
18.085/18.0851 Computational Science and Engineering I Summer 2020 

Week 6 (July 13th-July 17th) 

Lecturer: Richard Zhang Scribes: Richard Zhang 

In the past few weeks, we have learned how to solve basic differential equations in 1D. Now we shall move 
to multi-dimensions. To do that, we will need a few key tools in multi-dimensional calculus. 

6.1 Multi-Dimensional Differentiation 

In multi-dimensional calculus, we are concerned with functions that either take in multiple values or output 
multiple values, or both. Mathematically, we are concerned with functions f : Rm → Rn . Examples include 

2 2 f : R2 → R• f(x, y) = x + y . 

2• f(x, y, z) = [x, y , xy,
√ 
xyz]T .f : R3 → R4

There are four basic operations that we would like to study; gradient, divergence, curl, and Laplacian. 

6.1.1 Gradient 

6-1

Denoted as ∇, the gradient of a function, f : Rn → R, is defined as

∇f =

 ∂f
∂x1

...
∂f
∂xn

 (6.1)

As an example, suppose we have f(x, y, z, a) = x3y + 2ya+ z +
√
a, the gradient of f is defined as

∇f =

∂x
∂f
∂y
∂f
∂z
∂f
∂a

∂f (6.2)

=


3x2y
x3 + 2a

1
√1

2 a
+ 2y

 (6.3)

We can evaluate the gradient at (x, y, z, a) = (1, 0,−1, 2)T , we will have that

∇f =


0
5
1
√1

2 2

 (6.4)
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For a given surface, the normal unit vector, n̂, is defined as the vector perpendicular to the surface. The
normal derivative of a function f is defined as

∂f
= ∇f · n̂ (6.5)

∂n

In other words, we are looking at the weighted sum of derivatives that are normal to the surface.

6.1.2 Divergence

Denoted as ∇· or just div, the divergence of a function f : Rn → Rn is defined as

∇ · f = div(f) (6.6)

=
n∑
i=1

∂fn
∂xn

(6.7)

For example, suppose we have f(x, y, z) = (xy, yz, xz2). The divergence of f is then

∇ · f = div(f) (6.8)

dfx
dx

dfy
dy

= + +
dfz
dz

(6.9)

(6.10)= y + z + 2xz

The divergence of f evaluated at (x, y, z) = (1, 1, 1) would be

∇ · f = 1 + 1 + 2 (6.11)

= 4 (6.12)

6.1.3 Curl

Denoted as ∇×, or just curl, the curl of a function f : R3 → R3, is defined as

∇× f = curl(f) (6.13)

= det

 î ĵ k̂
∂x ∂y ∂z
fx fy fz

 (6.14)

(6.15)= î(∂yfz − ∂zfy)− ĵ(∂xfz − ∂zfx) + k̂(∂xfy − ∂yfx)

As an example, suppose that f(x, y, z) = (xy2, xz3, yxz), then the curl of f is

∇× f = î(xz − 3z2x)− ĵ(yz − 0) + k̂(z3 − 2xy) (6.16)

6.1.4 Laplacian

Denoted as ∇2 or ∆, the Laplacian of a function is the divergence√ of the gradient of a function f : Rn → R.
For example, the Laplacian of f(x, y, z, a) = x3y + 2ya+ z + a is

∇2f = ∆f (6.17)

= 6xy + 0 + 0− 1

4
a−3/2 (6.18)

= 6xy − 1

4
a−3/2 (6.19)

Two quick points
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• When n = 1, the Laplacian is simply the second derivative of a function.

• Δu = 0 is known as the Laplace’s equation. As one of the most fundamental partial differential equa-
tions, it governs many natural and engineering processes, such as electromagnetism, thermodynamics,
fluid dynamics, etc.

6.2 Multi-Dimensional Integration 

Just as multi-dimensional derivatives can get very creative, there are various ways we can perform integration 
in functions of several variables. 

6.2.1 Double Integrals: Area and Volume 

One of the most straightforward integration is over a certain area of volume. In 2D, this would be an area 
integral. In 3D, this would be a volume. 

2Let us integrate f(x, y) = x y over the area confined by y = 0, x = 0, and x = y. Then from the graph, we 
can deduct that y needs to go from 0 to x and x needs to go from 0 to 1. Hence we write 

∫ ∫
f(x, y)dxdy =

∫ 1 ∫ x

0

x2ydxdy (6.20)

=

0∫ 1

x2
∫ x

0

ydydx (6.21)

=

0∫ 1

0

x2
x2

2
dx (6.22)

=
x5

10
|10 (6.23)

=
1

10
(6.24)

6.2.2 Line Integrals

The key to multi-dimensional integration is evaluating the multi-dimensional functions f(x1, x2, ...xn). As
long as we can find a source of evaluating the function f(x), we should be able to integrate the function over
that source. That source, for instance, can be a line.

Suppose we are interested in integrate f along the curve parametrized by r(t), a ≤ t ≤ b. Then the line
integral of f defined along the curve would be∫ b

a

f(t)|r′(t)|dt (6.25)

As an example, suppose we have f(x, y) = yex along C where C is the line segment between (1, 2) and (4, 7).
Then we can write the line segment as a vector function v = (1, 2) + t(3, 5), where 0 ≤ t ≤ 1. In this way,
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x = 1 + 3t and y = 2 + 5t. Hence

∫
C

f(x, y)dl (6.26)

=

∫ 1

0

(2 + 5t)e1+3t
√

32 + 52dt (6.27)

=
16

9

√
34e4 − 1

9

√
34e (6.28)

6.2.3 Surface integrals

If the source is the surface element of an area, then we can have a surface integral. Suppose the surface is
defined as g(x, y). Then the surface integral over S would be

∫
S

f(x, y)dS =

∫
S

f(x, y)

√
1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy (6.29)

We will illustrate the technical calculations of surface integrals later on in the context of Divergence Theorem

6.3 Divergence Theorem and Stokes’ Theorem

The two most important theorems in vector calculus are divergence theorem and Stokes’ theorem.

6.3.1 Divergence Theorem

Suppose we have a function F (x, y, z) : R3 → R3. Then over a volume V enclosed by a surface S, we can
write down the relation ∫ ∫ ∫

V

∇ · Fdxdydz =

∮
F · n̂dS (6.30)

As an example, let’s verify the divergence theorem of F (x, y) = (5x, 2y) over the ”volume” R = {(x, y) :
x2 + y2 ≤ 1}. On the one hand, we have

∫
R

∇ · Fdxdy =

∫
(5 + 2)dxdy (6.31)

= 7

R∫
R

dxdy (6.32)

= 7π (6.33)

On the other hand, along the curve that confines the ”volume”, the normal unit vector n̂ is defined as
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(cos(θ), sin(θ)), where 0 ≤ θ ≤ 2π. Then we can compute the flux∫
S

F · n̂dS =

∫ 2π

(6.34)

=

0∫ 2π

(5 cos(θ), 2 sin(θ)) · (cos(θ), sin(θ)dθ

(2 cos2(θ) + 5 sin2(θ))dθ (6.35)

= 2

0∫ 2π

0

cos2(θ)dθ + 5

∫ 2π

0

sin(θ)dθ (6.36)

= 2π + 5π (6.37)

= 7π (6.38)

6.3.2 Stokes Theorem

If F : R3 → R3, then over any surface S, not necessarily closed, we have

C

F · dl =

∮ ∫
∇× FdA (6.39)

You will get to verify Stokes’ theorem in a homework problem

6.4 Fourier Series

The idea of Fourier series comes from a wish to mathematically represent a periodic function. For instance,

f(x) =

{
−1, −π ≤ x < 0

1, 0 ≤ x ≤ π
(6.40)

and now imagine that I extend the function of period 2π. It is easy to describe them in English, but how do
we do so mathematically?

6.4.1 Functional Space and Basis Vectors

We spoke earlier about the idea of extending the notion of vector space in linear algebra to functions. We
can speak of the collection of functions as a vector space, over which each individual function is a vector.
Then immediately, we can carry over many concepts from linear algebra to calculus. Here is a list

• Vector Space Rn ⇐⇒ functional space V over [−π, π]

• Vectors (”pointy arrows”) in Rn ⇐⇒ a function f(x) in V

• Dot product between two vectors in Rn ⇐⇒ inner product over [−π, π] between two functions in V

• Basis vectors (eg. standard basis e1, e2, ...en) in Rn ⇐⇒ basis functions

• Linear combination of basis vectors forming a vector in Rn ⇐⇒ Fourier series
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6.4.1.1 Inner Product

For any given two functions, f(x) and g(x), the inner product over the interval (a, b) is a scalar value defined
as

〈f, g〉 =

∫ b

a

f(x)g(x)dx (6.41)

Two comments

• If f = g, then 〈f, f〉 =
∫ b
a
f2dx = ||f ||L2(a,b) is known as the L2 norm of f over the interval [a, b]

• If 〈f, g〉 = 0, then f and g are called orthogonal functions. This is consistent with the orthogonality
definition of dot products in Rn.

6.4.1.2 Basis Functions and Linear Combinations

For the function space V over the interval [−π, π], a suitable collection of basis vectors would be: sin(nx)
and cos(nx), for n = 0, 1, 2, 3, ....

In other words, the claim is that all functions can be represented as a linear combination of sin(nx) and
cos(nx), ie. there exists an, bn, for any given f(x) over [−π, π], such that

f(x) =
∞∑
i=0

an cos(nx) +
∞∑
i=1

bn sin(nx) (6.42)

This is known as the Fourier series representation of f(x). Note that

•
∫ π
−π

•
∫ π
−π

•
∫ π
−π

sin(nx) cos(kx)dx = 0

sin(nx) sin(kx)dx = δnkπ

cos(nx) cos(kx)dx = δnkπ

where

δnk =

{
0, n 6= k

1, n = k
(6.43)

This will be left as a homework. In any case, this shows that sin(nx) and cos(kx) are orthogonal basis
vectors.

6.4.1.3 Calculate the Fourier coefficients

The question remains how we can find the an and bn. To do that, we continue our analogy with linear
algebra. Suppose we have a vector v = (−3, 4)T . We want to decompose into a linear combination of
orthogonal basis vectors v1, v2, where

v1 = (1, 1)T (6.44)

v2 = (1,−1)T (6.45)

Then there exists a1, a2 ∈ R, such that

v = a1v1 + a2v2 (6.46)

The way we find a1 and a2 are the following
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• Take the dot product of v1 on both sides. Note that the v2 term would then vanish due to orthogonality

• Solve for a1

• Repeat the above process for a2

Hence,

v · v1 = a1v1 · v1 + a2v2 · v1 (6.47)

= a1v1 · v1 (6.48)

a1 =
v · v1
v1 · v1

(6.49)

Similarly,

a2 =
v · v2
v2 · v2

(6.50)

we calculate that

• v · v1 = −3 + 4 = 1

• v · v2 = −7

• v1 · v1 = 2

• v2 · v2 = 2

Therefore, a1 = 1/2 and a2 = −7/2

The same procedure should apply to Fourier series of f :

• Take the inner product on both sides with respect to sin(kx). All terms that are not of sin(kx) should
disappear

• Solve for bk

• Repeat the above process for ak

Therefore, if

f(x) =
∞∑
i=0

an cos(nx) +
∞∑
i=1

bn sin(nx) (6.51)
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Then

〈f(x), cos(kx)〉 =

〈 ∞∑
an cos(nx) +

∞∑
i=1

bn sin(nx), cos(kx)

〉
(6.52)

∫ π

−π
f(x) cos(kx)dx =

∫ π

−π

i=0( ∞∑
i=0

an cos(nx) cos(kx) +
∞∑
i=1

bn sin(nx)

)
cos(kx)dx (6.53)

=
∞∑
i=0

an

∫ π

−π
cos(nx) cos(kx)dx+

∞∑
i=1

bn

∫ π

−π
sin(nx) cos(kx)dx (6.54)

=
∞∑
i=0

an

∫ π

−π
cos(nx) cos(kx)dx (6.55)

= ak

∫ π

−π
cos2(kx)dx (6.56)

1
ak = ∫ π

−π cos2(kx)dx

∫ π

−π
f(x) cos(kx)dx (6.57)

Note that if k > 0,
∫ π
−π cos2(kx). If k = 0,

∫ π
−π cos2(kx) = 2π. Hence

a0 =
1

2π

∫ π

−π
f(x)dx (6.58)

ak =
1

π

∫ π

−π
f(x) cos(kx)dx (6.59)

Following the same procedure, we can get that

bk =
1

π

∫ π

−π
f(x) sin(kx)dx (6.60)

Note that b0 does not exist because sin(0) = 0

6.4.2 A Concrete Example

Now let us do a concrete example. Suppose we have that f(x) is defined as

f(x) =

{
−1, −π ≤ x < 0

1, 0 ≤ x ≤ π
(6.61)

We will lay out a few steps to do so

6.4.2.1 Step 1: Identify the periods and write down the formula

It may seem trivial, but if the function is not given algebraically, it may not be clear what the period is
immediately. So we have to identify what the periods are and write them down. In this case, it is clear that
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the period is 2π over [−π, π]. Hence we know the previous calculations that

a0 =
1

2π

∫ π

−π
f(x)dx (6.62)

ak =
1

π

∫ π

f(x) cos(kx)dx (6.63)

bk =
1

π

−π∫ π

−π
f(x) sin(kx)dx (6.64)

6.4.2.2 Step 2: Observe even/oddness

Since sin(nx) and cos(nx) are odd and even functions, respectively, we can make an argument about the
event/oddness of f(x) to eliminate the corresponding terms in the Fourier series.

• If f(x) is even, then bk = 0 as there can be no odd terms

• IF f(x) is odd, then ak = 0 as there can be no even terms.

In this case, because f(x) is odd, ak = 0, whence we only have the coefficients bk.

6.4.2.3 Step 3: Compute the integrals

We do the computation after we have eliminated the obvious.

bk =
1

π

∫ π

−π
f(x) sin(kx)dx (6.65)

= − 1

π

∫ 0

−π
sin(kx)dx+

1
∫ π

sin(kx)dx (6.66)

= −− cos(kx)

kπ
|0−π +

π 0

− cos(kx)

kπ
|0π (6.67)

=
cos(kx)

kπ
|0−π −

cos(kx) |0π (6.68)

=
1− (−1)k

kπ
−

kπ
(−1)k − 1

kπ
|0π (6.69)

2(1− (−1)k)

kπ
(6.70)=

Observe that for k even, ak = 0. Hence,

bk =
4

kπ
(6.71)

Hence, the Fourier series of of f(x) is

f(x) =
∞∑

n=1,3,5,...

4

kπ
sin(kx) (6.72)

If we observe the convergence plot, we notice that there is a lot of oscillations. This is known as the Gibbs
phenomenon.
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6.4.3 Complex Exponential

We know that

f(x) =
∞∑
i=0

an cos(nx) +
∞∑
i=1

bn sin(nx) (6.73)

But since sin and cos can be expressed in terms of complex exponential, we can re-express f(x), a function
over the interval [−π, π] as a linear combination of einx. In other words,

f(x) =
∞∑

n=−∞
cne

inx (6.74)

6.4.4 Inner product

Because the basis function is complex, we will need to redefine the notion of inner product

〈f, g〉 =

∫ π

−π
f̄ gdx (6.75)

Here f̄ is the complex conjugate of f .
We prove that {einx}n∞=−∞ is a set of orthogonal basis vectors. If k 6= n

〈
einx, eikx

〉
=

∫ π

−π
e−inxeikxdx (6.76)

=
ei(k−n)x |π−π (6.77)

=

i(k − n)

cos(k − n)π + i sin(k − n)π − cos(k − n)π + i sin(k − n)

i(k − n)
(6.78)

= 0 (6.79)

If n = k, then 〈
eikx, eikx

〉
=

∫ π

e−ikxeikxdx (6.80)

=

−π∫ π

−π
dx (6.81)

= 2π (6.82)

Henceforth, we can use the same ”Fourier trick” as before, exploiting the orthogonality of the basis functions
to compute cn.

〈
eikx, f(x)

〉
=

〈 ∞∑
n=−∞

eikx, cne
inx

〉
(6.83)

=
∞∑

n=−∞
cn
〈
eikx, einx

〉
(6.84)

= ck(2π) (6.85)

ck =
1

2π

∫ π

−π
f(x)e−ikxdx (6.86)
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Let’s redo the example of the step function f(x)

ck =
1

2π

∫ π

−π
f(x)e−ikx (6.87)

=
1

2π

∫ 0

e−ikxdx+
1

2π

∫ π

0

e−ikxdx (6.88)

=
1

2π ik
|0−π −

−π

e−ikx 1

2π

e−ikx

ik
|0π (6.89)

=
1

2π

1− eikπ − 1 e−ikπ − 1

ik
(6.90)

=
1

2π

ik 2π
2− eikπ − e−ikπ

ik
(6.91)

=
1

2π

2− 2 cos(kx)

ik
(6.92)

=
1

π

1− cos(kx)

ik
(6.93)

=
1 1− (−1)k

(6.94)

Hence ck = 2
ikπ

π ik

if k is even and 0 if k is odd. Hence

f(x) =
∞∑

n=−∞,odd

2

ikπ
eikx (6.95)

We group the positive and negative terms of corresponding degree together and obtain that

f(x) =
∞∑

k=1,3,5,...

2

ikπ

(
eikx − e−ikx

)
(6.96)

=

∞∑
k=1,3,5,...

2

ikπ

(
eikx − e−ikx

)
(6.97)

=
∞∑

k=1,3,5,...

2

kπ
(2 sin(kx)) (6.98)

=
∞∑

k=1,3,5,...

4

kπ
sin(kx) (6.99)

So we recover the result using sines and cosines.

6.4.5 Other Technicalities

6.4.5.1 Even Functions

If the function that I am expanding over is even, ie. f(x) = f(−x), then immediately I know that all bn = 0.
This is because the sin(nx) is an odd function that would have made f odd if they ever show up in the series
expansion. Furthermore, because f is even,∫ π

−π
f(x) cos(nx) = 2

∫ π

0

f(x) cos(nx) (6.100)
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6.4.5.2 Odd Functions

Similarly, if the function f(x) is odd, ie f(x) = −f(x), then immediately I know that all an = 0 since any
existence would a cosine term would make the function even. Furthermore, because f(x) sin(nx) is even,∫ π

−π
f(x) sin(nx) = 2

∫ π

0

f(x) sin(nx) (6.101)

(
nπx
L

)
and cos

(
nπx
L

)
,

6.4.5.3 Fourier Series over [−L,L]

To Fourier expand a function over [−L,L], we must modify the basis function to be sin
so that the Fourier seires will become

f(x) =
∞∑
n=0

an cos
nπ

L
x+

∞∑
n=0

bn sin
nπ

L
x (6.102)

You will explore in the homework how to modify the expression for an and bn.
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