
5.61 Fall 2017 
Problem Set #2 Solutions 

1. McQuarrie, page 73, #2-6 

Solution: 

y 
dx2 +B dy This question deals with solving second-order differential equations of the form A d
2

+Cy = 0, dx 
mx A, B, C ∈ <. The standard method is to assume y = e . If we do that, the differential equation 

reduces simply to emx(Am2 + Bm + C = 0). This is a quadratic equation that can be solved very 
easily, to give roots m1 and m2. The general solution to the differential equation depends on the 
nature of m1 and m2. 

Case 1: m1 6 m2 ∈ <. y(x) = + c2em2x, where c1 = c1e
m1x and c2 are constants whose values are 

determined by initial conditions. 

Case 2: : m1 = m2 = m ∈ <. y(x) = emx(c1 + c2t), where c1 and c2 are constants whose values 
are determined by initial conditions. 

Case 3: m1 = a + ib, m2 = a − ib; a, b ∈ <. y(x) = eax(c1 sin bx + c2 cos bx), where c1 and c2 are 
constants whose values are determined by initial conditions. 

Armed with these, the solutions are as follows. 

a. m1 = −1 + i, m2 = −1 − i. Solution therefore is e−x(c1 sin x + c2 cos x). 

b. m1 = 3 + 4i, m2 = 3 − 4i. Solution is therefore e3x(c1 sin 4x + c2 cos 4x). 

c. m1 = −β + iω, m2 = −β − iω. Solution therefore is e−βx (c1 sin(ωx) + c2 cos(ωx)). 

d. m1 = −2 + i, m2 = −2 − i. Solution therefore is e−2x(c1 sin x + c2 cos x). However, we can 
find c1 and c2 as we have conditions y(0) = c2 = 1 =⇒ c2 = 1. y0(x) = e−2x(−2c1 sin x − 
2c2 cos x + c1 cos x − c2 sin x), and so y0(0) = (−2c2 + c1) = −3 =⇒ c1 = −1. Therefore, 
solution is e−2x(− sin x + cos x). 

2. McQuarrie, pages 76, #2-12 

Solution: 

We have the wave equation �
2π 

� 

y(x, t) = A sin (x − vt) 
λ 

(1) 
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The wavelength λ is the value such that 

y(x + λ, t) = y(x, t) (2) 

�
2π 

� 

y(x + λ, t) = A sin (x + λ − vt) (3) 
λ �
2π 2π 

� 

= A sin (x − vt) + λ (4) 
λ λ �
2π 

� 

= A sin (x − vt) + 2π (5) 
λ �
2π 

� 

= A sin (x − vt) = y(x, t) (6) 
λ 

Similarly, the frequency is the value v such that 
� 

1 
� 

y x, t + = y(x, t) (7) 
v 

v 1/v is the period. Testing the value v = λ , 
� 

λ 
� �

2π 
� �

λ 
��� 

y x, t + = A sin x + λ − v (8) 
v λ v �

2π 2π λ 
� 

= A sin (x − vt) − v (9) 
λ λ v �
2π 

� 

= A sin (x − vt) − 2π (10) 
λ �
2π 

� 

= A sin (x − vt) = y(x, t). (11) 
λ 

Suppose we are looking at phase φ of the wave 

2π 
φ = (x − vt) (12) 

λ 

You can understand this as looking at some point along the wave that takes on value A sin(φ). 
We follow this point, so φ remains fixed, but we have to move along the wave (since the wave is 
moving). Let φ = 0 for convenience Then we want to see how x changes with t at phase 

2π 
0 = (x − vt) (13) 

λ 
x = vt (14) 

dx 
= v. (15) 

dt 

So the wave has speed v. We could have also taken any constant phase, as the derivative would 
have killed that constant. 
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3. McQuarrie, pages 76, #2-14 

Solution: 

This problem demonstrates how separation of variables can help us in solving quantum mechanical 
problems. In particular, we will see that if we can break that Hamiltonian into a sum of known 
sub-Hamiltonians, 

H = 
X 

Hi (16) b b
i 

where each Hi has eigenfunction ψi and eigenenergy Ei, then the complete solution is b

ψ = 
Y 

ψi (17) 
i 

with eigenenergy 

E = 
X 

Ei. (18) 
i 

The differential equation of interest is the Schrödinger Equation when V (x, y) = 0. 

∂2ψ ∂2ψ 
�
8π2mE 

� 

+ + ψ(x, y) = 0 (19) 
∂x2 ∂y2 h2 

Solving differential equations essentially boils down to guessing solutions until you are satisfied. 
Now, suppose we can separate ψ into 

ψ(x, y) = ψx(x)ψy(y). (20) 

Plugging this into Equation (19) yields 

∂2ψx ∂2ψy 
�
8πmE 

� 

ψy(y) + ψx(x) + ψx(x)ψy(y) = 0. (21) 
∂x2 ∂y2 h2 

Divide by ψx(x)ψy(y) (a mathematician is crying somewhere) 

1 ∂2ψx 1 ∂2ψy 
�
8πmE 

� 

+ + = 0 (22) 
ψx(x) ∂x2 ψy(y) ∂y2 h2 

The first and second terms in Equation (22) are functions of x and y respectively, and they must 
add to a constant. This implies that both of these functions must be equal to a constant, say Kx 

and Ky respectively, such that 

8πmE 
Kx + Ky + = 0 (23) 

h2 

∂2ψx 
= Kxψx (24) 

∂x2 

∂2ψy 
= Kyψy (25) 

∂y2 

5.61 Fall 2017 Problem Set #2 Solutions Page 3 



I will perform the math to solve ψx only, since ψy is the same problem, with a different label. We 
can in general guess solutions of the form: 

kx −kx ψx = c1e + c2e . (26) 

Plugging this into Equation (24) yields 
k = 

p
Kx. (27) 

If Kx > 0, then we have an exponential solution. However, it can be shown that to fulfill the 
boundary conditions, the coefficients c1 and c2 must be zero and we have the trivial solution. 
Instead, suppose Kx < 0. Then k is complex. Write k = iq where q = Im[k]. 

0 = ψ(0, y) = ψx(0)ψy(0) =⇒ 0 = ψx(0) (28) 

0 = ψ(a, y) = ψx(a)ψy(0) =⇒ 0 = ψx(a) (29) 

0 = ψ(x, 0) = ψx(x)ψy(0) =⇒ 0 = ψy(0) (30) 

0 = ψ(x, b) = ψx(x)ψy(b) =⇒ 0 = ψy(b) (31) 

0 = ψx(0) = c1 + c2 (32) 

so c1 = −c2 and we can simplify 

iqx − e ψx = c1(e
−iqx) = 2ic1 sin(qx) = C1 sin(qx) (33) 

0 = ψx(a) = C1 sin(qa). (34) 

This is true whenever q = nxπ for nx ∈ Z. We can solve the y component in the same way, resulting a 
in solutions 

�nxπx � 
ψx(x) = C1 sin (35) 

a 
πy �ny � 

ψx(x) = C3 sin (36) 
b �nxπx �nyπy 

ψ(x, y) = A sin 
� 
sin 

� 
. (37) 

a b 

A can be determined by the normalization condition. Note that Kx = k2 = (iqx)
2 and similarly x 

for y. Plugging this into Equation (23) 

8π2mE 
= −Kx − Ky (38) 

h2 

2 2 π2 n π2 n
= x + y

(39) 
2 b2 a

2 h2 �nx 2 b2
� 

E = + n y (40) 
2 8m a
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4. Consider waves on a rectangular drum membrane: 

-

6 

y 

a 

b 

x 

A. Show by separation of variables that the general solution to the wave equation 

∂2µ ∂2µ 1 ∂2u 
+ = , 

2 ∂x2 ∂y2 v ∂t2 

has the form 
πx πy 

A sin 
�nx � 

sin 
�ny � 

cos 
�
ωnxny t + φnxny 

� 

b a 
where #1/2 

2 2 
" 
n nx y 

ωnxny = vπ + . 
b2 a2 

Solution: The wave equation is 
∂2u ∂2u 1 ∂2u 

+ = . 
2 ∂x2 ∂y2 v ∂t2 

If we assume a factorizible solution of the form u(x, y, t) = X(x)Y (y)T (t), we can rearrange terms 
to yield 

1 ∂2X(x) 1 ∂2Y (y) 1 ∂2T (t) 
+ = 

X(x) ∂x2 Y (y) ∂y2 v2T (t) ∂t2 

or 
F (x) + G(y) = V )t) =⇒ F (x) + G(y) − V (t) = 0, 

1 ∂2X(x) where F (x) = etc. Since we have three single-variable functions (of independent vari-X(x) ∂x2 

ables x, y, t) summing to a constant, each of the functions must themselves be a constant. Therefore, 
F (x) = −k2 , G(y) = −k2 and V (t) = −(k2 + k2 ). (We choose negative numbers because the so-x y x y

lutions corresponding to the positive numbers do not fit boundary conditions for x and y as they 
are exponentials, as opposed to sinusoids). Solving these equations by the method given in prob-
lem 2 (and fitting to boundary conditions) gives that X(x) = sin(nxπ x ), Y (y) = sin(nyπ y ), and b a 

2 2 n
�
nx y 

� 
T (t) = cos(ωt + φ) where ω = πv 

b2 + 
a2 . 
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B. 

Suggest a reason why this drum will sound awful. 

Solution: 

The drum will sound horrible as the frequencies will not necessarily be integer multiples of each 
other. For a 1D string ω = nπv , and so ω increases in a sequence of ω1, 2ω1, 3ω1, etc. However, for L 
a square drum of side a = b = L, the frequencies can easily be irrational multiples of each other. √ 

πv 2 2 2πv For example, ω = (n + n ) means that nx = 1, ny = 1 leads to ω = = ω1, but then nx = 2, L x y L √ √ 
5πv √5 ny = 1 leads to ω = = ω1. L 2 

This analysis can be extrapolated to any general rectangular drum, and thus we can see that there 
is no neat progression of frequencies, or a common time period for the modes (leading to odd 
interference effects) making the drum sound bad. 

5. This “magical mystery tour” problem deals with the 1-dimensional 
classical wave equation 

∂2u 1 ∂2u 
= . 

∂x2 v2 ∂t2 

A string of length L is anchored so that u(x, t) = 0 at x = 0 and x = L. 

All of the answers are to be expressed in terms of L and v. 

Let me start outright by saying that this is a hard problem, and there may exist alternate (and 
equally acceptable) solutions. 

A. Write an expression for u(x, t) as a linear superposition of “normal modes” of λ = 2L/n 
n = 1, 2, . . . , ∞. 

Solution: 
∞

x vt 
Any wave is a linear combination of normal modes, and so u(x, t) = 

X 
an sin(nπ ) cos(nπ +φn) 

L L 
n=1 

If we assume the wave was initially at rest, u0(x, 0) = 0 which makes φn = 0 for all n. Therefore, 

we can simply say: u(x, t) = 
∞

x vt X 
an sin(nπ ) cos(nπ ). 

L L 
n=1 
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B. Consider the square-wave “pluck” at t = 0 that has the form 

5 7 
u(x, 0) = 0 0 ≤ x ≤ L and 

8 
L ≤ x ≤ L 
8 

5 7 
u(x, 0) = 1 L < x < 

8 
L. 
8 

Express the pluck as an explicit linear combination of the normal modes. To do this to a good 
approximation you need to guesstimate the overlap integral of this square-wave pluck with each of 
the n = 1 − 8 normal modes. 
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Solution: 

The coefficients an are determined by the Fourier Integral: 

2 
Z L x 

an = u(x, 0) sin 
�
nπ 

� 
dx 

L L 0 Z 7L/8 2 x 
= u(x, 0) sin 

�
nπ 

� 
dx as u = 0 elsewhere 

L L 5L/8 
Z 7L/8 2 x 

= 1 × sin 
�
nπ 

� 
dx 

L L 5L/8 

2 L 
� �

5nπ 
� �

7nπ 
�� 

= ∗ cos − cos . 
L nπ 8 8 

The eight term approximation, however, is nowhere close to reality (though the shape is OK): 

Solution to Problem Set 2: September 20 2-3

This analysis can be extrapolated to any general rectangular drum, and thus we can see that there is no
neat progression of frequencies, or a common time period for the modes (leading to odd interference effects)
making the drum sound bad.

4. Problem 4

Let me start outright by saying that this is a hard problem, and there may exist alternate (and equally
acceptable solutions):

a. Any wave is a linear combination of normal modes, and so u(x, t) =
∞∑
n=1

an sin(nπ xL ) cos(nπ vtL + φn). If

we assume the wave was initially at rest, u′(x, 0) = 0, which makes φn = 0 for all n. Therefore, we can

simply say: u(x, t) =
∞∑
n=1

an sin(nπ xL ) cos(nπ vtL ).

b..The coefficients an are determined by the Fourier Integral:

an =
2

L

L∫

0

u(x, 0) sin(nπ
x

L
)dx

=
2

L

7L
8∫

5L
8

u(x, 0) sin(nπ
x

L
)dx as u = 0 elsewhere

=
2

L

7L
8∫

5L
8

1× sin(nπ
x

L
)dx

=
2

L
∗ L

nπ

(
cos
(5nπ

8

)
− cos

(7nπ

8

))

The eight term approximation however is nowhere close to reality (though the shape is ok):

Figure 2.1: 8 term approximation.

5.

The exact form of the pluck (1000 terms) looks as follows: 

1.2 

-0.2 
0.0 0.2 0.4 0.6 0.8 1.0 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Note: Numerically doing the integral by WolframAlpha etc. is also OK. 
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C. Identify the 3 normal modes that make the largest contributions to this u(x, 0) pluck and write 
the 3-term sum approximation of the moving wave, u(x, t). 

Solution: 

The three largest coefficients are a1, a2, a3. 1 means that coefficients an decrease as n increases, n 
and so the first few will be the largest (note, a4 = 0, and is out of the running-a5 makes a bigger 
contribution). Please note that it is the absolute value of the coefficient that matters, not the 
sign (since there is a cosine factor that evolves with time, and changes signs). The numbers are 
a1 = 0.345; a2 = −0.450; a3 = 0.227 and a5 = −0.166. 

D. What is the earliest time, trecurrence, when u(trecurrence) ≈ u(x, 0)? Sketch the half-recurrence 
wave, u(x, trecurrence/2). 

nπv Solution: The nth mode has angular frequency ωn = . Therefore, they have a time period of 

oscillations in time t = , as t = nTn (t is an integer multiple of all recurrence times). Therefore, 

L 
Tn = 2π 

ωn 
= 2L . nv From this we can see that all waves will have undergone an integer number of 

2L 
v 

recurrence time is 2L –Time period of the First Harmonic. v 

At t = L , the eight term approximation of the wave gives us: v 

2-4 Solution to Problem Set 2: September 20

The exact (1000 terms) looks as follows:

Figure 2.2: Exact wave.

Note: Numerically doing the integral by WolframAlpha etc is also ok.

c. Three largest coefficients are a1, a2, a3. 1
n means that coefficients an decrease as n increases, and so

the first few will be the largest (note, a4 = 0, and is out of the running-a5 makes a bigger contribution).
Please note that it is the absolute value of the coefficient that matters, not the sign (since there is a cosine
factor that evolves with time, and changes signs). The numbers are a1 = 0.345, a2 = −0.450, a3 = 0.227 and
a5 = −0.166.

d. The nth mode has angular frequency ωn = nπv
L . Therefore, they have a time period of Tn = 2π

ωn
= 2L

nv .

From this we can see that all waves will have undergone an integer number of oscillations in time t = 2L
v , as

t = nTn (t is an integer multiple of all recurrence times). Therefore, recurrence time is 2L
v -Time period of

the First Harmonic.

At t = L
v , the eight term approximation of the wave gives us:

Figure 2.3: 8 term approximation at half recurrence time.

The exact is: 
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0.2 

-1.2 
0.0 0.2 0.4 0.6 0.8 1.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

The overall effect is that the wave is reflected along both the x and y axes, taking the midpoint of 
the string to be the origin. 

E. (optional) Make an eleven frame time-lapse movie of u(x, t) for t = m 
�
trecurrence 

� 
m = 0, 1, . . . , 10. 10 

It is OK (preferable) to hand-sketch rather than plot an explicit mathematical expression. The 
important thing is that all of the qualitative features should be present in your sketch. 

F. (optional) By comparing some features of the m = 0 and 1 frames of the movie, estimate the 
velocity of the traveling wave. 

Solution: 

Not discussed in details as optional. The trick is to pretend that the standing poioipwave is a sum 
of two traveling waves moving in opposite directions, and then let those traveling waves move apart 
(and get rejected from the ends). Please contact Professor Field if you want more details. 

G. Using the approximate superposition from part C, compute the time-dependent quantity hxit = R L d 
0 xu(x, t)dx and plot hxit and dt hxit for the time interval 0 ≤ t ≤ trecurrence. It is OK to 
guesstimate these quantities, but explain your reasoning. 

Solution: 

The plots are as follows (with 8 term approximation, the exact looks similar): 
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Solution to Problem Set 2: September 20 2-5

The exact is:

Figure 2.4: Exact wave at half recurrence time.

The overall effect is that the wave is reflected along both the x and y axes, taking the midpoint of the string
to be the origin.

e. and f. Not discussed in details as optional. The trick is to pretend that the standing poioipwave is a
sum of two travelling waves moving in opposite directions, and then let those travelling waves move apart
(and get reflected from the ends). Please contact me if you want more details.

h. The plots are as follows (with 8 term approximation, the exact looks similar):

〈x〉:

Figure 2.5: Average x
d〈x〉
dt :

Figure 2.6: Average v

The three–term plots also look remarkably similar, and all qualitative features are preserved. 

H. What do the plots in part G tell you about the evolution of the specific pluck? (Words like 
dephasing, rephasing, velocity, and spreading will be very welcome in your answer to this question.) 

Solution: 

Dephasing: If one observes the hxi plot, it is immediately noticed that the wave moves away from 
its original average x value to something more random (where average x is almost 0 due to different 
phases at different parts). This shows that the highly regular wave shape is rapidly lost. 

Rephasing: After one full period however, the wave returns to its original shape. 

Velocity: The centre of the wavepacket is not stationary-it moves as the dhxi plot shows. dt 

Spreading: The wave spreads and covers larger area, as dephasing happens and shape is lost. This 
is harder to visualize without the snapshots at different moments, but it suffices to say that the 
wave is not static. 
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I. (optional) Suppose a spatially narrower pluck 

11 13 
u(x, 0) = 1 L < x < 

16 
L, 

16

or a centered pluck, 
3 5 

u(x, 0) = 1 L < x < 
8 

L, 
8

were chosen. Do not actually derive an expression for this pluck! Suggest reasons for the qualitative 
differences between the time evolution of these two plucks and that of the pluck documented in 
parts B through H? 

Solution: 

Symmetric pluck: There would not be any even harmonics present (wrong symmetry makes Fourier 
integral zero). Thus, the wave will actually go flat at times. 

Narrower pluck: Less interference and dephasing. More regular wave movement. 

6. 

A. Find the energies (En) and normalized wavefunctions (ψn) for a particle in an infinite (sym-
metric) box 

U(x) = 0 −L/2 < x < L/2 

U(x) = ∞ |x| ≥ L/2 . 

Solution: 

2h2 n
r 
2 nπx 

r 
2 nπx 

En = . ψn(x) = cos if n is odd and ψn(x) = sin if n is even. 
8mL2 L L L L 

B. Relate the En and ψn for problem 6.A to those for the (zero-left-edge) box. 

U(x) = 0 0 < x < L 

U(x) = ∞ x ≤ 0, x ≥ L . 

0 Define a simple coordinate transformation (e.g., x = ax + b) that makes the {ψn} for 6.A look like 
those of 6.B. 

Solution: 

5.61 Fall 2017 Problem Set #2 Solutions Page 12 



2h2 n
r 
2 nπx 

En = . ψn(x) = sin for all n. 
8mL2 L L 

0 L Energy is unaffected by translation, and x = x + 2 . If you take the wavefunction from part A, 
and insert x0 instead of x there, you will recover the wavefunction for part B. 

C. What happens to En and ψn if the box of 6.A is raised to higher energy 

U(x) = E0 > 0 |x| < L/2 

U(x) = ∞ |x| ≥ L ? 

This should not require a repeat of a complete calculation analogous to that in 6.A. 

Solution: 

2h2 n
r 
2 nπx 

r 
2 nπx 

En = E0 + . ψn(x) = cos if n is odd and ψn(x) = sin if n is even. 
8mL2 L L L L 

ψ is unchanged if we raise the bottom of the box by a constant amount (since we can fix the 
potential baseline arbitrarily), but the energy levels are moved up by a constant E0. 

0 D. Write a transformation (eg. x = ax + b) that enables you to obtain the {ψn} for 
U(x) = 0 |x| < L/2 

U(x) = ∞ |x| ≥ L 

from the {ψn} of 6.A. However, this box is twice as long as the box in 6.A. 

Solution: 

2h2 n
r 
1 nπx 

r 
1 nπx 

En = . ψn(x) = cos if n is odd and ψn(x) = sin if n is even. 
32mL2 L 2L L 2L 

0 x Transformation x = 2 . To be completely fair, this is not correct, as doubling the length changes 
the normalization constant too. The question is a bit vague and ill defined overall. 

7. For the particle in the zero-left-edge box of 6.B: 

A. Compute the probability of finding the particle in the interval 

0.999 1.001 
L ≤ x ≤ L 

2 2 
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for n = 1, 2, 3, and 104 . 

Solution: 

If P (a < x < b) is the probability of finding a particle between x = a and x = b, then the Born 
interpretation of the wavefunction says that: 

bZ 
P = ψ ∗ (x)ψ(x), 

a 

where ψ(x) is the normalized wavefunction for the particle, and ψ∗(x) is the complex conjugate of q 
2 ψ(x). Since ψ(x) = sin nπx for a particle in a box L L 

2 
Z b 

sin2 nπx 
P (a < x < b) = P = dx 

L L a 

1 
Z b � 

2nπx 
� 

= 1 − cos dx 
L L a 

b − a 1 
� 

2nπa 2nπb 
� 

= + sin − sin . 
L 2nπ L L 

0.999L 1.001L After putting in a = 2 and b = 2 , we get: 

1. n = 1 =⇒ P = 0.002 

2. n = 2 =⇒ P = 6 × 10−9 . 0 is OK too. 

3. n = 3 =⇒ P = 0.002 

4. n = 104 =⇒ P = 0.001 This suggests that the particle is uniformly distributed, which 
corresponds to the near-classical behavior expected because n is so large. 

B. Compute hxi and hpi for n = 1, 2, 3, and 104 . 

[To a very good approximation this should not require evaluation of any integrals.] 

Solution: 

L Symmetry forces hxi = for all n. hpi = 0 for a particle in a box as this is a stationary state, and 2 
there is no reason to favor one direction over the other. 

C. Compute ΔxΔp for n = 1, 2, 104, where Δx is the ”uncertainty” in x. It is the square root of 
the variance Δx = [hx2i − hxi2]1/2 and Δp = [hp2i − hpi2]1/2 Hint: the values of hxi, hpi, and hp2i 
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do not require evaluation of any integrals. Evaluation of hx2i will require use of integral tables or
some other cleverness. 

8. (optional) Consider a 2-slit experiment with the following char-
acteristics:

slits: 1 cm high, 0.01 cm wide 

slit separation: 0.2 cm 

distance to screen: 100 cm 

wavelength of light: 500nm 

area of screen: 10 cm × 10 cm

Discuss (there is no simple correct answer) how to specify a light intensity in Watts that ensures 
only one photon at a time is “interacting” with the screen. How long does it take for one photon 
to travel from slit to screen? 

Solution: 

A good starting point would be to ask how long would it take for one photon to travel from slit to 
screen. 
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Solution:

For
〈
p2
〉
:

n2h2

8mL2
= E = 〈T 〉 as V = 0, energy is purely kinetic, and so E = Average KE

=
p2

2m

=⇒
〈
p2
〉

=
n2h2

4L2
and ∆p =

nh

2L
.

〈
x2
〉

= L2

3 − L2

2n2π2 by doing the integral 2
L

∫ b
a x

2 sin2 xπx
L dx by parts. Therefore ∆x =

√
〈x2〉 − 〈x〉2 =

L
2nπ

√
n2π2

3 − 2.

Thus ∆x∆p = }
2

√
n2π2

3 − 2.
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