
   
18.085/18.0851 Computational Mathematical Engineering I Summer 2020 

Week 9 (August 3rd-August 7th) 

Lecturer: Richard Zhang Scribes: Richard Zhang 

Last week we learned about the Fourier transform and the computation of some important functions, in-
cluding the box function, the delta function, and the Gaussian. This lecture is dedicated to the application 
of the Fourier transform. 

9.1 Application 1: Heat Equation 

One of the very first applications of the Fourier transform is solving heat equations. In one dimension, the 
heat equation can be written as 

∂u ∂2u 
= α (9.1)

∂t ∂x2

This equation governs the heat flow in one dimension. Because it is dependent on both space and time, we 
need to specify both the intial and boundary conditions. Often time, you would see something like 

u(x, t = 0) = f(x) (9.2) 

u(x, t)|x∈∂Ω = g(x, t) (9.3) 

For well-behaved boundary conditions, we can again use separation of variables, ie. u(x) = X(x)T (t). But 
what about infinite boundary, ie. 

∂u ∂2u 
= α , x ∈ R (9.4)

∂t ∂x2 

u(x, t = 0) = f(x) (9.5) 

In that case, we would resort to Fourier transform. Assuming the solution can be written as the Fourier 
transform, we have 

(9.6)

(9.7)

(9.8)

(9.9)

û(k, t) =
1√
∫ ∞

u(x, t)e−ikxdx
2π −∞

Hence we take the heat equation and perform the Fourier transform on both sides∫ ∞
−∞

∂u(x, t)

∂t
e−ikxdx = α

∫ ∞
−∞

∂2u(x, t)

∂x2
e−ikxdx

Performing some algebra, we have

∂

∂t

(∫ ∞
−∞

)
u(x, t)e−ikxdx = α

∫ ∞ ∂2u(x, t)

∂x2
e−ikxdx

∂û(k, t)

∂t
= α

−∞∫ ∞
−∞

∂2u(x, t)

∂x2
e−ikxdx

9-1
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We shall perform the integration by parts twice on the right hand side, namely that

∫ ∞
−∞

∂2u(x, t)

∂x2
e−ikxdx =

∫ ∞
(−ik)

∂u(x, t)

∂x
e−ikxdx (9.10)

=

−∞∫ ∞
(−ik)2 ∂u(x, t)

∂x
e−ikxdx (9.11)

−∞∫ ∞
(9.12)= −(k)2u(x, t)e−ikxdx

−∞

= −(k)2û(k, t) (9.13)

Suppressing the explicit variable notation, we therefore arrived at the ordinary differential equation over t,
ie.

ût = −αk2û (9.14)

whose solution we know as

û(k, t) = û0e
−αk2t (9.15)

where û0 = û(k, t = 0). Hence, to get u(x, t), we just have to perform the inverse Fourier transform on
û(k, t), ie.

u(x, t) = F−1(û(k, t)) (9.16)

= F−1(û0e
−αk2t) (9.17)

=
1

2π

∫ ∞ (∫ ∞
−∞

u0(y)e−ikydy

)
e−αk

2teikxdk (9.18)

=
1

2π

−∞∫ ∞
−∞

∫ ∞
−∞

u0(y)e−αk
2teik(x−y)dkdy (9.19)

=
1√
2π

∫ ∞
−∞

u0(y)
1√
2π

∫ ∞
−∞

e−αk
2teik(x−y)dkdy (9.20)

(9.21)

Note that if we define

h(x) = F−1(e−αk
2t) (9.22)

=
1√
2π

∫ ∞
−∞

e−αk
2teik(x)dk (9.23)

(9.24)

Then

u(x, t) =
1√
2π

∫ ∞
−∞

u0(y)h(x− y)dy (9.25)
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A few comments 

• The exponential term in the integrand is called the heat kernel

• The heat kernel is smoothing: any choppy initial condition will be smoothened out by the heat kernel

• Heat goes from hot places to cold places. See demo.

9.2 Discrete Fourier Transform 

Now we would like to turn out study to computational Fourier analysis: the discrete Fourier transform. 

Here are the clarifications of the languages. 

• Fourier series: a representation of periodic functions

• Fourier transform: a representation of non-periodic, rapidly decreasing functions

• Discrete Fourier transform: computational Fourier series

• Fast Fourier transform: a fast way of doing discrete Fourier series and transform

• Discrete/Fast Fourier series: same as above

We will begin with the definition of discrete Fourier transform: suppose we have an interval [0, L] and we 
discretize into N points: x0, ..., xN−1. Then if the value of u at xj is uj , the DFT of u at that point would 

Hence we just have to compute h(x):

h(x) =
1√
2π

∫ ∞
(9.26)

=
1√
2π

−∞∫ ∞
(9.27)

=
1√
2π

−∞∫ ∞

2

e−αk teikxdk

e−αt(k
2−i(x/(αt))k)dk

e−αt(k
2−2(k)(ix/2)+(ix/(2αt))2−(ix/(2αt))2)dk (9.28)

=
1√
2π

−∞∫ ∞
e−αt(k−(ix/(2(αt))))2e−α(x/(2(αt)))2dk (9.29)

=
1√
2π

−∞∫ ∞
−∞

e−αt(k)2e−α(x/(2(αt)))2dk (9.30)

=
1√
2

√
π

αt
e−(x2/(4αt)) (9.31)

=
1√
2

π√
1

αt
e−(x2/(4αt)) (9.32)

(9.33)

Hence, the solution u(x, t) is

u(x, t) =
1√

4παt

∫ ∞
−∞

u0(y)e−
(x−y)2

4αt dy (9.34)
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be 

N −1X1d −ik2πj/Nû = uj e (9.35)k N 
k=0

where k = 0, ..., N − 1. 

Just like the continuous Fourier series, there is some prefactor, which is based on the orthogonality relation. 
We can easily check that 

N −1X1 il2πk/N −ij2πk/N e e = δjl (9.36)
N 

k=0

Here is the proof: 

• If l = j, then the sum is equal to 1 upon dividing by N

• If l 6= j, then

1

N

N∑−1

k=0

uje
−ik2πj/N =

1

N

N∑−1(
ei2π(l−j)/N

)k
(9.37)

=
1

N

k=0

1− (ei2π(l−j)/N )N

1− ei2π(l−j)/N (9.38)

= 0 (9.39)

Solving for ûdk will involve some matrix operation Au = b, where

Akj =
1

N
e−ik2πj/N (9.40)

(9.41)u = uj

bj = ûdk (9.42)

9.3 Fourier series over Arbitrary Interval

Before we talk about the relation between Fourier series and discrete Fourier transform I would first like to
tie up a loose end: Fourier series over any interval [a, b], such that L = b− a.
In that case, the complex representation should use the basis ei2πk/L, and the representation should be

f(x) =
∞∑

k=−∞

cke
i2πxk/L (9.43)

where

ck =
1

L

∫ b

a

f(x)e−ik2πx/Ldx (9.44)
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This is because

f(x)e−ik2πx/L =
∞∑

j=−∞
(9.45)

∫ b

a

f(x)e−ik2πx/Ldx =

∫ b

a

cje
i2πxj/Le−ik2πx/L

∞∑
j=−∞

(9.46)

∫ b

a

f(x)e−ik2πx/Ldx =
∞∑

j=−∞
cj

cje
i2πxj/Le−ik2πx/Ldx

∫ b

a

ei2πxj/Le−ik2πx/Ldx (9.47)

∫ b

a

f(x)e−ik2πx/Ldx =
∞∑

j=−∞
cj

∫ b

a

ei2πxj/Le−ik2πx/Ldx (9.48)

∫ b

a

f(x)e−ik2πx/Ldx = ckL (9.49)

ck =
1

L

∫ b

a

f(x)e−ik2πx/Ldx (9.50)

• When (a, b) = (−π, π), L = 2π and the basis becomes ei2πkx/(2pi = eikx

• When (a, b) = (−l, l), L = 2l and the basis becomes ei2πkx/(2l = eikπx

• When (a, b) = (0, l), L = l and the basis becomes ei2πkx/l

9.4 Relations Between Fourier series and Discrete Fourier Trans-
form

Given a function u(x), we can write down its Fourier series over the interval [0, L]

u(x) =
∞∑

l=−∞

cke
il2πx/L (9.51)

If we plug this in to the expression of the discrete Fourier transform, assuming xj = jL/N

ûdk =
1

N

N∑−1

k=0

uje
−ik2πj/N (9.52)

=
1

N

N∑−1

k=0

∞∑
l=−∞

cke
il2πxj/Le−ik2πj/N (9.53)

=
1

N

N∑−1

k=0

∞∑
l=−∞

cke
il2πj/Ne−ik2πj/N (9.54)

=
∞∑

l=−∞

ck

(
1

N

N∑−1

k=0

ei(l−k)2πj/N

)
(9.55)

(9.56)
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By the orthogonality relation, the sum is zero unless l − j =multiples of integers, ie l = k + mN , where
m = 0, 1, 2, 3, .... Hence

ûdk =
∞∑

ck+mN (9.57)
l=−∞

This is something interesting: if we consider u1(x) = cos(k2πx/L) and u2 = cos((k+N)2πx/L and compute
their Fourier series, then the first function will result in nonzero values only at uc±k while the second function
results in the exact same nonzeros. In other words, either function will yield the same right hand side. This
phenomenon is known as ”aliasing”.

Now the question is: what is the useful information out of this infinite sum. To answer that question, we
first assume that k < bN/2c. Then out of all Fourier coefficients, k is the smallest index in the sum, whence
ck is the dominating term. We can see that from the re-written sum below

ûdk = ck +
∞∑
m=1

ck−mN +
∞∑
m=1

ck+mN (9.58)

On the other hand, assuming bN/2c ≤ k ≤ N , we realize that ck−N becomes the dominating coefficient.
Hence, we write that

ûdk = ck−N +
∞∑
m=2

ck−mN +
∞∑
m=0

ck+mN (9.59)

Now what happens when k = N/2, for N even? Then there are two equally dominating terms in the sum,
cN/2 and cN/2, which gives garbage. In summary

ûdk ≈


0 ≤ k ≤ bN/2cck,

ck−N , bN/2c < k ≤ N (9.60)

garbage, k = N/2

One may wonder if it is possible to just not pick N to be even and get away with thinking about N/2. In
principle yes, but in practice, many methods, such as the fast Fourier transform, works the best for N = 2K ,
for some integer K. Under this circumstance, N is even.

See codes for some demos of discrete Fourier transform.

9.5 Course Summary

We have certainly come a very long way. Throughout the summer, we have managed to cover many topics
in computational mathematics, science and engineering. In particular, we have done

• Linear algebra and numerical linear algebra

• Spring-mass oscillations and ordinary differential equations

• Fourier series and Fourier transform
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• Partial differential equations and analytic methods: separate of variables, Fourier transform 

• Partial differential equations and numerical methods: finite difference, finite element 

• Miscellaneous topics: DFT, heat equations, signal processing 

Each topic has an infinite depth and we shall only illustrate a little bit of each 

9.5.1 Linear algebra and numerical linear algebra 

In a way, linear algebra is about solving the linear system, 

Ax = b (9.61) 

for different kinds of matrices (eg. symmetric, positive definite, square, least square, etc). Going deeper, 
numerical linear algebra is definitely an interesting area to explore. A few interesting MIT courses for you 
to consider include 

• 18.337 - Modern Numerical Computing 

• 18.335J/6.337J: Introduction to Numerical Methods 

An active area of research is parallel numerical linear algebra, that is, to perform analysis for parallel 
numerical linear algebra algorithms and/or design optimal numerical linear algebra well-suited for parallel 
programming approach 

9.5.2 Spring-mass oscillations and ordinary differential equations 

Spring-mass oscillation is a classic system that nonetheless finds its applications in numerous fields, from 
quantum mechanics and statistical mechanics to the designs of bridges and oil platform. Therefore, it is very 
important to gain a solid understanding of spring-mass systems. 

The study of ordinary differential equations is also quite extensive, ranging from pure mathematics to applied 
physics and ecology. For example, the evolution of the equations on phase space can have some very enriching 
geometric properties. From a numerical standpoint, time-stepping is still an active area of research. 

9.5.3 Fourier series and Fourier transform 

This is a classic and beautiful area of mathematics that is more or less complete. Most of the research 
takes place in signal processing and compressed sensing. There are quite some theoretical development of 
harmonic analysis, which is a generalization of Fourier analysis, that is probably not of interest to engineers. 

9.5.4 Partial differential equations and analytic methods 

Analytic method is a fun topic. You would be surprised how far pencils and paper can get you in terms 
of significant insight into the behaviors of your systems. Separation of variables and Fourier transform are 
really just the tip of the iceberg. From a mathematical point of view, analysis can easily get quite abstract 
and pure, involving lots of rigorous arguments to prove existence and uniqueness. 



9-8 Lecture 9: August 3rd-August 7th 

9.5.5 Partial differential equations and numeric methods 

This is a vast and active area of research that has been attracting billions of industry funding over the 
years. Aero-astro and mechanical engineering departments are both classic playgrounds of numerical partial 
differential equations. These days, the research tends to be focusing on equations involving stochastics. 

A few other topics that you may wish to look into are 

• Finite volume method 

• discontinuous Galerkin method 

• Spectral method (involving DFT) 

• Spectral finite element method 

9.5.6 Final Comments 

If there is one missing piece from this class, that would be stochastic. Everything that we have dealt with 
so far is deterministic. There is no probability distributions or random variables anywhere. Things change 
for quite a bit when we add stochasticity to it. 

Finally, everything that we have done so far is completely deductive: we start from the first principle and 
derive things from there. This is how mathematics should be done. Nonetheless, deductive approaches can 
be hard and slow, and thus we sometimes need a more top-down, inductive approach, for example, machine 
learning. This will be done by Prof. Gil Strang. 

Last but not the least, I want to reiterate the purpose of this class. It is true that you may never have to 
compute the singular vectors of SVD by hand or know how to assemble the matrix of the finite element 
method beyond this course. But I am a firm believer of a solid foundation of knowledge. Even if you may 
be making business executive decisions for the rest of your careers, you may very likely take consolations in 
and appreciations of the subtle, rich, and beautiful mechanisms behind all the embellished front-ends. 
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