
Deep Learning/Double Descent

Gilbert Strang

MIT

October, 2019

1/32

Number of Weights

2/32

-3 -2 -1 0 1 2 3

x

-6

-4

-2

0

2

4

6

8

10

N = 40

N = 4000

3/32

Fit training data by a Learning function F

We are given training data : Inputs v, outputs w

Example Each v is an image of a number
w = 0, 1, . . . , 9

The vector v describes each pixel in the image

We want to create a learning function so that
F (v) ≈ w

mmmaaattthhh...mmmiiittt...eeeddduuu///llleeeaaarrrnnniiinnngggfffrrrooommmdddaaatttaaa

4/32

http://math.mit.edu/~gs/learningfromdata/

Deep Neural Networks

1 Key operation Composition F = F3(F2(F1(x, v0)))
2 Key rule Chain rule for x-derivatives of F
3 Key algorithm Stochastic gradient descent to find x
4 Key subroutine Backpropagation to compute grad F
5 Key nonlinearity ReLU (y) = max (y, 0) = ramp function

Layer k vk = Fk(vk−1) = ReLU (Akvk−1 + bk)

Weights for layer k Ak = matrix and bk = offset vector

v0 = training data / v1, . . . , vℓ−1 hidden layers / vℓ = output

5/32

Deep Neural Networks

1 Key operation Composition F = F3(F2(F1(x, v0)))
2 Key rule Chain rule for x-derivatives of F
3 Key algorithm Stochastic gradient descent to find x
4 Key subroutine Backpropagation to compute grad F
5 Key nonlinearity ReLU (y) = max (y, 0) = ramp function

Layer k vk = Fk(vk−1) = ReLU (Akvk−1 + bk)

Weights for layer k Ak = matrix and bk = offset vector

v0 = training data / v1, . . . , vℓ−1 hidden layers / vℓ = output

5/32

Deep Neural Networks

1 Key operation Composition F = F3(F2(F1(x, v0)))
2 Key rule Chain rule for x-derivatives of F
3 Key algorithm Stochastic gradient descent to find x
4 Key subroutine Backpropagation to compute grad F
5 Key nonlinearity ReLU (y) = max (y, 0) = ramp function

Layer k vk = Fk(vk−1) = ReLU (Akvk−1 + bk)

Weights for layer k Ak = matrix and bk = offset vector

v0 = training data / v1, . . . , vℓ−1 hidden layers / vℓ = output

5/32

Figure from math.mit.edu/learningfromdata

ReLU

ReLU

ReLU

ReLU

v2

4× 3 matrix A1

Add 4× 1 vector b1

1× 4 matrix A2

Feature vector v0

Three components for
each training sample

y
1

at layer 1
y
1
= A1v0 + b1

Four components of y
1

and v1

v1 at layer 1
v1 = ReLU (y

1
)

Output w = v2

v2 = A2v1

6/32

http://math.mit.edu/~gs/learningfromdata/

Key computation : Weights x minimize overall loss L(x)

L(x) =
1

N

N∑

j=1

loss ℓ
(
x,vj

0

)
on sample j

“Square loss” = error ℓ
(
x,vj

0

)
=
∣∣∣
∣∣∣F
(
x,vj

0

)
− true

∣∣∣
∣∣∣
2

Cross-entropy loss, hinge loss,. . .

Classification problem : true = 1 or −1
Regression problem : true = vector

Gradient descent xk+1 = arg min ||xk − sk∇L(xk)||
Stochastic descent xk+1 = arg min

∣∣∣∣xk − sk∇ℓ
(
xk, v

k
0

)∣∣∣∣

7/32

Key computation : Weights x minimize overall loss L(x)

L(x) =
1

N

N∑

j=1

loss ℓ
(
x,vj

0

)
on sample j

“Square loss” = error ℓ
(
x,vj

0

)
=
∣∣∣
∣∣∣F
(
x,vj

0

)
− true

∣∣∣
∣∣∣
2

Cross-entropy loss, hinge loss,. . .

Classification problem : true = 1 or −1
Regression problem : true = vector

Gradient descent xk+1 = arg min ||xk − sk∇L(xk)||
Stochastic descent xk+1 = arg min

∣∣∣∣xk − sk∇ℓ
(
xk, v

k
0

)∣∣∣∣

7/32

Key Questions

1. Optimization of the weights x = Ak and bk

2. Convergence rate of descent and accelerated descent
(when xk+1 depends on xk and xk−1 : momentum added)

3. Do the weights A1, b1 . . . generalize to unseen test data ?
(Early stopping / Do not overfit the data)

8/32

Key Questions

1. Optimization of the weights x = Ak and bk

2. Convergence rate of descent and accelerated descent
(when xk+1 depends on xk and xk−1 : momentum added)

3. Do the weights A1, b1 . . . generalize to unseen test data ?
(Early stopping / Do not overfit the data)

8/32

Key Questions

1. Optimization of the weights x = Ak and bk

2. Convergence rate of descent and accelerated descent
(when xk+1 depends on xk and xk−1 : momentum added)

3. Do the weights A1, b1 . . . generalize to unseen test data ?
(Early stopping / Do not overfit the data)

8/32

1. Stochastic gradient descent optimizes weights Ak, bk

2. Backpropagation in the computational graph computes
derivatives with respect to weights x = A1, b1, . . . , Aℓ, bℓ

3. The learning function F (x,v0) = . . . F3(F2(F1(x,v)))

F1(v0) = max (A1v0 + b1, 0) = ReLU ◦ affine map

F (v) is continuous piecewise linear : how many pieces?

This measures the “expressivity” of the network

Assume 1 hidden layer with N neurons

9/32

1. Stochastic gradient descent optimizes weights Ak, bk

2. Backpropagation in the computational graph computes
derivatives with respect to weights x = A1, b1, . . . , Aℓ, bℓ

3. The learning function F (x,v0) = . . . F3(F2(F1(x,v)))

F1(v0) = max (A1v0 + b1, 0) = ReLU ◦ affine map

F (v) is continuous piecewise linear : how many pieces?

This measures the “expressivity” of the network

Assume 1 hidden layer with N neurons

9/32

1. Stochastic gradient descent optimizes weights Ak, bk

2. Backpropagation in the computational graph computes
derivatives with respect to weights x = A1, b1, . . . , Aℓ, bℓ

3. The learning function F (x,v0) = . . . F3(F2(F1(x,v)))

F1(v0) = max (A1v0 + b1, 0) = ReLU ◦ affine map

F (v) is continuous piecewise linear : how many pieces?

This measures the “expressivity” of the network

Assume 1 hidden layer with N neurons

9/32

1. Stochastic gradient descent optimizes weights Ak, bk

2. Backpropagation in the computational graph computes
derivatives with respect to weights x = A1, b1, . . . , Aℓ, bℓ

3. The learning function F (x,v0) = . . . F3(F2(F1(x,v)))

F1(v0) = max (A1v0 + b1, 0) = ReLU ◦ affine map

F (v) is continuous piecewise linear : how many pieces?

This measures the “expressivity” of the network

Assume 1 hidden layer with N neurons

9/32

v0 has m components / v1 has N components / N ReLU’s

The number of flat regions in Rm bounded by the N hyperplanes

r(N,m) =

m∑

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

N = 3 folds in a plane will produce 1 + 3 + 3 = 7 pieces

Recursion r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

10/32

v0 has m components / v1 has N components / N ReLU’s

The number of flat regions in Rm bounded by the N hyperplanes

r(N,m) =

m∑

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

N = 3 folds in a plane will produce 1 + 3 + 3 = 7 pieces

Recursion r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

10/32

v0 has m components / v1 has N components / N ReLU’s

The number of flat regions in Rm bounded by the N hyperplanes

r(N,m) =

m∑

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

N = 3 folds in a plane will produce 1 + 3 + 3 = 7 pieces

Recursion r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

10/32

v0 has m components / v1 has N components / N ReLU’s

The number of flat regions in Rm bounded by the N hyperplanes

r(N,m) =

m∑

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

N = 3 folds in a plane will produce 1 + 3 + 3 = 7 pieces

Start with 2 folds
← r(2, 2) = 4
Add new fold
← r(2, 1) = 3
math.mit.edu/learni

Recursion r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

10/32

v0 has m components / v1 has N components / N ReLU’s

The number of flat regions in Rm bounded by the N hyperplanes

r(N,m) =

m∑

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

N = 3 folds in a plane will produce 1 + 3 + 3 = 7 pieces

Start with 2 folds
← r(2, 2) = 4
Add new fold
← r(2, 1) = 3
math.mit.edu/learni

Recursion r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

10/32

F (x) = F2(F1(x)) is continuous piecewise linear

One hidden layer of neurons : deep networks have many more

Overfitting is not desirable ! Gradient descent stops early !

“Generalization” measured by success on unseen test data

Big problems are underdetermined [# weights > # samples]

Stochastic Gradient Descent finds weights that generalize well

11/32

F (x) = F2(F1(x)) is continuous piecewise linear

One hidden layer of neurons : deep networks have many more

Overfitting is not desirable ! Gradient descent stops early !

“Generalization” measured by success on unseen test data

Big problems are underdetermined [# weights > # samples]

Stochastic Gradient Descent finds weights that generalize well

11/32

F (x) = F2(F1(x)) is continuous piecewise linear

One hidden layer of neurons : deep networks have many more

Overfitting is not desirable ! Gradient descent stops early !

“Generalization” measured by success on unseen test data

Big problems are underdetermined [# weights > # samples]

Stochastic Gradient Descent finds weights that generalize well

11/32

F (x) = F2(F1(x)) is continuous piecewise linear

One hidden layer of neurons : deep networks have many more

Overfitting is not desirable ! Gradient descent stops early !

“Generalization” measured by success on unseen test data

Big problems are underdetermined [# weights > # samples]

Stochastic Gradient Descent finds weights that generalize well

11/32

F (x) = F2(F1(x)) is continuous piecewise linear

One hidden layer of neurons : deep networks have many more

Overfitting is not desirable ! Gradient descent stops early !

“Generalization” measured by success on unseen test data

Big problems are underdetermined [# weights > # samples]

Stochastic Gradient Descent finds weights that generalize well

11/32

Convolutional Neural Nets (CNN)

A =




x1 x0 x
−1 0 0 0

0 x1 x0 x
−1 0 0

0 0 x1 x0 x
−1 0

0 0 0 x1 x0 x
−1


 N + 2 inputs and N outputs

Each shift has a diagonal of 1’s A = x1L + x0C + x−1R

∂y

∂x1
= Lv

∂y

∂x0
= Cv

∂y

∂x
−1

= Rv

12/32

Convolutional Neural Nets (CNN)

A =




x1 x0 x
−1 0 0 0

0 x1 x0 x
−1 0 0

0 0 x1 x0 x
−1 0

0 0 0 x1 x0 x
−1


 N + 2 inputs and N outputs

Each shift has a diagonal of 1’s A = x1L + x0C + x−1R

∂y

∂x1
= Lv

∂y

∂x0
= Cv

∂y

∂x
−1

= Rv

12/32

Convolutional Neural Nets (CNN)

A =




x1 x0 x
−1 0 0 0

0 x1 x0 x
−1 0 0

0 0 x1 x0 x
−1 0

0 0 0 x1 x0 x
−1


 N + 2 inputs and N outputs

Each shift has a diagonal of 1’s A = x1L + x0C + x−1R

∂y

∂x1
= Lv

∂y

∂x0
= Cv

∂y

∂x
−1

= Rv

12/32

Convolutions in Two Dimensions

Weights



x11 x01 x

−11

x10 x00 x
−10

x1−1 x0−1 x
−1−1



Input image vij i, j from (0, 0) to (N+1, N+1)
Output image yij i, j from (1, 1)to (N,N)
Shifts L, C, R, U, D=Left,Center,Right,Up,Down

A convolution is a combination of shift matrices = filter = Toeplitz matrix

The coefficients in the combination will be the “weights” to be learned.

9 weights instead of n2 weights in A

Allows the neural net to have more width and depth

13/32

Convolutions in Two Dimensions

Weights



x11 x01 x

−11

x10 x00 x
−10

x1−1 x0−1 x
−1−1



Input image vij i, j from (0, 0) to (N+1, N+1)
Output image yij i, j from (1, 1)to (N,N)
Shifts L, C, R, U, D=Left,Center,Right,Up,Down

A convolution is a combination of shift matrices = filter = Toeplitz matrix

The coefficients in the combination will be the “weights” to be learned.

9 weights instead of n2 weights in A

Allows the neural net to have more width and depth

13/32

Convolutions in Two Dimensions

Weights



x11 x01 x

−11

x10 x00 x
−10

x1−1 x0−1 x
−1−1



Input image vij i, j from (0, 0) to (N+1, N+1)
Output image yij i, j from (1, 1)to (N,N)
Shifts L, C, R, U, D=Left,Center,Right,Up,Down

A convolution is a combination of shift matrices = filter = Toeplitz matrix

The coefficients in the combination will be the “weights” to be learned.

9 weights instead of n2 weights in A

Allows the neural net to have more width and depth

13/32

Computing the weights x = matrices Ak, bias vectors bk

Choose a loss function ℓ to measure F (x, v)− true output

Total loss L =
1

N
(sum of losses for all N samples)

Compute weights x to minimize the total loss L

14/32

Computing the weights x = matrices Ak, bias vectors bk

Choose a loss function ℓ to measure F (x, v)− true output

Total loss L =
1

N
(sum of losses for all N samples)

Compute weights x to minimize the total loss L

14/32

Computing the weights x = matrices Ak, bias vectors bk

Choose a loss function ℓ to measure F (x, v)− true output

Total loss L =
1

N
(sum of losses for all N samples)

Compute weights x to minimize the total loss L

14/32

Here are three loss functions—Cross-entropy is a favorite loss function for
neural nets

1 Square loss L(x) =
1

N

N∑

1

||F (x,vi)− true||2 : sum over samples vi

2 Hinge loss L(x) =
1

N

N∑

1

max (0, 1− t F (x)) for classification

3 Cross-entropy loss L(x)= − 1

N

N∑

1

[yi log ŷi + (1− yi) log (1− ŷi)]

15/32

Here are three loss functions—Cross-entropy is a favorite loss function for
neural nets

1 Square loss L(x) =
1

N

N∑

1

||F (x,vi)− true||2 : sum over samples vi

2 Hinge loss L(x) =
1

N

N∑

1

max (0, 1− t F (x)) for classification

3 Cross-entropy loss L(x)= − 1

N

N∑

1

[yi log ŷi + (1− yi) log (1− ŷi)]

15/32

Steepest Descent = Gradient Descent f = x2 + by2

x

y

z

steepest direction ∇f up and down the bowl

flat direction (∇f)⊥ along the ellipse x2 + by2 = constant

Steepest direction is perpendicular to the flat direction

Steepest direction is not aimed at the minimum

Steepest descent moves in the gradient direction

[
−2x
−2by

]
.

xk = b

(
b − 1

b + 1

)k

yk =

(
1 − b

1 + b

)k

f(xk, yk) =

(
1 − b

1 + b

)2k

f(x0, y0)

16/32

Descent formula xk+1 = xk − sk∇F (x) Stepsize sk = Learning rate

The first descent step starts out
perpendicular to the level set. As
it crosses through lower level sets,
the function f(x, y) is decreasing.
Eventually its path is tangent to
a level set L.

Slow convergence on a zig-zag path to the minimum of f = x2 + by2.

17/32

Momentum and the Path of a Heavy Ball

Descent with xk+1 = xk − szk

momentum with zk = ∇f(xk) + βzk−1

Descent with xk+1 = xk − szk

momentum zk+1 −∇f(xk+1) = βzk

Following the
eigenvector q

ck+1 =ck−s dk
−λ ck+1 + dk+1= β dk

[
1 0

−λ 1

][
ck+1

dk+1

]
=

[
1 −s
0 β

][
ck
dk

]

It seems a miracle that this problem has a beautiful solution.
The optimal s and β are

s =

(
2√

λmax +
√

λmin

)2

and β =

(√
λmax −

√
λmin√

λmax +
√

λmin

)2

18/32

Momentum and the Path of a Heavy Ball

Descent with xk+1 = xk − szk

momentum with zk = ∇f(xk) + βzk−1

Descent with xk+1 = xk − szk

momentum zk+1 −∇f(xk+1) = βzk

Following the
eigenvector q

ck+1 =ck−s dk
−λ ck+1 + dk+1= β dk

[
1 0

−λ 1

][
ck+1

dk+1

]
=

[
1 −s
0 β

][
ck
dk

]

It seems a miracle that this problem has a beautiful solution.
The optimal s and β are

s =

(
2√

λmax +
√

λmin

)2

and β =

(√
λmax −

√
λmin√

λmax +
√

λmin

)2

18/32

Momentum and the Path of a Heavy Ball

Descent with xk+1 = xk − szk

momentum with zk = ∇f(xk) + βzk−1

Descent with xk+1 = xk − szk

momentum zk+1 −∇f(xk+1) = βzk

Following the
eigenvector q

ck+1 =ck−s dk
−λ ck+1 + dk+1= β dk

[
1 0

−λ 1

][
ck+1

dk+1

]
=

[
1 −s
0 β

][
ck
dk

]

It seems a miracle that this problem has a beautiful solution.
The optimal s and β are

s =

(
2√

λmax +
√

λmin

)2

and β =

(√
λmax −

√
λmin√

λmax +
√

λmin

)2

18/32

Key difference : b is replaced by
√
b

Ordinary
descent factor

(
1 − b

1 + b

)2
Accelerated

descent factor

(
1 −

√
b

1 +
√
b

)2

Steepest
descent

(
.99

1.01

)2

= .96
Accelerated
descent

(
.9

1.1

)2

= .67

Notice that λmax/λmin = 1/b = κ is the condition number of S

19/32

Key difference : b is replaced by
√
b

Ordinary
descent factor

(
1 − b

1 + b

)2
Accelerated

descent factor

(
1 −

√
b

1 +
√
b

)2

Steepest
descent

(
.99

1.01

)2

= .96
Accelerated
descent

(
.9

1.1

)2

= .67

Notice that λmax/λmin = 1/b = κ is the condition number of S

19/32

Key difference : b is replaced by
√
b

Ordinary
descent factor

(
1 − b

1 + b

)2
Accelerated

descent factor

(
1 −

√
b

1 +
√
b

)2

Steepest
descent

(
.99

1.01

)2

= .96
Accelerated
descent

(
.9

1.1

)2

= .67

Notice that λmax/λmin = 1/b = κ is the condition number of S

19/32

Stochastic Gradient Descent

Stochastic gradient descent uses a “minibatch” of the training data

Every step is much faster than using all data

We don’t want to fit the training data too perfectly (overfitting)

Choosing a polynomial of degree 60 to fit 61 data points

20/32

Stochastic Gradient Descent

Stochastic gradient descent uses a “minibatch” of the training data

Every step is much faster than using all data

We don’t want to fit the training data too perfectly (overfitting)

Choosing a polynomial of degree 60 to fit 61 data points

20/32

Stochastic Gradient Descent

Stochastic gradient descent uses a “minibatch” of the training data

Every step is much faster than using all data

We don’t want to fit the training data too perfectly (overfitting)

Choosing a polynomial of degree 60 to fit 61 data points

20/32

Stochastic Gradient Descent

Stochastic gradient descent uses a “minibatch” of the training data

Every step is much faster than using all data

We don’t want to fit the training data too perfectly (overfitting)

Choosing a polynomial of degree 60 to fit 61 data points

20/32

Stochastic Descent Using One Sample Per Step
Early steps of SGD often converge quickly toward the solution x∗

Here we pause to look at semi-convergence : Fast start by stochastic
gradient descent

Convergence at the start changes to large oscillations near the solution

Kaczmarz for Ax = b with random i(k) xk+1 = xk +
bi − aT

i xk

||ai||2
ai

21/32

Stochastic Descent Using One Sample Per Step
Early steps of SGD often converge quickly toward the solution x∗

Here we pause to look at semi-convergence : Fast start by stochastic
gradient descent

Convergence at the start changes to large oscillations near the solution

Kaczmarz for Ax = b with random i(k) xk+1 = xk +
bi − aT

i xk

||ai||2
ai

21/32

Stochastic Descent Using One Sample Per Step
Early steps of SGD often converge quickly toward the solution x∗

Here we pause to look at semi-convergence : Fast start by stochastic
gradient descent

Convergence at the start changes to large oscillations near the solution

Kaczmarz for Ax = b with random i(k) xk+1 = xk +
bi − aT

i xk

||ai||2
ai

21/32

Stochastic Descent Using One Sample Per Step
Early steps of SGD often converge quickly toward the solution x∗

Here we pause to look at semi-convergence : Fast start by stochastic
gradient descent

Convergence at the start changes to large oscillations near the solution

Kaczmarz for Ax = b with random i(k) xk+1 = xk +
bi − aT

i xk

||ai||2
ai

21/32

Adaptive Methods Using Earlier Gradients (ADAM)

Adaptive Stochastic Gradient Descent xk+1 = xk − skDk

Dk = δDk−1 + (1− δ)∇L(xk) s2k = βs2k−1
+ (1− β) ||∇L (xk)||2

Why do the weights generalize well to unseen test data ?

22/32

Adaptive Methods Using Earlier Gradients (ADAM)

Adaptive Stochastic Gradient Descent xk+1 = xk − skDk

Dk = δDk−1 + (1− δ)∇L(xk) s2k = βs2k−1
+ (1− β) ||∇L (xk)||2

Why do the weights generalize well to unseen test data ?

22/32

Adaptive Methods Using Earlier Gradients (ADAM)

Adaptive Stochastic Gradient Descent xk+1 = xk − skDk

Dk = δDk−1 + (1− δ)∇L(xk) s2k = βs2k−1
+ (1− β) ||∇L (xk)||2

Why do the weights generalize well to unseen test data ?

22/32

Computation of ∂F/∂x : Explicit Formulas

vL = bL +ALvL−1 or simply w = b+Av.

The output wi is not affected by bj or Ajk if j 6= i

Fully connected layer

Independent weights Ajk

∂wi

∂bj
= δij and

∂wi

∂Ajk

= δijvk

Example

[
w1

w2

]
=

[
b1
b2

]
+

[
a11v1 + a12v2
a21v1 + a22v2

]

∂w1

∂b1
= 1,

∂w1

∂b2
= 0,

∂w1

∂a11
= v1,

∂w1

∂a12
= v2,

∂w1

∂a21
=

∂w1

∂a22
= 0.

23/32

Computation of ∂F/∂x : Explicit Formulas

vL = bL +ALvL−1 or simply w = b+Av.

The output wi is not affected by bj or Ajk if j 6= i

Fully connected layer

Independent weights Ajk

∂wi

∂bj
= δij and

∂wi

∂Ajk

= δijvk

Example

[
w1

w2

]
=

[
b1
b2

]
+

[
a11v1 + a12v2
a21v1 + a22v2

]

∂w1

∂b1
= 1,

∂w1

∂b2
= 0,

∂w1

∂a11
= v1,

∂w1

∂a12
= v2,

∂w1

∂a21
=

∂w1

∂a22
= 0.

23/32

Computation of ∂F/∂x : Explicit Formulas

vL = bL +ALvL−1 or simply w = b+Av.

The output wi is not affected by bj or Ajk if j 6= i

Fully connected layer

Independent weights Ajk

∂wi

∂bj
= δij and

∂wi

∂Ajk

= δijvk

Example

[
w1

w2

]
=

[
b1
b2

]
+

[
a11v1 + a12v2
a21v1 + a22v2

]

∂w1

∂b1
= 1,

∂w1

∂b2
= 0,

∂w1

∂a11
= v1,

∂w1

∂a12
= v2,

∂w1

∂a21
=

∂w1

∂a22
= 0.

23/32

Computation of ∂F/∂x : Explicit Formulas

vL = bL +ALvL−1 or simply w = b+Av.

The output wi is not affected by bj or Ajk if j 6= i

Fully connected layer

Independent weights Ajk

∂wi

∂bj
= δij and

∂wi

∂Ajk

= δijvk

Example

[
w1

w2

]
=

[
b1
b2

]
+

[
a11v1 + a12v2
a21v1 + a22v2

]

∂w1

∂b1
= 1,

∂w1

∂b2
= 0,

∂w1

∂a11
= v1,

∂w1

∂a12
= v2,

∂w1

∂a21
=

∂w1

∂a22
= 0.

23/32

Computation of ∂F/∂x : Explicit Formulas

vL = bL +ALvL−1 or simply w = b+Av.

The output wi is not affected by bj or Ajk if j 6= i

Fully connected layer

Independent weights Ajk

∂wi

∂bj
= δij and

∂wi

∂Ajk

= δijvk

Example

[
w1

w2

]
=

[
b1
b2

]
+

[
a11v1 + a12v2
a21v1 + a22v2

]

∂w1

∂b1
= 1,

∂w1

∂b2
= 0,

∂w1

∂a11
= v1,

∂w1

∂a12
= v2,

∂w1

∂a21
=

∂w1

∂a22
= 0.

23/32

Backpropagation and the Chain Rule

L(x) adds up all the losses ℓ (w − true) = ℓ (F (x,v)− true)

The partial derivatives of L with respect to the weights x should be
zero.

Chain
rule

d

dx
(F3(F2(F1(x))))=

(
dF3

dF2

(F2(F1(x)))

)(
dF2

dF1

(F1(x))

)(
dF1

dx
(x)

)

What is the multivariable chain rule ?

Which order (forward or backward along the chain) is faster ?

24/32

Backpropagation and the Chain Rule

L(x) adds up all the losses ℓ (w − true) = ℓ (F (x,v)− true)

The partial derivatives of L with respect to the weights x should be
zero.

Chain
rule

d

dx
(F3(F2(F1(x))))=

(
dF3

dF2

(F2(F1(x)))

)(
dF2

dF1

(F1(x))

)(
dF1

dx
(x)

)

What is the multivariable chain rule ?

Which order (forward or backward along the chain) is faster ?

24/32

Backpropagation and the Chain Rule

L(x) adds up all the losses ℓ (w − true) = ℓ (F (x,v)− true)

The partial derivatives of L with respect to the weights x should be
zero.

Chain
rule

d

dx
(F3(F2(F1(x))))=

(
dF3

dF2

(F2(F1(x)))

)(
dF2

dF1

(F1(x))

)(
dF1

dx
(x)

)

What is the multivariable chain rule ?

Which order (forward or backward along the chain) is faster ?

24/32

Backpropagation and the Chain Rule

L(x) adds up all the losses ℓ (w − true) = ℓ (F (x,v)− true)

The partial derivatives of L with respect to the weights x should be
zero.

Chain
rule

d

dx
(F3(F2(F1(x))))=

(
dF3

dF2

(F2(F1(x)))

)(
dF2

dF1

(F1(x))

)(
dF1

dx
(x)

)

What is the multivariable chain rule ?

Which order (forward or backward along the chain) is faster ?

24/32

Backpropagation and the Chain Rule

L(x) adds up all the losses ℓ (w − true) = ℓ (F (x,v)− true)

The partial derivatives of L with respect to the weights x should be
zero.

Chain
rule

d

dx
(F3(F2(F1(x))))=

(
dF3

dF2

(F2(F1(x)))

)(
dF2

dF1

(F1(x))

)(
dF1

dx
(x)

)

What is the multivariable chain rule ?

Which order (forward or backward along the chain) is faster ?

24/32

Backward-mode AD is faster for M1M2w

(M1M2)w needs N3+N2 multiplications M1(M2w) needs only N2+N2

Forward (((M1M2)M3) . . .ML)w needs (L−1)N3+N2

Backward M1(M2(. . . (MLw))) needs LN2

25/32

Backward-mode AD is faster for M1M2w

(M1M2)w needs N3+N2 multiplications M1(M2w) needs only N2+N2

Forward (((M1M2)M3) . . .ML)w needs (L−1)N3+N2

Backward M1(M2(. . . (MLw))) needs LN2

25/32

Backward-mode AD is faster for M1M2w

(M1M2)w needs N3+N2 multiplications M1(M2w) needs only N2+N2

Forward (((M1M2)M3) . . .ML)w needs (L−1)N3+N2

Backward M1(M2(. . . (MLw))) needs LN2

25/32

The Multivariable Chain Rule

∂w

∂v
=




∂w1

∂v1
· · · ∂w1

∂vn

· · ·
∂wp

∂v1
· · · ∂wp

∂vn




∂v

∂u
=




∂v1
∂u1

· · · ∂v1
∂um

· · ·
∂vn
∂u1

· · · ∂vn
∂um




∂wi

∂uk
=

∂wi

∂v1

∂v1
∂uk

+ · · ·+ ∂wi

∂vn

∂vn
∂uk

=

(
∂wi

∂v1
, . . . ,

∂wi

∂vn

)
···
(
∂v1
∂uk

, . . . ,
∂vn
∂uk

)

Multivariable chain rule : Multiply matrices !
∂w

∂u
=

(
∂w

∂v

)(
∂v

∂u

)

26/32

The Multivariable Chain Rule

∂w

∂v
=




∂w1

∂v1
· · · ∂w1

∂vn

· · ·
∂wp

∂v1
· · · ∂wp

∂vn




∂v

∂u
=




∂v1
∂u1

· · · ∂v1
∂um

· · ·
∂vn
∂u1

· · · ∂vn
∂um




∂wi

∂uk
=

∂wi

∂v1

∂v1
∂uk

+ · · ·+ ∂wi

∂vn

∂vn
∂uk

=

(
∂wi

∂v1
, . . . ,

∂wi

∂vn

)
···
(
∂v1
∂uk

, . . . ,
∂vn
∂uk

)

Multivariable chain rule : Multiply matrices !
∂w

∂u
=

(
∂w

∂v

)(
∂v

∂u

)

26/32

Hyperparameters : The Fateful Decisions

The words learning rate are often used in place of stepsize

sk is too small Then gradient descent takes too long to minimize L(x)

sk is too large Overshooting the best choice xk+1 in the descent direction

Cross-validation Divide the available data into K subsets

27/32

Hyperparameters : The Fateful Decisions

The words learning rate are often used in place of stepsize

sk is too small Then gradient descent takes too long to minimize L(x)

sk is too large Overshooting the best choice xk+1 in the descent direction

Cross-validation Divide the available data into K subsets

27/32

Hyperparameters : The Fateful Decisions

The words learning rate are often used in place of stepsize

sk is too small Then gradient descent takes too long to minimize L(x)

sk is too large Overshooting the best choice xk+1 in the descent direction

Cross-validation Divide the available data into K subsets

27/32

Hyperparameters : The Fateful Decisions

The words learning rate are often used in place of stepsize

sk is too small Then gradient descent takes too long to minimize L(x)

sk is too large Overshooting the best choice xk+1 in the descent direction

Cross-validation Divide the available data into K subsets

27/32

Regularization = Weight decay : ℓ2 or ℓ1

Small λ : increase the variance of the error (overfitting)

Large λ : increase the bias (underfitting), ||b−Ax||2 is less important

Deep learning with many extra weights and good hyperparameters will find
solutions that generalize, without penalty

28/32

Regularization = Weight decay : ℓ2 or ℓ1

Small λ : increase the variance of the error (overfitting)

Large λ : increase the bias (underfitting), ||b−Ax||2 is less important

Deep learning with many extra weights and good hyperparameters will find
solutions that generalize, without penalty

28/32

Regularization = Weight decay : ℓ2 or ℓ1

Small λ : increase the variance of the error (overfitting)

Large λ : increase the bias (underfitting), ||b−Ax||2 is less important

Deep learning with many extra weights and good hyperparameters will find
solutions that generalize, without penalty

28/32

Regularization = Weight decay : ℓ2 or ℓ1

Small λ : increase the variance of the error (overfitting)

Large λ : increase the bias (underfitting), ||b−Ax||2 is less important

Deep learning with many extra weights and good hyperparameters will find
solutions that generalize, without penalty

28/32

Softmax Outputs for Multiclass Networks

Softmax pj=
1

S
ewj where S=

n∑

k=1

ewk

Softmax produces the probabilities in teachyourmachine.com

The World Championship at the Game of Go

Residual Networks (ResNets) “skip connections”

29/32

Softmax Outputs for Multiclass Networks

Softmax pj=
1

S
ewj where S=

n∑

k=1

ewk

Softmax produces the probabilities in teachyourmachine.com

The World Championship at the Game of Go

Residual Networks (ResNets) “skip connections”

29/32

Softmax Outputs for Multiclass Networks

Softmax pj=
1

S
ewj where S=

n∑

k=1

ewk

Softmax produces the probabilities in teachyourmachine.com

The World Championship at the Game of Go

Residual Networks (ResNets) “skip connections”

29/32

Softmax Outputs for Multiclass Networks

Softmax pj=
1

S
ewj where S=

n∑

k=1

ewk

Softmax produces the probabilities in teachyourmachine.com

The World Championship at the Game of Go

Residual Networks (ResNets) “skip connections”

29/32

Neural Nets Give Universal Approximation

If f(v) is continuous there exists x so that |F (x,v)− f(v)|<ǫ for all v

Accuracy of approximation to f min
x ||F (x,v)− f(v)|| ≤ C||f ||S

Deep networks give closer approximation than splines or shallow nets

30/32

Neural Nets Give Universal Approximation

If f(v) is continuous there exists x so that |F (x,v)− f(v)|<ǫ for all v

Accuracy of approximation to f min
x ||F (x,v)− f(v)|| ≤ C||f ||S

Deep networks give closer approximation than splines or shallow nets

30/32

Neural Nets Give Universal Approximation

If f(v) is continuous there exists x so that |F (x,v)− f(v)|<ǫ for all v

Accuracy of approximation to f min
x ||F (x,v)− f(v)|| ≤ C||f ||S

Deep networks give closer approximation than splines or shallow nets

30/32

Counting Flat Pieces in the Graph
Theorem For v in Rm, suppose the graph of F (v) has folds along
N hyperplanes H1, . . . ,HN . Those come from N linear equations
aT
i v + bi = 0, in other words ReLU at N neurons. F has r(N,m) linear

pieces :

r(N,m) =
∑m

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

4

1a 3a

2a

1b 2b 3b
H

Start with 2 planes

← r(2, 2) = 4

Add new plane H

← r(2, 1) = 3

31/32

Counting Flat Pieces in the Graph
Theorem For v in Rm, suppose the graph of F (v) has folds along
N hyperplanes H1, . . . ,HN . Those come from N linear equations
aT
i v + bi = 0, in other words ReLU at N neurons. F has r(N,m) linear

pieces :

r(N,m) =
∑m

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

4

1a 3a

2a

1b 2b 3b
H

Start with 2 planes

← r(2, 2) = 4

Add new plane H

← r(2, 1) = 3

31/32

Counting Flat Pieces in the Graph
Theorem For v in Rm, suppose the graph of F (v) has folds along
N hyperplanes H1, . . . ,HN . Those come from N linear equations
aT
i v + bi = 0, in other words ReLU at N neurons. F has r(N,m) linear

pieces :

r(N,m) =
∑m

i=0

(
N
i

)
=

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
m

)

r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

4

1a 3a

2a

1b 2b 3b
H

Start with 2 planes

← r(2, 2) = 4

Add new plane H

← r(2, 1) = 3

31/32

Continuous Piecewise Linear Function

How many linear pieces with more layers ?

Now ReLU is folding piecewise linear functions

Hanin-Rolnick : Still r(N,m) ≈ cNm pieces from N neurons

32/32

Continuous Piecewise Linear Function

How many linear pieces with more layers ?

Now ReLU is folding piecewise linear functions

Hanin-Rolnick : Still r(N,m) ≈ cNm pieces from N neurons

32/32

Continuous Piecewise Linear Function

How many linear pieces with more layers ?

Now ReLU is folding piecewise linear functions

Hanin-Rolnick : Still r(N,m) ≈ cNm pieces from N neurons

32/32

MIT OpenCourseWare
https://ocw.mit.edu

18.085 Computational Science and Engineering I
Summer 2020

For information about citing these materials or our Terms of Use,
visit: https://ocw.mit.edu/terms.

	Blank Page

