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As we have seen in the last lecture, finite difference is a starting point but is quite inconvenient when it 
comes to non-rectangular boundaries and/or discontinuous boundary conditions. We would need a much 
more flexible method. 

Finite element method is a vast class of numerical method in solving engineering and and mathematical 
physics problems. Compared with the finite difference method, it has its advantage in 

• Accurate representation of complex geometric domain

• Easy representation of global solutions

• Capture of local structure effect

We shall first study the finite element method in 1D 

8.1 Finite Element Method in 1D 

As before, we start with the 1D Poisson’s equation 

d2u(x)− = f(x) (8.1)
dx2

u(0) = a (8.2) 

u(1) = β (8.3) 

We first need to redefine what it means for a function u to satisfy the equation 

8.1.1 The Weak Form 

Classically, the meaning of the equation above is that we would like to find a function u whose second 
derivative is equal to f(x) at any point x within the domain and who is equal to a at x = 0 and b at x = 1. 
However, often time this is just not possible. We have seen before that when f(x) = δ(x), the solution is 
not differentiable at x = 0. However, that is just one point. Shall we reject the entire solution and say that 
the equation does not have a solution just because of a single point? Probably not. So we need to redefine 
what it means to satisfy the differential equation above. 

For now we assume that a = β = 0, whence we can define the weak form 

Definition 8.1 u is called the weak solution to the problem above if for any infinitely smoothly functions v 
such that v(0) = v(1) = 0, Z 1 Z 1

u 0 v 0 = fv (8.4) 
0 0 

8-1
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v is also called a C∞ function. The motivation of the weak solution comes from the following algebra. If we 
multiply both sides of the equation by any C∞ function, v, and integrate over the domain, we have that Z 1 Z 1d2u(x)−v dx = f(x)v(x)dx (8.5) 

0 dx2
0 

(8.6) 

Performing the integration by parts on u, we have that Z 1 Z 1du du −v |01 + v 0(x) dx = f(x)v(x)dx (8.7)
dx dx0 0 

Since we picked v(0) = v(1) = 0, the boundary term vanishes, whence Z 1 Z 1 

v 0(x)u 0(x)dx = f(x)v(x)dx (8.8) 
0 0 

8.1.2 The Basis Function 

The crux of the finite element method relies on the assumption that we can write u a a linear combination 
of basis functions, ie. 

NX 
u(x) = aiφi (8.9) 

i=1 

We then plug it into the weak formulation and find that Z 1 N Z 1X 
0 v aiφi 

0 dx = f(x)v(x)dx (8.10) 
0 0i=1 

N Z 1 Z 1X 
0φ0 ai v idx = f(x)v(x)dx (8.11) 

0 0i=1 

Therefore, if I now set v = φj , for all j = 1, ..., N , we have 

N Z 1 Z 1X 
ai φi 

0 φ0 j dx = f(x)φj (x)dx (8.12) 
0 0i=1 

This can be then cast into a matrix equation, Ax = b, where Z 1 

Aij = φ0 iφj 
0 dx (8.13) 

0Z 1 

bj = f(x)φj (x) (8.14) 
0 

8.1.3 Linear Basis 

To set up the problem, let N be the number of inner nodes of the interval [0, 1], so that x0 = 0, xN+1 = 1, 
while xi = ih, for i = 1, ..., N and h = 1/(N + 1). We now define the piece linear function function as the 
basis vectors. For j = 1, ..., N , we define ⎧ 

x−xj−1⎪ , x ∈ [xj−1, xj ]⎨ h 

− x−xj+1φj (x) = , x ∈ [xj , xj+1] (8.15)⎪ h⎩
0, otherwise 
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These are also called the “hat function” because of their shapes. Then some algebra shows that Z 1 22dx = 0 
jφ (8.16) 

1 
(8.17)

h 

h 

j dx = − 

0Z 1 

iφ 
0 

Hence, the matrix A will look like ⎧ ⎪2,⎨ 

00φ 

i = j
1 

Aij = −1, |i − j| = 1 (8.18)
h ⎪⎩

0, Otherwise 

This is exactly the same as the second difference matrix. 

As an example, suppose N = 3. Then we have three basis functions that we call φ1, φ2, φ3, and we can 
formulate the 3 − by − 3 matrix A and 3-dimensional vector b so that Ac = b gives the coefficient vector 
c ∈ R3 , where ⎡ ⎤ 

2 −1 0
1 ⎣ ⎦A = −1 2 −1 (8.19)
h 

0 −1 2 

⎡ ⎤R 1 
f(x)φ1(x)dx0⎢R 1 ⎥

b = ⎣ f(x)φ2(x)dx⎦ (8.20)
0R 1 
f(x)φ3(x)dx0 

8.1.3.1 Inhomogenous boundary 

In case of inhomogeneous boundary conditions, we are faced with 

d2u(x)− = f(x) (8.21)
dx2 

u(0) = a (8.22) 

u(1) = β (8.23) 

where a, β 6= 0. We define w(x) to be a line that goes through (0, a) and (1, β), namely 

w(x) = (β − a)x + a (8.24) 

Then if we define ũ = u(x) − w(x), ũ would satisfy that 

d2ũ d2u d2w − = − − (8.25)
dx2 dx2 dx2 

= f(x) (8.26) 

ũ(0) = u(0) − w(0) (8.27) 

= 0 (8.28) 

ũ(1) = u(1) − w(1) (8.29) 

= 0 (8.30) 
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which brings us back to the homogeneous case. Therefore, to solve for u, we just have to apply the machinery 
from the homogeneous problem before subtracting w to get the final answer. 

From here, we can go in several directions, including 

• Higher order 1D Poisson: rather than having linear basis element, we run it for quadratic, cubic, or 
higher-degree polynomials Poisson 

• Linear basis for 2D Poisson’s equation with triangular meshes: we can generalize this process 2D with 
triangular meshes 

• Linear basis for 2D Poisson’s equation with rectangular meshes: we can generalize this process for 2D 
Poisson’s equation with rectangular meshes 

• Higher order basis for 2D Poisson’s equation 

• Linear or higher order basis for 3D Poisson’s equation 

The book does the first bullet point, and we will explore the second bullet point here. You will have a 
chance to explore the remaining bullets in other courses such as numerical partial differential equations, 
computational fluid dynamics, computational mechanics, etc. 

8.2 Finite Element Method in 2D 

Solving the Poisson’s equation in 2D is very nontrivial compared with 1D. The first thing we will need to 
do is dividing up the domain into meshes, which would support the basis functions. 

Suppose for now that we are solving the Poisson’s equation with zero boundary conditions, ie. 

−Δu = g (8.31) 

u|∂Ω = 0 (8.32) 

8.2.1 Weak Solution in Higher Dimensions 

Definition 8.2 u is called the weak solution of the system above if for any v ∈ C∞ such that v|∂Ω = 0 Z Z 
ru · rvdxdy = gvdxdy (8.33) 

Ω Ω 

The motivation comes from the following calculation. Starting with Δu = g, we have that, for every smooth 
function v, 

−vΔu = gv (8.34)Z Z 
− vΔudxdy = gvdxdy (8.35) 

Ω Ω 

The higher dimensional integration by parts comes from the following identity: if v is a scalar and F is a 
vector, r · (vF ) = rv · F + vr · F . Now if we let F = r · u, we get that 

r · (vru) = ru · v + uΔu (8.36) 
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In that way, Z Z Z 
r · (vru)dxdy = ru · vdxdy + uΔudxdy (8.37) 

Ω Ω Ω 

By divergence theorem, we have that Z I 
r · (vru)dxdy = vru · ˆ (8.38)ndS 

Ω ∂Ω 

However, since we defined v = 0 on ∂Ω, Z I 
r · (vru)dxdy = vru · ˆ (8.39)ndS 

Ω ∂Ω 

= 0 (8.40) 

whence we have Z Z 
fvdxdy = − vΔudxdy (8.41) ZΩ Z Ω 

fvdxdy = ru · rvdxdy (8.42) 
Ω Ω 

We can also assume that the solution is a linear combination of different basis functions 

NX 
u(x, y) = ciφi(x, y) (8.43) 

i=1 

which, upon being plugged in to the weak formulation, becomes Z N ZX 
fvdxdy = rφi · rvdxdy (8.44) 

Ω Ωi=1 

Picking v = φj , we have Z N �Z �X 
fφj dxdy = rφj · rφi cidxdy (8.45) 

Ω Ωi=1 

8.2.2 Triangulation 

The first step towards solving Poisson using FEM is a proper discretization of the domain. In 1D, because 
of its restrictive nature, in 1D there aren’t a lot of creative ways to discretize the domain. In 2D, however, 
the possibilities are endless! 

In this lecture, we will focus on triangulating the domain. Triangulating means that we will divide up the 
domain using triangles. We will consecutively label the following objects 

• Nodes 

• Edges 

• Triangles 

See examples 
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8.2.3 Linear Basis: Pyramid Functions 

Once the domain has been triangulated and nodes/edges/triangles established, we can proceed with defining 
the linear basis functions, φj , where j runs through all the nodes, j = 1, ..., N . The basis functions should 
enjoy the property of ( 

1, (x, y) = jth node 
φj (x, y) = (8.46)

0, (x, y) = neighboring nodes 

For the linear basis, they should 

φj (x, y) = ax + by + c (8.47) 

For instance, if the triangle is defined by (0, 0), (1, 0), and (0, 1), φj defined at (0, 0) would be 

x y
φj = 1 − − (8.48)

h h 

while φk defined at (0, 1) would be 

x 
φk = 1 − (8.49)

h 

Hence, in this case, 

rφj = (−1/h, −1/h)T (8.50) 

rφk = (−1/h, 0)T (8.51) 

And hence the corresponding entry, Ajj , Z 
Ajj = φj 

2dxdy (8.52) ZΩ 

1 
= dxdy (8.53)

h2 

1 
= (8.54)
2h2 

while Ajk would Z 
Ajk = φj φkdxdy (8.55) ZΩ 

1 
= dxdy (8.56)

h2 
Ω 

1 
= (8.57)
2h2 

etc. 

So the algorithms to solving the Poisson’s equation is 

• Triangulate the domain and label all the edges, nodes, and face information 

• Compute the basis functions defined at each node and their gradients 

• Fill in the matrix A and b by computing the integration 

• Solve Ac = b to get the coefficients. 



8-7 Lecture 8: July 27th-July 31st 

8.2.4 Non-homogeneous Boundary 

Now suppose we are solving Poisson’s equation with non-homogeneous boundary conditions, ie. 

−Δu = g, in Ω (8.58) 

u = f, on ∂Ω (8.59) 

So we define ũ = u − f . Then we observe that 

−Δũ = −Δu − Δf (8.60) 

= g − Δf (8.61) 

ũ|∂Ω = u|∂Ω − f (8.62) 

= f − f (8.63) 

= 0 (8.64) 

Which returns to the homogeneous case. So all we need is to solve the homogeneous differential equation 
involving ũ before adding f to it, ie. 

u = ũ+ f (8.65) 

8.3 Fourier Transform 

We know how to accurately represent periodic functions using sines and cosines, or alternatively, complex 
exponentials. The coefficients of the Fourier series gives us some insight about substantial information 
retained at different frequencies. This is best illustrated by the Parseval’s theorem. 

8.3.1 Parseval Theorem 

We shall first state the theorem 

Theorem 8.3 Let f(x) have the following Fourier series representation 

∞ ∞X X 
f(x) = an cos(nx) + bn sin(nx) (8.66) 

i=0 i=1 

Then Z π 
2 2 2|f(x)|2dx = π(2a0 + a1 + a3 + ...) (8.67) 

−π 

The proof is simply by observing that when expanding f2(x) and taking the integral, the only surviving 
terms are those of cos2 and sin2 . All other terms would vanish due to the orthogonality of sin and cos. 
This is saying that the energy of the function is stored in the energy of the coefficients. Recall that earlier 
in simple harmonic oscillator, we can also trigger similar waves with different levels of energies. 

Here is an application: computing the following sum 

∞X 1 
(8.68) 

n2 
n=1,3,5,... 
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To do that, we take the step function f(x) and compute its L2 norm Z π 

|f(x)|2dx = 2π (8.69) 
−π 

∞X 16 
= (8.70)

k2π2 
1,3,5,... 

2π3 ∞X 1 
16 

= 
k2 

(8.71) 
k=1,3,5,... 

Hence X∞ 
1 π3 

= (8.72)
k2 8 

k=1,3,5,... 

But how about non-periodic function that decays at infinity? Can we get their power structure in some 
sense? And how do we represent non-periodic functions in general? We will need a tool called the Fourier 
transform. 

Definition 8.4 Given a rapidly decaying function, f(x) : R → R, f(x) enjoys the following relation with 
f̂(k) : R → R: Z ∞ 

−ikxdxf̂(k) = √ 
1 

f(x)e (8.73)
2π −∞Z ∞ 

ikxdkf(x) = √ 
1 

f̂(k)e (8.74)
2π −∞ 

The first relation is called the Fourier transform, while the second is called the inverse Fourier transform. 

Before we talk about the applications of the Fourier transform, let’s do a few examples of the Fourier 
transforms 

8.3.2 Example 1: Box Function 

We start with f(x) defined as ( 
1, −L ≤ x ≤ L 

f(x) = (8.75)
0, |x| > L 

Let’s compute the Fourier transform of f Z ∞ 
−ikxdxf̂(k) = √ 

1 
f(x)e (8.76)

2π −∞Z L1 −ikxdx= √ e (8.77)
2π −L 

−ikx 1 e |x=L = √ (8.78)
2π −ik x=−L 

1 
= √ (2 sin(kL)) (8.79)

2π r 
2 

= sin(kL) (8.80)
π 
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8.3.3 Example 2: Delta function 

Now we let f(x) = δ(x). Then Z ∞ 
−ikxdxf̂(k) = √ 

1 
δ(x)e (8.81)

2π −∞ r 
1 

= (8.82)
2π 

Henceforth, we get to the ”weird” statement about the delta function, ie. Z ∞1 −ikxdkδ(x) = e (8.83)
2π −∞ 

This is weird because the integral is technically not converging. But it is a useful fact for many physics and 
engineering applications. 

8.3.4 Example 3: Gaussian 

2 
Let f(x) = e−ax , where a > 0. We will need to compute Z ∞ 

−ax −ikxdxf̂(k) = e 
2 

e (8.84) 
−∞ 

Computing this integral is beautiful, and the starting point is computing the following integral Z ∞ 
2 

I = e −x dx (8.85) 
−∞ 

The way to do it is to first compute I2 

�Z ∞ �2 

I2 2 

= e −x (8.86) 
−∞Z ∞ Z ∞ 

2 2−x −x = e dx e dx (8.87) 
−∞ −∞ 

Recall that in this case, x is a dummy variable. Therefore, we can just as well replace it by y and get that Z ∞ Z ∞ 
2 2 

I2 −x −y= e dx e dy (8.88) 
−∞ −∞ 

But then we can put everything into one double integral Z ∞ Z ∞ 
−x −yI2 = e 

2 

e 
2 

dxdy (8.89) 
−∞ −∞Z ∞ Z ∞ 

−(x +y= e 
2 2)dxdy (8.90) 

−∞ −∞ 

This is a double integral in Cartesian coordinate. Let’s switch to the polar coordinate to make things better. 

2 2 2• In the polar coordinate, x + y = r 

• dxdy = rdrdθ 
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• The bounds of integration becomes: r goes from 0 to ∞, while θ goes from 0 to 2π 

Hence, I2 becomes Z 2π Z ∞ 

I2 −(r = e 
2)rdrdθ (8.91) 

0 0 

A u−substitution will have u = r2 and rdr = du/2, and so Z 2π Z ∞ 

I2 −(r = e 
2)rdrdθ (8.92) 

0 0 

= π (8.93) 
√ 

Hence, I = π. Now using a variable substitution, it is not hard to see that Z ∞ r 
π 

e −ax 2 

dx = (8.94) 
a−∞ 

2 
Now let’s compute the Fourier transform of e−ax . Z ∞ 

21 −ax −ikxdx√ e e (8.95)
2π −∞ 

To do this, we are going to recall a trick we learned in high school called ”completing the square”. Essentially, 
if we know that (a − b)2 = a2 − 2ab + b2 , we can get a2 − ab into something similar using 

a 2 ± ab = a 2 ± 
2ab 

(8.96)
2 � � � �2 � �2

b b b 
= a 2 ± 2(a) + ± (8.97)

2 2 2 � �2
b b2 

= a ± ± (8.98)
2 4 

If we look at the exponent of the integrand, we see that 

2−ax 2 − ikx = −a(x + x(ik/a)) (8.99) 

Hence if we let a = x and b = ik/a, we see that 

−ax 2 − ikx = −a((x + ik/(2a))2 − (ik/a)2/4) (8.100) 

Hence we know that Z ∞ Z ∞ 
21 −ax ikxdx =

1 −a((x+ik/(2a))2−(ik/a)2 
√ e e √ e /4)dx (8.101)
2π −∞ 2π −∞ 

−(k2/(4a)) Z ∞ e −a((x+ik/(2a))2 

= √ e )dx (8.102)
2π −∞ 

Since we are sweeping across the entire real line, the shift on x does not really matter. Hence, we can write 
that Z ∞ −(k2/(4a)) Z ∞ 

21 e 2−ax ikxdx = −ax√ e e √ e dx (8.103)
2π −∞ 2π −∞ 

− k
2 

4ae 
= √ (8.104)

2a 
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