
$$\Psi^*(x,0)\Psi(x,0) = \frac{1}{4}\psi_1^2 + \frac{1}{4}\psi_3^2 + \frac{1}{2}\psi_2^2 + \frac{1}{2}\psi_1\psi_3 - \frac{1}{\sqrt{2}}\psi_1\psi_2 - \frac{1}{\sqrt{2}}\psi_2\psi_3$$

We can plot both $\Psi^*(x, t_{1/2})\Psi(x, t_{1/2})$ and $\Psi^*(x, 0)\Psi(x, 0)$ assuming for convenience that $\alpha = 1$. We see that the wavepacket has moved from one side of the well to the other side in half the oscillation time, as shown below.



2 Vibrational Transitions

The intensity of a transition between the initial vibrational level, v_i , and the final vibrational level, v_f , is given by

$$I_{v_f,v_i} = \left| \int \psi_{v_f}^*(x) \hat{\mu}(x) \psi_{v_i}(x) dx \right|^2,$$

where $\mu(x)$ is the "electric dipole transition moment function"

$$\hat{\mu}(x) = \mu_0 + \frac{d\mu}{dx} \bigg|_{x=0} \hat{x} + \frac{d^2\mu}{dx^2} \bigg|_{x=0} \frac{\hat{x}^2}{2} + \text{ higher-order terms}$$
$$= \mu_0 + \mu_1 \hat{x} + \mu_2 \hat{x}^2 / 2 + \mu_3 \hat{x}^3 / 6 + \dots$$

Consider only μ_0 , μ_1 , and μ_2 to be non-zero constants and note that all $\psi_v(x)$ are real. You will need some definitions from Lecture Notes #9:

$$\hat{x} = \left(\frac{2\mu\omega}{\hbar}\right)^{-1/2} (\hat{a} + \mathbf{a}^{\dagger})$$
$$\hat{a}\psi_v = v^{1/2}\psi_{v-1}$$
$$\hat{a}^{\dagger}\psi_v = (v+1)^{1/2}\psi_{v+1}$$
$$[\hat{a}, \hat{a}^{\dagger}] = +1.$$

A. Derive a formula for all $v + 1 \leftarrow v$ vibrational transition intensities. The $v = 1 \leftarrow v = 0$ transition is called the "fundamental".

Solution:

We can derive the formula for the $\nu + 1 \leftarrow \nu$ as follows:

$$\begin{split} I_{\nu+1,\nu} &= \left| \int \psi_{\nu+1}^* \hat{\mu} \psi_{\nu} dx \right|^2 \\ &= \left| \mu_0 \int \psi_{\nu+1}^* \psi_{\nu} dx + \mu_1 \int \psi_{\nu+1}^* x \psi_{\nu} dx + \frac{\mu_2}{2} \int \psi_{\nu+1}^* x^2 \psi_{\nu} dx \right|^2 \\ &= \left| \mu_1 \left(\frac{\hbar}{2\mu\omega} \right)^2 \sqrt{\nu+1} \right|^2 \end{split}$$

We see that the 1^{st} and 3^{rd} terms go to zero as a result of our selection rules, and the above epxression simplifies to

$$I_{\nu+1,\nu} = \mu_1^2 \left(\frac{\hbar}{2\mu\omega}\right) (v+1)$$

B. What is the expected ratio of intensities for the $v = 11 \leftarrow v = 10$ band $(I_{11,10})$ and the $v = 1 \leftarrow v = 0$ band $(I_{1,0})$?

The ratio of intensities can be calculated as follows:

$$I_{11,10} = \mu_1^2 \left(\frac{\hbar}{2\mu\omega}\right) (11)$$
$$I_{1,0} = \mu_1^2 \left(\frac{\hbar}{2\mu\omega}\right) (1)$$
$$\frac{I_{11,10}}{I_{1,0}} = 11$$

C. Derive a formula for all $v + 2 \leftarrow v$ vibrational transition intensities. The $v = 2 \leftarrow v = 0$ transition is called the "first overtone".

Solution:

$$\begin{split} I_{\nu+2,\nu} &= \left| \int \psi_{\nu+2}^* \hat{\mu} \psi_{\nu} dx \right|^2 \\ &= \left| \mu_0 \int \psi_{\nu+2}^* \psi_{\nu} dx + \mu_1 \int \psi_{\nu+2}^* x \psi_{\nu} dx + \frac{\mu_2}{2} \int \psi_{\nu+2}^* x^2 \psi_{\nu} dx \right|^2 \\ &= \left| \frac{\mu_2}{2} \left(\frac{\hbar}{2\mu\omega} \right) \sqrt{\nu + 1} \sqrt{\nu + 2} \right|^2 \\ &= \frac{\mu_2^2}{4} \left(\frac{\hbar}{2\mu\omega} \right)^2 (\nu + 1)(\nu + 2) \end{split}$$

D. Typically $\left(\frac{2\mu\omega}{\hbar}\right)^{-1/2} = 1/10$ and $\mu_2/\mu_1 = 1/10$ (do not worry about the units). Estimate the ratio $I_{2,0}/I_{1,0}$.

Solution:

$$I_{2,0} = \frac{\mu_2^2}{2} \left(\frac{\hbar}{2\mu\omega}\right)^2$$
$$I_{1,0} = \mu_1^2 \left(\frac{\hbar}{2\mu\omega}\right)$$
$$\frac{I_{2,0}}{I_{1,0}} = \frac{1}{2} \left(\frac{\mu_2}{\mu_1}\right)^2 \left(\frac{\hbar}{2\mu\omega}\right)$$
$$= \frac{1}{2} \left(\frac{1}{10}\right) (10)^2$$
$$= \frac{1}{2}.$$

3 More Wavepacket for Harmonic Oscillator

$$\sigma_x \equiv \left[\langle \hat{x}^2 \rangle - \langle x \rangle^2 \right]^{1/2}$$
$$\sigma_{p_x} \equiv \left[\langle \hat{p}^2 \rangle - \langle \hat{p} \rangle^2 \right]^{1/2}$$
$$\Psi_{1,2}(x,t) = 2^{-1/2} \left[e^{-i\omega t} \psi_1 + e^{-2i\omega t} \psi_2 \right]$$
$$\Psi_{1,3}(x,t) = 2^{-1/2} \left[e^{-i\omega t} \psi_1 + e^{-3i\omega t} \psi_3 \right]$$

A. Compute $\sigma_x \sigma_{p_x}$ for $\Psi_{1,2}(x,t)$.

Solution:

The first step to compute $\Delta x \Delta p$ is to compute four quantites: $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, and finally $\langle p^2 \rangle$. The first thing to remember is how to write these integrals in terms of the ladder operators.

$$\hat{x} = \left(\frac{\hbar}{2\mu\omega}\right)^2 \left(\hat{a} + \hat{a}^{\dagger}\right)$$
$$\hat{x}^2 = \left(\frac{\hbar}{2\mu\omega}\right) (\hat{a} + \hat{a}^{\dagger})^2 = \left(\frac{\hbar}{2\mu\omega}\right) \left(\hat{a}^2 + 2\hat{N} + 1 + \hat{a}^{\dagger 2}\right)$$
$$\hat{p} = i(\hbar\mu\omega/2)^{1/2} (\hat{a}^{\dagger} - \hat{a})$$
$$\hat{p}^2 = -\frac{\hbar\mu\omega}{2} (\hat{a}^{\dagger} + \hat{a})^2 = -\frac{\hbar\mu\omega}{2} \left(\hat{a}^2 + 2\hat{N} - 1 + \hat{a}^{\dagger 2}\right)$$

We can now compute the expectation values for these quantities.

$$\langle x \rangle = \frac{1}{2} \int (\psi_1 e^{i\omega t} + \psi_2 e^{2i\omega t}) \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\hat{\boldsymbol{a}} + \hat{\boldsymbol{a}}^{\dagger})(\psi_1 e^{-i\omega t} + \psi_2 e^{2i\omega t}) dx$$

$$\langle x \rangle = \frac{1}{2} \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} \sqrt{2}(e^{i\omega t} + e^{-i\omega t}) = \left(\frac{\hbar}{\mu\omega}\right)^{1/2} \cos(\omega t)$$

Computing $\langle x^2 \rangle$ is easier because the time-dependence cancels out.

$$\langle x^2 \rangle = \frac{1}{2} \left(\frac{\hbar}{2\mu\omega} \right) (2(1) + 1 + 2(2) + 1) = \frac{2\hbar}{\mu\omega}.$$

By Ehrenfest's theorem, we can calculate the expectation value of p

$$\mu \frac{d\langle x \rangle}{dt} = -(\hbar \mu \omega)^{1/2} \sin(\omega t) = \langle p \rangle.$$

We can compute the value of p^2 as well to be

$$\left\langle p^2 \right\rangle = 2\hbar\mu\omega.$$

Now we can compute Δx

$$\Delta x = \left(\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2 \right)^{1/2} = \left(\frac{\hbar}{\mu \omega} \right)^{1/2} \left(2 - \cos^2(\omega t) \right)^{1/2}.$$

Similarly, Δp is

$$\Delta p = (\hbar \mu \omega)^{1/2} (2 - \sin^2(\omega t))^{1/2}.$$

Therefore,

$$\Delta x \Delta p = \hbar (2 + 1/4 \sin^2(2\omega t))^{1/2}.$$

B. Compute $\sigma_x \sigma_{p_x}$ for $\Psi_{1,3}(x,t)$.

Solution:

For this case, we can first compute the expectation values of x and p.

$$\langle x \rangle = \frac{1}{2} \int (\psi_1 e^{i\omega t} + \psi_3 e^{3i\omega t}) \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\hat{\boldsymbol{a}} + \hat{\boldsymbol{a}}^{\dagger})(\psi_1 e^{-i\omega t} + \psi_3 e^{-3i\omega t}) dx.$$

In this case, operating with x will result in terms of eigenfunctions ψ_0 , ψ_2 , and ψ_4 . These are orthogonal to ψ_1 and ψ_3 , resulting in

 $\langle x \rangle = 0$

Similarly, we know that

 $\langle p \rangle = 0$

We can compute the expectation value of x^2 .

First, let's consider the time-independent terms. These are the terms of the form $\psi_v(2N+1)\psi_v$. Adding up these two terms from ψ_1 and ψ_3 gives $\frac{1}{2}\frac{\hbar}{2\mu\omega}(2(1)+1+2(3)+1) = \frac{5\hbar}{2\mu\omega}$. Now we can consider the cross terms that would result in motion. There are two terms that would be nonzero, $\psi_1 \hat{a}^2 \psi_3$ and $\psi_3 \hat{a}^{\dagger 2} \psi_1$. Computing this gives us

$$\frac{1}{2}\frac{\hbar}{2\mu\omega}\sqrt{6}(e^{2i\omega t}+e^{-2i\omega t})=\frac{\sqrt{6}\hbar}{2\mu\omega}\cos(2\omega t).$$

Therefore

$$\langle x^2 \rangle = \frac{\hbar}{\mu\omega} \left(\frac{5}{2} + \frac{\sqrt{6}}{2} \cos(2\omega t) \right).$$

Computing $\langle p^2 \rangle$ by the fact that $\langle \hat{H} \rangle = \langle T \rangle + \langle V \rangle$ is the simplest route. Since $\langle V \rangle = 1/2\mu\omega^2 \langle x^2 \rangle$, we know that $\langle V \rangle = \frac{\hbar\omega}{2} \left(\frac{5}{2} + \frac{\sqrt{6}}{2} \cos(2\omega t) \right)$. We calculate $\langle \hat{H} \rangle = \frac{E_1 + E_3}{2} = \frac{5}{2}\hbar\omega$. A little algebra gives us that $\langle T \rangle = \frac{\hbar\omega}{2} \left(\frac{5}{2} + \frac{\sqrt{6}}{2} \cos(2\omega t) \right) = \frac{\langle p^2 \rangle}{2m}$. Therefore

$$\left\langle p^2 \right\rangle = \hbar\mu\omega \left(\frac{5}{2} - \frac{\sqrt{6}}{2} \cos(2\omega t) \right)$$

Now we can compute the uncertainty relationship very quickly

$$\Delta x \Delta p = \hbar \left[\left(\frac{5}{6} + \frac{\sqrt{6}}{2} \cos(2\omega t) \right) \left(\frac{5}{6} - \frac{\sqrt{6}}{2} \cos(2\omega t) \right) \right]^{1/2} \\ = \frac{\hbar}{2} [25 - 6 \cos^2(2\omega t)]^{1/2}.$$

C. The uncertainty principle is

$$\sigma_x \sigma_{p_x} \ge \hbar/2.$$

The $\Psi_{1,2}(x,t)$ wavepacket is moving and the $\Psi_{1,3}(x,t)$ wavepacket is "breathing". Discuss the time-dependence of $\sigma_x \sigma_{p_x}$ for these two classes of wavepackets.

Solution:

Let's look at plots of the uncertainties, as computing in parts **A** and **B**. From these plots, we see that both uncertainties oscillate, although the wavepacket with a lower average energy (from part **A**) has lower average uncertainty than the wavepacket from part **B**. Both oscillate with the same frequency but with different amplitudes. The uncertainties don't necessarily reflect the movement of the wavepacket directly. The wavepacket from part **A** will dephase and move from side-to-side. The wavepacket from part **B** (the breathing wavepacket) will dephase and rephase, while the average value of x will remain 0.

4 Two-Level Problem

A. Algebraic Approach

$$\int \psi_1^* \widehat{H} \psi_1 d\tau = H_{11} = E_1$$
$$\int \psi_2^* \widehat{H} \psi_2 d\tau = H_{22} = E_2$$
$$\int \psi_2^* \widehat{H} \psi_1 d\tau = H_{12} = V$$

Find eigenfunctions:

$$\begin{split} \psi_{+} &= a\psi_{1} + b\psi_{2} \qquad (\text{must be normalized, }\psi_{1},\psi_{2} \text{ are orthonormal})\\ \widehat{H}\psi_{+} &= E_{+}\psi_{+} \\ \psi_{-} &= c\psi_{1} + d\psi_{2} \qquad (\text{must be normalized, and orthonormal to }\psi_{+})\\ \widehat{H}\psi_{-} &= E_{-}\psi_{-} \end{split}$$

Use any brute force algebraic method (but not matrix diagonalization) to solve for E_+ , E_- , a, b, c and d.

Solution:

We are given

$$H_{11} = E_1$$
$$H_{22} = E_2$$
$$H_{12} = V$$

We want eigenfunctions:

$$\begin{split} \widehat{H}\psi_{+} &= E_{+}\psi_{+} \qquad \text{where } \psi_{+} &= a\psi_{1} + b\psi_{2} \\ \widehat{H}\psi_{-} &= E_{-}\psi_{-} \qquad \text{where } \psi_{-} &= c\psi_{1} + d\psi_{3} \end{split}$$

 $\widehat{H}\psi_* = \widehat{H}(a\psi_1 + b\psi_2) = E_+(a\psi_1 + b\psi_2) = E_+\psi_+$ left multiplied by $\psi_1^* \longrightarrow \int_{-\infty}^{\infty} \psi_1 = \overline{H}(a\psi_1 + b\psi_2)d\tau = E_+\int_{-\infty}^{\infty} \psi_1^+(a\psi_1 + b\psi_2)d\tau$ to τ

$$a(H_{11}) + b(V) = E_{+}(a + 0b)$$

$$c(H_{11}) + d(V) = E_{-}(c + 0d)$$

$$a(H_{11} - E_{+}) + bV = 0$$
(4.1)

$$c(H_{11} - E_{-}) + dV = 0 (4.2)$$

Now repeat the process, but for left multiply by $\psi_2^*:$

$$\int_{-\infty}^{\infty} \psi^2 H(a\psi_1 + b\psi_2) d\tau = E_+ \int_{-\infty}^{\infty} \psi_2^+(a\psi_1 + b\psi_2)$$

$$aV + b(H_{22} - E_+) = 0 \tag{4.3}$$

$$cV + d(H_{22} - E_{-}) = 0 (4.4)$$

Rearrange Eq. (4.1) and Eq. (4.3), then set equal

$$\frac{a}{b} = \frac{V}{H_{11} - E_+} = \frac{H_{22} - E_+}{V}$$
(4.5)

same for Eqs. (4.2) and (4.4)

$$\frac{c}{d} = \frac{V}{H_{11} - E_{-}} = \frac{H_{22} - E_{-}}{V}$$
(4.6)

Cross-multiply Eqs. (4.5) & (4.6) and rearrange

$$V^{2} = (H_{11} - E_{\pm})(H_{22} - E_{\pm}) = H_{11}H_{22} - H_{11}E_{\pm} - E_{\pm}H_{22} + E_{\pm}^{2}.$$

Quadratic function of $E_{\pm} \Rightarrow E_{\pm}^2 - (H_{11} + H_{22})E_{\pm} + H_{11}H_{22} - V^2 = 0.$ Solve using the quadratic formula

$$E_{+} = \frac{1}{2} \left[(H_{11} + H_{22}) \pm \left[(H_{11} + H_{22})^{2} - 4(H_{11}H_{22} - V^{2}) \right]^{1/2} \right]$$

We want a simpler expression for E_{\pm} .

Let
$$\overline{E} = \frac{H_{11} + H_{22}}{2}$$

$$\Delta = \frac{H_{11} - H_{22}}{2}$$

$$\overline{E_{\pm}} = \overline{E} \pm [\Delta^2 + V^2]^{1/2}$$

We want normalized wavefunctions:

$$1 = a^2 + b^2 = c^2 + d^2$$
$$a = \sqrt{1 - b^2}$$
$$c = \sqrt{1 - d^2}$$

Rewriting Eq. (4.5)

$$\frac{\sqrt{1-b^2}}{b^2} = \frac{V}{H_{11} - E_+} = \frac{V}{H_{11} - \overline{E} - [\Delta^2 + V^2]^{1/2}} = \frac{V}{\Delta - [\Delta^2 + V^2]^{1/2}}$$

Let
$$\Delta^2 + V^2 = x$$

$$\frac{\sqrt{1-b^2}}{b^2} = \frac{\sqrt{x-\Delta^2}}{\Delta - \sqrt{x}}$$

$$\frac{\sqrt{1-b^2}}{b^2} = \frac{\sqrt{x-\Delta^2}}{\Delta^2 - 2\Delta\sqrt{x} + x} = \frac{(\sqrt{x} - \Delta)(\sqrt{x} + \Delta)}{+(\sqrt{x} - \Delta)(\sqrt{x} - \Delta)}$$

$$\frac{1-b^2}{b^2} = \frac{\sqrt{x} + \Delta}{\sqrt{x-\Delta}}$$

$$1 = b^2 \left(1 + \frac{\sqrt{x} + \Delta}{\sqrt{x-\Delta}}\right) = b^2 \left(\frac{2\sqrt{x}}{\sqrt{x-\Delta}}\right)$$

$$b^2 = \frac{\sqrt{x} - \Delta}{2\sqrt{x}} = \frac{1}{2} \left(1 - \frac{\Delta}{\sqrt{x}}\right)$$

$$a = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{\sqrt{x}}\right)}$$

$$a = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{\sqrt{x}}\right)}$$

$$c = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{\sqrt{x}}\right)}$$

$$d = -\sqrt{\frac{1}{2} \left(1 + \frac{\Delta}{\sqrt{x}}\right)}$$

$$\downarrow$$
use same procedure to find these values

B. Matrix Approach

$$\begin{aligned} \mathbf{H} &= \begin{pmatrix} E_1 & V \\ V^* & E_2 \end{pmatrix} = \begin{pmatrix} \overline{E} & 0 \\ 0 & \overline{E} \end{pmatrix} + \begin{pmatrix} \Delta & V \\ V^* & \Delta \end{pmatrix} \\ \overline{E} &= \frac{E_1 + E_2}{2} \\ \Delta &= \frac{E_1 - E_2}{2} < 0 \qquad (\text{assume } E_1 < E_2) \end{aligned}$$

(i) Find the eigenvalues of \mathbf{H} by solving the determinantal secular equation

$$0 = \begin{vmatrix} \Delta - E & V \\ V^* & -\Delta - E \end{vmatrix}$$
$$0 = -\Delta^2 + E^2 - |V|^2$$

Solution:

$$\widehat{H} = \begin{pmatrix} E_1 & V \\ V^* & E_2 \end{pmatrix} = \begin{pmatrix} \overline{E} + \Delta & V \\ V^* & \overline{E} - \Delta \end{pmatrix}$$
$$\widehat{H}\overrightarrow{C} = E\overrightarrow{C} \Rightarrow (\widehat{H} - EI)\overrightarrow{C} = 0$$
$$0 = \begin{pmatrix} \overline{E} + \Delta - E & V \\ V^* & \overline{E} - \Delta - E \end{pmatrix}\overrightarrow{C}$$

Let $E' = -\overline{E} + E$

$$0 = \begin{pmatrix} \Delta - E' & V \\ V^* & -\Delta - E' \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{12} \end{pmatrix}$$
$$\det \begin{vmatrix} \Delta - E' & V \\ V^* & -\Delta - E' \end{vmatrix} = -1(\Delta^2 - E'^2) - |V|^2 = 0$$
$$0 = -\Delta^2 + E'^2 - |V|^2$$
$$E' = \pm \sqrt{\Delta^2 + |V|^2}$$
$$\boxed{E_{\pm} = \overline{E} \pm \sqrt{\Delta^2 + |V|^2}}$$

(ii) If you dare, find the eigenfunctions (eigenvectors) of **H**. Do these eigenvectors depend on the value of \overline{E} ?

$$\begin{pmatrix} \Delta - \sqrt{\Delta^2 + |V|^2} & V \\ V^* & -\Delta - \sqrt{\Delta^2 + |V|^2} \end{pmatrix} \begin{pmatrix} V_{11} \\ V_{12} \end{pmatrix} = 0 \\ (\Delta - \sqrt{\Delta^2 + V^2}) V_{11} + V V_{12} = 0$$

$$V_{11} = \frac{+V}{\sqrt{\Delta^2 + V^2} - \Delta} V_{12}$$

$$V_{11} = \frac{\sqrt{x - \Delta^2}}{\sqrt{x - \Delta}} V_{12} = \frac{\sqrt{(\sqrt{x} + \Delta)(\sqrt{x} - \Delta)}}{\sqrt{x - \Delta}} V_{12} = \sqrt{\frac{(\sqrt{x} + \Delta)(\sqrt{x} - \Delta)}{(\sqrt{x} - \Delta)(\sqrt{x} - \Delta)}} V_{12}$$

$$V_{11} = \sqrt{\frac{\sqrt{x} + \Delta}{\sqrt{x - \Delta}}} V_{12}$$

$$\begin{pmatrix} \Delta + \sqrt{\Delta^2 + |V|^2} & V \\ V^* & -\Delta + \sqrt{\Delta^2 + |V|^2} \end{pmatrix} \begin{pmatrix} V_{21} \\ V_{22} \end{pmatrix} = 0 \\ V_{21} = \frac{V}{\sqrt{\Delta^2 + |V|^2 + \Delta V_{22}}} = \frac{\sqrt{x - \Delta^2}}{\sqrt{x + \Delta}} V_{22} \\ \hline \vec{V}_2 = \left(\sqrt{\frac{\sqrt{x} - \Delta}{\sqrt{x + \Delta}}}\right) \frac{1}{\sqrt{1 + \frac{\sqrt{x} - \Delta}{\sqrt{x + \Delta}}}}$$

Eigenvectors do not depend on \overline{E} .

(iii) Show that

$$E_{+} + E_{-} = 2\overline{E} \text{ (trace of } \mathbf{H})$$
$$(E_{+})(E_{-}) = \begin{vmatrix} \Delta & V \\ V^{*} & -\Delta \end{vmatrix} \quad (\text{determinant of } \mathbf{H})$$

SAME

$$E_{+} + E_{-} = \overline{E} + \sqrt{\Delta^{2} + |V|^{2}} + \overline{E} - \sqrt{\Delta^{2} + |V|^{2}} = 2\overline{E}$$
$$Tr(\widehat{H}) = E_{1} + E_{2} = \overline{E} + \sqrt{\Delta^{2} + |V|^{2}} + \overline{E} - \sqrt{\Delta^{2} + |V|^{2}} = 2\overline{E}$$
$$(E_{+})(E_{0}) = (\overline{E} + \sqrt{\Delta^{2} + |V|^{2}})(\overline{E} - \sqrt{\Delta^{2} + |V|^{2}}) = \overline{E}^{2} - \Delta^{2} - |V|^{2} = \det(\widehat{H})$$
$$\det(\widehat{H}) = \begin{vmatrix} \Delta + \overline{E} & V \\ V^{*} & \overline{E} - \Delta \end{vmatrix} = \overline{E}^{2} - \Delta^{2} - |V|^{2}$$

(iv) This is the most important part of the problem: If $|V| \ll \Delta$, show that $E_{\pm} = \overline{E} \pm \frac{|V|^2}{(E_2 - E_1)}$ by doing a power series expansion of $[\Delta^2 + |V|^2]^{1/2}$. Also show that

$$\psi_+ \approx \alpha \psi_2 + \frac{|V|}{(E_2 - E_1)} \psi_1$$

where

$$\alpha = \left[1 - \left(\frac{|V|}{(E_2 - E_1)}\right)^2\right]^{1/2} \approx 1.$$

It is always a good strategy to show that ψ_+ belongs to E_+ (not E_-). This minimizes sign and algebraic errors.

Solution:

No answer given

C. You have derived the basic formulas of non-degenerate perturbation theory. Use this formalism to solve for the energies of the three-level problem:

$$\mathbf{H} = \begin{pmatrix} E_1^{(0)} & V_{12} & V_{13} \\ V_{12}^* & E_2^{(0)} & V_{23} \\ V_{13}^* & V_{23}^* & E_3^{(0)} \end{pmatrix}$$

Let $E_1^{(0)} = -10$
 $E_2^{(0)} = 0$
 $E_3^{(0)} = +20$
 $V_{12} = 1$
 $V_{13} = 2$
 $V_{23} = 1$

$$\widehat{H} = \begin{pmatrix} -10 & 1 & 2\\ 1 & 0 & 1\\ 2 & 1 & 20 \end{pmatrix}$$
$$\widehat{H}\psi = E\psi$$
$$\mathbf{H}\vec{c} = E\vec{c}$$

$$(\mathbf{H} - E\mathbf{I})\vec{c} = 0$$

Solution for E obtained from:

$$0 = \det(\mathbf{H} - E\mathbf{I})$$

= $\det \begin{vmatrix} -10 - E & 1 & 2 \\ 1 & -E & 1 \\ 2 & 1 & 20 - E \end{vmatrix}$
= $(-10 - E)[E^2 - 20E - 1) + 1(2 - 20 + E + 2(1 + 2E))$
= $-E^3 + 20E^2 + E - 10E^2 + 200E + 10 - 18 + E + 2 + 4E$
= $-E^3 + 10E^2 + 206E - 6$

Solve this numerically:

$$E_1 = -10.218$$

 $E_2 = 0.029085$
 $E_3 = 20.189$

D. The formulas of non-degenerate perturbation theory enable a solution for the three approximate eigenvectors of **H** as shown below. Show that **H** is *approximately diagonalized* when you use ψ'_1 below to evaluate **H**:

$$\psi_1' = \psi_1 + \frac{V_{12}}{E_1 - E_2}\psi_2 + \frac{V_{13}}{E_1 - E_3}\psi_3$$

$$\psi_2' = \psi_2 + \frac{V_{12}}{E_2 - E_1}\psi_1 + \frac{V_{13}}{E_2 - E_3}\psi_3$$

$$\psi_3' = \psi_3 + \frac{V_{13}}{E_3 - E_1}\psi_1 + \frac{V_{23}}{E_3 - E_2}\psi_2$$

This problem is less burdensome when you use numerical values rather than symbolic values for the elements of **H**.

Solution:

Given the appropriate solution vectors, we want to test that they "nearly" diagonalized **H**. Writing ψ'_1 , ψ'_2 and ψ'_3 is the ψ_1 , ψ_2 , ψ_3 basis.

$$\begin{split} \psi_1' & \psi_1' = \begin{pmatrix} 1\\ \frac{1}{-10-0}\\ \frac{2}{-10-20} \end{pmatrix} = \begin{pmatrix} 1\\ \frac{1}{10}\\ \frac{-1}{15} \end{pmatrix} \\ \psi_2' & \psi_2' = \begin{pmatrix} \frac{1}{0+10}\\ 1\\ \frac{1}{0-20} \end{pmatrix} = \begin{pmatrix} \frac{1}{10}\\ 1\\ \frac{-1}{20} \end{pmatrix} \\ \psi_3' & \psi_3' = \begin{pmatrix} \frac{2}{20+10}\\ \frac{1}{20-0}\\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{15}\\ \frac{1}{20}\\ 1 \end{pmatrix} \end{split}$$

The transformation into this new approximate eigenbasis is

$$\mathbf{U} = \begin{pmatrix} \psi_1' & \psi_2' & \psi_2' \end{pmatrix}$$
$$\mathbf{U} = \begin{pmatrix} 1 & \frac{1}{10} & \frac{1}{15} \\ \frac{-1}{10} & 1 & \frac{1}{20} \\ \frac{-1}{15} & \frac{-1}{20} & 1 \end{pmatrix}$$

Then

$$\mathbf{U}^{-1}\mathbf{H}U = \mathbf{H}'$$

which should be approximately diagonal:

$$H' = \begin{pmatrix} -10.218 & -0.116 & 0.031 \\ -0.066 & 0.029 & 0.060 \\ -1.125 & 0.190 & 20.189 \end{pmatrix}$$

which is nearly diagonal with eigenvalues very similar to those calculated exactly in part C.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.61 Physical Chemistry Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.