Linear algebra & Numerical Analysis

Introduction to MATLAB

Marta Jarošová

http://homel.vsb.cz/~dom033/

Outline

- What is it MATLAB?
- MATLAB Environment and MATLAB Help
- Variables, matrices and vectors
- Strings
- .m files: scripts and functions
- Flow control
- 2D, 3D graphics
- Guide

What is it MATLAB?

- MATLAB = "MATrix LABoratory"
- a high-performance language for technical computing
 - computation, visualization, and programming environment
- a modern programming language environment
 - sophisticated data structures
 - built-in *editing* and *debugging tools*
 - support of *object-oriented programming*

an excellent tool for teaching and research

Matlab tools

- powerful *built-in routines* enable a very wide variety of computations
- easy to use graphics commands that make the visualization of results immediately available
- specific applications are collected in *toolboxes*:
 - signal processing
 - symbolic computation
 - control theory
 - simulation

- optimization
- parallel computing
- and several other fields of applied science and engineering

Real world problem: Mining industry

steel support

clamp joint

MATLAB Environment

🥠 MATLAB 7.12.0 (R2011a)						
File Edit Debug Desktop Window Help						
🗄 🖆 🔏 ங 🛍 🤊 💜 📦 🗊 🖹 🥹 Current Folder: 🗔 teaching)MATLAB	💌 🖻					
Shortcuts P How to Add N What's New						
Current Folder	Workspace → □ ? ×					
↓ ≪ M ▼ P € ★- ① New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> . ×	📜 🛒 🔁 👪 🧠 🛛 💭 Select 👻					
$f_x >>$	Name 🛆 Value					
goniom.m	A <100×100 double>					
stat.m						
🖄 stat2.m						
	Command History					
	clear all					
	ls					
stat2.m (MATLAB Function)	A = rand(100);					
🤮 stat2(x)	x = rand(100,1)					
🥶 avg(x, n)	save matrix					
	clc 🚽					
start	OVR /					

Command Window

- Use the Command Window to enter variables and to run MATLAB functions and scripts. MATLAB displays the results.
- Press the up arrow key ↑ to recall a statement you previously typed. Edit the statement as needed, and then press Enter to run it.

- / C	🥠 Command Window							
File	Edit	Del	bug	Deskt	top	Window	Help	
(1) N	lew to	MAT	LAB?	Watch	h thi	s <u>Video</u> , se	ee <u>Demos</u> , or read <u>Getting Started</u> .	
	>>	v	=	5;				
	~	-	_	г т	2	31		
	//	a	-	11	2	51		
	a =	=						
			1			2	3	
			_				-	
£.,								
Jx	>>							

Command History

📣 Command History	- D ×
File Edit Debug Desktop Window Help	¥د.
b = [5 6 8]';	-
c = A * b	
d = a+b	
d = a+b'	
$-\mathbf{A} = \mathbf{rand}(10);$	
spy (A)	
clc	
close all	
x = 0:pi/20:pi;	
plot(sin(x))	
hold on	
plot(cos(x),'r')	
grid on	
clear all	
close all	
clc	-
	1.

- Statements you enter in the Command Window are logged in the Command History.
- You can view and search for previously run statements, as well as copy and execute selected statements
- You can also **create a file** from selected statements.

Current Folder

- MATLAB limits where it looks for files so it can locate them more quickly.
- The file must be in one of these locations:
 - MATLAB current folder
 - A folder that is on the MATLAB search path
- The Current Folder browser is a tool for managing files.

Workspace

📣 Workspace							
File Edit View Graphics Debug Desktop Window Help							
🛅 📑 🝓 🖏 🐁 Stack: Base 💌 🔯 Select data to plot	-						
Name 🛆 Value Min Max							
A <100×100 double> 7.026 0.9998 × <100×1 double> 0.0068 0.9977							
>> who							
Your variables are:							
A x							
>> whos							
Name Size							
A 100x100							

- The Workspace consists of the set of variables stored in memory.
- You add variables to the workspace by using functions, running function and script files, and loading saved workspaces.

Bytes	Class	Attributes
80000	double	
800	double	

Help and Documentation (?

There are different ways to get help, depending on your needs.

Help: Contents

• Look for getting started guides, code examples, demos,

and more.

arch 🔎	•	🗰 🔅 🕨 🕨 w sum, transpose, and diag
ontents Search Results		16 3 2 13
		5 10 11 8
	-1	9 6 7 12
		4 15 14 1
		This matrix matches the numbers in the engraving. Once you have
En Preter duration		entered the matrix, it is automatically remembered in the MATLAB
		workspace. You can refer to it simply as A. Now that you have A in
		the workspace, take a look at what makes it so interesting. Why is
Harrices and Magic Squares		it magic?
About Matrices		
Entering Matrices		A Back to Top
sum, transpose, and diag		
		sum, transpose, and diag
		You are probably already aware that the special properties of a
		magic square have to do with the various ways of summing its
		elements. If you take the sum along any row or column, or along
ter working with Matrices		either of the two main diagonals, you will always get the same
H-More About Matrices and Arrays		ie
		10
t±-Graphics		sum(A)
H Programming		
⊕ Data Analysis		MAILAB replies with
		ang =

Help: Search Results

 In the Help browser Search field, enter the words you want to look for.

Inear system x → x Contents Search Results Type Relevance ∨ Product Linear Algebra Blocks The LTL Sustems block insearch linear time invariant (LTT)	ers 🔻
Contents Search Results Type Product Linear Algebra Blocks	<u> </u>
Type Relevance V Product	
The LTL Evistence block imparts line any time inversion (LTL)	
me un system block imports intear, une-invariant (un) 🔤 🔤 🚺 intear System Solvers	
systems into The imported system must be proper LTI	_
Control System Toolbox	
Linear System Modeling	
Control System Toolbox	
Y Linear Classification System	raries
NND10LC Linear pattern classification containing blocks for linear algebra; Linear System Solvers, Matrix	
Neural Network Technology Factorizations, and Matrix Inverses. A fourth library, Matrix Operat	ions,
provides other essential blocks for working with matrices.	
Using Linear System Model Objects	
A Back to Top	
Control System Toolbox	
Cinear System Solvers	
The Linear System Solvers library provides the following The Linear System Solvers library provides the following blocks for	solving
DSP System Toolbox	
Linear System Design (newlind) Autocorrelation LPC	
most other network architectures, linear networks can be Cholesky Solver	
designed directly use the function newlind to design linear - Engward Substitution	
Neural Network Toolbox	
	
Search Unline Support for linear system	►.

MATLAB Help

From command window

>> help spones

SPONES Replace nonzero sparse matrix elements with ones. R = SPONES(S) generates a matrix with the same sparsity structure as S, but with ones in the nonzero positions.

See also spfun, spalloc, nnz.

Reference page in Help browser doc spones

Matrices and vectors

Run in MATLAB Command Window

>> echodemo vectors_matrices

Useful matrix functions

- A' transpose of matrix A. Also transpose(A).
- det(A) determinant of A
- eig(A) eigenvalues and eigenvectors
- inv(A) inverse of A
- svd(A) singular value decomposition
- norm (A) matrix or vector norm
- find (A) find indices of elements that are nonzero.
 Can also pass an expression to this function,
 e.g. find(A > 1) finds the indices of elements of A greater than 1.

Useful matrices

A few other useful matrices are:

- zeros create a matrix of zeros
- ones create a matrix of ones
- rand create a matrix of random numbers
- eye create an identity matrix

Sparse matrices

Sparse matrix have the large number of zero elements

The sparse attribute allows MATLAB to:

- Store only the nonzero elements of the matrix, together with their indices.
- Reduce computation time by eliminating operations on zero elements.

Sparse matrices

le			λ
1	0	0	2
0	3	0	0
0	4	5	0
0	0	6	7
\langle			
L 2	3 4	1 3]';	%indices of rows
L 2	2 3	4 4];	%indices of columns
L 3	4 6	2 7]';	%values
2 0 0 arse(A	;01()) 0 1; 2 % B sav	0 0 2 0; 3 1 2 0 0] %saved as full red as sparse
	le (1 0 0 1 2 1 2 1 3 2 0 0 arse (A	$ \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ 0 & 4 \\ 0 & 0 \end{pmatrix} $ $ 1 2 3 4 \\ 1 2 2 3 \\ 1 3 4 6 \end{bmatrix} $ $ 2 0 0; 0 1 0 \\ arse(A) \\ 1 (P) $	

Sparse matrices

n=5; e=ones(n,1); %vector of ones

A = spdiags([-e 2*e -e], -1:1, n, n); %sparse matrix nxn with % 2's on diagonal and -1 on subdiagonale and superdiagonale

[I,J,V]=find(S); %returns a vector V containing the values % that correspond to the row and column indices I and J.

I=[1 1 2 3]; J=[1 3 2 4]; V=[1 1.5 2 3.7]; m=5; n=6; S=sparse(I,J,V,m,n); %generate mxn sparse matrix from I,J,V

spy(S) %plots the sparsity pattern of the matrix S. speye(5,4); %sparse identity nnz(S) %number of nonzero elements

sprand, sprandn, sprandsym

Strings

str = 'Dr. John Doe'; %create string

```
%join 2 strings
str1 = strcat(str,', ','1970') %ignore spaces
str2 = [str,', ','1970'] %do not ignore the spaces
T=1323.56;
sprintf(,Temperature T=%10.4fK', T) %format data to string
ans =
Teperature T= 1323.5600K
strcmp('hello','Hello') %compare 2 strings
ans =
     0
```

Scripts

- external files, have a filename extension of .m
- the simplest MATLAB programs, a sequence of statements and comments
- useful for automating blocks of MATLAB commands, such as computations you have to perform repeatedly from the command line
- operate on existing data in the workspace
- do not return output arguments – any variables that they create remain in the workspace

goniom.m

% Script example: % Evaluating goniometric % functions in pi/2 x=pi/2; s=sin(x); c=cos(x); t=tan(x); co=cot(x); disp([s,c,t,co]); %show results

>> goniom 1.0e+016	*			

0.0000 0.0000 1.6331 0.0000

Editor

🖻 Editor - D:\teaching\MATLAB\stat2.m
File Edit Text Go Cell Tools Debug Desktop Window Help 🛛 🛪 🔻
: 🞦 😂 📓 🍝 🐃 🖏 🤊 🔍 🌭 🖅 - 🏘 🆛 🗰 🍂 💽 - 🖥 📽 📾 🕼 🕼 🕼 🗐 / 💽 fx 🔲
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
(1) This file uses Cell Mode. For information, see the <u>rapid code iteration</u> video, the <u>publishing</u> video, or <u>help</u> .
1 [function [mean, stdev] = stat2(x)
2 8% Example of function
3 % [mean,stdev] = stat2(x) returns mean
4 -% and standard deviation of x
5 - n = length(x);
6 - mean = avg(x,n);
$7 - \frac{1}{2} \operatorname{stdev} = \operatorname{sqrt}(\operatorname{sum}((x-\operatorname{avg}(x,n)), 2)/n);$
8
9 $-$ function mean = avg(x,n)
10 - mean = sum(x)/n;
j stat2.m × lu.m ×
stat2 Ln 2 Col 23 OVR

- external files, have a filename extension of .m
- First line: function declaration with input and output arguments
 function [out1, out2, ...] = myfun(in1, in2, ...)
- The variables within the body of the function are **all local** variables.
- Anonymous Functions
- Primary and Subfunctions
- Nested Functions

stat.m

```
function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/n));
```

Anonymous Functions

- a simple form of the MATLAB function that is defined within a single statement.
- You can define an anonymous function right at the command line, or within a function or script.

>>
$$sqr = @(x) x.^2;$$
 >> $f = @(x) 5*x^2 + 3*x + 5;$
>> $sqr(7)$ >> $f(0)$
ans = ans = 49 5

Primary and Subfunctions

- Any function (except anonymous) must be defined within a file.
- Each such function file contains a required primary function that appears first, and any number of subfunctions that may follow the primary.
- Primary functions can be called from outside of the file that defines them, while subfunctions cannot. Subfunctions are visible only to the primary function and other subfunctions within their own file.

stat2.m

<pre>function [mean,stdev] = stat2(x)</pre>	<pre>>>[mean stdev]=stat2([1 2 5])</pre>
n = length(x);	
mean = avg(x,n);	mean =
stdev = sqrt(sum((x-avg(x,n)).^2)/n);	2.6667
function mean = $avg(x,n)$	stdev =
mean = sum(x)/n;	1.6997

Nested Functions

- You can define functions within the body of another function. These are said to be *nested* within the outer function.
- A nested function has access to the workspaces of all functions inside of which it is nested. A variable that has a value assigned to it by the primary function can be read or overwritten by a function nested at any level within the primary.

```
function x = A(p1, p2)
...
function y = B(p3)
...
end
...
end
```

Flow Control: Conditional Control: if-else-elseif

```
% Generate a random number
a = randi(100, 1);
% If it is even, divide by 2
if rem(a, 2) == 0
    disp('a is even')
    b = a/2;
end
a = randi(100, 1);
if a < 30
    disp('small')
elseif a < 80
    disp('medium')
else
    disp('large')
end
```

Conditional Control: switch

```
mynumber = input('Enter a number:');
```

```
switch mynumber
case -1
disp('negative one');
case 0
disp('zero');
case 1
disp('positive one');
otherwise
disp('other value');
```

Loop Control: for

 The for loop repeats a group of statements a fixed, predetermined number of times. A matching end delineates the statements.

```
for n = 3:32
    r(n) = rank(magic(n));
end
```

```
r
```

It is a good idea to indent the loops for readability, especially when they are nested:

```
for i = 1:m
    for j = 1:n
        H(i,j) = 1/(i+j);
    end
end
```

Loop Control: while

 The while loop repeats a group of statements an indefinite number of times under control of a logical condition. A matching end delineates the statements.

```
n = 5;
fact = 1;
while (n>1)
    fact = fact*n;
    n = n-1;
end
```

2D graphics: plot

3D graphics: mesh, surf

Creating GUI with GUIDE

- GUIDE, the MATLAB Graphical User Interface Development Environment, provides a set of tools for creating graphical user interfaces (GUIs). These tools greatly simplify the process of laying out and programming GUIs
- When you open a GUI in GUIDE, it is displayed in the Layout Editor, which is the control panel for all of the GUIDE tools. The following figure shows the Layout Editor with a blank GUI template.

Creating GUI with GUIDE

• video file (11 min):

http://www.mathworks.com/support/2011a/matlab/7.12/demos/Creating aGUIwithGUIDE_viewlet_swf.html

- Matlab: Instructions to download: <u>http://homel.vsb.cz/~dom033/predmety/NMM/matlab_download</u>
- Introduction to MATLAB:
 <u>http://web.gps.caltech.edu/classes/ge11d/doc/matlab_Resource_Seminar.pdf</u>
- David Houcque, INTRODUCTION TO MATLAB FOR ENGINEERING STUDENTS:

http://www.mccormick.northwestern.edu/docs/efirst/matlab.pdf

• Getting Started Guide:

http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf