
5.61 Fall 2017 
Problem Set #1 Solutions 

1. Transfer of momentum between a photon and a particle 

A. Compute the momentum of one 500nm photon using pphoton = Ephoton/c where c is the speed 
of light, c = 3 × 108 m/s, and ν = c/λ. 

Solution: 
The Concept: Explore Particle-Wave Duality 

pproton = Eproton/c 

p = Momentum 

E = Energy = hν 

c = Speed of light, 3 × 108m/s 

hν 
pPH = ν = c/λ 

c 
pPH = h/λ (λ in meters), 500nm = 500 × 10−9 m 

pPH = h/500 × 10−9 = 6.626 × 10−34/500 × 10−9 = 1.325 × 10−27kg m/s 

B. You are going to use a photon to observe one point on the trajectory of a Na atom between a 
source and a target. Suppose the photon hits the Na atom and is permanently absorbed by the Na 
atom. What is the change in velocity of the Na atom? 

Solution: 
Na ATOMS → 22.99 g/mol 

0.02299 kg 1 mol · 
mol 6.022 × 1023Atoms 

AVERAGE MASS OF ONE Na ATOM = 3.818 × 10−26 kg/atom 

Δp = mΔν = 3.818 × 10−26kg Δν = Δp = h/λ(in meters) 

h 
Δv = IF IT’S THE PHOTON (from Part A) Δv = 0.0347m/s 

λ(3.818 × 10−26kg) 
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C. Answer the same question for the photon hitting and being absorbed by an electron. 

Solution 
MASS e− = 9.109 × 10−31 kg 
BY SAME ALGEBRA 

h 
Δv = Photon from Part A, Δv = 1450m/s 

λ(9.109 × 10−31kg) 

D. A photon of λ = 500 nm can determine the position of an atom to Δx ≈ 500 nm. Compute 
ΔxΔp for detection of a Na atom by a 500 nm photon. 

Solution 

ΔxΔp ≈ 500nm · 1.325 × 10−27kg m/s (See Part A) 

= 500 × 10−9 · 1.325 × 10−27 = 6.63 × 10−34kg m2/s 

E. Suppose instead you use a 1 nm photon. Will ΔxΔp be smaller, larger, or the same as for a 
500 nm photon? 

Solution 
LET’S TRY MORE SYMBOLICALLY THIS TIME 

ΔxΔp ≈ λΔp 

Δp = h/λ 

ΔxΔp = λh/λ = h = 6.63 × 10−34 kg m2/s 

2. 

A. A baseball has diameter = 7.4 cm. and a mass of 145g. Suppose the baseball is moving at 
v = 1nm/second. What is its de Broglie wavelength 

h h 
λ = = 

p mν 

and will such a slow moving baseball diffract off of the stationary bat of a player attempting to 
bunt the ball? 

Solution 

Dball = 0.074m 

mball = 0.145 kg 

vball = 1 nm/s = 1 × 10−9m/s 
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Using de Broglie: 

h h 6.626 × 10−34m2kg/s 
4.6 × 10−24λball = = = = m = λball 

p mν 0.145 kg · 1 × 10−9 m/s 

NOTE: At first glance, you might notice how slow the ball is moving and think it will have a small 
momentum, resulting in a relatively large λ. However, the large mass of the baseball (it is on the 
macroscopic scale, not atomic) means that the ball has an extremely large momentum in terms of 
quantum mechanical problems, leading to an extremely small de Broglie wavelength. 
The ball will NOT diffract off the bat because the λball is ∼ 23 orders of magnitude smaller than 
the bat. 

B. How might you measure the velocity of a baseball moving at v ≈ 1nm/sec? 

Solution: 
Because the ball is moving so slowly, traditional techniques (doppler radar, high speed cameras 
with length scales) will be unable to measure the speed of the ball (even modern equipment can’t 
measure such minute differences). Multiple possible schemes exist, but here is one possible setup: 

• use coherent — nm x-ray source — monochromatic, in-phase x-rays 

• when light path from baseball→detector and mirror→detector differ by an integer number of 
wavelengths, we see constructive interference. 

• when these paths differ by 1 (integer wave-length) we see destructive interference. 2 

• We see alternating bright and dark regions on the detector. 

Coherent x-ray 
source 

mirror 
� 
� ↓ 
� 
� 
� ∧ � 
� 
� beam splitter (half-silvered mirror) 
� 

� �� � 
> � �

hhhhh< hhhhhh > �� 
↓ 

λx−ray vball = Δt 

interfence peaks 
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3. A pulsed Nd:YAG laser is found in many physical chemistry 
laboratories. 

A. For a 2.00mJ pulse of laser light, how many photons are there at 1.06µm (the Nd:YAG funda-
mental), 537nm (the 2nd harmonic), and 266nm (the 4th harmonic)? 

Solution: 
The concept: Practice using the concepts of photons and their energy. Given the total energy, use 
the energy per photon to determine the number of photons. 

For 1.06 µm Light 
Energy of one photon = Ep = hν; ν = c/λ; Ep = hc/λ 

λ = 1.06µm = 1.06 × 10−6 m 

c = 3 × 108 m/s 

h = Planck’s constant = 6.626 × 10−34kg m2/s 

Ep = 1.88 × 10−19J 
1.88 × 10−19 J/photon, we want photons/pulse. 

1 2.00 × 10−3 

1.07 × 1016photons/pulse 
1.88 × 1019J/photon 

× 
pulse 

= 

For 537nm Light 
2 possible strategies — 1 is the same as above. 
Note that λii = 1 i; thus each photon has 2× the energy 2 

Each pulse has 1/2 the photons = 5.35 × 1015 photons/pulse 

For 266 nm Light 

Same 2 strategies as part ii) → 2.68 × 1015 photons/pulse 

B. The duration of a typical Nd:YAG laser pulse is 6 nanoseconds. During the laser pulse, (2 mJ 
at 1.06 µm) what are: 
i) the number of photons/second? 

Solution: 
From A. we know how many photons per pulse 

1 
1.07 × 1016photons/pulse · = 

6 · 10−9 s/pulse 
1.8 × 1024 photons/sec 

and ii) the power in Watts (Joules/second)? 

Solution: 
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We know from above that each pulse has E = 2 × 10−3J 

2 × 10−3J 
Power = = 

6 × 10−9s 
3 × 105 W 

4. from McQuarrie, page 38, #19 

A. Given that the work function of chromium is 4.40 eV, calculate the kinetic energy of electrons 
emitted from a clean chromium surface that is irradiated with ultraviolet radiation of wavelength 
200 nm. 

Solution: 
The chromium surface is irradiated with 200 nm UV light. These photons have energy 

hc (6.626 × 1034J · s)(3 × 108m · s−1) 
E = = 

λ 200 × 10−9m 
= 9.94 × 10−19J 

= 6.20eV 

The photo–ejected electron has kinetic energy 

KE = Ephoton − φo = 6.20eV − 4.40eV = 1.80eV = 2.88 × 10−19J 

B. What are the speed and the de Broglie wavelength of the ejected electron from question 4A? 

Solution: 

1 p2 
2 KE = mv = 

2 2m p p
→ v + 2KE/m = 2 · 1.80eV/(9.11 × 10−31kg) = 7.96 × 105m/s 

√ 
→ λdeBroglie = h/p = h/ 2mKE = 9.14 × 10−10 m = 9.14 

5. From McQuarrie, page 38, #21 

Some data for the kinetic energy of ejected electrons as a function of the wavelength of the incident 
radiation for the photoelectron effect for sodium metal are shown below: 

λ/nm 100 200 300 400 500 
KE/eV 10.1 3.94 1.88 0.842 0.222 

Use some sort of plot of these data to determine values for h and φ. 
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Solution: 
First, let’s remind ourselves of the relationship between the electron’s max KE and the incident 
photon wavelingth 

hc 
KE = hν − φ = − φ. 

λ 

Plotting KE vs. 1/λ will yield a straight line, with slope hc and intercept −φ. Below is an example 
plot (note the units). 12 
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The fit yielded the following results: � � 
1 

KE = a + b 
λ 

a = hc = 1234 ± 3eV · nm 

b = −φ = −2.24 ± 0.02eV 

First, solving for φ, we get 
φ = 2.24 ± 0.02 eV 

Solving for Planck’s constant, we find 

a (1234 ± 3)eV · nm 
h = = 

c 3 × 108m · s−1 

= (4.113 ± 10) × 10−18eV · s 

= (6.589 ± 0.016) × 10−34J · s, 

compared to 6.626 × 10−34J · s. 
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6. From McQuarrie, page 39, #32 

A. Derive the Bohr formula for ν̃ (a modified form of Eq. 1.29) for one electron bound to a nucleus 
of atomic number Z. 

Solution: 
This problem asks us to find the difference in energy (in wavenumbers, ν̃), between different levels 
of a Bohr atom with nuclear charge +Ze. The first step is to setup the kinematics of circular motion 
in a Coulomb potential. Then we will apply quantization of angular momentum by units of }. This 
will allow us to determine the energies of each quantized level, from which we can determine the 
Bohr formula. 
Circular motion of electron in Coulomb potential: 
The electron experiences an inward electrostatic force with magnitude: 

Ze2 

fCoulomb = 
2 4πε0r

which must equal the centripetal force maintaining the circular orbit, so 

2 Ze2 mev
= . 

4πε0r2 r 

We will want to find the angular momentum of the electron, so it’s necessary to solve the above 
equation for v, s 

Ze2 
v = 

4πε0rme 

The angular momentum, L = p × r = mvr is then, s 
Ze2mer 

L = mvr = 
4πε0 

Applying Bohr’s postulate, we force the angular momentum to be quantized in units of }, s 
Ze2mern 

Ln = = n}. 
4πε0 

Below we will need the value of rn. Solving for that now gives 

n2}24πε0 
= rn 

Ze2me 

Now that we’ve quantized the angular momentum, we can determine the total energy of each 
discrete state. The total energy will be the orbital kinetic energy and the electrostatic potential 
energy, 

L2 
n En = + V (rn) 
2I 
n2}2 −Ze2 

= + . 
2mer2 4πε0rn n 
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Substituting rn with the expression we found above yields 

4 2 42}2Z2 Z2n e me e me 
En = = 

2men4}4(4πε0)2 n2}2(4πε0)2 � � 
Z2 41 e me 

= − 
2 n2}2(4πε0)2 � � 

Z2 41 e me 1 
= − . 

2 8 h2ε20 n

The Bohr formula can now be obtained: 

1 v Em2 − Em1 ν ̃= = = 
λ c hc � � 

4Z2e me 1 1 
= − − 

8h3cε2 n2 n2 
0 1 2 � � 

= Z2R∞ 
1 − 

1 
2 2 n n1 2 

Note that this formula assumes an infinitely heavy nucleus (which isn’t such a bad approximation). 
A further refinement is to replace the Rydberg constant, R∞, as 

1 
R∞ → RM = R∞ , 

1 + me/M 

where M is the nuclear mass. This is identical with replacing the electron mass, me, with the 
reduced mass of the electron-nucleus system, µ = meM 

me+M . 

B. Use the Bohr Theory to predict the wavelength (in ˚ = n = 1 “Lyman α” A) of the n 2 ← 
transition of a U+91 atomic ion. 

Solution: 
The Lyman α transition of U+91 corresponds to n = 2 → n = 1. This transition occurs at � � 

ν̃ = Z2R∞ 
1 
12 − 

1 
22 

= 
3 
Z2R∞. 
4 

The wavelength of this transition is 

1 4 
λ = 

ν̃ 
= 
3Z2R∞ 

4 
= −1 
3(922)(1.09737 × 10−3Å ) 

= 0.14 Å. 
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C. For the U+91 n = 1 Bohr orbit, what are the radius and the electron speed? Is there anything 
impossible about this result? 

Solution: 
The radius of the n = 1 Bohr orbit can be obtained from part A, where we determined 

n2}24πε0 
rn = . 

Ze2me 

Substituting n = 1 and Z = 92 gives 

12(1.0545 × 10−34J · s)24π(8.8542 × 10−12F · m−1) 
r1 = 

92(1.602 × 10−19C)2(9.11 × 10−31kg) 

= a0/92 

= 5.75 × 10−3 Å. 

The electron speed can be found by using any one of the many relations we have for v. The simplest 
is the angular momentum quantization condition mevrn = n}, 

n} (1)(1.0545 × 10−34J · s) 
v = = 

mer1 (9.11 × 10−31kg)(5.75 × 10−3 Å) 

= 2.01 × 108 m · s −1 . 

This velocity is a significant fraction of the speed of light. Therefore, we expect that relativistic 
effects will be non-negligible in U91+ . 

D. For U+91 n = 1000, what are the orbit-radius and speed? 

Solution: 
We are asked to do the same as part C, but with n = 1000. This is a good chance to use scaling 
laws, which are both extremely useful and insightful. In this case, we are interested in how certain 
quantities, namely radius and velocity, scale with the principle quantum number, n. Examining 
our expressions for rn and vn, we obtain 

2 r ∝ n 
−1 v ∝ n . 

With n = 1000, we can simply scale our answers to part C yielding 

r1000 = r1 · 10002 = 5.75 × 103 Å 
−1 v1000 = v1/1000 = 2.01 × 105 m · s . 
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OPTIONAL PROBLEMS (7-10 BELOW) 

Questions about complex numbers and complex functions of a real variable. 

7. From McQuarrie, page 49, #A-2 

If z = x + 2i y, then find 

A. Re(z ∗) 

Solution: Re(x + 2iy) = x 

B. Re(z2) 

2 Solution: Re((x + 2iy)2) = Re(x2 + 4ixy − 4y2) = x2 − 4y

C. Im(z2) 

Solution: Im(x2 + 4ixy − 4y2) = 4xy 

D. Re(zz ∗) 

2 Solution: Re(x − 2iy)(x + 2iy)) = Re(x2 + 4y2) = x2 + 4y

E. Im(zz ∗) 

Solution: Im(x2 + 4y2) = 0. 
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8. From McQuarrie, page 49, #A-3 and #A-4 

iθA. Express the following complex numbers in the form re : 

i) 6i √ 
ii) 4 − 2i 
iii) −1 − 2i 
iv) π + ei 

Solution: 
iθ Using z = x + iy = rep

2 r = x2 + y
tan θ = y/x 

i 
π θ = 

i) 

6 6 2 

real 

ii) 
@ ↓ θ 
@R 

iii) 

* 

����

↑ 

iv) 

beiπ/2 6i = 

� √ � √ √ − 2 √ i arctan −0.340i 4 − 2i = 18e 4 = 3 2e

√ √ 
i(arctan( 2 )+π) (1.107+π)i − 5e 7 = 5e

√ √ 
i arctan( e 0.713i π2e2eπ + ei = π2e2e π ) = 
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B. Express the following complex numbers in the form x + iy: 

iπ/4 i) e
2πi/3 ii) 6e
−(π/4)/i+ln 2 iii) e
−2πi 4πi iv) e + e

Solution: 
iθ z = re = r cos θ + ir sin θ 

√ √ � � � � 
2 2 π π i) z = cos + i sin = + i 4 4 2 2 

√ � � � � 
2π 2π ii) z = 6 cos + 6i sin = −3 + i3 3 3 3 

√ √ � � � � 
ln 2 −(π −π −π iii) z = e e 4 )i = 2 cos + 2i sin = 2 − i 2 4 4 

iv) z = (cos(−2π) + i sin(−2π) + cos(4π) + i sin(4π)) = 2 . 

9. From McQuarrie, page 49,50 #A-6 – A-8 and A-10 

A. Show that 
iθ −iθ e + e

cos θ = 
2 

and 
iθ − e−iθ e

sin θ = 
2i 

Solution: 
iθ This is a simple application of Euler’s relation e = cosθ + i sin θ: 

iθ e −iθ + e cos θ + i sin θ + cos(−θ) + i sin(−θ) 
= 

2 2 
2 cos(θ) 

= = cos(θ), 
2 

and 

iθ − e−iθ e cos θ + i sin θ − cos(−θ) − i sin(−θ) 
= 

2i 2i 
2i sin θ 

= = sin θ. 
2i 
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B. Use McQuarrie A.6 Equation to derive 
n z = r n(cos θ + i sin θ)n = r n(cos nθ + i sin nθ) 

and from this, the formula of de moivre: 

(cos θ + i sin θ)n = cos nθ + i sin nθ. 

Solution: 

iθ)n z n = (re 
iθ)n inθ) = r n(e = r n(e 

= r n(cos θ + i sin θ)n = r n(cos nθ + i sin θ) 

→ (cos θ + i sin θ)n = cos nθ + i sin nθ 

C. Use the formula of de Moivre, which is given in part B, to derive the following very useful 
trigonometric identities: 

cos 2θ = cos 2 θ − sin2 θ 

sin 2θ = 2 sin θ cos θ 

cos 3θ = cos 3 θ − 3 cos θ sin2 θ 

= 4 cos3 θ − 3 cos θ 

sin 3θ = 3 cos2 θ sin θ − sin3 θ 

= 3 sin θ − 4 sin3 θ. 

Solution: 

(cos θ + i sin θ)2 = (cos 2θ) + i(sin 2θ) (by part B) 

(cos2 θ − sin2 θ) + i(2 sin θ cos θ) = (cos 2θ) + i(sin 2θ) 

→ cos 2θ = cos 2 θ − sin2 θ 

→ sin 2θ = 2 sin θ cos θ 

(cos θ + i sin θ)3 = (cos3θ) + i(sin 3θ) 

(cos3 θ − 3 cos θ sin2 θ) + i(3 cos2 θ sin θ − sin3 θ) = (cos3θ) + i(sin 3θ) 

→ cos 3θ = cos 3 θ − 3 cos θ sin2 θ 

= 4 cos3 θ − 3 cos θ 

→ sin θ = 3 cos2 θ sin θ − sin3 θ 

= 3 sin θ − 4 sin3 θ. 
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10. From McQuarrie, page 50, #A-9 

Consider the set of functions (
1 imφ m = 0, ±1, ±2, . . . 

Φm(φ) = √ e 
2π 0 ≤ φ ≤ 2π 

First show that (Z 2π 0 for all values of m = 0 6
dφΦm(φ) = √ 

0 2π m = 0. 

Next show that (Z 2π 0 m = 6 n 
dφΦ ∗ (φ)Φn(φ) = m

0 1 m = n. 

Solution: 
Our set of functions is defined as 

1 imφ Φm(φ) = √ e , 
2π 

where m = 0, ±1, ±2, . . . . We must first evaluate the integral of each function over the range [0, 2π]. Z 2π Z 2π 1 imφdφ Φm(φ)dφ = √ e 
0 2π 0 Z 2π 1 

= √ (cos mφ + i sin mφ)dφ. 
2π 0 

For m 6 0, the integral over each trigonometric function is zero because they each have a period = 
that is a multiple of 2π. For m = 0, the sin mφ term is zero, and the cos mφ term is 1, leaving Z 2π √ 

√ dφ = √ = 2π. 
1 2π 

2π 0 2π 

In summary, (Z 2π 0 m = 0 6
Φm(φ)dφ = √ 

0 2π m = 0. R 2π 
Now we must evaluate the integrals Φ∗ (φ)Φn(φ)dφ for all m and n. 0 mZ 2π Z 2π 

−imφ inφdφ Φ ∗ (φ)Φn(φ)dφ =
1 

e e m 2π 0 0 Z 2π 1 
= e i(n−m)φdφ 
2π 0 
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