5.61 Fall 2017
Problem Set #4 Solutions

1 Survival Probabilities for Wavepacket in Harmonic Well

Let V(x) = %ka, k=w?p, w=10, p=1.

A. Consider the three term ¢t = 0 wavepacket
U(z,0) = cip1 + cip3 + dips.

Choose the constants ¢ and d so that ¥(z, 0) is both normalized and has the largest possible negative
value of (x) at t = 0. What are the values of ¢ and d and (x),_,?

Solution:

We begin by determining ¥*(x,0)¥(x,0) as follows (assuming real coefficients in the case of a
harmonic oscillator)

U*(2,0)W(x,0) = ("¢} + "} + d*¥3) (cr + ez + dia)
= 1] + Als|® + o

/\IJ*(:E, 0)¥(x,0)dr = ¢* + ¢ + d?
1=22+4d? (1.1)

Now we must compute (x) at ¢ = 0 in order to determine the value of the constants at which it is
most negative

/\IJ*(:U,O)x\I/(x,O)dx = CQ/w’fmbldx+62/¢fx¢3dm+cd/wfx¢2dm
+ ¢ / Yirprda + 2 / Yizpgde + cd / Yiripoda
+ cd / Yixdr + cd / Yixpsde + d? / Yixipodr
Due to the selection rules, the above equation reduces to
/\Il*(x,O):U\II(:U,O)d:r =cd {/ @/}Tﬂ/}gdw+/w§xw2d:ﬂ+/¢§x¢1dx+/w§xw3dx}

By converting x to ladder operator form, the integrals can be easily evaluated, giving the following
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values

/ Wi eadr = V2

(312)

fan (i)

/w;wldx = \/5( )
(312)

/ Yyrpsde = V3
As a result, we find that
=2cd | — 2 3).
(x) = 2c (2/~W) (V2 +V3)
We can now use our relationship in Eq. (1.1) as follows:

1=2¢%+d?
d==+v1-2c?

We choose the positive result as is the case for constants of a harmonic oscillator, and plug this
into our equation for (x) as follows:

/
(x) =2c\/1 —2¢2 (2;1})1 2 (V2 +V3).

We now minimize the above equation with respect to the constant ¢, in order to determine the
extremum of x, and consequently the minimum value of x:

1/2
0= d;? = [2V1 =2 4 (1 = 2%) 73 (~4c)| (2;) (V2 +V3)
2¢2
T

1

Cc = j:§
1

=

and that if we use ¢ = —1/2
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Since the question asks for the constants that give the largest possible negative value of (z),_, our
final answer is

! (Z) v (V2 +V3)

Note that we could also hve chosen ¢ =

D=

B. Compute and plot the time-dependences of (&) and (p). Do they satisfy Ehrenfest’s theorem
about motion of the “center” of the wavepacket?

Solution:

Given (z),_,, we know the form of (x) only has terms w12, x32, x21, and x3, where we define

Tom, = /w;aﬁwmdaﬁ.

Therefore, we can determine () as follows:
(x) = /\If*(x,t)x\lf(x,t)dx

1/2 o o
_ _2\1/5 <2Zu> [\/ie—i(Eg—El)t/h_i_ /36l Bs—F2)t/h

1\ /2ei(B2En)t/h 4 \/ge—i(Eg—Eg)t/h]

In the case of the HO, if we define (as per the lecture notes)
_AE Ey—Ey E3—E

W

h h B h
We find (utilizing Euler’s formula)
1 5o\ 12
(x) = 7 <2/M> (V2 + V3) coswt.

Evaluating p leads to (neglecting all zero terms as a result of selection rules)
6) = [ v 0p(eds
1 . . . .
-5 [ [ vibaadze s [ gprindnct [wipondect v [ wsmsdmem]
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To compute (p) further, we note the ladder operator relationship

1/2
p=i (h‘;w> (@' —a).

The integrals can be evaluated as follows:

[ vipvads = —iv3 (22) 12

/w?;ﬁwzd:c — V3 (ﬁgw>1/z

/%ﬁ%dw — i3 <hgw) 1/2

/wé‘ﬁwgd;p — i3 (ﬁ;;w> 1/2
Therefore

(5) = —— (ﬁ” “) . [V2(e™ = 70 /(e — i)

o2\ 2
1/2
= \2 <ﬁ;2w> (V2 4 V/3) sinwt
Ehrenfest’s theorem states A
dla) _ (p)
dt wo

We can in fact verify this by taking the time derivative of (x) as follows:

dizy d| 1 ([ n\Y?
di = at [—\/ﬁ <2MUJ> (\/i‘f' \/g) coswt]

_ @ <ﬁ) " VBt VB sinut

2 \ 2uw

- o\ /2
,udét> 12(ﬁ';> (V2 + V/3) sinwt)

—~

p) -

In order to plot the time-dependance of (z) and (p), we first normalize both by the factor

1 no\ /2
7o) 2
This gives us

—coswt = —cos 10¢

7=
]5 = pwsinwt = 10sin 10¢

5.61 Fall 2017 Problem Set #4 Solutions Page 4



Below is a plot of Expectation Values of z and p over time:

-5

10l

C. Compute and plot the survival probability

Does P(t) exhibit partial or

P(t) = ’ / AV (z,1)U(z, 0)

full recurrences or both?

2

Solution:
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U*(z,t) = W} (x, 1) BN 4 cWs(x, 1) Ph 4 cWh(a, t)e P2t/M
U(z,t) = cllll(x7t)e—iE1t/h +cqj3($’t)e—iE3t/h + C\I/2(x,t)e—iE2t/h
[ 008,00 = [P R e

2
— i 4 ieiw31t 4 leiwzlt 4 ief’io.@lt 4 i

’/‘Ij(x’t)w(“”o)dx 16 ' 16 8 16 16

1 —iw3at 1 —twa1t 1 tw3ot 1
+ 86 + 86 + 86 + 1

1 1
= 3 + §c052wt+ §coswt.

Where we define (in the case of a Hamiltonian Operator)

w31 AFE
w = w = W = —— = —
21 32 9 7
It is clear that the survival probability exhibits both partial and full recurrences, with full recurrence
defined as

Wyl rec = 27

2 ™
thull rec = — =
w

g.

Partial recurrence is defined as:

2wtpar rec = 27

m s
tpar rec —

The survival probability is plotted below.

D.
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Plot W™ (x,t/2)W(z,11/2) at the time t;/, defined as one-half the time between ¢ = 0 and the first
full recurrence. How does this snapshot of the wavepacket look relative to the ¥ x (z,0)¥(x,0)
snapshot? Should you be surprised?

Solution:

. 1 1 1 1
U (x, t)W(z,t) = Zw% + 11#32, + 5@03 + §¢1¢3(cos 2wt)

- \21#11/)2(005 wt) — \}§¢1¢3(COS wt)
We can determine W*(x,t;/5)W(z,;/2) and ¥*(x,0)¥(x,0) where t;/5 = 5.
W (o, t1y2) W@ y2) = 207+ TUR + S0+ St + it + i)
T,l1/2 90,1/2—414322213\@12\/523
. 1 1 1 1 1 1
U*(z,0)¥(x,0) = Zﬁ + ng + 51&% + §¢1¢3 - ﬁ%% - \ﬁ%%

We can plot both W*(z,;/5)¥(z,t1/2) and ¥*(z,0)¥(z,0) assuming for convenience that o = 1.
We see that the wavepacket has moved from one side of the well to the other side in half the
oscillation time, as shown below.

U (r, t)¥(r,t)att=Fandt=0
08 T T T

e ()

07 m | Blue curve is t =t 9

06 Green curveist =t =0
05

04+

03

02

0.1
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2 Vibrational Transitions

The intensity of a transition between the initial vibrational level, v;, and the final vibrational level,

vy, is given by
2

I

Iy = ‘ [ v, @iy ()

where p(x) is the “electric dipole transition moment function”

d d2 £2
f(x) = po + ﬁ » T4 chl; » % + higher-order terms

= po + i+ ped®/ 2+ psd®/ 6+ ...

Consider only pg, (1, and g to be non-zero constants and note that all ¢, (x) are real. You will
need some definitions from Lecture Notes #9:

-1/2
T = (2;?}) (a+ aT)
ay, = v %,

@l = (v + 1)V

~

[@,a'] = +1.

A. Derive a formula for all v + 1 < v vibrational transition intensities. The v = 1 + v = 0
transition is called the “fundamental”.

Solution:

We can derive the formula for the v + 1 < v as follows:

2

Loy = / W1 i d

2

— |0 [wirtde [ 0o+ 2 [ vinatdo

2
h 2
= |p1 () Vv +1
2w

We see that the 1% and 3™ terms go to zero as a result of our selection rules, and the above
epxression simplifies to

h
i (QMW> (v+1)

B. What is the expected ratio of intensities for the v = 11 < v = 10 band (I11,10) and the
v=14v=0band ({10)?
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Solution:

The ratio of intensities can be calculated as follows:
h
Iiw=p—)@11
11,10 = M7 <2MW> (11)
h
Lo=p}|=—)(
=it (5 ) @)

I11,10
Io

)

=11

C. Derive a formula for all v + 2 < v vibrational transition intensities. The v = 2 + v = 0
transition is called the “first overtone”.

Solution:

2

Iﬁzu=(/¢$gﬂmdx

2

— |0 [ istnda i [0 oo+ 2 [ 0inatido

2

:lmgﬁ>ﬁwdﬁ%2
Hw

2
_ f <QZU>2(U+1)(U+2)

5 ~1/2
D. Typically <;;w> = 1/10 and p2/p1 = 1/10 (do not worry about the units). Estimate the

ratio IQ,Q/ILO.

Solution:
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3 More Wavepacket for Harmonic Oscillator

1/2

Or = {<§72> — <w>2]
1/2
o, = (%) = ()]
qjlg(l’,t) —_ 271/2 [ef’iwtwl + 6721@2&1/}2]
\111,3(«73775) _ 271/2 [efiw%bl + 673iwt¢3]

A. Compute 0,0, for ¥y o(z,1t).

Solution:

The first step to compute AzAp is to compute four quantites: (x), <x2>, (p), and finally <p2>. The
first thing to remember is how to write these integrals in terms of the ladder operators.

We can now compute the expectation values for these quantities.

<x> _ ;/<wleiwt + ¢2€2iUJt) <ﬁ

2w

(x) = L <h>1/2 V2(e™! 4 e ™) = (h)m cos(wt)

2uw pw

1/2 ] )
) (& +a)(gre™ + o) d
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Computing <:U2> is easier because the time-dependence cancels out.

2h

oy _L( N _ 2
(z*) = 5 <2uw> (2(1)+1+2(2)+1)_W.

By Ehrenfest’s theorem, we can calculate the expectation value of p

d(x)

P = —(ﬁHW)I/Q sin(wt) = (p) -

We can compute the value of p? as well to be

<p2> = 2hpw.
Now we can compute Ax
1/2 Ao\ /2
Az = (<x2> - (x)Q) = (uw) (2- cosz(wt))lﬂ.

Similarly, Ap is
Ap = (hpw)?(2 — sin®(wt)) /2.

Therefore,
AzAp = i(2 + 1/4sin?(2wt)) /2.

B. Compute 0,0, for ¥y 3(z,t).

Solution:

For this case, we can first compute the expectation values of z and p.

)= [t e (S

1/2
N ~t —iwt —3iwt
2Mw> (@+a") (e + 3e )dx.

In this case, operating with x will result in terms of eigenfunctions g, 19, and 4. These are
orthogonal to 1 and 3, resulting in

Similarly, we know that

We can compute the expectation value of z2.
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Vi3

20(
1.8 i
1.6 i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J qj1a2
1 2 3 4 5 6
1 iwt Jiwt h ~ ~1\2 —iwt —3iwt
(z) = 3 (1™ 4 1h3e™™™") 2w (@+a'") " (Pre™™" +se )dx

First, let’s consider the time-independent terms. These are the terms of the form 1, (2N + 1)1),.
Adding up these two terms from ; and 3 gives %2/%(2(1) +1+23)+1) = % Now we can
consider the cross terms that would result in motion. There are two terms that would be nonzero,
W@y and zat . Computing this gives us

1 & . . V6h
- 6 2qwt — 2wt — 20wt).
272/%‘)[(6 +e ) o cos(2wt)
Therefore
h (5 V6
2
= — [ 24+ X2 cos(2wt) | .
(x%) o <2 + 5 cos( wt))

Computing (p®) by the fact that <ﬁ> = (T)+ (V) is the simplest route. Since (V) = 1/2uw? (2?),
we know that (V) = & (% + @ cos(2wt)). We calculate <ﬁ> = % = Shw. A little algebra

2
gives us that (T") = % (% + @ cos(2wt)> = %. Therefore

Now we can compute the uncertainty relationship very quickly

1/2
(2 + \éé cos(2wt)) (2 — \gé COS(QWt)>]

= 2[25 — 6 cos?(2wt)]"/2,

AxAp=nh
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C. The uncertainty principle is
020p, > h/2.

The WUy o(x,t) wavepacket is moving and the Wy 3(x,t) wavepacket is “breathing”. Discuss the
time-dependence of 0,0, for these two classes of wavepackets.

Solution:

Let’s look at plots of the uncertainties, as computing in parts A and B. From these plots, we see
that both uncertainties oscillate, although the wavepacket with a lower average energy (from part
A) has lower average uncertainty than the wavepacket from part B. Both oscillate with the same
frequency but with different amplitudes. The uncertainties don’t necessarily reflect the movement
of the wavepacket directly. The wavepacket from part A will dephase and move from side-to-
side. The wavepacket from part B (the breathing wavepacket) will dephase and rephase, while the
average value of x will remain 0.

4 Two-Level Problem

A. Algebraic Approach
/%Z)Tﬁi/)ldT =Hn=E
/lb;ﬁ%dT = Hyy = Ey

/w;ﬁ¢1dT = H12 = V

Find eigenfunctions:

Yy = a1 + bipy (must be normalized, 11,99 are orthonormal)
Hipy = Bty

Yo = 1 + dipg (must be normalized, and orthonormal to )
Hy_ = FE_4_

Use any brute force algebraic method (but not matrix diagonalization) to solve for E,, F_, a,b,c

and d.

Solution:

We are given

Hy = Fy
Hyy = F»
Hiy =V
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We want eigenfunctions:

Hiy = E v, where b, = aiy + bio
flw, =FE_1_ where ¥_ = cy1 + di)s

Hep. = H(ayy + bps) = By (an + bps) = Eyby
left multiplied by 7 / by = aiﬂl n bT/JQ dT _ B, / ¢1 (atbr + bs)dr

integrate with respect
to T

Now repeat the process, but for left multiply by v3:

/ " R H (s + bin)dr — By / " (s + )

aV + b(H22 — E+) =0
cV + d(H22 — E,) =0

Rearrange Eq. (4.1) and Eq. (4.3), then set equal

g \%4 H22 — E+

b Hpy—Ef V
same for Eqgs. (4.2) and (4.4)

E 14 H22 —FE_

d Hpy—E_- Vv

Cross-multiply Eqgs. (4.5) & (4.6) and rearrange

V? = (Hy — By)(Hey — By) = Hy1Hop — HEy — ExHop + E7.

Quadratic function of Fy = E3 — (Hy1 + Hae)Ey + Hi1Hao — V2 = 0.

Solve using the quadratic formula

E, =

l\')M—t

(Hu1 + Hoo) & [(Hiy + Hao)? — 4(Hy1 Hoo — VQ)]I/Q}

We want a simpler expression for E.
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We want normalized wavefunctions:

1=’ 4+’ =2+d°
o= VIZB
R
Rewriting Eq. (4.5)
V1-02 Vv B V B |4
¥  Hy-E. Hy — E — [A2 4+ V2]1/2 - A — [A2 4 V2)1/2

Let A24V2=1¢

VI-0? Vo —A?
2 o Az
Vi-? Ve AT (Vo - A) (VT +A)
o A2-2Az+az  +(Vr— A)(VT - A)

1-b0* Jz+A
¥ Ji-A
R
bzzﬂ—ﬁ:} 1_A>
o0z 2 Jz

A
NZ3
o = 1<1+A> ~— plug binto a = V1 — b2
2 NI
1 (1 A )
C = — _ —_— -—
2 Ve | use same procedure to
1 < A > find these values
d=—/=|14+ —= ‘
2 vz
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B. Matrix Approach

g (B VY_(E 0\, (A Vv
~\V* Ey) \0 FE Vs A
Ey + By
2

FEy—FE
% <0 (assume E; < E3)

> o
I

(i) Find the eigenvalues of H by solving the determinantal secular equation

OZ‘A—E 1% ‘

V: —-A-E
0=—-A+E*—|V]?

Solution:

j-\[— BV . E+A Vv
v B) -\ v E-A

HC=EC= (H-ENC=0
_(E+A-E 1% 5
0—( = E—A—E)C

Let B/ = —-E+ FE

0— A—F |4 Vi1
v —A—FE") \Vio
A—F |4

det v _A_E

— 1A= E*) —|V]’=0

0=-A24+ E* —|V]?
E'=+A2+|V|?

Eir=FE4+ /A2 +|V]|?

(ii) If you dare, find the eigenfunctions (eigenvectors) of H. Do these eigenvectors depend on the
value of E?
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Solution:

(A— VA2 + V|2 1% ) <V11> _0

v A— A vE) ) T

(A= VAZH V)V +V Ve =0
+V

VH:\/W—A 12
s Ve R ETAGEA),  [(ErAE-A)
R Vi-A SR ROZEFNI VR Vi
Vii = gtivm

A2+ |V |2 %4 Vi) _

v —A+ A2 V2] \ Vo)
B 1%  Vr—A?
VAZHVE+ AV, Vit A

. VI=A 1
Vo = VA | —/———
1 1+ Y24

JTiA

Vaa

Vai

Eigenvectors do not depend on E.

(iii) Show that

Ey + E_ = 2F (trace of H)

(B )(E) = ‘VA _VA} (determinant of H)
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Solution:

SAME

E,+E_ =E+ /A2 |V2+E— /A2 |V2=2E

Tr(H) = B\ + By = E+ /A + VP + E— /A2 4 [V = 2E

(1) (Bo) = (B+ A2+ [VR)(E — /A2 + V) = B — A? - [V[? = det(H)
~ ’A+E 1%

det(H) = |, E_A' =E - A2 |V

(iv) This is the most important part of the problem: If |[V| < A, show that B+ = E + % by

doing a power series expansion of [A% 4 [V|?]/2]. Also show that

N \4
Yy & a)g + > — B 1

o= [ ()

It is always a good strategy to show that ¢4 belongs to Ey (not E_). This minimizes sign and
algebraic errors.

where
1/2

~ 1.

Solution:

No answer given

C. You have derived the basic formulas of non-degenerate perturbation theory. Use this formalism
to solve for the energies of the three-level problem:
B Viy Wi
H=| vy B Ve
* * 0
Vs Vi By

Let B = —10

EY =0

B = 120
Vig=1
Vig =2
Vag =1
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Solution:

—-10 1
H = 0 1
1 20
Hvy = Ev
Hcé = E¢
(H-EL)¢=0
Solution for E obtained from:
0 = det(H — ET)
—-10—F 1 2
= det 1 —-F 1
2 1 20— F

= (~10 — E)[E? = 20E — 1) +1(2 - 20 + E + 2(1 + 2E)
= _—FE3+20E*>+ E —10E*>+200E +10— 18+ E+ 2+ 4E
= —FE3 +10E% + 206E — 6

Solve this numerically:

Ey =-10.218
E5 = 0.029085
E3 =20.189

D. The formulas of non-degenerate perturbation theory enable a solution for the three approximate
eigenvectors of H as shown below. Show that H is approzimately diagonalized when you use ]
below to evaluate H:

Vio Vi
I
=t g vt g s
Vig Vis
! _ Tila T
=t gt g s
Vi Vas
! A _Tes
=t E TR T B Y

This problem is less burdensome when you use numerical values rather than symbolic values for
the elements of H.

Solution:
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Given the appropriate solution vectors, we want to test that they “nearly” diagonalized H. Writing
Py, Yy and o5 is the 11, 19, Y3 basis.

1

/ / 1 _ —1
Uy P = —10-0 | — Tq
—10—20 15

1 1

0+10 10

A WP = 1 =11

_1 =1

0—20 20

2 1

204{10 15

/ /o _ 1

1/13 1/’3 - 20—0 — 120

1 1

The transformation into this new approximate eigenbasis is

U= (¢ v vb)

1 L1 L
1 10 115
U=|w 1 =%
=1 =1
15 20
Then
U 'HU = H

which should be approximately diagonal:

—-10.218 —-0.116 0.031
H = | —0.066 0.029 0.060
—-1.125 0.190 20.189

which is nearly diagonal with eigenvalues very similar to those calculated exactly in part C.
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