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Question 1. 

Elimination on A1 (Ri represents row i): 

Steps Result ⎞⎛ ⎜⎜⎝
1 −3 2 1 
2 −4 0 −1 
−1 0 −2 3 
3 −3 0 −2 

start 

⎞⎛ 
1 −3 2 1−2R1 + R2 → R2 

R1 + R3 → R3 
⎜⎜⎝ 

⎟⎟⎠ 
0 2 −4 −3 
0 −3 0 4 

−3R1 + R4 → R4 0 6 −6 −5 ⎞⎛ ⎜⎜⎝ 

1 −3 2 1 
0 2 −4 −3 
0 −6 0 8 
0 6 −6 −5 

⎟⎟⎠2R3 → R3 

⎞⎛ 
1 −3 2 1 ⎜⎜⎝ 
0 2 −4 −3 
0 0 −12 −1 

3R2 + R3 → R3 

−3R2 + R4 → R4 
0 0 6 4 ⎞⎛ ⎜⎜⎝ 

1 −3 2 1 
0 2 −4 −3 
0 0 −12 −1 
0 0 12 8 

4R4 → R4 

⎞⎛ ⎜⎜⎝ 

1 −3 2 1 
0 2 −4 −3 
0 0 −12 −1 
0 0 0 7 

4R3 + R4 → R4 

1 

⎟⎟⎠ 

⎟⎟⎠ 

⎟⎟⎠ 

⎟⎟⎠ 
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Once we reach this stage the matrix is in “echelon” form. If desired this 
particular matrix can further be reduced into the identity matrix, which is 
sometimes referred to as Gauss-Jordan elimination, whereas Gaussian elim-
ination in this context stops once the matrix is in echelon form. It is useful 
to distinguish between these two processes because converting a matrix into 
echelon form is suÿcient for computing the important LU decomposition. 

To solve A2x = b, perform Gauss-Jordan elemination using the augmented � 
matrix A2 b : 

Steps ⎛ 
Result ⎞ 

−2 0 −2 1 
start ⎝ 8 10 −4 ⎠1 

0 −4 3 −2 ⎛ ⎞ 
−2 0 −2 1 

4R1 + R2 → R2 ⎝ 0 10 −12 ⎠5 
0 −4 3 −2 ⎛ ⎞ 
−2 0 −2 1 

(2/5)R2 + R3 → R3 ⎝ 0 10 −12 ⎠5 
0 0 −9/5 0 ⎛ ⎞ 
−2 0 0 1 

eliminate in 3rd col ⎝ 0 10 0 ⎠5 
0 0 −9/5 0 

−(1/2)R1 → R1 

(1/10)R2 → R2 

⎛ 
1 ⎝0 

0 
1 

0 
0 

⎞ 
−1/2 ⎠1/2 

−(5/9)R3 → R3 0 0 1 0 

⎛ ⎞ 
−1/2 

Looking at the rightmost column, the solution to A2x = b is x = ⎝ 1/2 ⎠ 
0 
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Question 2. 

A full row or column of zeros is always an indication that a matrix is singular 
(non-invertible) and therefore has a null space with dimension ≥ 1. To find 
the column space and null space, we can perform elimination on B1: 

Steps Result ⎛ ⎞ 
0 −1 3 ⎝ ⎠start 1 4 −1 
0 0 0 ⎛ ⎞ 
1 4 −1R1 → R2 ⎝ ⎠0 −1 3 

R2 → R1 0 0 0 ⎛ ⎞ 
1 0 11 ⎝ ⎠4R2 + R1 → R1 0 −1 3 
0 0 0 

Then we can see that a vector (x, y, z)T is in the null space if the relations 
x + 11z = 0 and −y + 3z = 0 hold: 

⎛ ⎞⎛ ⎞ 
1 0 11 x � 

x + 11z = 0⎝0 −1 3 ⎠⎝y⎠ = 0 =⇒ −y + 3z = 0 
0 0 0 z 

So then any vector (−11z, 3z, z)T is in the null space of B1 and we can give 
the basis: ⎧⎛ ⎞⎫ ⎨ −11 ⎬ ⎝ ⎠N(B1) = span 3⎩ ⎭ 

1 

The column space of B1 simply corresponds to the columns that have pivot 
elements, namely the first and second:⎧⎛ ⎞ ⎛ ⎞⎫ ⎨ 0 −1 ⎬ 

C(B1) = span ⎩⎝1⎠ , ⎝ 4 ⎠⎭ 
0 0 

Adding the dimensions of these spaces we have dim N(B1)+dim C(B1) = 3, 
which does indeed match the dimension of the domain R3 . 
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In the row-echelon form of B2, obtained with Gaussian elemination on A1 in 
the previous problem, we can see there are four pivots. Thus the dimension 
of the column space is four, and so the column space is all of R4 , which is 
spanned by the standard basis vectors e1 = (1, 0, 0, 0)T , e2 = (0, 1, 0, 0)T , 
e3 = (0, 0, 1, 0)T , e4 = (0, 0, 0, 1)T . By rank-nullity, the dimension of null 
space is 4 − 4 = 0, so its basis is the empty set ∅. 

Question 3. 

The characteristic polynomial for C1 is: � � 
−λ 1 

det(C1 − λI) = det = λ(3 + λ) + 2 = (λ + 1)(λ + 2) −2 −3 − λ 

Which has roots λ1 = −1 and λ2 = −2. The eigenvectors corresponding to 
λ1 and λ2 are in the null space of C1 − λ1I and C2 − λ2I, respectively. Then 
for λ1 we wish to find solutions of � � 

1 1 
(C1 − λ1I)v1 = v1 = 0 −2 −2 

So clearly v1 = (1, −1)T is a suitable eigenvector for λ1, as is any nonzero 
multiple of v1. Performing the same steps for v2, we see v2 = (1, −2)T and 
multiples of this are eigenvectors for λ2. 

Question 4. 

• The characteristic polynomial for A1 is (2 − λ)(7 − λ) − 36 = 
(λ − 11)(λ + 2) so we have eigenvalues λ1 = 11, λ2 = −2. � � 
A2 = −2 0 is a triangular matrix, so we can use the fact that 

0 −4 
the eigenvalues of a triangular matrix are simply the diagonal elements 
(a good property to know!): λ1 = −2 and λ2 = −4. � � � � 

−1 1 • Consider u = and v = 
1 −2 p √ p √ 

• ||u||L2 = (−1)2 + 12 = 2 and ||v||L2 = 12 + (−2)2 = 5 
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• 
�� � 2 

– For A1 we have Q(u, u) = −1 1 
6� � � �� � 2 6 1 

Q(v, v) = 1 −2 = 6 
6 7 −2 

� � � 
6 −1 

= −3 and 
7 1 

� �� �� � −2 0 −1 
– For A2 we have Q(u, u) = −1 1 = −6 and 

0 −4 1� �� �� � 2 6 1 
Q(v, v) = 1 −2 = −18 

6 7 −2 

• Symmetric matrices with all negative eigenvalues will have a nega-
tive quadratic form Q(u, u) for all nonzero vectors u. If the eigenvalues 
have mixed signs, the quadratic form doesn’t have a particular sign. 
This property is the definiteness of a matrix, and all negative eigen-
values imply negative definiteness, and also implies many other useful 
properties. One can analogously define positive definite matrices. 

Question 5. 

Statement 1 proof: 

det(A) det(A−1) = det(AA−1) = det(I) = 1 =⇒ det(A−1) = 
1 

det(A) 

Statement 2 proof (inductive): 

det(An) = det(AAn−1) = det(A) det(An−1) 
= det(A) det(A) det(An−2) 
· · · 
= det(A)n 

Question 6. 

Part 2: 

If we have eigendecomposition A = VΛV−1 , then we can compute Ak with: 

Ak = (VΛV−1)k = (VΛV−1) · · · (VΛV−1) 

Notice in the expansion that adjacent V and V−1 products cancel and the 
remaining Λ products can be collapsed into Λk . For an inductive proof, 
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we can say our base case is A1 = VΛ1V−1 clearly. Then if we suppose 
An−1 = VΛn−1V−1 is true, then we see 

An = AAn−1 = (VΛV−1)(VΛn−1V−1) = VΛΛn−1V−1 = VΛnV−1 

So the equation holds for any n ≥ 0, by induction. 

Part 3: See next page for example code in Julia, or MATLAB solution code. 
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In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

In [6]:

In [7]:

In [8]:

Out[2]: 4×4 Array{Float64,2}: 
 0.567917   0.574422  0.614411  0.637295 
 0.760314   0.482641  0.259178  0.969808 
 0.0679652  0.653934  0.386424  0.384521 
 0.0170879  0.349758  0.572598  0.265557

Out[4]: 4×4 Array{Float64,2}: 
 2.73039  4.11606  3.69293  4.55391 
 2.78521  4.18318  3.73266  4.6441 
 1.70599  2.60291  2.32884  2.85865 
 1.27137  1.91894  1.73656  2.11971

Out[5]: 4×4 Array{Float64,2}: 
 2.73039  4.11606  3.69293  4.55391 
 2.78521  4.18318  3.73266  4.6441 
 1.70599  2.60291  2.32884  2.85865 
 1.27137  1.91894  1.73656  2.11971

Out[6]: 4×4 Array{Float64,2}: 
 -1.39689e-16  3.58586e-16  -7.75452e-16  1.06789e-16 
 -1.42747e-16  3.64724e-16  -7.89298e-16  1.08895e-16 
 -8.85696e-17  2.26913e-16  -4.87979e-16  6.66013e-17 
 -6.44e-17     1.67358e-16  -3.61549e-16  4.96017e-17

  224.625 ms (48 allocations: 183.11 MiB) 

  109.500 ms (24 allocations: 46.85 MiB) 

using LinearAlgebra

A = rand(4, 4)

eig = eigen(A)
V, Λ = eig.vectors, Diagonal(eig.values);

A^4

# real part matches A^4 to at least 6 figures
real(V * Λ^4 * inv(V))

# imaginary part is just roundoff errors
imag(V * Λ^4 * inv(V))

using BenchmarkTools
A = rand(1000, 1000)
# force julia to do naive matrix power
As = repeat([A], 25)
@btime prod(As);

eig = eigen(A)
V, Λ = eig.vectors, Diagonal(eig.values)
@btime V * Λ^25 * inv(V);
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