
1 

5.61 Fall 2017 
Problem Set #3 Solutions 

ˆA. McQuarrie, page 120, #3-3 Show Af(x) = λf(x), for λ constant. Find the eigenvalue λ. 

Solution: 

(a) 

d2 

Â = 
dx2 

f(x) = cos(ωx) 

d2 

cos(ωx) = −ω2 cos(ωx) = −ω2f(x) 
dx2 

=⇒ λ = −ω2 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(b) 

d 
Â = 

dt 
iωt f(t) = e 

d iωt = iωeiωt e = iωf(t) 
dt 
=⇒ λ = iω 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(c) 

d2 d 
Â = + 2 + 3 

dx2 dt 
αx f(x) = e � � 

d2 d d2 d αx αx + 2 + 3 e = e αx + 2 e αx + 3e 
dx2 dx dx2 dx 

αx = α2 e αx + 2αeαx + 3e 

= (α2 + 2α + 3)f(x) 

=⇒ λ = α2 + 2α + 3 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 
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(d) 

∂ 
Â = 

∂y 
2 6y f(x, y) = x e 

∂ 2 2 (x e 6y) = 6x e 6y = 6f(x, y) 
∂y 

=⇒ λ = 6 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

B. McQuarrie, page 120, #3-4 

Solution: 

∂2 ∂2 ∂2 

r 2 = + + (1.19) 
∂x2 ∂y2 ∂z2 � � 
∂2 ∂2 ∂2 

r 2[cos ax cos by cos cz] = + + [cos ax cos by cos cz] (1.20) 
∂x2 ∂y2 ∂z2 

= −a 2 − b2 − c 2[cos ax cos by cos cz] (1.21) 
2 − b2 − c 2 =⇒ λ = −a (1.22) 

C. McQuarrie, page 182, #4-11 

Solution: 

(a) The Commutator [ bA, bB] = bA bB − bB bA operates on f(x). � � 
d2 d2 d2 

, x f = (xf) − x f 
dx2 dx2 dx2 (1.23) 

d 
= (f + xf 0) − xf 00 
dx

= f 0 + f 0 + xf 00 − xf 00 

= 2f 0 � � 
d2 d 

=⇒ , x = 2 
dx2 dx 

(1.24) 

(1.25) 

(1.26) 

(1.27) 
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(b) � � � �� � � �� � 
d d d d d d − x, + x f = − x f + xf − + x f − xf (1.28) 
dx dx dx dx dx dx � � � � 

= 
d − x (f 0 + xf) − 

d 
+ x (f 0 − xf) (1.29) 

dx dx 
d 
(f 0 

d 
= + xf) − x(f 0 + xf) − (f 0 − xf) − x(f 0 − xf) (1.30) 
dx dx

= (f 00 + f + xf 0) − (xf 0 + x 2f) − (f 00 − f − xf 0) − (xf 0 − x 2f) (1.31) 

= 2f (1.32) � � 
d d ⇒ − x, + x = 2 (1.33) 
dx dx 

(c) �Z � Z Z x x x d df d 
dx, = dx − f dx (1.34) 

dx dx dx 0 0 0 Z x 

= df − f (1.35) 
0 

= f(x) − f(0) − f(x) (1.36) 

= −f(0) (1.37) �Z � x d ⇒ dx, = “ −( )| ” (1.38) x=0 dx 0 Z 
= − dxδ(x) (1.39) 

(There’s no particularly good notation for this type of operation.) 

(d) � � � � � � � � 
d2 d d2 d d2 d 2 2 − x, + x = , + , x − x, − [x, x 2] (1.40) 
dx2 dx dx2 dx dx2 dx � � � � � � 

d2 d2 d 
= 0 + x , x + , x x + , x − 0 (1.41) 

dx2 dx2 dx� � � � 
d d 

= x 2 + 2 x + 1 (1.42) 
dx dx 
d d 

= 2x + 2x + 2 + 1 (1.43) 
dx dx 

d 
= 3 + 4x . (1.44) 

dx 

McQuarrie, pages 121-122, #3-11. Continuity of ψ0 

Solution: 
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Beginning with the Schrödinger equation 

d2ψ 2m 
= [V (x) − E]ψ(x), (2.1) 

dx2 }2 

we integrate both sides from a − ε to a + ε (taking the limit ε → 0), where a is some arbitrary fixed 
value of x, �Z � �Z � a+ε d2ψ a+ε 2m 

lim dx = lim [V (x) − E]ψ(x)dx (2.2) 
ε→0 dx2 }2 ε→0 a−ε a−ε � � � � � � dψ dψ 2m � � lim − = lim[(V (a) − E)ψ(a)2ε]. (2.3) � ε→0 dx � dx }2 ε→0a+ε a−ε 

If the left side of Eq 2.3 is 0, then by definition dψ/dx is continuous at x = a. The right side of 
Eq 2.3 is obtained by noting than in the limit that ε → 0, the integral about x = a is just equal to 
the integrand evaluated at x = a (if the integrand is continuous) times the width of the integration 
limits, which is simply 2ε. Since this first case assumes V (x) is continuous, and since ψ(x) is always 
continuous, we can perform this “rigorous limiting approximation.” (Apologies if that sounds like 
an oxymoron). Since (V (a) − E)ψ(a) is just some constant number, the limit on the right hand 
side of Eq 2.3 is equal to 0. Therefore, the condition for continuity of dψ/dx at x = a is satisfied. 
Since a was an arbitrary value for x, dψ/dx must be continuous everywhere. 

If V (x) is not continuous at x = a, then we need to split up the integral into two parts "Z # �Z � − a+ε a2m 2m 
lim [V (x) − E]ψ(x)dx = lim [V (x) − E]ψ(x)dx (2.4) 

}2 ε→0 }2 ε→0 a−ε a−ε �Z � a+ε 2m 
= lim [V (x) − E]ψ(x)dx 

}2 ε→0 a+ 

=
2m 

lim[(V (a −) − E)ψ(a −)ε + (V (a +) − E)ψ(a +)ε] (2.5) 
}2 ε→0

2m 
= lim[(V` + Vr − 2E)ψ(a)ε] (2.6) 

}2 ε→0

In the last step, we replaced V (a−) with the limiting value of V (x) on the left side of the discon-
tinuity V` (and similarly for V (a+)). Since ψ(x) is continuous, both limits are equal to its value 
at x = a. Examining this limit, we see that even though V` 6= Vr, both are still finite numbers. 
Therefore, the limit (which is ∝ ε), still goes to 0. Thus the left side of Eq 2.3 is still zero, and 
dψ/dx is continuous even at finite discontinuities in V (x). 

In the case that V (x) has an infinite discontinuity at x = a (e.g. a particle in a box potential), 
then either V` or Vr is infinite. The limit as ε → 0 of Eq 2.6 won’t be zero, but some finite number 
(“ 0 × ∞ ∼ finite”). Therefore, by Eq 2.3, dψ/dx will have different limiting values depending 
on which direction you come from. Thus, we’ve shown that the derivative of the wavefunction is 
discontinuous at infinite boundaries. 

A. McQuarrie, page 123, #3-17 

5.61 Fall 2017 Problem Set #3 Solutions Page 4 

3 






Solution: 

For a particle in a box of extent [0, a], we have the normalized eigenfunctions r 
2 

ψn = sin(nπx/a). (3.1) 
a 

The expectation values, hxi and hx2i, for the state ψn are Z a 

hxi = ψ ∗ xψndx (3.2) n
0 Z a 2 

= x|ψn|2dx (3.3) 
a 0 Z a 

=
2 

x sin2(nπx/a)dx (3.4) 
a 0 
a 

= 
2 Z a 

hx 2i = ψ ∗ x 2ψndx (3.5) n
0 Z a 2 

= x 2|ψn|2dx (3.6) 
a 0 Z a 

=
2 

x 2 sin2(nπx/a)dx (3.7) 
a 0 � � 
2 a 3 

= 2 − . (3.8) 
2π2 6 n

This yields 

(3.9) 

(3.10) 

(3.11) 

Therefore, the uncertainty σx is always less than a, the width of the box. Since we know the particle 
cannot be outside the box (where V = ∞), it makes physical sense that the uncertainty in position 
can never be larger than the width of the box. 

B. McQuarrie, page 127, #3-36

Solution: 

In this problem, we apply the de Broglie hypothesis to standing waves in the particle in a box 
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=
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6

(
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n2π2
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4

]1/2
= a

√
1

12
− 1

2n2π2
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potential. We posit that the waves in the allowed region must satisfy 

nλ 
2 
= a (3.12) 

2a ⇒ λ = (3.13) 
n 

so that nodes occur at the end points and there are an integral number of half-wavelengths within 
the box. Using the de Broglie hypothesis to solve for the corresponding momenta, we obtain 

h nh 
pn = = (3.14) 

λn 2a 
2 pn ⇒ En = (3.15) 
2m 

2h2 n
= 

2 . (3.16) 
8ma

The resulting energies match the energy eigenvalues obtained from solving the Schrödinger equation. 

Particle in an infinite 1-D Well 

A. McQuarrie, page 122, #3-12. Answer this problem qualitatively by drawing a cartoon for n = 2 
and n = 3 states. 

Solutions: The solutions for a particle in an infinite box of length a are �nπx � 
ψn(x) = (2/a)1/2 sin . 

a 

The number of internal nodes is n − 1. The nodes are equally spaced. 

There is an equal probability of the particles being in each of the lobes of ψ(x). 

n # nodes probabilities in each lobe 
1 0 1 
2 1 1/2 
3 2 1/3 
4 3 1/4 
5 4 1/5 

The probabilities in the four equal regions are not equal, which is illustrated by the sketch for n = 2 
and n = 3. 

The cartoons that show the difference in probability for regions of width a/4 for n = 2 and n = 3. 
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2/a 2/a 

n = 2 

0 a/2 a 

Probability is 1/4 in all 4 regions because 
each contains exactly 1/2 of a lobe 

n = 3 

0 a/3 2a/3 a 

Probability is larger than 1/4 in two re-
gions because there is no node in those re-
gions and smaller than 1/4 in two regions 
because there is a node in those regions. 

B. Is there a simple mathematical/physical reason why the probabilities are not 1/4 for all four 
regions: 0 ≤ x ≤ a/4, a/4 ≤ x ≤ a/2, a/2 ≤ x ≤ 3a/4, and 3a/4 ≤ x ≤ a? 

[HINT: where are the nodes in ψn(x)?] 

Solution: 

Compute the probabilities in the four equal length regions for any value of quantum number n. 

Probability in region c ≤ x ≤ d � �Z d Z d � � 2 nπx 
P (c, d) = ψ ∗ (x)ψ(x)dx = sin2 dx 

a a c c 

From integral table Z 
x sin 2x 

sin2 xdx = − . 
2 4 

Compute the probabilities 

First Region: 0 ≤ x ≤ a/4 c = 0, d = a/4 � � � � 
2nπd 2nπc � �nπ 

sin − sin = sin − sin 0 
a a 2 

= 0 for n even 

= (−1)(n−1)/2 for n odd 

Second Region: a/4 ≤ x ≤ a/2 c = a/4, d = a/2 � � � � 
2nπd 2nπc �nπ � 

sin − sin = sin(nπ) − sin 
a a 2 

= 0 − (−1)(n−1)/2 0 for even n 

= −(−1)(n−1)/2 for odd n 
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Third Region a/2 ≤ x ≤ 3a/4 c = a/2, d = 3a/4 � � 

sin 
3nπ − sin(nπ) = 0 for even, − (−1)(n−1)/2 for odd-n. 
2 

Fourth Region 3a/4 ≤ x ≤ a c = 3a/4, d = a � � 

sin(2nπ) − sin 
3nπ 

= 0 for even-n, (−1)n−1/2 for odd-n. 
2 

Overall we get probability 

1
+ 

1
(−1)(n−1)/2 for 2 regions 

4 2nπ 
1 − 

1
(−1)(n−1)/2 for 2 regions 

4 2nπ 

The sum over all 4 regions is 1, but the probability is not 1/4 in each of the 4 regions as you saw 
from the cartoons in part A. 

Particle on a Ring 

Solve for the energy levels of the particle confined to a ring as a crude model for the electronic 
structure of benzene. The two dimensional Schrödinger Equation, in polar coordinates, is � � � � 

}2 ∂2 1 ∂ ∂ 1 − r + + U(r, φ) ψ = Eψ. 
2 2µ r ∂r ∂r r ∂φ2 

For this problem, U(r, φ) = ∞ for r 6= a, but when r = a, U(a, φ) = 0. 

A. This implies that ψ(r, φ) = 0 for r 6 Why? = a. 

Solution: 

We begin with the two-dimensional Schrödinger equation in polar coordinates (r, φ), � � � � � � 
}2 ∂2 1 ∂ ∂ 1 − r + + U(r, φ) ψ = Eψ, (5.1) 

2 2µ r ∂r ∂r r ∂φ2 

where � 
∞ r = 6 a 

U(r, φ) = (5.2) 
0 r = a 

Just like the particle in the box, wherever the potential is infinite, the wavefunction must be zero. 
Otherwise, the Schrödinger equation would diverge. Therefore ψ(r, φ) = 0 for r = 6 a. 
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B. If ψ(r, φ) = 0 for r 6 = 0. What is the simplified form of the Schr¨= a, then ∂ψ odinger Equation ∂r 
that applies when the particle is confined to the ring? 

Solution: 

Since ∂ψ = 0, the first term in the brackets of Eq. 5.1 is 0. Additionally, we can replace r with a ∂r 
everywhere else. Since U(a, φ) = 0, this term also vanishes. We are left with 

}2 ∂2ψ 1 − = Eψ. (5.3) 
2 2µ a ∂φ2 

C. Apply the “periodic” boundary condition that ψ(a, φ) = ψ(a, φ + 2π) to obtain the En energy 
levels. 

Solution: 

Eq. 5.3 can be rewritten as 
∂2ψ 2µa2E 

= − ψ, (5.4) 
∂φ2 }2 

which has solutions � �1/2 
2µa2E 

ψ(φ) = Aeimφ , m = ± . (5.5) 
}2 

Applying the periodic boundary condition ψ(φ) = ψ(φ + 2π) gives us 

ψ(φ) = ψ(φ + 2π) (5.6) 
imφ imφ im2π e = e e (5.7) 

1 = e im2π (5.8) 

⇒ m = 0, ±1, ±2, . . . (5.9) 

Now solving for E in terms of m, � �1/2 
2µa2E 

m = ± (5.10) 
}2 

2}2 m⇒ Em = , m = 0, ±1, ±2, . . . (5.11) 
2µa2 

The quantized energy levels are ∝ m2 and for |m| ≥ 1 occur in degenerate pairs of {±m}. 

D. The C–C bond length in benzene is 1.397 Å. Thus a circle which goes through all 6 carbon 
atoms has a radius r = 1.397 Å. Use this to estimate the n = 2 ← n = 1 electronic transition for 
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“benzene” treated as an electron on a ring. The longest wavelength allowed electronic transition 
for real benzene is at 2626 Å. Explain why the agreement is not perfect. 

Solution: 

Approximating the electronic structure of benzene as a particle on a ring, with a = A, we 1.397 ˚

calculate the m = 2 ← m = 1 transition to lie at 

}2 

E2 − E1 = (4 − 1) (5.12) 
2me(1.397 Å)2 

(6.626 × 10−34J · s/2π)2 

= 3 (5.13) 
2(9.11 × 10−31kg)(1.397 Å)2 

= 9.38 × 10−19J (5.14) 

⇒ λ = 
hc 

= 2120 ˚ (5.15) A. 
ΔE 

This is fairly close to the experimental value of 2626 Å, indicating that the particle on a ring is 
a qualitatively correct picture of benzene’s electronic structure. There are various reasons for the 
discrepancy, however. First, the potential is not uniform with φ, but has periodic wells near each 
carbon atom. Additionally, electron-electron repulsion will significantly change the multi-electron 
orbital energies (which we do not account for in this simple one-electron state model). 

[Note: if you are confused why we use the 2 ← 1 transition instead of the 1 ← 0, consider how 
many “ring electrons” there are in benzene. What electronic states (i.e. orbitals) are filled? What 
transition corresponds to the longest wavelength?] 

1-Dimensional Infinite Wells with Steps 

Consider the potential 

V (x) = ∞ x < 0, x > a 

V (x) = 0 0 ≤ x ≤ a/2 

h2 

V (x) = V0 = (2)2 a/2 < x ≤ a 
2 8ma

(This is the energy of n = 1 of an infinite well of width a/2.) 

A. 

Sketch V (x) vs. x. 

Solution: 
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� � 

-0 

6 

? 

6 
V = ∞ V = ∞ 

V0 

a a/2 

B. What are the boundary conditions for ψ(x) at x = 0 and x = a? 

Solution: 

ψ(0) = ψ(a) = 0 

C. What requirements must be satisfied at x = a/2? 

Solution: � � � � a a 
ψleft 

2 
= ψright 

2 
continuity of ψ � � 

a a dψleft dψright dψ 2 = 2 continuity of 
dx dx dx 

D. Solve for the n = 2 (one node) and n = 3 (two nodes) ψn(x) eigenfunctions of H b and En energy 
levels. 

Hints: 

(i) For 0 ≤ x ≤ a/2, ψI (x) = A sin kI x kI = [2mE/}2]1/2 

(ii) For a/2 < x ≤ a, ψII = B sin kII (a − x) kII = [2m(E − V0)/}2]1/2 

(iii) ψI (a/2) = A sin(kI a/2) 

��� 
��� 

ψII (a/2) = B sin(kII a/2) 

dψI 

x=a/2 
= AkI cos(kI a/2) dx 

dψII 
dx = +BkII cos(kII a/2) 

x=a/2 
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Solution: 

The matching requirements at x = a/2 are 

A sin(kIa/2) = B sin(kIIa/2) 

AkI cos(kIa/2) = BkII cos(kIIa/2) 

kI = [2mE/}2]1/2 

kII = [2m(E − V0)/}2]1/2 

A sin(kIIa/2) kII cos(kIIa/2) 
= = 

B sin(kIa/2) kI cos(kIa/2) 
1 1 
tan(kIIa/2) = tan(kIa/2) 

kII kI 

To simplify the algebra, let k0 = kIa/2, k0 I II = kIIa/2 

1 
tan(kII

0 ) = 
1 
tan(kI

0 ) (6.1) 
k0 k0 II I 

� �2 � � a � a �2 2m 
k0

2
I − k02 

k2 − k2 = II I II = V0 
2 2 }2 � �� � � �2 h2 a 2m 

= 
2 }2 8m(a/2)2 

= π2 

k0
2
I − k02 

= π2 
II h i1/2 

k0 k0
2 

I = ±[ II + π2 (6.2) 

or h i1/2 
k0

2 
k0

2 
= ±[ I − π2 (6.3) II 

Combine Eqs. (6.1) and (6.3) and solve using Wolfram Alpha. 

We get pairs of k0 and k0 I II. 
k0 k0 I II 

� This i means that ψ1(x) has an 2.3236 2.1144i 
exponentially decreasing form 4.015838 2.50147 
in the x > a/2 region. 5.1920 4.13361 

6.6964 5.91374 

� �1/2 

kI = kI
0 (2/a) = 

2mE 
}2 

k2 }2 k02I (2/a)
2}2 k02I h

2 
I E = = = 
2m 2m 2π2a2m 
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So we get the first three energy levels: 

E1 = 0.2735(h
2/a2 m) 

E2 = 0.8170(h
2/a2 m) 

E3 = 1.3657(h
2/a2 m) 

dψI We take these values of E and input them to the original forms of ψI, ψII, and dψII and solve dx dx 
for the values of A and B, and finally normalize the ψi(x). 

E. Compare your values of E2 and E3 to what you obtain from the de Broglie quantization condition 

a/2 a/2 
(n/2) = + 

λn,I λn,II 

λ = h/p = 2π/k = h[2m(E − V (x))]−1/2 

Solution: 

The de Broglie quantization condition is based on the requirement that ψ(0) = 0 and ψ(a) = 0. 
We have two segments of the wavefunction which have 

λ = h/p. 

For n = 2 we expect one internal node, so there will be one full wavelength. For n = 3 we expect 
two internal nodes so there will be 3/2 wavelength. We calculate the accumulated phase in the 
0 ≤ x ≤ a/2 and a/2 ≤ x ≤ a regions. 

n = 2 
λ = h = √ h 

p 2m(E−V (x)) 

q q
h2 h2 

2m(0.817−0.500) 2 2m(0.817) 2 n a ma ma= + a = 1.04 ≈ 2 
2 2 h 2 h 2 

n = 3 pretty good agreement q q
h2 h2 

2m(1.37−0.5) 2m(1.37) n a a2m ma2 = + a = 1.48 ≈ 3 
2 2 h 2 h 2 

F. For the n = 2 and n = 3 energy levels, what are the probabilities, P2 and P3, of finding the 
particle in the 0 ≤ x ≤ a/2 region? 

Solution: 

5.61 Fall 2017 Problem Set #3 Solutions Page 13 



The relative probabilities of finding the particle in the 0 ≤ x ≤ a/2 and a/2 < x < a regions are 
proportional to the reciprocal of the momentum. The particle moves faster in Region I than in 
Region II. 

The semi-classical (WKB) quantization condition may be expressed as an “action integral” Z x>(En) 

pn(x)dx = (n − 1/2)h 
x<(En) 

where pn(x) is the classical momentum 

pn(x) = [2m(En − V (x))]1/2 

n = 1, 2, . . . is the integer quantum number, the number of internal nodes in ψn(x) is n − 1, the 
inner and outer turning points are x<(En) and x>(En), and En is the nth eigenenergy. The quantity 
p(x)dx is “action”. The −1/2h term on the right hand side corresponds to extra stabilization due 
to accumulation of action outside of the classically bounded region which is required to permit 
lim|x|→∞ ψ(x) = 0. However, in the case of infinite vertical walls, the −1/2h term is not present. 
The de Broglie relation, λ = h/p, becomes a basis for intuition. If V (x) is piece-wise constant, then 
the fractional number of wavelengths in each constant V (x) region is 

Δx Δx 
= 

λ h/p 

We are interested in the integer number of half-wavelengths between turning points. If V (x) is 
piece-wise constant, then the number of 1/2-wavelengths in each constant–V (x) region is 

Δx 
n = 2 . 

h/p(x) 

The ψn(x) for the n = 1, 2, 3 levels have 1, 2, 3 half-wavelengths. 

The two regions of the V (x) are each of length a/2 and 

]−1/2 pI = h[2mEn

pII = h [2m(En − V0)]
−1/2 

The relative probabilities are proportional to � 
PI = [2mE]−1/2 

E = p 2/2m 
PII = [2m(E − V0)]−1/2 

P rel P rel ∝ 0.7820 ∝ 1.256 I II 

Normalize for n = 2: 

= P rel PI [(0.7820)2 + (1.256)2]−1/2 = 0.384 I 

PII = 0.616 

For n = 3: 
PI = 0.444, PII = 0.556 
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Notice that the probabilities in the two regions become more nearly equal as the energy increases. 
This illustrates how the effect of the step is felt less as E increases, eventually becoming negligible 
at very high E. 

G. (optional) Will the n = 2 and n = 3 energy levels of the V1(x) and V2(x) potentials (defined 
below) be identical, as suggested by part E? Why? 

V1(x) : V1(x) = ∞ x < 0, x > a 

V1(x) = 0 0 ≤ x ≤ a/2 barrier on right side 
V1(x) = V0 a/2 < x ≤ a 

versus 

V2(x) : V2(x) = ∞ x < 0, x > a 

V2(x) = 0 0 ≤ x ≤ a/4, 3a/4 ≤ x ≤ a barrier in the center 
V2(x) = V0 a/4 < x ≤ 3a/4 

Solution: 

This is the most important part of this problem. It asks you to create a cartoon that is built on 
all of the crucial insights of this problem: 

1. The lowest energy level of any one dimensional problem has zero internal nodes. 

2. Tunneling into a classically forbidden region always results in stabilization relative to a zero-
tunneling situation. 

3. The wavefunction in a classically forbidden region always has the form: 

ψ(x) = Aeκx + Be−κx where κ is real and A,B are complex 

4. When the potential energy is stepwise-constant, κ is independent of x 

κ = [(V0 − E)2m/}2]1/2 

and it is often convenient to assume that A and B are positive or negative real numbers. 

5. A crucial point is that at every internal joining point, xjoin, there are two requirements, 
continuity of the wavefunction and continuity of its derivative, dψ/dx. At a boundary, at 
xstep, to a region where V (x) discontinuously becomes infinite, there is only one requirement: 
ψ(xstep) = 0. There is no requirement on dψ/dx. (You know this from the particle in an 
infinite well.) 
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For this specific problem, V (x) = ∞ for x < 0 and x > a, V (x) = 0 for x ≥ 0 and x ≤ a, with 
a barrier of width a/2 and height V0 = h2/8m(a/2)2 , V0 is chosen to be the exact energy of 
the n = 1 level of a particle in an infinite well of width a/2 and the exact energy of the n = 2 
level of an infinite well of width a. So the crucial issue is how does the location of the barrier 
within the box affect the energy of the n = 1 level. The problem is constructed so that you 
address the crucial question: which placement of the barrier, centered vs. right-side, results 
in the lowest energy? 

This problem illustrates a shortcoming of a semiclassical “accumulated phase” method for 
estimating eigen-energies, which involves complete neglect of joining-point matching require-
ments. You might have guessed that the key insight is the existence of two (centered barrier) 
vs. one (right-side barrier) internal matching points. 

6. Cartoons provide key insights 

First insight: if, upon entry into the E < V0 barrier region, ψ(x) and dψ/dx have the same 
sign, the absolute value of the wavefunction will increase exponentially. This means that, 
for the barrier in the center, it will be impossible to satisfy the continuity of derivative 
requirement at the midpoint of the barrier region, and for the barrier on the right it will be 
impossible to satisfy the requirement that ψ(a) = 0. For the barrier in the center, the energy 
of the n = 1 level must be larger than V0. If E1 < V0, both ψ and dψ/dx will have the same 
signs at both x = a/4 and at 3a/4. Continuity of dψ/dx at x = a/2 cannot be satisfied. So 
the n = 1 level of the barrier in the center will be shifted to above the top of the barrier. 
For the n = 1 level of the barrier on the right, in order to satisfy the ψ1(a) = 0 boundary 
condition, it is necessary for ψ1 and dψ1/dx to have opposite signs at x = a/2. The lowest 
energy at which this could occur is for E1 slightly larger than V0/4 (which is the energy of 
n = 2 of the barrier-free infinite well of width a)! This demonstrates that the location of the 
barrier has an enormous effect of the energy of the n = 1 level. 

Second insight: For the barrier in the center, En=1 > V0, and so this will be a simple 3-region 
problem and E must be determined (iteratively) so that ψ(a) = 0. For the right side barrier, 
ψ(x) will be decreasing exponentially and E must be chosen so that ψ(a) = 0. 

Major insight about tunneling: For all symmetric wells with a barrier in the center, the n = 1 
level (no internal nodes) will be shifted upward from the no barrier energy by a large amount, 
the n = 2 level (one node at the center) will be shifted upward by a very small amount, and 
the n = 3 level (two nodes, neither at the center) will be shifted upward by an amount much 
larger than that for the n = 2 level but much smaller than that for the n = 1 level. Level 
staggering is the signature of tunneling! 

H. Solve for n = 1 ψ1(x) and E1 for V1. 

HINTS: For a/2 < x ≤ a, 

ψII(x) = BeκII(a−x) + Ce−κII(a−x) 

κII = [2m(V0 − E)/}2]1/2 
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Solution: 

From Part D.: E1 = 0.2735 h2
2 

a m 

ψ(a) = 0 

ψII(a/2) = ψI(a/2) 

I. (optional) Is E1 for V1 larger or smaller than E1 for V2? Why? A cartoon would be helpful. 

Solution: 

The form of ψII in the classically forbidden region for n = 1 is a decreasing exponential. There can 
be no zero-crossing in the under-barrier region. For the symmetric barrier, ψ(a/4) and ψ(3a/4) are 
smaller than ψ(a/2) for the case of the right-side barrier. The rate of exponential decrease of ψ in 
the forbidden region depends on V (x) − E. This means that the probability in the forbidden region 
is larger for the right side edge barrier. This implies that the energy is higher for n = 1 of V1(x). 
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