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Faces are a behaviorally important class of visual stimuli for primates. Recent work in macaque monkeys has identified six discrete face
areas where most neurons have higher firing rates to images of faces compared with other objects (Tsao et al., 2006). While neurons in
these areas appear to have different tuning (Freiwald and Tsao, 2010; Issa and DiCarlo, 2012), exactly what types of information and,
consequently, which visual behaviors neural populations within each face area can support, is unknown. Here we use population decod-
ing to better characterize three of these face patches (ML/MF, AL, and AM). We show that neural activity in all patches contains infor-
mation that discriminates between the broad categories of face and nonface objects, individual faces, and nonface stimuli. Information is
present in both high and lower firing rate regimes. However, there were significant differences between the patches, with the most
anterior patch showing relatively weaker representation of nonface stimuli. Additionally, we find that pose-invariant face identity
information increases as one moves to more anterior patches, while information about the orientation of the head decreases. Finally, we
show that all the information we can extract from the population is present in patterns of activity across neurons, and there is relatively
little information in the total activity of the population. These findings give new insight into the representations constructed by the face
patch system and how they are successively transformed.
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Introduction
Primates are uniquely adept at extracting information from faces
(Bruce and Young, 1986; Pokorny and de Waal, 2009). Electro-
physiological studies in macaque monkeys have shown that im-
ages of faces selectively drive a subset of neurons in the
inferotemporal cortex (Perrett et al., 1982; Desimone et al., 1984;
Kobatake and Tanaka, 1994), and PET and fMRI studies of hu-
mans have shown that there are localized regions that respond
more to images of faces than to images in other object classes

(Sergent et al., 1992; Kanwisher et al., 1997). More recent work
has connected these findings by showing that macaque infero-
temporal cortex contains six discrete face-selective areas (“face
patches”) that have stronger fMRI responses to faces than to
nonface objects, and that neurons in these patches exhibit much
higher firing rates to images of faces (Tsao, 2006; Freiwald and
Tsao, 2010; Issa et al., 2013). Additionally, these face patches form
an interconnected network, and neurons in different patches
have different response properties (Moeller et al., 2008; Freiwald
and Tsao, 2010; Issa and DiCarlo, 2012). Since the face patches
form a connected system, they provide an ideal opportunity to
systematically and quantitatively compare the amount of infor-
mation in each patch about different classes of visual stimuli to
understand how population codes are hierarchically transformed
in the brain.

In this study we used neural population decoding to better
quantify the information content in three of these face patches
[the middle lateral and middle fundus patches (ML/MF), the
anterior lateral patch (AL), and the anterior medial patch (AM)].
In particular, we were interested in two questions. First, do face
patches contain information exclusively about faces or do they
also contain information about nonface objects? While it is
known that neurons inside face patches exhibit higher firing rates
to faces than to nonface objects (Tsao, 2006; Issa et al., 2013), in
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general it has not yet been demonstrated whether neurons pri-
marily code information for distinguishing different images only
in high firing rate responses (i.e., “preferred stimuli”) or whether
information is carried in smaller modulations in the lower range
of spiking activity. Thus, it is possible that neurons in these
patches contain nonface information in lower firing rate regimes.

Second, we were interested in the extent to which face patches
contain information about differences within the domain of
faces. Specifically, we explored whether neural populations
within the three face patches contain pose-invariant identity
about specific individuals, and whether they contain information
about the pose of the head. Previous analyses examining single
neuron responses have suggested that the more anterior patches
are more pose invariant and the more posterior patches contain
more information about head pose (Freiwald and Tsao, 2010). By
using decoding analyses, however, we are able to better compare
pose-specific and pose-invariant identity information carried by
the whole-cell population. These analyses give insight into how
two important facial variables, pose and identity, are represented
at the population level along the face patch system.

Materials and Methods
All procedures conformed to local and U.S. National Institutes of Health
guidelines, including the U.S. National Institutes of Health Guide for
Care and Use of Laboratory Animals, regulations for the welfare of ex-

perimental animals issued by the German federal government, and stip-
ulations of local authorities.

Stimuli and experimental design
Two stimulus sets were used in the experiments (Fig. 1; Freiwald and
Tsao, 2010). The first stimulus set (Fig. 1A), called the “face-object-
body” stimulus set (FOB), consisted of 16 images from eight different
categories (human faces, human bodies, fruits and vegetables, gadgets,
human hands, scrambled patterns, monkey body parts, and monkey
whole bodies) for a total of 128 images. To understand how low level
image features could affect our results on the FOB dataset, we calculated
the HMAX S1 and C2 image similarity of the eight categories by comput-
ing Pearson’s correlation coefficient between the S1 (or C2) values for all
pairs of the 16 images in each category. S1 features are based on Gabor
functions at different scales and locations, and are supposed to model V1
simple cell responses, while C2 features are modeled on higher level
visual responses (Serre et al., 2007; Mutch et al., 2010). Figure 1B displays
the correlation coefficient averaged over all pairs of images in each cate-
gory and the error bars are the SDs over all pairs within each category.

The second stimulus set (Fig. 1C), called the “face-views” stimulus set
(FV), consisted of human face images taken from eight different angles
(left full profile, left three-quarter profile, straight, right three-quarter
profile, right full profile, up, down, and back) from 25 different individ-
uals. The 25 individuals in the image set spanned a wide range of visual
appearances (i.e., different races, genders, ages, hair styles, etc.) and were
each presented against a gray background. The monkeys had experience

Figure 1. Stimulus sets used in the experiments. A, One example of each image from the eight categories in the FOB stimulus set. Each category contained 16 images, for a total of 128 images
in this stimulus set. B, Average HMAX S1 and C2 image similarity (Pearson’s correlation) between all images in each of the eight categories in the FOB dataset, averaged over all pairs of the 16 images
in each category. HMAX S1 features are responses to Gabor filters and thus mimic properties of V1, while C2 features are modeled on higher level visual responses (Serre et al., 2007; Mutch et al.,
2010). Error bars show the SD in the HMAX feature correlations across pairs of the 16 images. As can be seen, images in the face category were most similar to each other while images in the scrambles
image category were most different from each other. C, An example of the eight head orientations for 1 of the 25 people in the FV stimulus set.
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interacting with 4 of the 25 individuals in this stimulus set, and had not
interacted with the remaining 21 individuals.

For both stimulus sets, images were presented to the monkeys in ran-
dom order in a rapid sequence where each image was shown for 200 ms
followed by a 200 ms blank interval. All stimuli were 7 � 7 degrees of
visual angle in size and presented at the center of the screen. Each image
was repeated from 3 to 10 times. Monkeys were given a juice reward for
maintaining fixation within a 2.5 degree window at the center for the
screen for 3 s.

Neural recordings
Single-unit recordings were made from three male rhesus macaque mon-
keys (Macaca mulatta). Before recording, face patches were localized by
conducting fMRI scans from each alert monkey and identifying the re-
gions that responded significantly more to images of faces compared with
images of bodies, fruits, objects, hands, and scrambled patterns. Neural
recordings were performed in four of these face patches (two middle
patches, ML and MF, and two anterior patches, AL and AM). Following
the practice of Freiwald and Tsao (2010) who found similar response
properties in ML and MF, we combined the data from these patches.
Thus our analyses examine three face-selective regions—ML/MF, AL,
and AM—which appear to be organized hierarchically, with ML/MF at
the input level, AM at the output level, and AL representing an interme-
diate level of processing (Freiwald and Tsao, 2010).

Only well isolated single units were used in our analyses. The data used
in these analyses was previously presented in Freiwald and Tsao (2010),
and a more detailed description of the surgical, recording, and experi-
mental procedures can be found there and in Moeller et al. (2008).

Data analyses
Population decoding methods were used to analyze the data in this paper
(for single neuron selectivity index measures see Tsao et al. (2006), Frei-
wald and Tsao (2010)). In brief, a pattern classifier was trained on the
firing rate activity of a population of neurons to discriminate between
stimuli. The “decoding accuracy” is then calculated as the percentage of
stimuli that are correctly classified using a “test set” of data that consists
of the firing rate activity from a different set of trials. All analyses were
done in MATLAB using a beta version of the Neural Decoding Toolbox
(Meyers, 2013). Below we first describe common parameters that are
used for all analyses, and then we describe in more detail the specific
parameters of each particular analysis. For more information about these
decoding analyses see Meyers and Kreiman (2012) and Meyers (2013).

Parameters common to all analyses. For all analyses, pseudo-
populations were created that contained 40 neurons that were randomly
sampled from the larger populations of ML/MF, AL, or AM neurons
(only neurons that had recordings from at least three repetitions of each
stimulus were included in the analyses). Three cross-validation splits of
the data were used by randomly selecting three trials for each stimulus for
each neuron. Thus for most analyses, the classifier was trained on two R40

dimensional vectors from each class and tested on a third vector. The
decoding procedure was run 50 times creating different pseudo-
populations and cross-validation splits on each run (i.e., 50 resample
runs were used). A Poisson Naive Bayes classifier (PNB) was used (see
below, Classifiers). All results that are plotted as a function of time (Figs.
3, 4 and 6 – 8) are based on firing rates in 100 ms bins that were sampled
at 10 ms intervals, with the data starting at the time when the stimulus
was shown. These 100 ms bins are plotted such that the decoding accu-
racy is aligned to the center of each bin. For Figures 2 and 5, the average
firing rate in a 300 ms bin that started 100 ms after stimulus onset was
used. The decoding accuracies reported in the body of the paper are also
based on using a 300 ms bin that starts 100 ms after stimulus onset. Since
decoding accuracy is generally higher when larger bin sizes are used, the
decoding results in this 300 ms bin are higher than the decoding accura-
cies shown on the 100 ms sliding bin figures (we use the smaller bin sizes
when plotting the results as a function of time to better see the temporal
evolution of the decoding accuracies). It should be noted that decoding
accuracy gives a lower bound on the amount of information in a brain
region (Quian Quiroga and Panzeri, 2009); thus, we say there is “infor-
mation” about a particular variable when the decoding accuracy for that
variable is above chance.

Classifiers. A PNB classifier (Duda et al., 2001) was used for all analyses
in this paper. In this classifier, each neuron’s spiking activity is modeled
as a Poisson random variable, and each neuron’s activity is assumed to be
independent given a particular stimulus. To explore how the overall
activity level of the whole population affected decoding performance
(Fig. 8), we used several additional classifiers. The aim of these analyses
was not to do an extensive search for the best possible classifier, but rather
to examine how the overall firing rate level (which is much higher when
faces are shown) affects the decoding accuracy of simple biologically
plausible classification rules that could easily be implemented in neural
circuits. Such analyses can give insight into whether information is en-
coded in overall spiking activity level of a population or only in the
relative activity patterns across neurons.

To summarize how these classifiers operate, let wc be a vector that
consists of the mean of the training vectors from class c, and let x be a test
point to be classified; (thus wc and x are vectors in Rn where n is the
number of neurons, which for all analyses was n � 40). Also, let w� c and x�
be scalars that are found by taking the mean of the values in the vectors wc

and x, respectively. Then training for the Total Activity classifier con-
sisted of computing the w� c for each class, and training the other classifiers
consisted of calculating wc for each class. The decision functions that
each classifier uses to classify a test point x are given in Table 1. As can be
seen, despite the different interpretations that are often given to these
classifiers (e.g., measures of correlations, angles in a high dimensional
space, and maximum likelihood estimates), they are all rather similar and
mainly differ in the way that they normalize the data. For the Maximum
Correlation Coefficient and Minimum Angle classifier, the data was
z-score normalized using the mean and SDs of the training data to pre-
vent neurons with higher firing rates from dominating the decision.

Testing statistical significance. To assess whether the decoding accura-
cies we obtained were higher than those expected by chance, we ran a
permutation test that consisted of shuffling the labels first and then run-
ning the full decoding procedure (Meyers and Kreiman, 2012). This
shuffle procedure was repeated 200 times to generate a null distribution,
and the results were considered significantly above chance if the real
decoding results were higher than all the values in the null distribution
( p � 1/200 � 0.005). All p values reported in the body of the paper are
based on using data in a 300 ms bin that started 100 ms after stimulus
onset.

To assess whether there was a statistically significant increase in pose-
invariant information from ML/MF to AL, we ran a permutation test
(Wasserman, 2004) by combining the data from ML/MF and AL into one
population, randomly selected a population of neurons from this joint
ML/MF-AL population that was the same size as the original AL popu-
lation, and calculating the same mean pose-invariant decoding accuracy
value that was computed to create Figure 6 (as described below). This
procedure was repeated 200 times, selecting a different subset of neurons

Table 1. A table listing the classification decision functions for the four different
classifiers used in this paper

A. Poisson Naive Bayes (PNB)
arg max

c
log �wc)

T x � nw� c

B. Total Activity (TAct)
arg min

c
�w� c � x��

C. Maximum Correlation Coefficient (MCC)

arg max
c

(wc � w� c)
T (x � x�)

�wc � w� c� �x � x��
D. Minimum Angle (Min Ang)

arg max
c

wc
T x

�wc� �x�
wc is a vector that is the mean of the training data from class c, w� c is a scalar that is the mean of wc , x is the test vector
to be classified, x� is a scalar that is the mean of x, and n is the number of neurons; thus training the classifier consists
of learning wc and w� c and testing the classifier consists of determining which class x belongs to. As can be seen, all
these classifiers are rather similar and mainly differ in how they normalize the data and, consequently, whether they
take the overall level of population activity into account (A and B) or whether they only examine relative differences
in the firing rate activity between neurons (C and D). TAct, Total Activity; MCC, Maximum Correlation Coefficient; Min
Ang, Minimum Angle.
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each time to create a null distribution under the hypothesis that the
ML/MF and AL population had equal pose-invariant information. A p
value was calculated by assessing how many of the values in the null
distribution were as large as or larger than the real pose-invariant decod-
ing accuracy from AL. A similar procedure was used to assess if there was
a statistically significant increase in pose-specific information, and to
assess whether there was a statistically significant increase in pose-
invariant and pose-specific information from AL to AM. Again, we con-
sidered results statistically significantly for a p value �0.005, and we used
data in a 300 ms bin that started 100 ms after stimulus onset.

Face-object-body analyses. Three different decoding analyses were run
on data obtained during presentation of FOB stimuli. In the first analysis,
we decoded individual images regardless of the category the images be-
longed to (Fig. 2). A classifier was trained to discriminate between all
images in the dataset (since there were 128 images, chance level is 1/128).
The firing rates in Figure 2B were calculated by averaging the firing rate
over all neurons separately for each image and then sorted based on the
decoding accuracy of each image.

In the second analysis, we had the classifier discriminate between ex-
emplars within each category (Fig. 3). To do this analysis, we ran a sep-
arate decoding procedure for each category, where the classifier needed
to discriminate between the 16 images in a given category (chance 1/16);
the results from all eight of these within-category decoding analyses are
plotted against each other in Figure 3. We also assessed whether higher
population firing rates were positively correlated with higher decoding
accuracies using the individual image decoding accuracies that were cal-
culated separately for each category. To do this analysis, for each cate-
gory, we correlated the population firing and the decoding accuracy for
the 16 images in the category. The analysis was repeated for each category
and brain region (yielding a total of 3 � 8 � 24 correlations). A permu-
tation test was run to see whether the results were statistically significant
(one-tailed, p � 0.05). We also ran a similar permutation test as a control
to see if any of the negative correlations were statistically significant
(none were).

In the third analysis, we discriminated faces from nonface objects
(Figs. 4A, and 8A) by running seven separate analyses with data from face
images in one class, and data from one of the seven nonface object cate-
gories in the second class. For each of these seven face versus one other
category analyses, two pseudo-population responses of 12 unique face
and nonface stimuli were used for training, and testing was done using
one pseudo-population response to the remaining four stimuli in each
class. (Since we are using different stimuli in the training and test sets, we
could have actually trained and tested the classifier on three pseudo-
population responses for each stimuli in this analysis, but we decided to
use two training responses and one test response to be consistent with all
the other analyses in the paper.) This procedure was repeated 50 times
using 12 randomly chosen images for training and the remaining four
images for testing. The final results plotted in Figures 4A and 8A are
averaged over all seven of the face versus object category decoding anal-
yses. To assess whether the decoding performance on this face nonface
discrimination task was high, we performed a similar analysis where we
had the classifier discriminate between data from nonface category 1
versus a different nonface category 2. A similar procedure was used where
the classifier was trained on two examples from 12 randomly chosen
stimuli and tested on one example of each of the four remaining stimuli
from each class. This led to 21 binary category 1 versus category 2 results,
and we plotted the average of these 21 of these binary decoding analyses
in Figures 4B. We also plot the results from all 28 of these binary decoding
analyses in Figure 4C.

Face-views analyses. Two different decoding analyses were conducted
on the face-views dataset to characterize head orientation and face iden-
tity coding. In the first analysis (Figs. 5, 6), we assessed pose-invariant
identity information by running a series of decoding analyses where we
trained a classifier to discriminate between each of the 25 individuals
using images from one head orientation, and then we tested the classifier
using images from either the same head orientation (using data from
different trials) or using images from a different head orientation (thus
each bar on each subplot in Fig. 5 comes from running a separate analysis
where the classifier was trained and tested on a specific pair of head

orientations). Because the classifier needed to discriminate between 25
individuals, chance is 1/25. The cyan bars in Figure 5 show statistically
significant decoding accuracies using a permutation test at the p � 0.005
level. Time-resolved results (Fig. 6) were obtained by averaging all the
results when the classifier was trained and tested at the same head orien-
tation (“same-pose” decoding accuracy; Fig. 6, blue bars), or averaging
all the results when the classifier was trained and tested at different head
orientations (“pose-invariant” decoding accuracy; Fig. 6, red bars). Error
bars indicate the SDs over all these results. We excluded images from the
back of the head from this plot to be sure that they were not driving the
differences between AL and AM, although the results look very similar
when the back of the head results are included.

For the second analysis, we quantified identity-invariant head orien-
tation information (Fig. 7). To do this we trained a classifier to discrim-
inate between the eight head orientations using two examples for each
orientation from 20 randomly chosen individuals, and then tested the
classifier using one example of each head orientation from the remaining
five individuals (this analysis is similar to the face vs nonface analysis on
the FOB where we trained and tested on data from different images so
that we could assess information that was invariant to the exact images
used). This procedure was repeated 50 times randomly selecting a differ-
ent 20 individuals to train the classifier each time. Since eight head ori-
entations were used in this analysis, chance was 1/8. For the results
plotted as a function of the k most selective neurons (Fig. 7B), the top k
most selective neurons were chosen based on the p values from an
ANOVA applied to the training data (a separate decoding procedure was
run for each value of k). The classifier was then trained and tested using
only these k most selective neurons, and the results are plotted as a
function of k.

Examining “signal-to-noise” difference between the face patches. To as-
sess whether there were differences between the signal-to-noise ratios
(i.e., trial-to-trial variability) between the neurons in different patches
that could influence the results, we calculated coefficient of variation
values for all neurons used in the decoding analyses using data in a 300 ms
bin starting 100 ms after stimulus onset. For each neuron, we took the
median CV value across all stimuli as representative of the average level of
trial-to-trial variability for that neuron (ignoring stimuli that had pro-
duced no spikes). We then compared the distributions of these CV be-
tween the neurons in different face patches using a Kruskal–Wallis test,
and pairwise Kolmogorov–Smirnov tests. At an �-level of 0.05, none of
these tests revealed a statistically significant difference between the
patches. We also took the square root of the spike count firing rates on
each trial and then redid these analyses and also did not see any statisti-
cally significant differences between the patches.

Results
Assessing face and nonface visual information
Our first set of analyses examined how much information the
different face patches contained about face and nonface stimuli.
While it is clear from previous work that firing rates of neurons
are higher for faces than nonface objects in these patches (Tsao et
al., 2006; Freiwald and Tsao, 2010; Issa et al., 2013), it is not clear
how much information there is about faces compared with non-
face objects in each area. In particular, while Tsao et al. (2006)
showed that ML/MF can discriminate and categorize nonface
objects with above chance accuracy, there has been no systematic
analysis of how this evolves along the face-processing pathway,
proceeding to more anterior patches. To address this question we
applied three different decoding analyses to firing rates from a
population of neurons (i.e., population response vectors) that
were recorded during presentation of FOB stimuli (the FOB
stimulus set contains 16 images from eight different categories;
see Materials and Methods). For this and all subsequent analyses,
we compared the amount of information in three different face
patches: the ML/MF, AL, and AM.

In our first analysis we decoded the identity of each individual
image, disregarding category (since there are 128 images in total,
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chance based on naively guessing between all images would be
1/128). This analysis assessed the combined effect of image cate-
gory and image identity information. If a given face patch repre-
sented face images with high fidelity, but did not contain
information about nonface objects, then we should be able to
decode face images but we should not be able to decode nonface
objects. Figure 2A shows the sorted decoding accuracies for each
image. The decoding accuracies of face images were generally
higher than decoding accuracies of nonface images, which might
be expected given the fact that face images elicit much higher
firing rates than nonface images and thus could lead to a distinct
cluster of face responses (which would make chance decoding for
face images closer to 1/16, while chance for nonface images would
be around 1/112). However, in ML/MF and in AL several nonface
objects were decoded with higher or comparable accuracy as
some of the face images, showing that information about nonface

images can be extracted from face patch activity. In ML/MF and
only in ML/MF two profile images of crouching bodies were
among the best decoded images; in AL there does not appear to be
much commonality between the top nonface images; and in AM,
the three clock images in the dataset were the nonface images with
the highest decoding accuracies. When we plotted the average
population firing rate for all images sorted by decoding accuracy
(Fig. 2B), we observed that all face images (apart from one in in
AL) had a higher population firing rate compared with every
nonface image, as was previously shown by Freiwald and Tsao
(2010), and is similar to the results found in the human fusiform
face area (FFA) by Mur et al. (2012), who showed that almost all
individual face images in the FFA elicited higher fMRI responses
to face images compared with images from other categories. A
scatter plot of firing rate versus decoding accuracy (Fig. 2C) re-
veals a significant correlation in all three patches for both face and
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Figure 2. Individual image decoding accuracies and average firing rates in the three face patches to each image in the face, body, and object stimulus set. A, The sorted decoding accuracies for
each image in the FOB set. Red bars indicate decoding accuracies of face images. The three nonface images with the highest decoding accuracies for each patch are shown as insets at the top of each
subplot. The decoding accuracies for all face images are in the top 50% for ML/MF and AL, and all 16 face images had the highest decoding accuracies in AM. B, The average population firing rate for
each image (in the same order as A). Total population firing rates for all face images (apart from one image in AL) were higher than for nonface images. C, Individual image decoding accuracies
plotted as a function of individual image firing rates. There is a positive correlation between decoding accuracies and firing rates for both face and nonface images (significant correlations are denoted
in green with an asterisk).
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nonface objects, suggesting that features decoded by the cells in
the nonface objects are ones that tend to produce a higher firing
rate, possibly because they share a feature with faces (e.g., the
three clocks in AM that showed the highest decoding accuracy
among nonface objects also elicited the highest firing rate). The
correlation between higher firing rates and decoding accuracies is
explored in more detail below.

All patches contain information to discriminate between
individual images within each category, with AM showing a
very strong representation for specific faces compared with
specific objects
In the previous analysis, information about object category
(faces, bodies, etc.) could affect the ability to decode individual
images. Namely, if the classifier could tell what category an image
came from (which might be easier to do for face images given that
they all have high firing rates), then it could be easier to tell the
identity of an individual. To address this issue, we applied a sec-
ond decoding analysis where we examined how well we could
discriminate between the 16 images within their own category
only. This analysis allows us to examine whether all members of a
category evoked similar response patterns (e.g., do all face images
elicit the same high firing rates across all neurons?), or whether
different members within a category evoke distinct patterns of
neural activity. Results (Fig. 3) show that the classifier was able to
reliably discriminate between members in each category for all of
the face patches (p � 0.005 permutation test), with the exception
of the scrambled image category, which elicited the worst perfor-
mance in all three patches, and in AL and AM did not exceed our
�-level of 0.005 (p � 0.035 and p � 0.060 for AL and AM, respec-
tively). There were, however, some notable differences between
face patches: in ML/MF and AL, it was possible to discriminate
between members within each category with a similar level of
decoding accuracy for almost all categories, while in AM, the
classifier was much better at discriminating between images of
faces compared with images in the other categories. Thus we see
that ML/MF’s and AL’s neural activity captures visual features
that are present in a range of natural image categories, while again
we see that AM represents face images much better than images
from other visual categories. It should be noted that the images

within particular categories are more visually similar to each
other compared with images within other categories, so one
should interpret the absolute decoding accuracies for each cate-
gory within a given face patch with caution. In particular, the face
images are more similar to each other in terms of their pixel
similarity compared with the other categories, so one might ex-
pect lower decoding accuracies for discriminating between dif-
ferent faces compared with other categories based on low-level
visual similarity alone (Fig. 1B). Thus one should not read too
much into the fact that the decoding accuracies for faces and
objects are similar in ML/MF and AL. However, the relationship
of decoding accuracies for the different categories across different
patches is informative and shows that AM has a much better
representation of faces compared with objects relative to the
strength of representation between faces and objects in ML/MF
and AL.

We also wanted to examine whether images that elicited
higher population firing rates also had higher decoding accura-
cies. To assess whether such a relationship exists, we correlated
the individual image decoding accuracies with their population
firing rates (this analysis was done separately for each category).
Table 2 shows the correlation values for all eight categories for all
three face patches. Across the three patches, 10 of 24 (3 � 8 � 24)
correlations were significantly positive indicating that there was a
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Figure 3. Decoding accuracies for discriminating between the 16 objects within each category on the face, body, and object stimulus set. The within-category decoding accuracy for faces is similar
to the accuracy levels seen in several other object categories in ML/MF and AL (right, center subplots) while the within-category decoding accuracy for faces is much higher than the decoding accuracy
of other object categories in AM (right subplot). These results show that for most categories, images within the same category elicit different neural responses. The black bars under the plots indicate
the time when the stimulus was present, the orange bars under the plot indicate the length of the decoding time window, with the orange circle indicating that the decoding accuracies are aligned
to the center of this bin. Chance decoding is 1/16.

Table 2. Correlation between individual image firing rates and decoding accuracies
for the three face patches show that higher population firing rates were
correlated with higher decoding accuracies

ML/MF AL AM

Human faces �0.34 0.29 0.50*
Human bodies 0.10 0.62* 0.47
Fruits and vegetables 0.42 0.80* 0.23
Gadgets 0.79* 0.34 0.78*
Human hands 0.60* 0.66* �0.32
Scrambled patterns �0.21 �0.01 0.11
Monkey body parts 0.55* 0.89* 0.34
Monkey whole bodies 0.33 0.47* 0.37

Each correlation was calculated separately for the 16 images in each category. Asterisks indicate statistically signif-
icant positive correlations ( p � 0.05) using a permutation test. There were no statistically significant negative
correlations.
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relationship between the overall population activity and decod-
ing accuracy (there were no significant negative correlations).

Discrimination performance for faces versus nonfaces is
higher than discrimination performance between nonface
categories for all patches
Next we examined the capacity of the three face patches for face
detection. To address how well populations of cells within the
three regions can discriminate between a face from a nonface,
regardless of their identity, we set up seven binary decoding tasks,
where the exemplars from the first class were always the 16 images
of faces, and the examples for the second class were 16 images
from one of the nonface categories. For each task, the classifier
was trained on 12 randomly chosen faces and nonface images,
and tested on the remaining four face and nonface images (the
process was repeated 50 times randomly choosing different train-
ing and test images each time; see Materials and Methods). Figure
4A shows the results for this face/nonface analysis averaged over
all of the seven face versus nonface binary decoding tasks. The
results show that all three face patches performed nearly perfectly
on this face-detection task. Also, as a reference, we asked whether

the face patches allowed for the discrimination of object catego-
ries other than faces. We performed another set of binary decod-
ing analyses trying to decode the 16 images from one of the
nonface categories compared with the 16 images from a second
nonface category, using the same paradigm of training on 12
images and testing on four images. Figure 4B shows the results for
this category discrimination analysis averaged over all of the 21
permutations of the two category decoding tasks. The results
show that all face patches perform better than chance in discrim-
inating one nonface object category from another. Since this re-
sult was achieved without including the face category, this result
is not a simple byproduct of categorizing the response to given
stimulus as “not a face”; there must be genuine shape informa-
tion in the neural population telling one object category from
another. Performance on nonface stimulus categorization is
much lower than for face detection in all face patches (face vs
nonface category � 99, 97, and 99%; nonface category 1 vs non-
face category 2 is 61, 70, and 65%, for ML/MF, AL, and AM,
respectively). However, this lower performance might in part
reflect the lower homogeneity of nonface compared with face
images. Among the three areas, AL is best able to discriminate
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Figure 4. Face versus nonface, and category1 versus category2 decoding accuracies. A, Decoding accuracies for determining whether an image was a face versus a nonface (face detection) using
data from ML/MF (blue), AL (green), and AM (red). The decoding analysis was run separately seven times for face versus each of the nonface categories, and the decoding accuracies were averaged
over the seven results. B, A comparison of category 1 versus category 2 decoding for the nonface categories (colors for the different brain regions are the same as in A). The decoding analysis was run
for all 21 pairs of nonface category 1 versus nonface category 2, and the plotted results are the average of each of these 21 decoding analyses. The black bars under the plots indicate the time when
the stimulus was present, and the orange bars indicate the length of the decoding time window. C, All 28 results for discriminating between all pairs of categories using 300 ms of data (i.e., all pairs
of decoding results that went into the averages in A and B). Chance on these binary decoding tasks is 50%.
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between different nonface categories. When looking at the results
separately for each of the binary category discriminations (Fig.
4C), we see that higher average between category decoding accu-
racy in AL was due to the fact that it could easily discriminate the
scrambled image category from all other categories. This result
shows that all 16 scrambled images elicited a similar response
pattern in AL (that was different from all other categories) and is
consistent with the results in Figure 3, showing that it was hard to
discriminate between different members in this category.

Assessing face identity and pose information
The above results show that neural activity in ML/MF, AL, and
AM contains information that could be used to detect the pres-
ence of a face, and to discriminate among different face and non-
face images. For our next set of analyses we sought to look at face
representations in more detail and determine the extent to which
face patches contain information about identity of a face despite
changes in orientation and about the orientation of a face despite
changes in identity.

Face identity information across head poses becomes more
explicit from posterior to anterior face patches
To examine how much information there was about facial iden-
tity regardless of head orientation, we applied a “generalization
analysis” (Meyers, 2013) where we trained a classifier to discrim-
inate between each of the 25 individuals using images from one
head orientation, and then tested the classifier using images from
either the same head orientation using data from different trials
(pose-specific identity information) or using images from a dif-
ferent head orientation (pose-invariant identity information). If
a neural representation contains face identity information in a
pose-invariant format, then decoding performance should gen-
eralize across head orientations, even when classifier training is
confined to only one orientation. Figure 5 shows the results from
training the classifier on images from left profile, straight, or right
profile head orientations (Fig. 5, rows) and testing the classifier
on all possible head orientations using data from different trials.
In ML/MF, significant decoding accuracy is achieved when train-
ing and testing the classifier on images of the identical head ori-
entation and, more weakly and in some cases only, for physically
similar head orientations (straight and upward or straight and
half-profile). AL shows generalization of identity information to
all head orientations apart from the back of the head, and AM
shows even broader generalization that includes even the back of
the head. AL and AM also show elevated mirror symmetric de-
coding accuracies (e.g., high performance for training on the left
and testing on the right profile.

To further compare pose-specific identity information to
pose-invariant identity information, we averaged all the results
that were created from training and testing the classifier at the
same head orientation, and we compared them to the average
results when the classifier was trained on one head orientation
and tested on a different orientation (in both cases we excluded
results from the back of the head images to make sure that this
condition was not driving any differences seen between AL and
AM, although similar results were obtained when the back of the
head images were included). Fig. 6 shows the results from this
analysis plotted as a function of time. The results show that AL
and AM have similar levels of pose-specific identity information
(p � 0.075), which is higher than the pose-specific identity in-
formation in ML/MF (p � 0.005), and that there is a clear in-
crease in pose-invariant information from ML/MF to AL to AM
(p � 0.005 from ML/MF to AL, and from AL to AM), which is

consistent with the notion that these regions form a hierarchy for
constructing pose-invariant representations.

Head pose information decreases from posterior to anterior
face patches
To compare how much information was present about head orien-
tation that is separate from information that is present about specific
individuals, we applied a decoding analysis where we trained a clas-
sifier to discriminate between the eight head orientations using two
training examples taken from 20 randomly chosen people, and we
tested the ability of the classifier to categorize one example from the
remaining five people (this procedure was repeated 50 times ran-
domly selecting 20 people to train the classifier on each time, and the
results were averaged over these 50 runs). We could best decode head
orientation information from AL and ML/MF, with AM showing a
lower decoding accuracy (Fig. 7). Thus it appears that AM is building
pose-invariant representations of face identity at the cost of losing
information about exact head orientation.

To ensure that this decrease in pose information in AM was
not somehow due to the classifier putting too much emphasis on
the pose-invariant neurons, we did an additional analysis where
we used an ANOVA to find the most pose-selective neurons on
the training set, and then we trained and tested the classifier using
only these selective neurons. Figure 7B shows the decoding results
from this analysis as a function of the number of neurons we se-
lected. The results show that even when only a small number of the
most selective neurons are used (�3–5), there is less pose informa-
tion in AM than ML/MF and AM. Thus while AM does possess some
neurons that are sensitive to pose, as is evident from the pose decod-
ing accuracy being well above chance, it is clear that this pose infor-
mation in AM is weaker in even the most pose-selective neurons
compared with ML/MF and AL.

Examining coding of information in high population firing
rates versus patterns across neurons
Almost all the information present is contained in the pattern of
responses across neurons
For our final analysis, we examined whether information is coded
in the overall level of activity in the population (i.e., average firing
rate over all neurons), or whether information is mainly coded in
the differential pattern of activity across neurons (i.e., differential
patterns across neurons ignoring the overall population activity).
This question is of interest because, as shown in Figure 2C and
Table 2, overall population firing rates and decoding accuracy are
positively correlated. Thus it is possible that gradations in the
overall population firing rate might contain the majority of in-
formation for discriminating between stimuli. Furthermore,
fMRI recordings appear to be best correlated with the average
activity over a larger regions of cortex (Issa et al., 2013), so com-
paring a classifier that can average all spiking activity to a classifier
that takes into account individual contributions of neurons can
give insight into what information might be difficult to extract
from fMRI signals.

To examine this question, we compared the decoding accura-
cies of two classifiers that only take the relative patterns across
neurons into account (the Maximum Correlation Coefficient
classifier and the Minimum Angle classifier), to a classifier that
only takes the overall level of population activity into account
(the Total Activity classifier), and the PNB classifier (used in all
other analyses in the paper), which uses both the overall popula-
tion activity as well as the relative patterns across neurons. Figure
8A shows the results comparing these four classifiers on the face
versus other object category decoding task (using the FOB data-
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set). Performance of all classifiers in the face versus object task
was similar, indicating that there is information to discriminate
between faces and other object categories based on either the total
level of activity in the population or based on the pattern across
neurons disregarding the overall level of population activity. In
contrast, on all other decoding tasks, we found the Total Activity
classifier had a much lower decoding accuracy than the other
classifiers. For example, within-category discrimination decod-
ing of the monkey whole bodies on the FOB dataset (Fig. 8B) and
pose-specific face identity decoding on the FV dataset (Fig. 8C)
were much lower for the Total Activity classifier compared with
the other classifiers. Thus, while an overall high population firing
rate might indicate the presence of a face, it appears that the
overall activity does not have information much beyond that.

Additionally, examining the relative pattern of firing rates across
neurons while discounting the overall firing rate (Maximum Corre-
lation Coefficient and Minimum Angle classifiers) achieved equiva-
lent decoding accuracies as using a classifier that took into account
both the pattern across neurons and the total activity level (i.e., the
PNB classifier), indicating that all the information that we were able
to extract was contained in the relative patterns of activity across
neurons.

However, this is not to say that there is no relationship be-
tween decoding accuracy and higher population firing rates. In-
deed, when we correlate individual image firing rates with
individual image decoding accuracies, we see a statistically signif-
icant positive correlation for both the 128 individual image de-
coding analysis (Fig. 2C) and when decoding individual images
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within each category for many categories in ML/MF, AL, and AM
(Table 2). Thus higher population activity generally indicates
higher decoding accuracy, although a more detailed assessment
about what types of information are present cannot be extracted
from the more crude measure of total population firing rate.

Discussion
In this study, we exploit the macaque face patch system to address
a question of great importance to systems neuroscience: How are
population codes hierarchically transformed in the brain? The

macaque face patch system provides an ideal opportunity to ad-
dress this question since it is composed of discrete, functionally
distinct, but strongly connected nodes.

We use a population decoding approach to compare how
three different face patches (ML/MF, AL, and AM) represent
different types of face and nonface stimuli. Our quantitative ap-
proach reveals several important new insights. First, we find that
we can extract information about both faces and nonface objects
from all three patches with above chance accuracy, and impor-
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tantly, the AM population appears to selectively represent indi-
vidual face identity over nonface object identity compared with
ML/MF and AL populations (Figs. 2, 3). Second, we found that
pose-invariant face identity information appears to increase as
one moves to more anterior patches, while information about the
orientation of the head regardless of the individual is best repre-
sented in the two more posterior patches ML/MF and AL (Figs.
5–7). Finally, we found that much more information to distin-
guish faces and objects is contained in patterns of activity across
neurons than in the total level of population activity (Fig. 8).

Information is contained in patterns of activity in both high
and low population firing rate regimes
While previous results showed that neurons in these fMRI-
defined face patches respond with higher firing rates to face im-
ages compared with nonface images (Tsao et al., 2006; Freiwald
and Tsao, 2010; Issa et al., 2013), they did not examine in detail
how much information is present in the population about non-
face objects. By applying a decoding analysis we are able to see
that there is significant nonface information in the lower firing
rate regimes in ML/MF and AL, while in comparison, AM had
much more information about faces compared with nonface ob-
ject categories (Figs. 2, 3).

The fact that we could decode nonface information from
some of these face patches is similar to the results of Haxby et al.
(2001), who showed that it is possible to decode object informa-
tion from the FFA based on fMRI BOLD responses. However,
because it is still not known exactly how information is coded in
neural activity, we remain agnostic in our interpretation as to
whether the nonface object information in these lower firing rates
contribute to behaviors related to nonface objects. For example,
particular visual properties of the nonface objects might resemble
face-like features,which could allow us to decode information
about the nonface objects; however, this could be irrelevant for
the way monkeys actually solve the task. While it could also be
argued that the converse is true, namely that the face patches
might be responding just to visual shapes that faces happen to
contain, other evidence makes this less likely (e.g., the contrast
preference of face cells seen in Ohayon et al. (2012)). Additional
studies that perturb particular face patch regions while monkeys
engage in face and object discrimination tasks could help resolve
the question about whether this nonface object information in
lower firing rates actually contributes to behavior.

Relatedly, our analyses comparing different classifiers (Fig. 8)
show that the total population activity level contains relatively
little information (apart from information about whether a face
was present). Consistent with this, multiple fMRI studies have

demonstrated that distributed response patterns within a brain
region contain a rich amount of information above and beyond
what is present in univariate modulation (Kamitani and Tong,
2005; Kriegeskorte and Bandettini, 2007; Çukur et al., 2013). Yet
given that that higher firing rates are correlated with higher neu-
ral decoding accuracies (Fig. 2C, Table 2), even coarse overall
activity levels can, at least sometimes, indicate the types of infor-
mation represented, which could explain why region of interest
analyses are useful for inferring the function of brain regions. We
believe the link between higher population activity levels and
higher decoding is likely due to higher firing rate regimes en-
abling neurons to code information in larger dynamic range of
activation and, consequently, giving rise to more discriminative
patterns of activity.

The face representations in AM contain information in a
highly invariant manner
Our analyses of the face-views dataset give a more detailed picture
of what types of face information are contained in face patch
regions. In agreement with Freiwald and Tsao (2010) we see an
increase in pose-invariant identity information from ML/MF to
AL to AM (Figs. 5, 6), that the neural populations have similar
responses to mirror symmetric head orientations in AL and AM
(Fig. 5), and that there is more head orientation information in
ML/MF and AL than in AM (Fig. 7). Our analyses also reveal that
the classifier was able to partially generalize from the back of the
head to frontal views using data from AM and that this was not
possible using data from ML/MF (Fig. 5), which indicates that
global features such as hair, head shape, or skin tone are used by
AM; however, generalization was much better to nonbackward
views, indicating that view-invariant tuning in AM is not due
solely to global cues. Interestingly, monkeys had not interacted
with 21 of the 25 individuals in the image set. It thus appears that
the pose-invariant identity representations we report here are not
a result of extensive familiarity with the individual in the image
set. Our results bear some similarity with two fMRI studies.
Kriegeskorte et al. (2007) showed that multivoxel activity pat-
terns in human anterior inferotemporal cortex, but not in the
more posterior FFA, can be used to discriminate between indi-
vidual face images, and Anzellotti et al. (2014) decoded face iden-
tity information invariant to head orientation from occipital face
area, FFA, and inferotemporal cortex.

In previous work we have found that it is useful to view the
ventral visual pathway as a system that performs “intelligent in-
formation loss,” where information about visual details in early
visual areas, such as V1, are lost to build up abstract/invariant
representations that are more useful for behavior in higher brain
regions (Meyers and Kreiman, 2012; Meyers, 2013). The results
in this study fit well into this framework where we see a gradual
buildup of representations that are better suited for processing
faces in AM at the cost of losing information about nonface stim-
uli (also see Anzellotti et al., 2014). The representations in AM do
not appear to be as fully abstract as the neurons found in the
human medial temporal lobe, which respond selectively to a par-
ticular concept of a person even when the visual image eliciting
neural responses have nothing in common (such as the written
name and an image of a particular person; Quiroga et al., 2005).

Outlook
While the results presented here further our understanding of the
face patch system, they also help to highlight the importance of
future studies that would be useful for gaining a deeper under-
standing of how this system is operating. In particular, the fact

4

Figure 8. Classifier comparison to assess how much information is in the overall firing rate
level and in patterns across neurons. Each subplot compares the results from four different
classifiers (Maximum Correlation Coefficient classifier in green, Minimum Angle classifier in
cyan, Poisson Naive Bayes classifier in purple, and Total Activity classifier in red). The columns
contain data from the three different face patches. A, Results from decoding whether an image
was a face or is in another object category on the FOB dataset (i.e., same decoding task as in Fig.
4). B, Within-category discrimination for monkey whole bodies on the FOB dataset (i.e., same
decoding task as in Fig. 3). C, Pose-specific individual face discrimination on the FV dataset (i.e.,
same as the blue traces on Fig. 6). For face versus nonface results, all classifiers performed
similarly. For all other analyses, there was much more information in classifiers that extracted
patterns of information across neurons (PNB, Maximum Correlation Coefficient, Minimum An-
gle) than the classifier that used the total activity (TAct). The black bars under the plots indicate
the time when the stimulus was present, and the orange bars under the plot indicate the length
of the decoding time window.
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that the complexity of face-specific features appears to be build-
ing up in the face patch system has shown us that it would be
useful to obtain recordings from more neurons using an even
larger set of visual images. A study of the posterior face patch (PL)
by Issa and DiCarlo (2012) has given strong evidence that the
early responses to this most posterior face patch are largely driven
by an image of an eye and an outline of the face, and recordings by
Freiwald and Tsao (2010) in the middle face patches show that
these patches are driven by features relating to the eyes (iris size
and intereye distance) and overall face shape (aspect ratio and
face direction; Freiwald et al., 2009). By using a broader stimulus
set and systematically comparing across posterior, middle, and
anterior patch, it should be possible to gain a better understand-
ing of the visual features that drive the populations of neurons
recorded from in this study, and potentially relate these features
to computational models (Leibo et al., 2014; Tan and Poggio,
2014). Additionally, while the monkeys in this study did have a
lifetime of exposure to human faces, it would be useful to exam-
ine how the face patches respond to more ecologically relevant
macaque face images, in addition to the human face images used
here, to determine whether the results hold across species. Over-
all, however, the results shown here underscore the functional
differences between face patches, and help set a foundation for
understanding what information is read out about faces and non-
face objects from each patch, by quantifying what information is
available.

Notes
Supplemental material for this article is available at figshare.
com/s/8bfec6b8cce811e4866406ec4bbcf141. The supplemental file con-
tains additional analyses of the data. This material has not been peer
reviewed.
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