ENERGY BUDGETS

A series of articles exploring and reviewing the rapidly-expanding study of the energy costs of production processes, encompassing foods and agriculture, transport, materials, petrochemicals and products, and their importance for policy making.

3. Goods and services: an input-output analysis

David J. Wright

In this third article in the series on Energy Budgets, Dr Wright uses the US input-output table to trace all the inputs to each industrial process back to requirements for primary energy, and discusses the relative advantages of the inputoutput approach and the process analysis approach.

Dr Wright is with the Systems Analysis Research Unit at the Department of the Environment, Marsham Street, London, SW1, UK

The views expressed in this article are those of the author and do not necessarily coincide with those of the UK Department of the Environment. The article is Crown Copyright 1974

The recent 'energy crisis' was not due to the fact that energy is a depletable resource, nor due to the fact that there are applications in which the substitutability of energy is limited. It was due to the fact that the producers were able to control the supply and hence the price of energy. However, any of these three reasons would justify a close appraisal of how much energy is used in the production of the various goods and services in our economic systems. This can be done by constructing an energy budget for each production process and results have been obtained by Bravard and Portal,¹ Chapman,^{2,3} Leach and Slesser,⁴ Smith⁵ and Slesser.⁶ Not only the direct inputs of energy to the process are counted, but also the secondary requirement of energy in the production of the other new materials input. Another way of calculating the energy requirements of different commodities is from published government statistics. A variety of such sources is used by Makhijani and Lichtenberg⁷ and in the present article we use the input-output table. This table is a matrix showing the flows of products between the various industries of an economy.

Obtaining energy costs from input-output tables

The economy is divided into a number of industries and these are listed as both the rows and columns of the input-output matrix. The entries in the column corresponding to any selected industry give the direct requirements from each of the other industries to produce one unit of that industry's output. If the input-output matrix is denoted by A, then the element A_{ij} gives the requirement from industry *i* to produce one unit of the output of industry *j*. It is important that the matrix is square, as then, knowing these direct requirements, one can use the same matrix to find out what was needed to produce them. These one can call the secondary requirements, and it can be seen that they correspond to the matrix A^2 . Similarly, one can calculate the tertiary requirements corresponding to A^3 and so on. Finally, the total requirements matrix, B, which represents all these indirect and direct inputs is given by

$$B = A + A^{2} + A^{3} + \ldots = (I - A)^{-1} - I$$

Thus a matrix inversion is all that is needed to obtain the total requirements matrix from the direct requirements one, and this inverted matrix is usually published along with the matrix A.

As regards energy requirements, everything has, in effect, been traced back to primary energy inputs in the matrix B, taking into account inefficiencies of the fuel conversion industries. Thus, if we identify those rows of B that correspond to inputs of primary energy (coal, crude oil, natural gas, nuclear and hydro-electricity), we can obtain the total primary energy requirement of any commodity by reading down the corresponding column of the matrix B.

The input-output tables are, of course, published in money terms and so we obtain the requirement:-

x dollars of primary energy per 1 dollar of cement (1) for instance. Knowing the prices of the different forms of primary energy, this can be converted to:

y kWh of primary energy per 1 dollar of cement (2) and, knowing the price of cement, we obtain:

z kWh of primary energy per 1 ton of cement (3)

However, many commodities are insufficiently homogeneous to be measured by a physical unit such as 1 ton, and we can obtain only (2) above, eg

y kWh of primary energy per 1 dollar of farm machinery.

Each of these measures is useful in different ways. Some applications are as follows:

(1) gives an idea of the short-term effect of changes in the price of energy on the costs of commodities. Comparing (2) for different commodities it can be seen whether there is any disparity between money costs and energy costs. (3) gives the relation between physical production and demands for primary energy. Results of type (1) can simply be read off the input-output table, and in the present article we concentrate on those of types (2) and (3).

Calculation of energy costs of US products

Input-output tables cannot be derived from the economic statistics normally available to governments in countries with market economies. The derivation of all the inter-industry flows requires a special census which is not conducted annually. Moreover, obtaining the input-output table from the census data is itself a time-consuming process with the effect that present input-output tables are, at best, five years out of date by the time they are published. The most recent UK table is for 1968⁸ and this divides the economy into 90 industries, whereas for the US a bigger table is available, 363 industries square, for 1963⁹. The present author¹⁰ has previously calculated energy costs from the UK tables; this article concentrates on the USA. In fact, results for the USA are easier to obtain as foreign trade (which introduces a complication into the calculation) is a much smaller proportion of GDP in the US than in the UK.

¹ J.C. Bravard and C. Portal, *Energy* requirements in the production of metals (Oak Ridge Laboratory Report, USA, 1971)

² P.F.Chapman, '*The energy costs of producing copper and aluminium from primary sources*' (Open University Report ERG 001, UK, 1973)

³ P.F. Chapman, *The energy costs of producing copper and aluminium from secondary sources* (Open University Report ERG 002, UK, 1973)

⁴ G. Leach, and M. Slesser, *Energy equivalents of network inputs to the food production process* (Strathclyde University Report, UK, 1973)

⁵ H. Smith, 'Cumulative energy requirements of some products of the chemical industry' *Transactions 20, Section E, World Energy Conference*, 1969

⁶ M. Slesser 'Energy subsidy as a criterion for food policy planning' *Journal of the Science of Food and Agriculture*, Vol 24, Nov 1973

⁷ A.B. Makhijani and A.J. Lichtenberg, 'Energy and well-being', *Environment*, Vol. 14, No. 5, June 1972, p. 10

⁸ Input-Output Tables for the UK, 1968, Central Statistical Office of UK, (Her Majesty's Stationery Office, 1973)

⁹ Input-Output Structure of US Economy: 1963, US Department of Commerce, 3 vols (US Government Printing Office, 1969)

¹⁰ D.J. Wright, 'The natural resource requirements of commodities' Paper presented at conference on energy costing held at Imperial College, London, July 1973 Table 1 gives results of type 2 above in units of kWh/\$ for each of the 363 industries in the US 1963 input-output table. The energy unit kWh has been chosen, not because of any electrical connotation, but as a well-defined physical measure avoiding the tons of coal equivalent in which primary energy is usually measured. The money unit is the 1963 \$.

Some details relevant to this calculation are as follows:

(a) Prices of primary energy

Prices of the different forms of primary energy are obtained from the 'Statistical abstract of the US'^{1 1} and checked against production figures and the financial data in the input-output table itself. Imports are also treated as an input of primary energy to reflect the importation of energy and also the energy used abroad to manufacture exports to the USA. An average figure is taken as the energy cost of imports. These prices are taken to apply to purchases of primary energy by any industry so that concessionary prices allowed to certain industries are a source of error in the calculation.

(b) Prices of final products

The unit of value assigned to any commodity is the factory gate price measured in 1963\$. Thus transportation costs (energy and monetary) incurred by the producer directly, or indirectly, to transport his supplies and his supplier's supplies, etc, are included, but the costs of distribution to the final buyer appear separately under 'wholesale and retail trade' (items 69.1 and 69.2) and 'transportation' (industries 65.1-65.7).

(c) Capital depreciation

The inter-industry flows in the input-output table include repairs to, but not replacements of, capital. So if one regards depreciation as replacements of capital, then this energy cost is ignored in the analysis. We see below that there is a straightforward relationship between money and energy value of capital so that, given the monetary value of capital depreciation, one could easily translate this to an energy cost and some authors have done this for certain products. However, depreciation rates are not readily available for each of the 363 industries separately and so this energy flow is excluded from the present analysis.

(d) Labour, profits and solar energy

These are also energy inputs to the production process which have been excluded from the results in Table 1. They could be included but there is some arbitrariness as to the appropriate stage to do this. For instance, is it the physical energy contributed by the labourer to the production process, or the energy content of the food he eats, or the primary energy needed to produce all the goods and services he enjoys? Similarly, with solar energy in agriculture, should we include the total energy incident on the plants, or just that used in photosynthesis, or an opportunity energy cost of not covering the farm with solar cells? Different uses of the results give different answers to these questions. Excluding these three inputs of energy means that the results are

¹¹ 'Statistical Abstract of the United States', (US Department of Commerce, Washington, DC) (Published Annually)

Table 1. Energy	/ intensities	of US	products	in	kWh/1963\$
-----------------	---------------	-------	----------	----	------------

			N. /100251						
	Ref. no		Yh/1963\$I					Comercian machines	9-0
	1.01)	Dairy	18.5	(26-05) (26-06)	Commercial printing Business forms	18-4 15-9	(51-01) (51-02)	Computing machines Typewriters	11-9
	(1·02) (1·03)	Poultry Meat	18.6	(26-07)	Greetings cards	12.6	(51-03)	Scales	15-3
	2.01)	Cotton	21-4	(26-08)	Misc. printing		(51-04)	Office mach. Aut. vend. mach.	16-8 16-6
	2.02)	Grains Tobacco	25-4 20-9	(27-01) (27-02)	Industrial chemicals Fertilisers	61-9 36-3	(52-01) (52-02)	Laundry equip.	18.7
	2·03) 2·04)	Fruits	16-1	(27-03)	Agric. chemicals	47.0	(52-03)	Refrig. mach.	16-6
1	2.05)	Veg. sugar	19.0	(27-04)	Misc. chem. products	42-0	(52-04)	Measuring pumps Serv. ind. mach.	17-4 15-9
	2.06)	Oil crops Forest prods.	24-0 16-2	(28-01) (28-02)	Plastics materials Synthetic rubber	42·2 60·3	(52-05) (53-01)	Elec, meas, instr.	10-8
	2-07) 3.00}	For, & fish prods.	38.6	(28-02)	Cellulosic fibres	45-0	(53-02)	Transformers	23.2
	(4-00)	Ag. for. & fish serv.	16-2	(28-04)	Organic fibres	27.9	(53-03)	Switchgear	12-7 16-1
	5-00) 6-01)	fron ore mining Copper ore mining	47-4 21.5	(29-01) (29-02)	Drugs Cleaning preparations	14·0 27·1	(53-04) (53-05)	Motors & generators Industrial controls	12-0
	6-02)	Non-ferr, ore mining	38-2	(29.02)	Toilet preparations	16-1	(53-06)	Welding apparatus	20-6
	7-00}		257.0	(30.00)	Paints	40-3 375-0	(53-07)	Carbon products Elect, ind. apparatus	40-7 16-6
	8.00}	Crude oil & nat. gas Stone & clay mining	33.5 28.3	(31-01) (31-02)		109-0	(53-08) (54-01)	House cooking equip.	18-6
	(10.00)	Chem, & fert, mineral mining	31.2	(31-03)	Asphalt	83-6	(54-02)	House frig.	18-8
	(11.01)	Constr. resid. buildings	14.9	(32-01)	Tyres	25-9 15-0	(54-03) (54-04)	House laundry equip. Elec. housewares	18-8 17-8
	(11.02) (11.03)	Constr. non resid. buildings Constr. public utilities	16.6 20.9	(32-02) (32-03)	Rubber footwear Reclaimed rubber	24.1	(54-05)	Vacuum cleaners	13-6
	11.04)	Constr. highways	30.8	(32.04)	Misc. plastic products	21-9 19-0	(54-06)	Sewing machines Household appliances	13-1 18-8
	(11.05)	Constr. other Maint. resid. build.	27-8 13-0	(33-00) (34-01)	Leather tanning Footwear	16-1	(54-07) (55-01)	Electric lamps	9.9
	(12-01) (12-02)	Maint, other	14.4	(34-02)	Footwear except rubber		(55-02)	Lighting fixtures	25-4
	(13.01)	Guided missiles	7.4	(34-03)	Other leather products	12.7	(55-03)	Wiring devices Radio & TV sets	20-3 16-5
	(13-02)	Ammunition Tanks	16·5 20-6	(35-01) (35-02)	Glass Glass containers	18-8 23-1	(56-01) (56-02)	Radio & TV sets Phonograph records	15-6
	(13-03) (13-04)	Sighting & fire control	10-4	(36-01)	Cement	11-2	(56-03)	Telephone apparatus	10-8
	13-05)	Small arms	21-9	(36-02)	Brick Ceramic tile	39-7 28-9	(56-04)	Radio & TV commun. equip. Electron tubes	8-7 13-1
	13-06)	Smail arms ammo. Other ordnance	14-4 13-6	(36-03) (36-04)	Clay refractories	29.7	(57-01) (57-02)	Semiconductors	13.7
	13-07) 14-01)	Meat Products	13-15	(36-05)	Clay products	37.6	(57-03)	Electronic components	13-4
	14-021	Creamery butter	21-4	(36-06)	Plumbing fixtures	18-5 18-1	(58-01)	Storage batteries Primary batteries	18-3 13-8
	14-03)	Cheese	21.6	(36-07) (36-08)	Food utensils Porcelain elec, supplies	15-1	(58-02) (58-03)	X-ray apparatus	15-8
	14-04) 14-05)	Con. & evap. milk Ice cream	21-7 17-0	(36-09)	Pottery products	16-6	(58-04)	Engine elec. equip.	15-5
	14-06)	Fluid milk	17-9	(36-10)	Concrete block	30-1 24-4	(58-05)	Elec. equip. Bus bodies	15-9 20-3
1	14 07)	Canned sea foods	21-8	(36-11) (36-12)	Concrete products Mixed concrete	24-4 39-9	(59-01) (59-02)	Bus bodies Truck trailers	20-3 19-8
	14-08) (14-09)	Canned specialities Canned fruits & veg.	17-5 20-0	(36-13)		100-0	(59-03)	Motor vehicles	17-4
	14-091	Dehydrated food	17.1	(36-14)	Gypsum products	24-3	(60-01)	Aircraft	8-8 15-0
	[14-11]	Pickles & sauces	18.9	(36-15)	Cut stone Abrasive products	22-4 18-2	(60-02)	Aircraft engines Aircraft propellers	13.9
	(14-12)	Packaged fish	23-3 18-0	(36-16) (36-17)	Asbestos products	27.5	(60-03) (60-04)	Aircraft equip.	10-6
	(14-13) (14-14)	Frozen fruits & veg. Cereal preparations	20.0	(36-18)	Gaskets	18-1	(61-01)	Shipbuilding	15-5
	(14-15)	Animal feeds	19-9	(36-19)	Minerals	28·9 20·2	(61-02)	Boatbuilding	15-0 14-3
	14-16)	Rice milling	21-2	(36-20) (36-21)	Mineral wool Non-clay refractories	20·2 32·8	(61-03) (61-04)	Locomotives Railroad cars	27.6
	(14-17) (14-18)	Wet corn milling Bakery products	30-1 15-8	(36-22)	Non-metal mineral prod.	23-5	(61-05)	Motorcycles	35-6
	(14-19)	Sugar	46-3	(37-01)	Biast furnace	68-9	(61-06)	Trailer coaches	16-9
	14-20)	Confectionery	24-6	(37-02)	Iron & steel foundries Iron & steel forgings	21-1 41-2	(61-07)	Transportation equip.	26-4
	(14-21)	Alcohol	9-8 16-3	(37-03) (37-04)	Primary metal products	21.2	(62-01) (62-02)	Eng. & sci. instruments Mech. meas. devices	12.3
	(14-22) (14-23)	Soft drinks Flavouring	18-8	(38-01)	Primary copper	32.9	(62-03)	Aut, temp. controls	12.5
	(14.24)	Cottonseed oil mills	23.3	(38-02)	Primary lead	29-1	(62-04)	Surgical instruments	16-8
1	14-25}	Soybean oil mills	25.4	(38-03)	Primary zinc	39.7 49.2	(62-05)	Surgical appliances	13-3 17-9
	14-26) 14-27)	Vegetable oil mills Fats & oils	50-3 27-3	(38-04) (38-05)	Primary aluminium Primary non-ferr.	58-1	(62-06) (62-07)	Dental equipment Watches	11-4
	14-27)	Roasted coffee	52.3	(38-06)	Secondary non-ferr.	12-3	(63-01)	Optical instr.	18-7
	14-29)	Cooking oils	23-5	(38.07)	Copper rolling & drawing	25-6 32-9	(63-02)	Opthalmic goods	18-8
	14-30)	Manufactured ice	22.6	(38-08) (38-09)	Alum, rolling & drawing Non-ferr, rolling & drawing	32·9 24-8	(63-03)	Photo equip.	17-0 31-6
	14-31) 14-32)	Macaroni & spaghetti Food preparations	16·5 22·1	(38-10)	Non-ferr, wire drawing	21.5	(64-01) (64-02)	Jewellery Mus. instr.	17-8
	(15-01)	Cigarettes	8.2	(38-11)	Alum, castings	24-0	(64-03)	Games	17-5
	15-02)	Tobacco stemming	20.1	(38-12)	Brass castings Non-ferr, castings	19-0 20-1	(64-04)	Sporting goods	14-4 17-9
	16-01)	Broadwoven fabric Narrow fabric	24-4	(38-13) (38-14)	Non-ferr, forgings	27.6	(64-05)	Pens	43.5
	16-02)	Yarn	24-4	(39-01)	Metal cans	35-4	(64-06) (64-07)	Artifical flowers Buttons	18-1
	16-04)	Thread	22.7	(39-02)	Metal barrels	35.6	(64-08)	Brooms	19-3
	17-01)	Floor covering	26-5	(40-01) (40-02)	Metal sanitary wood Plumbing fittings	20-7 20-1	(64-09)	Floor covering	20-2 15-7
	17-02) (17-03)	Felt goods Lace goods	19·2 24·7	(40-02)	Heating equip, not elect.	18.4	(64-10) (64-11)	Morticians goods Signs	18-0
	17-04	Paddings	20.2	(40.04)	Structural steel	31-4	(64-12)	Misc. manu.	20.5
,	17-05)	Textile waste	22.9	(40-05)	Metal doors	20-8 28-7	(65-01)	Railroads	17-3 27-2
	17-06)	Coated cord	21-9 27-0	(40-06) (40-07)	Plate work Sheet metal	28-7	(65-02)	Local highway pass, trans,	18-5
	(17-07) (17-08)	Tyre cord Scouring	37.5	(40-08)	Architectural metal	21.5	(65-03) (65-04)	Motor freight trans. Water trans	45-4
4	17-09)	Cordage	48.5	(40-09)	Misc. metal	33.4	(65-05)	Air trans.	43-5
	17-10)	Textile goods	59.4	(41-01)	Bolts, etc. Metal stampings	23·9 25·6	(65-06)	Pipe line trans.	29-4 5-2
	18-01) (18-02)	Hosiery Knit apparel	139	(41-02) (42-01)	Cutlery	20.0	(65-07) (66-00)	Trans, services Communications	5.5
	(18-03)	Knit Fabric	21-4	(42-02)	Hand tools	19-9	(67-00)	Radio & TV broadcast	6-1
	18-04)	Apparel other	13-0	(42-03)	Hardware Eporemica etc	18-3 18-3	(68-01)	Electric utilities	104-0 197-3
	(19.01) 19.02)	Curtains House furnishings	16-0 21-9	(42-04) (42-05)	Engraving, etc. Misc. wire prod.	41-2	(68-02) (68-03)	Gas utilities Water & sanitary serv.	25.2
	19-03)	Textile products	18.2	(42-06)	Safes	20.9	(69-01)	Wholesale trade	11-5
	20-01)	Logging camps	23-6	(42-07)	Steel springs Pipe fittings	35.7 20-3	(69-02)	Retail trade	8-2 4-3
	20-02)	Sawmills general Hardwood	23-8 23-9	(42-08) (42-09)	Pipe fittings Collapsible tubes	20.3	(70-01) (70-02)	Banking Credit agencies	4-3 16-2
	20.03/	Special sawmills	33.5	(42.03)	Metal foil	24-8	(70-02)	Security brokers	6-4
	20.05)	Millwork	15-3	(42-11)	Metal products	23-0	(70-04)	Insurance carriers	8.9
	20-06)	Veneer & plywood	23.6	(43-01)	Steam engines	21-4 14-7	(70-05)	Insurance agents	7-1 2-7
	20-07)	Wood structures Wood preserving	16·7 28·4	(43-02) (44-00)	Int. comb. engines Farm machinery	22.9	(71-01)	Owner-occupied dwellings Real estate	10-5
	20-08)	Wood products	23.4	(44-00)	Constr. machinery	18-3	(72-01)	Hotels	9.7
(21.00)	Wooden containers	20.7	(45-02)	Mining machinery	17-3 17-7	(72-02)	Repair services	12-5
	22-01)	Wood furniture Upholstered furniture	14·2 14·6	(45-03)	Oil field machinery	17-7	(72-03)	Barber & beauty shops	4-0 8-3
	22-02) 22-03)	Metal furniture	14-6 21-8	(46-01) (46-02)	Elevators Conveyors	17-4	(73-01) (73-02)	Misc. bus. serv. Advertising	11-6
	22-04)	Mattresses	18-4	(46-03)	Hoists	20.5	(73-03)	Misc. prof. serv.	7.0
!	23-01) 23-02)	Wood office furn. Metal office furn.	15-3 19-3	(46-04)	Industr. trucks Mach. tools cutting	17-3 14-8	(75-00)	Auto repair Motion pictures	11-0 13-8
(23-02) 23-03)	Public build, furn,	19-3	(47-01) (47-02)	Mach, tools cutting Mach, tools forming	19-7	(76-01) (76-02)	Motion pictures Amusements	6-8
(23-04)	Wood partitions	13-6	(47-03)	Special dies & tools	14-7	(77-01)	Doctors & dentists	3.7
	23-05)	Metal partitions	21-0	(47-04)	Metalworking machinery	15-2 17-8	(77.02)	Hospitals Other medical serv	9-2 12-1
	23-06) 23-07)	Venetian blinds Furniture & fixtures	20-3 17-3	(48.01) (48.02)	Food prod. mach. Textile machinery	20-2	(77-03) (77-04)	Other medical serv. Education	13.2
	23.071	Pulp	51-3	(48.03)	Woodworking mach.	18.0	(77-05)	Non-profit organisations	10-0
(24-021	Paper	47-2	(48.04)	Paper ind, mach.	21.9 15.0	(78.01)	Post office	7-2 239-0
	24-03) 24-04)	Paperboard Envelopes	41-8 20-5	(48.05) (48.06)	Printing mach. Special mach.	19.4	(78.02) (78.03)	Federal elec. util. Commodity credit corp.	-
	24.04)	Sanitary paper	26-8	(49-01)	Pumps	15.5	{78.04}	Other fed, gov.	19.8
(24 06	Wailpaper & board	37-5	(49-02)	Ball bearings	23.1 15.7	(79-01)	Loc. gov. pass. transit	14-9 108-0
	24.07)	Paper products	26·8 24·7	(49-03) (49-04)	Blowers Indust. patterns	9.3	(79.02) (79.03)	State elec. util. Other state ent.	22-2
	25-00) 26-01)	Paperboard boxes Newspapers	14-2	(49.04)	Power transmiss, equip.	17.5	(80.01)	Direct imports	-
	26.02)	Periodicals	14-1	(49-06)	Furnaces	16-8 16-1	(80-02)	Transferred imports	24-8
	26-03)	Book printing	11-9	(49-07) (50-00)	General ind, mach. Machine shop prod.	16-1	(81-00) (82-00)	Business travel Office supplies	24-8 19-0
(26-04)	Misc. publ.	11-8	(30-00)	macrime anop prou.		(02.00)	er soppies	

appropriate to an investigation of demands made on terrestrial energy sources, solar energy being used to the extent to which it is today, and people enjoying consumption for its own sake rather than to facilitate their contribution to the production process.

(e) Feedstocks

It is not possible to distinguish in the input-output table between, for instance, petroleum used as a feedstock and petroleum used to provide process energy. Hence both are automatically included, giving a very high energy costing for plastics, etc. The figures therefore include the opportunity cost of not using the feedstock energy elsewhere.

(f) Technology assumption

All figures are inevitably based on the technology of US industry in 1963. This is important to bear in mind for industrial outputs produced by a mixture of technologies. For instance, the energy cost of aluminium reflects a weighted average of the energy cost of recycling and that of extraction from bauxite. This sort of factor is probably more important than the changes in technology since 1963, since energy consumption and real GDP have risen at approximately the same rate since then (at just over 4% in the USA from 1963 to 1971). Only with the recent rise in primary energy prices can one expect technical change towards energy saving.

To summarise, the factors included and excluded are listed in Table 2.

Interpretation of results

We now describe three different areas of application of these results:

(1) Energy cost of capital investment

Table 1 shows the 'energy intensities' (kWh/\$) of the different commodities produced in the USA. The 'flow' of energy in final products at these different 'intensities' can be represented by the

Included	Excluded
Mining, quarrying of raw materials Metal extraction, refining, fabrication	
Transportation of intermediate products between industries	Transportation and distributior of finished product to final buver
Lighting, heating of factories and offices	
Et cetera at all previous stages of production process	
Repairs to capital Feedstocks	Replacements of capital
	Labour and Profits Solar Energy
Energy lost in fuel conversion	

histogram in Figure 1. The vertical axis shows the money cost of purchases by final buyers (personal consumption, capital investment, government purchases, exports). The average energy intensity for the whole economy is 23.4 kWh/\$ but there is quite a spread about this value (standard deviation 52.9 kWh/\$) because of some commodities, which we shall consider below, whose energy intensity is too high to fit on the horizontal axis of Figure 1. Within this histogram, a separate histogram is drawn for capital investment, and shows that, although 115 of the industries make contributions to this, the spread of energy intensities of capital investment is relatively small. (Mean value = 16.5 kWh/\$, standard deviation = 4.4 kWh/. This is similar to results obtained from an analysis of UK input-output tables by the present author¹⁰ where a narrow range of energy intensities of capital goods was also observed (mean value $44.1 \text{ kWh}/1963 \text{\pounds} = 15.8 \text{ kWh}/1963 \text{\$}$, standard deviation $3.3 \text{ kWh}/1963 \text{\pounds} = 1.2 \text{ kWh}/1963 \text{\$}$). One of the advantages of the input-output method of deriving energy costs, over the more detailed process analysis approach, is in rapidly identifying broad classes of products, such as capital goods, which have roughly the same energy intensity. One can then say with some degree of certainty that a \$1 million investment programme will require roughly 16.5×10^{6} kWh of primary energy, without going into the details of what buildings and machinery, etc, are involved.

(2) Energy flows in foreign trade

Another straightforward result from Table 1 and Figure 1 is to identify those commodities whose energy intensity is much higher than average. Excluding fuels, whose energy intensity is obviously high, the most striking are some foods, textiles, paper, chemicals, plastics, paints, asphalt, cement, metals, transportation. These energy intensity figures are particularly relevant to trade, as they show whether we are gaining or losing energy when we exchange commodities of equal money value. Of those listed above the most important in trade are paper, chemicals, iron and transport. Chemicals take oil as a feedstock and it is a preferred

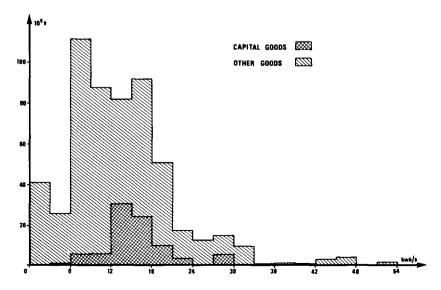


Figure 1. Energy flow at different 'intensities' in US 1963

fuel for transport, but paper and iron can be produced without it. Hence if we hypothesise that oil prices will rise relative to the cost of other primary fuels to 12-15 times the 1963 figure, it will be possible to save the same amount of energy by reducing exports of paper and iron as by increasing imports of crude oil (for the same foreign exchange cost). At present (1974) oil prices are 4-5 times their 1963 values.

A more comprehensive analysis of energy flow in foreign trade is shown in Figure 2. As mentioned above, foreign trade is more important for the UK than for the USA, and so the histograms are similar to Figure 1 but derived from the UK results.¹⁰ In Figure 2 one histogram shows energy flowing from UK in all exports excluding fuels (mean = $41.8 \text{ kWh}/1968\pounds$, standard deviation = $29.8 \text{ kWh}/1968\pounds$, total energy flow = $336 \times 10^9 \text{ kWh}$) and the other histogram shows the comparison for imports (mean = $51.7 \text{ kWh}/1968\pounds$, standard deviation = $30.7 \text{ kWh}/1968\pounds$, total energy

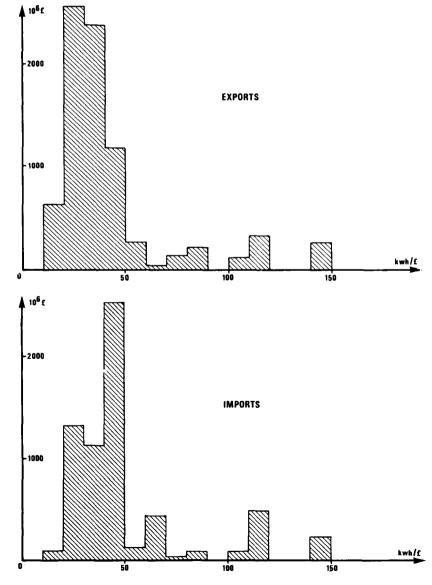


Figure 2. Energy flow at different 'intensities' in UK foreign trade 1968

flow = 339×10^9 kWh). Thus the energy flows balance, but imports are, on average, more energy intensive than exports (the difference is significant at the 2.5% level).

(3) Energy cost of services

It is often said that, as per capita income rises, the consumption pattern tends more towards services than goods which, being less energy intensive, allow some slackening in the rate of growth of demand for energy. Certainly this tendency has not had an appreciable effect on the energy/money ratio for different nations in recent years. Cross-section and time series analyses¹² of energy comsumption per capita/GNP per capita show this ratio tending to an upper asymptote as income per head rises rather than declining. Table 1 throws some light on this point to the extent of identifying the energy intensity of services. Financial and personal service industries, health, education, etc, all have an energy intensity of about 10 kWh/\$, ie just under half the figure for the whole economy. So, although the energy intensity of services is certainly less than average, it is not so small that the current trend towards a 'service economy' produces a noticeable effect on overall energy consumption.

Energy costs in physical terms

So far we have been concerned with energy costs per money value of the product, and now we turn to energy costs per physical unit, ie the measure of type (3) described earlier. This is only available for those commodities which are sufficiently homogeneous to be measurable in physical units and a list is given in Table 3. As stated above these are figures for the average technology employed, so that for metals the energy cost given is lower than the cost of extraction from ore, because some is produced by (less energy intensive) recycling. Another reason for some of the figures being too low is that concessionary prices for bulk purchases of fuels have not been taken into account.

The figures in Table 3 can be expected to be less accurate than those in Table 1 because no industry produces a completely homogeneous output. Also the input-output approach is more useful for obtaining overall results for a broad range of commodities as described above, and where interest centres on a specific product a detailed process costing may be called for. For instance, the very high figure for paint in Table 3 corresponds to a similar high figure obtained from the UK input-output tables,¹⁰ and probably indicates that a process energy costing is advisable to identify where energy savings can be achieved.

Summary

Energy costs of all commodities produced in the USA in 1963 have been derived from an input-output table. All intermediate inputs to the production are traced back to the primary energy needed to produce and transport them. Other authors have performed energy costings of individual processes and obtained more detailed results, whereas the input-output approach is more

¹² L.G. Brookes, 'More on the output elasticity of energy consumption', *Journal* of *Industrial Economics*, Vol 21, No 1, Autumn 1972, p. 83

No.	Commodity	Energy cost
(1.2)	Poultry	7.32 (per kg live weight)
(2.1)	Cotton	15.7
(2.3)	Tobacco	26.4
(5.0)	Iron ore	0.504
(14.2)	Butter	27.4
(14-3)	Cheese	20.3
(14-6)	Milk	7.35
(14-14)	Flour	2.36
(14-16)	Milled rice	4.09
(14-19)	Sugar	5.74
(14·24)	Cottonseed oil	5.33
(1 4 ·25)	Soybean oil	4.98
(14-28)	Coffee	41.9
(15.1)	Cigarettes	0.0370 kWh/cigarette
(20-6)	Plywood	1.41 kWh/ft ²
(24-1)	Pulp	7.83
(24.2)	Paper	17.02
(27.2)	Fertilisers	8-63 (per kg plant nu trie nt
(28.2)	Synthetic rubber	35.8
(30.0)	Paints	199•7 kWh/gal.
(32.3)	Reclaimed rubber	6.10
(37.1)	Pig iron	4.34
(37.2)	Steel (ex-foundry)	3.27
(37.3)	Steel forgings	6.39
(38.1)	Copper	22.1
(38-2)	Lead	7.14
(38.3)	Zinc	10.5
(38.4)	Aluminium	24.4
(38-8)	Aluminium sheet	30-4

Table 3. Energy costs in US in 1963 units kWh/kg unless otherwise stated

appropriate for producing results for a range of commodities, eg capital goods, imports, exports, etc. Input-output tables are usually available in published form whereas data for process costing are sometimes less easy to obtain. However, input-output tables are at least 5 years out of date because of the time currently taken to carry out the required census and then compile the table. This applies to the technology used, not to the prices. The availability of input-output tables facilitates comparisons between countries although this is not attempted in this article. Also the input-output approach can readily be applied to any other natural resource, or combination of resources, besides primary energy.

We have presented above energy costs per unit of money value (Table 1) which are appropriate to comparing money and energy costs for different commodities, and also energy costs per physical unit (Table 3) which are useful in obtaining a relation between physical production and demands on primary energy sources. It is difficult to estimate the accuracy of these figures but anything better than 10-15% would be optimistic.

Acknowledgement

The author would like to express his thanks to the other members of the Systems Analysis Research Unit for many helpful discussions.