
Alexandra Silva
K. Rustan M. Leino (Eds.)

LN
CS

 1
27

59

33rd International Conference, CAV 2021
Virtual Event, July 20–23, 2021
Proceedings, Part I

Computer Aided
Verification

Lecture Notes in Computer Science 12759

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexandra Silva • K. Rustan M. Leino (Eds.)

Computer Aided
Verification
33rd International Conference, CAV 2021
Virtual Event, July 20–23, 2021
Proceedings, Part I

123

Editors
Alexandra Silva
University College London
London, UK

K. Rustan M. Leino
Automated Reasoning Group | AWS
Seattle, WA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-81684-1 ISBN 978-3-030-81685-8 (eBook)
https://doi.org/10.1007/978-3-030-81685-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-81685-8
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2021, the 33rd International
Conference on Computer-Aided Verification. CAV 2021 was held as a virtual con-
ference during July 20–23, 2021. The tutorial days were on July 19 and July 24, 2021,
and the pre-conference workshops were held during July 18–19, 2021. Due to the
COVID-19 outbreak, all events took place online.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This puts CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2021 received a very high number of submissions (290). We accepted 16 tool
papers, 3 case studies, and 60 regular papers, which amounts to an acceptance rate of
roughly 27%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, machine learning, and industrially
deployed systems. The program featured keynote talks by Loris D’Antoni
(UW-Madison), Corina Pasareanu (NASA), and Anna Slobodova (Centaur Technol-
ogy, Inc.) as well as invited tutorials by Nate Foster (Cornell University), Zak Kincaid
(Princeton) together with Tom Reps (UW-Madison), and Nadia Polikarpova (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2021 hosted the following workshops:
Formal Approaches to Certifying Compliance (FACC), Formal Methods for
ML-Enabled Autonomous Systems (FoMLAS), Formal Methods for Blockchains
(FMBC), Numerical Software Verification (NSV), Theory and Practice of String
Solving (TPSS), Verifying Probabilistic Programs (VeriProP), Synthesis (SYNT),
Satisfiability Modulo Theories (SMT), and Verification Mentoring Workshop (VMW).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2021 consisted of 79 members — a
committee of this size ensures that each member has to review only a reasonable
number of papers in the allotted time. In all, the committee members wrote over 900
reviews while investing significant effort to maintain and ensure the high quality of the
conference program. We are grateful to the CAV 2021 Program Committee for their
outstanding efforts in evaluating the submissions and making sure that each paper got a
fair chance. Like last year’s CAV, we made the artifact evaluation mandatory for tool
paper submissions and optional, but encouraged, for the rest of the accepted papers.
This year saw an unprecedented number of 66 artifact submissions. The Artifact
Evaluation Committee consisted of 72 members who put in significant effort to eval-
uate each artifact. The goal of this process was to provide constructive feedback to tool

developers and help make the research published in CAV more reproducible. We are
also very grateful to the Artifact Evaluation Committee for their hard work and ded-
ication in evaluating the submitted artifacts.

CAV 2021 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2021 a success. First, we would like to thank Clément Pit-Claudel and Maria Schett for
chairing the Artifact Evaluation Committee and John Cyphert for putting together the
proceedings. We also thank Arie Gurfinkel for chairing the workshop organization,
Bor-Yuh Evan Chang for managing sponsorship, Thomas Wies for arranging student
fellowships, Norine Coenen for handling publicity, Leopold Haller for organising the
Logic Lounge, and Peter Müller for putting together the Ask me Anything program. We
also thank Jean-Baptiste Jeannin and Arjun Radhakrishna for chairing the Mentoring
Committee. Putting together an online conference is a complex task and we are grateful
to the virtualization chair Tiago Ferreira, the student volunteer coordinators Tobias
Kappé and Tao Gu, the local organizers for the Asia timezone, Ichiro Hasuo and
Krishna S, and the team at Slides Live for all their efforts. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2021.

We hope that you will find the proceedings of CAV 2021 scientifically interesting
and thought-provoking!

June 2021 Alexandra Silva
Rustan Leino

vi Preface

Organization

Steering Committee

Ornal Grumberg Technion, Israel
Aarti Gupta Princeton University, USA
Daniel Kroening Amazon, USA
Kenneth Mcmillan University of Texas at Austin, USA

Conference Co-chairs

K. Rustan M. Leino Amazon, USA
Alexandra Silva University College London, UK

Artifact Co-chairs

Clément Pit-Claudel Massachusetts Institute of Technology, USA
Maria Schett University College London, UK

Workshop Chair

Arie Gurfinkel University of Waterloo, Canada

Verification Mentoring Workshop Organizing Committee

Jean-Baptiste Jeannin
(Co-chair)

University of Michigan, USA

Arjun Radhakrishna
(Co-chair)

Microsoft Research, USA

Suguman Bansal University of Pennsylvania, USA
Roopsha Samanta Purdue University, USA
Caterina Urban Inria and École Normale Supérieure, France

Logic Lounge Organizer

Leopold Haller Google Inc., USA

Ask Me Anything Organizer

Peter Müller ETH Zürich, Switzerland

Publicity Chair

Norine Coenen CISPA Helmholtz Center for Information Security,
Germany

Sponsorship Chair

Bor-Yuh Evan Chang University of Colorado Boulder, USA

Fellowship Chair

Thomas Wies New York University, USA

Student Volunteer Coordinators

Tao Gu University College London, UK
Tobias Kappé Cornell University, USA

Proceedings and Talks Chair

John Cyphert University of Wisconsin–Madison, USA

Virtualization Chair

Tiago Ferreira University College London, UK

Local Organization Chairs

Ichiro Hasuo National Institute of Informatics, Japan
Krishna S. IIT Bombay, India

Program Committee

Erika Abraham RWTH Aachen University, Germany
Elvira Albert Universidad Complutense de Madrid, Spain
Christel Baier TU Dresden, Germany
Clark Barrett Stanford University, USA
Ezio Bartocci TU Wien, Austria
Josh Berdine Facebook, UK
Armin Biere Johannes Kepler University Linz, Austria
Sam Blackshear Novi, USA
Jasmin Blanchette Vrije Universiteit Amsterdam, Netherlands
Roderick Bloem Graz University of Technology, Austria
Borzoo Bonakdarpour Michigan State University, USA
Ahmed Bouajjani Université de Paris, France
Tevfik Bultan University of California, Santa Barbara, USA

viii Organization

Sagar Chaki Mentor Graphics, USA
Bor-Yuh Evan Chang University of Colorado Boulder and Amazon, USA
Hana Chockler King's College London, UK
Cristina David University of Bristol, UK
Jennifer Davis Collins Aerospace, USA
Yuxin Deng East China Normal University, China
Rayna Dimitrova CISPA Helmholtz Center for Information Security,

Germany
Alastair Donaldson Imperial College London, UK
Constantin Enea Université de Paris, France
Joao Fernandes University of Porto, Portugal
Bernd Finkbeiner CISPA Helmholtz Center for Information Security,

Germany
Vijay Ganesh University of Waterloo, Canada
Pierre Ganty IMDEA Software Institute, Spain
Aarti Gupta Princeton University, USA
Arie Gurfinkel University of Waterloo, Canada
Ichiro Hasuo National Institute of Informatics, Japan
Marieke Huisman University of Twente, Netherlands
David N. Jansen Institute of Software, Chinese Academy of Sciences,

China
Jean-Baptiste Jeannin University of Michigan, USA
Ranjit Jhala University of California, San Diego, USA
Rajeev Joshi Amazon, USA
Temesghen Kahsai The University of Iowa, USA
Benjamin Lucien Kaminski University College London, UK
Joost-Pieter Katoen RWTH Aachen University, Germany
Guy Katz The Hebrew University of Jerusalem, Israel
Laura Kovacs Vienna University of Technology, Austria
Mitja Kulczynski Kiel University, Germany
Mohit Kumar Tekriwal University of Michigan, USA
Orna Kupferman The Hebrew University of Jerusalem, Israel
Marta Kwiatkowska University of Oxford, UK
Shuvendu Lahiri Microsoft Research, USA
Akash Lal Microsoft Research, India
Kim Larsen Aalborg University, Denmark
Marijana Lazic Technical University of Munich, Germany
Owolabi Legunsen University of Illinois at Urbana-Champaign, USA
K. Rustan M. Leino

(Co-chair)
Amazon, USA

Rupak Majumdar Max Planck Institute for Software Systems, Germany
Ruben Martins Carnegie Mellon University, USA
Ken McMillan University of Texas at Austin, USA
Aina Niemetz Stanford University, USA
Ruzica Piskac Yale University, USA
Sylvie Putot Ecole Polytechnique, France

Organization ix

Markus N. Rabe Google, USA
Talia Ringer University of Washington, USA
Kristin Yvonne Rozier Iowa State University, USA
Philipp Ruemmer Uppsala University, Sweden
Krishna S. IIT Bombay, India
Roopsha Samanta Purdue University, USA
Sanjit A. Seshia University of California, Berkeley
Natarajan Shankar SRI International, USA
Natasha Sharygina Università della Svizzera italiana, Switzerland
Sharon Shoham Tel Aviv University, Israel
Alexandra Silva (Co-chair) University College London, UK
Tachio Terauchi Waseda University, Japan
Cesare Tinelli The University of Iowa, USA
Aaron Tomb Galois, Inc., USA
Ashutosh Trivedi University of Colorado Boulder, USA
Caterina Urban Inria, France
Margus Veanes Microsoft, USA
Jules Villard Facebook, UK
Yakir Vizel Technion, Israel
Chao Wang University of Southern California, USA
Wang Yi Uppsala University, Sweden
Mingsheng Ying University of Technology Sydney, Australia
Nobuko Yoshida Imperial College London, UK
Lijun Zhang Institute of Software, Chinese Academy of Sciences,

China

Artifact Evaluation Committee

Rosa Abbasi Boroujeni Max Planck Institute for Software Systems, Germany
Guy Amir The Hebrew University of Jerusalem, Israel
Vincent Archambault University of Montreal, Canada
M. Fareed Arif The Unviersity of Iowa, USA
Filipe Arruda Universidade Federal de Pernambuco, Brazil
Kshitij Bansal Facebook, USA
Suguman Bansal Rice University, USA
Shraddha Barke University of California, San Diego, USA
Kevin Batz RWTH Aachen University, Germany
Heiko Becker Max Planck Institute for Software Systems, Germany
Julia Belyakova Southern Federal University, Russia
Murphy Berzish University of Waterloo, Canada
Ranadeep Biswas Université de Paris, France
Alexandra Bugariu ETH Zurich, Switzerland
Katherine Cordwell Carnegie Mellon University, USA
Martin Desharnais Bundeswehr University Munich, Germany
Zafer Esen Uppsala University, Sweden
Mathias Fleury Johannes Kepler University Linz, Austria

x Organization

Isabel Garcia-Contreras IMDEA Software Institute and Universidad Politecnica
de Madrid, Spain

Luke Geeson Arm, UK
Nick Giannarakis University of Wisconsin-Madison, USA
Pablo Gordillo Universidad Complutense de Madrid, Spain
Laura Graves University of Waterloo, Canada
Zheng Guo University of California, San Diego, USA
Vedad Hadžić Graz University of Technology, Austria
Miguel Isabel Universidad Politécnica de Madrid, Spain
Anastasiia Izycheva Technical University of Munich, Germany
Chris Jenkins University of Iowa, USA
Daniela Kaufmann Johannes Kepler University Linz, Austria
Brian Kempa Iowa State University, USA
Bettina Könighofer Graz University of Technology, Austria
Mitja Kulczynski Kiel University, Germany
Mohit Kumar Tekriwal University of Michigan, USA
Stella Lau Massachusetts Institute of Technology, USA
Julien Lepiller Yale University, USA
Chunxiao Li University of Waterloo, Canada
Junyi Liu Institute of Software, Chinese Academy of Sciences,

China
Debasmita Lohar Max Planck Institute for Software Systems, Germany
Makai Mann Stanford University, USA
Roy Margalit Tel Aviv University, Israel
Sidi Mohamed Beillahi Université de Paris and CNRS, France
Marcel Moosbrugger TU Wien, Austria
Marianela Morales Inria, France
Jasper Nalbach RWTH Aachen University, Germany
Andres Noetzli Stanford University, USA
Mário Pereira Universidade NOVA de Lisboa, Portugal
Mateo Perez University of Colorado Boulder, USA
Elizabeth Polgreen University of California, Berkeley, USA
Mathias Preiner Stanford University, USA
Tim Quatmann RWTH Aachen University, Germany
Bob Rubbens University of Twente, Netherlands
Vimala S. Indian Institute of Technology, Madras, India
Philipp Schröer RWTH Aachen University, Germany
Joseph Scott University of Waterloo, Canada
Amanda Stjerna Uppsala University, Sweden
Zachary Susag University of Wisconsin-Madison, USA
Hira Syeda Chalmers Universityof Technology, Sweden
Martin Tappler Graz University of Technology, Austria
Michael Tautschnig Queen Mary University of London, UK
Saeid Tizpaz Niari University of Texas at El Paso, USA
Hazem Torfah University of California, Berkeley, USA
Deivid Vale Radboud University Nijmegen, Netherlands

Organization xi

Masaki Waga Kyoto University, Japan
Peixin Wang Shanghai Jiao Tong University, China
Sarah Winkler Free University of Bozen-Bolzano, Italy
Tobias Winkler RWTH Aachen University, Germany
Ali Younes Bauman Moscow State University, Russia
Xiao-Yi Zhang National Institute of Informatics, Japan
Yuhao Zhang University of Wisconsin-Madison, USA

Additional Reviewers

Ahmad, Hammad
An, Jie
Armborst, Lukas
Almagor, Shaull
Arenas, Puri
Asadi, Sepideh
Amir, Guy
Arif, Fareed
Asarin, Eugene
Baanen, Anne
Batz, Kevin
Berzish, Murphy
Bacci, Giovanni
Baumeister, Jan
Blicha, Martin
Balasubramanian, A. R.
Belo Lourenço, Cláudio
Boker, Udi
Barbosa, Haniel
Bentkamp, Alexander
Bønneland, Frederik M.
Barwell, Adam
Berger, Jana
Brain, Martin
Castellano, Ezequiel
Chen, Mingshuai
Coenen, Norine
Castro-Pérez, David
Chida, Nariyoshi
Cogumbreiro, Tiago
Cetinkaya, Ahmet
Chipara, Octav
Correas Fernández, Jesús
Cheang, Kevin
Dai, Gaoyang

Defourné, Antoine
Downing, Mara
Darwin, Oscar
Dill, David
Dunn, Isaac
Dave, Vrunda
Dohmen, Taylor
Dureja, Rohit
De Masellis, Riccardo
Doveri, Kyveli
Eberhart, Clovis
Eiers, William
Esen, Zafer
Ebrahimi, Masoud
Farzan, Azadeh
Feng, Yuan
Fleury, Mathias
Fedyukovich, Grigory
Ferraiuolo, Andrew
Gardy, Patrick
Godefroid, Patrice
Graham-Lengrand, Stéphane
Gehani, Ashish
Gomez-Zamalloa, Miguel
Grumberg, Orna
Genaim, Samir
Goorden, Martijn
Guan, Ji
Georgiou, Pamina
Gordillo, Pablo
Guha, Shibashis
Giacobbe, Mirco
Graf, Susanne
Gupta, Ashutosh
Giesl, Jürgen

xii Organization

Habermehl, Peter
Helfrich, Martin
Huang, Chengchao
Hadzic, Vedad
Hofmann, Jana
Huber, Nikolaus
Hark, Marcel
Holík, Lukáš
Hyvärinen, Antti
Hecking-Harbusch, Jesko
Hozzova, Petra
Irfan, Ahmed
Isabel, Miguel
Jaber, Nouraldin
Jha, Susmit
Jovanović, Dejan
Jensen, Mathias Claus
Jiang, Xu
Junges, Sebastian
Jensen, Peter Gjøl
Kadron, Burak
Klikovits, Stefan
Koenighofer, Bettina
Kempa, Brian
Klinkenberg, Lutz
Kremer, Gereon
Kheterpal, Nishant
Klüppelholz, Sascha
Kura, Satoshi
Kim, Edward
La Malfa, Emanuele
Li, Jianlin
Lin, Shaokai
Lachnitt, Hanna
Li, Yangjia
Lorber, Florian
Larraz, Daniel
Li, Yong
Lukina, Anna
Lathouwers, Sophie
Limperg, Jannis
Luppen, Zachary
Lee, Sang-Hwa
Maderbacher, Benedikt
Merayo, Alicia
Mora, Federico

Madnani, Khushraj
Metzger, Niklas
Mueller, Peter
Mallik, Kaushik
Michelmore, Rhiannon
Mundkur, Prashanth
Mann, Makai
Mohaqeqi, Morteza
Murali, Vishnu
Martin-Martin, Enrique
Monti, Raul
Möhle, Sibylle
Mazzucato, Denis
Moosbrugger, Marcel
Nagisetty, Vineel
Nenzi, Laura
Noll, Thomas
Narodytska, Nina
Nikšić, Filip
Nummelin, Visa
Nejati, Saeed
Otoni, Rodrigo
Ozdemir, Alex
Özkan, Burcu
Overbeek, Roy
Pant, Yash Vardhan
Perez, Mateo
Polgreen, Elizabeth
Passing, Noemi
Philipoom, Jade
Poulsen, Danny Bøgsted
Patane, Andrea
Pick, Lauren
Preiner, Mathias
Pereira, Mário
Piribauer, Jakob
Purser, David
Quatmann, Tim
Reynolds, Andrew
Rubbens, Bob
Ryan, Megan
Rowe, Reuben
Sato, Sota
Sebastiani, Roberto
Stanford, Caleb
Schupp, Stefan

Organization xiii

Shah, Ameesh
Stankovic, Miroslav
Schurr, Hans-Jörg
Solovyev, Alexey
Stein, Benno
Schwenger, Maximilian
Spel, Jip
Tabar, Asmae
Torfah, Hazem
Tsiskaridze, Nestan
Tekriwal, Mohit
Tschaikowski, Max
Turrini, Andrea
Tibo, Alessandro
Unno, Hiroshi
Vasconcelos, Vasco
Vediramana Krishnan, Hari Govind
Vukmirović, Petar
Vazquez-Chanlatte, Marcell
Venkatesan, Abinaya
Waga, Masaki
Wang, Qisheng

Wilson, Amalee
Wagner, Christopher
Weil-Kennedy, Chana
Winkler, Tobias
Wang, Benjie
Welzel, Christoph
Wu, Haoze
Wang, Fang
Wicker, Matthew
Wu, Min
Wang, Peixin
Xue, Bai
Yu, Emily
Zeljić, Aleksandar
Zhang, Linpeng
Zhou, Mengchu
Zhang, Hanwei
Zhao, Hengjun
Zuleger, Florian
Zhang, Hengjun
Zhou, Li

xiv Organization

Contents – Part I

Invited Papers

NNREPAIR: Constraint-Based Repair of Neural Network Classifiers 3
Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller,
and Corina S. Păsăreanu

Balancing Automation and Control for Formal Verification
of Microprocessors . 26

Shilpi Goel, Anna Slobodova, Rob Sumners, and Sol Swords

Algebraic Program Analysis . 46
Zachary Kincaid, Thomas Reps, and John Cyphert

Programmable Program Synthesis . 84
Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps

Deductive Synthesis of Programs with Pointers: Techniques, Challenges,
Opportunities: (Invited Paper) . 110

Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe,
and Ilya Sergey

AI Verification

DNNV: A Framework for Deep Neural Network Verification 137
David Shriver, Sebastian Elbaum, and Matthew B. Dwyer

Robustness Verification of Quantum Classifiers . 151
Ji Guan, Wang Fang, and Mingsheng Ying

BDD4BNN: A BDD-Based Quantitative Analysis Framework
for Binarized Neural Networks . 175

Yedi Zhang, Zhe Zhao, Guangke Chen, Fu Song, and Taolue Chen

Automated Safety Verification of Programs Invoking Neural Networks 201
Maria Christakis, Hasan Ferit Eniser, Holger Hermanns,
Jörg Hoffmann, Yugesh Kothari, Jianlin Li, Jorge A. Navas,
and Valentin Wüstholz

Scalable Polyhedral Verification of Recurrent Neural Networks 225
Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh,
Andrei Dan, and Martin Vechev

Verisig 2.0: Verification of Neural Network Controllers Using Taylor
Model Preconditioning. 249

Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur,
George Pappas, and Insup Lee

Robustness Verification of Semantic Segmentation Neural Networks Using
Relaxed Reachability . 263

Hoang-Dung Tran, Neelanjana Pal, Patrick Musau,
Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang,
Stanley Bak, and Taylor T. Johnson

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 287
Haitham Khedr, James Ferlez, and Yasser Shoukry

Concurrency and Blockchain

Isla: Integrating Full-Scale ISA Semantics and Axiomatic
Concurrency Models . 303

Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte,
and Peter Sewell

Summing up Smart Transitions . 317
Neta Elad, Sophie Rain, Neil Immerman, Laura Kovács,
and Mooly Sagiv

Stateless Model Checking Under a Reads-Value-From Equivalence 341
Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak,
Andreas Pavlogiannis, and Viktor Toman

Gobra: Modular Specification and Verification of Go Programs 367
Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn,
João C. Pereira, and Peter Müller

Delay-Bounded Scheduling Without Delay! . 380
Andrew Johnson and Thomas Wahl

Checking Data-Race Freedom of GPU Kernels, Compositionally 403
Tiago Cogumbreiro, Julien Lange, Dennis Liew Zhen Rong,
and Hannah Zicarelli

GENMC: A Model Checker for Weak Memory Models 427
Michalis Kokologiannakis and Viktor Vafeiadis

xvi Contents – Part I

Hybrid and Cyber-Physical Systems

Synthesizing Invariant Barrier Certificates via
Difference-of-Convex Programming. 443

Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan,
and Joost-Pieter Katoen

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear
Systems via Barrier Certificate Generation . 467

Zhengfeng Yang, Yidan Zhang, Wang Lin, Xia Zeng, Xiaochao Tang,
Zhenbing Zeng, and Zhiming Liu

HYBRIDSYNCHAADL: Modeling and Formal Analysis of Virtually
Synchronous CPSs in AADL . 491

Jaehun Lee, Sharon Kim, Kyungmin Bae, and Peter Csaba Ölveczky

Computing Bottom SCCs Symbolically Using Transition
Guided Reduction . 505

Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 529
Sergio Mover, Alessandro Cimatti, Alberto Griggio, Ahmed Irfan,
and Stefano Tonetta

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 552
Étienne André

Formally Verified Switching Logic for Recoverability
of Aircraft Controller . 566

Ratan Lal, Aaron McKinnis, Dustin Hauptman, Shawn Keshmiri,
and Pavithra Prabhakar

SceneChecker: Boosting Scenario Verification Using Symmetry
Abstractions . 580

Hussein Sibai, Yangge Li, and Sayan Mitra

Effective Hybrid System Falsification Using Monte Carlo Tree Search
Guided by QB-Robustness . 595

Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo,
and Jianjun Zhao

Fast Zone-Based Algorithms for Reachability in Pushdown
Timed Automata . 619

S. Akshay, Paul Gastin, and Karthik R. Prakash

Contents – Part I xvii

Security

Verified Cryptographic Code for Everybody . 645
Brett Boston, Samuel Breese, Joey Dodds, Mike Dodds, Brian Huffman,
Adam Petcher, and Andrei Stefanescu

Not All Bugs Are Created Equal, But Robust Reachability Can
Tell the Difference . 669

Guillaume Girol, Benjamin Farinier, and Sébastien Bardin

A Temporal Logic for Asynchronous Hyperproperties 694
Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour,
Bernd Finkbeiner, and César Sánchez

Product Programs in the Wild: Retrofitting Program Verifiers to Check
Information Flow Security . 718

Marco Eilers, Severin Meier, and Peter Müller

Constraint-Based Relational Verification . 742
Hiroshi Unno, Tachio Terauchi, and Eric Koskinen

Pre-deployment Security Assessment for Cloud Services Through
Semantic Reasoning . 767

Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk

Synthesis

Synthesis with Asymptotic Resource Bounds . 783
Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps

Program Sketching by Automatically Generating Mocks from Tests 808
Nate F. F. Bragg, Jeffrey S. Foster, Cody Roux,
and Armando Solar-Lezama

Counterexample-Guided Partial Bounding for Recursive
Function Synthesis . 832

Azadeh Farzan and Victor Nicolet

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 856
Roman Andriushchenko, Milan Češka, Sebastian Junges,
Joost-Pieter Katoen, and Šimon Stupinský

Adapting Behaviors via Reactive Synthesis . 870
Gal Amram, Suguman Bansal, Dror Fried, Lucas Martinelli Tabajara,
Moshe Y. Vardi, and Gera Weiss

xviii Contents – Part I

Causality-Based Game Solving . 894
Christel Baier, Norine Coenen, Bernd Finkbeiner, Florian Funke,
Simon Jantsch, and Julian Siber

Author Index . 919

Contents – Part I xix

http://dx.doi.org/10.1007/978-3-030-81688-9_1

Contents – Part II

Complexity and Termination

Learning Probabilistic Termination Proofs . 3
Alessandro Abate, Mirco Giacobbe, and Diptarko Roy

Ghost Signals: Verifying Termination of Busy Waiting 27
Tobias Reinhard and Bart Jacobs

Reflections on Termination of Linear Loops . 51
Shaowei Zhu and Zachary Kincaid

Decision Tree Learning in CEGIS-Based Termination Analysis. 75
Satoshi Kura, Hiroshi Unno, and Ichiro Hasuo

ATLAS: Automated Amortised Complexity Analysis of Self-adjusting
Data Structures . 99

Lorenz Leutgeb, Georg Moser, and Florian Zuleger

Decision Procedures and Solvers

Theory Exploration Powered by Deductive Synthesis. 125
Eytan Singher and Shachar Itzhaky

CoqQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver 149
Xiaomu Shi, Yu-Fu Fu, Jiaxiang Liu, Ming-Hsien Tsai,
Bow-Yaw Wang, and Bo-Yin Yang

Porous Invariants . 172
Engel Lefaucheux, Joël Ouaknine, David Purser, and James Worrell

JavaSMT3: Interacting with SMT Solvers in Java . 195
Daniel Baier, Dirk Beyer, and Karlheinz Friedberger

Efficient SMT-Based Analysis of Failure Propagation 209
Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires,
Alberto Griggio, Martin Jonáš, and Greg Kimberly

ddSMT 2.0: Better Delta Debugging for the SMT-LIBv2 Language
and Friends . 231

Gereon Kremer, Aina Niemetz, and Mathias Preiner

Learning Union of Integer Hypercubes with Queries:
(with Applications to Monadic Decomposition). 243

Oliver Markgraf, Daniel Stan, and Anthony W. Lin

Interpolation and Model Checking for Nonlinear Arithmetic 266
Dejan Jovanović and Bruno Dutertre

An SMT Solver for Regular Expressions and Linear Arithmetic
over String Length . 289

Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea,
Joel D. Day, Dirk Nowotka, and Vijay Ganesh

Counting Minimal Unsatisfiable Subsets . 313
Jaroslav Bendík and Kuldeep S. Meel

Sound Verification Procedures for Temporal Properties
of Infinite-State Systems . 337

Quentin Peyras, Jean-Paul Bodeveix, Julien Brunel,
and David Chemouil

Hardware and Model Checking

Progress in Certifying Hardware Model Checking Results 363
Emily Yu, Armin Biere, and Keijo Heljanko

Model-Checking Structured Context-Free Languages 387
Michele Chiari, Dino Mandrioli, and Matteo Pradella

Model Checking x-Regular Properties with Decoupled Search 411
Daniel Gnad, Jan Eisenhut, Alberto Lluch Lafuente, and Jörg Hoffmann

AIGEN: Random Generation of Symbolic Transition Systems 435
Swen Jacobs and Mouhammad Sakr

GPU Acceleration of Bounded Model Checking with ParaFROST. 447
Muhammad Osama and Anton Wijs

Pono: A Flexible and Extensible SMT-Based Model Checker 461
Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang,
Hongce Zhang, Kristopher Brown, Aarti Gupta, and Clark Barrett

Logical Foundations

Towards a Trustworthy Semantics-Based Language Framework via
Proof Generation. 477

Xiaohong Chen, Zhengyao Lin, Minh-Thai Trinh, and Grigore Roşu

xxii Contents – Part II

Foundations of Fine-Grained Explainability . 500
Sylvain Hallé and Hugo Tremblay

Latticed k-Induction with an Application to Probabilistic Programs 524
Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer

Stochastic Systems

Runtime Monitors for Markov Decision Processes. 553
Sebastian Junges, Hazem Torfah, and Sanjit A. Seshia

Model Checking Finite-Horizon Markov Chains
with Probabilistic Inference . 577

Steven Holtzen, Sebastian Junges, Marcell Vazquez-Chanlatte,
Todd Millstein, Sanjit A. Seshia, and Guy Van den Broeck

Enforcing Almost-Sure Reachability in POMDPs . 602
Sebastian Junges, Nils Jansen, and Sanjit A. Seshia

Rigorous Roundoff Error Analysis of Probabilistic
Floating-Point Computations. 626

George Constantinides, Fredrik Dahlqvist, Zvonimir Rakamarić,
and Rocco Salvia

Model-Free Reinforcement Learning for Branching Markov Decision
Processes . 651

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak

Software Verification

Cameleer: A Deductive Verification Tool for OCaml 677
Mário Pereira and António Ravara

LLMC: Verifying High-Performance Software . 690
Freark I. van der Berg

Formally Validating a Practical Verification Condition Generator 704
Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers

Automatic Generation and Validation of Instruction Encoders and Decoders. . 728
Xiangzhe Xu, Jinhua Wu, Yuting Wang, Zhenguo Yin, and Pengfei Li

An SMT Encoding of LLVM’s Memory Model for Bounded
Translation Validation . 752

Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes

Contents – Part II xxiii

Automatically Tailoring Abstract Interpretation to Custom
Usage Scenarios . 777

Muhammad Numair Mansur, Benjamin Mariano, Maria Christakis,
Jorge A. Navas, and Valentin Wüstholz

Functional Correctness of C Implementations of Dijkstra’s, Kruskal’s,
and Prim’s Algorithms. 801

Anshuman Mohan, Wei Xiang Leow, and Aquinas Hobor

Gillian, Part II: Real-World Verification for JavaScript and C. 827
Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos,
and Philippa Gardner

Debugging Network Reachability with Blocked Paths 851
S. Bayless, J. Backes, D. DaCosta, B. F. Jones, N. Launchbury,
P. Trentin, K. Jewell, S. Joshi, M. Q. Zeng, and N. Mathews

Lower-Bound Synthesis Using Loop Specialization and Max-SMT 863
Elvira Albert, Samir Genaim, Enrique Martin-Martin, Alicia Merayo,
and Albert Rubio

Fast Computation of Strong Control Dependencies 887
Marek Chalupa, David Klas ka, Jan Strejček, and Lukás Tomovic

DIFFY: Inductive Reasoning of Array Programs Using
Difference Invariants . 911

Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat

Author Index . 937

xxiv Contents – Part II

Invited Papers

NNREPAIR: Constraint-Based Repair
of Neural Network Classifiers

Muhammad Usman1(B), Divya Gopinath2(B), Youcheng Sun3(B),
Yannic Noller4(B), and Corina S. Păsăreanu2(B)

1 University of Texas at Austin, Austin, USA
muhammadusman@utexas.edu

2 KBR Inc., Nasa Ames, Mountain View, USA
{divya.gopinath,corina.s.pasareanu}@nasa.gov

3 Queen’s University Belfast, Belfast, UK
youcheng.sun@qub.ac.uk

4 National University of Singapore, Singapore, Singapore
yannic.noller@acm.org

Abstract. We present NNrepair, a constraint-based technique for
repairing neural network classifiers. The technique aims to fix the logic
of the network at an intermediate layer or at the last layer . NNrepair
first uses fault localization to find potentially faulty network parameters
(such as the weights) and then performs repair using constraint solving
to apply small modifications to the parameters to remedy the defects.
We present novel strategies to enable precise yet efficient repair such
as inferring correctness specifications to act as oracles for intermediate
layer repair, and generation of experts for each class. We demonstrate
the technique in the context of three different scenarios: (1) Improv-
ing the overall accuracy of a model, (2) Fixing security vulnerabilities
caused by poisoning of training data and (3) Improving the robustness of
the network against adversarial attacks. Our evaluation on MNIST and
CIFAR-10 models shows that NNrepair can improve the accuracy by
45.56% points on poisoned data and 10.40% points on adversarial data.
NNrepair also provides small improvement in the overall accuracy of
models, without requiring new data or re-training.

1 Introduction

Neural networks have many applications, being used for example in pattern
analysis, image classification, or sentiment analysis for textual data, and also in
medical diagnosis or perception and control in autonomous driving, which bring
safety and security concerns [10]. These systems learn the network parameters
(weights and biases) through training on a set of labeled examples. The per-
formance of the trained networks is independently validated by computing the
accuracy on a held-out labeled test set.

Just like other software systems, trained neural networks can have defects
that need repair. For example, a trained neural network may have low accuracy
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 3–25, 2021.
https://doi.org/10.1007/978-3-030-81685-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_1

4 M. Usman et al.

which may be due to limited training data. One would like to repair the network
by modifying its parameters (or a subset of them) to improve its overall accu-
racy, even in the absence of additional training data. In another scenario, the
training data for a neural network has been poisoned by an adversary leading to
high accuracy on normal data but poor accuracy on poisoned data [6,7,11]. In
this case, one would like to repair the network to remedy the defect while still
maintaining a high accuracy on non-poisoned data. In yet another scenario, a
trained network may have high accuracy on the test set but may be vulnerable
to adversarial perturbations, i.e., small modifications to the inputs that lead to
unexpected outputs. Recent studies [8,15,20] show that this defect is very com-
mon even for highly trained, highly accurate networks. In this case, one would
like to repair the network to make it robust against adversarial perturbations
while at the same time retaining its accuracy on the normal, unperturbed test
set.

Retraining could be used to alter the neural network parameters and repair
for faults, but it can be very difficult and expensive subject to uncertainties,
and may result in a network that is quite different from the original one, thus
wasting the effort of the original training.

We present a novel constraint-solving based approach, NNrepair, to repair
neural networks trained for the task of classification, with respect to all three sce-
narios described above. Similar to traditional program repair [5,13,22], NNre-
pair first uses fault localization to identify the network parameters that are the
likely source of defects, followed by repair, which uses constraint solving to apply
small modifications to the network parameters to remedy the defects.

Given a trained neural network model, the potentially faulty components
could be the architecture of the model (which is fixed in the design stage) or the
learn-able parameters such as the weights and the biases (which are determined
during training). In this work, we focus on the learn-able parameters of a neural
network model, specifically the weights on the edges connecting neurons. As
observed in [9], changing the weights is a common fix for neural networks.

We leverage the organization of a neural network into layers and the natural
decomposition of computation that each layer provides, and scope our work
to focus the repair on a single layer of the network. Repairs across multiple
layers are possible, but they would be less scalable and involve more complex
modifications. We propose two types of repairs: intermediate-layer repair and
last-layer repair. Intermediate-layer repair attempts to fix failures by modifying
the behavior of neurons at an inner layer of the network. Last-layer repair, on
the other hand, attempts to modify the decision constraints at the last layer.

Fault localization is used to mark one or more neurons at a layer as ‘suspi-
cious’ and to find a sub-set of incoming edges to the suspicious neurons, whose
weights will be the target for repair. The repair process involves solving con-
straints collected from the network, via a simple form of concolic execution [17].
For last-layer repair, the oracle of the repair is the desired label for every fail-
ing input and the repair constraints encode this decision. For intermediate-layer
repair, we propose a novel use of activation patterns representing specifications

NNrepair: Constraint-Based Repair of Neural Network Classifiers 5

of correct behavior at the layer [4] as oracles for repair. This enables us to keep
the repair local to the layer and therefore efficient.

Furthermore, to make the constraint solving scalable, instead of solving for
constraints for all classes at once, we propose to decompose the repair into a
set of sub-tasks, one for each output class. Specifically, we set-up the constraint
solving to correct a subset of the weights with the goal of improving accuracy of
the model wrt a specific output class. The result of this repair is a set of experts,
which are neural networks that improve accuracy of the network wrt specific
output classes. We then combine the experts to obtain the final repaired model.

There are a few recent related techniques that propose to use constraint solv-
ing for neural network repair. We summarize them in Sect. 6. These techniques
tend to focus on last layer repair while we also propose repair at an interme-
diate layer. Furthermore, we evaluate our initial prototype in three scenarios:
improving accuracy, robustness and resilience towards poisoned data. None of
the related techniques address all three (albeit potentially possible).

We summarize our contributions as follows.

– We propose and implement a repair technique that applies fault localization
and constraint solving to neural networks. Our approach can perform both
last and intermediate layer repair.

– To achieve scalability, our approach decomposes the repair into a set of experts
which display superior accuracy for specific labels. These are then combined
using a set of strategies that we propose to obtain the final repair.

– We present a novel technique to make it more efficient to repair inner layers of
a neural network by inferring specifications of correct behavior (in the terms
of the activation patterns) at the output of inner layers, and using them as
oracles for repair.

– While previous neural network repair techniques (see Sect. 6) tend to focus
solely on improving accuracy, we demonstrate our technique in the context of
three different scenarios: (1) Improving the overall accuracy of a model, (2)
Fixing security vulnerabilities caused by poisoning of training data and (3)
Improving the robustness of the network against adversarial attacks.

– We evaluate the techniques in the context of image classifiers for the MNIST
and CIFAR-10 data sets. The results indicate that NNrepair can improve
the performance of the network by 45.56% points on poisoned data and
10.40% points on adversarial data. NNrepair also provides small improve-
ment (+0.20% points), in the overall accuracy of models, without requiring
new data or re-training.

2 Background

Neural Networks. In this work we focus on neural network classifiers. These
networks take in an input, such as an image, and output a class (or label)
specific to the problem they have been trained to solve. Networks are organized
in layers of different types, including convolutional, activation, and pooling, each
of which has a number of nodes. For this paper, we focus on activation layers.

6 M. Usman et al.

Each node from the previous layer will output into the associated node in the
activation layer, which will apply an activation function. Common activation
functions include linear rectification (a.k.a. ReLU) and sigmoid. For simplicity
we discuss here ReLU activations but our work applies to arbitrary activations
as discussed below. Let N(X) denote the value of a neuron as a function of the
input. N(X) =

∑
i wi · Ni(X) + b where Ni’s denote the values of the neurons

in the previous layer of the network and the coefficients wi and the constant b
are referred to as weights and bias, respectively. If this function evaluates to a
non-negative value, the node is activated and outputs that value, otherwise it
outputs 0. A final decision (logits) layer produces the network decisions based on
the real values computed by the network, by applying e.g., a softmax function;
in our work we use the max function instead. For a comprehensive introduction
to neural networks, see [3].

Activation Patterns. We leverage previous work [4] to infer network properties
based on the activation patterns of neurons in the network. We will use these
activation patterns as oracles for the intermediate layer repair. An activation
pattern σ specifies an activation status (on or off) for some subset of neurons at
a layer in the network. All other neurons do not matter. We write on(σ) for the
set of neurons marked on, and off (σ) for the set of neurons marked off in the
pattern σ. Each activation pattern σ defines a predicate σ(X) that is satisfied by
all inputs X whose evaluation achieves the same activation status for all neurons
as prescribed by the pattern.

σ(X) :: =
∧

N∈on(σ)

N(X) > 0 ∧
∧

N∈off (σ)

N(X) ≤ 0 (1)

A decision pattern σ is a property wrt network F and postcondition P if:

∀X : σ(X) ⇒ P (F (X)). (2)

A postcondition for a classification network is that the top predicted class is
C, i.e., P (Y) := argmax(Y) = C.

The previous work [4] also describes how to compute activation patterns.
The idea is to observe the activation signatures of a large number of inputs and
apply decision tree learning over them to infer activation patterns that are thus
empirically valid. We adopt the same approach here. The support of a pattern is
formed by all the inputs that satisfy the pattern. We are interested in computing
high-support patterns as they are the most likely to reflect valid properties of
the network.

3 Example

This section demonstrates Intermediate-layer and Last-layer repair on a simple
example. Figure 1 shows a simple two-input network with two hidden layers; each
containing two ReLU nodes (ReLU(x) = x (on) if x > 0, 0 (off) otherwise), and

NNrepair: Constraint-Based Repair of Neural Network Classifiers 7

Fig. 1. Example

Table 1. Data for example

x0 x1 N0 N1 N2 N3 y0 y1 class ideal

X0 1 1 1 1 0 1 8 6 0 0

X1 0 1 1 1 1 1 0.25 9.25 1 1

X2 1 0 0 1 0 1 3 2.25 0 0

X3 −1 1 1 1 1 0 −7 13.12 1 1

X4 1.5 2 1 1 1 1 12.68 12.68 1 0

after repair: 1.5 2 1 1 0 1 13.3 10.5 0 0

X5 0.6 1 1 1 1 1 5.91 5.62 0 1

after repair: 0.6 1 1 1 1 1 5.91 5.95 1 1

two outputs, y0 and y1. The weights are depicted on the edges between nodes.
For simplicity we assume biases are 0. The input X, which is a two-element
array denoted [x0, x1], is assigned class 0 if y0 > y1 and 1 otherwise. Let us
assume the model behaves correctly on the first four inputs shown in Table 1. The
table also shows the decisions of the ReLU activations for nodes N0, N1, N2, N3,
respectively. Whenever a ReLU node is on, the decision is indicated as a 1 and
if it is off, then the decision value is shown as 0.

Consider now the input X4 = [1.5, 2.0]. Assume this input is mis-classified;
the output class is 1 but the ideal class is 0. The inaccuracy of the model could
be a result of insufficient training. We then aim to build a repair, which in our
case focuses on a single layer of the network and modifies the weights feeding
into the neurons at that layer.

We keep the repair local to the layer by using activation patterns [4] in
lieu of the decision constraints. The insight in [4] is that the logic that every
layer implements could be captured as rules in terms of the activation patterns
of the neurons. We can observe in the example, that for all inputs correctly
classified with label 0, the neuron pair (N2, N3) in the second layer has the
activation pattern (off, on). For the failing input, this pattern is not satisfied;
in fact the activation for (N2, N3) for the failing input is (on, on). We use the
above observation to fix the failure by performing intermediate layer repair. We

8 M. Usman et al.

Fig. 2. Overview of the approach

aim to modify the neuron activations of the second layer on the failing input to
satisfy the correct-label pattern for class 0 at the layer.

We aim to perform the repair by making minimal changes to the model. We
identify the weights to be modified using an attribution-based approach and
use constraint solving to compute the values of the new weights (see Sect. 4 for
details). Changing the weight of a single edge, connecting N1 and N2 from −1.5
to −1.9 changes the activation pattern for (N2, N3) to (off, on) on the failing
input, while preserving the behavior of the neurons (in terms of their activation
pattern) and the output of the model on the passing inputs.

Consider now another input for the above-corrected network, X5 = [0.6, 1.0].
This input is very close to X1 = [0.0, 1.0] (correctly classified to 1) with a small
change to x0 that makes the model mis-classify the input to 0. This represents a
typical adversarial scenario where a correctly classified input is perturbed slightly
to create an input that ‘jumps’ the decision boundary of the network leading
to a mis-classification. It can be observed that the activation patterns of the
internal layer neurons for X5 are the same as for the correctly classified input
X1, thus an intermediate-layer repair would not work for this input. Therefore
we perform last-layer repair. We localize the weights of the edges in the last layer
that need repair. Changing the weight on the edge between N3 and y1 (from 1.5
to 1.6) corrects the class for the failing test to 1, while retaining the same labels
for the other inputs.

4 Approach

Figure 2 gives an overview of our approach. We aim to repair a faulty trained
neural network classifier, which is given as input. As in other repair approaches,
we consider both positive and negative examples for the repair. The negative
examples are used to guide the repair towards correcting the faults while the
positive examples are used to constrain the repair to not damage the existing
good functionality of the network. We aim for a repair strategy that is scalable
and applies small changes to the network. We therefore target the repair on
a single layer of the network. Repairs across multiple layers of the network are
possible, but they would be less scalable and involve more complex modifications.

NNrepair: Constraint-Based Repair of Neural Network Classifiers 9

Unlike all previous work, which tends to focus the repair at the last layer
(see Sect. 6) we propose here techniques for both intermediate and last layer
repair. Intuitively, a last layer repair is easier as it aims to modify the weights
that impact directly the decisions, and can use the network’s output as an oracle
to guide the repair. However the resulting repair may not generalize well and
furthermore the network may be faulty at some intermediate layer. A repair
at an intermediate layer can have a higher impact over the network’s behavior
but it is more difficult as it is not clear what oracle to use to guide the repair.
One can use the output of the network as the oracle but this may result in an
un-manageable large number of constraints to solve. In this work we propose a
novel use of neuron activation patterns to act as oracles in intermediate layer
repair.

As repairing for all the output classes at the same time can be very difficult,
our proposed approach obtains instead a set of expert networks, one for each
target class, which are easier to compute. These experts are combined to obtain
a final repaired classifier. Specifically, our repair strategy has the following steps:

1 Fault Localization: The goal of this step is to identify a small set of suspicious
neurons and incoming suspicious edges, whose weights we aim to correct.

2 Concolic Execution: For the weights of the suspicious edges, we add δ values
that are set to 0 in concrete mode, but are designated as symbolic for the
symbolic mode. The network is executed concolically along positive and nega-
tive examples, to collect the values of suspicious neurons in terms of symbolic
expressions.

3 Constraint Solving: The symbolic expressions are assembled with a set of
repair constraints which are then solved with an off-the-shelf solver. Essen-
tially, the repair constraints need to encode the network decision for the
positive examples and modify (i.e., correct) the network decision for the neg-
ative examples. For the last layer repair this amounts to adding constraints
imposed by the decision layer. For intermediate-layer repair, we use activation
patterns instead of decision constraints, allowing us to keep the repair local
to the layer.
The solutions for the symbolic δ’s obtained from the solver are used to update
the weights of the network, thus obtaining an expert for a specific class.

4 Combining Experts: Finally the experts obtained for each class are combined
to obtain the repaired classifier. This needs to be done carefully, to avoid
redundant computations among experts and to not damage the overall accu-
racy and timing performance of the classification.

In the following we give more details about our approach.

4.1 Intermediate-Layer Repair

Fault Localization. We explore the usage of activation patterns of the network
(Sect. 2) to act as oracles of correct behavior. We also use these patterns to guide
the identification of potentially faulty neurons. Specifically, we use the decision-
tree learning approach from [4] to extract correct-label patterns corresponding to

10 M. Usman et al.

every output class at an intermediate layer. Each pattern is satisfied by a group
of inputs correctly classified to a certain label. Typically multiple correct-label
patterns are generated. We select the ones with the highest support, which are
mostly likely to hold true on the network for all inputs. Note also that the work
in [4] considers ReLU activations but it could be extended to consider arbitrary
linear or non-linear activation functions, by comparing the values of neurons
with a threshold.

A correct-label pattern with high support at a layer indicates that there
is a high chance that any input satisfying the pattern at the layer would be
classified by the network to the corresponding label. Furthermore, a mis-classified
input will not satisfy the correct-label pattern for the respective ideal label. For
every failing input, we compare the activations of the neurons with those in the
respective correct-label pattern and consider those neurons whose activations
differ as the potentially faulty ones. The repair then aims to change the outputs
of the neurons for each of the failing inputs, such that they satisfy the correct-
label pattern for their ideal labels.

In this work, we select a dense layer (i.e., a fully connected layer which
receives input from every neuron in the previous layer) with ReLU activations.
Typically such dense layers appear closer to the output and may impact the
classification decision more than convolutional layers which process the input.
Further, the number of neurons at fully connected layers is typically smaller than
at other layers making the pattern-extraction process efficient.

Consider a mis-classified input, Xf with ideal label C. Let σC be the correct-
label pattern with highest support for C. Let L be the layer for this pattern, and
let N denote a neuron at layer L. Then the set of suspicious or faulty neurons
Nf aulty can be defined as follows;

N ∈ Nf aulty ⇐⇒ (N ∈ on(σC)∧N(Xf) ≤ 0)∨(N ∈ off (σC)∧N(Xf) > 0) (3)

Once the neurons whose outputs need to change are identified, we also need to
identify the incoming edges to those neurons whose weights we aim to modify. We
use a simple statistical method to identify the important weights which impact
the respective neuron’s output, more for the failing inputs as compared to the
passing inputs.

Consider a set Fail of failing inputs with the same ideal label C and a set
Pass of passing inputs. We use #(·) to denote the cardinality of the sets. The
defect score for each edge is determined as follows.

Score(Ei) :: =
∑

X∈Fail |Ni(X) · wi|
#Fail

−
∑

X∈Pass |Ni(X) · wi|
#Pass

(4)

Here Ei denotes an incoming edge (for a faulty node N), Ni is the corre-
sponding node in the preceding layer and wi is the weight of the edge.

Thus, we take the average of the absolute values passing through the edge for
all the negative examples for C and the average of the absolute values passing
through the edge for all the positive examples and subtract them. The intuition
is to identify the edges which have more influence on the incorrect decision of the

NNrepair: Constraint-Based Repair of Neural Network Classifiers 11

network. We calculate the defect score for each incoming edge to each neuron
(N) in Nfaulty. We then select the edges with top n% of the scores to create the
set of faulty edges, for a small n.

Concolic Execution. We perform a simplified form of concolic execution to form
symbolic constraints for suspicious neurons. For the weights of the suspicious
edges, we add δ values that are set to 0 in concrete mode, but are designated
as symbolic in the symbolic mode. The network is executed concolically along
both positive and negative examples, to collect the values of neurons as weighted
sums in terms of both concrete values and the symbolic δ values. The value of a
neuron is computed as constraints of the following form:

SymN,X =
∑

i

(wi + δi) · Ni(X) +
∑

j

wj · Nj(X) + b (5)

Here SymN,X is a fresh symbolic variable introduced to encode the symbolic
value of neuron N for input X, wi’s denote the weights of the suspicious edges
(in the suspicious layer) while the wj ’s denote the other weights, which do not
need modification. Furthermore, Ni(X), Nj(X) represent the concrete values of
the neurons coming from the previous layer. Note that no expensive constraint
solving is needed in this step.

Repair Constraints and Constraint Solving. For intermediate-layer repair, we
add the activation patterns constraints (that imply the decision constraints, see
Eq. 1) to the set of constraints. Specifically, for each neuron N in Nfaulty, and
for each (passing or failing) input X we add SymN,X > 0 if N ∈ on(σC) and we
add SymN,X ≤ 0 if N ∈ off (σC).

The solutions for the symbolic δ’s obtained from the solver guarantee that
all the inputs (both passing and failing) satisfy the pattern and are thus likely
to be classified as C by the network. These solutions are then used to update
the weights of the network, thus obtaining an expert for the class C.

Example. Let us consider the example from Sect. 3, the case of the intermediate-
layer repair. As already discussed in Sect. 3, let us suppose we consider the
activation pattern for class 0 at layer 2. We select N2 as the target for repair
(since its activation along the failing test X4 is on instead of off) and we want
the input to satisfy the pattern {off, on} for {N2, N3}. We compute defect scores
for the incoming edges to N2 using the failing input and all passing inputs for
classes 0 and 1. The score of the edge between N0 and N2 is 2.0 while the score
of the edge between N1 and N2 is 2.81, we therefore select the second edge as a
target for repair. We then build the following constraints from the failing test.
SymN2,4 = 2.0 · (−1.0 ·1.5+2.0 ·2.0)+(−1.5+ δ) · (0.5 ·1.5+1.0 ·2.0)∧SymN2,4 ≤ 0.0

Similarly, we build constraints from the passing tests that satisfy the pattern
for label 0, X0 and X2:
SymN2,0 = 2.0 · (−1.0 ·1.0+2.0 ·1.0)+(−1.5+δ) · (0.5 ·1.0+1.0 ·1.0)∧ SymN2,0 ≤ 0.0∧
SymN2,2 = 2.0 · (−1.0 ·1.0+2.0 ·0.0)+(−1.5+ δ) · (0.5 ·1.0+1.0 ·0.0)∧ SymN2,2 ≤ 0.0

12 M. Usman et al.

In practice we also add some constraints on δ to keep it small but we omit
them here for simplicity. A solution for all the constraints is δ = −0.4 which is
used to update the weight for the target repair resulting in an expert for class 0.

4.2 Last-Layer Repair

Fault Localization. In a classifier network the last layer typically contains as
many neurons as the number of classes. An input is classified to label C, if the
output of the respective neuron is greater than the values of all other output
neurons. It is therefore natural to designate this neuron as suspicious for target
class C. Let NC denote the neuron at the last layer corresponding to a class
C. We use the same technique as in intermediate layer repair (Eq. 4) to localize
edges and short-list the important weights which are the target for repair.

Concolic Execution. Similar to the intermediate layer repair, we add symbolic
δ values to the important weights and perform concolic execution along pass-
ing and failing tests to create the symbolic expression for the node SymNC ,X

(following Eq. 5).

Repair Constraints and Constraint Solving. We then add the decision constraints
for the passing and failing inputs:

∧

C �=C′
SymNC ,X > SymNC′ ,X (6)

The obtained solutions guarantee that all the inputs that were used in the
repair (both positive and negative) are classified to the correct class. The solu-
tions are used to build the expert for each class. We then combine the experts
using the combination strategies outlined in the next section.

Example. Consider now the example from Sect. 3, the case of the last-layer repair.
As we aim to repair for class 1 we select for repair the neuron named y1 in the
figure. The score for the edge between N2 and y1 is −2.75 and the score for the
edge between N3 and y1 is 0.45 so we select the latter for repair. We then build
the following constraints based on the failed test (note that the expression for
the second variable simplifies to a concrete value):
Symy1,5 = (2.5 · (2 · (−1 · 0.6 + 2 · 1.0) − 1.9 · (0.5 · 0.6 + 1 · 1.0)) + (1.5 + δ) · (−0.5 · (−1 ·
0.6 + 2 · 1.0) + 3 · (0.5 · 0.6 + 1 · 1.0)))∧
Symy0,5 = (−1.5 · (2 · (−1 · 0.6 + 2 · 1.0) − 1.9 · (0.5 · 0.6 + 1 · 1.0)) + 2.0 · (−0.5 · (−1 ·
0.6 + 2 · 1.0) + 3 · (0.5 · 0.6 + 1 · 1.0)))∧
Symy1,5 > Symy0,5

Similar constraints are added for the positive inputs (we omit them here for
brevity). Solving these constraints gives δ = 0.1 which is added to the weight for
the edge between N3 and y1 to obtain an expert for class 1.

NNrepair: Constraint-Based Repair of Neural Network Classifiers 13

4.3 Combining Experts

We create experts for each label in the dataset. For example, for a neural network
trained on the MNIST data set (which is used for the classification of handwritten
digits from 0 to 9), we generate 10 experts – one expert per label. We propose
three variants of how to combine these experts:

(A) execute the model for all experts and combine the results afterwards,
(B) merge all experts into one combined expert before model execution, and
(C) filter strong experts first, then follow variant (A) or (B).

Variant (A) is an instance of ensemble modeling [1], which typically involves
creating multiple models to predict an outcome. In our case, we start by execut-
ing all the experts for each input. This is done in a combined fashion, to avoid
repeated execution of same code: before the repaired layer the model is executed
with the original weights; starting from the repaired layer the execution is split
up for the different experts. At the end of the execution, each expert classifies
the input to a certain label. We need to combine the results from all the experts
in order to classify the input to a single label.

Each expert can classify the input to any of the labels, however, each expert
can be trusted to produce the correct result only for its own respective label.
Therefore, we start by generating a set E including the experts that classify
the inputs to their respective labels. Note that it could be that multiple experts
report that the given input belongs to their respective class or it could be that
no expert classifies the given input to the expert’s class. If E is empty, then we
select the label by the original model. If there is one expert in E, then we select
this unique expert. If there are multiple experts in E, then we need to resolve
the conflict between experts and choose one label, for which we propose three
strategies:

Naive: This strategy simply falls back to the original model.
Confidence: This strategy selects the expert from E with the highest confidence

for its own label, i.e., the absolute value of the output node corresponding to
the label.

Voting: For the label corresponding to each expert in E, this strategy collects
votes from the other experts for the respective label. It then selects the expert
from E with the majority of the votes.

In variant (B), we propose to merge the experts before executing the model.
For the intermediate-layer repair, for every weight that is considered faulty we
update it with the one δ value, which is the average of the solutions from all
the experts. This creates a single merged network. For the last-layer repair, we
simply apply all the repairs at once; there is no need for an average as the nodes
(and edges) that are targets for repair are disjoint.

In variant (C), instead of using all experts we select a subset of strong experts.
Note that each expert is constructed from failing inputs only for the respective
label. Therefore, when exposed to data which are supposed to be classified to

14 M. Usman et al.

the expert’s label, the expert displays higher accuracy than the original model
(higher recall). However, when exposed to data which can belong to different
labels, the experts could display lower overall accuracy than the original model
(lower precision) due to high false positives. Therefore, we determine which of
the experts have both their precision and recall (F1 score), computed over all
positive/negative inputs, higher than the original model and retain only those
while filtering out the rest. The same combination strategies, variant (A), are
used to obtain a single classification result for the input.

5 Evaluation

We implemented our approach in the NNrepair tool pipeline, which is based
on NeuroSPF [21]. It first translates a trained Keras model into Java, uses
Symbolic PathFinder (SPF) [16] for concolic execution and z3 [14] for constraint
solving. In this section we evaluate NNrepair by considering its application
to three highly common scenarios; Scenario 1: improving accuracy, Scenario 2:
fixing backdoor attacks, and Scenario 3: enhancing adversarial robustness. Our
experiments use two commonly used datasets for image classification networks,
MNIST and CIFAR-10. We consider two architectures for MNIST with 10 and
7 layers respectively. They are convolutional neural networks (CNNs) and have
the typical structure of modern neural networks such as convolutional/dense,
max-pooling and softmax layers. The first MNIST model has an accuracy of
96.34% on the standard test set, while the second model has an accuracy of
98.89%. We refer to these models as MNIST-LQ (low-quality) and MNIST-HQ
(high-quality) respectively. The CIFAR-10 model is a 15-layer CNN with 890k
trainable parameters and has an accuracy of 81.04%. In order to validate our
approach, we consider the following research questions:

RQ1 Is NNrepair successful in correcting the defects in all three scenarios?
RQ2 How do intermediate-layer repair and last-layer repair compare with each

other?
RQ3 What is the inference time overhead introduced by NNrepair over the

original model?

5.1 Scenarios

(1) The goal of repair in the first scenario is to improve the overall accuracy of
a model. We measure the improvement in accuracy on the standard test set,
henceforth denoted Test. We use positive and negative examples from the
train set, henceforth denoted Train, to generate the repair.

(2) For this scenario, we apply the backdoor attack from [6]. Samples of poisoned
data are shown in Fig. 3. The poisoned models have good accuracy on the
standard data, but poor accuracy on the poisoned data. The goal of the
repair is to improve the accuracy on poisoned data, which we measure on a
separate poisoned test set P-Test. At the same time, we expect the repair

NNrepair: Constraint-Based Repair of Neural Network Classifiers 15

Fig. 3. Example poisoned data for MNIST (left) and CIFAR-10 (right). The backdoor
is embedded as the white square at the bottom right corner of each image. When the
backdoor appears, the poisoned MNIST model will classify the input as “7” and the
poisoned CIFAR-10 model will classify it as “horse”.

to retain the accuracy on standard, un-poisoned data, which we measure on
Test. In this scenario, the first 600 inputs in Train are poisoned (P-Train).
We draw from these particular inputs to get the negative examples to focus
the repair on the defect. We draw the positive examples from Train.

(3) For the last scenario, we apply adversarial perturbations over Train and Test
using FGSM1, for ε = 0.05. This results in four data sets: Train, Adv-Train,
Test and Adv-Test. The models have good overall accuracy on Train and
Test, but poor accuracy on Adv-Train and Adv-Test. The goal of the repair
here is to improve the accuracy on the adversarial data (which we measure
on Adv-Test) without damaging too much the accuracy on standard data
(which we measure on Test). We draw the negative examples to be used in
repair from Adv-Train, while we use positive examples from both Adv-Train
and Train. Since we use two separate sets to generate experts, when comput-
ing the F1-score for selection of experts, we explored two different options:
computing F1 score over Adv-Train only and computing harmonic mean of
the F1 scores computed over Train and Adv-Train separately. However, in
practice there was no difference as same experts were filtered in both cases.

5.2 Experiment Set-Up

For each of the three scenarios, we experimented with both intermediate-layer
and last-layer repairs. We evaluated all the combination strategies (Naive, Con-
fidence, Voting, and Merged) with the F1-filtering option being OFF and ON.
When F1-filtering is OFF, the experts for all labels are used in the combination
strategies by default, while when it is ON, we only include those experts whose
F1 score on Train is greater than the original model.

Intermediate-Layer Repair: We focused on the dense layer just before the output
layer for both the MNIST and CIFAR models. The intuition for this selection is
that dense layers appearing closer to the output potentially impact the classifi-
cation decision more than convolutional layers closer to the input (which have
the role of feature extraction). The MNIST models have 128 and 100 ReLU
nodes and 576 and 400 incoming edges to each neuron at this layer respectively,
while the CIFAR model has 512 ReLU neurons and 1,600 incoming edges at this

1 https://www.tensorflow.org/tutorials/generative/adversarial fgsm.

https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

16 M. Usman et al.

layer. We extracted high support patterns for correct classification; the average
support per label was within 1,013–2,502 across scenarios, out of around 6,000
inputs per label. The neurons short-listed in Nf aulty using pattern-based local-
ization varied between 1 and 10 in number. We focused on modifying the weights
of the incoming edges having their scores within the top 10%.

We used the patterns extracted at the layer to select a subset of tests for
the purpose of constraint solving. As explained in Sect. 4, we used decision-
tree learning to extract patterns for correct classification for every label. We
also extracted patterns for incorrect classification for each label, which represent
neuron activations satisfied by inputs which should ideally be classified to the
given label but get mis-classified. From the set of all failing tests for a given
label, we select all inputs that satisfy the pattern for incorrect classification for
the label. From the set of all passing tests for a given label, we select the subset
of inputs that satisfy the pattern for correct classification. We then randomly
select # failing tests + 100 inputs from this set. The subset of failing and passing
tests selected using the procedure above is used for constraint solving.

Last Layer Repair: At the last layer, the two MNIST models have 10 ReLU
nodes and 128 and 100 incoming edges to each neuron respectively, while the
CIFAR model has 10 ReLU neurons and 512 incoming edges. For each label, we
selected 5 failing and 5 passing inputs randomly from the respective datasets. For
the first scenario, both these failing and passing inputs come from the Train set.
For the last layer repair top 5 suspicious weights were made symbolic for each
expert. We determined empirically that a larger number for symbolic weights
and/or passing/failing inputs leads often to unsat constraints while a smaller
number may not improve the network.

The poisoned (2) and adversarial (3) scenarios differ from scenario 1, in that
they seek to address two challenges. The repaired model needs to have better
accuracy than the original model on poisoned and adversarial inputs respectively
(evaluated on the P-Test and Adv-Test sets), as well as the accuracy on normal
inputs should not be degraded much (evaluated on the normal Test set). For this
reason, for the purpose of constraint solving in addition to including passing tests
from the respective poisoned and adversarial train sets, we also include passing
tests from Train. We performed experiments increasing the number of passing
tests included from the normal train set from 0 to 10, 50, and 100.

5.3 Results

Table 2 presents a summary of our results (please refer to the Appendix2 for more
detailed results). The table displays the results for MNIST and CIFAR models
for the three scenarios. For each scenario, the results for both intermediate layer
and last layer repair are presented in terms of the improvement in accuracy
obtained over the original model. This is the best result corresponding to the
improvement in accuracy on the respective test sets (normal Test for the first

2 https://arxiv.org/abs/2103.12535.

https://arxiv.org/abs/2103.12535

NNrepair: Constraint-Based Repair of Neural Network Classifiers 17

scenario, P-Test for the second and Adv-Test for the third). The combination
strategy and the F1-Filter setting (ON/OFF) used to obtain the best result are
also displayed, along with the corresponding improvements in accuracy on the
other train and test sets. For the repair, z3 was able to generate solutions for each
expert within a minute. The constraint generation using SPF was the bottleneck
and SPF generated constraints for each expert within 15–60 min, depending on
the number of tests included. However, this could be improved since running
SPF on all positive/negative inputs can be performed in parallel. Experiments
were performed on a Windows 10.0 machine with Intel Core-i5 and 16 GB RAM.
The code, constraint files along with Z3 solution files are available at https://
github.com/muhammadusman93/nnrepair.

RQ1: For this research question we seek to investigate if NNrepair is suc-
cessful in correcting defects in all three scenarios. To measure success, we consider
the improvement in accuracy provided by the repair in all three scenarios.

The effectiveness of NNrepair in improving accuracy (Scenario 1) can be
analyzed by considering Table 2 (cases MNIST-LQ, MNIST-HQ and CIFAR10).

We observe that the best results provided by NNrepair for the MNIST-LQ
model was +0.20, +0.02 for the MNIST-HQ model and +0.16 for the CIFAR10
model. This improvement (albeit small) was achieved without any new inputs or
re-training. The quality of the improvement appears to degrade as the quality of
the original model increases. We note that achieving improvement in the overall
accuracy of an already high-quality model without new data is very challenging.
In fact this improvement appears to be in line or better than related repair
techniques (see Sect. 6). Note also that the complexity and size of the models do
not seem to have an impact on the effectiveness of the repair. The MNIST-HQ
architecture is simpler than MNIST-LQ and the CIFAR10 architecture is much
bigger and more complex than the MNIST models.

For Scenario 2, on the MNIST-Pois model, NNrepair increased the accu-
racy from 10.38% to 55.94% on poisoned inputs (P-Test). The repair causes
a slight decrease (−3.11) in accuracy on non-poisoned inputs (Test) but the
repaired model still has a high accuracy (≥95.5%) on non-poisoned inputs. On
the more challenging CIFAR10-Pois model, the best improvement provided by
NNrepair is a +3.77 increase on poisoned inputs, and a small decrease in accu-
racy on non-poisoned inputs (−0.61). For Scenario 3, on the MNIST-Adv model,
NNrepair increased the accuracy from 28.37% to 38.77% on adversarial inputs,
while causing a small decrease (−3.14) in accuracy on non-adversarial inputs.
For CIFAR10-Adv, the best result was an increase of +0.34 on adversarial inputs
with a minor decrease of −0.07 on non-adversarial inputs.

For the last two scenarios, the primary goal is to improve accuracy on poi-
soned or adversarial data. Although ideally we would also want to preserve the
original accuracy on normal data, this may not always be possible in practice.
We experimented with varying number of passing tests from Train for scenarios 2
and 3. The results are presented in the first table in the Appendix. The accuracy
of the resulting repair on the poisoned/adversarial test sets tends to decrease as
the number of normal passing tests goes up. However, this also reduces the

https://github.com/muhammadusman93/nnrepair
https://github.com/muhammadusman93/nnrepair

18 M. Usman et al.

Table 2. Summary of NNrepair performance on all models. Repair column shows
the type of repair, i.e., intermediate or last layer. Increase/decrease in accuracy shown
in terms of the difference between the accuracy of the repaired model and the original
model on the respective datasets. Accuracy of the original model is shown in brackets
(in bold) below each data set. The Strategy column shows the combination strategy
which work best for each scenario. ALL means that all strategies performed equally.
F1-Filter shows if best results were obtained by turning F1-Filter ON or OFF. The
number of experts used are shown in brackets.

Model Repair Increase/Decrease in accuracy Strategy F1-Filter

Train Test

(96.59%) (96.34%)

MNIST-LQ Interm +0.22 +0.20 Votes ON(3)

MNIST-LQ Last +0.00 +0.00 ALL ON(0

Train Test

(99.81%) (98.89%)

MNIST-HQ Interm +0.01 +0.02 Merged ON(3)

MNIST-HQ Last +0.00 +0.00 ALL ON(0)

P-Train Test P-Test

(98.99%) (98.63%) (10.38%)

MNIST-Pois Interm +0.00 −0.01 +1.81 Votes ON(2)

MNIST-Pois. Last −2.60 −3.11 +45.56 Confidence OFF

Train Adv-Train Test Adv-Test

(98.67%) (29.92%) (97.87%) (28.37%)

MNIST-Adv Interm −4.35 +2.75 −4.15 +3.87 Confidence ON(9)

MNIST-Adv. Last −3.99 +11.15 −3.14 +10.40 Merged ON(10)

Train Test

(87.25%) (81.04%)

CIFAR10 Interm +0.03 +0.03 Merged ON(1)

CIFAR10 Last +0.12 +0.16 ALL ON(1)

P-Train Test P-Test

(96.97%) (72.26%) (15.89%)

CIFAR10-Pois Interm +0.03 +0.02 +0.81 Merged ON(4)

CIFAR10-Pois. Last −0.89 −0.61 +3.77 Merged OFF

Train Adv-Train Test Adv-Test

(87.25%) (34.39%) (81.04%) (35.96%)

CIFAR10-Adv Interm +0.05 +0.22 −0.07 +0.34 Merged ON(10)

CIFAR10-Adv. Last −0.25 +0.37 −0.27 +0.27 Merged ON(10)

degradation in the accuracy on normal test set. Previous studies in adversarial
robustness [23] indicate that one can obtain robust networks but the price to
be paid is a significant decrease in accuracy on normal data. Similar considera-
tions apply to the poisoning case. Therefore, we tolerate small decrease in the
accuracy on normal Test in our work as well.

The last two columns in Table 2 list the combination strategies and the F1-
filtering option which work best for each scenario. The Merged strategy seems
to work well for the CIFAR10 model for all the three scenarios. However, there

NNrepair: Constraint-Based Repair of Neural Network Classifiers 19

is no clear winner for the MNIST models. In fact, for the last layer repair on
CIFAR10, all the strategies gave the same improvement in accuracy. In practice,
the users would need to use a separate validation set and try all the strategies
to pick the best one for their application domain.

Answer RQ1: NNrepair shows benefit in all three scenarios. It
can repair a network to make it robust against adversarial perturba-
tions/poisoned inputs while at the same time retain a good accuracy
on the normal, unperturbed/non-poisoned test set. NNrepair can also
improve the overall accuracy of the models, however the effectiveness of
the repair tends to decrease when the original accuracy is already high.

RQ2: Table 2 can be used to compare the performance of intermediate-layer
and last-layer repair on the different scenarios. For the MNIST models, last-layer
repair did not help in improving the overall accuracy. Repairing the dense layer
before the output layer using the pattern-based repair helps in increasing the
accuracy albeit by a small amount. For the CIFAR10 model, on the other hand,
repairing the output layer increases the overall accuracy of the model by 0.16,
which is better than intermediate-layer repair (+0.03).

For the poisoned and adversarial scenarios, on the MNIST models, last-layer
repair performed better than intermediate layer-repair on the targeted test sets.
Intermediate-layer repair increased the accuracy by 1.81 on the poisoned model
and 3.87 on the adversarial model while last-layer repair increased the accu-
racy by 45.56 on the poisoned model and 10.40 on the adversarial model. For
CIFAR10-Pois, intermediate layer repair increases the accuracy by 0.81 while
last layer repair improves it by 3.77. Note that intermediate-layer repair seems
to help better in retaining the accuracy on the standard Test, albeit providing
smaller improvements on the target sets (detailed results in the Appendix). Fur-
thermore, for CIFAR10-Adv, intermediate layer repair gives better results than
last-layer repair (0.34 vs 0.27 respectively).

To summarize, focusing only on an inner layer of the network or just the
output layer may not suffice to correct errors in all models and scenarios. We
plan to investigate application of repair at more than one layer. Fault localization
approaches may help determine the layer/s to focus on for effective repair for a
given application.

Answer RQ2: Intermediate-layer repair helped more in improving the
overall accuracy of the models (except for CIFAR10) and last-layer repair
was more effective in repairing specific failures such as vulnerabilities to
poisoned or adversarial inputs (except on CIFAR10 adversarial model).
The take away is that there is not a specific type of repair (last-layer or
intermediate layer) that works well consistently and different models and
failure scenarios may necessitate repair at different layers.

20 M. Usman et al.

RQ3: To understand the overhead introduced by running multiple experts
and the combination logic, we conducted experiments on one of the models,
MNIST-LQ. We executed the original model on the test set and compared the
inference time with the model produced by a repair at an intermediate layer
(i.e., layer 6) and by a repair at the final layer (i.e., layer 8). Additionally, we
measured the inference time for an intermediate layer repair with F1-Filtering
(i.e., layer6-F1). We performed this comparison for all 10,000 inputs in the test
set.

The Merge combination strategy does not require any expert combination
after model execution because this strategy merges the repairs in advance. There-
fore, there is no change with regard to the original model execution except the
weight values used in the calculations, and we did not observe any difference in
terms of the inference time. We focus the remaining discussion on the strategies
that require the execution of multiple experts. Our experiments show that the
time for the expert combination after model execution (as necessary for Naive,
Confidence, and Voting combination strategies) is negligible with around 0.0008
ms and also is similar for all these combination strategies. The main overhead
is introduced by the additional calculations necessary to compute the multi-
ple expert values at each layer. The box plot in Fig. 4 shows the total time
for the model execution for the experts inclusive the time for the Naive expert
combination.

0 1 2 3 4 5 6 7

layer6-F1

layer6

layer8

original

time in millisec

Fig. 4. Inference time comparison (Naive Combination Strategy)

The repair at the last layer produces an average slowdown (compared to
the original model) of 1.0383x. In contrast, the repair at the intermediate layer
produces an average slowdown of 7.7638x. Therefore, it makes sense to apply
some filtering of experts, which do not show good performance on the training
set (see F1-score filtering in Sect. 4.3). For this experiment we kept 3 experts (see
the plot with layer6-F1). This reduced model produces an average slowdown of
only 3.0742x.

NNrepair: Constraint-Based Repair of Neural Network Classifiers 21

Answer RQ3: The Merge combination strategy does not impact the
inference time. All other combination strategies introduce a similar over-
head. While the inference time for the last-layer repair is comparable with
the original model, the inference time for an intermediate-layer repair is
expensive. However, it can be significantly reduced with F1 filtering.

5.4 Discussion

The purpose of our evaluation was to showcase the versatility of NNrepair in
different scenarios. The takeaway from the experiments is that there is not a spe-
cific type of repair (last-layer or intermediate layer) that works well consistently
and different models and failure scenarios may necessitate repair at different lay-
ers. In particular, we believe that the intermediate-layer repair holds the most
promise for scaling to large networks and we plan to further experiment with
the technique in the future.

Generally, the best repair results are obtained on the poisoning task, where
the accuracy can be increased by up to 45% and 3.7% on MNIST and CIFAR10,
without a need for retraining, which can be expensive in practice. Furthermore,
note that we do not assume knowledge of the poison, as our techniques only use
information about correct and incorrect classification. In the future, we plan to
perform more experiments with different poisoning scenarios.

We were able to obtain modest accuracy improvements on the high-quality
models, while for the low-quality models, re-training can achieve better results
(see comparison with MODE in the next section). More experimental comparison
with retraining and/or fine-tuning the models is needed to further assess the
merits of our constraint-based repair.

The gains in the adversarial setting are not very significant for the larger
models. In this work, our goal was to demonstrate the feasibility of using local-
ized constraints solving as a generic technique for addressing a wide range of
challenges in deep learning. Adversarial attack is only one potential application
scenario that is considered. There is a large body of research work on adversarial
attacks and we can not claim in any way that we can cover all attacks.

We also note that the efficacy of NNrepair is evaluated statistically (over
the test set) as our method does not provide any formal guarantees. In general, it
is difficult to guarantee an improvement of the overall accuracy with formalisms,
as there are no formal specifications for the image classification domain. Thus,
in practice one builds (trains) a model using a statistical measure of accuracy.

22 M. Usman et al.

6 Related Work

The emphasis of this paper is on neural network repair, where the goal is to
“correct” the neural network and improve its performance, robustness and secu-
rity, by using a small number of labeled inputs. There have been relatively few
attempts for repairing a neural network. These neural network repair works can
be classified given if re-training is needed and/or if there is a first step to prior-
itize neuron weights to fix. A number of fix patterns and challenges for neural
network repair were collected in [9].

In MODE [12], a neural network is said to be buggy for a specific output
label if its test accuracy is lower than the expectation. This is fixed by selecting
features that are critical for the misbehavior via differential analysis using a
subset of training data and then retraining by selecting inputs from the remaining
unused training inputs based on the differential heat map. We ran MODE on
the MNIST models from our study. The results are as follows:

Model Test Acc. (%)

MNIST-LQ +0.37

MNIST-HQ −0.40

NNrepair has similar performance, i.e., slightly better than MODE on
MNIST-HighQuality and slightly worse on MNIST-LowQuality. Meanwhile, the
re-training procedure in MODE led to varied performances for the repaired
model. The results for MODE are the average outcome after 10 runs, none of
which improved the accuracy of MNIST-HighQuality.

Unlike MODE that identifies ill-trained weights or buggy neurons, Apricot
[24] first generates a set of models from the original neural network with a
reduced set of training data and at each iteration of the training, Apricot adjusts
each weight of the repaired model towards the average weight of these reduced
models correctly classifying the input while away from the misclassifications.
The approach from [19] uses constraint solving for repairing neural networks. It
considers a two-dimension slice of the input space of ACAS Xu and uses SMT
constraints to achieve weight changes for correct cases that are checked against
the specification. We found it non-trivial to extend this approach to typically
high-dimensional input space of the image classifiers that we study in this paper.

Typically, a software repair technique (including for neural networks) employs
as a first step fault localization to determine the code entities that need to be
fixed. DeepFault [2] is an approach to spectrum-based fault localization that aims
to identify the neurons that are ‘more’ responsible to adversarial behaviours of a
neural network. However, the aim of DeepFault is to generate more adversarial

NNrepair: Constraint-Based Repair of Neural Network Classifiers 23

examples, which is the opposite to the repair purpose of our paper. Another
related approach, Arachne [18], uses fault localization to identify neural weights
(connected to the final output layer) to modify, using Particle Swarm Opti-
misation (PSO), for better weights to improve the model’s accuracy on some
particular label. As also noted in [18], increasing the prediction accuracy for a
particular label often comes along with the decreasing prediction accuracy of the
overall neural network model.

Our NNrepair work provides a general repair approach which can be applied
for improving accuracy, enhancing robustness against adversarial attacks and
fixing the backdoor security problems for neural networks. Although previous
techniques could be presumably extended to these scenarios, in practice they
were only demonstrated for improving the prediction accuracy of the neural
network (in MODE and Apricot) or a particular label (in Arachne).

7 Conclusion and Future Work

We presented NNrepair, which uses constraint solving for intermediate-layer
and last-layer repair of neural networks. We demonstrated NNrepair in three
scenarios: improving the overall accuracy, fixing security vulnerabilities caused
by data poisoning and improving the adversarial robustness of the networks.

In future work, we plan to experiment with different localization techniques
and to evaluate our repair on larger networks and different architectures. Our
method can also be applied to multiple layers but we restricted to single-layer
for scalability. One avenue for research is to apply single-layer repair repeatedly
or compositionally to handle correcting bugs across multiple layers.

References

1. Ensemble learning methods for deep learning neural networks. https://mac
hinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks

2. Eniser, H.F., Gerasimou, S., Sen, A.: DeepFault: fault localization for deep neu-
ral networks. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol.
11424, pp. 171–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16722-6 10

3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

4. Gopinath, D., Converse, H., Pasareanu, C., Taly, A.: Property inference for deep
neural networks. In: 34th International Conference on Automated Software Engi-
neering (ASE), pp. 797–809. IEEE (2019)

5. Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.
ACM 62(12), 56–65 (2019). https://doi.org/10.1145/3318162

6. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: BadNets: evaluating backdooring
attacks on deep neural networks. IEEE Access 7, 47230–47244 (2019). https://
doi.org/10.1109/ACCESS.2019.2909068

https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks
https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks
https://doi.org/10.1007/978-3-030-16722-6_10
https://doi.org/10.1007/978-3-030-16722-6_10
https://doi.org/10.1145/3318162
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.1109/ACCESS.2019.2909068

24 M. Usman et al.

7. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial
machine learning. In: 4th Workshop on Security and Artificial Intelligence, pp.
43–58. ACM (2011)

8. Huang, X., et al.: A survey of safety and trustworthiness of deep neural net-
works: verification, testing, adversarial attack and defence, and interpretability.
Comput..Sci. Rev. 37, 100270 (2020)

9. Islam, M.J., Pan, R., Nguyen, G., Rajan, H.: Repairing deep neural networks: Fix
patterns and challenges. In: 42nd International Conference on Software Engineering
(ICSE) (2020)

10. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and
prospects. Science 349(6245), 255–260 (2015)

11. Liu, Y., et al.: Trojaning attack on neural networks. In: 25th Annual Network and
Distributed System Security Symposium (NDSS) (2018)

12. Ma, S., Liu, Y., Lee, W.C., Zhang, X., Grama, A.: MODE: automated neural
network model debugging via state differential analysis and input selection. In:
26th Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 175–186. ACM (2018)

13. Monperrus, M.: Automatic software repair: a bibliography. ACM Comput. Surv.
51(1), 1–24 (2018). https://doi.org/10.1145/3105906

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

15. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: EuroS&P (2016)

16. Păsăreanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic pathfinder: integrating symbolic execution with model checking for
java bytecode analysis. Autom. Softw. Eng. 20(3), 391–425 (2013). https://doi.
org/10.1007/s10515-013-0122-2

17. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/SIGSOFT FSE (2005)

18. Sohn, J., Kang, S., Yoo, S.: Search based repair of deep neural networks. arXiv
preprint arXiv:1912.12463 (2019)

19. Sotoudeh, M., Thakur, A.V.: Correcting deep neural networks with small, general-
izing patches. In: Workshop on Safety and Robustness in Decision Making (2019)

20. Szegedy, C., et al.: Intriguing properties of neural networks, Technical report
(2013). http://arxiv.org/abs/1312.6199

21. Usman, M., Noller, Y., Păsăreanu, C.S., Sun, Y., Gopinath, D.: Neurospf: a tool for
the symbolic analysis of neural networks. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pp. 25–28 (2021). https://doi.org/10.1109/ICSE-Companion52605.2021.00027

22. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with
evolutionary computation. Commun. ACM 53, 109–116 (2010). https://doi.org/
10.1145/1735223.1735249

https://doi.org/10.1145/3105906
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1007/s10515-013-0122-2
http://arxiv.org/abs/1912.12463
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/ICSE-Companion52605.2021.00027
https://doi.org/10.1145/1735223.1735249
https://doi.org/10.1145/1735223.1735249

NNrepair: Constraint-Based Repair of Neural Network Classifiers 25

23. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: 35th International Conference on Machine
Learning (ICML), Stockholmsmässan, Stockholm, Sweden, pp. 5283–5292. PMLR
(2018). http://proceedings.mlr.press/v80/wong18a.html

24. Zhang, H., Chan, W.: Apricot: a weight-adaptation approach to fixing deep learning
models. In: 34th International Conference on Automated Software Engineering
(ASE), pp. 376–387. IEEE (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://proceedings.mlr.press/v80/wong18a.html
http://creativecommons.org/licenses/by/4.0/

Balancing Automation and Control for
Formal Verification of Microprocessors

Shilpi Goel, Anna Slobodova(B), Rob Sumners, and Sol Swords

Centaur Technology, Inc., Austin, TX, USA
{shilpi,anna,rsumners,sswords}@centtech.com

Abstract. Formal methods are becoming an indispensable part of the
design process in software and hardware industry. It takes robust tools
and proofs to make formal validation of large scale projects reliable.
In this paper, we will describe the current status of formal verifica-
tion at Centaur Technology. We will explain our challenges and our
methodology—how various proofs and verification artifacts are intercon-
nected and how we keep them consistent over the duration of a project.
We also describe our main engine—a powerful symbolic simulator with
rewriting capabilities that is integrated in a theorem prover and proven
correct.

Keywords: Hardware verification · Microprocessor verification ·
Microcode verification · Formal methods · ACL2 · Symbolic
simulation · Decision procedures

1 Introduction

The discussion of Formal Verification (FV) of software and hardware three
decades ago was mostly about case studies or proofs of concept that required
a lot of manual effort by researchers. Since then, FV has taken a transforma-
tional journey that has resulted in highly automated tools—equivalence checkers,
model checkers, SMT solvers, and theorem provers. Large scale formal verifica-
tion projects were first reported by hardware companies around ten years ago,
e.g. Intel [28], IBM [36], ARM [34], and Centaur Technology [18,37]. Success sto-
ries of FV at software development companies followed. To name just a few, see
Peter O’Hearn’s keynote at PLDI 2020 conference about incorrectness logic and
static analysis his group applies at Facebook [30], David Dill’s keynote at CAV
2020 about the Libra project at Facebook [19] and their use of the Move Prover
[44], or the invited talk by Byron Cook at CAV 2018 about the application of
formal methods at Amazon Web Services [16]. Formal methods are becoming
a reliable and indispensable part of the design process in the commercial soft-
ware and hardware industries. This newly elevated position of formal verification
brings new responsibilities for those that develop tools and methods and those
who build proofs. FV teams face various challenges:

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 26–45, 2021.
https://doi.org/10.1007/978-3-030-81685-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_2

Balancing Automation and Control for FV of Microprocessors 27

• Tools and libraries used by FV teams are expected to be reliable and main-
tainable.

• FV teams get involved much sooner in a project cycle, often starting with an
incomplete design, and they are expected to give feedback quickly.

• Designs under FV scrutiny are being continuously changed by several design-
ers at a time.

• Specifications change during the process as designers get feedback from back-
end tools, or due to the changes in the target market.

• The scope and depth of proofs change as development continues.
• An FV team might be working on several proliferations of a project with

overlapping schedules.

These challenges can only be solved by building robust expandable proofs. In
this paper, we will describe the approach taken by our FV team at Centaur Tech-
nology. Centaur is a relatively small company, of about one hundred employees,
that designs x86 compatible microprocessors, focusing on the low cost, low power
market. It might surprise many that our formal verification tools are based on a
theorem prover. This is only possible because the theorem prover we use, ACL2
[8], has been designed with industrial applications in mind [24]. ACL2 has been
successfully used not only at our company but also at many others: e.g. ARM,
AMD [35], IBM [36], Rockwell-Collins [22], and Oracle [32]. All our proofs are
done within the ACL2 system. ACL2 is used to write specifications, models,
tools, and tests, as well as to generate documentation. Two features of ACL2
that are crucial to our work are fast execution and extensibility. Our x86 model
[20] is not only one of most complete of its kind, but is capable of executing
application programs at a speed of around 3 million instructions per second.

We will start with a brief description of the ACL2 system and the features
that make it a good choice for a verification framework (Sect. 2). The reflective
features of ACL2 allow us to build verified tools within the system. One such tool
is FGL [39], our symbolic simulator equipped with rewriting capabilities. FGL
is completely integrated into ACL2 as a verified clause processor. It provides
a desirable balance between automation and user guidance. We will describe
its mechanism in detail in Sect. 4. We also explain its usability as a highly pro-
grammable solver that is capable of proving complex conjectures about Register-
Transfer Level (RTL) design and microcode in Sect. 3. FGL and its use within
our framework are primary contributions of the work presented in this paper.
The challenges enumerated above are illustrated with the process of verifica-
tion for a single x86 instruction. We explain the complex interconnection of the
various parts of the proofs, and describe how they are built and maintained.

2 Our FV Tools

All formal verification at Centaur is done within the framework of ACL2 [8].
ACL2 is an untyped language (a subset of Common Lisp) and a theorem prover
that supports first-order logic as expressed in this language. ACL2 also has

28 S. Goel et al.

some limited support for higher-order style definitions [29]. ACL2 is an open
source software project that has an active community contributing to an exten-
sive library of proofs and utilities. Centaur has contributed to many libraries that
support hardware verification, including support for translating Verilog and Sys-
tem Verilog to ACL2 expressions [7,10] and libraries that support bit operations.
ACL2 provides an interface through which it can be connected to trusted tools
such as SAT solvers. There is also an integration of Z3 in ACL2 [5] and an
interface to the ABC model checker [1,14].

Besides interfaces to trusted tools, ACL2 has a mechanism for extending its
reasoning by admitting verified clause-processors [2]. We use this feature in sev-
eral ways, notably for SVL [43], a routine that automates verification of multipli-
ers, and for FGL, the core tool that provides automation for our microoperation
execution and microcode proofs.

FGL, briefly, is a term rewriter geared toward transforming expressions act-
ing on fixed-sized data into Boolean formulas. For example, a specification for an
x86 instruction may be written in high-level ACL2. Processing a call of this spec-
ification function on variable arguments in FGL yields a result that expresses
each of the bits of the writeback data, flags, etc., as a Boolean formula (rep-
resented in an and-inverter graph) whose inputs are the symbolic bits of the
input variables. Similarly, FGL processing of the ACL2 model of the microcoded
implementation for that instruction yields Boolean formula representations of
the implementation’s outputs. Equivalence checking these two sets of Boolean
formulas is then sufficient to show that the implementation result matches the
specification. We describe the FGL system in more detail in Sect. 4, showing
how it transforms terms into hybrid term/Boolean-function objects and how its
behavior may be programmed with rewrite rules.

3 Challenges of Verifying a Single x86 instruction

An intuitive notion of the functional correctness of a microprocessor is that any
sequence of bytes decoded as instructions either executes correctly or leads to
an exception if byte sequence is illegal. For the x86 instruction set, parsing and
decoding a sequence of bytes is a complex process due to the many instruction
formats with varying lengths and field types. The Intel 64 and IA-32 Instruc-
tion Set Architecture (ISA) is defined by the Software Developer’s Manuals [27],
which have thousands of pages describing the expected impact of every instruc-
tion on the state of the machine. It is a living and growing specification, with new
instructions and variants added constantly. The architectural specification does
not dictate how the ISA is supposed to be implemented. Various implementation-
specific choices, collectively called the microarchitecture, include:

– how memory is organized
– how an instruction is decoded into a sequence of microoperations
– the set of microoperations implemented in hardware
– the throughput and latency of microoperations and instructions

Balancing Automation and Control for FV of Microprocessors 29

and various others features of the microprocessor. In our previous work [21],
we described what it means for an x86 instruction to be decoded and executed
correctly and how our proofs capture this property. For illustrative purposes, we
use the same example that was described in that work. Table 1 describes the x86
double-precision shift right instruction SHRD and Table 2 shows the microopera-
tions that implement it1. In this paper, we will recall the individual steps of the
verification with a different purpose—to discuss the challenges in each step and
how we deal with them. In particular, we will focus on increasing the automation
and reducing the time required of engineers to catch and debug problems while
maintaining the proofs.

In the process of verification, we refer to two sets of formal specifications:
the architectural specification of x86 [20] and a microarchitectural specification,
which is a proprietary IP of Centaur and unique to each project. We refer to the
former as the x86 model and the latter as the microcode model. Both of these
models are written in ACL2 following an interpreter-style operational semantics
approach. The x86 model includes the specification of x86 instructions that oper-
ate on the ISA state, and analogously, the microcode model includes the specifi-
cations of microoperations that operate on the microarchitectural state. Thanks
to the high execution speed of the x86 model, it can be validated by running
extensive code. The microcode model is directly compared to the RTL implemen-
tation. In addition, for data-intensive operations like floating-point arithmetic,
we have the ability to run our models against existing x86 hardware from Intel
and AMD. Again, the efficient execution of ACL2 code is crucial for the valida-
tion of these models.

Our verification is done on the Register-Transfer Level (RTL) of microproces-
sor design. We have two goals: to confirm that the RTL behaves as specified by
our microarchitectural specification and to show that it implements instructions
correctly with respect to our architectural specification.

Table 1. SHRD–-Double Precision Shift Right: irrelevant fields elided

Opcode Instruction Description

REX.W + 0F AC /r ib SHRD r/m64, r64, imm8 Shift r/m64 to right
imm8 places while
shifting bits from r64
in from left

3.1 Front-End and Microcode Verification

The front-end of a microprocessor fetches, decodes, and then translates a
sequence of bytes into a sequence of microoperations. For a modern x86 pro-
cessor, this is one of the more complicated parts of the design. Writing and

1 Note that this is not the actual implementation of SHRD in our current design.

30 S. Goel et al.

Table 2. SHRD RCX, RDX, imm8: a concrete run

Initial values RDX := 0x1122_3344_5566_7788
RCX := 0x0123_4567_89AB_CDEF
imm8 := 16

Expected values RDX := 0x1122_3344_5566_7788
RCX := 0x7788_0123_4567_89AB

UOPs from front-end Concrete Run & Description
MOVSX G2, RCX
(SSZ: 64; DSZ: 64)

G2 ← 0x0123_4567_89AB_CDEF
Move RCX to internal register G2

MOVZX G3, <imm8>
(SSZ: 8; DSZ: 64)

G3 ← 16
Move immediate to internal register G3

UOPs in ROM Concrete Run & Description
AND G3, G3, 63
(SSZ: 8; DSZ: 64)

G3 ← 16
Mask immediate operand

MOV G10, -1
(SSZ: 64; DSZ: 64)

G10 ← 0xFFFF_FFFF_FFFF_FFFF
Move -1 to internal register G10

JE G3, 0, ent_nop
(SSZ: 16; DSZ: 16)

No jump taken
Jump to routine ent_nop if G3 == 0

SUB G5, 0, G3
(SSZ: 32; DSZ: 32)

G5 ← 0xFFFF_FFF0; ZF ← 0
Store -G3 in internal register G5;
clear the zero flag because result is non-zero

SHR<!ZF> G10, G10, G5
(SSZ: 64; DSZ: 64)

G10 ← 0xFFFF
Shift G10 right by (G5 & 63) if ZF == 0

AND<ZF> G10, G10, 0
(SSZ: 64; DSZ: 64)

G10 ← 0xFFFF
Set G10 to 0 if ZF == 1

AND G6, RDX, G10
(SSZ: 64; DSZ: 64)

G6 ← 0x7788
Store (RDX & G10) in internal register G6

SHR G7, G2, G3
(SSZ: 64; DSZ: 64)

G7 ← 0x0000_0123_4567_89AB
Store (G2 » G3) in G7

SHL G2, G7, G3
(SSZ: 64; DSZ: 64)

G2 ← 0x0123_4567_89AB_0000
Store (G7 « G3) in G2

OR G2, G2, G6
(SSZ: 64; DSZ: 64)

G2 ← 0x0123_4567_89AB_7788
Store (G2 | G6) in G2

ROR G7, G2, G3
(SSZ: 64; DSZ: 64)

G7 ← 0x7788_0123_4567_89AB
Rotate G2 right by G3 and store result in G7

OR RCX, G7, G7
(SSZ: 64; DSZ: 64)

RCX ← 0x7788_0123_4567_89AB
Store the result of G7 | G7 in RCX

maintaining a formal specification for it would be impractical. The readability
and complexity of such a specification would be similar to that of the implemen-
tation itself. How, then, do we go about its verification? We have one methodol-
ogy to verify the decoding of byte sequences into legal/illegal instructions (with
appropriate exceptions), and another one to show that legal instructions are
implemented correctly via microoperations.

Balancing Automation and Control for FV of Microprocessors 31

Listing 1.1. SHRD entry in inst.lst
(xINST "SHRD"

(OP :OP #xFAC)
(ARG :OP1 '(:MODR/M.R/M :GPR :MEM)

:OP2 '(:MODR/M.REG :GPR)
:OP3 '(:IMM8))

'(X86 -SHLD/SHRD)
'((:UD (UD-LOCK -USED))))

For illegal instructions, we make sure that all sequences of bytes that do
not decode into a sequence of legal instructions are recognized as illegal and
we verify that an appropriate exception is signaled. This is done by simulating
the front-end on a symbolic sequence of bytes and proving that any input that
does not map to a legal opcode (as defined by the decode specification in our
x86 model) produces an exception. The decode specification in the x86 model
relies heavily on inst.lst—a data structure defined by us that captures all
the information needed to decode every x86 instruction. The initial version of
inst.lst was mechanically extracted from the Intel manuals (Chaps. 3–5, Vol.
2) [27] by parsing the tables in the description pages of each instruction and
transforming the contents into an ACL2-readable format. For instance, for the
implementation in Table 2, the relevant entry in the Intel manuals is in Table 1
and that in inst.lst is in Listing 1.1. Since then, inst.lst has been inspected,
enhanced, and validated against internal and external x86 decoders.

Next we focus on our process for verifying legal instructions. For each instruc-
tion, our goal is to prove that for any starting machine state and for any
byte sequence representing a legal invocation of that instruction in that state,
the front-end produces a sequence of microoperations which, when run on our
microcode model, produce the same results as the instruction run on our x86
model2. To prove this, we simulate the front-end to generate the correspond-
ing sequence of microoperations. Using FGL, we then prove that the sequence
implements the instruction as defined by our x86 specification. FGL symboli-
cally processes the sequence of microoperations as executed on our microcode
model, resulting in a symbolic machine state where the bits of the written reg-
isters are represented as Boolean formulas in terms of the values read from the
initial state. It likewise processes the instruction specification, reducing it to
Boolean formulas as well. We can then show by Boolean equivalence checking
that the front-end-generated sequence of microoperations has the same effect on
the state as the x86 instruction specification. We discuss the process of symbolic
simulation of microcode by FGL in Sect. 4. This FGL proof confirms that the
front-end’s operation is correct for this particular instruction.

This correctness has two caveats. First, it assumes that the individual micro-
operations are correctly implemented, i.e., in accordance with their specifica-
tions in our microcode model. Second, in the case of out-of-order processors,
if the microoperations are executed in a different order, that sequence needs
to be compared to the sequence generated by the front-end. Currently, we can
2 Note that the microcode model is a proprietary formal model of the microarchitecture

implemented by the design. Its validation is discussed later.

32 S. Goel et al.

ensure only the former—for most microoperations, we have proved that their
implementations in the processor’s execution units matches their behavior in
our microcode model; we discuss this further in Sect. 3.2. However, the latter—
the correctness of reordering of the microoperations—is work planned for the
future.

There is another part to the verification story. The front-end generates only
sequences of microoperations of a limited length. Some instructions are complex
and require much longer sequences (e.g. instructions performing transcendental
or cryptographic functions). For these instructions, the sequence of microopera-
tions generated by the front-end is just the beginning of the microcode program.
The rest is stored in a ROM and the front-end generates the entry-point of this
code. That means our verification has to account for those microcode routines.

ROM instructions are more complex than microoperations and they may
also be compressed in order to save valuable ROM space. As in the front-end,
the specification of this compression and decoding of ROM instructions into
sequences of microoperations is complex and also changes during the design
process. Even if we could define it formally, the maintenance of such a specifica-
tion would be very time consuming. Instead, we do the same trick as with the
front-end—we symbolically simulate the part of the design that fetches ROM
instructions and translates them into a sequence of microoperations. The rest
is done similarly as for the sequence of operations generated by the front-end.
These proofs implicitly verify the correctness of fetching from ROM and ROM
instruction translation. We call this implicit verification because we do not have
an explicit specification of the translation and fetching. However, we do have
formal specifications of the instructions implemented by the microcode. There-
fore, the proof of correctness of the instructions implies the correctness of the
underlying design, including ROM fetching and translation. In other words, we
can verify some parts of the design as black-boxes, without knowing exactly
how they work, by reasoning about the overall observable effect on the machine
state. The main advantage of this type of verification of both the front-end and
microcode translator is that the maintenance of the proofs does not require
either deep understanding of the design or writing and maintaining cumbersome
specifications.

The microcode sequences generated from x86 instructions that we encoun-
tered so far were in the style of straight-line code. We do not expect this to be
the case for all of them. In the past, we worked on some microcode stored in
ROM that served other purposes [18]. This code had loops and jumps between
loops and we were able to do invariant-style proofs. Our main problem at that
time was that the proofs were not robust enough and very hard to maintain. Now
we are in a much better position, having FGL and a methodology that keeps
the microcode model in sync with the design. Hence, we are optimistic about
our ability to bring the verification of most, if not all, legal x86 instructions to
completion.

Balancing Automation and Control for FV of Microprocessors 33

Finally, we note that in our previous work [21], we used GL—the predecessor
of FGL—as our core verification tool. The benefits of switching to FGL have
been considerable. GL had limited support for term rewriting, as a result of
which symbolic simulation of the microcode model was difficult and debugging
failed proof attempts even more so. As such, instead of programming GL to
deal with symbolic machine states, we usually used ACL2’s rewriter to “open
up” the microcode model and played to GL’s strengths by using it for the final
equivalence proof that often required non-trivial arithmetic reasoning. In other
words, we obtained ACL2 formulas corresponding to the written registers in
terms of the values in the initial microcode state, and then used GL to prove
that those formulas were equivalent to our specification functions. FGL easily
allows us to do these tasks (symbolic simulation and equivalence checking) along
with others within a common environment and thereby reduces overhead in our
methodology.

3.2 Verification of Execution Units

Everything that was said in Sect. 3.1 relies on the assumption that our microcode
model is correct. Parts of that model—front-end decoding and ROM instruction
fetch and translate—are implicitly verified. The other part, definitions of micro-
operations that form the base of the model, were explicitly defined in ACL2 and
need to be validated. A large portion of our work lies in the proofs that confirm
that RTL executes the microoperations in compliance with those specifications.
In order to achieve that, we build a formal model of the respective RTL module
[7], unroll it with respect to the latencies of the microoperations to be verified
[6] and check conformance with the specification using FGL.

These microoperations are executed in various units, the number, timing, and
organization of which differs based on the specific microarchitecture. We might
have separate floating-point add and floating-point multiply units, or one unit
that executes both. There might be a unit that implements string operations,
another that implements integer operations, and yet another one devoted to
SIMD operations, etc. The scope of proofs that confirm correctness of execution
of microoperations is dictated by the capacity of the tools we use. During the
first years of FV at Centaur, we limited the proof for each microoperation to
the specific unit where it was executed [25,26,37]. Since then, improvements
to our RTL modeling and symbolic simulation (i.e., FGL) allow us to do the
proofs in the scope of the module containing all those units (we refer to that
module as the execution module or EXE) [21]. Migration to a higher scope has
a huge advantage for the stability of the proofs. First, proofs are robust with
respect to the changes of the interfaces of submodules in EXE. For instance, when
an interface of a floating-point sub-unit changes to accommodate extra control
signals that simplify its logic, very likely the change is transparent to the input-
output behavior of EXE and will not effect our proofs. Second, if timing of an
internal unit changes, but overall timing of the EXE module does not, that is
transparent to the proofs.

34 S. Goel et al.

Having all microoperation proofs in the same scope has another advantage—
we can build just one formal model of the RTL, do one unrolling to the maximum
latency, and store it as a constant that can be shared and loaded by individual
proofs. A review of the assumptions about the interface and the maintenance of
the assumptions is also simplified when all the proofs are done with respect to
one module.

3.3 Regressions

Regressions have become an indispensable part of the continuous integration.
There are several reasons why we need to re-run our proofs regularly. Since
we start to build our proofs early in the design process, design changes occur
regularly and can introduce bugs that we need to catch. But proofs can be
broken not only due to changes in the design but also because of changes in
the specifications, tools, and libraries. While the ISA specification is relatively
stable, the microarchitecture specification might change during the project as
a result of feedback from back-end tools or better ideas from the designers.
Proofs might also change as the design becomes more mature and we add more
thorough checks. While the core ACL2 theorem prover is very stable, ACL2
libraries are growing and may be modified by developers outside our team. All
of these verification artifacts are tightly interconnected and regressions ensure
that we keep them consistent.

When a proof of the correctness of a microoperation fails, there are several
possible reasons:

– There is a bug in the RTL design.
– There was a change in the design (interface or timing) that our proofs need

to take into account.
– The specification of the microoperation changed; e.g. some flags indicate a

new intended use, or a portion of the result became “don’t care”.

We need to investigate the reason for failure and either report a bug to
designers, adjust the proofs, or change the specification of the microoperation.

When we change the specification of a microoperation, the new definition
will then be used by our microcode proofs. If those fail, it may indicate that the
change affected some instruction implementations in an undesirable way. In other
cases, the failure might be a result of missing rewrite rules. Microcode proofs
might also fail due to the changes to front-end design or fetch and translate from
ROM that introduced a new bug.

Regressions can be scheduled for a specific frequency (daily, weekly, etc.),
run manually, or triggered by changes in the design, specification, or tool suite.
We use open-source tools like git and Jenkins, and ACL2-specific scripts that
compute dependencies on ACL2 files. Regressions also automatically generate
a documentation manual from our ACL2 proof scripts [17]. This documenta-
tion includes information about which proofs failed and which succeeded and
as the result of it, which microoperations and instructions are covered by the

Balancing Automation and Control for FV of Microprocessors 35

successful proofs. This keeps the documentation in sync with the design as well
as the proofs. We tag individual documentation topics to indicate their intended
audience; e.g., the General Audience tag is used when an overview of a verifica-
tion effort is presented, and the FV Audience tag is used when describing proof
strategies and verification tools.

4 FGL

Since FGL is the core proof engine used in our microcode and execution unit
proofs, we will describe here how it works and how it may be programmed.

FGL [4,39] is part of the ACL2 libraries and publicly available [9]. It is a
significant rewrite and extension of GL (“G in the Logic”) [38,41,42], which was
itself a rewrite and extension of the G System of Boyer and Hunt [13]. The idea
behind all of these is to recursively transform ACL2 terms into symbolic objects
that represent the values of these terms and that consist mostly of structures
containing Boolean function objects. When successful, the result of transforming
the body of a conjecture is a single Boolean function, which may be checked
for validity. The G System supported Boolean functions represented as binary
decision diagrams [15], and operated on symbolic input objects using symbolic
counterpart functions derived mechanically from function definitions. GL used
an interpreter to capture function behavior rather than translating definitions,
and added support for an and-inverter graph (AIG) representation for Boolean
functions along with links to external SAT solvers for resolving Boolean function
validity. Later changes in GL added preliminary support for rewrite rules and
termlike symbolic objects so as to allow for some abstraction.

FGL continues the trend toward user-definable rules displacing built-in
behavior. It is a rewriter at its core, so user-defined rewrite rules are the basis
of its reasoning system, rather than an add-on. Nevertheless, it comes with an
extensive library of rules that replicates the automation provided by GL. Rewrite
rules supported by FGL offer powerful capabilities such as programmable binding
of free variables and visibility into the syntax of the rewriting targets [39]. FGL
also replaces built-in primitive function symbolic counterparts with meta rules
similar in spirit to ACL2’s [23], which similarly allow directly programmable
manipulation of the syntax of objects but may also be added by users. FGL
adds support for incremental SAT, allowing multiple SAT checks of related for-
mulas to share learned clauses and heuristic information. It also allows global
simplification of the entire AIG using combinational circuit simplification meth-
ods. Both of these features may be invoked from within rewrite rules; e.g., if
the author of a rewrite rule judges that a hypothesis of the rule is unlikely to
be solved by rewriting alone, they may specify that incremental SAT should be
used to prove it.

Many other projects have also aimed to allow interactive theorem provers
to call on automatic decision procedures; too many such efforts exist to list
them all. In higher-order logic proof assistants, several tools collectively called
hammers translate queries into the language of an automated theorem prover

36 S. Goel et al.

Listing 1.2. Semantics of a machine instruction
(defun run -inst (inst st)

(let* ((instname (first inst))
(args (rest inst))
(x (first args))
(y (second args))
(ans (case instname

(const y)
(copy (get -st-reg y st))
(add (+ (get -st-reg x st)

(get -st-reg y st)))
(and (bitwise -and (get -st-reg x st)

(get -st-reg y st)))
(rshift (right -shift (get -st-reg y st)

(get -st-reg x st))))))
(set -st-reg x ans st)))

Listing 1.3. Semantics of a straight-line code block
(defun run -prog (insts st)

(if (atom insts)
st

(let ((st (run -inst (first insts) st)))
(run -prog (rest insts) st))))

and then translate the emitted proof back into a form acceptable by the original
prover [12]. Several decision procedure integrations have also been carried out
in ACL2. Reeber and Hunt [33] identified a decidable subclass of ACL2 list
formulas and contributed a decision procedure that transforms such a formula
into a SAT problem. Peng and Greenstreet [31] process a subclass of ACL2
formulas including integer and rational arithmetic, uninterpreted functions, and
algebraic data structures, converting such problems to SMT queries. FGL differs
by focusing on the efficient integration of user-extendible term rewriting and
Boolean simplification and decision procedures.

4.1 Example

We describe how FGL works at a high level by running through an example,
the code of which is publicly available [40]. We define a simple machine model
(Listings 1.2, 1.3) that has 16 32-bit registers and a few instructions defined,
and use those instructions to implement (in straight-line code) an optimized
routine to count the number of bits set in a 32-bit input (Listing 1.4), similar to
implementations in Bit Twiddling Hacks [11]. We also define a straightforward
ACL2 specification count-bits for the bit count operation (Listing 1.5). We
prove that for any initial state, if we run this program on the machine, then the
resulting state has its register 0 value equal to the count-bits of the value that
was in register 0 before running the program (Listing 1.6).

The invocation of def-fgl-thm in Listing 1.6 causes the FGL rewriter to be
applied to the conjecture. It begins by descending into the term and applying
rewrite rules to subterms from the inside out. In many cases, these rules are just
the definitional formulas of the functions we have introduced; for example, the
definitions of run-prog, run-inst, and count-bits are used as rewrite rules, so
that calls of these functions are replaced by their bodies. Rewriting the term

Balancing Automation and Control for FV of Microprocessors 37

Listing 1.4. BITCOUNT program listing
(defconst *bitcount*

'((copy 10 0) ;; copy the operand to regs 10 and 11
(copy 11 0)
(const 5 #x55555555) ;; set reg 5 to the mask
(and 10 5) ;; bitand the operand with the mask
(const 0 1) ;; set reg 0 to 1
(rshift 11 0) ;; right shift the operand by 1
(and 11 5) ;; mask the shifted operand
...
(const 0 #x003f)
(and 10 0) ;; mask the relevant bits of the result
(copy 0 10))) ;; move the result to reg 0.

Listing 1.5. count-bits specification function
(defun count -bits (x)

(if (or (not (integerp x)) (<= x 0))
0

(+ (nth -bit 0 x)
(count -bits (right -shift 1 x)))))

while opening such definitions effectively conducts a symbolic simulation of the
program and its specification. For some functions, it is preferable to avoid open-
ing the definitions and instead use rules that rely on particular properties to
simplify combinations of calls; for example, Listing 1.7 shows a rule that simpli-
fies a read of a write of the machine state’s register file.3

Rather than producing a new term as the result of rewriting each subterm,
the FGL rewriter produces hybrid structures we call symbolic objects that may
(like terms) contain function calls, variable references, and constants, but (unlike
terms) also may contain symbolic Booleans, represented by a reference into an
AIG defining a Boolean function, and symbolic integers, represented by a list
of references into the AIG giving the two’s-complement bits. Table 3 lists the
variants of symbolic objects.

In order to prove this conjecture, we aim for the result of rewriting the con-
jecture to be a symbolic Boolean, which can then be proved valid by encoding
its negation as a SAT problem. We therefore want to compute a Boolean for-
mula equivalent to the equal comparison of the specification and implementation
results. Working backwards from this goal, we can obtain this if we can repre-
sent the specification and implementation results as symbolic integers; the equal

Listing 1.6. Correctness theorem for BITCOUNT
(def -fgl -thm bitcount -implements -count -bits

(let* ((input (get -st-reg 0 st))
(final -st (run -prog *bitcount* st))
(result (get -st-reg 0 final -st)))

(equal result (count -bits input))))

3 Since ACL2 is an untyped language, functions have well-defined behavior even on ill-
typed inputs. The uses of zero-extend in this rule reflect the choice of the definitions
to coerce integers that don’t fit in the allotted space into well-typed values by zero-
extending them.

38 S. Goel et al.

Listing 1.7. Read-over-write rule for get-st-reg
(def -fgl -rewrite get -st-reg -of-set -st-reg

(equal (get -st -reg i (set -st-reg j v st))
(if (equal (zero -extend 4 i) (zero -extend 4 j))

(zero -extend 32 v)
(get -st-reg i st))))

Table 3. Symbolic object variants

– (g-boolean lit) represents a Boolean, t or nil, as an AIG literal, lit

– (g-integer lit0 lit1 . . .) represents an integer as a list of AIG literals giving the two’s-complement bits, least-significant first

– (g-concrete obj) represents the constant obj itself

– (g-apply fn args) represents a function application, where fn is a function symbol and args is a list of symbolic objects

– (g-var name) represents a variable named name

– (g-ite test then else) represents an if-then-else, where the three arguments are symbolic objects

– (g-cons car cdr) represents a cons pair, where the two arguments are symbolic objects

– (g-map tag alist) represents a table of key/value pairs with constant keys and symbolic values,

supporting fast lookups (see ACL2 documentation on fast alists [3])

comparison of these is the conjunction of the Boolean equivalences between all
the corresponding bits. Working further backwards, we’ll find that we can simi-
larly compute these values given the bits of the intermediate integer values from
which they are computed, etc., back to the original values that are components
of the free variables of the conjecture. That is, generally speaking, we wish to
represent every intermediate integer value as a symbolic integer. In the next
two sections we will describe how to extract Boolean variables from the initial
variables of the conjecture (Sect. 4.2) and how to build up Boolean formulas to
represent the bits of intermediate values (Sect. 4.3).

4.2 Extracting Boolean Variables

When rewriting a term in a Boolean context such as the test of an if expression,
FGL will coerce the rewritten result to a symbolic Boolean object. The symbolic
Boolean values of symbolic object types other than function calls and variables
are easy to determine; for example, integers are non-nil and therefore considered
true in ACL2. For function call and variable results, this coercion is accomplished
by assigning a Boolean variable to the object, either a fresh one—a new primary
input node in the underlying AIG— or an existing one when such an assignment
has already been recorded for that object. These Boolean variables along with
the constants t and nil are the base Boolean formulas. More complex formulas
are built up from these variables by processing of if terms and by low-level
meta-routines, introduced below.

The Boolean variables needed for the bitcount proof correspond to the bits
of the accessed registers of the initial machine state st. We introduce rewrite
rules that cause FGL to generate 32 Boolean variables for the bits of a 32-bit
register when that register is accessed, composing these into a symbolic integer.
The two rules involved are shown in Listing 1.8.

Balancing Automation and Control for FV of Microprocessors 39

Listing 1.8. Rules for generating Boolean variables for initial register values
(def -fgl -rewrite get -st-reg -generate -bits

(implies (syntaxp (fgl -object -case st :g-var))
(equal (get -st-reg n st)

(zero -extend 32 (hide -get -st-reg n st)))))

(def -fgl -rewrite zero -extend -const -width
(implies (syntaxp (integerp n))

(equal (zero -extend n x)
(if (or (not (integerp n))

(<= n 0))
0

(intcons (intcar x)
(zero -extend (1- n) (intcdr x)))))))

The FGL rewriter will try to apply the first rule, get-st-reg-generate-bits,
every time it encounters a call of get-st-reg, but due to its syntaxp hypoth-
esis it will immediately fail if st is not syntactically a variable. In the case of
the conjecture we’re attempting to prove, this ensures that the rule will only
apply to get-st-reg calls on the initial state. Such calls will be replaced by
the zero-extend term of the right-hand side. In that term, hide-get-st-reg is
an alias for get-st-reg; this avoids looping in the application of the rule. The
construction of the 32-bit vector of Boolean variables is then accomplished by
repeated application of the rule zero-extend-const-width. The functions intcar,
intcdr, and intcons used here to access or construct bits of an integer as if it
were a list of Booleans: intcar gets the Boolean value of the least-significant bit
(LSB), intcdr right-shifts by 1 to remove the LSB, and intcons adds a new LSB
to an integer, reversing the intcdr operation. The first argument to intcons is
recognized by FGL as a Boolean context, so the rewriter will introduce Boolean
variables corresponding to the terms that appear there, namely:

(intcar (intcdr . . . (intcdr (hide-st-get k st)) . . .))

The association of each such termlike object with the corresponding Boolean
variable is stored in a hash table. Each time a termlike object is found in a
Boolean context, it is looked up in the table; if it has an existing entry, the
corresponding Boolean variable is returned, and if not, a new Boolean variable
is generated and stored.

After generating the new Boolean variable, the intcons call becomes a new
symbolic integer that now includes that bit. The final value produced by the zero-
extend is therefore a symbolic integer consisting of 32 fresh Boolean variables. If
the same register were to be accessed again, the same process would occur except
that the objects associated with the Boolean variables would be recognized and
the same Boolean variables returned again.

4.3 Composing Boolean Functions

The most basic way in which a new Boolean formula is computed from a pre-
vious one during FGL’s rewriting process is by FGL’s built-in handling of if.
Specifically, if an if term occurs in which the two branches are both symbolic

40 S. Goel et al.

Listing 1.9. Bitwise AND implementation rule
(def -fgl -rewrite fgl -bitwise -and

(equal (bitwise -and x y)
(if (int -endp -check x-endp x)

(if (intcar x) (ifix y) 0)
(if (int -endp -check y-endp y)

(if (intcar y) (ifix x) 0)
(intcons (and (intcar x)

(intcar y))
(bitwise -and (intcdr x) (intcdr y)))))))

Boolean objects, the result is the Boolean if-then-else of the test formula and
the two branch formulas. This if-then-else formula is built in the AIG and a
reference to the resulting node is returned as the Boolean formula resulting from
the if. If the two branches are both integer values represented either as symbolic
integers or integer constants, then the result is a new symbolic integer, the bits
of which are the if-then-elses of the test with the corresponding bits from the
two branches.

As a simple example, the rule used to expand calls of bitwise-and is shown
in Listing 1.9. This rewrites a call of bitwise-and on a pair of symbolic integers,
producing a new symbolic integer in which each bit’s formula is the AND of the
corresponding bits of the inputs.

The rule applies to any call of bitwise-and. It first checks each of the inputs
with int-endp-check. This is true if it can be syntactically determined that the
input must be either −1 or 0—in particular, if the input’s symbolic integer
representation has only one bit. (The syntactic check works by binding its result
to the free variable x-endp introduced within the form. The technical details of
this rewriter feature are described elsewhere [39].) If this is true of either input,
then the result is based on the one relevant bit of that input (the intcar): if it is
true, then the input’s value is -1 and the result is the other input (coerced to an
integer value using ifix, which replaces non-integer values with 0); if false, then
the input’s value is 0 and therefore the result is too. In many cases, the intcar
value will be a (non-constant) Boolean formula; the result of this if is then a
new vector of Boolean formulas, each of which is the conjunction of the intcar
formula with the corresponding bit of the other input.

If the int-endp-check test is false on both inputs, then the rule creates the
first bit of the result by creating the and of the first bits of the two inputs. (In
ACL2, (and x y) is really shorthand for (if x y nil), so this is actually another
if merge operation.) It then makes another call of bitwise-and on the remaining
bits of the two inputs, which will cause another application of this rule; this
recurs until the bits of one of the inputs are exhausted.

The bitwise-and rule is a particularly simple example of how FGL can be
programmed to compute complex Boolean formulas, but designing and proving
these sorts of rules for other operations is a straightforward exercise in interactive
theorem proving. FGL also includes a library of such rules which the user can
safely extend with new rewrite rules as needed.

For some applications, the performance of stepping through iterative rules
such as these using the rewriter is insufficient. For these cases, FGL supports

Balancing Automation and Control for FV of Microprocessors 41

creating custom rewriting procedures analogous to ACL2’s metafunctions [23]
and invoking them via rules similar to ACL2’s meta rules. Metafunctions operate
directly on the syntactic forms to be rewritten—symbolic objects in FGL, terms
in ACL2. They return a resulting term (and substitution in FGL, though not
in ACL2) that is equivalent to the input object. To allow a metafunction to
be applied during rewriting, a meta rule is admitted, which requires proving a
theorem stating that the metafunction produces correct results. It is noteworthy
that FGL itself is proven in ACL2 to produce correct results even with user
extension via rewrite rules or custom rewriting procedures.

5 Conclusion

Over the past years, formal verification at Centaur has moved beyond its previous
focus on data-path proofs for arithmetic modules. Our verification projects have
expanded into the areas of front-end decoding and microcode, as well as the
implementations of a rich set of microoperations. We engage with the design
process in its early stages and maintain and expand our proofs throughout the
whole life cycle of the project. Over the years, our tools have been improved and
we have learned a few lessons.

We chose to use open-source tools and we are constantly contributing to
ACL2 libraries. The ACL2 community has a tested way of collaboration between
groups using git, peer reviewed commits, and a rich regression suite.

We write specifications that can be expanded and refined in response to
design and microarchitectural changes. When the design is incomplete, the spec-
ifications are still useful when augmented by relevant assumptions. When a
project requires additional flags or features, a modular style of specification
allows for appropriate changes. We try to avoid complex specifications like those
for the front-end decoder or ROM instruction decoder. These parts of the design
are implicitly verified during microcode verification.

Scheduled, triggered, and manual regressions are an important safeguard to
avoid breaking consistency among our proofs. They catch undesirable changes
in the specifications, tools, and design.

A key to ensuring stability of the proofs is their scope—the bigger the scope,
the more stable the proofs, because changes to interfaces of larger modules are
less frequent than changes at lower levels. The transition from unit to cluster-
level proofs led to substantially higher robustness and easier maintenance. This
has been possible due to improvements in the process of building our formal
models and enhancements in FGL. We also benefit greatly from enhancements
in modern SAT solvers.

We still have considerable work to do towards achieving our verification goals.
Some of these goals could be achieved with more man power, whereas for others
we do not have the right technology yet. There is a lot of microcode left to
be verified. We have not verified the mechanisms of out-of-order microoperation
scheduling, but we believe it is possible with our tools. We do not have a complete
methodology for verification of memory access instructions yet. Our plan is to
work on all these fronts.

42 S. Goel et al.

References

1. ACL2 Documentation: AIGNET-ABC-INTERFACE Interface to ABC. Accessed
April 2021. http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-
manual/?topic=AIGNET_AIGNET-ABC-INTERFACE

2. ACL2 Documentation: CLAUSE-PROCESSOR. Accessed April 2021. http://
www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_
CLAUSE-PROCESSOR

3. ACL2 Documentation: FAST-ALISTS. Accessed April 2021. http://www.cs.
utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-
ALISTS

4. ACL2 Documentation: FGL Bit-blasting Prover Framework. Accessed April
2021. https://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?
topic=FGL_FGL

5. ACL2 Documentation: SMTLINK Interface to Z3. Accessed April 2021. http://
www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_
SMTLINK

6. ACL2 Documentation: SV Hardware Verification Library. Accessed April
2021. http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?
topic=ACL2_SV

7. ACL2 Documentation: VL Verilog Toolkit. Accessed April 2021. http://www.cs.
utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_VL

8. ACL2 Home Page. Accessed April 2021. http://www.cs.utexas.edu/users/moore/
acl2

9. FGL Library in the ACL2 Community Books. Accessed April 2021. https://github.
com/acl2/acl2/tree/master/books/centaur/fgl

10. VL Verilog Toolkit. Accessed: April 2021. https://github.com/acl2/acl2/tree/
master/books/centaur/vl

11. Anderson, S.E.: Bit twiddling hacks. Accessed: April 2021. https://graphics.
stanford.edu/~seander/bithacks.html#CountBitsSetParallel

12. Blanchette, J., Kaliszyk, C., Paulson, L., Urban, J.: Hammering towards QED. J.
Formaliz. Reason. 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-5787/
4593

13. Boyer, R.S., Hunt, Jr., W.A.: Symbolic simulation in ACL2. In: Proceedings of the
Eighth International Workshop on the ACL2 Theorem Prover and Its Applications,
ACL2 2009, pp. 20–24. ACM, New York (2009). https://doi.org/10.1145/1637837.
1637840

14. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5

15. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992). https://doi.org/10.1145/
136035.136043

16. Cook, B.: Formal reasoning about the security of Amazon web services. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part I. LNCS, vol. 10981, pp.
38–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_3

17. Davis, J., Kaufmann, M.: Industrial-strength documentation for ACL2. In: Pro-
ceedings of the 12th International Workshop on the ACL2 Theorem Prover and
its Applications, ACL2 2014, Vienna, Austria, 12–13 July 2014, pp. 9–25 (2014).
https://doi.org/10.4204/EPTCS.152.2

http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=AIGNET_AIGNET-ABC-INTERFACE
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=AIGNET_AIGNET-ABC-INTERFACE
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_CLAUSE-PROCESSOR
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_FAST-ALISTS
https://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=FGL_FGL
https://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=FGL_FGL
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=SMT_SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_SV
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_SV
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_VL
http://www.cs.utexas.edu/users/moore/acl2/v8-3/combined-manual/?topic=ACL2_VL
http://www.cs.utexas.edu/users/moore/acl2
http://www.cs.utexas.edu/users/moore/acl2
https://github.com/acl2/acl2/tree/master/books/centaur/fgl
https://github.com/acl2/acl2/tree/master/books/centaur/fgl
https://github.com/acl2/acl2/tree/master/books/centaur/vl
https://github.com/acl2/acl2/tree/master/books/centaur/vl
https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/1637837.1637840
https://doi.org/10.1145/1637837.1637840
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.4204/EPTCS.152.2

Balancing Automation and Control for FV of Microprocessors 43

18. Davis, J., Slobodova, A., Swords, S.: Microcode verification – another piece of
the microprocessor verification puzzle. In: Klein, G., Gamboa, R. (eds.) ITP 2014.
LNCS, vol. 8558, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-08970-6_1

19. Dill, D.L.: Formal Verification of Libra Blockchain Smart Contracts. Recording of
the keynote (2020). https://www.youtube.com/watch?v=cYxxJU-Wt2U

20. Goel, S.: Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model. Ph.D. thesis, Department of Computer Science, The
University of Texas at Austin (2016). http://hdl.handle.net/2152/46437

21. Goel, S., Slobodova, A., Sumners, R., Swords, S.: Verifying x86 instruction imple-
mentations. In: Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2020, pp. 47–60. Association for Comput-
ing Machinery, New York (2020). https://doi.org/10.1145/3372885.3373811

22. Greve, D., Wilding, M.: Evaluatable, high-assurance microprocessors. In: NSA
High-Confidence Systems and Software Conference (HCSS), Linthicum, MD,
March 2002. http://hokiepokie.org/docs/hcss02/proceedings.pdf

23. Hunt, W.A., Kaufmann, M., Krug, R.B., Moore, J.S., Smith, E.W.: Meta reasoning
in ACL2. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 163–
178. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_11

24. Hunt, Jr., W.A., Kaufmann, M., Moore, J.S., Slobodova, A.: Industrial hardware
and software verification with ACL2. In: Verified Trustworthy Software Systems,
vol. 375. The Royal Society (2017). https://doi.org/10.1098/rsta.2015.0399 (Article
Number 20150399)

25. Hunt, W.A., Swords, S.: Centaur technology media unit verification. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 353–367. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4_28

26. Hunt, Jr., W.A.A., Swords, S., Davis, J., Slobodova, A.: Use of formal verification
at centaur technology. In: Hardin, D. (ed.) Design and Verification of Microproces-
sor Systems for High-Assurance Applications, pp. 65–88. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-1539-9_3

27. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Man-
ual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, November,
2020, Order Number: 325462–070US. https://software.intel.com/en-us/articles/
intel-sdm

28. Kaivola, R., et al.: Replacing testing with formal verification in Intel® CoreTM

i7 processor execution engine validation. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 414–429. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4_32

29. Kaufmann, M., Moore, J.S.: Limited second-order functionality in the first-order
setting. J. Autom. Reason. 64, 391–422 (2020). https://doi.org/10.1007/s10817-
018-09505-9

30. O’Hearn, P.W.: Formal reasoning and the hacker way (keynote). In: Krishnan, P.,
Reichenbach, C. (eds.) Proceedings of the 9th ACM SIGPLAN International Work-
shop on the State Of the Art in Program Analysis, SOAP@PLDI 2020, London,
UK, 15 June 2020, p. 1. ACM (2020). https://doi.org/10.1145/3394451.3401953

31. Peng, Y., Greenstreet, M.R.: Smtlink 2.0. In: Electronic Proceedings in Theoretical
Computer Science, vol. 280, pp. 143–160, October 2018. https://doi.org/10.4204/
eptcs.280.11

32. Rager, D.L., Ebergen, J., Nadezhin, D., Lee, A., Chau, C., Selfridge, B.: Formal
Verification of Division and Square Root Implementations, an Oracle Report, pp.
149–160. ACM, IEEE, October 2016

https://doi.org/10.1007/978-3-319-08970-6_1
https://doi.org/10.1007/978-3-319-08970-6_1
https://www.youtube.com/watch?v=cYxxJU-Wt2U
http://hdl.handle.net/2152/46437
https://doi.org/10.1145/3372885.3373811
http://hokiepokie.org/docs/hcss02/proceedings.pdf
https://doi.org/10.1007/11541868_11
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1007/978-3-642-02658-4_28
https://doi.org/10.1007/978-1-4419-1539-9_3
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/s10817-018-09505-9
https://doi.org/10.1007/s10817-018-09505-9
https://doi.org/10.1145/3394451.3401953
https://doi.org/10.4204/eptcs.280.11
https://doi.org/10.4204/eptcs.280.11

44 S. Goel et al.

33. Reeber, E., Hunt, W.A.: A SAT-based decision procedure for the subclass of unrol-
lable list formulas in ACL2 (SULFA). In: Furbach, U., Shankar, N. (eds.) IJCAR
2006. LNCS (LNAI), vol. 4130, pp. 453–467. Springer, Heidelberg (2006). https://
doi.org/10.1007/11814771_38

34. Reid, A., et al.: End-to-end verification of processors with ISA-formal. In: Chaud-
huri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS, vol. 9780, pp. 42–58. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_3

35. Russinoff, D.M.: Formal Verification of Floating-Point Hardware Design: A Math-
ematical Approach. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
95513-1

36. Sawada, J., Sandon, P., Paruthi, V., Baumgartner, J., Case, M., Mony, H.:
Hybrid verification of a hardware modular reduction engine. In: Bjesse, P., Slo-
bodova, A. (eds.) Proceedings of Formal Methods in Computer-Aided Design
(FMCAD). ACM/IEEE CEDA (2011). https://www.cs.utexas.edu/users/hunt/
FMCAD/FMCAD11/

37. Slobodova, A., Davis, J., Swords, S., Hunt, Jr., W.A.: A flexible formal verification
framework for industrial scale validation. In: Proceedings of the 9th IEEE/ACM
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE), pp. 89–97. IEEE/ACM, Cambridge (2011). https://doi.org/10.1109/
memcod.2011.5970515

38. Swords, S.: Term-level reasoning in support of bit-blasting. In: Slobodova, A., Hunt,
Jr., W.A. (eds.) Proceedings 14th International Workshop on the ACL2 Theorem
Prover and its Applications, Austin, Texas, USA, 22–23 May 2017. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 249, pp. 95–111. Open Publishing
Association (2017). https://doi.org/10.4204/EPTCS.249.7

39. Swords, S.: New rewriter features in FGL. In: Passmore, G., Gamboa, R. (eds.)
Proceedings of the Sixteenth International Workshop on the ACL2 Theorem Prover
and its Applications, Worldwide, Planet Earth, 28–29 May 2020. Electronic Pro-
ceedings in Theoretical Computer Science, vol. 327, pp. 32–46. Open Publishing
Association (2020). https://doi.org/10.4204/EPTCS.327.3

40. Swords, S.: FGL example. Accessed April 2021. https://github.com/solswords/fgl-
example

41. Swords, S., Davis, J.: Bit-blasting ACL2 theorems. In: Hardin, D., Schmaltz, J.
(eds.) Proceedings 10th International Workshop on the ACL2 Theorem Prover and
its Applications, Austin, Texas, USA, 3–4 November 2011. Electronic Proceedings
in Theoretical Computer Science, vol. 70, pp. 84–102. Open Publishing Association
(2011). https://doi.org/10.4204/EPTCS.70.7

42. Swords, S.O.: A Verified Framework for Symbolic Execution in the ACL2 Theorem
Prover. Ph.D. thesis, University of Texas at Austin, December 2010. http://hdl.
handle.net/2152/ETD-UT-2010-12-2210

43. Temel, M., Slobodova, A., Hunt, W.A.: Automated and scalable verification of inte-
ger multipliers. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp.
485–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_23

44. Zhong, J.E., et al.: The move prover. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020,
Part I. LNCS, vol. 12224, pp. 137–150. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-53288-8_7

https://doi.org/10.1007/11814771_38
https://doi.org/10.1007/11814771_38
https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1007/978-3-319-95513-1
https://doi.org/10.1007/978-3-319-95513-1
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD11/
https://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD11/
https://doi.org/10.1109/memcod.2011.5970515
https://doi.org/10.1109/memcod.2011.5970515
https://doi.org/10.4204/EPTCS.249.7
https://doi.org/10.4204/EPTCS.327.3
https://github.com/solswords/fgl-example
https://github.com/solswords/fgl-example
https://doi.org/10.4204/EPTCS.70.7
http://hdl.handle.net/2152/ETD-UT-2010-12-2210
http://hdl.handle.net/2152/ETD-UT-2010-12-2210
https://doi.org/10.1007/978-3-030-53288-8_23
https://doi.org/10.1007/978-3-030-53288-8_7
https://doi.org/10.1007/978-3-030-53288-8_7

Balancing Automation and Control for FV of Microprocessors 45

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Algebraic Program Analysis

Zachary Kincaid1(B), Thomas Reps2(B), and John Cyphert2(B)

1 Princeton University, Princeton, NJ 08540, USA
zkincaid@cs.princeton.edu

2 University of Wisconsin, Madison, WI 53706, USA
reps@cs.wisc.edu, jcyphert@wisc.edu

Abstract. This paper is a tutorial on algebraic program analysis. It
explains the foundations of algebraic program analysis, its strengths and
limitations, and gives examples of algebraic program analyses for numer-
ical invariant generation and termination analysis.

1 Introduction

This tutorial provides an introduction to algebraic program analysis, focusing
upon techniques for (numerical) invariant generation and termination analysis.
By reading this paper, you will learn the answers to the following questions:

– How does one design an algebraic program analysis?
– What new opportunities does algebraic program analysis enable?
– What are the limitations and important open problems in algebraic program

analysis?

The origin of algebraic program analysis is the algebraic approach to solving
path problems in graphs [1,6,48,59]: (1) compute a regular expression recogniz-
ing a set of paths of interest, and (2) interpret that regular expression within an
algebraic structure corresponding to the problem at hand. Various path problems
(e.g., computing shortest paths, path-finding problems, and dataflow analysis) can
be solved by using different algebraic structures to interpret regular expressions.

In the context of program analysis, the graph of interest is a control flow
graph for a program, and the algebra defines a space of summaries (approxima-
tions of program behavior) and a means for composing them. The algebraic app-
roach amounts to computing a summary for a program in “bottom-up” fashion,
building summaries for larger and larger subprograms by applying the operators
of the summary algebra.

The general pattern of an algebraic program analysis is: given a system of
(recursive) equations defining the semantics of a program, (1) symbolically com-
pute a closed-form solution, and then (2) interpret the closed form within an
algebraic structure corresponding to the analysis. The algebraic approach can
be contrasted with classical iterative abstract interpretation, which also starts
with a system of (recursive) equations defining the semantics of a program. How-
ever, the iterative approach is to (a) interpret the operations in the equations in
an abstract domain, and then (b) solve the equations over the abstract domain
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 46–83, 2021.
https://doi.org/10.1007/978-3-030-81685-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_3

Algebraic Program Analysis 47

by successive approximation. Thus, the classical approach is one of “interpret
and then solve,” whereas the algebraic approach is “solve and then interpret.”

The algebraic approach can be applied to various kinds of equations and alge-
braic structures. Three cases we consider in this article, and the corresponding
kind of program-analysis problems they can be used to solve, are:

Section 2 (Non-recursive) program summarization: left-linear equations over reg-
ular algebras.

Section 4 Linearly-recursive procedure summarization: linear equations over
tensor-product domains.

Section 5 Conditional termination analysis: right-linear equations over ω-regular
algebras.

Why Algebraic Program Analysis? Algebraic program analysis is a general frame-
work for understanding compositional program analyses. The principle of com-
positionality states that “the meaning of a complex expression is determined by
its structure and the meanings of its constituents” [57]. A program analysis is
compositional when the result of analyzing a composite program is a function
of the results of analyzing its components. Compositionality enables program
analyses to scale to large programs, to be parallelized, to be applied incremen-
tally, and to be applied to incomplete programs [18]. Algebraic program analysis
provides a structure in which to think about how to design such an analysis.

Insistence upon compositionality also demands a different perspective on
program analysis, which can suggest solutions to problems that may otherwise
not be apparent. We demonstrate this principle with a series of examples that
illustrate a variety of different ideas that are enabled by thinking of program
analysis in compositional terms.

Last, the algebraic framework enables a style of reasoning about the behavior
of program analyses themselves. By exploiting compositionality, it is possible to
design effective algebraic analyses that satisfy certain laws (e.g., monotonicity—
“more information in yields more information out”). Analyses can be classified
on the basis of algebraic laws that they satisfy, and we can reason how program
transformation affects analysis using these laws.

Why Not Algebraic Program Analysis? While compositionality brings many
desirable properties, it comes at the price of losing context. Compositionality
requires that the analysis of a program component is a function of the source
code of that component, and therefore cannot depend on the surrounding con-
text in which the component appears in the program. Many program analysis
techniques make essential use of context, for example:

– In an iterative abstract interpreter, which propagates information about
reachable states from the program entry forwards, the analysis of a com-
ponent depends on every component that may precede it in an execution.

– In a refinement-based software model checker, which inspects paths that go
from entry to an error state, the analysis of a component depends on the
whole program.

48 Z. Kincaid et al.

One of the main challenges of designing a good algebraic program analysis is to
overcome this loss of contextual information.

Secondly, algebraic program analysis is less general than iterative program
analysis, in the sense that any set of semantic (in)equations can be solved itera-
tively using the same basic algorithm, whereas each particular type of equation
system requires a specialized algorithm. Some problems—e.g., resolving semantic
equations of recursive procedures—have no known practical algebraic solutions.

2 Regular Algebraic Program Analysis

This section describes the algebraic approach to solving path problems in graphs
[1,6,48,59]. The basic structure of the method is to use regular expressions to
capture the set of paths of a graph, and then interpret these expressions to
obtain a desired result. We illustrate the approach by considering the problem
of computing shortest paths, and then show how it can be applied to numerical
invariant generation.

First, we establish some basic definitions. The syntax of regular expres-
sions over an alphabet Σ is as follows:

a ∈ Σ

R ∈ RegExp(Σ) :: = a | 0 | 1 | R1 + R2 | R1 · R2 | R∗

We will sometimes use juxtaposition R1R2 (rather than R1 · R2) to denote con-
catenation.

The semantics of regular expressions over Σ is given by a Σ-interpretation
I = 〈A, f〉, which consists of regular algebra A and a semantic function f . A
regular algebra A =

〈
A, 0A, 1A,+A, ·A, ∗A

〉
is an algebraic structure consist-

ing of a set A (called its universe) equipped with two distinguished elements
0A, 1A ∈ A, two binary operations +A (choice) and ·A (sequencing), and a
unary operation (−)∗A

(iteration).1 When the algebra is clear from context, we
will drop the superscript. A semantic function f : Σ → A maps each letter in
Σ to an element of A’s universe.

A Σ-interpretation I = 〈A, f〉 assigns to each regular expression R over Σ
to an element I �R� of A by interpreting each letter according to the semantic
function and each regular operator using its counterpart in A:

I �0� = 0A

I �1� = 1A

I �a� = f(a) For a ∈ Σ

I �R1 · R2� = I �R1� ·A I �R2�

I �R1 + R2� = I �R1� +A I �R2�

I �R∗� = I �R�∗A

Notice that the interpretation is compositional: for any expression R, I �R�
is a function of the top-level operator in R and the interpretations of its sub-
expressions.
1 Note that no particular laws are assumed to govern these operations. We will return

to this issue in Sect. 3.

Algebraic Program Analysis 49

Example 1 (Standard interpretation). The standard interpretation of regular
expressions is the language interpretation, L = 〈L, �〉 where L is the regular
algebra of languages. The universe of the interpretation is the set of regular lan-
guages over Σ, 0 � ∅ is the empty language, 1 � {ε} is the singleton language
containing the empty word, and the operators are

X + Y � X ∪ Y Union

X · Y � {xy : x ∈ X, y ∈ Y } Concatenation

X∗ � {x1x2 . . . xn : x1, . . . , xn ∈ X} Kleene closure

The semantic function � maps each letter a to the singleton language {a}. For
any regular expression R, L �R� is the (regular) set of words recognized by R. ⌟

We now describe how non-standard interpretations can be used to solve prob-
lems over directed graphs. A directed graph G = 〈V,E〉 consists of a finite set
of vertices V and a finite set of directed edges E ⊆ V × V . A path in G is a
finite sequence e1e2 . . . en with ei ∈ E such that for each i, the destination of ei

matches the source of ei+1. A path expression (in G) is a regular expression
over the alphabet of edges E that recognizes a set of paths in G. For any pair
of vertices u, v ∈ V , there is a path expression PathExpG(u, v) that recognizes
exactly the set of paths in G that begin at u and end at v. There are several ways
to compute path expressions. The classical method is Kleene’s algorithm [44] for
computing a regular expression for a finite state automaton (thinking of G as an
automaton over the alphabet E with start state u and final state v). For sparse
graphs, there are more efficient alternatives to Kleene’s algorithm, in particular
Tarjan’s algorithm [58]. The insight of the algebraic approach to path problems
is that these algorithms can be re-used for multiple purposes: first use a path
expression algorithm to find a regular expression recognizing a set of paths of
interest, and then compute a problem-dependent (non-standard) interpretation
of that expression.

Example 2 (Shortest paths). Consider the integer-weighted graph depicted in
Fig. 1a. Suppose that we wish to compute the length of the shortest path from
a to c. We begin by computing a path expression recognizing all paths from a
to c:

(
〈a, b〉 〈b, d〉 (〈d, e〉 〈e, d〉)∗ 〈d, a〉

)∗ 〈a, b〉
(
〈b, c〉 + 〈b, d〉 (〈d, e〉 〈e, d〉)∗ 〈d, c〉

)

This path expression can be represented succinctly by the directed acyclic
graph (DAG) pictured in Fig. 1b. Define the distance interpretation D where
the semantic function maps each edge to its weight, and the algebra’s universe
consists of the integers along with ±∞, 0 is interpreted as ∞, 1 as 0, and the
operators are as follows:

50 Z. Kincaid et al.

Fig. 1. An integer weighted graph and a path expression DAG representing the paths
from a to c

d1 + d2 � min(d1, d2) Minimum

d1 · d2 � d1 + d2 Addition

d∗ �
{

−∞ if d < 0
0 otherwise

Closure

The weight of the shortest weighted path from a to c is D�PathExpG(a, c)� = 1,
which can be calculated efficiently by interpreting the path expression DAG
“bottom-up” (see gray labels in Fig. 1b). ⌟

Algebraic path-finding can be used to generate invariants by representing a
program by a control flow graph, and interpreting path expressions within an
algebra of program summaries. A control flow graph (CFG) G = 〈V,E, r, C〉
is a directed graph 〈V,E〉 with a distinguished root (or entry) vertex r ∈ V ,
and where each edge e ∈ E is labeled by a command C(e); see Fig. 2a for an
example. In the remainder of this section, we give examples of interpretations
that can be used to generate (numerical) program summaries.

2.1 Transition-Formula Interpretations

Fix a finite set of variables, X, representing the variables of a program. A tran-
sition formula is a logical formula F (X,X ′) whose free variables range over X

Algebraic Program Analysis 51

and a set of “primed copies” X ′ � {x′ : x ∈ X}. For the purposes of this expo-
sition, we further suppose that variables range over integers, and that transition
formulas are expressed in the language of linear integer arithmetic. A transition
formula can be interpreted as a binary relation →F over states State � Z

X ,
where s →F s′ if and only if F is true when s is used to interpret the un-primed
variables and s′ is used to interpret the primed variables. For example, if F is
the transition formula

F � x′ = x + 1 ∧ y = y′ ∧ x < y ,

then we have

s →F s′ ⇐⇒ s′(x) = s(x) + 1, s(y) = s′(y), and s(x) < s(y) .

Suppose that G = 〈V,E, r, C〉 is a control flow graph, where commands range
over assignments x := e and assumptions [c], where e is a linear integer term
and c is a linear arithmetic formula. (An assumption [c] is a command that does
not change the program state, but which can only be executed if the formula c
holds.) We define a semantic function tf that maps each control flow edge into
the universe of transition formulas by translating the command associated with
the edge into logic:

tf(e) �

⎧
⎨
⎩

(x′ = e) ∧
(∧

y �=x∈X y′ = y
)

if C(e) is x := e

c ∧
(∧

y∈X y′ = y
)

if C(e) is [c]

We define an algebra of transition formulas as follows:

0 � false Empty relation

1 �
∧

x∈X

x′ = x Identity relation

F + G � F ∨ G Union

F · G � ∃X ′′.F (X,X ′′) ∧ G(X ′′,X ′) Relational composition

Above and elsewhere, we use positional notation for substitution; e.g., F (X,X ′′)
denotes the formula obtained by replacing all the X ′ symbols with “double
primed” symbols in X ′′ (and leaving the un-primed X symbols as they are).
Intuitively, F ∗ should be interpreted as the reflective transitive closure of F .
However, in general it is not possible to compute the reflexive transitive closure
of a formula (nor even to represent it as a formula). Hence, we must be content
with an over-approximate transitive closure operator. There are many different
methods for over-approximating transitive closure, so we speak of the family of
algebras of transition formulas, which have the same basic structure and dif-
fer only in the interpretation of the iteration operator. In the remainder of this
section, we describe a selection of methods for implementing the iteration opera-
tor. Disclaimer : for each example, the presentation differs somewhat (sometimes
substantially) from the cited source. The examples should be read as “how the
cited analysis might be presented in the algebraic framework.”

52 Z. Kincaid et al.

Example 3 (Transitive Predicate Abstraction [47]). Fix a set of variables X. Say
that a transition formula p(X,X ′) is

– reflexive if
∧

x∈X x = x′ |= p(X,X ′)
– transitive if p(X,X ′) ∧ p(X ′,X ′′) |= p(X,X ′′)

Let P be a finite set of candidate reflexive and transitive transition formulas.
For example we might choose

P � {x �� x′ : x ∈ X, ��∈ {≤,≥}}
∪{x �� 0 ⇒ x′ �� 0 : x ∈ X, ��∈ {≤,≥, <,>}}

We can define an iteration operator that over-approximates the reflexive transi-
tive closure of a formula F by the conjunction of the subset of P that is entailed
by F :

F ∗ �
∧

{p ∈ P : F |= p} . ⌟

Example 4 (Interval analysis [51]). Let F (X,X ′) be a transition formula. An
inductive interval invariant for F assigns to each variable x ∈ X a pair of integers
ax, bx ∈ Z such that if s is a state such that s(x) ∈ [ax, bx] for all x ∈ X and
s →F s′, then s′(x) ∈ [ax, bx] for all x ∈ X. Monniaux showed that it is possible to
determine optimal inductive interval invariants by posing the inductive-invariance
condition symbolically and quantifying over the bounds [51].

Let P = {px : x ∈ X} and Q � {qx : x ∈ X} be sets of fresh variables, which
we use to the lower and upper bounds of intervals, respectively. The set of
inductive interval invariants for a formula F can be represented by the formula

Inv(F, P,Q) � ∀X,X ′.

(
F ∧

∧
x∈X

px ≤ x ≤ qx

)
⇒
(∧

x∈X

px ≤ x′ ≤ qx

)

That is, the models of Inv (which assign integers to the lower and upper bound
variables P and Q) are in one-to-one correspondence with the interval invariants
of F . We may universally quantify over all inductive interval invariants to arrive
at the following iteration operator:

F ∗ � ∀P,Q.

(
Inv(F, P,Q) ∧

∧
x∈X

px ≤ x ≤ qx

)
⇒
(∧

x∈X

px ≤ x′ ≤ qx

)

In contrast to the typical iterative approach with classical widening and nar-
rowing operators, this operator computes a formula that implies all (and
therefore most precise) inductive interval invariants.2 For example, for the

2 Note that while the formula implies all interval invariants, it does not itself take the
form of an interval invariant.

Algebraic Program Analysis 53

loop (while (i �= n) do i := i + 1), this method yields the following over-
approximation of the reflexive transitive closure of F :

F ∗ ≡ n′ = n ∧ i ≤ i′ ∧ (i ≤ n ⇒ i′ ≤ n)

If we suppose that i is initially 0 and n is initially 100, then this formula implies
the loop invariant that n is equal to 100, and i is in the interval [0, 100]. ⌟

Example 5 (Recurrence analysis [4,27]). Let F (X,X ′) be a transition formula,
and let x and x′ denote vectors containing the variables X and X ′, respectively.
A linear recurrence inequation of F is a formula of the form aᵀx′ ≤ aᵀx + b that
is entailed by F . The idea behind recurrence analysis is to extract a set of linear
recurrence inequations for a formula, {aᵀ

i x
′ ≤ aᵀ

i x + bi}i∈I , and to use the closed
form of those recurrences to over-approximate the transitive closure of F :

F ∗ � ∃k.k ≥ 0 ∧
∧
i∈I

aᵀ
i x

′ ≤ aᵀ
i x + kbi

For instance, consider the following loop:

while (x > 0) do
if (y < 0) { x := x + y; y := y - 1 }
else { x := x - 2; y := y - 3}

The loop exhibits the following recurrences

(2x′ − y′) ≤ (2x − y) − 1
y′ ≤ y − 1

−y′ ≤ −y + 3
or in matrix form,

⎡
⎣
2 −1
0 1
0 −1

⎤
⎦

[
x′

y′

]
≤

⎡
⎣
2 −1
0 1
0 −1

⎤
⎦

[
x
y

]
+

⎡
⎣

−1
−1
3

⎤
⎦

which yields the following transition formula that summarizes the loop:

∃k.k ≥ 0 ∧ (2x′ − y′) ≤ (2x − y′) − k ∧ y′ ≤ y − k ∧ −y′ ≤ −y + 3k .

The loop also exhibits other recurrences (such as x′ ≤ x−1); however, the three
selected recurrences are complete in the sense that all implied recurrences are
non-negative linear combinations of these three (e.g., x′ ≤ x − 1 is obtained by
adding 1/2-times the first and second recurrences).

Such a complete set of recurrences exists for any transition formula F , which
can be computed as follows. First, observe that the set of linear recurrences of F ,

Rec(F) � {(a, b) : F |= aᵀx′ ≤ aᵀx + b}

is closed under non-negative linear combinations (i.e., it is a convex cone). Our
goal is to find a (finite) set of generators for Rec(F)—a finite set {(ai, bi)}i∈B

such that

Rec(F) =

{
(0, λ0) +

∑
i∈B

λi(ai, bi) : λ0 ≥ 0, λi ≥ 0 for all i ∈ B

}
.

54 Z. Kincaid et al.

To compute generators for Rec(F), we first introduce a fresh set of “difference”
variables, {δx}x∈X and form a formula

Δ(F) � ∃X,X ′.F ∧
∧

x∈X

δx = x′ − x .

Observe that (a, b) ∈ Rec(F) if and only if Δ(F) |= aᵀδ ≤ b. Thus, a set of
generators for Rec(F) corresponds exactly to a half-space representation for the
convex hull of Δ(F), which can be computed using the algorithm from [27].

The class of linear recurrence inequations considered in this example can be
generalized in various ways to yield more powerful invariant generation proce-
dures. In particular,

– [27] computes linear recurrences with polynomial closed forms
– [42] computes polynomial recurrences with polynomial and complex exponen-

tial closed forms.
– [41] computes polynomial recurrences with polynomial and rational exponen-

tial closed forms. ⌟

2.2 Weak Interpretations

Transition formulas are an appealing basis for algebraic program analysis, since
all the operators (except the iteration operator) are precise—they simply encode
the meaning of the program into logic. The significance of this is that transition
formula algebras delay precision loss as long as possible, which helps to overcome
loss of contextual information. However, there are algebraic analyses of interest
that are defined on weak logical fragments that cannot precisely express union
and/or relational composition.

Example 6 (Affine relation analysis [38]). An affine relation is a relation that
corresponds to the set of models of a transition formula of the form Ax′ = Bx+c.
Define the algebra of affine transition relations to be the regular algebra where
the universe is the set of affine transition relations, 0 is interpreted as the empty
relation, 1 is interpreted as the identity relation, + is interpreted as the affine
hull of R1 ∪ R2 (the smallest affine relation that contains both R1 and R2), · is
interpreted as relational composition, and ∗ is interpreted as the operation that
sends any affine relation R to the limit of the sequence {Ri}∞

i=0 defined by

R0 = 0 Ri+1 = Ri + (Ri · R) for i ≥ 0

Since we have R0 ⊆ R1 ⊆ . . . and if any Ri+1 properly contains Ri the dimension
of Ri+1 is strictly greater than that of Ri, this sequence must stabilize in finite
time, so the operation R∗ is computable. ⌟

3 Semantic Foundations

This section presents a general view of algebraic program analysis, with the goal
of elucidating its underlying principles so that they may be understood outside

Algebraic Program Analysis 55

the setting of graphs and regular expressions. This sets the stage for Sect. 4 and
Sect. 5, wherein we will develop program analysis schemes that follow the same
general “recipe” that we lay out in this section, but deviate from the instance
of this recipe that we saw in Sect. 2.

Following the theory of abstract interpretation [22], we begin with a concrete
semantics that defines the meaning of a program. The concrete semantics is
specified as the least (or greatest) solution to a system of recursive equations.
The concrete semantics is not computable—the goal of a program analysis is
to approximate it. The way that this is accomplished in an algebraic analysis
is by symbolically computing a closed-form solution to the semantic equations
(i.e., a non-recursive system of equations whose (unique) solution coincides with
the concrete semantics), and then interpreting that closed-form solution in an
algebraic structure that approximates the algebra of the concrete semantics.

3.1 Semantic Equations

Given a control flow graph G, we can syntactically derive a system of equations
E(G)—see Fig. 2. For each vertex v, we introduce a variable Xv and an equation
(Xv = Rv) that relates that variable to the variables for v’s predecessors. Notice
that this system of equations can be viewed as a (left-)regular grammar, with
each non-terminal symbol Xv recognizing the set of paths from the root r to the
vertex v. This is an instance of the more general concept of a solution to a system
of equations over an algebraic structure. A solution to the system of equations
E(G) = {Xv = Rv}v∈V over a regular interpretation I = 〈A, f〉 is a function σ
that maps each variable to an element of A such that each equation is satisfied:
for each equation (Xv = Rv) in E(G), we have σ(X) = Iσ�R�, where Iσ is
the interpretation obtained by extending the semantic function to variables by
interpreting them according to σ.

The prototypical concrete semantics of interest in algebraic analysis is the
relational semantics. The relational semantics of a program associates to every
control flow vertex v a reachability relation Rv, which is the set of pairs 〈s, s′〉
such that if the program begins at r in state s, then it may reach v with state
s′. The relational semantics may be obtained as the least solution to the sys-
tem of semantic equations over the relational interpretation, which is defined as
follows. The regular algebra of state relations, R, has binary relations on states
as its universe, 0 is interpreted as the empty relation ∅, 1 is interpreted as the
identity relation {〈s, s〉 : s ∈ State}, · is interpreted as relational composition,
+ as union, and ∗ as reflexive, transitive closure. The relational interpreta-
tion R is the interpretation over the regular algebra of state relations where the
semantic function maps each command to its associated transition relation; e.g.,
i := i + 2 is associated with the set of all pairs 〈s, s′〉 such that s′(i) = s(i) + 1
and s′(x) = s(x) for all x �= i. The relational semantics of a CFG G is the least
solution to E(G) over the relational interpretation.

Having formulated the concrete semantics as the solution to a system of
equations, we must now solve the system symbolically. The classical algorithm
is a variation of Gaussian elimination, given in Algorithm 1. This algorithm
is essentially Kleene’s algorithm [44] for computing a regular expression for a

56 Z. Kincaid et al.

r

a

b

c

d

ef

i := 0

j := 0 [i < 1000] i := i + 2

[j < 500]j := j + 1

[j ≥ 500]

i ≥ 1000

(a)

Xr = 1

Xa = Xr · 〈r, a〉
Xb = Xa · 〈a, b〉

+ Xd · 〈d, b〉
+ Xe · 〈e, b〉

Xc = Xb · 〈b, c〉
Xd = Xc · 〈c, d〉
Xe = Xd · 〈d, e〉
Xf = Xb · 〈b, f〉

(b)

Xr = 1

Xa = 〈r, a〉
Xb = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗

Xc = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, c〉
Xd = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, c〉 〈c, d〉
Xe = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, c〉 〈c, d〉 〈d, e〉
Xf = 〈r, a〉 〈a, b〉 (〈b, c〉 〈c, d〉 (〈d, b〉 + 〈d, e〉 e, b))∗ 〈b, f〉

(c)

Fig. 2. (a) A control flow graph; (b) the corresponding systems of equations; and (c)
a closed-form solution.

finite state automaton, recast in the language of equations. The front-solving
step eliminates variables one-by-one, at each step i producing a system of equa-
tion of equations that is equivalent to the original, but in which the variable
Xi does not appear in the right-hand-side of any equations Xj = Rj for j ≥ i.
The back-solving step eliminates all variable occurrences from right-hand-sides,
at each step replacing Xi with its closed form Ri in each equation Xj = Rj for
j < i. An example illustrating the result of solving the system of equations in
Fig. 2b symbolically appears in Fig. 2c. The significant difference to the famil-
iar Gaussian elimination algorithm in linear algebra is the “loop-solving” step,
which solves a single recursive equation Xi = Ri symbolically by re-arranging
Ri into the form XiA + B and taking BA∗ to be the solution. The loop-solving
step is justified under the relational interpretation, and more generally for any
interpretation over a Kleene algebra.3

3 The laws of Kleene algebra are not minimal in this regard.

Algebraic Program Analysis 57

Input : Left-linear system of equations, E = {Xi = Ri}n
i=1

Output : Closed-form solution to E
for i = 1 to n do /* Front-solving */

Re-arrange Ri in the form XiA + B;
Ri ← BA∗ ; /* “Loop-solving” */
foreach j > i do Rj ← Rj [X �→ Ri] ;

end
for i = n to 2 do /* Back-solving */

foreach j < i do Rj ← Rj [Xi �→ Ri] ;
end
return E;
Algorithm 1: Gaussian elimination for left-linear systems of equations

Definition 1. Let A = 〈A,+, ·, ∗, 0, 1〉 be a regular algebra. We say that A is
an idempotent semiring if it satisfies the following (for all a, b, c,∈ A):

a + (b + c) = (a + b) + c a(bc) = (ab)c Associativity
a(b + c) = ab + ac (b + c)a = ba + ca Distributivity

a + 0 = a 1a = a1 = a Identity
a + b = b + a Commutativity of +

a + a = a Idempotence
a0 = 0a = 0 Annihilation

In any idempotent semiring, we may define a natural order ≤, where a ≤ b iff
a + b = b. Note that + is the least upper bound with respect to this order.

We say that A is a Kleene algebra if it is an idempotent semiring and the
following hold (for all a, x ∈ A):

1 + a(a∗) = a∗ 1 + (a∗)a = a∗ Unfolding
ax ≤ x ⇒ a∗x ≤ x xa ≤ x ⇒ xa∗ ≤ x Induction

Exercise 1. Show that in any Kleene algebra, the least solution to a (left-)linear
recursive equation X = a + Xb exists and is equal to ab∗

The sense in which Gaussian elimination computes a “closed-form solutions”
to a system of left-linear equations E is that:

– (closed form) the right-hand sides do not refer to variables, and
– (solution) for any interpretation I over a Kleene algebra, for each equation

(X = R) ∈ E, we have σ(X) = I �R� where σ is the least solution to E
over I .

The connection between Gaussian elimination and graph algorithms like
Floyd-Warshall inspired Tarjan’s path-expression algorithm [58]. In the language
of graphs, Tarjan’s algorithm computes for each vertex v of a control flow graph
G with root r a path expression PathExpG(r, v) that recognizes the set of paths
from r to v; in the language of equations, it solves left-linear systems of equations

58 Z. Kincaid et al.

symbolically. Tarjan’s algorithm is preferred to Gaussian elimination in practice:
is more efficient (nearly linear time for reducible flow graphs, compared to cubic
time for Gaussian elimination) and produces simpler solutions. For expository
purposes, we will continue to refer to Gaussian elimination for solving systems
of equations, viewing Tarjan’s method as an efficient variation.

3.2 Abstract Interpretation

Gaussian elimination can solve a system of left-linear equations over a Kleene
algebra (e.g., relational semantics) symbolically. However, the solution cannot be
interpreted in the concrete algebra, since operators are not effective (that is, they
cannot be implemented by a machine). We approximate the concrete semantics
by interpreting the closed-form solution in an effective abstract algebra (e.g., one
of the transition-formula algebras from Sect. 2).

Following the theory of abstract interpretation [22], the correctness of this
approach is justified by establishing a relationship between the “concrete” and
“abstract” interpretations. In the algebraic framework, a natural way to express
the relationship is via a soundness relation [24], which is a binary relation
between two algebras that is preserved by the operations of the algebra. Mem-
bership of a (concrete, abstract) pair in the relation indicates that the concrete
element is approximated by the abstract element.

Definition 2 (Soundness relation). Given two Σ-interpretations I � =〈
A�, f �

〉
and I � =

〈
A�, f �

〉
, − � − ⊆ A� × A� is a soundness relation

if f �(a) � f �(a) for all a ∈ Σ and � is a sub-algebra of the product algebra
A� × A�; i.e., 0� � 0�, 1� � 1�, and for all x1 � y1 and x2 � y2 we have

– x1 +� x2 � y1 +� y2

– x1 ·� x2 � y1 ·� y2

– x∗�

1 � y∗�

1

The definition of soundness relation generalizes to interpretations over other
classes of algebraic structures in the natural way: it is a binary relation over
two algebras of the same signature that is preserved by every operation in the
signature.

Example 7 (Transition formula overapproximation). Let R denote the algebra
of state relations and TF denote an algebra of transition formulas. The over-
approximation relation is defined by

R �O F ⇐⇒ ∀〈s, s′〉 ∈ R, s →F s′.

Preservation of constants and the sequencing and choice operations is easily veri-
fied; to show that �O is a soundness relation, we need only to show that R �O F

implies R∗R �O F ∗TF

; i.e., (−)∗TF

over-approximates reflexive transitive closure.
Of course, this proof depends on the particular implementation of the iteration
operator.

The over-approximate soundness relation allows us to verify safety properties:
if R �O F and F entails some property P , then R satisfies P . ⌟

Algebraic Program Analysis 59

Example 8 (Transition formula underapproximation). The under-approximation
relation is defined by

R �U F ⇐⇒ ∀s, s′.s →F s′ ⇒ 〈s, s′〉 ∈ R,

Preservation of constants and the sequencing and choice operations is again
easily verified; to show that �U is a soundness relation, we need only to show
that R �O F implies R∗R �O F ∗TF

; i.e., (−)∗TF

under-approximates reflexive
transitive closure. The iteration operators in Sect. 2 are all over-approximate.
An example of an under-approximate iteration operator is

F ∗ �
n∨

i=0

F ◦ · · · ◦ F︸ ︷︷ ︸
i times

(for some fixed choice of n) which corresponds to bounded model checking [9],
with an unrolling bound of n.

The under-approximate soundness relation allows us to refute safety prop-
erties: if R �U F and F does not entail some property P , then R does not
satisfy P . ⌟

The problem of “approximating the behavior of a program” can be formalized
as follows:

Given a system of semantic equations over a set of variables X describing
the concrete semantics of a program (i.e., its least solution σ� over some
interpretation I �), find some σ� : X → A� such that for each variable
X ∈ X , we have σ�(X) � σ�(X).

The algebraic approach to this problem is to compute for each variable X a
closed form RX (such that σ�(X) = I �(RX)), and define σ�(X) � I �(RX).
The correctness of this approach is justified by the following soundness lemma,
which follows by induction on regular expressions.

Lemma 1 (Soundness). Let Σ be an alphabet, let I � =
〈
A�, f �

〉
and I � =〈

A�, f �
〉

be Σ-interpretations, and let �⊆ A� ×A� be a soundness relation. Then
for any regular expression R ∈ RegExp(Σ), we have I ��R� � I ��R�

3.3 Discussion

A subtlety of algebraic program analysis is that most algebras of interest in pro-
gram analysis are not Kleene algebras (for instance, none of the algebras in Sect. 2
are), and so in general, Gaussian elimination does not find solutions to systems of
equations over “abstract” interpretations corresponding to programanalyses. This
technical difficulty is sidestepped by appealing to the concrete semantics (which
typically is defined over a Kleene algebra, such as the algebra of state relations)
to justify the use of path-expression algorithms, and a sound approximating alge-
bra to interpret the resulting expressions. The fact that the abstract interpreta-
tion of the closed-form solution to the concrete system of equations does not yield

60 Z. Kincaid et al.

a solution to the abstract system of equations is immaterial: our goal is to over-
approximate the concrete rather than solve the abstract.

Formalizing a program analysis as an algebraic structure allows one to under-
stand the behavior of program analyses in terms of algebraic laws, and use the
language of algebra to reason about program analyses. For example, any tran-
sition formula algebra (in the family described in Sect. 2.1) is an idempotent
semiring, and so any two ∗-free regular expressions that denote the same lan-
guage have the same (up to logical equivalence) interpretation as a transition
formula. While none of the iteration operators in Sect. 2.1 satisfy the Unfolding
and Induction laws of Kleene algebra, they do satisfy weaker pre-Kleene algebra
iteration laws:

1 ≤ a∗ Reflexivity
a ≤ a∗ Extensivity

a∗a∗ = a∗ Transitivity
a ≤ b ⇒ a∗ ≤ b∗ Monotonicity

For any n, (an)∗ ≤ a∗ Unrolling

A concrete use-case for these laws appears in [25], which develops regular expres-
sion transformation techniques that preserve concrete semantics but are guar-
anteed to produce (non-strictly) more precise abstract semantics.

Such laws can also be useful for users of program analysis tools. For exam-
ple, since all operations are monotone (as a consequence of the monotonicity and
idempotent-semiring laws), a user can rely on the principle that “more informa-
tion in yields more information out.” If a user alters a program P by adding addi-
tional assume commands to get a program P ′ (e.g., expressing invariants that
are found by some other automated invariant generation technique, user-provided
hints, etc.), monotonicity means that they may rely on the fact that the analysis
will produce summaries for P ′ that are at least as precise as those for P .

A Recipe for Algebraic Program Analysis. We conclude this section by presenting
a general view of algebraic program analysis, abstracted from the language of
graphs and regular expressions:

1. (Modeling) Express the concrete semantics as the least (or greatest) solution to
a system of recursive equations (e.g., relational semantics as the least solution
to the left-linear system of equations corresponding to a control flow graph).

2. (Closed forms) Design a suitable language of “closed-form solutions” and an
algorithm for computing them (e.g., regular expressions and path-expression
algorithms).

3. (Interpretation) Design an abstract interpretation of the language of closed
forms and a soundness relation connecting the concrete and abstract interpre-
tations (e.g., transition-formula algebras (Sect. 2.1) and the over-approximate
soundness relation (Ex. 7)).

Section 4 and Sect. 5 give two more instances of this generic recipe, generalizing
beyond left-linear equations and regular-expressions as closed forms. Section 4
considers linear equations (and an appropriate language of closed forms); Sect. 5
considers another form of equation with ω-regular expressions as closed forms.

Algebraic Program Analysis 61

4 Interprocedural Analysis

Algebraic program analyses are oriented around computing summaries for pro-
gram fragments, and are naturally suited to analyzing programs with procedures.
Following Cousot & Cousot [23] and Sharir & Pnueli [56], the idea is to structure
the analysis in two phases:

Phase I: compute for each procedure X a summary that approximates the
behavior of X (including the actions of all procedures called transitively from
X).

Phase II: analyze whole-program paths from the start of the main procedure,
using the summaries to interpret procedure calls.

An example of a program with procedures is given in Fig. 3(a). The CFGs for
its procedures are shown in Fig. 3(b) along with a set of equations corresponding
to the CFGs (Fig. 3(c)). For Phase I, it is also useful to consider the following
equations in which we have eliminated all variables except for those of the form
Xs,x, which represent the procedure summaries.

Xs1,x1 = (〈s1, a〉 · Xs2,x2 + 〈s1, b〉) · Xs2,x2

Xs2,x2 = Xs3,x3 · Xs3,x3

Xs3,x3 = 〈s3, x3〉
(1)

This system of equations can be obtained either by a process of successively
eliminating variables from Fig. 3(c), or they can be read off directly from each
control-flow graph: sequential composition corresponds to ·, and branching cor-
responds to +.

We can also construct a graph of the dependencies among the variables in
the equation system. In this case, we would have

Xs3,x3 −→ Xs2,x2 −→ Xs1,x1 (2)

(which is also isomorphic to the program’s call graph). Note that the equations
in Eq. (1) are not left-linear. However, by eliminating variables in a topological
order of Eq. (2), these systems can still be solved using Gaussian elimination
(Algorithm 1).

Xs3,x3 = 〈s3, x3〉
Xs2,x2 = 〈s3, x3〉 · 〈s3, x3〉
Xs1,x1 = (〈s1, a〉 · 〈s3, x3〉 · 〈s3, x3〉 + 〈s1, b〉) · 〈s3, x3〉 · 〈s3, x3〉

(3)

Unfortunately, this strategy breaks down for programs with recursive pro-
cedures: the essential difficulty is in computing the summaries of procedures
that are directly recursive or part of a set of mutually recursive procedures. We
will return to this issue shortly, after a brief discussion of Phase II, which can
be addressed via algebraic program analysis, regardless of whether the original
equation system contains recursion.

62 Z. Kincaid et al.

Fig. 3. (a) A three-procedure program scheme. (b) Control-flow graphs for program
(a). The edges labeled “X2” and “X3” represent calls to the respective procedures. (c)
A system of equations corresponding to (b).

Fig. 4. Graph corresponding to the equation system used for Phase II for the program
from Fig. 3.

With closed-form solutions for the procedure summaries in hand, Phase II
can be addressed with Gaussian elimination. (Note that for a program with
recursive procedures, the transformed Phase II system is still recursive. However,
it is left-recursive, and so can be handled with regular expressions, and analyzed
using the transition-formula interpretations of Sect. 2—the “loops” in Phase II
correspond to sequences of recursive calls). Figure 4 shows the equation system

Algebraic Program Analysis 63

Fig. 5. (a) A two-procedure program scheme, where X1 represents the main procedure,
X2 represents a recursive subroutine, and C〈s1,a〉, C〈s2,x2〉, C〈s2,b〉, and C〈b,x2〉 represent
four program statements. (b) Control-flow graphs for program (a). The three edges
labeled “X2” represent calls to procedure X2. (c) A system of equations corresponding
to (b).

used for Phase II for the program from Fig. 3 in graphical form. The graph
is similar to Fig. 3(b) with (i) additional edges from each call-site to the start
node of the called procedure, and (ii) the edges previously labeled with “X2”
and “X3” are now labeled with the values from Eq. (3) for the corresponding
procedure summaries: 〈s3, x3〉 · 〈s3, x3〉 and 〈s3, x3〉, respectively.

The remainder of this section focuses on Phase I: computing procedure sum-
maries. Consider the two-procedure program shown in Fig. 5(a). CFGs for its
procedures are shown in Fig. 5(b) along with a set of recursive equations cor-
responding to the interprocedural CFG. Unfortunately, equations like those in
Fig. 5(c) do not fit naturally with the recipe given in Sect. 3.3. The essential
difficulty is with item 3.3: “Design a suitable language of ‘closed-form solutions’
and an algorithm for computing them.” In particular, we cannot use regular
expressions and path-expression algorithms because the equations in Fig. 5(c)
are not left-linear (and they cannot be put in left-linear form).

Two ideas are involved in using algebraic program analysis to summarize
recursive procedures:

1. The generalization by Esparza et al. [26] of Newton’s method—the classical
numerical-analysis algorithm for finding roots of real-valued functions—to a
method for solving a system of equations over a semiring S, called Newtonian
Program Analysis (NPA). As in its real-valued counterpart, each iteration of
NPA solves a simpler “linearized” problem. (See Sect. 4.1.)

2. The technique of Reps et al. [53] for applying the algebraic-program-analysis
recipe to the linearized problems that arise in NPA. (See Sect. 4.2.)

64 Z. Kincaid et al.

4.1 Motivation: Newtonian Program Analysis

To motivate why we are interested in the special case of linear equations
(Sect. 4.2), this section provides a brief overview of how linear equations arise
in NPA. Let E = {Xi = Ri}n

i=1 be a system of equations, and fix an inter-
pretation I over some algebra A. Define a function f : An → An by f(σ) =
(Iσ�R1�, . . . ,Iσ�Rn�) (i.e., the n-tuple of interpreted right-hand-sides, where
variables are interpreted according to σ). NPA is an iterative method for pro-
gram analysis that solves the following sequence of problems for ν:

ν(0) = f(0) ν(i+1) = Y(i) (4)

where Y(i) is the value of Y in the least solution of

Y = f(ν(i))+ LinearCorrectionTerm(E, ν(i),Y) (5)

Thus, NPA is similar to Kleene iteration, except that on each iteration, f(ν(i))
is “corrected” by an amount controlled by LinearCorrectionTerm(E, ν(i),Y)—a
function of f , the current approximation ν(i), and (vector) variable Y—which
nudges the next approximation ν(i+1) in the right direction at each step.

The linear correction term is the result of replacing each right-hand side
Ri =

∑
j Rj with a sum

∑n
i=0 Ri,j,k, where each Ri,j,k is obtained from Ri,j by

replacing all variables, except possibly one, with its interpretation in ν. (The
formal definition can be found elsewhere [26, §3.2].) For example, consider the
system of equations below, a simplified variant of Fig. 5(c) that is obtained by
eliminating all variables except Xs1,x1 ,Xs2,b,Xs2,x2 :

Xs1,x1 = 〈s1, a〉 Xs1,x2

Xs2,b = 〈s2, b〉 + Xs2,b · Xs2,x2 · Xs2,x2 · 〈d, b〉
Xs2,x2 = 〈s2, x2〉 + Xs2,b 〈b, x2〉

(6)

The transformation results in the following system (for brevity, we denote
Ys1,x1 , Ys2,b, Ys2,x2 by Y1, Y2, Y3):

Y1 = 〈s1, a〉 · Y3

Y2 = 〈s2, b〉 + Y2 · ν3 · ν3 · 〈d, b〉 + ν2 · Y3 · ν3 · 〈d, b〉 + ν2 · ν3 · Y3 · 〈d, b〉
Y3 = 〈s2, x2〉 + Y2 · 〈b, x2〉

(7)

Note that the two underlined summands are both truly linear : they are linear,
but not left-linear nor right-linear.

The process of solving Eqs. (4) and (5) for ν(i+1), given ν(i), is called
one Newton round. On the initial Newton round, we set 〈ν(0)

1 , ν
(0)
2 , ν

(0)
3 〉 ←

〈0,I �〈s2, x2〉�,I �〈s3, x3〉�〉. On round i + 1, we solve Eq. (7) for 〈Y1, Y2, Y3〉
with 〈ν1, ν2, ν3〉 set to the value 〈ν(i)

1 , ν
(i)
2 , ν

(i)
3 〉 obtained on round i, and then

set 〈ν(i+1)
1 , ν

(i+1)
2 , ν

(i+1)
3 〉 ← 〈Y1, Y2, Y3〉.

Algebraic Program Analysis 65

Operationally, the linearization transformation imposes a particular proto-
col for sampling the program’s space of behaviors. For instance, in Fig. 5(b),
the procedure X2 has two call-sites along the loop through b. In Eq. (7), each
right-hand-side summand in the equation for Y2 has at most one variable: the
transformation inserted ν2 or ν3 at various call-sites (considering Xs2,b as a
pseudo-call-site corresponding to tail recursion), and left at most one variable Yi

in each summand. In essence, during a given Newton round, the analyzer samples
the behavior of f by taking the + of various paths through the transformation
of f . Along each path through a (transformed) right-hand side, the summary for
each pseudo-call-site Xi encountered is held fixed at νi, except for possibly one
pseudo-call-site on the path, which is explored by visiting (the linearized version
of) the called procedure. The summaries ν1, ν2, ν3 are updated according to the
result of this exploration, and the algorithm performs the next Newton round.

The analogy between NPA and Newton’s method in numerical analysis is
that in both cases one creates a linear approximation of f(X) around the “point”
(ν(i), f(ν(i))); the solution of the linear system is the next approximation of X.

4.2 Algebraic Program Analysis for Linear Equations

In this section, we instantiate the recipe for algebraic program analysis from
Sect. 3.3 to solve a system of linear equations, such as the linearized problems
that arise as Eq. (5) [53]. This goal may seem out of reach because item 3.3 of
the recipe requires us to “design a suitable language of ‘closed-form solutions’
and an algorithm for computing them.”

What is a suitable language of closed-form solutions of linear equations?
Clearly the regular expressions and path-expression algorithms used in Sect. 2
and Sect. 3 will not do, because the least solution under the language interpre-
tation to the (truly) linear equation X = aXb + 1 is

{
aibi : i ≥ 0

}
, which is the

canonical example of a linear-context-free language that is not regular. However,
over fifty years ago, formal-language theorists established that linear-context-
free languages have certain similarities to regular languages [17,34,61], and we
can make use of this property to design a language of closed forms for linear
equations. Intuitively,

{
aibi : i ≥ 0

}
can be obtained by (i) introducing paired

alphabet symbols, such as (a, b), (ii) defining concatenation of paired symbols as
(a, b) · (c, d) def= (ca, bd), (iii) defining Kleene-star in the natural way over paired-
symbol concatenation, so (a, b)∗ is the language of paired words

{
(ai, bi) : i ≥ 0

}
,

and (iv) applying an operation that concatenates the left word and right word
of each paired word:

{
(ai, bi) : i ≥ 0

}
�→
{
aibi : i ≥ 0

}
.

66 Z. Kincaid et al.

For the purpose of algebraic program analysis, this idea can be formalized by
introducing tensored regular expressions over an alphabet Σ, whose syntax
is defined as follows:4

a ∈ Σ

R ∈ RegExp(Σ) :: = a | 0 | 1 | R1 + R2 | R1 · R2 | R∗ | S�

S ∈ RegExpT (Σ) :: = R1 ⊗ R2 | 0 | 1 | S1 ⊕ S2 | S1 � S2 | S�

We can now follow the pattern of Sect. 2, and define algebras suitable for
interpreting tensored regular expressions.

Definition 3. A tensor-product algebra T = 〈A,T,⊗,�〉 consists of two
regular algebras A and T along with an operation ⊗ : A × A → T , called tensor
product, and an operation � : T → A, called detensor.

Example 9 (Standard interpretation). The standard interpretation from Exam-
ple 1 can be extended to tensored regular expressions by defining a universe of
languages over word pairs (“tensored words”) T = 2Σ∗×Σ∗

, whose operators are
given by:

X ⊗ Y � {〈x, y〉 : x ∈ X, y ∈ Y }
Z� � {zz : 〈z, z〉 ∈ Z}

Z1 � Z2 � {〈z2z1, z1z2〉 : 〈z1, z1〉 ∈ Z1, 〈z2, z2〉 ∈ Z2}
Z1 ⊕ Z2 � Z1 ∪ Z2

Z� �
⋃
i∈N

Zi

Note that this interpretation allows tensored regular expressions to be used to
capture linear context-free languages. For instance, the equation X = aXb + 1,
whose least solution is

{
aibi : i ≥ 0

}
can be written in closed form as X =

((a ⊗ b)�)�, and the equation X = aXa + bXb + 1, whose least solution is
the language of even-length palindromes over {a, b}, can be written as X =
(((a ⊗ a) ⊕ (b ⊗ b))�)�. ⌟

Example 10 (Relational interpretation). The relational interpretation can be
extended to tensored regular expressions by defining an algebra of binary state-
pair relations, as follows.5 The universe is the set of relations on State × State
(i.e., an element of the universe is a subset of State × State × State × State).
Comparing with the standard interpretation, (in which an element 〈p1, p2〉 con-
sists of a “backwards path” p and a “forwards continuation”) we may think of
4 A warning about notation: in our previous papers, we used ⊕ and ⊗ for the two

semiring operations, � for tensor product, and ⊕T and ⊗T for the two tensored-
semiring operations. In this paper, we use + and · for the semiring operations, with
circles around them for the tensored-semiring versions: ⊕ and �. We use ⊗ for tensor
product, which is consistent with usual mathematical notation.

5 That is, an element of the algebra is a pair of pairs of states.

Algebraic Program Analysis 67

an element
〈(

s′
1

s2

)
,

(
s1

s′
2

)〉
of a state-pair relation as consisting of two pre/post

state pairs: a “backwards” pair s′
1

∗← s1 and a “forwards” pair s2 →∗ s′
2. In the

algebra of state-pair relations, 0 is interpreted as the empty relation, 1 as the
identity relation, and + as union. The remaining operators are given by:

R1 ⊗ R2 =
{〈(

s′
1

s2

)
,

(
s1

s′
2

)〉
: 〈s1, s

′
1〉 ∈ R1, 〈s2, s

′
2〉 ∈ R2

}

T� =
{

〈s, s′〉 : ∃s′′, s′′.
〈(

s′′

s′′′

)
,

(
s
s′

)〉
∈ T ∧ s′′ = s′′′

}
(8)

T1 � T2 =
{〈(

s1

s2

)
,

(
s′
1

s′
2

)〉
:
〈(

s1

s2

)
,

(
s′′
1

s′′
2

)〉
∈ T1 ∧

〈(
s′′
1

s′′
2

)
,

(
s′
1

s′
2

)〉
∈ T2

}

T� =
∞⋃

i=0

T � . . . � T︸ ︷︷ ︸
i times

Note that the tensored sequencing operation is just a form of relational compo-
sition (over tuples of stacked elements); similarly, tensored iteration is a form of
reflexive transitive closure. ⌟

Example 11 (Transition-formula interpretation). Transition formulas can be
used to interpret tensored regular expression in a way analogous to the rela-
tional interpretation (as one should expect, because there must be a soundness
relation between them!). A tensored transition formula T is a formula over four
vocabularies, representing the value of the variables before and after a pair of
computations. The tensor and detensor operations are essentially the same as
those from the relational interpretation, translated into logic:

(F1 ⊗ F2)
((

X ′
1

X2

)
,

(
X1

X ′
2

))
� F1(X1,X

′
1) ∧ F2(X2,X

′
2) (9)

T�(X,X ′) � ∃
(

Y1

Y2

)
.T

((
Y1

Y2

)
,

(
X
X ′

))
∧ Y1 = Y2

In the Eq. (9), the vocabularies X1, X ′
1, X2, and X ′

2 track the original role
of the respective vocabulary in F1 or F2. The “stacked” notation is intended
to be suggestive of an interpretation of a tensored transition formula over a
doubled vocabulary, where the variables are X ′

1 ∪ X2 and their “primed copies”
are X1 ∪ X ′

2. To make the connection with Sect. 2.1 more apparent, we shall
define W1 = X ′

1, W2 = X2, W ′
1 = X1, W ′

2 = X ′
2. With this notation, the

product operation can be defined as:

(T1�T2)

((
W1

W2

)
,

(
W1

W2

)′)
� ∃

(
W1

W2

)′′
.T1

((
W1

W2

)
,

(
W1

W2

)′′)
∧T2

((
W1

W2

)′′
,

(
W1

W2

)′)

As with the relational interpretation, the product operation is just a form of
relational composition (over tuples of stacked elements).

68 Z. Kincaid et al.

Remarkably, the algebra of tensored transition formulas is the same as the
algebra of untensored transition formulas, just over an extended set of variables.
In particular, the iteration operators from Sect. 3 can be used to implement �.
For instance, consider the recursive procedure

foo(): if (*) then a := a + 1; foo(); b := b + 1

The path to the recursive call of foo and the path from the recursive call to exit
can be modeled by the transition formulas F and G, respectively:

F � a′ = a + 1 ∧ b′ = b

G � b′ = b + 1 ∧ a′ = a

A procedure summary for foo can be calculated by evaluating ((F ⊗G)�)�, using
recurrence analysis (Example 5) to implement the � operator:

F ⊗ G � a1 = a′
1 − 1 ∧ b1 = b′

1 ∧ b′
2 = b2 + 1 ∧ a′

2 = a2

(F ⊗ G)� � ∃k.k ≥ 0 ∧ a1 = a′
1 − k ∧ b1 = b′

1 ∧ b′
2 = b2 + k ∧ a′

2 = a2

((F ⊗ G)�)� � ∃k.k ≥ 0 ∧ a′ = a + k ∧ b′ = b + k
⌟

We now show how to compute closed forms for linear equations. First, we
perform a regularizing transformation, which takes a system of linear equations
ELin and converts it into a system of left-linear equations ELeftLin. The trans-
formation takes each right-hand-side term of the form a · Y · b and converts it
to Z � (a ⊗ b), where Y and Z are variables whose values are elements of the
regular algebras A and T of a tensor-product algebra 〈A,T,⊗,�〉.
Definition 4. Given a linear equation system ELin over the regular algebra A
of a tensor-product algebra T = 〈A,T,⊗,�〉, the regularizing transforma-
tion τReg creates a left-linear equation system ELeftLin = τReg(ELin) over T by
transforming each equation of ELin as follows:

Yj = cj +
∑
i,k

(ai,j,k ·Yi · bi,j,k)

Zj = (1 ⊗ cj) ⊕
⊕
i,k

(Zi � (ai,j,k ⊗ bi,j,k))
τReg

where Zi and Zj are variables that take on values from T.

For instance, if the regularizing transformation is applied to the linear system
of equations in Fig. 6a, the result is the system of equations Fig. 6b. Because
Fig. 6b is left-linear, we can now use the approach from Sect. 2 and Sect. 3—that
is, create a closed-form solution for each variable Zi by finding a path expression
for the variable in the graph Fig. 6c. Finally, one gives a closed-form solution
for each variable Yi for the linear equation system in Fig. 6a by applying (−)�

to each path expression—see Fig. 6d. This algorithm for computing closed-form
solutions to linear equations is justified in the tensored-relational interpretation,
and more generally, in any interpretation whose algebra forms what we dub a
Kronecker algebra, defined as follows:

Algebraic Program Analysis 69

Fig. 6. (a) A linear system of equations; (b) its regularization; (c) the graph corre-
sponding to (b); (d) a closed-form solution for (a).

Definition 5. A Kronecker algebra Kr = 〈〈A,+, ·, ∗, 0, 1〉, 〈T,⊕,�,�, 0, 1〉,
⊗,�〉 is a tensor-product algebra that consists of two Kleene algebras
〈A,+, ·, ∗, 0, 1〉 and 〈T,⊕,�,�, 0, 1〉 such that (i) the natural order forms a com-
plete lattice (i.e., both algebras have all infinite sums), and (ii) the following
properties hold:

1. 0 ⊗ 0 = 0
2. 1 ⊗ 1 = 1
3. (a ⊗ b)� = a · b, for all a, b ∈ A
4. (a1 ⊗ b1) � (a2 ⊗ b2) = (a2 · a1) ⊗ (b1 · b2), for all a1, a2, b1, b2 ∈ A

5. (t1 ⊕ t2)� = t�1 + t�2 , for all t1, t2 ∈ T

We assume that all distributivity properties of A and T , as well as item 5, hold
for infinite sums. In particular, for item 5, we have

(⊕
i∈I

ti

)�

=
∑
i∈I

t�i (10)

4.3 Discussion

The Instantiation of the Recipe. Returning to the recipe from Sect. 3.3, what we
have done for a system of linear equations ELin is to instantiate the recipe as
follows:

1. (Modeling). The concrete semantics is the least solution of ELin interpreted
in relational semantics.

2. (Closed forms). Each variable of ELin is expressed as the detensor ((−)�) of
a tensored regular expression. Closed forms are computed from the closed-
forms of the left-linear system of equations τReg(ELin) that results from the
regularizing transformation (e.g., see Fig. 6).

70 Z. Kincaid et al.

3. (Interpretation). Tensored regular expressions can be interpreted as tensored
transition formulas (Example 11), which are simply transition formulas over
a “doubled” vocabulary.

Two Lessons. We would like to mention two lessons that we learned while work-
ing on this material over the years.

1. For the problems that arise in NPA, we must solve an equation system that
is truly linear, not left-linear or right-linear. A reasonable sanity check might
go as follows:

– Algebraic program analysis à la Sect. 2 solves a left-linear (or right-linear)
system of equations using methods based on regular expressions.

– NPA repeatedly creates a system of linear equations that needs to be
solved. Such linear equations are related to linear context-free languages,
such as the language {aibi}, which is not regular.

– Ergo, it is a non-starter to attempt to apply algebraic program analysis
to the equations that arise on each round of NPA.

However, as shown in this section, it was possible to side-step this fundamen-
tal mismatch, by extending algebraic program analysis to systems of linear
equations using Kronecker algebras, which have additional operations, such
as tensor product and detensor.
Thus, beyond the technical details, perhaps a more important takeaway is “be
careful how you apply sanity checks.” There is a risk that a plausible-sounding
sanity check could cause you to discard an idea that is worth pursuing.

2. In some sense, the solution using Kronecker algebras goes against the grain of
what computer scientists typically preach, namely, create appropriate abstrac-
tions (in the sense of abstract data-types) for a problem at hand, and then
program your solution, thinking of the chosen abstractions as the operations
of an abstract machine. This style of thinking is considered central to man-
aging complexity in computer science, and it is generally considered heresy
to break an abstraction.
For algebraic program analysis, the abstraction is regular algebra, used with
interpretations that are abstractions (in the sense of abstract interpretation
[22]) of a program’s concrete transition relations. However, the introduction
of tensor product and detensor breaks that abstraction! To understand what
we mean, consider the definition of F · G for transition relations in Boolean
programs, i.e.,

(F · G)(W,Z) � ∃X,Y.F (W,X) ∧ G(Y,Z) ∧ (X = Y),

and the definitions of F ⊗ G and T�,6 namely,

(F ⊗ G)(W,X, Y, Z) � F (W,X) ∧ G(Y,Z)
T (W,X, Y, Z)� � ∃X,Y.T (W,X, Y, Z) ∧ (X = Y)

6 Because we are trying to relate these operations to the untensored product operation
·, we do not make use of the stacked notation from Sect. 4.2.

Algebraic Program Analysis 71

The product operation F ·G has three distinct steps: (i) conjoin F (W,X) and
G(Y,Z); (ii) conjoin the equality X = Y ; and (iii) project out vocabularies X
and Y . In essence, tensor product and detensor break the abstraction of · as
an indivisible operation: · is decomposed into two more-granular operations,
⊗ and �. By performing F ⊗ G, we perform just the first step of ·, and only
later, when � is performed, do we “finish up” by applying the second and
third steps of ·. The advantage is that we can operate on tensored values for
some number of steps before “finishing” some earlier ·.
Again, beyond the technical details, the takeaway may be the process that we
went through, which may be of value as a conceptual tool in other contexts:

– The insight on how to break the abstraction—both as presented here
and as occurred during our research seven or eight years ago—came from
thinking about one specific interpretation of Kleene algebra: transition
relations for Boolean programs.

– The algebraic properties of the new, finer-granularity operations allowed
us to abstract out a new algebra, dubbed in this paper Kronecker algebra.

– The ideas could now be applied in other contexts by finding other inter-
pretations of Kronecker algebra (or, because we are interested in program
analysis, by finding interpretations that over-approximate Kronecker alge-
bra).

5 Termination Analysis

This section describes how algebraic program analysis can be applied to termi-
nation analysis, based on the approach of [63]. The goal of termination analysis
is to prove that a program has no infinite executions. Our high-level strategy is
to exploit compositionality: we prove that a loop terminates by first computing a
summary (e.g., a transition formula) for its body, and then finding a termination
argument for the summary.

Following Sect. 3, we first formalize a concrete semantics as the (greatest)
solution of a system of semantic equations. An appropriate notion of concrete
semantics for termination analysis is the set of non-terminating states of the
program (from which there exists an infinite execution)—the program terminates
exactly when none of the program’s initial states belong to this set. As in Sect. 3,
this system of equations can be derived syntactically from a program’s control
flow graph—see Fig. 7 for an example. The non-terminating states of the program
are the greatest solution to this system of equations over the algebra where the
universe is the set of states, � is interpreted as union (a state is non-terminating
if it has at least one infinite execution) and � is interpreted as preimage (a state
is non-terminating iff it can reach a non-terminating state).7

7 Despite the fact that this system of equations is right-linear, the method of Sect. 2
does not apply because the system of equations has two sorts instead of one; in
particular, � has type � : 2State×State ×2State → 2State, and so is not a binary operation
on a set.

72 Z. Kincaid et al.

Fig. 7. A program represented by a control flow graph (a), abstract syntax tree (b),
and system of equations (c).

A suitable language of “closed-form solutions” for the system of equations
that arise in termination analysis is ω-regular expressions. The syntax of ω-
regular expressions over an alphabet Σ is as follows:

a ∈ Σ

R ∈ RegExp(Σ) :: = a | 0 | 1 | R1 + R2 | R1 · R2 | R∗

S ∈ ω-RegExp(Σ) :: = Rω | S1 � S2 | R � S

The semantics of a (ω)-regular expressions is given by an interpretation over an
ω-algebra and a regular algebra.

Definition 6. An ω-algebra over a regular algebra A is 4-tuple B =〈
B,�B ,�B ,ω

B
〉

consisting of a universe B, an operation �B : A × B → B, an

operation �B : B × B → B, and an operation (−)ωB

: A → B.

Example 12 (Standard interpretation). In the standard interpretation of ω-
regular expressions, the universe consists of sets of infinite sequences over the
alphabet Σ, and the operations are

W1 � W2 � W1 ∪ W2 Union

X � W � {xw : x ∈ X,w ∈ W} Concatenation

Xω � {x1x2 · · · : x1, x2, · · · ∈ X} Infinite repetition

Algebraic Program Analysis 73

For example, an ω-regular expression that recognizes all infinite paths in Fig. 7a
starting at r is:

Outer loop︷ ︸︸ ︷
(〈r, a〉 〈a, b〉 〈b, c〉 (〈c, d〉 〈d, e〉 〈e, c〉)∗ 〈c, r〉)ω

�
(
(〈r, a〉 〈a, b〉 〈b, c〉 (〈c, d〉 〈d, e〉 〈e, c〉)∗ 〈c, r〉)∗ 〈r, a〉 〈a, b〉 〈b, c〉) � (〈c, d〉 〈d, e〉 〈e, c〉)ω︸ ︷︷ ︸

Inner loop

⌟

Example 13 (Nonterminating state interpretation). The non-terminating state
algebra is an ω-algebra over the algebra of state relations. Its universe consists
of sets of states. The operators are

R � S � {x : ∃y. 〈x, y〉 ∈ R ∧ y ∈ S} Preimage

S1 � S2 � S1 ∪ S2 Union

Rω �
{

x0 ∈ State :
∃x1, x2, . . .
∀i. 〈xi, xi+1〉 ∈ R

}
Non-terminating states of R

⌟

Tarjan’s path expression algorithm can be adapted to compute an ω-regular
expression that recognizes the set of infinite paths in a graph beginning at a
particular node [63]. The equational view of this algorithm is that it computes
closed-form solutions to right-linear equations over Büchi algebras (e.g., the alge-
bra of non-terminating states).

Definition 7 (Büchi algebra). A Büchi algebra is an ω-algebra over a Kleene
algebra satisfying the following:

S1 � (S2 � S3) = (S1 � S2) � S3 Associativity
S1 � S2 = S2 � S1 Commutativity

S � S = S Idempotence
((R1 · R2) � S) = R1 � (R2 � S) Compatibility

((R1 + R2) � S) = (R1 � S) � (R2 � S) Right-distributivity
R � (S1 � S2) = (R � S1) � (R � S2) Left-distributivity

Rω = R � Rω Unfold
S1 � (R � S1) � S2 ⇒S1 � Rω � (R∗ � S2) Coinduction

where � is the order defined by a � b iff a � b = b.

Exercise 2. Show that in any Büchi algebra, the greatest solution to the equation
X = (a � X) � z exists and is equal to X = aω � (a∗ � z).

Summarizing: we have modeled a program’s non-terminating states as the
greatest solution to a system of semantic equations, devised a language of “closed
form solutions”, and identified an algorithm for computing closed form solutions
to the equations. It remains only to develop abstract interpretations of the lan-
guage of closed forms which implements termination analysis.

74 Z. Kincaid et al.

5.1 Non-terminating State-Formula Interpretations

Just as transition formulas (over variables X and X ′) can be used to represent
state relations, state formulas (over the variables X) can be used to represent
sets of (non-terminating) states. We can extend an algebra of transition formulas
to an algebra of non-terminating state formulas by defining

F � P � ∃X ′.F (X,X ′) ∧ P (X ′) Preimage

P1 � P2 � P1 ∨ P2 Union

Intuitively, the ω operator should compute the set of non-terminating states
of a transition formula. Analogously to the ∗ operator in Sect. 2, this set is
uncomputable, and we must be satisfied with an over-approximation (i.e., we
aim to compute a state formula that contains all non-terminating states—the
soundness relation of interest is the one defined by N � S ⇐⇒ ∀s ∈ N.s |= S).
There are many ways of doing this, so we speak of the family of non-terminating
state formula interpretations. In the remainder of this section, we give examples
of ω-operators.

Example 14 (Linear-lexicographic ranking functions [32]). Let F (X,X ′) be a
transition formula. A linear lexicographic ranking function (LLRF) for F is a
sequence of linear terms t1, . . . , tn over X such that for any states s and s′

such that s →F s′, each ti evaluates to a non-negative integer in s, and the
integer n-tuple decreases in lexicographic order going from s to s′. Since there
are no infinite strictly descending chains of non-negative n-tuples of integers
with respect to the lexicographic order, if F has an LLRF, then F has no non-
terminating states. For example, the inner loop of Fig. 7 has a 1-dimensional
LLRF 〈k〉, and the outer loop has a 2-dimensional LLRF 〈n − i, j〉.

The problem of determining whether a linear integer arithmetic formula has
an LLRF is decidable [32]. If a formula does not have an LLRF, then we can use
a coarse over-approximation of the non-terminating states of a formula (e.g., the
set of states that have at least one outgoing transition). This yields the following
interpretation of the ω operator:

Fω �
{

false if there is an LLRF for F

∃X ′.F (X,X ′) otherwise

For Fig. 7, using recurrence analysis to implement the ∗ operator (Example 5), we
get that every non-terminating state must satisfy false—the program terminates
from any initial state. ⌟

Example 15 (Unbounded trajectories [63]). Let F (X,X ′) be a transition formula.
A necessary (but not sufficient) condition for a state s to be a non-terminating
for a transition formula F is that there is a computation of F starting from s for
every possible length. This condition is undecidable, but it can be approximated
using an approximate transitive-closure operator such as the ones in Sect. 2.1.
Suppose that (−)∗ is an over-approximate transitive-closure operator. Letting k

Algebraic Program Analysis 75

and k′ be symbols that do not appear in F , we can create a transition formula
exp(F) in one parameter k′ such that for any k′, if there exists a sequence
s1 →F s2 →F · · · →F sk′ , then s1 →exp(F) sk′ :

exp(F) � (F ∧ k′ = k + 1)∗[k �→ 0]

The states s for which there exists a computation s →exp(F) s′ → s′′ for all
choices of the parameter k′ over-approximates the set of non-terminating states
of F :

Fω � ∀k′ ≥ 0.∃X ′,X ′′. exp(F) ∧ F (X ′,X ′′)

For example, if ∗ is instantiated to recurrence analysis (Example 5), then on
the transition formula

F � i �= n ∧ i′ = i + 2 ∧ n′ = n

(corresponding to the program while (i �= n) do i := i + 2), we have

Fω = i > n ∨ (n − i) mod 2 = 1 ⌟

Additional examples of termination analyses in the algebraic framework
appear in [63] and [62].

5.2 The Instantiation of the Recipe

The recipe from Sect. 3.3 is instantiated for termination analysis as follows:

1. (Modeling). The concrete semantics is the set of non-terminating states, which
is the greatest solution to a system of right-linear equations.

2. (Closed forms). The language of closed-forms is given by ω-regular expres-
sions; they can be computed by a variation of Tarjan’s algorithm [63].

3. (Interpretation). An ω-regular expression can be interpreted as a state formula
representing a set of possibly non-terminating states, while regular expressions
are interpreted as transition formulas (Sect. 2). The soundness relation is
over-approximate: we can prove that a program terminates by finding an
unsatisfiable pre-condition, but the analysis cannot prove non-termination.

6 Recap

This section contains a few remarks about commonalities among the three kinds
of problems and the techniques we have presented for applying algebraic program
analysis to them. The paper has been structured around the three-part recipe
for algebraic program analysis given in Sect. 3.3. Table 1 recaps how the recipe
has been instantiated for the three kinds of problems considered.

Within this paper, all methods for computing closed-form solutions can be
understood as some variation of Gaussian elimination, Algorithm 1 (in prac-
tice, they are variations of Tarjan’s path-expression algorithm). The essential

76 Z. Kincaid et al.

Table 1. Instantiations of the recipe for algebraic program analysis from Sect. 3.3.

Section 3.3 Section 4.3 Section 5.2

Analysis type Intraprocedural Linear interprocedural Termination

Modeling LFP of left-linear

equations

LFP of linear

equations

GFP of right-linear

equations

Closed-form solution A regular expression

(path expression over the

CFG)

Detensor of a tensored

path expression

An omega-regular

expression

Interpretation (concrete) A Kleene algebra

(Definition 1), e.g.,

transition relations

(Sect. 3.1)

A Kronecker algebra

(Definition 5), e.g.,

tensored transition

relations

(Example 10)

A Büchi algebra

(Definition 7), e.g.,

non-terminating

states (Example 13)

Interpretation (abstract) A regular algebra

(Sect. 2), e.g., a

transition-formula

interpretation (Sect. 2.1)

A tensor-product

algebra (Definition 3),

e.g., a tensored

transition-formula

interpretation

(Example 11)

An ω algebra

(Definition 6), e.g., a

non-terminating

state-formula

interpretation

(Sect. 5.1)

Table 2. “Loop-solving” steps.

Equation type Form of “loop” Closed form for X

Left-linear X = a + Xb � ab∗

Linear X = a +
∑m

i=1 biXci � ((1 ⊗ a) � (
⊕m

i=1 bi ⊗ ci)
�)�

Right-linear X = (b � X) � z � aω � (b∗
� z)

difference between Sect. 2, Sect. 4, and Sect. 5 is the “loop-solving” step. Each
requires the right-hand-side expression R to be in a particular form (left-linear,
linear, right-linear), and each requires a different language of expressions in which
to express closed forms (regular, tensored regular, ω-regular). Table 2 shows
the respective “loop-solving” steps for computing a closed form. Note that in
Table 2, the letters a, bi, ci, z range over expressions (which may involve vari-
ables other than X). For example, to apply the left-linear rule to the equation
X = Xp + Xq + Y r + Z, we first re-arrange terms on the right-hand side as
X(p + q) + (Y r + Z) and then compute the “closed-form” (Y r + Z)(p + q)∗.

7 Related Work

Abstracting States Versus State Changes. Classically, invariant generation is con-
ceived as the problem of over-approximating the reachable states of a program.
Computing invariants involves solving a system of equations of the form

X[r] = vr r ∈ Nodes, the root node
X[n] =

∑
em,n∈Edges

I �em,n�(X[m]) n ∈ Nodes − {r} (11)

for the unknowns X[n], n ∈ Nodes, where vr represents the set of initial states
and I �−� provides an interpretation of each CFG edge as a state transformer.

Algebraic Program Analysis 77

In a solution, X[n] holds a descriptor that represents a superset of the set of
program states that can arise at program point n. Note that in Eq. (11), the
function I �em,n� on edge em,n is applied to the value X[m] on node m.

Algebraic program analyses, in contrast, concern dynamics—state changes—
rather than states. The reason is that algebraic analyses are compositional: states
do not compose, but state changes do.

A first step towards abstracting state changes was taken by Graham & Weg-
man [33], who gave a method to solve dataflow equations via composition of the
state transformers on CFG edges. That is, their basic primitives were (i) com-
position of functions, and (ii) union of functions. If we adopt this outlook and
define r1 · r2 to be r2 ◦ r1, r1 + r2 to be the union of r1 and r2, and 1 to be the
identity function, instead of Eq. (11), the goal would be to solve the following
equation system:

X[r] = 1 r ∈ Nodes, the root node
X[n] =

∑
em,n∈Edges

X[m] · I �em,n� n ∈ Nodes − {r} (12)

where the unknowns X[n] are now function-valued. Note that the function
I �em,n� on edge em,n is composed with the value X[m] on node m. From here—
because one is working over function-valued quantities—it is now natural to for-
mulate interprocedural program-analysis problems by means of equations over
unknowns that denote procedure summaries, as was done by Cousot and Cousot
[23] and Sharir and Pnueli [56].

“Interpret, Then Solve” Versus “Solve, Then Interpret.” The systems in
Eqs. (11) and (12) are interpreted, in the sense that they are understood as
semantic equations valued over a particular abstract domain, say D. Such a
system E = {Xi = Ri}i∈I can be solved by an iterative method: compute a
sequence σ0, σ1, · · · ∈ {Xi}i∈I → D of assignments abstract domain values to
variables

σ0(Xi) � 0 for all i ∈ I

σn+1(Xi) � Iσn
�Ri� for all n ≥ 0 and all i ∈ I

Eventually this process converges—typically with the aid of widening to
extrapolate to the limit—upon an assignment that over-approximates the least
solution to E.

In algebraic program analysis, we think of a system of equations as an unin-
terpreted (syntactic) object. Equations are solved symbolically and then the
solutions are interpreted in an algebraic structure to obtain an analysis result.
The key step in this direction was made by Tarjan [59], who observed that
once a solution to the path-expression problem was in hand, multiple dataflow-
analysis problems could be solved merely by reinterpreting the alphabet symbols
and operators of regular expressions in different algebras—i.e., “solve and then
interpret.”

Whereas the iterative framework for program analysis has a “built-in” algo-
rithm for analyzing loops and recursive behavior (by computing the limit of a

78 Z. Kincaid et al.

sequence), the algebraic framework does not prescribe any particular method,
and it is up to the analysis designer to devise one. This obligation places an addi-
tional burden on the analysis designer, but also provides flexibility: the analysis
designer may analyze loops in ways that may (Example 6) or may not (Exam-
ples 5 and 4) resemble iterative fixpoint computation.

Iteration Operators and Loop Summarization. In the computer-aided-verification
community, there is a body of literature on loop summarization (or “loop leap-
ing”) and acceleration. Summarization aims to compute or approximate the
behavior of (certain) loops, while acceleration aims to approximate the postim-
age of a set of states under a loop. These techniques have been incorporated
into iterative abstract interpretation [28,31], abstraction-refinement-based soft-
ware model checking [19,37], termination analysis [7,20,60], and resource bound
analysis [10,64]. The most closely related techniques to algebraic program anal-
ysis are those that build summaries for whole programs in “bottom-up” fashion.
Such analyses have been formalized in various ways, including: recursion on the
abstract syntax tree (AST) of a program [51], AST rewriting [8], and graph
rewriting [47,60]. Algebraic program analysis provides a unifying foundation for
such analyses, in the same way that dataflow analysis [39] and (iterative) abstract
interpretation [22] provide a unifying foundation for iterative program analyses.

There are several methods for loop summarization, based on finite-monoid
affine transformations [11,12,29], difference-bound relations [15,21], octagonal
relations [13,14,45], integer vector addition systems [35], fragments of the theory
of arrays [2]. For the most part, these summarization methods are non-uniform
in the sense that their input language differs from their output language (e.g.,
[13] takes as input an octagonal relation and produces as output a Presburger
formula). This non-uniformity is the essential barrier that must be overcome to
use such techniques to implement the iteration operator of an algebraic program
analysis (e.g., we can define an iteration operator by using optimization modulo
theories [55] to extract the octagonal hull of a Presburger formula, then use [13]
to compute a Presburger formula representing its transitive closure).

Elimination-Based Dataflow Analysis. Elimination-based dataflow analysis is a
family of dataflow analyses that computes analysis results using methods that
resemble Gaussian elimination [3,33,36] (see [54] for a survey). Early methods
were specialized to reducible control flow graphs, but operated faster than general
Gaussian elimination. Tarjan’s algorithm [58] is an elimination method with
fast operation on reducible (and “nearly reducible”) control flow graphs, but is
applicable to arbitrary graphs.

Weighted Graphs. There is a vast literature on solving path problems on
weighted graphs where the weights are drawn from a semiring [1,30,50]. Path
problems can also be solved on semiring-weighted pushdown systems, which has
applications to interprocedural dataflow analysis [52]. This work focuses on iter-
ative techniques for solving path problems.

Algebraic Program Analysis 79

(Non-iterative) algorithms for path problems over algebraic structures with
an explicit iteration operator were considered by Aho et al. [1], Backhouse &
Carré [5], and Lehmann [48], and was implicit in previous work by Kleene [44],
and McNaughton & Yamada [49]. Tarjan connected this line of work with pro-
gram analysis [58,59].

8 Open Problems

We conclude with a list of challenges suggested by algebraic program analysis.

Scaling SMT-Based Algebraic Program Analysis. The bottom-up interpretation
step of a closed-form expression is efficient, in that it operates in linear time and
space in the size of the expression DAG in a model where each algebraic operation
has unit cost. For logic-based interpretations, however, algebraic operations do
not have unit cost: operators manipulate formulas, and the size of those formulas
may grow as operators are applied. For example, the regular expression a2n

can
be represented by an expression DAG with n+1 nodes, with the following shape:

. . . a

If the letter a is interpreted as the transition formula x′ = x + 1 and · as
relational composition, then the transition-formula interpretation of a2n

has size
O(2n). Scaling SMT-based algebraic program analysis to large programs requires
techniques for generating succinct summaries, and/or efficient reasoning about
compact formula representations involving λ-expressions.

Recursive Procedures. Section 4.2 shows how the algebraic approach can be
applied to summarize linearly recursive procedures. But to compute sum-
maries for generally recursive procedures, current-generation algebraic-program-
analysis tools fall back on another non-algebraic scheme (such as hybrid itera-
tive/algebraic, like Kleene or Newton iteration [40,53], or the template-based
approach of [16]). This raises the question: is there a practical algebraic method
for analyzing general recursion? The essential challenge is in devising a language
of “closed forms” that (1) can represent arbitrary context-free languages, and
(2) is amenable to an effective interpretation in logic.

Beyond Numerical Domains. To date, all algebraic program analyses have been
numerical in nature—they abstract away aspects of program behavior that can-
not be captured by integer variables. It remains to be seen whether the algebraic
approach can yield practical analyses for reasoning about features like strings,
arrays, and the heap. Reasoning about memory manipulation is particularly
challenging in a compositional setting, since we cannot rely on the context of
a program fragment to resolve aliasing relationships. One possible avenue is to
incorporate abductive reasoning to make educated guesses about the shape of
memory, as in [18].

80 Z. Kincaid et al.

Property Refutation. Algebraic program analysis is typically conceived as
a method for generating over-approximate summaries. The nature of over-
approximation is that the summaries can be used to verify that a program
does satisfy a property of interest, but not prove that it doesn’t. An interest-
ing direction for future work is to devise methods by which algebraic program
analyses can refute properties, perhaps based on bounded model checking [9],
under-approximate loop summarization [46], or symbolic execution [43].

Acknowledgments. Supported, in part, by a gift from Rajiv and Ritu Batra; by a
Facebook Research Award; by NSF under grant number 1942537, and by ONR under
grants N00014-17-1-2889 and N00014-19-1-2318. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the authors, and
do not necessarily reflect the views of the sponsoring entities.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

2. Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in
a theory of arrays and its applications. In: Fontaine, P., Ringeissen, C., Schmidt,
R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 23–39. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40885-4 3

3. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM
19(3), 137 (1976)

4. Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to affine
loop invariants detection. Electr. Notes Theor. Comp. Sci. 267(1), 3–16 (2010)

5. Backhouse, R., Carré, B.: Regular algebra applied to path-finding problems. J.
Inst. Math. Appl. 15, 161–186 (1975)

6. Backhouse, R.C., Carré, B.A.: Regular algebra applied to path-finding problems.
IMA J. Appl. Math. 15(2), 161–186 (1975)

7. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance anal-
yses from invariance analyses. In: POPL, pp. 211–224 (2007)

8. Biallas, S., Brauer, J., King, A., Kowalewski, S.: Loop leaping with closures. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 214–230. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 16

9. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

10. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: algebraic bound com-
putation for loops. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS
(LNAI), vol. 6355, pp. 103–118. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17511-4 7

11. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
Theor. Comput. Sci. 309(1), 413–468 (2003)

12. Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58179-0 43

https://doi.org/10.1007/978-3-642-40885-4_3
https://doi.org/10.1007/978-3-642-33125-1_16
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-17511-4_7
https://doi.org/10.1007/978-3-642-17511-4_7
https://doi.org/10.1007/3-540-58179-0_43
https://doi.org/10.1007/3-540-58179-0_43

Algebraic Program Analysis 81

13. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2 29

14. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 23

15. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
577–588. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006 49

16. Breck, J., Cyphert, J., Kincaid, Z., Reps, T.: Templates and recurrences: better
together. In: PLDI, pp. 688–702 (2020)

17. Brzozowski, J.A.: Regular-like expressions for some irregular languages. In: SWAT
(FOCS), pp. 278–286 (1968)

18. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 1–66 (2011)

19. Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based
model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 428–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3 32

20. Chen, H., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-precise
procedure-modular termination analysis. TOPLAS 40(1), 1:1-1:38 (2018)

21. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028751

22. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

23. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive
procedures. In: Neuhold, E. (ed.) Formal Descriptions of Programming Concepts,
(IFIP WG 2.2, St. Andrews, Canada, August 1977), pp. 237–277. North-Holland
(1978)

24. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

25. Cyphert, J., Breck, J., Kincaid, Z., Reps, T.W.: Refinement of path expressions
for static analysis. Proc. ACM Program. Lang. 3(POPL), 45:1–45:29 (2019)

26. Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. J. ACM
57, 6 (2010)

27. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: FMCAD, pp. 57–64
(2015)

28. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with
aspic and c2fsm. Electr. Notes Theor. Comput. Sci. 267(2), 3–13 (2010)

29. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: applications to
broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol.
2556, pp. 145–156. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36206-1 14

30. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algo-
rithms. ORCS, vol. 41, 1st edn. Springer, Boston (2008). https://doi.org/10.1007/
978-0-387-75450-5

31. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006). https://doi.org/10.1007/11823230 10

https://doi.org/10.1007/978-3-642-00768-2_29
https://doi.org/10.1007/978-3-642-14295-6_23
https://doi.org/10.1007/11787006_49
https://doi.org/10.1007/978-3-540-78800-3_32
https://doi.org/10.1007/978-3-540-78800-3_32
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1007/11823230_10

82 Z. Kincaid et al.

32. Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using
extremal counterexamples. SIGPLAN Not. 50(6), 608–618 (2015)

33. Graham, S.L., Wegman, M.N.: A fast and usually linear algorithm for global flow
analysis. J. ACM 23(1), 172–202 (1976)

34. Gruska, J.: Some classifications of context-free languages. Inf. Control 14(2), 152–
179 (1969)

35. Haase, C., Halfon, S.: Integer vector addition systems with states. In: Ouaknine,
J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 112–124. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11439-2 9

36. Hecht, M.S., Ullman, J.D.: Analysis of a simple algorithm for global data flow
problems. In: POPL, pp. 207–217 (1973)

37. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating inter-
polants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 187–202.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6 16

38. Karr, M.: Affine relationship among variables of a program. Acta Inf. 6, 133–151
(1976)

39. Kildall, G.: A unified approach to global program optimization. In: POPL (1973)
40. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.W.: Compositional recurrence

analysis revisited. In: PLDI, pp. 248–262 (2017)
41. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.W.: Closed forms for numerical loops.

Proc. ACM Program. Lang. 3(POPL), 55:1–55:29 (2019)
42. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant

synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (2018)
43. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–

394 (1976)
44. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,

C., McCarthy, J. (eds.) Automata Stud., pp. 3–40. Princeton University Press,
Princeton (1956)

45. Konečný, F.: PTIME computation of transitive closures of octagonal relations. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 645–661.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 42

46. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 26

47. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.:
Loop summarization using abstract transformers. In: Cha, S.S., Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6 10

48. Lehmann, D.J.: Algebraic structures for transitive closure. Theoret. Comput. Sci.
4(1), 59–76 (1977)

49. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Trans. Electron. Comput. 9(1), 39–47 (1960)

50. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.
Autom. Lang. Comb. 7(3), 321–350 (2002)

51. Monniaux, D.: Automatic modular abstractions for linear constraints. In: POPL,
pp. 140–151 (2009)

52. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP 58(1–2), 206–263 (2005)

53. Reps, T., Turetsky, E., Prabhu, P.: Newtonian program analysis via tensor product.
TOPLAS 39(2), 9:1–9:72 (2017)

https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-642-33386-6_16
https://doi.org/10.1007/978-3-662-49674-9_42
https://doi.org/10.1007/978-3-642-39799-8_26
https://doi.org/10.1007/978-3-642-39799-8_26
https://doi.org/10.1007/978-3-540-88387-6_10

Algebraic Program Analysis 83

54. Ryder, B.G., Paull, M.C.: Elimination algorithms for data flow analysis. ACM
Comput. Surv. (CSUR) 18(3), 277–316 (1986)

55. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 484–498. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 38

56. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications. Prentice-Hall (1981)

57. Szabó, Z.: Compositionality (2020). https://plato.stanford.edu/entries/
compositionality/

58. Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM 28(3), 594–614
(1981)

59. Tarjan, R.E.: A unified approach to path problems. J. ACM 28(3), 577–593 (1981)
60. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summariza-

tion and termination analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19835-9 9

61. Yntema, M.: Inclusion relations among families of context-free languages. Inf. Con-
trol 10, 572–597 (1967)

62. Zhu, S., Kincaid, Z.: Reflections on termination of linear loops. In: CAV (2021)
63. Zhu, S., Kincaid, Z.: Termination analysis without the tears. In: PLDI (2021)
64. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-

grams with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23702-7 22

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-31365-3_38
https://doi.org/10.1007/978-3-642-31365-3_38
https://plato.stanford.edu/entries/compositionality/
https://plato.stanford.edu/entries/compositionality/
https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1007/978-3-642-23702-7_22
https://doi.org/10.1007/978-3-642-23702-7_22
http://creativecommons.org/licenses/by/4.0/

Programmable Program Synthesis

Loris D’Antoni, Qinheping Hu, Jinwoo Kim(B), and Thomas Reps

University of Wisconsin-Madison, Madison, USA
{ldantoni,qhu28,jkim934,treps}@wisc.edu

Abstract. Program synthesis is now a reality, and we are approaching
the point where domain-specific synthesizers can now handle problems
of practical sizes. Moreover, some of these tools are finding adoption
in industry. However, for synthesis to become a mainstream technique
adopted at large by programmers as well as by end-users, we need to
design programmable synthesis frameworks that (i) are not tailored to
specific domains or languages, (ii) enable one to specify synthesis prob-
lems with a variety of qualitative and quantitative objectives in mind,
and (iii) come equipped with theoretical as well as practical guarantees.
We report on our work on designing such frameworks and on building
synthesis engines that can handle program-synthesis problems describ-
able in such frameworks, and describe open challenges and opportunities.

1 Introduction

1.1 A Synthesis Tale

Monica, a software engineer, is trying to write a program for transforming data
she has stored in an array of integer numbers. Monica needs to zero-out all the
negative entries from the array (they represent irrelevant data points) and add
10 to all the positive entries (this is a normalization step needed in Monica’s
API). Of course, Monica is a great engineer and she could write this program
herself, but since Monica knows that similar problems arise often in her company
(i.e., reformatting arrays to match certain APIs), Monica decides to try out this
new thing everyone is talking about: program synthesis.

Monica wants a tool that takes as input some examples of the desired
transformation and a set of operators the program can use, and magically
outputs the intended program. In fact, Monica already has an input, a
unit test, that she wants to process using her newly synthesized program:
[−1, 2, 3, 10, 31,−14,−11], for which the output should be [0, 12, 13, 20, 41, 0, 0].

Monica also knows that the final program will look like a loop that iterates
over the input array arr, which leads her to develop the grammar in Fig. 1.
Monica thinks this grammar is general enough that it will cover a reasonable
range of programs for similar tasks but limited enough that it will not result in
spurious programs that overfit too much to the examples.

Quickly, Monica discovers that using program synthesis is not so straight-
forward. There are so many different tools! And they all take different kinds of
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 84–109, 2021.
https://doi.org/10.1007/978-3-030-81685-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_4

Programmable Program Synthesis 85

Fig. 1. The grammar Gex Monica has in mind for synthesizing programs that iterate
over an input array (Start is the starting nonterminal). Gex is general enough to cover
most programs that iteratively normalize entries in an array.

inputs. After a bit more research, Monica decides to go for one of the many
tools, UltraSynth™, and encodes her problem. UltraSynth is written in a C-like
language and Monica has mostly programmed in Python for her job. However,
Monica decides to give UltraSynth a try and after a few days of learning the
ins and outs of UltraSynth, she finally manages to encode her transformation-
synthesis problem in UltraSynth. To achieve her goal, Monica had to tweak a bit
what the grammar looks like to provide it to UltraSynth, which only accepted
grammars without unbounded recursion (i.e., without infinitely many terms)
and had to encode the examples in a way that was accepted by the tool.

The time has come and Monica manages to run UltraSynth on an instance
of the synthesis problem. UltraSynth outputs the program in Fig. 2b, which is
correct on the example. However, this program is needlessly large and contains
many unneeded operations.

Fig. 2. Two possible solutions for Monica’s synthesis problem.

Monica has already invested a lot of time in learning UltraSynth, so she
tries to figure out a way to avoid such problematic programs. Monica astutely
realizes that the needless computations in Line 3 of Fig. 2b are due to repeated
applications of the minus operator. Monica would like to ask UltraSynth to
synthesize the program that contains as few minus operators as possible, but
UltraSynth does not support a way to “prefer” one possible program over another.
To bypass this limitation, Monica decides to remove the production E → E - E
in order to suppress these programs.

86 L. D’Antoni et al.

Monica reruns UltraSynth after removing E → E - E from the grammar,
and to her surprise, UltraSynth continues to run for hours and eventually times
out without providing a solution. After investigating the matter, Monica finds
out that she has made a mistake and disallowed too many programs—there is no
longer a valid solution to the synthesis problem because without subtraction, the
variable x cannot be decremented in line 5. UltraSynth was unable to report, or
even detect this simple mistake—Why is it so difficult to program a synthesizer
and why can’t synthesis tools detect the simplest of mistakes?

Monica has finally had enough of synthesis. She goes back to her daily rou-
tine and just writes the 7-line piece of code that applies the transformation she
intended (Fig. 2a).

1.2 Programmable Synthesis Frameworks

The story of Monica is a common one in program synthesis, where most of the
recent focus has been on solving problems rather than building general algo-
rithms, tools, and methodologies. Existing synthesis frameworks are not pro-
grammable as they lack at least one of the following properties:

Domain-Agnostic. Existing synthesis ideas and algorithms have been intro-
duced with specific domains in mind and are hard to apply to arbitrary
synthesis problems. The languages used to specify synthesis problems are
therefore domain-specific, and often fail to abstract the logical requirements
of the synthesis problem. In our example, Monica had to look for a specific
tool that accepted programs of the kind she was interested in. Moreover, she
was not permitted to refine the specification to add a quantitative objective
she had in mind (minimizing the number of minus operators).

Solver-Agnostic. Different synthesis tools are typically not interchangeable
because their underlying solvers solve different types of problems. Even when
two solvers can in principle solve the same types of problems, they typically
cannot be interchanged or combined because they typically use drastically
different formats written in different languages (e.g., Racket [28] vs. C [27]).
For example, when Monica found out that UltraSynth was not working as
expected, she could not easily try another tool to see if that tool was better.

This state of affairs is unfortunate because synthesis is very general; if synthe-
sis were easier to use, it would benefit many domains. The potential generality,
which is currently held back by the need for better support for usability, under-
scores the need to answer the following question:

Canwemake synthesismore programmable?

In this paper, we present the steps we have undertaken in the direction of making
synthesis more programmable, including some of the challenges that we faced,
and some of the opportunities that the work has opened.

Programmable Program Synthesis 87

2 An Overview of Programmable Program Synthesis

The goal of enlarging the scope of synthesis has focused our attention on the
need to have a framework in which synthesis problems can be addressed. By a
framework, we mean the conceptual underpinnings that allow one to build tools
to automate the creation of solutions for problems in some domain, in this case,
program-synthesis problems. The canonical example is how the theory of parsing
underlies the yacc tool [13], which automates the construction of parsers. For
instance, consider the problem that yacc addresses:

– An instance of a parsing problem, Parse(L,s), has two parameters: L, a
context-free language; and s, a string to be parsed. String s changes more
frequently than language L.

– Context-free grammars are a formalism for specifying context-free lan-
guages.

– Create a tool that implements the following specification:
• Input: a context-free grammar that describes language L.
• Output: a parser, yyparse(), such that invoking yyparse() on s com-

putes Parse(L,s).

One consideration for building a framework is the existence of a well-defined
“engine” (or collection of engines) for performing the desired task—in this case,
parsing s with respect to L, once both L and s are at hand. Yacc supports
just a single engine, which parses a string with respect to a grammar that is
LALR(1). In principle, yacc could have been a more general tool by having it
perform various tests on L to determine what grammar family L belongs to (e.g.,
LALR(1), LR(1), LL(1), LL(*)), and then emitting a parser that makes use of
an appropriate parsing algorithm for that family, falling back on Generalized LR
parsing [19] in case L is not in one of the specialized families supported.

Another aspect illustrated by yacc is that the parameters to the problem
have different “binding times”. In this case, string s changes more frequently
than language L—i.e., L is bound early, and s is bound late. The framework
implementation can exploit the known value of the early-bound parameter to
create a more efficient implementation. In the case of yacc, it compiles L to
tables used by a table-driven LALR(1) parsing algorithm.

2.1 Why Isn’t Existing Work in Synthesis Programmable?

There do exist synthesis tools (mostly, solver-aided languages [27,28]) that allow
one to control some aspects of a synthesis problem in a programmable fashion.
However, the nature of existing synthesis tools also forces an association between
how a synthesis problem is written and how it is solved. For instance, in Sect. 1,
the fact that solvers are tightly coupled to some specification language prevented
Monica from trying out a different tool after UltraSynth produced an inadequate
answer. The current state of program-synthesis tools is depicted in Fig. 3.

88 L. D’Antoni et al.

Fig. 3. Program synthesis today, where the lack of separation between specification
and solver causes a user to have to encode a problem multiple times to use different
tools.

This situation is in direct conflict with the principles articulated at the end
of Sect. 1, namely, that a user should be able to program the various aspects
of a synthesis problem using a formalism that is both (i) domain-agnostic and
(ii) solver-agnostic. The first property addresses generality: the formalism should
be powerful enough to capture a wide variety of synthesis problems (e.g., SQL,
regular expressions, and imperative programs). The second property opens the
door for synthesis-problem specifications to be fed—possibly after a compila-
tion/translation step—to different specialized solvers, or to multiple solvers with
different capabilities.

Another example that one may consider a programmable framework is
Syntax-Guided Synthesis (SyGuS) [1], which is a successful synthesis frame-
work targeted at expressions. The defining characteristic of SyGuS, compared
to other synthesis approaches such as solver-aided languages, is that it allows
one to write synthesis problems in a completely logical format.

Example 1. Consider the simple problem of synthesizing the maximum max
of two input variables, x and y. There are two parts to a SyGuS problem: a
syntactic part, written as a context free grammar such as the example GS below:

GS :: = Start → x | y | Start + Start | if x<y then Start else Start

and the specification part, which is written as a Boolean formula ψS :

ψS ≡ ∀x, y.max(x, y) ≥ x ∧ max(x, y) ≥ y ∧ (max(x, y) = x ∨ max(x, y) = y)

A SyGuS problem is simply the pair sy = (GS , ψS), where a solution to the
SyGuS problem sy is a term t ∈ L(G) such that ψS holds. For example, the fol-
lowing term is a solution for the function max in the problem we just described:

if x < y then y else x.

Programmable Program Synthesis 89

The advantage of such a logic-based formalism is that it achieves a separa-
tion from solver and specification, which allows SyGuS to be solver-agnostic.
Several different SyGuS solvers have been developed (e.g., [4,7,21,26]), many of
which use drastically different internal algorithms that have different strengths
for solving different kinds of problems. Moreover, a user of SyGuS need not con-
sider the differing input languages or characteristics of these solvers, and instead
can encode their problem just once in the SyGuS format to have access to all
the different solvers.

While SyGuS achieves—and shows the benefits of—solver-agnosticity, it fails
to achieve domain-agnosticity because the framework is targeted specifically at
expressions. For example, consider the scenario from Sect. 1: Monica would be
unable to encode her problem in SyGuS, because the grammar Gex in Fig. 1
contains a production with a while loop, and loops, which require a custom
semantics, cannot be expressed in any decidable theory—a key restriction of
SyGuS. SyGuS also does not allow one to express intent outside of the behav-
ioral specification ψ, which would have prevented Monica from trying to optimize
the program obtained from UltraSynth in Fig. 2b.

All in all, the current state of program synthesis is an unsatisfactory mess,
as depicted in Fig. 3. There are multiple non-interoperable solvers with different
input languages, targeting different synthesis domains with varying degrees of
overlap. SyGuS, by virtue of solver-agnosticity, provides a unified approach to
synthesizing expressions, which forms the basis of multiple solvers. However,
while SyGuS is a bright spot, it fails to be general: it does not cope with (1) the
variety of domains used in synthesis, required to deal with arbitrary languages
(e.g., SQL, regular expressions, and imperative programs), and (2) the variety of
collateral considerations that arise for different domains (e.g., types, quantitative
objectives, and probabilities).

2.2 What Does a Programmable Synthesis Framework Look Like?

Our vision of programmable synthesis can be summed up as follows:

programmable synthesis
==

easily instantiable, domain-agnostic, solver-agnostic synthesis framework.

In contrast with Fig. 3, what we would like to have is depicted in Fig. 4, where
both user and solver work with a unified general format, regardless of domain
or solving technique. Such an approach would allow one to specify a synthesis
problem once and for all, without having to worry about the underlying solving
strategy. To achieve this goal, it is necessary to distill out the essence of
many program-synthesis problems into a specification formalism that is ground
in formal methods (e.g., automata and logic) and is agnostic to any specific
domain of application. This degree of abstraction also opens the opportunity
to lift certain synthesis algorithms and ideas to a higher level that makes these
algorithms reusable across different tools. Our framework can then interface to

90 L. D’Antoni et al.

Fig. 4. Programmable program synthesis, where a synthesis problem with arbitrary
constraints can be written once and for all in a general format, which can then be
dispatched to compatible solvers.

different solving tools (backend solvers) in a way that allows one to easily swap
one solver for another, or to use multiple solvers in tandem. If our vision is
achieved, the capabilities that would be available to tool designers—discussed
in greater detail in Sect. 5—would allow synthesis tools to be created that have
the kind of flexibility that Monica expected and needed in Sect. 1.1.

Let us now be more concrete about the requirements for such a framework for
synthesis. Following the pattern for yacc given above, a framework for synthesis
could follow a similar scheme:

– An instance of a synthesis problem Synthesize(L, �·�L, ϕ) has three param-
eters: L, a formal language; �·�L, a semantics to ascribe to L; and ϕ, a
behavioral specification for some desired member of L. The behavioral spec-
ification ϕ changes more frequently than L and �·�L.

– Let Fsyntax and Fsemantics be appropriate formalisms for specifying L and
�·�L, respectively.

– Create a tool that implements the following specification:
• Input: an Fsyntax specification of a language’s syntax, and an Fsemantics

specification of the language’s semantics.
• Output: a function SynthL,�·�L(·) that takes ϕ as input and computes

Synthesize(L, �·�L, ϕ).

To be even more concrete, Fsyntax could be a regular-tree grammar [5],1
and Fsemantics would be defined over the grammar in a compositional man-
ner, production by production. What we have called collateral considerations
(types, quantitative objectives, probabilities, etc.) would be handled as part
of the Fsyntax or Fsemantics specifications, depending on the issue at hand. For
instance, constraints on program behavior, such as refinement types [24], mini-
mizing/bounding evaluation resources usage [11,15], and probabilistic behavior

1 The grammar would also be equipped with production-by-production pretty-printing
rules to specify how to convert a tree to its textual representation.

Programmable Program Synthesis 91

[22], are semantic concerns that would be part of Fsemantics. Other considerations
would be part of Fsyntax, such as bounds on the use of syntactic constructs [12],
or the use of probabilistic generative models of syntactic structures [3,17]. For
instance, for these two issues, one could weight the productions of the grammar
with values from a semiring, and place a (possibly learned) distribution on the
productions, respectively.

The scheme in the box above would allow us to meet the goals of being
both domain-agnostic and solver-agnostic,2 as long as (i) the formalisms for
Fsyntax and Fsemantics are sufficiently powerful to qualify as “domain-agnostic,”
and (ii) specifications in these formalisms can be analyzed and broken down
into components that can be farmed out to existing solvers (or perhaps to new
implementations of the kinds of algorithms used in existing solvers).

Who benefits from such a framework? The existence of a domain- and solver-
agnostic framework benefits two parties: (i) users of synthesis tools such as
Monica, and (ii) designers of synthesis tools, such as the team behind Ultra-
Synth. Both scenarios can be illustrated by making an analogy with LLVM [20]—
which provides an intermediate representation for compilation that is similarly
both domain- and solver-agnostic. Users of LLVM, which are front-end language
designers, benefit from two facts: (i) that the LLVM IR is rich enough to support
the range of features their language might have, and (ii) that once their language
is compiled down into LLVM IR, the entire library of LLVM IR optimizations is
accessible to them. Similarly, a programmable synthesis framework benefits users
in two ways: (i) by supporting the full range of features that may be required
for a synthesis problem, and (ii) by putting multiple solvers within reach for
problems written in the framework. Additionally, a well-defined framework also
facilitates reuse of problem components: for example, Monica can reuse Gex for
synthesizing other array transformations.

On the other hand, backend optimization designers of LLVM benefit from
the fact that once their optimization is written in LLVM, all LLVM users may
easily access those optimizations if need be. Similarly, tool designers for a pro-
grammable synthesis framework rest easy knowing that once their tool sup-
ports the framework, those who need it will find it accessible and easy to use—
regardless of what internal techniques they decide to use. Note that while the
framework intends to be general, tools that interface with the framework can
choose to be selective in the problems they support—it is up to the users, or
perhaps the framework designers, to match a problem with an appropriate solver
(similar to how language designers mix and match backend optimizations for
their language in LLVM). In addition, advances at the framework-level—such as
2 We also acknowledge that even the scheme given above, which was modeled on the

one for yacc, is open to revision. In particular, the additional degree of parameter-
ization for synthesis (L, �·�L, and ϕ) opens the door for a variety of alternatives,
based on different “binding times” for L, �·�L, and ϕ. For instance, a solver that uses
different abstract domains as part of a refinement-based search strategy [29] would
have L and ϕ fixed, but vary �·�L. Similarly, when one has quantitative syntactic
objectives [12], the solver would carry out its search with ϕ fixed, L varying, and
�·�L induced as L changes.

92 L. D’Antoni et al.

the development of meta-algorithms, as illustrated in Sect. 4.2—instantly benefit
all tools that support the framework.

This Paper. New technical challenges, as well as new opportunities, come along
with our broader goals. In this paper, we present some of the work that we have
done toward building the kind of framework sketched out above.

Specifying Programmable Synthesis Problems (Sect. 3). Semantics-
guided synthesis (SemGuS) is our proposed framework that allows a user
to provide both the syntax and semantics for the constructs in the language
over which programs are to be synthesized. We show how SemGuS can easily
be extended with quantitative objectives for specifying when a synthesized
program is “good” according to a certain metric—e.g., the program should be
of minimal size or should maximize a certain outcome.

Solving Programmable Synthesis Problems (Sect. 4). We present solvers
that can tackle problems specified in the SemGuS framework. We also present
a meta-solver that can be combined with other SemGuS solvers to sup-
port quantitative objectives. Because our framework does not impose solver-
specific restrictions on how synthesis problems are programmed, our solvers
can prove unrealizability—i.e., whether a synthesis problem has no solution—
of many complex synthesis problems with infinite search spaces.

These steps are just the beginning of what we expect to be a multi-year jour-
ney into designing a framework that achieves our goals, and solvers for such a
framework. We discuss some of the open challenges and opportunities in Sect. 5.

3 Programmable-Synthesis Specifications

Designing synthesis frameworks that are programmable requires one to formally
abstract the essence of how one specifies different program-synthesis problems.
While we do not claim to have developed a completely unified framework that
can capture all synthesis problems yet, in this section we present two ideas for
programming many practical synthesis problems: (i) SemGuS, a framework that
uses logic and formal methods to make the search space and specifications of all
synthesis problems easy to program in arbitrary domains (Sect. 3.1), and (ii) an
extension of SemGuS that allows one to specify quantitative objectives over the
syntactic structure of a synthesized program (Sect. 3.2).

3.1 Semantics-Guided Synthesis

Existing work on program synthesis [1] typically identifies two main components
to a synthesis problem: (i) a search space of candidate programs, which is in
essence a small programming language, and (ii) a behavioral specification, which
describes what the synthesized program should do. A programmable synthesis
framework must represent (at the very least) these two components in a domain-
and solver-agnostic way. Take the syntax-guided synthesis (SyGuS) framework,

Programmable Program Synthesis 93

for example: SyGuS achieves solver-agnosticity by representing the search space
as a regular tree grammar, and the specification as a Boolean formula in a
decidable background theory.

Then why is SyGuS, and this particular combination of representations,
unable to achieve domain-agnosticity? The syntactic component of SyGuS—
the grammar—actually does achieve some degree of domain-agnosticity, in the
sense that one is free to define a language of one’s own. However, SyGuS requires
that the specified grammar be contained within a fixed background theory, which
are terms with a pre-defined fixed and standardized semantics. While this design
choice makes the solutions to SyGuS problems easy to verify (using an SMT
solver), it limits the programmability of the search space.

For example, let us reconsider the example in Sect. 1. If Monica attempted
to write her example as a SyGuS problem, she would have been unable to use
loops because loops are not part of the supported background theory. What if
Monica wanted a solution that operates over a DSL, or had some pre-defined
components that she wanted to use (like len(arr))? What if Monica wanted
to synthesize regular expressions, or some other programs with relatively non-
standard semantics?

One can intuitively understand these scenarios as synthesis problems over dif-
ferent programming languages (search spaces)—a DSL, library functions, regular
expressions. To support different programming languages, a synthesis framework
needs more than the ability to accept a syntax, it needs the ability to accept
a semantics for a language as well. Therefore, developing a programmable syn-
thesis framework capable of supporting all these scenarios requires designing
a solver-agnostic way of specifying the semantics of such arbitrary program-
ming languages. SyGuS has shown that regular tree grammars are an effective
formalism for programming the syntax of a search space; we extend this with a
formalism to program the semantics of the search space as well, which, to achieve
true domain-agnosticity, need not be constrained to a fixed background theory.

Semantics as Constrained Horn Clauses. Our solution to this challenge is the
Semantics-Guided Synthesis (SemGuS) framework [14], which allows users to
customize the syntax and semantics of the search space. To see how Sem-
GuS supports programmable semantics, let us consider the production Start →
while x>=0 do S from Fig. 1 as an example. This production is a while loop, and
part of the semantics for a term produced by this production can be expressed
using the inference rule below3 (where Γ represents a state that maps variables
to integer values):

�x>=0�(Γ) = True �s�(Γ) = Γ1 �while x>=0 do s�(Γ1) = Γ2

�while x>=0 do s�(Γ) = Γ2 (1)

Such semantics are supported in the SemGuS framework by expressing the
inference rule in Eq. (1) as a Constrained Horn Clause (CHC). CHCs are logical
formulas, and more precisely, they are implications where one is only allowed
3 A similar rule must be added for the case in which the guard evaluates to false.

94 L. D’Antoni et al.

to have a single relation in the conclusion, and a conjunction of relations along
with one constraint in the premise:

Definition 1 (Constrained Horn Clauses.). A Constrained Horn Clause is
a first-order formula of the form

∀−→x ,−→x1, . . . ,
−→xn.(φ ∧ R1(−→x1) ∧ · · · ∧ Rn(−→xn) =⇒ H(−→x)),

where φ is a constraint over some background theory that may contain variables
from −→x ,−→x1, . . . ,

−→xn, and R1, . . . , Rn and H are uninterpreted relations.

In SemGuS, search spaces are represented as regular tree grammars, where
productions have associated semantics. In Eq. (1), the semantics of a term x>=0
is represented using the semantic function �·�. SemGuS, assumes that each non-
terminal N appearing in the grammar has a corresponding logical relation semN ,
which we refer to as the semantic relation, that represents the behavior of the
semantic function �·� in Eq. (1). For example, the expression �s�(Γ) = Γ1 from
Eq. (1) can be translated into the relation semS(〈s, Γ 〉, Γ1).

Example 2 (Semantic Rules as CHCs). The following CHC captures how
one would express in SemGuS the semantics of the production Start →
while x>=0 do S shown in Eq. (1):

Γ [x] ≥ 0 semS(〈s, Γ 〉, Γ1) semStart(〈while x>=0 do s, Γ1〉, Γ2)
semStart(〈while x>=0 do s, Γ 〉, Γ2) (2)

One can read Eq. (2) as the following implication:

semS(〈s, Γ 〉, Γ1)∧semStart(〈while x>=0 do s, Γ1〉, Γ2) ∧ Γ [x] ≥ 0 =⇒
semStart(〈while x>=0 do s, Γ 〉, Γ2)

(3)

Equation (3) is a CHC where semStart and semS are relations, and Γ [x] ≥ 0
corresponds to the first-order constraint φ.

SemGuS allows one to specify multiple such CHCs4 for each production in the
grammar. CHCs are the logical formalism of choice for expressing these semantics
in a language-agnostic way, which are an intuitive and expressive format.
The SemGuS Framework. Once a user has understood how to define a seman-
tics for their grammar, a SemGuS problem then can be specified simply as a
synthesis problem over a grammar equipped with such a semantics.

Definition 2 (SemGuS). A SemGuS problem over a theory T is a tuple
sem = (G�·�, ψ(x, f(x))), where:

– G is a regular tree grammar equipped with the semantics �·�,
4 The ability to define multiple semantic rules for a production is useful for productions

such as while loops, which are commonly equipped with two rules that describe
looping and loop termination.

Programmable Program Synthesis 95

– ψ(x, f(x)) is a Boolean formula over the theory T , that serves as the behav-
ioral specification,

– f is a free second-order variable that serves as the function to be synthesized.

A solution to the SemGuS problem sem is a term s ∈ L(G�·�) such that
ψ(x, �s�(x)) holds.

Example 3 (Monica’s Synthesis Problem in SemGuS). Consider the synthe-
sis problem Monica had in Sect. 1. Let Gex�·� be the grammar Gex from
Fig. 1, equipped with semantic rules such as the one defined in Eq. (2). Let
E = {[−1, 2, 3, 10, 31,−14,−11]}, the input array Monica considered for her task.
Let ψ(arr, f(arr)) be a formula over the theory of arrays and CLIA describing
what it means for the program f to be correct on an input arr:

ψ(arr, f(arr)) ≡
∧

0≤i<len(arr)

f(arr)[i] = ITE (arr[i] > 0, arr[i] + 10, 0).

Then semex = (Gex�·�,
∧

arr∈E ψ(arr, f(arr))) is a SemGuS problem defined
over a background theory of arrays and CLIA—the behavioral specification
requires that the final program satisfies all the examples in E.5 Moreover, semex

is written in a completely logical format, and is thus not tied to a specific tool
like UltraSynth and can be dispatched to multiple backend solvers (assuming
tooling) as Monica pleases.

The ability to customize the semantics for a language in a framework allows
that framework to support a plethora of different synthesis problems. One can
define synthesis problems over regular expressions, domain-specific languages,
imperative languages, or any other language that has a semantics definable as
CHCs within the framework, all of which can be tested using different solvers
utilizing different strategies.

Example 4 (Regular Expressions Synthesis in SemGuS). Synthesis problems
over regular expressions can be expressed succinctly in SemGuS. The gram-
mar of regular expressions can be captured with the following grammar, where
c is a character and φ the empty set:

R → c | ε | φ | R + R | R · R | R∗

Using CHCs, one can also naturally express the semantics of terms r ∈ L(R). For
example, the semantics of Kleene star can be given as the following two CHCs:

semR(r∗, ε)
semR(r, s1) semR(r∗, s2) s = s1s2

semR(r∗, s)
5 In this example, one could have used a formula simply describing the input/output

examples instead of a more complex logical formula. We chose the latter option to
illustrate how the behavioral specification can involve terms in interesting theories—
e.g., CLIA and arrays.

96 L. D’Antoni et al.

The rules are based on the expansion r∗ → ε + r · r∗: the first rule lets r∗

accept ε, and the second rule accepts a string s by finding two substrings s1, s2,
such that s1 is accepted by r, s2 is accepted by r∗, and the concatenation s1 · s2

is equal to s. The specification of the problem can then use expressions of the
form semR(r, s) and ¬semR(r, s) to denote whether an example s is positive or
negative, respectively.

3.2 Adding Quantitative Syntactic Objectives

In the example discussed in Sect. 1.1, the original synthesis problem Monica
posed to the solver was under-constrained and caused the underlying tool to
synthesize an undesirable solution that contained unnecessary operations. While
the logical-specification mechanism is powerful, it can only capture the func-
tional requirements of the synthesis problem—e.g., the program should perform
correctly on a given set of input/output examples. When multiple possible pro-
grams can satisfy the specification, a programmable synthesis framework should
provide a way to prefer one to the other—i.e., the user of the framework should
be able to describe a quantitative objective. In this section, we show how the
formal foundations of SemGuS (i.e., the use of grammars and logic) allow us to
easily extend the framework to incorporate quantitative objectives over the syn-
tax of the synthesized program. The ideas we present were originally described
in the context of SyGuS [12]; here we show how they can also be applied to
SemGuS.

Adding Quantitative Objectives Using Weighted Grammars. Recall that a Sem-
GuS problem is given along with a regular tree grammar specifying the search
space. In our running example, Monica would like to synthesize a program that
has few occurrences of the minus operator. A natural way to express this intent
is allowing Monica to tag productions involving such an operator with a cost,
let’s say 1. Our quantitative extension of SemGuS builds on this intuition and
allows users to add weights/costs to productions in the grammar. This extension
leads to a well-studied formalism, weighted tree grammars, keeping the SemGuS
framework general. Intuitively, a weighted tree grammar is a grammar in which
each production p has an associated weight/cost μ(p).

Intuitively, the weight of a derivation tree is the sum of the weights of all
productions.6 For simplicity, in this paper, we assume that the domain of weights
is the natural numbers, and that their sum is the usual application of the +-
operator. We use wG(t) to denote the weight of a term t with respect to the
weighted grammar G.

With the weights specified by the weighted grammars, users can specify quan-
titative objectives as constraint objectives and optimization objectives. A con-
straint objective is a predicate ω(v) over a numerical variable v; we say that
6 Weights have to come equipped with operators that tell us how to combine weights

of individual productions to obtain the weights of terms. Formally, the weights must
be from a semiring; we refer the reader to the original work on this topic [12] for
details.

Programmable Program Synthesis 97

a term t satisfies the constraint objective if ω(wG(t)) holds. An optimization
objective is a flag opt ∈ {True, False} indicating whether we want to minimize
the weight of the solution.

Example 5. Recall that in the example introduced in Sect. 1, Monica wants to
avoid redundant occurrences of the minus (-) operator. To express this intent
in SemGuS, Monica can utilize the following weighted grammar.

Start → x = len(arr) - 1; while x>=0 do S
S → arr[E] = arr[E] + E | arr[E] = E |

x = E | S; S | if arr[x]>0 then S else S
E → 0 | 1 | x | E + E | E - E/1

In the weighted grammar, only the rule E → E - E is assigned the weight 1. All
other rules are assigned the weight 0 (omitted for readability). The weight of a
term t with respect to this grammar is the number of occurrence of the minus
operator in t. If Monica wants to restrict the number of occurrences of the minus
operators to be less than 5, she can use the constraint objective ω(v) = v < 5.
Furthermore, if she want to minimize the occurrences of the minus operator, she
can set the flag opt to True.

To summarize, a SemGuS problem with quantitative syntactic objectives is a
tuple sem = (W�·�, ψ(x, f(x)), ω,opt) where W�·� is a weighted grammar with a
corresponding semantics, ψ is a Boolean formula like before, ω is the constraint
objective, and the flag opt is the optimization objective. The goal is to find
a solution that not only satisfies the specification ψ, but also the quantitative
objective ω, and is of minimal cost if opt is set to True.

Quantitative syntactic objectives are useful in applications such as program-
ming by examples [10] and program repair [6], where it is desirable to produce
small programs with fewer constants, because such programs are more likely to
generalize to examples and test cases outside of the set of examples given by the
user. When allowing real-valued weights, syntactic objectives can be also used
to find the most likely solution with respect to a given probability distribution.
We can assign productions weights that represent their probabilities; the weight
of a candidate solution is its likelihood.

4 Programmable-Synthesis Solvers

While a programmable synthesis framework as discussed in Sect. 3 is certainly
desirable, it is of little practical use if one is unable to solve the problems that are
written in such a framework. In this section, we show that SemGuS problems
can be solved practically. We first describe two general solving techniques for
SemGuS (Sect. 4.1) and then present new algorithmic solving techniques enabled
by the SemGuS framework (Sect. 4.2).

98 L. D’Antoni et al.

4.1 General Solving Procedures for SemGuS Problems

We start off by presenting two solving procedures for general SemGuS prob-
lems we implemented as a tool, rooted in strategies commonly used in existing
program synthesizers: enumeration (used in the tool MESSY-Enum) and con-
straint solving (used in the tool MESSY). Specifically, we will be considering
SemGuS-with-examples problems: SemGuS problems where the specification is
given in terms of a finite set of examples E. An algorithm for solving SemGuS-
with-examples problems can be combined with counterexample-guided inductive
synthesis (CEGIS) [27], which generates counterexamples in case a synthesized
answer does not meet the general specification, to iteratively increase the exam-
ple set E and eventually obtain a correct program.

MESSY-Enum: A Basic Enumerator for SemGuS Problems. Because
SemGuS also relies on a grammar to specify the syntax of valid terms, like
SyGuS, one can employ a simple enumerator that generates terms of increasing
size from the grammar and test the enumerated terms against the behavioral
specification. With SemGuS, a term (representing a program) cannot be exe-
cuted directly, because the semantics to ascribe to it has been specified in the
semantic specification. However, because the semantics is specified with CHCs,
the term can be executed with a level of interpretation supplied by an off-the-
shelf CHC solver. Therefore, MESSY-Enum employs an off-the-shelf CHC solver
such as [18] to check if the CHCs are consistent with the specification.7

Concretely, given a term te to test, one can use the following CHC to check
whether te meets the specification:

∧
ei∈E semStart(〈ei, te〉, oi)

Realizable
Query

(4)

The Query rule in Eq. (4) exactly encodes the specification as a CHC: it asks
whether the semantics of te computed by semStart is consistent with the set of
input-output examples E. If so, the conclusion Realizable is provable using the
existing set of CHCs—i.e., te is a solution to the synthesis problem.

Because we cannot directly execute candidate terms and instead rely on CHC
solvers (which may be treated as a blackbox), it is difficult to employ common
enumeration optimizations, such as behavioral equivalence caching, or equality
saturation. Developing an enumeration-based solver capable of utilizing these
ideas would require generating an explicit and efficiently executable interpreter
from the given semantics, which is an interesting research challenge and future
direction that we discuss in Sect. 5.

7 One can treat CHC solving as akin to a proof search, where the objective is to prove
that a specific query holds (in this case, Realizable from Eq. (4)) using the provided
CHCs.

Programmable Program Synthesis 99

MESSY: SemGuS Problem Solving as CHC-Solving. MESSY-Enum uses
a CHC solver to check whether an enumerated term te is consistent with the spec-
ification or not—however, CHC solvers are also capable of automatically search-
ing for terms that satisfy the specification, as well. Our next solver, MESSY,
takes advantage of this fact by expressing both the syntax of the search space
and the semantics using CHCs. Once the entire search space is modeled this way,
one can then slightly modify the Query rule to accommodate this change and
directly use a CHC solver to solve the entire SemGuS problem. In essence, Messy
reduces solving the SemGuS problem into finding a configuration of variables
for which the set of CHC rules (containing syntax, semantics, and specification)
is valid—similar to how constraint-based methods in existing synthesizers reduce
the synthesis problem to one of solving a set of constraints.

Example 6 (MESSY Encoding). We show how the syntax and semantics used
in the production Start → while x>=0 do S from Fig. 1 can be captured using
CHCs. This production states that one can obtain a syntactically valid term
while x>=0 do s ∈ L(Start) for the nonterminal Start, given a valid term s ∈
L(S). Equation (5) encodes this idea as a CHC using the syntax relations synS ,
and synStart, which capture whether the supplied arguments are valid terms that
may be derived from the corresponding nonterminals S , and Start .

synS(s)

synStart(while x>=0 do s) (5)

Because the syntax relations provide a way to guarantee that a term t is a
valid term in the syntax of a SemGuS problem, one can rewrite the Query rule
from Eq. (4) to use this relation instead of an explicitly enumerated term te.

synStart(t)
∧

ei∈E semStart(〈ei, t〉, oi)

Realizable
Query

(6)

The new Query rule in Eq. (6) has the term t as a free variable—i.e., proving
Realizable amounts to finding a term t ∈ L(Start) that is consistent on the
input-output examples. A CHC solver presented with this rule, in tandem with
the syntax and semantic rules, will then attempt to find a configuration of t such
that Realizable holds. If the solver can prove that the premises of Equation Eq.
(4) hold, then the term t is a solution to the SemGuS problem.

One of the advantages of using such a CHC-based method is when dealing
with cases where there is no answer to the synthesis problem, i.e., when there
exists no t such that Realizable holds. In this case, the SemGuS problem con-
tains no answer satisfying the specification within its search space; we say that
such a problem is unrealizable. Proving unrealizability is something that many
existing solvers fail to consider, but is important: for example, Monica would
not have had to wait for several hours after modifying the grammar in Sect. 1 if
her solver had been able to show that the problem was unrealizable.

100 L. D’Antoni et al.

4.2 Meta Algorithms for Solving SemGuS Problems

Now that we have shown how to build solvers for general SemGuS problems
(that do not involve quantitative objectives), we turn to ‘meta’-algorithms for
solving SemGuS problems, which are ‘meta’ in the sense that they (i) may be
used atop any general SemGuS solver, (ii) generate modified SemGuS problems
(rather than solutions) that can be easier to solve than the original SemGuS
problem or can be used to solve SemGuS problems with quantitative objectives.
The key component behind these meta-algorithms is the customizability of the
search-space description in SemGuS.

A Meta Solver for Quantitative Objectives. We first present an algorithm
for solving SemGuS problems with quantitative objectives [12]—i.e., where pro-
ductions in the grammar have weights. We assume, for simplicity, that the only
quantitative objective is to find the program of least cost that satisfies the speci-
fication. The idea of the algorithm is to iteratively reduce the SemGuS problem
with a quantitative objective to a sequence of SemGuS problems without quan-
titative objectives, which are used to iteratively find a solution that has least
cost—i.e., at each step of the sequence the cost of the solution is improved.

The algorithm operates as follows. Initially, we are given a SemGuS prob-
lem sem with a weighted grammar W (we omit the semantic information for
brevity) and with the minimization objective opt set to true.8 The first step of
the algorithm is to construct an unweighted grammar GW by merely erasing all
the weights in W . We can now use any SemGuS solver to solve the resulting
SemGuS problem and obtain a term t0. This term will have a weight c accord-
ing to the weighted grammar W , but it might not be the term of least cost that
satisfies the specification. Our algorithm therefore tries to find out whether a
solution with a lower weight exists, and accordingly constructs an (unweighted)
grammar GW

<c such that a term t is accepted by the grammar GW
<c if and only if

the weight of t according to W is less than c. When the weights are natural num-
bers, this construction is always possible [12]. We now have again an unweighted
grammar, and we can use a SemGuS solver to solve the resulting problem. This
procedure can be repeated until no better solution exists.

Example 7. Consider the weighted grammar W we presented in Example 5. In
particular, let us focus our attention on the following subset of productions that
involve non-zero weights:

E → 0 | 1 | x | E + E | E - E/1

The grammar GW
<3, which accepts all terms of weight less than 3 is as follows:

E → E2 | E1 | E0

E2 → E1 - E0 | E0 - E1

E1 → E0 - E0

E0 → 0 | 1 | x | E0 + E0

8 For simplicity, we assume no further quantitative objectives are present, but the
general case can be handled using similar ideas [12].

Programmable Program Synthesis 101

Intuitively, each non-terminal Ei produces all and only terms with exactly i
minus operators.

The meta solver for quantitative objectives shows how using a solver-agnostic
specification formalism—i.e., grammars—enables algorithms that operate at the
specification level and can be reused across multiple solvers.

Underapproximating Semantics with SemGuS. The previous section
showed how the programmability of the search-space syntax (i.e., the gram-
mar) allows us to design meta-algorithms to solve SemGuS problems involving
quantitative objectives. In this section, we show how the programmability of
the search-space semantics can be used to build meta-algorithms that can make
synthesis faster. The key idea is to generate “simpler” variants of the original
SemGuS problem that use an underapproximating semantics, where an under-
approximating semantics is defined as a subset of the original semantics that
must be precise on the subset on which it is defined.

Definition 3. For a grammar G equipped with a semantics �·�, we say �·��

underapproximates �·� on G, or that �·�� is an underapproximating semantics
for G with respect to �·�, if for every term t ∈ L(G), every state Γ , and every
value v on which �·�� is defined, �t��(Γ, v) = �t�(Γ, v).

One easy way to underapproximate a semantics is to simply “eliminate” cer-
tain operators from a grammar by not defining semantic rules for them. How-
ever, the concept of underapproximation need not be bounded to eliminating
operators from a grammar—it may have a fully semantic meaning instead, for
example, a bound on the number of possible loop iterations. The key intuition is
that underapproximation is sound for use in synthesis—if a term t is the answer
to a synthesis problem sy, sy actually does not need to contain any syntax or
semantics outside of what is used to define and compute t. (In contrast, overap-
proximation is sound for proving unrealizability.)

Example 8. Recall, once again, the synthesis problem Monica has in Sect. 1. The
grammar Gex of Fig. 1 contains a while loop, which has a complex semantics
that can be expensive to compute and, most importantly, allows nonterminating
behavior. Most existing synthesizers [27,28] explicitly prohibit nontermination
by only considering finitely many unrollings for loops (because most answers to
a synthesis problem will indeed terminate).

Fortunately, Monica knows that on her example [−1, 2, 3, 10, 31,−14,−11],
the loop should iterate no more than 7 times to process every element of the array.
Monica may then choose to supply the synthesizer with an underapproximating
semantics that limits the number of loop iterations to 7, which could greatly
reduce the amount of computation the synthesizer must perform—for example,
a naive enumerator might get stuck on a nonterminating loop when using the
precise semantics, while terminating quickly when using the underapproximating
semantics. Such a semantics can be expressed easily by adding a loop counter c
to the semantics of loops given in Eq. (2), yielding the following CHC:

102 L. D’Antoni et al.

c ≥ 0 Γ [x] ≥ 0 semS(〈s, Γ, c − 1〉, Γ1) semStart(〈while x>=0 do s, Γ1, c − 1〉, Γ2)

semStart(〈while x>=0 do s, Γ, c〉, Γ2)
(7)

Setting c = 7 in the Query rule now ensures that loops run at most 7 iterations.

Abstract Semantics with SemGuS. Similar to how we used underapproxi-
mating semantics to find solutions to a SemGuS problem, abstract (overappoxi-
mating) semantics can be used to prove that a SemGuS problem is unrealizable.

Definition 4. For a grammar G equipped with a semantics �·�, we say �·�# is an
abstract semantics for G with respect to �·� if there exists an abstraction function
α and a concretization function γ, such that for all t ∈ L(G), if �t�(Γ, v) holds,
then �t�#(α(Γ), α(v)) holds, and Γ ∈ γ(α(Γ)), v ∈ γ(α(v)), i.e., α and γ form
a Galois connection.

In contrast to underapproximating semantics, abstract semantics are sound
when used to prove unrealizability—i.e., that a synthesis problem has no solution
that satisfies its specification within its search space. Consider the use of abstract
interpretation in program analysis: abstract interpretation is most often used to
prove that a program cannot reach a certain set of bad states, while often being
unable to guarantee that a program will produce a specific value, due to lack of
precision. Similarly, an abstract semantics will often be unable to guarantee that
a synthesized program satisfies the specification, due to lack of precision—but it
can guarantee that all programs in the search space will never be able to produce
a certain set of values, which can be used to prove unrealizability.

Example 9. Consider the scenario from Sect. 1, in which Monica removed sub-
traction from her grammar in an attempt to simplify the synthesized program.
The removal of subtraction made the problem unrealizable—and UltraSynth ran
for hours on end because it could not prove that this was the case. While prov-
ing unrealizability can be very difficult in general, a solver capable of reasoning
about abstract domains and semantics could have utilized an (abstract) semantic
rule such as Eq. (8) below:

semE(〈e1, Γ 〉, {pos}) semE(〈e2, Γ 〉, {pos})
semE(〈e1 + e2, Γ 〉, {pos}) (8)

Equation (8) is defined on the abstract domain {pos, zero, neg}—corresponding
to positive, zero, and negative values—and captures the fact that the sum of two
positive numbers will always be positive. This rule will be able to prove that Gex

without subtraction will never be able to modify x to a negative value, and thus
that no program in the search space will terminate (leading to unrealizability).

Unrealizability is a property that is ignored by many current synthesizers,
but it is a very important property nonetheless. One practical way to think about

Programmable Program Synthesis 103

unrealizability is as a sanity check, like a type system: the fact that a synthe-
sis problem provided by an end user is unrealizable means that the synthesis
problem is malformed in the sense that the user has got some of their specifi-
cations wrong. Similar scenarios happen daily with ordinary programming, and
we expect them to happen with synthesis as well—thus, it is desirable that syn-
thesizers be able to detect these problems, and report them early on if possible,
without running indefinitely, as in Sect. 1. Unrealizability also has applications
in computing optimal solutions, as in Sect. 4.2: unrealizability given a grammar
with a lower weight bound ensures that the current solution is optimal.

5 The Future of Programmable Synthesis and SemGuS

We hope we have convinced the reader that synthesis could use more programma-
bility, and that SemGuS addresses many of the programmability issues of exist-
ing synthesis work. But what lies ahead? How can we make programmable syn-
thesis truly practical? In this section, we first outline some of the steps we are
undertaking to answer this question (Sect. 5.1).

More importantly, we would also like to emphasize that the vision of pro-
grammable program synthesis can only be realized through a community effort.
We will conclude this section with ideas to involve the synthesis community to
help us realize our vision (Sect. 5.2).

5.1 What Are We Working on Next?

In this section, we present some of the directions our group is pursuing in extend-
ing SemGuS to richer objectives and building better solvers for it. We also
describe some open problems related to SemGuS.

Interfacing Existing Program Synthesizers with SemGuS. The bulk of our dis-
cussion in Sect. 3 was about achieving domain-agnosticity by building upon the
ideas that SyGuS used in achieving solver-agnosticity. However, there also exist
synthesis tools that are already domain-agnostic; most notably, solver-aided lan-
guages such as Sketch [27], Rosette [28], MiniKanren [8], and Prose [25]. While
these tools are not solver-agnostic, they can in principle be used as SemGuS
solvers by virtue of their domain-agnosticity.

To use such existing tools as SemGuS solvers, one must develop a compiler
of sorts to translate a SemGuS problem (written in the logical format from
Sect. 3) to the specific front-end language of the tool. This task is not trivial
for a number of reasons. First, each of these tools implement restrictions on the
types of synthesis problems they accept; these restrictions are what enables their
fast algorithms. For example, Rosette, Sketch, and MiniKanren only support
finite search spaces (i.e., finite grammars), and this fact is encoded in different
ways for different tools (e.g., by imposing bounds on the search depth or by
imposing syntactic bounds on the search space). Second, some of these solvers
implicitly use limited semantics—e.g., Sketch limits how many times a loop can

104 L. D’Antoni et al.

be executed. Third, some of these solvers require special inputs that are useful to
guide the synthesis engine—e.g., Prose requires the user to provide a semantics
for each operator in the input language as well as an inverse semantics that
can be executed backwards; the inverse semantics is used to perform efficient
enumeration.

Soundly compiling SemGuS problems to these tools requires one to modify
the original problems to fit these restrictions. Thankfully, the flexibility of Sem-
GuS comes to our aid! In Sect. 4.2, we have described ideas for transforming
SemGuS problems using restricted grammars or underapproximating semantics.
These transformations are sound for synthesis—i.e., a solution to the transformed
synthesis problem, which satisfies the restrictions of a particular external tool, is
still a solution to the original problem—and thus can be used to interface with
external tools. We are currently working on automating such translations.

The case of Prose is particularly interesting in that it requires inverse seman-
tics, which are not immediately available from a SemGuS problem. However,
because SemGuS semantics are expressed logically as CHCs, one can automati-
cally invert these semantics starting from the CHCs—we are currently developing
a tool that performs this inversion automatically and uses the inverse semantics
to interface with Prose.

Other more specialized solvers, such as those for synthesizing regular expres-
sions [23], could also be interfaced with our framework, with the limitation that
they will only be able to handle specific problems. The more general question
here is: how can we determine whether a specific SemGuS problem is com-
patible with a specialized solver? We are working on designing “theories” that
describe specific semantics for which specialized solvers exist. For example, if one
were to use SemGuS to work with regular expressions, they could import the
regular-expression theory, which by design would enable compatibility with cer-
tain solvers. Note that this approach is still solver-agnostic because any general
SemGuS solver would still be able to use this problem definition.

Lifting Existing Synthesis Algorithms to Work with SemGuS. While interfac-
ing existing synthesizers with SemGuS is one straightforward way of creating
SemGuS solvers, we envision that higher efficiency can be achieved by designing
solvers that take advantage of the structure of SemGuS problems. Is it possible
to lift algorithms (not tools) that have previously been successful with SyGuS
or other synthesizers up into SemGuS?

For example, consider the problem of building an efficient enumeration algo-
rithm for SemGuS, an algorithmic technique that is now successfully employed
in most SyGuS solvers [2,4,21]. The success of enumeration has been driven by
a number of clever ideas for efficiently pruning the search space of relevant pro-
grams. An example was mentioned in Sect. 4.1, where we discussed the challenges
with employing strategies such as behavioral equivalence caching or equality sat-
uration on SemGuS due to the lack of an executable semantics—i.e., in Sem-
GuS, evaluating a term on an input requires a costly call to a CHC solver. We
are currently building an enumeration algorithm for SemGuS that addresses
this limitation. Our algorithm first synthesizes an executable interpreter from

Programmable Program Synthesis 105

the SemGuS problem semantics, and then uses this executable interpreter to
guide the search. To scale, our approach must handle other challenges, which we
are also working on—e.g., discovering which operators have a semantics that is
associative or commutative can help us avoid enumerating equivalent terms.

While the generality of SemGuS is an obstacle to adapting some well-known
algorithms, the same generality also helps SemGuS provide a natural inter-
face to express other algorithms, such as program synthesis using abstraction
refinement [29]. The approach taken here is to synthesize programs that work
on an abstract domain, and repeatedly refine the abstract domain until a pro-
gram is found that is correct under the concrete semantics. This approach, in
a sense, uses a meta-algorithm that can be expressed naturally in SemGuS,
as discussed in Sect. 4.2. We believe that SemGuS will naturally be able to
express many such meta-algorithms, and further accelerate the development of
new meta-algorithms.

Supporting Richer Specifications. Beyond the basic specification mechanisms,
SemGuS already supports syntactic quantitative objectives through weighted
grammars (Sect. 3.2). To capture the breadth of specifications appearing in
modern synthesis applications, the SemGuS framework will have to evolve over
time. While we are investigating a number of complex objectives that will require
extensions to the framework (e.g., probabilistic specifications), in the following
paragraph we describe a specification mechanism the current SemGuS frame-
work can already capture for free: types.

Consider the problem of synthesizing a program that meets a given time
complexity (or asymptotic resource usage in general) [11,16]. In existing work,
such bounds are specified (and proven correct) using a dependent type system.
The solver uses the type system to guide the search, by enumerating only terms
that satisfy a certain type. We observe that the SemGuS framework is already
able to capture such type-based specifications! In particular, types are a form
of static semantics that can be associated with terms and, in most cases, typing
rules can be encoded as CHCs, similarly to how one encodes semantic rules. For
example, the following dependent type rule can be captured using a CHC where
each typing judgment t : type is described using a relation r(t, type).

a : {Int | ϕa(v)} b : {Int | ϕb(v)} + : x : Int → y : Int → {Int | v = x + y}
a + b : {Int | v = x + y ∧ ϕa(x) ∧ ϕb(y)} (9)

5.2 What Can the Synthesis Community Do?

As we mentioned at the beginning of this section:

The vision of programmable program synthesis can only be realized through a
community effort.

We discuss problems the community can help with in this concluding section.

106 L. D’Antoni et al.

A Broader Scope for Synthesis. The scope and potential of synthesis is very
broad, in fact even broader than what has been discussed in this paper. An
invited paper by Gulwani began [9]

Program Synthesis is the task of discovering an executable program from
user intent expressed in the form of some constraints.

However, we feel that this viewpoint is actually somewhat narrow. We believe
that insight on many problems can be obtained via the “lens” of synthesis: for
many computing tasks, the goal is to produce some artifact to which some seman-
tics is attached, and the process of producing that artifact can be thought of as
a synthesis problem. For instance, in an AI planning problem, the artifact is a
plan—i.e., Monica from Sect. 1 is a robot, and the sought-for program must navi-
gate her from point A to point B (e.g., minimizing power consumption and time,
while avoiding collisions and satisfying other safety guarantees). Closer to home
for the CAV community, inside many tools for statically checking assertions in
programs (such as SLAM or BLAST), the key component is one that creates
an abstracted model of the program that is sufficiently precise to show that an
assertion violation is not possible. Among the artifacts that may need to be syn-
thesized are inductive invariants, abstract transformers, function summaries, and
interface specifications. Thus, we conclude by offering the following wider defini-
tion of synthesis, which connects this broader outlook with the semantics-based
perspective that we have presented in this paper:

Synthesis is the task of discovering a syntactic object—selected from
some formalism in which each syntactic object has a rigorously defined
semantics—from an “intent” expressed in the form of some kind of con-
straint.

We believe that the issues discussed in this paper will be increasingly important
if synthesis is to be applied successfully to the creation of artifacts that have
semantics, but are not programs per se.

The generality of our framework can bridge the gap between the many appli-
cations of synthesis, and we hope that the community will engage in our work
by modeling their synthesis problems in SemGuS, and by adapting their solvers
to work with SemGuS. Such contributions will result in new benchmarks and
solvers, contributing to the programmability and effectiveness of SemGuS.

Standardization and Competitions. We believe that the idea of a programmable
synthesis framework, and SemGuS, the start of such a framework, represents
a step forward in program synthesis. Similarly to what happened with SyGuS,
SemGuS must be standardized, other researchers should build solvers for it, and
these solvers should compete annually in SemGuS competitions.

We hope that this paper will encourage readers to experiment with and
advance the ideas presented here, in three ways: First, we hope that the generality
of the framework will make it easy for people to use it on various problems, which
in turn will make it easy to collect large and diverse sets of benchmarks that

Programmable Program Synthesis 107

will make the design of new solvers focused and effective. Second, we hope that
researchers will build new algorithms and techniques that are general and can
solve problems built in this framework. Third, we hope to soon create a yearly
competition that will foster further interest in building general synthesizers for
our framework. More than anything, this paper is a call-to-arms—an invitation
to help broaden the scope and abilities of program synthesis, toward an era where
Monica uses synthesizers just as much as Python during her daily work.

Acknowledgments. Supported, in part, by a gift from Rajiv and Ritu Batra; by
multiple Facebook Research Awards; by a Microsoft Faculty Fellowship; by NSF under
grants 1420866, 1763871, and 1750965; by ONR under grants N00014-17-1-2889 and
N00014-19-1-2318; and a grant from the Korea Foundation for Advanced Studies. Any
opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors, and do not necessarily reflect the views of the sponsoring
entities.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design (FMCAD), pp. 1–8. IEEE (2013)

2. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part I. LNCS,
vol. 10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54577-5_18

3. Amodio, M., Chaudhuri, S., Reps, T.W.: Neural attribute machines for program
generation. CoRR, abs/1705.09231 (2017)

4. Barke, S., Peleg, H., Polikarpova, N.: Just-in-time learning for bottom-up enumer-
ative synthesis. Proc. ACM Program. Lang. 4(OOPSLA,), 1–29 (2020)

5. Comon, H., et al.: Tree automata techniques and applications (2007). http://www.
grappa.univ-lille3.fr/tata. Accessed 12 October 2007

6. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
383–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_21

7. ESolver. https://github.com/abhishekudupa/sygus-comp14
8. Feldman, M.Q., Wang, Y., Byrd, W.E., Guimbretière, F., Andersen, E.: Towards

answering “Am I on the right track?” Automatically using program synthesis. In
Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E, SPLASH-
E 2019, pp. 13–24, New York, NY, USA. Association for Computing Machinery
(2019)

9. Gulwani, S.: Dimensions in program synthesis. In: PPDP (2010)
10. Gulwani, S.: Programming by examples: applications, algorithms, and ambiguity

resolution. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706,
pp. 9–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_2

11. Hu, Q., Cyphert, J., D’Antoni, L., Reps, T.: Synthesis with asymptotic resource
bounds. In: CAV (2021)

12. Hu, Q., D’Antoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part I. LNCS, vol.
10981, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3_21

https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/978-3-319-41540-6_21
https://github.com/abhishekudupa/sygus-comp14
https://doi.org/10.1007/978-3-319-40229-1_2
https://doi.org/10.1007/978-3-319-96145-3_21
https://doi.org/10.1007/978-3-319-96145-3_21

108 L. D’Antoni et al.

13. Johnson, S.: YACC: Yet another compiler-compiler. Technical Report Computer
Science Technical report 32, Bell Laboratories (1975)

14. Kim, J., Hu, Q., D’Antoni, L., Reps, T.: Semantics-guided synthesis. Proc. ACM
on Program. Lang. 5(POPL), 1–32 (2021)

15. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.:. Resource-guided program
synthesis. In: PLDI, pp. 253–268 (2019)

16. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-guided program
synthesis. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 253–268 (2019)

17. Kobayashi, N., Sekiyama, T., Sato, I., Unno, H.: Toward neural-network-guided
program synthesis and verification. CoRR, abs/2103.09414 (2021)

18. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016)

19. Lang, B.: Deterministic techniques for efficient non-deterministic parsers. In:
Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 255–269. Springer, Heidelberg
(1974). https://doi.org/10.1007/978-3-662-21545-6_18

20. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis and transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California, March
(2004)

21. Lee, W.: Combining the top-down propagation and bottom-up enumeration for
inductive program synthesis. Proc. ACM Program. Lang. 5(POPL), 1–28 (2021)

22. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 208–217 (2015) Language
Design and Implementation, pp. 208–217 (2015)

23. Pan, R., Hu, Q., Xu, G., D’Antoni, L.: Automatic repair of regular expressions.
Proc. ACM Program. Lang. 3(OOPSLA), 1–29 (2019)

24. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 522–538 (2016)

25. Polozov, O., Gulwani, S.: Flashmeta: a framework for inductive program synthesis.
In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, 25–30 October 2015, pp. 107–126
(2015)

26. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015, Part II. LNCS, vol. 9207, pp. 198–216. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21668-3_12

27. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transf. 15,
475–495 (2012). https://doi.org/10.1007/s10009-012-0249-7

28. Torlak, E., Bodik, R.: Growing solver-aided languages with Rosette. In: Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pp. 135–152 (2013)

29. Wang, X., Dillig, I., Singh, R.: Program synthesis using abstraction refinement.
PACMPL 2(POPL), 63:1-63:30 (2018)

https://doi.org/10.1007/978-3-662-21545-6_18
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/s10009-012-0249-7

Programmable Program Synthesis 109

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Deductive Synthesis of Programs
with Pointers: Techniques, Challenges,

Opportunities
(Invited Paper)

Shachar Itzhaky1, Hila Peleg1, Nadia Polikarpova2(B), Reuben N. S. Rowe3,
and Ilya Sergey4,5

1 Technion, Haifa, Israel
{shachari,hilap}@cs.technion.ac.il

2 University of California, San Diego, USA
npolikarpova@eng.ucsd.edu

3 Royal Holloway, University of London, Egham, UK
reuben.rowe@rhul.ac.uk

4 Yale-NUS College, Singapore, Singapore
ilya.sergey@yale-nus.edu.sg

5 National University of Singapore, Singapore, Singapore

Abstract. This paper presents the main ideas behind deductive synthe-
sis of heap-manipulating program and outlines present challenges faced
by this approach as well as future opportunities for its applications.

1 Introduction

Just like a journey of a thousand miles begins with a single step, an imple-
mentation of a working operating system, cryptographic library, or a compiler
begins with writing a single function. This is not quite so for verified software,
whose development starts with three “steps”: a function specification (or, spec),
followed by its implementation, and then by a proof that the implementation
satisfies the spec. Although recent years have seen an explosion of increasingly
diverse and sophisticated verified systems [14,20,26,31,41,48,71,73,96], their
cost remains high, owing to the effort required to write formal specifications and
proofs in addition to writing the code.

The good news is that in many cases the aforementioned three steps can be
replaced by just one of them: writing the spec. The rest can be delegated to
deductive program synthesis [52]—an emerging approach to automated software
development, which takes as input a specifications, and searches for a corre-
sponding program together with its proof.

Past approaches to deductive synthesis typically avoided low-level programs
with pointers [43,69,83], which are notoriously difficult to reason about, making
these approaches inapplicable to automating the development of verified systems
code. The few techniques that did handle the heap [47,72] had significant limita-
tions in terms of expressiveness and/or efficiency. Our prior work on the SuSLik

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 110–134, 2021.
https://doi.org/10.1007/978-3-030-81685-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_5

Deductive Synthesis of Programs with Pointers 111

synthesizer [70], has introduced an alternative approach to synthesis of pointer-
manipulating programs, whose key enabling component is the use of Separation
Logic (SL) [66,75] as the specification formalism. Due to its proof scalability,
Separation Logic enabled modular verification of low-level imperative code and
has been implemented in a large number of automated and interactive program
verifiers [4,7,18,37,57,62,64,68]. The main novelty of SuSLik was an observa-
tion that the structure of SL specifications can be used to efficiently guide the
search for a program and its proof. Since then, our follow-up work has explored
automatic discovery of recursive auxiliary functions [34], generating indepen-
dently checkable proof certificates for synthesized programs [93], and giving the
user more control over the synthesis using concise mutability annotations [19].

As an appetizer for SL-powered deductive program synthesis consider the
problem of flattening a binary tree data structure into a doubly-linked list.
Assume also that the programmer would prefer to perform this transforma-
tion in-place, without allocating new memory, which they conjecture is possible
because the nodes of the two data structures have the same size (both are records
with a payload and two pointers). With SuSLik, the programmer can describe
this transformation using the following Hoare-style SL specification:

{tree(x, S)} flatten (loc x) {dll(x, y, S)} (1)

1 flatten(loc x) {
2 if (x == 0) {
3 } else {
4 let l = *(x + 1);
5 let r = *(x + 2);
6 flatten(l);
7 flatten(r);
8 helper (r, l, x);
9 }

10 }
11

12 helper(loc r, loc l,
13 loc x) {
14 if (l == 0) {
15 if (r == 0) {
16 } else {
17 *(r + 2) = x;
18 *(x + 1) = r;
19 }
20 } else {
21 let v = *l;
22 let w = *(l + 1);
23 *(l + 2) = r;
24 helper(r, w, l);
25 *(l + 2) = x;
26 }
27 }

Fig. 1. Flattening a tree into a DLL.

Here the precondition asserts that ini-
tially x points to the root of a tree, whose
contents are captured by a set S. The
postcondition asserts that after the exe-
cution of flatten, the same location x is a
head of a doubly-linked list, with the same
elements S as the initial tree (y denotes
the existentially quantified back-pointer
of the list). The definitions of the two
predicates, tree and dll, which constrain
the symbolic heaps in the pre- and post-
condition are standard for SL [75] and will
be shown in Sect. 2.

Given the spec (1), SuSLik takes less
than 20 s to generate the program in
Fig. 1, written in a core C-like language,
as well as a formal proof that the pro-
gram satisfies the spec. Several things are
noteworthy about this program. First, the
code indeed does not perform any allo-
cation, and instead accomplishes its goal
by switching pointers (in lines 17, 18,
23, and 25); this makes it economical in
terms of memory usage as only a low-level
program can be: similar code written in
a functional language like OCaml would
inevitably rely on garbage collection. Sec-
ond, the main function flatten relies on

112 S. Itzhaky et al.

an auxiliary recursive function helper, which the programmer did not anticipate; in fact
the need for this auxiliary—and its specification—is discovered by SuSLik completely
automatically. All the programmer has to do to obtain a provably correct implementa-
tion of flatten is to write the spec (1) and define the two SL predicates it uses, which
are, however, reusable across different programs.

At this point, a critical reader might be wondering whether this technology is
mature enough to move past hand-crafted benchmarks and assist them in developing
the next CompCert [48] or CertiKOS [31]. For one, the program in Fig. 1 does not
seem optimal: a closer look reveals that the role of helper is to concatenate the lists
obtained by flattening the two subtrees, resulting in the overall O(n2) complexity wrt.
the size of the original tree.1 Apart from performance of synthesized programs, the
reader might have the following concerns:

– What is the class of programs this approach is fundamentally capable of synthe-
sizing? How picky is it to the exact shape of input specifications?

– Is the proof search predictably fast across a wide range of problems?
– Will the synthesized code be concise and easy to understand?
– Finally, what are the “killer apps” for this technology and in which domains can

we hope for its adoption for practical need?

The goal of this manuscript is precisely to illustrate the remaining challenges in
SL-based synthesis of heap-manipulating programs and outline some future research
directions towards addressing these challenges. In the remainder of this paper we pro-
vide the necessary background and a survey of the results to date (Sect. 2); we then
zoom in on the promising techniques for improving proof search (Sect. 3); in Sect. 4
we discuss the completeness of synthesis, outlining the work that needs to be done in
order to formally characterize the class of programs that can and cannot be generated;
in Sect. 5 we talk about possible extensions to the synthesis procedure for improving
the quality of synthesized programs; finally, in Sect. 6 we discuss possible applica-
tions of SL-based synthesis, such as program repair, data migration, and concurrent
programming.

2 State of the Art

2.1 Specifications

SuSLik takes as input a Hoare-style specification, i.e., a pair of a pre- and a post-
condition. Consider, for example, a specification for a function swap,2 which swaps the
values of two pointers:

{x �→ a ∗ y �→ b} swap(loc x, loc y) {x �→ b ∗ y �→ a} (2)

The precondition x �→ a ∗ y �→ b states that the relevant part of the heap contains two
memory locations, x and y, which store values a and b, respectively. We also know
that and x �= y, because the semantics of separating conjunction (∗) require that the
two heaps it connects be disjoint. The postcondition x �→ b ∗ y �→ a demands that after

1 In Sect. 4 we show what it takes to derive an alternative, linear-time solution.
2 Our language has no return statement, hence all functions have return type void,

which is omitted from the spec; return values are emulated by writing to the heap.

Deductive Synthesis of Programs with Pointers 113

executing the function, the values stored in x and y be swapped. This specification
also implicitly guarantees that swap always terminates and executes without memory
errors (e.g., null-pointer dereferencing). Note that x and y also appear as parameters
to swap, and hence are program variables, i.e., can be mentioned in the synthesized
program; the payloads a and b, on the other hand, are logical variables, implicitly
universally quantified, and must not appear in the program. In the rest of this paper,
we distinguish program variables from logical variables by using monotype font for the
former.

In general, in a specification {P} f(...) {Q}, assertions P, Q both have the form
φ; P , where the spatial part P describes the shape of the heap, while the pure part
φ is a plain first-order formula that states the relations between variables (in (2) the
pure part in both pre- and postcondition is trivially true, and hence omitted). For
the spatial part, SuSLik employs the standard symbolic heap fragment of Separation
Logic [66,75]. Informally, a symbolic heap is a set of atomic formulas called heaplets
joined with separating conjunction (∗). The simplest kind of heaplet is a points-to
assertion x �→ e, describing a single memory location with address x and payload e. An
empty symbolic heap is represented with emp.

To capture linked data structures, such as lists and trees, SuSLik specifications
use inductive heap predicates, which are standard in Separation Logic. For instance,
the tree predicate used in (1) is inductively defined as follows:

tree(x, S) � x = 0 ⇒ {S = ∅; emp}
| x �= 0 ⇒ {S = {v} ∪ Sl ∪ Sr;

[x, 3] ∗ x �→ v ∗ 〈x, 1〉 �→ l ∗ 〈x, 2〉 �→ r ∗ tree(l, Sl) ∗ tree(r, Sr)}
(3)

The predicate is parametrized by the root pointer x and the set of tree elements S. This
definition consists of two guarded clauses: the first one describes the empty tree (and
applies when the root pointer is null), and the second one describes a non-empty tree.
In the second clause, a tree node is represented by a three-element record starting at
address x. Records are represented using a generalized form of the points-to assertion
with an offset : for example, the heaplet 〈x, 1〉 �→ l describes a memory location at the
address x + 1. The block assertion [x, 3] is an artifact of C-style memory management:
it represents a memory block of three elements at address x that has been dynamically
allocated by malloc (and hence can be de-allocated by free). The first field of the
record stores the payload v, while the other two store the addresses l and r of the left
and right subtrees, respectively. The two disjoint heaps tree(l, Sl) and tree(r, Sr) store
the two subtrees. The pure part of the second clause indicates that the payload of the
whole tree consists of v and the subtree payloads, Sl and Sr.

2.2 The Basics of Deductive Synthesis

The formal underpinning of SuSLik is a deductive inference system called Synthetic
Separation Logic (SSL). Given a pre-/postcondition pair P, Q, deductive synthe-
sis proceeds by constructing a derivation of the SSL synthesis judgment, denoted
{P}�{Q} | c, for some program c. In this derivation, c is the output program, con-
structed while searching for the proof of the synthesis goal {P} � {Q}. Intuitively,
the output program c should satisfy the Hoare triple {P} c {Q}. The derivation is
constructed by applying inference rules, a subset of which is presented in Fig. 2, and
every inference rule “emits” a program fragment corresponding to this deduction.

114 S. Itzhaky et al.

Fig. 2. Selected SSL rules (simplified). Fig. 3. Derivation of swap.

Figure 3 shows an SSL derivation for swap, using inference rules of Fig. 2. The
derivation, read bottom-up, starts with the pre/post pair from (2) as the synthesis
goal; each rule application simplifies the goal until both the pre- and the post-heap
are empty, and might also prepend a statement (highlighted in grey) to the output
program. In the initial goal, the Read rule can be applied to the heaplet x �→ a to
read the logical variable a from location x into a fresh program variable a1; the second
application of Read similarly reads from the location y. At this point, the Write
rule is applicable to the post-heaplet x �→ b1 because its right-hand side only mentions
program variables and can be directly written into the location x; note that this rule
equalizes the corresponding heaplets in the pre- and post-condition. After two applica-
tions of Write, the pre- and the post-heap become equal and can be simply cancelled
out by the Frame rule, leaving emp on either side of the goal; the terminal rule Emp
then concludes the derivation. Although very simple, this example demonstrates the
secret behind SuSLik’s efficiency: the shape of the specification restricts the set of
applicable rules and thereby guides program synthesis.

2.3 Synthesis with Recursion and Auxiliary Functions

We now return to our introductory example—flattening a binary tree into a doubly-
linked list—whose specification (1) we repeat here for convenience:

{tree(x, S)} flatten(loc x) {dll(x, y, S)}
The definition of the tree predicate has been shown above (3); the predicate dll(x, y, S)
describes a doubly-linked list rooted at x with back-pointer y and payload set S:

dll(x, y, S) � x = 0 ⇒ {S = ∅; emp}
| x �= 0 ⇒ {S = {v} ∪ S′;

[x, 3] ∗ x �→ v ∗ 〈x, 1〉 �→ n ∗ 〈x, 2〉 �→ y ∗ dll(n, x, S′)}
(4)

Note that in the spec (1) both the set S and the back-pointer y are logical variables,
but S is implicitly universally quantified (a so-called ghost variable), because it occurs
in the precondition, while y is existentially quantified (a so-called existential variable),
because it only occurs in the postcondition. The reader might be wondering why use an
existential here instead of a null pointer: as we show below, such weakening is required

Deductive Synthesis of Programs with Pointers 115

Fig. 4. Intermediate synthesis state when deriving flatten.

to obtain the solution in Fig. 1; we discuss the alternative spec and corresponding
solution in Sect. 4.

At a high level, the synthesis of flatten proceeds by eagerly making recursive calls
on the left and the right sub-trees, l and r, as illustrated in Fig. 4, which leads to the
following synthesis goal:

{[x, 3] ∗ x �→ v ∗ 〈x, 1〉 �→ l ∗ 〈x, 2〉 �→ r ∗ dll(l, yl, Sl) ∗ dll(r, yr, Sr)}
� {dll(x, y, {v} ∪ Sl ∪ Sr)} (5)

Now the synthesizer must concatenate the two doubly-linked lists, rooted at l and r,
together with the parent node x into a single list. Since the spec gives us no access to the
last element of either of the two lists, this concatenation requires introducing a recursive
auxiliary function to traverse one of the lists to the end. We now demonstrate how
SuSLik synthesizes recursive calls and discovers the auxiliary using a single mechanism
we call cyclic program synthesis [34], inspired by cyclic proofs in Separation Logic [11,
76]. The main idea behind cyclic proofs is that, in addition to reaching a terminal rule
like Emp, a sub-goal can be “closed off” by forming a cycle to an identical companion
goal earlier in the derivation; in SSL these cycles give rise to recursive calls.

Figure 5 depicts a cyclic derivation of flatten. For now let us ignore the appli-
cations of the Proc rule, which do not modify the synthesis goal; their purpose will
become clear shortly. Given the initial goal (1), SuSLik first applies the Open rule,
which unfolds the definition of tree in the precondition and emits a conditional with
one branch per clause of the predicate. The first branch (x = 0) is trivially solved by
skip, since a null pointer is both an empty tree and an empty list. The second branch
is shown in Fig. 5: its precondition contains two predicate instances tree(l, Sl) and
tree(r, Sr) for the two sub-trees of x.

Now SuSLik detects that either of those instances can be unified with the pre-
condition tree(x, S) of the top-level goal, so it fires the Call rule, which uses cyclic
reasoning to synthesize recursive calls. More specifically, Call has two premises: the
first one synthesizes a recursive call and the second one the rest of the program after
the call. The spec of the first premise must be identical to some earlier goal, so that
it can be closed off by forming a cycle; in our example, the back-link (1) connects the
first premise back to the top-level goal. Once a companion goal is identified, SuSLik
inserts an application of Proc right above it: its purpose is to delineate procedure
boundaries, or, in other words, give a name to the piece of code that the Call rule is
trying to call. To ensure that recursion is terminating, we must prove that tree(l, Sl)
in the precondition of the Call’s premise is strictly smaller than tree(x, S) in the pre-

116 S. Itzhaky et al.

Fig. 5. Derivation of flatten and its recursive auxiliary helper.

condition of the companion (see [34] for more details about our termination checking
mechanism).

After the second application of Call (to tree(r, Sr)), SuSLik arrives at the goal (5),
with two lists in the precondition (marked (a) in Fig. 5). Ignoring again the application
of Proc, which will be inserted later, SuSLik proceeds by unfolding the list dll(l, yl, Sl)
via Open, eventually arriving at the goal (b): this goal again has two lists in the
precondition but one of them is now smaller (it is the tail of dll(l, yl, Sl)). At this
point Call detects that (a sub-heap of) goal (b) can be unified,3 with goal (a) thus
forming the cycle (3), which this time links to an internal goal in the derivation instead
of the top-level goal. As before SuSLik inserts an application of the Proc rule just
above the companion goal (a), thereby abducing an auxiliary procedure with a fresh
name.

2.4 Implementation and Empirical Results

The most up-to-date implementation of SuSLik is publicly available at:

https://github.com/TyGuS/suslik

Table 1 collects the results of running SuSLik on benchmarks from our prior work [19,
34,70,93] as well as seven new benchmarks, which we added to illustrate various chal-
lenges discussed in subsequent sections.4 Most existing benchmarks had been adapted
from the literature on verification and synthesis [24,47,50,72]. In addition to standard
textbook data structures, our benchmarks include operations on two less common data
structures, which to the best of our knowledge cannot be handled by other synthesizers.

3 This is where we rely on the existential back-pointer in (1): if we replace yl with 0,
then dll(l, 0, Sl) and dll(w, yw, Sw) would not unify.

4 The code and benchmarks accompanying this paper are available online [35].

https://github.com/TyGuS/suslik

Deductive Synthesis of Programs with Pointers 117

Table 1. SuSLik benchmarks and results. We report the number of Procedures gen-
erated, total number Stmt of statements in those procedures, the ratio Code/Spec of
code to specification (in AST nodes), and the synthesis time in seconds for standard
SuSLik (Time), with a simpler cost function (TimeSC) and with no bounds on pred-
icate unfolding and calls (TimeNB). “-” denotes timeout after 30 minutes. Footnotes
indicate the sources of benchmarks.

Data structure Id Description Proc Stmt Code/Spec Time TimeSC TimeNB

Integers 1 Swap two 1 4 1.0x 0.2 1.2 0.2

2 Min of two1 1 3 1.1x 0.8 3.0 1.1

Singly linked list 3 Length2 1 6 1.4x 0.4 0.5 0.6

4 Max2 1 11 1.9x 3.0 7.0 4.7

5 Min2 1 11 1.9x 2.9 6.7 4.1

6 Singleton1 1 4 0.9x 0.2 0.2 0.2

7 Deallocate 1 4 5.5x 0.2 0.2 0.2

8 Initialize 1 4 1.6x 0.4 0.4 0.6

9 Copy3 1 11 2.7x 0.6 1.0 393.3

10 Append3 1 6 1.1x 0.4 0.4 0.6

11 Delete3 1 12 2.6x 1.2 0.9 2.0

12 Deallocate two 2 9 6.2x 0.2 0.2 0.2

13 Append three 2 14 2.3x 1.0 2.5 1.7

14 Non-
destructive
append

2 21 3.0x 8.0 51.5 -

15 Union 2 23 5.5x 4.3 20.6 36.0

16 Intersection4 3 32 7.0x 101.1 121.2 -

17 Difference4 2 21 5.1x 4.7 55.0 29.5

18 Deduplicate4 2 22 7.3x 1.8 2.5 5.5

Sorted list 19 Prepend2 1 4 0.4x 0.2 0.3 0.3

20 Insert2 1 19 3.1x 1.0 16.2 1.2

21 Insertion sort2 1 7 1.2x 0.7 2.7 42.7

22 Sort4 2 13 4.9x 1.0 1.5 2.9

23 Reverse4 2 11 4.0x 0.7 0.7 1.4

24 Merge2 2 30 4.4x 55.6 10.1 -

Doubly linked list 25 Singleton1 1 5 1.1x 0.2 0.2 0.5

26 Copy 1 22 4.3x 7.2 9.9 -

27 Append3 1 10 1.6x 1.7 27.2 -

28 Delete3 1 19 3.7x 3.4 3.5 -

29 Single to
double

1 23 6.0x 0.7 0.8 4.6

List of lists 30 Deallocate 2 11 10.7x 0.2 0.3 0.3

31 Flatten4 2 17 4.4x 0.6 0.6 1.9

32 Length5 2 21 5.5x 22.8 - -

(continued)

118 S. Itzhaky et al.

Table 1. (continued)

Data structure Id Description Proc Stmt Code/Spec Time TimeSC TimeNB

Binary tree 33 Size 1 9 2.5x 0.4 0.6 185.8

34 Deallocate 1 6 8.0x 0.2 0.2 0.2

35 Deallocate two 1 16 11.8x 0.4 0.5 0.5

36 Copy 1 16 3.8x 2.5 42.9 -

37 Flatten
w/append

1 17 4.8x 0.4 0.6 0.7

38 Flatten w/acc 1 12 2.1x 0.6 0.9 1.9

39 Flatten 2 23 7.1x 1.5 1.0 5.5

40 Flatten to dll in
place

2 15 9.6x 11.3 - 23.2

41 Flatten to dll
w/null5

2 17 11.2x 106.1 1418.3 46.5

BST 42 Insert2 1 19 2.8x 14.6 21.7 518.0

43 Rotate left2 1 5 0.2x 6.2 7.0 -

44 Rotate right2 1 5 0.2x 4.9 5.6 -

45 Find min5 1 11 1.4x 66.3 80.2 -

46 Find max5 1 18 2.2x 58.0 80.8 -

47 Delete root2 1 18 1.3x 13.9 - -

48 From list4 2 27 5.7x 10.0 10.7 -

49 To sorted list4 3 32 7.7x 20.8 11.7 -

Rose tree 50 Deallocate 2 9 12.0x 0.2 0.3 0.2

51 Flatten 3 25 8.0x 11.0 6.3 -

52 Copy5 2 32 7.9x - - -

Packed tree 53 Pack5 1 16 1.6x - - -

54 Unpack5 1 23 2.9x 21.0 - -
1 Jennisys [47] 2 ImpSynth [72] 3 Dryad [50] 4 Eguchi et al. [24] 5 New

A rose tree [51] is a variable-arity tree, where child nodes are stored in a linked list; it
is described in SL by two mutually recursive predicates (rtree for the tree and children
for the list of children), and our synthesized operations on rose trees are also mutu-
ally recursive. A packed tree is a binary tree serialized into an array; it is interesting
because operations on packed trees use non-trivial pointer arithmetic (we discuss them
in Sect. 6).

Apart from the size of each program (in statements), we also report the ratio
of code size to spec size (both in AST nodes) as a measure of synthesis utility. For
the majority of the benchmarks the generated code is larger than the specification,
sometimes significantly (up to 12x); the only exceptions are benchmarks with very
convoluted specs, such as BST rotations (benchmarks 43 and 44), or extremely simple
programs, such swap from Fig. 3 (benchmark 1) and prepending an element to a sorted
list (benchmark 19).

A number of benchmarks generate more than one procedure: those programs require
recursive auxiliaries [34], such as our running example flatten from Fig. 1 (bench-
mark 40). It is worth mentioning that benchmarks 37 through 41 encode different

Deductive Synthesis of Programs with Pointers 119

versions of flattening a binary tree into a singly or doubly-linked list: 37 and 38 are
simplified versions that do not require discovering auxiliaries because they contain addi-
tional hints from the user (a library function for appending lists in 37 and an inductive
specification for flatten with a list accumulator in 38); 39 is similar to 40 but returns
a singly-linked list (and hence requires allocation). Finally 41 is a version of 40 that
uses 0 instead of y as the back-pointer of the output list; this precludes SuSLik from
generating an auxiliary for appending two lists, and instead it discovers a slightly more
complex, but linear-time solution, which we discuss in Sect. 4.

The missing synthesis times for some benchmarks indicate that they could not be
synthesized automatically after 30 min, but were possible to solve in an “interactive”
mode, where the search has been given hints on how to proceed in the case of multiple
choices. We elaborate on the possibility of generating those programs automatically
in subsequent sections. Apart from regular SuSLik time we also report time for two
variations discussed in Sect. 3.

3 Proof Search

Similarly to existing deductive program synthesizers [43], SuSLik adopts best-first
And/Or search [54] to search for a program derivation. The search space is repre-
sented as a tree with two types of nodes. An Or-node corresponds to a synthesis goal,
whose children are alternative derivations, any of which is sufficient to solve the goal.
An And-node corresponds to a rule application, whose children are premises, all of
which need to be solved in order to build a derivation. Each goal has a cost, which
is meant to estimate how difficult it is to solve. The search works by maintaining a
worklist of Or-nodes that are yet to be explored. In each iteration, the node with the
least cost is dequeued and expanded by applying all rules enabled according to a proof
strategy ; the node’s children are then added back to the worklist.

The proof strategy and the cost function are crucial to the performance of the proof
search. In current SuSLik implementation both are ad-hoc and brittle; in the rest of
the section we outline possible improvements to their design.

3.1 Pruning via Proof Strategies

A proof strategy is a function that takes in a synthesis goal and its ancestors in the
search tree, and returns a list of rules enabled to expand that goal. Without strategies,
the branching factor of the search would be impractically large. SuSLik’s strategies
are based on the observation that some orders of rule applications are redundant, and
hence can be eliminated from consideration without loss of completeness. Identifying
redundant orders is non-trivial and is currently done informally, increasing the risk of
introducing incomplete strategies.

For example, SuSLik’s proof strategy precludes applying Call if Close (a rule
that unfolds a predicate in the postcondition) has been applied earlier in the deriva-
tion. The reasoning is that Call only operates on the precondition, while Close only
operates on the postcondition, hence the two rule applications must be independent,
and can always be reordered so that Call is applied first. But it gets more complicated
once we let Call abduce auxiliaries: now applying Call after Close could be useful
to give it access to more companion goals, whose postconditions differ from that of the
top-level goal. Consider for example copying a rose tree with the following spec:

{r �→ x ∗ rtree(x, S)} void rtcopy(loc r) {r �→ y ∗ rtree(y, S) ∗ rtree(x, S)} (6)

120 S. Itzhaky et al.

Copying a rose tree seems to require two mutually-recursive procedures: the main one
(6) that copies an rtree and an auxiliary one that copies the list of its children, and hence
has children instead of rtree in its postcondition. To our surprise, however, our proof
strategy does not preclude the derivation of rtcopy (see benchmark 52 in Table 1): in
this derivation, the auxiliary returns two rtrees, which are then unfolded after the call
to extract the relevant children.

Future Directions. To develop more principled yet efficient strategies, we need to turn
to the proof theory community, which has accumulated a rich body of work on efficient
proof search. One technique of particular interest—focusing [53]—defines a canonical
representation of proofs in linear logic [29] (more precisely, a canonical ordering on
the application of proof rules, which can be enforced during the search by tracing
local properties). Existing program synthesis work [27,79] has leveraged ideas from
focusing, but only in the setting of type inhabitation for pure lambda calculi. SuSLik
takes advantage of some of these ideas, too: it designates some rules, such as Read
and logical normalization rules, to be invertible; these rules can be applied eagerly and
need not be backtracked. Beyond focusing, we might explore the applicability of more
advanced canonical representations of programs and proofs [1,33,79]. We believe that
these techniques will help us formalize and leverage inherent SSL symmetries, such
as that two programs operating on disjoint parts of the heap can be executed in any
order.

3.2 Prioritization via a Cost Function

When selecting the next goal to expand, SuSLik’s best-first search relies on a heuristic
cost function of the form (with p, w > 1):

cost({φ, P}� {ψ, Q}) = p ∗ cost(P) + cost(Q) cost(p(e)u,c) = w ∗ (1 + u + c)
cost(P ∗ Q) = cost(P) + cost(Q) cost() = 1

In other words, a cost of a synthesis goal is a (weighted) total cost of all heaplets in
its pre- and postcondition. The intuition is that the synthesizer needs to eliminate all
these heaplets in order to apply the terminal Emp rule, so each heaplet contributes to
the goal being “harder to solve”. Predicates are more expensive than other heaplets,
because they can be unfolded and produce more heaplets. In addition, for each predicate
instance p(e)u,c SuSLik keeps track of the number of times it has been unfolded (u)
or has gone through a call (c); factoring this into the cost prevents the search from
getting stuck in an infinite chain of unfolding or calls. Finally, it can be useful to give
a higher weight to the heaplets in the precondition, because many rules that create
expensive search branches (most notably Call) operate on the precondition.

Our implementation currently uses p = 3, w = 2, which is a result of manual
tuning. Column TimeSC in Table 1 shows how synthesis times change if we set p = 1.
As you can see, SuSLik’s performance is quite sensitive even to this small change: four
benchmarks, which originally took under 30 s, now time out after 30 minutes, while
benchmark 24, on the contrary, is solved five times faster. These results suggest that
different synthesis tasks benefit from different search parameters, and that we might
need a mechanism to tune SuSLik’s search strategy for a given synthesis task.

In addition, because the cost heuristic is not efficient enough at guiding the search,
we introduce hard bounds on the number of unfoldings and calls u and c for a predicate
instance. Column TimeNB in Table 1 shows the results of running SuSLik without

Deductive Synthesis of Programs with Pointers 121

these bounds: as you can see, 19 benchmarks time out (compared to only two in the
original setup). The requirement to guess sufficient bounds for each benchmark hampers
the usability of SuSLik, hence in the future we would like to replace them with a better
cost function.

Future Directions. To guide the search in a more intelligent and flexible way, we turn
to extensive recent work on using learned models to guide proof search [8,28,49,78,95]
and program synthesis [5,15,39,46,55,82]. Guiding deductive synthesis would most
likely require a non-trivial combination of these two lines of work.

In the area of proof search, existing techniques are used to select the next strategy in
a proof assistant script [59,60,78,95], or select a subset of clauses to use in a first-order
resolutions proof [9,49]. Although these techniques are not directly applicable to our
context, we can likely borrow some high-level insights, such as two-phased search [49],
which applies a slow neural heuristic to make important decisions in early stages of
search (e.g., which predicate instances to unfold), and then less accurate but much
faster hand-coded heuristics take over. Among the many techniques for guiding program
synthesis, neural-guided deductive search (NGDS) [39] might be the natural place to
start, since it shows how to condition the next synthesis step on the current synthesis
sub-goal.

At the same time we also expect the limited size of the available dataset (i.e., the
benchmarks from Table 1) would hamper the application of deep learning to SuSLik.
An alternative approach is to encode feature extractors [58] and apply machine learning
algorithms to the result of such feature extractors. Another approach is to learn a
coarse-grained model from available data and then adjust it during search, based on
the feedback from incomplete derivations, as in [6,15,82].

4 Completeness

Soundness and completeness are desirable properties of synthesis algorithms. In our
case, it is natural to formalize these properties relative to an underlying verification
logic, which defines Hoare triples {P} c {Q}, with the total correctness interpretation
“starting from a state satisfying P , program c will execute without memory errors and
terminate in a state satisfying Q”. This logic can be defined in the style of Small-
foot [7], using a combination of symbolic execution rules and logical rules, with the
addition of cyclic proofs to handle recursion [76].

Relative soundness means that any solution SuSLik finds can be verified:
∀P , Q, c. P�Q | c ⇒ {P} c {Q}. Relative completeness means that whenever
there exists a verifiable program, SuSLik can find one: ∀P , Q.(∃c.{P} c {Q}) ⇒
(∃c′. P�Q | c′). Proving relative soundness is rather straightforward, because SSL rules
are essentially more restrictive versions of verification rules, hence an SSL derivation
can be rewritten by translating every P�Q | c into {P} c {Q}.5 Completeness on the
other hand is quite tricky, exactly because SSL rules impose more restrictions on the
pre- and postconditions, in order to avoid blind enumeration of programs and instead
guide synthesis by the spec. In the rest of this section we look into two major sources
of relative incompleteness of SSL: recursive auxiliaries and pure reasoning.

5 In our recent work we have developed an automatic translation from SSL derivations
into three Coq-based verification logics [93].

122 S. Itzhaky et al.

4.1 Recursive Auxiliaries

A common assumption and source of incompleteness in recursive program synthe-
sis [43,67,69] is that (1) synthesis is performed one function f at a time: if auxiliaries
are required, their specifications are supplied explicitly; and (2) the specification Φ of f
is inductive: one can prove that Φ holds of f ’s body assuming it holds of each recursive
call. This restriction hampers the usability of synthesizers, because the user must guess
all required auxiliaries and possibly generalize Φ to make it inductive, which in most
cases requires knowing the implementation of f . As we have shown in Sect. 2, SuSLik
mitigates these limitations to some extent, as it is able to discover auxiliary functions,
such as helper in Fig. 1, automatically. To make the search tractable, however, cyclic
synthesis restricts the space of auxiliary specifications considered by SuSLik to syn-
thesis goals observed earlier in the derivation. Although this restriction is easy to state,
we still do not have a formal characterization (or even a firm intuitive understanding)
of the class of auxiliaries that SSL fundamentally can and cannot derive. Below we
illustrate the intricacies on a series of examples.

1 intersect (loc r, y)
2 {
3 let x = *r;
4 if (x == 0) {
5 } else {
6 let v = *x;
7 let n = *(x + 1);
8 *r = n;
9 intersect(r, y);

10 insert(v, x, r, y);
11 }
12 }

13 insert(int v, loc x, r, y) {
14 let z = *r;
15 if (y == 0) { free(x); }
16 else {
17 let vy = *y;
18 let n = *(y + 1);
19 if (v == vy) {
20 *(x + 1) = z;
21 *r = x;
22 } else {
23 insert(v, x, r, n);
24 }}}

Fig. 6. Intersection of lists with unique elements. This implementation cannot be syn-
thesized from (7), but a slight modification of it can, as explained in the text.

Generalizing Pure Specs. One reason SuSLik might fail to abduce an auxiliary is
that the pure part of the companion’s goal might be too specific for the recursive call.
Let us illustrate this phenomenon using the list intersection problem (benchmark 16
in Table 1) with the following specification, where ulist denotes a singly-linked list with
unique elements:

{r �→ x ∗ ulist(x, Sx) ∗ ulist(y, Sy)}� {r �→ z ∗ ulist(z, Sx ∩ Sy) ∗ ulist(y, Sy)} (7)

Given this specification, we expected SuSLik to generate the program shown in Fig. 6.
To compute the intersection of two input lists rooted in x and y, this program first
computes the intersection of y and the tail of x (line 9). The auxiliary insert then
traverses y to check if it contains v (the head of x), and if so, inserts it into the
intermediate result z (line 23), and otherwise, de-allocates the node x (line 15). This
program, however, cannot be derived by SSL; to see why let us take a closer look at
the synthesis goal after line 9, which serves as the spec for insert:

Deductive Synthesis of Programs with Pointers 123

{Sx = {v} ∪ S1 ∧ v /∈ S1 ∧ Sz = S1 ∩ Sy; r �→ z ∗ ulist(z, Sz) ∗ ulist(y, Sy) ∗
x �→ v ∗ . . .}� {

S′
z = Sx ∩ Sy; r �→ z′ ∗ ulist(z′, S′

z) ∗ ulist(y, Sy)
}

(8)

The issue here is that the pure spec is too specific: the precondition Sz = S1 ∩ Sy

and the postcondition S′
z = Sx ∩ Sy define the behavior of this function in terms of the

elements of input lists x and y, but the recursive call in line 23 replaces y with its tail
n so these specifications do not hold anymore. The solution is to generalize the pure
part of spec (8), so that it does not refer to Sx:

{v /∈ Sz; r �→ z ∗ ulist(z, Sz) ∗ ulist(y, Sy) ∗ x �→ v ∗ . . .}
�

{
S′

z = Sz ∪ ({v} ∩ Sy); r �→ z′ ∗ ulist(z′, S′
z) ∗ ulist(y, Sy)

}
(9)

Alas, such a transformation of the pure spec is beyond SuSLik’s capabilities.

13 insert(int v, loc x,
r, y) {

14 let z = *r;
15 if (z == 0) {
16 intersectOne(v,

x, r, y)
17 } else {
18 let vz = *z;
19 let n = *(z + 1);
20 *r = n;
21 *z = v;
22 insert(v, z, r,

y);
23 ...
24 }}

To our surprise, SuSLik was nevertheless able
to generate a solution to this problem by finding
an alternative implementation for insert, shown
on the right. This implementation appends v to z

instead of prepending it; more specifically, insert
starts by traversing z, and once it reaches the
base case, it calls another auxiliary, intersectOne
(omitted for brevity), which traverses y and returns
a list whose elements are {v} ∩ Sy (i.e., a list with
at most one element), which is then appended to
the intersection. At a first glance it is unclear how
this superfluous traversal of z can possibly help
with generalizing the spec (8); the key to this mys-
tery lies in the recursive call in line 22: note that as
the second parameter, instead of the input list x,
it actually uses z after replacing its head element
with v! This substitution makes the overly restrictive spec of (8) actually hold.

Of course this implementation is overly convoluted and inefficient, so in the future
we plan equip SuSLik with the capability to generalize pure specs. To this end,
we plan to combine deductive synthesis with invariant inference techniques via bi-
abduction [86]. For instance, whenever the Call rule identifies a companion goal, we
can replace its pure pre- and post-condition φ and ψ with unknown predicates Uφ

and Uψ. During synthesis, we would maintain a set of Constrained Horn Clauses over
these unknown predicates (starting with: φ ⇒ Uφ and Uψ ⇒ ψ); these constraints
can be solved incrementally, like in our prior work [69], pruning the current derivation
whenever the constraints have no solution. If synthesis succeeds, the assignment to Uφ

and Uψ corresponds to the inductive generalization of the original auxiliary spec. Since
only the pure part of the spec is generalized, the spatial part can still be used to guide
synthesis.

Accumulator Parameters. It is common practice to introduce an auxiliary recursive
function to thread through additional data in the form of “accumulator” inputs or
outputs. Cyclic program synthesis has trouble conjuring up arbitrary accumulators,
since it constructs auxiliary specifications from the original specification via unfolding
and making recursive calls.

124 S. Itzhaky et al.

Consider linked list reversal (23 in Table 1): SuSLik generates an inefficient,
quadratic version of this program, which reverses the tail of the list and then appends
its head to the result (hence discovering “append element” as the auxiliary). The canon-
ical linear-time version of reversal requires an auxiliary with two list arguments—the
already reversed portion and the portion yet to be reversed—and hence is outside of
SuSLik’s search space: cyclic synthesis cannot encounter a precondition with two lists,
as it starts with a single list predicate in the precondition, and neither unfolding nor
making a call can duplicate it.

1 flatten (loc x) {
2 if (x == 0) {
3 } else {
4 let l = *(x + 1);
5 let r = *(x + 2);
6 flatten(l);
7 helper(r, l, x);
8 }
9 }

10

11 helper (loc r, loc l, loc x) {
12 if (r == 0) {
13 if (l == 0) {} else {

14 *(l + 2) = x;
15 }
16 } else {
17 let rl = *(r + 1);
18 let rr = *(r + 2);
19 *(r + 2) = rl;
20 *(r + 1) = l;
21 helper(rl, l, r);
22 *(x + 2) = rr;
23 *(x + 1) = r;
24 helper(rr, r, x);
25 }
26 }

Fig. 7. Flattening a tree into a DLL in linear time.

There are examples, however, where SuSLik surprized us by inventing the necessary
accumulator parameters. Consider again our running example, flattening a tree into
a doubly-linked list. Recall that given the spec (1), SuSLik synthesizes an inefficient
implementation with quadratic complexity. A canonical linear-time solution requires an
auxiliary that takes as input a tree and a list accumulator, and simply prepends every
traversed tree element to this list; because of the accumulator parameter, discovering
this auxiliary seems to be outside of scope of cyclic synthesis. To our surprise, SuSLik
is actually able to synthesize a linear-time version of flatten, shown in Fig. 7 (and
encoded as benchmark 41 in Table 1), given the following specification:

{tree(x, S)} flatten (loc x) {dll(x, 0, S)} (10)

Compared with (1), the existential back-pointer y of the output list is replaced with
the null-pointer 0, precluding SuSLik from traversing the output of the recursive call
(cf. Sect. 2), which in this case comes in handy, since it enforces that every tree element
is traversed only once.

The new solution starts the same way as the old one, by flattening the left sub-tree
l, which leads to the following synthesis goal after line 6:

{dll(l, 0, Sl) ∗ tree(r, Sr) ∗ [x, 3] ∗ x �→ v ∗ . . .}� {dll(x, 0, {v} ∪ Sl ∪ Sr}) (11)

As you can see, the precondition now contains a tree and a list! Since it can-
not recurse on the list dll(l, 0, Sl), the synthesizer instead proceeds to unfold the tree
tree(r, Sr) and then use (11) as a companion for two recursive calls on r’s sub-trees,
turning (11) into a specification for helper in Fig. 7.

Deductive Synthesis of Programs with Pointers 125

4.2 Pure Reasoning

To enable synthesis of the wide range of programs demonstrated in Sect. 2, SuSLik
must support a sufficiently rich logic of pure formulas. Our implementation currently
supports linear integer arithmetic and sets, but the general idea is to make SuSLik
parametric wrt. the pure logic (as long as it can be translated into an SMT-decidable
theory), and outsource all pure reasoning to an SMT solver.

In the context of synthesis, however, outsourcing pure reasoning is trickier than
it might seem (or at least trickier than in the context of verification). Consider the
following seemingly trivial goal:

{x �→ a + 10}� {x �→ a + 11} (12)

This goal can be solved by incrementing the value stored in x, i.e., by the program
let a1 = *x; *x = a1 + 1. Verifying this program is completely straightforward: a
typical SL verifier would use symbolic execution to obtain the final symbolic state
{x �→ a + 10 + 1}, reducing verification to a trivial SMT query ∃a.a + 10 + 1 �= a + 11.
Synthesizing this program, on the other hand, requires guessing the program expression
a1 + 1, which does not occur anywhere in the specification.

To avoid blind enumeration of program expressions, SuSLik attempts to reduce
the goal (12) to a syntax-guided synthesis (SyGuS) query [2]:

∃f.∀x, a, a1.a1 = a + 10 =⇒ f(x, a1) = a + 11

Queries like this can be outsourced to numerous existing SyGuS solvers [3,32,46,77];
SuSLik uses CVC4 [74] for this purpose. Because SyGuS queries are expensive, the
challenge is to design SSL rules to issue these queries sparingly.

Fig. 8. SSL derivation for goal (12).

Figure 8 shows how two pure reasoning rules, ∃-Intro and Solve-∃, work together
to solve the goal (12). ∃-Intro is triggered by the postcondition heaplet x �→ a + 1,
whose right-hand side is a ghost expression, which blocks the application of Write.
∃-Intro replaces the ghost expression with a program-level existential variable y (i.e.,
an existential which can only be instantiated with program expressions). Now Solve-∃
takes over: this rule constructs a SyGuS query using all existentials in the current goal
as unknown terms and the pure pre- and post-condition as the SyGuS specification.
In this case, the SyGuS query succeeds, replacing the existential y with the program
term a1 + 1. From here on, the regular Write rule finishes the job.

126 S. Itzhaky et al.

Note that although the goal (12) is artificially simplified, it is extracted from a
real problem: benchmark 32 in Table 1, length of a list of lists. In fact the versions of
SuSLik reported in our previous work were incapable of solving this benchmark because
they were lacking the ∃-Intro rule, which we only introduced recently. Although the
current combination of pure reasoning rules works well for all our benchmarks, it is
still incomplete (even modulo the completeness of the pure synthesizer), because, for
efficiency reasons, Solve-∃ only returns a single solution to the SyGuS problem, even
if the pure specification allows for many. This might be insufficient when Solve-∃ is
called before the complete pure postcondition is known (for example, to synthesize
actual arguments for a call). Developing an approach to outsourcing pure reasoning
that is both complete and efficient is an open challenge for future work.

5 Quality of Synthesized Programs

Should we hope that the output of deductive synthesis will be directly integrated into
high-assurance software, we need to make sure that the code it generates is not only
correct, but also efficient, concise, readable, and maintainable. The current implementa-
tion of SuSLik does not take any of these considerations into account during synthesis;
in this section we discuss two of these challenges, and outline some directions towards
addressing them.

5.1 Performance

We have already mentioned examples of SuSLik solutions with sub-optimal asymptotic
complexity in Sect. 4: for example, SuSLik generates quadratic programs for linked list
reversal and tree flattening instead of optimal linear-time versions. Although a linear-
time solution to tree flattening from Fig. 7 is actually within SuSLik’s search space
(even with the more general spec (1)), SuSLik opts for the sub-optimal one simply
because it has no ability to reason about performance and hence has no reason to
prefer one over the other.

To enable SuSLik to pick the more efficient of the two implementations, we can
integrate SSL with a resource logic, such as [56], following the recipe from our prior
work on resource-guided synthesis [44]. One option is to annotate each points-to heaplet
x �→p e with non-negative potential p, which can be used to pay for execution of state-
ments, according to a user-defined cost model. Predicate definitions can describe how
potential is allocated inside the data structure; for example, we can define a tree with
p units of potential per node as follows:

tree(x, S, p) � x = 0 ⇒ {S = ∅; emp}
| x �= 0 ⇒ {S = {v} ∪ Sl ∪ Sr;

[x, 3] ∗ x �→p v ∗ 〈x, 1〉 �→ l ∗ 〈x, 2〉 �→ r ∗ tree(l, Sl, p) ∗ tree(r, Sr, p)}

We can now annotate the specification (1) with potentials as follows:

{tree(x, S, 2)} flatten (loc x) {dll(x, y, S, 0)} (13)

If we define the cost of a procedure call to be 1, and the cost of other statements to
be 0, this specification guarantees that flatten only makes a number of recursive calls
that is linear in the size of the tree (namely, two calls per tree element). With this

Deductive Synthesis of Programs with Pointers 127

specification, the inefficient solution in Fig. 1 does not verify: since helper traverses
the list r, it must assign some positive potential to every element of this list in order to
pay for the call in line 24, but the specification (13) assigns no potential to the output
list. On the other hand, the efficient solution in Fig. 7 verifies: after the recursive call to
flatten in line 6 we obtain {dll(l, y, Sl, 0) ∗ tree(r, Sr, 2) ∗ . . .}; helper verifies against
this specification since it only traverses the tree r and hence can use the two units of
potential stored in its root to pay for the two calls in lines 21 and 24. In fact, the user
need not guess the precise amount of potential p = 2 in the spec (13): any constant
p ≥ 2 would work to reject the quadratic solution and admit the linear one.

5.2 Readability

Although readability is hard to quantify, we have noticed several patterns in SuS-
Lik-generated code that are obviously unnatural to a human programmer, and hence
need to be addressed. Perhaps the most interesting problem arises due to inference
of recursive auxiliaries: because SuSLik has no notion of abstraction boundaries, the
allocation of work between the different procedures is often sub-optimal. One exam-
ple is benchmark 39 in Table 1, which flattens a binary tree into a singly-linked list.
This example is discussed in detail in our prior work [34]; the solution is similar to
flatten from Fig. 1, except that this transformation cannot be performed in-place:
instead, the original tree nodes have to be deallocated, and new list nodes have to
be allocated. Importantly, in SuSLik’s solution, tree nodes are deallocated inside the
helper function, whose main purpose is to append two lists. A better design would
be to perform deallocation in the main function, so that helper has no knowledge of
tree nodes whatsoever. To address this issue in the future we might consider different
quality metrics when abducing specs for auxiliaries, such as encouraging all heaplets
generated by unfolding the same predicate to be processed by the same procedure.

6 Applications

6.1 Program Repair

In our statement of the synthesis problem, complete programs are generated from
scratch from Hoare-style specifications. But what if the program is already written
previously but is buggy—would it be possible to automatically find a fix for it if we
know what its specification is? This line of research, employing deductive synthesis for
automated program repair [30], known as deductive program repair, has been explored
in the past for functional programs [42] and simple memory safety properties [90], and
only recently has been extended to heap-manipulating programs using the approach
pioneered by SuSLik [63].

The SL-based deductive repair relies on existing automated deductive verifiers [17]
to identify a buggy code fragment (which breaks the verification), followed by the
discovery of the correct specification, which is used for the subsequent synthesis of
the patch. The main shortcoming of the existing SL-based repair tools is the need to
provide the top-level specs for the procedures in order to enable their verification (and
potential bug discovery) in the first place. As a way to improve the utility of those
tools, a promising direction is to employ existing static analyzers, such as Infer [12],
to derive those specifications by abducing them from the usages of the corresponding
functions [13].

128 S. Itzhaky et al.

6.2 Data Migration and Serialization

The pay-off of deductive synthesis is especially high for programs like tree flatten-
ing, which change the internal representation of a data structure without changing its
payload; these programs usually have a simple specification, while their implementa-
tions can get much more intricate. One example where such programs can be useful
is migration of persistent data: thanks to recent advancements in non-volatile memory
(NVM) [40,45,84], large amounts of data are now persistently stored in memory, in
arbitrary programmer-defined data structures. If the programmer decides to change the
data structure, data has to be migrated between the old and the new representations,
and writing those migration functions by hand can be tedious. In addition, reallocat-
ing large data structures is often prohibitively expensive, so the migration needs to
be performed in-place, without reallocation. As we have demonstrated in our running
example, this is something that can be easily specified and synthesized in SuSLik.

4

2 5

1 3

4 2 1 3 5

ptree(x, n, S) � {x �→ tag ∗ ptree′(x, tag , n, S)}
ptree′(x, tag , n, S) � tag = 1 ⇒ {n = 1 ∧ S = {v}; 〈x, 1 →�〉 v}

| tag = 0 ⇒ {n = 1 + nl + nr ∧
S = {v} ∪ Sl ∪ Sr;
〈x, 1 →�〉 v ∗ ptree(x + 2, nl, Sl)
∗ ptree(x + 2 · (1 + nl), nr, Sr)}

Fig. 9. (Left) Pointer-based and packed representations of the same binary tree. (Right)
An SL predicate for packed trees.

Another real-world application of this kind of programs is data serialization and
de-serialization, where data is transformed back and forth between a standard pointer-
based representation and an array so that it can be written to disk or sent over the
network [16,91]. For example, Fig. 9 shows a pointer-based full binary tree and its
serialized (or packed) representation, where the nodes are laid out sequentially in pre-
order [92]. The right-hand-side of the figure shows an SL predicate ptree that describes
packed trees: every node x starts with a tag that indicates whether it is a leaf; if x is
not a leaf, its left child starts at the address x + 2 and its right child at x + 2 · (1 + nl),
where nl is the size of the left child, which is typically unknown at the level of the
program.

Imagine a programmer wants to synthesize functions that translate between these
two representations, i.e., pack and unpack the tree. The most natural specification for
unpack would be:

{r �→ x ∗ packed(x, sz , S)}unpack_simple(loc r)

{
r �→ y ∗ packed(x, sz , S)

∗ tree(y, sz , S)

}
(14)

This specification, however, cannot be implemented in SSL: when x is an internal node,
we do not know the address of its right subtree, so we have nothing to pass into the
second recursive call. Instead unpack must traverse the packed tree and discover the
address of the right subtree by moving past the end of the left subtree; this can be

Deductive Synthesis of Programs with Pointers 129

implemented by returning the address past the end of the ptree together with the root
of the newly built tree, as a record:

{r �→ x ∗ 〈r, 1〉 �→ ∗ . . .} unpack(loc r) {r �→ x + 2 · sz ∗ 〈r, 1〉 �→ y ∗ . . .} (15)

With this specification, SuSLik is able to synthesize unpack in 20 s (benchmark 54 in
Table 1); as for pack (benchmark 53), it is within the search space (which we confirmed
in interactive mode) but automatic search currently times out after 30 minutes. In
the future, it would be great if SuSLik could automatically discover an auxiliary with
specification (15), given only (14) as inputs; this is similar to the problem of discovering
accumulator parameters, which we discussed in Sect. 4, and is outside of capabilities of
cyclic synthesis at the moment.

6.3 Fine-Grained Concurrency

Finally, we envision that deductive logic-based synthesis will make it possible to tackle
the challenge of synthesizing provably correct concurrent libraries. The most efficient
shared-memory concurrent programs implement custom synchronization patterns via
fine-grained primitives, such as compare-and-set (CAS). Due to sophisticated interfer-
ence scenarios between threads, reasoning about such programs is particularly chal-
lenging and error-prone, and is the reason for the existence of many extensions of
Concurrent Separation Logic (CSL) [10,65] for verification of fine-grained concur-
rency [22,23,36,38,61,85,87–89].

For instance, Fine-Grained Concurrent Separation Logic (FCSL) [61,80,81], takes
a very specific approach to fine-grained concurrency verification, following the tradi-
tion of logics such as LRG [25] and CAP [22] and building on the idea of splitting the
specification of a concurrent library to a resource protocol and Hoare-style pre/post-
conditions. State-of-the art automated tools for fine-grained concurrency verification
require one to describe both the protocol and Hoare-style pre/postconditions for the
methods to be verified [21,94]. We believe, it should be possible to take those two com-
ponents and instead synthesize the concurrent method implementations. The resource
protocol will provide an extended set of language primitives to compose programs from.
Those data structure-specific primitives can be easily specified in FCSL and contribute
derived inference rules describing when these primitives can be used safely.

Acknowledgements. We thank Andreea Costea and Yutaka Nagashima for their
feedback on the drafts of this paper. This research was supported by the National
Science Foundation under Grant No. 1911149, by the Israeli Science Foundation (ISF)
Grants No. 243/19 and 2740/19, by the United States-Israel Binational Science Foun-
dation (BSF) Grant No. 2018675, by Singapore MoE Tier 1 Grant No. IG18-SG102,
and by the Grant of Singapore NRF National Satellite of Excellence in Trustworthy
Software Systems (NSoE-TSS).

References

1. Acclavio, M., Straßburger, L.: From syntactic proofs to combinatorial proofs. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol.
10900, pp. 481–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 32

https://doi.org/10.1007/978-3-319-94205-6_32
https://doi.org/10.1007/978-3-319-94205-6_32

130 S. Itzhaky et al.

2. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. IEEE (2013)
3. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via

divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 18

4. Appel, A.W., et al.: Program Logics for Certified Compilers. Cambridge University
Press (2014)

5. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. arXiv preprint arXiv:1611.01989 (2016)

6. Barke, S., Peleg, H., Polikarpova, N.: Just-in-time learning for bottom-up enumer-
ative synthesis. Proc. ACM Program. Lang. 4(OOPSLA), 227:1–227:29 (2020)

7. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11575467 5

8. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the coq
proof assistant. In: LPAR. EPiC Series in Computing, vol. 73, pp. 138–150. Easy-
Chair (2020)

9. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016)

10. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47–65 (2016)

11. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: POPL, pp. 101–112. ACM (2008)

12. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

13. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

14. Chajed, T., Tassarotti, J., Kaashoek, M.F., Zeldovich, N.: Verifying concurrent,
crash-safe systems with perennial. In: SOSP, pp. 243–258. ACM (2019)

15. Chen, Y., Wang, C., Bastani, O., Dillig, I., Feng, Yu.: Program synthesis using
deduction-guided reinforcement learning. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 587–610. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53291-8 30

16. Chilimbi, T.M., Hill, M.D., Larus, J.R.: Cache-conscious structure layout. In:
PLDI, pp. 1–12. ACM (1999)

17. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

18. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI, pp. 234–245. ACM (2011)

19. Costea, A., Zhu, A., Polikarpova, N., Sergey, I.: Concise read-only specifications for
better synthesis of programs with pointers. In: ESOP 2020. LNCS, vol. 12075, pp.
141–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44914-8 6

20. Delignat-Lavaud, A., et al.: Implementing and proving the tls 1.3 record layer. In:
S&P, pp. 463–482. IEEE Computer Society (2017)

21. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper:
automatic verification for fine-grained concurrency. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 16

https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
http://arxiv.org/abs/1611.01989
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1007/978-3-030-44914-8_6
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/978-3-662-54434-1_16

Deductive Synthesis of Programs with Pointers 131

22. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2 24

23. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9 26

24. Eguchi, S., Kobayashi, N., Tsukada, T.: Automated synthesis of functional pro-
grams with auxiliary functions. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol. 11275,
pp. 223–241. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02768-
1 13

25. Feng, X.: Local rely-guarantee reasoning. In: POPL, pp. 315–327. ACM (2009)
26. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using verification

to disentangle secure-enclave hardware from software. In: SOSP, pp. 287–305. ACM
(2017)

27. Frankle, J., Osera, P.-M., Walker, D., Zdancewic, S.: Example-directed synthesis:
a type-theoretic interpretation. In: POPL, pp. 802–815. ACM (2016)

28. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4
tactics. In: LPAR, EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair
(2017)

29. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
30. Le Goues, C., Pradel, M., Roychoudhury, A.: Automated program repair. Commun.

ACM 62(12), 56–65 (2019)
31. Gu, R., et al.: Certikos: an extensible architecture for building certified concurrent

OS kernels. In: OSDI, pp. 653–669. USENIX Association (2016)
32. Huang, K., Qiu, X., Shen, P., Wang, Y.: Reconciling enumerative and deductive

program synthesis. In: PLDI, pp. 1159–1174. ACM (2020)
33. Hughes, D.J.D.: Unification nets: Canonical proof net quantifiers. In: LICS, pp.

540–549. ACM (2018)
34. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, RN.S., Sergey, I.: Cyclic program

synthesis. In: PLDI. ACM (2021)
35. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: SuSLik (CAV

2021 Artifact): Code and Benchmarks, May 2021. https://doi.org/10.5281/zenodo.
4850342

36. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: POPL, pp. 271–282. ACM (2011)

37. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

38. Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. J. Funct. Program. 28, E20 (2018)

39. Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., Gulwani, S.: Neural-
guided deductive search for real-time program synthesis from examples. In: ICLR.
OpenReview.net (2018)

40. Kawahara, T., Ito, K., Takemura, R., Ohno, H.: Spin-transfer torque RAM tech-
nology: review and prospect. Microelectron. Reliab. 52(4), 613–627 (2012)

41. Klein, G.: SeL4: formal verification of an OS kernel. In: SOSP, pp. 207–220. ACM
(2009)

https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.5281/zenodo.4850342
https://doi.org/10.5281/zenodo.4850342
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

132 S. Itzhaky et al.

42. Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 13

43. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.
In: OOPSLA, pp. 407–426. ACM (2013)

44. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-guided program
synthesis. In: PLDI, pp. 253–268. ACM (2019)

45. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as
a scalable dram alternative. In: ISCA, pp. 2–13. ACM (2009)

46. Lee, W., Heo, K., Alur, R., Naik, M.: Accelerating search-based program synthesis
using learned probabilistic models. In: PLDI. ACM (2018)

47. Rustan, K., Leino, M., Milicevic, A.: Program extrapolation with jennisys. In:
OOPSLA, pp. 411–430. ACM (2012)

48. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL, pp. 42–54. ACM (2006)

49. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: LPAR, EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017)

50. Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-
structures. In: POPL, pp. 123–136. ACM (2012)

51. Malcolm, G.: Data structures and program transformation. Sci. Comput. Program.
14(2–3), 255–279 (1990)

52. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst. 2(1), 90–121 (1980)

53. Andreoli, J.: Logic programming with focusing proofs in linear logic. J. Logic Com-
put. 2, 297–347 (1992)

54. Martelli, A., Montanari, U.: Additive AND/OR graphs. In: IJCAI, pp. 1–11.
William Kaufmann (1973)

55. Menon, A., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.: A machine learning
framework for programming by example. In: International Conference on Machine
Learning, pp. 187–195 (2013)

56. Mével, G., Jourdan, J.-H., Pottier, F.: Time credits and time receipts in iris. In:
Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 3–29. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17184-1 1

57. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

58. Nagashima, Y.: LiFtEr: language to encode induction heuristics for Isabelle/HOL.
In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 266–287. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34175-6 14

59. Nagashima, Y.: Smart Induction for Isabelle/HOL (Tool Paper). In: FMCAD, pp.
245–254. IEEE (2020)

60. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for
Isabelle/HOL. In: ASE, pp. 362–372. ACM (2018)

61. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8 16

62. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of heap-
manipulating programs. In: POPL, pp. 261–274. ACM (2010)

https://doi.org/10.1007/978-3-319-21668-3_13
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-030-34175-6_14
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16

Deductive Synthesis of Programs with Pointers 133

63. Nguyen, T.-T., Ta, Q.-T., Sergey, I., Chin, W.-N.: Automated repair of heap-
manipulating programs using deductive synthesis. In: Henglein, F., Shoham, S.,
Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp. 376–400. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-67067-2 17

64. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers.
In: POPL, pp. 320–333. ACM (2006)

65. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

66. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

67. Osera, P.-M., Zdancewic, S.: Type-and-example-directed program synthesis. In:
PLDI, pp. 619–630. ACM (2015)

68. Piskac, R., Wies, T., Zufferey, D.: GRASShopper: complete heap verification with
mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8 9

69. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: PLDI, pp. 522–538. ACM (2016)

70. Polikarpova, N., Sergey, I.: Structuring the synthesis of heap-manipulating pro-
grams. Proc. ACM Program. Lang. 3(POPL), 72:1-72:30 (2019)

71. Protzenko, J., et al.: Evercrypt: a fast, verified, cross-platform cryptographic
provider. In: S&P, pp. 983–1002. IEEE Computer Society (2020)

72. Qiu, X., Solar-Lezama, A.: Natural synthesis of provably-correct data-structure
manipulations. PACMPL 1(OOPSLA), 65:1–65:28 (2017)

73. Ramananandro, T., et al.: Everparse: verified secure zero-copy parsers for authenti-
cated message formats. In: USENIX Security Symposium, pp. 1465–1482. USENIX
Association (2019)

74. Reynolds, A., Kuncak, V., Tinelli, C., Barrett, C.W., Deters, M.: Refutation-based
synthesis in SMT. Formal Meth. Syst. Des. 55(2), 73–102 (2019)

75. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

76. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: CPP, pp. 53–65. ACM (2017)

77. Saha, S., Garg, P., Madhusudan, P.: Alchemist: learning guarded affine functions.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 440–446.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 26

78. Sanchez-Stern, A., Alhessi, Y., Saul, L., Lerner, S.: Generating correctness proofs
with neural networks. In: Proceedings of the 4th ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 1–10. ACM
(2020)

79. Scherer, G., Rémy, D.: Which simple types have a unique inhabitant? In: ICFP,
pp. 243–255. ACM (2015)

80. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: PLDI, pp. 77–87. ACM (2015)

81. Sergey, I., Nanevski, A., Banerjee, A., Delbianco, G.A.: Hoare-style specifications
as correctness conditions for non-linearizable concurrent objects. In: OOPSLA, pp.
92–110. ACM (2016)

82. Si, X., Yang, Y., Dai, H., Naik, M., Song, L.: Learning a meta-solver for syntax-
guided program synthesis. In: International Conference on Learning Representa-
tions (2019)

https://doi.org/10.1007/978-3-030-67067-2_17
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-319-21690-4_26

134 S. Itzhaky et al.

83. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: POPL, pp. 313–326. ACM (2010)

84. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453, 80–83 (2008)

85. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 9

86. Trinh, M.-T., Le, Q.L., David, C., Chin, W.-N.: Bi-abduction with pure properties
for specification inference. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp.
107–123. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03542-0 8

87. Turon, A.: Understanding and expressing scalable concurrency. Ph.D. thesis,
Northeastern University (2013)

88. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: POPL, pp. 343–356. ACM (2013)

89. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

90. van Tonder, R., Le Goues, C.: Static automated program repair for heap properties.
In: ICSE, pp. 151–162 ACM (2018)

91. Vollmer, M., Koparkar, C., Rainey, M., Sakka, L., Kulkarni, M., Newton, R.R.:
LoCal: a language for programs operating on serialized data. In: PLDI, pp. 48–62.
ACM (2019)

92. Vollmer, M., et al.: Compiling tree transforms to operate on packed representations.
In: ECOOP. LIPIcs, , vol. 74, pp. 26:1–26:29. Schloss Dagstuhl (2017)

93. Watanabe, Y., Gopinathan, K., P̂ırlea, G., Polikarpova, N., Sergey, I.: Certifying
the synthesis of heap-manipulating programs (2021). Conditionally accepted at
ICFP’21

94. Windsor, M., Dodds, M., Simner, B., Parkinson, M.J.: Starling: lightweight con-
currency verification with views. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 544–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 27

95. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: ICML. PMLR, , vol. 97, pp. 6984–6994 (2019)

96. Zinzindohoué, J.-K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a
verified modern cryptographic library. In: CCS, pp. 1789–1806. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-319-03542-0_8
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-319-63387-9_27
https://doi.org/10.1007/978-3-319-63387-9_27
http://creativecommons.org/licenses/by/4.0/

AI Verification

DNNV: A Framework for Deep Neural
Network Verification

David Shriver(B) , Sebastian Elbaum ,
and Matthew B. Dwyer

University of Virginia, Charlottesville, VA, USA
{dls2fc,selbaum,matthewbdwyer}@virginia.edu

Abstract. Despite the large number of sophisticated deep neural net-
work (DNN) verification algorithms, DNN verifier developers, users, and
researchers still face several challenges. First, verifier developers must
contend with the rapidly changing DNN field to support new DNN opera-
tions and property types. Second, verifier users have the burden of select-
ing a verifier input format to specify their problem. Due to the many
input formats, this decision can greatly restrict the verifiers that a user
may run. Finally, researchers face difficulties in re-using benchmarks to
evaluate and compare verifiers, due to the large number of input formats
required to run different verifiers. Existing benchmarks are rarely in for-
mats supported by verifiers other than the one for which the benchmark
was introduced. In this work we present DNNV, a framework for reducing
the burden on DNN verifier researchers, developers, and users. DNNV
standardizes input and output formats, includes a simple yet expressive
DSL for specifying DNN properties, and provides powerful simplification
and reduction operations to facilitate the application, development, and
comparison of DNN verifiers. We show how DNNV increases the support
of verifiers for existing benchmarks from 30% to 74%.

Keywords: Deep neural networks · Formal verification · Tool

1 Introduction

Deep neural networks (DNN) are being applied increasingly in complex domains
including safety critical systems such as autonomous driving [3,7]. For such appli-
cations, it is often necessary to obtain behavioral guarantees about the safety
of the system. To address this need, researchers have been exploring algorithms
for verifying that the behavior of a trained DNN meets some correctness prop-
erty. In the past few years, more than 20 DNN verification algorithms have been
introduced [2,4,6,8–11,15,21,22,24–27,29–34,36], and this number continues to
grow. Unfortunately, this progress is hindered by several challenges.

First, DNN verifier developers must contend with a rapidly changing field
that continually incorporates new DNN operations and property types. While
supporting more properties and operations may increase the applicable scope

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 137–150, 2021.
https://doi.org/10.1007/978-3-030-81685-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_6&domain=pdf
http://orcid.org/0000-0003-0208-6517
http://orcid.org/0000-0001-9592-1352
http://orcid.org/0000-0002-1937-1544
https://doi.org/10.1007/978-3-030-81685-8_6

138 D. Shriver et al.

Table 1. The network and property formats supported by each verifier. A * indicates
that only a subset of the full input format specification is supported.

Verifier Network format Property format Algorithmic approach

Reluplex [16] Reluplex-NNET Hard-coded Search

Planet [10] RLV RLV Search

BaB [6] RLV RLV Search

BaBSB [6] RLV RLV Search

MIPVerify [29] MIPVerify Julia API MIPVerify Julia API Optimization

Neurify [30] Neurify-NNET Hard-coded Search-optimization

DeepZono [25] ONNX*, ERAN-PYT, ERAN-TF ERAN Python API Reachability

DeepPoly [26] ONNX*, ERAN-PYT, ERAN-TF ERAN Python API Reachability

RefineZono [27] ONNX*, ERAN-PYT, ERAN-TF ERAN Python API Reachability

RefinePoly [24] ONNX*, ERAN-PYT, ERAN-TF ERAN Python API Reachability

Marabou [17] Reluplex-NNET or ONNX* Marabou Python API Search

nnenum [1] ONNX* nnenum Python API Search-reachability

VeriNet [14] ONNX* or Neurify-NNET VeriNet Python API Search-optimization

of verifiers to real-world problems, it also increases a verifier’s complexity.
For example, for a verifier such as DeepPoly, supporting additional operations
requires non-trivial effort to define and prove correctness of new abstract trans-
formers. For verifiers such as Reluplex or Neurify, supporting new property types
requires implementing a mapping from those properties onto internal verifier
structures.

Second, DNN verifier users carry the burden of re-writing property specifi-
cations and transforming their models to match a chosen verifier’s supported
format. That burden is compounded by the diversity of input formats required
by each verifier, as illustrated in Table 1. There is little overlap between input
formats for verifiers (only DeepZono and DeepPoly or BaB and BaBSB which
are algorithmically similar), and even when using the same format (as in the
case of the popular ONNX format) we find that the underlying operations sup-
ported are different. This makes it difficult and costly to run multiple verifiers on
a given problem since the user must understand the requirements of each verifier
and translate inputs to their formats. While two new formats, VNNLIB [13] and
SOCRATES [20], have been introduced in an attempt to standardize DNN veri-
fier input formats, their expressiveness is currently limited and they can require
writing new conversion tools for networks, as we discuss at the end of Sect. 3.1.

Finally, DNN verifier researchers face challenges in re-using benchmarks to
evaluate and compare verifiers. Most benchmarks exist in the format of the ver-
ifier for which they were introduced, and running other verifiers on that bench-
mark requires writing custom tooling to translate the benchmark to other for-
mats, or writing new input parsers for verifiers to support the given benchmark
format. For example, the ACAS Xu benchmark (described in Sect. 5), was orig-
inally specified with networks in Reluplex-NNET format, and properties hard-
coded into the verifier. The benchmark was converted, for example, into RLV
format for BaB and BaBSB, as well as into ONNX with hard-coded properties

DNNV: A Framework for Deep Neural Network Verification 139

for RefineZono. Other benchmarks, such as the DAVE benchmark used by Neu-
rify, has networks specified in Neurify-NNET, and properties hard-coded into
the verifier. Due to its format, this potentially great benchmark has not been
used by other verifiers.

We introduce a framework,DNNV, to reduce the burden on verifier researchers,
developers, and users. DNNV helps to create and run more re-usable verification
benchmarks by standardizing a network and property format, and it increases the
applicability of a verifier to richer properties and real-world benchmarks by per-
forming property reductions and simplifying DNN structures.

Fig. 1. DNNV architecture

As shown in Fig. 1, DNNV takes as input a network in the common ONNX
input format, a property written in an expressive domain-specific language
DNNP, and the name of a target verifier. Using the framework and plugins for
the target verifier, DNNV transforms the problem by simplifying the network
and reducing the property to enable the application of verifiers that otherwise
would be unable to run. DNNV then translates the network and property to
the input format of the desired verifier, runs that verifier on the transformed
problem, and returns the results in a standardized format.

The primary contributions of this work are: (1) the DNNV framework to
reduce the burden on DNN verifier researchers, developers, and users; DNNV
includes a simple yet expressive DSL for specifying DNN properties, and power-
ful simplification and reduction operations to increase verifiers’ scope of appli-
cability, (2) an open source tool implementing DNNV1, with support for 13
verifiers, and extensive documentation, and (3) an evaluation demonstrating the
cost-effectiveness of DNNV to increase the scope of applicability of verifiers.

2 Background

A deep neural network N encodes an approximation of a target function
f : R

n → R
m. A DNN can be represented as a directed graph GN = 〈VN , EN 〉,

where nodes, v ∈ VN , represent operations and edges, e ∈ EN , represent input

1 https://github.com/dlshriver/DNNV.

https://github.com/dlshriver/DNNV

140 D. Shriver et al.

arguments to operations. A node without any incoming edges is an input to the
DNN. The output of a DNN can be computed by looping over nodes in topolog-
ical order and computing the value of the node given its inputs. The literature
on machine learning has developed a broad range of rich operation types and
explored the benefits of different combinations of operations in realizing accurate
approximations of different target functions, e.g., [12].

Given a DNN, N : R
n → R

m, a property, φ(N), defines a set of constraints
over the inputs, φX – the pre-condition, and a set of constraints over the outputs,
φY – the post-condition. Verification of φ(N) seeks to prove or falsify: ∀x ∈ R

n :
φX (x) → φY(N (x)).

A widely studied class of properties is robustness, which originated with the
study of adversarial examples [28,35]. These properties specify that inputs from
a specific region of the input space must all produce the same output class.
Detecting violations of robustness properties has been widely studied, and they
are a common type of property for evaluating verifiers [10,25,26,29,30]. Another
common class of properties is reachability, which define the post-condition using
constraints over output values. Reachability properties specify that inputs from
a given region of the input space must produce outputs within a given region
of the output space. Such properties have been used to evaluate several DNN
verifiers [16,17,30].

A recent survey on DNN verification [18] classifies these approaches based
on their type: reachability, optimization, or search, or a combination of these.
Reachability-based methods compute a representation of the reachable set of
outputs from an encoding of the set of inputs that satisfy the pre-condition. The
computed output set is often an over-approximation of the true reachable output
region. The precision of the computed output region depends on the symbolic
representation used, e.g., hyper-rectangles, zonotopes, polyhedra. Reachability-
based methods include [11,22,24–27,34]. Optimization-based methods formulate
property violations as a threshold for an objective function and use optimization
algorithms to attempt to satisfy that threshold. Optimization-based methods
include [2,9,21,29,33]. Search-based methods explore regions of the input space
where they then formulate reachability or optimization sub-problems. Search-
based methods include [6,10,15,16,31,32].

3 DNNV Overview

DNNV remedies several key challenges faced by the DNN verification commu-
nity. A general overview of DNNV is shown in Fig. 1. DNNV takes in a property
and network in a standard format, simplifies the network, reduces the property,
translates the network and property to the input format of the verifier, runs the
verifier, and translates its output. Each of these components can be customized
by verifier specific plugins. We explain these components in more detail below.

DNNV: A Framework for Deep Neural Network Verification 141

3.1 Input Formats
Table 2. The number of ONNX
operations supported by each
verifier.

Verifier # ONNX operations

DNNV 31

ERAN 22

nnenum 15

marabou 12

VeriNet 12

As shown in Table 1, existing verifiers do not
support a consistent, common input format
for networks and properties. DNNV stan-
dardizes the input and output formats to aid
the community in creating and running veri-
fication benchmarks.

ONNX. For specifying general deep neu-
ral network architectures, we choose the open
source DNN format ONNX [19]. ONNX can
represent real-world networks, is supported by many common frameworks (e.g.,
PyTorch, MXNet) and conversion tools are available for other frameworks (e.g.,
TensorFlow, Keras). Our current implementation supports a subset of the ONNX
specification that subsumes the subsets of ONNX implemented by the supported
verifiers. Table 2 shows the number of ONNX operations supported by each of
the verifiers included in DNNV. DNNV supports 40% more operations than the
verifier with the next highest support. The ONNX subset supported by DNNV
is sufficient for almost all existing verification benchmarks, as well as many real-
world networks including VGG16 and ResNet34.

1 from dnnv.properties import *
2 from torchvision.datasets import FashionMNIST
3 from torchvision.transforms import ToTensor
4

5 N = Network("N")
6 data = FashionMNIST("/tmp", download=True,
7 transform=ToTensor())
8 mean = 0.2860
9 std = 0.3530

10 i = Parameter("data_idx", type=int, default=1)
11 x = (data[i][0][None, :].numpy() - mean) / std
12 e = Parameter("epsilon", type=float) / std
13

14 Forall(
15 x_,
16 Implies(
17 And(
18 (-mean / std) <= x_ <= ((1 - mean) / std),
19 (x - e) < x_ < (x + e),
20),
21 argmax(N(x_)) == argmax(N(x)),
22),
23)

Fig. 2. Example of a local robustness property
specified with DNNP.

DNNP. Due to the lack of
a standard format for specify-
ing DNN properties, we develop
a Python-embedded DSL for
DNN properties, which we call
DNNP. DNNP is designed to
express any property that can
be verified by existing DNN ver-
ifiers in a form that is inde-
pendent of the network. DNNP
is described in more detail in
Appendix A of the extended
version of this paper [23].

We demonstrate DNNP with
an example of a local robust-
ness property, shown in Fig. 2.
The property specifies that, for
all inputs, x (Lines 14–23),
in the input space (Line 18)
and within a hyper-rectangle of
radius e centered at the given input x (Line 19), the network should predict
the same maximum class for both x and x (Line 21). For Fashion MNIST, this
means that for all images within an L∞ distance of e (specified on Line 12) from

142 D. Shriver et al.

image 1 of the dataset (selected on Lines 10–11), the network should classify all
of these images the same as it does for image 1. We first import several Python
packages that will be useful for specifying the property (Lines 1–3), including
the dataset used to train the network, and a method for data manipulation.
Because DNNP allows importing arbitrary Python packages, it enables re-use
of the same data loading and manipulation methods used to train a network.
After importing the necessary utilities, we define several variables that will be
used in the final property expression (Lines 5–12). Two of these variables, i on
Line 10 and e on Line 12 are declared as parameters, which allows them to be
specified on the command line at run time. The value for e must be provided
at run time, since no default value is provided. Finally, we define the seman-
tics of the property specification, using methods provided by DNNP, as well as
variables defined above (Lines 14–23).

Fig. 3. Batch Normalization Simplification simplifies a batch norm following a convo-
lution operation to an equivalent single convolution operation with modified weights
and bias, while maintaining the strides and pads.

Other Input Formats. Since the creation of DNNV, two new input formats,
VNNLIB [13] and SOCRATES [20], have emerged in an attempt to standardize
the verifier input space. The current draft of VNNLIB also uses ONNX as the
DNN input format, however it supports a much smaller set of operations than
DNNV, supporting only 17 ONNX operations. The VNNLIB property format
is a subset of SMTLIB in which variables of the form Xi are implicitly mapped
to network inputs and variables of the form Yi are implicitly mapped to net-
work outputs. In its current form, this specification only supports DNN models
with a single flat input tensor and single flat output tensor, whereas DNNP and
ONNX can support DNN models with multiple inputs and output tensors of any
shape. SOCRATES proposes a JSON format containing both the property and
network specifications. Because DNNV treats networks and properties indepen-
dently, properties can be re-used for multiple networks, and only a single network
must be stored to check multiple properties, resulting in a lower storage cost,
especially for large models. Additionally, while the custom JSON format used
by SOCRATES requires new DNN translation tools to be written to convert to
the required format, the ONNX format used by DNNV is commonly available
in most machine learning frameworks. While we believe that ONNX and DNNP
are currently the most expressive and easily accessible input formats currently
proposed, DNNV can provide benefits to any format through DNN simplification
and property reduction to increase the applicability of all verifiers.

DNNV: A Framework for Deep Neural Network Verification 143

3.2 Network Simplification

In order to allow verifiers to be applied to a wider range of real world networks,
DNNV provides tools for network simplification. Network simplification takes in
an operation graph and applies a set of semantics preserving transformations to
the operation graph to remove unsupported structures, or to transform sequences
of operations into a single more commonly supported operation.

An operation graph GN = 〈VN , EN 〉 is a directed graph where nodes,
v ∈ VN represent operations, and edges e ∈ EN represent inputs to those
operations. Simplification, simplify : G → G, transforms an operation graph
GN ∈ G, to an equivalent DNN with more commonly supported structure,
simplify(GN) = GN ′ , such that the resulting DNN has the same behavior as
the original ∀x.N (x) = N ′(x), and uses more commonly supported structures.

One such simplification is batch normalization simplification, which removes
batch normalization operations from a network by combining them with a
preceding convolution operation or generalized matrix multiplication (GEMM)
operation. This is possible since batch normalization, convolution, and GEMM
operations are all affine operations. The simplification of a batch normalization
operation following a convolution operation is shown in Fig. 3. If no applicable
preceding layer exists, the batch normalization layer is converted into an equiva-
lent convolution operation. This simplification enables the application of verifiers
without explicit support for batch normalization operations, such as Neurify and
Marabou, to networks with these operations.

Fig. 4. Property reduction to a local robustness property adds a suffix that classifies
outputs as violations or non-violations of the original output constraints, and changing
the property to a common form of robustness property.

DNNV currently includes 6 additional DNN simplifications, enumerated and
described in more detail in Appendix B of the extended version of this paper [23].

3.3 Property Reduction

In order to allow verifiers to be applied to more general safety properties, DNNV
provides tools to reduce properties to a supported form. For instance, properties
can be translated to local robustness properties, which are required by MIPVerify
or reachability properties which are required by Reluplex.

144 D. Shriver et al.

Property reduction takes in a verification problem, which is comprised of
a property specification and a network, and encodes it as an equivalid set of
verification problems with properties in a form supported by a given verifier.

A verification problem is a pair, ψ = 〈N , φ〉, of a DNN, N , and a prop-
erty specification φ, formed to determine whether N |= φ is valid. Reduction,
reduce : Ψ → P (Ψ), aims to transform a verification problem, 〈N , φ〉 = ψ ∈ Ψ ,
to an equivalid form, reduce(ψ) = {〈N1, φ1〉, . . . , 〈Nk, φk〉}, in which property
specifications are in a common supported form. As defined, reduction has two
key properties. The first property is that the set of resulting problems is equivalid
with the original verification problem. The second property is that the resulting
set of problems all use the same property type. Applying reduction enables veri-
fiers to support a large set of verification problems by implementing support for
a single property type.

For example, given a network that classifies images of clothing items, a user
may want to specify that, if the network classifies an image as a coat, then the
score given to the class of a pullover is not less than the score for the sneaker class.
The property is specified in the bottom left of Fig. 4. Such a verification problem
can be difficult to specify for many verifiers. For example, Neurify would require
writing code to specify linear constraints for the property and re-compiling the
verifier, and MIPVerify cannot support this property as is. DNNV can reduce
this verification problem to an equivalent problem with a robustness property.

A high level overview of this reduction is shown in Fig. 4; a more detailed
description is provided in Appendix C of the extended version of this paper [23].

3.4 Input and Output Translation

Because of the large variety of input formats required by the verifiers, one of
the primary components of DNNV translates from its internal representation
of properties and networks to the input formats of each verifier.

DNNV also requires an output translator that can parse the results of run-
ning a verifier and returns sat, unsat, or unknown. If the result is sat, indicating
a violation was found, DNNV also returns a counter example to the property,
and validates that it does violate the property by performing inference with the
network and confirming that the input and output do not satisfy the property.

4 Implementation

DNNV is written in 8400 lines of Python code and is available for download and
re-use at https://doi.org/10.5281/zenodo.4883626. Python was chosen due to its
ubiquitous use for developing deep neural networks. DNNV currently supports
13 verifiers, and was designed to facilitate the integration of new verifiers. The
currently supported verifiers are shown in Table 1, along with their original input
formats, and algorithmic approach. Around 2000 LOC (of the 8400 total LOC)
are used to integrate these 13 verifiers into DNNV, with Planet requiring the
most effort at 437 lines, and BaB and BaBSB requiring the least effort with 89
lines of code due to re-use of the Planet input translator.

https://doi.org/10.5281/zenodo.4883626

DNNV: A Framework for Deep Neural Network Verification 145

4.1 Supporting Reuse and Extension

DNNV is designed to facilitate the integration of new verifiers. The 5 primary
components of DNNV, DNN simplification, property reduction, input transla-
tion, verifier execution, and output translation are designed to be re-usable, and
to facilitate the implementation of new components by providing utilities for
traversing and manipulating operation graphs and properties.

Networks are represented as an operation graph, where nodes represent oper-
ations in the DNN and edges represent inputs and outputs to those operations.
The operation graph can also be traversed using a visitor pattern. This pat-
tern is particularly useful for the development of DNN simplifications and input
translators. It allows developers to easily traverse computation graphs in order
to translate operations to the required format. We provide built-in utilities for
converting from our internal network representation to ONNX, PyTorch, and
TensorFlow models. The implementation also includes utilities for performing
pattern matching on operation graphs. We utilize this feature to provide utilities
that transform a network from an operation graph representation to a sequential
layer representation, which is particularly useful for the network input translator
of Neurify, which requires DNNs to have a regular structure of a set of convolu-
tional layers followed by fully connected layers, all with relu activations.

4.2 Usage

DNNV can be run from the command line as follows: python -m dnnv <prop>
<verifier> --network <name> <path>, where the arguments correspond to a
DNN model in the ONNX format, a property written in DNNP, and the verifier
to run. Many additional options can be seen by specifying the -h option.

After execution, for each verifier, DNNV reports the verification result as
one of sat (if the property was falsified), unsat (if the property was proven to
hold), unknown (if the verifier is incomplete and could not prove the property
holds), or error, along with the reason for error, if an error occurs during DNN
and property translation, or during verifier execution. DNNV also reports the
time to translate and verify the property.

5 Study

We now examine the applicability of verifiers to existing verification benchmarks
with and without DNNV. A verification benchmark consists of a set of verifica-
tion problems which are used to evaluate the performance of a verifier. A problem
is made of a DNN and a property specification and asks whether the property is
valid for the given DNN. We consider a verifier to support a benchmark if it can
be run on that benchmark out of the box. We consider a verifier to have support
for a benchmark through DNNV if DNNV can be run on that benchmark with
networks specified using ONNX and properties specified in DNNP, and can
reduce, simplify, and translate the problem to work with the target verifier.

146 D. Shriver et al.

Benchmarks. To evaluate benchmark support, we collected the benchmarks
used by each of the 13 verifiers supported by DNNV, and determined whether
each verifier can run on the benchmark out of the box, and also whether they
could be run on the benchmark when DNNV is applied. The verification bench-
marks are shown in Table 3 and are also described in more detail in Appendix D
of the extended version of this paper [23]. Each row of the table corresponds
to a benchmark, to which we assign a short key for identifying the benchmark.
For each benchmark, we give the name, some of the verifiers it evaluated, the
number of properties (#P) and networks (#N), and features that can make it
challenging for verifiers. These features include whether any properties cannot
represent their input constraints using hyper-rectangles (¬HR), whether any
network in the benchmark contains convolution operations (C), whether any
network contains residual structures (R), and whether any network uses any
non-ReLU activation functions (¬ReLU).

Results. The support of verifiers for each benchmark is shown in Table 4. Each
row of this table corresponds to one of the 13 verifiers supported by DNNV, and
each column corresponds to one of the 19 benchmarks identified in Table 3. Each

Table 3. Verifier benchmarks.

Features

Key Name Uses #P #N ¬HR C R ¬ReLU

AX ACAS Xu [1,6,16,17,30] 10 45

CD Collision Detection [6,10,17] 500 1

PM Planet MNIST [10] 7 1

TS TwinStream [5] 1 81

PCA PCAMNIST [6] 12 17

MM MIPVerify MNIST [29] 10000 5

MC MIPVerify CIFAR10 [29] 10000 2

NM Neurify MNIST [14,30] 500 4

NDb Neurify Drebin [30] 500 3

NDv Neurify DAVE [30] 200 1

DZM DeepZono MNIST [25] 1700 10

DZC DeepZono CIFAR10 [25] 1700 5

DPM DeepPoly MNIST [14,26] 1500 8

DPC DeepPoly CIFAR10 [26] 800 5

RZM RefineZono MNIST [27] 800 8

RZC RefineZono CIFAR10 [27] 200 2

RPM RefinePoly MNIST [24] 600 6

RPC RefinePoly CIFAR10 [24] 300 3

VC VeriNet CIFAR10 [14] 250 1

DNNV: A Framework for Deep Neural Network Verification 147

Table 4. Benchmark support by each verifier. The left half of the circle is black if
the verifier can support the benchmark out of the box, and is white otherwise. The
right half is black if the verifier supports the benchmark through DNNV, and is white
otherwise. An absent circle indicates that the verifier can not be made to support some
aspect of the benchmark.

Benchmark

Verifier A
X

C
D

P
M

T
S

P
C

A

M
M

M
C

N
M

N
D

b

N
D

v

D
Z
M

D
Z
C

D
P
M

D
P
C

R
Z
M

R
Z
C

R
P
M

R
P
C

V
C

Reluplex

Planet

BaB

BaBSB

MIPVerify

Neurify

DeepZono

DeepPoly

RefineZono

RefinePoly

Marabou

nnenum

VeriNet

cell of the table may contain a circle that identifies the support of the verifier for
the benchmark. The left half of the circle is black if the verifier can support the
benchmark out of the box, and is white otherwise. The right half is black if the
verifier supports the benchmark through DNNV, and white otherwise. An absent
circle indicates that the verifier can not be made to support some aspect of the
benchmark. For the benchmarks shown here, this is always due to the presence
of non-ReLU activation functions in some of the networks in the benchmarks.

As shown in Table 4, DNNV can dramatically increase the support of ver-
ifiers for benchmarks. For example, the Planet verifier could originally be run
on 5 of the 19 benchmarks, but could be run on 16 using DNNV. Similarly, the
nnenum verifier, could originally only be run on 1 of the existing benchmarks,
but could be run on 13 using DNNV. Of the 223 pairs of verifiers and
benchmarks for which support may be possible, 166 of them are cur-
rently supported by DNNV, an increase of over 2.4 times the 68 pairs
supported without DNNV.

148 D. Shriver et al.

6 Conclusion

We present the DNNV framework for reducing the burden on DNN verifier
researchers, developers, and users. DNNV standardizes input and output for-
mats, includes a simple yet expressive DSL for specifying DNN properties, and
provides powerful simplification and reduction operations to facilitate the appli-
cation, development, and comparison of DNN verifiers. Our study showed the
potential of DNNV and we made its implementation available, with support for
13 verifiers, and extensive documentation.

Acknowledgment. This material is based in part upon work supported by the
National Science Foundation under Grant Number 1900676 and 2019239.

References

1. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

2. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Neural Information Pro-
cessing Systems, NIPS 2016, pp. 2621–2629. Curran Associates Inc., USA (2016)

3. Bojarski, M., et al.: End to end learning for self-driving cars. In: NIPS 2016 Deep
Learning Symposium (2016)

4. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: CNN-Cert: an effi-
cient framework for certifying robustness of convolutional neural networks. AAAI,
January 2019

5. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Piecewise linear
neural network verification: a comparative study. CoRR abs/1711.00455v1 (2017).
http://arxiv.org/abs/1711.00455v1

6. Bunel, R.R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified
view of piecewise linear neural network verification. In: NeurIPS, pp. 4795–4804
(2018)

7. Codevilla, F., Miiller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driv-
ing via conditional imitation learning. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1–9, May 2018. https://doi.org/10.1109/
ICRA.2018.8460487

8. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

9. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach to
scalable verification of deep networks. In: Conference on Uncertainty in Artificial
Intelligence (UAI 2018), pp. 162–171. AUAI Press, Corvallis (2018)

10. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
http://arxiv.org/abs/1711.00455v1
https://doi.org/10.1109/ICRA.2018.8460487
https://doi.org/10.1109/ICRA.2018.8460487
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19

DNNV: A Framework for Deep Neural Network Verification 149

11. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18, May
2018. https://doi.org/10.1109/SP.2018.00058

12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

13. Guidotti, D., Barrett, C., Katz, G., Pulina, L., Narodytska, N., Tacchella, A.: The
Verification of Neural Networks Library (VNN-LIB) (2019). www.vnnlib.org

14. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive
refinement and adversarial search. In: Giacomo, G.D., et al. (eds.) ECAI 2020.
Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2513–2520. IOS
Press (2020). https://doi.org/10.3233/FAIA200385

15. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

17. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

18. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. CoRR abs/1903.06758 (2019)

19. ONNX: Open Neural Network Exchange (2017). https://github.com/onnx/onnx
20. Pham, L.H., Li, J., Sun, J.: SOCRATES: towards a unified platform for neural

network verification. CoRR abs/2007.11206 (2020). https://arxiv.org/abs/2007.
11206

21. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. In: ICLR. OpenReview.net (2018)

22. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: IJCAI, pp. 2651–2659. ijcai.org (2018)

23. Shriver, D., Elbaum, S., Dwyer, M.B.: DNNV: A framework for deep neural net-
work verification (2021). http://arxiv.org/abs/2105.12841

24. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron con-
vex barrier for neural network certification. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32: NeurIPS 2019, pp. 15072–15083 (2019)

25. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31, pp. 10802–10813. Curran Associates, Inc. (2018). http://papers.nips.
cc/paper/8278-fast-and-effective-robustness-certification.pdf

26. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)

27. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certifica-
tion of neural networks. In: 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019).
https://openreview.net/forum?id=HJgeEh09KQ

https://doi.org/10.1109/SP.2018.00058
http://www.deeplearningbook.org
http://www.deeplearningbook.org
www.vnnlib.org
https://doi.org/10.3233/FAIA200385
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://github.com/onnx/onnx
https://arxiv.org/abs/2007.11206
https://arxiv.org/abs/2007.11206
https://www.ijcai.org
http://arxiv.org/abs/2105.12841
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
https://openreview.net/forum?id=HJgeEh09KQ

150 D. Shriver et al.

28. Szegedy, C., et al.: Intriguing properties of neural networks. In: Bengio, Y., LeCun,
Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014)

29. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019). https://openreview.net/forum?id=HyGIdiRqtm

30. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: NeurIPS, pp. 6369–6379 (2018)

31. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: USENIX Security Symposium, pp.
1599–1614. USENIX Association (2018)

32. Weng, T., et al.: Towards fast computation of certified robustness for RELU net-
works. In: ICML, Proceedings of Machine Learning Research, vol. 80, pp. 5273–
5282. PMLR (2018)

33. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: ICML, Proceedings of Machine Learning
Research, vol. 80, pp. 5283–5292. PMLR (2018)

34. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and veri-
fication for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018). https://doi.org/10.1109/TNNLS.2018.2808470

35. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

36. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. Adv. Neural Inf. Process.
Syst. 31, 4944–4953 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/10.1109/TNNLS.2018.2808470
http://creativecommons.org/licenses/by/4.0/

Robustness Verification of Quantum
Classifiers

Ji Guan1(B), Wang Fang1,2, and Mingsheng Ying1,3,4

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy

of Sciences, Beijing 100190, China
{guanj,fangw}@ios.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Center for Quantum Software and Information, University of Technology Sydney,

Ultimo, NSW 2007, Australia
mingsheng.ying@uts.edu.au

4 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

Abstract. Several important models of machine learning algorithms
have been successfully generalized to the quantum world, with poten-
tial speedup to training classical classifiers and applications to data ana-
lytics in quantum physics that can be implemented on the near future
quantum computers. However, quantum noise is a major obstacle to the
practical implementation of quantum machine learning. In this work,
we define a formal framework for the robustness verification and anal-
ysis of quantum machine learning algorithms against noises. A robust
bound is derived and an algorithm is developed to check whether or not
a quantum machine learning algorithm is robust with respect to quantum
training data. In particular, this algorithm can find adversarial examples
during checking. Our approach is implemented on Google’s TensorFlow
Quantum and can verify the robustness of quantum machine learning
algorithms with respect to a small disturbance of noises, derived from
the surrounding environment. The effectiveness of our robust bound and
algorithm is confirmed by the experimental results, including quantum
bits classification as the “Hello World” example, quantum phase recogni-
tion and cluster excitation detection from real world intractable physical
problems, and the classification of MNIST from the classical world.

Keywords: Quantum machine learning · Robustness verification ·
Adversarial examples · Robust bound

1 Introduction

In the last few years, the successful interplay between machine learning and
quantum physics shed new light on both fields. On the one hand, machine learn-
ing has been dramatically developed to satisfy the need of the industry over
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 151–174, 2021.
https://doi.org/10.1007/978-3-030-81685-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_7

152 J. Guan et al.

the past two decades. At the same time, many challenging quantum physical
problems have been solved by automated learning. Notably, inaccessible quan-
tum many-body problems have been solved by neural networks, one instance
of machine learning [1]. On the other hand, as the new model of computation
under quantum mechanics, quantum computing has been proved that it can
(exponentially) speed up classical algorithms for some important problems [2].
This motivates the development of quantum machine learning and provides the
possibility of improving the existing computational power of machine learning
to a new level (see the review papers [3,4] for the details). After that, quantum
machine learning was integrated into solving real world problems in quantum
physics. One essential example is that quantum convolutional neural networks
inspired by machine learning were proposed to implement quantum phase recog-
nition [5]. Quantum phase recognition asks whether a given input quantum state
belongs to a particular quantum phase of matter. At the same time, more prov-
able advantages of quantum machine learning than the classical counterpart have
been reported. For instance, the training complexity of quantum models has an
exponential improvement on certain tasks [6]. Stepping into industries, Google
recently built up a framework TensorFlow Quantum for the design and train-
ing of quantum machine learning within its famous classical machine learning
platform—TensorFlow [7].

Even though quantum machine learning outperforms the classical counter-
part in some way, the difficulties in the classical world are expected to be encoun-
tered in the quantum case. Classical machine learning has been found to be
vulnerable to intentionally crafted adversarial examples (e.g. [8,9]). Adversarial
examples are inputs to a machine learning algorithm that an attacker has crafted
to cause the algorithm to make a mistake. One essential mission of machine
learning is to prove the absence of or detect adversarial examples used in the
defense strategy—adversarial training [10]—appending adversarial examples to
the training dataset and retraining the machine learning algorithm to be robust
to these examples. However, this goal is not easily achieved [11]. The machine
learning community has developed several interesting ideas on designing spe-
cific attack algorithms (e.g. [10,12]) to generate adversarial examples, which is
far from measuring the robustness against any adversary. Recently, the formal
method community has taken initial steps in this direction [13–16], by verify-
ing the robustness of classical machine learning algorithms in a provable way:
either a formal guarantee that the algorithms are robust for a given input or
a counter-example (adversarial example) is provided if an input is not robust.
Some tools have been developed, such as VerifAI [17] and NNV [18]. This phe-
nomenon of vulnerability is more common in the quantum world since quantum
noise is inevitable in quantum computation, at least in the current NISQ (Noisy
Intermediate-Scale Quantum) era, and thus led to a series of recent works on
quantum machine learning robustness against specific noises. For example, Lu
et al. [19] studied the robustness to various classical adversarial attacks; Du
et al. [20] proved that by appending depolarization noise in quantum circuits for
classifications, a robust bound against adversaries can be derived; Liu and Wit-

Robustness Verification of Quantum Classifiers 153

tek [21] gave a robust bound for the quantum noise coming from a special unitary
group. Very recently, Weber et al. [22] formalized a link between binary quan-
tum hypothesis testing [23] and robust quantum machine learning algorithms
for classification tasks.

Up to our best knowledge, the existing studies of quantum machine learning
robustness only consider the situation of a known noise source. However, a fun-
damental difference between quantum and classical machine learning is that the
quantum attacker is usually the surroundings instead of humans in the classical
case, and the information of the environment is unknown. To protect against an
unknown adversary, we need to derive a robust guarantee against a worst-case
scenario, from which the commonly-assumed known noise sources (e.g. depolar-
ization noise [20]) are usually far. Yet in the case of unknown noise, several basic
issues are still unsolved:

– In theory, it is unclear how to compute a tight and even the optimal bound
of the robustness for any given quantum machine learning algorithm.

– In practice, an efficient way to find an adversarial example, which can be used
to retraining the algorithm to defense the noise, is lacking. Indeed, we do not
even know which metric is a better choice measuring the robustness against
noise, the same as the classical case against human attackers [24].

In this work, we define a formal framework for the robustness verification
and analysis of quantum machine learning algorithms against noises in which
the above problems can be studied in a principled way. More specifically, we
choose to use fidelity as the metric measuring the robustness as it is one of the
most widely used quantities to quantify the uncertainty of noise in the process of
quantum computation, and commonly used in quantum engineering and experi-
mental communities (e.g. [25,26]). Based on this, an analytical robust bound for
any quantum machine learning classification algorithm is obtained and can be
applied to approximately checking the robustness of quantum machine learning
algorithms. Furthermore, we show that computing the optimal robust bound
can be reduced to solving a Semidefinite Programming (SDP) problem. These
results lead to an algorithm to exactly and efficiently check whether or not a
quantum machine learning algorithm is robust with respect to the training data.
A special strength of this algorithm is that it can identify useful new train-
ing data (adversarial examples) during checking, and these data can be used to
implement adversarial training as the same as classical robustness verification.
The effectiveness of our robust bound and algorithms is confirmed by the case
studies of quantum bits classification as the “Hello World” example of quantum
machine learning algorithms, quantum phase recognition and cluster excitation
detection from real world intractable physical problems, and the classification of
MNIST from the classical world.

In summary, the main technical contributions of the paper are as follows.

– Computing the optimal robust bound of quantum machine classification algo-
rithms is reduced to an SDP (Semidefinite Programming) problem;

154 J. Guan et al.

– An efficient algorithm to check the robustness of quantum machine learning
algorithms and detect adversarial examples is developed;

– The implementation of the robustness verification algorithm on Google’s Ten-
sorFlow Quantum;

– Case studies – Checking the robustness of several popular quantum machine
learning algorithms for quantum bits classification, cluster excitation detec-
tion and the classification of MNIST (which are all implemented in Google’s
TensorFlow Quantum), and quantum phase recognition.

2 Quantum Data and Computation Models

For the convenience of the reader, in this section, we recall some basic concepts
of quantum data (states) and the quantum computation model.

The basic data of classical computers are bits, represented by two digits 0
and 1. In quantum computing, quantum bits (qubit) play the same role. A qubit

is expressed by a normalized complex vector |φ〉 =
(

a
b

)
= a|0〉 + b|1〉 with

complex numbers a and b satisfying the normalization condition |a|2 + |b|2 = 1.

Here, |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
correspond to bits 0, 1 respectively, and {|0〉, |1〉}

is an orthonormal basis of a 2-dimensional Hilbert (linear) space. In general, for
a quantum computer consisting of n qubits, a quantum datum is a normalized
complex vector |ψ〉 in a 2n-dimensional Hilbert space H. Such a |ψ〉 is usually
called a pure state in the literature of quantum computation.

As a model for computation, a quantum circuit consists of a sequence of, say
m quantum logic gates. Each quantum gate can be mathematically represented
by a unitary matrix Ui on H, i.e., U†

i Ui = UiU
†
i = I, where U†

i is the conjugate
transpose of Ui and I is the identity matrix on H. Then the circuit is represented
by the unitary matrix U = Um · · · U1. If the quantum datum |ψ〉 is inputted to
the circuit, then the output is a quantum datum:

|ψ′〉 = U |ψ〉. (1)

In practice, a quantum datum may not be completely known and can be
thought of as a mixed state or ensemble {(pk, |ψk〉)}k, meaning that it is at |ψk〉
with probability pk. Mathematically, it can be described by a density operator
ρ (Hermitian positive semidefinite matrix with unit trace1) on H:

ρ =
∑

k

pk|ψk〉〈ψk|, (2)

where 〈ψk| is the conjugate transpose of |ψk〉, i.e., |ψk〉 = 〈ψk|†. In this case, the
model of quantum computation is tuned to be a super-operator E , i.e. a mapping
from matrices to matrices. It can be written as

ρ′ = E(ρ). (3)
1 ρ has unit trace if tr(ρ) = 1, where trace tr(ρ) of ρ is defined as the summation of

diagonal elements of ρ.

Robustness Verification of Quantum Classifiers 155

Here, ρ and ρ′ are the input and output data (mixed states) of quantum com-
putation E , respectively. Not every super-operator E is meaningful in physics. It
is required to satisfy the following conditions:

– E is trace-preserving: tr(E(ρ)) = tr(ρ) for all mixed state ρ on H;
– E is completely positive: for any Hilbert space H′, the trivially extended

operator idH′ ⊗E maps density operators to density operators on H′ ⊗ H,
where ⊗ denotes the tensor product and idH′ is the identity map on H′.

Such a super-operator E admits a Kraus matrix form [2]: there exists a set of
matrices {Ek}k on H such that

E(ρ) =
∑

k

EkρE†
k.

Here {Ek}k is called Kraus matrices of E [2].
The behind dynamics of quantum computers is governed by quantum

mechanics, which is applied at the microscopic scale (near or less than 10−9

meters). At this level, we cannot directly readout the quantum data as the same
as the classical counterpart. The only way to extract information from it is
through a quantum measurement, which is mathematically modeled by a set
{Mk}m

k=1 of matrices on its state (Hilbert) space H with
∑

k M†
kMk = I. This

observing process is probabilistic: if the system is currently in state ρ, then a
measurement outcome k is obtained with probability

pk = tr(M†
kMkρ). (4)

After the measurement, the system’s state will be collapsed (changed), depending
on the measurement outcome k, which is vitally different from the classical
computation. If the outcome is k, the post-measurement state becomes

ρ′
k =

MkρM†
k

tr(M†
kMkρ)

. (5)

This special property makes it hard to accurately estimate the distribution {pk}k

unless enough many copies of ρ are provided.
In summary, quantum data have two different forms—pure state |ψ〉 and

mixed state ρ corresponding to the computation model as a unitary matrix U or
a super-operator E , respectively. Not surprisingly, the latter is a generalization
of the former by putting:

ρ = |ψ〉〈ψ|, E(ρ) = UρU†.

Because of this, the results obtained for mixed states ρ can also be applied to
pure states |ψ〉. Thus, in this paper, we mainly consider mixed states as the
quantum data and super-operators as the model of quantum computation.

156 J. Guan et al.

3 Quantum Classification Algorithms

In this section, we briefly recall quantum classification algorithms. They are
designed for classification of quantum data. Essentially, they share the same
basic ideas with their classical counterparts but deal with quantum data in the
quantum computation model.

3.1 Basic Definitions

In this paper, we focus on a specific learning model called quantum supervised
classification. Given a Hilbert space H, we write D(H) for the set of all (mixed)
quantum states on H (see its definition in Eq. (2)).

Definition 1. A quantum classification algorithm A is a mapping D(H) → C,
where C is the set of classes we are interested in.

Following the training strategy of classical machine learning, the classifica-
tion A is learned through a dataset T instead of being pre-defined. This training
dataset T = {(ρi, ci)}N

i=1 consists of N < ∞ pairs (ρi, ci), meaning that quan-
tum state ρi belongs to class ci. To learn A, we initialize a quantum learning
model—a parameterized quantum circuit (including measurement control) Eθ

and a measurement {Mk}k∈C . Mathematically, the circuit can be modelled as
a quantum super-operator Eθ (see its definition in Eq. (3)), and θ is a set of
free parameters that can be tuned. Then for each k ∈ C, we can compute the
probability of the measurement outcome being k:

fk(θ, ρ) = tr(M†
kMkEθ(ρ)). (6)

It is worth noting that, as we mentioned before, measuring quantum state ρ is
probabilistic and ρ will be changed after measuring. So, in practice, accurately
estimating fk(θ, ρ) for all k ∈ C requires enough many copies of ρ, which is not
the same as the classical case, where a single copy of classical data often meets
the training process.

The quantum classification algorithm A outputs the class label c for a quan-
tum state ρ using the following condition:

A(θ, ρ) = arg max
k

tr(M†
kMkEθ(ρ)). (7)

The learning is carried out as θ is optimized to minimize the empirical risk

min
θ

1
N

N∑
i=1

L(f(θ, ρi), ci), (8)

where L refers to a predefined loss function, f(θ, ρ) is a probability vector with
each fk(θ, ρ), k ∈ C as its element, and ci is also seen as a probability vector with
the entry corresponding to ci being 1 and others being 0. The goal is to find the
optimized parameters θ∗ minimizing the risk in Eq. (8) for the given dataset T .

Robustness Verification of Quantum Classifiers 157

Mean-squared error (MSE) is the most popular instance of the empirical risk,
i.e., the loss function L is squared error:

L(f(θ, ρi), ci) =
1
C

‖f(θ, ρi) − ci‖2
2,

where C is the number of classes in C, and ‖·‖2 is the l2-norm.
As one can see in the above learning process, the main differences between

classical and quantum machine learning algorithms are the learning models and
data.

In this paper, we focus on the well-trained quantum classification algorithm
A, usually called a quantum classifier. Here, A is said to be well-trained if train-
ing and validation accuracy are both high (≥95%). The training (validation)
accuracy is the frequency that A successfully classifies the data in a training (val-
idation) dataset. A validation dataset is mathematically equivalent to a training
dataset but only for testing A rather than learning A. In this context, θ∗ is nat-
urally omitted, i.e., A(ρ) = A(θ∗, ρ) and E(ρ) = Eθ∗(ρ). Briefly, A only consists
of a super-operator E and a measurement {Mk}k, denoted by A = (E , {Mk}k).

3.2 An Illustrative Example

Let us further illustrate the above definitions by a concrete example—Quantum
Convolutional Neural Networks (QCNNs) [5], one of the most popular and suc-
cessful quantum learning models. QCNN extends the main features and struc-
tures of the Convolutional Neural Networks (CNNs) to quantum computing.

ρ

Input

Image

State

Convolution Pooling Convolution Pooling Fully connected

U1

U1

U1

U1

U1

U1

U1

U1

U1

V1

V1

V1

V1

V1

MCUG

V1

U2

U2

U2

U2

V2

V2 F

Measurement

U Unitary matrix

(a)

(b)

Fig. 1. Simple example of CNN and QCNN. QCNN, like CNN, consists of a convolution
layer that finds a new state and a pooling layer that reduces the size of the model.
Here, MCUG stands for measurement control unitary gate, i.e., unitary matrix V1 is
applied on the circuit if and only if the measurement outcome is 1.

158 J. Guan et al.

The model of QCNN applies the convolution layer and the pooling layer from
CNNs to quantum systems, as shown in Fig. 1(b). The layout proceeds as follows:

1 The convolution layer (circuit) applies multiple qubit gates Ui between adja-
cent qubits to find a new state;

2 The pooling layer reduces the size of the quantum system by measuring a
fraction of qubits, and the outcomes determine unitary Vi applied to nearby
qubits;

3 Repeat the convolution layer and pooling layer defined in 1–2;
4 When the size of the system is sufficiently small, the fully connected layer is

applied as a unitary matrix F on the remaining qubits.

The input of QCNNs is an unknown quantum state ρin and the output is
obtained by measuring a fixed number of output qubits. As in the classical case,
the learning model (defined as the number of convolution and pooling layers) is
fixed, but the involved quantum gates (i.e. unitary matrices) Ui, Vj , F themselves
are learned by the above learning process.

Remark 1. Quantum machine learning can also be used to do classical machine
learning tasks. Image classification, for example, is one of the most success-
ful applications of Neural Networks (NNs). To explore the possible advantage of
quantum computing, Quantum Neural Networks (QNNs) have been used to clas-
sify images in [27,28]. It is shown that by encoding images to a quantum state
ρin, QNNs can achieve high accuracy in image classification. We will present a
quantum classifier for the classification of MNIST as an example in the evalua-
tion section.

4 Robustness

An important issue in classical machine learning is: how robust is a classification
algorithm to adversarial perturbations. A similar issue exists for quantum clas-
sifiers against quantum noise. Intuitively, the robustness of quantum classifier
A is the ability to make correct classification with a small perturbation to the
input states. Then a quantum state σ is considered as an adversarial example if
it is similar to a benign state ρ, but ρ is correctly classified and σ is classified
into a class different from that of ρ. Formally,

Definition 2 (Adversarial Example). Suppose we are given a quantum clas-
sifier A(·), an input example (ρ, c), a distance metric D(·, ·) and a small enough
threshold value ε > 0. Then σ is said to be an ε-adversarial example of ρ if the
following is true

(A(ρ) = c) ∧ (A(σ) �= c) ∧ (D(ρ, σ) ≤ ε).

The leftmost condition A(ρ) = c asserts that ρ is correctly classified, the mid-
dle condition A(σ) �= c means that σ is incorrectly classified, and the rightmost
condition D(ρ, σ) ≤ ε indicates that ρ and σ are similar (i.e., their distance is

Robustness Verification of Quantum Classifiers 159

small). Sometimes, without any ambiguity, σ is called an adversarial example of
ρ if ε is preset. Notably, by the above definition, if A incorrectly classifies ρ, then
we do not need to consider the corresponding adversarial examples. This is the
correctness issue of quantum classifier A rather than the robustness issue. Hence,
in the following discussions, we only consider the set of all correctly recognized
states.

The absence of adversarial examples leads to robustness.

Definition 3 (Adversarial Robustness). Let A be a quantum classifier.
Then ρ is ε-robust for A if there is no adversarial example of ρ.

The major problem concerning us in this paper is the following:

Problem 1 (Robustness Verification Problem). Given a quantum classifier A(·)
and an input example (ρ, c). Check whether or not A(σ) = c for all σ ∈ Nε(ρ),
where Nε(ρ) is the ε-neighbourhood of ρ as

Nε(ρ) = {σ ∈ D(H) : D(ρ, σ) ≤ ε)}.

If not, then an adversarial example (counter-example) σ ∈ Nε(ρ) is provided.

Obviously, if δ is a robust bound for an input example (ρ, c) such that A(σ) =
c for any state σ ∈ Nδ(ρ), then for any ε ≤ δ (i.e. Nε(ρ) ⊆ Nδ(ρ)), there is no
ε-adversarial example of ρ. It is a challenging problem to compute the optimal
robust bound δ∗ = max δ so that there is no ε-adversarial example if and only
if ε ≤ δ∗.

The above adversarial robustness of quantum states can be generalized to a
notion of robustness for quantum classifiers:

Definition 4 (Robust Accuracy). Let A be a quantum classifier. The ε-
robust accuracy of A is the proportion of ε-robust states in the training dataset.

Remark 2. Here, the robust accuracy is defined with respect to the training
dataset. In some applications, the dataset can be chosen as another set of quan-
tum states with correct classifications, such as a validation dataset or a combi-
nation of it with the training dataset.

The reader should notice that the above definitions of robustness for quantum
classifiers are similar to those for classical classifiers. But an intrinsic distinct-
ness between them comes from the choice of distance D(·, ·). In the classical case,
humans play the role of the adversary, and then such a distance should promise
that a small perturbation is imperceptible to humans, and vice versa. Otherwise,
we cannot take the advantage of machine learning over human’s distinguishabil-
ity. For instance, in image recognition, the distance should reflect the perceptual
similarity in the sense that humans would consider adversarial examples gener-
ated by it perceptually similar to benign image [24]. In the quantum case, it is
essential to choose a distance D that is meaningful in quantum physics. In this
paper, we choose to use the distance:

D(ρ, σ) = 1 − F (ρ, σ)

160 J. Guan et al.

defined by fidelity

F (ρ, σ) = [tr(
√√

ρσ
√

ρ)]2.

Here
√

ρ =
∑

k

√
λk|ψk〉〈ψk| if ρ admits the spectral decomposition

∑
k λk

|ψk〉〈ψk|. Fidelity is one of the most widely used quantities to quantify such
uncertainty of noise by the experimental quantum physics and quantum engi-
neering communities (see e.g. [29,30]).

Remark 3. The trace distance has been used in recent literature (e.g. [20]) for
some issues related to quantum robustness verification:

T (ρ, σ) =
1
2
‖ρ − σ‖tr =

1
2
tr[

√
(ρ − σ)†(ρ − σ)].

It is a generalization of the total variation distance, which is a distance measure
for probability distributions. So far, to the best of our knowledge, there is no
discussion about which distance is better in the literature. Here, we argue that
fidelity is better than trace distance in the context of quantum machine learning
against quantum noise. As we know, state distinguishability is the basis of mea-
suring the effect of noise on quantum computation. The main difference between
trace distance T (ρ, σ) and fidelity F (ρ, σ) is the number of copies of states ρ
and σ as the resource required in the experiments for distinguishing them. More
precisely, trace distance quantifies the maximum probability of correctly guess-
ing through a measurement whether ρ or σ was prepared, while fidelity asserts
the same quantity whence infinitely many samples of ρ and σ can be supplied
(See Appendix A of the extended version of this paper [31] for more details). In
quantum machine learning, a large enough number of copies of the states are the
precondition of statistics in Eq. (6) for learning and classification. Thus, fidelity
is more suitable than trace distance for our purpose.

5 Robust Bound

In this section, we develop a theoretic basis for robustness verification of quantum
classifiers. After setting the distance D to be the one defined by fidelity, a robust
bound can be derived.

Lemma 1 (Robust Bound). Given a quantum classifier A = (E , {Mk}k∈C)
and a quantum state ρ. Let p1 and p2 be the first and second largest elements of
{tr(M†

kMkE(ρ))}k, respectively. If
√

p1 − √
p2 >

√
2ε, then ρ is ε-robust.

Proof. See Appendix B of the extended version of this paper [31].

The above robust bound gives us a quick robustness verification by the mea-
surement outcomes of ρ without searching any possible adversarial examples.
Furthermore, it also can be used to compute an under-approximation of the
robust accuracy of A by one-by-one checking the robustness of quantum states
in the training dataset. We will see that the robust bound and the induced robust

Robustness Verification of Quantum Classifiers 161

accuracy scales well in the later experiments. However,
√

p1 − √
p2 >

√
2ε is not

a necessary condition of ε-robustness. Fortunately, when
√

p1 − √
p2 ≤ √

2ε, we
can compute the optimal robust bound by Semidefinite Programming (SDP).
Recall that SDP is a convex optimization concerned with the optimization of a
linear objective function over the intersection of the cone of positive semidefinite
matrices with an affine space. It has the form

min tr(CX)
subject to tr(AkX) ≤ bk, for k = 1, . . . ,m

X ≥ 0

where C,A1, . . . , Am are all Hermitian n × n matrices (i.e. A† = A), and X is the
optimization variable n × n matrix with X ≥ 0, i.e., X is positive semidefinite.
Many efficient solvers have been developed for solving SDPs—not only compute
the minimal value, but also output a corresponding optimal solution X. The
following two theorems show that checking ε-robustness and computing optimal
robust bound of quantum states can both be reduced to an SDP.

Theorem 1 (ε-robustness Verification). Let A = (E , {Mk}k∈C) be a quan-
tum classifier and ρ be a state with A(ρ) = l. Then ρ is ε-robust if and only if for
all k ∈ C and k �= l, the following problem has no solution (feasibility problem):

min
σ∈D(H)

0

subject to σ ≥ 0
tr(σ) = 1

tr[(M†
l Ml − M†

kMk)E(σ)] ≤ 0
1 − F (ρ, σ) ≤ ε

Proof. See Appendix C of the extended version of this paper [31].

Actually, the objective function 0 in the above theorem can be chosen as any
constant number.

Theorem 2 (Optimal Robust Bound). Let A and ρ be as in Theorem 1
with A(ρ) = l, and let δk be the solution of the following problem:

δk = min
σ∈D(H)

1 − F (ρ, σ)

subject to σ ≥ 0
tr(σ) = 1

tr[(M†
l Ml − M†

kMk)E(σ)] ≤ 0

where if the problem is unsolved, then δk = +∞. Then δ = mink �=l δk is the
optimal robust bound of ρ.

Proof. The proof is similar to Theorem 1.

162 J. Guan et al.

Remark 4. One may wonder why checking ε-robustness and computing the opti-
mal robust bound can always be reduced to an SDP. This is indeed implied by the
basic quantum mechanics postulate of linearity; more specifically, all of the super-
operators and measurements used in quantum machine learning algorithms are
linear. In contrast, the functions represented by the neural networks in classi-
cal machine learning may be nonlinear as the pooling layer is not linear. As a
result, the reduced optimization problem for the robustness verification is not
convex (e.g. [32]). For overcoming this difficulty, many different methods have
been developed to encode the nonlinear activation functions as linear constraints.
Examples include NSVerify [33], MIPVerify [34], ILP [35] and ImageStar [13].

Algorithm 1. StateRobustnessVerifier(A, ε, ρ, l)
Require: A = (E , {Mk}k∈C) is a well-trained quantum classifier, ε < 1 is a real

number, (ρ, l) is an element of the training dataset of A
Ensure: true indicates ρ is ε-robust or false with an adversarial example σ indicates

ρ is not ε-robust
1: for each k ∈ C and k �= l do
2: By an SDP solver, compute δk with an optimal state σk in the SDP of Theorem 2
3: end for
4: Let δ = mink δk and k∗ = arg mink δk

5: if δ > ε then
6: return true
7: else
8: return false and σk∗
9: end if

6 Robustness Verification Algorithms

In this section, we develop several algorithms for verifying the robustness of
quantum classifiers based on the theoretic results presented in the last section.

First, let us consider the robustness of a given quantum state ρ. In many
applications (as shown in our experiments in Sect. 7), we are required to check
whether ρ is ε-robust for an arbitrarily given threshold ε. Note that once we
computed the optimal robust bound δ, checking ε-robustness of ρ is equivalent
to compare ε and δ; that is, ε ≤ δ if and only if ρ is ε-robust. Combining with
this simple observation with Theorem 1, we obtain Algorithm 1 for checking the
ε-robustness of ρ and finding the minimum adversarial perturbation δ caused by
quantum noise. The main cost of Algorithm 1 incurs in solving SDPs in Line 2,
which scales as O(n6.5) by interior-point methods [36], where n is the number of
rows of the semidefinite matrix ρ in SDP, i.e., the dimension of Hilbert space of
the quantum states in our case. As we need to apply an SDP solver for |C| − 1
times in Line 1, the total complexity is as follows.

Robustness Verification of Quantum Classifiers 163

Theorem 3. The worst case complexity of Algorithm 1 is O(|C| ·n6.5), where n
is the dimension of input state ρ and |C| is the number of the set C of classes we
are interested in.

Now we turn to consider the robustness of a quantum classifier A. Algo-
rithm 2 is designed for checking robustness of A by combining Algorithm 1
with Lemma 1 (see the discussion in the paragraph after Lemma 1). A major
benefit of formal robustness verification for classical classifiers is perhaps that
it can be used to detect a counter-example (adversarial example) for a given
input (see e.g. [13–16]). This benefit is kept in Algorithm 2 for the robustness
verification of quantum classifiers. In particular, we are able to extend the tech-
nique of adversarial training in classical machine learning [10] into the quantum
case: an adversarial example σ is automatically generated once ε-robustness of
ρ fails, and then by appending (σ, l) into the training dataset, we can retrain A
to improve the robustness of the classifier.

Algorithm 2. RobustnessVerifier(A, ε, T)
Require: A = (E , {Mk}k∈C) is a well-trained quantum classifier, ε < 1 is a real

number, T = {(ρi, li)} is the training dataset of A
Ensure: The robust accuracy RA and a set R = {< σj , ij >}, where for each j, ρj

is an ε-adversarial example of ρij ; R can be an empty set if all states in T are
ε-robust.

1: R = ∅ be an empty set. // Recording adversarial examples and corresponding
indexes of states in training dataset T

2: for each (ρi, li) ∈ T do
3: Let p1 and p2 be the first and second largest elements of {tr(M†

kMkE(ρi))}k,
respectively.

4: if
√

p1 − √
p2 ≤ √

2ε then // Applying the robust bound in Lemma 1
5: if StateRobustnessVerifier (A, ε, ρi, li) == false then
6: σ be the output state of StateRobustnessVerifier (A, ε, ρi, li)
7: R = R ∪ {(σ, i)}
8: end if
9: end if

10: end for
11: return RA = 1 − |R|

|T | , R // |R| = 0 if R is an empty set

To analyze the complexity of Algorithm 2, we first see by Theorem 2 that
for evaluating the robustness of A—computing its robust accuracy and finding
its adversarial examples, one need to call Algorithm 1 for each quantum state
in the training dataset, which costs O(|C| · n6.5). Thus, the total complexity of
robustness verification is O(|T | · |C| ·n6.5), where |T | is the number of elements in
the training dataset T . However, the robust bound given in Lemma 1 can help
to speed up the process by quickly finding all potential non-robust states, as the
complexity of finding the bound is only O(|C| ·n3), which is the cost of |C| times
of the multiplication of two n × n matrices. In practice, this bound scales well,

164 J. Guan et al.

as confirmed by our experiments presented in Sect. 7. Therefore, a good strategy
for implementing the robustness verification is that we first use robust bound
to pick up all potential non-robust states from the given training dataset T and
store them in a set T ′. Then we check all left candidates in the training dataset
T one-by-one using Algorithm 1 and use a set R to record the found adversarial
examples and the corresponding indexes of states. This strategy can significantly
reduce the complexity to O(|T ′| · |C| · n6.5). Indeed, our experiments show that
the robust bound given in Lemma 1 scales very well in the sense of |T ′| � |T |.
Remark 5. Thanks to the linearity of the quantum learning model determined by
the basic postulate of quantum mechanics, the robustness verification of quantum
classifiers can be done in an efficient way (with polynomial time complexity in
the size of the input state). It is usually not the case in verifying the robustness
of classical machine learning algorithms. For example, DNNs are often non-linear
and non-convex, and verifying even some simple properties of them can be an
NP-complete problem [37].

Surprisingly, the robustness verification problem for quantum classifiers
becomes much harder if we are required to find adversarial examples in pure
states. Roughly speaking, the reason is that the set of all pure states is not
convex, and thus computing the optimal robust bound for pure states is not
an SDP, as in Theorem 2. We can prove that it is a Quadratically Constrained
Quadratic Program (QCQP), an optimization problem where both the objec-
tive function and the constraints are quadratic functions (see Appendix D of
the extended version of this paper [31] for the proof), which is NP-hard. Algo-
rithm 1 can be adapted to this pure state robustness verification by calling a
QCQP solver instead of an SDP solver in Line 2. Subsequently, Algorithm 2
can use this new version of Algorithm 1 as a subroutine to compute the corre-
sponding robust accuracy and find adversarial examples of pure states. We will
evaluate the QCQP-based robustness verification in the case study of MNIST
classification in which handwritten digits are encoded in pure states.

7 Evaluation

Algorithm 2 is implemented on TensorFlow Quantum—a platform of Google for
designing and training quantum machine learning algorithms, by calling an SDP
solver—CVXPY: Python Software for Disciplined Convex Programming [38].
This section aims to evaluate our approach with experiments on some concrete
examples. This section is arranged as follows. In Subsects. 7.1–7.4, we present
several well-trained quantum classifiers. Then the evaluation is carried out in
Subsect. 7.5 by applying Algorithm 2 to check the robustness verification of these
classifiers and find their adversarial examples if existing.

To demonstrate our method as sufficiently as possible, we check the robust-
ness of four quantum classifiers. We begin with a “Hello World” example—qubits
classification, and then we step in two quantum classifiers applied to real world
tasks—quantum phase recognition and cluster excitation detection, which are

Robustness Verification of Quantum Classifiers 165

both fundamental and hard problems in quantum physics. At last, to compare
with classical robustness verification, we consider the classification of MNIST
by encoding handwritten digital images into quantum data. These experiments
cover all illustrated examples of TensorFlow Quantum.

7.1 Quantum Bits Classification

A “Hello World” example of quantum machine learning is quantum bits clas-
sification [7]. The aim is to implement a binary classification for regions on a
single qubit, i.e., a perceptron for qubits. Specifically, two random normalized
vectors |a〉 and |b〉 (pure states) in the X-Z plane of the Bloch sphere are chosen.
Around these two vectors, we randomly sample two sets of quantum data points;
the objective is to learn a quantum gate to distinguish the two sets. A concrete
instance of this type is shown in Fig. 2. In this example, the angles with |0〉 (Z-
axis) of the two states |a〉 and |b〉 are θa = 1 and θb = 1.23, respectively; see the
first figure in Fig. 2. Around these two vectors, we randomly sample two sets (one
for category “a” and one for category “b”) of quantum data points on the sphere,
forming a dataset. The dataset consists of 800 samples for the training and 200
samples for the validation. As shown in Fig. 2, we use a parameterized rotation
gate Ry(θ) = e−iσyθ/2 and a measurement M = {Ma = |0〉〈0|,Mb = |1〉〈1|} to
do the classification. Targeting to minimizing the MSE form of Eq. (8), we use
Adam optimizer [39] to update θ. After training, we achieve both 100% training
and validation accuracy, and the final parameter θ is 0.4835.

Ry(θ)
M

Fig. 2. Training model of quantum bits classification: the left figure shows the samples
of the quantum training dataset represented on the Bloch sphere. Samples are divided
into two categories, marked by red and yellow, respectively. The vectors are the states
around which the samples were taken. The first part of the right figure is a parame-
terized rotation gate, whose job is to remove the super-positions in the quantum data.
The second part is a measurement M along the Z-axis of the Bloch sphere converting
the quantum data into classes. (Color figure online)

166 J. Guan et al.

7.2 Quantum Phase Recognition

Quantum phase recognition (QPR) of one dimensional many-body systems has
been attacked by quantum convolutional neural networks (QCNNs) proposed by
Cong et al. [5]. Consider a Z2 ×Z2 symmetry-protected topological (SPT) phase
P and the ground states of a family of Hamiltonians on spin-1/2 chain with open
boundary conditions:

H = −J
N−2∑
i=1

ZiXi+1Zi+2 − h1

N∑
i=1

Xi − h2

N−1∑
i=1

XiXi+1

where Xi, Zi are Pauli matrices [2] for the spin at site i, and the Z2×Z2 symmetry
is generated by Xeven(odd) =

∏
i∈even(odd) Xi. The goal is to identify whether the

ground state |ψ〉 of H belongs to phase P when H is regarded as a function
of (h1/J, h2/J). For small N , a numerical simulation can be used to exactly
solve this problem [5]; See Fig. 4a in Appendix E of the extended version of this
paper [31] for the exact phase boundary points (blue and red diamonds) between
SPT phase and non-SPT (paramagnetic or antiferromagnetic) phase for N = 6.
Thus the 6-qubit instance is an excellent testbed for different new methods and
techniques of QPR. Here, we train a QCNN model to implement 6-qubit QPR
in this setting.

To generate the dataset for training, we sample a serials of Hamiltonian
H with h2/J = 0, uniformly varying h1/J from 0 to 1.2 and compute their
corresponding ground states; see the gray line of Fig. 4a in Appendix E of
the extended version of this paper [31]. For the testing, we uniformly sample
a set of validation data from two random regions of the 2-dimensional space
(h1/J, h2/J); see the two dashed rectangles of Fig. 4a. Finally, we obtain 1000
training data and 400 validation data. Our parameterized QCNN circuit is shown
in Fig. 4b in Appendix E of the extended version of this paper [31], and the uni-
taries Ui, Vj , F are parameterized with generalized Gell-Mann matrix basis [40]:
U = exp(−i

∑
j θjΛj), where Λj is a matrix and θj is a real number; the total

number of parameters θj , Λj is 114. For the outcome measurement of one qubit,
we use measurement M = {M0 = |+〉〈+|,M1 = |−〉〈−|} to predict that input
states belongs to P with output 0, where |±〉 = 1√

2
(|0〉 ± |1〉). Targeting to

minimizing the MSE form of Eq. (8), we use Adam optimizer to update the
114 parameters. After training, 97.7% training accuracy and 95.25% validation
accuracy are obtained. At the same time, our classifier conducts a phase dia-
gram (the colorful figure in Fig. 4a), where the learned phase boundary almost
perfectly matches the exact one gotten by the numerical simulation. All these
results indicate that our classifier is well-trained.

7.3 Cluster Excitation Detection

The task of cluster excitation detection is to train a quantum classifier to detect
if a prepared cluster state is “excited” or not [7]. Excitations are represented with
a X rotation on one qubit. A large enough rotation is deemed to be an excited

Robustness Verification of Quantum Classifiers 167

state and is labeled by 0, while a rotation that isn’t large enough is labeled by 1
and is not deemed to be an excited state. Here, we demonstrate this classification
task with 6 qubits. We use the circuit shown in Fig. 5a of Appendix E in the
extended version of this paper [31] to generate training (840) and validation
(360) samples. The circuit generates a cluster state by performing a X rotation
(we omit angle θ) on one qubit. The rotation angle θ is ranging from −π to π and
if −π/2 ≤ θ ≤ π/2, the label of the output state is 1; otherwise, the label is 0.
The classification circuit model (a quantum convolutional neural network) uses
the same structure in TensorFlow Quantum [7], shown in Fig. 5b of Appendix E
in the extended version of this paper [31]. The explicit parameterization of Ci, Pj

can be found in [7]. The final measurement M = {M0 = |0〉〈0|,M1 = |1〉〈1|}.
Targeting to minimizing the MSE form of Eq. (8), we use Adam optimizer to
update all Ci, Pj . We achieve 99.76% training accuracy and 99.44% validation
accuracy.

7.4 The Classification of MNIST

Handwritten digit recognition is one of the most popular tasks in the classical
machine learning zoo. The archetypical training and validation data come from
the MNIST dataset which consists of 55,000 training samples handwritten dig-
its [41]. These digits have been labeled by humans as representing one of the
ten digits from number 0 to 9, and are in the form of gray-scale images that
contains 28 × 28 pixels. Each pixel has a grayscale value ranging from 0 to 255.
Quantum machine learning has been used to distinguish a too simplified version
of MNIST by downscaling the image sizes to 8 × 8 pixels. Subsequently, the
numbers represented by this version of MNIST can not be perceptually recog-
nized [7]. Here, we build up a quantum classifier to recognize a MNIST version
of 16 × 16 pixels (see second column images of Fig. 3). As demonstrated in [7],
we select out 700 images of number 3 and 700 images of number 6 to form our
training (1000 images) and validation (400 images) datasets. Then we downscale
those 28 × 28 images to 24 × 24 images (fitting the size of quantum data), and
encode them into the pure states of 8 qubits via amplitude encoding. Amplitude
encoding uses the amplitude of computational basis to represent vectors with
normalization:

(x0, x2, . . . , xn−1) →
n−1∑
i=0

xi√∑n−1
j=0 |xj |2

|i〉.

where {|i〉} is a set of orthogonal basis of the 8 qubits state space. The nor-
malization doesn’t change the pattern of those images. For learning a quantum
classifier, we use the QCNN model in Fig. 6 of Appendix E in the extended ver-
sion of this paper [31] and use measurement M = {M0 = |+〉〈+|,M1 = |−〉〈−|}.
The output of measurement M indicates the numbers: output 1 for number 3
and output 0 for number 6. The explicit parameterization of those Ci, Pj can

168 J. Guan et al.

be found in [7]. Again we use Adam optimizer to update the model parameters
minimizing the MSE form of Eq. (8). We finally achieve 98.4% training accuracy
and 97.5% validation accuracy.

7.5 Robustness Verification

Now, we start to check the ε-robustness for the above four well-trained classifiers
presented in the previous four subsections.

In practical applications, the value of robustness ε in Definition 3 represents
the ability of state preparation by quantum controls. For example, the state-of-
the-art is that a single qubit can be prepared with fidelity 99.99% (e.g. [29,30]).
Here, we choose four different values of ε in each experiment.

To show the scalability of our robust bound given in Lemma 1, we use it to
develop an algorithm (Algorithm 3 in Appendix F of the extended version of
this paper [31]) to under-approximate the robust accuracy, which is computed
by Algorithm 2. Algorithm 3 is a subroutine of Algorithm 2 without calling an
SDP solver (whenever a potential non-robust state can be detected by the robust
bound in Lemma 1). We compare the verification times by Algorithms 2 and 3.

Table 1. Verification results of quantum bits classification

Robust accuracy (in percent)

ε = 0.001 ε = 0.002 ε = 0.003 ε = 0.004

Robust bound (Lemma 1 - Algorithm 3) 88.13 75.88 58.88 38.25

Robustness algorithm (Theorem 2 -

Algorithm 2)

90.00 76.50 59.75 38.88

Verification times (in seconds)

Robust bound (Lemma 1 - Algorithm 3) 0.0050 0.0048 0.0047 0.0048

Robustness algorithm (Theorem 2 -

Algorithm 2)

1.3260 2.7071 4.6285 6.9095

Table 2. Verification results of quantum phase recognition.

Robust accuracy (in percent)

ε = 0.0001 ε = 0.0002 ε = 0.0003 ε = 0.0004

Robust bound (Lemma 1 - Algorithm 3) 99.20 98.80 98.60 98.30

Robustness Algorithm (Theorem 2 -
Algorithm 2)

99.20 98.80 98.60 98.40

Verification times (in seconds)

Robust bound (Lemma 1 - Algorithm 3) 1.4892 1.4850 1.4644 1.4789

Robustness algorithm (Theorem 2 -
Algorithm 2)

19.531 25.648 28.738 33.537

Robustness Verification of Quantum Classifiers 169

The experiments are done on a computer with the following configurations:
Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz × 8 Processor, 15.8 GiB Memory,
Ubuntu 18.04.5 LTS, with CVXPY: Python Software for Disciplined Convex
Programming [38] for solving SDP, and a SciPy solver for finding the minimum
of constrained nonlinear multivariable function for solving QCQP.

The experimental results are given in Tables 1, 2, 3 and 4. As an example,
we illustrate the details of the result for the case of ε = 0.001 in Table 1. First,
we only apply our robust bound in Lemma 1 to pick up all potential non-robust
states from the 800 points in the training dataset. Then 95 points are left. Thus,
the under-approximation of the robust accuracy computed by Algorithm 3 (in
Appendix F of the extended version of this paper [31]) is 88.13%. Next, we check
the 0.001-robustness by Algorithm 2. Indeed, only 80 of the points detected by
the above robust bound are non-robust and the exact robust accuracy is 90.00%.
We also compare the verification time of the two approaches to the robust accu-
racy. See the second column in Table 1 for the detail, and other experiment
results of ε-robustness are also summarized in the same table. Tables 1, 2, 3 and
4 for the verification results show that in all of these experiments, the robust
bound obtained in Lemma 1 scales very well, and the robustness verification by
Algorithm 3 costs significantly less time (<2 s) than the way of computing the
optimal robust bound by Algorithm 2. For example, for quantum phase recog-

Table 3. Verification results of cluster excitation detection

Robust accuracy (in percent)

ε = 0.0001 ε = 0.0002 ε = 0.0003 ε = 0.0004

Robust bound (Lemma 1 - Algorithm 3) 99.05 98.81 98.21 97.86

Robustness algorithm (Theorem 2 -
Algorithm 2)

100.0 100.0 100.0 100.0

Verification times (in seconds)

Robust bound (Lemma 1 - Algorithm 3) 1.2899 1.2794 1.2544 1.2567

Robustness algorithm (Theorem 2 -
Algorithm 2)

209.52 244.79 325.97 365.30

Table 4. Verification results of the classification of MNIST

Robust accuracy (in percent)

ε = 0.0001 ε = 0.0002 ε = 0.0003 ε = 0.0004

Robust bound (Lemma 1 - Algorithm 3) 99.70 99.40 99.30 99.20

Robustness algorithm (Theorem 2 -

Algorithm 2)

99.80 99.60 99.30 99.30

Verification times (in seconds)

Robust bound (Lemma 1 - Algorithm 3) 0.0803 0.1315 0.0775 0.0811

Robustness algorithm (Theorem 2 -

Algorithm 2)

0.3955 0.6751 0.7653 0.8855

170 J. Guan et al.

nition, for ε = 0.0001, 0.0002 and 0.0003, the under-approximation of the robust
accuracy is the same as the real value. Even for the last case of ε = 0.0004,
only the 0.1% difference is got. Furthermore, from the tables, the verification
time of Algorithm 2 is increasing with the value of ε, while the running time
of the method by the robust bound is almost unchanged. This is because the
former algorithm uses an SDP or QCQP solver to search all possible adversarial
examples for the potential non-robust states picked up by the robust bound, and
the number of these states are growing up with the value of ε. These counter-
examples detected by the algorithm confirm that our robustness framework is
effective. For instance, see Fig. 3 for two visualized adversarial examples gen-
erated by Algorithm 2 with a QCQP solver. As we can see, the benign and
adversarial images are perceptually similar. This also proves that our robustness
verification algorithm can detect not only quantum but also classical adversarial
examples.

resize

resize

Fig. 3. Two training states and their adversarial examples generated by Algorithm 2
with a QCQP solver: the first column images are 28×28 benign data from MNIST; The
second column shows the two downscaled 16 × 16 grayscale images; The last column
images are decoded from adversarial examples founded by Algorithm 2. The third
column images are the grayscale difference between benign and adversarial images.

8 Conclusion

In this work, we initiate the research of the formal robustness verification of
quantum machine learning algorithms against unknown quantum noise. We
found an analytical robustness bound which can be efficiently computed to
under-approximate the robust accuracy in practical applications. Furthermore,

Robustness Verification of Quantum Classifiers 171

we developed a robustness verification algorithm that can exactly verify the ε-
robustness of quantum machine learning algorithms and provides useful counter-
examples for the adversarial training.

For topics for future research, it should be useful in practical applications to
find an efficient method that over-approximates the robust accuracy of quantum
classifiers. Combined with the under-approximation approach developed in this
work, it can help us to more accurately and fast estimate the robust accuracy. In
classical machine learning, there exist some works in the literature to achieve this
task. For instance, ImageStars, a new set representation, was introduced in [13] to
perform efficient set-based analysis by combining operations on concrete images
with linear programming, which leads to efficient over-approximative analysis of
classical convolutional neural networks.

Tensor networks are one of the best-known data structures for implementing
large-scale quantum classifiers (e.g. QCNNs with 45 qubits in [5]). For practical
applications, we are going to incorporate tensor networks into our robustness
verification algorithm so that it can scale up to achieve the demand of NISQ
devices (of ≥50 qubits).

More generally, further investigations are required to better understand the
role of robustness in quantum machine learning, especially through more exper-
iments on real world applications like learning phases of quantum many-body
systems.

Acknowledgment. We would like to thank the anonymous reviewers for their insight-
ful comments. This work was partly supported by the National Key R&D Program
of China (Grant No: 2018YFA0306701), the National Natural Science Foundation of
China (Grant No: 61832015) and the Australian Research Council (ARC) under grant
No.DP210102449.

References

1. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial
neural networks. Science 355(6325), 602–606 (2017)

2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2010)

3. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quan-
tum machine learning. Nature 549(7671), 195–202 (2017)

4. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum
domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)

5. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat.
Phys. 15(12), 1273–1278 (2019)

6. Huang, H.-Y., Kueng, R., Preskill, J.: Information-theoretic bounds on quantum
advantage in machine learning. arXiv preprint arXiv:2101.02464 (2021)

7. Broughton, M., et al.: TensorFlow quantum: a software framework for quan-
tum machine learning. arXiv preprint arXiv:2003.02989 (2020). See https://www.
tensorflow.org/quantum for the platform

8. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.D.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58 (2011)

http://arxiv.org/abs/2101.02464
http://arxiv.org/abs/2003.02989
https://www.tensorflow.org/quantum
https://www.tensorflow.org/quantum

172 J. Guan et al.

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference
Track Proceedings (2015)

10. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learn-
ing models resistant to adversarial attacks. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May
2018, Conference Track Proceedings. OpenReview.net (2018)

11. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing
ten detection methods. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pp. 3–14 (2017)

12. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. arXiv
preprint arXiv:1712.09665 (2017)

13. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

14. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

15. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with Ver-
ifAI. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 122–134.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 6

16. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable
guarantees (invited paper). In: Fokkink, W.J., van Glabbeek, R. (eds.) 30th Inter-
national Conference on Concurrency Theory, CONCUR 2019, Amsterdam, the
Netherlands, 27–30 August 2019. LIPIcs, vol. 140, pp. 1:1–1:5. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

17. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

18. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

19. Sirui, L., Duan, L.-M., Deng, D.-L.: Quantum adversarial machine learning. Phys.
Rev. Res. 2, 033212 (2020)

20. Du, Y., Hsieh, M.-H., Liu, T., Tao, D., Liu, N.: Quantum noise protects quantum
classifiers against adversaries. arXiv preprint arXiv:2003.09416 (2020)

21. Liu, N., Wittek, P.: Vulnerability of quantum classification to adversarial pertur-
bations. Phys. Rev. A 101(6), 062331 (2020)

22. Weber, M., Liu, N., Li, B., Zhang, C., Zhao, Z.: Optimal provable robustness of
quantum classification via quantum hypothesis testing. npj Quantum Inf. 7(1),
1–12 (2021)

23. Helstrom, C.W.: Detection theory and quantum mechanics. Inf. Control 10(3),
254–291 (1967)

http://arxiv.org/abs/1712.09665
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_6
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
http://arxiv.org/abs/2003.09416

Robustness Verification of Quantum Classifiers 173

24. Sharif, M., Bauer, L., Reiter, M.K.: On the suitability of Lp-norms for creating
and preventing adversarial examples. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 1605–1613 (2018)

25. Roque, T.F., Clerk, A.A., Ribeiro, H.: Engineering fast high-fidelity quantum oper-
ations with constrained interactions. npj Quantum Inf. 7(1), 1–17 (2021)

26. Torosov, B.T., Vitanov, N.V.: Smooth composite pulses for high-fidelity quantum
information processing. Phys. Rev. A 83(5), 053420 (2011)

27. Farhi, E., Neven, H., et al.: Classification with quantum neural networks on near
term processors. Quantum Rev. Lett. 1(2), 10–37686 (2020)

28. Oh, S., Choi, J., Kim, J.: A tutorial on quantum convolutional neural networks
(QCNN). In: 2020 International Conference on Information and Communication
Technology Convergence (ICTC), pp. 236–239. IEEE (2020)

29. Myerson, A.H., et al.: High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett.
100(20), 200502200502 (2008)

30. Burrell, A.H., Szwer, D.J., Webster, S.C., Lucas, D.M.: Scalable simultaneous mul-
tiqubit readout with 99.99% single-shot fidelity. Phys. Rev. A 81(4), 040302 (2010)

31. Guan, J., Fang, W., Ying, M.: Robustness verification of quantum classifiers. arXiv
preprint arXiv:2008.07230 (2020)

32. Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., Kwiatkowska, M.: Global
robustness evaluation of deep neural networks with provable guarantees for the
hamming distance. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16
August 2019, pp. 5944–5952. ijcai.org (2019)

33. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv preprint arXiv:1706.07351 (2017)

34. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net
(2019)

35. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Lee, D.D., Sugiyama,
M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, Barcelona, Spain, 5–10 December 2016, pp. 2613–2621 (2016)

36. Zhang, R.Y., Lavaei, J.: Sparse semidefinite programs with near-linear time com-
plexity. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 1624–1631.
IEEE (2018)

37. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

38. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex
optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

39. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

40. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A Math. Theor.
41(23), 235303 (2008)

41. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.
lecun.com/exdb/mnist/

http://arxiv.org/abs/2008.07230
http://arxiv.org/abs/1706.07351
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

174 J. Guan et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

BDD4BNN: A BDD-Based Quantitative Analysis
Framework for Binarized Neural Networks

Yedi Zhang1, Zhe Zhao1, Guangke Chen1, Fu Song1,2(B), and Taolue Chen3

1 ShanghaiTech University, Shanghai, China
songfu@shanghaitech.edu.cn

2 Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China
3 Birkbeck, University of London, London, UK

Abstract. Verifying and explaining the behavior of neural networks is becom-
ing increasingly important, especially when they are deployed in safety-critical
applications. In this paper, we study verification and interpretability problems
for Binarized Neural Networks (BNNs), the 1-bit quantization of general real-
numbered neural networks. Our approach is to encode BNNs into Binary Deci-
sion Diagrams (BDDs), which is done by exploiting the internal structure of the
BNNs. In particular, we translate the input-output relation of blocks in BNNs to
cardinality constraints which are in turn encoded by BDDs. Based on the encod-
ing, we develop a quantitative framework for BNNs where precise and compre-
hensive analysis of BNNs can be performed. We demonstrate the application of
our framework by providing quantitative robustness analysis and interpretability
for BNNs. We implement a prototype tool BDD4BNN and carry out extensive
experiments, confirming the effectiveness and efficiency of our approach.

1 Introduction

Deep neural networks (DNNs) have achieved human-level performance in several
tasks, and are increasingly being incorporated into various application domains such as
autonomous driving [4] and medical diagnostics [53]. Modern DNNs usually contain
a great many parameters which are typically stored as 32/64-bit floating-point num-
bers, and require a massive amount of floating-point operations to compute the output
for a single input [60]. As a result, it is often challenging to deploy them on resource-
constrained, embedded devices. To mitigate the issue, quantization, which quantizes
32/64-bit floating-points to low bit-width fixed-points (e.g., 4-bits) with little accuracy
loss [23], emerges as a promising technique to reduce resource requirements. In par-
ticular, binarized neural networks (BNNs) [27] represent the case of 1-bit quantization
using the bipolar binaries ±1. BNNs can drastically reduce memory storage and exe-
cution time with bit-wise operations, hence substantially improve the time and energy
efficiency. BNNs have been demonstrated to achieve a high accuracy for a wide variety
of applications [34,41,52].

This work is supported by the National Natural Science Foundation of China (NSFC) under
Grants No.: 62072309, and an oversea grant from the State Key Laboratory of Novel Software
Technology, Nanjing University (KFKT2018A16).

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 175–200, 2021.
https://doi.org/10.1007/978-3-030-81685-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_8

176 Y. Zhang et al.

DNNs have been shown to lack robustness [11,14,36,49,59] and interpretability
of the predictions they make [25,43]. Various formal techniques and heuristics have
been proposed to analyze DNNs and interpret their behaviors, most of which focus on
real-numbered DNNs only. Verification of quantized DNNs has not been thoroughly
explored so far, although recent results have highlighted its importance: it was shown
that a quantized DNN does not necessarily preserve the properties satisfied by the real-
numbered DNN before quantization [14,22]. Indeed, the fixed-point number semantics
effectively yields a discrete state space for the verification of quantized DNNs whereas
real-numbered DNNs feature a continuous state space. The discrepancy could inval-
idate current verification techniques for real-numbered DNNs when they are directly
applied to the quantized counterparts (e.g., both false negative and false positive could
occur). Therefore, specialized techniques are required for rigorously verifying quan-
tized DNNs.

Broadly speaking, the existing techniques for quantized DNNs make use of con-
straint solving which is based on either SAT/SMT or (reduced, ordered) binary decision
diagrams (BDDs). A majority of work resorts to SAT/SMT solving. For the 1-bit quan-
tization (i.e., BNNs), typically BNNs are transformed into Boolean formulas where
SAT solving is harnessed [12,33,45,46]. Some recent work also studies variants of
BNNs [28,48], i.e., BNNs with ternary weights. For quantized DNNs with multiple bits
(i.e., fixed-points), it is natural to encode them as quantifier-free SMT formulas, e.g.,
using bit-vector and fixed-point theories [7,22,24], so that off-the-shelf SMT solvers
can be leveraged. In another direction, BDD-based approaches currently can tackle
BNNs only [54]. In a nutshell, they encode a BNN and an input region as a BDD,
based on which various analyses can be performed via queries on the BDD. The crux
of the approach is how to generate the BDD efficiently. In the work [54], the BDD is
constructed by BDD learning [44], thus, currently limited to toy BNNs (e.g., 64 input
size, 5 hidden neurons, and 2 output size) with relatively small input regions.

On the other hand, existing work mostly focuses on qualitative verification, which
asks whether there exists an input x (in a specified region) for a neural network such that
a property (e.g., local robustness) is violated. In many practical applications, checking
only the existence is not sufficient. Indeed, for local robustness, such an (adversarial)
input almost surely exists which makes a qualitative answer less meaningful. Instead,
quantitative verification, which asks how often a property φ is satisfied or violated, is
far more useful yet more challenging as it could provide a probabilistic guarantee of
the behavior of neural networks. Such a quantitative guarantee is essential to certify,
for instance, certain implementations of neural network based perceptual components
against safety standards of autonomous vehicles [29,32]. Quantitative analysis of gen-
eral neural networks, however, is challenging, hence received little attention and for
which the results are rather limited so far. DeepSRGR [69] presented an abstract inter-
pretation based quantitative robustness verification approach for DNNs which is sound
but incomplete. For BNNs, approximate SAT model-counting solvers (�SAT) are lever-
aged [6,47] based on the SAT encoding for the qualitative counterpart. Though proba-
bly approximately correct (PAC) style guarantees can be provided, verification cost is
usually prohibitively high to achieve higher precision and confidence.

BDD4BNN 177

Main Contributions. We propose a BDD-based framework BDD4BNN to support
quantitative analysis of BNNs. The main challenge is how to efficiently build BDDs
from BNNs [47]. In contrast to previous work [54] which is learning-based and largely
treats the BNN as a blackbox, we directly encode a BNN and the associated input
region into BDDs. In a nutshell, a BNN is a sequential composition of multiple internal
blocks and one output block. Each block comprises 3 layers and captures a function
f : {+1,−1}n → {+1,−1}m, where n (resp. m) denotes the number of inputs (resp. out-
puts) of the block. Technically, the function f can be alternatively rewritten as a function
over the standard Boolean domain, i.e., f : {0, 1}n → {0, 1}m. A key stepping-stone of
our encoding is the observation that the i-th output yi of the block can be captured by
a cardinality constraint of the form

∑n
j=1 � j ≥ k such that yi = +1 ⇔ ∑n

j=1 � j ≥ k,
where each literal � j is either x j or ¬x j for the input variable x j, and k is a constant.
We then present an algorithm to encode a cardinality constraint

∑n
j=1 � j ≥ k as a BDD

with O((n − k) · k) nodes in O((n − k) · k) time. As a result, the input-output relation
of each block can be encoded as a BDD, the composition of which yields the BDD for
the entire BNN. A distinguished advantage of our BDD encoding lies in its support of
incremental encoding. In particular, when different input regions are of interest, there is
no need to construct the BDD of the entire BNN from scratch.

Encoding BNNs as BDDs enables a wide variety of applications in security analysis
and decision explanation of BNNs. In this paper, we highlight two of them within our
framework, i.e., robustness analysis and interpretability. It was shown that DNNs have
been suffering from poor robustness to adversarial examples [49,50,59]. We consider
two quantitative variants of the problem: (1) how many adversarial examples does the
BNN have in the input region, and (2) how many of them are misclassified to each
class? We further provide an algorithm to incrementally compute the (locally) maximal
Hamming distance within which the BNN satisfies the desired robustness properties.

Interpretability is an issue arisen as a result of the blackbox nature of DNNs [25,43].
In application domains such as medical diagnosis, understanding the decisions made by
DNNs is a must. We consider two problems: (1) why some inputs are (mis)classified
into a class by the BNN and (2) are there any essential features in the input region that
are common for all samples classified into a class?

Experimental Results. We implement our framework as a prototype tool BDD4BNN
using the CUDD package [58], which scales to BNNs with up to 4 internal blocks,
200 hidden neurons, and 784 input size. To the best of our knowledge, it is the first
work to precisely and quantitatively analyze such large BNNs that go significantly
beyond the state-of-the-art. The experimental results show that BDD4BNN is signifi-
cantly more efficient and scalable than the learning-based technique [54]. Furthermore,
we demonstrate how BDD4BNN can be used in quantitative robustness analysis and
decision explanation of BNNs. For quantitative robustness analysis, our experimental
results show that BDD4BNN is considerably (5× to 1, 340×) faster and more accurate
than the state-of-the-art approximate �SAT-based approach [6]. It can also compute pre-
cisely the distribution of predicated classes of the images in the input region as well as
the locally maximal Hamming distances on several BNNs. For decision explanation,
we show the effectiveness of BDD4BNN in computing prime-implicant explanations

178 Y. Zhang et al.

and essential features of the given input region for some target classes. Note that this
work focuses on quantitative verification and interpretability of BNNs and may under-
perform SAT/SMT-based methods [12,33,45,46] for qualitative verification of BNNs.

In general, our main contributions can be summarized as follows.

Fig. 1. Architecture of a BNN with d + 1 blocks

– We introduce a novel algorithmic approach for encoding BNNs into BDDs that
exactly preserves the semantics of BNNs and supports incremental encoding.

– We propose a framework for quantitative verification of BNNs and in particular, we
demonstrate the robustness analysis and interpretability of BNNs.

– We implement the framework as an end-to-end tool BDD4BNN and conduct thor-
ough experiments on various BNNs, demonstrating the efficiency and effectiveness
of BDD4BNN.

2 Preliminaries

In this section, we briefly introduce binarized neural networks (BNNs) and (reduced,
ordered) binary decision diagrams (BDDs).

We denote by R, N, B, and B±1 the set of real numbers, the set of natural numbers,
the standard Boolean domain {0, 1} and the integer set {+1,−1}. For n ∈ N, we denote
by [n] the set {1, · · · , n}. We will use W, W′, . . . to denote (2-dimensional) matrices,
x, v, · · · to denote (row) vectors, and x, v, . . . to denote scalars. We denote by Wi,: and
W:, j the i-th row and j-th column of the matrix W. Similarly, we denote by x j and Wi, j

the j-th entry of x and Wi,: respectively. In this work, Boolean values 1/0 will be used
as integers 1/0 in arithmetic computations without typecasting.

2.1 Binarized Neural Networks

A binarized neural network (BNN) [27] is a neural network where weights and acti-
vations are predominantly binarized over the domain B±1. In this work, we consider
feed-forward BNNs. As shown in Fig. 1, a BNN can be seen as a sequential composi-
tion of several internal blocks and one output block. Each internal block comprises 3
layers: a linear layer (LIN), a batch normalization layer (BN), and a binarization layer
(BIN). The output block comprises a linear layer and an ARGMAX layer. Note that
the input/output of internal blocks and the input of the output block are all vectors over
B±1.

BDD4BNN 179

Table 1. Definitions of layers in BNNs, where nd+2 = s and arg max(·) returns the index of the
largest entry which occurs first.

Layer Function Parameters Definition

LIN tlini : Bni
±1 → Rni+1 Weight matrix: W ∈ Bni×ni+1

±1
Bias (row) vector: b ∈ Rni+1

tlini (x) = y where ∀ j ∈ [ni+1],
y j = 〈x,W:, j〉 + b j

BN tbn
i : Rni+1 → Rni+1 Weight vectors: α ∈ Rni+1

Bias vector: γ ∈ Rni+1

Mean vector: μ ∈ Rni+1

Std. dev. vector: σ ∈ Rni+1

tbn
i (x) = y where ∀ j ∈ [ni+1],

y j = α j · (x j−μ j
σ j

) + γ j

BIN tbin
i : Rni+1 → Bni+1

±1 – tbin
i (x) = y where ∀ j ∈ [ni+1],

y j =

⎧
⎪⎪⎨
⎪⎪⎩

+1, if x j ≥ 0;

−1, otherwise.

ARGMAX tam
d+1 : Rs → Bs – tam

d+1(x) = y where ∀ j ∈ [s],
y j = 1⇔ j = arg max(x)

Definition 1. A BNN N : Bn1
±1 → B

s with s classes is given by a tuple of blocks
(t1, · · · , td, td+1) such that N = td+1 ◦ td ◦ · · · ◦ t1,

– for every i ∈ [d], ti : Bni

±1 → Bni+1
±1 is an internal block comprising a LIN layer tlin

i , a
BN layer tbn

i and a BIN tbin
i with ti = tbin

i ◦ tbn
i ◦ tlin

i ,
– td+1 : Bnd+1

±1 → Bs is the output block comprising a LIN layer tlin
d+1 and an ARGMAX

layer tam
d+1 with td+1 = tam

d+1 ◦ tlin
d+1,

where tbin
i , tbn

i , tlin
i for i ∈ [d], tlin

d+1 and tam
d+1 are given in Table 1.

Intuitively, a LIN layer is a linear transformation. A BN layer following a LIN layer
is used to standardize and normalize the output of the LIN layer. A BIN layer is used
to binarize the real-numbered output vector of the BN layer. In this work, we consider
the sign function which is widely used in BNNs to binarize real-numbered vectors. An
ARGMAX layer follows a LIN layer and outputs the index of the largest entry as the
predicted class which is represented by a one-hot vector. (In case there is more than one
such entry, the first one is returned.) Formally, given a BNN N = (t1, · · · , td, td+1) and
an input x ∈ Bn1

±1, N(x) ∈ Bs is a one-hot vector in which the index of the non-zero
entry is the predicated class.

2.2 Binary Decision Diagrams

A BDD [9] is a rooted acyclic directed graph where non-terminal nodes v are labeled by
Boolean variables var(v) and terminal nodes (leaves) v are labeled with values val(v) ∈
B, referred to as the 1-leaf and the 0-leaf respectively. Each non-terminal node v has two
outgoing edges: hi(v) meaning var(v) = 1 and lo(v) meaning var(v) = 0. We will also
refer to hi(v) and lo(v) as the hi and lo children of v respectively. Moreover, assuming
that x1, · · · , xm is the variable ordering, for each node v with var(v) = xi and each
v′ ∈ {hi(v), lo(v)} with var(v′) = x j, we have i < j. In the graphical representation
of BDDs, hi(v) and lo(v) are depicted by solid and dashed lines respectively. Multi-
Terminal Binary Decision Diagrams (MTBDDs) are a variant of BDDs in which the

180 Y. Zhang et al.

Fig. 2. The reduced BDD for f (x1, y1,

x2, y2) = (x1 ⇔ y1) ∧ (x2 ⇔ y2)

Table 2. Some basic BDD operations, where
op ∈ {And,Or,Xor,Xnor}

Operation Description

v = Var(x) fv(x) = x

v = Const(1) fv = 1

v = Const(0) fv = 0

Not(v) ¬ fv

Apply(v, v′, op) fv op fv′

Exists(v, X) ∃X. fv

SatAll(v) SatAll(fv)

RelProd(v, v′) fv ◦ fv′

ITE(x, v, v′) (x ∧ v) ∨ (¬x ∧ v′)

terminal nodes are not restricted to be 0 or 1. A BDD is reduced if it (1) has only one
1-leaf and one 0-leaf, (2) does not contain a node v such that hi(v) = lo(v), and (3)
does not contain two distinct non-terminal nodes v and v′ such that var(v) = var(v′),
hi(v) = hi(v′) and lo(v) = lo(v′). For example, Fig. 2 shows the reduced BDD for the
Boolean function f (x1, y1, x2, y2) = (x1 ⇔ y1) ∧ (x2 ⇔ y2). Hereafter, we assume that
BDDs are reduced.

Bryant [9] showed that BDDs can serve as a canonical form of Boolean functions.
Given a BDD over variables x1, · · · , xm, each non-terminal node v with var(v) = xi

represents a Boolean function fv = (xi ∧ fhi(v)) ∨ (¬xi ∧ flo(v)). Operations on Boolean
functions can usually be efficiently implemented via manipulating their BDD represen-
tations. A good variable ordering is crucial for the performance of BDD manipulations
while the problem of finding an optimal ordering for a function is NP-hard. To store and
manipulate BDDs efficiently, the nodes are stored in a hash table and the recent com-
puted results are stored in a cache to avoid duplicated computations. In this work, we
will use some basic BDD operations such as ITE for If-Then-Else, Xor for exclusive-
OR, Xnor for exclusive-NOR (i.e., a Xnor b = ¬(a Xor b)) and SatAll(fv) for the
set of all solutions of the Boolean formula fv. We denote by L(v) the set SatAll(fv).
For easy reference, more operations are given in Table 2. By op(v, v′) we denote the
operation Apply(v, v′, op).

3 BDD4BNN Design

3.1 BDD4BNN Overview

An overview of BDD4BNN is depicted in Fig. 3. BDD4BNN comprises four main com-
ponents: Region2BDD, BNN2CC, BDD Model Builder, and Query Engine. For a fixed
BNN N = (t1, · · · , td, td+1) and a region R of the input space of N , BDD4BNN con-
structs the BDDs (Gout

i)i∈[s] to encode the input-output relation of N in the region R,
where the BDD Gout

i corresponds to the class i ∈ [s]. Technically, the region R is parti-
tioned into s parts represented by (Gout

i)i∈[s]. For each property query, BDD4BNN ana-
lyzes (Gout

i)i∈[s] and outputs the query result.

BDD4BNN 181

Fig. 3. Overview of BDD4BNN

Fig. 4. Graphic representation of BDDs using Algorithm 1

The general workflow of our approach is as follows. First, Region2BDD builds up a
BDD Gin

R from the region R which represents the desired input space of N for analysis.
Second, BNN2CC transforms each block of the BNN N into a set of cardinality con-
straints (CCs) similar to [6,46]. Third, BDD Model Builder builds the BDDs (Gout

i)i∈[s]

from all the cardinality constraints and the BDD Gin
R . Finally, Query Engine answers

queries by analyzing the BDDs (Gout
i)i∈[s]. Our Query Engine currently supports two

types of application queries: robustness analysis and interpretability.
In the rest of this section, we first introduce the key sub-component CC2BDD,

which provides an encoding of cardinality constraints into BDDs. We then provide
details of the components Region2BDD, BNN2CC, and BDD Model Builder. The
Query Engine will be described in Sect. 4.

3.2 CC2BDD: Cardinality Constraints to BDDs

A cardinality constraint is a constraint of the form
∑n

j=1 � j ≥ k over a vector x of
Boolean variables with length n, where the literal � j is either x j or ¬x j for each j ∈ [n].
Note that constraints of the form

∑n
j=1 � j > k,

∑n
j=1 � j ≤ k and

∑n
j=1 � j < k are equivalent

to
∑n

j=1 � j ≥ k + 1,
∑n

j=1 ¬� j ≥ n − k and
∑n

j=1 ¬� j ≥ n − k + 1, respectively. We assume
that 1 (resp. 0) is a special cardinality constraint that always holds (resp. never holds).

To encode
∑n

j=1 � j ≥ k as a BDD, we observe that all the possible solutions of
∑n

j=1 � j ≥ k can be compactly represented by a BDD-like graph shown in Fig. 4(a),
where each node is labeled by a literal, and a solid (resp. dashed) edge from a node
labeled by � j means that the value of the literal � j is 1 (resp. 0). Thus, each path from the
�1-node to the 1-leaf through the � j-node (where 1 ≤ j ≤ n) captures a set of valuations
where � j followed by a (horizontal) dashed line is set to be 0 while � j followed by

182 Y. Zhang et al.

Algorithm 1: BDD Construction for cardinality constraints

1 Proc CC2BDD(CC :
∑n

j=1 � j ≥ k)
2 Gk+1,1 = Gk+1,2 = · · · = Gk+1,n−k+1 = Const(1);
3 G1,n−k+2 = G2,n−k+2 = · · · = Gk,n−k+2 = Const(0);
4 for (i = k; i ≥ 1; i − −) do
5 for (j = n − k + 1; j ≥ 1; j − −) do
6 if (�i+ j−1 == xi+ j−1) then Gi, j = ITE(xi+ j−1,Gi+1, j,Gi, j+1);
7 else Gi, j = ITE(xi+ j−1,Gi, j+1,Gi+1, j);
8 return G1,1

a (vertical) solid line is set to be 1, and all the other literals which are not along the
path can take arbitrary values. Clearly, for each of these valuations, there are at least k
positive literals, hence the constraint

∑n
j=1 � j ≥ k holds.

Based on the above observation, we build the BDD for
∑n

j=1 � j ≥ k using
Algorithm 1. It builds a BDD for each node in Fig. 4(a), row-by-row (the index i in
Algorithm 1) and from right to left (the index j in Algorithm 1). For each node at the
i-th row and j-th column, the label of the node must be the literal �i+ j−1. We build the
BDD Gi, j = ITE(xi+ j−1,Gi+1, j,Gi, j+1) if �i+ j−1 is of the form xi+ j−1 (Line 6), otherwise
we build the BDD Gi, j = ITE(xi+ j−1,Gi, j+1,Gi+1, j) (Line 7). Finally, we obtain the BDD
G1,1 that encodes the solutions of

∑n
j=1 � j ≥ k. Consider x1+¬x2+x3+¬x4+x5+¬x6 ≥ 3,

Fig. 4(b) shows its BDD by Algorithm 1.

Lemma 1. For each cardinality constraint
∑n

j=1 � j ≥ k, a BDD G with O((n − k) · k)
nodes can be computed in O((n−k) ·k) time such thatL(G) is the set of all the solutions
of
∑n

j=1 � j ≥ k.

Compared with prior works [8,42] which transform general arithmetic constraints
into BDDs, we devise a dedicated BDD encoding algorithm for the cardinality con-
straints without applying reduction, hence it is more efficient.

3.3 Region2BDD: Input Regions to BDDs

In this paper, we consider the following two types of input regions.

– Input region based on Hamming distance. For an input u ∈ Bn1
±1 and an integer

r ≥ 0, R(u, r) denotes the set {x ∈ Bn1
±1 | HD(x,u) ≤ r}, where HD(x,u) denotes the

Hamming distance between x and u. Intuitively, R(u, r) includes the input vectors
which differ from u by at most r positions.

– Input region with fixed indices. For an input u ∈ Bn1
±1 and a set of indices I ⊆ [n1],

R(u, I) denotes the set {x ∈ Bn1
±1 | ∀i ∈ [n1] \ I. ui = xi}. Intuitively, R(u, I) includes

the input vectors which differ from u only at the indices from I.

Note that both R(u, n1) and R(u, [n1]) denote the entire input space Bn1
±1.

Recall that each input sample is an element from Bn1
±1. To represent the region R by

a BDD, we transform each value ±1 into a Boolean value 1/0. To this end, for each
input u ∈ Bn1

±1, we create a new sample u(b) ∈ Bn1 such that for every i ∈ [n1], ui =

BDD4BNN 183

2u(b)
i − 1. Therefore, R(u, r) and R(u, I) will be represented by R(u(b), r) and R(u(b), I),

respectively. The transformation functions tlin
i , tbn

i , tbin
i and tam

d+1 of the LIN, BN, BIN, and
ARGMAX layers (cf. Table 1) will be handled accordingly. Note that for convenience,
vectors over the Boolean domain B may be directly given by u or x when it is clear
from the context.

Region Encoding Under Hamming Distance. Given an input u ∈ Bn1 and an integer
r, the region R(u, r) can be expressed by a cardinality constraint

∑n1
j=1 � j ≤ r (which is

equivalent to
∑n1

j=1 ¬� j ≥ n1 − r), where for every j ∈ [n1], � j = x j if u j = 0, otherwise
� j = ¬x j. For instance, consider u = (1, 1, 1, 0, 0) and r = 2, we have:

HD(u, x) = 1 ⊕ x1 + 1 ⊕ x2 + 1 ⊕ x3 + 0 ⊕ x4 + 0 ⊕ x5 = ¬x1 + ¬x2 + ¬x3 + x4 + x5.

Thus, R((1, 1, 1, 0, 0), 2) can be expressed by the cardinality constraint ¬x1+¬x2+¬x3+

x4 + x5 ≤ 2, or equivalently x1 + x2 + x3 + ¬x4 + ¬x5 ≥ 3.
By Algorithm 1, the cardinality constraint of R(u, r) can be encoded by the BDD

Gin
u,r, such that L(Gin

u,r) = R(u, r). Following Lemma 1, we get that:

Lemma 2. For an input region R given by an input u ∈ Bn1 and an integer r, a BDD
Gin

u,r with O(r · (n1− r)) nodes can be computed in O(r · (n1− r)) time such thatL(Gin
u,r) =

R(u, r).

Region Encoding Under Fixed Indices. Given an input u ∈ Bn1 and a set of indices
I ⊆ [n1], the region R(u, I) = {x ∈ Bn1 | ∀i ∈ [n1] \ I. ui = xi} can be represented by the
BDD Gin

u,I � Andi∈[n1]\I
(
(ui == 1)?Var(xi) : Not(Var(xi))

)
. Intuitively, Gin

u,I states that
the value at the index i ∈ [n1] \ I should be the same as the one in u while the value at
the index i ∈ I is unrestricted. For instance, consider u = (1, 0, 0, 0) and I = {3, 4}, we
have:

R((1, 0, 0, 0), {3, 4}) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)} = x1 ∧ ¬x2.

Lemma 3. For an input region R given by an input u ∈ Bn1 and indices I ⊆ [n1], a BDD
Gin

u,I with O(n1 − |I|) nodes can be computed in O(n1) time such that L(Gin
u,I) = R(u, I).

3.4 BNN2CC: BNNs to Cardinality Constraints

As mentioned before, to encode the BNNN = (t1, · · · , td, td+1) as BDDs, we transform
the BNN N into cardinality constraints from which the desired BDDs (Gout

i)i∈[s] are
constructed. To this end, we first transform each internal block ti : Bni

±1 → Bni+1
±1 into ni+1

cardinality constraints, each of which corresponds to one of the outputs of ti. Then we
transform the output block td+1 : Bnd+1

±1 → Bs into s(s− 1) cardinality constraints, where
one output class yields (s − 1) cardinality constraints.

For each vector-valued function t, we denote by t↓ j the (scalar-valued) function
returning the j-th entry of the output of t.

184 Y. Zhang et al.

Transformation for Internal Blocks. Consider the internal block ti : Bni

±1 → Bni+1
±1 for

i ∈ [d]. Recall that for every j ∈ [ni+1] and x ∈ Bni

±1, ti↓ j(x) = tbin
i (tbn

i (〈x,W:, j〉+ b j)), and
each value ±1 of an input u ∈ Bn1

±1 is replaced by 1/0 (cf. Sect. 3.3). To be consistent,
the function ti↓ j : Bni

±1 → B±1 is reformulated as the function t(b)
i↓ j : Bni → B such that

for every x ∈ Bni , t(b)
i↓ j(x) = 0.5 × (tbin

i (tbn
i (〈2x − 1,W:, j〉 + b j)) + 1), where 1 denotes the

vector of 1’s with the width ni.
Let Ci, j be the following cardinality constraint:

Ci, j �

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑ni

k=1 �k ≥ � 1
2 · (ni + μ j − b j − γ j·σ j

α j
)�, if α j > 0;

1, if α j = 0 ∧ γ j ≥ 0;
0, if α j = 0 ∧ γ j < 0;
∑ni

k=1 ¬�k ≥ � 1
2 · (ni − μ j + b j +

γ j·σ j

α j
)�, if α j < 0;

where for every k ∈ [ni], �k is xk if Wk, j = +1, and �k is ¬xk if Wk, j = −1.

Proposition 1. t(b)
i↓ j ⇔ Ci, j.

Proof refers to [71].

Transformation for the Output Block. For the output block td+1 : Bnd+1

±1 → Bs, since
td+1 = tam

d+1 ◦ tlin
d+1, then for every j ∈ [s], we can reformulate td+1↓ j : Bnd+1

±1 → B as the

function t(b)
d+1↓ j : Bnd+1 → B such that for every x ∈ Bnd+1 , t(b)

d+1↓ j(x) = td+1↓ j(2x − 1).
For every j′ ∈ [s] \ { j}, we define the cardinality constraint Cd+1, j′ as follows:

Cd+1, j′ �

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑nd+1

k=1 �d+1,k ≥ 1
4 (b j′ − b j +

∑nd+1

k=1 (Wk, j −Wk, j′)) + 1 + �Neg,
if j′ < j and 1

4 (b j′ − b j +
∑nd+1

k=1 (Wk, j −Wk, j′)) is an integer;

∑nd+1

k=1 �d+1,k ≥ � 1
4 (b j′ − b j +

∑nd+1

k=1 (Wk, j −Wk, j′))� + �Neg, otherwise;

where �Neg = |{k ∈ [nd+1] | Wk, j −Wk, j′ = −2}|, �d+1,k is xd+1,k if Wk, j −Wk, j′ = +2,
�d+1,k is ¬xd+1,k if Wk, j −Wk, j′ = −2, and �d+1,k is 0 if Wk, j −Wk, j′ = 0.

Proposition 2. t(b)
d+1↓ j ⇔

∧
j′∈[s], j′� j Cd+1, j′ .

Proof refers to [71].
For each internal block ti : Bni

±1 → B
ni+1
±1 , we denote by BNN2CC(ti) the car-

dinality constraints {Ci,1, · · · ,Ci,ni+1 }. For each output class j ∈ [s], we denote by
BNN2CC j(td+1) the cardinality constraints {Cd+1,1, · · ·Cd+1, j−1,Cd+1, j+1, · · · ,Cd+1,s}. By
applying the above transformation to all the blocks of the BNN N = (t1, · · · , td, td+1),
we obtain its cardinality constraint form N (b) = (t(b)

1 , · · · , t(b)
d , t

(b)
d+1) such that for each

i ∈ [d], t(b)
i = BNN2CC(ti), and t(b)

d+1 = (BNN2CC1(td+1), · · · ,BNN2CCs(td+1)). Given
an input u ∈ Bn1 , we denote by N (b)(u) the index j ∈ [s] such that all the cardinality
constraints in BNN2CC j(td+1) hold under the valuation u. It is straightforward to verify:

Theorem 1. u ∈ Bn1
±1 is classified into the class j by the BNN N iff N (b)(u(b)) = j.

BDD4BNN 185

Example 1. Consider the BNN N = (t1, t2) with one internal block t1 and one output
block t2 as shown in Fig. 5 (left-bottom), where the elements of the Weight matrix W
are associated to the edges, and the other parameters are given in the left-up table. The
transformation functions of blocks t1 and t2 are given in the right-up table, and their
cardinality constraints are given in the right-bottom table.

For instance, for each input x ∈ B3
±1, y1 = sign(−x1 + x2 + x3 + 2.7), i.e., y1 = +1⇔

−x1+ x2+ x3+2.7 ≥ 0. By replacing xi with 2× x(b)
i −1 and x(b)

1 with 1−¬x(b)
1 , we have:

y1 = +1 ⇔ (−x(b)
1 + x(b)

2 + x(b)
3 + 0.85 ≥ 0) ⇔ (¬x(b)

1 + x(b)
2 + x(b)

3 ≥ 0.15). Thus we get

y(b)
1 ⇔ ¬x(b)

1 + x(b)
2 + x(b)

3 ≥ 1 (note that y(b)
1 = 0⇔ ¬x(b)

1 + x(b)
2 + x(b)

3 < 1). Similarly, we

can deduce that o1 ⇔ y1 − y2 ≥ 0.7, and thus o1 ⇔ y(b)
1 − y(b)

2 ≥ 0.35⇔ y(b)
1 +¬y(b)

2 ≥ 2.

3.5 BDD Model Builder

The construction of the BDDs (Gout
i)i∈[s] from the BNN N (b) and the input region R

is done iteratively throughout the blocks. Initially, the BDD for the first block is built,
which can be seen as the input-output relation for the first internal block. In the i-th
iteration, as the input-output relation of the first (i−1) internal blocks has been encoded
into the BDD, we compose this BDD with the BDD for the block ti which is built from
its cardinality constraints t(b)

i , resulting in the BDD for the first i internal blocks. Finally,
we obtain the BDDs (Gout

i)i∈[s] of the BNN N , with respect to the input region R.

Fig. 5. An illustrating example

Design Choice. There are several design choices for efficiency consideration which
we discuss as follows. First of all, to encode the input-output relation of an internal
block ti into BDD from its cardinality constraints t(b)

i = {Ci,1, · · · ,Ci,ni+1 }, we need to
compute And j∈[ni+1]CC2BDD(Ci, j). A simple and straightforward approach is to initially
compute a BDD G = CC2BDD(Ci,1) and then iteratively compute the conjunction G =
And(G,CC2BDD(Ci, j)) of G and CC2BDD(Ci, j) for 2 ≤ j ≤ ni+1.

Alternatively, we use a divide-and-conquer strategy to recursively compute the
BDDs for the first half and the second half of the cardinality constraints respectively,

186 Y. Zhang et al.

and then apply the AND-operation. Our preliminary experimental results show that
the latter approach often performs better (about 2 times faster) than the former one,
although they generate the same BDD.

Second, constructing the BDD directly from the cardinality constraints t(b)
i =

{Ci,1, · · · ,Ci,ni+1 } becomes prohibitively costly when ni and ni+1 are large, as the BDDs
CC2BDD(Ci, j) for j ∈ [ni+1] need to consider all the inputs in Bni . To improve effi-
ciency, we apply feasible input propagation. Namely, when we construct the BDD for
the block ti+1, we only consider its possible inputs with respect to the output of the block
ti. Our preliminary experimental results show that the optimization could significantly
improve the efficiency of the BDD construction.

Third, instead of encoding the input-output relation of the BNN N as a sole BDD
or MTBDD, we opt to use a family of s BDDs (Gout

i)i∈[s], each of which corresponds
to one output class of N . Recall that each output class i ∈ [s] is represented by (s − 1)
cardinality constraints. Then, we can build a BDD Gi for the output class i, similar to
the BDD construction for internal blocks. By composing Gi with the BDD of the entire
internal blocks, we obtain the BDD Gout

i . Building a single BDD or MTBDD for the
BNN is possible from (Gout

i)i∈[s], but our approach gives the flexibility especially when
a specific target class is interested, which is common for robustness analysis.

Algorithm 2: BDD Construction for BNNs

1 Proc BNN2BDD(BNN : N = (t1, · · · , td, td+1), Region : R(u, τ))
2 Gin = Gin

u,τ (cf. Section 3.3); N (b) = (t(b)
1 , · · · , t(b)

d , t
(b)
d+1) (cf. Section 3.4);

3 for (i = 1; i ≤ d; i + +) do
4 G′ =Block2BDD(t(b)

i ,G
in, i);

5 Gin = Exists(G′, xi) ; // xi denote input variables of t(b)
i

6 G = (i == 1) ? G′ : RelProd(G,G′);
7 for (i = 1; i ≤ s; i + +) do
8 Gi =Block2BDD(t(b)

d+1↓i,G
in, d + 1);

9 Gout
i = RelProd(Gi,G);

10 return (Gout
i)i∈[s]

11 Proc Block2BDD(CCs : {Cm, · · · ,Cn}, InputSpace : Gin, BlkIndex : i)
12 if n == m then
13 G1 =CC2BDD(Cm) (cf. Algorithm 1);
14 G = And(G1,Gin);
15 if i � d + 1 then G = Xnor(xi+1

m ,G);
16 else
17 G1 =Block2BDD({Cm, · · · ,C� n−m

2 �+m},Gin, i);

18 G2 =Block2BDD({C� n−m
2 �+m+1, · · · ,Cn},Gin, i);

19 G = And(G1,G2);
20 return G

BDD4BNN 187

Overall Algorithm. The overall BDD construction procedure is shown in Algorithm 2.
Given a BNNN = (t1, · · · , td, td+1) with s output classes and an input region R(u, τ), the
algorithm outputs the BDDs (Gout

i)i∈[s], encoding the input-output relation of the BNN
N with respect to the input region R(u, τ).

The procedure BNN2BDD first builds the BDD representation Gin
u,τ of the input

region R(u, τ) and the cardinality constraints from BNN N (b) (Line 1). The first for-
loop builds a BDD encoding the input-output relation of the entire internal blocks
w.r.t. Gin

u,τ. The second for-loop builds the BDDs (Gout
i)i∈[s], each of which encodes the

input-output relation of the entire BNN for a class i ∈ [s] w.r.t. Gin
u,τ. The procedure

Block2BDD receives the cardinality constraints {Cm, · · · ,Cn}, a BDD Gin representing
the feasible inputs of the block and the block index i as inputs, and returns a BDD G. If
i = d+1, namely, the cardinality constraints {Cm, · · · ,Cn} are from the output block, the
resulting BDD G encodes the subset of Gin

u,τ that satisfy all the cardinality constraints
{Cm, · · · ,Cn}. If i � d + 1, then the BDD G encodes the input-output relation of the
Boolean function fm,n such that for every xi ∈ L(Gin), fm,n(xi) is the truth vector of the
cardinality constraints {Cm, · · · ,Cn} under the valuation xi. When m = 1 and n = ni+1,
fm,n is the same as t(b)

i , hence L(G) = {xi × xi+1 ∈ Gin × Bni+1 | t(b)
i (xi) = xi+1}. Detailed

explanation refers to [71].

Theorem 2. Given a BNN N with s output classes and an input region R(u, τ), we can
compute s BDDs (Gout

i)i∈[s] such that the BNNN classifies an input x ∈ R(u, τ) into the
class i ∈ [s] iff x(b) ∈ L(Gout

i).

Algorithm 2 explicitly involves O(d+ s) RelProd-operations, O(s2 +
∑

i∈[d] ni) And-
operations and O(d) Exists-operations.

4 Applications: Robustness Analysis and Interpretability

In this section, we present two applications within BDD4BNN, i.e., robustness analysis
and interpretability of BNNs.

4.1 Robustness Analysis

Definition 2. Given a BNN N and an input region R(u, τ), the BNN is (locally) robust
w.r.t. the region R(u, τ) if each sample x ∈ R(u, τ) is classified into the same class as the
ground-truth class of u.

An adversarial example in the region R(u, τ) is a sample x ∈ R(u, τ) such that x is
classified into a class, that differs from the ground-truth class of u.

As mentioned in Sect. 1, qualitative verification which checks whether a BNN is
robust or not is insufficient in many practical applications. In this paper, we are inter-
ested in quantitative verification of robustness which asks how many adversarial exam-
ples are there in the input region of the BNN for each class. To answer this question,
given a BNN N and an input region R(u, τ), we first obtain the BDDs (Gout

i)i∈[s] by
applying Algorithm 2 and then count the number of adversarial examples for each class

188 Y. Zhang et al.

in the input region R(u, τ). Note that counting adversarial examples amounts to com-
puting |R(u, τ)| − |L(Gout

g)|, where g denotes the ground-truth class of u, and |L(Gout
g)|

can be computed in time O(|Gout
g |).

In some applications, more refined analysis is needed. For instance, it may be
acceptable to misclassify a dog as a cat, but unacceptable to misclassify a tree as a car.
This suggests that the robustness of BNNs may depend on the classes to which samples
are misclassified. To capture this, we consider the notion of targeted robustness.

Definition 3. Given a BNN N , an input region R(u, τ), and the class t, the BNN is t-
target-robust w.r.t. the region R(u, τ) if every sample x ∈ R(u, τ) is never classified into
the class t. (Note that we assume that the ground-truth class of u differs from the class t.)

The quantitative verification problem of t-target-robustness of a BNN asks how
many adversarial examples in the input region R(u, τ) are misclassified to the class t by
the BNN N . To answer this question, we first obtain the BDD Gout

t by applying Algo-
rithm 2 and then count the number of adversarial examples by computing |L(Gout

t)|.
Note that, if one wants to compute the (locally) maximal safe Hamming distance

that satisfies a robustness property for an input sample (e.g., the proportion of adversar-
ial examples is below a threshold), our framework can incrementally compute such a
distance without constructing the BDD models of the entire BNN from scratch.

Definition 4. Given a BNN N , input region R(u, r) and threshold ε ≥ 0, r1 is the
(locally) maximal safe Hamming distance of R(u, τ), if one of the follows holds:

– if Pr(R(u, r)) > ε, then Pr(R(u, r1)) ≤ ε and Pr(R(u, r′)) > ε for r′ : r1 < r′ < r;
– if Pr(R(u, r)) ≤ ε, then Pr(R(u, r1 + 1)) > ε and Pr(R(u, r′)) ≤ ε for r′ : r < r′ ≤ r1;

where Pr(R(u, r)) is the probability
∑

i∈[s].i�g |L(Gout
i)|

|R(u,r)| for g being the ground-truth class of
u, assuming a uniform distribution of adversarial samples.

Algorithm 3 shows the procedure to incrementally compute the maximal safe Ham-
ming distance for a given threshold ε ≥ 0, input region R(u, r), and ground-truth class
g of u. Remark that Pr(R(u, r)) may not be monotonic w.r.t. the Hamming distance r.

4.2 Interpretability

In general, interpretability addresses the question of why some inputs in the input region
are (mis)classified by the BNN into a specific class? We consider the interpretability of
BNNs using two complementary explanations, i.e., prime implicant explanations and
essential features.

Definition 5. Given a BNNN , an input region R(u, τ) and a class g, a prime implicant
explanation (PI-explanation) of decisions made by the BNN N on the inputs L(Gout

g)
is a minimal set of literals {�1, · · · , �k} such that for every x ∈ R(u, τ), if x satisfies
�1 ∧ · · · ∧ �k, then x is classified into the class g by the BNN N .

BDD4BNN 189

Algorithm 3: Compute the maximal safe Hamming distance

1 Proc MaxHD(BNN : N = (t1, · · · , td, td+1), Region : R(u, r), Threshold : ε, Class : g)
2 (Gout

i)i∈[s] =BNN2BDD(N ,R(u, r));

3 if (
∑

i∈[s].i�g |L(Gout
i)|

|R(u,r)| > ε) then // decrease r
4 while (r ≥ 0) do
5 r = r − 1;
6 (Gout

i)i∈[s] = (And(Gin
u,r,G

out
i))i∈[s];

7 if (
∑

i∈[s].i�g |L(Gout
i)|

|R(u,r)| ≤ ε) then return r;

8 else // increase r
9 while (r ≤ n1) do // n1 is the input size of the BNN N

10 r = r + 1;
11 (Bout

i)i∈[s] =BNN2BDD(N ,R(u, r) \ R(u, r − 1));
12 (Gout

i)i∈[s] = (Or(Bout
i ,G

out
i))i∈[s];

13 if (
∑

i∈[s].i�g |L(Gout
i)|

|R(u,r)| > ε) then return r − 1;

14 return r

Intuitively, a PI-explanation {�1, · · · , �k} indicates that {var(�1), · · · , var(�k)} are key
features, namely, if fixed, the predication is guaranteed no matter how the remaining
features change. Remark that there may be more than one PI-explanation for a set of
inputs L(Gout

g). When g is set to be the class of the benign input u, a PI-explanation on
Gout

g suggests why these samples are classified into g by the BNN N .

Definition 6. Given a BNN N , an input region R(u, τ) and a class g, the essential fea-
tures for the inputs L(Gout

g) are literals {�1, · · · , �k} such that every x ∈ R(u, τ), if x is
classified into the class g by the BNN N , then x satisfies �1 ∧ · · · ∧ �k.

Intuitively, the essential features {�1, · · · , �k} denote the key features such that all
samples x ∈ R(u, τ) that are classified into the class g by the BNN N must agree on
these features. Essential features differ from PI-explanations, where the former can be
seen as a necessary condition, while the latter can be seen as a sufficient condition.

BDD libraries (e.g., CUDD [58]) usually provide APIs to identify prime impli-
cants (e.g., Cudd bddPrintCover and Cudd FirstPrime) and essential variables (e.g.,
Cudd FindEssential). Therefore, prime implicants and essential features can be com-
puted via queries on the BDDs (Gout

i)i∈[s].

5 Evaluation

We have implemented our framework as a prototype tool BDD4BNN based on the
CUDD package [58]. BDD4BNN is implemented with Python as the front-end to pre-
process BNNs and C++ as the back-end to perform the BDD encoding and analysis.
In this section, we report the experimental results, including BDD encoding, robustness
analysis based on hamming distance, and interpretability.

190 Y. Zhang et al.

Experimental Setup. The experiments were conducted on a machine with Intel Xeon
Gold 5118 2.3GHz CPU, 64-bit Ubuntu 20.04 LTS operating systems, 128 G RAM.
Each BDD encoding executed on one core limited by 8-h.

Benchmarks. We use the PyTorch (v1.0.1.post2) deep learning platform provided by
NPAQ [6] to train and test BNNs. We trained 12 BNN models (P1-P12) with varying
sizes using the MNIST dataset [35]. The MNIST dateset contains 70,000 gray-scale 28
× 28 images (60,000 for training and 10,000 for testing) of handwritten digits with 10
classes. In our experiments, we downscale the images (28 × 28) to some selected input
size n1 (i.e., the corresponding image is of the size

√
n1 × √n1) and then binarize the

normalized pixels of the images.
Details of the BNN models are listed in Table 3, each of which has 10 classes (i.e.,

s = 10). Column 1 shows the name of the BNN model. Column 2 shows the architecture
of the BNN model, where n1 : · · · : nd+1 : s denotes that the BNN model has d + 1
blocks, n1 inputs and s outputs; the i-th block for i ∈ [d + 1] has ni inputs and ni+1

outputs with nd+2 = s. Recall that each internal block has 3 layers while the output
block has 2 layers. Therefore, the number of layers ranges from 5 to 14, the dimension
of inputs ranges from 9 to 784, and the number of hidden neurons per linear layer ranges
from 10 to 100. Column 3 shows the accuracy of the BNN model on the test set of the
MNIST dataset. (We can observe that the accuracy increases with the size of inputs, the
number of layers, and the number of hidden neurons per layer.) We randomly choose
10 images from the training set of the MNIST dataset (one image per class) to evaluate
our approach.

5.1 Performance of BDD Encoding

We evaluate BDD4BNN on the BNNs listed in Table 3 using different input regions.

BDD Encoding Using Full Input Space. We evaluate BDD4BNN on the BNNs (P1–
P5), where Bn1

±1 is used as the input region. The results are shown in Table 4, where |G|
denotes the number of BDD nodes in the BDD manager. We can observe that both the
execution time and the number of BDD nodes increase with the size of BNNs.

BDD Encoding Under Hamming Distance. We evaluate BDD4BNN on the BNNs
(P5–P12). In this case, an input region is given by one of the 10 images and a Hamming
distance r ranging from 2 to 6. The average results are shown in Table 5, where [i] (resp.
(i)) indicates the number of cases that BDD4BNN runs out of memory (resp. time).
Overall, the execution time and the number of BDD nodes increase with r. BDD4BNN
succeeded on all the cases when r ≤ 4, 75 cases out of 80 when r = 5, and 48 cases
out of 80 when r = 6. We observe that the execution time and number of BDD nodes
increase with the number of hidden neurons (P6 vs. P7, P8 vs. P9, and P11 vs. P12),
while the effect of the number of layers is diverse (P6 vs. P8 vs. P10, and P7 vs. P9).
From P9 and P10, we observe that the number of hidden neurons per layer is likely
the key impact factor of the efficiency of BDD4BNN. Interestingly, our tool BDD4BNN
works well on BNNs with large input sizes (i.e., on P11 and P12).

BDD4BNN 191

Table 3. BNN benchmarks

Name Architecture Accuracy Name Architecture Accuracy

P1 9:20:10 12.23% P7 100:100:10 75.16%

P2 16:32:10 28.63% P8 100:50:20:10 71.1%

P3 16:64:32:10 25.14% P9 100:100:50:10 77.37%

P4 36:15:10:10 27.12% P10 100:50:30:30:10 80.63%

P5 64:10:10 49.16% P11 784:30:50:50:50:10 88.23%

P6 100:50:10 73.25% P12 784:50:50:50:50:10 86.95%

Table 4. BDD encoding using full input space

Name P1 P2 P3 P4 P5

Time (s) ≈0 0.78 28.21 10924.51 Timeout

|G| 288 18,864 17,636 152,830,875 –

These results demonstrate the efficiency and scalability of BDD4BNN on BDD
encoding of BNNs. We remark that, compared with the learning-based approach [54],
our approach is considerably more efficient and scalable. For instance, the learning-
based approach takes 403 s to encode a BNN with 64 input size, 5 hidden neurons, and
2 output size when r = 6, while ours takes about 3 s even for a larger network P5.

5.2 Robustness Analysis

We evaluate BDD4BNN on the robustness of BNNs, including robustness analysis under
different input regions and maximal safe Hamming distance computing.

Robustness Verification with Hamming Distance. We evaluate BDD4BNN on BNNs
(P7, P8, P9, and P11) using the 10 images. The input regions are given by the Hamming
distance r ranging from 2 to 4, resulting in 120 instances. To the best of our knowledge,
NPAQ [6] is the only work that supports quantitative robustness verification of BNNs to
which we compare BDD4BNN. Recall that NPAQ only provides PAC-style guarantees.
Namely, it sets a tolerable error ε and a confidence parameter δ. The final estimated
results of NPAQ have the bounded error ε with confidence of at least 1 − δ, i.e.,

Pr[(1 + ε)−1RealNum ≤ EstimatedNum ≤ (1 + ε)RealNum] ≥ 1 − δ (1)

In our experiments, we set ε = 0.8 and δ = 0.2, as done in [6].

192 Y. Zhang et al.

Table 5. BDD encoding under Hamming distance

r=2 r=3 r=4 r=5 r=6

Time(s) |G| Time(s) |G| Time(s) |G| Time(s) |G| Time(s) |G|
P5 0.01 1,559 0.03 9,795 0.11 36,796 0.74 176,107 2.94 592,104

P6 0.25 4,670 4.17 84,037 109.26 1,018,571 2,292.5 11,375,842 (5) 17,811 41,883,970

P7 0.65 5,295 22.70 106,754 652.78 1,575,722 (1) 17,399 16,163,078 [10] -

P8 0.14 6,147 1.95 125,226 44.51 1,668,027 1,146.8 20,519,582 (1) 12,491 172,369,297

P9 1.99 6,139 63.30 136,126 1,428.6 2,005,666 [1](3) 17,039 29,323,244 [10] -

P10 0.30 4,630 4.87 100,054 101.41 1,603,920 1,909.9 19,844,299 (5) 20,484 173,316,483

P11 5.52 3,128 5.73 22,120 6.60 86,413 11.63 556,774 238.2 2,881,468

P12 12.4 5,693 12.87 49,996 16.92 493,820 403.09 5,739,602 (1) 11,058 16,241,733

Table 6. Robustness verification under Hamming distance

r
NPAQ [6] BDD4BNN Diff

#(Adv) Time(s) Pr(adv) #(Adv) Time(s) Pr(adv) #(Adv) Speed Up

2 875 271.07 17.32% 1,806 0.65 35.76% 106.4% 416

P7 3 39,587 919.88 23.74% 65,054 22.71 39.01% 64.33% 40

4 1,023,798 3,862.0 25.04% 1,501,691 661.79 36.73% 46.68% 5

2 1,601 187.78 31.70% 2,261 0.14 44.76% 41.22% 1,340

P8 3 66,562 396.45 39.92% 64,372 1.96 38.60% -3.29% 201

4 1,636,070 1,861.7 40.02% 1,829,103 45.0 44.74% 11.80% 40

2 1,214 363.44 24.03% 1,406 1.99 27.84% 15.82% 182

P9 3 51,464 3,763.6 30.86% 42,901 63.31 25.73% -16.64% 58

4 1,316,181 (1) 9,007.8 32.20% 3,968,609 1,505.0 97.08% 201.5% 5

2 12,083 3,831.0 3.93% 28,736 5.52 9.34% 137.8% 693

P11 3 0 (2) 4,634.2 0% 0 5.68 0% - 815

4 0 (2) 7,979.1 0% 0 6.38 0% - 1,250

The results on the average of the images are shown in Table 6. NPAQ ran out of time
on 5 instances (which occur in P9 with r = 4 and P11 with r = 3 and r = 4), while
BDD4BNN successfully verified all the 120 instances. Table 6 only shows the results of
115 instances that can be solved by NPAQ. Columns 3, 4, and 5 (resp. 6, 7, and 8) show
the number of adversarial examples, the execution time, and the proportion of adver-
sarial examples in the input region. Column 9 shows the error rate RealNum−EstimatedNum

EstimatedNum
,

where RealNum is from our result, and EstimatedNum is from NPAQ. Column 10
shows the speedup of BDD4BNN compared with NPAQ. Remark that the numbers of
adversarial examples are 0 for P11 on input regions with r = 3 and r = 4 that can be
solved by NPAQ. There do exist input regions for P11 that cannot be solved by NPAQ
but have adversarial examples (see below). On BNNs that were solved by both NPAQ
and BDD4BNN, BDD4BNN is significantly (5× to 1, 340×) faster and more accurate
than NPAQ. From Table 5 and Table 6, we also found that most of the verification time
is spent on BDD encoding while the rest is usually less than 10 s.

Details of Robustness and Targeted Robustness. Figure 6(a) (resp. Fig. 6(b) and
Fig. 6(c)) depicts the distributions of classes on P8 with Hamming distance r = 2 (resp.
P8 with r = 3 and P11 with r = 2), where on the x-axis i = 0, · · · , 9 denotes the input

BDD4BNN 193

Fig. 6. Details of robustness verification with Hamming distance

region that is within the respective Hamming distance to the image of digit i (called
i-region). We can observe that P8 is robust for the 0-region when r = 2 and robust for
the 6-region when r = 2 and r = 3, but is not robust for the other regions. (Note P8
is not robust for 0-region when r = 3, which is hard to be visualized in Fig. 6(b) due
to the small number of adversarial examples.) Most of the adversarial examples in the
1-region and 5-region are misclassified into the digit 3 by P8. P11 is not robust for the
1-region or the 5-region, but is robust for all the other regions. Though P8 and P11 are
not robust on some input regions, indeed they are t-target-robust for many target classes
t, e.g., P11 is t-target-robust for the 1-region when t � 2, and the 5-region when t � 3.
(The raw data are given in [71].)

Quality Validation of NPAQ. Figure 6(d) shows the distribution of error rates of NPAQ,
where the x-axis is the range of the error rate and the y-axis is the corresponding number
of instances. There are 19 instances where the estimated number of adversarial exam-
ples exceeds (1+ε) of the real number of the adversarial examples and 7 instances where
the estimated number of adversarial examples is less than (1 + ε)−1 of the real number
of the adversarial examples. This means that out of 115 instances, only in 89 instances
the estimated number is within the allowed range, which is less than 1 − δ = 0.8.

Maximal Safe Hamming Distance. As a representative of such an analysis, we eval-
uate BDD4BNN on 4 BNNs (P7, P8, P9, and P11) with 10 images for 2 robustness
thresholds (ε = 0 and ε = 0.03). The initial Hamming distance r is 3. Intuitively, ε = 0
(resp. ε = 0.03) means that up to 0% (resp. 3%) samples in the input region can be
adversarial.

Table 7 shows the results, where columns SD and Time give the maximal safe Ham-
ming distance and the execution time, respectively. BDD4BNN solved 74 out of 80
instances. (For the remaining 6 instances, BDD4BNN ran out of time or memory, but

194 Y. Zhang et al.

Table 7. Maximal safe Hamming distance

Image

P7 P8 P9 P11

ε = 0 ε = 0.03 ε = 0 ε = 0.03 ε = 0 ε = 0.03 ε = 0 ε = 0.03

SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s)

0 1 15.09 4 10,845 2 0.51 6 Timeout 3 746.15 3 737.96 6 29.69 6 29.28

1 -1 19.96 -1 19.13 -1 2.84 -1 2.97 0 155.50 0 155.09 0 6.49 0 6.11

2 2 13.25 3 422.04 0 0.46 0 0.50 1 37.50 4 14,127 6 11,334 6 11,437

3 0 21.39 0 20.94 -1 1.92 -1 2.08 0 41.04 0 40.49 6 8,323.1 6 8,088.3

4 3 426.81 5 OOM -1 2.41 -1 2.61 2 8.08 5 OOM 6 30.85 6 30.74

5 -1 15.60 -1 15.92 -1 0.68 -1 0.74 -1 22.54 -1 21.54 -1 7.03 -1 6.72

6 4 7,990.6 5 OOM 3 5.69 4 198.26 1 57.37 4 Timeout 6 44.57 6 45.12

7 -1 16.08 -1 15.90 -1 2.49 -1 2.52 1 89.49 4 Timeout 6 89.38 6 88.39

8 -1 19.02 -1 19.28 -1 1.71 -1 1.80 -1 80.16 -1 79.91 6 43.95 6 43.30

9 0 26.82 0 27.69 0 5.09 1 5.39 -1 109.04 -1 107.24 6 338.73 6 327.48

Fig. 7. Graphic representation of essential features and PI-explanations

it was still able to compute a larger safe Hamming distance.) We can observe that the
maximal safe Hamming distance increases with the threshold ε on several BNNs and
input regions. We can also observe that P11 is more robust than others, which is con-
sistent with their accuracies (cf. Table 3). Remark that SD = −1 indicates that the input
image itself is misclassified.

5.3 Interpretability

To demonstrate the ability of BDD4BNN on interpretability, we consider the analysis of
the BNN P12 and the image u of digit 1.

Essential Features. For the input region given by the Hamming distance r = 4, we
compute two sets of essential features for the inputs L(Gout

2) and L(Gout
5), i.e., the

adversarial examples in the region R(u, 4) that are misclassified into the classes 2 and
5 respectively. The essential features are depicted in Figs. 7(a) and 7(b), where black
(resp. blue) color means that the value of the corresponding pixel is 1 (resp. 0), and
yellow color means that the value of the corresponding pixel can take arbitrary values.
Figure 7(a) (resp. Fig. 7(b)) indicates that the inputs L(Gout

2) (resp. L(Gout
5)) must agree

on these black- and blue-colored pixels.

BDD4BNN 195

PI-Explanations. For demonstration, we assume that the input region is given by the
fixed set of indices I = {1, 2, · · · , 28} which denotes the first row of pixels of 28 × 28
images. We compute two PI-explanations of the inputs L(Gout

2) and L(Gout
5). The PI-

explanations are depicted in Figs. 7(c) and 7(d). Figure 7(c) (resp. Fig. 7(d)) suggests
that, by the definition of the PI-explanation, all the images in the region R(u, I) obtained
by assigning arbitrary values to the yellow-colored pixels are always misclassified into
the class 2 (resp. class 5), while changing one black-colored or blue-colored pixel would
change the predication result since a PI-explanation is a minimal set of literals.

6 Related Work

In this section, we discuss the related work on qualitative/quantitative analysis and inter-
pretability of DNNs. As there is a vast amount of literature regarding these topics, we
will only discuss the most related ones to BDD4BNN.

Qualitative Analysis of DNNs. For real-numbered DNNs, various formal verifica-
tion approaches have been proposed. Typical examples include constraint solving based
approaches [17,26,30,31,51], optimization based approaches [10,13,15,16,40,61,67,
68], and program analysis based approaches [2,3,18,20,37–39,55–57,62–64,69].

Existing techniques for quantized DNNs are mostly based on constraint solving,
in particular, SAT/SMT solving [12,33,45,46]. Following this line, verification of
BNNs with ternary weights [28,48] and quantized DNNs with multiple bits [7,22,24]
were also studied. Recently, the SMT-based framework Marabou for real-numbered
DNNs [31] has also been extended to support BNNs [1].

Quantitative Analysis of DNNs. Comparing to qualitative analysis, quantitative anal-
ysis of neural networks is currently very limited. Two sampling-based approaches were
proposed to certify the robustness for both DNNs and BNNs [5,65]. Yang et al. [69]
proposed a spurious region-guided refinement approach for real-numbered DNN verifi-
cation, claiming to be the first work of the quantitative robustness verification of DNNs
with soundness guarantees.

Following the SAT-based qualitative analysis of BNNs [45,46], SAT-based quan-
titative analysis approaches were also proposed [6,21,47]. In particular, approximate
SAT model-counting solvers are utilized. Shih et al. [54] also proposed a BDD-based
approach to tackle BNNs, similar to our work in spirit. However, our approach is able
to handle BNNs of considerably larger sizes than their learning-based method.

Interpretability of DNNs. Though interpretability of DNNs is crucial for explain-
ing predictions, it is very challenging to tackle due to the blackbox nature of DNNs.
There is a large body of work on the interpretability of DNNs (cf. [25,43] for a survey).
Almost all the existing approaches are heuristic-based and restricted to finding explana-
tions that are local in an input region. Some of them tackle the interpretability of DNNs
by learning an interpretable model, such as binary decision trees [19,70] or finite-state

196 Y. Zhang et al.

automata [66]. In contrast to ours, they target at DNNs and only approximate the origi-
nal model in the input region. The BDD-based approach [54] mentioned above has been
used to compute the PI-explanation, but essential features were not considered therein.

7 Conclusion

In this paper, we have proposed a novel BDD-based framework for quantitative verifica-
tion of BNNs. We implemented the framework as a prototype tool BDD4BNN and con-
ducted extensive experiments on 12 BNN models with varying sizes and input regions.
Experimental results demonstrated that BDD4BNN is more scalable than the existing
BDD-learning based approach, and significantly more efficient and accurate than the
existing SAT-based approach NPAQ. This work represents the first, but a key, step of the
long-term program to develop an efficient and scalable BDD-based quantitative analysis
framework for BNNs.

References

1. Amir, G., Wu, H., Barrett, C.W., Katz, G.: An SMT-based approach for verifying binarized
neural networks. CoRR abs/2011.02948 (2020)

2. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a synergis-
tic approach for analyzing neural network robustness. In: PLDI, pp. 731–744 (2019)

3. Ashok, P., Hashemi, V., Křetı́nský, J., Mohr, S.: DeepAbstract: neural network abstraction
for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 92–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 5

4. Baidu: Apollo (2021). https://apollo.auto
5. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification for deep

neural networks. CoRR abs/2002.06864 (2020)
6. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification of neural

networks and its security applications. In: CCS, pp. 1249–1264 (2019)
7. Baranowski, M., He, S., Lechner, M., Nguyen, T.S., Rakamarić, Z.: An SMT theory of

fixed-point arithmetic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 13–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51074-9 2

8. Bartzis, C., Bultan, T.: Construction of efficient BDDs for bounded arithmetic constraints.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 394–408. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 28

9. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
put. 35(8), 677–691 (1986)

10. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and bound for
piecewise linear neural network verification. J. Mach. Learn. Res. 21, 42:1-42:39 (2020)

11. Chen, G., et al.: Who is real Bob? Adversarial attacks on speaker recognition systems. CoRR
abs/1911.01840 (2019)

12. Cheng, C.-H., Nührenberg, G., Huang, C.-H., Ruess, H.: Verification of binarized neural
networks via inter-neuron factoring. In: Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS,
vol. 11294, pp. 279–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03592-
1 16

https://doi.org/10.1007/978-3-030-59152-6_5
https://apollo.auto
https://doi.org/10.1007/978-3-030-51074-9_2
https://doi.org/10.1007/978-3-030-51074-9_2
https://doi.org/10.1007/3-540-36577-X_28
https://doi.org/10.1007/978-3-030-03592-1_16
https://doi.org/10.1007/978-3-030-03592-1_16

BDD4BNN 197

13. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 251–268.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 18

14. Duan, Y., Zhao, Z., Bu, L., Song, F.: Things you may not know about adversarial example: a
black-box adversarial image attack. CoRR abs/1905.07672 (2019)

15. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedfor-
ward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS,
vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-
5 9

16. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to scalable
verification of deep networks. In: UAI, pp. 550–559 (2018)

17. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

18. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network
verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 43–65.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 3

19. Frosst, N., Hinton, G.E.: Distilling a neural network into a soft decision tree. In: Proceed-
ings of the 1st International Workshop on Comprehensibility and Explanation in AI and ML
(2017)

20. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: S&P,
pp. 3–18 (2018)

21. Ghosh, B., Basu, D., Meel, K.S.: Justicia: a stochastic SAT approach to formally verify
fairness. CoRR abs/2009.06516 (2020)

22. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quantize your
neural network? In: TACAS 2020. LNCS, vol. 12079, pp. 79–97. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45237-7 5

23. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited
numerical precision. In: ICML, pp. 1737–1746 (2015)

24. Henzinger, T.A., Lechner, M., Žikelić, D.: Scalable verification of quantized neural networks
(technical report). arXiv preprint arXiv:2012.08185 (2020)

25. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verifi-
cation, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37,
100270 (2020)

26. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 1

27. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks.
In: NeurIPS, pp. 4107–4115 (2016)

28. Jia, K., Rinard, M.: Efficient exact verification of binarized neural networks. In: NeurIPS
(2020)

29. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to
demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 94, 182–193
(2016)

30. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT
solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 5

https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-45237-7_5
http://arxiv.org/abs/2012.08185
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

198 Y. Zhang et al.

31. Katz, G., et al.: The Marabou framework for verification and analysis of deep neural net-
works. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

32. Koopman, P., Osyk, B.: Safety argument considerations for public road testing of
autonomous vehicles. SAE Int. J. Adv. Curr. Pract. Mobility 1, 512–523 (2019)

33. Korneev, S., Narodytska, N., Pulina, L., Tacchella, A., Bjorner, N., Sagiv, M.: Constrained
image generation using binarized neural networks with decision procedures. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 438–449. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 27

34. Kung, J., Zhang, D.C., van der Wal, G.S., Chai, S.M., Mukhopadhyay, S.: Efficient object
detection using embedded binarized neural networks. J. Signal Process. Syst. 90(6), 877–890
(2018)

35. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
36. Lei, Y., Chen, S., Fan, L., Song, F., Liu, Y.: Advanced evasion attacks and mitigations on

practical ML-based phishing website classifiers. CoRR abs/2004.06954 (2020)
37. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks

with symbolic propagation: towards higher precision and faster verification. In: Chang, B.-
Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32304-2 15

38. Li, R., et al.: PRODeep: a platform for robustness verification of deep neural networks. In:
FSE, pp. 1630–1634 (2020)

39. Liu, W., Song, F., Zhang, T., Wang, J.: Verifying ReLU neural networks from a model check-
ing perspective. J. Comput. Sci. Technol. 35(6), 1365–1381 (2020)

40. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU
neural networks. CoRR abs/1706.07351 (2017)

41. McDanel, B., Teerapittayanon, S., Kung, H.T.: Embedded binarized neural networks. In:
EWSN, pp. 168–173 (2017)

42. Minato, S.I., Somenzi, F.: Arithmetic Boolean expression manipulator using BDDs. Formal
Methods Syst. Des. 10(2), 221–242 (1997). https://doi.org/10.1023/A:1008643722423

43. Molnar, C., Casalicchio, G., Bischl, B.: Interpretable machine learning - A brief history,
state-of-the-art and challenges. CoRR abs/2010.09337 (2020)

44. Nakamura, A.: An efficient query learning algorithm for ordered binary decision diagrams.
Inf. Comput. 201(2), 178–198 (2005)

45. Narodytska, N.: Formal analysis of deep binarized neural networks. In: IJCAI, pp. 5692–
5696 (2018)

46. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying proper-
ties of binarized deep neural networks. In: AAAI, pp. 6615–6624 (2018)

47. Narodytska, N., Shrotri, A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assessing heuristic
machine learning explanations with model counting. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 267–278. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-24258-9 19

48. Narodytska, N., Zhang, H., Gupta, A., Walsh, T.: In search for a SAT-friendly binarized
neural network architecture. In: ICLR (2020)

49. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.: Practical
black-box attacks against machine learning. In: CCS, pp. 506–519 (2017)

50. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limita-
tions of deep learning in adversarial settings. In: S&P, pp. 372–387 (2016)

51. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neu-
ral networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
243–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 24

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-319-94144-8_27
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1007/978-3-030-32304-2_15
https://doi.org/10.1023/A:1008643722423
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1007/978-3-030-24258-9_19
https://doi.org/10.1007/978-3-642-14295-6_24

BDD4BNN 199

52. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification
using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46493-0 32

53. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed.
Eng. 19, 221–248 (2017)

54. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by Angluin-style
learning. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 354–370.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 25

55. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex barrier
for neural network certification. In: NeurIPS, pp. 15072–15083 (2019)

56. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective robustness
certification. In: NeurIPS, pp. 10825–10836 (2018)

57. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural
networks. Proc. ACM Program. Lang. (POPL) 3, 41:1–41:30 (2019)

58. Somenzi, F.: CUDD: CU decision diagram package (2015)
59. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
60. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks.

In: ICML, pp. 6105–6114 (2019)
61. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with mixed integer

programming. In: ICLR (2019)
62. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional neural

networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224,
pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 2

63. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In: ter Beek,
M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 670–686. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

64. Wan, W., Zhang, Z., Zhu, Y., Zhang, M., Song, F.: Accelerating robustness verification of
deep neural networks guided by target labels. CoRR abs/2007.08520 (2020)

65. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to assessing neural
network robustness. In: ICLR (2019)

66. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural networks using
queries and counterexamples. In: ICML, pp. 5244–5253 (2018)

67. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer
adversarial polytope. In: ICML, pp. 5283–5292 (2018)

68. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verification for mul-
tilayer neural networks. TNNLS 29(11), 5777–5783 (2018)

69. Yang, P., et al.: Improving neural network verification through spurious region guided refine-
ment. CoRR abs/2010.07722 (2020)

70. Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting CNNs via decision trees. In: CVPR, pp.
6261–6270 (2019)

71. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based quantitative
analysis framework for binarized neural networks. CoRR abs/2103.07224 (2021)

https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-030-24258-9_25
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-30942-8_39

200 Y. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Automated Safety Verification of
Programs Invoking Neural Networks

Maria Christakis1, Hasan Ferit Eniser1�, Holger Hermanns , Jörg Hoffmann2,
Yugesh Kothari1, Jianlin Li , Jorge A. Navas4, and Valentin Wüstholz5

1 MPI-SWS, Kaiserslautern and Saarbrücken, Germany
{maria,hfeniser,ykothari}@mpi-sws.org

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{hermanns,hoffmann}@cs.uni-saarland.de

3 SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
ljlin@ios.ac.cn

4 SRI International, Menlo Park, USA
jorge.navas@sri.com

5 ConsenSys, Kaiserslautern, Germany
valentin.wustholz@consensys.net

6 Institute of Intelligent Software, Guangzhou, China
7 University of Chinese Academy of Sciences, Beijing, China

Abstract. State-of-the-art program-analysis techniques are not yet able
to effectively verify safety properties of heterogeneous systems, that is,
systems with components implemented using diverse technologies. This
shortcoming is pinpointed by programs invoking neural networks despite
their acclaimed role as innovation drivers across many application areas.
In this paper, we embark on the verification of system-level properties for
systems characterized by interaction between programs and neural net-
works. Our technique provides a tight two-way integration of a program
and a neural-network analysis and is formalized in a general framework
based on abstract interpretation. We evaluate its effectiveness on 26 vari-
ants of a widely used, restricted autonomous-driving benchmark.

1 Introduction

Software is becoming increasingly heterogeneous. In other words, it consists of
more and more diverse software components, implemented using different tech-
nologies such as neural networks, smart contracts, or web services. Here, we
focus on programs invoking neural networks, in response to their prominent role
in many upcoming application areas. Examples from the forefront of innovation
include a controller of a self-driving car that interacts with a neural network
identifying street signs [43,48], a banking system that consults a neural network
for credit screening [3], or a health-insurance system that relies on a neural net-
work to predict people’s health needs [51]. There are growing concerns regarding
the effects of integrating such heterogeneous technologies [40].

Despite these software advances, state-of-the-art program-analysis techniques
cannot yet effectively reason across heterogeneous components. In fact, program
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12759, pp. 201–224, 2021.
https://doi.org/10.1007/978-3-030-81685-8_9

,

3, ,

2 6

2 7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_9&domain=pdf

analyses today focus on homogeneous units of software in isolation; for instance,
to check the robustness of a neural network (e.g., [37,27,36,66,65,64,57,41]),
or safety of a program invoking a neural network while—conservatively, but
imprecisely—treating the neural network as if it could return arbitrary values.
This is a fundamental limitation of prevalent program-analysis techniques, and
as a result, we cannot effectively analyze the interaction between diverse com-
ponents of a heterogeneous system to check system properties.

Many properties of heterogeneous systems depend on components correctly
interacting with each other. For instance, consider a program that controls the
acceleration of an autonomous vehicle by invoking a neural network with the
current direction, speed, and LiDAR image of the vehicle’s surroundings. One
might want to verify that the vehicle’s speed never exceeds a given bound. Even
such a seemingly simple property is challenging to verify automatically due to
the mutual dependencies between the two components. On the one hand, the
current vehicle direction and speed determine the feasible inputs to the neural
network. On the other hand, the output of the neural network controls the
vehicle acceleration, and thereby, the speed. To infer bounds on the speed (and
ultimately prove the property), an automated analysis should therefore analyze
how the two components interact.
Our approach. In this paper, we make the first step in verifying safety of het-
erogeneous systems, and more specifically, of programs invoking neural networks.
Existing work on verification of neural networks has either focused on the net-
work itself (e.g., with respect to robustness) or on models (e.g., expressed using
differential equations) that invoke the network, for example as part of a hybrid
system [24,59]. In contrast, our approach is designed for verifying safety of a C
(or ultimately LLVM) program interacting with the network. In comparison to
models, C programs are much more low-level and general, and therefore require
an intricate combination of program and neural-network analyses.

More specifically, our approach proposes a symbiotic combination of a pro-
gram and a neural-network analysis, both of which are based on abstract inter-
pretation [18]. By treating the neural-network analysis as a specialized abstract
domain of the program analyzer, we are able to use inferred invariants for the
neural network to check system properties in the surrounding program. In other
words, the program analysis becomes aware of the network’s computation. For
this reason, we also refer to the overall approach as neuro-aware program anal-
ysis. In fact, the program and neural-network analyses are co-dependent. The
former infers sets of feasible inputs to the neural network, whereas the latter
determines its possible outputs given the inferred inputs. Knowing the possible
neural-network outputs, in turn, enables proving system safety.

We evaluate our approach on 26 variants of Racetrack, a benchmark from
related work that originates in AI autonomous decision making [4,5,32,46,52,53].
Racetrack is about the problem of navigating a vehicle on a discrete map to
a goal location without crashing into any obstacles. The vehicle acceleration (in
discrete directions) is determined by a neural network, which is invoked by a
controller responsible for actually moving the vehicle. In Sect. 4, we show the

202 M. Christakis et al.

effectiveness of our approach in verifying goal reachability and crash avoidance
for 26 Racetrack variants of varying complexity. These variants constitute a
diverse set of verification tasks that differ both in the neural network itself and
in how and for what purpose the program invokes the neural network.

Despite our evaluation being focused on this setting, the paper’s contribution
should not be mistaken as being about Racetrack verification. Instead, it is
about neuro-aware program analysis of heterogeneous systems for autonomous
decision making. While Racetrack is a substantially simplified blueprint for
the autonomous-driving context, it features the crucial co-dependent program
architecture that is characteristic across the entire domain.
Contributions. Overall, we make the following contributions:

1. We present the first symbiotic combination of program and neural-network
analyses for verifying safety of heterogeneous systems.

2. We formalize neuro-aware program analysis in a general framework that uses
specialized abstract domains.

3. We evaluate the effectiveness of our approach on 26 variants of a widely used,
restricted autonomous-driving benchmark.

2 Overview

We now illustrate neuro-aware program analysis on a high level by describing
the challenges in verifying safety for a variant of the Racetrack benchmark.
This variant serves as our running example for the class of programs that invoke
one or more neural networks to perform a computation affecting program safety.

In general, Racetrack is a heterogeneous system that simulates the prob-
lem of navigating a vehicle to a goal location on a discrete map without crashing
into any obstacles. It consists of a neural network, which predicts the vehi-
cle acceleration toward discrete directions, and a controller (implemented in C)
that actually moves the vehicle on the map. Alg. 1 shows pseudo-code for our
running example, a variant of Racetrack that incorporates additional non-
deterministic noise to make verification harder.

Line 1 non-deterministically selects a state from the map as the currentState,
and line 2 assumes it is a start state for the vehicle, i.e., it is neither a goal nor
an obstacle. On line 3, we initialize the result of navigating the vehicle as stuck,
i.e., the vehicle neither crashes nor does it reach a goal. The loop on line 5
iterates until either a predefined number of steps N is reached or the vehicle is
no longer stuck (i.e., crashed or at a goal state). The if-statement on line 6 adds
non-determinism to the controller by either zeroing the vehicle acceleration or
invoking the neural network (NN) to make a prediction. Such non-deterministic
noise illustrates one type of variant we created to make the verification task more
difficult (see Sect. 4.1 for more details on other variants used in our evaluation).
Line 10 moves the vehicle to a new currentState according to acceleration, and
the if-statement on line 11 determines whether the vehicle has crashed or reached
a goal. The assertion on line 16 denotes the system properties of goal reachability

Automated Safety Verification of Programs Invoking Neural Networks 203

Algorithm 1: An example Racetrack variant.
1 currentState ← ?
2 assume IsStartState(currentState)
3 result ← stuck
4 i ← 0
5 while i < N and result = stuck do
6 if ? then
7 acceleration ← 0
8 else
9 acceleration ← NN(currentState)

10 currentState ← Move(currentState, acceleration)
11 if IsCrash(currentState) then
12 result ← crash
13 else if IsGoal(currentState) then
14 result ← goal
15 i ← i+ 1

16 assert result = goal

and crash avoidance. In case this assertion does not hold but we do prove the
result to be stuck, then we have only verified crash avoidance.

Note that these are safety, and not liveness, properties due to the bounded
number of loop iterations (line 5)—N is 50 in our evaluation, thus making
bounded model checking [8,15] intractable.
Challenges. Verifying safety of this heterogeneous system with state-of-the-art
program-analysis techniques, such as abstract interpretation, is a challenging
endeavor.

When considering the controller in isolation, the analysis is sound if it as-
sumes that the neural network may return any output (>). More specifically,
the abstract interpreter can ignore the call to the neural network and simply
havoc its return value (i.e., consider a non-deterministic value). In our running
example, this means that any vehicle acceleration is possible from the perspec-
tive of the controller analysis. Therefore, it becomes infeasible to prove a system
property such as crash avoidance. In fact, in Sect. 4, we show this to be the case
even with the most precise controller analysis.

On the other hand, when considering the neural network in isolation, the
analysis must assume that any input is possible (>) even though this is not
necessarily the case in the context of the controller. More importantly, without
analyzing the controller, it becomes infeasible to prove properties about the
entire system; as opposed to properties of the neural network, such as robustness.
Our approach. To address these issues, our approach tightly combines the con-
troller and neural-network analyses in a two-way integration based on abstract
interpretation.

In general, an abstract interpreter infers invariants at each program state
and verifies safety of an asserted property when it is implied by the invariant
inferred in its pre-state. In the presence of loops, as in Racetrack (line 5 in

204 M. Christakis et al.

Alg. 1), inference is performed for a number of iterations in order to reach a
fixpoint, that is, infer invariants at each program state that do not change when
performing additional loop iterations.

For our running example, to compute the fixpoint of the main loop, the con-
troller analysis invokes the neural-network analysis instead of simply abstracting
the call to the neural network by havocking its return value. The invariants in-
ferred by the controller analysis in the pre-state of the call to the network are
passed to the neural-network analysis; they are used to restrict the input space
of the neural network. In turn, the invariants that are inferred by the neural-
network analysis are returned to the controller analysis to restrict the output
space. This exchange of verification results at analysis time significantly improves
precision. By making the program analysis aware of the network’s computation,
neuro-aware program analysis is able to prove challenging safety properties of
the entire system.

Our implementation combines off-the-shelf, state-of-the-art abstract inter-
preters, namely, Crab [34] for the controller analysis and DeepSymbol [41]
or Eran [27,56,57] for the neural-network analysis. Crab8 is a state-of-the-art
analyzer for checking safety properties of LLVM bitcode programs. Its modular
high-level architecture is similar to many other abstract interpreters, such as
Astrée [9], Clousot [26], and Infer [11], and it supports a wide range of different
abstract domains, such as Intervals [17], Polyhedra [19], and Boxes [33]. Special-
ized neural-network analyzers, such as DeepSymbol or Eran, have only very
recently been developed to deal with the unique challenges of precisely check-
ing robustness of neural networks; for instance, the challenge of handling the
excessive number of “branches” induced by cascades of ReLU activations.

The technical details of this combination are presented in the following sec-
tion. Note, however, that our technical framework does not prescribe a neural-
network analysis that is necessarily based on abstract interpretation. Specifically,

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
g
g
g

it could integrate any sound analysis that, given
a set of (symbolic) input states, produces a set of
output states over-approximating the return value
of the neural network. We also discuss how our ap-
proach may integrate reasoning about other com-
plex components, beyond neural networks. Our
program analysis is also not inherently tied to
Crab, but could be performed by other abstract
interpreters that use the same high-level architec-
ture, such as Astrée [9].

The Racetrack map on the right, which is
borrowed from related work [5,32], shows the ver-
ification results achieved by our approach when
combining Crab and DeepSymbol. Gray cells
marked with ‘x’ denote obstacles, and yellow cells

8 https://github.com/seahorn/crab

Automated Safety Verification of Programs Invoking Neural Networks 205

https://github.com/seahorn/crab

marked with ‘g’ denote goal locations. Recall from Alg. 1 that we can consider
any cell, which is neither an obstacle nor a goal, as a possible start location.

In our evaluation, we run a separate analysis for each possible start state to
identify all start locations from which the vehicle is guaranteed to reach a goal; in
other words, the analysis tries to prove that result = goal holds (line 16 of Alg. 1)
for each possible start location. Note that verifying a single start state already
constitutes a challenging verification problem since, due to noise, the number of
reachable states grows exponentially in the number of loop iterations (the vehicle
can navigate to any feasible position). This setting of one start state is common
in many reinforcement-learning environments, e.g., Atari games, Procgen [16],
OpenAI Gym MiniGrid9, etc.

Maps like the above are used throughout the paper to display the outcome of
a verification process per cell. We color locations for which the process succeeds
green in all shown maps. Similarly, we color states from which the vehicle might
crash into an obstacle red ; i.e., one or more states reachable from the start state
may lead to a crash, and the analysis is not able to show that result 6= crash

holds before line 16. Finally, states from which the vehicle is guaranteed not to
crash but might not reach a goal are colored in blue; i.e., the analysis is able to
show that result 6= crash holds before line 16, but it is not able to show that
result 6= stuck also holds.

As shown in the map, our approach is effective in verifying goal reacha-
bility and crash avoidance for the majority of start locations. Moreover, the
verification results are almost identical when combining Crab with a different
neural-network analyzer, namely Eran (see Sect. 4). Note that, since the anal-
ysis considers individual start states, the map may show a red start state that
is surrounded by green start states. One explanation for this is that the vehicle
never enters the red state from the surrounding green states or that it only en-
ters the red state with a “safe” velocity and direction—imagine that the vehicle
velocity when starting from the red state is always 2, whereas when entering it
from green states, the velocity is always less. In general, whether a trajectory is
safe largely depends on the neural-network behavior, which can be brittle.

3 Approach

As we discussed on a high level, our approach symbiotically combines an existing
program analysis (PA) with a neural-network analysis (NNA). The result is
a neuro-aware program analysis (NPA) that allows for precisely analyzing a
program that invokes neural networks (see Fig. 1). In the following, we focus on
a single network to keep the presentation simple. As shown in Fig. 1, the two
existing analyses are extended to pass information both from PA to NNA (Φ in
the diagram) and back (Ψ in the diagram).

In the following, we describe neuro-aware program analysis in more detail
and elaborate on how the program analysis drives the neural-network analysis
to verify safety properties of the containing heterogeneous system. Since the
9 https://github.com/maximecb/gym-minigrid

206 M. Christakis et al.

https://github.com/maximecb/gym-minigrid

Program
Analyzer

(PA)

Neural
Network
Analyzer
(NNA)

Program P Neural Network NN

Neuro-Aware Program Analyzer (NPA)

Safe / Unsafe

?

?

Figure 1: Overview of neuro-aware program analysis.

program analysis drives the neural-network analysis, we will explain the analysis
in a top-down fashion by focusing on the program analysis before going into the
details of the network analysis. In other words, our description of the program
analysis assumes that we have a network analysis that over-approximates the
behavior of the neural network.

3.1 Neuro-Aware Program Analysis

For our presentation, we assume imperative programs P with standard con-
structs, such as loops, function calls, arithmetic, and pointer operations (our
implementation targets LLVM bitcode). In addition, we assume a special func-
tion call o := nn(i1, . . . , in) that calls a neural network with input parameters
i1, . . . , in and returns the result of querying the network in return value o. We
also assume that the query does not have side effects on the program state. We
denote programs P augmented with special calls to neural networks as Pnn .

We assume an abstract domain D consisting of a set of abstract elements d ∈
D. Domain D is equipped with the usual binary operators 〈v,t,u,

` a
〉, where

the ordering between elements is given by v. ⊥D represents the smallest domain
element and >D the largest (smallest and largest relative to the ordering imposed
by v). The least upper bound (greatest lower bound) operator is denoted by t
(u). As usual, if the abstract domain is not finite or the number of elements is
too large, then we also assume the domain to be equipped with widening (

`
)

and narrowing (
a
) operators to ensure termination of the fixpoint computation.

Moreover, we assume the abstract forget : D × V 7→ D operation that removes
a set of variables from the abstract state, and its dual project : D × V 7→ D
that projects the abstract state onto a set of variables. Finally, we assume the
semantics function [[.]] : P 7→ D 7→ D that, given a pre-state, computes the
abstract semantics of a program to obtain its post-state; it does so recursively,
by induction over the syntax of the program. We do not require that there exists
aGalois connection [18] between the abstract domainD and the concrete domain

Automated Safety Verification of Programs Invoking Neural Networks 207

C. The only requirement is that D over-approximates C, i.e., [[.]]C ⊆ γ ◦ [[.]] ◦ α
where [[.]]C is the concrete semantics and γ : D 7→ C and α : C 7→ D are the
concretization and abstraction functions, respectively.

We can then trivially define [̂[.]] : Pnn 7→ D 7→ D to deal with Pnn as follows:

̂[[Cmd]](d) =
{
[[o := nn(i1, . . . , in)]](d) if Cmd ≡ o := nn(i1, . . . , in)
[[Cmd]](d) otherwise

[[o := nn(i1, . . . , in)]](d) =

{
⊥D if d = ⊥D

forget(d, o) otherwise

However, this definition of [̂[.]] is not very useful since it conservatively approxi-
mates the neural network by havocking its return value o.

To obtain a more precise approximation, we can integrate a designated neural-
network analysis. Specifically, we view the neural-network analysis as another
abstract domain Dnn , where, in practice, we do not require any other opera-
tion from Dnn except the transfer function for o := nn(i1, . . . , in) that soundly
approximates the semantics of the neural network (see Sect. 3.2 for more details):

[[o := nn(i1, . . . , in)]](d) =

⊥D if d = ⊥D

let dnn = convert(project(d, i1, . . . , in)) in
let d′nn = [[o := nn(i1, . . . , in)]]Dnn (dnn) in
forget(d, o)u convert−1(d′nn) otherwise

Intuitively, this more precise transfer function performs the following steps
(unless d is ⊥D). First, it converts from D to Dnn to invoke the transfer function
of Dnn on the converted value dnn . It then havocs the return value o and conjoins
the inferred return value after converting d′nn back to D. In the above definition,
functions convert : D 7→ Dnn and convert−1 : Dnn 7→ D convert from one
abstract domain (D) to the other (Dnn) and back. We allow for conversions to
result in loss of precision, that is, ∀x ∈ D · xv convert−1(convert(x)).

It is important to realize here that the implementation of functions convert
and convert−1, however precise, may still trigger a fatal loss of precision. After
all, the abstract domains D and Dnn must also be expressive and precise enough
to capture the converted values. For example, assume that, in a given program,
the function call o := nn(i1, . . . , in) invokes a neural network to obtain the next
move of a vehicle (encoded as a value from 0 to 7). Suppose the abstract return
value d′nn is the set of moves {1, 7}. In this case, given a domain D that cannot
express these two moves as disjuncts, the implementation of function convert−1

has no choice but to abstract more coarsely; for instance, by expressing the
return value as the interval [1, . . . , 7]. Depending on the program, this may be
too imprecise to prove safety. This happened to be the case for the Racetrack
variants we analyzed in Sect. 4, which is why we chose to use a disjunctive
domain for the analysis; more specifically, we use Boxes [33], which allows us to
track Boolean combinations of intervals.

208 M. Christakis et al.

Nevertheless, the considerations and approach described so far are still not
precise enough for verifying the safety properties in the variants of Racetrack
that we consider. This is because the controller makes extensive use of (multi-
dimensional) arrays, whose accesses are not handled precisely by the analysis.
However, we observed that these arrays are initialized at the beginning of the
system execution (for instance, to store maps indexed by x-y coordinates), and
after initialization, they are no longer modified. Handling such array reads pre-
cisely is crucial in our context since over-approximation could conservatively
indicate that the vehicle may crash into an obstacle.

Common array domains that summarize multiple elements using one or a
small number of abstract elements fail to provide the needed precision. Even a
fully expanded array domain [9] that separately tracks each array element loses
precision if the index of an array read does not refer to a single array element;
in such cases, the join of all overlapping elements will be returned. In addition,
the Clang compiler—used to produce the LLVM bitcode that Crab analyzes—
desugars multi-dimensional arrays into single-dimensional arrays. This results in
additional arithmetic operations (in particular, multiplications) for indexing the
elements; these are also challenging to analyze precisely.

Interestingly, to address these challenges, we follow the same approach as for
neural networks, in other words, by introducing a designated and very precise
analysis to handle reads from these pre-initialized arrays. More formally, we
introduce a new statement to capture such reads, o := ar(i1, . . . , in), where ik is
the index for the k-th dimension of an n-dimensional array. Note that this avoids
index conversions for multi-dimensional arrays since indices of each dimension
are provided explicitly. Moreover, it is structurally very similar to the nn(. . .)
statement we introduced earlier. In particular, the specialized transfer function
for D differs only in the two conversion functions and the specialized transfer
function [[.]]Dar

:

[[o := ar(i1, . . . , in)]](d) =

⊥D if d = ⊥D

let dar = convertar(project(d, i1, . . . , in)) in
let d′ar = [[o := ar(i1, . . . , in)]]Dar (dar) in
forget(d, o)u convertar−1(d′ar) otherwise

To keep this transfer function simple, its input is a set of concrete indices and
its output a set of concrete values that are retrieved by looking up the indexed
elements in the array (after initialization). This makes it necessary for convertar
to concretize the abstract inputs to a disjunction of (concrete) tuples (i1 , . . . , in)
for the read indices. Similarly, convert−1ar converts the disjunction of (concrete)
values back to an element of domain D.

Let us consider the concrete example in Fig. 2 to illustrate this more clearly.
Line 1 initializes an array that is never again written to. On line 2, a non-
deterministic value is assigned to variable idx, and the subsequent assume-
statement constrains its value to be in the interval from 0 to 6. The assertion
on line 5 checks that element elem, which is read from the array (on line 4),

Automated Safety Verification of Programs Invoking Neural Networks 209

1 int arr[] = {0, 1, 1, 2, 3, 5, 8, 13};
2 int idx = *;
3 assume (0 <= idx && idx <= 6);
4 int elem = arr[idx];
5 assert(elem < 13);

Figure 2: Example illustrating the specialized array domain.

is less than 13. Let us assume that we want to analyze the code by combining
the numerical Intervals domain with our array domain Dar ; in other words, we
assume D is instantiated with Intervals. In the pre-state of the array read, the
analysis infers that the abstract value for idx is interval [0, 6]. When computing
the post-state for the read operation, the analysis converts this interval to the
concrete set of indices {0, 1, 2, 3, 4, 5, 6} via convertar. The transfer function for
the array domain then looks up the (concrete) elements for each index to ob-
tain the (concrete) set {0, 1, 2, 3, 5, 8}. Before returning this set to the Intervals
domain, the analysis applies convert−1ar to obtain the abstract value [0, 8]. This
post-state allows the numerical domain to prove the assertion.

Note that this array domain is not specific to controllers such as the one used
in our Racetrack variants. In fact, one could consider using it to more precisely
analyze other programs with complex arrays that are initialized at runtime; a
concrete example would be high-performance hash functions that often rely on
fixed lookup tables.

Even more generally, the domains we sketched above suggest that our ap-
proach is also applicable to other scenarios; for instance, when a piece of code is
too challenging to handle by a generic program analysis, and a simple summary
or specification would result in unacceptable loss of precision.

3.2 Neural-Network Analysis

AI2 [27] was the first tool and technique for verifying robustness of neural net-
works using abstract interpretation. Eran is a successor of AI2; it incorporates
specialized transfer functions and abstract domains, such as DeepZ [56] (a variant
of Zonotopes [28]) and DeepPoly [57] (a variant of Polyhedra [19]). Meanwhile,
DeepSymbol [41] extended AI2 with a novel symbolic-propagation technique.
In the following, we first provide an overview of the techniques in Eran and
DeepSymbol. Then, we describe how their domains can be used to implement
the specialized transfer function from Dnn that was introduced in Sect. 3.1. On
a high level, even though we are not concerned with robustness properties in
this work, we re-purpose components of these existing tools to effectively check
safety properties of heterogeneous systems that use neural networks.

The main goal behind verifying robustness of a neural network is to provide
guarantees about whether it is susceptible to adversarial attacks [31,12,50,44].
Such attacks slightly perturb an original input (e.g., an image) that is classified
correctly by the network (e.g., as a dog) to obtain an adversarial input that
is classified differently (e.g., as a cat). Given a concrete input (e.g., an image),

210 M. Christakis et al.

existing tools detect such local-robustness violations by expressing the set of all
perturbed inputs (within a bounded distance from the original according to a
metric, such as L∞ [35]) and “executing” the neural network with this set of
inputs to obtain a set of outcomes (or labels). The network is considered to be
locally robust if there are no more than one possible outcome.

Existing techniques use abstract domains to express sets of inputs and out-
puts, and define specialized transfer functions to capture the operations (e.g.,
affine transforms and ReLUs) that are required for executing neural networks.
For instance, Eran uses the DeepPoly [57] domain that captures polyhedral
constraints and incorporates custom transfer functions for affine transforms, Re-
LUs, and other common neural-network operations. DeepSymbol propagates
symbolic information on top of abstract domains [65,41] to improve its precision.
The key insight is that neural networks make extensive use of operations that ap-
ply linear combinations of arguments, and symbolic propagation is able to track
linear-equality relations between variables (e.g., activation values of neurons).

Both Eran and DeepSymbol have the following in common: they define an
abstract semantics for reasoning about neural-network operations and for com-
puting an abstract set of outcomes from a set of inputs. We leverage this seman-
tics to implement the specialized transfer function [[o := nn(i1, ..., in)]]Dnn

(dnn)
from Sect. 3.1.

4 Experimental Evaluation

To evaluate our technique, we aim to answer the following research questions:

RQ1: How effective is our technique in verifying goal reachability and crash
avoidance?

RQ2: How does the quality of the neural network affect the verification results?
RQ3: How does a more complex benchmark affect the verification results?
RQ4: How does the neural-network analyzer affect the verification results?

4.1 Benchmarks

We run our experiments on variants of Racetrack, which is a popular bench-
mark in the AI community [4,5,32,46,52,53] and implements the pseudo-code
from Alg. 1 in C (see Sect. 2 for a high-level overview of the benchmark).

The Racetrack code10 is significantly more complicated than the pseudo-
code in Alg. 1 would suggest; more specifically, it consists of around 400 lines of
C code and invokes a four-layer fully connected neural network—with 14 inputs,
9 outputs, and 64 neurons per hidden layer (using ReLU activation functions).
To name a few sources of complexity, the currentState does not just denote a
single value, but rather the position of the vehicle on the map, the magnitude
and direction of its velocity, its distance to goal locations, and its distance to
obstacles. As another example, the Move function runs the trajectory of the
10 https://github.com/Practical-Formal-Methods/Racetrack-Benchmark

Automated Safety Verification of Programs Invoking Neural Networks 211

https://github.com/Practical-Formal-Methods/Racetrack-Benchmark

vehicle from the old to the new state while determining whether there are any
obstacles in between.

For simplicity, the code does not use floating-point numbers to represent
variables, such as position, velocity, acceleration, and distance. Therefore, the
program analyzer does not need to reason about floating-point numbers, which
is difficult for Crab and most other tools. However, this does not semantically
affect the neural network or its analysis, both of which do use floats. An inter-
face layer converts the input features, tracked as integers in the controller, to
normalized floats for the neural-network analysis. The output from the neural-
network analysis is a set of floating-point intervals, which are logically mapped
to integers representing discrete possible actions at a particular state.

We evaluate our approach on 26 variants of Racetrack, which differ in the
following aspects of the analyzed program or neural network.
Maps. We adopt three Racetrack maps of varying complexity from related
work [5,32], namely barto-small (bs) of size 12× 35, barto-big (bb) of size 30×
33, and ring (r) of size 45 × 50. The size of a map is measured in terms of
its dimensions (i.e., width and height). The map affects not only the program
behavior, but also the neural network that is invoked. The latter is due to the
fact that we train custom networks for different maps.
Neural-network quality. The neural network (line 9 of Alg. 1) is trained, using
reinforcement learning [60], to predict an acceleration given a vehicle state, that
is, the position of the vehicle on the map, the magnitude and direction of its
velocity, its distance to goal locations, and its distance to obstacles. As expected,
the quality of the neural-network predictions depends on the amount of training.
In our experiments, we use well (good), moderately (mod), and poorly (poor)
trained neural networks. We use the average reward at the end of the training
process to control the quality. More details are provided in RQ2.
Noise. We complicate the Racetrack benchmark by adding two sources of
non-determinism, namely environment (env) and neural-network (nn) noise.
Introducing such noise is common practice in reinforcement learning, for in-
stance, when modeling real-world imperfections, like slippery ground.

When environment noise is enabled, the controller might zero the vehicle
acceleration (in practice, with a small probability), instead of applying the ac-
celeration predicted by the neural network for the current vehicle state. This
source of non-determinism is implemented by the if-statement on line 6 of Alg. 1.
Environment noise may be disabled for states that are too close to obstacles to
allow the vehicle to avoid definite crashes by adjusting its course according to
the neural-network predictions. The amount of environment noise is, therefore,
controlled by the distance to an obstacle (od) at which we disable it. For ex-
ample, when od = 3, environment noise is disabled for all vehicle states that
are at most 3 cells away from any obstacle. Consequently, when od = 1, we
have a more noisy environment. Note that we do not consider od = 0 since the
environment would be too noisy to verify safety for any start state.

Note that environment noise is not meant to represent realistic noise, but
rather to make the verification task more challenging. However, it is also not

212 M. Christakis et al.

entirely unrealistic and can be viewed as “necessarily rectifying steering course
close to obstacles”. Non-deterministically zeroing acceleration is inspired by re-
lated work [32].

For a given vehicle state, the neural network computes confidence values for
each possible acceleration; these values sum up to 1. Normally, the predicted
acceleration is the one with the largest confidence value, which however might
not always be high. When neural-network noise is enabled, the network analyzer
considers any acceleration for which the inferred upper bound on the confidence
value is higher than a threshold ε. For example, when ε = 0.25, any acceleration
whose inferred confidence interval includes values greater than 0.25 might be
predicted by the neural network. Consequently, for lower values of ε, the neural
network becomes more noisy. Such probabilistic action selection is widely used
in reinforcement learning [55].

Each of these two sources of noise—env and nn noise—renders the verifica-
tion of a neural-network controller through enumeration of all possible execution
paths intractable: due to the non-determinism, the number of execution paths
from a given initial state grows exponentially with the number of control itera-
tions (e.g., the main loop on line 5 of Alg. 1). In our Racetrack experiments,
the bound on the number of loop iterations is 50, and as a result, the number
of execution paths from any given initial state quickly becomes very large. By
statically reasoning about sets of execution paths, our approach is able to more
effectively handle challenging verification tasks in comparison to exhaustive enu-
meration.
Lookahead functionality. We further complicate the benchmark by adding
lookahead functionality (not shown in Alg. 1), which aims to counteract incorrect
predictions of the neural network and prevent crashes. In particular, when this
functionality is enabled, the controller simulates the vehicle trajectory when
applying the acceleration predicted by the neural network a bounded number of
additional times (denoted la). For example, when la = 3, the controller invokes
the neural network 3 additional times to check whether the vehicle would crash
if we were to consecutively apply the predicted accelerations. If this lookahead
functionality indeed foresees a crash, then the controller reverses the direction of
the acceleration that is predicted for the current vehicle state on line 9 of Alg. 1.
Conceptually, the goal behind our lookahead functionality is similar to the one
behind shields [2]. While lookahead is explicitly encoded in the program as code,
shields provide a more declarative way for expressing such safeguards.

4.2 Implementation

For our implementation11, we extended Crab to support specialized abstract
domains as described in Sect. 3. To integrate DeepSymbol and Eran, we im-
plemented a thin wrapper around these tools to enable their analysis to start

11 Our source code can be found at https://github.com/Practical-Formal-Methods/

clam-racetrack and an installation at https://hub.docker.com/r/practicalformalmethods/

neuro-aware-verification.

Automated Safety Verification of Programs Invoking Neural Networks 213

https://github.com/Practical-Formal-Methods/clam-racetrack
https://github.com/Practical-Formal-Methods/clam-racetrack
https://hub.docker.com/r/practicalformalmethods/neuro-aware-verification
https://hub.docker.com/r/practicalformalmethods/neuro-aware-verification

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 3: Verification results for RQ1, where env(od = 3). The maps on the
left are bs (top) and bb (bottom), and the map on the right is r.

from a set of abstract input states and return a set of abstract output states.
Moreover, our wrappers provide control over the amount of neural-network noise
(through threshold ε).

4.3 Setup

We use deep Q-learning [47] to train a neural network for each Racetrack
variant. We developed all training code in Python using the TensorFlow12 and
Torch13 deep-learning libraries.

We configure Crab to use the Boxes abstract domain [33], DeepSymbol to
use Intervals [18] with symbolic propagation [41], and Eran to use DeepPoly [57].
When running the analysis, we did not specify a bound on the available time or
memory; consequently, none of our analysis runs led to a time-out or mem-out.
Regarding time, we report our results in the following, and regarding memory,
our technique never exceeded 13.5GB when analyzing all start states of any map.

We performed all experiments on a 48-core Intel R© Xeon R© E7-8857 v2
CPU @ 3.6GHz machine with 1.5TB of memory, running Debian 10 (buster).

4.4 Results

We now present our experimental results for each research question.
RQ1: How effective is our technique in verifying goal reachability and
crash avoidance? To evaluate the effectiveness of our technique in proving these
system properties, we run it on the following benchmark variants: bs, bb, and r
maps, good neural networks, env noise with od = 1, 2, 3, and la = 0 (i.e., no
lookahead). The verification results are shown in Figs. 3, 4, and 5 (see Sect. 2 for
the semantics of cell colors). These results are achieved when combining Crab
with DeepSymbol, but the combination with Eran is comparable (see RQ4).

As shown in Fig. 3, for the vast majority of initial vehicle states, our technique
is able to verify goal reachability and crash avoidance. This indicates that our
integration of the controller and neural-network analyses is highly precise. As
12 https://www.tensorflow.org
13 http://torch.ch/

214 M. Christakis et al.

https://www.tensorflow.org
http://torch.ch/

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 4: Verification results for RQ1, where env(od = 2).

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 5: Verification results for RQ1, where env(od = 1).

Table 1: Performance results for RQ1.

Map NN Noise LA NN Total Avg NN Avg
Analyzer Time Time Time

bs good env(od = 3) 0 DeepSymbol 1h20m34s 14m53s 30.2%
bb good env(od = 3) 0 DeepSymbol 3h52m38s 18m55s 16.1%
r good env(od = 3) 0 DeepSymbol 2h58m17s 11m33s 26.6%

expected, the more env noise we add (i.e., the smaller the od values), the fewer
states we prove safe (see Figs. 4 and 5).

Tab. 1 shows the performance of our technique. The first four columns of
the table define the benchmark settings, the fifth the neural-network analyzer,
and the last three show the total running time of our technique for all start
states, the average time per state, and the percentage of this time spent on the
neural-network analysis. Note that we measure the total time when running the
verification tasks (for each start state) in parallel14; the average time per state
is independent of any parallelization. We do not show performance results for
different od values since environment noise does not seem to have a significant
impact on the analysis time.

Recall from Sect. 2 that, without our technique, it is currently only possible to
verify properties of a heterogeneous system like Racetrack by considering the
controller in isolation, ignoring the call to the neural network, and havocking
its return value. We perform this experiment for all of the above benchmark
variants and find that Crab alone is unable to prove goal reachability or crash

14 https://doi.org/10.5281/zenodo.1146014

Automated Safety Verification of Programs Invoking Neural Networks 215

https://doi.org/10.5281/zenodo.1146014

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 6: Verification results for RQ2, with mod neural networks.

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 7: Verification results for RQ2, with poor neural networks.

avoidance for any initial vehicle state; in other words, all states are red. This is
the case even when replacing Boxes with Polyhedra—these two domains perform
the most precise analyses in Crab.
RQ2: How does the quality of the neural network affect the verifi-
cation results? To evaluate this research question, we run our technique on
the following benchmark variants: bs, bb, and r maps, mod and poor neural
networks, env noise with od = 3, and la = 0. The verification results are shown
in Figs. 6 and 7; they are achieved by combining Crab with DeepSymbol.

In deep Q-Learning (see Sect. 4.3), a neural network is trained by assigning
positive or negative rewards to its predictions. A properly trained network learns
to collect higher rewards over a run. Given this, we assess the quality of networks
by considering average rewards over 100 runs from randomly selected starting
states. If the network collects more than 70% of the maximum achievable reward,
we consider it a good agent. If it collects ca. 50% (or respectively, ca. 30%) of
the maximum reward, we consider it a mod (respectively, poor) agent.

In comparison to Fig. 3, our technique proves safety of fewer states since
the quality of the networks is worse. Analogously, more states are verified in
Fig. 6 than in Fig. 7. Interestingly, for bb, our technique proves crash avoidance
(blue cells) more often when using a poor neural network (Fig. 7) instead of a
mod one (Fig. 6). We suspect that this is due to the randomness of the training
process and the training policy, which penalizes crashes more than getting stuck;
so, a poor neural network might initially only try to avoid crashes.

Regarding performance, the analysis time fluctuates when using mod and
poor neural networks. There is no pattern even when comparing the time across

216 M. Christakis et al.

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

Figure 8: Verification results for RQ3, where la = 0, 1, 3 from left to right.

Table 2: Performance results for RQ3.

Map NN Noise LA NN Total Avg NN Avg
Analyzer Time Time Time

bs mod env(od = 3) 0 DeepSymbol 2h27m53s 27m35s 45.0%
bs mod env(od = 3) 1 DeepSymbol 8h04m40s 1h12m20s 14.9%
bs mod env(od = 3) 3 DeepSymbol 9h30m14s 1h47m05s 11.49%

different map sizes for equally trained networks. This is to be expected as neural
networks may behave in unpredictable ways when not trained properly (e.g., the
vehicle may drive in circles), which affects the performance of the analysis.
RQ3: How does a more complex benchmark affect the verification
results? We complicate the benchmark by adding lookahead functionality, i.e.,
resulting in la additional calls to the neural network per vehicle move (see
Sect. 4.1 for more details). Since well trained neural networks would benefit less
from this functionality, we use mod networks in these experiments. In particular,
we run our technique on the following benchmark variants: bs map, mod neural
networks, env noise with od = 3, and la = 0, 1, 3. The verification results are
shown in Fig. 8; they are achieved by combining Crab with DeepSymbol.

As la increases, the benchmark becomes more robust, yet more complex. We
observe that, for larger values of la, our technique retains its overall precision
despite the higher complexity; e.g., there are states that are verified with la = 3
or 1 but not with 0. However, there are also few states that are verified with
la = 1 but not with 3. In these cases, the higher complexity does have a negative
impact on the precision of our analyses.

Tab. 2 shows the performance of our technique for these experiments. As
expected, the analysis time increases as the benchmark complexity increases.
RQ4: How does the neural-network analyzer affect the verification re-
sults? We first compare DeepSymbol with Eran on the following benchmark
variants: bs, bb, and r maps, good neural networks, env noise with od = 3,
and la = 0. The verification results achieved when combining Crab with Eran
are shown in Fig. 9; compare this with Fig. 3 for DeepSymbol.

We observe the results to be comparable. With DeepSymbol, we color 216
cells green and 1 blue for bs, 455 green for bb, and 499 green and 6 blue for r.
With Eran, the corresponding numbers are 214 cells green and 7 blue for bs,
459 green and 4 blue for bb, and 485 green and 71 blue for r. We observe similar
results for other benchmark variants, but we omit them here.

Comparing the two neural-network analyzers becomes more interesting when
we enable nn noise. More specifically, we run our technique on the following
benchmark variants: bs, bb, and r maps, good networks, nn noise with ε = 0.25,

Automated Safety Verification of Programs Invoking Neural Networks 217

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 9: Verification results for RQ4 with Eran, where env(od = 3).

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 10: Verification results for RQ4 with DeepSymbol, where nn(ε = 0.25).

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
x

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

x
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
x

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

x
x

x
x

x
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

g
.

.
.

.
.

.
.

.
.

.
.

x
x x x x x x x x x x x x .
x x .
x x .
x x .
x x .
x x x x x x x x x x x x x x x x x x
x x
x x
x x
. x x x x x x x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x x
. x x x x x x x x x x x x x x
. x x x x x x x x x x x x x
. x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x g
x x x x x x x x g
x x x x x x x x x x g
x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x g
x x x x x x x x x x x x x x x x x x x g
x g

x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x
x x x x x
x x x
x x x
x x x
. x
. x
. x
. x
. x
. x
. x
. x
x x x
x x x
x x x
x x x x x
x x x x x
x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x . x x x x x x x x x
x x x x x x x x x x x . x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x . g g g . x

Figure 11: Verification results for RQ4 with Eran, where nn(ε = 0.25).

and la = 0. Fig. 10 shows the verification results when combining Crab with
DeepSymbol, and Fig. 11 when combining Crab with Eran.

As shown in the figures, the verification results are slightly better with Eran.
In particular, with DeepSymbol, we color 170 cells green for bs, 109 green for
bb, and 195 green for r. With Eran, the corresponding numbers are 181 cells
green for bs, 131 green for bb, and 203 green for r. Despite this, the perfor-
mance of our technique can differ significantly depending on whether we use
DeepSymbol or Eran, as shown in Tab. 3. One could, consequently, imagine a
setup where multiple neural-network analyzers are run in parallel for each veri-
fication task. If time is of the essence, we collect the results of the analyzer that
terminates first. If it is more critical to prove safety, then we could combine the
results of all analyzers once they terminate.

218 M. Christakis et al.

Table 3: Performance results for RQ4.

Map NN Noise LA NN Total Avg NN Avg
Analyzer Time Time Time

bs good env(od = 3) 0 DeepSymbol 1h20m34s 14m53s 30.2%
bs good env(od = 3) 0 Eran 43m21s 8m11s 38.4%
bb good env(od = 3) 0 DeepSymbol 3h52m38s 18m55s 16.1%
bb good env(od = 3) 0 Eran 3h26m17s 16m42s 57.2%
r good env(od = 3) 0 DeepSymbol 2h58m17s 11m33s 26.6%
r good env(od = 3) 0 Eran 4h38m03s 18m18s 53.8%
bs good nn(ε = 0.25) 0 DeepSymbol 1h26m09s 15m41s 36.7%
bs good nn(ε = 0.25) 0 Eran 45m37s 8m24s 45.0%
bb good nn(ε = 0.25) 0 DeepSymbol 2h52m50s 13m24s 20.7%
bb good nn(ε = 0.25) 0 Eran 2h59m48s 14m10s 64.7%
r good nn(ε = 0.25) 0 DeepSymbol 2h01m18s 7m57s 26.4%
r good nn(ε = 0.25) 0 Eran 3h21m32s 13m11s 54.3%

5 Related Work

The program-analysis literature provides countless examples of powerful analysis
combinations. To name a few, dynamic symbolic execution [29,10] and hybrid
fuzzing [45,58,69] combine random testing and symbolic execution, numerous
tools broadly combine static and dynamic analysis [6,20,21,49,30,13,14,22,61],
and many tools combine different types of static analysis [7,1,34]. In contrast
to neuro-aware program analysis, almost all these tools target homogeneous,
instead of heterogeneous, systems. Concerto [61] is a notable exception that
targets applications using frameworks such as Spring and Struts. It combines
abstract and concrete interpretation, where, on a high level, concrete interpreta-
tion is used to analyze framework code, whereas abstract interpretation is used
for application code. Instead of building on existing analyzers, as in our work,
Concerto introduces a designated technique for analyzing framework code.

There is recent work that focuses specifically on verifying hybrid systems with
DNN controllers [24,59]. Unlike in our work, they do not analyze programs that
interact with the network, but models; in one case, ordinary differential equations
describing the hybrid system [24], and in the other, a mathematical model of
a LiDAR image processor [59]. In this context of hybrid systems with DNN
controllers, there is also work that takes a falsification approach to the same
problem [62,70,23]. They generate corner test cases that cause the system to
violate a system-level specification. Moreover, existing reachability analyses for
neural networks [25,42,67,68] consider linear or piecewise-linear systems, instead
of programs invoking them.

Kazak et al. [39] recently proposed Verily, a technique for verifying systems
based on deep reinforcement learning. Such systems have been used in various
contexts, such as adaptive video streaming, cloud resource management, and In-
ternet congestion control. Verily builds on Marabou [38], a verification tool for
neural networks, and aims to ensure that a system achieves desired service-level
objectives (expressed as safety or liveness properties). Other techniques use ab-
stract interpretation to verify robustness [27,57,41] or fairness properties [63] of
neural networks. Furthermore, there are several existing techniques for check-

Automated Safety Verification of Programs Invoking Neural Networks 219

ing properties of neural networks using SMT solvers [37,38,36] and global opti-
mization techniques [54]. In contrast to our approach, they focus on verifying
properties of the network in isolation, i.e., without considering a program that
queries it. However, we re-purpose two of the above analyzers [57,41] to infer
invariants over the neural-network outputs. Gros et al. [32] make use of statis-
tical model checking to obtain quality-assurance reports for a neural network
in a noisy environment. Their approach provides probabilistic guarantees about
checked properties, instead of definite ones like in our work, and also does not
analyze a surrounding system.

6 Conclusion

Many existing software systems are already heterogeneous, and we expect the
number of such systems to grow further. In this paper, we present a novel ap-
proach to verifying safety properties of such systems that symbiotically combines
existing program and neural-network analyzers. Neuro-aware program analysis
is able to effectively prove non-trivial system properties of programs invoking
neural networks, such as the 26 variants of Racetrack.
Acknowledgements. We are grateful to the reviewers for their constructive
feedback. This work has been supported by DFG Grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science). Jorge Navas has
been supported by NSF Grant 1816936. Holger Hermanns and Jianlin Li have
been supported by Guangdong Province Science Grant 2018B010107004.

References

1. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: UFO: A framework
for abstraction- and interpolation-based software verification. In: CAV. LNCS,
vol. 7358, pp. 672–678. Springer (2012)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI. pp. 2669–2678. AAAI (2018)

3. Babaev, D., Savchenko, M., Tuzhilin, A., Umerenkov, D.: E.T.-RNN: Applying
deep learning to credit loan applications. In: KDD. pp. 2183––2190. ACM (2019)

4. Baier, C., Christakis, M., Gros, T.P., Groß, D., Gumhold, S., Hermanns, H., Hoff-
mann, J., Klauck, M.: Lab conditions for research on explainable automated deci-
sions. In: TAILOR. LNCS, vol. 12641, pp. 83–90. Springer (2020)

5. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic
programming. Artif. Intell. 72, 81–138 (1995)

6. Beyer, D., Chlipala, A.J., Majumdar, R.: Generating tests from counterexamples.
In: ICSE. pp. 326–335. IEEE Computer Society (2004)

7. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: FSE. pp. 57–67.
ACM (2012)

8. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999)

220 M. Christakis et al.

https://perspicuous-computing.science

9. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI. pp. 196–
207. ACM (2003)

10. Cadar, C., Engler, D.R.: Execution generated test cases: How to make systems
code crash itself. In: SPIN. LNCS, vol. 3639, pp. 2–23. Springer (2005)

11. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: NFM. LNCS, vol. 9058, pp. 3–11. Springer (2015)

12. Carlini, N., Wagner, D.A.: Defensive distillation is not robust to adversarial exam-
ples. CoRR abs/1607.04311 (2016)

13. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: FM. LNCS, vol. 7436, pp. 132–146. Springer (2012)

14. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: ICSE. pp. 144–155. ACM (2016)

15. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. FMSD 19, 7–34 (2001)

16. Cobbe, K., Hesse, C., Hilton, J., Schulman, J.: Leveraging procedural generation
to benchmark reinforcement learning. In: ICML. PMLR, vol. 119, pp. 2048–2056.
PMLR (2020)

17. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: ISOP. pp. 106–130. Dunod (1976)

18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252. ACM (1977)

19. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL. pp. 84–96. ACM (1978)

20. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining static checking and
testing. In: ICSE. pp. 422–431. ACM (2005)

21. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for
bug finding. TOSEM 17, 1–37 (2008)

22. Czech, M., Jakobs, M.C., Wehrheim, H.: Just test what you cannot verify! In:
FASE. LNCS, vol. 9033, pp. 100–114. Springer (2015)

23. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: NFM. LNCS, vol. 10227, pp. 357–
372. Springer (2017)

24. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: HSCC. pp. 157–168.
ACM (2019)

25. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification
of feedback control systems using feedforward neural networks. In: ADHS. IFAC-
PapersOnLine, vol. 51, pp. 151–156. Elsevier (2018)

26. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: FoVeOOS. LNCS, vol. 6528, pp. 10–30. Springer (2010)

27. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: Safety and robustness certification of neural networks with abstract
interpretation. In: S&P. pp. 3–18. IEEE Computer Society (2018)

28. Ghorbal, K., Goubault, E., Putot, S.: The Zonotope abstract domain Taylor1+.
In: CAV. LNCS, vol. 5643, pp. 627–633. Springer (2009)

29. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: PLDI. pp. 213–223. ACM (2005)

Automated Safety Verification of Programs Invoking Neural Networks 221

30. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: Unleashing the power of alternation. In: POPL. pp. 43–56. ACM
(2010)

31. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

32. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statis-
tical model checking. In: FORTE. LNCS, vol. 12136, p. 12136. Springer (2020)

33. Gurfinkel, A., Chaki, S.: Boxes: A symbolic abstract domain of boxes. In: SAS.
LNCS, vol. 6337, pp. 287–303. Springer (2010)

34. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: CAV. LNCS, vol. 9206, pp. 343–361. Springer (2015)

35. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (2012)
36. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural

networks. In: CAV. LNCS, vol. 10426, pp. 3–29. Springer (2017)
37. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An

efficient SMT solver for verifying deep neural networks. In: CAV. LNCS, vol. 10426,
pp. 97–117. Springer (2017)

38. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The
Marabou framework for verification and analysis of deep neural networks. In: CAV.
LNCS, vol. 11561, pp. 443–452. Springer (2019)

39. Kazak, Y., Barrett, C.W., Katz, G., Schapira, M.: Verifying deep-RL-driven sys-
tems. In: NetAI@SIGCOMM. pp. 83–89. ACM (2019)

40. Larus, J., Hankin, C., Carson, S.G., Christen, M., Crafa, S., Grau, O., Kirchner, C.,
Knowles, B., McGettrick, A., Tamburri, D.A., Werthner, H.: When computers de-
cide: European recommendations on machine-learned automated decision making.
Tech. rep. (2018)

41. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural net-
works with symbolic propagation: Towards higher precision and faster verification.
In: SAS. LNCS, vol. 11822, pp. 296–319. Springer (2019)

42. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. CoRR abs/1706.07351 (2017)

43. Luo, H., Yang, Y., Tong, B., Wu, F., Fan, B.: Traffic sign recognition using a
multi-task convolutional neural network. Trans. Intell. Transp. Syst. 19, 1100–1111
(2018)

44. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: ICLR. OpenReview.net (2018)

45. Majumdar, R., Sen, K.: Hybrid concolic testing. In: ICSE. pp. 416–426. IEEE
Computer Society (2007)

46. McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: ICAPS. pp. 151–160. AAAI (2005)

47. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.A.: Playing Atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013)

48. Nassi, B., Mirsky, Y., Nassi, D., Ben-Netanel, R., , Drokin, O., Elovici, Y.: Phan-
tom of the ADAS: Securing advanced driver-assistance systems from split-second
phantom attacks. In: CCS. pp. 293–308. ACM (2020)

49. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The YOGI project: Software
property checking via static analysis and testing. In: TACAS. LNCS, vol. 5505, pp.
178–181. Springer (2009)

222 M. Christakis et al.

50. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.:
The limitations of deep learning in adversarial settings. In: EuroS&P. pp. 372–387.
IEEE Computer Society (2016)

51. Pham, T., Tran, T., Phung, D.Q., Venkatesh, S.: Predicting healthcare trajectories
from medical records: A deep learning approach. J. Biomed. Informatics 69, 218–
229 (2017)

52. Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: IJCAI. pp. 2350–2356. IJCAI/AAAI (2013)

53. Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
Revisiting determinization. In: ICAPS. pp. 217–225. AAAI (2014)

54. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: IJCAI. pp. 2651–2659. ijcai.org (2018)

55. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017)

56. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: NeurIPS. pp. 10825–10836 (2018)

57. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3, 41:1–41:30 (2019)

58. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing through selective
symbolic execution. In: NDSS. The Internet Society (2016)

59. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: HSCC. pp. 147–156. ACM (2019)

60. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(2018)

61. Toman, J., Grossman, D.: CONCERTO: A framework for combined concrete and
abstract interpretation. PACMPL 3(POPL), 43:1–43:29 (2019)

62. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In: IV. pp.
1555–1562. IEEE Computer Society (2018)

63. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness
certification of neural networks. PACMPL 4, 185:1–185:30 (2020)

64. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: NeurIPS. pp. 6369–6379 (2018)

65. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Security. pp. 1599–1614. USENIX
(2018)

66. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: TACAS. LNCS, vol. 10805, pp. 408–426. Springer
(2018)

67. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verifica-
tion for multilayer neural networks. TNNLS 29, 5777–5783 (2018)

68. Xiang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation and
safety verification for piecewise linear systems with neural network controllers. In:
ACC. pp. 1574–1579. IEEE Computer Society (2018)

69. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: A practical concolic execution
engine tailored for hybrid fuzzing. In: Security. pp. 745–761. USENIX (2018)

70. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte carlo tree search. Trans. Comput. Aided Des.
Integr. Circuits Syst. 37, 2894–2905 (2018)

Automated Safety Verification of Programs Invoking Neural Networks 223

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

224 M. Christakis et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Scalable Polyhedral Verification
of Recurrent Neural Networks

Wonryong Ryou1(B), Jiayu Chen1, Mislav Balunovic1,
Gagandeep Singh2, Andrei Dan3, and Martin Vechev1

1 Department of Computer Science, ETH Zürich, Zurich, Switzerland
wryou@ethz.ch

2 VMWare Research and Department of Computer Science, UIUC, Champaign, USA
3 Hitachi Power Grids Research, Zurich, Switzerland

Abstract. We present a scalable and precise verifier for recurrent neu-
ral networks, called Prover based on two novel ideas: (i) a method to
compute a set of polyhedral abstractions for the non-convex and non-
linear recurrent update functions by combining sampling, optimization,
and Fermat’s theorem, and (ii) a gradient descent based algorithm for
abstraction refinement guided by the certification problem that combines
multiple abstractions for each neuron. Using Prover, we present the first
study of certifying a non-trivial use case of recurrent neural networks,
namely speech classification. To achieve this, we additionally develop cus-
tom abstractions for the non-linear speech preprocessing pipeline. Our
evaluation shows that Prover successfully verifies several challenging
recurrent models in computer vision, speech, and motion sensor data
classification beyond the reach of prior work.

Keywords: Robustness verification · Polyhedral abstraction ·
Recurrent neural networks · Long short-term memory · Abstraction
refinement · Speech classifier verification

1 Introduction

Recurrent neural networks (RNNs) are widely used to model long-term dependen-
cies in lengthy sequential signals [11,27,43]. Prior work has demonstrated the sus-
ceptibility of RNNs to adversarial perturbations of its inputs [28], exposing secu-
rity vulnerabilities of state-of-the-art RNNs when used in domains such as speech
recognition [8,22], malware detection [16], and others. Thus, verifying the robust-
ness of recurrent architectures is critical for their safe deployment. While there has
been considerable interest in certifying the robustness of feedforward image classi-
fiers [4,12,13,23,32,37,39,47], less attention has been given to recurrent architec-
tures. As a result, current certification solutions do not scale beyond simple models
and datasets, which limits their practical applicability. Further, there has been no
work on verifying real-world use cases of RNNs. In this paper, we address both of
these challenges and present the first precise and scalable verifier for RNNs based
c© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 225–248, 2021.
https://doi.org/10.1007/978-3-030-81685-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_10

226 W. Ryou et al.

Fig. 1. Certification of recurrent architectures using Prover: utterance “stop” with per-
turbations is correctly classified. Possible perturbations are captured and propagated
through the system, then refined backward for improved precision. (Color figure online)

on abstract interpretation [10], which enables us to certify robustness of realistic
speech recognition systems.

We illustrate the problem setting and overall flow in Fig. 1. Here, a speech recog-
nition model based on the Long Short-Term Memory (LSTM) architecture [15]
receives a signal encoding the utterance of “stop” by a human. As such models
are usually employed in noisy environments, they must robustly classify variations
(e.g., voice changes) to the utterance “stop”. However, recent work [8] has shown the
model may be fooled into classifying the utterance as “go”. It is important to prove
such mis-classifications are not possible, thus avoiding a potential exploitation by
an adversary, for instance in automated traffic control settings (which can lead to
accidents). Our goal is to design a verifier that can formally establish the robust-
ness of such models against noise-induced perturbations. We focus on LSTMs, as
they are the most widely used form of RNNs, but our methodology can be easily
extended to other architectures (e.g., Gated Recurrent Unit (GRU) [9]). Figure 1
shows how our proposed verifier, called Prover, (Polyhedral Robustness Verifier
of RNNs) automatically verifies the robustness of the model. Here, the labeled
rectangles represent operations in the network. The “Preprocess” box captures
domain-specific pre-processing operations (typically present when using RNNs,
e.g., speech processing). In our method, we first compute a polyhedral abstraction
capturing all speech signals given as input to the model under the given pertur-
bation budget. At each timestep i, the pre-processing operation receives a polyhe-
dron s(i) and produces an output polyhedron x(i). This shape is then propagated
symbolically through the LSTM and the post-processing stage, resulting in a poly-
hedral output shape, denoted as z (blue shape in Fig. 1).

Key Challenge: Polyhedral Abstractions for LSTMs. The main challenge
in certifying LSTMs is the design of precise and scalable polyhedral abstract

Scalable Polyhedral Verification of Recurrent Neural Networks 227

transformers for the non-linear operations employed in LSTMs: given a polyhe-
dral shape capturing hidden states h(i−1), to produce the shape capturing the
next set of hidden states h(i). A recent method [21] computes this based on
gradient-based optimization but suffers from two main limitations. First, the
optimization procedure is computationally expensive and does not scale to real-
istic use cases. Second, the method lacks convergence and optimality guarantees.
To address these issues, we introduce a novel technique based on a combination
of sampling, linear programming, and Fermat’s theorem [1], which significantly
improves the precision and scalability compared to prior work [21], while offering
asymptotic guarantees of convergence towards the optimal solution.

Refinement via Optimization. To certify robustness, we must verify that
each concrete point in the output shape z corresponds to the correct label “stop”.
However, z can contain, due to over-approximation, spurious incorrect concrete
points (it intersects the red region representing incorrect outputs). To address
this issue, we form a loss based on the output shape, backpropagate the gra-
dient of this loss through the timesteps and adjust the polyhedral abstractions
in each LSTM unit to decrease the loss. The goal is to refine the abstraction,
guided by the certification task. We illustrate this process in Fig. 1 using the
purple backward arrow with the refined polyhedral abstraction shown in purple.
Using the refined abstraction, the new output shape z′ (purple polygon) lies com-
pletely inside the green region of the output space, meaning it provably contains
only correct output vectors (corresponding to “stop”), and hence certification
succeeds. Overall, our method significantly increases the precision of end-to-end
RNN certification without introducing high runtime costs.

Key Contributions. Our main contributions are:

– A new and efficient method to certify the robustness of RNNs to adversarial
perturbations. Our method relies on novel polyhedral abstractions for han-
dling non-linear operations in these architectures.

– A novel method that automatically refines the abstraction for each input
example being certified guided by the certification task.

– An implementation of the method in a system called Prover and evaluation
on several benchmarks and datasets. Our results show that Prover is precise
and scales to larger models than prior work. Prover is also the first verifier
able to certify realistic RNN-based speech classifiers. The code is available in
https://github.com/eth-sri/prover.

2 Related Work

While the first adversarial examples for neural networks were found in computer
vision [6,41], recent work also showed the vulnerability of RNNs [28]. Modern
speech recognition systems, based on RNNs, were shown susceptible to small
noise crafted by an adversary using white-box attacks [7,8], achieving a 100%
success rate against DeepSpeech [14], a state-of-the-art speech-to-text engine.
These were later followed by attacks based on universal perturbation [26] and
temporal dependency [46]. Recent work [22,31] demonstrates that adversarial

https://github.com/eth-sri/prover

228 W. Ryou et al.

examples for audio classifiers are realizable in the real-world. While giving an
empirical estimate of the vulnerability of RNNs, these works do not provide any
formal guarantees, which is the goal of our work.

There have also been recent works on the verification of RNNs. [2] propose
the certification of RNNs based on mixed-integer linear programming, which only
works for ReLU-based networks and does not consider LSTMs, which use sigmoid
and tanh activations. [45] propose an input discretization method to certify video
models that are a combination of CNNs and RNNs. However, discretization does
not scale to the perturbations we consider in our work. [18] propose to verify
RNNs by automatically inferring temporal homogeneous invariants using binary
search. However, their approach is limited to vanilla RNNs and does not apply to
the more commonly used LSTM networks considered in this work. [19] propose
the statistical variant of Angulin’s algorithm [3] for probabilistic verification and
counterexample generation for RNNs, however they cannot provide deterministic
guarantees as our work. The work most related to ours is POPQORN [21] which
uses expensive gradient-based optimizations for every operation in the network.
We experimentally show that it does not scale to practical applications such as
speech classification.

3 Background

We first define the threat model and then present all operations that are part of
the verification procedure, including speech preprocessing and LSTM updates.

3.1 Threat Model

We use a threat model based on the L∞-norm, where an attacker can change
each element of a correctly classified input vector s by an amount ≤ ε ∈ R

[8]. Therefore, our input region can be represented as a conjunction of intervals
[si − ε, si + ε], where si is the i-th element of s. The measure of signal distortion
in this setting are decibels (dB) defined as:

dB(s) = max
i

20 · log10(|si|); dBs(δ) = dB(δ) − dB(s)

The quieter the perturbation is, the smaller dBs(δ) is. We fix the dBs(δ) =: ε
as dB perturbation and focus on verifying that the model classifies correctly all
signals s′ possible under our threat model.

3.2 Long Short-Term Memory (LSTM)

LSTM architectures [15] are popular for handling sequential data as they can uti-
lize long-term dependencies. These dependencies are passed through time using
two state vectors for the timestep t: cell state c(t) and hidden state h(t). These
state vectors are updated using the following formulas:

Scalable Polyhedral Verification of Recurrent Neural Networks 229

Fig. 2. LSTM cell: f
(t)
0 , i

(t)
0 , o

(t)
0 , and c̃

(t)
0 represent the pre-activated gates.

f
(t)
0 = [x(t), h(t−1)]Wf + bf

o
(t)
0 = [x(t), h(t−1)]Wo + bo

c(t) = σ(f (t)
0) � c(t−1) + σ(i(t)

0) � tanh(c̃(t)
0)

i
(t)
0 = [x(t), h(t−1)]Wi + bi

c̃
(t)
0 = [x(t), h(t−1)]Wc̃ + bc̃

h(t) = σ(o(t)
0) � tanh(c(t))

where [·, ·] is the horizontal concatenation of two row vectors, W· and b· are the
kernel and bias of the cell, respectively, and σ is the sigmoid function. At timestep
t, vectors f

(t)
0 , i

(t)
0 , o

(t)
0 , c̃

(t)
0 represent pre-activations of the forget gate, input

gate, output gate and the candidate gate, respectively. We show an illustration
of an LSTM cell in Fig. 2. We treat σ and tanh as forms of activation functions,
which is why we define the LSTM using pre-activations.

Intuitively, the input gate transforms the input vector, the forget gate filters
the information from the previous cell state, the candidate gate prepares the
candidate cell state, and the output gate transforms the current hidden state.
All of these gates receive as input the hidden state h(t−1) of the previous cell
and the input x(t) representing the current frame. This recurrent architecture
allows inputs with arbitrary length, enabling LSTMs to handle temporal data,
e.g., speech processing.

3.3 Speech Preprocessing

Though there have been various works that operate directly on the raw signal
[29,36], speech signals are commonly preprocessed using the filterbank or log Mel-
filterbank energy methods. The result is a vector of coefficients whose elements
contain log-scaled values of filtered spectra, one for every Mel-frequency. This
method models the non-linear human acoustic perception as power spectrum
filters based on Mel-frequencies. The input signal is split into several (possibly
overlapping) frames for granular analysis, and the following steps are applied:

1. Pre-emphasizing and windowing are preprocessing stages on the raw signals.
Speech signals tend to have larger and smoother low-frequency samples and
smaller and fluctuating high-frequency samples. Pre-emphasizing is a process

230 W. Ryou et al.

of subtracting the adjacent sampled values multiplied by a scalar parameter
(s(i)

j −αs
(i)
j−1, commonly α = 0.97). This alleviates the unbalanced distribution

of signal strength along with the frequency. Windowing involves multiplica-
tion of each sampled value and ‘windows’ according to their indices. The
window here refers to a Hamming window, which is a bell-like curve with
peak in the middle of the frame and drops at the side. It reduces the border
effects on each frame by suppressing the values near the border with smaller
values.

2. Power spectrum of Fast Fourier transform (FFT) performs the discrete
Fourier transform (DFT) and obtains the squared norm of each element to
obtain intensities in the frequency domain. FFT consists of matrix multipli-
cations with complex entries. We modify it to use only real numbers by: (i)
separating real and imaginary parts of the matrix and constructing two sepa-
rate matrices, (ii) multiplying each matrix with the signal, (iii) squaring the
entries, and (iv) adding the resulting matrices entry-wise.

3. Mel-filter bank log energy: The Mel-frequency filters are triangular, each
emphasizing the power of the selected frequency and suppressing the adja-
cent ones. In our case, we (i) apply the Mel-filterbank to the power spectrum
and (ii) take the log of the entries to adjust the level.

Following [35], each step can be represented as a distinct matrix operation. It
allows us to decompose and rearrange the steps into slightly different stages:

1. Pre-square stage: S → Y = SM1. This stage contains pre-emphasizing, win-
dowing (step 1), and FFT (until step 2-(ii)). All operations are representable
as matrix multiplications, so we pre-calculate the product matrix.

2. Square stage: Y → θ = Y � Y . This is step 2-(iii). Entry-wise square opera-
tions cannot be combined with other matrix multiplications.

3. Pre-log stage: θ → X̃ = θM2. From step 2-(iv) through step 3-(i). We
combine the operations into a single matrix.

4. Log stage: X̃ → X = log X̃. Applying entry-wise logarithm (step 3-(ii)).

We use the resulting X = [x(1) · · · x(T)]ᵀ as the input to the neural network.

3.4 Verification Using DeepPoly Abstract Domain

DeepPoly [39] is a sub-polyhedral abstract domain that associates a lower and
an upper polyhedral bound and interval bounds per neuron. It is faster than
Polyhedra [40] and more precise than other weakly relational domains such as
Octagons [25], Zones [24], and Zonotopes [38] when analyzing neural networks.
Previously, it has been suceesfully applied for verifying feedforward networks
in [4,39]. Formally, let X = {x1, x2, . . . , xn} be an ordered set of neurons such
that the neurons in layer l appear before the neurons of layer l′ > l. DeepPoly
associates with each neuron xj , both interval lj ≤ xj ≤ uj and polyhedral
bounds

∑
i<j ai ·xi +b ≤ xj ≤

∑
i<j a′

i ·xi +b′ where lj , uj , ai, a′
i, b, b′ ∈ R∪{∞}.

DeepPoly is exact for affine transformations which are frequently applied both in
the speech preprocessing pipeline and the LSTM unit. DeepPoly loses precision

Scalable Polyhedral Verification of Recurrent Neural Networks 231

for the non-linear operations in LSTMs. We note that computing polyhedral
bounds on their output is more challenging than for feedforward networks.

The precision of the DeepPoly approximation for the non-linear operations
depends on the tightness of the interval bounds of the neurons that are input
to the non-linear operations. DeepPoly provides a scalable and precise method
called backsubstitution for optimizing a linear expression within a region defined
by the set of DeepPoly constraints. It does so by recursively substituting the
bounding linear expressions of target neurons with the polyhedral bounds of
previous layers’ neurons until reaching the input neurons. It then uses the con-
crete bounds of the input neurons for computing the result. Backsubstitution is
used for computing the interval bounds of neurons input to the non-linear oper-
ations as well as for bounding the difference between the neurons in the output
layer needed to prove robustness. We refer the reader to [39] for details of the
backsubstitution.

4 Overview of Prover

This section illustrates the workings of Prover on a small example. Our goal is
to certify the robustness of a single LSTM cell on the input x ∈ [−1.2, 1.2]. For
this example, we assume that there are two output classes and all intermediate
LSTM gates {i, f , c̃, o} share the same weights and biases:

{i, f , c̃, o} =
[

1
0.5

]

x +
[
0
1

]

, c = σ(i) � tanh(c̃), h = σ(o) � tanh(c).

The correct output here is h2 and to certify robustness we need to prove that
h2 − h1 > 0 holds for all inputs x. In other words, min h2 − h1 > 0.

Polyhedral Abstraction. We build our verifier based on the DeepPoly [39]
abstraction since DeepPoly outperforms the interval analysis and other compet-
itive domains, as Sect. 3.4 states.

Challenges in Computing Polyhedral Bounds for LSTMs. The composed
binary non-linear operations applied in LSTMs such as σ(x) tanh(y) and σ(x)y
are significantly more complex to handle than the ReLU, Sigmoid, and Tanh
activations originally handled by [39]. This is because the non-linear operations
in LSTMs mentioned above involve transcendental functions yielding non-linear
3D curves that are neither convex nor concave. The optimal polyhedral bounds
for these operations have no closed-form solution and cannot be calculated by
simple geometry or algebra. Further, obtaining such bounds is computation-
ally expensive [21]. For example, obtaining the lower linear plane for bounding
σ(x) tanh(y) is equivalent to solving a Lagrangian with 6 variables - 3 linear
coefficients, 2 interval-bounded coordinates and 1 Lagrange multiplier for the
constraint. In contrast, the optimal polyhedral bounds for ReLU, Sigmoid, and
Tanh have closed form solutions, easily visualized in 2D.

Precise Polyhedral Bounds via LP. To overcome these challenges, we pro-
pose a generic approach based on linear programming (LP) to compute precise

232 W. Ryou et al.

polyhedral bounds. We illustrate our approach for calculating a lower polyhe-
dral bound of h2 = σ(o2) tanh(c2). First, we calculate the concrete intervals for
the two target variables via backsubstitution [39], briefly described in Sect. 3.4.
In our case, the target variables are o2 and c2 and the backsubstitution yields
o2 ∈ [0.4, 1.6] and c2 ∈ [−0.79, 0.62]. Our abstraction can represent the affine
transformations exactly. Therefore, we obtain the exact interval for o2 = 0.5·x+1
via the backsubstitution whereas the obtained interval for c2 is an overapproxi-
mate one. Then, we uniformly sample a set of points {(x1, y1), ..., (xn, yn)} from
the input domain [0.4, 1.6] × [−0.79, 0.62]. We solve the following optimization
problem to calculate the lower polyhedral bound of h2:

min
Al,Bl,Cl∈R

n∑

i=1
(σ(xi) tanh(yi) − (Al · xi + Bl · yi + Cl)) ,

subject to the constraint that Al · xi + Bl · yi + Cl ≤ σ(xi) tanh(yi) for each
i. This is a linear program over three variables (Al, Bl, Cl) that can be solved
efficiently in polynomial time. However, the obtained bound may not be sound as
the sampled points do not fully cover the continuous input domain. To address
this, we shift the plane downwards by an offset (decreasing Cl) equal to the
maximum violation between Al ·x+Bl ·y+Cl and h2 based on Fermat’s theorem.
After solving the linear program and the adjustment, we obtain Al = 0.04, Bl =
0.46, Cl = 0.01 which results in the following lower polyhedral bound to h2:
h2 ≥ LBh2 = 0.04 · o2 + 0.46 · c2 + 0.01. We compute the upper bound to
h2 : h2 ≤ UBh2 analogously. After computing a polyhedral abstraction of each
neuron, we calculate the lower bound of h2 − h1 via backsubstitution as follows:

min h2 − h1 ≥ LBh2 − UBh1

≥ (0.04 · o2 + 0.46 · c2 + 0.01) − (−0.09 · o1 + 0.66 · c1 + 0.14)
≥ 0.04 · o2 + 0.46 · (0.07 · i2 + 0.27 · g2 + 0.09)

+ 0.09 · o1 − 0.66 · (−0.04 · i1 + 0.38 · g1 + 0.25) − 0.14
≥ 0.20 · (0.5 · x + 1) − 0.13 · x − 0.10 ≥ −0.03 · x − 0.08 ≥ −0.11.

The precision of the bounds generated by our LP-based method increases
with the number of samples yielding optimal bounds (in the sense of small gap)
asymptotically. For our example, the computed bounds are optimal.

While our optimal bounds significantly improve precision compared to inter-
vals, they are not sufficient to certify robustness. Prior work for ReLU networks
[5,12,23] showed that the greedy approach of always selecting the optimal bounds
minimizing the gap can yield less precise results than an adaptive strategy which
computes bounds guided by the certification problem. Based on this observation,
we introduce a novel approach based on splitting and gradient descent that com-
putes polyhedral abstractions for non-linearities employed in LSTMs informed
by the certification problem and proves that min h2 − h1 > 0 actually holds.

Abstraction Refinement via Splitting and Gradient Descent. While our
method based on LP offers an efficient way to compute polyhedral abstraction of

Scalable Polyhedral Verification of Recurrent Neural Networks 233

activation functions, its main limitation is that the abstraction cannot be refined
based on the certification goal. In this work, we introduce a novel method where
we first compute mutiple sound bounds for the neuron using our LP method and
then automatically obtain a combination of the computed bounds that improves
the lower bound of our certification objective h2 −h1 for each input example. As
before, we use the backsubstitution to obtain the interval bounds for the input
variables. Since the output of our LP method is sensitive to the choice of the
sampled points, we split the original input region [lx, ux]×[ly, uy] to sample more
effectively from smaller sub-regions thereby reducing the chances of missing an
outlier. We found that splitting along the two diagonals of [lx, ux] × [ly, uy] into
four triangular zones, denoted as Tk, k ∈ {1, 2, 3, 4}, performs the best in our
evaluation. We use T0 to denote the original input region. Next, we calculate
four additional planes, for both the upper and lower bounds, by sampling each
subregion Tk and then applying our LP method as before. We refer to each plane
as a candidate bound:

min
Al,Bl,Cl∈R

n∑

i=1
(σ(xi) tanh(yi) − (Al · xi + Bl · yi + Cl))

subject to
n∧

i=1
Al · xi + Bl · yi + Cl ≤ σ(xi) tanh(yi) where (xi, yi) ∼ Tk

Using our LP based method, we obtain the following corresponding candidate
polyhedral abstraction for h2, LBk

h2
for each Tk in our example:

h2 ≥ LB0
h2 = 0.04 · o1 + 0.46 · c1 + 0.01, h2 ≥ LB1

h2 = 0.04 · o1 + 0.46 · c1 + 0.01
h2 ≥ LB2

h2 = 0.13 · o1 + 0.63 · c1 − 0.17, h2 ≥ LB3
h2 = 0.04 · o1 + 0.46 · c1 + 0.01

h2 ≥ LB4
h2 = 0.13 · o1 + 0.63 · c1 − 0.17

Note that LB0
h2

denotes the polyhedral abstraction calculated for the whole
region, and there might be duplicate LB’s when the curve in the given subregion
is concave. The final bound LBh2 is a linear combination of LBk

h2
:

LBh2 =
4∑

k=0

λi · LBk
h2 ,

4∑

k=0

λi = 1.

Our optimization algorithm, explained in Sect. 5.2, learns the values of λi via
gradient descent that maximizes min h2 − h1. For our example, we obtain λ =
(0.09, 0.13, 0.34, 0.09, 0.35) as the set of coefficients which results in a new lower
bound of h2 ≥ 0.10 · o2 + 0.58 · c2 − 0.11 for the neuron h2. We improve the
bounds for other neurons in a similar fashion. Using the new bounds, we obtain
h2 − h1 ≥ 0.01 > 0 which enables us to correctly certify the predicate of interest.
If the certification still fails, it is possible to further refine the abstraction by
increasing the number of splits and repeating the procedure above.

Compared to [21], which uses a single bound, our method is more flexible and
can tune λ parameters to find a combination of different bounds for each neuron

234 W. Ryou et al.

that yields the most precise certification result for each certification instance.
Our method is also faster as it performs expensive gradient-based optimization
for only the output layer whereas [21] performs this step for each neuron in the
LSTM twice. [5,12,23] also suggest a similar idea of bounding ReLU’s lower
bound using gradient descent, but their approach is limited to unary functions
with trivial candidates, not applicable to our setting which requires handling
complex binary operations with non-trivial initial bounds.

Generality of Our Method. Our method is generic and can be easily extended
to obtain polyhedral bounds for the non-linear operations in other architectures
such as transformers [42] and capsule networks [34].

5 Scalable Certification of LSTMs

Next, we formally describe our scalable verifier for LSTM networks. As men-
tioned in Sect. 4, we build our verifier based on the DeepPoly abstract domain
[39] introduced in Sect. 3.4. For simplicity, we focus on computing the polyhedral
bounds for the output of non-linear operations. Note that the computed polyhe-
dral bounds contain only the neurons from the previous layers. This restriction
is required for backsubstitution used for computing the interval bounds of the
inputs, which is an approximate algorithm for solving an LP (e.g. maximize
or minimize xj) within a polyhedral region defined by DeepPoly constraints.
In Sect. 5.1, we show how to obtain tight, asymptotically optimal polyhedral
bounds on key operations in the LSTM unit: σ(x) tanh(y) and σ(x)y. Section 5.2
describes a novel method to dynamically choose between different polyhedral
bounds for increasing verifier precision.

5.1 Computing Polyhedral Abstractions of LSTM Operations

Our goal is to bound the products of sigmoid and tanh and sigmoid and identity,
using lower and upper polyhedral planes parameterized by coefficients Al, Bl,
Cl and Au, Bu, Cu, respectively. Let f(x, y) = σ(x) tanh(y) and g(x, y) = σ(x)y.
For h ∈ {f, g} we describe how to obtain the lower and upper bounds of h:

Al · x + Bl · y + Cl ≤ h(x, y) ≤ Au · x + Bu · y + Cu

We formulate the search for a lower bound of h(x, y) as an optimization
problem that minimizes the volume between the bound and the function, subject
to the (soundness) constraint that the lower bound is below the function value:

min
Al,Bl,Cl

∫

(x,y)∈B

(h(x, y) − (Al · x + Bl · y + Cl))

subject to Al · x + Bl · y + Cl ≤ h(x, y), ∀(x, y) ∈ B. (1)

We denote B = [lx, ux] × [ly, uy] as the boundaries of input neurons x and y
obtained using backsubstitution. We next describe our method to solve Eq. (1).

Scalable Polyhedral Verification of Recurrent Neural Networks 235

Step 1: Approximation via LP. We solve an approximation of the intractable
optimization problem from Eq. (1), obtaining potentially unsound constraints.
Unsoundness implies that there can be points in region B which violate the
bounds. We build on the approach from [4], which proposes to approximate the
objective in Eq. (1) using Monte Carlo sampling. Let D = {(x1, y1), . . . , (xn, yn)}
be a set of points from B sampled uniformly at random. We phrase the following
optimization problem:

min
Al,Bl,Cl∈R

n∑

i=1
(h(xi, yi) − (Al · xi + Bl · yi + Cl))

subject to
n∧

i=1
Al · xi + Bl · yi + Cl ≤ h(xi, yi). (2)

Fig. 3. Visualization of the z =
σ(x) tanh(y) curve and the lower bound
computed by linear programming. Red
crosses represent the sampled points
and dashed lines show the difference
between the curve and the plane (sum-
mands in the optimization). (Color
figure online)

Figure 3 shows an input region with
Monte Carlo samples as red circles and
summands in the LP objective as verti-
cal lines. As this is a low-dimensional lin-
ear program (LP), we can solve it exactly
in polynomial time using off-the-shelf LP
solvers. We compute a candidate upper
bound analogously.

Step 2: Adjusting the Offset to Guar-
antee Soundness. Since we compute the
lower bound from a subset of points in B,
there can be a point in B where the value
of h(x, y) is less than our computed lower
bound. To ensure soundness, we compute
Δl = min(x,y)∈B h(x, y)−(Al·x+Bl·y+Cl)
and then adjust the lower bound by updat-
ing the offset Cl ← Cl + Δl, resulting
in a sound lower bound plane. While the
method of [4] also performs offset calculation for obtaining sound bounds, they
perform certification of image classifiers against geometric perturbations using
expensive branch and bound for calculating the offset. In contrast, we exploit
the structure of non-linearities used in LSTMs obtaining a closed-form formula
for the offset yielding an exact solution. We now provide details of our offset
adjustment method for f(x, y) = σ(x) tanh(y) and g(x, y) = σ(x)y.

Offset Calculation for f(x, y) = σ(x) tanh(y): Let Al · x + Bl · y + Cl be the
initial lower bounding plane obtained from LP in region B. We define F (x, y):

F (x, y) = σ(x) tanh(y) − (Al · x + Bl · y + Cl)

236 W. Ryou et al.

To find Δl = min(x,y)∈B F (x, y), we first find the extreme points by comput-
ing partial derivatives.

∂F

∂x
= σ(x) tanh(y)(1 − σ(x)) − Al (3)

∂F

∂y
= σ(x)(1 − tanh2(y)) − Bl (4)

We consider three cases:

– Case 1: x ∈ {lx, ux} and y ∈ [ly, uy] Under this condition, we denote
Sx := σ(x) as a constant. To ease notation, let t = tanh(y) where t ∈
[tanh(ly), tanh(uy)]. Then ∂F

∂y

!= 0 can be rewritten as:

1 − t2 = Bl/Sx (5)

– Case 2: y ∈ {ly, uy} and x ∈ [lx, ux] Here we set Ty := tanh(y) and s =
σ(x), x ∈ [σ(lx), σ(ux)] analogously. ∂F

∂x

!= 0 is rewritten to:

s(1 − s) = Al/Ty (6)

– Case 3: otherwise Otherwise, we consider both ∂F
∂x

!= 0 and ∂F
∂y

!= 0. By
combining Eq. (3) and Eq. (4), we reduce tanh(y) and obtain:

s4 + (−2 − Bl)s3 + (1 + 2Bl)s2 + (−Bl)s − A2
l

!= 0 (7)

Given that F (x, y) is differentiable and the region B is compact, Fermat’s
theorem (stationary points) [1] states that F achieves its extremum at either the
roots of Eq. (5), Eq. (6), and Eq. (7), or at the 4 corners of B. We evaluate F
at these points to get Δl. We adjust the offset by replacing Cl ← Cl + Δl. The
adjusted F is no less than 0 on any point in B, which means that the plane with
adjusted Cl becomes a sound lower bound of the σ(x) tanh(y) curve.

Offset Calculation for g(x, y) = σ(x)y: We next calculate the offset for σ(x)y.
We define the differentiable function G(x, y) = σ(x)y − (Al · x + Bl · y + Cl) over
the compact set B and compute:

∂G

∂x
= σ(x)y(1 − σ(x)) − Al (8)

∂G

∂y
= σ(x) − Bl (9)

We use Fermat’s theorem and consider three cases:

– Case 1: x ∈ {lx, ux} and y ∈ [ly, uy] When σ(x) is fixed, Eq. (9) is constant,
which means G is monotonous in this case.

Scalable Polyhedral Verification of Recurrent Neural Networks 237

– Case 2: y ∈ {ly, uy} and x ∈ [lx, ux] Denote s = σ(x) where s ∈ [σ(lx), σ(ux)],
then setting Eq. (8) != 0 becomes

s(1 − s) = Al/y (10)

– Case 3: otherwise If there is a local extremum in the region, the Hessian of
G must be either positive-definite or negative-definite.

∂2G

∂x2 = σ(x)y(1 − σ(x))(1 − 2σ(x)), ∂2G

∂y2 = 0,
∂2G

∂x∂y
= σ(x)(1 − σ(x))

∂2G

∂x2 · ∂2G

∂y2 −
(

∂2G

∂x∂y

)2

= − (σ(x)(1 − σ(x)))2
< 0

Hence, there is no local extremum inside the boundaries.

To summarize, we only need to consider the roots of Eq. (10) to calculate the
minimum of G to obtain Δl for σ(x)y. Figure 3 shows the lower bound plane
obtained after solving the LP and adjusting the offset. We update the upper
bound analogously.

Asymptotic Optimality. We can prove that, similarly to [4], as we increase
the number of samples n, the solution of the LP asymptotically approaches the
solution of the original problem from Eq. (1). Rephrasing and simplifying the
theorem from [4]:

Theorem 1. Let N be the number of points sampled in the algorithm. Let
(ωl, bl) be our lower constraint (linear constraints and bias, respectively) and
let L(ω∗, b∗) be the true minimum of function L. For every δ > 0 there exists
Nδ such that |L(ωl, bl) − L(ω∗, b∗)| < δ for every N > Nδ, with high probability.
Analogous result holds for upper constraint (ωu, bu) and function U.

We denote L =
∫

(x,y) F (x, y) and (ωl, bl) are our Al, Bl, Cl. Following the the-
orem, our sampling method guarantees the asymptotic optimality of our bounds.
The theorem can be extended analogously for the upper bound.

5.2 Abstraction Refinement via Optimization

While our approach based on sampling, linear programming, and Fermat’s the-
orem allows us to obtain (asymptotically) optimal bounds, it still has a funda-
mental limitation that it produces a single bound. Further, this approach is, in
a sense, greedy: when considering the entire network, it is possible that selecting
non-optimal planes for each neuron yields more precise results at the end. Neither
the method from [21] nor the method in Sect. 5.1 achieves this. We present the
first approach to learn an abstraction refinement that increases the end-to-end
precision of certification.

Step 1: Compute a Set of Candidate Bounds. We adapt our approach from
Sect. 5.1 to compute a set of candidate planes, instead of a single plane. We run

238 W. Ryou et al.

the sampling procedure multiple times, each time on a different subregion of
the original region B = [lx, ux] × [ly, uy], with the constraints still enforced over
the entire region B. We define four different triangular subdomains: T1 and T2
are triangles resulting from splitting B along the main diagonal, while T3 and T4
are triangles resulting from splitting B along the other diagonal. We additionally
define T0 = B. For each k ∈ {0, 1, 2, 3, 4}, we perform sampling and optimization
as in Eq. (2), this time sampling from Tk to obtain candidate lower bounds:

min
Al,Bl,Cl∈R

n∑

i=1
(σ(xi) tanh(yi) − (Al · xi + Bl · yi + Cl))

subject to
n∧

i=1
Al · xi + Bl · yi + Cl ≤ σ(xi) tanh(yi) where (xi, yi) ∼ Tk

For each neuron i, this yields 5 candidate lower bound and upper bound
planes, LBk

i and UBk
i for k ∈ {0, 1, 2, 3, 4}. These five candidate planes for each

of the N neurons are shown in Fig. 4.

Fig. 4. Learning to combine linear bounds via gradient descent. Here the five candidate
planes multiplied by λ are depicted either in green or red, or both. Green represents
the sampled domain, Tk, and red is the extension of the obtained green plane out of the
domain. With the linear combination of the planes, we compute the bound, calculate
the loss, and backpropagate. (Color figure online)

Step 2: Find the Optimal Combinations of the Bounds. Next, our goal
is to learn a linear combination of the computed candidate bounds which yields
the highest end-to-end certification precision for the given input region. To do
this, we define the lower and upper bound of neuron i as a linear combination
of the proposed five bounds:

LBi =
4∑

k=0

λLB
i · LBk

i ,

4∑

k=0

λLB
i = 1, UBi =

4∑

k=0

λUB
i · UBk

i ,

4∑

k=0

λUB
i = 1.

Recall that we formulate robustness certification as proving that for all labels
i different from the ground truth label t: zt − zi > 0. The lower bound on
zt−zi is computed using backsubstitution [39], as shown in our overview example
in Sect. 4. However, this lower bound now depends on the coefficients λ, so we
define the function f(x, ε, i, λ) which computes the lower bound of the expression
zt − zi when using λ to combine the neuron bounds.

Scalable Polyhedral Verification of Recurrent Neural Networks 239

We describe our approach to find the best coefficients λ in Algorithm 1.
Consider the number of possible labels m and the number of binary operations
of interest Nops. To find λ, we solve the optimization problem for each label i:

zt − zi > max
λ

f(x, ε, i, λ)

If the solution to the above optimization problem is positive, then we proved
robustness with respect to class i. In the algorithm, we initialize λ̃, a pre-
normalized vector of λ, for each neuron, uniformly between –1 and 1. Then,
in each epoch, we compute the normalized λ by applying softmax to λ̃ and run
certification using λ, obtaining a loss L equal to the value −f(x, ε, i, λ). We
perform gradient descent update on λ̃ based on the loss. If the loss is negative,
we have found λ which proves the robustness and the algorithm terminates. The
core updating flow is shown in Fig. 4.

Algorithm 1. Learning λ via gradient descent
Given input x, label y, model M, perturbation ε
Initialize the polyhedral abstractions and candidate bounds based on x, M and ε.
for i ← 1 to m where i �= y do

Initialize λ̃ ∼ [−1, 1]Nops×5, epoch ← 0
repeat

λ ← SoftMax(λ̃), L ← −f(x, ε, i, λ), λ̃ ← λ̃ − α∇λ̃ L, epoch ← epoch + 1
until epoch = max_epoch or L < 0
if L ≥ 0 then

return not certified
end if

end for
return certified

6 Certification of Speech Preprocessing

Speech preprocessing transforms the original set of perturbed speech signals,
represented via intervals, through complex pipeline operations, into a non-linear
and non-convex set. Propagating this set through the network is computationally
expensive (infeasible for large models). To address this issue, we define precise
overapproximations of key non-linear operations found in the speech prepro-
cessing pipeline, such as Square and Log, expressed in the DeepPoly abstraction.
These approximate bounds are computed via constant time closed form formulas
based on concrete bounds of the inputs. We note that the first and third stages
of the pipeline described in Sect. 3.3 involve an affine transformation, captured
exactly using DeepPoly. Overall, when combined with our LSTM verifier, this
method yields more precise end-to-end certification results than using intervals
for approximating speech preprocessing.
Square. The lower and upper polyhedral bounds of the output of the square
function y = x2 where x ∈ [lx, ux] are shown in Fig. 5a. We first consider the

240 W. Ryou et al.

bounds for y which minimize the area in the xy-plane. The upper bound UBy is
obtained by computing the chord joining the end points (lx, l2

x) and (ux, u2
x). The

lower bound is a line parallel to UBy passing through a point ((ux + lx)/2, ((ux +
lx)/2)2) in the middle of the curve.

LBy = (ux + lx) · x − ((ux + lx)/2)2
, UBy = (ux + lx) · x − ux · lx.

While the above bounds would be sufficient in any other domain, they do not
work for the speech domain as the subsequent Log requires that the input is
strictly non-negative, as it is not defined for negative inputs. Also, we should
carefully consider the floating point errors during calculations. Hence, we intro-
duce the additional parameter δ ∈ R, a small threshold value to ensure the lower
bound stays non-negative. In our experiments, we set δ = 1 × 10−5. Upper and
lower bounds for y = x2 are computed as UBy = (ux + lx) ·x−ux · lx and LBy =

Fig. 5. Two polyhedral abstractions for the speech preprocessing stage.

⎧
⎪⎪⎨

⎪⎪⎩

2 · (lx +
√

l2x − δ) · x − (lx +
√

l2x − δ)2 3 · l2x + 2 · lx.ux − u2
x ≤ 4 · δ,

√
δ ≤ lx

2 · (ux −
√

u2
x − δ) · x − (ux −

√
u2

x − δ)2 3 · u2
x + 2.ux.lx − l2x ≤ 4 · δ, ux ≤ −δ

0 lx ≤ √
δ, −√

δ ≤ ux

(ux + lx) · x − ((ux + lx)/2)2 o.w.

Log. We define the polyhedral abstraction of the output y = log(x) of the log
operation where x ∈ [lx, ux], as shown in Fig. 5b. Our abstractions are optimal
and minimize the area in the xy-plane. The lower bound LBy is the chord joining
the end points (lx, log(lx)) and (ux, log(ux)). The upper bound UBy is obtained
by computing a line parallel to LBy passing through the middle of the curve at
((ux + lx)/2, log((ux + lx)/2)). Our final abstractions are:

LBy = log(lx) + x − lx
ux − lx

log(ux

lx
), UBy = 2 · x

ux + lx
− 1 + log(ux + lx

2).

Scalable Polyhedral Verification of Recurrent Neural Networks 241

7 Experimental Evaluation

We implemented our approach in a verifier called Prover, using PyTorch [30]
and Gurobi 9.0 for solving linear programs. The code is available in https://
github.com/eth-sri/prover. We evaluate Prover on speech classifiers for FSDD
[17] and GSC v2 [44] datasets. Then, we compare Prover against POPQORN
[21] on the MNIST image classification task proposed by it. We note that
POPQORN does not scale to the speech classifiers considered in our work. We
demonstrate further scalability by verifying large motion sensor sequence classi-
fier trained on HAPT [33] dataset containing 256 hidden dimensional 4 layered
LSTM units.

Setup. GSC dataset experiments ran on an Nvidia GeForce RTX 2080, while
the rest ran on a single Tesla V100. Following convention from prior work [39],
we consider only those inputs that are classified correctly without perturbation.
We use the same set of hyperparameters for the experiments unless specifically
mentioned. We use 100 sampling points for constructing the linear program and
optimize λ parameters using Adam [20] for 100 epochs. During optimization, we
initialize the learning rate to 100 and multiply it by 0.98 after every epoch.

7.1 Speech Classification

We certify the robustness of two speech classifiers for the FSDD and GSC v2
datasets. FSDD consists of recordings of digits spoken by six different speak-
ers, recorded at 8 kHz. GSC has 35 distinct labels of single word utterances at
16 kHz. We compare our base method based on sampling and linear program-
ming (Sect. 5.1), denoted as Prover (LP), and our method using abstraction
refinement via optimization (Sect. 5.2), denoted as Prover (OPT).

Preprocessing. A key challenge in speech classification, not encountered in the
image domain, is the complex preprocessing stage before the LSTM network.
The preprocessing stage in this experiment consists of FFT and Mel-filter trans-
formations. Preprocessed input then passes through the fully connected layer
with ReLU activation followed by the LSTM unit.

FSDD Certification. We used the following parameters for the preprocessing:
we slice the raw wave signal with length 256 using a stride of 200 with 10 Mel-
frequencies. For this experiment, we trained an LSTM network with two LSTM
layers and 32 hidden units each, preceded by a 40 ReLU-activated fully-connected
layer. This network achieves an accuracy of 83.6% on the FSDD task. The aver-
age number of frames was 14.7. We verify the first 100 correctly classified inputs
for each perturbation. Our perturbation metric on speech classification tasks is
described in Sect. 3.1. Our results are shown in Fig. 6a and Fig. 6b. We vary the
decibel perturbation between –90 dB and –70 dB and evaluate the precision and
runtime of Prover. Figure 6a shows the percentage of certified samples: our
method based on optimizing the bounds (OPT) performs best, e.g., certifying
twice as many samples compared to LP, for a significant perturbation of –70

https://github.com/eth-sri/prover
https://github.com/eth-sri/prover

242 W. Ryou et al.

Fig. 6. Performance plots for the FSDD and GSC datasets with different perturbations.
All tests are done with the same architecture described in the text.

dB. In terms of runtime, Fig. 6b shows that the OPT runtime increases with the
perturbation magnitude, meaning that the optimizer needs more iterations to
converge to the resulting bounds.

Interval vs. Polyhedral Abstraction for Speech Preprocessing. We stud-
ied experimentally the importance of designing precise polyhedral abstractions
of the speech preprocessing pipeline. If we replace the polyhedral bounds for
the square and logarithm operations with interval constraints, the precision of
Prover (LP) drops from 86% to 61% on –90 dB and from 70% to 20% on –80
dB. This shows the importance of keeping relational information while overap-
proximating the speech preprocessing pipeline.

GSC Certification. We used the following parameters for the preprocessing:
we downsample the raw input to 8 kHz, sliced the signal in length 1024, followed
by 10 Mel-frequency filterbanks. As with the FSDD architecture, we used two
layers of LSTM and 50 hidden units each, preceded by a 50 ReLU-activated
fully-connected layer. This network achieves accuracy of 80% on the GSC task.

Scalable Polyhedral Verification of Recurrent Neural Networks 243

Certifying the GSC classifier is more challenging than FSDD: this dataset has
35 labels, compared to 10 in FSDD. The larger label set size requires Prover
to compare 34 output differences - acquiring the lower bounds of lGT − lF L

where each term stands for the final output score for the ground truth and false
label, respectively. Figure 6c shows the percentage of certified samples: 75% on
–110 dB and 46% on –100 dB with Prover (OPT), again higher precision than
Prover (LP). Figure 6d shows the longer running time for Prover (OPT) than
on FSDD, due to its larger label set size.

7.2 Image Classification

Based on the setup from [21], we flatten each image into a vector of dimension
784. This vector is partitioned into a sequence of f frames (f depends on the
experiment). Next, the LSTM uses this frame as an input.

Comparison with POPQORN. We compare the precision and scalability of
Prover against POPQORN [21]. We trained an LSTM network containing 1
layer with 32 hidden units using standard training, achieving an accuracy of
96.5%. The network receives a sequence of f = 7 image slices as input and
predicts a digit corresponding to the image.

As POPQORN is slow, we used only ten correctly classified images randomly
sampled from the test set. For each frame index i and each method, we compute
the maximum perturbation bound ε such that the method can certify that the
LSTM classifier is robust to perturbations up to ε in the L∞-norm of the i-th
slice of the image. We determine the maximum ε using the same binary search
procedure as in [21].

Table 1. Certification of several LSTM models using Prover with ε = 0.01. F , H,
and L denote the number of frames, LSTM hidden units and layers respectively.

F H L Accuracy (%) Certified (%) by OPT/LP by OPT Running time (s)
4 32 1 96.1 91/89 14.5
4 32 2 96.7 92/73 29.1
4 32 3 95.8 95/65 43.1
4 64 1 97.3 93/92 27.0
4 128 1 97.1 95/95 52.4
7 32 1 96.5 63/56 32.1

244 W. Ryou et al.

Fig. 7. Results for the comparison
between Prover and POPQORN. Plot-
ted points represent the maximum L∞
norm perturbation for each frame index
1 through 7.

Figure 7 presents the results of this
experiment. We observe that, for all
three methods, early frames have smaller
ε certified perturbation bounds than
the later frames. The reason is that
the approximation error on frame 1
propagates through the later frames to
the classifying layer, while the error
on frame 7 only affects the last layer.
Across all frames, both our LP and
OPT methods significantly outperform
POPQORN, meaning that Prover
enables a more precise abstraction than
POPQORN. As for speech classifiers,
OPT is more precise than LP. We com-
pare running times of the three meth-
ods on perturbations in the first frame –
most challenging as it requires propagat-
ing through all timesteps. Here, Prover
(LP), Prover (OPT), and POPQORN
take 65,348, and 2,160 s respectively per example on average. We conclude that
both variants of Prover are more precise than POPQORN while being 33.2×
and 6.21× more scalable for LP and OPT respectively.

Effect of Model Size. We evaluate the scalability of Prover by certifying sev-
eral recurrent architectures, with varying number of frames F , hidden units H
and LSTM layers L. For each network, we certify the first 100 correctly classified
images using the same perturbation ε = 0.01 for all frames, with 3 repetitions.
While in the previous experiment we certified each frame separately to closely
follow the setup from [21], it is more natural to assume the adversary is able
to perturb the entire input. The results are shown in Table 1. We observe that
the precision of Prover is affected mostly by the number of frames, as the pre-
cision loss accumulates along the frames. Naturally, the running time increases
with the number of neurons and frames, as Prover is optimizing the bounds
for each σ(x) tanh(y) operation. However, we also observe a counter-intuitive
phenomenon that Prover (OPT) performs better with multi-layer models than
with the single-layer model. The precision from Prover (LP) drops with the
number of LSTM layers unlike those from Prover (OPT). We hypothesize
that an increased number of trainable parameters enhances the flexibility of
the bounds for the optimization, allowing us to find more combinations of the
bounds that certify the input. Prover (LP) has non-flexible bounds, so the
error propagates.

Effect of Perturbation Budget. We certify the robustness of the MNIST
classifier for different ε values. We again evaluated 100 correctly classified samples
from the test set. Figure 8 shows the experimental results. The OPT version has

Scalable Polyhedral Verification of Recurrent Neural Networks 245

Fig. 8. Results on MNIST with different epsilons and F = 4, H = 32, L = 2.

significantly higher precision than LP: i.e., for ε = 0.013 in Fig. 8a, LP proves
39% while OPT certifies 89% of samples with a higher runtime in Fig. 8b.

7.3 Motion Sensor Data Classification

We further demonstrate the scalability of Prover by considering a large classi-
fier containing 4 LSTM layers with 256 hidden units each for the human activity
recognition dataset HAPT [33]. Each input in the dataset consists of recorded
triaxial linear accelerations and angular velocities, sampled 50 Hz. Here, we
restricted HAPT to six activity classes and we trimmed angular velocities to
at most 6 s after the point of prediction. Each input sequence is sliced into slid-
ing windows of 0.5 s, which are then passed as an input to the classifier. The
trained classifier achieves 88% test accuracy. Identical to the other experiments,
we run Prover on the first 100 correctly classified inputs.

Fig. 9. Results on HAPT with different epsilons and H = 256, L = 4.

246 W. Ryou et al.

Results, shown in Fig. 9, indicate that Prover (OPT) verifies more inputs
than Prover (LP), for all perturbation budgets. Although the number of param-
eters has increased, Fig. 9b shows smaller running times compared to Fig. 6b and
Fig. 6d. This is because of the smaller number of classes in HAPT, as the verifi-
cation needs to perform the backsubstitution for each incorrect class. This result
shows that Prover (i) is applicable to LSTM classifiers in various domains, and
(ii) scales to the large models.

8 Conclusion

We introduced a novel approach for certifying RNNs based on a combination of
linear programming and abstraction refinement. The key idea is to compute a
polyhedral abstraction of the non-linear operations found in the recurrent cells
and to dynamically adjust this abstraction according to each input example
being certified. Our experimental results show that Prover is more precise and
scalable than prior work. These advances enable Prover to certify, for the first
time, the robustness of LSTM-based speech classifiers.

References

1. Fermat’s theorem. https://planetmath.org/fermatstheoremstationarypoints
2. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of RNN-

based neural agent-environment systems. In: Proceedings of the AAAI Conference
on Artificial Intelligence (2019)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geomet-
ric robustness of neural networks. In: Advances in Neural Information Processing
Systems (2019)

5. Balunovic, M., Vechev, M.: Adversarial training and provable defenses: Bridging
the gap. In: International Conference on Learning Representations (2020)

6. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Joint
European Conference on Machine Learning and Knowledge Discovery in Databases
(2013)

7. Carlini, N., et al.: Hidden voice commands. In: 25th {USENIX} Security Sympo-
sium ({USENIX} Security 16), pp. 513–530 (2016)

8. Carlini, N., Wagner, D.: Audio adversarial examples: Targeted attacks on speech-
to-text. In: 2018 IEEE Security and Privacy Workshops (SPW) (2018)

9. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724–1734 (2014)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of Principles of Programming Languages, ACM (1977)

11. Diro, A., Chilamkurti, N.: Leveraging LSTM networks for attack detection in fog-
to-things communications. IEEE Commun. Mag. 56(9), 124–130 (2018)

12. Dvijotham, K., et al.: Training verified learners with learned verifiers.
arXiv:1805.10265 (2018)

https://planetmath.org/fermatstheoremstationarypoints
http://arxiv.org/abs/1805.10265

Scalable Polyhedral Verification of Recurrent Neural Networks 247

13. Fischer, M., Baader, M., Vechev, M.: Certification of semantic perturbations via
randomized smoothing. arXiv:2002.12463 (2020)

14. Hannun, A., et al.: Deep speech: Scaling up end-to-end speech recognition.
arXiv:1412.5567 (2014)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

16. Hu, W., Tan, Y.: Black-box attacks against RNN based malware detection algo-
rithms. arXiv:1705.08131 (2017)

17. Jackson, Z.: Free spoken digit dataset (2020). https://github.com/Jakobovski/free-
spoken-digit-dataset

18. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. arXiv:2004.02462 (2020)

19. Khmelnitsky, I., et al.: Property-directed verification of recurrent neural networks.
arXiv:2009.10610 (2020)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014)

21. Ko, C., Lyu, Z., Weng, T., Daniel, L., Wong, N., Lin, D.: Popqorn: Certifying
robustness of recurrent neural networks. In: International Conference on Machine
Learning (ICML) (2019)

22. Li, J., Qu, S., Li, X., Szurley, J., Kolter, J.Z., Metze, F.: Adversarial music: real
world audio adversary against wake-word detection system. In: Advances in Neural
Information Processing Systems, pp. 11908–11918 (2019)

23. Lyu, Z., Ko, C.Y., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened crown: Tight-
ened neural network robustness certificates. arXiv:1912.00574 (2019)

24. Miné, A.: A new numerical abstract domain based on difference-bound matrices.
In: Proceedings of Programs As Data Objects (PADO), pp. 155–172 (2001)

25. Miné, A.: The octagon abstract domain. High. Order Symbolic Comput. 19(1),
31–100 (2006)

26. Neekhara, P., Hussain, S., Pandey, P., Dubnov, S., McAuley, J., Koushan-
far, F.: Universal adversarial perturbations for speech recognition systems.
arXiv:1905.03828 (2019)

27. Pachocki, J., et al.: Openai five. https://blog.openai.com/openai-five (2018)
28. Papernot, N., McDaniel, P., Swami, A., Harang, R.: Crafting adversarial input

sequences for recurrent neural networks. In: MILCOM 2016–2016 IEEE Military
Communications Conference, pp. 49–54. IEEE (2016)

29. Pascual, S., Bonafonte, A., Serra, J.: Segan: Speech enhancement generative adver-
sarial network. arXiv:1703.09452 (2017)

30. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
31. Qin, Y., Carlini, N., Goodfellow, I., Cottrell, G., Raffel, C.: Imperceptible, robust,

and targeted adversarial examples for automatic speech recognition. In: Interna-
tional Conference on Machine Learning (ICML) (2019)

32. Raghunathan, A., Steinhardt, J., Liang, P.S.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: Advances in Neural Information Processing
Systems (NeurIPS), pp. 10877–10887 (2018)

33. Reyes-Ortiz, J.L., Oneto, L., Samà, A., Parra, X., Anguita, D.: Transition-aware
human activity recognition using smartphones. Neurocomputing 171, 754–767
(2016)

34. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Pro-
ceedings of Neural Information Processing Systems (NIPS), pp. 3856–3866 (2017)

http://arxiv.org/abs/2002.12463
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1705.08131
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
http://arxiv.org/abs/2004.02462
http://arxiv.org/abs/2009.10610
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1912.00574
http://arxiv.org/abs/1905.03828
https://blog.openai.com/openai-five
http://arxiv.org/abs/1703.09452

248 W. Ryou et al.

35. Sahidullah, M., Saha, G.: Design, analysis and experimental evaluation of block
based transformation in MFCC computation for speaker recognition. Speech Com-
mun. 54(4), 543–565 (2012)

36. Sainath, T.N., Weiss, R.J., Senior, A., Wilson, K.W., Vinyals, O.: Learning the
speech front-end with raw waveform CLDNNs. In: Sixteenth Annual Conference
of the International Speech Communication Association (2015)

37. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron con-
vex barrier for neural network certification. In: Advances in Neural Information
Processing Systems (2019)

38. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems
(2018)

39. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. In: Proceedings of Principles of Programming Languages (POPL)
(2019)

40. Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Proceed-
ings of Principles of Programming Languages (POPL), pp. 46–59 (2017)

41. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)
42. Vaswani, A., et al.: Attention is all you need. In: Proceedings of Neural Information

Processing Systems (NIPS) (2017)
43. Vinyals, O., et al.: Alphastar: Mastering the real-time strategy game starcraft ii.

DeepMind blog p. 2 (2019)
44. Warden, P.: Speech commands: A dataset for limited-vocabulary speech recogni-

tion. arXiv:1804.03209 (2018)
45. Wu, M., Kwiatkowska, M.: Robustness guarantees for deep neural networks on

videos. arXiv:1907.00098 (2019)
46. Yang, Z., Li, B., Chen, P.Y., Song, D.: Characterizing audio adversarial examples

using temporal dependency (2019)
47. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network

robustness certification with general activation functions. In: Advances in Neural
Information Processing Systems, (NeurIPS) (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1907.00098
http://creativecommons.org/licenses/by/4.0/

Verisig 2.0: Verification of Neural
Network Controllers Using Taylor Model

Preconditioning

Radoslav Ivanov(B), Taylor Carpenter, James Weimer, Rajeev Alur,
George Pappas, and Insup Lee

University of Pennsylvania,
Philadelphia, PA 19104, USA

{rivanov,carptj,weimerj,alur,
pappasg,lee}@seas.upenn.edu

Abstract. This paper presents Verisig 2.0, a verification tool for closed-
loop systems with neural network (NN) controllers. We focus on NNs
with tanh/sigmoid activations and develop a Taylor-model-based reach-
ability algorithm through Taylor model preconditioning and shrink wrap-
ping. Furthermore, we provide a parallelized implementation that allows
Verisig 2.0 to efficiently handle larger NNs than existing tools can. We
provide an extensive evaluation over 10 benchmarks and compare Verisig
2.0 against three state-of-the-art verification tools. We show that Verisig
2.0 is both more accurate and faster, achieving speed-ups of up to 21x
and 268x against different tools, respectively.

1 Introduction

Following their increasing popularity, neural networks (NNs) have been recently
introduced to various new domains, including safety-critical systems such as
autonomous cars [4] and airborne collision avoidance systems [21]. At the same
time, NNs have been shown to be greatly susceptible to input perturbations:
minor input changes can cause a NN’s outputs to vary drastically, as is the case
with adversarial examples [26]. Such issues have emphasized the need to formally
analyze NN-based systems and assure their safety before they are deployed.

A number of formal verification approaches have been proposed in the last
few years to analyze closed-loop systems with NN components. On the one hand,
several techniques have been developed for reachability analysis. These works

This work was supported by the Air Force Research Laboratory (AFRL) and the
Defense Advanced Research Projects Agency (DARPA) under Contract No. FA8750-
18-C-0090, and by the Army Research Office (ARO) under Grant Number W911NF-
20-1-0080, and by the Office of Naval Research (ONR) award N00014-20-1-2115. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of AFRL, ARO, DARPA,
ONR, or the Department of Defense, or the United States Government.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 249–262, 2021.
https://doi.org/10.1007/978-3-030-81685-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_11

250 R. Ivanov et al.

Fig. 1. Overview of the closed-loop system considered in this paper.

handle the NN reachability problem in a variety of ways: by converting the NN
into a hybrid system [19]; by casting the problem into a satisfiability modulo con-
vexity problem [25]; by approximating the NN with a Taylor model [8,11,16,20];
or by propagating NN reachable sets using star sets [27,28]. Multiple falsifica-
tion techniques have been developed as well: these approaches work by adapting
existing hybrid-system falsifiers [2,6] to the NN case [7,29,33]; methods for sys-
tematic testing through scenario specification languages have been proposed as
well [14]. Finally, a number of techniques have been developed to analyze proper-
ties of the NN in isolation (e.g., input-output properties) [9,10,12,15,22,30–32],
though it is challenging to use these tools in a closed-loop setting as it is unclear
what NN specification ensures closed-loop safety in general.

While existing reachability techniques have shown impressive performance,
scalability remains an obstacle to applying these tools to realistic systems. In
particular, these methods have been evaluated mostly on low-dimensional sys-
tems, i.e., systems with several states and at most 41 measurements [18]. The
main scalability challenge stems from the fact that reachability is undecidable
even for linear hybrid systems [1]. Thus, all approaches overapproximate the
true reachable sets using a computationally convenient representation such as
polytopes [13] or Taylor models [5]. At the same time, this overapproximation,
known as the wrapping effect, leads to quick error accumulation over time, thus
making it challenging to verify complex specifications over a longer time horizon.

To address these limitations, we present Verisig 2.0, a scalable tool for ver-
ifying safety properties of closed-loop systems with NN controllers. We com-
bine ideas from NN reachability with ideas from hybrid system verification.
In particular, we adopt the idea of approximating NNs with Taylor models
(TMs) [11,16,20], and we alleviate the wrapping effect through TM precondi-
tioning and shrink wrapping [3,23,24]. Finally, we note that the NN reachability
computation can be parallelized since each neuron in a layer can be analyzed
independently. We have implemented our tool in conjunction with the hybrid
system tool Flow* [5], which enables us to handle general hybrid system models
with NN components.

We compare Verisig 2.0 against three tools, namely Verisig [20], NNV [28],
and ReachNN* [11]. We use 10 benchmarks that illustrate various challenges,
such as hybrid models, non-linear systems and systems with high-dimensional
observations. The results indicate that Verisig 2.0 is significantly faster (achiev-
ing speed-ups of up to 21x and 268x against Verisig and ReachNN*, respectively)
and produces tighter reachable set approximations on all benchmarks.

Verification of Neural Network Controllers 251

In summary, this paper has three contributions: 1) a Taylor-model-
based NN reachability method using TM preconditioning and shrink wrap-
ping; 2) an efficient implementation that allows for parallel execution; 3)
an extensive comparison against existing tools on 10 diverse benchmarks.
The source code to reproduce the results is available online (github.com/
rivapp/CAV21 repeatability package) as well as in the main Verisig repository
(github.com/Verisig/verisig).

2 Problem Statement

This section outlines the reachability problem addressed in this paper. We con-
sider a closed-loop system, illustrated in Fig. 1, consisting of: a) a plant with
states x modeled as a hybrid system; b) measurements y produced as a function
of x; c) an NN controller h that takes y as input and produces controls u.

Plant Model. We assume the plant is modeled as a standard hybrid system. In
particular, the state space X = XD × XC consists of continuous variables XC

and discrete locations XD = {q1, . . . , qm}. When in location q ∈ XD, the system
evolves according to differential equations fq, i.e., ẋ = fq(x, u), where x ∈ XC .
Each location q ∈ XD has an associated invariant I(q) ⊆ XC that must hold true
in that location. Transitions between locations are enabled by guards, which are
boolean predicates on the continuous variables. Finally, each continuous variable
may be reset to a new value when transitioning to a new location.

Observation Model. The system produces observations y = g(x), where
g : X → R

p. Note that some benchmarks in this paper use state feedback only,
i.e., y = x.

Controller. The controller h is a fully-connected feedforward NN with sig-
moid/tanh activations. Formally, h can be represented as a composition of its L
layers:

h(y) = hL ◦ hL−1 ◦ · · · ◦ h1(y), (1)

where each hi(y) = a(Wiy + bi) performs a linear function, with parameters Wi

and bi identified during training, followed by a sigmoid/tanh activation a.

Composed System. Although the hybrid system formulation places no restric-
tions on the controller/plant composition, in the interest of clarity we assume
the controller is executed in a time-triggered fashion, with sampling period T ,
as follows: u(t) = h(y(tk)), for t ∈ [tk, tk + T), where tk = kT and k = 0, 1, 2, . . .

Closed-Loop Reachability Problem. Let S be a composed system. Given an initial
set of states x(0) ∈ X0, the reachability problem, expressed as property φ, is to
verify a property ψ of the reachable states of S:

φ(X0) ≡ (x(0) ∈ X0) ⇒ ψ(x(t)), ∀t ≥ 0. (2)

http://github.com/rivapp/CAV21_repeatability_package
http://github.com/rivapp/CAV21_repeatability_package
http://github.com/Verisig/verisig

252 R. Ivanov et al.

3 Background: Neural Networks as Taylor Models

As described in Sect. 1, in this work we adopt a TM-based approach for propagat-
ing NN reachable sets. There are two main reasons for this: 1) TMs can approxi-
mate any differentiable function over a bounded range given a high enough order;
2) TMs are very effective at approximating hybrid system reachable sets, which
allows for a smooth composition between the NN and the rest of the system.
The rest of this section formalizes TMs and summarizes the existing approaches
to using TMs for NN reachability.

Taylor Model Definition. Intuitively, a TM of a function f is a polynomial
approximation p, together with a worst-case error bound I. A j-degree polyno-
mial approximation p of a j times continuously differentiable function f around
a point x, written p(x) ≡j f(x), is a polynomial p of degree j such that all partial
derivatives of f and p coincide at x. Let I be the set of all intervals I = [a, b]
and let f : D → R be a function of n variables defined over a domain D ∈ I

n.
Then a Taylor model of f over D of degree j is a pair (p, I) of a polynomial
approximation p and an error bound I (also known as a remainder) such that:

1)f(c) ≡j p(c),where c is the center of D,

2)∀x ∈ D, f(x) ∈ {p(x) + e | e ∈ I}.

Taylor Model Arithmetic. Let TM1 = (p1, I1) and TM2 = (p2, I2) be two TMs
defined over a domain D. Addition and multiplication are defined as follows [5]:

TM1 + TM2 = (p1 + p2, I1 + I2)
TM1 × TM2 = (p1 × p2, Int(p1)I2 + Int(p2)I1 + I1 × I2),

where Int(p) is an interval bound of p over D.
TMs have shown impressive performance in hybrid system reachability prob-

lems due to their ability to approximate any continuously differentiable function
given a high enough order [5]. Another appealing feature is that TMs can be used
to approximate solutions of differential equations through Picard iteration [5].
Thus, it is natural to try to use TMs to approximate NN reachable sets as well.

Two classes of approaches for approximating NNs with TMs have been devel-
oped in the literature. The first one is sampling-based: given a TM TMy of the
inputs y to h, these methods sample points Z from TMy and corresponding
outputs h(Z) to perform polynomial regression [8] or approximation [16]. While
these approaches work well for systems with several state variables, they cannot
handle higher-dimensional problems due to insufficient sampling.

A second approach to using TMs for NN reachability is to propagate the
TMs through each neuron in the NN. Specifically, let TMy = (p, I) be the TM
for y and consider a neuron ν that computes the function σ(wy + b), where σ
denotes the sigmoid. One can use TM arithmetic [5] to obtain TML = (wp +
b, wI) for the linear map in ν. For the sigmoid TM, TMσ, one could obtain
a Taylor series expansion of σ around the center of TML and get remainder

Verification of Neural Network Controllers 253

bounds using Taylor’s theorem [20]. Thus, the final TM for ν is TMν = TMσ ◦
TML. The benefit of propagating TMs in this fashion is that no sampling is
necessary since the NN is approximated directly. On the other hand, scalability
challenges manifest in a different way, namely the TM remainders may grow
quickly depending on the NN architecture (explained in more detail in Sect. 4).

We adopt the latter approach to approximating NN as TMs due to its
improved scalability. The next section describes our approach to reducing the
TM remainder size through TM preconditioning and shrink wrapping.

Fig. 2. The wrapping effect for different
taylor model orientations.

Fig. 3. Illustration of the shrink wrap-
ping method.

4 Taylor Model Preconditioning and Shrink Wrapping

This section presents our approach to limiting the remainder growth as TMs are
propagated through the NN. We explore two complementary techniques, namely
TM preconditioning and shrink wrapping. Both of these ideas were originally
developed for the purpose of reachability analysis of hybrid systems [3,23] – in
this paper, we adapt them to the NN case.

4.1 Taylor Model Preconditioning

As noted in Sect. 3, although propagating the TM through the NN is preferred
since it captures the functional representation of each neuron, it may suffer from
quick remainder growth. The following example illustrates this process.

Example 1. Let y1 and y2 be inputs to the NN h with corresponding TMs
TMy1 = (p1, I1) and TMy2 = (p2, I2) over domain D ∈ I

n. Let ν be a neu-
ron in the first layer implementing the function ν(y1, y2) = σ(w1y1 + w2y2 + b).
The TM for the linear part of ν is

TML := (pL, IL) = (w1p1 + w2p2 + b, w1I1 + w2I2).

Let TMσ = σ(a)+σ′(a)(TML −a)+σ′′(a)(TML −a)2/2+ Iσ be a second-order
Taylor series expansion of the sigmoid around point a, with remainder Iσ. Using
TM arithmetic [5], the TM for ν is TMν = (pν , Iν), where

pν = σ′′(a)p2
L + (σ′(a) − aσ′′(a))pL − (σ′(a) − 0.5aσ′′(a))a + σ(a)

Iν = σ′′(a)(2Int(pL)IL + I2
L) + (σ′(a) − aσ′′(a))IL + Iσ.

254 R. Ivanov et al.

Remark 1. In order to compute a TMσ = (pσ, Iσ) for the sigmoid/tanh, one
can follow the procedure described in prior work [20]. In summary, the following
three steps need to be performed, assuming the input TM is denoted by TML:

1. compute interval bounds, [a, b], for TML using interval analysis;
2. obtain a Taylor series approximation, pσ, of the sigmoid/tanh around the

midpoint of [a, b];
3. obtain worst-case error bounds, Iσ, for pσ using Taylor’s theorem.

As shown in Example 1, the remainder is propagated using interval analysis,
where a major contributor is the Int(pL) term, i.e., the interval bounds of pL.
Since this term approximates the (potentially high-dimensional) input TM with
a box, it may introduce significant wrapping effect if the input TM is not a
box, as illustrated in Fig. 2. The natural way to address this wrapping effect is
through rotating the TM in order to align it with the axes [23,24].

Algorithm 1. NN Verification Using Taylor Model Preconditioning
Input: Measurement TM Vector TMVy, NN h with L layers, and sigmoid activations.
1: TMV0 ← TMVy

2: for each i in {1, . . . , L} do
3: TMV L

i ← Wi ∗ TMVi−1 + bi

4: (Q + c,0) ◦ (R + Q�N, Q�I) ← TaylorModelPreconditioning(TMV L
i)

5: TMV ν
i ← TaylorModelForSigmoid((Q,0)) //Taylor series approximation

6: TMVi ← TMV ν
i ◦ (R + Q�(c + N), I)

7: end for
8: return TMVL

Since the set represented by a TM is the image of a polynomial over a given
domain, it is challenging to choose an appropriate rotation matrix. However,
as discussed in prior work [23,24], if one first normalizes the TM so that the
domain is [−1, 1]n, then the linear terms become the largest contributors to
interval analysis overapproximation (since higher order terms are less than 1 in
magnitude). Thus, a good choice for a rotation matrix is the matrix formed by
the linear terms of the (normalized) TM.

To formalize the above concept, let us decompose a TM vector TMV = (p, I)
into TMV = (c + M + N, I), where c denotes the constant terms, M denotes
the linear terms and N denotes the higher-order terms. The idea of precondi-
tioning is to decompose M = QR, where Q is an orthonormal matrix and R is
upper-triangular. This is achieved by splitting TMV into a composition of two
TM vectors: TMV = (Q+c,0)◦ (R+Q�N,Q�I).1 Then, each neuron’s compu-
tation is performed on Q only, which alleviates the wrapping effect introduced
by Int(pL) in Example 1 since Q is orthonormal.

1 Note that the new remainder may need to be enlarged to also include numerical
errors due to the computation of Q.

Verification of Neural Network Controllers 255

The algorithm is presented in Algorithm 1. Note that preconditioning is
performed in each layer, followed by again composing the two parts into the full
TM. While it is possible to represent the final TM as a composition of individual
layer TMs, the benefits of preconditioning would decrease after the first layer,
since most of the variability is captured in the right-most TM.

4.2 Shrink Wrapping

In systems where verification over a longer time horizon is required, avoiding
large remainders may be impossible even with effective preconditioning. In such
cases, one could use shrink wrapping in order to refactor the TM into one that
results in slower remainder accumulation in the future [3,24].

The high-level idea of shrink wrapping is illustrated in Fig. 3. If the remainder
becomes a significant part of the set described by the TM, then TM arithmetic
degrades into standard interval analysis. In this case, it helps to transform the
TM into a new TM that contains the original one but has no remainder. Thus,
even if the new TM is slightly larger, it is propagated symbolically using TM
arithmetic, which results in smaller error accumulation in the long run.

The choice of new TM is not obvious and is affected by the system in
consideration. The standard approach in related work [3,24] is to focus on
the linear terms (assuming the TM is normalized so that D = [−1, 1]n).
Specifically, suppose that the system’s state x is described by the TM vector
TMVx = (p, I) = (c + M + N, I). One option for the new TM vector is to
premultiply TMVx by M−1, thereby reducing the linear terms to the iden-
tity matrix, I. Then a shrink wrap factor q is chosen such that the image of
the higher-order terms contains the remainder of the initial TM vector, i.e.,
TMV new

x = (c + I + qM−1N,0).2

While it is possible to choose q by finding bounds on the partial derivatives of
the higher-order terms M−1N [3], our initial experiments indicated that a more
straightforward approach leads to no loss in precision. In particular, we represent
the new TM vector as TMV new

x = (c + diag(q),0), where q = Int(TMVx).
The last consideration is when to perform the TM conversion: if it is applied
too often, more error could be introduced by the frequent elimination of useful
information in the TMs. In our experiments, shrink wrapping is triggered when
the remainder is larger than 1e−6 and larger than 1% of the total TM range.

5 Implementation

We implemented our approach in conjunction with the Flow* tool [5], for easy
integration with standard hybrid system models. We provide similar TM func-
tions to the ones existing in Flow*, adapted to the case of NNs. In addition to
modified data structures, a main difference in our implementation is the option
to parallelize the TM vector propagation, i.e., Line 5 in Algorithm 1. This par-
allelization is possible since each neuron in a layer only depends on the input
2 The new remainder may be greater than 0 due to round-off error during the inversion.

256 R. Ivanov et al.

TMs, thus each computation can be done on a separate core. As illustrated in
Sect. 7, this implementation brings great benefits, especially in the case of larger
NNs, where multiple neuron computations can be performed in parallel.

6 Benchmarks

We use 10 benchmarks to evaluate the proposed approach. These benchmarks
were compiled from the related literature [17,19,20,28] and were selected in order
to cover a wide variety of systems and controllers: 1) continuous and hybrid
systems; 2) systems with state feedback and systems with measurements as a
function of the states; 3) low-dimensional systems as well as systems with high-
dimensional measurements; 4) controllers with both tanh and sigmoid activations
and with a number of neurons varying from 16 to 200 per layer.

Table 1 presents the dynamics and the initial set for each benchmark. For
simplicity, all properties are reachability properties (i.e., the problem is to verify
whether a goal set is reached from all initial states), though safety properties
can be handled as well. In particular, the goal regions are as follows:

– B1 : x1 ∈ [0, 0.2], x2 ∈ [0.05, 0.3]; B2 : x1 ∈ [−0.3, 0.1], x2 ∈ [−0.35, 0.5];

Table 1. List of benchmarks. Benchmarks B1−B5 and Tora were introduced by Huang
et al. [17]; adaptive cruise control (ACC) was presented by Tran et al. [28]; mountain car
(MC), quadrotor with model-predictive control (QMPC) and F1/10 were introduced
by Ivanov et al. [20]. We use V to denote the measurement dimension. In F1/10, y is
a 21-dimensional LiDAR scan.

Name Dynamics V Initial set

B1 ẋ1 = x2, ẋ2 = ux2
2 − x1 2 x1 ∈ [0.8, 0.9], x2 ∈ [0.5, 0.6]

B2 ẋ1 = x2 − x3
1, ẋ2 = u 2 x1 ∈ [0.7, 0.9], x2 ∈ [0.7, 0.9]

B3 ẋ1 = −x1(0.1 + (x1 + x2)2), 2 x1 ∈ [0.8, 0.9],

ẋ2 = (u + x1)(0.1 + (x1 + x2)2) x2 ∈ [0.4, 0.5]

B4 ẋ1 = −x1 + x2 − x3, 3 x1, x3 ∈ [0.25, 0.27],

ẋ2 = −x1(x3 + 1) − x2, ẋ3 = −x1 + u x2 ∈ [0.08, 0.1]

B5 ẋ1 = x3
1 − x2, 3 x1 ∈ [0.38, 0.4], x2 ∈ [0.45, 0.47]

ẋ2 = x3, ẋ3 = u x3 ∈ [0.25, 0.27],

Tora ẋ1 = x2, 4 x1 ∈ [−0.77, −0.75],

ẋ2 = −x1 + 0.1sin(x3), x2 ∈ [−0.45, −0.43],

ẋ3 = x4, x3 ∈ [0.51, 0.54],

ẋ4 = u x4 ∈ [−0.3, −0.28]

ACC ẋ1 = x2, ẋ2 = x3, ẋ3 = −4 − 2x3 − x2
2

1000 5 x1 ∈ [90, 91], x2 ∈ [32, 32.05]

ẋ4 = x5, ẋ5 = x6, ẋ6 = 2u − 2x6 − x2
5

1000 x4 ∈ [10, 11], x5 ∈ [30, 30.05]

MC x+
1 = x1 + x2, 2 x1 ∈ [−0.53, −0.5]

x+
2 = x2 + 0.0015u − 0.0025cos(3x1)

QMPC ẋ1 = x4 − 0.25, ẋ2 = x5 + 0.25, ẋ3 = x6 6 x1 ∈ [0.025, 0.05],

ẋ4 = 9.81u1, ẋ5 = −9.81u2, ẋ6 = u3 − 9.81 x2 ∈ [0, 0.025]

F1/10 ẋ1 = x3cos(x4), ẋ2 = x3sin(x4) 21 x1 ∈ [−0.0025, 0.0025],

ẋ3 = −1.633x3 + 0.3266(u − 4), ẋ4 =
x3tan(u)

0.225 x3 ∈ [−0.0025, 0.0025]

Verification of Neural Network Controllers 257

– B3 : x1 ∈ [0.2, 0.3], x2 ∈ [−0.3,−0.05]; B4 : x1 ∈ [−0.05, 0.05], x2 ∈ [−0.05, 0];
– B5(sig) : x1 ∈ [−0.4,−0.28], x2 ∈ [0.05, 0.22];
– B5(tanh) : x1 ∈ [−0.43,−0.38], x2 ∈ [0.16, 0.18];
– Tora: x1 ∈ [−0.1, 0.2], x2 ∈ [−0.9,−0.6];
– ACC: x1 ∈ [22.81, 22.87], x4 ∈ [29.88, 30.02];
– MC: x1 ≥ 0.45; QMPC: x1, x2, x3 ∈ [−0.32, 0.32]; F1/10: no crash [18].

7 Experiments

We compare our tool, named Verisig 2.0, against three state-of-the-art tools,
namely Verisig [19,20], ReachNN* [11,17], and NNV [27,28]. We selected these
tools because they handle NNs with sigmoid/tanh activations. For each bench-
mark, we record whether each tool could verify the property (or return Unknown
due to large approximation error). In addition, we compare the verification times
between the different tools. While Verisig and NNV do not support parallel exe-
cution,3 ReachNN* has been optimized for GPU execution, so a comparison in
terms of verification times is fair (all experiments were run on an Intel Xeon
Gold 6248 running at 2.5 GHz and with an Nvidia GeForce RTX 2080 Ti GPU).
Finally, we provide a comparison in terms of reachable sets.

Verification outcomes and times are reported in Table 2. Multiple controllers
were used in some benchmarks in order to test a variety of NNs. We present the

Table 2. Verification evaluation. The notation tanh/sig (n × k) indicates a NN with
tanh/sig activations, n hidden layers and k neurons per layer. For each tool, we provide
the verification time in seconds; if a property could not be verified, it is marked as
Unknown. If a tool crashed on a benchmark, it is marked as DNF.

Name NN setup Verisig 2.0 (40 cores) Verisig 2.0 (1 core) Verisig ReachNN* NNV

B1 tanh (2 × 20) 38 s 48 s DNF Unknown Unknown

sig (2 × 20) 40 s 49 s Unknown 69 s Unknown

B2 tanh (2 × 20) Unknown Unknown Unknown Unknown Unknown

sig (2 × 20) 6 s 8 s 12 s 32 s Unknown

B3 tanh (2 × 20) 32s 43 s 98 s 128 s Unknown

sig (2 × 20) 36 s 47 s 98 s 130 s Unknown

B4 tanh (2 × 20) 9 s 11 s 23 s 20 s DNF

sig (2 × 20) 10 s 12 s 24 s 20 s DNF

B5 tanh (3 × 100) 48 s 168 s Unknown Unknown Unknown

sig (3 × 100) 51s 196 s 1063 s 31 s Unknown

Tora tanh (3 × 20) 43 s 70 s 134 s 2524 s Unknown

sig (3 × 20) 50 s 83 s 136 s 3402 s Unknown

ACC tanh (3 × 20) 529 s 1512 s Unknown DNF Unknown

MC sig (2 × 16) 48 s 52 s 33 s N/A N/A

sig (2 × 200) 1241 s 4311 s Unknown N/A N/A

QMPC tanh (2 × 20) 636 s 697 s 703 s N/A N/A

F1/10 tanh (2 × 64) 3411 s 3654 s 2021 s N/A N/A

3 NNV is parallelized in the case of ReLU activations, but not for smooth activations.

258 R. Ivanov et al.

results for Verisig 2.0 as used with one and with 40 cores, in order to illustrate
the benefit of parallelization. Note that parallelization helps the most in systems
with wider NNs, e.g., the MC benchmark, since a larger part of the computation
is devoted to NN computation (relative to plant computation) in these systems.

Comparison with Verisig. Verisig is the closest method to Verisig 2.0, as it also
propagates TMs through the NN. Thus, Verisig can be seen as a baseline for our
approach, so this comparison illustrates most clearly the benefits of precondi-
tioning and shrink wrapping. Firstly, note that Verisig takes significantly more
time to compute reachable sets (21 times slower in the case of the B5 benchmark)
on all but one benchmark – the MC benchmark is peculiar because the NN is
very small, hence most of the computation is spent on the plant. Furthermore,
Verisig is unable to verify some properties due to increasing error. As shown
in Fig. 4, the reachable sets computed by Verisig introduce more approximation
error, especially in the challenging ACC benchmark, where preconditioning is
particularly useful due to the larger input space.

24 26 28 30 32

x
1

29.7

29.8

29.9

30

30.1

30.2

x
4

(a) ACC benchmark.

-0.5 0 0.5

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
2

(b) B5 benchmark, sigmoid.

-1 -0.5 0 0.5 1

x
1

-0.04

-0.02

0

0.02

0.04

0.06

0.08

x
2

(c) MC benchmark, 2 × 200.

Fig. 4. Comparison between the reachable sets produced by Verisig (blue) and Verisig
2.0 (green). Example simulated trajectories are plotted in red. The goal set is shown in
magenta. Note that the goal is not reached in the B5 benchmark. (Color figure online)

-0.5 0 0.5 1

x
1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
2

(a) B1 benchmark, sigmoid.

-0.5 0 0.5

x
1

0.1

0.2

0.3

0.4

0.5

0.6

x
2

(b) B5 benchmark, tanh.

-1 -0.5 0 0.5 1

x
1

-1

-0.5

0

0.5

1

x
2

(c) Tora benchmark, sigmoid.

Fig. 5. Comparison between the reachable sets produced by ReachNN* (blue) and
Verisig 2.0 (green). Simulated trajectories are plotted in red (not shown in the Tora
benchmark to improve visibility). The goal set is shown in magenta. (Color figure
online)

Verification of Neural Network Controllers 259

24 26 28 30 32

x
1

29.6

29.7

29.8

29.9

30

30.1

30.2
x
4

(a) ACC benchmark.

-1 -0.5 0 0.5 1

x
1

-3

-2

-1

0

1

2

x
2

(b) B2 benchmark, sigmoid.

-1 -0.5 0 0.5 1

x
1

-1.5

-1

-0.5

0

0.5

1

x
2

(c) Tora benchmark, tanh.

Fig. 6. Comparison between the reachable sets produced by NNV (blue) and the Verisig
2.0 approach (green) on three of the benchmarks from Table 2. Example simulated
trajectories are plotted in red. The goal set is shown in magenta. (Color figure online)

Fig. 7. Verisig 2.0 remainder growth (for position, x1) on the MC benchmark as we
increase the NN size. The remainder is reset to 0 after shrink wrapping.

Comparison with ReachNN*. ReachNN* is a sampling-based approach to NN
verification, so it is expected to work well on low-dimensional systems and
encounter difficulties as the dimension increases. As can be seen in Table 2,
Verisig 2.0 is faster on all but one benchmark, and the difference is especially
pronounced on the four-dimensional Tora benchmark, where ReachNN* is 268
times slower. Note that ReachNN* cannot handle hybrid models, so no compar-
ison could be made on those benchmarks. Finally, as shown in Fig. 5, Verisig
2.0 also results in tighter reachable sets – the benefit of shrink wrapping can be
observed in Fig. 5a, where the ReachNN* reachable sets eventually start to grow
fast whereas Verisig 2.0 is able to maintain low approximation error over time.

Comparison with NNV. Note that NNV is unable to verify any of the properties
considered in this paper due to high approximation error. This is mostly due to
the fact that NNV is optimized for networks with ReLU activations, where the
star set method used in NNV is effective and parallelizable. Figure 6 shows the
reachable computed by each tool, where it is clear that Verisig 2.0 maintains
tight reachable sets whereas the NNV approximation error grows quickly.

260 R. Ivanov et al.

Scalability Evaluation. Finally, we also evaluate the scalability of Verisig 2.0 as
we increase the NN size on the MC benchmark. Figure 7 illustrates how the
remainder grows over time for the x1 (position) state. We observe that the
larger NN results in significantly larger remainder growth. At the same time,
interpreting the remainder growth in isolation may be misleading since it also
depends on the size and shape of the true reachable sets. We leave a rigorous
analysis of the effect of NN size on scalability for future work.

8 Conclusion

This paper presented Verisig 2.0, a parallelized tool for NN verification. We devel-
oped a Taylor-model-based approach in which we reduce the approximation error
in reachable sets through Taylor model preconditioning and shrink wrapping.
Finally, we provided an extensive evaluation over 10 benchmarks and showed
that our method is significantly more accurate and faster than state-of-the-art
tools, resulting in 21x and 268x speed-ups on some benchmarks, respectively.
For future work, we will investigate which NN architectures are more amenable
for verification, both in terms of size and number of layers as well as in terms of
weight magnitude and direction.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.
138(1), 3–34 (1995)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Berz, M., Makino, K.: Suppression of the wrapping effect by taylor model-based
verified integrators: long-term stabilization by shrink wrapping. Int. J. Diff. Eq.
Appl 10, 385–403 (2005)

4. Bojarski, M., Del Testa, D., Dworakowski, D., et al.: End to end learning for self-
driving cars. arXiv preprint arXiv:1604.07316 (2016)

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

6. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: International Conference on Computer Aided Verification (2010)

7. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

8. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: 22nd International
Conference on Hybrid Systems: Computation and Control, pp. 157–168 (2019)

https://doi.org/10.1007/978-3-642-19835-9_21
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26

Verification of Neural Network Controllers 261

9. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

10. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

11. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: ReachNN*: a tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
ATVA 2020. LNCS, vol. 12302, pp. 537–542. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-59152-6 30

12. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.J.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. arXiv preprint
arXiv:1906.04893 (2019)

13. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

14. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: Conference on Programming Language Design and Implementation (2019)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: Safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP) (2018)

16. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis of
neural-network controlled systems. ACM Trans. Embed. Comput. Syst. (TECS)
18(5s), 1–22 (2019)

17. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International Conference on Computer Aided Verification (2017)

18. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Case study:
verifying the safety of an autonomous racing car with a neural network controller.
In: International Conference on Hybrid Systems: Computation and Control (2020)

19. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: 22nd ACM Inter-
national Conference on Hybrid Systems: Computation and Control (2019)

20. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. 20(1) (2020). https://doi.org/10.1145/3419742

21. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: Digital Avionics Systems Con-
ference (DASC), 2016 IEEE/AIAA 35th, pp. 1–10. IEEE (2016)

22. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

23. Makino, K., Berz, M.: Suppression of the wrapping effect by taylor model-based
verified integrators: Long-term stabilization by preconditioning. Int. J. Differ. Equ.
Appl. 10(4) (2011)

24. Neher, M., Jackson, K.R., Nedialkov, N.S.: On taylor model based integration of
odes. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-030-59152-6_30
http://arxiv.org/abs/1906.04893
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1145/3419742
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

262 R. Ivanov et al.

25. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pp. 147–156. ACM (2019)

26. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., et al.: Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

27. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

28. Tran, H., Cai, F., Lopez, D.M., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. ACM
Trans. Embed. Comput. Syst. 18(5s), 105 (2019)

29. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial
test generation for autonomous vehicles with machine learning components. arXiv
preprint arXiv:1804.06760 (2018)

30. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems (2018)

31. Weng, T., et al.: Towards fast computation of certified robustness for relu networks.
In: International Conference on Machine Learning, pp. 5273–5282 (2018)

32. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and veri-
fication for multi-layer neural networks. arXiv preprint arXiv:1708.03322 (2017)

33. Yaghoubi, S., Fainekos, G.: Gray-box adversarial testing for control systems with
machine learning components. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 179–184 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
http://arxiv.org/abs/1804.06760
http://arxiv.org/abs/1708.03322
http://creativecommons.org/licenses/by/4.0/

Robustness Verification of Semantic
Segmentation Neural Networks Using

Relaxed Reachability

Hoang-Dung Tran1(B), Neelanjana Pal2, Patrick Musau2,
Diego Manzanas Lopez2, Nathaniel Hamilton2, Xiaodong Yang2, Stanley Bak3,

and Taylor T. Johnson2

1 University of Nebraska-Lincoln, Lincoln, USA
2 Vanderbilt University, Nashville, USA

3 Stony Brook University, Stony Brook, USA

Abstract. This paper introduces robustness verification for semantic
segmentation neural networks (in short, semantic segmentation networks
[SSNs]), building on and extending recent approaches for robustness ver-
ification of image classification neural networks. Despite recent progress
in developing verification methods for specifications such as local adver-
sarial robustness in deep neural networks (DNNs) in terms of scalability,
precision, and applicability to different network architectures, layers, and
activation functions, robustness verification of semantic segmentation has
not yet been considered. We address this limitation by developing and
applying new robustness analysis methods for several segmentation neu-
ral network architectures, specifically by addressing reachability anal-
ysis of up-sampling layers, such as transposed convolution and dilated
convolution. We consider several definitions of robustness for segmenta-
tion, such as the percentage of pixels in the output that can be proven
robust under different adversarial perturbations, and a robust variant of
intersection-over-union (IoU), the typical performance evaluation mea-
sure for segmentation tasks. Our approach is based on a new relaxed
reachability method, allowing users to select the percentage of a num-
ber of linear programming problems (LPs) to solve when constructing
the reachable set, through a relaxation factor percentage. The approach
is implemented within NNV, then applied and evaluated on segmenta-
tion datasets, such as a multi-digit variant of MNIST known as M2NIST.
Thorough experiments show that by using transposed convolution for up-
sampling and average-pooling for down-sampling, combined with mini-
mizing the number of ReLU layers in the SSNs, we can obtain SSNs with
not only high accuracy (IoU), but also that are more robust to adver-
sarial attacks and amenable to verification. Additionally, using our new
relaxed reachability method, we can significantly reduce the verification
time for neural networks whose ReLU layers dominate the total analysis
time, even in classification tasks.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 263–286, 2021.
https://doi.org/10.1007/978-3-030-81685-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_12

264 H.-D. Tran et al.

1 Introduction

Image segmentation is the process of partitioning an image into multiple por-
tions, or segments, which are sets of pixels, and in short is referred to as seg-
mentation [30]. Segmentation has broad applications, ranging from perception in
autonomous cyber-physical systems (e.g., identifying pedestrians, lanes, vehicles,
etc. in images) and medical imaging (e.g., identifying tumors, measuring tissue,
etc. in X-rays and other medical scans) [31]. Semantic segmentation additionally
classifies each pixel into a class from a set of classes, and hence, can be viewed as
a generalization of image classification, the robustness of which has been studied
deeply in recent years.

State-of-the-art segmentation approaches typically rely on neural networks,
known as semantic segmentation networks (SSNs). Typically SSN architectures
take an image as input and are composed of two major portions: a sequence
of down-sampling layers to extract features from the input image into a latent
space, followed by another sequence of up-sampling layers, which in essence
map the features (roughly corresponding to the classes) from the latent space
to the image’s pixels, such that each pixel is associated with a class. However,
just as neural networks for image classification are well-known to be vulnera-
ble to adversarial perturbations, so too are SSNs [45]. Although deep neural
networks (DNN) verification is emerging into an established research area with
many tools and techniques proposed to verify safety and robustness specifica-
tions of DNNs [22,43] and neural network controlled systems [15,17,34,37], most
state-of-art verification techniques for robustness verification of DNNs focus on
variants of classification1, frequently for images [1,5,7,11,19,24,26,29,32,33,46].

To our knowledge, there are no existing methods that can verify robustness
of SSNs, which perform a more complex task than image classification, as the
output space dimensionality is (typically) of the same order of size as that of
the input space (e.g., the output is an image with the width and height of the
input image, but with identified classes in the output instead of color bit depth;
see Figs. 5 and 7 for examples). We review some existing testing-based robustness
evaluation methods in our related work section.

Overview and Contributions. In this paper, we present the first formal approach
for verifying SSN robustness using reachability analysis. Our approach’s central
idea is, if an input image is attacked (perturbed) with some bounded distur-
bance, we construct a reachable output set that contains all possible classes for
each pixel. From the reachable output set, we can formally guarantee an SSN’s
robustness at the pixel-level, i.e., each pixel is provably classified correctly. Our
approach focuses on two effective SSN architectures, including dilated CNNs
and transposed CNNs, which to our knowledge, are not supported in any other
existing neural network verification approaches. We evaluate our approach on a

1 The ACAS-Xu benchmarks [18] common in neural network verification can be viewed
as a form of classifier: the networks produce advisories (weak left, etc.), which in
essence are classes, but do not have images as their inputs.

Robustness Verification of Semantic Segmentation Neural Networks 265

set of SSNs trained with different architectures on the MNIST [21] and M2NIST
data sets, the latter of which is a multi-digit variant of MNIST suitable for seg-
mentation evaluation. Additionally, we define and evaluate several metrics for
robustness, as the robustness evaluation is more sophisticated for segmentation.

Our reachability-based approach builds on ImageStars, which are an efficient
data structure for verifying convolutional neural networks (CNNs) [33], to con-
struct the input set and compute the reachable set layer-by-layer throughout
the SSN. The ImageStar approach offers both exact and approximate reachabil-
ity schemes for analyzing the robustness of CNNs. Although the approximate
scheme obtains a tighter reachable set in comparison with the zonotope [28] and
new polytope methods [29] by using optimized ranges, in practice, we do not
need a tight reachable set in many cases. Indeed, we only need a “tight enough”
reachable set to verify a property. Therefore, it is reasonable to let users have the
freedom to choose an appropriate level of relaxation in constructing the reach-
able set for their applications. More relaxation comes with a coarser reachable
set and vice versa. To fulfill this need, we also present a new relaxed ImageS-
tar approach to allow users to choose a specific relaxation level defined by a
relaxation factor (RF) percentage when constructing the reachable set for their
applications. This relaxed reachability method can help reduce the verification
time of SSNs significantly (up to 99%) in some cases.

In summary, the main contributions of this paper are: 1) the first formal
approach for robustness verification of SSNs, 2) a new relaxed ImageStar reach-
ability method, 3) the implementation of the approach in a prototype software
tool, 4) thorough assessment of these methods on different network architectures,
and 5) insight on how to train robust SSNs that are amenable to verification.

2 Preliminaries and Problem Formulation

2.1 ImageStars

In this section, we review the ImageStar data structure and its properties [33].

Definition 1. An ImageStar Θ is a tuple 〈c, V, P, l, u〉 where c ∈ R
h×w×nc is

the anchor image, V = {v1, v2, · · · , vm} is a set of m images in R
h×w×nc called

generator images, P : R
m → {�,⊥} is a predicate, l and u are the lower bound

and upper bound vectors of the predicate variables, and h,w, nc are the height,
width, and number of channels of the images, respectively. The generator images
are arranged to form the ImageStar’s h × w × nc × m basis array. The set of
images represented by the ImageStar is given as:

�Θ� = {x | x = c + Σm
i=1(αivi) such that P (α1, · · · , αm) = �, li ≤ αi ≤ ui}.

We may refer to both the tuple Θ and the set of states �Θ� as Θ. In this work, we
restrict the predicates to be a conjunction of linear constraints, P (α) � Cα ≤ d
where, for p linear constraints, C ∈ R

p×m, α is the vector of m-variables, i.e.,
α = [α1, · · · , αm]T , and d ∈ R

p×1. An ImageStar is the empty set if and only if
P (α) subject to l ≤ α ≤ u is empty.

266 H.-D. Tran et al.

Lemma 1 (Affine mapping of an ImageStar). An affine mapping of an
ImageStar Θ = 〈c, V, P, l, u〉 with a scale factor γ and an offset image β is
another ImageStar Θ′ = 〈c′, V ′, P ′, l′, u′〉 in which the new anchor, generators
and predicate are as follows:

c′ = γ · c + β, V ′ = γ · V, P ′ ≡ P, l′ ≡ l, u′. ≡ u.

Note that, the scale factor γ can be a scalar or a vector containing scalar scale
factors in which each factor is used to scale one color channel in the ImageStar.

2.2 Range of a Specific Input in an ImageStar

We slightly alter the original definition of an ImageStar, [33], by introducing
lower bound and upper bound vectors to the predicate variables. Specifically, if
we want to find the range of an input x(i, j, k) (where 1 ≤ i ≤ h, 1 ≤ j ≤ w,
1 ≤ k ≤ nc) in an ImageStar Θ, we need to solve the following LP problem.

xmin = min(c(i, j, k) + Σm
p=1αivp(i, j, k)) s.t. Cα ≤ d, l ≤ α ≤ u, (1)

xmax = max(c(i, j, k) + Σm
p=1αivp(i, j, k)) s.t. Cα ≤ d, l ≤ α ≤ u. (2)

However, if we only want to estimate roughly the range of the neuron with-
out solving the LP optimization problem, we can compute the estimated range
quickly as follows.

xest
min = c(i, j, k) + Σm

p=1lp max(vp(i, j, k), 0) + Σm
q=1uq min(vq(i, j, k), 0), (3)

xest
max = c(i, j, k) + Σm

p=1up max(vp(i, j, k), 0) + Σm
q=1lq min(vq(i, j, k), 0). (4)

2.3 Semantic Segmentation Networks and Reachability

Definition 2. A semantic segmentation network (SSN) f is a nonlinear func-
tion that maps each pixel x(i, j) of a multichannel input image x to a target class
y(i, j) from a set of classes L = {1, 2, . . . , L}:

f : x ∈ R
h×w×nc → y ∈ Lh×w

x(i, j) → y(i, j) ∈ L,
(5)

where h,w, nc are the height, width, and number of channels of the input image,
respectively, and (i, j) ∈ {1, . . . , h} × {1, . . . , w} are the pixel height and width
indices, respectively.

Definition 3. Reachability analysis (or shortly, Reach) of a SSN f on an
ImageStar input set I is the process of computing all possible classes correspond-
ing to every pixel in all input images x in the ImageStar input set I:

Reach(f, I) : I → Rf

x → y = f(x).
(6)

Robustness Verification of Semantic Segmentation Neural Networks 267

We call Rf (I) the pixel-class reachable set of the SSN corresponding to the
input set I (or just Rf when I is clear from context), in which each pixel-class
pc(i, j) ∈ Rf at each pixel (i, j) ∈ {1, . . . , h}×{1, . . . , w} may contain more than
one class, i.e., pc(i, j) = {l1, . . . , lm} ⊆ L, for L ≥ m ≥ 1.

2.4 Adversarial Attacks and Robustness

Definition 4. An adversarial attack is where a set of n noise images xnoise

= [xnoise
1 , . . . , xnoise

n] and corresponding coefficient vector ε = [ε1, . . . , εn]T are
added to input image x to change the classification result of a network.

Mathematically, an adversarial attack is a linear parameterized function
gε,xnoise(·) that takes an image as an input and produces the corresponding adver-
sarial image.

xadv = gε,xnoise(x) = x + Σn
i=1εi · xnoise

i (7)

In this paper, we focus on the robustness analysis of SSNs under adversarial
attacks. We refer readers to [45] for a survey of state-of-art attack and defenses
approaches, mostly for classification.

Definition 5. An unknown, bounded adversarial attack (UBAA) is an adver-
sarial attack where the value of the coefficient vector ε is unknown but bounded
in a range [ε, ε], i.e., εi ≤ εi ≤ εi. An UBAA can be defined formally as a tuple
A = 〈ε, ε, xnoise〉.
Proposition 1 (UBAA as an ImageStar). Applying an UBAA A = 〈ε, ε,
xnoise〉 on an image x creates a set of images, which can be represented as an
ImageStar I = 〈c ≡ x, V ≡ xnoise, P (α) ≡ P (ε) ≡ ε ≤ ε ≤ ε〉.
Definition 6. Given a SSN f and an input image x, a pixel x(i, j) ∈ x is called
robust to an UBAA A if and only if: ∀ gε,xnoise ∈ A, f(xadv(i, j)) = f(x(i, j)),
where xadv(i, j) ∈ xadv = gε,xnoise(x). If ∃ gε,xnoise ∈ A such that f(xadv(i, j)) �=
f(x(i, j)), the pixel x(i, j) is called non-robust.

Definition 7. The robustness value (RV) of a SSN corresponding to an UBAA
applied to an input image is defined as RV = Nrobust

Npixels
× 100%, where Nrobust is

the total number of robust pixels under the attack, and Npixels = h ·w is the total
number of pixels of the input image.

Definition 8. The robustness sensitivity (RS) of a SSN corresponding to an
UBAA applied to an input image is defined as RS = Nnonrobust+Nunknown

Nattackedpixels
, where

Nnonrobust is the total number of non-robust pixels under the attack, Nunknown

is the total number of pixels whose robustness is unknown (may or may not be
robust), and Nattackedpixels is the total number of attacked pixels of the input
image.

Definition 9. The robust IoU (Intersection-over-Union) (RIoU) of a SSN cor-
responding to an UBAA applied to an input image is defined as the average
IoU of all labels that are robust under the attack. Let x be a segmentation

268 H.-D. Tran et al.

ground-truth image, y be the verified segmentation image under the attack, and
IoUp be the IoU (also known as Jaccard index) of the pth label in the label images
x and y, then the robust IoU of the SSN is computed by:

RIoU =
ΣL

p=1IoUp

L
. (8)

The robust IoU definition is quite similar to traditional IoU, which is a core
metric to evaluate the accuracy in training SSNs. However, instead of assessing
the accuracy, we use the robust IoU concept in combination with the robustness
value and robustness sensitivity as core metrics to evaluate the robustness of a
SSN under adversarial attack in the verification context.

2.5 Robustness Verification Problem Formulation

We consider two robustness verification problems.

Problem 1. Given a SSN f , an image x, and an UBAA A, prove for every pixel
x(i, j) ∈ x that x(i, j) is robust or non-robust to the attack A.

Problem 2. Given a SSN f , a set of N test images {x1, . . . , xN}, and an UBAA
A, compute the average robustness value RV , the average robustness sensitivity
RS, and the average robust IoU RIoU of the SSN (corresponding to A).

The core step in solving these problems is to prove the robustness of a SSN f
under an UBAA A at the pixel-level, i.e., Problem 1, which can be solved using
reachability analysis computing the “pixel-class reachable set” Rf = Reach(f, I)
that contains all possible classes of every pixel in the input set I constructed by
applying the attack A on an image x (Proposition 1). Next, we investigate a new
relaxed ImageStar reachability method for the ReLU layer, the up-sampling layers,
including transposed convolution, dilated convolution, and pixel-classification. We
note that the softmax layer can be neglected in the analysis [33].

3 Reachability of SSNs Using Relaxed ImageStars

In this section, we build on the original ImageStar method to develop reach-
ability analysis for the transposed convolution and dilated convolution layers,
and propose a new relaxed ImageStar reachability method for the ReLU and
pixel-classification layers. The reachability algorithms for other layers can be
handled using existing methods, such as those in [33]. Thus, we highlight han-
dling the up-sampling layers, which requires overcoming significant challenges,
and has not previously been done. Handling up-sampling layers is necessary for
SSN robustness verification.

3.1 Reachability of a Transposed (Dilated) Convolutional Layer

Transposed (dilated) convolutions are frequently used for up-sampling in image
segmentation applications to generate an output feature map that has a spatial

Robustness Verification of Semantic Segmentation Neural Networks 269

Fig. 1. An example of a transposed convolution operation.

Fig. 2. Example 1.

dimension greater than that of the input feature map. A transposed convolution
operation consists of four main steps, depicted in Fig. 1, and is defined by its
kernel size k, padding p, and stride s. A dilated convolution operation is defined
by its kernel size k, padding p, stride s and dilation factor d.

Lemma 2. The reachable set of a transposed (dilated) convolutional layer with
an ImageStar input set I = 〈c, V, P 〉 is another ImageStar, specifically I ′ =
〈c′, V ′, P 〉 where c′ = TConv(c) (c′ = DConv(c)) is the transposed (dilated)
convolution operation applied to the anchor image, V ′ = {v′

1, . . . , v
′
m}, v′

i =
TConvZeroBias(vi) (v′

i = DConvZeroBias(vi)) is the transposed (dilated) con-
volution operation with zero bias applied to the generator images, i.e., using only
the weights of the layer. Each of these are affine operations, see [30] for details,
and as shown in Lemma 1, ImageStars are closed under affine operations.2

3.2 Relaxed Reachability of a ReLU Layer

In this section, we present the relaxed ImageStar reachability of a ReLU layer.
Like the original approximate reachability method [33], the relaxed ImageStar
approach computes an overapproximate reachable set of a ReLU layer. However,
2 In most neural network frameworks, transposed and dilated convolution are imple-

mented as convolution with particular choices of padding, stride, and dilation factor
as illustrated in Fig. 1 for transposed convolution, which is well-known to be affine.

270 H.-D. Tran et al.

it allows users to construct a “tight enough” reachable set sufficient to prove
properties for their applications via a user-specified relaxation factor scaled from
0% to 100% that reduces verification time. In this paper, we focus on this pro-
cess for ReLU layers. We use a small example depicted in Fig. 2 to illustrate
the reachability of a ReLU layer using the relaxed ImageStar method. In this
example, we have a 2 × 2 (4 neurons) ImageStar input set I with the anchor
image c and two generator images v1 and v2, and we want to compute an over-
approximation of ReLU(I). To do that, we apply the triangle overapproximation
rule [10,36] for the ReLU activation function at each neuron of the input set in
the following.

Lemma 3. For any input x ∈ [l, u], the output set Y = {y| y = ReLU(x)}
satisfies: (1) If l ≥ 0, then y = x; (2) If u ≤ 0, then y = 0; or (3) If l < 0 and
u > 0, then Y ⊂ Ȳ = {y| y ≥ 0, y ≤ u(x−l)

u−l , y ≥ x}.
Using the predicate variable’s bounds, we can quickly estimate the ranges of

all neurons in the ImageStar set in Fig. 2 without solving any linear programming
(LP) optimization problems (by using Eq. 3). From the estimated ranges, we see
ReLU(n21) = 0 (n21 ≤ 0) and ReLU(n22) = 2−α1 +α2 (n22 > 0). Therefore, to
overapproximate ReLU(I), we need only perform the overapproximation rule on
neurons n11 and n12, which is where the user-defined relaxation can be applied.
In the original approximate reachability approach [33], we use the exact ranges
to construct the triangle overapproximation of the ReLU activation function,
which requires solving 4 LPs to find the exact ranges for n11 and n12, which
are [−0.5, 1.5] and [−1, 1] respectively in this example. Now, if users want to
reduce the number of LPs solved in constructing the overapproximate reachable
set to speed up verification, which LPs should be chosen to solve to construct a
sufficiently tight overapproximate reachable set? For example, if the users want
to relax 50% number of LPs for Example 1, then only 4− (50%×4) = 2 LPs are
solved to construct an overapproximate reachable set. So, which two LPs should
be chosen?

The answer is found by combining the exact ranges obtained by solving LPs
and the estimated ranges to construct the overapproximate reachable set. This
can be done using on of the following heuristic approaches. These approaches
select which neurons and their corresponding lower (upper) bounds should be
obtained exactly to construct an as-tight-as-possible overapproximate reachable
set with a given allowable number of LPs. Some of these heuristic approaches
are based on the estimated ranges information.

3.2.1 Randomly Relaxed Reachability
This approach randomly selects some LPs in the LPs pool to solve to obtain the
lower (upper) bounds for some (random) neurons. For Example 1, the LPs pool
is as follows.

LPpool = {min(n11),max(n11),min(n22),max(n22),
subject to : P = Cα ≤ d, l ≤ α ≤ u}.

Robustness Verification of Semantic Segmentation Neural Networks 271

Fig. 3. Overapproximation areas at neurons n11 and n12 using estimated ranges.

If users relax 50% of the LPs, then the randomly relaxed reachability algorithm
selects aimlessly two LPs in the LP pool to solve, and then combines the obtained
lower (upper) ranges with the estimated ranges to construct an overapproximate
reachable set using the triangle overapproximation rule, i.e., Lemma 3.

From Fig. 2, we can see that the estimated lower ranges of neurons n11 and
n12 are the same as the exact ones. Therefore, if the randomly relaxed reacha-
bility algorithm selects min(n11) and min(n12) to solve, the final ranges used for
constructing the reachable set exactly match the estimated ranges. This means
solving min(n11) and min(n12) wastes time and does not reduce the conserva-
tiveness of the overapproximate reachable set, as no tighter ranges are obtained.
In another case, if the algorithm selects max(n11) and max(n12), then we can
obtain the exact ranges of two neurons by solving only two LPs (instead of four
LPs), when combining the estimated lower ranges, i.e., −0.5 for n11 and −1
for n12 with the optimized upper ranges, i.e., 1.5 for n11 and 1 for n12. In this
case, the randomly relaxed algorithm can obtain the tightest overapproximate
reachable set by solving only 50% of the LPs.

3.2.2 Area-Based Relaxed Reachability
The area-based relaxed reachability approach finds and optimizes the ranges of
neurons with the potentially largest triangle overapproximation areas. Figure 3
illustrates the areas of the triangle overapproximation at neurons n11 and n12

using the estimated ranges. We see the overapproximation area of n12 (S̃n12 =
0.75) is larger than that of n11 (S̃n11 = 0.625). Therefore, if users relax 50%
of the LPs, the area-based relaxed reachability algorithm will use two LPs to
optimize the range of neuron n12, i.e., solving min(n12) and max(n12). With this
optimized range, the overapproximation area of the neuron n12 reduces from
S̃n12 = 0.75 to Sn12 = 0.5. If users relax 75% of the LPs, then the algorithm will
use two LPs to optimize the range of the neuron n12 and one LP to optimize
the upper bound of the neuron n11, because ũ11 = 2.5 > |l̃11| = 0.5.

3.2.3 Range-Based Relaxed Reachability
The range-based relaxed reachability approach finds the neurons with the
potentially widest ranges to optimize their ranges. For Example 1, unlike the

272 H.-D. Tran et al.

area-based approach, the range-based approach will use two LPs to optimize the
range of neuron n11, i.e., solving min(n11) and max(n11), whose estimated range
(ER) is widest (ERn11 = |ũn11 − l̃n11 | = |2.5 − (−0.5)| = 3 > ERn12 = 2.5).
After optimizing the range of neuron n11, the overapproximation area at this
neuron reduces from S̃n11 = 0.625 to Sn11 = 0.375. The improvement in terms
of overapproximation area reduction of the range-based method is equivalent to
the above area-based approach in this case, i.e., ΔSn11 = ΔSn12 = 0.25.

3.2.4 Bound-Based Relaxed Reachability
The bound-based relaxed reachability approach finds neurons with the poten-
tially largest (lower or upper) bounds to optimize their bounds. For Example
1, the algorithm will use two LPs to optimize the upper bounds of the neurons
n11 and n12, i.e., solving max(n11) and max(n12), because their estimated upper
bounds are the ones with largest absolute values. Thus, |ũn11 | = 2.5 > |ũn12 | =
1.5 > |l̃n12 | = 1 > |l̃n11 | = 0.5. After optimizing these upper bounds, the overap-
proximation areas at neurons n11 and n12 reduces to 0.375 and 0.5 respectively.
In this case, we can see that the bound-based relaxed approach is the best app-
roach compared to the others since it reduces the overapproximation errors at
both neurons n11 and n12, effectively reducing the overapproximation areas by
ΔSn11 = ΔSn12 = 0.25. It is worth noting the obtained overapproximate reach-
able set is the same as the one obtained by the original approximate ImageStar
reachability because the estimated and optimized lower bounds are the same.

3.3 Reachability of a Pixel-Classification Layer

The last layer in an SSN is a pixel-classification layer, which assigns a specific
class (label) to each pixel of an input image. Given an h × w × nc input image,
the size of the input x to the pixel-classification layer is h × w × L, where L
is the number of classes (labels) of the network (we neglect the softmax layer
in the analysis). To assign a specific class l, 1 ≤ l ≤ L to a pixel x(i, j) ∈ x,
1 ≤ i ≤ h, 1 ≤ j ≤ w, the value of the pixel x(i, j) at channel l, i.e., x(i, j, l),
needs to be the maximum one among L channels. When the input to the network
is an ImageStar set instead of a single image, the input to the pixel-classification
layer is a h × w × L ImageStar set. Depending on the value of the predicate
variables in the input set, a pixel x(i, j) in the set may be assigned to more than
one class. For example, if l1, . . . , lm are the cross-channel max-point candidates
of the pixel x(i, j) in L channels, the pixel-class reachable set of the layer at
the considered pixel is pc(i, j) = {l1, . . . , lm}. By determining all cross-channel
max-point candidates of all pixels in the input set, we can obtain the pixel-
class reachable set of the layer, which is also the reachable set of the SSN,
Rf = [pc(i, j)]h×w, i.e., the collection of pixel classes at every index (i, j).

Similar to the max-pooling layer [33], determining all cross-channel max-
point candidates of all pixels in the input set can be done via solving linear
programming (LP) optimization problems, which is time-consuming due to the
number of LPs required (or equivalently the size of the LP). To reduce compu-
tation time, we estimate the lower and upper bounds of the ImageStar input to

Robustness Verification of Semantic Segmentation Neural Networks 273

the layer using only the ranges of the predicate variables. These bounds are then
used to predict all possible cross-channel max-point candidates of all pixels.

4 Verification Algorithm

Our reachability-based verification algorithm for SSNs is presented in Algorithm
4.1. The algorithm takes an SSN f , an input image x, an UBAA A, and a
reachability method (exact or approximate) as inputs, then returns the pixel-
class reachable set Rf , the robustness value RV , sensitivity RS, and robust IoU
RIoU of the SSN. The algorithm works as follows. First, it constructs the input
set corresponding to the attack using Proposition 1 (line 2). Then, it computes
the pixel-class reachable set of the SSN using reachability analysis layer-by-
layer (line 3). Using the pixel-class reachable set, it verifies the robustness of
each pixel in the reachable set by comparing its classes with the non-attacked
(ground truth) output segmentation image, i.e., y = f(x). If Rf (i, j) = y(i, j),
the pixel x(i, j) is robust under the attack (line 10). If Rf (i, j) �= y(i, j)∧y(i, j) �⊂
Rf (i, j), the pixel x(i, j) is non-robust under the attack (line 12). Otherwise,
the robustness of the pixel x(i, j) is unknown (may be robust or non-robust),
due to overapproximation. Beyond verifying the robustness of each pixel in the
reachable set, it also counts the numbers of 1) robust pixels Nrobust (line 10), 2)
non-robust pixels Nnonrobust (line 12), and 3) pixels with unknown robustness
Nunknown (line 13). Finally, it computes the robustness value, sensitivity and
robust IoU of the SSN (lines 12, 13 and 14). The robustness of a SSN under an
UBAA should be evaluated on a set of test images (Problem 2).

Algorithm 4.1. Robustness verification of a semantic segmentation network.
Input: f, x, A, RF, method � SSN, input image, attack, relaxation factor, relaxation method

Output: Rf , RV, RS � pixel-class reachable set, robustness value, robustness sensitivity

1: procedure [Rf , RV, RS] = verify(f, x, A, RF, method)
2: I = constructInputSet(x, A) � construct an ImageStar input set

3: Rf = Reach(f, I, method) � compute the pixel-class reachable set

4: y = f(x) � compute non-attacked output segmentation image

5: h = x.Height, w = x.Width
6: Nrobust = 0, Nnonrobust = 0, Nunknown = 0, Nattackedpixels = 0
7: for i = 1 : h do
8: for j = 1 : w do
9: if A.xnoise(i, j) �= 0 then Nattackedpixels = Nattackedpixels + 1

10: if Rf (i, j) = y(i, j) then Nrobust = Nrobust + 1 � pixel x(i, j) is robust

11: else
12: if y(i, j) �⊂ Rf (i, j) then Nnonrobust = Nnonrobust + 1 � pixel x(i, j)

is non-robust

13: else Nunknown = Nunknown + 1 � pixel x(i, j) robustness is unknown

14: RV = (Nrobust/(h · w)) · 100%) � robustness value

15: RS = (Nnonrobust + Nunknown)/Nattackedpixels � robustness sensitivity

16: RIoU = getAverageIoU(y, Rf) � robust IoU

274 H.-D. Tran et al.

5 Evaluation

Experimental Setup. The approach is implemented in the NNV software tool for
verification of deep neural networks3. We evaluate our approach by verifying the
robustness of a set of SSNs trained on the MNIST [21] and M2NIST datasets
shown in Table 1, where class “ten” corresponds to the background, and the
other classes to the corresponding digits. The experiments were performed on a
computer with an Intel Core i7-6700 CPU at 3.4 GHz with 8 cores and 64 GB
Memory running Windows 10. The over-approximating reachability method and
6 cores are used for computing the pixel-class reachable sets.

We randomly selected 100 MNIST images (of size 28 × 28) and 100 M2NIST
images (of size 64 × 84) to evaluate the robustness of the trained SSNs. We
attack each image x in these two test sets using an UBAA brightening attack.
Particularly, we darken a pixel x(i, j) in the image if its value is larger than
a threshold d, i.e. if x(i, j) > d → xadv(i, j) = a � d. Mathematically, the
adversarial darkening attack on an image x can be described as:

xadv = x + ε · xnoise, 1 − Δε ≤ ε ≤ 1,

xnoise(i, j) = −x(i, j), if x(i, j) > d, otherwise xnoise(i, j) = 0.

For ε = 1, we completely darken all the pixels whose values are larger than d
(=150 in our experiments), i.e., xadv(i, j) = 0. The size of the input set caused
by the attack is defined by Δε. Generally, we have a large input set when Δε is
large. To evaluate the average robustness values (RV) and sensitivities (RS) of
the SSNs (on the test sets) in the connection with the number of attacked pixels,
we further restrict the maximum allowable number of attacked pixels by Nmax.

We focus our evaluation and discussion on three aspects: 1) the robustness
and sensitivity of different SSN architectures under adversarial attacks, 2) the
effect of SSN architectures and input size on verification performance, and 3)
the improvement of the new relaxed reachability method in terms of verification
results and performance. For the first two aspects, we use the relaxed reachability
method with relaxation factor RF = 0%, i.e., no relaxation, to construct the
reachable sets of the SSNs.

3 The examples and tool are available: https://github.com/verivital/nnv/tree/
cav2021/code/nnv/examples/Submission/CAV2021. An archival version is available
on Zenodo: https://doi.org/10.5281/zenodo.4726346.

https://github.com/verivital/nnv/tree/cav2021/code/nnv/examples/Submission/CAV2021
https://github.com/verivital/nnv/tree/cav2021/code/nnv/examples/Submission/CAV2021
https://doi.org/10.5281/zenodo.4726346

Robustness Verification of Semantic Segmentation Neural Networks 275

Table 1. Semantic Segmentation Network Benchmarks. Notation: ‘I’: input, ‘C’: con-
volution, ‘TC’: transposed convolution, ‘DC’: dilated convolution, ‘R’: ReLU, ‘B’: batch
normalization, ‘AP’: average-pooling, ‘MP’: max-pooling, ‘S’: softmax, ‘L’: label (pixel
classification).

ID Name Accuracy(IoU) Down-sampling Up-sampling Input size Layers

N1 mnist ap tc 0.87 C+AP TC 28 × 28 21 (1I, 7C, 3R, 4B, 2AP, 2TC, 1S, 1L)

N2 mnist mp tc 0.85 C+MP TC 28 × 28 21 (1I, 7C, 3R, 4B, 2MP, 2TC, 1S, 1L)

N3 mnist dc 0.83 C DC 28 × 28 21 (1I, 3C, 3R, 3B, 9DC, 1S, 1L)

N4 m2nist ap dc 0.62 C+AP DC 64 × 84 16 (1I, 4C, 3R, 3AP, 3DC, 1S, 1L)

N5 m2nist ap tc 0.75 C+AP TC 64 × 84 22 (1I, 7C, 8R, 2AP, 2TC, 1S, 1L)

N6 m2nist dc 0.72 C DC 64 × 84 24 (1I, 1C, 5R, 5B, 10DC, 1S, 1L)

10 20 30 40 50
0.85

0.9

0.95
(a)

10 20 30 40 50
2

3

4

5
(b)

10 20 30 40 50
0.2

0.3

0.4

0.5

0.6
(c)

10 20 30 40 50
660

680

700

720

740

760
(d)

10 20 30 40 50
20

40

60

80

100

120
(e)

10 20 30 40 50
0

1

2

3

4

5
(f)

(a) Δε = 0.001.

1 1.5 2 2.5 3
10-3

0.89

0.9

0.91

0.92
(a)

1 1.5 2 2.5 3
10-3

3

3.5

4

4.5
(b)

1 1.5 2 2.5 3
10-3

0.35

0.4

0.45

0.5
(c)

1 1.5 2 2.5 3
10-3

700

705

710

715

720
(d)

1 1.5 2 2.5 3
10-3

60

70

80

90
(e)

1 1.5 2 2.5 3
10-3

0

2

4

6
(f)

(b) Nmax = 20.

Fig. 4. The average robustness value, sensitivity, and IoU of MNIST SSNs.

5.1 Robustness and Sensitivity of Different Network Architectures

Max-Pooling vs. Average-Pooling. Max-pooling is the preferred choice over
average-pooling for training SSNs because of its nonlinear characteristics. We
investigate whether max-pooling is actually better than average-pooling in terms
of accuracy and robustness of deep SSN. Figure 4 illustrates the average robust-
ness and sensitivities of MNIST SSNs under different numbers of attacked pix-
els (Fig. 4a, 20 images are used) and input sizes (Fig. 4b, 10 images are used).
We focus on the first two SSNs, i.e. N1 and N2. These SSNs have the same
architectures (with 21 layers). The only difference is N1 uses average-pooling for
down-sampling while N2 uses max-pooling for the same task (both SSNs use two
transposed convolutional layers for up-sampling). With training, we experienced
that N1 is more accurate than N2, (0.87 IoU vs. 0.85 IoU, see Table 1). Inter-
estingly, N1 is also more robust than N2 since it has a larger average robustness
value (Figs. 4a-a, 4b-a), a higher average robust IoU (Figs. 4a-c, 4b-c), and more
robust pixels (Figs. 4a-d, 4b-d). One can also see that the average-pooling-based
SSN is less sensitive to the attack than the max-pooling-based SSN (Figs. 4a-(b,
e, f), 4b-(b, e, f)). Notably, when more pixels are attacked or larger input sizes are
used, the max-pooling-based SSN (i.e., N2) produces more pixels with unknown

276 H.-D. Tran et al.

2th Segmentation without Attack

three

ten

2th Pixel-class Reach Set

three

five

ten

unknown

2th Verified Reach Set

three

ten

unknown

misclass

(a) Rf (N1), Nunknown = 6 (Nmax = 50, Δε = 0.003).
2th Segmentation without Attack

three

ten

2th Pixel-class Reach Set

three

ten

unknown

2th Verified Reach Set

three

ten

unknown

misclass

(b) Rf (N2), Nunknown = 19 (Nmax = 50, Δε = 0.003).

Fig. 5. Example pixel-class reachable sets of MNIST SSNs. The max-pooling-based
SSN N2 produces more unknown pixels than the average-pooling-based SSN N1 (19
vs. 6).

robustness (Figs. 4a-f, 4b-f, and 5). Lastly, when the input size increases, the
robustness of the max-pooling-based SSN drops more quickly than the average-
pooling-based SSNs (Fig. 4b (a,d)) and its sensitivity increases faster (Fig. 4b
-b). We believe the main reason causing the max-pooling-based SSN to be more
sensitive to the attack is its high nonlinearity using max-pooling layers. It is
quite interesting that even the max-pooling-based SSN N2 has a higher accu-
racy (0.85) than the non-max-pooling SSN N3 (0.83), the average robust IoU of
the SSN N2 is smaller than the one of N3 (Figs. 4a-c, 4b-c).

Accuracy vs. Robustness; Deeper Networks and ReLU Layer Robust-
ness. Accuracy (and for segmentation, IoU) is one of the most important factors
for evaluating deep neural networks. We investigate whether more accurate and
deeper SSNs are more robust compared to other architectures. To determine
this, we analyze the robustness of two SSNs with different architectures and
accuracy trained on the M2NIST data set. The first SSN N4 is based on dilated
convolution with 16 layers and 0.62 (IoU) accuracy (Table 1). The second SSN
N5 is based on transposed convolution with 22 layers and 0.75 (IoU) accuracy.
Here, the second SSN is deeper and more accurate than the first SSN. We run the
robustness analysis on these two SSNs on a set of 20 M2NIST images. The results
are depicted in Fig. 6. In terms of robustness, the more accurate and deeper SSN
N5 is worse than the less accurate one N4 as it has a smaller average robustness
value and IoU (Figs. 6-(a,c), 7). Additionally, N5 is also more sensitive to the
attack than N4 (Fig. 6-(b,e)) when we increase the number of attacked pixels.
The main reason for this result is, the more accurate SSN contains many ReLU
layers (8 ReLU layers) compared with the less accurate one (3 ReLU layers).
Similar to the max-pooling layer, using many ReLU layers increases the nonlin-
earity of the SSN to capture complex features of images. Unfortunately, it also
makes the SSN more sensitive to the attack.

Robustness Verification of Semantic Segmentation Neural Networks 277

5 10 15 20 25

0.985

0.99

0.995

1
(a)

5 10 15 20 25
2

2.5

3

3.5
(b)

5 10 15 20 25
0.65

0.7

0.75

0.8
(c)

5 10 15 20 25
5280

5300

5320

5340

5360

5380
(d)

5 10 15 20 25
0

20

40

60

80

100
(e)

5 10 15 20 25
-1

-0.5

0

0.5

1
(f)

(a)

5 10 15 20 25
20

40

60

80

100

120

140
(a) (b)

N4 N5 N6

0

10

20

30

40

50

60

70

80

90

100

(b)

Fig. 6. The average robustness value, sensitivities, IoU, verification time (Δε = 10−5)
and reachability times (blue for ReLU layers and orange for others, Δε = 6 × 10−5) of
M2NIST SSNs. (Color figure online)

4th Segmentation without Attack

one

three

five

six

ten

4th Pixel-class Reach Set

one

three

five

six

nine

ten 4th Verified Reach Set

one

three

five

six

ten

misclass

(a) Rf (N4), Nnonrobust = 43 (Nmax = 25, Δε = 0.00001).
4th Segmentation without Attack

one

six

ten

4th Pixel-class Reach Set

one

six

seven

ten
4th Verified Reach Set

one

six

ten

misclass

(b) Rf (N5), Nnonrobust = 51 (Nmax = 25, Δε = 0.00001).

Fig. 7. Example pixel-class reachable sets of M2NIST SSNs. The more accurate and
deeper SSN N5 produces more non-robust pixels than the less accurate SSN N4 (51 vs.
43).

Dilated Convolution vs. Transposed Convolution. Dilated convolution
and transposed convolution are typical choices for semantic segmentation tasks.
We compare these techniques in terms of accuracy and robustness. On MNIST
SSNs, although the transposed-convolution SSNs N1 and the dilated-convolution
SSN N3 have the same number of layers (21 layers with 3 ReLU), N3 is less
accurate than N1 (0.83 vs. 0.87 IoU, see Table 1). In terms of robustness, N3

is also less robust and more sensitive to the attack than N1, as it has smaller
average RV and IoU, and larger sensitivities (Fig. 4). On M2NIST SSNs, by
considering 21-layer (8 ReLU) transposed-convolution SSN N5 and 24-layer
(4 ReLU) dilated-convolution SSN N6, one can see that even with more lay-
ers, N6 is less accurate than N5 (0.72 vs. 0.75 IoU, see Table 1). Also, N6 is less
robust and more sensitive to the attack than N5, since it has smaller average RV
and IoU, and larger sensitivities (Fig. 6).

278 H.-D. Tran et al.

5.2 Verification Performance

Dilated Convolution vs. Transposed Convolution. In general, more
attacked pixels and larger input size leads to greater verification time, as depicted
in Figs. 8a, 8b and 6b-(a). Interestingly, these show that the dilated-convolution-
based SSNs require greater verification time than the ones using transposed con-
volution. For example, the verification time of N3 is larger than N2 when they
have the same number of layers.

10 20 30 40 50
0

50

100

150

200

250

300

(a)

1 1.5 2 2.5 3
10-3

0

50

100

150

200

250

(b)

N1

0.005 0.01
0

10

20

30

40

50

60

R
ea

ch
ab

ili
ty

 T
im

e
(s

)

N2

0.005 0.01
0

50

100

150

200

250

R
ea

ch
ab

ili
ty

 T
im

e
(s

)

N3

0.005 0.01
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
ea

ch
ab

ili
ty

 T
im

e
(s

)

(c)

Fig. 8. Verification time is proportional to the number of attacked pixels and input
size. The max-pooling-based N2 and dilated convolution-based N3 SSNs require more
verification time than the average-pooling and transposed convolution-based SSN N1.
The reachability times of ReLU layers (blue) dominates the total reachability time
(other layers reachability times are in orange). (Color figure online)

Max-Pooling and ReLU Layers. Using max-pooling layer for down sampling
not only decreases the robustness of an SSN but also causes a dramatic increase
in time and memory consumption in verification. Figure 8 shows that the veri-
fication time (in seconds) of the max-pooling-based SSN N2 grows significantly
compared with the average-pooling-based SSN N1 when increasing the number
of attacked pixels Nattackedpixels or the input size Δε. When dealing with more
number of attacked pixels or larger input size, the max-pooling layer introduces
more predicate variables to overapproximate the reachable set, which causes the
increase both in computation time and memory usage [33]. Similar to the max-
pooling layer, the ReLU layer is also the main source of robustness degradation.
Additionally, it may also dominate the reachability time of a SSN, as shown in
Fig. 8c. This leads to an increase in the verification time for SSNs with many
ReLU layers.

5.3 Reducing Verification Time with Relaxation

When ReLU layer analysis dominates the total verification time significantly, as
in the case of MNIST SSNs shown in Fig. 8c and not in the case of M2NIST
SSNs depicted in Fig. 6b-(b), we can use the relaxed ImageStar reachability
methods to speed up the verification process. Table 2 presents the decrease in

Robustness Verification of Semantic Segmentation Neural Networks 279

the verification times in percentage when applying different relaxation heuristics
for ReLU layers. We note that due to the small input size and a small number of
attacked pixels, we do not see any changes in the robustness value, sensitivity,
and IoU compared with the non-relaxation method, i.e., the original approximate
ImageStar method. However, there is a significant improvement in verification
time when we apply the relaxed ImageStar reachability for non-max-pooling
SSNs N1 and N3. More relaxation leads to a higher reduction in the verification
time: up to 99% of the verification time can be reduced with 100% relaxation in
the reachability of ReLU layers.

Interestingly, using relaxation for the max-pooling-based SSN N2 decreases
the verification performance, i.e., leading to higher verification time. The main
reason is that the relaxed reachable sets after ReLU layers become increasingly
conservative. At the max-pooling layer, a more conservative reachable set leads
to more local max-point candidates that need to be determined via solving more
LPs, which causes an increase in the verification time. Additionally, if a local
region has more than one max-point candidate, a new predicate variable and its
corresponding generator image are introduced [33]. The increase in the number
of predicate variables and generator images causes the explosion in the memory

Table 2. The relaxed ImageStar reachability methods can reduce significantly the
verification time (in seconds) of MNIST SSN networks except for the one containing
max-pooling layers, i.e., N2. The maximum allowable number of attacked pixels is
Nmax = 50 for N1 and N2 and Nmax = 20 for N3.

ID RF
Δε = 0.005 Δε = 0.01 Δε = 0.02

Rand Area Range Bound Rand Area Range Bound Rand Area Range Bound

N1

0.00 20.56 20.23 19.43 19.05 82.57 81.04 76.48 83.51 860.86 861.69 734.99 862.03

0.25 19.5(↓ 5%) 20.7(↓ −2%) 18.8(↓ 3%) 20.7(↓ −9%) 72.2(↓ 13%) 75.8(↓ 7%) 69.5(↓ 9%) 84.4(↓ −1%) 734.1(↓ 15%) 770.2(↓ 11%) 665.0(↓ 10%) 978.1(↓ −13%)

0.50 17.7(↓ 14%) 18.6(↓ 8%) 18.3(↓ 6%) 19.0(↓ 0%) 58.3(↓ 29%) 67.0(↓ 17%) 62.1(↓ 19%) 69.5(↓ 17%) 587.8(↓ 32%) 613.6(↓ 29%) 530.7(↓ 28%) 779.5(↓ 10%)

0.75 17.0(↓ 17%) 17.7(↓ 13%) 16.7(↓ 14%) 16.9(↓ 11%) 47.4(↓ 43%) 49.9(↓ 38%) 51.0(↓ 33%) 53.0(↓ 37%) 347.6(↓ 60%) 389.2(↓ 55%) 361.1(↓ 51%) 439.0(↓ 49%)

1.00 15.2(↓ 26%) 16.4(↓ 19%) 16.2(↓ 17%) 15.2(↓ 20%) 34.4(↓ 58%) 34.4(↓ 58%) 36.0(↓ 53%) 36.0(↓ 57%) 90.5(↓ 89%) 90.1(↓ 90%) 94.4(↓ 87%) 92.9(↓ 89%)

N2

0.00 45.13 44.38 43.72 45.19 281.30 285.60 254.02 281.31 MemErr MemErr MemErr MemErr

0.25 53.1(↓ −18%) 53.5(↓ −21%) 51.8(↓ −19%) 69.9(↓ −55%) 308.0(↓ −9%) 294.7(↓ −3%) 255.6(↓ −1%) 378.1(↓ −34%) MemErr MemErr MemErr MemErr

0.50 64.3(↓ −42%) 66.4(↓ −50%) 62.9(↓ −44%) 86.5(↓ −91%) 302.2(↓ −7%) 312.7(↓ −10%) 295.2(↓ −16%) 481.0(↓ −71%) MemErr MemErr MemErr MemErr

0.75 72.9(↓ −62%) 75.8(↓ −71%) 72.5(↓ −66%) 93.0(↓ −106%) 306.0(↓ −9%) 309.0(↓ −8%) 344.4(↓ −36%) 448.5(↓ −59%) MemErr MemErr MemErr MemErr

1.00 79.6(↓ −76%) 79.5(↓ −79%) 79.8(↓ −83%) 79.9(↓ −77%) 364.4(↓ −30%) 325.4(↓ −14%) 322.1(↓ −27%) 318.5(↓ −13%) MemErr MemErr MemErr MemErr

N3

0.00 119.63 118.74 112.48 120.66 1119.16 1116.85 996.56 1116.66 17699.81 17651.30 17260.00 17780.00

0.25 95.9(↓ 20%) 100.4(↓ 15%) 95.3(↓ 15%) 107.9(↓ 11%) 920.7(↓ 18%) 1020.7(↓ 9%) 874.9(↓ 12%) 1157.0(↓ −4%) 15474.4(↓ 13%) 17222.3(↓ 2%) 14700.0(↓ 15%) 17201.0(↓ 3%)

0.50 72.7(↓ 39%) 77.8(↓ 35%) 72.2(↓ 36%) 78.5(↓ 35%) 648.4(↓ 42%) 759.4(↓ 32%) 644.2(↓ 35%) 797.8(↓ 29%) 11976.3(↓ 32%) 14566.7(↓ 17%) 11902.0(↓ 31%) 14729.0(↓ 17%)

0.75 45.5(↓ 62%) 50.2(↓ 58%) 48.5(↓ 57%) 49.6(↓ 59%) 352.6(↓ 68%) 424.9(↓ 62%) 378.1(↓ 62%) 416.8(↓ 63%) 6720.0(↓ 62%) 8556.8(↓ 52%) 7217.0(↓ 58%) 7942.0(↓ 55%)

1.00 22.0(↓ 82%) 23.0(↓ 81%) 22.9(↓ 80%) 22.3(↓ 81%) 47.6(↓ 96%) 45.7(↓ 96%) 45.7(↓ 95%) 45.2(↓ 96%) 116.1(↓ 99%) 115.7(↓ 99%) 115.4(↓ 99%) 115.2(↓ 99%)

0 0.2 0.4 0.6 0.8 1
Relaxation Factor (RF)

0.8

0.85

0.9

0.95

R
ob

us
tn

es
s

 = 0.10

relax-star-random
relax-star-area
relax-star-range
relax-star-bound

0 0.2 0.4 0.6 0.8 1
Relaxation Factor (RF)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ob

us
tn

es
s

 = 0.15

relax-star-random
relax-star-area
relax-star-range
relax-star-bound

Fig. 9. The conservativeness of different relaxation heuristics. The area-based and
range-based relaxation strategies outperform others in terms of conservativeness.

280 H.-D. Tran et al.

usage for the analysis. In the worst case, it can lead to a memory error as shown in
Table 2. Therefore, it is important to have relaxation strategies for max-pooling
layers, which will be investigated in our future work.

5.4 Conservativeness of Different Relaxation Heuristics

We have four relaxation heuristics that can be used in the reachability analysis
of ReLU layers. The verification time improvement of these methods is quite
similar, as shown in Table 2. It is interesting to see how good they are in terms
of conservativeness. Unfortunately, we cannot see it clearly via verification of
SSNs. Although increasing the number of attacked pixels and input size can
eventually show the difference in conservativeness of these methods, it requires
a more powerful computer with massive memory for verification. Therefore, to
determine the best relaxation heuristic in terms of conservativeness, we evaluate
image classification robustness that has been studied extensively recently, and
illustrates the benefits of the relaxation method beyond SSN verification. We
apply our four relaxation heuristics to verify robustness of an MNIST classifica-
tion network [29] that is trained by the DiffAI robust training framework under
the L∞-norm attack, where all pixels of an input image are attacked indepen-
dently by a bounded disturbance defined by ε4. The robustness of the network
is quantified in percentage stating how many images of 100 randomly selected
images are provably robust under the attack, i.e., classified correctly.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

R
ob

us
tn

es
s

Relax-star-area

RF = 0
RF = 0.25
RF = 0.5
RF = 0.75
RF = 1
DeepZ
DeepPoly

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

250

300

350

400

V
er

ifi
ca

tio
n

Ti
m

e
(s

)

Relax-star-area
RF = 0
RF = 0.25
RF = 0.5
RF = 0.75
RF = 1
DeepZ
DeepPoly

Fig. 10. When the relaxation factor (RF) ≤ 0.5, the area-based relaxed reachability
is less conservative than DeepZono [28] and DeepPoly [29]. It is also faster than these
approaches when the disturbance is small, i.e., ε ≤ 0.11.

Figure 9 illustrates the conservativeness of different relaxation methods. One
can see that the area-based and range-based relaxation strategies consistently
outperform others in terms of conservativeness since their provable numbers of
robust images (in 100 images) under the different sizes of the L∞ norm attacks
are higher than others in all cases. Figure 10 illustrates the conservativeness and
verification time of our area-based relaxed reachability (with different relaxation
4 These benchmarks were used in VNN-COMP’20.

Robustness Verification of Semantic Segmentation Neural Networks 281

factors (RF)) in comparison with DeepZono [28] and DeepPoly [29]. In terms
of conservativeness, the area-based relaxed reachability is better than DeepZono
and DeepPoly when we choose a relaxation factor RF ≤ 0.5. When the dis-
turbance is large, DeepZono and DeepPoly may become very conservative. For
example, when the disturbance bound ε = 0.2, the only 5 and 14 (over 100)
images are proved robust by DeepZono and DeepPoly, respectively. Meanwhile,
without relaxation, i.e., relaxation factor RF = 0, the area-based relaxed reach-
ability can prove 54 images are robust under the attack. It can prove robustness
of 48 and 23 images when the relaxation factors are 0.25 and 0.5, respectively. In
terms of verification time, when the disturbance is small, i.e., ε ≤ 0.11, the area-
based relaxed reachability is faster than DeepZono and DeepPoly. It is slower
than DeepPoly for larger disturbance (except for the case when the relaxation
factor is 1). This increase in the verification time is apparent since DeepZono and
DeepPoly do not solve any LPs for constructing the overapproximate reachable
set of the network while our approach does. Due to using only estimated ranges
of the neurons in constructing the reachable set, DeepZono and DeepPoly are
overly conservative for a large disturbance, proving only a few images are robust.
This reflects the fact that more computation time for optimization is needed to
prove more images robust.

6 Related Work

To enable neural networks use in safety-critical scenarios, many methods have
recently been proposed to improve their robustness and temper their susceptibil-
ity to adversarial attacks. The following section surveys the landscape of these
approaches in order to better contextualize our work.

SSN Robustness. SSNs are used in visual understanding systems in numer-
ous contexts, recent works aim to improve the robustness of these mod-
els [13,20,23,25], albeit none that provide worst-case guarantees, as our app-
roach does. For instance, recent work develops rigorous testing-based approaches
to evaluate the robustness of SSNs, considering a wide range of architectures,
and offering an insightful discussion about the comparative robustness of these
modalities against various adversarial attacks [2]. Kamann et al. conducted an
extensive evaluation of a state-of-the-art SSN using over 400,000 images and
issued a series of recommendations aimed at improving robustness to common
perturbations. Zhou et al. presented an automated method for evaluating robust-
ness of SSNs within visual systems for autonomous vehicles, which leverages an
additional sensor to generate ground truth labels so that an examination of the
classification accuracy of an SSN can be evaluated at runtime[47]. Robust train-
ing techniques that incorporate image corruptions and architecture modalities
have also been developed for SSNs [20]. Even though such works provide bet-
ter understanding, potential defenses against adversarial perturbations, run-time
evaluation, and comparative robustness measures, they cannot provide formal
verification guarantees for SSN robustness as our work does.

282 H.-D. Tran et al.

Neural Network Verification and Falsification. The bulk of neural network verifi-
cation approaches have been aimed at verifying input-output properties of DNNs.
These methods include SMT [18,19], polyhedral [35,44], mixed integer linear pro-
gramming (MILP) [9], interval arithmetic [38], zonotope [28], linearization[39],
and abstract-domain [29] approaches. There have also been a number of works
aimed at testing the robustness of networks with respect to bounded input per-
turbations such as feature-guided search, global optimization, and game theory
[16,42]. One such example is the work of Dreossi et al. where the authors pro-
posed a general definition of robustness for DNNs [8]. Their work categorizes
the existing literature into approaches that consider local robustness properties
[6], and those that focus on verifying the global robustness of the networks [14].
Most of the existing research in this area focuses on robustness of classification
neural networks, specifically image classification. While many approaches aim at
verification, methods also exist for falsification of system specifications, in which
robustness properties are included [12]. However, to the best of our knowledge,
no existing approaches consider verification for SSNs, as we do in this paper.

Sequence Model Verification and Robustness Analysis. Aside from classifica-
tion tasks, there are several verification approaches for sequence models. Unlike
SSN and classification networks, the output of sequence models such as recur-
rent neural networks (RNNs) depends on spatially or temporally ordered data
[4,41]. While some of these efforts are similar in spirit to our work in expanding
the classes of problems and models for verification, the verification tasks and
approaches differ.

Scalability and Specifications. Finally, verification of DNNs is challenging, and
presently the most complex networks remain inaccessible to the majority of
methods. However, several recent approaches have focused on improving the effi-
ciency of existing methods via parallelization and other techniques [3,35,40]. As
verification work is only meaningful when paired with high-quality specifications,
there has been significant work on the importance of semantics when defining
system specifications against adversarial attacks [27], and our paper contributes
to this direction through our formulation of robustness specifications and metrics
for segmentation tasks.

7 Conclusion

We present the first formal approach to verify robustness of SSNs using relaxed
reachability analysis. Our evaluation has analyzed the robustness and sensitivity
under adversarial attacks on a set of SSNs with typical architectures. From our
experiments, we show that while max-pooling and ReLU layers are useful in
training highly accurate SSNs, they are also the main sources of robustness
and verification performance degradation. SSNs using average-pooling for down-
sampling and transposed convolution for up-sampling seem to be an optimal
choice for achieving high accuracy, robustness, and verification performance.

Robustness Verification of Semantic Segmentation Neural Networks 283

Additionally, our relaxed reachability approach can help to reduce significantly
the total verification time for networks where the reachability time of ReLU
layers dominates the network’s reachability time, and are applicable to other
networks, such as CNNs used for classification. In the future, we will investigate
new relaxation heuristics for the max-pooling layer and extend this work to
cope with the encoder-decoder SSN architecture where max-unpooling layers
are used for up-sampling operations, instead of dilated/transposed convolution
as we considered in this paper.

Acknowledgments. The material presented in this paper is based upon work sup-
ported the Defense Advanced Research Projects Agency (DARPA) through contract
number FA8750-18-C-0089, the Air Force Office of Scientific Research (AFOSR) award
FA9550-19-1-0288, and the National Science Foundation (NSF) through grant numbers
1910017 and 2028001. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the
views of DARPA, AFOSR or NSF.

References

1. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
A synergistic approach for analyzing neural network robustness. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, pp. 731–744. Association for Computing Machinery,
New York (2019)

2. Arnab, A., Miksik, O., Torr, P.H.: On the robustness of semantic segmentation
models to adversarial attacks. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 888–897 (2018)

3. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

4. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. CoRR arXiv:1906.10395 (2019)

5. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of relu-based neural networks via dependency analysis. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3291–3299
(2020)

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

7. Dathathri, S., et al.: Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming (2020)

8. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

9. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks. arXiv preprint arXiv:1709.09130 (2017)

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
http://arxiv.org/abs/1906.10395
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
http://arxiv.org/abs/1709.09130

284 H.-D. Tran et al.

10. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

11. Fazlyab, M., Morari, M., Pappas, G.J.: Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE
Trans. Autom. Control 1 (2020)

12. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with Ver-
ifAI. In: 32nd International Conference on Computer Aided Verification (CAV)
(July 2020)

13. Full, P.M., Isensee, F., Jäger, P.F., Maier-Hein, K.: Studying robustness of semantic
segmentation under domain shift in cardiac MRI (2020)

14. Gopinath, D., Katz, G., Păsăreanu, C.S., Barrett, C.: DeepSafe: a data-driven
approach for assessing robustness of neural networks. In: Lahiri, S.K., Wang, C.
(eds.) ATVA 2018. LNCS, vol. 11138, pp. 3–19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01090-4 1

15. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis of
neural-network controlled systems. ACM Trans. Embed. Comput. Syst. (TECS)
18(5s), 1–22 (2019)

16. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

17. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Hybrid Systems:
Computation and Control (HSCC) (2019)

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

19. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

20. Klingner, M., Bar, A., Fingscheidt, T.: Improved noise and attack robustness for
semantic segmentation by using multi-task training with self-supervised depth esti-
mation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops (June 2020)

21. LeCun, Y.: The mnist database of handwritten digits. http://yann.lecun.com/
exdb/mnist/ (1998)

22. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

23. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.:
Image segmentation using deep learning: A survey (2020)

24. Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying
robustness of neural networks against a family of semantic perturbations. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (June 2020)

25. Oliveira, G., Bollen, C., Burgard, W., Brox, T.: Efficient and robust deep networks
for semantic segmentation. Int. J. Rob. Res. 37, 027836491771054 (2017)

26. Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., Kwiatkowska, M.: Global
robustness evaluation of deep neural networks with provable guarantees for the l 0
norm. arXiv preprint arXiv:1804.05805 (2018)

https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1804.05805

Robustness Verification of Semantic Segmentation Neural Networks 285

27. Seshia, S.A., et al.: Formal specification for deep neural networks. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 20–34. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 2

28. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
pp. 10825–10836 (2018)

29. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. vol. 3(POPL), p. 41 (2019)

30. Szeliski, R.: Computer Vision: Algorithms and Applications. 2nd edn. Springer,
New York (2021) https://doi.org/10.1007/978-1-84882-935-0

31. Thoma, M.: A survey of semantic segmentation. arXiv preprint arXiv:1602.06541
(2016)

32. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019)

33. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

34. Tran, H.D., Cei, F., Lopez, D.M., Johnson, T.T., Koutsoukos, X.: Safety veri-
fication of cyber-physical systems with reinforcement learning control. In: ACM
SIGBED International Conference on Embedded Software (EMSOFT 2019), ACM
(October 2019)

35. Tran, H.D., et al.: Parallelizable reachability analysis algorithms for feed-forward
neural networks. In: 7th International Conference on Formal Methods in Software
Engineering (FormaliSE2019), Montreal, Canada (2019)

36. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

37. Tran, H.D., Xiang, W., Johnson, T.T.: Verification approaches for learning-enabled
autonomous cyber-physical systems. IEEE Design & Test (2020)

38. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems, pp.
6369–6379 (2018)

39. Weng, T.W., et al.: Towards fast computation of certified robustness for relu net-
works. arXiv preprint arXiv:1804.09699 (2018)

40. Wu, H., et al.: Parallelization techniques for verifying neural networks. In: 2020
Formal Methods in Computer Aided Design (FMCAD), pp. 128–137 (2020)

41. Wu, J., Li, X., Ao, X., Meng, Y., Wu, F., Li, J.: Improving robustness and generality
of nlp models using disentangled representations (2020)

42. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based
approximate verification of deep neural networks with provable guarantees. Theor.
Comput. Sci. 807, 298–329 (2020)

43. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. arXiv preprint arXiv:1810.01989 (2018)

44. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety veri-
fication for neural networks with relu activations. arXiv preprint arXiv:1712.08163
(2017)

45. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

https://doi.org/10.1007/978-3-030-01090-4_2
https://doi.org/10.1007/978-1-84882-935-0
http://arxiv.org/abs/1602.06541
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-30942-8_39
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1810.01989
http://arxiv.org/abs/1712.08163

286 H.-D. Tran et al.

46. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 31, pp. 4939–4948. Cur-
ran Associates, Inc. (2018)

47. Zhou, W., Berrio, J., Worrall, S., Nebot, E.M.: Automated evaluation of semantic
segmentation robustness for autonomous driving. IEEE Trans. Intell. Transp. Syst.
21, 1951–1963 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

PEREGRiNN: Penalized-Relaxation
Greedy Neural Network Verifier

Haitham Khedr(B), James Ferlez, and Yasser Shoukry

University of California, Irvine, USA
{hkhedr,jferlez,yshoukry}@uci.edu

Abstract. Neural Networks (NNs) have increasingly apparent safety
implications commensurate with their proliferation in real-world appli-
cations: both unanticipated as well as adversarial misclassifications can
result in fatal outcomes. As a consequence, techniques of formal verifi-
cation have been recognized as crucial to the design and deployment of
safe NNs. In this paper, we introduce a new approach to formally verify
the most commonly considered safety specifications for ReLU NNs – i.e.
polytopic specifications on the input and output of the network. Like
some other approaches, ours uses a relaxed convex program to mitigate
the combinatorial complexity of the problem. However, unique in our
approach is the way we use a convex solver not only as a linear feasibil-
ity checker, but also as a means of penalizing the amount of relaxation
allowed in solutions. In particular, we encode each ReLU by means of the
usual linear constraints, and combine this with a convex objective func-
tion that penalizes the discrepancy between the output of each neuron
and its relaxation. This convex function is further structured to force the
largest relaxations to appear closest to the input layer; this provides the
further benefit that the most “problematic” neurons are conditioned as
early as possible, when conditioning layer by layer. This paradigm can
be leveraged to create a verification algorithm that is not only faster in
general than competing approaches, but is also able to verify consider-
ably more safety properties; we evaluated PEREGRiNN on a standard
MNIST robustness verification suite to substantiate these claims.

Keywords: Machine learning/AI · Decision procedures and solvers

1 Introduction

Neural Networks have become an increasingly central component of modern
machine learning systems, including those that are used in safety-critical cyber-
physical systems such as autonomous vehicles. The rate of this adoption has
exceeded the ability to reliably verify the safe and correct functioning of these
components, especially when they are integrated with other components such as

This work was sponsored by the NSF awards #CNS-2002405 and #CNS-2013824.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 287–300, 2021.
https://doi.org/10.1007/978-3-030-81685-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_13

288 H. Khedr et al.

controllers. Thus, there is an increasing need to verify that NNs reliably produce
safe outputs, especially subject to malicious adversarial inputs [16,20,27,28].

In this paper, we propose PEREGRiNN, an algorithm for efficiently and for-
mally verifying the input/output behavior of ReLU NNs. In this context, PERE-
GRiNN falls into the broad category of sound and complete search and optimiza-
tion NN verifiers [22]. The search aspect of PEREGRiNN involves iterating over
different combinations of neuron activation patterns to verify that each is compat-
ible with the specified safety constraints (on the input and output of the network).
Like other algorithms in this category, PEREGRiNN combines this search with
optimization techniques to make inferences about the feasibility of full-network
activation patterns on the basis of activation patterns of only a subset of neurons.
The optimization in question reformulates the original NN feasibility problem into
a relaxed convex feasibility problem to allow sound inferences: i.e. if the convex
relaxation is infeasible, then the original NN problem may soundly be concluded
to be infeasible. In this relaxed feasibility problem, the output of each individual
neuron is assigned a relaxation variable that is decoupled from the actual output of
that neuron. PEREGRiNN also uses a type of reachability analysis (symbolic inter-
val analysis) both to enhance the optimization-based inference described above
and as a source of additional sound inference itself. For this reason, PEREGRiNN’s
search procedure searches neurons in a layer-by-layer fashion, preferring to fix the
phases of neurons closest to the input layer first.

In contrast to other search and optimization algorithms, however, PERE-
GRiNN augments each convex feasibility query with a (convex) penalty function in
order to obtain better guidance on which activation patterns to search next. In par-
ticular, we note that the amount of relaxation needed on a neuron can be regarded
as a quasi-measure of how close the convex solver came to operating the associated
neuron in a valid regime – i.e. at a valid evaluation of that neuron on a particu-
lar input. In this sense, the amount of relaxation in aggregate can be regarded as
a quasi-measure of how close the solver came to finding a valid evaluation of the
network as a whole. Inversely, the largest distance between a relaxation variable
and its neuron’s closest ReLU constraint intuitively corresponds in some sense to
how “problematic” that neuron is with regard to obtaining such a valid evaluation.
These distances we refer to as the “slacks” for each neuron. Thus, PEREGRiNN
may be regarded as greedily minimizing a slack-based penalty.

Finally, we evaluated the performance of PEREGRiNN by using it to verify
the adversarial robustness of networks trained on the MNIST [21] dataset. Our
experiments show that PEREGRiNN is on average 1.27× faster than Neurify [31],
1.24× faster than Venus [6], 1.15× faster than nnenum [4], and 1.65× faster than
Marabou [19]. It also proves 27%, 19%, 10%, and 51% more properties than the
other solvers, respectively. PEREGRiNN’s unique convex penalty augmentations
are also considered in ablation experiments to validate their benefits.

Related Work. Since PEREGRiNN is a sound and complete verification algo-
rithm, we restrict our comparison to other sound and complete algorithms.
NN verifiers can be grouped into roughly three categories: (i) SMT-based
methods, which encode the problem into a Satisfiability Modulo Theory prob-
lem [11,18,19]; (ii) MILP-based solvers, which directly encode the verification

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 289

Sampling

Inference

Inference Component

Symbolic Interval

Inference

Convex Program

Inference

Search Component

Backtrack &

Condition New

Feasible?

Infeasible?

Activations
unexplored?

All activations
explored?

Neurons un-
conditioned?

All neurons
conditioned?

SAFE

UN-SAFEUN-SAFE
Counterexample

Neuron

Recondition
Infeasible?

Else

Found?

Else

Fig. 1. Block diagram of the PEREGRiNN algorithm

problem as a Mixed Integer Linear Program [3,5–8,14,23,29]; (iii) Reachability
based methods, which perform layer-by-layer reachability analysis to compute
the reachable set [4,13,15,17,30,32,34,35]; and (iv) convex relaxations meth-
ods [10,31,33]. In general, (i), (ii) and (iii) suffer from poor scalability. On the
other hand, convex relaxation methods depend heavily on pruning the search
space of indeterminate neuron activations; thus, they generally depend on obtain-
ing good approximate bounds for each of the neurons in order to reduce the
search space (the exact bounds are computationally intensive to compute [9]).
These methods are most similar to PEREGRiNN: for example, [7,25,32] recur-
sively refine the problem using input splitting, and [31] does so via neuron split-
ting. Other search and optimization methods include: Planet [11], which com-
bines a relaxed convex optimization problem with a SAT solver to search over
neurons’ phases; and Marabou [19], which uses a modified simplex algorithm.

2 Problem Formulation

In this paper, we will consider Rectified Linear Unit (ReLU) NNs. An n-layer
ReLU network, is a composition of n ReLU layer functions: i.e. NN = fn ◦
fn−1 ◦ · · · ◦ f1 where the ith ReLU layer function is defined as fi : y ∈ R

ki−1 �→
max{Wiy + bi, 0} ∈ R

ki . We refer to f1 as the input layer. Finally, to refer to
individual neurons, we use the notation (z)j to indicate the jth element of z.

Verification Problem. Let NN be an n-layer NN as defined above. Further-
more, let Py0 ⊂ R

k0 be a convex polytope in the input space of NN , and
let Pyn

⊂ R
kn be a convex polytope in the output space of NN . Finally, let

h� : R
k0 ×R

kn → R, � = 1, . . . ,m be convex functions defining joint input/output
constraints on NN . Then the verification problem is to decide whether{

x ∈ R
k0

∣∣∣ x ∈ Py0 ∧ NN (x) ∈ Pyn
∧ (

m∧
�=1

h�(x,NN (x)) ≤ 0
)}

= ∅. (1)

3 PEREGRiNN Overview

The general structure of PEREGRiNN is depicted in Fig. 1. Like other search
and optimization based NN verifiers it has two main components: a search com-
ponent and an inference component, and PEREGRiNN iterates back and forth

290 H. Khedr et al.

between these these two components until termination. In particular, the search
and inference components interact in the following way. The search component
successively iterates over all possible on/off activations for each neuron; this is
done by fixing these activations one neuron at a time, starting from the input
layer and working towards the output layer. The process of fixing a neuron’s acti-
vation is referred to as conditioning its phase: each neuron can be in either its
active phase (operating linearly) or inactive phase (outputting zero). Thus, the
search component provides the inference component a subset of neurons, each of
which has been conditioned; the inference component then attempts to soundly
reason about whether the remaining, unconditioned neurons can be operated in
such a way as to violate the safety constraint. If the inference component soundly
concludes safety for all possible activations of the remaining unconditioned neu-
rons, then the search component backtracks, oppositely reconditioning one of
the neurons that was already conditioned. Otherwise, if a sound safe conclusion
is not made, then the search component uses information from the inference
component to decide on a new neuron to condition, and the process repeats.
The algorithm terminates if either a counterexample to safety is found, or else
all possible neuron activations are considered without finding such a counterex-
ample.

The convex program inference block is at the heart of the inference compo-
nent and PEREGRiNN itself. In this block, PEREGRiNN, like other search and
optimization solvers, uses a relaxed linear feasibility program where the output
of each individual neuron is assigned a relaxation variable that is decoupled from
the actual output of that neuron. In the notation of Sect. 2, such a linear feasi-
bility program can be written as follows, where the vector variables yi, i
= 0 are
the relaxation variables.⎧⎨

⎩
yi ≥ 0, yi ≥ Wiyi−1 + bi ∀i = 1, . . . , n

y0 ∈ Py0 , yn ∈ P c
yn

,
m∧

�=1
h�(y0, yn) ≤ 0

(2)

Importantly, if (2) is infeasible, then the original NN problem in (1) may
be soundly concluded to be infeasible as well – and hence, safe. However, as
described above, the primary function of the convex feasibility program is to
use a set of conditioned neurons supplied by the search component in order to
soundly reason about the remaining neurons. To do this, the conditioned neurons
supplied by the search component are incorporated into the feasibility program
(2) as equality constraints in the following way:

Neuron (yi)j ON: (yi)j = (Wiyi−1 + bi)j ∧ (yi)j ≥ 0 (3)
Neuron (yi)j OFF: (yi)j = 0 ∧ (Wiyi−1 + bi)j ≤ 0. (4)

Inferences created by the symbolic interval inference block using Symbolic Inter-
val Analysis [32] are also incorporated using equality constraints like (3) and (4).

Of the remaining blocks, the “Backtracking & Reconditioning” block is essen-
tially described above. The “Condition New Neuron” and “Sampling Inference”
blocks have features unique to PEREGRiNN that are described in Sect. 4; the

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 291

former implements a novel neuron prioritization, and the latter is a unique app-
roach to quickly obtaining initial safety counterexamples.

4 PEREGRiNN Enhancements

4.1 Sum-of-Slacks Penalty

The core enhancement in PEREGRiNN is the inclusion of a specific objective
function in the convex program used by the inference component. As per the
discussion above, this objective function is interpreted as a penalty on how far
away a particular solution is from a valid input/output response of the network
(and activation pattern on all hidden neurons). Specifically, this penalty function
penalizes the sum of all of the “slack” variables for the entire network, where each
neuron’s slack variable is defined as si � yi −(Wi ·yi−1+bi). That is the distance
between a relaxation variable yi and the linear response of its associated neuron.
During each feasibility/inference call, this has the obvious effect of incentivizing
the convex solver to choose an actual input/output response of the network.

In addition, this penalty is effectively the L1-norm of the vector of all the slack
variables, since the slack variables are non-negative. The L1-norm of a vector,
used as a penalty function, is well known to effectively encourage sparsity on the
resulting optimal solution. Thus, the sum-of-slacks effectively incentivizes the
convex solver to leave as few neurons as possible indeterminate in the solution.
That is a sum-of-slacks penalty effectively encourages the convex solver to fix
the phases of as many neurons as possible.

4.2 Max-Slack Conditioning Priority

As noted above, the search component of PEREGRiNN operates layer-wise from
input layer to output layer in order to leverage Symbolic Interval Analysis for
additional inference. Hence, the search component always chooses the next neu-
ron to be searched (i.e. conditioned) from among those as-yet-unconditioned
neurons that are closest to the input layer. It further makes sense to only con-
sider conditioning neurons that the convex solver was unable to operate at valid
inputs/output. However, the convex solver typically returns several neurons to
choose from with this property, and it is necessary to choose which of them to
search next. Given the interpretation of a neuron’s “slack” variable as a measure
of how “problematic” that neuron was for the solver to obtain a valid evaluation
of the network, PEREGRiNN’s search component chooses the next neuron to
condition based on slack-order ranking of those neurons that are not being oper-
ated at valid input/output points. This “max-slack” heuristic choice is unique
to PEREGRiNN; compare to the output gradient heuristic employed in [31].

4.3 Layer-wise-Weighted Penalty

PEREGRiNN takes the “max-slack” neuron search priority one step further,
though. Using techniques similar to those in [26], it is possible to show that

292 H. Khedr et al.

there exists weights q1, . . . , qn such that solving (2) with the penalty

min
y0,..,yn

n∑
i=0

ki∑
j=1

qisij (5)

will result in a solution that is guaranteed to concentrate the most total slack in
the earliest (unconditioned) layer. Thus, by using the layer-wise weighted sum-of-
slacks penalty in (5), PEREGRiNN is uniquely able to force the (unconditioned)
layer closest to the input layer to have the largest total slack among all the layers.
As a consequence, PEREGRiNN effectively concentrates the most “problematic”
neurons in the layer where the next conditioning choice will be made. This
scheme makes it much more likely that the neuron with the highest slack among
all of the neurons will be among the next neurons considered for conditioning – in
effect, often guiding the search component to condition on the most problematic
neuron in the whole network (although this is not guaranteed).

As noted above, SMC [26] can be used to obtain layer-wise weights that
guarantee concentration of slack in the earliest (shallowest) layer. However, these
weights are often very large, since they depend on bounding the slack variables
(most readily by over-approximation); the effect of this is possible computational
instability in the convex program. Thus, as an implementation matter, we instead
select these weights using a heuristic scheme characterized by two real-valued
hyperparameters, λ0 and γ. In particular, the weight of the ith layer, qi, is
selected as qi = λ0 · γi. In our experiments, we found the values λ0 = 10−7 and
γ = 103 to effectively achieve the maximum slack concentration in the earliest
layers.

4.4 Initial Counterexample Search by Sampling

Finally, PEREGRiNN extends a simple idea first introduced in [32] to rapidly
identify counterexamples by means of sampling. The basic idea is to sample
within a known region of the input to the NN (or the input to some deeper layer),
and evaluate the NN (sub-NN) exactly on those samples in order to rapidly iden-
tify a counterexample; this approach help identify un-safe networks/properties
early on. However, whereas [32] samples from within hyper-rectangle sets derived
by symbolic interval analysis, PEREGRiNN uses the Volesti [12] Python library
to uniformly sample points within the polytopic input constraint set, Py0 , and
thus applies to be more general input constraint sets in (1).

5 Experiments

We evaluated the performance and effectiveness of PEREGRiNN at verifying
the adversarial robustness of NNs trained to recognize digits using the standard
MNIST dataset. This verification problem fits into the general NN verification
problem described in Sect. 2, and it is described subsequently in detail. In this
context, we evaluated PEREGRiNN with two objectives described as follows.

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 293

Table 1. Architecture of the NN models used in the experiments

Models # ReLUs Architecture

MNIST FC1 512 < 784, 256, 256, 10 >

MNIST FC2 1024 < 784, 256, 256, 256, 256, 10 >

MNIST FC3 1536 < 784, 256, 256, 256, 256, 256, 256, 10 >

1. We conducted ablation experiments for all of PEREGRiNN’s novel features
as described in Sect. 4. In particular, we compared the performance of a full
implementation of PEREGRiNN – i.e. exactly as described in Sect. 4 – with
implementations that are otherwise the same except for changing one and
only one of the following: the penalty function used in the convex program
inference block; the neuron prioritization used by the search component.

2. We compared PEREGRiNN against other state-of-the-art NN verifiers, both
in terms of the time required to verify individual networks and properties and
in terms of the number of properties proved with a common, fixed timeout.

Implementation. We implemented PEREGRiNN in Python, and used an off-
the-shelf Gurobi 9.1 [1] convex optimizer for solving linear programs; the Volesti
[12] Python interface was used to sample from the input polytope for the sam-
pling inference block. For the other NN verifiers, we used publicly available
implementations that were published by their creators (citations are included
below). Each instance of of any verifier was run within its own single-core Vir-
tual Box VM with 30 GB of memory; no more than 4 VMs were run concurrently
on a host machine with 48 hyperthreaded cores and 256 GB of memory.

5.1 Adversarial Robustness Verification Task

Subsequent experiments used the testbench we describe in this section; it is
largely identical to the PAT-FCN test in the VNN-COMP 2020 competition [2].

Neural Networks. We used three ReLU NNs to recognize digits using the
standard MNIST training database; these NNs are exactly as in the PAT-FCN
portion of [2]. The sizes of these fully-connected networks are described in Table 1.
Each entry in the “Architecture” column of Table 1 is the number of number of
neurons in a layer, from input layer on the left to output layer on the right.

Verification Properties. We created a number of NN verification tasks based
on proving whether the above described networks were robust against max-norm
perturbations of their inputs. In particular, each verification task involves prov-
ing whether a particular input image, x′, always results in the same classification
when it is subjected to a max-norm perturbation of at most some fixed size, ε > 0.
Thus, each such verification problem is parameterized by both the specified input
image, x′, and the maximum amount of perturbation, ε.

294 H. Khedr et al.

Formally, let x′ be a given image in category t ∈ {1, . . . ,M}, and let ε > 0
be a specified maximum amount of max-norm perturbation of x′. Then we say
that a NN with M classification outputs, NN , is robust if for each classification
category m ∈ {1, . . . , M} \ {t} the set of inputs yielding classification of x′ as m

φm � {x | x ∈ R
k0 , ‖x − x′‖∞ ≤ ε, z ∈ R

kn , max
i=1,...,n

NN (x)i = NN (x)m} (6)

is empty. Note that each instance of (6) is compatible with the problem in (1).

Adversarial Robustness Verifier Testbench. Our verification testbench
was then constructed by selecting 50 test images from the MNIST test dataset;
this set of test images includes the 25 used in the PAT-FCN portion of [2]. Each
test instance was then a combination of one of those images, one of the networks
from Table 1 and one the following two max-norm perturbations, ε = 0.02 or
ε = 0.05; these perturbations are same ones used in PAT-FCN [2]. Thus, each
verification test in our testbench can be identified by one of 300 tuples of the
form: (net, image, perturb.) ∈ TB � {FC1, FC2, FC2}×{1, . . . , 50}×{0.02, 0.05}.

5.2 Ablation Experiments

In this series of experiments we evaluated the contribution that each of the
primary PEREGRiNN enhancements made to its overall performance. This was
done by comparing the full PEREGRiNN algorithm – as described in Sect. 4 –
with altered versions that replace exactly one of those enhancements at a time.
Note: removing core features of PEREGRiNN often resulted in much longer
run times, so the experiments in this section use a testbench TB′ ⊂ TB that
excludes all tests with one of the larger networks FC2 or FC3 and ε = 0.05.

Penalty Function Ablation. Our first ablation experiment evaluated the con-
tribution of PEREGRiNN’s unique penalty function features; see Sect. 4.1 and
Sect. 4.3. In particular, we ran different variants of PEREGRiNN with the fol-
lowing penalty functions used inside the convex program inference block:

1. “Weighted sum of slacks”: PEREGRiNN’s own weighted sum of slacks
penalty;

2. “Sum of slacks”: A sum-of-slacks penalty with equal weighting on all layers;
3. “Feasibility”: A feasibility-only convex program such as the one used in other

tools, e.g. [31] (i.e. simply using a constant penalty function of 1);
4. “Inverted weighted sum of slacks”: PEREGRiNN’s own weighted sum of slacks

penalty, except with the layer-wise weights applied in reverse order to force
slack towards deeper layers rather than shallower ones (see also Sect. 4.3).

Figure 2a shows a cactus plot of the number of proved cases vs. the timeout
permitted to the algorithm: i.e. to prove at least a specified number of the test
cases, each algorithm must have its timeout set at to the value of its curve in

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 295

Fig. 2a. Figure 2b shows a histogram of the number of times each of the algorithm
variants needed to call the convex solver in order to terminate; this quantifies
each algorithm’s cost in a well-known unit of computation, also the single most
computationally costly part of PEREGRiNN. Figure 2b plots the number of
convex solver calls required for evenly spaced bins of convex solver calls.

(a) Cactus plot; proved cases vs. timeout (b) Histogram; number convex calls used

Fig. 2. Performance of PEREGRiNN variants with different objective functions

Conclusions: Figure 2a demonstrates that PEREGRiNN’s weighted sum of slacks
has a clear benefit over both a uniformly weighted sum-of-slacks penalty and a
plain feasibility convex program. For timeouts of longer than ≈ 1.2 seconds,
PEREGRiNN overtakes the other two in terms of number of properties proved;
even the uniform sum-of-slacks penalty considerably outperforms the feasibility
convex program at similar timeouts. Note that reversing the layer-wise weights of
PEREGRiNN’s penalty function incurs a performance hit, especially for timeouts
>1.2 s. This suggests that driving slacks toward shallower layers, where the next
neuron is conditioned, is the correct heuristic to apply. Figure 2b also shows that
going from feasibility to sum-of-slacks to weighted sum-of-slacks significantly
reduces the number of test cases that require between 425 and 525 calls to the
convex solver. This order of comparison shows a concomitant net influx of tests
into the lowest bin of < 25 convex calls; PEREGRiNN has the most test cases
in this category, with ≈130 test cases proved in < 25 convex solver calls.

Neuron Conditioning Priority Ablation. In the second ablation experi-
ment, we evaluated the contribution of PEREGRiNN’s maximum-slack neuron
conditioning priority (see Sect. 4.2). To that end, we ran variants of PERE-
GRiNN with three different neuron conditioning priorities for the search compo-
nent:

1. “Maximum slack”: PEREGRiNN’s max-slack neuron conditioning priority;
2. “Minimum slack”: This variant conditions the neuron with the smallest slack;
3. “Random choice”: This variant conditions on a random indeterminate neuron.

The performance of these algorithm variants is shown in Fig. 3a and Fig. 3b.
As in the previous ablation experiment, Fig. 3a shows a cactus plot of the number

296 H. Khedr et al.

of proved cases vs. the timeout, and Fig. 3b shows a histogram of the number of
calls to the convex solver required under each of the conditioning priorities.

Conclusions: Figure 3a shows that PEREGRiNN’s max-slack neuron priority
allows it to prove slightly more properties than either a random neuron choice
priority or the minimum-slack priority. The maximum slack priority also required
the fewest total convex calls across all instances: it used 178 fewer than minimum
slack and 686 fewer than a random choice. Thus, we conclude PEREGRiNN’s
max-slack heuristic slightly improves performance on this testbench.

5.3 Comparison with Other NN Verifiers

In this experiment, we evaluated PEREGRiNN with respect to a number of
state-of-the-art NN verifiers on our adversarial robustness testbench, TB. In
particular, we ran the following tools on TB: Venus [6]; Marabou [19]; Neu-
rify [31]; and nnenum [4]. Venus was run with st ratio=0.4, depth power=4,
offline deps = True, online deps = True, and ideal cuts = True; Marabou
and Neurify were used with default parameters but THREADS = 1; and nnenum
had ADVERSARIAL SEARCH turned off. Each algorithm had its own one-core VM.

(a) Cactus plot; proved cases vs. timeout (b) Histogram; number convex calls used

Fig. 3. Performance of PEREGRiNN variants with different conditioning priorities

Figure 4 contains a cactus plot showing the results for each of these algo-
rithms, including PEREGRiNN. For a given number of test cases to be proved,
Fig. 4 depicts the corresponding timeout required for each of the algorithm to
prove that many cases. Of all the algorithms, PEREGRiNN was able to prove
the most properties within the timeout limit of 600 s: PEREGRiNN was able
to prove 190 properties; it was followed by nnenum, which proved 172; Venus,
which proved 159; Neurify, which proved 149; and Marabou, which proved 125.
Marabou consistently performed the worst, proving fewer cases than any other
algorithm at every timeout. By contrast, Neurify was able to prove significantly
more test cases than any other algorithm for extremely short timeouts, but it
failed to prove more than 150 out of 300 test cases across the whole experiment.
nnenum performed worse than Neurify on the way to proving 150 test cases, but
it fared significantly better than either PEREGRiNN or Venus, which had more
or less similar performance below this threshold. However, after ≈150 test cases,

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 297

PEREGRiNN significantly outperformed all other algorithms: as the timeout
was increased, PEREGRiNN proved additional properties at a rate significantly
outpacing its closest competitor in this regime, nnenum. We further note that
all algorithms proved a mixture of SAT and UNSAT properties.

This data, taken as a whole, suggests that PEREGRiNN suffers from a worse
“best-case” performance than several other algorithms, especially nnenum and
Neurify. However, PEREGRiNN’s performance seems to be much more consis-
tent across different test cases. This allows it to prove more properties in aggre-
gate at the expense of being slower on a smaller subset of them. This further
suggests that PEREGRiNN is significantly less sensitive to peculiarities of partic-
ular test cases on the TB testbench. This will likely be a considerable advantage,
on average, when faced with verifying unknown networks and properties of this
type.

6 Discussion: Analogy to SAT Solvers

It is possible to draw a loose analogy between SAT solvers and search-and-
optimization NN verifiers such as PEREGRiNN. Indeed, since each neuron has
two phases, the operational phase of each neuron can be captured by a binary
variable; then any valuation of all these variables can be interpreted as SAT or
UNSAT based on the Input/Output properties to be verified on the network
(subject to that conditioning). Thus, the neuron conditioning step in PERE-
GRiNN is analogous to variable splitting in a SAT solver, and the backtrack and
re-condition block (see Fig. 1) functions analogously to backtracking. In this
analogy, infeasibility of the convex program and symbolic interval analysis func-
tion roughly like unit resolution in a SAT solver: they soundly reason about the
overall property before all neurons have been conditioned (i.e. variables split).

Fig. 4. Cactus plot of various solvers on 300-case testbench, TB

However, the main contribution of PEREGRiNN is a heuristic for deciding
which neuron to condition next: it is thus analogous to a heuristic for choosing
the next variable to split in a SAT solver. Specifically, PEREGRiNN’s heuristic
provides a numerical ranking of the as-yet-unconditioned neurons, and therefore
has a functional similarity to variable-ranking heuristics in SAT solvers (e.g.
VSIDS [24]). On the other hand, PEREGRiNN’s neuron ranking comes directly

298 H. Khedr et al.

from the output of the convex solver, which we argued reveals some information
about the underlying verification problem – this has no direct SAT-solver analog.

7 Conclusion

In this paper, we introduced PEREGRiNN, a new tool for formally verifying
input/output properties for ReLU NNs. PEREGRiNN compares favorably with
other state-of-the-art NN verifiers, thanks to a number of unique algorithmic fea-
tures. The benefits of these features were established with ablation experiments.

References

1. Gurobi optimizer 9.1. http://www.gurobi.com
2. International Verification of Neural Networks Competition 2020 (VNN-COMP

2020). https://sites.google.com/view/vnn20
3. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong

mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

4. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enu-
meration for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-53288-8 4

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. Adv. Neural Inf. Process. Syst.
29, 2613–2621 (2016)

6. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient verifi-
cation of ReLU-based neural networks via dependency analysis. Proc. AAAI Conf.
Artif. Intell. 34, 3291–3299 (2020). https://doi.org/10.1609/aaai.v34i04.5729

7. Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., Mudigonda, P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(42),
1–39 (2020)

8. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

9. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks (2017). https://arxiv.org/abs/1709.09130

10. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: Globerson, A., Silva, R. (eds.) Uncer-
tainty in Artificial Intelligence, vol. 1, pp. 550–559 (2018)

11. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

12. Emiris, I.Z., Fisikopoulos, V.: Practical Polytope Volume Approximation. ACM
Trans. Math. Softw. 44(4), 38:1–38:21 (2018). https://doi.org/10.1145/3194656

http://www.gurobi.com
https://sites.google.com/view/vnn20
https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1609/aaai.v34i04.5729
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://arxiv.org/abs/1709.09130
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3194656

PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier 299

13. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32, pp. 11423–11434.
Curran Associates, Inc. (2019)

14. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: Safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE
(2018). https://doi.org/10.1109/SP.2018.00058

16. Goodfellow, I.J., Shlens, J., Szegedy, C.S.: Explaining and harnessing adversarial
examples (2014). https://arxiv.org/abs/1412.6572

17. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2019, pp. 169–178. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3302504.3311806

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

19. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

20. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world
(2016). https://arxiv.org/abs/1607.02533

21. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

22. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
Verifying Deep Neural Networks (2019). http://arxiv.org/abs/1903.06758

23. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks (2017). https://arxiv.org/abs/1706.07351

24. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference,
pp. 530–535 (2001). https://doi.org/10.1145/378239.379017

25. Royo, V.R., Calandra, R., Stipanovic, D.M., Tomlin, C.: Fast neural network veri-
fication via shadow prices (2019). https://arxiv.org/abs/1902.07247

26. Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: SMC: satisfiability modulo convex programming. Proc. IEEE 106(9),
1655–1679 (2018). https://doi.org/10.1109/JPROC.2018.2849003

27. Song, D., et al.: Physical adversarial examples for object detectors. In: Proceedings
of the 12th USENIX Conference on Offensive Technologies. WOOT 2018, USENIX
Association (2018)

28. Szegedy, C., et al.: Intriguing properties of neural networks (2013). https://arxiv.
org/abs/1312.6199

29. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2017). https://arxiv.org/abs/1711.07356

https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1109/SP.2018.00058
https://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://arxiv.org/abs/1607.02533
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1903.06758
https://arxiv.org/abs/1706.07351
https://doi.org/10.1145/378239.379017
https://arxiv.org/abs/1902.07247
https://doi.org/10.1109/JPROC.2018.2849003
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1711.07356

300 H. Khedr et al.

30. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

31. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems,
vol. 31, pp. 6367–6377 (2018)

32. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: Proceedings of the 27th USENIX Con-
ference on Security Symposium, SEC 2018, pp. 1599–1614. USENIX Association
(2018). https://doi.org/10.5555/3277203.3277323

33. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope (2017). https://arxiv.org/abs/1711.00851

34. Xiang, W., Tran, H.D., Johnson, T.T.: Reachable set computation and safety ver-
ification for neural networks with relu activations (2017). https://arxiv.org/abs/
1712.08163

35. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018). https://doi.org/10.1109/TNNLS.2018.2808470

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.5555/3277203.3277323
https://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1712.08163
https://arxiv.org/abs/1712.08163
https://doi.org/10.1109/TNNLS.2018.2808470
http://creativecommons.org/licenses/by/4.0/

Concurrency and Blockchain

Isla: Integrating Full-Scale ISA Semantics
and Axiomatic Concurrency Models

Alasdair Armstrong1(B), Brian Campbell2, Ben Simner1, Christopher Pulte1,
and Peter Sewell1

1 University of Cambridge, Cambridge, UK
alasdair.armstrong@cl.cam.ac.uk

2 University of Edinburgh, Edinburgh, UK

Abstract. Architecture specifications such as Armv8-A and RISC-V
are the ultimate foundation for software verification and the correct-
ness criteria for hardware verification. They should define the allowed
sequential and relaxed-memory concurrency behaviour of programs, but
hitherto there has been no integration of full-scale instruction-set archi-
tecture (ISA) semantics with axiomatic concurrency models, either in
mathematics or in tools. These ISA semantics can be surprisingly large
and intricate, e.g. 100k+ lines for Armv8-A.

In this paper we present a tool, Isla, for computing the allowed
behaviours of concurrent litmus tests with respect to full-scale ISA def-
initions, in Sail, and arbitrary axiomatic relaxed-memory concurrency
models, in the Cat language. It is based on a generic symbolic engine
for Sail ISA specifications, which should be valuable also for other veri-
fication tasks. We equip the tool with a web interface to make it widely
accessible, and illustrate and evaluate it for Armv8-A and RISC-V.

By using full-scale and authoritative ISA semantics, this lets one eval-
uate litmus tests using arbitrary user instructions with high confidence.
Moreover, because these ISA specifications give detailed and validated
definitions of the sequential aspects of systems functionality, as used by
hypervisors and operating systems, e.g. instruction fetch, exceptions, and
address translation, our tool provides a basis for developing concurrency
semantics for these. We demonstrate this for the Armv8-A instruction-
fetch model and self-modifying code examples of Simner et al.

1 Introduction

A processor architecture should define, for any initial machine state, the set
of all architecturally allowed observable executions—thus specifying the basic
assumptions for programming and for software verification, and the correct-
ness criterion for hardware verification. Architecture specifications have two
main parts: the sequential and relaxed-memory concurrent aspects of instruc-
tion behaviour, each of which have been studied in previous work. For Armv8-
A and RISC-V, Armstrong et al. have established full-scale sequential mod-
els in Sail [10,15], a domain-specific language for instruction-set architecture

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 303–316, 2021.
https://doi.org/10.1007/978-3-030-81685-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_14

304 A. Armstrong et al.

(ISA) specification, that are complete enough to boot real-world operating sys-
tems such as Linux. For Armv8-A this model is automatically derived from
the authoritative Arm-internal specification [24], while for RISC-V it has been
hand-written and adopted by RISC-V International. On the concurrency side,
relaxed-memory semantics can be specified in two main styles: either as abstract-
microarchitectural operational models, characterising observable behaviour with
explicit out-of-order execution and buffering, or as axiomatic models, expressed
as a predicate over complete candidate executions represented as graphs of mem-
ory events. For Armv8-A and RISC-V “user” concurrency, both exist [1,7,8,22],
along with a “Promising ARM” variant [23]. For Armv8-A they have been proved
equivalent [21,22]; the authoritative vendor definition is the axiomatic one.

However, while an architecture should define the set of allowed executions for
arbitrary programs, hitherto there has been no integration of full-scale ISA defi-
nitions with axiomatic concurrency models, either in mathematics or in tools (for
operational models, this has only been done for RISC-V; other operational mod-
els have used small ISA fragments). Research and industry practice for relaxed
memory semantics rely on making the semantics executable as a test oracle:
not just a paper definition (in prose or mathematics), but tool-supported def-
initions that for small litmus-test examples can compute the set of all allowed
executions, that can then be compared against experimental data. Many tools
have been developed for operational and axiomatic architectural concurrency
models [4,6,8,12,14,17–20,25,26,28–32], with axiomatic tools notably includ-
ing the Herd tool of Alglave and Maranget [4,6,8], that can evaluate litmus
tests w.r.t. axiomatic memory models specified in a relational-algebra style in
the Cat language [2]. However, all of these previous tools for axiomatic models
have (at best) used hard-coded ISA semantics that cover only small fragments
of the complete architecture. For example, Zhang et al. [32] use a SMT solver
based approach for SoC verification, with a user-specified memory model (TSO
or SC), however the instruction level abstractions (ILAs) they use are much more
abstract than the ISA semantics we consider.

In this paper we describe a tool, Isla, that integrates full-scale ISA spec-
ifications, in Sail, with arbitrary axiomatic models, in the Cat language. We
first build a generic symbolic execution library for Sail specifications—which
should also be valuable for other verification tasks. We use this to construct a
tool for symbolically running binary litmus tests for any Sail ISA under any
(non-recursive) Cat axiomatic memory model, using an SMT solver. We equip
it with a web interface to make it widely accessible, and illustrate and evaluate
all this for Armv8-A and RISC-V. Isla is available at https://isla-axiomatic.cl.
cam.ac.uk and https://github.com/rems-project/isla. An extended version of the
paper [11], available at https://www.cl.cam.ac.uk/~pes20/isla/, includes appen-
dices showing the main parts of the full Sail/ASL semantics of a sample Armv8-A
instruction (add x4, x3, #1); the Armv8-A axiomatic concurrency model (com-
bining the official Arm specification for user concurrency [9,13] with the addi-
tions for instruction fetch semantics by Simner et al. [27]); and examples of the
latter.

https://isla-axiomatic.cl.cam.ac.uk
https://isla-axiomatic.cl.cam.ac.uk
https://github.com/rems-project/isla
https://www.cl.cam.ac.uk/~pes20/isla/

Isla: Integrating Full-Scale ISA Semantics 305

Our approach has several key advantages, which all follow from the fact that
mainstream industry ISAs are surprisingly large and intricate. The Armv8-A ISA
specification is around 100k lines. It defines the sequential behaviour of the full
instruction set in all its detail, including e.g. instruction decoding, behaviour at
each exception level, register banking, floating-point, vector instructions, system
registers, exceptions, address translation, virtualisation, security extensions, and
a host of optional architectural features. Simple litmus tests developed to investi-
gate user concurrency have historically used only very few instructions and very
little of this, and hand-written ISA models have sufficed, but even a ‘simple’
ADD instruction can, in reality, involve surprisingly much of the specification. If
one wants to examine arbitrary compiler-generated code one needs many more
instructions; and to develop systems concurrency semantics, e.g. covering the
concurrency behaviour of instruction fetch, exceptions, or address translation,
one might need any of the specification—and it would be exceedingly laborious
and error-prone to reproduce it by hand in a hard-coded semantics. By handling
the full authoritative Armv8-A ISA, we automatically support litmus tests that
use arbitrary instructions, and we enable research on systems concurrency, with
high confidence that the ISA follows the vendor specification. We demonstrate
this by applying our tool to the model and examples for self-modifying code by
Simner et al. [27], and our integration has also identified several places where the
ISA specification needs modifications to correctly give the intended behaviour in
a concurrent setting, e.g. to remove or enforce additional ordering. Because this
is based on authoritative Arm and RISC-V ISA specifications, the work should
enable relaxed-memory behaviour to be included in the standard test-edit-debug
cycle used in the development of such large and critical specifications.

2 Implementation

Axiomatic relaxed-memory concurrency models, being expressed as logical con-
straints over candidate execution graphs, lend themselves to solver-based tool
implementations. For the instruction-semantics part of such a tool, the most
direct approach would be to translate the ISA semantics (for the instructions that
occur in a litmus test) directly into SMT and combine that with the axiomatic-
model constraints, roughly along the lines of Alglave et al. [3]. That approach
was followed by Simner et al. [27], who compiled Sail directly into SMT to test
an axiomatic model for instruction-fetch tests, but using a small handwritten
Arm fragment, rather than the full Sail model derived from the Arm-internal
model. The problem with this direct approach is one of scale: as one covers more
of the Arm semantics, the resulting SMT problem simply becomes too large to
be practicable. For example, for a load instruction, the virtual address must be
translated into a physical address, which is a complex process with a great deal
of configurability—there may be zero, one, or two stages of address translation,
the page size may vary, the number of levels used in the page table may differ,
etc. This approach also required the top level fetch-execute-decode loop to be
handled specially, as one cannot translate such an unbounded loop directly into
SMT, which imposes significant constraints on the shape of allowable tests.

306 A. Armstrong et al.

In contrast, here we build and use a generic symbolic evaluation for Sail def-
initions using the Z3 SMT solver, which lets us compute the possible symbolic
thread-local traces of each instruction, and hence of each thread (treating mem-
ory read values as unknowns, left to the concurrency model constraints). It also
lets us use the same fetch-decode-execute loop that is used for emulation and
co-simulation (which embodies various architecture-specific subtleties).

2.1 Symbolic Execution for Sail

Sail is attractive for symbolic execution for several reasons. First, it is an inten-
tionally simple language, lacking many of the features found in general-purpose
languages. Second, it has to support very few programs, just the specifications
of major ISAs, so (unlike tools for conventional programming languages) we can
tune the execution to them. Third, almost all of the loops in these programs
are bounded. Our starting point is the translation of Sail to C, for emulation,
by Armstrong et al. [10]. This goes via a simple goto-language intermediate
representation which is already well-suited for this task.

Static Function Linearisation. Our symbolic execution always creates a new
task when we hit a branch, and we do not ever merge these tasks at join points.
This is a good strategy for instruction semantics, as it simplifies the symbolic
execution engine significantly, but it does mean some code can cause unnecessary
branching. To avoid this we have a static rewrite that can take a function with
if statements and rewrite it into a ‘linear’ form, e.g. as below:

var x = 2;

if undefined {

x = x + 1

} else {

x = x + 2

};

return x

⇒
let x0 = 2;

let b = undefined;

let x1 = x0 + 1;

let x2 = x0 + 2;

let x3 = ite(b, x1, x2);

return x3

This works by translating the body of the function into SSA form, then
replacing the φ-functions with if-then-else (ite) functions that translate into the
SMT ite. This results in a more complex SMT expression, but less branching in
the symbolic execution, so it is a trade-off, but often worthwhile.

Per-Thread Candidate Executions. For each litmus-test thread this sym-
bolic execution will produce a number of candidate executions, each of which
is a sequence of memory events (memory reads and writes, fences, register
accesses, and so on) with the symbolic values of these events potentially being
constrained by some SMT formula for the overall execution. For example, con-
sider the Armv8-A instruction add x4, x3, #1. For this instruction, our symbolic
evaluator generates an execution:

Isla: Integrating Full-Scale ISA Semantics 307

(declare-const input (_ BitVec 64))

(read-reg |R3| nil input)

(define-const output (bvadd input #x0000000000000001))

(write-reg |R4| nil output)

where the SMTLIB formula is defined by the declare-const and define-const

statements, with read-reg and write-reg effects indicating which variables in the
SMT formula correspond to the values read and written to registers (which are
otherwise just global variables) by the instruction. We simplify here for brevity,
omitting the negative, zero, carry and overflow flags that the model computes.
For more complex instructions, there are additional effects for memory accesses,
cache maintenance events, barriers, and so on.

2.2 Checking a Litmus Test

Figure 1 shows the overall process of checking a litmus test. Tests can be supplied
either in the .litmus format of previous axiomatic and operational tools [4,5,
14], reusing the parser from [4], or as a TOML file (a standard configuration
file format, with libraries available for most languages). We first assemble the
test with a conventional assembler into an ELF binary and load it into the
representation of memory that will be used, before initialising the model with
the program counter set to the entry point for each thread, then we symbolically
execute the instructions in each thread separately, using the Sail semantics for
each instruction, plus the same fetch-execute-decode loop in Sail we would use
for emulation, to produce sets of per-thread traces as above. Treating litmus tests
essentially as binaries, rather than the more-or-less ad hoc fragments of assembly
abstract syntax used by earlier tools, accommodates the fact that the Armv8-A
model does not define an abstract syntax, and reduces the gap between what
the tool evaluates and what is run in experimental testing. Note that the Arm
assembly in Fig. 1, as well as subsequent assembly snippets in this paper, use
the standard Arm convention that x0 and w0 refer to the same register, where w0

refers to the lower 32-bits of the register, and x0 refers to the full 64-bit width.
We then generate an SMT problem for every combination of the candidate

executions of each thread. This problem consists of the per-thread SMT formulae
concatenated together (renaming variables as necessary to avoid name-clashes),
combined with the axiomatic memory model (described in more detail below).

Finally, we need to generate some ‘glue’ SMT that connects the per-thread
semantics with the memory model. For every effect in the per-thread SMT
semantics we generate an enumeration of events, e.g. for an execution with two
reads and two writes:

(declare-datatypes ((Event 0)) (((R1) (R2) (W1) (W2) (IW))))

The event IW is a special write event that represents the initial state. We generate
relations such as value-of that relate events to their values as determined by the
effects in the per-thread semantics, so if the second read event R2 read the value
#xABCD, (value-of R2 #xABCD) would be true. We generate syntactic dependency

308 A. Armstrong et al.

Fig. 1. Overview of process for checking the allowed executions of a litmus test

relations for address, data, and control dependencies, discussed in more detail
in Sect. 2.3. Finally, there is a constraint on the final state of each test which
specifies values expected in registers and memory after all threads have executed.

The Cat language represents axiomatic memory models as definitions of rela-
tions over the above events, and constraints over those relations, e.g. that spe-
cific relations are irreflexive, acyclic, or empty (or the negation of any of these).
Relations are defined in a point-free relation-algebraic style, in terms of standard
relational operators such as composition, intersection and union. The memory
models we consider are all multi-copy-atomic, and all recursion in their defini-
tions can trivially be replaced with (reflexive)-transitive closure. Herd’s let rec
construct computes the least solution to a set of equations [2], which is tricky
to represent in SMT, so we do not support it. We believe even relations such
as Power’s (mutually recursive) preserved program order are nevertheless repre-
sentable as SMT, so this limitation is mostly in our translation from Cat—we
would likely want to use a different syntax to represent these relations for Isla.

A satisfiable solution to the overall SMT problem described above thus rep-
resents an execution permitted by the architecture. Parsing the model generated
by the SMT solver allows us to generate a graph of the execution by instantiating
each relation in the model with the various events. If all generated SMT problems

Isla: Integrating Full-Scale ISA Semantics 309

are unsatisfiable for every combination of per-thread candidate executions then
there are no permitted executions. If desired we can repeatedly ask the SMT
solver for additional distinct models until we have all permitted executions.

2.3 Syntactic Dependency Analysis

Axiomatic memory models for relaxed hardware architectures rely heavily on
notions of address, data, and control dependencies between instructions. For
example, consider the following assembly:

ldr w0, [x1] // load 32 bits from address in x1 into x0

cbnz w0, LC01 // compare and branch if non-zero to LC01

LC01:

mov w2, #1 // load 1 into x2

str w2, [x3] // store 32 bit-value in x2 to the address in x3

Here there is a control dependency between the load (ldr) and the store (str), as
the value read by the load is used to determine whether the branch instruction
cbnz that precedes the store is taken or not. This control dependency exists irre-
gardless of whether the branch is taken or not—its existence is purely determined
by the syntactic structure of the above code.

In general, existing ISA descriptions do not cover this aspect of the archi-
tecture well, as they are principally developed only to describe the sequen-
tial behaviour. Previous tools have either hand-coded dependency information,
which is acceptable for cut-down ISA models but too laborious and error-prone
at the scale of the ISA models we use, or used a heavyweight taint-tracking
interpreter [15]. Our approach avoids both of these. It is similar to the latter,
computing dependencies from the ISA specification, but building the footprint
analysis atop our symbolic execution library requires only around 500 LoC.

To express dependencies, we need to associate each event in our candidate
executions with the syntactic instruction/opcode that generated them. To do
this we use a Sail function , called in each architecture’s
fetch-decode-execute loop just after fetching an instruction; this adds a special
effect to the candidate execution recording the instruction opcode. We also have
another special effect that delimits each fetch-decode-execute cycle, so each effect
such as read-mem and write-mem that would give rise to an event can be associated
with an opcode, as well as an index in the program order relation for its thread.

For each instruction we also need to know its footprint : data about the
instruction including which input registers it reads, which output registers it
writes, whether it is a branch instruction, and so on. It also contains taint
information—we need to know which registers writes may contain data ‘tainted’
by a memory read performed by a load, or which input registers ‘taint’ data
written to memory. The Sail ISA specifications do not explicitly describe this
footprint, so we are forced to derive it from the specification.

To do this we symbolically evaluate each opcode independently in a suitably
unconstrained environment so as to capture all its possible behaviours. This
can be computationally expensive due to the number of possible behaviours

310 A. Armstrong et al.

some instructions have, so we build a footprint cache to avoid re-computing this
where possible. It turns out to be hard to distinguish ordinary branches from
instructions that can cause an exception to occur, so we add a special branch
address announce effect, created by a Sail function
that we call in branch instructions. This also enables the taint tracking for branch
addresses we need for control dependencies as described above. The taint tracking
is achieved simply by looking at what sub-expressions in the generated SMT
problem contain variables that also appear in the various effects in each trace.

Once we have this footprint information we can analyse it for the opcodes
between each read and write effect and derive the necessary dependency relations
over their events. Note that this dependency relation must be exact. If we under-
approximate, we will allow executions that should be forbidden, and if we over-
approximate we will forbid executions that should be allowed.

In some cases the current Arm-provided ISA specification does not include
enough information to identify the architecturally respected dependencies, and
our dependency analysis would identify a dependency when there should not be
one. To solve this we add some special Sail functions that give fine-grained control
of the dependency calculation. For example, in indirect branches we ignore any
dependency between the target register Xn and the link register X30 by including
a function in the Sail definition that tells the footprint analysis to ignore any
relation it finds between the two registers.

if branch_type == BranchType_INDCALL then {

ignore_dependency_edge(n, 30);

X(30) = PC() + 4

};

This works by adding a special annotation in the candidate execution trace
which can be used by the footprint analysis—for all other purposes it is a no-
op. This information should properly become part of the architecture specifica-
tion, as mistakes in the dependency calculations could be a source of soundness
bugs. The lack of support for this information in existing ISA specifications can
partly be explained by the lack of tooling to properly explore the integration of
ISA specifications with concurrency, something we hope a tool such as ours can
address.

2.4 Web Interface

Figure 2 shows the web interface we have developed for our tool, based on the
web interface for the C memory model tool Cerberus-BMC by Lau et al. [16].
This can either be run locally, or via a website, https://isla-axiomatic.cl.cam.ac.
uk.

3 System Litmus Tests

As mentioned previously, one advantage of our tool is that, because it supports
the full sequential ISA, it enables easy experimentation with tests and models

https://isla-axiomatic.cl.cam.ac.uk
https://isla-axiomatic.cl.cam.ac.uk

Isla: Integrating Full-Scale ISA Semantics 311

Fig. 2. Web interface for the tool

outside the scope of previous tools, e.g. involving new systems features. For
example, Simner et al. developed semantics for Arm instruction fetch and I/D
cache maintenance [27]. Consider the litmus test in Fig. 3 [27, §3.3], a simple
test involving self-modifying code. In order to run this test and the others in [27]
our tool required only minimal changes: we had to add support for data-cache
and instruction-cache maintenance events and relations for them in our Cat
to SMT translation. Additionally we needed to generalise how we generated
the rf (reads-from) relation to generate both the regular rf relation and the
new irf (instruction-reads-from) relation. Because our tool already runs tests
using a fetch-execute-decode loop, all the instruction fetch events were already
available—we in fact filter them out when running user-mode tests.

When generating candidate executions for a thread we normally do not
assume anything about what other threads may be doing, but for self-modifying
code this would clearly be problematic, as it would imply that any other thread
could modify any of this thread’s instructions arbitrarily. We therefore mark the
memory locations that contain instructions that can be modified and provide in
advance all the possible values they might take.

4 Results and Comparisons

We evaluate our tool for correctness and performance with respect to Herd using
previous corpora of tests.

312 A. Armstrong et al.

Fig. 3. Self-modifying code litmus test SM+cachesync-isb

We select 3798 litmus tests for both Armv8-A and RISC-V to compare
between our tool and Herd—these tests include a representative set of features
such as barriers and atomics, while exercising all of the basic litmus test shapes.
All tests were run on a 2.6GHz Intel Xeon Gold 6240 CPU with 36 physical
cores and 400GB of RAM. The tests are split into rough categories based on
the contents of the tests. We ran 36 concurrent instances of both our tool and
Herd across each set of tests, running Herd with the -speedcheck fast flag which
causes it to stop enumerating executions when it resolves the final assertion in
each test, which is the closest behaviour to how our tool behaves by default.

To assess correctness, we use a set of golden references for these above tests,
for all of which the previous operational RMEM [14] and axiomatic Herd models
and tools agree, and which have been extensively validated against hardware
implementations. We confirm that our tool produces the same expected results
as those models for all the litmus tests, including when run in exhaustive mode.

To assess performance, the table below gives the total real execution time for
each batch of tests.

Test set Number of tests Isla Herd

Armv8-A basic 2-thread 1377 49 s 11 s
Armv8-A basic 3-thread 161 11.7 s 1.2 s
Armv8-A exclusives 23 20.2 s 1.5 s
Armv8-A DMB/LD 70 7.4 s 0.7 s
Armv8-A PPO 2020 3 m 29.3 s 16.2 s
RISC-V basic 2-thread 36 0.7 s 0.2 s
RISC-V AMOs 111 2 s 0.7 s

Isla: Integrating Full-Scale ISA Semantics 313

In general Herd is faster for nearly all tests, but this is not surprising given
the amount of detail in the full-scale instruction semantics that we are using,
particularly for Armv8-A. Our goal is not to be faster, but to support those
full-scale ISA semantics while remaining fast enough for practical purposes. We
achieve this: most tests take only a second or so to run, which is perfectly usable
interactively. For example, given the Armv8-A basic 3-thread tests, for a single
sequential run of the tests, the shortest took 872ms to run, while the longest
took 1231ms. The above batch times are similarly perfectly usable for (e.g.)
regression testing while editing a model.

We also evaluate our tool with respect to that of Simner et al., for the
instruction-fetch tests (which are currently not supported by Herd) in Sect. 6
of their paper. Our tool returns the expected results for all these tests, includ-
ing the two tests (FOW and SM.F+ic) that were unsupported by their tool.
In terms of performance, we note that their tool took 30min to run just 90 of
the 1377 basic 2-thread tests above, which is awkwardly slow for using a tool in
practice, whereas when limiting our tool to 8 cores (to more closely match their
experimental setup) our tool will execute all 1377 in under 3min. We were addi-
tionally able to provide further validation that the Simner et al. model behaves
as the standard Armv8-A model for non-self-modifying tests by showing that it
behaves identically for all 3798 of the non-self-modifying tests above.

Acknowledgement. This work was partially supported by the UK Government
Industrial Strategy Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital platform (grant 105694),
ERC AdG 789108 ELVER, EPSRC programme grant EP/K008528/1 REMS, an Arm
iCASE award, Arm, and Google. Approved for public release; distribution is unlim-
ited. This work was supported by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8650-
18-C-7809 (“CIFV”). The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

References

1. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document Ver-
sion 20191214-draft, 238 pages (2020). https://riscv.org/technical/specifications/.
Accessed 23 Sept 2020

2. Alglave, J., Cousot, P., Maranget, L.: Syntax and semantics of the weak consistency
model specification language cat. CoRR abs/1608.07531 (2016)

3. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Computer Aided Verification - 25th
International Conference, CAV, pp. 141–157 (2013). https://doi.org/10.1007/978-
3-642-39799-8_9

4. Alglave, J., Maranget, L.: The diy7 tool. http://diy.inria.fr/. Accessed 28 Jan 2021
5. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against hard-

ware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp.
41–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_5

https://riscv.org/technical/specifications/
https://arxiv.org/abs/1608.07531
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
http://diy.inria.fr/
https://doi.org/10.1007/978-3-642-19835-9_5

314 A. Armstrong et al.

6. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1–7:74 (2014).
https://doi.org/10.1145/2627752

7. Arm: Arm Architecture Reference Manual: Armv8, for Armv8-A architecture
profile, 8248 pages (2020). https://developer.arm.com/documentation/ddi0487/fc.
Accessed 23 Sept 2020

8. Arm: Memory model tool (2020). https://developer.arm.com/architectures/cpu-
architecture/a-profile/memory-model-tool Accessed 26 Jan 2021

9. ARM Ltd.: ARM Architecture Reference Manual (ARMv8, for ARMv8-A architec-
ture profile) (2017). ARM DDI 0487B.a (ID033117). https://developer.arm.com/
documentation/ddi0487/b/?lang=en

10. Armstrong, A., et al.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS
(2019). http://www.cl.cam.ac.uk/~pes20/sail/

11. Armstrong, A., Campbell, B., Simner, B., Pulte, C., Sewell, P.: Isla: integrating
full-scale ISA semantics and axiomatic concurrency models (extended version).
In: Extended version of a paper in Proceedings of CAV 2021: 33rd International
Conference on Computer-Aided Verification (2021). https://www.cl.cam.ac.uk/
~pes20/isla/

12. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, 18–23 June, 2017, pp. 467–481. ACM (2017). https://
doi.org/10.1145/3062341.3062353

13. Deacon, W.: The ARMv8 application level memory model. https://github.com/
herd/herdtools7/blob/master/herd/libdir/aarch64.cat (2016)

14. Flur, S., French, J., Gray, K., Pulte, C., Sarkar, S., Sewell, P.: RMEM (2020).
www.cl.cam.ac.uk/~pes20/rmem/. Accessed 28 Jan 2021

15. Gray, K.E., Kerneis, G., Mulligan, D., Pulte, C., Sarkar, S., Sewell, P.: An inte-
grated concurrency and core-ISA architectural envelope definition, and test oracle,
for IBM POWER multiprocessors. In: Proceedings of MICRO-48, the 48th Annual
IEEE/ACM International Symposium on Microarchitecture (2015). https://doi.
org/10.1145/2830772.2830775

16. Lau, S., Gomes, V.B.F., Memarian, K., Pichon-Pharabod, J., Sewell, P.: Cerberus-
BMC: a principled reference semantics and exploration tool for concurrent and
sequential C. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification. LNCS,
vol. 11561, pp. 387–397. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-25540-4_22

17. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiproces-
sors. In: Proceedings of the 24th International Conference on Computer Aided
Verification, pp. 495–512 (2012). https://doi.org/10.1007/978-3-642-31424-7_36

18. Martonosi Research Group: Check research tools and papers. https://check.cs.
princeton.edu/. Accessed 28 Jan 2021

19. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Pro-
ceedings of TPHOLs 2009: Theorem Proving in Higher Order Logics, LNCS 5674,
pp. 391–407 (2009). https://doi.org/10.1007/978-3-642-03359-9_27

20. Park, S., Dill, D.L.: An executable specification and verifier for relaxed memory
order. IEEE Trans. Comput. 48(2), 227–235 (1999)

21. Pulte, C.: The semantics of multicopy atomic ARMv8 and RISC-V. Ph.D. thesis,
University of Cambridge (2018). https://www.repository.cam.ac.uk/handle/1810/
292229

https://doi.org/10.1145/2627752
https://developer.arm.com/documentation/ddi0487/fc
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/documentation/ddi0487/b/?lang=en
https://developer.arm.com/documentation/ddi0487/b/?lang=en
http://www.cl.cam.ac.uk/~pes20/sail/
https://www.cl.cam.ac.uk/~pes20/isla/
https://www.cl.cam.ac.uk/~pes20/isla/
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
www.cl.cam.ac.uk/~pes20/rmem/
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1007/978-3-030-25540-4_22
https://doi.org/10.1007/978-3-030-25540-4_22
https://doi.org/10.1007/978-3-642-31424-7_36
https://check.cs.princeton.edu/
https://check.cs.princeton.edu/
https://doi.org/10.1007/978-3-642-03359-9_27
https://www.repository.cam.ac.uk/handle/1810/292229
https://www.repository.cam.ac.uk/handle/1810/292229

Isla: Integrating Full-Scale ISA Semantics 315

22. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. In:
POPL 2018: Proceedings of the 45th ACM SIGPLAN Symposium on Principles of
Programming Languages (2018). https://doi.org/10.1145/3158107

23. Pulte, C., Pichon-Pharabod, J., Kang, J., Lee, S.H., Hur, C.K.: Promising-
ARM/RISC-V: a simpler and faster operational concurrency model. In: PLDI 2019:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (2019). https://doi.org/10.1145/3314221.3314624

24. Reid, A.: Trustworthy specifications of ARM v8-A and v8-M system level architec-
ture. In: FMCAD 2016, pp. 161–168 (2016). https://alastairreid.github.io/papers/
fmcad2016-trustworthy.pdf

25. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of PLDI 2011: the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 175–186
(2011). https://doi.org/10.1145/1993498.1993520

26. Sarkar, S., et al.: The semantics of x86-CC multiprocessor machine code. In: Pro-
ceedings of POPL 2009: the 36th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 379–391 (2009). https://doi.org/10.
1145/1594834.1480929

27. Simner, B., et al.: Armv8-a system semantics: instruction fetch in relaxed archi-
tectures. In: ESOP 2020: Proceedings of the 29th European Symposium on Pro-
gramming (2020). http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf

28. Trippel, C., Manerkar, Y.A., Lustig, D., Pellauer, M., Martonosi, M.: Full-stack
memory model verification with tricheck. IEEE Micro 38(3), 58–68 (2018)

29. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Castagna, G., Gordon, A.D. (eds.) Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, 18–20 January 2017, pp. 190–204. ACM
(2017). http://dl.acm.org/citation.cfm?id=3009838

30. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Analyzing the intel
Itanium memory ordering rules using logic programming and SAT. In: Geist,
D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 81–95. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39724-3_9

31. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for
axiomatic and executable specifications of memory consistency models. In: 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004), Santa
Fe, New Mexico, USA (2004). https://doi.org/10.1109/IPDPS.2004.1302944

32. Zhang, H., Trippel, C., Manerkar, Y.A., Gupta, A., Martonosi, M., Malik, S.:
ILA-MCM: integrating memory consistency models with instruction-level abstrac-
tions for heterogeneous system-on-chip verification. In: 2018 Formal Methods in
Computer Aided Design (FMCAD), pp. 1–10 (2018). https://doi.org/10.23919/
FMCAD.2018.8603015

https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1594834.1480929
https://doi.org/10.1145/1594834.1480929
http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf
http://dl.acm.org/citation.cfm?id=3009838
https://doi.org/10.1007/978-3-540-39724-3_9
https://doi.org/10.1109/IPDPS.2004.1302944
https://doi.org/10.23919/FMCAD.2018.8603015
https://doi.org/10.23919/FMCAD.2018.8603015

316 A. Armstrong et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Summing up Smart Transitions

Neta Elad1 , Sophie Rain2(B) , Neil Immerman3 , Laura Kovács2 ,
and Mooly Sagiv1

1 Tel Aviv University, Tel Aviv, Israel
2 TU Wien, Vienna, Austria

3 UMass Amherst, Amherst, USA

Abstract. Some of the most significant high-level properties of curren-
cies are the sums of certain account balances. Properties of such sums can
ensure the integrity of currencies and transactions. For example, the sum
of balances should not be changed by a transfer operation. Currencies
manipulated by code present a verification challenge to mathematically
prove their integrity by reasoning about computer programs that operate
over them, e.g., in Solidity. The ability to reason about sums is essential:
even the simplest ERC-20 token standard of the Ethereum community
provides a way to access the total supply of balances.

Unfortunately, reasoning about code written against this interface is
non-trivial: the number of addresses is unbounded, and establishing global
invariants like the preservation of the sumof the balances by operations like
transfer requires higher-order reasoning. In particular, automated reason-
ers do not provide ways to specify summations of arbitrary length.

In this paper, we present a generalization of first-order logic which
can express the unbounded sum of balances. We prove the decidablity
of one of our extensions and the undecidability of a slightly richer one.
We introduce first-order encodings to automate reasoning over software
transitions with summations. We demonstrate the applicability of our
results by using SMT solvers and first-order provers for validating the
correctness of common transitions in smart contracts.

1 Introduction

A basic challenge in smart contract verification is how to express the functional
correctness of transactions, such as currency minting or transferring between
accounts. Typically, the correctness of such a transaction can be verified by prov-
ing that the transaction leaves the sum of certain account balances unchanged.

Consider for example the task of minting an unbounded number of tokens in
the simplified ERC-20 token standard of the Ethereum community [32], as illus-
trated in Fig. 11. This example deposits the minted amount (n) into the receiver’s
address (a) and we need to ensure that the mint operation only changed the bal-

1 The old- prefix denotes the value of a function before the mint transition, and the
new- prefix denotes the value afterwards.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 317–340, 2021.
https://doi.org/10.1007/978-3-030-81685-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_15&domain=pdf
http://orcid.org/0000-0002-5503-5791
http://orcid.org/0000-0002-8940-4989
http://orcid.org/0000-0001-6609-5952
http://orcid.org/0000-0003-0845-5811
http://orcid.org/0000-0002-0723-1309
https://doi.org/10.1007/978-3-030-81685-8_15

318 N. Elad et al.

a: Address

n: Nat

mint(a,n)

Post -conditions

assert new -bal(a) = old -bal(a) + n #(i)

for each Address a′ �= a: #(ii)

assert new -bal(a′) = old -bal(a′)

assert new -sum() = old -sum() + n #(iii)

Fig. 1. Minting n tokens in ERC-20.

ance of the receiver. To do so, in addition to (i) proving that the balance of the
receiver has been increased by n, we also need to verify that (ii) the account
balance of every user address a′ different than a has not been changed during
the mint operation and that (iii) the sum of all balances changed exactly by
the amount that was minted. The validity of these three requirements (i)-(iii),
formulated as the post-conditions of Fig. 1, imply its functional correctness.

Surprisingly, proving formulas similar to the post-conditions of Fig. 1 is chal-
lenging for state-of-the-art automated reasoners, such as SMT solvers [6,7,9] and
first-order provers [11,19,34]: it requires reasoning that links local changes of the
receiver (a) with a global state capturing the sum of all balances, as well as con-
structing that global state as an aggregate of an unbounded but finite number
of Address balances. Moreover, our encoding of the problem uses discrete coins
that are minted and deposited, whose number is unbounded but finite as well.

In this paper we address verification challenges of software transactions with
aggregate properties, such as preservation of sums by transitions that manipulate
low-level, individual entities. Such properties are best expressed in higher-order
logic, hindering the use of existing automated reasoners for proving them. To
overcome such a reasoning limitation, we introduce Sum Logic (SL) as a gen-
eralization of first-order logic, in particular of Presburger arithmetic. Previous
works [12,21,31] have also introduced extensions of first-order logic with aggre-
gates by counting quantifiers or generalized quantifiers. In Sum Logic (SL) we
only consider the special case of integer sums over uninterpreted functions, allow-
ing us to formalize SL properties with and about unbounded sums, in particular
sums of account balances, without higher-order operations (Sect. 3). We prove
the decidability of one of our SL extensions and the undecidability of a slightly
richer one (Sect. 4). Given previous results [21], our undecidability result is not
surprising. In contrast, what may be unexpected is our decidability result and
the fact that we can use our first-order fragment for a convenient and practical
new way to verify the correctness of smart contracts.

We further introduce first-order encodings which enable automated reason-
ing over software transactions with summations in SL (Sect. 5). Unlike [5],
where SMT-specific extensions supporting higher-order reasoning have been
introduced, the logical encodings we propose allow one to use existing reason-
ers without any modification. We are not restricted to SMT reasoning, but can

Summing up Smart Transitions 319

also leverage generic automated reasoners, such as first-order theorem provers,
supporting first-order logic. We believe our results ease applying automated rea-
soning to smart contract verification even for non-experts.

We demonstrate the practical applicability of our results by using SMT
solvers and first-order provers for validating the correctness of common financial
transitions appearing in smart contracts (Sect. 6). We refer to these transitions
as smart transitions. We encode SL into pure first-order logic by adding another
sort that represents the tokens of the crypto-currency themselves (which we dub
“coins”).

Although the encodings of Sect. 5 do not translate to our decidable SL
fragment from Sect. 4, our experimental results show that automated reason-
ing engines can handle them consistently and fast. The decidability results of
Sect. 5 set the boundaries for what one can expect to achieve, while our exper-
iments from Sect. 5 demonstrate that the unknown middle-ground can still be
automated.

While our work is mainly motivated by smart contract verification, our results
can be used for arbitrary software transactions implementing sum/aggregate
properties. Further, when compared to the smart contract verification frame-
work of [33], we note that we are not restricted to proving the correctness of
smart contracts as finite-state machines, but can deal with semantic properties
expressing financial transactions in smart contracts, such as currency minting/-
transfers.

While ghost variable approaches [14] can reason about changes to the global
state (the sum), our approach allows the verifier to specify only the local changes
and automatically prove the impact on the global state.

Contributions. In summary, this paper makes the following contributions:

– We present a generalization to Presburger arithmetic (SL, in Sect. 3) that
allows expressing properties about summations. We show how we can formal-
ize verification problems of smart contracts in SL.

– We discuss the decidability problem of checking validity of SL formulas
(Sect. 4): we prove that it is undecidable in the general case, but also that
there exists a small decidable fragment.

– We show different encodings of SL to first-order logic (Sect. 5). To this end,
we consider theory-specific reasoning and variations of SL, for example by
replacing non-negative integer reasoning with term algebra properties.

– We evaluate our results with SMT solvers and first-order theorem provers,
by using 31 new benchmarks encoding smart transitions and their proper-
ties (Sect. 6). Our experiments demonstrate the applicability of our results
within automated reasoning, in a fully automated manner, without any user
guidance.

2 Preliminaries

We consider many-sorted first-order logic (FOL) with equality, defined in the
standard way. The equality symbol is denoted by ≈.

320 N. Elad et al.

We denote by STRUCT [Σ] the set of all structures for the vocabulary Σ. A
structure A ∈ STRUCT [Σ] is a pair (D, I), where for each sort s, its domain
in A is D(s), and for each symbol S, its interpretation in A is I(S). Note that
models of a formula ϕ over a vocabulary Σ are structures A ∈ STRUCT [Σ].

A first-order theory is a set of first-order formulas closed under logical con-
sequence. We will consider, the first-order theory of the natural numbers with
addition. This is Presburger arithmetic (PA) which is of course decidable [27].
We write N to denote the set of natural numbers. We consider 0 ∈ N and
write N

+ to explicitly exclude 0 from N. The vocabulary of PA is ΣPresburger =(
0, 1, c1, . . . , cl,+2

)
, with all constants 0, 1, ci of sort Nat. A structure A =

(D, I) ∈ STRUCT [ΣPresburger] is called a Standard Model of Arithmetic when
D(Nat) = N and +2 is interpreted as the standard binary addition + func-
tion over the naturals. The vocabulary ΣPresburger can be extended with a total
order relation, yielding Σ∗

Presburger =
(
0, 1,+2,≤2

)
, where ≤2 is interpreted as

the binary relation ≤ in Standard Models of Arithmetic.

3 Sum Logic (SL)

We now define Sum Logic (SL) as a generalization of Presburger arithmetic,
extending Presburger arithmetic with unbounded sums. SL is motivated by
applications of financial transactions over cryptocurrencies in smart contracts.
Smart contracts are decentralized computer programs executed on a blockchain-
based system, as explained in [28]. Among other tasks, they automate financial
transactions such as transferring and minting money. We refer to these trans-
actions as smart transitions. The aim of this paper and SL in particular is to
express and reason about the post-conditions of smart transitions similar to
Fig. 1.

SL expresses smart transition relations among sums of accounts of various
kinds, e.g., at different banks, times, etc. Each such kind, j, is modeled by an
uninterpreted function symbol, bj , where bj(a) denotes the balance of a’s account
of kind j, and a constant symbol sj , which denotes the sum of all outputs of
bj . As such, our SL generalizes Presburger arithmetic with (i) a sort Address
corresponding to the (unbounded) set of account addresses; (ii) balance functions
bj mapping account addresses from Address to account values of sort Nat; and
(iii) sum constants sj of sort Nat capturing the total sum of all account balances
represented by bj . Formally, the vocabulary of SL is defined as follows.

Definition 1 (SL Vocabulary). Let

Σl,m,d
+,≤ =

(
a1, . . . , al, b

1
1, . . . , b

1
m, c1, . . . , cd, s1, . . . , sm, 0, 1,+2,≤2

)

be a sorted first-order vocabulary of SL over sorts {Address, Nat}, where

– (Addresses) The constants a1, . . . , al are of sort Address;
– (Balance functions) b1

1, . . . , b
1
m are unary function symbols from Address to

Nat;

Summing up Smart Transitions 321

Table 1. ERC-20 token standard

Function Encoding in SL Reference in ERC-20

sum s or s′ totalSupply

bal(a) b(a) or b′(a) balanceOf

mint(a, v) b′(a) ≈ b(a) + v transfer

transferFrom(f, t, v) b′(t) ≈ b(t) + v ∧ b(f) ≈ b′(f) + v transferFrom

– (Constants and Sums) The constants c1, . . . , cd, s1, . . . , sm and 0, 1 are of sort
Nat;

– +2 is a binary function Nat × Nat → Nat;
– ≤2 is a binary relation over Nat × Nat.

In what follows, when the cardinalities in an SL vocabulary are clear from
context, we simply write Σ instead of Σl,m,d

+,≤ . Further, by Σl,m,d

�+,�≤ we denote the
sub-vocabulary where the crossed-out symbols are not available. Note that even
when addition is not available, we still allow writing numerals larger than 1.

We restrict ourselves to universal sentences over an SL vocabulary, with
quantification only over the Address sort.

We now extend the Tarskian semantics of first-order logic to ensure that the
sum constants of an SL vocabulary (s1, . . . , sm) are equal to the sum of outputs
of their associated balance functions (bj for each sj) over the respective entire
domains of sort Address.

Let Σ be an SL vocabulary. An SL structure A = (D, I) ∈ STRUCT [Σ]
representing a model for an SL formula ϕ is called an SL model iff

I(sj) =
∑

a∈D(Address)

[I(bj)] (a), for each 1 ≤ j ≤ m. (Sum Property)

We write A �SL ϕ to mean that A is an SL model of ϕ. When it is clear
from context, we simply write A � ϕ.

Example 1 (Encoding ERC-20 in SL). As a use case of SL, we showcase the
encoding of the ERC-20 token standard of the Ethereum community [32] in SL.
To this end, we consider an SL vocabulary Σl,2,d. We respectively denote the
balance functions and their associated sums as b, b′, s, s′ in the SL structure
over Σl,2,d. The resulting instance of SL can then be used to encode ERC-20
operations/smart transitions as SL formulas, as shown in Table 1. Using this
encoding, the post-condition of Fig. 1 is expressed as the SL formula

b′(a) ≈ b(a) + n ∧ ∀a′ �≈ a.b′(a′) ≈ b(a′) ∧ s′ ≈ s + n (1)

formalizing the correctness of the smart transition of minting n tokens in Fig. 1.
In the applied verification examples in Sect. 6, rather than verifying the low-level
implementation of built-in functions such as mintn, we assume their correctness
by including suitable axioms.

322 N. Elad et al.

4 Decidability of SL

We consider the decidability problem of verifying formulas in SL. We show that
when there are several function symbols bj to sum over, the satisfiability prob-
lem for SL becomes undecidable2. We first present, however, a useful decidable
fragment of SL.

4.1 A Decidable Fragment of SL

We prove decidability for a fragment of SL, which we call the (l, 1, d)-FRAG
fragment of SL (Theorem 4). For doing so, we reduce the fragment to Presburger
arithmetic, by using regular Presburger constructs to encode SL extensions, that
is the uninterpreted functions and sum constants of SL.

The first step of our reduction proof is to consider distinct models, which
are models where the Address constants ai represent distinct elements in the
domain D(Address). While this restriction is somewhat unnatural, we show that
for each vocabulary and formula that has a model, there exists an equisatisfiable
formula over a different vocabulary that has a distinct model (Theorem 1). The
crux of our decidability proof is then proving that (l, 1, d)-FRAG has small
Address space: given a formula ϕ, if it is satisfiable, then there exists a model
where |D(Address)| ≤ κ(|ϕ|), |ϕ| is the length of ϕ, and κ(.) is some computable
function (Theorem 3)3.

Distinct Models. An SL structure A is considered distinct when the l Address
constants represent l distinct elements in D(Address). I.e.,

|{I(a1), . . . , I(al)}| = l .

Since each SL model induces an equivalence relation over the Address constants,
we consider partitions P over {a1, . . . , al}. For each possible partition P we define
a transformation of terms and formulas TP that substitutes equivalent Address
constants with a single Address constant. The resulting formulas are defined
over a vocabulary that has |P | Address constants. We show that given an SL
formula ϕ, if ϕ has a model, we can always find a partition P such that each of
its classes corresponds to an equivalence class induced by that model.

Theorem 1 (Distinct Models). Let ϕ be an SL formula over Σ, then ϕ has a
model iff there exists a partition P of {a1, . . . , al} such that TP (ϕ) has a distinct
model. 	

Small Address Space. In order to construct a reduction to Presburger arith-
metic, we bound the size of the Address sort. For a fragment of SL to be
decidable, we therefore need a way to bound its models upfront. We formalize
this requirement as follows.
2 Proofs of our results are given in the appendix of [10].
3 The function κ(.) is defined per decidable fragment of SL, and not per formula.

Summing up Smart Transitions 323

Definition 2 (Small Address Space). Let FRAG be some fragment of SL
over vocabulary Σ = Σl,m,d

+,≤ . FRAG is said to have small Address space if there
exists a computable function κΣ(.), such that for any SL formula ϕ ∈ FRAG,
ϕ has a distinct model iff ϕ has a distinct model A = (D, I) with small Address
space, where |D(Address)| ≤ κΣ(|ϕ|).

We call κΣ(.) the bound function of FRAG; when the vocabulary is clear
from context we simply write κ(.).

One instance of a fragment (or rather, family of fragments) that satisfies this
property is the (l, 1, d)-FRAG fragment: the simple case of a single uninter-
preted “balance” function (and its associated sum constant), further restricted
by removing the binary function + and the binary relation ≤. Therefore, we
derive the following theorem:

Theorem 2 (Small Address Space of (l, 1, d)-FRAG).
For any l, d, it holds (l, 1, d)-FRAG, the fragment of SL formulas over the

SL vocabulary
Σl,1,d

�+,�≤ =
(
a1, . . . , al, b

1, c1, . . . , cd, s, 0, 1
)

,

has small Address space with bound function κ(x) = l + x + 1. 	

An attempt to trivially extend Theorem 2 for a fragment of SL with two
balance functions falls apart in a few places, but most importantly when com-
paring balances to the sum of a different balance function. In Sect. 4.2 we show
that these comparisons are essential for proving our undecidability result in SL.

Presburger Reduction. For showing decidability of some FRAG fragment of
SL, we describe a Turing reduction to pure Presburger arithmetic. We introduce
a transformation τ(.) of formulas in SL into formulas in Presburger arithmetic.
It maps universal quantifiers to disjunctions, and sums to explicit addition of all
balances. In addition, we define an auxiliary formula η(ϕ), which ensures only
valid addresses are considered, and that invalid addresses have zero balances.
The formal definitions of τ(.) and η(ϕ) can be found in [10].

By relying on the properties of distinctness and small Address space we get
the following results.

Theorem 3 (Presburger Reduction). An SL formula ϕ has a distinct,
SL model with small Address space iff τ(ϕ) ∧ η(ϕ) has a Standard Model of
Arithmetic. 	

Theorem 4 (SL Decidability). Let FRAG be a fragment of SL that has
small Address space, as defined in Definition 2. Then, FRAG is decidable.

Proof (Theorem 4). Let ϕ be a formula in FRAG. Then ϕ has an SL model iff
for some partition P of {a1, . . . , al}, TP (ϕ) has a distinct SL model. For any P ,
the formula TP (ϕ) is in FRAG, therefore TP (ϕ) has a distinct SL model iff it
has a distinct SL model with small Address space.

324 N. Elad et al.

From Theorem 3, we get that for any P , ϕP � TP (ϕ) has a distinct SL model
iff τ(ϕP)∧η(ϕP) has a Standard Model of Arithmetic. By using the PA decision
procedure as an oracle, we obtain the following decision procedure for a FRAG
formula ϕ:

– For each possible partition P of {a1, . . . , al}, let ϕP = TP (ϕ);
– Using a PA decision procedure, check whether τ(ϕP) ∧ η(ϕP) has a model,

for each P ;
– If a model for some partition P was found, the formula ϕP has a distinct SL

model, and therefore ϕ has SL model;
– Otherwise, there is no distinct SL model for any partition P , and therefore

there is no SL model for ϕ.

Remark 1. Our decision procedure for Theorem 4 requires Bl Presburger queries,
where Bl is Bell’s number for all possible partitions of a set of size l.

Using Theorem 4 and Theorem 2, we then obtain the following result.

Corollary 1. (l, 1, d)-FRAG is decidable. 	

4.2 SL Undecidability

We now show that simple extensions of our decidable (l, 1, d)-FRAG fragment
lose its decidability (Theorem 5). For doing so, we encode the halting problem
of a two-counter machine using SL with 3 balance functions, thereby proving
that the resulting SL fragment is undecidable.

Consider a two-counter machine, whose transitions are encoded by the Pres-
burger formula π(c1, c2, p, c′

1, c
′
2, p

′) with 6 free variables: 2 for each of the three
registers, one of which being the program counter (pc). We assume w.l.o.g. that
all three registers are within N

+, allowing us to use addresses with a zero balance
as a special “separator”. In addition, we assume that the program counter is 1
at the start of the execution, and that there exists a single halting statement at
line H. That is, the two-counter machine halts iff the pc is equal to H.

Reduction Setting. We have 4 Address elements for each time-step, 3 of
them hold one register each, and one is used to separate between each group of
Address elements (see Table 2). We have 3 uninterpreted functions from Address
to Nat (“balances”). For readability we denote these functions as c, l, g (instead
of b1, b2, b3) and their respective sums as sc, sl, sg:

1. Function c : Cardinality function, used to force size constraints. We set its
value for all addresses to be 1, and therefore the number of addresses is sc.

2. Function l : Labeling function, to order the time-steps. We choose one element
to have a maximal value of sc − 1 and ensure that l is injective. This means
that the values of l are distinctly [0, sc − 1].

3. Function g : General purpose function, which holds either one of the registers
or 0 to mark the Address element as a separating one.

Summing up Smart Transitions 325

Table 2. Transition system of a 2-counter machine, array view.

Address l(Address) c(Address) g(Address)

Time-step #0

⎧
⎪⎪⎨

⎪⎪⎩

0 1 0
1 1 c1 at #0
2 1 c2 at #0

a0 3 1 pc at #0 = 1
...

...
...

...

Time-step #i

⎧
⎪⎪⎨

⎪⎪⎩

x1 4i 1 0
x2 4i + 1 1 c1 at #i
x3 4i + 2 1 c2 at #i
x4 4i + 3 1 pc at #i

Time-step #(i + 1)

⎧
⎪⎪⎨

⎪⎪⎩

x5 4i + 4 1 0
x6 4i + 5 1 c1 at #(i + 1)
x7 4i + 6 1 c2 at #(i + 1)
x8 4i + 7 1 pc at #(i + 1)
...

...
...

...

Time-step #n = sc
4 − 1

⎧
⎪⎪⎨

sc − 4 1 0
sc − 3 1 c1 at #n
sc − 2 1 c2 at #n

a1 sc 1 1 pc at #n = H

Each group representing a time-step is a 4 Address element, ordered as follows:

1. First, a separating Address element x (where g(x) is 0).
2. Then, the two general-purpose counters.
3. Lastly, the program counter.

In addition we have 2 Address constants, a0 and a1 which represent the pc
value at the start and at the end of the execution. The element a1 also holds
the maximal value of l, that is, l(a1) + 1 ≈ sc. Further, a0 holds the fourth-
minimal value, since its the last element of the first group, and each group has
four elements.

Formalization Using a Two-Counter Machine. We now formalize our
reduction, proving undecidability of SL.
(i) We impose an injective labeling

ϕ1 = ∀x, y. (l(x) ≈ l(y)) → (x ≈ y)

(ii) We next formalize properties over the program counter pc. The Address
constant that represents the program counter pc value of the last time-step is
set to have the maximal labeling, that is

ϕ2 = ∀x.l(x) ≤ l(a1)

Further, the Address constant that represents the pc value of the first time-step
has the fourth labeling, hence

ϕ3 = l(a0) ≈ 3

326 N. Elad et al.

Finally, the first and last values of the program counter are respectively 1 and
H, that is

ϕ4 = g(a0) ≈ 1 ∧ g(a1) ≈ H

(iii) We express cardinality constraints ensuring that there are as many Address
elements as the labeling of the last Address constant (a1) + 1. We assert

ϕ5 = (sc ≈ l(a1) + 1) ∧ ∀x. (c(x) ≈ 1)

(iv) We encode the transitions of the two-counter machine, as follows. For every
8 Address elements, if they represent two sequential time-steps, then the formula
for the transitions of the two-counter machine is valid for the registers it holds.
As such, we have

ϕ6 = ∀x1, . . . , x8. (F1 ∧ F2 ∧ F3)
→ π (g(x2), g(x3), g(x4), g(x6), g(x7), g(x8))

where the conjunction F1∧F2∧F3 expresses that x1, . . . , x8 are two sequential
time-steps, with F1, F2 and F3 defined as below. In particular, F1, F2 and
F3 formalize that x1, . . . , x8 have sequential labeling, starting with one zero-
valued Address element (“separator”) and continuing with 3 non-zero elements,
as follows:

– Sequential:
l(x2) ≈ l(x1) + 1 ∧ · · · ∧ l(x8) ≈ l(x7) + 1 (F1)

– Time-steps:

g(x1) ≈ 0 ∧ g(x2) > 0 ∧ g(x3) > 0 ∧ g(x4) > 0 , (F2)
g(x5) ≈ 0 ∧ g(x6) > 0 ∧ g(x7) > 0 ∧ g(x8) > 0 (F3)

Based on the above formalization, the formula ϕ = ϕ1 ∧ · · · ∧ϕ6 is satisfiable
iff the two-counter machine halts within a finite amount of time-steps (and the
exact amount would be given by sc

4). Since the halting problem for two-counter
machines is undecidable, our SL, already with 3 uninterpreted functions and
their associated sums, is also undecidable.

Theorem 5. For any l ≥ 2,m ≥ 3 and d, any fragment of SL over Σl,m,d
+,≤ is

undecidable. 	

Remark 2. Note that in the above formalization the only use of associated sums
comes from expressing the size of the set of Address elements. As for our unin-
terpreted function c(.) we have ∀x.c(x) ≈ 1, its sum sc is thus the amount of
addresses. Hence, we can encode the halting problem for two-counter machines
in an almost identical way to the encoding presented here, using a generalization
of PA with two uninterpreted functions for l(.) and g(.), and a size operation
replacing c(.) and its associated sum.

Summing up Smart Transitions 327

5 SL Encodings of Smart Transitions

The definition of SL models in Sects. 3 and 4 ensured that the summation con-
stants sj were respectively equal to the actual summation of all balances bj(.). In
this section, we address the challenge to formalize relations between sj and bj(.)
in a way that the resulting encodings can be expressed in the logical frameworks
of automated reasoners, in particular of SMT solvers and first-order theorem
provers.

In what follows, we consider a single transaction or one time-step of multiple
transactions over sj , bj(.). We refer to such transitions as smart transitions.
Smart transitions are common in smart contracts, expressing for example the
minting and/or transferring of some coins, as evidenced in Fig. 1 and discussed
later.

Based on Sect. 3, our smart transitions are encoded in the Σl,2,d fragment
of SL. Note however, that neither decidability nor undecidability of this frag-
ment is implied by Theorem 4, nor Theorem 5. In this section, we show that
our SL encoding of smart transitions is expressible in first-order logic. We first
introduce a sound, implicit SL encoding, by “hiding” away sum semantics and
using invariant relations over smart transitions (Sect. 5.1). This encoding does
not allow us to directly assert the values of any balance or sum, but we can
prove that this implicit encoding is complete, relative to a translation function
(Sect. 5.2).

By further restricting our implicit SL encoding to this relative complete
setting, we consider counting properties to explicitly reason with balances and
directly express verification conditions with unbounded sums on sj and bj(.).
This is shown in Sect. 5.3, and we evaluate different variants of the explicit SL
encoding in Sect. 6, showcasing their practical use and relevance within auto-
mated reasoning.

To directly present our SL encodings and results in the smart contract
domain, in what follows we rely on the notation of Table 1. As such, we respec-
tively denote b, b′ by old-bal, new-bal and write old-sum, new-sum for s, s′. As
already discussed in Fig. 1, the prefixes old- and new- refer to the entire state
expressed in the encoding before and after the smart transition. We explicitly
indicate this state using old-world, new-world respectively. The non-prefixed
versions bal and sum are stand-ins for both the old- and new- versions—Fig. 2
illustrates our setting for the smart transition of minting one coin.

With this SL notation at hand, we are thus interested in finding first-order
formulas that verify smart transition relations between old-sum and new-sum,
given the relation between old-bal and new-bal. In this paper, we mainly focus
on the smart transitions of minting and transferring money, yet our results could
be used in the context of other financial transactions/software transitions over
unbounded sums.

Example 2. In the case of minting n coins in Fig. 1, we require formulas that (a)
describe the state before the transition (the old-world, thus pre-condition), (b)
formalize the transition (the relation between old-bal and new-bal; (i)-(ii) in

328 N. Elad et al.

Fig. 2. Implicit SL encoding of mint1, where Addr is short for Address.

Fig. 1) and (c) imply the consequences for the new-world ((iii) in Fig. 1). These
formulas verify that minting and depositing n coins into some address result in
an increase of the sum by n, that is new-sum = old-sum+n, as expressed in the
functional correctness formula (1) of Fig. 1.

5.1 SL Encoding Using Implicit Balances and Sums

The first encoding we present is a set of first-order formulas with equality over
sorts {Coin, Address}. No additional theories are considered. The Coin sort
represents money, where one coin is one unit of money. The Address sort rep-
resents the account addresses as before. As a consequence, balance functions
and sum constants only exist implicitly in this encoding. As such, the property
sum =

∑
a∈Address bal(a) cannot be directly expressed in this encoding. Instead,

we formalize this property by using so-called smart invariant relations between
two predicates has-coin and active over coins c ∈ Coin and a ∈ Address, as
follows.

Definition 3 (Smart Invariants). Let has-coin ⊆ Address× Coin and con-
sider active ⊆ Coin. A smart invariant of the pair (has-coin, active) is the
conjunction of the following three formulas

1. Only active coins c can be owned by an address a:

∀c : Coin. ∃a : Address. has-coin(a, c) → active(c) . (I1)

Summing up Smart Transitions 329

2. Every active coin c belongs to some address a:
∀c : Coin. active(c) → ∃a : Address. has-coin(a, c) . (I2)

3. Every coin c belongs to at most one address a:
∀c : Coin.∀a, a′ : Address.

(has-coin(a, c) ∧ has-coin(a′, c) → a ≈ a′) . (I3)

We write inv(has-coin, active) to denote the smart invariant (I1)∧(I2)∧(I3)
of (has-coin, active) .

Intuitively, our smart invariants ensure that a coin c is active iff it is owned
by precisely one address a. Our smart invariants imply the soundness of our
implicit SL encoding, as follows.

Theorem 6 (Soundness of SL Encoding). Given that sum = |active| and
for every a ∈ Address it holds bal(a) = |{c ∈ Coin | (a, c) ∈ has-coin}|, then
inv(has-coin, active) =⇒ sum =

∑
a∈Address bal(a). 	

We say that a smart transition preserves smart invariants, when

inv(old-has-coin, old-active)
⇐⇒ inv(new-has-coin, new-active),

where old-has-coin, old-active and new-has-coin, new-active respec-
tively denote the functions has-coin, active in the states before and after the
smart transition. Based on the soundness of our implicit SL encoding, we for-
malize smart transitions preserving smart invariants as first-order formulas. We
only discuss smart transitions implementing minting n coins here, but other
transitions, such as transferring coins, can be handled in a similar manner. We
first focus on miniting a single coin, as follows.

Definition 4 (Transition mint1(a, c)). Let there be c ∈ Coin, a ∈ Address.
The transition mint1(a, c) activates coin c and deposits it into address a.

1. The coin c was inactive before and is active now:

¬old-active(c) ∧ new-active(c) . (M1)

2. The address a owns the new coin c:

new-has-coin(a, c) ∧ ∀a′ : Address. ¬old-has-coin(a′, c) . (M2)

3. Everything else stays the same:

∀c′ : Coin. c′ �≈ c → (new-active(c′) ↔ old-active(c′)) , (M3)
∀c′ : Coin. ∀a′ : Address. (c′ �≈ c ∨ a′ �≈ a) → (M4)

(new-has-coin(a′, c′) ↔ old-has-coin(a′, c′)) .

The transition mint1(a, c) is defined as (M1) ∧ (M2) ∧ (M3) ∧ (M4).

330 N. Elad et al.

By minting one coin, the balance of precisely one address, that is of
the receiver’s address, increases by one, whereas all other balances remain
unchanged. Thus, the expected impact on the sum of account balances is also
increased by one, as illustrated in Fig. 2. The following theorem proves that the
definition of mint1 is sound. That is, mint1 affects the implicit balances and
sums as expected and hence mint1 preserves smart invariants.

Theorem 7 (Soundness of mint1(a, c)). Let c ∈ Coin, a ∈ Address such
that mint1(a, c). Consider balance functions old-bal, new-bal : Address → N,
non-negative integer constants old-sum, new-sum, unary predicates old-active,
new-active ⊆ Coin and binary predicates old-has-coin, new-has-coin ⊆
Address × Coin such that

|old-active| = old-sum , |new-active| = new-sum,

and for every address a′, we have

old-bal(a′) = |{c′ ∈ Coin | (a′, c′) ∈ old-has-coin}| ,

new-bal(a′) = |{c′ ∈ Coin | (a′, c′) ∈ new-has-coin}| .

Then, new-sum = old-sum+1, new-bal(a) = old-bal(a)+1. Moreover, for
all other addresses a′ �= a, it holds new-bal(a′) = old-bal(a′). 	

Smart transitions minting an arbitrary number of n coins, as in our Fig. 1, is
then realized by repeating the mint1 transition n times. Based on the soundness
of mint1, ensuring that mint1 preserves smart invariants, we conclude by induc-
tion that n repetitions of mint1, that is minting n coins, also preserves smart
invariants. The precise definition of mintn together with the soundness result
is stated in [10].

5.2 Completeness Relative to a Translation Function

Smart invariants provide sufficient conditions for ensuring soundness of our SL
encodings (Theorem 6). We next show that, under additional constraints, smart
invariants are also necessary conditions, establishing thus (relative) completeness
of our encodings.

A straightforward extension of Theorem 6 however does not hold. Namely,
only under the assumptions of Theorem 6, the following formula is not valid:

sum =
∑

a∈Address

bal(a) ⇐⇒ inv(has-coin, active) .

As a counterexample, assume (i) sum = |active|, (ii) for every a ∈ Address
it holds that bal(a) = |{c ∈ Coin | (a, c) ∈ has-coin}|, that is the assumptions
of Theorem 6. Further, let (iii) the smart invariants inv(has-coin, active) hold
for all but the coins c1, c2 ∈ Coin and all but the addresses a1, a2 ∈ Address.
We also assume that (iv) c1 is active but not owned by any address and (v) c2

Summing up Smart Transitions 331

is active and owned by the two distinct addresses a1, a2. We thus have sum =∑
a∈Address bal(a), yet inv(has-coin, active) does not hold.
To ensure completeness of our encodings, we therefore introduce a translation

function f that restricts the set F � 2Address×Coin × 2Coin of (has-coin, active)
pairs, as follows. We exclude from F those pairs (has-coin, active) that
violate smart invariants by both (i) not satisfying (I2), as (I2) ensures that
there are not too many active coins, and by (ii) not satisfying at least one
of (I1) and (I3), as (I1) and (I3) ensure that there are not too few active
coins. The required translation function f (as in [10]) now assigns every pair
(bal, sum) the set of all (has-coin, active) ∈ F that satisfy sum = |active|,
bal(a) = |{c ∈ Coin | has-coin(a, c)}| for every address a and have not been
excluded.

Theorem 8 (Relative Completeness of SL Encoding). Let (bal, sum) ∈
N
Address × N and let (has-coin, active) ∈ f(bal, sum) be arbitrary. Then,

sum =
∑

a∈Address

bal(a) ⇐⇒ inv (has-coin, active) .

	

5.3 SL Encodings Using Explicit Balances and Sums

We now restrict our SL encoding from Sect. 5.1 to explicitly reason with balance
functions during smart transitions. We do so by expressing our translation func-
tion f from Sect. 5.2 in first-order logic. We now use the summation constant
sum ∈ N and the balance function bal : Address → N in our SL encoding. In
particular, we use our smart invariants inv(has-coin, active) in this explicit
SL encoding together with two additional axioms (Ax1, Ax2), ensuring that
sum = |active| and bal(a) = |{c ∈ Coin | has-coin(a, c)}| for all a ∈ Address.

To formalize the additional properties, we introduce two counting mecha-
nisms in our SL encoding. The first one is a bijective function count : Coin → N

+

and the second one is a function idx : Address × Coin → N
+, where idx(a, .) :

Coin → N
+ is bijective for every a ∈ Address. To ensure that count and idx(a, .)

count coins, we impose the following two properties:

∀c : Coin. active(c) ⇐⇒ count(c) ≤ sum , (Ax1)

∀c : Coin. ∀a : Address. has-coin(a, c) ⇐⇒ idx(a, c) ≤ bal(a) . (Ax2)

Figure 3 illustrates our revised SL encoding for our smart transition mint1.
We next ensure soundness of our resulting explicit encoding for summation, as
follows.

Theorem 9 (Soundness of Explicit SL Encodings). Let there be a pair
(bal, sum) ∈ N

Address×N, a pair (has-coin, active) ∈ F , and functions count :
Coin → N

+ and idx : Address × Coin → N
+.

332 N. Elad et al.

Given that count is bijective, idx(a, .) : Coin → N
+ is bijective for every a ∈

Address, and that (Ax1), (Ax2) and inv (has-coin, active) hold, then, sum =
|active| and bal(a) = |{c ∈ Coin : has-coin(a, c)}|, for every a ∈ Address.

In particular, we have sum =
∑

a∈Address bal(a). 	

When compared to Sect. 5.1, our explicit SL encoding introduced above uses
our smart invariants as axioms of our encoding, together with (Ax1) and (Ax2).
In our explicit SL encoding, the post-conditions asserting functional correct-
ness of smart transitions express thus relations among old-sum to new-sum. For
example, for mintn we are interested in ensuring

mintn ⇒ new-sum = old-sum + n . (2)

By using two new constants old-total, new-total ∈ N, we can use sum =
total as smart invariant for mintn. As a result, the property to be ensured is
then

(old-sum = old-total ∧ new-total = old-total + n ∧ mintn)
⇒ (new-sum = new-total) .

(3)

It is easy to see that the negations of (2) and (3) are equisatisfiable. We note
however that the additional constants old-total, new-total used in (3) lead
to unstable results within automated reasoners, as discussed in Sect. 6.

Fig. 3. Explicit SL encoding of mint1, where Addr is short for Address.

Summing up Smart Transitions 333

6 Experiments

From Theory to Practice. To make our explicit SL encodings handier for
automated reasoners, we improved the setting illustrated in Fig. 3 by applying
the following restrictions without losing any generality.

(i) The predicates has-coin and active were removed from the explicit SL
encodings, by replacing them by their equivalent expressions (Ax1)-(Ax2).
(ii) The surjectivity assertions of count and idx were restricted to the relevant
intervals [1, sum], [1, bal(a)] respectively.
(iii) Compared to Fig. 3, only one mutual count and one mutual idx functions
were used. We however conclude that we do not lose expressivity of our resulting
SL encoding, as shown in [10].
(iv) When our SL encoding contains expressions such as ∀c : Coin. idx(a0, c) ∈
[l0, u0] ⇐⇒ idx(a1, c) ∈ [l1, u1], with a0, a1 being distinct addresses such that
either ui ≤ bal(ai) or li > bal(ai), i ∈ {0, 1}, then it can be assumed that the
coins in those intervals are in the same order for both functions [10].

Based on the above, we derive three different explicit SL encodings to be
used in automated reasoning about smart transitions. We respectively denote
these explicit SL encodings by int, nat and id, and describe them next.

Benchmarks. In our experiments, we consider four smart transitions mint1,
mintn, transferFrom1 and transferFromn, respectively denoting minting and
transferring one and n coins. These transitions capture the main operations of
linear integer arithmetic. In particular, mintn implements the smart transition
of our running example from Fig. 1.

For each of the four smart transitions, we implement four SL encodings: the
implicit SL encoding uf from Sect. 5.1 using only uninterpreted functions and
three explicit encodings int, nat and id as variants of Sect. 5.3. We also con-
sider three additional arithmetic benchmarks using int, which are not directly
motivated by smart contracts. Together with variants of int and nat presented
in the sequel, our benchmark set contains 31 examples altogether, with each
example being formalized in the SMT-LIB input syntax [1]. In addition to our
encodings, we also proved consistency of the axioms used in our encodings.

Fig. 4. Linked lists in id.

SL Encodings and Relaxations. Our explicit SL encoding int uses linear
integer arithmetic, whereas nat and id are based on natural numbers. As nat-
urals are not a built-in theory in SMT-LIB, we assert the axioms of Presburger
arithmetic directly in the encodings of nat and id.

334 N. Elad et al.

In our id encodings, inductive datatypes are additionally used to order coins.
There exists one linked list of all coins for count and one for each idx(a, .),
a ∈ Address. Additionally, there exists a “null” coin, which is the first ele-
ment of every list and is not owned by any address. As shown in Fig. 4, the
numbering of each coin is defined by its position in the respective list. This
way surjectivity for count and idx can respectively be asserted by the formu-
las ∃c : Coin. count(c) ≈ sum and ∀a : Address. ∃c : Coin. idx(a, c) ≈ bal(a).
However, asserting surjectivity for int and nat cannot be achieved without quan-
tifying over N

+. Such quantification would drastically effect the performance of
automated reasoners in (fragments of) first-order logics. As a remedy, within
the default encodings of int and nat, we only consider relevant instances of
surjectivity.

Further, we consider variations of int and nat by asserting proper surjectiv-
ity to the relevant intervals of idx and count (denoted as surj) and/or adding
the total constants mentioned in Sect. 5.3 (denoted as with total, no total) .
These variations of int and nat are implemented for mint1 and transferFrom1.

Experimental Setting. We evaluated our benchmark set of 31 examples using
SMT solvers Z3 [7] and CVC4 [6], as well as the first-order theorem prover
Vampire [19]. Our experiments were run on a standard machine with an Intel
Core i5-6200U CPU (2.30 GHz, 2.40 GHz) and 8 GB RAM. The time is given
in seconds and we ran all experiments with a time limit of 300 s. Time out is
indicated by the symbol ×. The default parameters were used for each solver,
unless stated otherwise in the corresponding tables4.

Experimental Analysis. We first report on our experiments using different
variations of int and nat. Table 3 shows that asserting complete surjectivity
for int and nat is computationally hard and indeed significantly effects the
performance of automated reasoners. Thus, for the following experiments only

Table 3. Results of mint1 and transferFrom1 using nat and int, with/without the
total constants and with/without surjectivity.

mint1 transferFrom1

no total Z3 CVC4 Vampire no total Z3 CVC4 Vampire

nat 0.02 × 0.92 nat × × 15.35

nat surj. × × × nat surj. 100.03 × ×
int 0.02 0.03 × int 0.02 0.07 ×
int surj. × 5.96 × int surj. 1.02 × ×

with total Z3 CVC4 Vampire with total Z3 CVC4 Vampire

nat 0.03 × 2.92 nat 0.28 × 22.54

nat surj. 0.11 × × nat surj. 38.24 × ×
int 0.02 0.03 × int 0.02 0.10 ×
int surj. 3.81 5.95 × int surj. × 6.56 ×

4 The precise calls and encodings are available at github.com/SoRaTu/SmartSums.

Summing up Smart Transitions 335

Table 4. Smart transitions using implicit/explicit SL encodings.

Encoding
Task

mint1 transferFrom1 mintn transferFromn

uf

Z3:

CVC4:

Vampire:

0.01

0.02

0.18

Z3:

CVC4:

Vampire:

0.02

0.03

0.19

Z3:

CVC4:

Vampire:

×
×

0.35∗

Z3:

CVC4:

Vampire:

×
×

0.44∗

nat

Z3:

CVC4:

Vampire:

0.02

×
0.92

Z3:

CVC4:

Vampire:

×
×

15.35

Z3:

CVC4:

Vampire:

×
×

23.23†

Z3:

CVC4:

Vampire:

×
×

228.22†

int

Z3:

CVC4:

Vampire:

0.02

0.03

×

Z3:

CVC4:

Vampire:

0.02

0.07

×

Z3:

CVC4:

Vampire:

0.03

0.05

×

Z3:

CVC4:

Vampire:

0.11

0.35

×

id

Z3:

CVC4:

Vampire:

×
×

7.36‡

Z3:

CVC4:

Vampire:

×
×

17.16‡

Z3:

CVC4:

Vampire:

×
×

23.52‡

Z3:

CVC4:

Vampire:

×
×
×

relevant instances of surjectivity, such as ∃c : Coin. count(c) = sum were asserted
in int and nat. Table 3 also illustrates the instability of using the total constant.
Some tasks seem to be easier even though their reasoning difficulty increased
strictly by adding additional constants.

Our most important experimental findings are shown in Table 4, demonstrat-
ing that our SL encodings are suitable for automated reasoners. Thanks to our
explicit SL encodings, each solver can certify every smart transition in at least
one encoding. Our explicit SL encodings are more relevant than the implicit
encoding uf as we can express and compare any two non-negative integer sums,
whereas for uf handling arbitrary values n can only be done by iterating over the
mint1 (or transferFrom1) transition. This iteration requires inductive reason-
ing, which currently only Vampire could do [15], as indicated by the superscript
∗. Nevertheless, the transactions mint1, transferFrom1, which involve only one
coin in uf, require no inductive reasoning as the actual sum is not considered;
each of our solvers can certify these examples.

We note that the tasks mintn and transferFromn from Table 4 yield a huge
search space when using their explicit SL encodings within automated reasoners.
We split these tasks into proving intermediate lemmas and proved each of these
lemmas independently, by the respective solver. In particular, we used one lemma
for mintn and four lemmas for transferFromn. In our experiments, we only
used the recent theory reasoning framework of Vampire with split queues [13]
and indicate our results in by superscript †.

We further remark that our explicit SL encoding id using inductive datatypes
also requires inductive reasoning about smart transitions and beyond. The need
of induction explains why SMT solvers failed proving our id benchmarks, as
shown in Table 4. We note that Vampire found a proof using built-in induc-
tion [15] and theory-specific reasoning [13], as indicated by superscript ‡.

We conclude by showing the generality of our approach beyond smart tran-
sitions. It in fact enables fully automated reasoning about any two summations

336 N. Elad et al.

Table 5. Arithmetic reasoning in the explicit SL encoding int.

Task
Time

Transition Impact

new-bal(a0) = old-bal(a0) + 3

new-bal(a1) = old-bal(a1) − 3
new-sum = old-sum

Z3:

CVC4:

Vampire:

0.20

1.28

×

new-bal(a0) = old-bal(a0) + 4

new-bal(a1) = old-bal(a1) − 2
new-sum = old-sum + 2

Z3:

CVC4:

Vampire:

0.58

7.14

×
new-bal(a0) = old-bal(a0) + 5

new-bal(a1) = old-bal(a1) − 3

new-bal(a2) = old-bal(a2) − 1

new-sum = old-sum + 1

Z3:

CVC4:

Vampire:

1.52

155.20

×

∑
i∈I g(i),

∑
i∈I h(i) of non-negative integer values g(i), h(i) (i ∈ I) over a

mutual finite set I. The examples of Table 5 affirm this claim.

7 Related Work

Smart Contract Safety. Formal verification of smart contracts is an emerging hot
topic because of the value of the assets stored in smart contracts, e.g. the DeFi
software [3]. Due to the nature of the blockchain, bugs in smart contracts are
irreversible and thus the demand for provably bug-free smart contracts is high.

The K interactive framework has been used to verify safety of a smart con-
tract, e.g. in [23]. Isabelle [22] was also shown to be useful in manual, interactive
verification of smart contracts [17]. We, however, focus on automated approaches.

There are also efforts to perform deductive verification of smart contracts
both on the source level in languages such as Solidity [4,14,33] and Move [35],
as well as on the the Ethereum virtual machine (EVM) level [2,29]. This paper
improves the effectiveness of these approaches by developing techniques for auto-
matically reasoning about unbounded sums. This way, we believe we support a
more semantic-based verification of smart contracts.

Our approach differs from works using ghost variables [14], since we do not
manually update the “ghost state”. Instead, the verifier needs only to reason
about the local changes, and the aggregate state is maintained by the axioms.
That means other approaches assume (a) the local changes and (b) the impact
on ghost variables (sum), whereas we only assume (a) and automatically prove
a ⇒ b. This way, we reduce the user-guidance in providing and proving (b).

Our work complements approaches that verify smart contracts as finite state
machines [33] and methods, like ZEUS [18], using symbolic model checking and
abstract interpretation to verify generic safety properties for smart contracts.

The work in [30] provides an extensive evaluation of ERC-20 and ERC-721
tokens. ERC-721 extends ERC-20 with ownership functions, one of which being
“approve”. It enables transactions on another party’s behalf. This is independent

Summing up Smart Transitions 337

of our ability to express sums in first-order logic, as the transaction’s initiator is
irrelevant to its effect.

Reasoning about Financial Applications. Recently, the Imandra prover intro-
duced an automated reasoning framework for financial applications [24–26]. Sim-
ilarly to our approach, these works use SMT procedures to verify and/or gen-
erate counter-examples to safety properties of low- and high-level algorithms.
In particular, results of [24–26] include examples of verifying ranking orders in
matching logics of exchanges, proving high-level properties such as transitivity
and anti-symmetry of such orders. In contrast, we focus on verifying proper-
ties relating local changes in balances to changes of the global state (the sum).
Moreover, our encodings enable automated reasoning both in SMT solving and
first-order theorem proving.

Automated Aggregate Reasoning. The theory of first-order logic with aggregate
operators has been thoroughly studied in [16,21]. Though proven to be strictly
more expressive than first-order logic, both in the case of general aggregates
as well as simple counting logics, in this paper we present a practical way to
encode a weakened version of aggregates (specifically sums) in first-order logic.
Our encoding (as in Sect. 5) works by expressing particular sums of interest,
harnessing domain knowledge to avoid the need of general aggregate operators.

Previous works [5,20] in the field of higher-order reasoning do not directly
discuss aggregates. The work of [20] extends Presburger arithmetic with Boolean
algebra for finite, unbounded sets of uninterpreted elements. This includes a way
to express the set cardinalities and to compare them against integer variables,
but does not support uninterpreted functions, such as the balance functions we
use throughout our approach.

The SMT-based framework of [5] takes a different, white-box approach, mod-
ifying the inner workings of SMT solvers to support higher-order logic. We on the
other hand treat theorem provers and SMT solvers as black-boxes, constructing
first-order formulas that are tailored to their capabilities. This allows us to use
any off-the-shelf SMT solver.

In [8], an SMT module for the theory of FO(Agg) is presented, which can be
used in all DPLL-based SAT, SMT and ASP solvers. However, FO(Agg) only
provides a way to express functions that have sets or similar constructs as inputs,
but not to verify their semantic behavior.

8 Conclusions

We present a methodology for reasoning about unbounded sums in the context
of smart transitions, that is transitions that occur in smart contracts model-
ing transactions. Our sum logic SL and its usage of sum constants, instead of
fully-fledged sum operators, turns out to be most appropriate for the setting of
smart contracts. We show that SL has decidable fragments (Sect. 4.1), as well
as undecidable ones (Sect. 4.2). Using two phases to first implicitly encode SL
in first-order logic (Sect. 5.1), and then explicitly encode it (Sect. 5.3), allows us

338 N. Elad et al.

to use off-the-shelf automated reasoners in new ways, and automatically verify
the semantic correctness of smart transitions.

Showing the (un)decidability of the SL fragment with two sets of uninter-
preted functions and sums is an interesting step for further work, as this fragment
supports encoding smart transition systems. Another interesting direction of
future work is to apply our approach to different aggregates, such as minimum
and maximum and to reason about under which conditions these values stay
above /below certain thresholds. A slightly modified setting of our SL axioms
can already handle min/max aggregates in a basic way, namely by using ≥ and
≤ instead of equality and dropping the injectivity/surjectivity (respectively)
axioms of the counting mechanisms.

Summing upon multidimensional arrays in various ways is yet another direc-
tion of future research. Our approach supports the summation over all values
in all dimensions by adding the required number of parameters to the predicate
idx and by adapting the axioms accordingly.

Acknowledgement. We thank Petra Hozzová for fruitful discussions on our encod-
ings and Sharon Shoham-Buchbinder for her insights and contributions to this paper.
This work was partially funded by the ERC CoG ARTIST 101002685, the ERC StG
SYMCAR 639270, the United States-Israel Binational Science Foundation (BSF) grant
No. 2016260, Grant No. 1810/18 from the Israeli Science Foundation, Len Blavatnik
and the Blavatnik Family foundation, the FWF grant LogiCS W1255-N23, the TU
Wien DK SecInt and the Amazon ARA 2020 award FOREST.

References

1. SMTLIB: Satisfiability Modulo Theories Library. https://smtlib.cs.uiowa.edu/
papers/smt-lib-reference-v2.6-r2017-07-18.pdf

2. Certora Ltd: The Certora Verifier (2020). www.certora.com
3. Concourse Open Community: DeFi Pulse (2020). https://defipulse.com/
4. Alt, L.: Solidity’s SMTChecker can Automatically find Real Bugs (2019). https://

medium.com/@leonardoalt/soliditys-smtchecker-can-automatically-find-real-
bugs-beb566c24dea

5. Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.: Extending SMT
solvers to higher-order logic. In: CADE, pp. 35–54 (2019)

6. Barrett, C., et al.: CVC4. In: CAV, pp. 171–177 (2011)
7. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337–340

(2008)
8. Denecker, M., De Cat, B.: DPLL (Agg): an efficient SMT module for aggregates.

In: Logic and Search (2010)
9. Dutertre, B., De Moura, L.: The Yices SMT Solver. Tool paper at http://yices.csl.

sri.com/tool-paper.pdf, pp. 1–2 (2006)
10. Elad, N., Rain, S., Immerman, N., Kovács, L., Sagiv, M.: Summing up smart

transitions (2021). https://arxiv.org/abs/2105.07663
11. Emerson, A.: Modal and temporal logics. In: Handbook of Theoretical Computer

Science, vol. B, pp. 995–1072 (1990)
12. Etessami, K.: Counting quantifiers, successor relations, and logarithmic space. In:

JCSS, pp. 400–411 (1997)

https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
www.certora.com
https://defipulse.com/
https://medium.com/@leonardoalt/soliditys-smtchecker-can-automatically-find-real-bugs-beb566c24dea
https://medium.com/@leonardoalt/soliditys-smtchecker-can-automatically-find-real-bugs-beb566c24dea
https://medium.com/@leonardoalt/soliditys-smtchecker-can-automatically-find-real-bugs-beb566c24dea
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
https://arxiv.org/abs/2105.07663

Summing up Smart Transitions 339

13. Gleiss, B., Suda, M.: Layered clause selection for saturation-based theorem proving.
In: IJCAR, pp. 34–52 (2020)

14. Hajdu, Á., Jovanovic, D.: Solc-verify: a modular verifier for solidity smart contracts.
In: VSTTE, pp. 161–179 (2019)

15. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with
generalization in superposition reasoning. In: CICM, pp. 123–137 (2020)

16. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. J.
ACM. 48(8), 880–907 (2001)

17. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: FC, pp. 520–535 (2017)

18. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: NDSS (2018)

19. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: CAV, pp.
1–35 (2013)

20. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean
algebra with Presburger arithmetic. In: CADE, pp. 260–277 (2005)

21. Libkin, L.: Logics with counting, auxiliary relations, and lower bounds for invariant
queries. In: LICS, pp. 316–325 (1999)

22. Nipkow, T.: Interactive proof: introduction to Isabelle/HOL. In: Software Safety
and Security, pp. 254–285 (2012)

23. Park, D., Zhang, Y., Rosu, G.: End-to-end formal verification of Ethereum 2.0
deposit smart contract. In: CAV, pp. 151–164 (2020)

24. Passmore, G.O., et al.: The Imandra automated reasoning system (system descrip-
tion). In: IJCAR, pp. 464–471 (2020)

25. Passmore, G.O.: Formal verification of financial algorithms with Imandra. In:
FMCAD, pp. i–i (2018)

26. Passmore, G.O., Ignatovich, D.: Formal verification of financial algorithms. In:
CADE, pp. 26–41 (2017)

27. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du I congres de Mathématiciens des Pays Slaves, pp. 92–101
(1929)

28. Sadiku, M., Eze, K., Musa, S.: Smart contracts: a primer (2018)
29. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.: eThor: practical and

provably sound static analysis of Ethereum smart contracts. In: CCS, pp. 621–640
(2020)

30. Stephens, J., Ferles, K., Mariano, B., Lahiri, S., Dillig, I.: SmartPulse: automated
checking of temporal properties in smart contracts. In: IEEE S&P (2021)

31. Väänänen, J.A.: Generalized quantifiers. In: Bull. EATCS (1997)
32. Vogelsteller, F., Buterin, V.: EIP-20: ERC-20 token standard. In: EIP no. 20 (2015)
33. Wang, Y., et al.: Formal verification of workflow policies for smart contracts in

azure blockchain. In: VSTTE, pp. 87–106 (2019)
34. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:

SPASS Version 3.5. In: CADE, pp. 140–145 (2009)
35. Zhong, J.E., et al.: The move prover. In: CAV, pp. 137–150 (2020)

340 N. Elad et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Stateless Model Checking Under
a Reads-Value-From Equivalence

Pratyush Agarwal1, Krishnendu Chatterjee2, Shreya Pathak1,
Andreas Pavlogiannis3, and Viktor Toman2(B)

1 IIT Bombay, Mumbai, India
2 IST Austria, Klosterneuburg, Austria

viktor.toman@ist.ac.at
3 Aarhus University, Aarhus, Denmark

Abstract. Stateless model checking (SMC) is one of the standard
approaches to the verification of concurrent programs. As scheduling
non-determinism creates exponentially large spaces of thread interleav-
ings, SMC attempts to partition this space into equivalence classes and
explore only a few representatives from each class. The efficiency of this
approach depends on two factors: (a) the coarseness of the partitioning,
and (b) the time to generate representatives in each class. For this rea-
son, the search for coarse partitionings that are efficiently explorable is
an active research challenge.

In this work we present RVF-SMC, a new SMC algorithm that uses a
novel reads-value-from (RVF) partitioning. Intuitively, two interleavings
are deemed equivalent if they agree on the value obtained in each read
event, and read events induce consistent causal orderings between them.
The RVF partitioning is provably coarser than recent approaches based
on Mazurkiewicz and “reads-from” partitionings. Our experimental eval-
uation reveals that RVF is quite often a very effective equivalence, as the
underlying partitioning is exponentially coarser than other approaches.
Moreover, RVF-SMC generates representatives very efficiently, as the
reduction in the partitioning is often met with significant speed-ups in
the model checking task.

1 Introduction

The verification of concurrent programs is one of the key challenges in formal
methods. Interprocess communication adds a new dimension of non-determinism
in program behavior, which is resolved by a scheduler. As the programmer has
no control over the scheduler, program correctness has to be guaranteed under
all possible schedulers, i.e., the scheduler is adversarial to the program and can
generate erroneous behavior if one can arise out of scheduling decisions. On the
other hand, during program testing, the adversarial nature of the scheduler is
to hide erroneous runs, making bugs extremely difficult to reproduce by testing
alone (aka Heisenbugs [1]). Consequently, the verification of concurrent programs
rests on rigorous model checking techniques [2] that cover all possible program
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 341–366, 2021.
https://doi.org/10.1007/978-3-030-81685-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_16

342 P. Agarwal et al.

behaviors that can arise out of scheduling non-determinism, leading to early
tools such as VeriSoft [3,4] and CHESS [5].

To battle with the state-space explosion problem, effective model checking for
concurrency is stateless. A stateless model checker (SMC) explores the behav-
ior of the concurrent program by manipulating traces instead of states, where
each (concurrent) trace is an interleaving of event sequences of the corresponding
threads [6]. To further improve performance, various techniques try to reduce the
number of explored traces, such as context bounded techniques [7–10] As many
interleavings induce the same program behavior, SMC partitions the interleav-
ing space into equivalence classes and attempts to sample a few representative
traces from each class. The most popular approach in this domain is partial-
order reduction techniques [6,11,12], which deems interleavings as equivalent
based on the way that conflicting memory accesses are ordered, also known as
the Mazurkiewicz equivalence [13]. Dynamic partial order reduction [14] con-
structs this equivalence dynamically, when all memory accesses are known, and
thus does not suffer from the imprecision of earlier approaches based on static
information. Subsequent works managed to explore the Mazurkiewicz partition-
ing optimally [15,16], while spending only polynomial time per class.

The performance of an SMC algorithm is generally a product of two factors:
(a) the size of the underlying partitioning that is explored, and (b) the total time
spent in exploring each class of the partitioning. Typically, the task of visiting
a class requires solving a consistency-checking problem, where the algorithm
checks whether a semantic abstraction, used to represent the class, has a con-
sistent concrete interleaving that witnesses the class. For this reason, the search
for effective SMC is reduced to the search of coarse partitionings for which the
consistency problem is tractable, and has become a very active research direc-
tion in recent years. In [17], the Mazurkiewicz partitioning was further reduced
by ignoring the order of conflicting write events that are not observed, while
retaining polynomial-time consistency checking. Various other works refine the
notion of dependencies between events, yielding coarser abstractions [18–20].
The work of [21] used a reads-from abstraction and showed that the consistency
problem admits a fully polynomial solution in acyclic communication topologies.
Recently, this approach was generalized to arbitrary topologies, with an algo-
rithm that remains polynomial for a bounded number of threads [22]. Finally,
recent approaches define value-centric partitionings [23], as well as partitionings
based on maximal causal models [24]. These partitionings are very coarse, as
they attempt to distinguish only between traces which differ in the values read
by their corresponding read events. We illustrate the benefits of value-based
partitionings with a motivating example.

1.1 Motivating Example

Consider a simple concurrent program shown in Fig. 1. The program has 98
different orderings of the conflicting memory accesses, and each ordering corre-
sponds to a separate class of the Mazurkiewicz partitioning. Utilizing the reads-
from abstraction reduces the number of partitioning classes to 9. However, when

Stateless Model Checking Under a Reads-Value-From Equivalence 343

taking into consideration the values that the events can read and write, the num-
ber of cases to consider can be reduced even further. In this specific example,
there is only a single behaviour the program may exhibit, in which both read
events read the only observable value.

Thread1

1. w(x, 1)
2. w(y, 1)

Thread2

1. w(x, 1)
2. w(y, 1)
3. r(x)

Thread3

1. w(x, 1)
2. w(y, 1)
3. r(y)

Equivalence classes:

Mazurkiewicz [15] 98
reads-from [22] 9

value-centric [23] 7
this work 1

Fig. 1. Concurrent program and its underlying partitioning classes.

The above benefits have led to recent attempts in performing SMC using
a value-based equivalence [23,24]. However, as the realizability problem is NP-
hard in general [25], both approaches suffer significant drawbacks. In particular,
the work of [23] combines the value-centric approach with the Mazurkiewicz par-
titioning, which creates a refinement with exponentially many more classes than
potentially necessary. The example program in Fig. 1 illustrates this, where while
both read events can only observe one possible value, the work of [23] further
enumerates all Mazurkiewicz orderings of all-but-one threads, resulting in 7 par-
titioning classes. Separately, the work of [24] relies on SMT solvers, thus spending
exponential time to solve the realizability problem. Hence, each approach suffers
an exponential blow-up a-priori, which motivates the following question: is there
an efficient parameterized algorithm for the consistency problem? That is, we
are interested in an algorithm that is exponential-time in the worst case (as the
problem is NP-hard in general), but efficient when certain natural parameters
of the input are small, and thus only becomes slow in extreme cases.

Another disadvantage of these works is that each of the exploration algo-
rithms can end up to the same class of the partitioning many times, further
hindering performance. To see an example, consider the program in Fig. 1 again.
The work of [23] assigns values to reads one by one, and in this example, it needs
to consider as separate cases both permutations of the two reads as the orders
for assigning the values. This is to ensure completeness in cases where there are
write events causally dependent on some read events (e.g., a write event appear-
ing only if its thread-predecessor reads a certain value). However, no causally
dependent write events are present in this program, and our work uses a prin-
cipled approach to detect this and avoid the redundant exploration. While an
example to demonstrate [24] revisiting partitioning classes is a bit more involved
one, this property follows from the lack of information sharing between spawned
subroutines, enabling the approach to be massively parallelized, which has been
discussed already in prior works [21,23,26].

344 P. Agarwal et al.

1.2 Our Contributions

In this work we tackle the two challenges illustrated in the motivating example
in a principled, algorithmic way. In particular, our contributions are as follows.

(1) We study the problem of verifying the sequentially consistent executions.
The problem is known to be NP-hard [25] in general, already for 3 threads.
We show that the problem can be solved in O(kd+1 · nk+1) time for an
input of n events, k threads and d variables. Thus, although the problem
NP-hard in general, it can be solved in polynomial time when the number of
threads and number of variables is bounded. Moreover, our bound reduces
to O(nk+1) in the class of programs where every variable is written by only
one thread (while read by many threads). Hence, in this case the bound is
polynomial for a fixed number of threads and without any dependence on
the number of variables.

(2) We define a new equivalence between concurrent traces, called the reads-
value-from (RVF) equivalence. Intuitively, two traces are RVF-equivalent if
they agree on the value obtained in each read event, and read events induce
consistent causal orderings between them. We show that RVF induces a
coarser partitioning than the partitionings explored by recent well-studied
SMC algorithms [15,21,23], and thus reduces the search space of the model
checker.

(3) We develop a novel SMC algorithm called RVF-SMC, and show that it
is sound and complete for local safety properties such as assertion viola-
tions. Moreover, RVF-SMC has complexity kd · nO(k) · β, where β is the
size of the underlying RVF partitioning. Under the hood, RVF-SMC uses
our consistency-checking algorithm of Item 1 to visit each RVF class during
the exploration. Moreover, RVF-SMC uses a novel heuristic to significantly
reduce the number of revisits in any given RVF class, compared to the
value-based explorations of [23,24].

(4) We implement RVF-SMC in the stateless model checker Nidhugg [27]. Our
experimental evaluation reveals that RVF is quite often a very effective
equivalence, as the underlying partitioning is exponentially coarser than
other approaches. Moreover, RVF-SMC generates representatives very effi-
ciently, as the reduction in the partitioning is often met with significant
speed-ups in the model checking task.

2 Preliminaries

General Notation. Given a natural number i ≥ 1, we let [i] be the set
{1, 2, . . . , i}. Given a map f : X → Y , we let dom(f) = X denote the domain of
f . We represent maps f as sets of tuples {(x, f(x))}x. Given two maps f1, f2 over
the same domain X, we write f1 = f2 if for every x ∈ X we have f1(x) = f2(x).
Given a set X ′ ⊂ X, we denote by f |X ′ the restriction of f to X ′. A binary
relation ∼ on a set X is an equivalence iff ∼ is reflexive, symmetric and transitive.

Stateless Model Checking Under a Reads-Value-From Equivalence 345

2.1 Concurrent Model

Here we describe the computational model of concurrent programs with shared
memory under the Sequential Consistency (SC) memory model. We follow a
standard exposition of stateless model checking, similarly to [14,15,21–23,28],
Concurrent Program. We consider a concurrent program H = {thri}k

i=1 of
k deterministic threads. The threads communicate over a shared memory G of
global variables with a finite value domain D. Threads execute events of the
following types.

(1) A write event w writes a value v ∈ D to a global variable x ∈ G.
(2) A read event r reads the value v ∈ D of a global variable x ∈ G.

Additionally, threads can execute local events which do not access global vari-
ables and thus are not modeled explicitly.

Given an event e, we denote by thr(e) its thread and by var(e) its global
variable. We denote by E the set of all events, and by R (W) the set of read
(write) events. Given two events e1, e2 ∈ E , we say that they conflict, denoted
e1 �� e2, if they access the same global variable and at least one of them is a
write event.
Concurrent Program Semantics. The semantics of H are defined by means
of a transition system over a state space of global states. A global state consists
of (i) a memory function that maps every global variable to a value, and (ii)
a local state for each thread, which contains the values of the local variables
and the program counter of the thread. We consider the standard setting of
Sequential Consistency (SC), and refer to [14] for formal details. As usual, H is
execution-bounded, which means that the state space is finite and acyclic.
Event Sets. Given a set of events X ⊆ E , we write R(X) = X ∩ R for the set
of read events of X, and W(X) = X ∩W for the set of write events of X. Given
a set of events X ⊆ E and a thread thr, we denote by Xthr and X �=thr the events
of thr, and the events of all other threads in X, respectively.
Sequences and Traces. Given a sequence of events τ = e1, . . . , ej , we denote
by E(τ) the set of events that appear in τ . We further denote R(τ) = R(E(τ))
and W(τ) = W(E(τ)).

Given a sequence τ and two events e1, e2 ∈ E(τ), we write e1 <τ e2 when e1

appears before e2 in τ , and e1 ≤τ e2 to denote that e1 <τ e2 or e1 = e2. Given
a sequence τ and a set of events A, we denote by τ |A the projection of τ on A,
which is the unique subsequence of τ that contains all events of A∩E(τ), and only
those events. Given a sequence τ and a thread thr, let τthr be the subsequence
of τ with events of thr, i.e., τ |E(τ)thr. Given two sequences τ1 and τ2, we denote
by τ1 ◦ τ2 the sequence that results in appending τ2 after τ1.

A (concrete, concurrent) trace is a sequence of events σ that corresponds to
a concrete valid execution of H. We let enabled(σ) be the set of enabled events
after σ is executed, and call σ maximal if enabled(σ) = ∅. As H is bounded,
all executions of H are finite and the length of the longest execution in H is a
parameter of the input.

346 P. Agarwal et al.

Reads-From and Value Functions. Given a sequence of events τ , we define
the reads-from function of τ , denoted RFτ : R(τ) → W(τ), as follows. Given a
read event r ∈ R(τ), we have that RFτ (r) is the latest write (of any thread)
conflicting with r and occurring before r in τ , i.e., (i) RFτ (r) �� r, (ii) RFτ (r) <τ

r, and (iii) for each w ∈ W(τ) such that w �� r and w <τ r, we have w ≤τ RFτ (r).
We say that r reads-from RFτ (r) in τ . For simplicity, we assume that H has an
initial salient write event on each variable.

Further, given a trace σ, we define the value function of σ, denoted
valσ : E(σ) → D, such that valσ(e) is the value of the global variable var(e)
after the prefix of σ up to and including e has been executed. Intuitively, valσ(e)
captures the value that a read (resp. write) event e shall read (resp. write) in σ.
The value function valσ is well-defined as σ is a valid trace and the threads of
H are deterministic.

2.2 Partial Orders

In this section we present relevant notation around partial orders, which are a
central object in this work.
Partial Orders. Given a set of events X ⊆ E , a (strict) partial order P over X is
an irreflexive, antisymmetric and transitive relation over X (i.e., <P ⊆ X × X).
Given two events e1, e2 ∈ X, we write e1 ≤P e2 to denote that e1 <P e2 or
e1 = e2. Two distinct events e1, e2 ∈ X are unordered by P , denoted e1 ‖P e2, if
neither e1 <P e2 nor e2 <P e1, and ordered (denoted e1 ‖P e2) otherwise. Given
a set Y ⊆ X, we denote by P |Y the projection of P on the set Y , where for
every pair of events e1, e2 ∈ Y , we have that e1 <P |Y e2 iff e1 <P e2. Given two
partial orders P and Q over a common set X, we say that Q refines P , denoted
by Q � P , if for every pair of events e1, e2 ∈ X, if e1 <P e2 then e1 <Q e2. A
linearization of P is a total order that refines P .
Lower Sets. Given a pair (X,P), where X is a set of events and P is a partial
order over X, a lower set of (X,P) is a set Y ⊆ X such that for every event
e1 ∈ Y and event e2 ∈ X with e2 ≤P e1, we have e2 ∈ Y .
Visible Writes. Given a partial order P over a set X, and a read event r ∈
R(X), the set of visible writes of r is defined as

VisibleWP (r) ={ w ∈ W(X) : (i) r �� w and (ii) r <P w and (iii) for each
w′ ∈ W(X) with r �� w′, if w <P w′ then w′ <P r }

i.e., the set of write events w conflicting with r that are not “hidden” to r by P .
The Program Order PO. The program order PO of H is a partial order
<PO⊆ E × E that defines a fixed order between some pairs of events of the same
thread, reflecting the semantics of H.

A set of events X ⊆ E is proper if (i) it is a lower set of (E ,PO), and (ii) for
each thread thr, the events Xthr are totally ordered in PO (i.e., for each distinct
e1, e2 ∈ Xthr we have e1 ‖PO e2). A sequence τ is well-formed if (i) its set of events
E(τ) is proper, and (ii) τ respects the program order (formally, τ � PO|E(τ)).

Stateless Model Checking Under a Reads-Value-From Equivalence 347

Every trace σ of H is well-formed, as it corresponds to a concrete valid execution
of H. Each event of H is then uniquely identified by its PO predecessors, and by
the values its PO predecessor reads have read.

thr1 thr2 thr3

w(x, 1)

r(x)

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

r(y)

rea
d by

Fig. 2. A trace σ, the displayed events E(σ) are vertically ordered as they appear in σ.
The solid black edges represent the program order PO. The dashed red edges represent
the reads-from function RFσ. The transitive closure of all the edges then gives us the
causally-happens-before partial order �→σ.

Causally-Happens-Before Partial Orders. A trace σ induces a causally-
happens-before partial order �→σ ⊆ E(σ) × E(σ), which is the weakest partial
order such that (i) it refines the program order (i.e., �→σ � PO|E(σ)), and (ii) for
every read event r ∈ R(σ), its reads-from RFσ(r) is ordered before it (i.e.,
RFσ(r) �→σ r). Intuitively, �→σ contains the causal orderings in σ, i.e., it captures
the flow of write events into read events in σ together with the program order.
Figure 2 presents an example of a trace and its causal orderings.

3 Reads-Value-From Equivalence

In this section we present our new equivalence on traces, called the reads-value-
from equivalence (RVF equivalence, or ∼RVF, for short). Then we illustrate that
∼RVF has some desirable properties for stateless model checking.
Reads-Value-From Equivalence. Given two traces σ1 and σ2, we say that
they are reads-value-from-equivalent, written σ1 ∼RVF σ2, if the following hold.

(1) E(σ1) = E(σ2), i.e., they consist of the same set of events.
(2) valσ1 = valσ2 , i.e., each event reads resp. writes the same value in both.
(3) �→σ1 |R = �→σ2 |R, i.e., their causal orderings agree on the read events.

Figure 3 presents an intuitive example of RVF-(in)equivalent traces.

348 P. Agarwal et al.

σ1thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

σ2thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

σ3thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

Fig. 3. Three traces σ1, σ2, σ3, events of each trace are vertically ordered as they
appear in the trace. Traces σ1 and σ2 are RVF-equivalent (σ1 ∼RVF σ2), as they have
the same events, same value function, and the two read events are causally unordered
in both. Trace σ3 is not RVF-equivalent with either of σ1 and σ2. Compared to σ1

resp. σ2, the value function of σ3 differs (r(y) reads a different value), and the causal
orderings of the reads differ (r(x) �→σ3r(y)).

Soundness. The RVF equivalence induces a partitioning on the maximal traces
of H. Any algorithm that explores each class of this partitioning provably dis-
covers every reachable local state of every thread, and thus RVF is a sound
equivalence for local safety properties, such as assertion violations, in the same
spirit as in other recent works [21–24]. This follows from the fact that for any
two traces σ1 and σ2 with E(σ1) = E(σ2) and valσ1 = valσ2 , the local states of
each thread are equal after executing σ1 and σ2.

reads-value-from

reads-from[22,28]

value-centric[23]

data-centric[21] Mazurkiewicz[14,15,29]

Fig. 4. SMC trace equivalences. An edge from X to Y signifies that Y is always at least
as coarse, and sometimes coarser, than X.

Coarseness. Here we describe the coarseness properties of the RVF equiva-
lence, as compared to other equivalences used by state-of-the-art approaches in
stateless model checking. Figure 4 summarizes the comparison.

The SMC algorithms of [22] and [28] operate on a reads-from equivalence,
which deems two traces σ1 and σ2 equivalent if

(1) they consist of the same events (E(σ1) = E(σ2)), and
(2) their reads-from functions coincide (RFσ1 = RFσ2).

The above two conditions imply that the induced causally-happens-before partial
orders are equal, i.e., �→σ1 = �→σ2 , and thus trivially also �→σ1 |R = �→σ2 |R.

Stateless Model Checking Under a Reads-Value-From Equivalence 349

Further, by a simple inductive argument the value functions of the two traces
are also equal, i.e., valσ1 = valσ2 . Hence any two reads-from-equivalent traces are
also RVF-equivalent, which makes the RVF equivalence always at least as coarse
as the reads-from equivalence.

The work of [23] utilizes a value-centric equivalence, which deems two traces
equivalent if they satisfy all the conditions of our RVF equivalence, and also
some further conditions (note that these conditions are necessary for correctness
of the SMC algorithm in [23]). Thus the RVF equivalence is trivially always at
least as coarse. The value-centric equivalence preselects a single thread thr, and
then requires two extra conditions for the traces to be equivalent, namely:

(1) For each read of thr, either the read reads-from a write of thr in both traces,
or it does not read-from a write of thr in either of the two traces.

(2) For each conflicting pair of events not belonging to thr, the ordering of the
pair is equal in the two traces.

Both the reads-from equivalence and the value-centric equivalence are in turn
as coarse as the data-centric equivalence of [21]. Given two traces, the data-
centric equivalence has the equivalence conditions of the reads-from equivalence,
and additionally, it preselects a single thread thr (just like the value-centric equiv-
alence) and requires the second extra condition of the value-centric equivalence,
i.e., equality of orderings for each conflicting pair of events outside of thr.

Finally, the data-centric equivalence is as coarse as the classical Mazurkiewicz
equivalence [13], the baseline equivalence for stateless model checking [14,15,29].
Mazurkiewicz equivalence deems two traces equivalent if they consist of the same
set of events and they agree on their ordering of conflicting events.

While RVF is always at least as coarse, it can be (even exponentially)
coarser, than each of the other above-mentioned equivalences. We illustrate
this in Appendix B of [30]. We summarize these observations in the following
proposition.

Proposition 1. RVF is at least as coarse as each of the Mazurkiewicz equiva-
lence [15], the data-centric equivalence [21], the reads-from equivalence [22], and
the value-centric equivalence [23]. Moreover, RVF can be exponentially coarser
than each of these equivalences.

In this work we develop our SMC algorithm RVF-SMC around the RVF
equivalence, with the guarantee that the algorithm explores at most one maxi-
mal trace per class of the RVF partitioning, and thus can perform significantly
fewer steps than algorithms based on the above equivalences. To utilize RVF, the
algorithm in each step solves an instance of the verification of sequential con-
sistency problem, which we tackle in the next section. Afterwards, we present
RVF-SMC.

350 P. Agarwal et al.

4 Verifying Sequential Consistency

In this section we present our contributions towards the problem of verifying
sequential consistency (VSC). We present an algorithm VerifySC for VSC, and
we show how it can be efficiently used in stateless model checking.
The VSC Problem. Consider an input pair (X,GoodW) where

(1) X ⊆ E is a proper set of events, and
(2) GoodW : R(X) → 2W(X) is a good-writes function such that w ∈ GoodW(r)

only if r �� w.

A witness of (X,GoodW) is a linearization τ of X (i.e., E(τ) = X) respecting the
program order (i.e., τ � PO|X), such that each read r ∈ R(τ) reads-from one of
its good-writes in τ , formally RFτ (r) ∈ GoodW(r) (we then say that τ satisfies
the good-writes function GoodW). The task is to decide whether (X,GoodW)
has a witness, and to construct one in case it exists.
VSC in Stateless Model Checking. The VSC problem naturally ties in with
our SMC approach enumerating the equivalence classes of the RVF trace parti-
tioning. In our approach, we shall generate instances (X,GoodW) such that (i)
each witness σ of (X,GoodW) is a valid program trace, and (ii) all witnesses
σ1, σ2 of (X,GoodW) are pairwise RVF-equivalent (σ1 ∼RVF σ2).
Hardness of VSC. Given an input (X,GoodW) to the VSC problem, let n =
|X|, let k be the number of threads appearing in X, and let d be the number of
variables accessed in X. The classic work of [25] establishes two important lower
bounds on the complexity of VSC:

(1) VSC is NP-hard even when restricted only to inputs with k = 3.
(2) VSC is NP-hard even when restricted only to inputs with d = 2.

The first bound eliminates the possibility of any algorithm with time complexity
O(nf(k)), where f is an arbitrary computable function. Similarly, the second
bound eliminates algorithms with complexity O(nf(d)) for any computable f .

In this work we show that the problem is parameterizable in k + d, and thus
admits efficient (polynomial-time) solutions when both variables are bounded.

4.1 Algorithm for VSC

In this section we present our algorithm VerifySC for the problem VSC. First we
define some relevant notation. In our definitions we consider a fixed input pair
(X,GoodW) to the VSC problem, and a fixed sequence τ with E(τ) ⊆ X.
Active Writes. A write w ∈ W(τ) is active in τ if it is the last write of its
variable in τ . Formally, for each w′ ∈ W(τ) with var(w′) = var(w) we have
w′ ≤τ w. We can then say that w is the active write of the variable var(w) in τ .
Held Variables. A variable x ∈ G is held in τ if there exists a read r ∈
R(X)\E(τ) with var(r) = x such that for each its good-write w ∈ GoodW(r) we

Stateless Model Checking Under a Reads-Value-From Equivalence 351

have w ∈ τ . In such a case we say that r holds x in τ . Note that several distinct
reads may hold a single variable in τ .
Executable Events. An event e ∈ E(X) \ E(τ) is executable in τ if E(τ) ∪ {e}
is a lower set of (X,PO) and the following hold.

(1) If e is a read, it has an active good-write w ∈ GoodW(e) in τ .
(2) If e is a write, its variable var(e) is not held in τ .

Memory Maps. A memory map of τ is a function from global variables to
thread indices MMapτ : G → [k] where for each variable x ∈ G, the map
MMapτ (x) captures the thread of the active write of x in τ .
Witness States. The sequence τ is a witness prefix if the following hold.

(1) τ is a witness of (E(τ), GoodW|R(τ)).
(2) For each r ∈ X \ R(τ) that holds its variable var(r) in τ , one of its good-

writes w ∈ GoodW(r) is active in τ .

Intuitively, τ is a witness prefix if it satisfies all VSC requirements modulo its
events, and if each read not in τ has at least one good-write still available to read-
from in potential extensions of τ . For a witness prefix τ we call its corresponding
event set and memory map a witness state.

Figure 5 provides an example illustrating the above concepts, where for
brevity of presentation, the variables are subscripted and the values are not
displayed.

thr1 thr2 thr3 thr4

wx

rx w′
x

ry

wy

ry

wx

rx

wy

Fig. 5. Event set X, and the good-writes function GoodW denoted by the green dotted
edges. The solid nodes are ordered vertically as they appear in τ . The grey dashed
nodes are in X \ E(τ). Events rx and w′

x are executable in τ . Event ry is not, its good-
write is not active in τ . Event wy is also not executable, as its variable y is held by
ry. The memory map of τ is MMapτ (x) = 1 and MMapτ (y) = 3. τ is a witness prefix,
and E(τ) with MMapτ together form its witness state.

352 P. Agarwal et al.

Algorithm 1: VerifySC
Input: Proper event set X and good-writes function GoodW : R(X) → 2W(X)

Output: A witness τ of (X, GoodW) if (X, GoodW) has a witness, else τ = ⊥
1 S ← {ε}; Done ← {ε}
2 while S �= ∅ do
3 Extract a sequence τ from S
4 if E(τ) = X then return τ ; // All events executed, witness found

5 foreach event e executable in τ do
6 Let τe ← τ ◦ e // Execute e

7 if � ∃τ ′ ∈ Done s.t. E(τe) = E(τ ′) and MMapτe
= MMapτ ′ then

8 Insert τe in S and in Done // New witness state reached

9 return ⊥ // No witness exists

Algorithm. We are now ready to describe our algorithm VerifySC, in Algorithm
1 we present the pseudocode. We attempt to construct a witness of (X,GoodW)
by enumerating the witness states reachable by the following process. We start
(Line 1) with an empty sequence ε as the first witness prefix (and state). We
maintain a worklist S of so-far unprocessed witness prefixes, and a set Done
of reached witness states. Then we iteratively obtain new witness prefixes (and
states) by considering an already obtained prefix (Line 3) and extending it with
each possible executable event (Line 6). Crucially, when we arrive at a sequence
τe, we include it only if no sequence τ ′ with equal corresponding witness state
has been reached yet (Line 7). We stop when we successfully create a witness
(Line 4) or when we process all reachable witness states (Line 9).
Correctness and Complexity. We now highlight the correctness and complex-
ity properties of VerifySC, while we refer to Appendix C of [30] for the proofs.
The soundness follows straightforwardly by the fact that each sequence in S is a
witness prefix. This follows from a simple inductive argument that extending a
witness prefix with an executable event yields another witness prefix. The com-
pleteness follows from the fact that given two witness prefixes τ1 and τ2 with
equal induced witness state, these prefixes are “equi-extendable” to a witness.
Indeed, if a suffix τ∗ exists such that τ1 ◦ τ∗ is a witness of (X,GoodW), then
τ2 ◦ τ∗ is also a witness of (X,GoodW). The time complexity of VerifySC is
bounded by O(nk+1 · kd+1), for n events, k threads and d variables. The bound
follows from the fact that there are at most nk · kd pairwise distinct witness
states. We thus have the following theorem.

Theorem 1. VSC for n events, k threads and d variables is solvable in O(nk+1 ·
kd+1) time. Moreover, if each variable is written by only one thread, VSC is
solvable in O(nk+1) time.

Implications. We now highlight some important implications of Theorem 1.
Although VSC is NP-hard [25], the theorem shows that the problem is param-
eterizable in k + d, and thus in polynomial time when both parameters are

Stateless Model Checking Under a Reads-Value-From Equivalence 353

bounded. Moreover, even when only k is bounded, the problem is fixed-parameter
tractable in d, meaning that d only exponentiates a constant as opposed to n
(e.g., we have a polynomial bound even when d = log n). Finally, the algorithm
is polynomial for a fixed number of threads regardless of d, when every mem-
ory location is written by only one thread (e.g., in producer-consumer settings,
or in the concurrent-read-exclusive-write (CREW) concurrency model). These
important facts brought forward by Theorem 1 indicate that VSC is likely to be
efficiently solvable in many practical settings, which in turn makes RVF a good
equivalence for SMC.

4.2 Practical Heuristics for VerifySC in SMC

We now turn our attention to some practical heuristics that are expected to
further improve the performance of VerifySC in the context of SMC.
1. Limiting the Search Space. We employ two straightforward improvements
to VerifySC that significantly reduce the search space in practice. Consider the
for-loop in Line 5 of Algorithm 1 enumerating the possible extensions of τ . This
enumeration can be sidestepped by the following two greedy approaches.

(1) If there is a read r executable in τ , then extend τ with r and do not
enumerate other options.

(2) Let w be an active write in τ such that w is not a good-write of any r ∈
R(X)\E(τ). Let w ∈ W(X)\E(τ) be a write of the same variable (var(w) =
var(w)), note that w is executable in τ . If w is also not a good-write of any
r ∈ R(X)\E(τ), then extend τ with w and do not enumerate other options.

The enumeration of Line 5 then proceeds only if neither of the above two tech-
niques can be applied for τ . This extension of VerifySC preserves complete-
ness (not only when used during SMC, but in general), and it can be signifi-
cantly faster in practice. For clarity of presentation we do not fully formalize
this extended version, as its worst-case complexity remains the same.
2. Closure. We introduce closure, a low-cost filter for early detection of VSC
instances (X,GoodW) with no witness. The notion of closure, its beneficial prop-
erties and construction algorithms are well-studied for the reads-from consistency
verification problems [21,22,31], i.e., problems where a desired reads-from func-
tion is provided as input instead of a desired good-writes function GoodW. Fur-
ther, the work of [23] studies closure with respect to a good-writes function, but
only for partial orders of Mazurkiewicz width 2 (i.e., for partial orders with no
triplet of pairwise conflicting and pairwise unordered events). Here we define
closure for all good-writes instances (X,GoodW), with the underlying partial
order (in our case, the program order PO) of arbitrary Mazurkiewicz width.

Given a VSC instance (X,GoodW), its closure P (X) is the weakest partial
order that refines the program order (P � PO|X) and further satisfies the fol-
lowing conditions. Given a read r ∈ R(X), let Cl(r) = GoodW(r)∩VisibleWP (r).
The following must hold.

354 P. Agarwal et al.

(1) Cl(r) = ∅.
(2) If (Cl(r), P |Cl(r)) has a least element w, then w <P r.
(3) If (Cl(r), P |Cl(r)) has a greatest element w, then for each w ∈ W(X) \

GoodW(r) with r �� w, if w <P r then w <P w.
(4) For each w ∈ W(X) \ GoodW(r) with r �� w, if each w ∈ Cl(r) satisfies

w <P w, then we have r <P w.

If (X,GoodW) has no closure (i.e., there is no P with the above conditions),
then (X,GoodW) provably has no witness. If (X,GoodW) has closure P , then
each witness τ of VSC(X,GoodW) provably refines P (i.e., τ � P).

Finally, we explain how closure can be used by VerifySC. Given an input
(X,GoodW), the closure procedure is carried out before VerifySC is called.
Once the closure P of (X,GoodW) is constructed, since each solution of
VSC(X,GoodW) has to refine P , we restrict VerifySC to only consider sequences
refining P . This is ensured by an extra condition in Line 5 of Algorithm 1, where
we proceed with an event e only if it is minimal in P restricted to events not yet
in the sequence. This preserves completeness, while further reducing the search
space to consider for VerifySC.
3. VerifySC Guided by Auxiliary Trace. In our SMC approach, each time
we generate a VSC instance (X,GoodW), we further have available an auxiliary
trace σ̃. In σ̃, either all-but-one, or all, good-writes conditions of GoodW are
satisfied. If all good writes in GoodW are satisfied, we already have σ̃ as a witness
of (X,GoodW) and hence we do not need to run VerifySC at all. On the other
hand, if case all-but-one are satisfied, we use σ̃ to guide the search of VerifySC,
as described below.

We guide the search by deciding the order in which we process the sequences
of the worklist S in Algorithm 1. We use the auxiliary trace σ̃ with E(σ̃) = X.
We use S as a last-in-first-out stack, that way we search for a witness in a depth-
first fashion. Then, in Line 5 of Algorithm 1 we enumerate the extension events
in the reverse order of how they appear in σ̃. We enumerate in reverse order, as
each resulting extension is pushed into our worklist S, which is a stack (last-in-
first-out). As a result, in Line 3 of the subsequent iterations of the main while
loop, we pop extensions from S in order induced by σ̃.

5 Stateless Model Checking

We are now ready to present our SMC algorithm RVF-SMC that uses RVF to
model check a concurrent program. RVF-SMC is a sound and complete algorithm
for local safety properties, i.e., it is guaranteed to discover all local states that
each thread visits.

RVF-SMC is a recursive algorithm. Each recursive call of RVF-SMC is argu-
mented by a tuple (X,GoodW, σ, C) where:

(1) X is a proper set of events.
(2) GoodW : R(X) → 2W(X) is a desired good-writes function.
(3) σ is a valid trace that is a witness of (X,GoodW).

Stateless Model Checking Under a Reads-Value-From Equivalence 355

(4) C : R → Threads → N is a partial function called causal map that tracks
implicitly, for each read r, the writes that have already been considered as
reads-from sources of r.

Further, we maintain a function ancestors : R(X) → {true, false}, where for each
read r ∈ R(X), ancestors(r) stores a boolean backtrack signal for r. We now
provide details on the notions of causal maps and backtrack signals.
Causal Maps. The causal map C serves to ensure that no more than one max-
imal trace is explored per RVF partitioning class. Given a read r ∈ enabled(σ)
enabled in a trace σ, we define forbidsC

σ(r) as the set of writes in σ such that C
forbids r to read-from them. Formally, forbidsC

σ(r) = ∅ if r ∈ dom(C), otherwise
forbidsC

σ(r) = {w ∈ W(σ) | w is within first C(r)(thr(w)) events of σthr}. We say
that a trace σ satisfies C if for each r ∈ R(σ) we have RFσ(r) ∈ forbidsC

σ(r).
Backtrack Signals. Each call of RVF-SMC (with its GoodW) operates with a
trace σ̃ satisfying GoodW that has only reads as enabled events. Consider one of
those enabled reads r ∈ enabled(σ̃). Each maximal trace satisfying GoodW shall
contain r, and further, one of the following two cases is true:

(1) In all maximal traces σ′ satisfying GoodW, we have that r reads-from some
write of W(σ̃) in σ′.

(2) There exists a maximal trace σ′ satisfying GoodW, such that r reads-from
a write not in W(σ̃) in σ′.

Whenever we can prove that the first above case is true for r, we can use this fact
to prune away some recursive calls of RVF-SMC while maintaining completeness.
Specifically, we leverage the following crucial lemma, and present the proof in
Appendix D of [30].

Lemma 1. Consider a call RVF-SMC(X,GoodW, σ, C) and a trace σ̃ extending
σ maximally such that no event of the extension is a read. Let r ∈ enabled(σ̃)
such that r ∈ dom(C). If there exists a trace σ′ that (i) satisfies GoodW and C,
and (ii) contains r with RFσ′(r) ∈ W(σ̃), then there exists a trace σ that (i)
satisfies GoodW and C, (ii) contains r with RFσ(r) ∈ W(σ̃), and (iii) contains
a write w ∈ W(σ̃) with r �� w and thr(r) = thr(w).

We then compute a boolean backtrack signal for a given RVF-SMC call and
read r ∈ enabled(σ̃) to capture satisfaction of the consequent of Lemma 1. If the
computed backtrack signal is false, we can safely stop the RVF-SMC exploration
of this specific call and backtrack to its recursion parent.
Algorithm. We are now ready to describe our algorithm RVF-SMC in detail,
Algorithm 2 captures the pseudocode of RVF-SMC(X,GoodW, σ, C). First, in
Line 1 we extend σ to σ̃ maximally such that no event of the extension is a
read. Then in Lines 2–5 we update the backtrack signals for ancestors of our
current recursion call. After this, in Lines 6–11 we construct a sequence of reads
enabled in σ̃. Finally, we proceed with the main while-loop in Line 13. In each
while-loop iteration we process an enabled read r (Line 14), and we perform
no more while-loop iterations in case we receive a false backtrack signal for r.

356 P. Agarwal et al.

Algorithm 2: RVF-SMC(X,GoodW, σ, C)
Input: Proper set of events X, good-writes function GoodW, valid trace σ that

is a witness of (X, GoodW), causal map C.
1 σ̃ ← σ ◦ σ̂ where σ̂ extends σ maximally such that no event of σ̂ is a read
2 foreach w ∈ E(σ̂) do // All extension events are writes

3 foreach r ∈ dom(ancestors) do // All ancestor mutations are reads

4 if r �� w and thr(r) �= thr(w) then // Potential new source for r to read-from

5 ancestors(r) ← true // Set backtrack signal to true

6 mutate ← ε // Construct a sequence of enabled reads

7 foreach r ∈ enabled(σ̃) do // Enabled events in σ̃ are reads

8 if r ∈ dom(C) then // Causal map C is defined for r

9 mutate ← mutate ◦ r // Insert r to the end of mutate

10 else // Causal map C is undefined for r

11 mutate ← r ◦ mutate // Insert r to the beginning of mutate

12 backtrack ← true
13 while backtrack = true and mutate �= ε do
14 r ← pop front of mutate // Process next read of mutate

15 if r �∈ dom(C) then
16 backtrack ← false

17 Fr ← VisibleWPO|E(σ̃)(r) \ forbidsC
σ̃(r) // Visible writes not forbidden by C

18 Dr ← {valσ̃(w) : w ∈ Fr} // The set of values that r may read

19 foreach v ∈ Dr do // Process each value

20 X ′ ← X ∪ E(σ̃) ∪ {r} // New event set

21 GoodW′ ← GoodW ∪ {(r, { w ∈ Fr | valσ̃(w) = v })} // New good-writes

22 σ′ ← VerifySC(X ′, GoodW′) // VerifySC guided by σ̃ ◦ r

23 if σ′ �= ⊥ then // (X′, GoodW′) has a witness

24 C′ ← C
25 ancestors(r) ← backtrack // Record ancestor

26 RVF-SMC(X ′, GoodW′, σ′, C′)
27 backtrack ← ancestors(r) // Retrieve backtrack signal

28 delete r from ancestors // Unrecord ancestor

29 foreach thr ∈ Threads do // Update causal map C(r) for each thread

30 C(r)(thr) ← |E(σ̃)thr| // Number of events of thr in σ̃

When processing r, first we collect its viable reads-from sources in Line 17, then
we group the sources by value they write in Line 18, and then in iterations of
the for-loop in Line 19 we consider each value-group. In Line 20 we form the
event set, and in Line 21 we form the good-write function that designates the
value-group as the good-writes of r. In Line 22 we use VerifySC to generate a
witness, and in case it exists, we recursively call RVF-SMC in Line 26 with the
newly obtained events, good-write constraint for r, and witness.

To preserve completeness of RVF-SMC, the backtrack-signals technique can
be utilized only for reads r with undefined causal map r ∈ dom(C) (cf. Lemma 1).
The order of the enabled reads imposed by Lines 6–11 ensures that subsequently,
in iterations of the loop in Line 13 we first consider all the reads where we can

Stateless Model Checking Under a Reads-Value-From Equivalence 357

utilize the backtrack signals. This is an insightful heuristic that often helps in
practice, though it does not improve the worst-case complexity.

Thread thr1

1. w1(x, 1)
2. r1(x)
3. w2(y, 1)

Thread thr2

1. w3(x, 1)
2. w4(y, 1)
3. r2(y)
4. w5(x, 2)

A
thr1 thr2
w1

r1

w3

w4

r2

B
thr1 thr2
w1

r1

w2

w3

w4

r2

r1

D
thr1 thr2
w1

r1

w3

w4

r2

w5

r2

C
thr1 thr2
w1

r1

w2

w3

w4

r2

w5

r2

E
thr1 thr2
w1

r1

w2

w3

w4

r2

w5

r1

Fig. 6. RVF-SMC (Algorithm 2). Circles represent nodes of the recursion tree. Below
each circle is its corresponding event set E(σ̃) and the enabled reads (dashed grey).
Writes with green background are good-writes (GoodW) of its corresponding-variable
read. Writes with red background are forbidden by C for its corresponding-variable
read. Dashed arrows represent recursive calls. (Color figure online)

Example. Figure 6 displays a simple concurrent program on the left, and
its corresponding RVF-SMC (Algorithm 2) run on the right. We start with
RVF-SMC(∅, ∅, ε, ∅) (A). By performing the extension (Line 1) we obtain the
events and enabled reads as shown below (A). First we process read r1 (Line
14). The read can read-from w1 and w3, both write the same value so they are
grouped together as good-writes of r1. A witness is found and a recursive call to
(B) is performed. In (B), the only enabled event is r2. It can read-from w2 and
w4, both write the same value so they are grouped for r2. A witness is found, a
recursive call to (C) is performed, and (C) concludes with a maximal trace. Cru-
cially, in (C) the event w5 is discovered, and since it is a potential new reads-from
source for r1, a backtrack signal is sent to (A). Hence after RVF-SMC backtracks
to (A), in (A) it needs to perform another iteration of Line 13 while-loop. In
(A), first the causal map C is updated to forbid w1 and w3 for r1. Then, read r2

is processed from (A), creating (D). In (D), r1 is the only enabled event, and w5

is its only C-allowed write. This results in (E) which reports a maximal trace.
The algorithm backtracks and concludes, reporting two maximal traces in total.

358 P. Agarwal et al.

Theorem 2. Consider a concurrent program H of k threads and d variables,
with n the length of the longest trace in H. RVF-SMC is a sound and complete
algorithm for local safety properties in H. The time complexity of RVF-SMC is
kd · nO(k) · β, where β is the size of the RVF trace partitioning of H.

Novelties of the Exploration. Here we highlight some key aspects of
RVF-SMC. First, we note that RVF-SMC constructs the traces incrementally
with each recursion step, as opposed to other approaches such as [15,22] that
always work with maximal traces. The reason of incremental traces is techni-
cal and has to do with the value-based treatment of the RVF partitioning. We
note that the other two value-based approaches [23,24] also operate with incre-
mental traces. However, RVF-SMC brings certain novelties compared to these
two methods. First, the exploration algorithm of [24] can visit the same class
of the partitioning (and even the same trace) an exponential number of times
by different recursion branches, leading to significant performance degradation.
The exploration algorithm of [23] alleviates this issue using the causal map data
structure, similar to our algorithm. The causal map data structure can provably
limit the number of revisits to polynomial (for a fixed number of threads), and
although it offers an improvement over the exponential revisits, it can still affect
performance. To further improve performance in this work, our algorithm com-
bines causal maps with a new technique, which is the backtrack signals. Causal
maps and backtrack signals together are very effective in avoiding having differ-
ent branches of the recursion visit the same RVF class.
Beyond RVF Partitioning. While RVF-SMC explores the RVF partitioning in
the worst case, in practice it often operates on a partitioning coarser than the one
induced by the RVF equivalence. Specifically, RVF-SMC may treat two traces σ1

and σ2 with same events (E(σ1) = E(σ2)) and value function (valσ1 = valσ2) as
equivalent even when they differ in some causal orderings (�→σ1 |R = �→σ2 |R). To
see an example of this, consider the program and the RVF-SMC run in Fig. 6.
The recursion node (C) spans all traces where (i) r1 reads-from either w1 or
w3, and (ii) r2 reads-from either w2 or w4. Consider two such traces σ1 and
σ2, with RFσ1(r2) = w2 and RFσ2(r2) = w4. We have r1 �→σ1r2 and r1 �→σ2

r2,
and yet σ1 and σ2 are (soundly) considered equivalent by RVF-SMC. Hence the
RVF partitioning is used to upper-bound the time complexity of RVF-SMC. We
remark that the algorithm is always sound, i.e., it is guaranteed to discover all
thread states even when it does not explore the RVF partitioning in full.

6 Experiments

In this section we describe the experimental evaluation of our SMC approach
RVF-SMC. We have implemented RVF-SMC as an extension in Nidhugg [27], a
state-of-the-art stateless model checker for multithreaded C/C++ programs that
operates on LLVM Intermediate Representation. First we assess the advantages
of utilizing the RVF equivalence in SMC as compared to other trace equivalences.

Stateless Model Checking Under a Reads-Value-From Equivalence 359

Then we perform ablation studies to demonstrate the impact of the backtrack
signals technique (cf. Sect. 5) and the VerifySC heuristics (cf. Sect. 4.2).

In our experiments we compare RVF-SMC with several state-of-the-art SMC
tools utilizing different trace equivalences. First we consider VC-DPOR [23], the
SMC approach operating on the value-centric equivalence. Then we consider
Nidhugg/rfsc [22], the SMC algorithm utilizing the reads-from equivalence. Fur-
ther we consider DC-DPOR [21] that operates on the data-centric equivalence,
and finally we compare with Nidhugg/source [15] utilizing the Mazurkiewicz
equivalence.1 The works of [22] and [32] in turn compare the Nidhugg/rfsc algo-
rithm with additional SMC tools, namely GenMC [28] (with reads-from equiva-
lence), RCMC [29] (with Mazurkiewicz equivalence), and CDSChecker [33] (with
Mazurkiewicz equivalence), and thus we omit those tools from our evaluation.

There are two main objectives to our evaluation. First, from Sect. 3 we know
that the RVF equivalence can be up to exponentially coarser than the other
equivalences, and we want to discover how often this happens in practice. Second,
in cases where RVF does provide reduction in the trace-partitioning size, we aim
to see whether this reduction is accompanied by the reduction in the runtime of
RVF-SMC operating on RVF equivalence.
Setup. We consider 119 benchmarks in total in our evaluation. Each benchmark
comes with a scaling parameter, called the unroll bound. The parameter controls
the bound on the number of iterations in all loops of the benchmark. For each
benchmark and unroll bound, we capture the number of explored maximal traces,
and the total running time, subject to a timeout of one hour. In Appendix E
of [30] we provide further details on our setup.

Fig. 7. Runtime and traces comparison of RVF-SMC with VC-DPOR.

1 The MCR algorithm [24] is beyond the experimental scope of this work, as that tool
handles Java programs and uses heavyweight SMT solvers that require fine-tuning.

360 P. Agarwal et al.

Fig. 8. Runtime and traces comparison of RVF-SMC with Nidhugg/rfsc.

Fig. 9. Runtime and traces comparison of RVF-SMC with DC-DPOR.

Fig. 10. Runtime and traces comparison of RVF-SMC with Nidhugg/source.

Stateless Model Checking Under a Reads-Value-From Equivalence 361

Results. We provide a number of scatter plots summarizing the comparison of
RVF-SMC with other state-of-the-art tools. In Fig. 7, Fig. 8, Fig. 9 and Fig. 10
we provide comparison both in runtimes and explored traces, for VC-DPOR,
Nidhugg/rfsc, DC-DPOR, and Nidhugg/source, respectively. In each scatter plot,
both its axes are log-scaled, the opaque red line represents equality, and the two
semi-transparent lines represent an order-of-magnitude difference. The points
are colored green when RVF-SMC achieves trace reduction in the underlying
benchmark, and blue otherwise.
Discussion: Significant Trace Reduction. In Table 1 we provide the results
for several benchmarks where RVF achieves significant reduction in the trace-
partitioning size. This is typically accompanied by significant runtime reduction,
allowing is to scale the benchmarks to unroll bounds that other tools cannot han-
dle. Examples of this are 27 Boop4 and scull loop, two toy Linux kernel drivers.

In several benchmarks the number of explored traces remains the same for
RVF-SMC even when scaling up the unroll bound, see 45 monabsex1, reorder 5
and singleton in Table 1. The singleton example is further interesting, in that while
VC-DPOR and DC-DPOR also explore few traces, they still suffer in runtime
due to additional redundant exploration, as described in Sects. 1 and 5.

Table 1. Benchmarks with trace reduction achieved by RVF-SMC. The unroll bound
is shown in the column U. Symbol “–” indicates one-hour timeout. Bold-font entries
indicate the smallest numbers for respective benchmark and unroll.

Benchmark U RVF-SMC VC-DPOR Nidh/rfsc DC-DPOR Nidh/source

27 Boop4 threads: 4 Traces 10 1337215 1574287 11610040 – –

12 2893039 – – – –

Times 10 837 s 1946 s 2616 s – –

12 2017 s – – – –

45 monabsex1

threads: U

Traces 7 1 423360 262144 7073803 25401600

8 1 – 4782969 – –

Times 7 0.09 s 784 s 33 s 3239 s 2819 s

8 0.09 s – 677 s – –

reorder 5 threads:

U+1

Traces 9 4 1644716 1540 1792290 –

30 4 – 54901 – –

Times 9 0.10 s 1711 s 0.44 s 974 s –

30 0.09 s – 49 s – –

scull loop threads: 3 Traces 2 3908 15394 749811 884443 3157281

3 115032 – – – –

Times 2 6.55 s 83 s 403 s 1659 s 1116 s

3 266 s – – – –

singleton threads:

U+1

Traces 20 2 2 20 20 –

30 2 – 30 – –

Times 20 0.07 s 179 s 0.08 s 171 s –

30 0.08 s – 0.10 s – –

362 P. Agarwal et al.

Table 2. Benchmarks with little-to-no trace reduction by RVF-SMC. Symbol † indi-
cates that a particular benchmark operation is not handled by the tool.

Benchmark U RVF-SMC VC-DPOR Nidh/rfsc DC-DPOR Nidh/source

13 unverif threads: U Traces 5 14400 14400 14400 14400 14400

6 518400 – 518400 – 518400

Times 5 7.45 s 63 s 3.33 s 68 s 2.72 s

6 376 s – 134 s – 84 s

approxds append

threads: U

Traces 6 50897 1256381 198936 1114746 9847080

7 923526 – 4645207 – –

Times 6 60 s 995 s 67 s 944 s 2733 s

7 2078 s – 2003 s – –

chase-lev-dq threads:

3

Traces 4 87807 † 175331 † 175331

5 227654 † 448905 † 448905

Times 4 289 s † 71 s † 71 s

5 995 s † 210 s † 200 s

linuxrwlocks threads:

U+1

Traces 1 56 † 59 † 59

2 62018 † 70026 † 70026

Times 1 0.12 s † 0.09 s † 0.13 s

2 42 s † 15 s † 9.50 s

pgsql threads: 2 Traces 3 3906 3906 3906 3906 3906

4 335923 335923 335923 335923 335923

Times 3 3.30 s 5.98 s 1.01 s 4.00 s 0.51 s

4 412 s 911 s 107 s 616 s 51 s

Discussion: Little-to-no Trace Reduction. Table 2 presents several bench-
marks where the RVF partitioning achieves little-to-no reduction. In these cases
the well-engineered Nidhugg/rfsc and Nidhugg/source dominate the runtime.

RVF-SMC Ablation Studies. Here we demonstrate the effect that fol-
lows from our RVF-SMC algorithm utilizing the approach of backtrack signals
(see Sect. 5) and the heuristics of VerifySC (see Sect. 4.2). These techniques have
no effect on the number of the explored traces, thus we focus on the runtime.
The left plot of Fig. 11 compares RVF-SMC as is with a RVF-SMC version that
does not utilize the backtrack signals (achieved by simply keeping the backtrack
flag in Algorithm 2 always true). The right plot of Fig. 11 compares RVF-SMC
as is with a RVF-SMC version that employs VerifySC without the closure and
auxiliary-trace heuristics. We can see that the techniques almost always result
in improved runtime. The improvement is mostly within an order of magnitude,
and in a few cases there is several-orders-of-magnitude improvement.

Finally, in Fig. 12 we illustrate how much time during RVF-SMC is typically
spent on VerifySC (i.e., on solving VSC instances generated during RVF-SMC).

Stateless Model Checking Under a Reads-Value-From Equivalence 363

Fig. 11. Ablation studies of RVF-SMC. The left plot compares RVF-SMC with and
without backtrack signals. The right plots compares RVF-SMC with and without the
closure and auxiliary-trace heuristics of Sect. 4.2.

Fig. 12. Histogram that illustrates the percentage of time spent solving VSC instances
during RVF-SMC.

7 Conclusions

In this work we developed RVF-SMC, a new SMC algorithm for the verification
of concurrent programs using a novel equivalence called reads-value-from (RVF).
On our way to RVF-SMC, we have revisited the famous VSC problem [25].
Despite its NP-hardness, we have shown that the problem is parameterizable in
k+d (for k threads and d variables), and becomes even fixed-parameter tractable
in d when k is constant. Moreover we have developed practical heuristics that
solve the problem efficiently in many practical settings.

Our RVF-SMC algorithm couples our solution for VSC to a novel explo-
ration of the underlying RVF partitioning, and is able to model check many
concurrent programs where previous approaches time-out. Our experimental
evaluation reveals that RVF is very often the most effective equivalence, as the
underlying partitioning is exponentially coarser than other approaches. More-
over, RVF-SMC generates representatives very efficiently, as the reduction in
the partitioning is often met with significant speed-ups in the model checking
task. Interesting future work includes further improvements over the VSC, as
well as extensions of RVF-SMC to relaxed memory models.

364 P. Agarwal et al.

Acknowledgments. The research was partially funded by the ERC CoG 863818
(ForM-SMArt) and the Vienna Science and Technology Fund (WWTF) through project
ICT15-003.

References

1. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: OSDI (2008)

2. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

3. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL (1997)

4. Godefroid, P.: Software model checking: the VeriSoft approach. FMSD 26(2), 77–
101 (2005)

5. Ball, T., Musuvathi, M., Qadeer, S.: Chess: a systematic testing tool for concurrent
software. Technical report (2007)

6. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer, Secaucus (1996)

7. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. SIGPLAN Not. 42(6), 446–455 (2007)

8. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. FMSD 35(1), 73–97 (2009)

9. Chini, P., Kolberg, J., Krebs, A., Meyer, R., Saivasan, P.: On the complexity of
bounded context switching. In: Pruhs, K., Sohler, C. (eds.) 25th Annual European
Symposium on Algorithms (ESA 2017), Leibniz International Proceedings in Infor-
matics (LIPIcs), Dagstuhl, Germany, vol. 87, pp. 27:1–27:15. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. (2017)

10. Baumann, P., Majumdar, R., Thinniyam, R.S., Zetzsche, G.: Context-bounded
verification of liveness properties for multithreaded shared-memory programs. In:
Proceedings of ACM Programming Language, vol. 5, no. POPL, pp. 1–31 (2021)

11. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. STTT 2(3), 279–287 (1999)

12. Peled, D.: All from one, one for all: on model checking using representatives. In:
CAV (1993)

13. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 30

14. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL (2005)

15. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: POPL (2014)

16. Nguyen, H.T.T., Rodŕıguez, C., Sousa, M., Coti, C., Petrucci, L.: Quasi-optimal
partial order reduction. In: Computer Aided Verification - 30th International Con-
ference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, 14–17 July, 2018, Proceedings, Part II, pp. 354–371 (2018)

17. Aronis, S., Jonsson, B., L̊ang, M., Sagonas, K.: Optimal dynamic partial order
reduction with observers. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems, pp. 229–248. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89963-3 14

https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/978-3-319-89963-3_14

Stateless Model Checking Under a Reads-Value-From Equivalence 365

18. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (extended abstract). In: CAV (1993)

19. Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.:
Context-sensitive dynamic partial order reduction. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 526–543. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 26

20. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Effective lock handling in stateless
model checking. In: Proceedings of ACM Programming Language, vol. 3, no. OOP-
SLA, pp. 1–26 (2019)

21. Chalupa, M., Chatterjee, K., Pavlogiannis, A., Sinha, N., Vaidya, K.: Data-centric
dynamic partial order reduction. In: Proceedings of ACM Programming Language,
vol. 2, no. POPL, pp. 31:1–31:30 (2017)

22. Abdulla, P.A., Atig, M.F., Jonsson, B., L̊ang, M., Ngo, T.P., Sagonas, K.: Optimal
stateless model checking for reads-from equivalence under sequential consistency.
In: Proceedings of ACM Programming Language, vol. 3, no. OOPSLA, pp. 1–29
(2019)

23. Chatterjee, K., Pavlogiannis, A., Toman, V.: Value-centric dynamic partial order
reduction. In: Proceedings of ACM Programming Language, vol. 3, no. OOPSLA,
pp. 1–29 (2019)

24. Huang, J.: Stateless model checking concurrent programs with maximal causality
reduction. In: PLDI (2015)

25. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997)

26. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model check-
ing under the release-acquire semantics. In: Proceedings of ACM Programming
Language, vol. 2, no. OOPSLA, pp. 135:1–135:29 (2018)

27. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. Acta Informatica 54(8), 789–818
(2016). https://doi.org/10.1007/s00236-016-0275-0

28. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Model checking for weakly consistent
libraries. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, New York, NY, USA, pp. 96–
110. ACM (2019)

29. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for c/c++ concurrency. In: Proceedings of ACM Programming
Language, 2, no. POPL, pp. 17:1–17:32 (2017)

30. Agarwal, P., Chatterjee, K., Pathak, S., Pavlogiannis, A., Toman, V.:
Stateless model checking under a reads-value-from equivalence. CoRR/arXiv
abs/2105.06424 (2021)

31. Pavlogiannis, A.: Fast, sound, and effectively complete dynamic race prediction.
In: Proceedings ACM Programming Language, vol. 4, no. POPL, pp. 1–29 (2019)

32. L̊ang, M., Sagonas, K.: Parallel graph-based stateless model checking. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 377–393. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 21

33. Norris, B., Demsky, B.: A practical approach for model checking C/C++11 code.
ACM Trans. Program. Lang. Syst. 38(3), 10:1–10:51 (2016)

https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/s00236-016-0275-0
https://arxiv.org/abs/2105.06424
https://doi.org/10.1007/978-3-030-59152-6_21

366 P. Agarwal et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Gobra: Modular Specification
and Verification of Go Programs

Felix A. Wolf1 , Linard Arquint1 , Martin Clochard1, Wytse Oortwijn2 ,
João C. Pereira1(B) , and Peter Müller1

1 Department of Computer Science, ETH Zurich,
Zurich, Switzerland

{felix.wolf,linard.arquint,martin.clochard,
joao.pereira,peter.mueller}@inf.ethz.ch
2 ESI (TNO), Eindhoven, The Netherlands

wytse.oortwijn@tno.nl

Abstract. Go is an increasingly-popular systems programming lan-
guage targeting, especially, concurrent and distributed systems. Go dif-
ferentiates itself from other imperative languages by offering structural
subtyping and lightweight concurrency through goroutines with message-
passing communication. This combination of features poses interesting
challenges for static verification, most prominently the combination of a
mutable heap and advanced concurrency primitives.

We present Gobra, a modular, deductive program verifier for Go
that proves memory safety, crash safety, data-race freedom, and user-
provided specifications. Gobra is based on separation logic and supports
a large subset of Go. Its implementation translates an annotated Go
program into the Viper intermediate verification language and uses an
existing SMT-based verification backend to compute and discharge proof
obligations.

Keywords: Separation logic · Program logics · Channel-based
concurrency · Interfaces · Deductive verification · Automated
verification

1 Introduction

Go is an increasingly popular systems programming language targeting, espe-
cially, concurrent and distributed systems such as web applications. It combines
standard features of imperative languages, such as mutable heap data struc-
tures, with less common concepts, such as structural subtyping and lightweight
concurrency through goroutines with message-passing communication.

This combination of features poses interesting challenges for static verifica-
tion, most prominently the combination of a mutable heap and advanced concur-
rency primitives. Prior research on Go verification handles some of these features,
but not their combination. For instance, Lange et al. [14,15] verify safety and

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 367–379, 2021.
https://doi.org/10.1007/978-3-030-81685-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_17&domain=pdf
http://orcid.org/0000-0002-8573-2387
http://orcid.org/0000-0002-6230-8014
http://orcid.org/0000-0002-5244-2519
http://orcid.org/0000-0003-4671-4132
http://orcid.org/0000-0001-7001-2566
https://doi.org/10.1007/978-3-030-81685-8_17

368 F. A. Wolf et al.

liveness of Go’s message-passing, but do not consider functional properties about
the heap state, whereas Perennial [4] supports heap data structures, but neither
channels nor interfaces.

We present Gobra, an automated, modular verifier for heap-manipulating,
concurrent Go programs. Gobra supports a large subset of Go, including Go’s
interfaces and primitive data structures, both of which have not been fully sup-
ported in previous work. Gobra verifies memory safety, crash safety, data-race
freedom, and user-provided specifications. It takes as input a Go program anno-
tated with assertions such as pre and postconditions and loop invariants. Ver-
ification proceeds by encoding the annotated programs into the intermediate
verification language Viper [17] and then applying an existing SMT-based veri-
fier. In case verification fails, Gobra reports at the level of the Go program which
assertions it could not verify.

Gobra’s assertion language builds on established concepts: Gobra uses sepa-
ration logic style permissions [19] to reason locally about heap data structures.
It supports recursive predicates and specification methods to abstract over (pos-
sibly unbounded) data structures and their contents. In particular, Gobra has
first-class predicates that enable a natural specification of concurrency primitives,
for instance, to parameterize a lock by an invariant.

Gobra is intended for the verification of substantial, real-world code, and is
currently used to verify the Go implementation of the SCION internet architec-
ture [23]. Our tool paper makes the following technical contributions:

(1) We present the Gobra tool, an automated modular verifier for annotated Go
programs. Our evaluation demonstrates that Gobra can verify non-trivial
examples with good performance. Our artifact is available online [21].

(2) We define a specification language for functional properties of Go programs.
Our specification language provides a consistent abstraction at the level of
Go and does not leak details of the underlying encoding.

(3) We present the first specification and verification technique for structural
subtyping via Go interfaces.

(4) Our Viper encoding supports, among other features, Go’s broad range of
built-in data types, such as slices and channels. A lightweight annotation
allows it to apply separation logic to reason soundly about addressable
memory locations, but use a more efficient encoding for others.

Outline. We demonstrate key features of Gobra on examples (Sect. 2), give an
overview of the encoding into Viper (Sect. 3), and provide an experimental eval-
uation of Gobra (Sect. 4). Lastly, Sect. 5 discusses related work and concludes.

2 Gobra in a Nutshell

This section illustrates Gobra’s specification language on simple examples and
shows how we handle interfaces and concurrency.

Gobra: Modular Specification and Verification of Go Programs 369

2.1 Basics

Gobra uses a variant of separation logic [19] in order to reason about muta-
ble heap data structures and concurrency. Separation logics associate an access
permission with each heap location. Access permissions are held by method
executions and transferred between methods upon call and return. A method
may access a location only if it holds the associated permission. Permission to a
shared location v is denoted in Gobra by acc(&v), which is analogous to sepa-
ration logic’s v �→ . Gobra provides an expressive permission model supporting
fractional permissions [3] to allow concurrent read accesses while still ensuring
exclusive writes, (recursive) predicates to denote access to unbounded data struc-
tures, and quantified permissions (also called iterated separating conjunction) to
express permissions to random-access data structures such as arrays and slices.

1 requires ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
2 ensures ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
3 ensures ∀ k int :: 0 ≤ k < len(s) =⇒ s[k] == old(s[k]) + n
4 func incr (s []int , n int) {

5 invariant 0 ≤ i ≤ len(s)
6 invariant ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
7 invariant ∀ k int :: i ≤ k < len(s) =⇒ s[k] == old(s[k])
8 invariant ∀ k int :: 0 ≤ k < i =⇒ s[k] == old(s[k]) + n
9 for i := 0; i < len(s); i += 1 {

10 s[i] = s[i] + n
11 }
12 }

Fig. 1. A simple Gobra example showing method and loop contracts.

The example in Fig. 1 illustrates the use of permissions. Method incr

increases all elements of a given slice s by an amount n. (Slices are data types
that can intuitively be seen as shared arrays of variable length.) The method
requires permission to all slice elements (via its precondition) and returns them
to the caller (via its first postcondition).

Functional properties are expressed via standard assertions, which include
side-effect free Go expressions (including calls to pure methods, as we explain
below) as well as universal quantification and old-expressions to refer to the value
an expression had in the pre-state of a method. In our example, the second
postcondition uses these assertions to express the functional behavior of the
method. The loop invariants are analogous to the method contracts and are
needed for verification.

In Go, any memory location can either be shared or exclusive. Shared loca-
tions reside on the heap and can, thus, be accessed by multiple methods and
threads; reasoning about shared locations requires permissions to ensure race
freedom and to enable framing, i.e., preserving information across heap changes.
On the other hand, exclusive locations are accessed exclusively by one method
execution and may be allocated on the stack; they can be reasoned about as
local variables. The Go compiler determines automatically whether a location is

370 F. A. Wolf et al.

shared or exclusive, for instance by determining whether its address is taken at
some point of the execution. To make verification independent of a particular
compiler analysis, Gobra requires shared locations to be decorated with an extra
annotation @ at the declaration point, as illustrated by the following client of
incr:

1 a@ := [4] int { 1, 2, 4, 8 }
2 incr(a[2:], 2)
3 assert a == [4] int { 1, 2, 6, 10 }

The first line declares a Go array a of fixed length 4, with values 1, 2, 4, and 8.
This array is sliced on line 2 using the syntax a[2:], thereby omitting the first
two elements of a from the created slice. Since a is used in a context in which
it is sliced, it is a shared location, which is made explicit via the @ annotation.
Consequently, the array creation will produce permissions to the array elements,
which are required by incr’s precondition. Omitting the @ annotation will cause
a verification error.

2.2 Interfaces

Go supports polymorphism through interfaces, named sets of method signatures.
Subtyping for interfaces is structural: a type implements an interface iff every
method of the interface is implemented by the type. The subtype relationship is
determined by the type checker, without any declarations from the programmer1.

Calls on an interface value are dynamically dispatched. In settings with nomi-
nal subtyping, dynamic dispatch is handled by proving behavioral subtyping [16]:
each subtype declaration requires a proof that the specifications of subtype meth-
ods refine the specifications of the corresponding supertype methods. Since struc-
tural subtypes are not declared explicitly, we adapt this approach as follows.

Whenever a Go program assigns a value to a variable of an interface type,
Gobra requires an implementation proof, that is, a proof that each method of the
subtype satisfies the specification of the corresponding method in the interface.
Implementation proofs are inferred automatically by Gobra in simple cases; user-
provided implementation proofs are required especially when they include ghost
operations, for instance, to manipulate predicates.

The example in Fig. 2 illustrates this approach. Interface stream

(lines 1–8) declares an interface with two methods, hasNext and next. The
latter may return values of an arbitrary type, which is denoted by an empty
interface. Since interfaces do not contain an implementation, their specification
must be fully abstract. To this end, stream introduces an abstract predicate
memory, whose definition is provided by the subtypes of the interface. The func-
tional behavior of interface methods can be expressed in terms of pure (that is,
side-effect free) abstract methods, here, hasNext, which will also be defined in
subtypes.

Next, lines 10–16 show an implementation of the interface in the form of a
counter. The counter has a current f and maximum max value. As long as the
1 For the sake of simplicity, we omit embeddings, Go’s construct for delegation; an

extension is straightforward.

Gobra: Modular Specification and Verification of Go Programs 371

1 type stream interface{
2 pred memory ()

3 requires acc(memory(), _) // arbitrary fraction of memory ()
4 pure hasNext () bool

5 requires memory () && hasNext ()
6 ensures memory ()
7 next() interface {}
8 }
9

10 type counter struct{ f int; max int }

11 requires acc(&x.f, _) && acc(&x.max , _)
12 pure func (x *counter) hasNext () bool { return x.f < x.max }

13 requires acc(&x.f) && acc(&x.max , 1/2) && x.hasNext ()
14 ensures acc(&x.f) && acc(&x.max , 1/2) && x.f == old(x.f)+1
15 ensures typeOf(y) == int && y.(int) == old(x.f)
16 func (x *counter) next() (y interface {}) { x.f++; return x.f-1 }

17
18 pred (x *counter) memory () { acc(&x.f) && acc(&x.max) }

19 (* counter) implements stream {

20 pure (x *counter) hasNextProof() bool {
21 return unfolding acc(x.memory(), _) in x.hasNext ()
22 }

23 (x *counter) nextProof() (res interface {}) { . . . }
24 }

Fig. 2. An interface specification for a stream (lines 1–8) together with an implementa-
tion (lines 10–16) and an implementation proof (lines 18–24). We write acc(p, _) to
denote an arbitrary, positive amount of predicate p, and simply p for acc(p, 1/1).
At line 14, the fractional permission to &x.max entails that x.max is not modified.

maximum value is not reached, next will increase the current value. At line 16,
an integer can be assigned to the empty interface since behavioral subtyping
holds trivially. The specification at line 15 expresses that the returned interface
value contains an integer with the old value of the f field.

The counter implementation is completely independent of the stream inter-
face. Their connection is established only in the implementation proof (lines
18–24). This proof defines the memory predicate from the stream interface for
receivers of type counter (line 18). Moreover, an implementation proof verifies
that the specification of each method implementation refines the specification
of the corresponding interface method. This proof checks that, assuming the
precondition of an interface method, a call to the implementation method with
identical arguments establishes the postcondition of the interface method. This
format is enforced syntactically and permits ghost operations before and after
the call to manipulate predicates. For instance, the proof on line 21 for hasNext

temporarily unfolds the memory predicate to obtain permission to x, which is
required by the implementation method, and conversely after the call.

Implementation proofs can be written explicitly, imported from other pack-
ages, and also inferred automatically when no explicit proof exists in the current
scope. Currently, Gobra does not infer ghost operations such as the unfolding

on line 21; our experiments suggest that already simple heuristics can deal with

372 F. A. Wolf et al.

many cases occurring in practice. For instance, many implementation proofs we
have encountered follow the same pattern: First, the interface predicate instances
of the precondition are unfolded. Second, the implementation method is called.
Lastly, the interface predicate instances of the postcondition are folded. This
pattern can be generated automatically to alleviate the annotation burden.

Gobra’s implementation proofs enable one to reason about interfaces without
enforcing subtype declarations in either the interface or the declaration, which
would defeat the purpose of structural subtyping. This solution allows one to rea-
son about dynamically-dispatched calls. For instance, the following code snippet
verifies in Gobra:

1 x := &counter {0, 50}
2 var y stream = x
3 fold y.memory ()
4 var z interface {} = y.next()

In particular, Gobra is able to determine that next’s precondition
hasNext () holds because y.hasNext () is equal to x.hasNext (), and the lat-
ter follows from the definition of hasNext (line 12) and the initial value of x.f.
This intuitive reasoning is enabled by an intricate underlying encoding, which
is not exposed to users. Users do not have to know how interface predicates are
encoded and can treat interface predicates the same as any other separation-logic
predicate.

2.3 Concurrency

Go supports concurrency through goroutines, lightweight threads started by pre-
fixing a method call with the go keyword. Go offers the usual synchronization
primitives, but goroutines idiomatically synchronize via channels. Buffered chan-
nels provide asynchronous communication, where sending a message blocks only
when the buffer is full. Unbuffered channels offer rendez-vouz communication.

Gobra enables verification of concurrent programs by associating Go’s syn-
chronization primitives with predicates that do not only express properties of
data but also express how permissions to shared memory get transferred between
threads. For instance, lock invariants may include properties as well as permis-
sions to the data protected by the lock, and channel invariants include properties
and permissions of the data sent over a channel. These invariants are specified
via ghost operations when the synchronization primitive is initialized.

Figure 3 illustrates Gobra’s concurrency support using an excerpt from a
parallel search-and-replace algorithm (see the full paper [22] for the complete
example). Method searchAndReplace spawns a series of worker threads and
then sends each of them a chunk of the input slice to process. The worker threads
are joined via a wait group wg. Method worker implements the worker threads.

Gobra associates channels (like c in the example) with a predicate to specify
properties and permissions of the sent data. The call c.Init (...) on line 10
takes this predicate as an argument. As expressed on line 2, it includes permis-
sions to the chunk a worker operates on. For synchronous channels, an additional
predicate can specify permissions transferred in the opposite direction, from the

Gobra: Modular Specification and Verification of Go Programs 373

1 pred messagePerm(wg *sync.WaitGroup , chunk []int , x, y int) {
2 (∀ i int :: 0 ≤ i < len(chunk) =⇒ acc(&chunk[i])) && . . .
3 }

4 requires ∀ i int :: 0 ≤ i < len(s) =⇒ acc(&s[i])
5 func searchAndReplace(s []int , x, y int) {
6 var wg@ sync.WaitGroup
7 ghost wg.Init()
8 c := make(chan []int ,4)
9 // predicate -name{. . ., _, . . .} is syntax for partial application

10 ghost c.Init(messagePerm {&wg , _, x, y})

11 // Spawn workers
12 invariant acc(c.RecvChannel (), _)
13 invariant c.RecvGotPerm () == messagePerm {&wg, _, x, y}
14 for i := 0; i < numOfWorkers; i++ { go worker(c, wg , x, y) }

15 // Split slice into chunks , which are sent to workers
16 invariant c.SendChannel ()
17 invariant c.SendGivenPerm () == messagePerm {&wg, _, x, y}
18 invariant ∀ i int :: offset ≤ i < len(s) =⇒ acc(&s[i])
19 invariant . . . // constraints on offset and nextOffset
20 for offset := 0; offset != len(s); offset = nextOffset {
21 nextOffset = . . .
22 wg.Add(1)
23 fold messagePerm {&wg , _, x, y}(s[offset:nextOffset])
24 c <- s[offset:nextOffset]
25 }
26 wg.Wait()
27 }

28 requires acc(c.RecvChannel (), _)
29 requires c.RecvGotPerm () == messagePerm{wg , _, x, y};
30 func worker(c <- chan []int , wg *sync.WaitGroup , x, y int) {

31 invariant acc(c.RecvChannel (), _)
32 invariant c.RecvGotPerm () == messagePerm{wg , _, x, y};
33 invariant ok =⇒ messagePerm{wg , _, x, y}(chunk)
34 for chunk , ok := <- c; ok; chunk , ok = <-c {
35 unfold messagePerm{wg, _, x, y}(chunk)
36 . . . // replace x with y in chunk
37 wg.Done() // same as wg.Add (-1)
38 }
39 }

Fig. 3. Excerpt showing goroutines, channels, and wait groups. The code spawns
workers (line 14), sends slice chunks through a channel to the workers (line 24), and
then waits on a wait group (line 26). A worker receives a chunk (line 34), processes it,
and then notifies the wait group (line 37). For the sake of simplicity, some details were
omitted.

receiver to the sender. Initializing a channel also creates send and receive per-
missions for the channel, which are used to control which threads may access it.
In our example, we transfer a fraction of the receive permission to each worker
(line 28).

The workers receive permission to the chunk they operate on via a message
sent on line 24 and received on line 34. The transfer back is orchestrated through
a wait group, which implements an abstract shared counter. Wait groups are used
as follows: The main thread adds to the counter the number of units of work
to be done in spawned goroutines (line 22). Each spawned goroutine decreases
the counter each time a unit of work is done (via a call to Done, line 37). The

374 F. A. Wolf et al.

master can await the counter to reach 0 via a call to Wait (line 26). Gobra uses
dedicated permissions to express the obligation of a thread to perform units
of work before decreasing the counter; each time this happens, permissions are
transferred to the wait group and, eventually to the main thread calling Wait.
We omit the details here for brevity.

In our example, this mechanism allows the main thread to recover the permis-
sions to the entire slice once the workers have terminated. The example in Fig. 3
illustrates only the permission aspect of the verification. Functional correctness
can be verified easily based on the explained machinery, by specifying a stronger
channel invariant that includes the work obligation for each worker. We omit the
details here, but see the full paper [22] for the complete example.

3 Encoding

Gobra encodes an annotated Go program into a Viper program verifying only
if the input program is correct. Many features of Gobra are also present in
Viper, making parts of the encoding straightforward. For instance, methods,
pure methods, and predicates are encoded to their Viper counterpart. Viper’s
permission model (including fractions, wildcards, and quantifiers) is similar to
Gobra’s, but memory is represented differently; Viper’s heap is object-based,
where each object contains all declared fields. Viper’s fields store primitive values
(including references). To encode Go’s compound values such as structs, arrays,
slices, and interface values, we use Viper’s mechanism to declare mathematical
types (such as tuples) using uninterpreted types, uninterpreted functions, and
appropriate axioms. Exclusive Go values are directly represented using these
mathematical types. For shared values, there is an indirection via the Viper
heap to permit aliasing and apply permission-based reasoning.

Interfaces. As explained in Sect. 2.2, our treatment of Go interfaces relies
on interface predicates, specification methods, and implementation proofs. We
explain how we handle the former two here; based on this encoding, the encoding
of implementation proofs is analogous to methods.

Intuitively, we encode interface predicates as a case split over all possible
implementations. All implementations not present in the current scope are sub-
sumed by an abstract default case. Consequently, adding an implementation does
not invalidate existing proofs, which enables modular reasoning. The predicate
for the stream example (Fig. 2) is encoded as follows:

predicate memory(x: �interface {}�) {
�typeOf(x) == *counter� ? �acc(x.(* counter))� : unknownMemory (x)

}
predicate unknownMemory (x: �interface {}�)

function hasNext(x: �interface {}�) returns (y: �bool�)
req �acc(x.memory(), _)�
ens �typeOf(x) == *counter� =⇒ y == hasNextProof(�x.(* counter)�)

Gobra: Modular Specification and Verification of Go Programs 375

The body of the predicate branches on the dynamic type of x, with a single case
for the (only) given implementation. The abstract predicate unknownMemory

encodes the default case. The encoding of pure methods such as hasNext uses an
analogous case split, but uses hasNextProof , which is part of the implementation
proof (Fig. 2 line 20) and couples the interface and implementation method. Our
encoding of interface predicates is an instance of an abstract predicate family [18].
For Go, we have crafted a variant that is well-suited for implementation proofs,
pure interface methods, and structural subtyping.

First-Class Predicates. Our support for concurrency uses first-class predi-
cates, for instance, to specify channel invariants (see Sect. 2.3). We encode first-
class predicate values as mathematical types, using defunctionalization. Pred-
icate instances are represented by abstract predicates that take the predicate
value as an argument. First-class predicates enable us to use library stubs to
support concurrency primitives such as mutexes and wait groups. These stubs
allow us to encode the use of these concurrency primitives via standard method
calls. Go’s native channel operations are represented analogously.

4 Implementation and Evaluation

The Gobra implementation consists of a parser and type checker for annotated
Go programs and a translation of those programs into the Viper intermediate
verification language. The resulting Viper program is verified using Viper’s sym-
bolic execution backend, which in turn uses the Z3 SMT solver [7]. Verification
errors are translated back to the Go level, such that users are not exposed to the
internal encodings. Users never have to inspect the encoding. Error messages
contain the failing assertion and a reason describing why the assertion failed.
Gobra’s test suite contains 407 verification tests (with and without errors) with
a total of 10’030 LOCs (Go code and annotations) that take 14.9 min to verify.

We evaluated Gobra on 14 interesting verification problems, which include
well-known algorithms and data structures, and cover Go’s main features, such
as interfaces (Examples 7–9) and concurrency primitives (Examples 13 and 14),
including goroutines, mutexes, wait groups, and channels. For each example,
Gobra verifies memory safety and functional correctness properties. To assess
Gobra’s performance on failing verifications, we have additionally constructed
two incorrect variations of each example, one with a seeded error in the specifi-
cation and one in the implementation.

All experiments were executed on a warmed-up JVM on a MacBook Pro with
a 2.3 GHz 8-Core Intel Core i9 CPU and 32 GB of RAM, running macOS 11.1
and OpenJDK 11. For each experiment, we measured its verification time using
Viper’s symbolic execution backend and averaged the duration of twelve execu-
tions, excluding the slowest and fastest outlier.

Figure 4 summarizes the results, including the required annotations and ver-
ification times for the three variants of each example. The annotation overhead

376 F. A. Wolf et al.

Example LOC / Spec. Viper LOC T [s] Tspec error [s] Timpl error [s]
1 binary search tree 125 / 140 632 10.88 10.50 11.67
2 dutchflag 22 / 16 142 2.02 1.78 1.88
3 heapsort 47 / 93 271 16.72 19.30 15.23
4 dense and sparse matrix 69 / 62 326 10.46 10.55 10.06
5 binary tree 59 / 20 217 2.09 2.08 2.11
6 running ex. (Fig. 1) 10 / 11 164 1.71 1.70 1.70
7 running ex. (Fig. 2) 24 / 16 186 1.04 0.98 1.01
8 list of interfaces 46 / 27 219 1.45 1.41 1.54
9 visitor pattern 76 / 30 475 4.38 4.22 5.45
10 zune 31 / 12 141 1.08 1.07 1.06
11 relaxed prefix 25 / 36 158 7.08 5.36 4.19
12 pair insertion sort 50 / 105 353 15.55 12.64 13.96
13 parallel search replace 35 / 94 565 53.18 51.97 61.54
14 parallel sum 31 / 98 527 58.39 50.25 57.69

Fig. 4. Experimental results. For each experiment, we list the number of lines of Go
code (LOC), number of lines of specification and proof annotations (Spec), and the
average verification time in seconds for correct examples (T), errors in the specification
(Tspec error), and errors in the implementation (Timpl error). A line containing both, code
and annotations, is counted as one line of Go code and one line of annotation.

ranges between 0.3 and 3.1 lines of annotations per line of code, which is typ-
ical for SMT-based deductive verifiers. Verification times range between a sec-
ond and a minute per example. The verification times are significantly higher
when the verified code uses concurrency features; these examples require quan-
titatively more and more-complex specifications, which complicates reasoning.
Lastly, there is hardly any difference between successful and failed verification
attempts. Consistent performance is crucial when verifiers are used interactively,
where users run them frequently, especially on programs that do not yet verify.

5 Related Work and Conclusion

Besides Gobra, we are aware of two other verification approaches for Go. Peren-
nial [4] reasons about concurrent, crash-safe systems. Their core techniques are
an extension to the Iris framework [13] and independent of Go. They connect
their theory to Go programs with Goose, a shallow embedding of Go into Coq [5],
which proves that Go code complies with a given transition system. In contrast
to Gobra, Perennial does not support core Go features such as channels and
interfaces.

Several prior works [9,14,15] infer behavioral types [12] to reason about
Go’s channel-based message passing. After they infer behavioral types for a
given program, they check safety and liveness properties on the inferred types,
using model checkers such as mCRL2 [6]. Some works use additional analyses to
strengthen the provided guarantees. Lange et al. [15] add a termination analysis
to enable one to verify unbounded properties under certain conditions. Gabet

Gobra: Modular Specification and Verification of Go Programs 377

and Yoshida [9] extend this work by inferring behavioral types on shared vari-
ables and locks to additionally reason about data-race freedom, lock safety, and
lock liveness. The approaches by Lange et al. [15] and Gabet and Yoshida [9] are
vastly different from Gobra. They do not verify code contracts, but instead ver-
ify global properties such as deadlock and data-race freedom. Their automation
is high and annotation overhead minimal, but their analyses are not modular
and do not verify functional properties of code. Furthermore, they do not verify
properties about the state of the heap.

There are some prior works that can handle channel-based concurrency and
heap-manipulating programs, but these do not apply directly to Go. Villard
et al. [20] introduce a powerful contract mechanism to specify protocols that
channels must adhere to. Their channel specification language is more expressive
than the one presented in this paper. Their contracts are finite state machines
and thus can have multiple phases. However, their channels are always shared
between two peers whereas Go supports more advanced concurrency patterns
where both channel endpoints are shared between an unbounded number of peers.
Actris [10,11] is a concurrent separation logic built on top of the Iris framework
to reason about session types in an interactive theorem prover. Actris can go
beyond two peers, but to do so, it requires a memory model that is incompatible
with Go’s memory model. Actris models the sharing of channel endpoints via
Iris’ ghost locks, which to our knowledge, implies sequentialization of sends, and
dually receives, which is not guaranteed by Go’s memory model.

Gobra’s verification logic and encoding into Viper have been inspired by
several other Viper-based verifiers, such as Nagini [8] for Python, Prusti [1] for
Rust, and VerCors [2] for Java. None of these verifiers address the Go-specific
features that Gobra supports.

Conclusion. We introduced Gobra, the first modular verifier for Go that sup-
ports reasoning about a crucial aspect of the language: the combination of
channel-based concurrency and heap-manipulating constructs. Moreover, Gobra
is the first verifier to support Go’s version of interfaces and structural subtyping.
In future work, we will expand the properties that can be verified with Gobra, in
particular to liveness and hyper-properties. Furthermore, we are applying Gobra
to verify the implementation of a full-fledged network router [23]. Gobra is hosted
on Github at https://github.com/viperproject/gobra.

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation program within the framework of the NGI-
POINTER Project funded under grant agreement No. 871528.

References

1. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. In: Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), vol. 3, pp. 147:1–147:30. ACM (2019)

https://github.com/viperproject/gobra

378 F. A. Wolf et al.

2. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 9

3. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

4. Chajed, T., Tassarotti, J., Kaashoek, M.F., Zeldovich, N.: Verifying concurrent,
crash-safe systems with Perennial. In: SOSP, pp. 243–258. ACM (2019)

5. Coq consortium, T.: The Coq proof assistant. https://coq.inria.fr/
6. Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In:

Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 15

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Eilers, M., Müller, P.: Nagini: a static verifier for Python. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018, Part I. LNCS, vol. 10981, pp. 596–603. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 33

9. Gabet, J., Yoshida, N.: Static race detection and mutex safety and liveness for go
programs (extended version) (2020)

10. Hinrichsen, J.K., Bengtson, J., Krebbers, R.: Actris: session-type based reasoning
in separation logic. Proc. ACM Program. Lang. 4(POPL), 1–30 (2019)

11. Hinrichsen, J.K., Bengtson, J., Krebbers, R.: Actris 2.0: Asynchronous session-type
based reasoning in separation logic. arXiv preprint arXiv:2010.15030 (2020)

12. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 1–36 (2016)

13. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018)

14. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off Go: liveness and safety for
channel-based programming, pp. 748–761 (2017)

15. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in Go using behavioural types. In: ICSE, pp. 1137–1148. ACM
(2018)

16. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

17. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

18. Parkinson, M., Bierman, G.: Separation logic and abstraction. ACM SIGPLAN
Not. 40(1), 247–258 (2005)

19. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

20. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z.
(ed.) APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10672-9 15

21. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:
Gobra: Modular Specification and Verification of Go Programs (2021). https://doi.
org/10.5281/zenodo.4716664

https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://coq.inria.fr/
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_33
http://arxiv.org/abs/2010.15030
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-10672-9_15
https://doi.org/10.5281/zenodo.4716664
https://doi.org/10.5281/zenodo.4716664

Gobra: Modular Specification and Verification of Go Programs 379

22. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:
Gobra: Modular specification and verification of go programs (extended version).
CoRR arXiv:2105.13840 (2021)

23. Zhang, X., Hsiao, H.C., Hasker, G., Chan, H., Perrig, A., Andersen, D.G.: Scion:
scalability, control, and isolation on next-generation networks. In: IEEE Sympo-
sium on Security and Privacy, pp. 212–227. IEEE (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2105.13840
http://creativecommons.org/licenses/by/4.0/

Delay-Bounded Scheduling Without
Delay!

Andrew Johnson1(B) and Thomas Wahl1,2(B)

1 Northeastern University, Boston, MA 02115, USA
aj3189@princeton.edu

2 GrammaTech Inc., Bethesda, USA

Abstract. We consider the broad problem of analyzing safety properties
of asynchronous concurrent programs under arbitrary thread interleav-
ings. Delay-bounded deterministic scheduling, introduced in prior work,
is an efficient bug-finding technique to curb the large cost associated
with full scheduling nondeterminism. In this paper we first present a
technique to lift the delay bound for the case of finite-domain variable
programs, thus adding to the efficiency of bug detection the ability to
prove safety of programs under arbitrary thread interleavings. Second,
we demonstrate how, combined with predicate abstraction, our technique
can both refute and verify safety properties of programs with unbounded
variable domains, even for unbounded thread counts. Previous work has
established that, for non-trivial concurrency routines, predicate abstrac-
tion induces a highly complex abstract program semantics. Our tech-
nique, however, never statically constructs an abstract parametric pro-
gram; it only requires some abstract-states set to be closed under certain
actions, thus eliminating the dependence on the existence of verification
algorithms for abstract programs. We demonstrate the efficiency of our
technique on many examples used in prior work, and showcase its sim-
plicity compared to earlier approaches on the unbounded-thread Ticket
Lock protocol.

1 Introduction

Asynchronous concurrent programs consist of a number of threads executing
in an interleaved fashion and communicating through shared variables, message
passing, or other means. In such programs, the set of states reachable by one
thread depends both on the behaviors of the other threads, and on the order
in which the threads are interleaved to create a global execution. Since the
thread interleaving is unknown to the program designer, analysis techniques for
asynchronous programs typically assume the worst case, i.e., that threads can
interleave arbitrarily; we refer to this assumption as full scheduling nondeter-
minism. In order to prove safety properties of such programs, we must therefore
ultimately investigate all possible interleavings.

Partially supported by the US National Science Foundation under grant #1718235.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 380–402, 2021.
https://doi.org/10.1007/978-3-030-81685-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_18

Delay-Bounded Scheduling Without Delay! 381

Proposed about a decade ago, delay-bounded deterministic scheduling [10] is
an effective technique to curb the large cost associated with exploring arbitrary
thread interleavings. The idea is that permitting a limited number of scheduling
delays—skipping a thread when it is normally scheduled to execute— in an oth-
erwise deterministic scheduler approximates a fully nondeterministic scheduler
from below. Delaying gives rise to a new thread interleaving, potentially reach-
ing states unreachable to the deterministic scheduler. In the limit, i.e., with
unbounded delays, the delaying and the fully nondeterministic scheduler permit
the same set of executions and, thus, reach the same states.

Prior work has demonstrated that delay-bounded scheduling can “discover
concurrency bugs efficiently” [10], in the sense that such errors are often detected
for a small number of permitted delays. The key is that few delays means to
explore only few interleavings. Thus, under moderate delay bounds, the reachable
state space can often be explored exhaustively, resulting—if no errors are found—
in a delay-bounded verification result.

We build on the empirical insight of efficient delay-bounded bug detection
(testing) or verification, and make the following contributions.

1. Delay-bounded scheduling without delay. If no bug is found while
exhaustively exploring the given program for a given delay budget, we “feel
good” but are left with an uncertainty as to whether the program is indeed bug-
free. We present a technique to remove this uncertainty, as follows. We prove
that the set R(d) of states reached under a delay bound d equals the set R of
reachable states under arbitrary thread interleavings if two conditions are met:

– increasing the delay bound by a number roughly equal to the number of
executing threads produces no additional reachable states, and

– set R(d) is closed under a certain set of critical program actions.

In some cases, the set of “critical program actions” may be definable statically at
the language level; in others, this must be determined per individual action. To
increase the chance that the above two conditions eventually hold, we typically
work with conservative abstractions of R; the (precisely computed) abstract
reachability set R is then used to decide whether the program is safe.

2. Efficient delay-unbounded analysis. We translate the above founda-
tional result into an efficient delay-unbounded analysis algorithm. It starts with
a deterministic Round-Robin scheduler, parameterized by the number of rounds
r it runs and of delays d it permits, and increases r and d in a delicate schedule
weak-until the two conditions above hold (it is not guaranteed that they ever
will). The key for efficiency is that the reachability sets under increasing r and d
are monotone. We therefore can determine reachability under parameters r′ ≥ r
and d′ ≥ d starting from a frontier of the states reached under bounds r and d.
We present this algorithm and prove it correct. We also prove its termination
(either finding a bug or proving correctness), under certain conditions.

3. Delay-unbounded analysis for general infinite-state systems. We
demonstrate the power of our technique on programs with unbounded-domain
variables and unbounded thread counts. The existence of integer-like variables

382 A. Johnson and T. Wahl

suggests the use of a form of predicate abstraction. Prior work has shown that
predicate abstraction for unbounded-thread concurrent programs leads to com-
plex abstract program semantics [8,15], going beyond even the rich class of
well-quasiordered systems [1]. Our delay-unbounded analysis technique does not
require an abstract program. Instead, we add to the idea of reachability analysis
under increasing r and d a third dimension n, representing increasing thread
counts, enjoying a similar convergence property. Circumventing the static con-
struction of the abstract program simplifies the verification process dramatically.

In summary, this paper presents a technique to lift the bound used in delay-
bounded scheduling, while (empirically) avoiding the combinatorial explosion of
arbitrary thread interleavings. Our technique can therefore find bugs as well as
prove programs bug-free. We demonstrate its efficiency using concurrent push-
down system benchmarks, as well as known-to-be-hard infinite-state protocols
such as the Ticket Lock [3]. We offer a detailed analysis of internal performance
aspects of our algorithm, as well as a comparison with several alternative tech-
niques. We attribute the superiority of our method to the retained parsimony of
limited-delay deterministic-schedule exploration.

A full version of this paper, with proofs omitted here and other supplementary
information, can be found in an accompanying Technical Report [14].

2 Delay-Bounded Scheduling

2.1 Basic Computational Model

For the purposes of introducing the idea behind delay-bounded scheduling, we
define a deliberately broad asynchronous program model. Consider a multi-
threaded program P consisting of n threads. We fix this number throughout
the paper up to and including Sect. 5.1, after which we consider parameterized
scenarios. Each thread runs its own procedure and communicates with others
via shared program variables. A “procedure” is a collection of actions (such as
those defined by program statements). We define a shared-states set G and, for
each thread, a local-states set Li (0 ≤ i < n). A global program state is therefore
an element of G×∏n−1

i=0 Li. In addition, a finite number of states are designated
as initial. (Finiteness is required in Sect. 4 for a termination argument [Lemma
11].)

The execution model we assume in this paper is asynchronous. A step is a
pair (s, s′) of states such that there exists a thread i (0 ≤ i < n) such that s
and s′ agree on the local states of all threads j �= i; the local state of thread i
may have changed, as well as the shared state. We say thread i executes during
the step, by executing some action of its procedure.1 The execution semantics
within the procedure is left to the thread (e.g., there may be multiple enabled
actions in a state, an action may itself be nondeterministic, etc.). Without loss of
generality for safety properties, we assume that the transition relation induced

1 If only the shared state changes, it is possible that the identity of the executing
thread is not unique. This small ambiguity is inconsequential for this paper.

Delay-Bounded Scheduling Without Delay! 383

by each thread’s possible actions be total. That is, instead of an action x being
disabled for a thread in state s, we stipulate that firing x from s results in s.

A path is a sequence p = (s0, . . . , sl) of states such that, for 0 ≤ i < l,
(si, si+1) is a step. This path has length l (= number of steps taken). A state s
is reachable if there exists a path from some initial state to s. We denote by R
the (possibly infinite) set of states reachable in P. Note that these definitions
permit arbitrary asynchronous thread interleavings.

2.2 Free and Round-Robin Scheduling

We formalize the notion of a scheduling policy indirectly, by parameterizing the
concept of reachability by the chosen scheduler. A state s is reachable under
free scheduling if there exists a path p = (s0, . . . , sl) from some initial state
s0 to sl = s. A free scheduler is simulated in state space explorers using full
nondeterminism. State s is reachable under n-thread Round-Robin scheduling
with round bound r if there exists a path p = (s0, . . . , sl) from some initial state
s0 to sl = s such that

1. �l/n� ≤ r, and
2. for 0 ≤ i < l, thread i (mod n) executes during step (si, si+1).

2.3 Delay-Bounded Round-Robin Scheduling

We approximate the set of states reachable under free scheduling from below,
using a relaxed Round-Robin scheduler. The scheduler introduced so far is, how-
ever, deterministic and thus vastly underapproximates the free scheduler, even
for unbounded r. The solution proposed in earlier work is to introduce a limited
number d of scheduling delays [10]. A delayed thread is skipped in the current
round and must wait until the next round.

Definition 1. State s is reachable under Round-Robin scheduling with
round bound r and delay bound d (“ reachable under RR(r, d) scheduling”
for short) if there exists a path p = (s0, . . . , sl) from some initial state s0 to
sl = s and a function f : {0, . . . , l − 1} → {0, . . . , n − 1}, called scheduling
function, such that

1. for dp := f(0) +
∑l−1

i=1

(
(f(i) − f(i − 1) − 1) mod n

)
, we have dp ≤ d,

2. � l+dp

n � ≤ r (dp as defined in 1.), and
3. for 0 ≤ i < l, thread f(i) executes during step (si, si+1).

Variable dp from 1. quantifies the total delay, compared to a perfect Round-
Robin scheduler, that the scheduling along path p has accumulated. Consider the
case of n = 4 threads T0,. . . ,T3. Then the scheduling sequence (f(0), . . . , f(11))
below on the left, of l = 12 steps and involving 13 states, follows a perfect
Round-Robin schedule of r = 3 rounds (separated by |):

0 1 2 3 | 0 1 2 3 | 0 1 2 3 0 1 2 3 | 0 1 2 3 | 0 1 2 3× × ×

384 A. Johnson and T. Wahl

The sequence on the right of l = 9 steps follows a Round-Robin scheduling
of r = 3 rounds and a total of dp = 3 delays: one after the second step (T2 is
delayed: 3 − 1 − 1 mod 4 = 1), another two delays after the sixth step (T3 and
T0 are delayed: 1 − 2 − 1 mod 4 = 2). The final state of this path is reachable
under RR(3, 3) scheduling. Note that delays effectively shorten rounds.

We denote by R(r, d) the set of states reachable in P under RR(r, d) schedul-
ing. (Note that this set is finite, for any program P.) It is easy to see that, given
sufficiently large r and d, any schedule can be realized under RR(r, d) scheduling:

Theorem 2. State s is reachable under free scheduling iff there exist r, d such
that s is reachable under RR(r, d) scheduling: R =

⋃
r,d∈N

R(r, d).

State-space exploration under free scheduling can therefore be reduced to enu-
merating the two-dimensional parameter space (r, d) and computing states reach-
able under RR(r, d) scheduling. This can be used to turn a Round Robin-based
state explorer into a semi-algorithm, dubbed delay-bounded tester in [10].

An important property of the round and delay bounds is that increasing
them can only increase the reachability sets:

Property 3 (Monotonicity in r & d). For any round and delay bounds r
and d:

R(r, d) ⊆ R(r + 1, d) , R(r, d) ⊆ R(r, d + 1) . (1)

This follows from the . . . ≤ r and . . . ≤ d constraints in Definition 1. The prop-
erty relies on r and d being external to the program, not accessible inside it.
Under this provision, monotonicity in any kind of resource bound is a fairly nat-
ural yet not always guaranteed property; we give a counterexample in Sect. 5.2.

3 Abstract Closure for Delay-Bounded Analysis

The goal of this paper is a technique to prove safety properties of asynchronous
programs under arbitrary thread schedules. Theorem 2 affords us the possibility
to reduce the exploration of such arbitrary schedules to certain bounded Round-
Robin schedules, but we still need to deal with those bounds. In this section we
present a closure property for bounded Round-Robin explorations.

3.1 Respectful Actions

Let S be the set of global program states of P, and let α : S → A be an abstrac-
tion function, i.e., a function that maps program states to elements of some
abstract domain A. Function α typically hides certain parts of the information
contained in a state, but the exact definition is immaterial for this subsection.

A key ingredient of the technique proposed in this paper is to identify actions
of the program executed by a thread with the property that the abstract succes-
sor of an abstract state under such an action does not depend on concrete-state
information hidden by the abstraction.

Delay-Bounded Scheduling Without Delay! 385

Definition 4. Let x be a program action, and let the relation s
i : x−→ s′ denote

that s → s′ is a step during which thread i executes x. Action x respects α if,
for all states s1, s2, s

′
1, s

′
2 ∈ S and all i : 0 ≤ i < n:

α(s1) = α(s2) ∧ s1
i, x−→ s′

1 ∧ s2
i, x−→ s′

2 ⇒ α(s′
1) = α(s′

2) . (2)

Intuitively, “x respects α” means that successors under action x of α-equiv-
alent states all have the same unique abstraction. Note the special case s1 = s2,
s′
1 �= s′

2: for nondeterministic actions x to respect α, multiple successors s′
1, s

′
2 of

the same concrete state s1 = s2 under x also must have the same abstraction.

Example 5. Consider n-thread concurrent pushdown systems (CPDS), an
instance of the asynchronous computational model presented in Sect. 2.1. We
have a finite set of shared states readable and writeable by each thread. Each
thread also has a finite-alphabet stack, which it can operate on by (i) overwrit-
ing the top-of-the-stack element, (ii) pushing an element onto the stack, or (iii)
popping an element off the top of the non-empty stack. The classic pointwise
top-of-the-stack abstraction function is defined by

α(g, w0, . . . , wn−1) = (g, σ0, . . . , σn−1) , (3)

where g is the shared state (unchanged by α), wi is the contents of the stack of
thread i, and σi is the top of wi if wi is non-empty, and empty otherwise [18].
Note that the domain into which α maps is a finite set.

Push and overwrite actions respect α, while pop actions disrespect it: consider
the case n = 1 and s1 = (g, w0) = (0, 10) and s2 = (0, 11), with stack contents 10
and 11, resp. (left = top). While α(s1) = α(s2) = (0, 1), the (unique) successor
states of s1 and s2 after a pop are not α-equivalent: the elements 0 and 1 emerge
as the new top-of-the-stack symbols, respectively, which α can distinguish.

The notion of respectful actions gives rise to a condition on sets of abstract
states that we will later use for convergence proofs:

Definition 6. An abstract-state set A is closed under actions disrespect-
ing α if, for every a ∈ A and every successor a′ of a under a disrespectful
action, a′ ∈ A.

For maximum precision: a′ is said to be a successor of a under a disrespectful
action if there exist concrete states s and s′, a thread id i and an action x such
that α(s) = a, α(s′) = a′, x disrespects α, and s

i : x−→ s′. If abstraction α is clear
from the context, we may just say “closed under disrespectful actions”.

3.2 From Delay-Bounded to Delay-Unbounded Analysis

We now present our idea to turn a round- and delay-bounded tester into a
(partial) verifier, namely by exploring the given asynchronous program for a
number of round and delay bounds until we have “seen enough”. Recall the
notations R and R(r, d) defined in Sect. 2. We also use R and R(r, d) short for

386 A. Johnson and T. Wahl

α(R) and α(R(r, d)), i.e. the respective abstract reachability sets. (Note that
R is not an abstract fixed point—instead, it is the result of applying α to the
concrete reachability set R; see discussion in Sect. 7.)

Theorem 7. For any r, d ∈ N, if R(r, d) = R(r + 1, d + n − 1) and R(r, d) is
closed under actions disrespecting α, then R(r, d) = R.

The theorem states: if the set of abstract states reachable under RR(r, d) schedul-
ing does not change after increasing the round bound by 1 and the delay bound
by n − 1, and it is closed under disrespectful actions, then R(r, d) is in fact the
exact set R of abstract states reachable under a free scheduler: no approximation,
no rounds, no delays, no Round-Robin.

Proof. of Theorem 7: we have to show that R(r, d) is closed under the abstract
image function Im induced by α, defined as

Im(a) = {a′ : ∃s, s′ : α(s) = a, α(s′) = a′, s → s′} .

That is, we wish to show Im(R(r, d)) ⊆ R(r, d), which proves that no more
abstract states are reachable. Consider a ∈ R(r, d) and a′ ∈ Im(a), i.e. we have
states s, s′ such that α(s) = a, α(s′) = a′, and s

i : x−→ s′ for some thread i and
some action x. The goal is to show that a′ ∈ R(r, d).

To this end, we distinguish flavors of x. If x disrespects α, then a′ ∈ R(r, d),
since the set is closed under disrespectful actions.

So x respects α. Since a ∈ R(r, d), there exists a state s0 ∈ R(r, d) with
α(s0) = a. Suppose for a moment that thread i is scheduled to run in state s0.
Then it can execute action x; any successor state s′

0 satisfies s′
0 ∈ R(r, d), and:

a′ (def a′)= α(s′) (x resp. α)= α(s′
0)

(def s′
0)∈ α(R(r, d)) = R(r, d) .

But what if the thread scheduled to run in state s0 under RR(r, d) scheduling,
call it j, is not thread i? Then we delay any threads that are scheduled before
thread i’s next turn; if i < j, this “wraps around”, and we need to advance to the
next round. The program state has not changed—we are still in s0. Let s′

0 be the
successor state obtained when thread i now executes action x, and λ(i, j) = 1 if
i < j, 0 otherwise. Then we have s′

0 ∈ R(r + λ(i, j), d + (j − i) mod n), and:

a′ (def a′)= α(s′) (x resp. α)= α(s′
0)

(def s′
0, α)∈ R(r + λ(i, j), d + (j − i) mod n)

(monot. r,d)

⊆ R(r + 1, d + n − 1) (Thm. 7)= R(r, d) .

This concludes the proof of Theorem 7. �
Example 8. Consider a simple 3-thread system with a shared-states set G =
{0, 1, 2}. The local state of each thread is immaterial; function α just returns the
shared state: α(g, l0, l1, l2) = g. The threads’ procedures consist of the following
actions, which update only the shared state:

Delay-Bounded Scheduling Without Delay! 387

Thread T0: 0 → 1 Thread T1: 0 → 1 Thread T2: 0 → 2 .

Table 1 shows the set of reachable states for different round and delay bounds.
For example, with one round and zero delays, the only feasible action is T0’s.
The reachable states are 0 (initial) and 1 (found by T0). The table shows a path
to a pair (r, d) that meets the conditions of Theorem 7. From (r, d) = (1, 0) we
increment r to find a plateau in r of length 1. We then increase d to try to find
a plateau in d of length n − 1 = 2. This example shows that a delay plateau of
length 1 is not enough, as 2 is only reachable at least 2 delays. At (2, 2) we find
a new state (2), so we restart the search for plateaus in r and d. At (3, 4), the
plateau conditions for Theorem 7 are met. There are no disrespectful transitions,
so by Theorem 7, we know that R(3, 4) = R.

Table 1. Reachable states in Example 8 under various round and delay bounds. The
boxed set passes the convergence test suggested by Theorem 7

d = 0 d = 1 d = 2 d = 3 d = 4

r = 1 {0,1} {0,1} {0,1,2} {0,1,2} {0,1,2}
r = 2 {0,1} {0,1} {0,1,2} {0,1,2} {0,1,2}
r = 3 {0,1} {0,1} {0,1,2} {0,1,2} {0,1,2}

4 Efficient Delay-Unbounded Analysis

Turning Theorem 7 into a reachability algorithm requires efficient computation of
the sets R(r, d). This section presents an approach to achieve this, by expanding
only frontier states when either the round or the delay parameter is increased.

To this end, let C be a state property (such as an assertion) that respects α,
in the sense that, for any states s1, s2, if α(s1) = α(s2), then s1 |= C iff s2 |= C.
From now on, we further assume the domain A of abstraction function α to be
finite, which will ensure termination of our algorithm (see Lemma 11 later).

Our verification scheme for C is shown in Algorithm 1, which uses Algorithm
2 as a subroutine. In the rest of this paper, we also refer to Algorithm 1 as Delay-
(and round-) UnBounded Analysis, DrUBA for short.

The main data structure used in the algorithms is that of a State, which
stores both program variables and scheduling information, in the attributes
finder , rounds taken, and delays taken. For a state s, variables s.rounds taken
and s.delays taken represent the number of times the scheduler started a round
and delayed a thread, resp., to get to s. Variable s.finder contains the index
of the thread whose action produced s. This is enough information to continue

388 A. Johnson and T. Wahl

Algorithm 1. Verifying property C against all reachable states of program P
Input: n-thread asynchronous program, property C
Output: “safe”, “violation of C”, or “unknown”
1: Reached := (finite) set of initial states � Reached : states reached so far
2: r := 0; d := 0

3: repeat
4: Frontier := {s ∈ Reached : s.rounds taken = r}
5: r++
6: for s ∈ Frontier do
7: Reached := Reached ∪ FinishRounds(s, r + 1, C)
8: r++
9: until round plateau of length 1

10: repeat
11: Frontier := {s ∈ Reached : s.delays taken = d}
12: d++
13: for s ∈ Frontier do
14: s′ := s � copy of state s
15: s′.delays taken++
16: s′.finder := (s′.finder + 1) mod n

17: if s′.finder mod n = 0 then
18: s′.rounds taken++
19: Reached := Reached ∪ FinishRounds(s′, r, C)
20: if new abstract state found during for loop in Line 13 then
21: goto 3 � abort second repeat loop; go back to first
22: until delay plateau of length n − 1
23: if α(Reached) is closed under disrespectful actions then
24: return “safe”
25: else
26: return “unknown”

Algorithm 2. FinishRounds(s, r, C)
Input: s: state, r: round bound, C: state property
Output: states reachable from s up to round bound r, without delaying
1: Set<State> Unexplored := {s}, Reached := {}
2: while Unexplored != {} do
3: select and remove some state u from Unexplored
4: if u violates C then
5: throw “violation of C (witnessed by reaching state u)”
6: Reached := Reached ∪ {u}
7: if u.finder < n − 1 or u.rounds taken < r then � if u schedulable
8: Unexplored := Unexplored ∪ (Image(u) \ Reached)
9: return Reached

Delay-Bounded Scheduling Without Delay! 389

the execution from s later, starting with the thread after finder . For the initial
states, rounds taken and delays taken are zero, and finder is n−1 (the latter so
that expanding the initial states starts with thread (n − 1) + 1 mod n = 0). For
set membership testing, two states are considered equal when they agree on their
finders and on program variables. The rounds taken and delays taken variables
are for scheduling purposes only and ignored when checking for equality.

As mentioned in Prop. 3, the sequence of reachability sets is monotone with
respect to both rounds and delays, for any program. This entails two useful
properties for Algorithm 1. First, we can increase the bounds in any order and
at individual rates. Second, it suffices to expand states at the frontier of the
exploration, without missing new schedules. When adding a new delay, we only
need to delay those states that were (first) found in schedules using the maximum
delays. When adding a round, we only need to expand states that were (first)
found in the last round of a schedule.

Algorithm 1 first advances the round parameter r until a round plateau has
been reached (Lines 3–9). It does so by running the FinishRounds function on
frontier states s: those that were reached in the final round r of the previous
round iteration. FinishRounds (Algorithm 2) explores from the given state s,
Round-Robin style, up to the given round, without delaying any thread. The
actual expansion of a state happens in function Image (Line 8 of Algorithm 2),
which computes a state’s successors and initializes their scheduling variables:
rounds taken and delays taken are copied from u, the finder of the successor is
the next thread (+1 mod n). If this wraps around, rounds taken is incremented
as well.

Back to the main Algorithm 1: we have reached a round plateau of length 1
if the entire for loop in Line 6 sees no new abstract states (no new elements in
α(Reached)). If so, we are not ready yet to perform the convergence test (recall
Example 8). Instead, Algorithm 1 now similarly advances the delay parameter
d (Lines 10–22). For each frontier state (delays taken = d), we delay the thread
scheduled to execute from this state (by incrementing (mod n) the finder vari-
able), and record the taken delay (Line 15). Then we again call the FinishRounds
function and merge in the states found. Importantly, these merges preserve states
already in Reached , meaning that the algorithm will keep states found earlier in
the exploration (with smaller r, d).

The loop beginning in Line 10 repeats until a delay plateau of length n −
1 is encountered (as required by Theorem 7). This means that during n − 1
consecutive repeat iterations, the for loop in 13 did not find any new abstract
states. When the round and delay plateaus have the required lengths (1 and
n−1, resp.), we invoke the convergence test (Line 23), which amounts to applying
Theorem 7. If the test fails, Algorithm 1 returns “unknown”.

Towards proving partial correctness of Algorithm 1, we first show that the
states eventually collected in set Reached by the algorithm correspond exactly
to the round- and delay-bounded reachability sets R(r, d), and that—after the
two main repeat loops—a plateau of sufficient length has been generated. As

390 A. Johnson and T. Wahl

a corollary, the algorithm is partially correct, i.e. it returns correct answers if it
terminates.

Lemma 9. If Algorithm 1 reaches Line 23, the current values of r and d satisfy:
(i) Reached = R(r, d), and (ii) R(r − 1, d − (n − 1)) = R(r, d).

Corollary 10. The answers “safe” and “violation of C” returned by Algorithm
1 are correct.

The algorithm won’t return either “safe” or “violation of C” in one of two
situations: when the convergence test fails in Line 23 (it gives up), and when it
fails to ever reach this line. The latter can be prevented using a finite-domain α:

Lemma 11. If the domain A of abstraction function α is finite, Algorithm 1
terminates on every input.

Since abstraction α approximates the information contained in a state, a plateau
may be intermediate, e.g. R(1, 0) � R(1, 1) = R(2, 2) � R(2, 3). Thus, stopping
the exploration simply on account of encountering a plateau—even of lengths
(1, n−1)—is unsound. Intermediate plateaus make our algorithm (unavoidably)
incomplete: if the test in Line 23 fails, then there are known-to-be-reachable
abstract states with abstract successors whose reachability cannot be decided at
that moment. If we knew the plateau to be intermediate, we could keep exploring
the sets R(r, d) for larger values of r and d until the next plateau emerges, hoping
that the convergence test succeeds at that time. In general, however, we cannot
distinguish intermediate from final plateaus.

5 DrUBA with Unbounded-Domain Variables

In addition to unbounded control structures like stacks, which come up in push-
down systems and were discussed in Ex 5, infinite state spaces in programs are
often due to (nominally) unbounded-domain program variables. This presents
no problem for the computation of the concrete reachability sets Reached in
Algorithm 1: for any round and delay bounds (r, d), the set of concrete reach-
able states RR(r, d) is finite and thus explicitly computable (no symbolic data
structures are needed).2 On the other hand, termination of the same algorithm
requires that it eventually reach a plateau in r and d of sufficient length. This is
guaranteed by an abstraction function α that maps concrete states into a finite
abstract space. A finite abstract domain is therefore highly desirable.

A generic abstraction that reduces an unbounded data domain to a finite one
is predicate abstraction [4,13, see [14] for a short primer]. The goal in this section
is to demonstrate how the simple scheme of delay-unbounded analysis can be
combined with predicate abstraction to verify unbounded-thread programs.

2 Contrast this to a context-switch bound, under which reachability sets can be infinite.

Delay-Bounded Scheduling Without Delay! 391

5.1 The Fixed-Thread Case

Consider program P in Fig. 1 on the left [8, page 4: program P
′′]. Intuitively,

variable m counts the number of threads spawned to execute P concurrently. It
is easy to see that “the assertion in [P] cannot be violated, no matter how many
threads execute [P], since no thread but the first will manage to” [8] enter the
true branch of the if statement and reach the assertion.

Program P

shared int m := 0

shared int s := 0

local int l := 0

0: m++

1: if m = 1 then
2: s++, l++
3: assert s = l
4: goto 2

1 2 3 4 6 75

0

1

2

3

4

d
r

Fig. 1. Left: program P; Right: how Algorithm 1 operates on (an abstraction of) it

Previous work has shown that even the 1-thread version of this program
cannot be proved correct using predicate abstraction unless we permit predi-
cates that depend on both shared and local variables [9, for the unprovability
result], which have been referred to as mixed [8]. An example is the predicate
p :: (s = l), which comes up in the assertion. The dependence of p on both shared
and thread-local data causes standard solutions that track the truth value of p in
a shared or local Boolean variable to be unsound. The solution proposed in [8]
is to use broadcast instructions to have the executing thread notify all other
threads whenever the truth value of p changes. This solution comes with two
disadvantages: (i) the resulting Boolean broadcast programs are more expensive
to analyze than strictly asynchronous Boolean programs, and (ii) the solution
cannot be extended to the unbounded-thread case.

Let us consider how we can verify this program using Algorithm 1, for the
fixed-thread case; we consider n = 2 threads. We will have to use mixed predi-
cates as in [8], but since we never execute the abstract Boolean program, there
is no need for constructing it. As a result, there is no need for broadcast instruc-
tions.

The program generates an unbounded number of reachable concrete states,
but we explore it only under round and delay bounds r and d. As per Algorithm
1, we increase these bounds until we have reached plateaus of lengths 1 and
n − 1 = 1, resp. Plateaus are determined over the abstract-state set, so we need
a function α.

392 A. Johnson and T. Wahl

First attempt: a single predicate. We define α as follows, for a concrete state c:

α1(c) = (c.pc0, c.s = c.l0) ∈ 0, . . . , 4 × {0, 1} ,

where c.pc0, c.l0, and c.s are the values of thread 0’s pc and local variable l,
and of shared variable s, in state c, respectively. The function extracts from a
concrete state the current program location of thread 0 and the value of predicate
p :: (s = l) for thread 0.3 The only statement not respecting α1 is the if statement
in Line 1: here, the new value of the pc cannot be determined from the current
values of pc and predicate p alone. All other statements respect α1.

We can now perform an iterative exploration of this program—bounded but
exhaustive within each bound. In Fig. 1 on the right, red arrows denote “new
abstract state reached”. A red horizontal arrow (r++) means: “keep increasing r”.
A red vertical arrow (d++) means: “switch to increasing r”. In other words,
following a red arrow—no matter the direction—we always go “right” (r++). The
green horizontal arrow followed by a green vertical arrow at the end indicates that
we have reached the first plateaus of length 1 in both directions: at (r, d) = (7, 4).

At this point we have reached a total of 7 abstract states. State (3, 0) (pc =
3, s �= l) is not among them, so the assertion has not been violated so far.
We run the convergence test, to determine whether set R(7, 4) is closed under
disrespectful actions. Since the if in Line 1 is the only disrespectful statement, we
only need to check successors of abstract states of the form (1, ?) (i.e., with pc =
1). Unfortunately, R(7, 4) contains abstract state (1, 0) (a reachable abstract
state) but not its abstract successor (2, 0). This state is unreachable, but we do
not know that at this point. This causes Algorithm 1 to return “unknown”.

Second attempt: two predicates. The disrespectful action causing the failure sug-
gests that we need to keep track of whether the branch in Line 1 can be taken,
i.e. whether m = 1. We refine our abstraction using this (non-mixed) predicate:

α2(c) = (c.pc0, c.s = c.l0, c.m = 1) ∈ 0, . . . , 4 × {0, 1}2 . (4)

The abstract successors of the if statement can now be decided based only on
knowledge provided by α2, i.e. the statement respects α2. There is, however,
another statement disrespecting α2, and only one: the increment m++ in Line 0.
If m �= 1, we cannot decide whether m = 1 will be true after the increment.

We again perform our iterative exploration of this program, and find the first
suitable plateau at the same point (r, d) = (7, 4). This time, however, we have
reached a total of 12 abstract states (all of them “safe”). We run the convergence
test: we only need to check already reached abstract states of the form (0, ?, 0)
(pc = 0, m �= 1). Set R(7, 4) contains exactly one state of this form: (0, 1, 0),
which m++ can turn into (1, 1, 0) and (1, 1, 1)—note that the next pc value is
unambiguous (1), and predicate s = l is not affected. The good news is now
that both abstract states (1, 1, 0) and (1, 1, 1) are contained in R(7, 4). This
proves this set closed under disrespectful actions; Algorithm 1 terminates: the
assertion is safe for any execution schedule, for the case of n = 2 threads.
3 Tracking these values for thread 0 suffices: the multi-threaded program is symmetric.

Delay-Bounded Scheduling Without Delay! 393

We summarize that, in our solution above, we assumed a lucky hand in pick-
ing predicates—the question of predicate discovery is orthogonal to the delay-
unbounded analysis scheme. However, the proof obtained using Algorithm 1 does
not involve costly broadcast operations, previously proposed as an ingredient to
extend predicate abstraction to concurrent programs. A second, more powerful
advantage is that, unlike the earlier broadcast solution, Algorithm 1 extends
gracefully to the unbounded-thread case. This is the topic of the rest of this
section.

5.2 The Unbounded-Thread Case

The goal now is to investigate whether an asynchronous unbounded-domain
variable program is safe for arbitrary thread counts (and thread interleavings).

Existing solutions. We are aware of only one general technique that combines
predicate abstraction with unbounded-thread concurrency [15]. That technique
can achieve the above goal, roughly as follows. In addition to standard and
mixed predicates used also in the fixed-thread case, we now permit inter-thread
predicates, which quantify over all threads other than the executing one. Such
predicates allow us to express, for example, that a thread’s local variable l’s
value is larger than that of any other thread: ∀i : i �= self : l > li. Predicates of
this type are provably required during predicate abstraction to verify the safety
of the Ticket Lock algorithm [3,15].

Abstraction against inter-thread predicates leads to a dual-reference pro-
gram [15], a process that is already far more complex than standard sequen-
tial or even fixed-thread predicate abstraction. But we pay another price for
using these predicates: namely, the loss of monotonicity of the transition rela-
tion w.r.t. a standard well-quasiordering � on infinite state sets of unbounded-
thread Boolean programs. In this context, monotonicity states, roughly, that
adding passive threads to a valid transition keeps the transition intact.

This price is heavy, since monotonicity w.r.t. � would have given us a
well-quasiordered infinite-state transition system, for which local-state reach-
ability properties are decidable [1]; working implementations exist. The above-
mentioned prior work attempts to salvage the situation, by adding a set of tran-
sitions (the non-monotone fragment) to the dual-reference program that restore
monotonicity and further overapproximate but without affecting the reachability
of unsafe states [15].

Alternative solution. We now propose a solution that uses the same type of inter-
thread predicates (this is inevitable), but renders dual-reference programs, the
monotone closure of the transition relation and all other “overhead” introduced
in [15] unnecessary. We will use Algorithm 1 as a sub-routine.

The idea is as follows. Sect. 5.1 suggests a way to verify fixed-thread asyn-
chronous programs, using a combination of predicate abstraction and Algorithm
1 . To handle the unbounded-thread case, we wrap another layer of incremental
resource bounding around this combined algorithm—the “resource” this time is

394 A. Johnson and T. Wahl

the number n of threads executing the program. For each member of a sequence
of increasing fixed thread counts we compute the set of abstract states reachable
under arbitrary thread interleavings. This is purely a sub-routine; we will use
the method proposed in Sect. 5.1 (others are possible, e.g. [8]).

The incremental (in n) analysis proceeds until we have reached a thread
plateau of length 1, and then run the convergence test: we check the current
abstract reachability set for closure under disrespectful actions. This time, the
abstract transitions must take into account that the number of executing threads
is unknown. It is easy to see that a plateau of length 1 is sufficient: we compute
the set of abstract states reachable under arbitrary thread schedules; thus, the
obstacle of non-schedulability of thread i in the proof of Theorem 7 that forced
us to wait for a (delay) plateau of length n − 1 does not apply here.

A non-monotone resource parameterization
Before we demonstrate this idea on program P, we justify our strategy of combin-
ing resource bounds. The idea presented above can be viewed as a multi-resource
analysis problem where we increment r and d in an “inner loop” (represented
by Algorithm 1 as a sub-routine to compute fixed-thread reachability sets), and
n in an outer loop. Both loops compute monotonously increasing reachability
sequences: for “inner” this is Prop. 3; for “outer” this is easy to see. Theorem 7
relies upon the monotonicity: without it, the test R(r, d) = R(r + 1, d + n − 1)
makes the algorithm unsound.

The way we nest the three involved resource parameters is not arbitrary:
Round-Robin reachability under an increasing thread count is not monotone.
More precisely, making the thread-count parameter n explicit, let R(r, d, n)
denote the set of states reachable in the n-thread program P under RR(r, d)
scheduling. Then R(r, d, n) ⊆ R(r, d, n + 1) is not valid. The following example
illustrates this (at first counter-intuitive) monotonicity violation:

Example 12. Consider the asynchron-
ous Boolean program over shared varin-
ables s and t on the right. Here we have
R(3, 0, 1) �⊆ R(3, 0, 2): given 1 thread
(sequential execution), a state with

shared bool s := 0, t := 0
0: t := !t
1: if t then
2: s := 1

s = 1 is reachable. With 2 symmetric threads, under delay-free Round-Robin
scheduling (d = 0), the first and second thread will repeatedly flip t to 1 and back
to 0, resp., before either one has a chance to get past the guard in Line 1.

A stronger result is: for all r ∈ N, R(3, 0, 1) �⊆ R(r, 0, 2), i.e. we cannot make
up for the poor scheduling of the second thread by adding more rounds.
The consequence for us is that we cannot compute, for fixed r, d, the sets
R(r, d,∞), using the closure-under-disrespectful-actions paradigm. Instead we
must, for each n, compute R(∞,∞, n) (using Algorithm 1 or otherwise) and
increase n in the outer loop.

Verifying program P for unbounded thread count
We recall that, given the two predicates shown in Eq. (4) and the pc, we were
able to verify program P correct (under arbitrary thread interleavings) for n = 2

Delay-Bounded Scheduling Without Delay! 395

threads; a total of 12 abstract states were reached (out of 5 · 22 = 20 possible).
Advancing the outer loop, we invoke Algorithm 1 for n = 3 threads. This reveals
another reachable abstract state, namely pc = 0, s �= l, m �= 1. Unfortunately,
this state causes Algorithm 1 to return “unknown”: under α2, one currently
unreached abstract successor is pc = 1, s �= l, m = 1, violating closure. Observing
that a thread executing Line 1 with m = 1 must be the first thread executing,
we try tracking the initial value of m:

α3(c) = (c.pc0, c.s = c.l0, c.m = 1, c.m = 0) ∈ 0, . . . , 4 × {0, 1}3 . (5)

Interestingly, all actions (statements) of program P respect abstraction α3. This
means that the test for closure under disrespectful actions is vacuously true—we
can stop as soon as we have reached a plateau in n of length 1. We don’t have
to wait long for this plateau: we invoke Algorithm 1 for n = 3 and n = 4 under
abstraction α3. (Note that n = 4 requires a longer plateau than n = 3.) The
abstract reachability sets consist of the same 14 abstract states in both cases. We
report the program safe, for arbitrary interleavings and arbitrary thread counts.
We can also report the exact set of 14 reachable abstract states.

We again summarize that, while we still (and unavoidably) use mixed pred-
icates, we do not construct a thread-parameterized abstract program, which
would require broadcast statements [8] and a rather involved dual-reference tran-
sition semantics [15]. In fact, we did not even need to test for closure under any
abstract images, since the chosen abstraction enjoys respect from all actions.

6 Evaluation

Our goal for the evaluation of DrUBA was to answer the following questions:

1. How does DrUBA compare to abstract fixed-point computation (“AI”)?
2. How does DrUBA compare to the approach from [18] (“CUBA”)?
3. How expensive is the state exploration along a plateau in Algorithm 1?
4. What is the performance benefit of the frontier optimization in Algorithm 1?

Questions 1 and 2 serve to compare DrUBA against other techniques; Questions
3 and 4 investigate features of Algorithm 1.

To this end we implemented, in Java 11, a verifier using Algorithm 1 that
takes concurrent pushdown systems as input; we refer to this verifier as DrUBA
in this section.4 We also implemented the AI approach in Java 11. For the
comparison with the context-unbounded approach, we used a publicly available
tool5. Our experiments are based on the concurrent benchmark programs also
used in [18]. The experiments are performed on a 3.20GHz Intel i5 PC. The
memory limit was 8GB, with a timeout of 1 h.

4 DrUBA implementation available at https://doi.org/10.5281/zenodo.4726301.
5 https://github.com/lpzun/cuba.

https://doi.org/10.5281/zenodo.4726301
https://github.com/lpzun/cuba

396 A. Johnson and T. Wahl

6.1 Results

Table 2 reports the benchmark names, the thread counts, and the size of the
reachable abstract state space (columns 1–3). The second part of the table shows
the time it took each verifier to fully explore the state space and confirm conver-
gence. For the AI approach, we check whether the abstract state space is closed
under all operations each time either r or d is incremented. Algorithm 1 was
faster than “AI” on every example except Stefan-4,5. Stefan is the only pro-
gram that actually does not require any delays to discover all reachable abstract
states. The results indicate that the AI approach spends approximately half of its
computation time doing repeated convergence tests after each bound increment.
Furthermore, as state sets increase in size, AI seems to take even longer, as with
the Bluetooth3 (2+3) example. The convergence test needed for “AI” includes
checking closure under both respectful and disrespectful actions, making it more
costly than the one used in Algorithm 1.

Algorithm 1 also improved on the results with “CUBA”. For examples that
took longer than a few seconds, DrUBA was able to run in less time on the
same benchmark. The difference on small examples is likely due to a different
implementation language (C++ vs. Java). DrUBA does not explore as many
schedules, and explores fewer as the delay and round bounds approach their
cutoff values (as noted below). Additionally, DrUBA was less memory-intensive
for large examples for which the CUBA approach cannot prove that the set of
reachable states per context bound is finite. In this case, “CUBA” requires the
use of more expensive symbolic representations of states sets. Algorithm 1 does
not suffer from this problem—the reachability sets in each iteration are finite.
For the Stefan-5 example, “CUBA” ran out of memory after 23 min. DrUBA
was able to prove convergence for this example (as was “AI”).

Table 3 reports the number of times Algorithm 1 computed the image (suc-
cessors) of a state until reaching the final r-d-plateau (Col. 3) and during the final
plateau (Col. 4), as well as the total number of image computations without the
frontier optimization (Col. 5). The table offers convincing evidence to support
our heuristic that waiting for a long d-plateau at the end of exploration is not
costly, answering Question 3.. On most benchmarks, the amount of computation
done during the plateau (Col. 4) was negligible. This included our largest exam-
ple, Bluetooth3 (2+3). The exception to this is the Stefan examples, which—as
mentioned earlier—do not require any delays to reach the full abstract state set
(the d-plateau starts at (rmax,0)). Finally, a naive implementation that does not
take advantage of monotonicity, forgoing the frontier approach to expanding the
state set, was orders of magnitude worse. This is because it has to recompute
the whole set for every iteration of r or d. This answers Question 4..

Comparing Col. 7 in Table 2 to the cutoff context-switch bounds from [18],
we find that, while the r and d bounds were large, not all programs that needed
large bounds took a long time to verify. For example, the Bluetooth3 (2+1)
example took much less time than Stefan-5, despite requiring 21 more delays
(with similar rounds). A hint for the reason can be found in Table 3. Once the
set of abstract states is close to the R, there are very few new states on the

Delay-Bounded Scheduling Without Delay! 397

Table 2. Benchmark description and running times for different algorithms. Threads:
of threads (a + b: the respective numbers of threads from two different templates);
R: number of reachable abstract states; Time: running time (sec) for each algorithm
(”—”: timeout or memory-out); rmax, dmax: round and delay counts at the end of each
plateau when convergence was detected.

1 2 3 4 5 6 7

Benchmark Threads |R| Time: Time: Time: rmax, dmax

Algorithm 1 “AI” “CUBA” Algorithm 1

1+1 1010 .69 .92 .32 23, 15

1 Bluetooth1 1+2 5468 3.32 6.79 2.25 32, 29

2+1 18972 8.52 16.69 13.60 35, 26

1+1 1018 .71 .98 .29 23, 15

2 Bluetooth2 1+2 5468 3.60 6.68 2.62 32, 29

2+1 18972 8.81 16.68 13.97 35, 26

1+1 1018 .72 1.23 .41 23, 15

1+2 5468 3.61 6.40 2.79 32, 29

3 Bluetooth3 2+1 19002 9.97 16.27 14.50 35, 26

2+2 94335 70.71 136.31 343.05 44, 40

2+3 460684 654.47 2084.76 TO 56, 56

1+1 272 .36 .49 .14 31, 16

4 BST-Insert 2+1 6644 3.62 5.25 10.09 49, 32

2+2 14256 8.12 14.87 99.94 50, 38

5 Filecrawler 1+2 246 .37 .54 .05 20, 12

6 K-Induction 1+1 130 .51 .74 .48 20, 09

7 Proc-2 2+2 352 .56 .77 2.05 19, 20

2 31 .24 .36 .04 13, 02

8 Stefan 4 687 13.99 13.82 20.33 32, 04

5 3085 428.22 295.02 OOM 35, 05

8 — OOM OOM OOM —

9 Dekker 2 1507 .82 1.62 .39 37, 16

frontier. We can see this in the small numbers in Col. 4, but it also applies to
the round bound. If a state is rediscovered, it is not expanded in further round
increments. Once the round bound is large enough, there are few deep schedules
of maximum possible length (nr) that produce new concrete states.

6.2 Unbounded-Thread Experiments

We implemented Algorithm 1 in combination with predicate abstraction as
detailed in Sect. 5.2 to check the effectiveness of our technique on a tricky con-
current program that requires unbounded variable domains. The Ticket Lock

398 A. Johnson and T. Wahl

Table 3. Detailed analysis of Algorithm 1, measuring the number of times the program
computed the successors of a state. Col. 3 reports the image operations Algorithm 1
performed before reaching the FP (final plateau), Col. 4—the number of additional
image operations computed until the program ended. Col. 5 shows the image operations
without the frontier improvement, requiring recomputing each R(r, d) from the initial
states.

1 2 3 4 5

Benchmark Threads Calls to Image Calls to Image Calls to Image

→ begin FP Begin → end FP w/o frontier

1+1 4,034 1 339,261

1 Bluetooth1 1+2 23,441 3 4,758,084

2+1 80,283 19 23,199,458

1+1 4,103 1 350,587

2 Bluetooth2 1+2 23,493 3 4,780,778

2+1 80,714 19 23,290,556

1+1 4,096 8 348,851

1+2 23,493 3 4,786,950

3 Bluetooth3 2+1 80,834 19 23,467,470

2+2 478,426 2 283,910,446

2+3 2,766,625 6 —

1+1 780 1 82,130

4 BST-Insert 2+1 29,802 6 17,785,065

2+2 62,190 25 34,335,106

5 Filecrawler 1+2 1,056 4 202,074

6 K-Induction 1+1 5,636 974 218,715

7 Proc-2 2+2 2,501 1,298 578,099

2 367 59 500,494

8 Stefan 4 658,696 261,881 —

5 10,299,293 6,621,157 —

8 — — —

9 Dekker 2 3,636 2 688,836

protocol [3] and the predicates used to prove its correctness are shown in Fig. 2.
In Line 0, threads wait to enter the Critical Section, whose code is at the begin-
ning of Line 1; the rest of Line 1 is exit code to prepare the thread for re-entry. In
the predicates on the right, subscript i denotes thread i’s copy of a local variable.

This example has been shown to require significant adjustments to predicate
abstraction to accommodate fixed-thread concurrency [8], and has been claimed
to require an entirely new theory to cope with the unbounded-thread case [15].
We rely on the same predicates used in earlier work, and it is clear what motivates
each predicate. P1 ensures t is a”new” ticket larger than previous ones, P2 is

Delay-Bounded Scheduling Without Delay! 399

shared int s := 0, t := 0

local int l := fetch and add(t)
0: while s �= l do; � wait for s = l
1: critical-section code here

inc(s)
l := fetch and add(t)
goto 0

P1: ∀i : t > li
P2: |{i : pci = 1}| ≥ 2
P3: s = l
P4: ∀i : i �= self : l �= li

Fig. 2. Left: the Ticket Lock protocol; Right: four predicates used to prove it correct

used to check the safety property, P3 tracks the condition in Line 0, and P4
means that the operating thread’s l is unique. DrUBA finds four abstract states
for both 2 threads and 3 threads using Algorithm 1. This is an n-plateau of
length 1.

To prove convergence for both Algorithm 1 and the “outer loop” increment-
ing n, we used the ACL2s theorem prover [7]. We specified the data in a concrete
state, and the four abstract states that were found. Only the second statement
disrespects this abstraction w.r.t. r, d and n, as we know the value of the test in
the first statement for an abstract state. Given these, ACL2s was able to verify
that the set of abstract states is closed under the semantics of statement 1. As
a result, we can report that Ticket Lock is safe (P2 is invariantly false), for an
arbitrary number of threads and arbitrary thread interleavings.

7 Discussion of Related Work

This work is inspired from two angles. The first is clearly the delay-bounded
scheduling (DBS) technique [10]. The authors formalize this concept and show its
effectiveness as a testing scheme. Their computational model of a dynamic task
buffer is somewhat different from ours. We have not discussed dynamic thread
creation here; it can be simulated by creating threads up-front and delaying them
until such time as they are supposed to come into existence. The DBS paper also
presents a sequentialization technique that can be turned into a symbolic verifier
via verification-condition generation and SMT solving. This, however, requires
bounding loops and recursion. Our approach combines exhaustive finite-state
model exploration with convergence detection and thus does not suffer from
these restrictions.

The second inspiration comes from an earlier context-unbounded analysis
technique [18]. Similar in spirit to the present work, [18] started from a yet ear-
lier context-bounded analysis technique and describes a condition under which
a chosen context bound is sufficient to reach all states reachable under some
abstraction. For the case of concurrent pushdown systems (CPDS)—the verifi-
cation target of [18]—, the pop operation plays a crucial role in establishing this
condition; note that, in our work, pop actions disrespect the top-of-the-stack
abstraction commonly used for CPDS.

400 A. Johnson and T. Wahl

Our work has a number of advantages over [18]. First, and crucially, the
set of states reachable under a context bound can be infinite (a single context
can already generate infinitely many states); its determination thus requires
more expensive symbolic reachability methods. In contrast, the reachability set
under Round-Robin scheduling with a round- and a delay bound is always finite;
moreover, it can be computed very easily, even for complex programs. This makes
our technique a prime choice for lifting existing testing schemes to verifiers.
A second advantage over [18] is that we retain much of the efficiency of the
“almost deterministic” exploration delay-bounded scheduling, as demonstrated
in Sect. 6. A downside of our work is that our convergence condition is sound only
after a plateau has emerged of length roughly equal to the number of running
threads; this is not required in [18]. However, as also demonstrated in Sect. 6,
our efforts to compute reachable states for increasing r, d in a frontier-driven
way nearly annihilates this drawback: in most cases, only a small number of
image computations happen along the plateau.

An alternative to our verification approach is a classical analysis based on
abstract interpretation [6]. Given function α, such analysis interprets the entire
program abstractly, and then computes a fixed point under the abstract pro-
gram’s transition relation. This fixed point, if it exists, overapproximates the
set of reachable abstract states. Hence, the absence of error states in the fixed
point implies safety, but the presence of errors does not immediately permit
a conclusion. In contrast, our technique interleaves concrete state space explo-
ration (enabling genuine testing) with abstraction-based convergence detection.
We believe this to be a useful approach in practical programming environments,
where abstract proof engines with poorly understood bug-finding capabilities
may be met with skepticism. A more detailed discussion of DrUBA vs. Abstract
Interpretation can be found in the Appendix of [14].

Underapproximating program behaviors using bounding techniques is a wide-
spread solution to address undecidability of safety verification problems. Exam-
ples include depth- [12] and context-bounding [16,17,20], delay-bounding [10],
bounded asynchrony [11], preemption-bounding [19], and phase-bounded anal-
ysis [2,5]. Many of these bounding techniques admit decidable analysis prob-
lems [16,17,20] and thus have been successfully used in practice for bug find-
ing. Round- and delay-bounded Round-Robin scheduling trivially renders safety
decidable, since the delay-program is finite-state. In addition, it is very easy to
implement, avoiding, for example, the need for symbolic data structures and
algorithms to represent and process intermediate reachability sets.

8 Conclusion

We have presented an approach to enhancing delay-bounded scheduling in asyn-
chronous programs with a convergence test that, if successful, certifies that all
states from some chosen abstract domain have been reached. The resulting algo-
rithm inherits from earlier work the capability to detect bugs efficiently, but can
also prove safety properties, under arbitrary thread interleavings. It exploits the

Delay-Bounded Scheduling Without Delay! 401

monotonicity of delay-bounded reachability sets to expand states and test for
convergence only when needed. We have further demonstrated that, combined
with predicate abstraction using powerful predicates, tricky unbounded-thread
routines over unbounded data, such as the Ticket Lock, can be verified using
substantially less machinery than proposed in earlier work. We have shown the
experimental competitiveness of our approach against several related techniques.

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bull. Symb.
Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Atig, M.F., Cederberg, J.: Analysis of message passing programs
using smt-solvers. In ATVA, pp. 272–286 (2013)

3. Andrews, G.R.: Concurrent programming: Principles and practice. Benjamin-
Cummings Publishing Co. (1991)

4. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In PLDI, pp. 203–213 (2001)

5. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
Int. J. Softw. Tools Technol. Transf. 16(2), 127–146 (2013). https://doi.org/10.
1007/s10009-013-0276-z

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pp.
238–252 (1977)

7. Dillinger, P.C., Manolios, P., Vroon, D., Moore, J.S.: ACL2s: “the ACL2 Sedan”.
Electron. Notes Theor. Comput. Sci. 174(2), 3–18 (2007)

8. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In: Computer Aided Verifi-
cation (CAV), pp. 356–371 (2011)

9. Donaldson, A.F., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs (Extended Technical Report).
CoRR, abs/1102.2330 (2011)

10. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Principles of
Programming Languages (POPL), pp. 411–422 (2011)

11. Fisher, J., Henzinger, T.A., Mateescu, M., Piterman, N.: Bounded asynchrony:
Concurrency for modeling cell-cell interactions. In: Formal Methods in Systems
Biology, pp. 17–32 (2008)

12. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL, pp. 174–186 (1997)

13. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV, pp.
72–83 (1997)

14. Johnson, A., Wahl, T.:Delay-bounded scheduling without delay! (Extended Tech-
nical Report). CoRR, abs/2105.07277 (2021)

15. Kaiser, A., Kroening, D., Wahl, T.: Lost in abstraction: monotonicity in multi-
threaded programs. Inf. Comput. (IaC) 252, 30–47 (2017)

16. La Torre, S., Parthasarathy, M., Parlato, G.: Analyzing recursive programs using
a fixed-point calculus. In: PLDI, pp. 211–222 (2009)

17. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. Form. Methods Syst. Des. 35(1), 73–97 (2009)

https://doi.org/10.1007/s10009-013-0276-z
https://doi.org/10.1007/s10009-013-0276-z

402 A. Johnson and T. Wahl

18. Liu, P., Wahl, T.: CUBA: interprocedural context-unbounded analysis of concur-
rent programs. In: Programming Languages Design and Implementation (PLDI),
pp. 105–119 (2018)

19. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446–455 (2007)

20. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS, pp. 93–107 (2005)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Checking Data-Race Freedom of GPU
Kernels, Compositionally

Tiago Cogumbreiro1(B) , Julien Lange2 ,
Dennis Liew Zhen Rong1 , and Hannah Zicarelli1

1 University of Massachusetts Boston, Boston, USA
{tiago.cogumbreiro,zhenrong.liew001,hannah.zicarelli001}@umb.edu

2 Royal Holloway, University of London, Egham, UK
julien.lange@rhul.ac.uk

Abstract. GPUs offer parallelism as a commodity, but they are diffi-
cult to program correctly. Static analyzers that guarantee data-race free-
dom (DRF) are essential to help programmers establish the correctness
of their programs (kernels). However, existing approaches produce too
many false alarms and struggle to handle larger programs. To address
these limitations we formalize a novel compositional analysis for DRF,
based on access memory protocols. These protocols are behavioral types
that codify the way threads interact over shared memory.

Our work includes fully mechanized proofs of our theoretical results,
the first mechanized proofs in the field of DRF analysis for GPU kernels.
Our theory is implemented in Faial, a tool that outperforms the state-of-
the-art. Notably, it can correctly verify at least 1.42× more real-world
kernels, and it exhibits a linear growth in 4 out of 5 experiments, while
others grow exponentially in all 5 experiments.

Keywords: GPU · Data-race · Static analysis · Behavioural types

1 Introduction

GPUs are massively parallel devices that promise a great return on investment
at a cost: they are notably difficult to program. In GPU programming, hundreds
of lightweight threads share portions of arrays in parallel (without locks)—very
different from the programming model of multithreaded programs written in
C or Java with heavy-weight heterogeneous threads. Data-race freedom (DRF)
analysis aims to guarantee that for all possible executions, every array cell being
written by one thread cannot be concurrently accessed by another thread.

In the field of static analysis of DRF in GPU programs, there is a tension
between efficiency and correctness (no missed data-races and no false alarms)
that thus far is unresolved. Bug finding tools [26,27,33] favor correctness over
efficiency: they provide correct results at small scales, by simulating the program
execution. Such tools are incapable of handling certain parameters symbolically
(e.g., array size) and can easily exhaust users’ resources (e.g., loops with long
iteration spaces or unknown bounds). Approaches based on Hoare logic [5,7,22]
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 403–426, 2021.
https://doi.org/10.1007/978-3-030-81685-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_19&domain=pdf
http://orcid.org/0000-0002-3209-9258
http://orcid.org/0000-0001-9697-1378
http://orcid.org/0000-0003-1002-5677
http://orcid.org/0000-0002-3607-1746
https://doi.org/10.1007/978-3-030-81685-8_19

404 T. Cogumbreiro et al.

Fig. 1. Work-flow of the verification.

can cope with medium-sized programs, do not miss data-races, and do not require
array size information; however, they suffer from a high-rate of false alarms and
require code annotations written by concurrency experts. Finally, tools that can
cope with larger programs and do not require array size information either miss
data-races [24] or overwhelm the user with false alarms [37].

To appease this tension, we introduce a novel static DRF analysis that can
handle larger programs and produce fewer false alarms than related work, with-
out missing data-races. Additionally our analysis does not require code anno-
tations or array size information. Our verification framework hinges on access
memory protocols, a new family of behavioral types [1] that codify the way
threads interact through shared memory. Our behavioral types also make evi-
dent two aspects of the analysis that can be made separate: concurrency analysis
(i.e., could these two expressions run in parallel?) and data-race conflict detec-
tion (i.e., do these array indices match?).

Contributions and Synopsis. This paper includes the following contributions.

(1) In Sect. 3, we formalize the syntax, semantics, and well-formedness con-
ditions for access memory protocols, which are behavioral types for GPU
programs. This behavioral abstraction results in a simpler yet more expres-
sive theory than previous works, e.g., it does not require user-provided loop
invariants.

(2) In Sect. 4, we show that our DRF analysis of access memory protocols can
be soundly and completely reduced to the satisfiability of an SMT formula,
see Theorems 1 and 3. Our theory and results on access memory protocols
are fully mechanized in Coq. To the best of our knowledge, this is the first
mechanized proof of correctness of a DRF analysis for GPU programs.

(3) We show that our DRF analysis of access memory protocols is compositional
when protocols satisfy a structural property, see Theorem 2. Additionally,
we show how to transform protocols when they do not meet this property.

(4) In Sect. 5 we present Faial, which infers access memory protocols from CUDA
kernels and implements our theory. Our experiments show that Faial is more
precise and scales better than existing tools.

(5) In Sect. 6, we present a thorough experimental evaluation of Faial against
related work [5,24,26,27], the largest comparative study of GPU verifica-
tion (5 tools in 260 kernels, 3 tools compared in 487 kernels). Faial verified
218 out of 227 real-world kernels (at least 1.42× more than other tools)
and correctly verified more handcrafted tests than other tools (4 out of 5).
In a synthetic benchmark suite (250 kernels), Faial is the only tool to exhibit
linear growth in 4 out of 5 experiments, while others grow exponentially in
all 5 experiments.

Checking Data-Race Freedom of GPU Kernels, Compositionally 405

Listing 2.1 Examples of racy kernels, l.h.s. is from [34] and r.h.s. simplifies l.h.s.
for clarity, with one-dimensional array and thread identifier, and 1-stride loops.

1 for (int r = 0; r < N; r++) {
2 for (int i = 0; i<TILE_DIM; i+=BLOCK_ROWS)
3 { tile [tid.y+ i][tid.x] = idata [index_in+i*width];}
4 __syncthreads();
5 for (int j = 0; j<TILE_DIM; j+=BLOCK_ROWS)
6 { odata[index_out+j*height] = tile [tid.x][tid.y+j];}}

1 for (int r = 0; r < N; r++) {
2 for (int i = 0; i<M; i++)
3 { tile [tid] = ...;}
4 __syncthreads();
5 for (int j = 0; j<M; j++)
6 {... = tile [tid+j];}}

Our paper is accompanied by an implementation (Faial), an evaluation frame-
work (inc. datasets), and proof scripts (in Coq) for each theorem. All of these
are available in our artifact [9].

2 Overview

This section gives an overview of our approach by examining a data-race we
found in published work [17,34]. We discuss the challenges that such examples
pose to the state-of-the-art of DRF analysis. Then we introduce a verification
framework based on access memory protocols: behavioral types [1] that codify
the way threads interact via shared memory. Figure 1 gives an overview of the
verification pipeline. We start from CUDA kernels, from which we infer access
memory protocols. Protocols are then checked for well-formedness and trans-
formed in three steps into formulas that are verified by an SMT solver.

2.1 Challenges of GPU Programming

GPU Programming Model. The key component of GPU programming is
the kernel program, or just kernel, that runs according to the Single-Instruction-
Multiple-Thread (SIMT) execution model, where multiple threads run a single
instruction concurrently. A kernel is parameterized by a special variable that
holds a thread identifier, henceforth named tid. In parallel, each member of a
group of threads runs an instantiated copy of the kernel by supplying its identifier
as an argument. Threads communicate via shared memory (arrays) and mediate
communication via barrier synchronization (an execution point where all threads
must wait for each other before advancing further). Writes are only guaranteed
to be visible to other threads after a barrier synchronization.

GPU programming platforms usually group threads hierarchically in multi-
ple levels, across which no inter-groups synchronization is possible. In both the
literature [6,24] and this work, the focus is on intra-group communication.

Challenges. We motivate the difficulty of analyzing data-races by studying a
programming error found in the wild, reported in Listing 2.1 (left). This excerpt
comes from a tutorial [34] on optimizing numeric algorithms for GPUs. The code
listing transposes a matrix N-times with an outer loop indexed by variable r.

Remarkably, the tutorial [34] does not inform the readers that Listing 2.1
contains a subtle data-race: one transpose-operation starts (the writes to tile

406 T. Cogumbreiro et al.

Listing 2.2 Minimal representative example of an access memory protocol high-
lighting the data-race in Listing 2.1.

1 // r = 0
2 forU j in 0..M // for (int j = 0; j<M; j++)
3 {rd[tid+j]}; // _ = tile [tid+ i];
4 // r = 1
5 forU i in 0..M // for (int i = 0; i<M; i++)
6 {wr[tid]} // tile [tid] = _;

in line 3) without awaiting the termination of the previous transpose-operation
(the reads from tile in line 6), thus corrupting the data over time and possibly
skewing the timing of the optimization to appear faster than it should be. We
found a related data-race in [17], which reuses code from [34].

Our tool, Faial, successfully identifies the program state that triggers the
data-race in Listing 2.1: when r=1 and N=2. However, state-of-the-art tools strug-
gle to accurately analyze Listing 2.1, as evaluated in Sect. 6 (Claim 1: Test 1).
Symbolic execution tools, such as [26,27], timeout for N>1, and, in general, can-
not handle symbolic (unknown) bounds. GPUVerify [6], a tool based on Hoare
logic, reports a false alarm: a spurious data-race when r=0 and N=1. PUG [24]
incorrectly identifies the example as DRF, as its analysis appears to ignore data-
races originating from different iterations of a loop.

2.2 Memory Access Protocols by Example

We now investigate the data-race in Listing 2.1 with an access memory proto-
col. For presentation purposes, we focus our discussion on Listing 2.1 (r.h.s.),
that simplifies the l.h.s. whilst retaining the root cause of its data-race, which
stems from the interaction between both loops. We discuss how we support
multi-dimensional arrays, multi-dimensional thread identifiers, and arbitrary
loop strides in Sect. 5. In our Coq formalism the notion of “accesses” (and their
dimensions) is a parameter of the theory, thus orthogonal to the theory presented
here.

Consider the execution of the end of the first iteration (r=0) and the beginning
of the second (r=1) iteration of the outer-loop. In this case, the execution of the
j-loop when r=0 is not synchronized with the execution of the i-loop when r=1 as
there is no call to __syncthreads() in between.

The access memory protocol in Listing 2.2 captures this partial execution
from the viewpoint of array tile. By design access memory protocols over approx-
imate kernels by abstracting away what data is being written to/read from an
array, to focus on where data is being written. The protocol models the two prob-
lematic loops of Listing 2.1, i.e., the j-loop when r=0 and the i-loop when r=1.
The first loop reads (rd[tid+j]) from the array, while the second writes (wr[tid])
to it. Evaluation of a protocol follows the SIMT model: each thread evaluates
wr[tid] by instantiating tid with their unique identifier (hereafter, an integer),
e.g., thread 0 yields wr[0] and thread 1 yields wr[1].

Checking Data-Race Freedom of GPU Kernels, Compositionally 407

Analysis of Unsynchronized Protocols. We say that a protocol is DRF when
all concurrent accesses are pair-wise DRF, i.e., when issued by different threads
on the same index, then neither access is a write. For instance the respective
sets of concurrent accesses of threads 0 and 1 in Listing 2.2 is given below

tid = 0
{rd[j] | 0 ≤ j < M} ∪ {wr[0]} DRF with?

tid = 1
{rd[1+j] | 0 ≤ j < M} ∪ {wr[1]}

When M>1, thread 0 (l.h.s) accesses rd[1] and thread 1 (r.h.s) accesses wr[1].
Thus, there is a data-race on index 1 of the array.

A fundamental challenge of static DRF verification is how to handle loops.
Symbolic execution approaches that unroll loops, e.g., [26,27], cannot handle
large nor symbolic iteration spaces. Static approaches that use Hoare logic, e.g.,
[5,7,22], require user-provided loop invariants. Another approach is to reduce
loops to verifying the satisfiability of a corresponding universally quantified
formula, e.g., [25,30]. This has the advantage of being fast and not requiring
invariants. However, its previous application to GPU programming, i.e., PUG,
is unsound due to the interaction between barrier synchronizations and loops,
e.g., PUG misses the data-race in Listing 2.1. We give more details in Sect. 6.

Our Approach. A key contribution of our work is to identify conditions that allow
a kernel to be reduced to a first-order logic formula, by precisely characterizing
the effect of barrier synchronization in loops. To this end, the language of access
memory protocols distinguishes syntactically between protocol fragments that
synchronize from those that do not. For instance, the protocol in Listing 2.2 is
identified as unsynchronized, as it does not include any synchronization.

In Sect. 4, we show that the DRF analysis of unsynchronized protocols can
be precisely reduced to a first-order logic formula, where universally quantified
formulae represent loops, thus obviating the need to unroll them explicitly. For
instance, we reduce the verification of Listing 2.2 to asking whether for all M ,
t1, and t2, where t1 �= t2 are thread identifiers, the following holds:

∀j1, i1, j2, i2 : 0 ≤ j1 < M ∧ 0 ≤ i1 < M ∧ 0 ≤ j2 < M ∧ 0 ≤ i2 < M =⇒
{rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}

This formula is unprovable since rd[t1 + j1] races with wr[t2] when, e.g., t1 = 0,
t2 = 1, j1 = 1, and M > 1. Hence, our technique flags Listing 2.2 as racy.

Analysis of Synchronized Protocols. The protocol in Listing 2.3 (left) mod-
els all the interactions over the shared array tile from Listing 2.1. This protocol
consists of one outer loop r that contains two inner loops separated by a barrier
synchronization (sync). The first inner loop writes (wr[tid]) to the array, while
the second reads (rd[tid + j]) from the array.

408 T. Cogumbreiro et al.

Listing 2.3 access memory protocols (left) of array tile from Listing 2.1 and its
aligned version (right).

1 forS r in 0..N {
2 forU i in 0..M { wr[tid] }
3 sync;
4 forU j in 0..M { rd[tid + j] }
5 }

aligns to

1 forU i in 0..M { wr[tid] }
2 sync;
3 forS r in 1..N {
4 forU j in 0..M { rd[tid + j] }
5 forU i in 0..M { wr[tid] }
6 sync; }
7 forU j in 0..M { rd[tid + j] }

This protocol illustrates how our language syntactically differentiates between
protocols fragments that synchronize from those that do not. Concretely, our lan-
guage precludes an unsynchronized loop (forU x ∈ n..m {u}) from calling sync any-
where in u, and it requires that a synchronized loop (forS x ∈ n..m {p}) includes
at least one occurrence of sync. The superscript U (resp. S) stands for synchronized
(resp. unsynchronized). This distinction can be inferred automatically and yields
a compositional analysis, as we explain below.

The behavior of synchronized loops is difficult to analyse because they may
contain data-races that span more than one iteration. For instance an instruction
of iteration r in Listing 2.3 may race with an instruction of iteration r+1.

Our Approach. In this work we show that the DRF analysis of synchronized proto-
cols can safely be reduced to a first-order logic formula when such loops are aligned,
i.e., when there is at least one synchronization exactly before the loop and one
at the end of its body. In Sect. 4.1 we show how to transform an arbitrary access
memory protocol into an aligned protocol using a syntax-driven transformation
technique called barrier aligning. Intuitively, barrier aligning normalizes loops so
that they do not “leak” accesses between iterations. The right-hand side of List-
ing 2.3 shows the result of applying barrier aligning on the protocol from Listing 2.3
(left). Observe that the fragment before the aligned loop (line 1) corresponds to the
unsynchronized part of the original loop (before sync). The original loop itself is
rearranged so that the part succeeding sync is moved to the beginning of the aligned
loop (lines 3–6). The fragment following the aligned loop (line 7) corresponds to
the unsynchronized loop that appears after the sync in the original protocol.

In Sect. 4.1 we show that aligned protocols enable compositional verifica-
tion: protocol fragments between two barriers can be analyzed independently.
This compositional analysis is possible because (i) there is no causality between
instructions, except through sync and (ii) aligned protocols syntactically delimit
the causality induced by sync. For instance, the aligned protocol in Listing 2.3 can
be reduced to analyzing the following three protocol fragments independently:

forU i ∈ 0..M {wr[tid]} forU j ∈ 0..M {rd[tid + j]}
forS r ∈ 1..N {forU j ∈ 0..M {rd[tid + j]}; forU i ∈ 0..M {wr[tid]}; sync}

The first two protocols are handled like Listing 2.2 because they are unsynchro-
nized. Representing a synchronized loop as a formula becomes possible when

Checking Data-Race Freedom of GPU Kernels, Compositionally 409

the protocol is aligned : both threads must share the same value for r at each
iteration. Hence, we reduce the verification to asking whether for all N , M , t1,
and t2 where t1 �= t2 and the following holds:

∀r, j1, i1, j2, i2 : 1 ≤ r<N ∧ 0 ≤ j1<M ∧ 0 ≤ i1<M ∧ 0 ≤ j2<M ∧ 0 ≤ i2<M

=⇒ {rd[t1 + j1]} ∪ {wr[t1]} DRF with? {rd[t2 + j2]} ∪ {wr[t2]}

Our technique identifies Listing 2.3 as racy since this formula is unprovable, i.e.,
rd[t1+j1] races with wr[t2] when r = 1, t1 = 0, t2 = 1, j1 = 1, N > 1 and M > 1.

3 Access Memory Protocols

An access memory protocol describes the interaction between a group of threads
and a single shared-memory location. A protocol records where in memory
accesses take place, but abstracts away from what data is read from/written
to memory. The language of protocols distinguishes between an unsynchronized
protocol fragment u ∈ U , that disallows synchronization, from a synchronized
fragment p ∈ S that must include a synchronization. The syntax and seman-
tics of access memory protocols is given in Figure 2. Our operational semantics
is inspired by the synchronous, delayed semantics (SDV) from Betts et al. [6],
where threads execute independently and communicate upon reaching a barrier.

Hereafter, i, j, k are metavariables over non-negative integers picked from the
set N. An arithmetic expression n is either: an integer variable x, an integer i,
or a binary operation on integers that yields an integer. A boolean expression b
is either a boolean literal, an arithmetic comparison 	, or a propositional logic
connective ◦. We write n ↓ i when expression n evaluates to integer i, where
evaluation is defined in the natural way. We overload the notation for Boolean
expressions, e.g., b ↓ true means that expression b evaluates to true.
Unsynchronized Fragment. A protocol u ∈ U either does nothing (skip), accesses
a shared memory location o[i] (reads from/writes to index i), performs sequential
composition, or loops. Figure 2 gives the semantics of unsynchronized protocols,
which is parameterized by a set of thread identifiers T ⊆ N, where |T | ≥ 2.

Evaluation of an unsynchronized protocol u by a thread identifier i, written
u ↓i P , yields a phase, i.e., a set P ∈ P of access values α ∈ A. Each access
value, or just access, notation i:o[j], consists of its issuing thread identifier i, an
access mode o (read/write), and an index j. Protocol skip produces no accesses.
A memory access o[n] evaluates the index and creates a singleton phase. Sequenc-
ing and looping are standard. Loop ranges include the lower bound and exclude
the upper bound. Similarly to SDV, Rule U-par executes a copy of the unsyn-
chronized code u for each thread i ∈ T by replacing the special variable tid by
the thread identifier, u[tid := i], which results in the union of the accesses of all
threads. To simplify the presentation we omit the unsynchronized conditionals,
however they are included in our Coq formalism and are fully supported by Faial,
see Sect. 5.

410 T. Cogumbreiro et al.

Syntax

N � i ::= 0 | 1 | · · ·
n ::= x | i | n � n

B � b ::= true | false | n � n | b ◦ b
U � u ::= skip | o[n] | u ; u | forU x ∈ n..m {u}
S � p ::= sync | u | p ; p | forS x ∈ n..m {p}

o ::= wr | rd
A � α ::= i:o[i]
P � P ::= {α1, . . . , αn}

H ::= [] | P : : H

Big-step semantics for U u ↓i P u ↓ S

U-skip

skip ↓i ∅

U-acc
n ↓ j

o[n] ↓i{i:o[j]}

U-seq
u1 ↓i P1 u2 ↓i P2

u1 ; u2 ↓i P1 ∪ P2

U-for-1
(n ≥ m) ↓ true

forU x ∈ n..m {u} ↓i ∅

U-for-2
(n < m) ↓ true u[x := n] ↓i P1 forU x ∈ n + 1..m {u} ↓i P2

forU x ∈ n..m {u} ↓i P1 ∪ P2

U-par
S =

⋃
{u[tid := i] ↓i Pi | i ∈ }

u ↓ S

History concatenation and merging H · H H
 H

[P1 . . . Pn] · [Pn+1 . . . Pn+k] = [P1 . . . Pn+k] (H · [P])
 ([P ′] · H ′) = H · [P ∪ P ′] · H ′

Big-step semantics for S p ↓ H

S-sync

sync ↓ [∅, ∅]

S-par
u ↓ P

u ↓ [P]

S-seq
p ↓ H q ↓ H ′

p ; q ↓ H
 H ′

S-for-1
(n ≥ m) ↓ true

forS x ∈ n..m {p} ↓[∅]

S-for-2
(n < m) ↓ true p[x := n] ↓ H forS x ∈ n + 1..m {p} ↓ H ′

forS x ∈ n..m {p} ↓ H
 H ′

Structurally well-formed protocols swf (p)

swf (u ; sync)
swf (p) swf (q)

swf (p ; q)
swf (p) tid /∈ fv(n) ∪ fv(m)

swf (u1 ; forS x ∈ n..m {p ; u2})

Data-race, safe phase, and safe history α # β safe(P) safe(H)

wr ∈ {o, o′} i �= j

i:o[k] # j:o′[k]
∀α, β ∈ P : ¬(α # β)

safe(P)
∀P ∈ H : safe(P)

safe(H)

Fig. 2. Syntax, semantics, and properties of access memory protocols.

Checking Data-Race Freedom of GPU Kernels, Compositionally 411

Synchronized Fragment. A protocol p ∈ S may perform barrier synchroniza-
tion sync, run unsynchronized code u, perform sequential composition, and loop.
Figure 2 gives the semantics of a protocol, notation p ↓ H. Evaluation of a pro-
tocol p yields a history (ranged over by H), i.e., a list of phases (P) that records
how memory was accessed. We use :: as list constructor and · for the usual list
concatenation operator. Histories are merged using the special �-operator.

A barrier synchronization creates two empty phases, corresponding to phases
before and after synchronization. Running an unsynchronized protocol yields a
single phase containing all accesses performed by that protocol. Sequencing two
synchronized protocols p with q merges the last phase of the former with the
first phase of the latter, as these two phases run concurrently. The base case of
a synchronized loop produces a singleton history containing the empty phase.
Running one iteration of a synchronized loop sequences the history of the first
iteration with the rest of the loop, by merging the two histories.

Next, we introduce the notion of well-formed protocols, a restriction of
structurally well-formed protocols, see swf (p) in Figure 2. We discuss how well-
formedness is enforced in Sect. 5. We write fv(p) (resp. fv(n)) for the free vari-
ables of p (resp. n).

Definition 1 (Well-formed protocol, p ∈ W). We say that a protocol is well-
formed, notation p ∈ W, when swf (p), fv(p) ⊆ {tid}, and every synchronized
loop executes at least one iteration.

DRF is formalized at the bottom of Figure 2. Two accesses are in a data-race
(or racy) when there exist two different threads that access the same index k,
and one of these accesses is a write. Our definition does not distinguish between
harmful and benign data races, a data-race in which both threads write the same
value. Phase P is safe iff each pair of accesses it contains is not racy. History P is
safe when all of its phases are safe. We say that p is DRF iff p ↓ H and safe(H).

4 DRF-Preserving Transformations of Protocols

This section presents the main steps of the DRF analysis summarized in Figure 1:
barrier aligning (Sect. 4.1) and splitting (Sect. 4.2).

This section also includes our key theoretical results. We establish that these
steps preserve and reflect data-races (i.e., any and all data-races are found), see
Theorem 1 and Theorem 3. We make precise the notion of compositionality that
makes our approach scalable in Theorem 2.

4.1 Aligning Protocols

The first transformation step normalizes protocols by aligning synchronized
loops, which in turn enables a form of compositional verification. The goal of the
transformation is to produce protocols which belong to A, see top of Figure 3.

Barrier aligning (or just aligning) is performed by function align, given in
the bottom half of Figure 3. The function returns a pair whose first element is an

412 T. Cogumbreiro et al.

Aligned protocols p ∈ A

u ; sync ∈ A p ∈ A q ∈ A
p ; q ∈ A

p ∈ A q ∈ A
p ; forS x ∈ n..m {q} ∈ A

Sequencing aligned protocols o
9 : U → A → A o

9 : (A × U) → (A × U) → A × U

u o
9 (u′ ; sync) = (u ; u′) ; sync u o

9 (p ; q) = (u o
9 p) ; q (p, u) o

9 (q, u′) = (p ;(u o
9 q), u′)

Aligning protocols align : W → A × U

align(u ; sync) = (u ; sync, skip) align(p ; q) = align(p) o
9 align(q)

align(p) = (q, u3) q1 = u1
o
9 q[x := n] u = u3 ; u2

align(u1 ; forS x ∈ n..m {p ; u2}) = (q1 ; forS x ∈ n+1..m {u[x := x−1] o
9 q}, u[x := m−1])

Fig. 3. Aligning protocols.

aligned and synchronized protocol, and whose second element is an unsynchro-
nized protocol. Intuitively, the pair represents a sequence which we delimitate
syntactically. We note that the output of align, say (q, u), can be trivially made
into an aligned protocol: q;u; sync. The case for synchronization is simple, align
returns the input protocol as the first component of the pair and skip as the
second component (the input protocol is already fully aligned). The case for
sequence consists of the sequential composition of the pair aligned with unsyn-
chronized code using operator (o

9). Sequencing two pairs (p, u) o
9 (q, u′) amounts

to sequencing u to the outer-most piece of unsynchronized code present in q.
Dealing with synchronized loops is more involved. Given a loop u1; forS x ∈

n..m {p;u2}, we produce a protocol consisting of the fragment preceding the
loop and the synchronized part of its first iteration (q1), an aligned loop starting
at n+1, and the unsynchronized part of its last iteration (u[x := m−1]). See
Listing 2.3 for an example of protocol aligning. We note that we can always unroll
the loop because the analysis only considers non-empty synchronized loops; we
discuss how to enforce this assumption in Sect. 5.

We now state two fundamental properties of barrier aligning: preserving
and reflecting DRF (Theorem 1), and enabling compositional verification (The-
orem2). Theorem1 states that verifying DRF of a well-formed protocol p is
equivalent to verifying DRF of its aligned counterpart.

Theorem 1 (Correctness of Align). If p ∈ W and align(p) = (q, u), then
p is DRF if and only if q;u is DRF.

To state our compositionality result, we introduce a language of contexts:

C ::= [_] | u; sync | p; C | C; p | C; forS x ∈ n..m {p} | p; forS x ∈ n..m {C}

Checking Data-Race Freedom of GPU Kernels, Compositionally 413

Syntax

L � h ::= skip | n:o[m] | h ; h | var x in n..m; h

Product of histories H ⊗ H

H1 ⊗ H2 = [P1 ∪ P2 | (P1, P2) ∈ H1 × H2]

Big-step semantics h ⇓ H

skip ⇓ [∅]
n ↓ i m ↓ j

n:o[m] ⇓ [{i:o[j]}]
h1 ⇓ H1 h2 ⇓ H2

h1 ; h2 ⇓ H1 ⊗ H2

(n ≥ m) ↓ true
var x in n..m; h ⇓ [∅]

(n < m) ↓ true h[x := n] ⇓ H1 var x in n + 1..m; h ⇓ H2

var x in n..m; h ⇓ H1 · H2

Projection trace : U → L

trace(o[n]) = tid:o[n] trace(forU x ∈ n..m {u}) = var x in n..m; trace(u)

trace(u1 ; u2) = trace(u1) ; trace(u2) trace(skip) = skip

Splitting protocols split : A → [L]

split(p ; q) = split(p) · split(q)

t1, t2 fresh h1 = trace(u)[tid := t1] h2 = trace(u)[tid := t2]
split(u ; sync) = [var t1 in 1..| |; var t2 in 0..t1; h1 ; h2]

split(p ; forS x ∈ n..m {q}) = split(p) · [var x in n..m; h | h ∈ split(q)]

Fig. 4. Syntax and semantics of symbolic traces, and splitting of protocols.

The base cases correspond to a hole [_] or an unsynchronized protocol (followed
by sync). The other cases follow the structure of access memory protocols.

Theorem 2 (Compositionality). Let C be a context, s.t. C[skip; sync] is DRF.
For all p ∈ A, if p is DRF, fv(p) ⊆ {tid}, then C[p] ∈ A and C[p] is also DRF.

Compositionality allows Faial to analyze each fragment of an aligned protocol
independently, by splitting the given protocol into multiple symbolic traces.

4.2 Splitting Protocols into Symbolic Traces

The second verification step, splitting, consists in transforming an aligned proto-
col into symbolic traces, i.e., symbolic representations of sets of memory accesses
which occur between two synchronizations.

414 T. Cogumbreiro et al.

Symbolic Traces. Intuitively, symbolic traces are a thin abstraction over an SMT
formula. We describe how to translate a symbolic trace to a formula in Sect. 5.

We give the syntax and semantics of symbolic traces in Figure 4. Expres-
sion skip terminates a trace. Expression n:o[m] states that thread n accesses
index m with mode o. Expression h1;h2 composes two symbolic traces using
operator ⊗, also given in Figure 4. Expression var x in n..m;h binds variable x
in h, where variable x is an integer in the range induced from n and m. The
semantics of a symbolic trace yields a history with a phase for each possible vari-
able assignment. Expression skip yields a single empty phase. Expression n:o[m]
evaluates to a singleton set that contains the access value that results from eval-
uating the thread-identifier expression n and the index expression m. Sequencing
histories h1;h1 consists of performing the product of phases (operator ⊗), which
consists of merging every phase of H1 with every phase of H2. A variable binder
behaves like a skip when the range of values is empty. Otherwise, we fork two his-
tories H1 and H2. We assign the lower bound of the set in H1, and we recursively
evaluate a variable binder where we increment its lower bound in H2.

Barrier splitting is the transformation from aligned protocols to symbolic traces,
performed via functions trace and split , defined in Figure 4. Function trace
extracts the symbolic trace of an unsynchronized program for a single thread.
Memory accesses are tagged with the owner thread tid, and unsynchronized
loops are converted into variable bindings. Function split returns a list of sym-
bolic traces. The case for p; q is trivial (operator · stands for list concatenation).
The base case of split is for unsynchronized protocol fragment u, which produces
a list containing a single symbolic trace. It introduces fresh variables t1 and t2
that represent two (distinct) symbolic thread identifiers. The rest of the trace
consists of the trace of u instantiated to the first thread identifier t1 followed
by its instantiation to the second thread identifier t2. The case for synchronized
loops simply reinterprets the loop as a variable binder. Function split leads to an
exponential blow up wrt. nesting of synchronized loops, but this has not posed
problems in practice, c.f., Claim 2.

Example 1. Let p̂ = wr[tid + 1]; rd[tid + 2]; sync. We have that split(p̂) returns:

var t1 in 1..|T |; var t2 in 0..t1; t1:wr[t1+1]; t1:rd[t1+2]; t2:wr[t2+1]; t2:rd[t2+2]

We show that barrier splitting preserves and reflects DRF.

Theorem 3. Let p ∈ A, such that p ↓ H1, and H2 = [H | h ∈ split(p)∧h ⇓ H],
then safe(H1) if and only if safe(H2).

Hence we have established that aligning (Theorem 1) and splitting (Theo-
rem 3) preserve and reflect data-races, i.e., any and all data-races are found.
Thus, the only source of approximation in our analysis stems from the inference
of protocols from CUDA kernels, which we discuss in the next section. Theorem 3
highlights the compositionality of our analysis, as each symbolic trace resulting
from function split can be analyzed independently.

Checking Data-Race Freedom of GPU Kernels, Compositionally 415

5 Implementation

In this section we present our tool, Faial, that implements the steps described
in Figure 1. Faial takes a CUDA kernel as input and produces results that either
identify the kernel as DRF or list specific data-races. In this section, we describe
the implementation of the protocol inference, well-formedness checks, and trans-
formation to SMT.
Inference. This step transforms a CUDA kernel into access memory protocols
(one for each shared array). It uses libclang [23] to parse the kernel, a standard
single static assignment (SSA) transformation to simplify the analysis of indices
and arrays, and code slicing to only retain code related to shared array accesses.
We note that Faial supports constructs of the CUDA programming model that
are not directly modeled by access memory protocols, e.g., unstructured loops,
conditionals, function calls, and multi-dimensional arrays. To support multi-
dimensional thread identifiers, we extend the language of protocols to support
multiple thread identifiers, and adapt function split accordingly. The main chal-
lenges are related to loops and function calls.

Whenever possible loops are transformed to loops with a stride of 1 fol-
lowing ideas from loop normalization [24] and abstraction [30]. For instance,
in for(int i=lb;i<ub;i+=s){S} we change the stride from s into 1 by exe-
cuting the loop body S when the loop variable i is divisible by stride,
i.e., the loop becomes for(int i=lb;i<ub;i++) if((i+lb)%s==0){S}. Similarly, a
loop ranging over powers of n, e.g., for(int i=lb;i<ub;i*=s), becomes for(int
i=lb;i<ub;i++) if(powerof(i,s)){S}, where function powerof(i,s) tests whether i is
a power of base s. We approximate whiles as a structured loop with an unknown
upper bound.

Function calls that manipulate shared memory are uncommon in GPU pro-
gramming. Additionally auxiliary functions that manipulate shared memory
have a compiler annotation to inline their bodies, hence we can inline such calls
easily. Faial cannot handle recursive functions, but these rarely occur in practice.
Function calls that do not access shared memory are simply discarded.

Well-Formedness. This step ensures that kernels Faial analyzes meet the well-
formedness conditions, i.e., p ∈ W, including the assumptions that synchronized
loops iterate at least once, see Definition 1. First, Faial annotates loops with a
synchronized/unsynchronized tag according to the presence of sync in the loop
body, then adjusts the precedence of sequencing to group all unsynchronized code
preceding a sync or a synchronized loops. Synchronized loops of well-formed pro-
tocols cannot manipulate thread-local variables (i.e., tid), an assumption shared
by the CUDA programming model. Hence, Faial flags such kernels as erroneous.
Next, Faial adds assertions before/after synchronized loops to check that the
loop range is non-empty, i.e., loops execute at least once. Similarly to loops,
conditionals are tagged as synchronized or unsynchronized. Then, Faial inlines
synchronized conditionals, i.e., when a synchronized conditional is found, two
copies of the input program are created and each copy is prefixed by a global
assertion corresponding to the condition. Faial does not support synchronized

416 T. Cogumbreiro et al.

conditionals that appear within synchronized loops. We have not found real-
world kernels that include such a construction.
Quantification. This step transforms each symbolic trace (Figure 4) into an SMT
formula, to check for safety, c.f., Figure 2. The presented formalism assumes a
decidable fragment. However, as CUDA programs may include multiplication in
index expressions, Faial uses an undecidable logic (SMTLib’s QF_LIA). Essen-
tially, the generated formula guarantees that the indices of array accesses are
distinct when there is at least one write. We illustrate this straightforward trans-
formation with Example 2.

Example 2. The formula generated from the trace in Example 1 is given below:

∀t1, t2 : 1 ≤ t1 < |T | ∧ 0 ≤ t2 < t1 ∧ (m1 = wr ∨ m2 = wr) =⇒
(
(idx1 = t1 + 1 ∧ m1 = wr) ∨ (idx1 = t1 + 2 ∧ m1 = rd)

)

∧
(
(idx2 = t2 + 1 ∧ m2 = wr) ∨ (idx2 = t2 + 2 ∧ m2 = rd)

)
∧ idx1 �= idx2

where each symbolic access is translated to a conjunction representing its index
(idx) and access mode (m). Observe that the formula enforces that indices idx1

and idx2 (executed by distinct threads) are different.

For multi-dimensional arrays, we generate one pair of indices per dimension, and
check that at least one pair is distinct.

6 Experimental Evaluation

We evaluate Faial over several datasets and show how it fares against existing
approaches. We structure this evaluation in three claims.

Claim 1: Correctness. We claim that our approach finds more bugs and raises
fewer false alarms than existing tools. To evaluate this claim, we compare
Faial against four state-of-the-art kernel verification tools over 10 kernels that
are known to be tricky to analyze.

Claim 2: Scalability. We claim that our approach scales better to larger pro-
grams. To evaluate this claim, we compare Faial against other tools over a set
of synthetic benchmarks designed to test the limits of each tool, in terms of
run time and memory usage.

Claim 3: Real-world usability. We claim that our approach is more usable
than existing static verification tools on real-world CUDA programs. To evalu-
ate this claim, we use a varied dataset of real-world DRF kernels and measure
the false alarm rate, run time, and memory usage of Faial, GPUVerify, and
PUG.

Benchmarking Environment. To make our evaluation reproducible, we developed
a benchmarking framework to automate our experiments over the different tools
and datasets. For Claim 1 and Claim 3, we designed a tool-agnostic file format for
kernel functions and associated metadata (e.g., expected result of DRF analysis,

Checking Data-Race Freedom of GPU Kernels, Compositionally 417

Table 1. Results for Claim 1. DRF indicates that a (static analysis) tool reported
a test case as DRF. NRR indicates that a (symbolic execution) tool did not report
any data-race. Label x/y indicates that the tool reported y data-races, x of which are
actual races. Label timeout indicates that the tool did not terminate within 90s. A test
passes if the tool returns the expected result and all reported races are valid.

Test Expected Faial GPUVerify PUG GKLEE SESA

1 transposeDiagonal Racy 1/1 0/2 DRF timeout timeout
DRF DRF 0/1 DRF timeout timeout

2 first-iter Racy 1/1 0/1 1/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

3 last-iter Racy 1/1 1/1 0/1 timeout timeout
DRF DRF 0/1 DRF timeout timeout

4 last-iter-first-iter Racy 1/1 0/1 0/1 timeout timeout
DRF DRF 0/1 0/1 timeout timeout

5 read-index Racy 0/1 1/1 0/1 NRR NRR
DRF 0/1 DRF 0/1 NRR NRR

Number of tests passed (of 5): 4 1 0 0 0

grid and block dimensions, and include directives). And for Claim 2, we created
a tool that generates kernels according to given templates, e.g., see Figure 7.

We evaluate Faial against the following verification tools: GPUVerify [5] v2018-
03-22; PUG [24] v0.2; and, GKLEE [26] and SESA [27] v3.0. Experiments for Claim 1
useanIntel i5-6500CPU,7.7GBRAM,andFedora33OS,whileClaim2andClaim3
use an Intel i7-10510U CPU, 16GB RAM, and Pop! OS.
Excluded Tools. We excluded ESBMC-GPU [33] and Simulee [37] from the evalu-
ation because we were unable to get them to run satisfactorily. Both tools have
rudimentary support for verifying arbitrary CUDA kernels. ESBMC-GPU did not
find a single data-race in our benchmarks, while Simulee produced false alarms
for every DRF-kernel given.

Claim 1: Correctness

We have selected a set of tricky kernels to expose false alarms and missed data-
races in Faial, GPUVerify, PUG, GKLEE, and SESA. Our results are reported
in Table 1. The dataset consists of 5 tests, each consisting of two variations
of the same kernel: one racy and one DRF. The racy version of Test 1 (c.f.,
Listing 2.1) contains an inter-iteration data-races. The DRF version adds a sync
after the second inner loop. Tests 2 to 4 expose various loop-related data-races.
Their protocols are given in Figure 5. In the racy version of Test 2 wr[tid + 1]
conflicts with wr[tid] of the first iteration. Similarly, in the racy version of Test 3,
wr[tid + 1] of the last iteration races with wr[tid]. In the racy version of Test 4 the
last iteration of a nested loop races with the first iteration of the following loop.
Test 5 exposes the abstraction gap between kernel and access memory protocols
(which abstract away array elements), see Figure 6.

Faial passes more tests than any other tool. Failed Test 5 is caused by access
memory protocols abstracting away from what data is being read from/written

418 T. Cogumbreiro et al.

Fig. 5. Protocols for Tests 2 to 4, c.f., Claim 1, where N is a free thread-global variable.
Yellow shaded code only appears in the DRF version of first-iter and last-iter. Red
shaded code only appears in the racy version of last-iter-first-iter (Color figure online).

Fig. 6. Kernels and protocols for Test 5 (read-index), c.f., Claim 1; x becomes a free
thread-local variable as protocols do not model array elements.

to arrays, i.e., array elements. In each case, Faial reports one spurious data
race (0/1). We report on performance trade-offs wrt. tracking array elements in
Claim 2.

GPUVerify passes Test 5 because it tracks array elements, but fails the remain-
ing 4 tests. Some reported false alarms are ill-formed, e.g., on the racy component
of Test 2, the report (0 : wr[tid]; 16 : wr[tid]) has disjoint indices.

PUG obtains the worst score amongst static tools. Notably, the tool misses a
data-race in Test 1, demonstrating its unsoundness, c.f., Sect. 2.1.

GKLEE and SESA timeout for tests that include loops, as the loop bounds
are unknown.Both tools miss the data-race in Test 5. Symbolic tools may be able
to report data-races when the bound is known, e.g., timeouts start in Test 1 when
the bound is at least 2, in Test 2 when the bound is at least 23, 000.

Claim 2: Scalability

We evaluate the scalability of our approach with a synthetic dataset that aims
at demonstrating how different kernel constructs affect run time and memory
usage of Faial, GKLEE, GPUVerify, PUG, and SESA. Our dataset is divided into
five categories, one per syntactical construct in the language of access memory
protocols, as well as conditionals, which are supported by our inference step,
c.f., Sect. 5. Figure 7 shows the protocols of the kernel patterns we generate in
each category: (i) repeated accesses (read then write), (ii) repeated barrier syn-
chronizations separated by writes, (iii) repeated conditionals, (iv) increasingly
nested unsynchronized loops, and (v) increasingly nested synchronized loops. In
each category, we vary the problem size by repeating a pattern from 1 to 50
times. Note that all kernels generated this way are DRF.

Checking Data-Race Freedom of GPU Kernels, Compositionally 419

Fig. 7. Synthetic protocols generated for Claim 2. N is a free thread-global variable,
and n1, n2. . . are positive integer literals.

Figure 8 shows the average run time and memory usage over five runs on
logarithmic and linear scales, respectively. For each run, we set a timeout of 90s
and we exclude any run that times out or reports a false alarm. Cutoffs in the
memory plots are determined by the cutoffs in the run time plots.

Overall Faial is the most scalable tool. In 4 out of 5 categories, Faial has the
slowest growth for all experiments, and verifies all tests within 0.46 s. In the
largest problem sizes, our tool is the fastest in 3 categories (access, conditional,
unsynchronized loop), 2nd for barriers, and 3rd for synchronized loops. Overall,
the memory usage of Faial is competitive with other tools. Faial is the only tool
with a near constant time/memory for up to 50 unsynchronized loops, indicating
the scalability of reducing unsynchronized loops to universally quantified formu-
las. Faial only times out for kernels which consists of >17 nested synchronized
loops. However such kernels are uncommon, e.g., the levels of nested synchro-
nized loops in the real-word kernels studied in Claim 3 are at most 3.

GPUVerify remains stable in the barrier and conditional categories but is
affected negatively by loops and accesses. Loops are a known bottleneck in
GPUVerify [2]. In the access category there is an exponential slowdown due to
GPUVerify keeping track of what data is being written to/read from array.

PUG tool remains stable with the number of barrier synchronizations but is
affected negatively by the number of conditionals and loops. PUG is the fastest
tool with smaller inputs, but it raises false alarms in the access category, hence
these measurements are omitted from the corresponding plots.

We discuss GKLEE and SESA together since SESA processes GKLEE’s NVCC
byte code output by concretizing variables, before passing it to GKLEE itself.
There are two main factors that affect negatively these symbolic execution tools:
(i) the number of loops, since they unroll each loop; and (ii) the amount of
bookkeeping required to keep track of what is read from/written to memory.
Figure 8 shows clear exponential curves for the access and barrier synchronization
categories. Observe that these tools timeout immediately in the loop categories.

Claim 3: Real-World Usability

We evaluate the usability of our approach by comparing Faial with other static
verification tools (GPUVerify and PUG) on real-world kernels wrt. rate of false
alarm and run time. We curated a set of CUDA kernels from [2], which consists
of 3 benchmark suites (totaling 227 CUDA kernels): NVIDIA GPU Computing

420 T. Cogumbreiro et al.

faial gpuverify pug sesa gklee

100

101 pug

accesses

10−1

100

barriers

10−1

100

101

conditionals

10−1

100

101

102

sesa

gklee

unsync-loops

1 8 15 22 29 36 43 50

10−1

100

101

102

sesa

gklee

sync-loops

T
im

e
(s

)

Problem size

40

45

50

55

60
pug

accesses

40

45

50

55

60

65

70barriers

40

45

50

55

60conditionals

40

50

60

70

80
sesa

gklee

unsync-loops

1 8 15 22 29 36 43 50

50

100

150

200

250

sesa

gklee

sync-loops

M
em

ory
usage

(M
B

)

Problem size

Fig. 8. Results for Claim 2. Run time (left plots) are given on a logarithmic scale,
and memory (right plots) are given on a linear scale. Flatter and lower curve is better.
Tools annotated with a triangle are excluded due to timeouts or errors.

SDK v2.0 (8 CUDA kernels); NVIDIA GPU Computing SDK v5.0 (166 CUDA
kernels); Microsoft C++ AMP Sample Projects (20 kernels); gpgpu-sim bench-
marks (33 kernels). All kernels are DRF and have been pre-processed by the
authors of [2] to facilitate verification. Each kernel is in a distinct file, all depen-
dencies are available, and kernels are annotated with minimal pre-conditions to
allow for automatic analysis (e.g., thread count is given).

Checking Data-Race Freedom of GPU Kernels, Compositionally 421

Correct (C) False Alarm (F) Unsupported (U) Timeout (T)

C: 96.0% (218)

F: 4.0% (9)

U: 0.0% (0)

T: 0.0% (0)

(a) Faial

C: 67.4% (153)

F: 20.7% (47)

U: 0.4% (1)

T: 11.5% (26)

(b) GPUVerify

C: 34.8% (79)

F: 2.6% (6)

U: 62.6% (142)

T: 0.0% (0)

(c) PUG

faial gpuverify pug

0

100

101

T
im

e
(s

)

0 20 40 60 80 100 120 140 160 180 200 220

Kernel id

40

50

60

70

80

90

M
em

or
y

(M
B

)

(d) Run time (top) and memory usage (bottom) of true-positives. Time (resp. memory)
is cropped at 10s (resp. 100MB) and plotted on a logarithmic (resp. linear) scale.

Fig. 9. Results for Claim 3, on a set of 227 DRF CUDA kernels.

As we aim to evaluate fully automatic verification of three tools, we removed
code annotations (pre-conditions and loop invariants) specific to GPUVerify.
Additionally, we made minor changes to some kernels to meet the limitations of
the front-end of Faial and PUG. For instance we converted nested array lookups
to use temporary variables and inlined functions calls that operate on arrays in
22 kernels. Another 8 kernels were modified to simplify their control flows. Our
curated dataset will be included in our artifact submission.

Figures 9a, b, and c give the correctness results of Faial, GPUVerify, and PUG,
respectively. Correct refers to the true-positive rate, i.e., when the tool correctly
identifies the kernel as DRF. False Alarm refers to the false alarm rate, i.e., when
the tool incorrectly identifies the kernel as racy. A kernel is Unsupported if it
makes the tool crash. A Timeout occurs when the tool exceeds the limit of 60s
to verify a kernel. The values shown are an average calculated over five runs.

422 T. Cogumbreiro et al.

Figure 9d shows the average run time and memory usage of every true-positive
report (we omit invalid reports) across the three tools.

Overall Faial has the highest rate of true-positives at 96%. Our tool is second
in terms of run time and memory usage, showing a good compromise w.r.t. time
and space. Faial verifies most kernels within 1s, and all kernels that need more
time are only verified by Faial. GPUVerify shows lower memory usage at the
cost of a higher verification run time. PUG verifies the lowest number of kernels
(34.8%), as most kernels are unsupported (62.6%).

7 Related Work

SMT-Based DRF Analyses. Li and Gopalakrishnan propose a direct encoding of
DRF analysis of GPU programs in SMT, with PUG [24,25]. Both PUG and Faial
follow a similar approach of barrier splitting: having a symbolic representation of
a canonical interleaving, and dividing up the analysis over barrier intervals. The
two major distinctions are that (1) PUG misses inter-thread data-races in syn-
chronized loops, e.g., Listing 2.1, and (2) the algorithms of PUG are unspecified
and lack soundness proofs. In [24, Sect. 6.3] the authors identify the challenge of
detecting inter-thread data-races, but do not elaborate a solution. Ma et al. [30]
present a similar technique to detect data-races and deadlocks in OpenMP pro-
grams (CPU-based parallelism). However, their work does not guarantee DRF,
and they do not formalize their algorithms. In [8], Prasanth et al. propose a
polyhedral encoding of DRF for OpenMP programs, which is only applicable to
programs with affine array accesses. However the prevalence of linearized array
expressions in GPU kernels is known to stump polyhedral analysis [16].
Hoare-Logic-Based DRF Analyses. The main drawback of Hoare-logic based
tools is their high rate of false alarms. They also require code annotations from
a concurrency expert to handle loops. GPUVerify [2,3,5,6,12] can verify CUDA
and OpenCL kernels using Boogie [4] as a backend. GPUVerify also relies on
a two-thread abstraction (pen and paper proof)—in this paper, we present the
first machine-checked proof of the two-thread abstraction idea. VeriCUDA [20,21]
focuses on reasoning about the functional correctness of GPU programs using
Hoare-logic. In [22] the authors extend VeriCUDA to proving DRF. In a sim-
ilar vein, VerCors [7] uses separation logic to prove the functional correctness
and DRF of GPU kernels. Both VeriCUDA and VerCors expect a tool-specific
language, hence cannot handle real-world kernels directly.
Data-Race Finders. These include dynamic data-race detection, symbolic-
execution, and model-checking. Such techniques are better suited for highly
detailed analysis in smaller kernels, and typically are unable to prove DRF.
Dynamic data-race detection executes a kernel to find data-races on a fixed
input, e.g., [14,18,19,28,32,38,39]. This technique only reports real data-races,
but suffers from a slowdown of at least 10× compared to the non-instrumented
program, and requires the kernel input data, which might be unavailable or
unknown. Symbolic execution and model checking have been extended to detect

Checking Data-Race Freedom of GPU Kernels, Compositionally 423

data-races [10,11,26,33,37]. These techniques do without the kernel input data
and can detect more data-races than dynamic data-race detection.
Miscellaneous. Ferrel et al. introduce a machine-checked formalism to reason
about the semantics of CUDA assembly [15]. Dabrowski et al. mechanize the
DRF-analysis of multithreaded programs [13]. Muller and Hoffmann present a
logic to reason about the evaluation cost of CUDA kernels [31].

Other behavioral types have been used to verify parallel and multithreaded
systems that communicate via message-passing [29,35,36]. However these do not
capture shared memory (only message-passing), thus cannot address data-races.

8 Conclusion

We tackle the problem of statically checking DRF in GPU kernels, with a new
family of behavioral types, i.e., access memory protocols. We provide a novel
compositional analysis of access memory protocols, along with fully mechanized
proofs and an implementation. Our evaluation explores challenging and diverse
benchmarks (229 real-world and 258 synthetic kernels) to demonstrate that our
approach is more precise (false alarms and missed alarms), scalable (time/mem-
ory growth), and usable (real-world kernels correctly verified) than other tools.

Acknowledgements. We thank Rumyana Neykova, Stephen Chang, and the anony-
mous reviewers for their insightful feedback on earlier versions of this work.

References

1. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016). https://doi.org/10.1561/2500000031

2. Bardsley, E., et al.: Engineering a static verification tool for GPU kernels. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 226–242. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_15

3. Bardsley, E., Donaldson, A.F., Wickerson, J.: KernelInterceptor: automating GPU
kernel verification by intercepting kernels and their parameters. In: Proceedings of
IWOCL, pp. 1–5 (May 2014). https://doi.org/10.1145/2664666.2664673

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
a modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

5. Betts, A., et al.: The design and implementation of a verification technique for
GPU kernels. Trans. Program. Lang. Syst. 37(3), 1–49 (2015). https://doi.org/10.
1145/2743017

6. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a
verifier for GPU kernels. In: Proceedings of OOPSLA, pp. 113–132. ACM (2012).
https://doi.org/10.1145/2384616.2384625

7. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU pro-
grams. Sci. Comput. Program. 95(P3), 376–388 (2014). https://doi.org/10.1016/
j.scico.2014.03.013

https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1145/2664666.2664673
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1016/j.scico.2014.03.013
https://doi.org/10.1016/j.scico.2014.03.013

424 T. Cogumbreiro et al.

8. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model for
SPMD programs and its use in static data race detection. In: Ding, C., Criswell, J.,
Wu, P. (eds.) LCPC 2016. LNCS, vol. 10136, pp. 106–120. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52709-3_10

9. Cogumbreiro, T., Lange, J., Liew Zhen Rong, D., Zicarelli, H.: Checking Data-Race
Freedom of GPU Kernels, Compositionally (Artifact) (2021). https://doi.org/10.
5281/zenodo.4726300

10. Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In:
Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 203–218.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34188-5_18

11. Collingbourne, P., Cadar, C., Kelly, P.H.: Symbolic crosschecking of floating-point
and SIMD code. In: Proceedings of EuroSys, pp. 315–328. ACM (2011). https://
doi.org/10.1145/1966445.1966475

12. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-
step semantics for analysis and verification of GPU kernels. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 270–289. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6_16

13. Dabrowski, F., Pichardie, D.: A certified data race analysis for a Java-like language.
In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 212–227. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9_16

14. Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: BARRACUDA:
binary-level analysis of runtime RAces in CUDA programs. In: Proceedings of
PLDI, pp. 126–140. ACM (2017). https://doi.org/10.1145/3062341.3062342

15. Ferrell, B., Duan, J., Hamlen, K.W.: CUDA au Coq: a framework for machine-
validating GPU assembly programs. In: Proceedings of DATE, pp. 474–479 (2019).
https://doi.org/10.23919/DATE.2019.8715160

16. Grosser, T., Ramanujam, J., Pouchet, L.N., Sadayappan, P., Pop, S.: Optimistic
delinearization of parametrically sized arrays. In: Proceedings of ICS, pp. 351–360.
ACM (2015). https://doi.org/10.1145/2751205.2751248

17. ul Hassan Khan Khan, A., Al-Mouhamed, M., Fatayer, A., Almousa, A., Baqais,
A., Assayony, M.: Padding free bank conflict resolution for CUDA-based matrix
transpose algorithm. In: Proceedings of SNPD, pp. 1–6 (2014). https://doi.org/10.
1109/SNPD.2014.6888709

18. Holey, A., Mekkat, V., Zhai, A.: HAccRG: hardware-accelerated data race detection
in GPUs. In: Proceedings of ICPP, pp. 60–69 (2013). https://doi.org/10.1109/
ICPP.2013.15

19. Kamath, A.K., George, A.A., Basu, A.: ScoRD: a scoped race detector for GPUs.
In: Proceedings of ISCA, pp. 1036–1049. IEEE (2020). https://doi.org/10.1109/
ISCA45697.2020.00088

20. Kojima, K., Igarashi, A.: A hoare logic for SIMT programs. In: Shan, C. (ed.)
APLAS 2013. LNCS, vol. 8301, pp. 58–73. Springer, Cham (2013). https://doi.
org/10.1007/978-3-319-03542-0_5

21. Kojima, K., Igarashi, A.: A hoare logic for GPU kernels. Trans. Comput. Logic
18(1), 1–43 (2017). https://doi.org/10.1145/3001834

22. Kojima, K., Imanishi, A., Igarashi, A.: Automated verification of functional cor-
rectness of race-free GPU programs. J. Autom. Reason. 60(3), 279–298 (2017).
https://doi.org/10.1007/s10817-017-9428-2

23. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of CGO, pp. 75–88. IEEE (2004). https://
doi.org/10.1109/CGO.2004.1281665

https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.5281/zenodo.4726300
https://doi.org/10.5281/zenodo.4726300
https://doi.org/10.1007/978-3-642-34188-5_18
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1145/1966445.1966475
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1007/978-3-642-03359-9_16
https://doi.org/10.1007/978-3-642-03359-9_16
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.23919/DATE.2019.8715160
https://doi.org/10.1145/2751205.2751248
https://doi.org/10.1109/SNPD.2014.6888709
https://doi.org/10.1109/SNPD.2014.6888709
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ICPP.2013.15
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1007/978-3-319-03542-0_5
https://doi.org/10.1007/978-3-319-03542-0_5
https://doi.org/10.1145/3001834
https://doi.org/10.1007/s10817-017-9428-2
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665

Checking Data-Race Freedom of GPU Kernels, Compositionally 425

24. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proceedings of FSE, pp. 187–196. ACM (2010). https://doi.org/10.1145/
1882291.1882320

25. Li, G., Gopalakrishnan, G.: Parameterized verification of GPU kernel programs.
In: Proceedings of IPDPSW, pp. 2450–2459 (2012). https://doi.org/10.1109/
IPDPSW.2012.302

26. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proceedings of PPoPP, vol.
47, pp. 215–224. ACM (2012). https://doi.org/10.1145/2370036.2145844

27. Li, P., Li, G., Gopalakrishnan, G.: Practical symbolic race checking of GPU pro-
grams. In: Proceedings of SC, pp. 179–190. IEEE (2014). https://doi.org/10.1109/
SC.2014.20

28. Li, P., et al.: LD: low-overhead GPU race detection without access monitoring.
Trans. Archit. Code Optim. 14(1), 1–25 (2017). https://doi.org/10.1145/3046678

29. López, H.A., et al.: Protocol-based verification of message-passing parallel pro-
grams. In: Proceedings of OOPSLA, pp. 280–298. ACM (2015). https://doi.org/
10.1145/2814270.2814302

30. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: Proceedings of ICPP, pp. 510–516.
IEEE (2013). https://doi.org/10.1109/ICPP.2013.63

31. Muller, S.K., Hoffmann, J.: Modeling and analyzing evaluation cost of CUDA ker-
nels. In: Proceedings of the ACM on Programming Languages 5(POPL) (2021).
https://doi.org/10.1145/3434306

32. Peng, Y., Grover, V., Devietti, J.: CURD: a dynamic CUDA race detector. In:
Proceedings of PLDI, pp. 390–403. ACM (2018). https://doi.org/10.1145/3192366.
3192368

33. Pereira, P., et al.: Verifying CUDA programs using SMT-based context-bounded
model checking. In: Proceedings of SAC, pp. 1648–1653. ACM (2016). https://doi.
org/10.1145/2851613.2851830

34. Ruetsch, G., Micikevicius, P.: Optimizing matrix transpose in CUDA. NVIDIA
CUDA SDK Application Note 18 (2009). https://www.cs.colostate.edu/~cs675/
MatrixTranspose.pdf

35. Vasconcelos, V.T.: Session types for linear multithreaded functional programming.
In: Proceedings of PPDP, pp. 1–6. ACM (2009). https://doi.org/10.1145/1599410.
1599411

36. Vasconcelos, V., Ravara, A., Gay, S.: Session types for functional multithreading.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 497–511.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_32

37. Wu, M., Ouyang, Y., Zhou, H., Zhang, L., Liu, C., Zhang, Y.: Simulee: detecting
CUDA synchronization bugs via memory-access modeling. In: Proceedings of ICSE,
pp. 937–948. ACM (2020). https://doi.org/10.1145/3377811.3380358

38. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GRace: a low-overhead mechanism
for detecting data races in GPU programs. In: Proceedings of PPoPP, pp. 135–146.
ACM (2011). https://doi.org/10.1145/1941553.1941574

39. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: detecting data races in
GPU programs via a low-overhead scheme. Trans. Parallel Distrib. Syst. 25(1),
104–115 (2014). https://doi.org/10.1109/TPDS.2013.44

https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1109/IPDPSW.2012.302
https://doi.org/10.1145/2370036.2145844
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1145/3046678
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1109/ICPP.2013.63
https://doi.org/10.1145/3434306
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/3192366.3192368
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1145/2851613.2851830
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://doi.org/10.1145/1599410.1599411
https://doi.org/10.1145/1599410.1599411
https://doi.org/10.1007/978-3-540-28644-8_32
https://doi.org/10.1145/3377811.3380358
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1109/TPDS.2013.44

426 T. Cogumbreiro et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

GENMC: A Model Checker for Weak
Memory Models

Michalis Kokologiannakis(B) and Viktor Vafeiadis

MPI-SWS, Kaiserslautern, Germany
{michalis,viktor}@mpi-sws.org

Abstract. GenMC is an LLVM-based state-of-the-art stateless model
checker for concurrent C/C++ programs. Its modular infrastructure
allows it to support complex memory models, such as RC11 and IMM,
and makes it easy to extend to support further axiomatic memory
models.

In this paper, we discuss the overall architecture of the tool and how
it can be extended to support additional memory models, programming
languages, and/or synchronization primitives. To demonstrate the point,
we have extended the tool with support for the Linux kernel memory
model (LKMM), synchronization barriers, POSIX I/O system calls, and
better error detection capabilities.

1 Introduction

For any software developer or verification engineer, it is no news that concurrent
programming is difficult, that concurrent software is often buggy, and that there-
fore verification of concurrent programs has attracted a lot of research interest.
Within the verification community at least, it is also common knowledge that
verification of concurrent programs is challenging because of the huge number
of interleavings of the threads comprising a concurrent program.

What has changed in the last decade, however, is the importance of weak
memory consistency [6,11,13,14,21,25,32,36,40,41] as a key factor contribut-
ing to the complexity of concurrent programming. Weak memory models do not
simply increase the number of thread interleavings; they also confound program-
mers, who typically have little intuition about how to reason about the behaviors
induced by these additional interleavings.

GenMC is a fully automatic verification tool meant for such programmers.
It is a stateless model checker (SMC) [23] that can be used to verify bounded
clients of intricate concurrent algorithms, such as implementations of synchro-
nization primitives and shared data structures (e.g., queues, sets, and maps). It
accepts as input a C/C++ program using C/C++11 atomics and/or the concur-
rency primitives from the pthread library, and reports any data races, assertion
violations, or other errors encountered. By default, verification is performed with
respect to the RC11 memory model [32], but there are command line options for
selecting other models, such as IMM [41] and LKMM [10].
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 427–440, 2021.
https://doi.org/10.1007/978-3-030-81685-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_20&domain=pdf
http://orcid.org/0000-0002-7905-9739
http://orcid.org/0000-0001-8436-0334
https://doi.org/10.1007/978-3-030-81685-8_20

428 M. Kokologiannakis and V. Vafeiadis

Since the theory underlying GenMC has already been published elsewhere
[28,29,31], this paper focuses on the overall design of the tool and on various
enhancements implemented in it. Our main design goals of GenMC were:

Generality: The tool should be able to verify programs written in a variety of
programming languages with respect to a variety of memory models.

Efficiency: The tool should implement a state-of-the-art SMC algorithm and
incorporate further optimizations for common programming patterns.

Usability: The tool should provide useful and readable error messages.
Extensibility: The tool should be easily adaptable to support additional models

and synchronization primitives, and to tweak its performance. Extensibility
is key to achieving the other goals, since it allows gradual improvements to
the tool in terms of coverage, performance, and error detection/reporting.

These goals are achieved by a combination of techniques:

GenMC’s core SMC algorithm [29,31] is parametric in the choice of the
memory model—subject to a few minimal constraints (see Sect. 2).
The implementation is based on LLVM, a versatile intermediate language for
multiple programming languages.
GenMC follows a modular architecture minimizing dependencies across com-
ponents (see Sect. 3), which makes it easy to extend with support for addi-
tional memory models (Sect. 4) and synchronization primitives (Sect. 5).
Its architecture contains hooks to provide fast approximate consistency
checks, which are exploited by the memory model implementations (see
Sect. 4).
GenMC contains a number of optimizations that provide noticeable perfor-
mance benefits on common workloads (Sect. 7).
GenMC keeps additional metadata so as to present error messages in terms
of variables names appearing in the source code (Sect. 6).

GenMC has been applied to a few industrial settings, where it has found bugs
and/or verified bounded correctness of concurrent libraries [39].

Related Work. There has been extensive work on SMC, with most tools focus-
ing on sequential consistency [7,8,15,23,37]. Tools that support weak memory
models include CDSChecker [38] that verifies C/C++11 programs under the
original C11 memory model, Tracer [5] that verifies C/C++11 programs under
the RA model, RCMC [27] that verifies C programs under RC11 [32], and Nid-
hugg [1,2,4,12,13] that supports SC, TSO, PSO and provides limited support
for the POWER and ARMv7 memory models. In contrast to GenMC, which
uses the same core algorithm for all memory models, Nidhugg uses multiple
different algorithms depending on the memory model.

There has also been work on adapting SAT/SMT-based bounded model
checking (BMC) techniques for weak memory models [9,17,22]. Dartagnan
[22] is a BMC tool that is parametric in the choice of the memory model, as it
accepts the memory model as input in the litmus format [11].

GenMC: A Model Checker for Weak Memory Models 429

2 Memory Model Requirements

GenMC’s core algorithm is parametric in the choice of the memory model pro-
vided that it can be expressed in an axiomatic way and satisfies a few basic
requirements that we describe below.

Axiomatic memory models represent the executions of a concurrent program
as execution graphs [11] that satisfy a certain consistency predicate. Execution
graphs comprise a set of events (nodes) that represent the individual memory
accesses performed by the program, and some relations on these events (edges).
Example relations included in all memory models are the preserved program
order (ppo) and reads-from (rf) relations: ppo relates events in the same thread
that are ordered (e.g., by a chain of dependencies or a fence), while rf relates
writes to reads reading from them.

GenMC can be used to verify programs under such a model as long as the
model’s consistency predicate fulfills the following requirements:

No-Thin-Air: In consistent graphs, ppo∪rf should be acyclic. This intuitively
means that an event cannot circularly depend on itself.

Prefix-Closedness: Restricting a consistent graph to any (ppo ∪ rf)-prefix-
closed subset of its events yields a consistent graph. Prefix-closedness enables
the algorithm to construct a consistent graph incrementally.

Extensibility: Adding a (ppo ∪ rf)-maximal event to a consistent graph for
some choice of an incoming rf-edge preserves consistency. This captures the
intuitive idea that executing a program should never get stuck if a thread has
more statements to execute. In particular, a read of x should always be able
to return the value written by the most recent write to x.

These requirements are satisfied by almost all axiomatic memory models
(e.g., TSO [40], PSO [42], Power [11], ARMv7 [11], ARMv8 [21], RC11 [32],
IMM [41], LKMM [10]). The only known axiomatic memory model that does
not satisfy these requirements is the original formulation of the C/C++11 model
[13], which has been criticized for its flaws [32,43].

Although these requirements cannot be satisfied by more advanced memory
models that cannot be defined in an axiomatic fashion (e.g., [14,24,25,33]), there
is ongoing work to support such a model.

3 Tool Architecture

Verification with GenMC comprises three stages (cf. Fig. 1, left).
The first stage invokes clang to compile the source C/C++ program to

LLVM-IR. To accommodate programs written in different languages, GenMC
also accepts LLVM-IR as its input, provided that it adheres to certain conven-
tions about thread creation.

The second stage transforms the LLVM-IR code to make verification more
effective by replacing spinloops by assume statements, bounding infinite loops,

430 M. Kokologiannakis and V. Vafeiadis

Compilation

Transformation

Verification

� Success X Error report

11
1 1

1
1

1
*

Driver

RC11 IMM LKMM

Interpreter Execution Graph

Calculator

Work Set

Fig. 1. Overal architecture (left) and dynamic components (right).

and performing sound optimizations, such as dead allocation elimination. It also
collects additional debugging information to enable better error reporting.

The third stage invokes the verification procedure, which explores all the
executions of the program. If an error is found during this stage, the execution
is halted and an error report is produced (see Sect. 6).

The architectural subcomponents of this stage are depicted in Fig. 1 (right).
At the center lies the verification driver, which owns three independent compo-
nents: an execution graph, a work set, and an interpreter.

The execution graph records the visited execution trace, and has routines
for calculating various relation on the graph, such as the happens-before rela-
tion. As each memory model comprises different relations, the execution graph
contains multiple calculators that are dynamically populated when the graph
is created, and the consistency predicate is calculated as a fixpoint of all the
selected relations, whenever this is requested by the driver.

The work set records alternate options for later exploration, the precise def-
inition of which can depend on the memory model.

The interpreter merely executes the user program, notifying the driver each
time a “visible” action (e.g., a load/store to shared memory) is encountered. It is
directly based on the LLVM interpreter lli [35], and is the only part of our code
base that heavily depends on LLVM. In turn, the driver modifies accordingly the
execution graph, possibly pushes some items to the work set, and returns control
back to the interpreter, along with a value that will be used by the interpreter,
if necessary (e.g., in the case of a load). In effect, the driver and the interpreter
can be thought of as coroutines [18]. The interpreter calls the driver whenever it
encounters a visible action or finishes running a thread, while the driver monitors
execution consistency, schedules the program threads, and discovers alternative
exploration options, which are pushed to the work set.

The aforementioned components are all parameterized by the user’s configu-
ration options. The most important of these options is the memory model, which
also determines whether dependencies between instructions should be tracked by
the interpreter and stored in the execution graph. Another important option is
when and how consistency is to be calculated. Since checking consistency at
each step can be expensive for some memory models, it is possible to provide an

GenMC: A Model Checker for Weak Memory Models 431

approximate consistency check to be applied at each step and only perform the
full consistency check once an error is detected.

To facilitate memory-model-specific optimizations, the driver is overridden
for each memory model. Each instance sets up the (approximate) consistency
checks and can provide specialized methods for crucial verification components.

4 Supporting New Memory Models

Adding support for a new memory model entails three basic steps.
First, one has to provide definitions for any memory model primitives that the

interpreter should intercept beyond those already supported (i.e., plain memory
accesses and C/C++11 atomics). One can either provide a header file mapping
these primitives to LLVM-IR instructions or create special event types for them.

Second, one has to provide calculators for the memory model’s relations that
are not already supported by GenMC. Depending on the memory model, this
step may require a variable amount of effort, but it effectively boils down to
translating relational calculations into matrix operations.

Third, one can also provide approximations for the consistency checks. Such
approximations entail storing crucial information about a memory model’s rela-
tions as vector clocks (e.g., causally preceding events, for some notion of causal-
ity), but deciding what to store is up to the user to decide and encode. Impor-
tantly, GenMC’s performance depends not only on the calculators provided in
the previous step, but also on the effectiveness of the approximations, which
quickly filter out inconsistent exploration options. For instance, GenMC’s cur-
rent RC11 driver treats SC accesses as release-acquire (RA) accesses (the con-
sistency of which can be quickly determined), and only checks for full RC11
consistency when an error has been triggered, a heuristic that seems to work
well in practice for programs that have both SC and non-SC accesses.

All in all, adding support for a memory model largely depends on the com-
plexity of the model. Adding support for models like SC or RA is trivial, since
such accesses are already supported as part of RC11 and IMM. In contrast,
adding support for LKMM involved much more work, as we describe below.

4.1 Supporting the Linux Kernel Memory Model (LKMM)

LKMM [10] is a memory model that encompasses a variety of different architec-
tures supported by the Linux kernel. As LKMM differs substantially from RC11
and IMM, supporting it required all steps described above as well as a few other
engineering decisions, the most important of which are discussed below.

First, LKMM uses complex constraints for checking consistency of an exe-
cution graph. As repeatedly calculating these constraints can be expensive, we
designed approximations for them. Unlike most other memory models, LKMM
does not define a suitable happens-before relation for checking coherence and
detecting races. (Its hb relation cannot be used for this purpose.) We thus defined

432 M. Kokologiannakis and V. Vafeiadis

a custom happens-before relation that can rule out inconsistent executions very
quickly, and use it to approximate coherence and race detection checks.

Second, although LKMM dictates that non-atomic accesses (called plain
in LKMM’s jargon) only conditionally contribute to ppo, we incorporate such
accesses in GenMC’s ppo (thus arriving at a stronger notion of ppo), mostly
for technical reasons. Specifically, the calculation of dependencies between only
non-plain accesses is difficult because each non-plain access in the source-code
level may map to several plain and non-plain accesses in LLVM-IR level.

To increase confidence in our implementation, we ran all litmus tests dis-
tributed along with LKMM as part of the Linux kernel (32 tests in total), and
compared our results with the results of the Herd [11] memory model simulator.
Both tools explored the same number of executions for all tests.

In addition, we extracted some manually written tests from LKMM’s supple-
mentary repository [34] (categories atomic and kernel). We picked these cat-
egories as they contain tests written in C pseudocode (thus easily translatable
to C) and do not contain tests with plain accesses, which, as described, GenMC
treats slightly differently from what LKMM dictates. In total, these categories
amount to another 84 tests, from which we excluded two tests containing unsup-
ported primitives, one test for which Herd did not terminate within 42 h, and
three tests that cannot be cleanly translated to C. Out of the remaining 78 tests,
GenMC explores the same number of executions for 75 tests. The discrepancies
observed in the three remaining tests are due to the different way the two tools
produce and calculate dependencies. (In GenMC, control dependencies extend
to all subsequent memory accesses of the same thread, whereas in Herd they
extend only to the merge point of a conditional statement.)

We note that Herd took about 18 min to run all the above tests, while
GenMC needed less than 2 s.

5 Supporting New Languages and Libraries

Supporting additional programming languages is straightforward as long as they
can be compiled to LLVM. This was, for example, the case when we extended
GenMC to accept C++ (the initial version accepted only C input). All we had
to do was to create stub header files for the C++ library, and to extend the
interpreter to recognize the memory (de)allocation calls generated by clang.

Supporting different runtime environments (e.g., JVM bytecode) requires
constructing a new interpreter for the desired runtime system that calls the
driver whenever a visible action is encountered. In addition, since the driver
and the interpreter communicate using the LLVM type information, it may be
necessary to add a translation layer between the interpreter(s) and the driver.

Supporting new concurrency libraries requires localized changes. If the
library’s semantics can be implemented in terms of memory accesses, one has
to construct an appropriate header file or extend the interpreter to provide the
mapping from library calls to the relevant memory access events. If this is not
possible and/or if native support for a library is desirable (e.g., for performance

GenMC: A Model Checker for Weak Memory Models 433

reasons), then the execution graph has to be extended with new kinds of events
and the consistency checks have to be adapted accordingly.

Next, we present two such library extensions, one mapping its calls to indi-
vidual memory accesses, and the other creating new kinds of events.

System Calls. As part of [26], we extended GenMC with support for system
calls, such as open(), close(), read() and write(), which can be modeled by
making multiple primitive calls (reads and writes) to a different address space.

There are two ways one could implement these system calls: either by pro-
viding an actual implementation (which would then be compiled to LLVM-IR)
or by adding support in the interpreter to internally implement those calls and
communicating multiple times with the driver.

We preferred the latter solution because it is more portable. An external
implementation would have to be manually ported whenever support for more
languages is added. In contrast, the internal implementation needs no change.
Further, even if a new interpreter for a different runtime system is added, it
should be simple to decouple the system calls from the interpreter, and have the
different runtime systems share the infrastructure that handles system calls.

Barriers. N -way barriers are a widely-used synchronization primitive. They have
two functions: barrier init and barrier wait. The former initializes a barrier
object with the number of threads that will rendezvous at the barrier, while the
latter is called every time a thread reaches the barrier. A thread that is calling
barrier wait blocks until the initially specified number of threads reaches the
barrier, at which point all threads will be simultaneously unblocked, and the
barrier value will reset to the one specified with barrier init.

Barriers can be straightforwardly implemented with a shared variable count-
ing the number of threads that have called barrier wait. But doing so yields
poor model checking performance. For N threads calling barrier wait, there
are N ! possible orders in which they can update the shared counter, thus crip-
pling the performance of the tool. Tracking the order of these updates is not
only expensive but also completely unnecessary. For many real-world use cases
of barriers (e.g., scatter-gather workloads), the order in which different threads
reached the barrier is irrelevant, and the thread that reached last unimportant.

We leverage this intuition and provide built-in support for barrier init
and barrier wait calls that does not track the relative ordering among
barrier wait calls synchronizing with one another, thereby achieving an expo-
nential reduction in verification time. Concretely, in the simple program below
where N threads execute barrier wait concurrently, GenMC explores only one
execution instead of N ! executions:

barrier wait(); ... barrier wait();

Our extension is called BAM (Barrier-Aware Model-checking) and is detailed
and evaluated in a companion paper [30].

434 M. Kokologiannakis and V. Vafeiadis

6 Error Detection and Reporting

GenMC detects a number of different kinds of errors: violations of user-supplied
regular and persistency assertions, data races, memory errors and simple cases
of termination errors. It reports errors by printing an offending execution graph
and highlighting the event(s) that caused the violation. Upon request, GenMC
can also print a total ordering of the instructions that lead to the violation, or
produce the offending execution in the DOT graph description language.

Persistency Errors. To verify persistency properties of programs performing file
I/O, we allow user programs to contain a special recovery routine [26], which
would typically check some invariant over the persisted state.

When such a routine is present, GenMC simulates all possible ways in which
the program could have crashed because of a power failure, executing the recov-
ery routine at the end of every such execution. Of course, to avoid the obvious
state-space explosion, the simulation of all the possible failures is done in an
optimized fashion, driven by the memory accesses of the recovery routine.

The performance of GenMC when verifying persistency properties of pro-
grams under the ext4 filesystem has been evaluated at [26].

Memory Errors. Memory errors refers to accessing uninitialized, unallocated or
deallocated memory. In models like RC11 [32], reasoning about memory safety
can be tricky at times, as demonstrated by the example below:

p := alloc();
∗p :=rlx 42;
x :=rlx 1;

if x = 1 then
a :=rlx p;
b :=rlx ∗a;

This example is erroneous under RC11 because the allocation of p is not guar-
anteed to have propagated to the second thread by the time it is dereferenced.
(Since all accesses are relaxed, there is no synchronization between the threads.)

GenMC also accounts for more complicated scenarios such as p being con-
currently freed when accessed, p being freed twice, or p being the address of a
local (stack) variable that might not be alive when accessed.

Refining Error Reports. It is often useful to refine the error reporting. For exam-
ple, in memory models that treat data races as errors (such as RC11), GenMC
by default detects data races and reports them as errors. This, however, can be
costly in terms of verification time or even prohibit the verification of programs
that use compiler/custom primitives to access shared memory, as such programs
would almost certainly be considered racy.

To deal with such cases, GenMC provides switches that disable race detec-
tion and refine the range of errors that will be reported to the user. Switches
of the latter kind are especially useful when dealing with programs that contain
system calls. By default, when such system calls fail, GenMC reports an error,
which is inconvenient for programs that contain proper error handling, as some

GenMC: A Model Checker for Weak Memory Models 435

system errors are rather benign (e.g., a file not existing). With the appropriate
switch, in case of system errors, an appropriate value is written in errno, as
dictated by the POSIX standard.

Case Study. We demonstrate the error reporting capabilities of GenMC with
a real use case. We consider a flat-combining queue [19] that has been proposed
to be ported in Rust’s crossbeam library.

This queue serves as a nice case study for a couple of reasons. First, it con-
tains loops that can diverge, and so its verification requires loop bounding, which
GenMC can do automatically. Second, it is implemented using compiler primi-
tives for concurrent accesses, and so its verification requires disabling race detec-
tion. Third, while experimenting with it, we found it to be buggy.

The error report produced by GenMC can be seen in Fig. 2. The error is
quite intricate: it requires three threads to manifest, each of which executes
a large number of instructions. The error is due to an ordering bug (relaxed
accesses are used instead of release/acquire), which demonstrates the need for
model checking tools that handle weak memory models.

Error detected: Attempt to read from uninitialized memory!
Event (3, 63) in graph:
<-1, 0> main:

<0, 1> thread_n:

(1, 18): Urel (cmb.queue, 0) [(0, 36)] L.169: combiner.c
(1, 19): Urel (cmb.queue, 2565579352) L.169: combiner.c

(1, 96): Racq (m.msg._meta.next, 2565579416) [(2, 26)] L.228: combiner.c

(1, 112): Wrlx (cmb.takeover, 2565579416) L.158: combiner.c
<0, 2> thread_n:

(2, 26): Wrel (m.msg._meta.next, 94798317999592) L.167: combiner.c
<0, 3> thread_n:

(3, 18): Urel (cmb.queue, 2565579352) [(1, 19)] L.169: combiner.c
(3, 19): Urel (cmb.queue, 2565579480) L.169: combiner.c

(3, 50): Rrlx (cmb.takeover, 2565579416) [(1, 112)] L.87: combiner.c

(3, 63): Racq (m.msg._meta.next, 0) [BOTTOM] L.187: combiner.c

Number of complete executions explored: 2795
Number of blocked executions seen: 6001
Total wall-clock time: 2.12s

Fig. 2. An error report by GenMC after removing irrelevant lines.

We note that the error report contains helpful debugging information, such
as the names of variables accessed (e.g., m.msg. meta.next) and the values
read/written. To display this information, GenMC maintains a mapping from
addresses to program variables using the additional debugging information col-
lected in the “Transformation” phase.

436 M. Kokologiannakis and V. Vafeiadis

7 Other Performance Enhancements to GenMC

In this section, we briefly discuss two recent changes to the driver to optimize
its performance for certain kinds of programs.

Symmetry Reduction. Many programs, such as the flat-combining queue of
Sect. 6, have a symmetric structure: each thread runs the same code. In such
cases, many execution graphs are equivalent up to some thread relabeling—a
property that is exploited by symmetry reduction (SR) [16,20].

We implemented a simple SR algorithm that detects whether multiple threads
with the same code are spawned with no intervening memory accesses, and avoids
exploring executions for which a symmetric one (by relabeling such threads) has
already been explored. This can yield exponential improvements. For example,
a program with N threads incrementing a shared variable atomically has N !
executions; employing SR yields only one execution. With SR, the verification
time of the corrected flat-combining queue drops from 15 s to 2.5 s.

To further demonstrate the benefits of SR, we measured the performance of
GenMC with and without SR on some realistic lock implementations adapted
from the literature. The results can be seen in Table 1. All reported times are in
seconds, unless mentioned otherwise. We ran both GenMC versions three times
for each benchmark, with an increasing number of threads each time (the initial
thread number for each benchmark is provided in the second column). As it can
be seen, SR leads to a significant performance improvement in all cases.

Table 1. Testing lock implementations (1 h timeout; 4 GB memory limit)

N Without SR With SR

N N+1 N+2 N N+1 N+2

mutex 2 0.02 0.40 41 min 0.03 0.08 164.66

mutex musl 2 0.01 34.47 oom 0.01 5.92 oom

rwlock 2 0.02 0.18 47.34 0.04 0.05 1.94

spinlock 3 0.03 0.08 1.19 0.02 0.03 0.18

ticketlock 4 0.02 0.13 2.35 0.01 0.01 0.01

ttaslock 3 0.06 2.05 38 min 0.08 0.11 33.87

twalock 3 0.03 0.49 79.68 0.03 0.04 0.36

Lock-Aware Partial Order Reduction. A common problem with locking is that
of false sharing, where N threads contend to acquire the same lock even if it
is unnecessary for correctness. In such cases, GenMC’s partial order reduction
algorithm [29] will explore all N ! orders in which the lock can be acquired even
though they all lead to the same outcome.

GenMC: A Model Checker for Weak Memory Models 437

We have implemented lock-aware partial order reduction (LAPOR) [28], an
enhancement to partial order reduction that does not track ordering among
locks unless their critical regions have conflicting accesses, in which case the
lock ordering is induced from the ordering among those accesses. With LAPOR,
GenMC achieves exponential improvements in lock-based implementations of
concurrent libraries that have false sharing, such as search trees with coarse-
grained or hand-over-hand locking. LAPOR has been evaluated at [28].

8 Conclusion

We presented GenMC, a state-of-the-art stateless model checker that can be
used to verify consistency and persistency properties of C/C++ programs. We
described its architecture, and how its modular design can be leveraged to
account for new features and memory models. To widen the applicability of
GenMC, we have extended it with support for LKMM, basic system calls and
additional synchronization primitives. We have also improved its performance
with optimizations, such as symmetry reduction and lock-aware partial order
reduction that can exponentially decrease its search space.

In the future, we plan to implement a DSL for memory models, so as to make
it easier to extend GenMC with new models and quickly tweak their approxi-
mation strategies. We are also planning to incorporate further optimizations into
the tool to enable more effective verification of lock-free algorithms.

Acknowledgements. We thank the anonymous reviewers for their feedback. This
work was supported by a European Research Council (ERC) Consolidator Grant for the
project “PERSIST” under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101003349).

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 28

2. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: POPL 2014, pp. 373–384. ACM, New York (2014). https://doi.org/
10.1145/2535838.2535845

3. Abdulla, P.A., Atig, M.F., Jonsson, B., L̊ang, M., Ngo, T.P., Sagonas, K.: Opti-
mal stateless model checking for reads-from equivalence under sequential con-
sistency. Proc. ACM Program. Lang. 3, 150:1–150:29 (2019) https://doi.org/10.
1145/3360576

4. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for power. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
134–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 8

5. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Optimal stateless model checking
under the release-acquire semantics. Proc. ACM Program. Lang. 2(OOPSLA),
135:1–135:29 (2018) https://doi.org/10.1145/3276505

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/3360576
https://doi.org/10.1145/3360576
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3276505

438 M. Kokologiannakis and V. Vafeiadis

6. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Comput. 29(12), 66–76 (1996)

7. Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.:
Context-sensitive dynamic partial order reduction. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 526–543. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 26

8. Albert, E., Gómez-Zamalloa, M., Isabel, M., Rubio, A.: Constrained dynamic par-
tial order reduction. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS,
vol. 10982, pp. 392–410. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96142-2 24

9. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 9

10. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.: Frightening small
children and disconcerting grown-ups: concurrency in the Linux kernel. In: ASP-
LOS 2018, pp. 405–418. ACM, Williamsburg, VA, USA (2018). https://doi.org/
10.1145/3173162.3177156

11. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014) https://doi.org/10.1145/2627752

12. Aronis, S., Jonsson, B., L̊ang, M., Sagonas, K.: Optimal dynamic partial order
reduction with observers. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10806, pp. 229–248. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89963-3 14

13. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL 2011, pp. 55–66. ACM, Austin, Texas, USA (2011). https://
doi.org/10.1145/1926385.1926394

14. Chakraborty, S., Vafeiadis, V.: Grounding thin-air reads with event structures.
Proc. ACM Program. Lang. 3(POPL), 70:1–70:28 (2019) https://doi.org/10.1145/
3290383

15. Chalupa, M., Chatterjee, K., Pavlogiannis, A., Sinha, N., Vaidya, K.: Data-centric
dynamic partial order reduction. Proc. ACM Program. Lang. 2(POPL), 31:1–31:30
(2017) https://doi.org/10.1145/3158119

16. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal
logic model checking. Form. Meth. Syst. Des. 9(1/2), 77–104 (1996) https://doi.
org/10.1007/BF00625969

17. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

18. Conway, M.E.: Design of a separable transition-diagram compiler. Commun. ACM
6(7), 396–408 (1963) https://doi.org/10.1145/366663.366704

19. Crossbeam: Flat combining #63. https://github.com/crossbeam-rs/crossbeam/
issues/63. Accessed 29 Jan 2021

20. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31980-1 25

21. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: POPL 2016, pp. 608–621. ACM, St. Petersburg, FL, USA (2016). https://
doi.org/10.1145/2837614.2837615

https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3158119
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/BF00625969
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/366663.366704
https://github.com/crossbeam-rs/crossbeam/issues/63
https://github.com/crossbeam-rs/crossbeam/issues/63
https://doi.org/10.1007/978-3-540-31980-1_25
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/2837614.2837615

GenMC: A Model Checker for Weak Memory Models 439

22. Gavrilenko, N., Ponce-de-León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: relation analysis for compact SMT encodings. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 355–365. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25540-4 19

23. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL 1997, pp. 174–186. ACM, Paris, France (1997). https://doi.org/10.1145/
263699.263717

24. Jagadeesan, R., Jeffrey, A., Riely, J.: Pomsets with preconditions: a simple model
of relaxed memory. Proc. ACM Program. Lang. 4(OOPSLA) (2020) https://doi.
org/10.1145/3428262

25. Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: POPL 2017, pp. 175–189. ACM, Paris, France
(2017). https://doi.org/10.1145/3009837.3009850

26. Kokologiannakis, M., Kaysin, I., Raad, A., Vafeiadis, V.: PerSeVerE: persistency
semantics for verification under ext4. Proc. ACM Program. Lang. 5(POPL) (2021)
https://doi.org/10.1145/3434324

27. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. Proc. ACM Program. Lang. 2(POPL),
17:1–17:32 (2017). https://doi.org/10.1145/3158105

28. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Effective lock handling in stateless
model checking. Proc. ACM Program. Lang. 3(OOPSLA) (2019). https://doi.org/
10.1145/3360599

29. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Model checking for weakly con-
sistent libraries. In: PLDI 2019, ACM, New York (2019). https://doi.org/10.1145/
3314221.3314609

30. Kokologiannakis, M., Vafeiadis, V.: BAM: Efficient Model Checking for Barriers.
In: NETYS 2021, LNCS, Springer, Heidelberg (2021). https://plv.mpi-sws.org/
genmc

31. Kokologiannakis, M., Vafeiadis, V.: HMC: Model checking for hardware memory
models. In: ASPLOS 2020, pp. 1157–1171. ACM, Lausanne, Switzerland (2020).
https://doi.org/10.1145/3373376.3378480

32. Lahav, O., Vafeiadis, V., Kang, J., Hur, C.-K., Dreyer, D.: Repairing sequential
consistency in C/C++11. In: PLDI 2017, pp. 618–632. ACM, Barcelona, Spain
(2017). https://doi.org/10.1145/3062341.3062352

33. Lee, S.-H., Cho, M., Podkopaev, A., Chakraborty, S., Hur, C.-K., Lahav, O.,
Vafeiadis, V.: Promising 2.0: Global optimizations in relaxed memory concur-
rency. In: Donaldson, A.F., Torlak, E. (eds.) PLDI 2020, pp. 362–376. ACM (2020).
https://doi.org/10.1145/3385412.3386010

34. McKenney, P.E.: Automatically generated litmus tests for validation LISA-
language Linux-kernel memory models(2021). https://github.com/paulmckrcu/
litmus. Accessed: 28 Apr 2021

35. lli - directly execute programs from LLVM bitcode (2003). https://llvm.org/docs/
CommandGuide/lli.html. Accessed 29 Jan 2021

36. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005, pp.
378–391. ACM (2005). https://doi.org/10.1145/1040305.1040336

37. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing Heisenbugs in concurrent programs. In: OSDI 2008, pp. 267–280.
USENIX Association (2008). https://www.usenix.org/legacy/events/osdi08/tech/
full papers/musuvathi/musuvathi.pdf

https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3434324
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3360599
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://plv.mpi-sws.org/genmc
https://plv.mpi-sws.org/genmc
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3385412.3386010
https://github.com/paulmckrcu/litmus
https://github.com/paulmckrcu/litmus
https://llvm.org/docs/CommandGuide/lli.html
https://llvm.org/docs/CommandGuide/lli.html
https://doi.org/10.1145/1040305.1040336
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf

440 M. Kokologiannakis and V. Vafeiadis

38. Norris, B., Demsky, B.: CDSChecker: Checking concurrent data structures written
with C/C++ atomics. In: OOPSLA 2013, pp. 131–150. ACM (2013). https://doi.
org/10.1145/2509136.2509514

39. Oberhauser, J., et al.: VSync: Push-Button Verification and Optimization for Syn-
chronization Primitives on Weak Memory Models. In: ASPLOS 2021, pp. 530–545.
ACM, Virtual, USA (2021). https://doi.org/10.1145/3445814.3446748

40. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

41. Podkopaev, A., Lahav, O., Vafeiadis, V.: Bridging the gap between program-
ming languages and hardware weak memory models. Proc. ACM Program. Lang.
3(POPL), 69:1–69:31 (2019). https://doi.org/10.1145/3290382

42. SPARC International Inc., The SPARC architecture manual (version 9). Prentice-
Hall (1994)

43. Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., Zappa Nardelli, F.:
Common compiler optimisations are invalid in the C11 memory model and what
we can do about it. In: POPL 2015, pp. 209–220. ACM, Mumbai, India (2015).
https://doi.org/10.1145/2676726.2676995

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290382
https://doi.org/10.1145/2676726.2676995
http://creativecommons.org/licenses/by/4.0/

Hybrid and Cyber-Physical Systems

Synthesizing Invariant Barrier Certificates
via Difference-of-Convex Programming

Qiuye Wang1,2(B) , Mingshuai Chen3(B) , Bai Xue1,2(B) ,
Naijun Zhan1,2(B) , and Joost-Pieter Katoen3(B)

1 SKLCS, Institute of Software, CAS, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

{wangqye,xuebai,znj}@ios.ac.cn
3 RWTH Aachen University, Aachen, Germany

{chenms,katoen}@cs.rwth-aachen.de

Abstract. A barrier certificate often serves as an inductive invariant
that isolates an unsafe region from the reachable set of states, and hence
is widely used in proving safety of hybrid systems possibly over the
infinite time horizon. We present a novel condition on barrier certifi-
cates, termed the invariant barrier-certificate condition, that witnesses
unbounded-time safety of differential dynamical systems. The proposed
condition is by far the least conservative one on barrier certificates, and
can be shown as the weakest possible one to attain inductive invariance.
We show that discharging the invariant barrier-certificate condition—
thereby synthesizing invariant barrier certificates—can be encoded as
solving an optimization problem subject to bilinear matrix inequalities
(BMIs). We further propose a synthesis algorithm based on difference-
of-convex programming, which approaches a local optimum of the BMI
problem via solving a series of convex optimization problems. This algo-
rithm is incorporated in a branch-and-bound framework that searches for
the global optimum in a divide-and-conquer fashion. We present a weak
completeness result of our method, in the sense that a barrier certificate
is guaranteed to be found (under some mild assumptions) whenever there
exists an inductive invariant (in the form of a given template) that suf-
fices to certify safety of the system. Experimental results on benchmark
examples demonstrate the effectiveness and efficiency of our approach.

1 Introduction

Hybrid systems are mathematical models that capture the interaction between
continuous physical dynamics and discrete switching behaviors, and hence are
widely used in modelling cyber-physical systems (CPS). These CPS may be

This work has been partially funded by the NSFC under grant No. 61625206, 61732001,
61872341, and 61836005, by the ERC Advanced Project FRAPPANT under grant No.
787914, and by the CAS Pioneer Hundred Talents Program.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 443–466, 2021.
https://doi.org/10.1007/978-3-030-81685-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_21&domain=pdf
http://orcid.org/0000-0001-5138-3273
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0001-9717-846X
http://orcid.org/0000-0003-3298-3817
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-81685-8_21

444 Q. Wang et al.

complex and safety-critical, with sensitive variables of the environment in its
sphere of control. Everyday examples include process control at all scales, rang-
ing from household appliances to nuclear power plants, or embedded systems
in transportation domain, such as autonomous driving maneuvers in automo-
tive, aircraft collision-avoidance protocols in avionics, or automatic train control
applications, as well as a broad range of devices in health technologies, such as
cardiac pacemakers.

The safety-critical feature of these CPS, with increasingly complex behaviors,
has initiated automatic safety or, dually, reachability verification of hybrid sys-
tems [1,15]. The problem of reachability verification is undecidable in general [1],
albeit with decidable families of sub-classes (see, e.g., [2,16–18,31]) identified in
the literature. The hard core of the verification problem lies in reasoning about
the continuous dynamics, which are often characterized by ordinary differen-
tial equations (ODEs). In particular, when nonlinearity arises in the ODEs, the
explicit computation of the exact reachable set is usually intractable even for
purely continuous dynamics [49].

Therefore in the literature, a plethora of approximation schemes, as surveyed
in [15], for reachability analysis of hybrid systems has been developed, including
an invariant-style reasoning scheme known as barrier certificate [41]. A barrier
certificate often serves as an inductive invariant that isolates an unsafe region
from the reachable set, thereby witnessing safety of hybrid systems possibly over
the infinite time horizon. A common way to synthesize barrier certificates is to
reduce the condition defining barrier certificates to a numerical optimization or
constraint solving problem. There is, however, a trade-off between the expres-
siveness of the barrier-certificate condition and the efficiency in discharging the
reduced constraints. Hence, to enable efficient algorithmic synthesis of barrier
certificates via, e.g., linear programming (LP), second-order cone programming
(SOCP), semidefinite programming (SDP) and interval analysis [11,30], the gen-
eral condition on inductive invariance (that a barrier certificate defines an invari-
ant, see [8,51]) has been strengthened into a spectrum of different shapes, e.g.,
[8,29,51,60,62]. It has been, nevertheless, a long-standing challenge to find a
barrier-certificate condition that is as weak as possible while admitting efficient
synthesis algorithms.

In this paper, we present a new condition on barrier certificates, termed
the invariant barrier-certificate condition, based on the sufficient and necessary
condition on being an inductive invariant [36]. Our invariant barrier-certificate
condition is by far, to the best of our knowledge, the least conservative one
on barrier certificates, and can be shown as the weakest possible one to attain
inductive invariance. We show, by leveraging Putinar’s Positivstellensatz [32],
that discharging the invariant barrier-certificate condition —thereby synthesiz-
ing invariant barrier certificates— can be encoded as solving an optimization
problem subject to bilinear matrix inequalities (BMIs). We further show that
general bilinear matrix-valued functions can be decomposed as a difference of two
psd-convex (extension of convexity to matrix-valued functions) functions using
eigendecomposition, thus resulting in a synthesis algorithm as per difference-of-
convex programming (DCP) [33,52], which solves a series of convex sub-problems
(in the form of linear matrix inequalities (LMIs)) that approaches (arbitrarily

Synthesizing Invariant Barrier Certificates via DCP 445

close to) a local optimum of the BMI problem. This algorithm is incorporated in
a branch-and-bound framework that searches for the global optimum in a divide-
and-conquer fashion. We present a weak completeness result of our method, in
the sense that a barrier certificate is guaranteed to be found (under some mild
assumptions) whenever there exists an inductive invariant (in the form of a given
template) that suffices to certify the system’s safety. A similar result on complete-
ness is previously provided only by symbolic approaches, yet to the best of our
knowledge, not by methods base on numerical constraint solving, e.g., [4,60,61].
Experiments on a collection of examples suggested that our invariant barrier-
certificate condition recognizes more barrier certificates than existing conditions,
and that our DCP-based algorithm is more efficient than directly solving the
BMIs via off-the-shelf solvers.

Due to space restrictions, proofs and benchmark details have been omitted;
they are found in an extended version of this paper [57].

2 A Bird’s-Eye Perspective

We use the following example to give a bird’s-eye view of our approach.

Example 1 (overview [11]). Consider the following continuous-time dynamical
system modelled by an ordinary differential equation:

ẋ =
(

ẋ1

ẋ2

)
=

(
x1 + x2

x1x2 − 0.5x2
2 + 0.1

)
.

The verification obligation is to show that the system trajectory originating from
any state in the initial set X0 = {x | I(x) ≤ 0} with I(x) = x2

1 + (x2 − 2)2 − 1
will never enter the unsafe set Xu = {x | U(x) ≤ 0} with U(x) = x2 + 1. �

A barrier certificate satisfying our condition in Definition 4 serves as an
inductive invariant that suffices to isolate the unsafe region Xu from the set of
reachable states from X0, thereby proving safety of the system over the infinite
time horizon. To this end, we proceed in the following steps.

1) Encode as Sum-of-Squares (SOS) Constraints. We set a (polynomial)
barrier-certificate template B(a,x) = ax2 with unknown coefficient a ∈ R.
According to Theorem 1, we only need to consider Lie derivatives up to order
NB,f = 1, i.e., L0

f B(a,x) = ax2 and L1
f B(a,x) = a(x1x2 − 0.5x2

2 + 0.1).
By Theorem 5, B(a,x) is an invariant barrier certificate if there exists a

polynomial v(x), SOS polynomials σ(x), σ′(x) and a constant ε > 0 such that

− ax2︸︷︷︸
B

+σ(x)
(
x2

1 + (x2 − 2)2 − 1
)

︸ ︷︷ ︸
I

, (1.1, initial)

− a
(
x1x2 − 0.5x2

2 + 0.1
)

︸ ︷︷ ︸
L1

f B

+ v(x) ax2︸︷︷︸
L0

f B

, (1.2,Lieconsecution)

ax2︸︷︷︸
B

+σ′(x) (x2 + 1)︸ ︷︷ ︸
U

−ε (1.3, separation)

are SOS polynomials. We set ε = 0.01 in this example.

446 Q. Wang et al.

2) Reduce to a BMI Optimization Problem. Observe that the above SOS
constraints can be formulated as BMI constraints. For instance, let us assume
that (1.2) is an SOS polynomial of degree at most 2 and v(s,x) = s0+s1x1+s2x2

is a template polynomial with unknown coefficients s. Then constraint (1.2) is
equivalent to the BMI constraint

F2(a, s) = −
⎛
⎝−0.1a 0 0.5as0

0 0 0.5(as1 − a)
0.5as0 0.5(as1 − a) as2 + 0.5a

⎞
⎠ � 0

meaning that the bilinear matrix (LHS of �) is negative semidefinite. Note that
the bilinearity arises due to the coupling of the unknown coefficients a and s.

Constraints (1.1) and (1.3) can be reduced to BMI constraints in an analogous
way1, yielding F1 and F3. It then follows that, to solve the SOS constraints, we
need to find a feasible solution (a, s) such that2

F1(a, s) � 0 ∧ F2(a, s) � 0 ∧ F3(a, s) � 0. (2)

To exploit well-developed optimization techniques, the feasibility problem (2)
is transformed to an optimization problem subject to BMI constraints:

maximize
λ,a,s

λ

subject to Bi(λ,a, s) =̂ Fi(a, s) + λI � 0, i = 1, 2, 3 (3)

where I is the identity matrix with compatible dimensions. Note that problem (2)
has a feasible solution if and only if the optimal value λ∗ in (3) is non-negative.

3) Decompose as Difference-of-Convex Problems. The problem (3) con-
tains non-convex constraints and hence does not admit efficient (polynomial-
time) algorithms tailored for convex optimizations. However, by our technique
presented in Sect. 5, a non-convex function Bi(λ,a, s) can be decomposed as the
difference of two psd-convex (defined later) matrix-valued functions:

Bi(λ,a, s) = B+
i (λ,a, s) − B−

i (λ,a, s). (4)

The decomposition of B2(λ,a, s), for instance, gives

B+
2 (λ, a, s) =

1
8

⎛
⎜⎝

8λ + 0.08a + a2 + 0.408s2
0 0.408s0s1 −2as0 + 0.816s0s2

0.408s0s1 8λ + a2 + 0.408s2
1 4a − 2as1 + 0.816s1s2

−2as0 + 0.816s0s2 4a − 2as1 + 0.816s1s2 8λ − 4a + 2.449a2 − 4as2 + s2
0 + s2

1 + 1.632s2
2

⎞
⎟⎠

B−
2 (λ, a, s) =

1
8

⎛
⎜⎝

a2 + 0.408s2
0 0.408s0s1 2as0 + 0.816s0s2

0.408s0s1 a2 + 0.408s2
1 2as1 + 0.816s1s2

2as0 + 0.816s0s2 2as1 + 0.816s1s2 2.449a2 + 4as2 + s2
0 + s2

1 + 1.632s2
2

⎞
⎟⎠ .

1 Despite that no bilinearity is involved in constraints (1.1) and (1.3), they can be
processed in the same way as (1.2), yielding LMI constraints.

2 Extra constraints on σ(x) and σ′(x) being SOS polynomials can be encoded anal-
ogously in the feasibility problem, yet are omitted here for the sake of simplicity.

Synthesizing Invariant Barrier Certificates via DCP 447

4) Solve a Series of Convex Sub-problems. Now, we apply a standard
iterative procedure in difference-of-convex programming [10] as follows. Given
a feasible solution zk = (λk,ak, sk) to the BMI optimization problem (3), the
concave part −B−

i (λ,a, s) in (4) is linearized around zk, thus yielding a series of
convex programs (k = 0, 1, . . .):

maximize
λ,a,s

λ

subject to B+
i (z) − B−

i

(
zk

) − DB−
i

(
zk

) (
z − zk

)� 0, i = 1, 2, 3 (5)

where DB−
i denotes the derivative of the matrix-valued function B−

i .
The soundness of our approach asserts that the feasible set of the linearized

program (5) under-approximates the feasible set of the original BMI program (3).
Therefore, if λk ≥ 0 after iteration k, we can safely claim that (ak, sk) is a feasible
solution to (2). A barrier certificate B(x) is then obtained by substituting ak in
B(a,x). Moreover, if we take the optimum z∗,k of (5) to be the next linearization
point zk+1, the solution sequence {zk}k∈N converges to a local optimum of (3).

Fig. 1. Phase portrait of the system in
Example 1. The arrows indicate the vec-
tor field and the solid curves are ran-
domly sampled trajectories.

We show that the linearized program
(5) is equivalent to an LMI optimiza-
tion problem admitting polynomial-
time algorithms, say the well-known
interior-point methods supported by
most off-the-shelf SDP solvers. Our iter-
ative procedure starts with a strictly
feasible initial solution z0 to program
(3) and terminates with λ2 ≥ 0
(subject to numerical round-off) and
a2 = −0.00363421, yielding the barrier
certificate

B(a2,x) = −0.00363421x2 ≤ 0.

Figure 1 depicts the system dynamics
and the synthesized barrier certificate.

We remark that the aforementioned
iterative procedure on solving a series of convex optimizations converges only
to a local optimum of the BMI problem (3). This means that, in some cases, it
may miss the global optimum that induces a non-negative λ∗. We will present
in Sect. 6 a solution to this problem by incorporating our iterative procedure
into a branch-and-bound framework that searches for the global optimum in a
divide-and-conquer fashion.

3 Mathematical Foundations

Notations. Let N, N
+, R, R

+ and R
+
0 be respectively the set of natural, positive

natural, real, positive real and non-negative real numbers. For a vector x ∈ R
n,

xi refers to its i-th component and ‖x‖ denotes the �2-norm; for a matrix A ∈

448 Q. Wang et al.

R
n×m, A(i, j) refers to its (i, j)-th element. Let R[x] be the polynomial ring in

x over the field R. A polynomial h ∈ R[x] is sum-of-squares (SOS) iff there exist
polynomials g1, . . . , gk ∈ R[x] such that h =

∑k
i=1 g2

i . We denote by Σ[x] ⊂ R[x]
the set of SOS polynomials over xx. Sn denotes the space of n×n real, symmetric
matrices. For A ∈ Sn, A 	 0 means that A is positive semidefinite (psd, for
short)3, i.e., ∀x ∈ R

n : xTAx ≥ 0. A matrix-valued function B : R
n → Sm is psd-

convex on a convex set C ⊆ R
n if ∀x1,x2 ∈ C.∀μ ∈ (0, 1) : B(μx1 + (1 − μ)x2) �

μB(x1) + (1 − μ)B(x2).

Differential Dynamical Systems. We consider a class of continuous dynami-
cal systems modelled by ordinary differential equations of the autonomous type:

ẋ = f(x) (6)

where x ∈ R
n is the state vector, ẋ denotes its temporal derivative dx/dt, with

t ∈ R
+
0 modelling time, and f : R

n → R
n is a polynomial flow field (or vector

field) that governs the evolution of the system. A polynomial vector field is local
Lipschitz, and hence for some T ∈ R

+ ∪ {∞}, there exists a unique solution (or
trajectory) ζx0 : [0, T) → R

n originating from any initial state x0 ∈ R
n such that

(1) ζx0(0) = x0, and (2) ∀τ ∈ [0, T) : dζx0
dt

∣∣
t=τ

= f(ζx0(τ)). We assume in the
sequel that T is the maximal instant up to which ζx0 exists for all x0.

Remark 1. Our techniques on synthesizing barrier certificates in this paper focus
on differential dynamics of the form (6). However, we foresee no substantial
difficulties in extending the results to multi-mode hybrid systems where extra
constraints on the system evolution, e.g., guards, are present.

Safety Verification Problem. Given a domain set X ⊆ R
n, an initial set

X0 ⊆ X and an unsafe set Xu ⊆ X , the reachable set of a dynamical system of
the form (6) at time instant t ∈ [0, T) is defined as RX0(t) =̂ {ζx0(t) | x0 ∈ X0}.
We denote by RX0 the aggregated reachable set, i.e., the union of RX0(t) over
t ∈ [0, T)4. The system is said to be safe iff RX0 ∩Xu = ∅, and unsafe otherwise.
For simplicity, we consider X = R

n throughout this paper.
To avoid the explicit computation of the exact reachable set, which is usu-

ally intractable for nonlinear hybrid systems (cf., e.g., [15]), barrier-certificate
methods make use of a partial differential operator, termed the Lie derivative,
to capture the evolution of a barrier function along the vector field:

Definition 1 (Lie Derivative [28]). Given a vector field f : R
n → R

n over
x, the Lie derivative of a polynomial function B(x) along f , Lk

f B : R
n → R of

order k ∈ N, is

Lk
f B(x) =̂

{
B(x), k = 0,〈

∂
∂xLk−1

f B(x),f(x)
〉

, k > 0

3 More generally, for A, B ∈ Sn, A � B indicates that B − A is positive semidefinite.
4 This subsumes the problem of unbounded-time safety verification where a unique

solution exists over the infinite time horizon [0, ∞).

Synthesizing Invariant Barrier Certificates via DCP 449

where 〈·, ·〉 is the inner product of vectors, i.e., 〈u,v〉 =̂
∑n

i=1 uivi for u,v ∈ R
n.

The Lie derivative Lk
f B(x) is essentially the k-th temporal derivative of the

(barrier) function B(x), and thus captures the change of B(x) over time.
An inductive invariant Ψ ⊆ R

n of a dynamical system is a set of states such
that all the trajectories starting from within Ψ remain in Ψ :

Definition 2 (Inductive Iinvariant [40]). Given a system (6), a set Ψ ⊆ R
n

is an inductive invariant of system (6) if and only if

∀x0 ∈ Ψ.∀t ∈ [0, T) : ζx0(t) ∈ Ψ. (7)

In the sequel, we refer to inductive invariants simply as invariants. In [36], a
sufficient and necessary condition on being a polynomial invariant is proposed:

Theorem 1 (Invariant condition [36]). Given a polynomial B ∈ R[x], its
zero sub-level set {x | B(x) ≤ 0} is an invariant of system (6) if and only if 5

B ≤ 0 =⇒
∨NB,f

i=0

((∧i−1

j=0
Lj

f B = 0
)

∧ Li
f B < 0

)
∨

∧NB,f

i=0
Li

f B = 0 (8)

where NB,f ∈ N
+ is a completeness threshold, i.e., a finite positive integer that

bounds the order of Lie derivatives, which can be computed using Gröbner bases6.

In contrast, a barrier certificate is a function whose zero sub-level set isolates
an unsafe region Xu from the reachable set RX0 w.r.t. some initial set X0:

Definition 3 (Semantic Barrier Certificate [51]). Given a system (6), an
initial set X0 and an unsafe set Xu, a barrier certificate of (6) is a differentiable
function B : R

n → R satisfying

∀x0 ∈ X0.∀t ∈ [0, T) : B (ζx0(t)) ≤ 0 and ∀x ∈ Xu : B(x) > 0. (9)

The existence of such a barrier certificate trivially implies safety of the system.
Moreover, one may readily verify that if some set Ψ = {x | B(x) ≤ 0} is an
invariant and satisfies (X0 ⊆ Ψ)∧(Ψ ∩Xu = ∅), then B(x) is a barrier certificate.

As observed in [51], however, the semantic statement in Definition 3 encodes
merely the general principle of barrier certificates [8], yet in itself is not that
useful for safety verification because it explicitly involves the system solutions.
Therefore, in order to enable efficient synthesis, the semantic condition on barrier
certificates has been strengthened into a handful of different shapes (see, e.g., [8,
29,41,60], which all imply inductive invariance). It has been yet a long-standing
challenge to find a barrier-certificate condition that is as weak as possible while
admitting efficient synthesis algorithms.

Our BMI encoding of the invariant barrier-certificate condition (cf. Sect. 4)
roots in Putinar’s Positivstellensatz, which characterizes positivity of polynomi-
als on a semi-algebraic set defined by a system of polynomial inequalities:
5 In (8),

∧i−1
j=0 Lj

f B = 0 is true for i = 0 by default. This applies in the sequel.
6 NB,f is the minimal i such that Li+1

f B is in the polynomial ideal generated by

L0
f B, L1

f B, . . . , Li
f B. The ideal membership can be decided via Gröbner basis.

450 Q. Wang et al.

Theorem 2 (Putinar’s Positivstellensatz [32]). Let K = {x | ∧m
i=1 gi(x) ≥

0} be a compact semi-algebraic set defined by g1, . . . , gm ∈ R[x]. Assume the
Archimedean condition holds7, i.e., there exists L ∈ R

+ such that L − ‖x‖2 =
σ0(x) +

∑m
i=1 σi(x)gi(x) for some σ0, . . . , σm ∈ Σ[x]. If h ∈ R[x] is strictly

positive on K, then

h(x) = σ0(x) +
∑m

i=1
σi(x)gi(x)

holds for some SOS polynomials σ0, . . . , σm ∈ Σ[x].

We now recall a key technique used in our reduction to semidefinite opti-

mizations. Given a symmetric matrix X ∈ Sn partitioned as X =
(

A C
CT D

)
with

invertible A, the Schur complement of A in X is defined as X/A =̂ D−CTA−1C.
An important property of the Schur complement X/A is that it characterizes
the positive semidefiniteness of the block matrix X:

Theorem 3 (Schur Complement [3]). If A � 0, then X 	 0 iff X/A 	 0.

We apply the Schur complement in Sect. 5 to transform nonlinear convex con-
straints into linear constraints.

4 Invariant Barrier-Certificate Condition as BMIs

In this section, we present our invariant barrier-certificate condition (see Defi-
nition 4) based on the necessary and sufficient condition on being an inductive
invariant (cf. Theorem 1), and show how to encode it as BMI constraints.

4.1 Invariant Barrier-Certificate Condition

Definition 4 (Invariant Barrier Certificate). Given a system (6), an ini-
tial set X0 and an unsafe set Xu, a polynomial function B : R

n → R is an
invariant barrier certificate of system (6) if and only if

1. (initial): ∀x ∈ X0 : B(x) ≤ 0;
2. (consecution): ∀x ∈ R

n :
∧NB,f

i=1

((∧i−1
j=0 Lj

f B(x) = 0
)

=⇒ Li
f B(x) ≤ 0

)
;

3. (separation): ∀x ∈ Xu : B(x) > 0.

Notice that the consecution constraint in Definition 4 involves Lie derivatives
of orders up to NB,f ∈ N

+, as is the case in Theorem 1. Our invariant barrier-
certificate condition hence generalizes existing conditions on barrier certificates,
e.g., [4,60,63], which consider Lie derivatives only up to the first order.

The consecution condition in Definition 4 is in fact equivalent to the invariant
condition (8) in Theorem 1 (cf. [57, Lemma 2]), thereby revealing the relation
between an inductive invariant and an invariant barrier certificate:
7 This condition can be met by adding a (redundant) constraint gm+1(x) = L0 −

‖x‖2 ≤ 0, provided that a bound L0 ∈ R
+ is known such that ∀x ∈ K : L0−‖x‖2 ≥ 0.

Synthesizing Invariant Barrier Certificates via DCP 451

Theorem 4 (Inductive Invariance). Given a system (6), an initial set X0

and an unsafe set Xu. If B(x) is an invariant barrier certificate, then Ψ = {x |
B(x) ≤ 0} is an invariant. Conversely, if Ψ = {x | B(x) ≤ 0} is an invariant
satisfying X0 ⊆ Ψ and Ψ ∩ Xu = ∅, then B(x) is an invariant barrier certificate.

It follows from Theorem 4 that our invariant barrier-certificate condition is
the least conservative one on barrier certificates to attain inductive invariance.

Remark 2. We do not employ the invariant condition (8) in Theorem 1 as the
constraint on the consecution of Lie derivatives. This is because our consecution
condition in Definition 4 is simpler, and in particular, amenable to more straight-
forward transformations to SOS constraints via Putinar’s Positivstellensatz, as
shown later in Subsect. 4.2.

Remark 3. For a fixed 0 < N < NB,f , the consecution condition in Definition 4
can be strengthened in the following way while preserving inductive invariance:

∀x ∈ R
n :

∧N−1

i=1

((∧i−1

j=0
Lj

f B(x) = 0
)

=⇒ Li
f B(x) ≤ 0

)
∧

((∧N−1

j=0
Lj

f B(x) = 0
)

=⇒ LN
f B(x) < 0

)

where for the N-th Lie derivative, one needs LN
f B(x) < 0 (rather than LN

f B(x) ≤
0). In practice, using such a strengthened consecution condition —with less sub-
constraints to solve— may yield more efficient synthesis.

4.2 Encoding as BMI Optimizations

Next, we show how to encode synthesizing an invariant barrier certificate (cf. Def-
inition 4) as an optimization problem subject to BMIs. To this end, we first recast
the invariant barrier-certificate condition into a collection of SOS constraints8.

Theorem 5 (Sufficient Condition for Invariant Barrier Certificate).
Given a system (6), an initial set X0 = {x | I(x) ≤ 0} and an unsafe set
Xu = {x | U(x) ≤ 0}. A polynomial B ∈ R[x] is an invariant barrier certificate
of (6) if for some ε ∈ R

+, there exist vi,j ∈ R[x] and SOS polynomials σ(x), σ′(x)
s.t.

1. −B(x) + σ(x)I(x),
2. for all 1 ≤ i ≤ NB,f , −Li

f B(x) +
∑i−1

j=0 vi,j(x)Lj
f B(x),

3. B(x) + σ′(x)U(x) − ε

are SOS polynomials.

By enforcing the Archimedean condition and applying Putinar’s Positivstel-
lensatz, we further derive a necessary condition of invariant barrier certificate:
8 For simplicity, we assume that X0 and Xu are both captured by a single polynomial.

Our formulations, however, apply also to cases with basic semi-algebraic X0 or Xu.

452 Q. Wang et al.

Theorem 6 (Necessary Condition for Invariant Barrier Certificate).
Given a system (6), an initial set X0 = {x | I(x) ≤ 0} and an unsafe

set Xu = {x | U(x) ≤ 0}. If B ∈ R[x] is an invariant barrier certificate
of (6), then for some ε ∈ R

+, there exist vi,j ∈ R[x] and SOS polynomials
σ(x), σ′(x), ρ(x), ρ′(x), ρ′′

i (x) s.t. for any L ∈ R
+,

1. −B(x) + ρ(x)(‖x‖2 − L) + σ(x)I(x) + ε,
2. for all 1 ≤ i ≤ NB,f , −Li

f B(x)+ ρ′′
i (x)(‖x‖2 −L)+

∑i−1
j=0 vi,j(x)Lj

f B(x)+ ε,
3. B(x) + ρ′(x)(‖x‖2 − L) + σ′(x)U(x)

are SOS polynomials.

Notice that a polynomial B(x) satisfying the sufficient condition in The-
orem 5 suffices as an invariant barrier certificate that witnesses safety of the
system. In contrast, a polynomial B(x) satisfying the necessary condition in
Theorem 6 may serve as a candidate invariant barrier certificate, and safety of
the system can be concluded via a posterior check9 of B(x) per Definition 4.

Next we show how to encode an SOS constraint of the shape “h(x) ∈ Σ[x]”
in Theorems 5 and 6 as a BMI constraint. To this end, we first set a template
polynomial10 B(a,x) parameterized by unknown real coefficients a as the barrier
certificate. We then proceed by setting templates for the remaining unknown
polynomials (e.g., vi,j(x)) and SOS polynomials (e.g., σ(x) and ρ(x)) in h(x),
with all the parameters in these templates grouped into s. Observe that the
parameterized SOS polynomial h(a, s,x) is of a bilinear form on the parameter
spaces, i.e., h(a, s,x) is linear in a and s separately. However, nonlinearity arises
in the combined parameter space (a, s) due to the product couplings of a and s,
i.e., vi,j(si,j ,x)Lj

f B(a,x) in the consecution constraint.
Now the problem of synthesizing an invariant barrier certificate boils down to

searching for an instantiation of the parameters a and s such that the sufficient
condition in Theorem 5 holds (or alternatively, the necessary condition in Theo-
rem 6 holds and the posterior check passed). Such an instantiation of a (making
B(a,x) an invariant barrier certificate) will be called valid in the sequel.

Suppose that a parameterized SOS polynomial h(a, s,x) is of degree at most
2d, with user-specified d ∈ N. Then h(a, s,x) can always be written in quadratic
form as h(a, s,x) = bTQ(a, s)b, where b = (1, x1, x2, x1x2, . . . , x

d
n) is the basis

vector of size p =
(
n+d

n

)
containing all monomials of degree up to d, and Q(a, s) ∈

Sp is a parameterized real symmetric matrix known as the Gram matrix [6]11.
An important fact states that h(a, s,x) is SOS if and only if Q(a, s) 	 0.

Let F(a, s) = −Q(a, s). As per h(a, s,x), the matrix-valued function F(a, s)
is bilinear in (a, s). Observe that h(a, s,x) is SOS if and only if the BMI con-
straint F(a, s) � 0 holds. See Example 1 for an illustration of this BMI encoding.
9 Such a check inherits decidability of the first-order theory of real-closed fields [53].

10 A template polynomial g(a,x) is required to be linear in its parameters a.
11 Extracting the Gram matrix amounts to solving a system of linear equations resulting

from coefficient matching. The derived Gram matrix may contain extra unknowns if
the system of linear equations admits multiple solutions, which nevertheless can be
encoded in our subsequent workflow by enumerating the basis of its null space.

Synthesizing Invariant Barrier Certificates via DCP 453

In general, F(a, s) can be flattened in an expanded bilinear form as

F(a, s) = F +
∑m

i=1
aiHi +

∑n

j=1
sjGj +

∑m

i=1

∑n

j=1
aisjFi,j

where m and n are the size of a and s, respectively; F,Hi, Gj , Fi,j ∈ Sp are
constant matrices. Discharging the conditions of invariant barrier certificates
hence amounts to solving the BMI feasibility problem of finding a and s s.t.

Fι(a, s) � 0, ι = 1, 2, . . . , l. (10)

Here F(a, s) is indexed by ι and l is the number of SOS constraints involved.
To exploit well-developed techniques in optimization, the feasibility problem

(10) is transformed to an optimization problem subject to BMI constraints:

maximize
λ,a,s

λ

subject to Fι(a, s) + λI � 0, ι = 1, 2, . . . , l. (11)

A solution (λ,a, s) to (11) is feasible if it satisfies the BMIs in (11), and strictly
feasible if all the BMIs are satisfied with strict inequalities. We sometimes drop
the λ component in the solution when it is clear from the context. Notice that
problem (10) has a feasible solution if and only if the optimal value λ∗ in the
BMI optimization problem (11) is non-negative.

To achieve (weak) completeness of our method in subsequent sections on
solving the BMI optimization problem, we make the following assumption on
the boundedness of the search space (a, s) of the optimization.

Assumption 1 (Boundedness on the Parameters). Every feasible solution
(a, s) to the BMI problem (11) is in a compact set with non-empty interior, i.e.,

(a, s) ∈ Ca × Cs =
{

(a, s)
∣∣ ‖a‖2 ≤ La, ‖s‖2 ≤ Ls

}

for some known bounds La, Ls ∈ R
+.

Remark 4. The boundedness on a in Assumption 1 makes sense in practice since
we usually prefer barrier certificates with bounded coefficients. Moreover, when
the bilinear functions Fι(a, s) in (11) are affine in a and s, i.e., with a zero
constant matrix F , the parameters a and s can be scaled independently by any
positive factor. Therefore in this case, w.l.o.g, one may simply set La = Ls = 1.

5 Solving BMI Optimizations via DCP

The BMI optimization problem (11), derived from the synthesis problem, is
known to be NP-hard and contains non-convex constraints [55], and hence is not
amenable to efficient (polynomial-time) algorithms committed to solving convex
optimizations. In this section, we present an algorithm for solving general BMI

454 Q. Wang et al.

optimizations via difference-of-convex programming [33,52], which solves a series
of convex sub-problems that approaches a local optimum of (11).

For brevity, we consider optimization problems with a single BMI
constraint12:

maximize
z=(x,y)

g(z)

subject to B(x,y) =̂ F +
m∑

i=1

xiHi +
n∑

j=1

yjGj +
m∑

i=1

n∑
j=1

xiyjFi,j � 0 (12)

where the objective function g : R
m+n → R is linear in z = (x, y);

F,Hi, Gj , Fi,j ∈ Sp are constant symmetric matrices.

5.1 Difference-of-Convex Decomposition

The key challenge in solving the BMI problem (12) is its non-convexity, that is,
the matrix-valued function B(x,y) is, in general, not psd-convex.

There have been attempts, most pertinently in [10], to decompose a bilin-
ear function as a difference between two psd-convex functions, known as the
difference-of-convex (DC) decomposition, such that the optimization in its
decomposed form enjoys well-established techniques in difference-of-convex pro-
gramming [33,52]. The DC decomposition in [10], however, is confined to BMIs
of a specific structure, namely, XTY + Y TX � 0, where X and Y are matrix
variables containing variables xi and yj , respectively. The more general bilinear
function B(x,y) in (12) does unfortunately not admit straightforward forms of
decomposition such as those in [10, Lemma 3.1].

In what follows, we present a difference-of-convex decomposition of the
matrix-valued function B(x,y), inspired by [58], using eigendecomposition.

First, observe that the function B(x,y) can be written as

B(x,y) =
(
x ⊗ I
y ⊗ I

)T (
0 Γ

ΓT 0

)(
x ⊗ I
y ⊗ I

)
+

(
Ω1 Ω2

) (
x ⊗ I
y ⊗ I

)
+ F (13)

where ⊗ denotes the Kronecker product: for two matrices A ∈ R
a×b and B ∈

R
c×d, A ⊗ B =̂ [A(1, 1)B, . . . , A(1, b)B;

. . . ;A(a, 1)B, . . . , A(a, b)B] ∈ R
ac×bd, 0

represents the zero matrices with compatible dimensions, and

Γ =
1
2

⎛
⎜⎝

F1,1 . . . F1,n

...
. . .

...
Fm,1 . . . Fm,n

⎞
⎟⎠ , Ω1 =

(
H1 . . . Hm

)
, Ω2 =

(
G1 . . . Gn

)
.

The form of (13) implies that B(x,y) is psd-convex if the matrix M =(
0 Γ

ΓT 0

)
is positive semidefinite. Unfortunately, as [58, Theorem 1] points out,

for a non-trivial bilinear function B(x,y), M may not be positive semidefinite.
12 Multiple BMI constraints can be joined as a single BMI in a block-diagonal fashion.

Synthesizing Invariant Barrier Certificates via DCP 455

Nevertheless, the matrix M can always be decomposed as M = M1 − M2

with M1,M2 	 0, i.e., a difference between two psd-matrices. One way to do so
is to use the eigendecomposition of the (real symmetric13) matrix M ∈ S(m+n)p.
That is, M = V TDV , where the orthogonal matrix V contains the eigenvectors
of M ; D is a diagonal matrix whose diagonal elements are the eigenvalues of M .

Let D+ be the matrix obtained by setting all negative elements of D to zero
and D− = D+ − D. We have

M = V TD+V︸ ︷︷ ︸
M1

−V TD−V︸ ︷︷ ︸
M2

.

It follows that M1,M2 	 0 and therefore we find a DC decomposition of B(x,y):

Theorem 7 (Difference-of-Convex Decomposition). The following form

B(x,y) = B+(x,y) − B−(x,y) (14)

where

B+(x,y) =
(
x ⊗ I
y ⊗ I

)T

M1

(
x ⊗ I
y ⊗ I

)
+

(
Ω1 Ω2

)(
x ⊗ I
y ⊗ I

)
+ F

B−(x,y) =
(
x ⊗ I
y ⊗ I

)T

M2

(
x ⊗ I
y ⊗ I

)

is a difference-of-convex decomposition of B(x,y). Namely, the matrix-valued
functions B+(x,y) and B−(x,y) are psd-convex on R

m+n.

Remark 5. In practice, the aforementioned matrices M , M1 and M2 induced by
eigendecomposition are often highly sparse. One can hence exploit the sparsity
to improve the algorithmic performance of the DCP-based synthesis approach.

5.2 Reduction to LMIs

On top of the DC decomposition (cf. Theorem 7), we can now apply a standard
iterative procedure in difference-of-convex programming [10] to solve the BMIs.

The core idea of the procedure is to iteratively solve a series of convex sub-
problems. More specifically, given a feasible solution zk = (xk,yk) to the BMI
optimization problem (12), the “concave part” −B−(x,y) in (14) is linearized
around zk, thereby yielding a series of convex programs (k = 0, 1, . . .):

maximize
z=(x,y)

g(z) +
1
2
δ
∥∥z − zk

∥∥2

subject to B+(z) − B− (
zk

) − DB− (
zk

) (
z − zk

) � 0 (15)

where DB−(z) : R
m+n → Sp is the derivative of the matrix-valued function B−

at z, i.e., a linear mapping from a vector u ∈ R
m+n to a matrix in Sp:

DB−(z)(u) =̂
∑n+m

i=1
ui

∂B−

∂zi
(z).

13 M thus only has real eigenvalues.

456 Q. Wang et al.

Algorithm 1: BMI-DC: Solving BMIs based on DC decomposition
input: A BMI optimization problem (12) with a strictly feasible initial solution z0.

output: A sequence of feasible solutions S =
{
z0, . . . , zk

}
to the BMI optimization.

1 k ← 0; S ← {
z0

}
;

2 M ← reformulation of (12) as (13);

3 (M1, M2) ← DC decomposition of M as in (14);

4 repeat

5 Construct the convex sub-problem (15) out of (M1, M2) linearized around zk;

6 zk+1 ← optimum of the program (15);

7 S ← S ∪ {
zk+1

}
; � S keeps track of visited points

8 k ← k + 1;

9 until
∥
∥zk − zk−1

∥
∥ < ε for a given tolerance ε ∈ R

+
0 ;

10 return S;

An extra regularization term 1
2δ‖z − zk‖2 with δ < 0 is added in (15) to

enforce that g(z) strictly increases after each iteration until it stabilizes, which
can be encoded as a second-order cone constraint and embedded in SDP solving.

Note that the linearized problem (15) is convex and therefore can be solved
efficiently14 via methods including, among others, augmented Lagrangian meth-
ods [35] and gradient descent methods [3]. Furthermore, the Schur complement
in Theorem 3 implies that (15) can be reformulated as an LMI problem:

Theorem 8. The quadratic matrix inequality (QMI) constraint

B+(z) − B− (
zk

) − DB− (
zk

) (
z − zk

) � 0

in (15) is equivalent to the LMI constraint15

(−I N(z ⊗ I)
(z ⊗ I)TNT −B− (

zk
) − DB− (

zk
) (

z − zk
)

+ Ω(z ⊗ I) + F

)
� 0

where N is the square root matrix of M1, i.e., M1 = NTN , and Ω =
(
Ω1 Ω2

)
.

Theorem 8 entails that the series of linearized convex sub-problems of the
form (15) can be solved alternatively by most off-the-shelf SDP solvers desig-
nated for discharging LMIs via polynomial-time algorithms, say the interior-
point methods. Furthermore, by taking the optimum of the k-th sub-problem to
be the next linearization point zk+1, we obtain an iterative procedure for solving
general BMIs, as depicted in Algorithm 1.

Algorithm 1 falls into the DCP framework [10] and thus enjoys useful prop-
erties, e.g., soundness, termination and convergence as follows.

14 The global optimum of (15) is attainable under standard assumptions, e.g., Slater’s
condition and the second-order sufficient KKT conditions [3].

15 This transforms a QMI with matrices in Sp to an LMI with matrices in S(m+n+1)p.

Synthesizing Invariant Barrier Certificates via DCP 457

Theorem 9 (Soundness). Every solution zi = (xi,yi) ∈ S with i = 0, . . . , k
returned by Algorithm 1 is a feasible solution to the original BMI problem (12).

The result below states termination and convergence of Algorithm 1 in terms
of KKT points of (12), i.e., solutions fulfilling the KKT conditions [3] of (12)16.

Theorem 10 (Termination and convergence). If (12) has finitely many
KKT points, then (1) for ε ∈ R

+, Algorithm 1 terminates; (2) for ε = 0, Algo-
rithm 1 visits an infinite sequence of solutions converging to a KKT point.

We remark that, under some sufficient KKT conditions and regularity con-
ditions [3], a KKT point suffices as a local optimum. In this case, the infinite
sequence {zi}i∈N of points visited by Algorithm 1 (for ε = 0) converges to a
local optimum of (12).

5.3 Finding the Initial Solution

The iterative procedure in Algorithm 1 starts with a fed-by-oracle strictly feasible
initial solution z0 to the BMI problem (12). Finding such an initial solution,
however, is non-trivial in general due to the non-convexity of (12). We argue
though, that a strictly feasible initial solution can be obtained for the BMI
problem of the form (11) induced by the barrier-certificate synthesis problem.

Recall that in the BMI problem (11), bilinearity arises from the multiplication
of B(a,x) with some unknown multiplier polynomials parameterized by s. One
way to reduce the BMI constraints to LMIs is to fix every multiplier polynomial
to be a non-negative constant, thereby yielding a linear program:

maximize
λ,a

λ

subject to Fι(a, s)
∣∣
s=(cι,0,...,0)

+ λI � 0, ι = 1, 2, . . . , l (16)

where s in Fι(a, s) is substituted by (cι, 0, . . . , 0) with cι ∈ R
+
0 , which encodes

a non-negative constant multiplier polynomial. Observe that no s-variable is
involved in (16) and the constraints therein are linear in a.

Apparently, a strictly feasible solution (λ,a) to (16) induces a strictly feasible
solution (λ,a, (cι, 0, . . . , 0)) to (11) as well. Moreover, we have

Lemma 1. The LMI program (16) always has a strictly feasible solution.

As a consequence, a strictly feasible solution to the BMI problem (11) can
be obtained by solving the LMI problem (16). In fact, when considering Lie
derivatives only up to the first order, solving (the feasibility counterpart of) (16)
is exactly the procedure to synthesize either an exponential barrier certificate [29]
(with cι ∈ R

+) or a convex barrier certificate [41] (with cι = 0). Algorithm 1
therefore subsumes existing synthesis techniques in the sense that any valid
barrier certificate synthesized by methods in [29,41] can also be discovered by
Algorithm 1. Moreover, an alternative way to reduce the BMI constraints to
LMIs is to fix the multipliers to be some given non-trivial (SOS) polynomials [62].
16 Addressing the KKT conditions in detail falls outside the scope of this paper.

458 Q. Wang et al.

Algorithm 2: Branch-and-Bound: Searching for a valid parameter ā
input: A BMI optimization problem of the form (11) with Ca = {a | ‖a‖2 ≤ La}.

output: A valid parameter ā, or otherwise ⊥ indicating a failure.

1 if La < η then return ⊥; � abort on fine-enough partitions (η ∈ R+)

/* sample-and-check is not necessary if Theorem 6 is used */

2 ā ← a randomly-sampled point in Ca;

3 if ā is valid then return ā; � check validity (inductive invariance)

4 if proja(Sglb) ∩ Ca = ∅ then � Sglb contains a global set of visited points

5 S ← apply BMI-DC in Algorithm 1 to (11) with initial solution in (Ca, Cs);

6 Sglb ← Sglb ∪ S;

/* checking validity is not necessary if Theorem 5 is used */

7 if a valid parameter ā ∈ proja(S) is found then return ā;

8 (C1
a, C2

a) ← bisect(Ca); � partition the parameter space

9 ā ← Branch-and-Bound(C1
a);

10 if ā
= ⊥ then return ā;

11 else return Branch-and-Bound(C2
a);

Remark 6. Different choices of the multiplier constants cι in (16) may lead to
different initial solutions fed to Algorithm 1, thereby considerably different num-
ber of iterations until termination. In practice, techniques like randomization are
worth exploring when choosing these multiplier constants.

6 Incorporating in a Branch-and-Bound Framework

The aforementioned iterative procedure on solving a series of convex optimiza-
tions converges only to a local optimum of the BMI problem (11) (or more
generally, (12)). This means that, in some cases, it may miss the global opti-
mum that induces a non-negative λ∗. We present in this section a solution to
this problem by incorporating the iterative procedure into a branch-and-bound
framework that searches for the global optimum in a divide-and-conquer fashion,
as is a common technique in non-convex optimizations.

The basic idea is as follows. We first try to solve the BMI problem (11) by
Algorithm 1 over the compact parameter space (Ca, Cs). If a valid solution, (i.e., a
solution that contains a valid parameter ā ∈ Ca such that B(ā,x) is an invariant
barrier certificate) is found, then the corresponding barrier certificate can be
obtained. Otherwise, we keep bisecting Ca and apply Algorithm 1 over each
bisection17. The procedure, as depicted in Algorithm 2 in a recursive manner,
terminates when a valid parameter is found or the partition is fine enough.

Algorithm 2 takes as input a BMI problem of the form (11) that encodes
either the sufficient condition in Theorem 5 or the necessary condition in The-
orem 6 for invariant barrier certificates. In the former case, a sample-and-check
process (Line 2–3) is necessary to attain (weak) completeness (see Theorem 11).
The conditional statement in Line 4 rules out parameter (sub-)spaces that have

17 The validity of ā ∈ Ca does not depend on s, thus we do not partition Cs.

Synthesizing Invariant Barrier Certificates via DCP 459

already been explored, which is the case when the projection of some visited
point in Sglb (a global set that keeps track of visited points by Algorithm 1,
initialized as ∅) onto a is in the current parameter space.

The following theorem claims a weak completeness result: our method guar-
antees to find a barrier certificate when there exists an inductive invariant (in
the form of a given template) that suffices to certify safety of the system.

Theorem 11 (Weak Completeness). Algorithm 2 returns a valid parameter
ā ∈ Ca, if (1) the partition granularity is fine enough (i.e., small enough η ∈ R

+),
(2) the degrees of multiplier polynomials and SOS polynomials used to form (11)
are large enough, and (3) there exists, for the given template B(a,x), a strictly
valid parameter â ∈ Ca (i.e., any parameter in some neighborhood of â is valid).

Remark 7. The bisection operation in Algorithm 2 induces —in the worst case—
an exponential blow-up in the number of branches. In practice, one can prune
branches inducing only negative objective values, via, e.g., convex relaxation [26].

7 Experimental Results

We have carried out a prototypical implementation18 of our synthesis techniques
in Wolfram Mathematica, which was selected due to its built-in primitives for
SDP, polynomial algebra and matrix operations. Given a safety verification prob-
lem as input, our implementation works toward discovering an invariant barrier
certificate (in the form of a given template) that witnesses unbounded-time safety
of the system. A collection of benchmark examples (detailed in [57, Appendix B])
has been evaluated on a 2.10 GHz Intel Xeon processor with 376 GB RAM run-
ning 64-bit CentOS Linux 7.

Table 1 reports the empirical results. BMI-DC concerns our locally-convergent
Algorithm 1 for solving BMIs (encoding the sufficient condition in Theorem 5)
based on DC decomposition. We compare our approach with PENLAB [14]—an
off-the-shelf solver in Matlab for directly discharging the same BMI problems
(with no guarantee on convergence)—and SOSTOOLS [39]—for solving LMIs
derived from Prajna and Jadbabaie’s original barrier-certificate condition [41].
The comparison is performed under the same problem configurations19. Due
to numerical errors caused by floating-point computations and the fact that
reaching the local/global optimum does not necessarily yield a valid barrier
certificate, we additionally perform a posterior check, via both the quantifier-
elimination procedure in Mathematica and the SMT solver Z3 [37], of the
synthesized candidate barrier certificate per Definition 4.

Table 1 shows that BMI-DC suffices to synthesize valid barrier certificates in
most of the examples within a reasonable number of iterations (i.e., the number of
convex sub-problems solved by SDP). This however does not cover all the cases:

18 Available at � https://github.com/Chenms404/BMI-DC.
19 For PENLAB and SOSTOOLS, we use their optimized, built-in criteria for termina-

tion and methods for finding the initial solutions.

https://github.com/Chenms404/BMI-DC

460 Q. Wang et al.

Table 1. Empirical results on benchmark examples (time in seconds)

Example name nsys dflow dBC BMI-DC PENLAB SOSTOOLS

#iter. Time Verified Time Verified Time Verified

overview [11] 2 2 1 2 0.03 ✓ 0.31 ✓ 0.07 ✓

contrived 2 1 2 0 0.01 ✓ 0.48 ✓ 0.75 ✓

lie-der [36] 2 2 1 0 0.01 ✓ 0.22 ✓ 0.04 ✓

lorenz [11] 3 2 2 8 2.37 ✓ 75.11 ✗ 1.47 ✗

lti-stable [19] 2 1 2 0 0.01 ✓ 0.23 ✓ 0.14 ✓

lotka-volterra [21] 3 2 1 3 0.07 ✓ 0.36 ✓ 0.21 ✓

clock [43] 2 3 1 0 0.01 ✓ 0.88 ✗ 0.18 ✗

lyapunov [44] 3 3 2 4 1.25 ✓ 56.98 ✗ 0.35 ✓

arch1 [50] 2 5 2 0 0.01 ✓ 33.76 ✗ 0.31 ✓

arch2 [50] 2 2 2 5 0.37 ✓ 0.38 ✗ 0.17 ✗

arch3 [50] 2 3 2 1 0.07 ✓ 0.54 ✓ 0.18 ✓

arch4 [50] 2 2 1 2 0.09 ✓ 0.49 ✗ 0.06 ✓

barr-cert1 [41] 2 3 2 12 0.85 ✓ 2.53 ✗ 0.09 ✗

barr-cert2 [11] 2 2 2 6 1.57 ✓ 1.16 ✗ 0.15 ✓

barr-cert3 [63] 2 2 1 0 0.01 ✓ 0.20 ✓ 0.11 ✗

barr-cert4 [63] 2 3 2 13 0.96 ✓ 0.89 ✗ 0.23 ✗

fitzhugh-nagumo [47] 2 3 2 2 0.16 ✓ 1.24 ✓ 0.25 ✗

stabilization [48] 3 2 2 9 2.88 ✓ 55.22 ✓ 0.11 ✓

lie-high-order 2 1 2 32 4.12 ✓ 1.56 ✗ 0.25 ✗

raychaudhuri [13] 4 2 2 34 9.51 ✓ 33.64 ✗ 0.14 ✗

focus [42] 2 1 4 100 54.89 ✗ 0.95 ✗ 0.48 ✗

sys-bio1 [27] 7 2 2 2 73.22 ? 101.95 ? 1.35 ?

sys-bio2 [27] 9 2 1 1 1.03 ? 15.54 ? 0.16 ?

quadcopter [19] 12 1 1 0 0.03 ? 65.42 ? 0.36 ?
nsys: system dimension; dflow: maximal flow-field degree; dBC: degree of the template barrier certificate.
#iter.: number of iterations. 0 means that the initial solution (cf. Subsect. 5.3) is valid.
verified: the synthesized barrier certificate is valid (✓), invalid (✗) or inconclusive (?, beyond the
capability of quantifier elimination in Mathematica and nonlinear reasoning in Z3).
time: CPU-time, excluding that for casting the BMIs/LMIs. Boldface marks the winner among ✓’s.

for the focus example, the solution is close enough to a local optimum (after
100 iterations) but yields still an invalid barrier certificate. This problem can be
solved (if there exists an invariant barrier certificate as specified) by enforcing
the branch-and-bound framework as presented in Sect. 6. The phase portraits of
a selected set of examples and the synthesized invariant barrier certificates are
depicted in Fig. 2 (see more in [57, Appendix B]).

The comparison in Table 1 suggests that (1) Our invariant barrier-certificate
condition recognizes more barrier certificates than the original (more conserva-
tive) condition as implemented in SOSTOOLS. In particular, the lie-high-order
example does admit an inductive invariant in the form of the given template,
but none of the existing barrier-certificate conditions [4,60,63] —concerning Lie
derivatives only up to the first order— recognizes it, since we have L1

f B(x) = 0

Synthesizing Invariant Barrier Certificates via DCP 461

Fig. 2. Phase portraits of a selected set of examples with the synthesized invariant
barrier certificates. The arrows indicate the vector field (hidden in 3D-graphics for a
clear presentation) and the solid curves are randomly sampled trajectories.

for some x on the boundary of B and hence it requires to exploit the second-order
Lie derivative L2

f B; (2) Our DCP-based synthesis algorithm finds more barrier
certificates in less time than directly solving the BMI problems via non-convex
optimization techniques as implemented in PENLAB.

We remark that symbolic methods based on, e.g., quantifier elimination [36],
can hardly deal with any of the examples listed in Table 1 due to the prohibitively
high computation complexity. Moreover, it would be desirable to pursue a com-
parison with the augmented Lagrangian method for solving BMIs as proposed
in [4], which unfortunately is not yet possible due to the unavailability of the
implementation thereof. We will discuss crucial differences to [4] in Sect. 8.

8 Related Work

As surveyed in [15], the research community has, over the past three decades,
extensively addressed the automatic verification of safety-critical hybrid systems.
The almost universal undecidability of the unbounded-time reachability prob-
lem [1], however, confines the sound key-press routines to either semi-decision
procedures or approximation schemes, most of which address bounded-time ver-
ification by, e.g., computing the finite-time image of a set of initial states.

Invariant generation [36,41], amongst others, is a well-established approxima-
tion scheme that provides a reliable witness for safety (or equivalently, unreach-
ability) of dynamical systems over the infinite time horizon. Invariants can be
constructed in various forms, e.g., barrier certificates [41,51] and differential
invariants [36,40]. With a priori specified templates, the invariant synthesis
problem can be reduced to numerical optimizations or constraint solving, as
in, e.g., [22,25,46,54].

Most pertinently, Prajna and Jadbabaie proposed in their seminal work [41]
a concept coined barrier certificate to encode invariants. To enable efficient
synthesis via semidefinite programming, the barrier-certificate condition in [41]
strengthens the general condition encoding inductive invariance. Since then, sig-
nificant efforts have been investigated in developing more relaxed (i.e., weaker)

462 Q. Wang et al.

forms of barrier-certificate condition that still admit efficient synthesis, thereby
leading to, e.g., exponential-type barrier certificates [29], Darboux-type barrier
certificates [62], general barrier certificates [8] and vector barrier certificates [51].
To attain efficient synthesis, these barrier-certificate conditions share a com-
mon property on convexity. That is, if for some a1,a2 ∈ R

m, B(a1,x) and
B(a2,x) both satisfy the barrier-certificate condition, then for any 0 < μ < 1,
B(μa1 + (1 − μ)a2,x) must also satisfy the barrier-certificate condition.

However, neither the semantic barrier-certificate condition (9) encoding the
general principle of barrier certificates [8,51] nor the inductive invariant con-
dition (8) is convex. This means, when resorting to convex barrier-certificate
conditions, one may miss some potential barrier certificates that suffice as induc-
tive invariants witnessing safety. Therefore, non-convex conditions were sug-
gested [60], for which the synthesis problem can be reduced to BMI problems
solvable via customized schemes, e.g., the augmented Lagrangian method [4]
and the alternating minimization algorithm [63]. Our synthesis techniques also
exploit a BMI reduction, with three crucial differences: (1) our invariant barrier-
certificate condition is equivalent to the inductive invariant condition in the sense
of Theorem 4, and thus is less conservative than all the aforementioned condi-
tions which consider Lie derivatives only up to the first order; (2) our DCP-based
techniques for solving BMIs naturally inherit appealing results on convergence
and (weak) completeness, which are not (and can hardly be) provided by the
approaches in [4,60,63]; (3) our DCP-based iterative procedure visits only fea-
sible solutions to the original BMI problem, and hence whenever a solution that
induces a non-negative objective value is found, we can safely terminate the algo-
rithm and claim a feasible solution to the original BMI problem, which may yield
a valid barrier certificate. This is not the case for the approaches in [4,60,63].

Beyond barrier certificates, Wang and Rajamani [58] investigated the feasi-
bility problem of general BMI problems with an application to multi-objective
nonlinear observer design. The technique of eigendecomposition was also used
therein to conduct the DC decomposition. The decomposed concave part, how-
ever, is simply ignored and no iterative procedure that exhibits convergence to
a local optimum can be provided.

The idea of augmenting a locally-convergent algorithm with a branch-and-
bound framework to find the global optimum has been exploited in the realm
of optimization [20] and control [56]. In contrast, our method is designed for
the specific problem of barrier-certificate synthesis, and hence our branch-and-
bound algorithm concerns only the parameter space of a, i.e., coefficients of the
template barrier certificate.

Finally, we refer interested readers to other approaches to solving BMI prob-
lems, e.g., rank minimization [23,38,45], sequential SDP [7,12], as well as meth-
ods committed to general non-convex optimizations, e.g., interior point trust-
region [5,9,34], successive linearization [24] and primal-dual interior point [59].

Synthesizing Invariant Barrier Certificates via DCP 463

9 Conclusion

Barrier certificates are powerful tools to prove time-unbounded safety of hybrid
systems. We have presented a new condition on barrier certificates—the invariant
barrier-certificate condition. This condition is by far the least conservative one on
barrier certificates, and can be shown as the weakest possible one to attain induc-
tive invariance. We showed that our invariant barrier-certificate condition can be
reformulated as an optimization problem subject to bilinear matrix inequalities,
which can be solved by our locally-convergent algorithm based on difference-of-
convex programming. By incorporating this algorithm into a branch-and-bound
framework, we obtained a weak completeness result. Experiments on benchmark
examples suggested that our invariant barrier-certificate condition recognizes
more barrier certificates than existing conditions, and that our DCP-based algo-
rithm is more efficient than directly solving the BMIs via off-the-shelf solvers.

We stress that our techniques for solving BMIs are of a general nature rather
than being confined to barrier-certificate synthesis. Interesting future directions
include to extend our method to other synthesis problems, e.g., discovering
invariants and/or termination proofs of deterministic/probabilistic programs.

Acknowledgements. The authors would like to thank Hengjun Zhao for the fruitful
discussion on differential dynamics requiring high-order Lie derivatives.

References

1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138(1), 3–34 (1995)

2. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimina-
tion. In: HSCC (2001)

3. Boyd, S., Vandenberghe, L.: Convex Optimization (2004)
4. Chen, X., et al.: A novel approach for solving the BMI problem in barrier certifi-

cates generation. In: CAV (2020)
5. Chiu, W.Y.: Method of reduction of variables for bilinear matrix inequality prob-

lems in system and control designs. IEEE SMC 47(7), 1241–1256 (2016)
6. Choi, M.D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In:

Proceedings of Symposia in Pure Mathematics (1995)
7. Correa, R.: A global algorithm for nonlinear semidefinite programming. SIOPT

15(1), 303–318 (2004)
8. Dai, L., et al.: Barrier certificates revisited. J. Symb. Comput. 80, 62–86 (2017)
9. Dennis, J., Heinkenschloss, M., Vicente, L.N.: Trust-region interior-point SQP algo-

rithms for a class of nonlinear programming problems. SICON 36(5), 1750–1794
(1998)

10. Dinh, Q.T., et al.: Combining convex-concave decompositions and linearization
approaches for solving BMIs, with application to static output feedback. IEEE
TAC 57(6), 1377–1390 (2011)

464 Q. Wang et al.

11. Djaballah, A., et al.: Construction of parametric barrier functions for dynamical
systems using interval analysis. Automatica 78, 287–290 (2017)

12. Eggers, A., et al.: Improving the SAT modulo ODE approach to hybrid systems
analysis by combining different enclosure methods. In: SoSyM (2012)

13. Ferragut, A., Gasull, A.: Seeking Darboux polynomials. Acta Applicandae Math-
ematicae 139(1), 167–186 (2015)

14. Fiala, J., Kočvara, M., Stingl, M.: PENLAB: A MATLAB solver for nonlinear
semidefinite optimization. CoRR abs/1311.5240 (2013)

15. Fränzle, M., Chen, M., Kröger, P.: In memory of Oded Maler: automatic reacha-
bility analysis of hybrid-state automata. ACM SIGLOG News 6(1), 19–39 (2019)

16. Gan, T., et al.: Decidability of the reachability for a family of linear vector fields.
In: ATVA (2015)

17. Gan, T., et al.: Computing reachable sets of linear vector fields revisited. In: ECC
(2016)

18. Gan, T., et al.: Reachability analysis for solvable dynamical systems. IEEE TAC
63(7), 2003–2018 (2018)

19. Gao, S., et al.: Numerically-robust inductive proof rules for continuous dynamical
systems. In: CAV (2019)

20. Goh, K.C., Safonov, M.G., Papavassilopoulos, G.P.: Global optimization for the
biaffine matrix inequality problem. J. Glob. Optim. 7(4), 365–380 (1995)

21. Goubault, E., et al.: Finding non-polynomial positive invariants and Lyapunov
functions for polynomial systems through Darboux polynomials. In: ACC (2014)

22. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: CAV (2008)

23. Ibaraki, S., Tomizuka, M.: Rank minimization approach for solving BMI problems
with random search. In: ACC (2001)

24. Kanzow, C., et al.: Successive linearization methods for nonlinear semidefinite pro-
grams. Comput. Optim. Appl. 31(3), 252–273 (2005)

25. Kapinski, J., et al.: Simulation-guided Lyapunov analysis for hybrid dynamical
systems. In: HSCC (2014)

26. Kheirandishfard, M., Zohrizadeh, F., Madani, R.: Convex relaxation of bilinear
matrix inequalities Part I: Theoretical results. In: CDC (2018)

27. Klipp, E., et al.: Systems Biology in Practice: Concepts, Implementation and Appli-
cation (2008)

28. Kolár̆ I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry
(1993)

29. Kong, H., et al.: Exponential-condition-based barrier certificate generation for
safety verification of hybrid systems. In: CAV (2013)

30. Kong, S., Solar-Lezama, A., Gao, S.: Delta-decision procedures for exists-forall
problems over the reals. In: CAV (2018)

31. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for
families of linear vector fields. J. Symb. Comput. 32(3), 23–253 (2001)

32. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications (2010)
33. Le Thi, H.A., Dinh, T.P.: DC programming and DCA: thirty years of developments.

Math. Program. 169(1), 5–68 (2018)
34. Leibfritz, F., Mostafa, E.: An interior point constrained trust region method for

a special class of nonlinear semidefinite programming problems. SIOPT 12(4),
1048–1071 (2002)

35. Li, X., Sun, D., Toh, K.C.: QSDPNAL: a two-phase augmented Lagrangian method
for convex quadratic semidefinite programming. Math. Program. Comput. 10(4),
703–743 (2018)

Synthesizing Invariant Barrier Certificates via DCP 465

36. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT (2011)

37. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS (2008)
38. Orsi, R., Helmke, U., Moore, J.B.: A Newton-like method for solving rank con-

strained linear matrix inequalities. Automatica 42(11), 1875–1882 (2006)
39. Papachristodoulou, A., et al.: SOSTOOLS version 3.00 sum of squares optimization

toolbox for MATLAB. CoRR abs/1310.4716 (2013)
40. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as

fixedpoints. In: CAV (2008)
41. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier cer-

tificates. In: HSCC (2004)
42. Ratschan, S., She, Z.: Constraints for continuous reachability in the verification of

hybrid systems. In: AISC (2006)
43. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint

propagation-based abstraction refinement. ACM TECS 6(1), 8-es (2007)
44. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-

mial systems by computation of Lyapunov-like functions. SICON 48(7), 4377–4394
(2010)

45. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

46. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. In: HSCC (2004)

47. Sassi, M.A.B., Girard, A., Sankaranarayanan, S.: Iterative computation of polyhe-
dral invariants sets for polynomial dynamical systems. In: CDC (2014)

48. Sassi, M.A.B., Sankaranarayanan, S.: Stability and stabilization of polynomial
dynamical systems using Bernstein polynomials. In: HSCC (2015)

49. Smith, W.D.: Church’s thesis meets the n-body problem. Appl. Math. Comput.
178(1), 154–183 (2006)

50. Sogokon, A., Ghorbal, K., Johnson, T.T.: Non-linear continuous systems for safety
verification (benchmark proposal). In: ARCH @ CPSWeek (2016)

51. Sogokon, A., et al.: Vector barrier certificates and comparison systems. In: FM
(2018)

52. Tao, P.D., Souad, E.B.: Algorithms for solving a class of nonconvex optimization
problems. North-Holland Mathematics Studies, Methods of subgradients (1986)

53. Tarski, A.: A Decision Method for Elementary Algebra and Geometry (1951)
54. Tiwari, A.: Approximate reachability for linear systems. In: HSCC (2003)
55. Toker, O., Ozbay, H.: On the NP-hardness of solving bilinear matrix inequalities

and simultaneous stabilization with static output feedback. In: ACC (1995)
56. Tuan, H.D., Apkarian, P., Nakashima, Y.: A new Lagrangian dual global opti-

mization algorithm for solving bilinear matrix inequalities. Int. J. Rob. Nonlinear
Control IFAC-Affiliat. J. 10(7), 561–578 (2000)

57. Wang, Q., et al.: Synthesizing invariant barrier certificates via difference-of-convex
programming (extended version). arXiv abs/2105.14311 (2021)

58. Wang, Y., Rajamani, R.: Feasibility analysis of the bilinear matrix inequalities
with an application to multi-objective nonlinear observer design. In: CDC (2016)

59. Yamashita, H., Yabe, H.: Local and superlinear convergence of a primal-dual inte-
rior point method for nonlinear semidefinite programming. Math. Program. 132(1–
2), 1–30 (2012)

60. Yang, Z., Lin, W., Wu, M.: Exact safety verification of hybrid systems based on
bilinear SOS representation. ACM TECS 14(1), 1–19 (2015)

466 Q. Wang et al.

61. Yang, Z., et al.: A linear programming relaxation based approach for generating
barrier certificates of hybrid systems. In: FM (2016)

62. Zeng, X., et al.: Darboux-type barrier certificates for safety verification of nonlinear
hybrid systems. In: EMSOFT (2016)

63. Zhang, Y., et al.: Safety verification of nonlinear hybrid systems based on bilinear
programming. IEEE TCAD 37(11),(2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

An Iterative Scheme of Safe
Reinforcement Learning for Nonlinear

Systems via Barrier Certificate
Generation

Zhengfeng Yang1, Yidan Zhang1, Wang Lin2(B), Xia Zeng3, Xiaochao Tang1,
Zhenbing Zeng4, and Zhiming Liu3,5

1 Shanghai Key Lab of Trustworthy Computing, East China Normal University,
Shanghai, China

zfyang@sei.ecnu.edu.cn,{ydzhang,xctang}@stu.ecnu.edu.cn
2 School of Information Science and Technology, Zhejiang Sci-Tech University,

Hangzhou, China
linwang@zstu.edu.cn

3 School of Computer and Information Science, Southwest University,
Chongqing, China

xzeng0712@swu.edu.cn
4 Department of Mathematics, Shanghai University, Shanghai, China

zbzeng@shu.edu.cn
5 Centre for Intelligent and Embedded Software, Northwestern Polytechnical

University, Suzhou, China
zliu@nwpu.edu.cn

Abstract. In this paper, we propose a safe reinforcement learning app-
roach to synthesize deep neural network (DNN) controllers for nonlinear
systems subject to safety constraints. The proposed approach employs an
iterative scheme where a learner and a verifier interact to synthesize safe
DNN controllers. The learner trains a DNN controller via deep reinforce-
ment learning, and the verifier certifies the learned controller through
computing a maximal safe initial region and its corresponding barrier
certificate, based on polynomial abstraction and bilinear matrix inequal-
ities solving. Compared with the existing verification-in-the-loop synthe-
sis methods, our iterative framework is a sequential synthesis scheme of
controllers and barrier certificates, which can learn safe controllers with
adaptive barrier certificates rather than user-defined ones. We implement
the tool SRLBC and evaluate its performance over a set of benchmark
examples. The experimental results demonstrate that our approach effi-
ciently synthesizes safe DNN controllers even for a nonlinear system with
dimension up to 12.

This work was partially supported by the Scientific and Technological Innovation 2030
Major Projects under Grant 2018AAA0100902, the National Natural Science Foun-
dation of China under Grant 61772203, 61902325, 62032019, 61732019, the Zhejiang
Provincial Natural Science Foundation of China under Grant LY20F020020, the Capac-
ity Development Grant of Southwest University under Grant SWU116007, the Funda-
mental Research Funds for the Central Universities under Grant SWU117058.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 467–490, 2021.
https://doi.org/10.1007/978-3-030-81685-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_22

468 Z. Yang et al.

Keywords: Formal verification · Safe reinforcement learning · Barrier
certificates · Continuous dynamical systems

1 Introduction

The design and synthesis of controllers for dynamical systems is a fundamental
problem in the field of control. In recent years, with the boom of deep learning,
there has been considerable research activities in the use of deep neural net-
works (DNNs) for control of cyber-physical systems such as unmanned aerial
vehicles, self-driving cars, etc. [33]. For these safety-critical systems, one of the
most important and challenging problems is safe controller synthesis, that is,
to synthesize a controller guaranteeing that the system’s trajectory will never
intersect with an undesired region.

A number of techniques included under the umbrella of Deep Reinforcement
Learning (DRL) have been used to effectively learn controllers from user-defined
reward functions encoding desired system behavior [17,36]. A majority of these
works lack formal reasoning about the safety of such DNN-controlled dynamical
systems from such learning process. To guarantee the safety property of syn-
thesized DNN controllers, considerable works focus on the safety verification of
DNN-controlled closed-loop systems, which is a really hard problem because it
is tangled with highly nonlinear DNN expressions. The main research on this
topic is through reachable set estimation of DNN-controlled systems, which can
only deal with time bounded safety property [11,12,18,19,37]. On the other
hand, other than formally verifying synthesized DNN controllers, more recent
works have been proposed to learn DNN controllers for dynamical systems with
safety guarantees [8,39,40]. For example, a verification-in-the-loop DNN con-
troller training algorithm is presented in [8], which integrates RL framework
with user-provided control barrier functions (CBFs) for reward function encod-
ing, combined with SMT based formal CBF checking; a correctness-by-design
method is proposed in [39] that first learns DNN controllers and barrier cer-
tificates simultaneously using supervised learning, and then performs posterior
formal verification of barrier certificates via SMT solvers.

In this paper, we propose a safe reinforcement learning approach to synthesize
DNN controller for nonlinear systems subject to safety constraints via barrier
certificate generation. The proposed approach employs an iterative scheme where
a learner and a verifier interact to synthesize safe DNN controllers. Firstly, the
learner applies DRL method to train a DNN controller by encoding the safety
requirement (and the barrier certificate requirement, if applicable) into reward
function. For the learned controller, the verifier computes a Maximal Safe Input
Region (MSIR) and the corresponding barrier certificate. Once the MSIR is a
superset of the prescribed initial set Θ, it is easy to see that the safety of the
closed-loop system under the learned controller with Θ is verified. Otherwise, the
computed barrier certificate needs to be adjusted and fed to guide the learner
to retrain a new controller. The above inductive loop repeats until an MSIR
enclosing Θ is computed.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 469

Compared with [8], a user-provided barrier certificate is adopted for reward
function encoding and the barrier certificate is fixed through the learning process,
whereas in this paper the controllers and the barrier certificates are synthesized
simultaneously and yielded in a larger state space, which increases the diver-
sity and flexibility of barrier certificates. Meanwhile, the barrier certificates in
our approach are computed by numerical optimization method, which is more
efficient than the SMT based method in [8]. Compared with [39], our method
is based on RL framework and thus has better data sampling efficiency than
the meshing-based data set generation in [39] for supervised learning. Besides,
our method is iterative so that can utilize intermediate learned results to guide
learning in the next iteration, rather than restarting from scratch as in [39] when
a learned barrier certificate failed formal checking. Thanks to these advantages,
our method has really good performance in efficiency and scalability even for
problems with dimension up to 12.

The main contributions of this paper are summarized as follows:

– We propose a safe reinforcement learning via barrier certificate generation to
synthesize DNN controller, which can guarantee the unbounded-time safety
of the closed-loop systems.

– Our synthesis approach employs a sequential iterative scheme, where DNN
controllers and the corresponding barrier certificates are synthesized alterna-
tively, and in each iteration, barrier certificates are slightly adjusted to guide
retraining safe DNN controllers quickly.

– We provide a detailed experimental evaluation on a set of benchmarks, which
shows the efficiency and effectiveness of our approach.

The paper is organized as follows. Section 2 gives a brief introduction to
the safe controller synthesis problem. Section 3 describes an iterative scheme
of safe reinforcement learning for safe DNN controller synthesis. In Sect. 4, we
provide an overall algorithm with a detailed example attached to depict how
the algorithm works. In Sect. 5, we present an experimental evaluation of our
algorithm over a set of benchmark examples. We compare with related works in
Sect. 6 before concluding in Sect. 7.

2 Preliminaries

Notations. Let R and N be the field of real number and natural number, respec-
tively. R[x] denotes the ring of polynomials with coefficients in R over variables
x = [x1, x2, . . . , xn]T , and R[x]n denotes the n-dimensional polynomial ring vec-
tor. Let R[x]d ⊂ R[x] be the vector space of polynomials of degree at most d.
Let N

n
d := {α ∈ N

n :
∑

i αi ≤ d}. Denote by Σ[x] ⊂ R[x] (resp. Σ[x]d ⊂ R[x]2d)
the space of sums of squares (SOS) polynomials.

Consider a continuous dynamical system of the form

ẋ = f(x), (1)

470 Z. Yang et al.

where x = (x1, . . . , xn)T ∈ R
n and f = (f1, . . . , fn)T ∈ R[x]n is the vector field

defined on the state space D ⊂ R
n. We assume that f satisfies the local Lipschitz

condition, so that (1) has a unique solution x(t,x0) in D for every initial state
x0 ∈ D at time t = 0.

In many contexts, a dynamical system is equipped with a domain Ψ ⊂ D and
an initial set Θ ⊂ Ψ , represented as a triple C .= (f , Θ, Ψ). Given a prespecified
unsafe region Xu ⊂ D, we say that the system C is safe if all system trajectories
starting from Θ can not evolve into any state specified by Xu, which has been
widely investigated in safety critical applications.

Definition 1 (Safety). For a constrained continuous dynamical system
(CCDS) C = (f , Ψ,Θ) and a given unsafe region Xu, the system is safe if for all
x0 ∈ Θ, there does not exist t1 > 0 such that

∀t ∈ [0, t1].x(t,x0) ∈ Ψ and x(t1,x0) ∈ Xu,

that is, the system’s trajectory never reaches Xu from Θ as long as it remains
in Ψ .

Remark 1. If the trajectory x(t,x0) first leaves Ψ and then enters Ψ again, then
by Definition 1, the part of the trajectory from the first exit point is excluded
from our concern and is not relevant to the safety of the considered CCDS.

In this paper, we consider a controlled CCDS C = (f , Ψ,Θ) with continuous
dynamics defined by {

ẋ = f(x,u)
u = k(x), (2)

where x ∈ Ψ ⊆ R
n are the system states, u ∈ U ⊆ R

m are the control inputs,
and f : Ψ × U → R

n and k : Ψ → U are the locally Lipschitz continuous vector
field and feedback controller function, respectively. The problem we considered
in this paper is defined as follows.

Definition 2 (Safe Controller Synthesis). For a controlled CCDS C =
(f , Ψ, Θ) with f defined by (2) and a given unsafe region Xu, design a locally
Lipschitz continuous feedback control law k such that the closed-loop system C
with f = f(x,k(x)) is safe as per Definition 1.

The concept of barrier certificates plays an important role in safety verifica-
tion of continuous systems. The essential idea is to use the zero level set of a
barrier certificate B(x) as a barrier to separate all the reachable states from the
unsafe region. The following theorem states the conditions that must be satisfied
by a barrier certificate.

Theorem 1 [26]. Given a continuous system C = (f , Ψ,Θ), and the unsafe
region Xu. Suppose there exists a real-valued function B : Ψ → R satisfying the
following conditions:

(i) B(x) ≥ 0 ∀x ∈ Θ,

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 471

(ii) B(x) < 0 ∀x ∈ Xu,
(iii) B(x) = 0 ⇒ LfB(x) > 0 ∀x ∈ Ψ ,

where LfB(x) denotes the Lie-derivative of B(x) along the vector field f(x), i.e.,
LfB(x) =

∑n
i=1

∂B
∂xi

· fi(x), then B(x) is a barrier certificate, and the safety of
system C is guaranteed.

Corollary 1. For a controlled CCDS C = (f , Ψ,Θ) with f defined by (2), a
feedback control law u = k(x) can be used to ensure the safety control of C, if
there exists a barrier certificate for the closed-loop system under the control law
k(x).

Throughout this paper, we assume that the initial set Θ, the domain Ψ
and the unsafe set Xu are compact semi-algebraic sets, defined by polynomial
equations and inequalities. Concretely, the semi-algebraic sets Θ,Ψ and Xu are
represented as follows:

⎧
⎨

⎩

Θ : = {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . , m1},

Ψ : = {x ∈ R
n |hj(x) ≥ 0, j = 1, . . . , m2},

Xu : = {x ∈ R
n | qk(x) ≥ 0, k = 1, . . . , m3},

for some polynomials gi, hj , qk ∈ R[x].

3 Synthesis of Safe Controller via Learning and
Verification

In this section, we introduce an iterative framework for synthesizing a deep neural
network (DNN) controller for a CCDS subject to safety constraints. As shown in
Fig. 1, the procedure is structured as an inductive loop between a learner and a
verifier. The learner trains a DNN controller using reinforcement learning. The
trained DNN controller is passed to the verifier, which checks the safety of the
closed-loop system under the trained controller via barrier certificate generation.

Observing Fig. 1, we first apply the reinforcement learning method to train a
neural network controller u = k(x) in terms of the target of the safety satisfiabil-
ity, and then try to yield a barrier certificate B(x) based on the bilinear matrix
inequalities (BMI) solving, to guarantee the safety of the closed-loop system with
the controller k(x).

However, for the system with the controller k(x), such barrier certificate B(x)
may not exist. The reasons are twofold: (i) the controller k(x) is trained through
the trajectories starting from finite points in the initial set Θ; (ii) the existence
of the barrier certificate is just a sufficient condition of the safety of the given
system.

In this situation, for the learned controller k(x), one may compute a Maximal
Safe Input Region (MSIR) Θγ and the corresponding barrier certificate B(x),
which can guarantee the safety of the continuous system with respect to the
initial set Θγ . Once Θγ is a superset of the prescribed initial set Θ, i.e., Θ ⊆ Θγ ,

472 Z. Yang et al.

Continuous
SystemGrid Initial

Region

Critic
Network

Actor
Network

Replay Buffer
Polynomial
Inclusion

MSIR and BC
Computation

Safety
Satisfaction?

BC
Refinement

Output:
Success

Reward

Learner Verifier

Loop Validation

DNN Controller
Abstract

controller:

MSIR
BC

Yes

No

Updated BC

update

update

Fig. 1. The framework of safe neural network controller synthesis.

it is easy to see that the safety of the system with Θ is verified. Otherwise,
we need adjust the barrier certificate B(x) and the controller k(x) sequentially.
This operation is able to build an iterative framework, wherein each iteration
proceeds in two stages:

– Update the neural network controller. We apply deep reinforcement
learning method to obtain the updated controller ki(x) by feeding B̂i−1(x),
which is the barrier certificate yielded from the above iteration (See the
learner in Fig. 1).

– Compute the barrier certificate with the maximal safe input region.
With the updated controller ki(x), we transfer the problem of barrier certifi-
cate generation into a bilinear matrix inequalities (BMI) solving, and then
compute the maximal region Θi with the corresponding barrier certificate
Bi(x). Namely, the existence of Bi(x) suffices to prove the safety of the sys-
tem with respect to the initial set Θi. Once Θi encloses the original initial set
Θ, i.e., Θ ⊆ Θi, the current controller ki(x) is the desired safe one. Otherwise,
we need refine Bi(x), and then go to the next iteration (See the verifier in
Fig. 1).

3.1 Training of Safe Controller

In the following, we focus on the learner component of Fig. 1 and show how
to train a safe controller using deep deterministic policy gradient (DDPG) [23],
which is a popular reinforcement learning approach suited for continuous control
applications. The DDPG combines the value-based and policy-based method,
and is made up of two parts: actor and critic. The critic uses the off-policy data
to learn the action-value function, which evaluates how good the action k taken
is in the given state x. The actor can learn the continuous action policy by
using the action-value function. In practice, it is difficult to obtain the exact
action-value function and policy function. Thus, two deep neural networks are

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 473

introduced to solve this problem, i.e. the critic network Q(x,u|βQ) and actor
network k(x|βk) with weights βQ and βk, respectively.

The reward function should be appropriately designed to achieve the goal of
safety controller synthesis via reinforcement learning. For safe controller synthe-
sis, the task is to synthesize a DNN controller such that all the trajectories of
the closed-loop system starting from Θ can not evolve into the unsafe region Xu.
Thus, the reward function is preliminarily defined as

r̂t = β1 · dist(Xu,xt)

where β1 > 0 is the scale factor, and dist(Xu,xt) denotes the distance between
the state xt and the unsafe region Xu. In addition, according to the third condi-
tion of Theorem 1, once the trajectory hit the zero level set of barrier certificate
it must satisfy LfB(xt) > 0; otherwise, the system behavior should be penalized.
For this purpose, the reward function is updated as

rt =
{

r̂t − min(β2|LfB(xt)|,Δrmin), |B(xt)| < δ and LfB(xt) ≤ 0
r̂t, otherwise (3)

where LfB(xt) =
∑n

i=1
∂B(xt)

∂xi
fi(xt, u), β2 > 0 is the scale factor, δ is a small

positive value characterizing the zero-level set of B, and Δrmin > 0 is the thresh-
old avoiding too large fluctuations of reward value. In this work, we set β1 = 1.0,
β2 = 1.0, δ = 0.1, Δrmin denotes the size of Ψ . Since 0 ≤ r̂t ≤ Δrmin, the setting
rt (3) can be kept within a certain range, making the convergence effect better.

Algorithm 1. Barrier Certificate Guided Reinforcement Learning
Input: CCDS C; unsafe region Xu; barrier certificate B(x)
Output: DNN Controller k
1: Initialize critic Q and actor k, corresponding target networks Q′ = Q and k′ = k
2: Initialize barrier certificate B(x) = ⊥ and replay buffer R = ∅
3: Sample initial states from Θ and store them to ΩΘ

4: for x0 ∈ ΩΘ do
5: for t = 1, · · · , T do
6: calculate ut = k(xt)
7: calculate xt+1 = xt + f(xt,ut)
8: calculate rt = r(xt+1, Xu, B(x))
9: store (xt,xt+1, ut, rt) to R

10: Sample random minibatch of transitions from R
11: Update critic Q and actor k
12: end for
13: Update the target networks Q′ and k′

14: end for
15: return k

To synthesize the safety controller using reinforcement learning, a dataset of
sampled trajectories is needed. To sample trajectories, we first generate a set of

474 Z. Yang et al.

initial states from Θ. Let l,u ∈ R
n be the vectors of the lower and upper bounds

of Θ, i.e., Θ ⊆ [l,u]. We first sample from each dimension of [l,u] equidistantly
with a fixed mesh size. For a sampled initial state x0, its trajectory is generated,
and the transition tuples (xt,xt+1,ut, rt) are collected to form a replay buffer to
update the action and critic networks. Concretely, the action network receives
a state xt in time step t as input, and directly outputs a continuous action
ut = k(xt|βk). The critic network takes the state xt and the action ut as input,
and outputs a scalar Q-value Q(xt,ut|βQ). For every m simulated time steps, we
sample a batch of tuples from the buffer as the training data to update the actor
and critic networks, until a certain prescribed termination condition is met for
the learning process. The resulting actor network is the synthesized controller.
All training related parameters, such as smoothing factor, are set as default.
Our DDPG implementation is based on an open-source package DDPG [23].
The algorithm is outlined in Algorithm 1.

Remark 2. The barrier certificate is initialized to be ⊥, which means that the
learner initially trains a DNN controller via standard reinforcement learning,
without the aid of barrier certificates.

3.2 Safety Verification with Barrier Certificates

In the following, we focus on the verifier component of the proposed safe DNN
synthesis framework, as described in Fig. 2, and show how to verify the safety of
the closed-loop system under the DNN controller yielded from the learner.

Polynomial
Inclusion

MSIR and BC
Computation

BC
Refinement

Yes

No

Learner

Verifier

Updated

MSIR
BC

Output:
Success

Fig. 2. The framework of the verifier.

Shown in Fig. 2, the learner produces a DNN controller ki(x). In order to
make the problem of generating barrier certificates amenable to polynomial opti-
mization problem, the verifier first employs Bernstein polynomial approximation
to abstract the learned DNN controller as a polynomial one k̃i(x), with the asso-
ciated abstract error ε modeled as a bounded parameter, that is, u = k̃i(x) + ε.

By doing it, the safety of the closed-loop system under the DNN controller
can be guaranteed via the existence of barrier certificates for the closed-loop
system under the abstract controller. The verifier then performs bilinear matrix

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 475

inequalities (BMI) solving technique, to obtain a maximal safe initial region
(MSIR) Θi and the corresponding barrier certificate Bi(x). Once the computed
MSIR Θi contains the given initial set Θ, then the safety of the closed-loop
system under the DNN controller u = ki(x) is verified. Otherwise, the verifier
slightly adjusts the barrier certificate Bi(x), based on quadratic programming
solving, to gain an updated one B̃i(x), which can separate the unsafe region
from the initial set. Then, the refined BC is fed to guide the learner to retrain
a new DNN controller.

Polynomial Abstraction of DNN Controllers. In the following, we con-
sider the DNN controller with a single output, and for multiple-output cases,
an extension is to approximate each output respectively. Formally, for a DNN
controller k(x), we seek to compute an approximate polynomial p(x) ∈ R[x]
with a verified bound μ ∈ R+, such that

|k(x) − p(x)| < μ,∀x ∈ Ψ,

and the bound μ is as small as possible.
Weierstrass approximation theorem [7] asserts that a continuous function on

a closed and bounded interval can be uniformly approximated on the interval
by polynomials to any degree of accuracy. In this paper, we will compute the
approximate polynomial based on the theory of Bernstein polynomials [9]. Let
d = (d1, · · · , dn) ∈ N

n and f : [0, 1]n → R. The polynomial

Bf,d(x) =
∑

0≤cj≤dj
j∈{1,··· ,n}

f
(c1

d1
, · · · ,

cn

dn

) n∏

j=1

(
dj

cj

)

x
cj

j (1 − xj)dj−cj

is called the multivariate Bernstein polynomial of f . Theoretically, the Bernstein
polynomial Bf,d(x) converges uniformly to f for d1, · · · , dn → ∞. In practice,
the estimation of the approximation error bound is needed. As stated in [9],
assume f is a Lipschitz continuous function over I : [0, 1]n with a Lipschitz
constant L, then we have

‖Bf,d(x) − f(x)‖ ≤ L

2

(n∑

j=1

(
1
dj

)
) 1

2

, ∀x ∈ I.

Now, for the DNN controller k(x) over a domain Ψ , we can apply the above
method to obtain a Bernstein polynomial with a valid approximate error bound
as its abstraction. Concretely, we first construct an interval enclosure for Ψ , and
apply a linear transformation to map the interval enclosure onto the unit box I,
then utilize Bernstein polynomial approximation to obtain an abstract polyno-
mial controller k̃(x)+ε with ε ∈ [−μ, μ], where k̃(x) is a Bernstein polynomial of
k(x) and μ is its valid approximate error bound. Note that the fully-connected
neural networks with sigmoid and tanh activation functions are Lipschitz con-
tinuous, and the estimation of Lipschitz constants for deep neural networks has
been studied in [14,31,34].

476 Z. Yang et al.

Maximal Safe Initial Region Computation. Since k̃(x)+ ε enclosures k(x),
the safety of the closed-loop system under the DNN controller k(x) can be guar-
anteed via the existence of barrier certificates for the closed-loop system under
the abstract controller k̃(x) + ε. From this observation, we try to compute an
MSIR Θγ and its corresponding barrier certificate Bγ(x), which can guarantee
the safety of the closed-loop system under the abstract controller k̃(x) + ε with
respect to Θγ .

Firstly, we consider how to predefine a suitable initial state set template Θγ

from the given initial set Θ. In what follows, we provide some parametric initial
state sets for two typical representations: Boxes and Euclidean ellipsoids (balls).

Box Template. Suppose that the box initial set Θ is represented as

Θ = {x ∈ R
n||xi − ci| ≤ bi},

where xc = (c1, · · · , cn)T is the center of the box, and bi ∈ R>0. Then, the
parametric initial set can be expressed as

Θγ = {x ∈ R
n|‖D−1(x − xc)‖∞ ≤ γ},

where D = diag(b1, · · · , bn) is a diagonal matrix.

Ellipsoid Template. Suppose that the ellipsoid initial set Θ is expressed as a
common representation:

Θ = {x ∈ R
n|x = xc + Av, ‖v‖2 ≤ 1},

where xc is the center of the ellipsoid, and the matrix A is nonsingular. Then
the parametric initial set can be expressed as

Θγ = {x ∈ R
n|x = x0 + γ Av, ‖v‖2 ≤ 1}

= {x ∈ R
n|‖A−1 (x − x0)‖2 ≤ γ}.

Without loss of generality, we can select the template of the parametric initial
sets by taking the form Θγ := {x ∈ R

n|g(x) ≤ γ, i = 1, . . . , m1} with γ ∈ R>0,
where g(x) is the polynomial used to defined the prescribed initial set Θ.

In order to enlarge the safe initial region by choice of Θγ , we maximize γ
while imposing the constraints for the existence of barrier certificates. Assume
that the barrier certificate B(x) is a polynomial of degree at most d, whose
coefficients form a vector space of dimension s(d) =

(
n+d

d

)
with the canonical

basis (xα) of monomials. Suppose the coefficients are unknown, and denote by
b = (bα) ∈ R

s(d) the coefficient vector of B(x), and write

B(x,b) =
∑

α∈Nn
d

bαxα =
∑

α∈Nn
d

bα xα1
1 xα2

2 · · · xαn
n ,

in the canonical basis. Thus, the problem of computing an MSIR Θγ of the
closed-loop system under the abstract controller k̃(x) + ε can be represented as
an optimization problem

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 477

γ∗
opt = maxb,γ γ

s.t. B(x,b) ≥ 0, ∀x ∈ Θγ ,
LfB(x,b) > 0, ∀x ∈ Ψ and B(x,b) = 0,
B(x,b) < 0, ∀x ∈ Xu.

⎫
⎪⎪⎬

⎪⎪⎭

(4)

Then, Sum-of-Squares (SOS) relaxation technique is applied to encode the
optimization problem (4) as a SOS program. In fact, given a basic semi-algebraic
set K defined by:

K = {x ∈ R
n | p1(x) ≥ 0, . . . , ps(x) ≥ 0},

where pj ∈ R[x], 1 ≤ j ≤ s, a sufficient condition for the nonnegativity of the
given polynomial f(x) on the semi-algebraic set K is provided as

f(x) = σ0(x) +
s∑

i=1

σi(x)pi(x), (5)

where σi ∈ Σ[x]d, 1 ≤ i ≤ s. Thus, the representation (5) ensures that the
polynomial f(x) is nonnegative on the given semi-algebraic set K.

Observing (4), the polynomial LfB(x,b) is involved with the uncertain vari-
able ε in the range [−μ, μ], which can be written as the constraint, ĥ(ε) ≥ 0
with

ĥ(ε) := (ε + μ)(μ − ε).

Thus, the problem (4) can be transformed into the following optimization
problem

γ∗ = maxb,γ γ
s.t. B(x,b) − σ(x)(γ − g(x)) ∈ Σ[x],

LfB(x,b) − λ(x)B(x,b) − ∑
j φj(x)hj(x) − ν(x, ε)ĥ(ε) − ε1 ∈ Σ[x],

−B(x,b) − ε2 − ∑
j κj(x)qj(x) ∈ Σ[x],

⎫
⎪⎪⎬

⎪⎪⎭
(6)

where ε1, ε2 > 0, the entries of σ(x), φj(x) κ(x) ∈ Σ[x], and ν(x, ε) ∈ Σ[x, ε],
and λ(x) ∈ R[x]. Note that ε1, ε2 are needed to ensure positivity of polynomials
as required in the second and third constraints in (4). Clearly, the feasibility of
the constraints in (6) is sufficient to imply the feasibility of the constraints in (4),
thus the optimum of (6) is a lower bound of the optimum of (4), i.e., γ∗ ≤ γ∗

opt.
The SOS program (6) is bilinear due to the product of the unknown coef-

ficients of (B(x,b), λ(x)) and (σ(x), γ), yielding a non-convex bilinear matrix
inequalities (BMI) problem. Fortunately, a Matlab package PENBMI solver [22],
which combines the (exterior) penalty and (interior) barrier method with the
augmented Lagrangian method, can be applied directly to obtain a numerical
solution of the problem (6). The solution γ∗,b∗ to problem (6) yields an MSIR
Θγ∗ and its corresponding barrier certificate B(x,b∗). It means that the closed-
loop system under the abstract controller k̃(x) + ε is safe, with respect to Θγ∗ .
Moreover, if the given initial set Θ is a subset of Θγ∗ , then the safety of the
closed-loop system under the DNN controller k(x) with respect to Θ is verified.
Otherwise, B(x,b∗) will be further refined via quadratic programming method.

478 Z. Yang et al.

Remark 3. The gap between the optima of problems (4) and (6) decreases as
increasing of degrees for the multiplier polynomials. The degree bound for the
multiplier polynomials is exponential with the number of variables x and the
degrees of the polynomials appearing in the semi-algebraic sets. In practice, we
set up a truncated SOS programming for (6) by fixing a priori (much smaller)
degree bound of all the unknown multiplier polynomials, to avoid high compu-
tational complexity.

Barrier Certificate Refinement. Consider the case in which the initial set Θ
is not a subset of the MSIR Θγ∗ . In this case, the barrier certificate B(x,b∗) can
succeed to separate the unsafe region Xu from Θγ∗ , but it may fail to separate
from Θ. In other words, B(x,b∗) can not be regarded as a truly candidate barrier
certificate with respect to Θ and Xu. Therefore, we will utilize the information
of B(x,b∗) to refine it, in order to obtain a new candidate barrier certificate that
can separate Θ from Xu. Consider the change in B(x,b∗) is expected as small
as possible, the step of the barrier certificate refinement can be represented as

min ‖b̂ − b∗‖2
2

s.t. B(x, b̂) ≥ 0 ∀x ∈ Θ,

B(x, b̂) < 0 ∀x ∈ Xu.

⎫
⎬

⎭
(7)

By investigating (7), the constraints are the ones involving universal quanti-
fiers. To avoid eliminating universal quantifiers directly, here we provide a relax-
ation technique to deal with (7), which is based on selecting sampling points. For
Θ and Xu, let us first construct rectangular meshes in Θ and Xu respectively,
with a mesh spacing r ∈ R+ (say r = 0.05). The resulting mesh point sets are
denoted as ΩΘ and ΩXu

, respectively.
It is known that for a continuously differentiable function φ(x) over a compact

domain D, the mean value theorem yields that

|φ(x + Δx) − φ(x)| ≤ nη‖Δx‖∞,

where x,x+ Δ ∈ Ω are chosen randomly, and η = supx∈D ‖∇φ(x)‖∞. Based on
the above observation, the following implications are satisfied:

B(xj , b̂) − δ1 ≥ 0, ∀xj ∈ ΩΘ =⇒ B(x, b̂) ≥ 0 ∀x ∈ Θ,

B(xj , b̂) + δ2 < 0, ∀xj ∈ ΩXu
=⇒ B(x, b̂) < 0 ∀x ∈ Xu.

}

where δi = nηir ∈ R>0, i = 1, 2 with η1 = supx∈Θ ‖∇B(x,b∗)‖∞ and η2 =
supx∈Xu

‖∇B(x,b∗)‖∞.
By using the above relaxation technique based on sampling points, (7) can

be relaxed as the following problem

min ‖b̂ − b∗‖2
2

s.t. B(xj , b̂) − δ ≥ 0, ∀xj ∈ ΩΘ,

B(xj , b̂) + δ < 0, ∀xj ∈ ΩXu
,

⎫
⎬

⎭
(8)

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 479

which is a typical quadratic programming problem and can be solved by state-
of-the-art solvers with great efficiency.

Now, the refined B̂(x) = B(x, b̂) can separate Θ from Xu, but may still not
satisfy the Lie derivative condition for barrier certificates. According to Theo-
rem 1, B̂(x) is not a truly barrier certificate for the closed-loop system under
the abstract controller k̃(x) + ε with respect to Θ and Xu. Next, the refined
B̂(x) will be further fed to guide the learner to retrain a new controller. To do
it, we first consider the additional constraint for the Lie derivative of B̂(x), and
apply barrier certificate guided reinforcement learning to compute a new DNN
controller.

4 Algorithm

In Sect. 3, we have elaborated on the iteration-based safe controller synthesis
method that iteratively co-synthesizes a DNN controller within the RL frame-
work and a polynomial barrier certificate via BMI solving. Briefly, we describe
the main implementation steps of our approach in the following Algorithm 2.

Algorithm 2. SRLBC: Safe Reinforcement Learning with Barrier Certificate
Input: The CCDS C; unsafe region Xu; maximum number of iterations maxIter
Output: Safe DNN Controller k
1: iter ← 0
2: B ← ⊥
3: while iter < maxIter do
4: k ← Learning(f, Θ, Xu, B)

5: ̂k, μ ← PolyInclusion(k)

6: Θ∗
γ , B(x,b∗) ← MaxSafeSet(f, ̂k, μ, Θ, Xu)

7: if Θ ⊆ Θ∗
γ then

8: return k
9: end if

10: B ← RefineBarrier(B(x,b∗), Θ, Xu)
11: end while

Algorithm 2 shows the iteration scheme of our safe controller synthesis, which
guides the experiment implementation. The procedure takes as inputs a CCDS
C, an unsafe region Xu, a maximum number of iterations maxIter, and returns
a safe DNN controller of a given architecture. In a pass of the iteration, the
implementation process has four steps as follows.

(i) Apply the RL method to train a DNN controller. The learner introduced in
Sect. 3.1 is implemented by Line 4 in Algorithm 2, and the barrier certificate
is initialized to be ⊥, which means that the learner trains a DNN controller
via classical reinforcement learning, without the aid of barrier certificates
in the initial pass;

480 Z. Yang et al.

(ii) For the closed-loop system under the DNN controller learned in Step (i),
compute a maximal safe initial region (MSIR), with which a barrier cer-
tificate exists. We use Bernstein polynomial approximation to compute a
polynomial abstraction for the learned DNN controller by Line 5, and then
compute an MSIR Θγ∗ and the corresponding barrier certificate B(x,b∗)
by Line 6;

(iii) Check the condition wether the MSIR Θγ∗ in Step (ii) contains the given
initial set Θ. If Θ ⊆ Θγ∗ , then we terminate the loop with a verified safe
DNN controller; otherwise go to Step (iv). This process refers to Lines 7–9;

(iv) Slightly modify the barrier certificate from Step (iii) so that it separates
the initial set and the unsafe region, and then go to Step (i) to learn a
new controller by encoding the refined barrier certificate into the reward
function. For this task, the barrier certificate B is refined via quadratic
programming by Line 10.

This inductive loop repeats until an MSIR enclosing Θγ and its corresponding
barrier certificate are computed or until a timeout is reached.

Remark 4. Our procedure is sound, i.e. a valid output from the verifier is prov-
ably correct. However, we cannot claim any completeness, since our procedure
might in general not terminate because the existence of the barrier certificate
is just a sufficient condition of the safety of the system, and such a barrier cer-
tificate may not exist indeed. Once the procedure fails, we may improve the
relaxation precision and then increase the possibility to find the barrier certifi-
cate by increasing the degree bound for the multiplier polynomials in the SOS
program (6).

Furthermore, an example is used to depict how our safe controller synthesis
algorithm works.

Example 1. Consider the Van der Pol system
[
ẋ1

ẋ2

]

=
[

x2

−x1 + 1
3x3

1 − x2 + u

]

with the domain Ψ = {x ∈ R
2 | −3 ≤ x1, x2 ≤ 3}. Our goal is to design a control

law k such that all trajectories of the system under u = k(x1, x2) starting from
the initial set

Θ = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ 1.12}
will never enter the unsafe set

Xu = {x ∈ R
2 | (x1 + 1)2 + (x2 + 1)2 ≤ 1}.

We complete our goal by Algorithm 2, and provide the details here. At first,
we apply the reinforcement learning method to train the initial neural network
controller u = k0(x) in terms of the target of safety satisfiability, which is Step

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 481

(i) and refers to Line 4 in Algorithm 2, and then try to yield the barrier cer-
tificate B(x). We compute polynomial abstraction of DNN Controller k0(x) via
Bernstein polynomials which is Step (ii), where

k̃0(x) = 0.0142x1 + 0.0092x2 − 0.0205x2
1 + 0.0077x1x2 + 0.0340x2

2

+ 0.0246x3
1 + 0.0018x2

1x2 − 0.0820x1x
2
2 + 0.0435x3

2 + ε.
(9)

with ε ∈ [−0.05, 0.05], which is implemented by Line 5. Thus, the polynomial
abstraction technique can yield an abstract polynomial system.

Go on Step (ii) to compute a maximal safety region Θγ and the corresponding
barrier certificate B(x). In this case, we parameterize the initial set:

Θγ = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ γ}.

For the given abstract polynomial system with the parameterized initial set
Θγ , our goal is to maximize the radius γ subject to the existence of a barrier
certificate. By calling the PENBMI solver [22] we can obtain a barrier certificate
B0(x) with the maximal safe initial region Θ0 (Line 6 in our Algorithm 2), i.e.,

Θ0 = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ 0.8132},

B0(x) = 11.716 + 22.8064x1 + 21.5368x2 − 4.5273x2
1 + 13.8084x1x2 + 3.0453x2

2.

(10)

Thus, the safety of the system with the controller k0(x) with respect to the set
Θ0 is guaranteed. Now the present controller k0(x) can not be safe for whole
initial set Θ, we continue to update controller and barrier certificate (Line 7–9).

Let k0(x) and B0(x) be the initial controller and the initial barrier certificate,
we perform the iterative framework to synthesize the controller subject to the
safety constraint. As shown in Fig. 3(a), the zero level set of B0(x) is the blue
dashed line. Observing Fig. 3(a), B0(x) can succeed to separate the unsafe region
Xu (the red circle) from Θ0 (the green dashed circle), but not separate from the
initial set Θ, which means that B0(x) can not be regarded as the truly barrier
certificate. Therefore, one may perturb the coefficients of B0(x) to obtain B̂0(x)
which can separate Θ and Xu. And this process corresponds to Step (iv) and
Line 10 of our Algorithm 2. The perturbed polynomial is represented as

B̂0(x) = 10.5590 + 22.9401x1 + 18.2448x2 − 0.8954x2
1 + 14.4971x1x2 + 1.1060x2

2.

As shown in Fig. 1(b), the zero level set of the barrier B̂0(x) (the blue dash)
separates Xu (the red circle) from Θ (the green circle). According to the concept
of barrier certificate and Theorem 1, B̂0(x) is not a truly barrier certificate,
since the condition of the Lie derivative of the barrier certificate is not satisfied.
Accordingly, by using the B̂0(x) and the initial controller k0(x), we then try to
retrain a control law with an additional constraint of the lie derivative for the
barrier certificate B̂0(x). Calling the learner module (Line 4), we update a new
control law k1(x) represented as a two-hidden layer sigmoid-based DNN with 20
neurons per layer by RL approach.

482 Z. Yang et al.

Xu

B0

Θ

Θ0

(a)

Xu

Θ

B0

B0

Θ0

(b)

B1

Θ

Xu

(c)

Fig. 3. This picture shows the iteration process of barrier certificate updating when we
learn the safe controller. The red circles stand for unsafe regions, the blue curves stand
for the zero level set of barrier certificates, and the green circles stand for the initial sets
and safe initial sets. Subfigure (a) describes the intermediate results of maximal safe
initial set Θ0 (the green dashed circle) with its associate barrier certificate B0 obtained
from Line 6 in Algorithm 2 at the first iteration. We slightly modify the barrier function
B0 to separate Θ and Xu by Line 10 and obtain B̂0 which is the blue solid curve shown
in Subfigure (b). Using B̂0 as a guide, a new controller is learned, from which a barrier
certificate B1 is generated as shown in Subfigure (c). It can be shown that B1 is the
real barrier certificate of the system. (Color figure online)

Repeating the above abstraction technique and solving the BMI problem for
finding the maximal safety initial set Θ1, we obtain the barrier certificate B1(x)
with respect to Θ1, i.e.,

Θ1 = {x ∈ R
2 | (x1 − 1.5)2 + x2

2 ≤ 1.2201},

B1(x) = 10.3661 + 22.6569x1 + 17.7852x2 − 0.9037x2
1 + 14.1832x1x2 + 0.9471x2

2.
(11)

It is easy to check that the original initial set Θ is now a subset of Θ1, which
means that B1(x) is a truly barrier certificate.

5 Experiments

In this section, we first depict an example of three dimension nonlinear contin-
uous system to show our algorithm by synthesizing a safe DNN controller for
it, and then present an experimental evaluation of our algorithm over a set of
benchmark examples by comparing with a DNN controller learning framework
called nncontroller in [39].

Example 2. Consider the continuous dynamical system
⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
x3 + 8x2

−x2 + x3

−x3 − x2
1 + u

⎤

⎦

with the domain
Ψ = {x ∈ R

3 |x2
1 + x2

2 + x2
3 ≤ 16}.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 483

Our goal is to design a control law k such that all trajectories of the closed-loop
system under u = k(x1, x2, x3) starting from the initial set

Θ = {x ∈ R
3 |x2

1 + x2
2 + x2

3 ≤ 1}

will never enter the unsafe set

Xu = {x ∈ R
3 | (x1 − 2.1)2 + (x2 − 2.1)2 + (x2

3 − 2.1) ≤ 1.82}.

It suffices to synthesize a control law k and a barrier certificate B(x) with
the maximal safe initial region Θγ such that Θ ⊆ Θγ . Suppose that the DNN
controller k is represented as a five-hidden layer sigmoid activated DNN with
30 neurons per layer. We first call the learner to train a DNN controller, and
then call the verifier to compute the maximal safe initial region Θγ and its cor-
responding barrier certificate B(x). After two iterations, we successfully obtain
a safe DNN controller, and the following barrier certificate

B(x) = 220.1981 − 45.7322x1 − 40.2831x2 − 218.4765x3 + 4.9575x2
1

+ 38.7288x1x2 − 9.8224x1x3 − 66.8398x2
2 + 17.2562x2x3 + 18.3967x2

3.

(12)

As shown in Fig. 4, the zero level set of the barrier certificate B(x) (the blue
surface) separates Xu (the red ball) from all trajectories starting from Θ (the
green ball). Therefore, the safety of the above system is verified.

Fig. 4. Phase portrait of the system in Example 2. The zero level set of the barrier
certificate B(x) (the blue surface) separates Xu (the red ball) from all trajectories
starting from Θ (the green ball). (Color figure online)

We have implemented a safe controller synthesis tool called SRLBC based
on Algorithm 2, with Tensorflow 1.14 for the DNN controller synthesis and a
Matlab package PENBMI [22] for barrier certificate generation. Table 1 shows the
performance evaluation of our SRLBC and nncontroller in [39] on 12 continuous

484 Z. Yang et al.

systems. All experiments are conducted on a machine running Windows 10 with
16 GB RAM, a 3.20 GHz AMD Ryzen 7 3700X CPU, and an NVIDIA GeForce
GTX 1650 super GPU.

In Table 1, the origins of these 12 examples are provided in the first column;
df denotes the maximal degree of the polynomials in the vector fields; nx denotes
the number of the state variables; L and N refer to the numbers of hidden layers
and the neurons per each hidden layer, respectively; t1 and t2 denote the time
spent by SRLBC and nncontroller in seconds, respectively; the symbol ′−′ means
that nncontroller was unable to return a safe DNN controller within 10,000 s.

Table 1. Performance evaluation

Examples df nx NNstructure SRLBC nncontroller

L N degB(x) t(s) NN-type BC t(s)

C1 [28] 2 2 4 20 2 54.77 2-10-1 20.52

C2 [6] 3 2 4 20 2 37.54 2-10-1 8.46

C3 [6] 3 2 4 20 2 35.99 2-10-1 6.77

C4 [27] 3 2 4 20 4 38.68 2-10-1 6.88

C5 [39] 3 3 5 30 2 56.21 3-10-1 32.19

C6 [20] 3 4 5 30 2 45.54 4-10-1 78.52

C7 [6] 3 4 5 30 4 40.82 4-10-1 184.85

C8 [32] 2 5 5 30 2 423.11 5-20-1 2217.41

C9 [38] 2 6 5 30 2 383.26 – –

C10 [4] 3 6 5 30 4 942.74 – –

C11 [21] 2 7 5 30 2 1829.46 – –

C12 [21] 2 9 5 30 2 6208.79 – –

Table 1 shows that for the 12 examples, our SRLBC manages to handle all
of them within 3 iterations, while nncontroller can only deal with 8 successfully.
Especially for the four examples from C9 to C12 whose dimensions exceed 5,
nncontroller fails to synthesize safe controllers within specified time bound after
various attempt. We have tried different network structures with the number
of hidden layers varies from 1 to 5 and the number of hidden neurons chosen
among {10, 20, 30, 40}, the nncontroller fails to train candidate DNN controllers
and barrier certificates within the time limit, whereas our SRLBC can yield safe
controllers, represented as five-layer sigmoid activated neural networks.

Consider the efficiency of our SRLBC and nncontroller in terms of the time
spent in synthesizing safe DNN controllers for shared examples. On average,
our SRLBC takes 91.58 s to synthesize a safe DNN controller while nncontroller
needs 323.2 s, which is about 3.53 times slower than our SRLBC. Despite the
network structures used for SRLBC is more complex than that for nncontroller,
and the number of neural network neurons of SRLBC is much more than that
of nncontroller, we could synthesize more efficiently.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 485

Obviously, our SRLBC scales better than nncontroller for the considered
examples. Although our SRLBC consumes a little more time than nncontroller
for the systems with dimension 2 or 3, our tool shows its advantage on time
consuming when handling the systems with dimension higher than 3 (C6-C8)
and its ability on examples C9-C12. Comparing with nncontroller which is also
a data driven approach, SRLBC inherits the advantage in learning efficiency
of reinforcement learning, whereas the size of the training data for nncontroller
increases exponentially with the dimension of the considered systems, which
greatly limits the scale of the problem to deal with. Beyond Table 1, we have
tried an example of nonlinear polynomial system [16] with dimension up to 12,
and SRLBC yields successfully a result in 54,314 s while nncontroller fails. It is
clear that our approach is able to attack large-scale problems.

During the experiment, we have observed that SRLBC obtains the near-
safe controllers at the first iteration for most examples, and the remaining work
is to refine barrier certificates slightly and use them to guide and adjust the
controllers. In fact, the numbers of the iterations in our experiments on the
benchmarks did not exceed 3 for all cases. These observations show that our
iterative scheme of safe reinforcement learning converges well in practice, because
the refinement of the controllers could utilize the intermediate learned results
before we get the final results. In addition, SRLBC could easily generalize to
deal with non-polynomial systems and it has successfully solved the classical
continuous Cartpole system [3], which would be presented in the future work.

6 Related Work

Our work on synthesizing DNN controllers for safety control of nonlinear systems
is mainly related to two categories of research, i.e. formal verification of nonlinear
systems with DNN controller and safe DNN controller synthesis. There has been
considerable research conducted in these areas because of the applications in
safety critical systems in recent years.

Formal Verification of Nonlinear Systems with DNN Controller. One
of the mainstream methodologies is through constructing over-approximations
to the reachable sets of the system trajectories under DNN controllers. And
the core technique first focuses on output range analysis of the neural network
components, then combines the output range with reachability analysis on the
dynamical systems. For instance, based on the output range analysis in [13],
Dutta et al. verified the feedback control systems with DNN controllers using
mixed-integer linear programming [12]. And they implemented the prototype
tool for the neural rule generation inside the tool termed as Sherlock, and used
it together with Flow* for computing the reach sets of the systems [10].

The difference of works on this direction lies in what kind of abstract domains
is adopted for output range analysis of the neural network components. A recent
attempt involves the work of Xiang et al. that computes the output ranges as
a union of convex polytopes [37]. For the piecewise linear systems with ReLU
neural network as the controller, they compute the output range of ReLU neural

486 Z. Yang et al.

network by a layer-by-layer approach. Dutta et al. propose an approach to
abstract the DNN by a local polynomial approximation along with rigorous error
bound, and then integrate it with a Taylor model-based flow pipe construction
scheme for continuous differential equations to derive the over-approximation of
the real reachable set [11]. Likely, Huang et al. present an approach to construct-
ing a polynomial approximation for a DNN controller using Bernstein polyno-
mials, and then integrate result with the plant to get the over-approximated
reachable set [18]. There is a different route for reachability of systems with neu-
ral network components proposed by Ivanov et al. and termed as Verisig [19].
It transforms the problem of verifying neural network controlled system into a
hybrid system verification problem by first transforming a sigmoid-based neural
network into an equivalent hybrid system and then composing it with the plant.

Instead of computing reachable sets, a different approach for verifying neural
network controlled systems is through barrier certificate synthesis. Tuncali et
al. synthesize candidate barrier certificates using simulation-guided techniques,
and then verify the overall system safety by checking the validity of the barrier
certificate conditions for the candidate [35]. The safety property was proofed, or
a counterexample was returned to updated candidate barrier certificates.

Safety Critical Controller Generation. Research works in this category
differ in: (1) the overall learning framework, e.g. reinforcement learning (RL)
or supervised learning; (2) the kind of safety certificate, e.g., control Lyapunov
function (CLF) or control barrier function (CBF) [2].

For CLFs or CBFs synthesis, a demonstrator-learner-verifier framework was
proposed in [29] to learn polynomial CLFs for polynomial nonlinear dynamical
systems; a special type of neural network was designed in [30] as candidates for
learning Lyapunov functions; a supervised learning approach was proposed in
[5] to learn neural network Lyapunov functions and linear control policies; data-
driven model predictive control (MPC) exploiting neural Lyapunov function and
neural network dynamics model was proposed in [12,25]. For multi-agent sys-
tems, barrier function has recently been applied for safe policy synthesis on
POMDP models [1]. The computer science community has dealt with the issue of
safe controller learning in different ways from above: for example, a logical-proof
based approach was proposed in [15] towards safe RL; a synthesis framework
capable of synthesizing deterministic programs from neural network policies was
proposed in [41] and so formal verification techniques for traditional software
systems can be applied. Compared with these works, [39] learn controllers based
on neural networks. To certify the safety property they utilize barrier certificates,
which are represented by DNNs as well. In this way, they train DNN controllers
and DNN barrier certificates simultaneously, achieving a verification-in-the-loop
synthesis. Liu et al. proposed a Recurrent Neural Network (RNN) framework
to synthesize feedback control policies for a system under STL specifications
[24]. The CBF was used to modify the control policies predicted by the RNN to
guarantee safety.

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 487

7 Conclusion

In this paper, we have developed a novel scheme for synthesizing safe controllers
of nonlinear systems with control against safety constraints. It employs an iter-
ative architecture, where a learner trains DNN controllers using reinforcement
learning and a verifier checks them via computation of maximal safe initial
regions and the corresponding barrier certificates, based on polynomial abstrac-
tion and bilinear matrix inequalities solving. The key idea in this paper is to
use an alternating co-synthesis scheme of controllers and barrier certificates to
generate safe controllers, which could refine barrier certificates during iteration.
On the one hand, this synthesis scheme has inherited the higher learning effi-
ciency from RL technique than other data driven methods. On the other hand,
this iterative architecture could modify barrier certificates to obtain an adap-
tive one along with DNN controller retraining, and other verification-in-the-loop
synthesis methods are usually based on user-defined barrier functions. Further-
more, our BMI solving based barrier certificate generation is more efficient than
SMT based verification. The experimental results demonstrate that our method
is more scalable and effective than the existing DNN controller synthesis method
nncontroller.

References

1. Ahmadi, M., Singletary, A., Burdick, J.W., Ames, A.D.: Safe policy synthesis in
multi-agent POMDPs via discrete-time barrier functions. In: Proceedings of the
IEEE 58th Conference on Decision and Control (CDC), pp. 4797–4803. IEEE
(2019)

2. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada,
P.: Control barrier functions: theory and applications. In: Proceedings of the 17th
European Control Conference, (ECC), pp. 3420–3431 (2019)

3. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5),
834–846 (1983)

4. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of paramet-
ric barrier functions for dynamical systems using interval analysis. In: Proceedings
of the 53rd IEEE Conference on Decision and Control (CDC), pp. 753–758. IEEE
(2014)

5. Chang, Y.C., Roohi, N., Gao, S.: Neural Lyapunov control. In: Proceedings of
the Annual Conference on Advances in Neural Information Processing Systems
(NeurIPS), pp. 3245–3254 (2019)

6. Chesi, G.: Computing output feedback controllers to enlarge the domain of attrac-
tion in polynomial systems. IEEE Trans. Autom. Control 49(10), 1846–1853 (2004)

7. Davis, P.J.: Interpolation and Approximation. Dover Books on Mathematics. Dover
Publications, New York (1975)

8. Deshmukh, J.V., Kapinski, J., Yamaguchi, T., Prokhorov, D.: Learning deep neural
network controllers for dynamical systems with safety guarantees: Invited paper.
In: Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–7 (2019)

488 Z. Yang et al.

9. Duchoň, M.: A generalized bernstein approximation theorem. Tatra Mt. Math.
Publ. 49(1), 99–109 (2011)

10. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - a tool
for verification of neural network feedback systems: demo abstract. In: Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Computation and
Control (HSCC), pp. 262–263 (2019)

11. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Con-
trol (HSCC), pp. 157–168 (2019)

12. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of
feedback control systems using feedforward neural networks. IFAC-PapersOnLine
51(16), 151–156 (2018)

13. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

14. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.J.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. arXiv preprint
arXiv:1906.04893 (2019)

15. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe
control through proof and learning. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI), pp. 6485–6492 (2018)

16. Gao, S.: Quadcopter model. https://github.com/dreal/benchmarks
17. Garćıa, J., o Fernández, F., et al.: A comprehensive survey on safe reinforcement

learning. J. Mach. Learn. Res. 16(42), 1437–1480 (2015)
18. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: ReachNN: reachability analysis of

neural-network controlled systems. ACM Trans. Embedded Comput. Syst. 18(5s),
106:1-106:22 (2019)

19. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control (HSCC), pp. 169–178 (2019)

20. Jarvis-Wloszek, Z.: Lyapunov based analysis and controller synthesis for polyno-
mial systems using sum-of-squares optimization. Ph.D. thesis, University of Cali-
fornia (2003)

21. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in
Practice: Concepts. Implementation and Application, Wiley-Blackwell (2005)

22. Kočvara, M., Stingl, M.: PENBMI user’s guide (version 2.0) (2005). http://www.
penopt.com

23. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: Pro-
ceedings of the 4th International Conference on Learning Representations (ICLR)
(2016)

24. Liu, W., Mehdipour, N., Belta, C.: Recurrent neural network controllers for signal
temporal logic specifications subject to safety constraints (2020). https://arxiv.
org/abs/2009.11468

25. Mittal, M., Gallieri, M., Quaglino, A., Salehian, S.S.M., Koutńık, J.: Neural Lya-
punov model predictive control (2020). https://arxiv.org/abs/2002.10451

26. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1429 (2007)

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
http://arxiv.org/abs/1906.04893
https://github.com/dreal/benchmarks
http://www.penopt.com
http://www.penopt.com
https://arxiv.org/abs/2009.11468
https://arxiv.org/abs/2009.11468
https://arxiv.org/abs/2002.10451

An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems 489

27. Prajna, S., Parrilo, P.A., Rantzer, A.: Nonlinear control synthesis by convex opti-
mization. IEEE Trans. Autom. Control 49(2), 310–314 (2004)

28. Pylorof, D., Bakolas, E.: Analysis and synthesis of nonlinear controllers for input
constrained systems using semidefinite programming optimization. In: Proceedings
of the 2016 American Control Conference (ACC), pp. 6959–6964 (2016)

29. Ravanbakhsh, H., Sankaranarayanan, S.: Learning control Lyapunov functions
from counterexamples and demonstrations. Auton. Rob. 43(2), 275–307 (2019)

30. Richards, S.M., Berkenkamp, F., Krause, A.: The Lyapunov neural network: adap-
tive stability certification for safe learning of dynamic systems (2018). http://arxiv.
org/abs/1808.00924

31. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 2651–2659 (2018)

32. Sassi, M.A.B., Sankaranarayanan, S.: Stabilization of polynomial dynamical sys-
tems using linear programming based on bernstein polynomials (2015). arXiv
preprint arXiv:1501.04578

33. Squires, E., Pierpaoli, P., Egerstedt, M.: Constructive barrier certificates with
applications to fixed-wing aircraft collision avoidance. In: Proceedings of the
IEEE Conference on Control Technology and Applications (CCTA), pp. 1656–1661
(2018)

34. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the
2nd International Conference on Learning Representations (ICLR) (2014)

35. Tuncali, C.E., Kapinski, J., Ito, H., Deshmukh, J.V.: Reasoning about safety of
learning-enabled components in autonomous cyber-physical systems. In: Proceed-
ings of the 55th Annual Design Automation Conference (DAC), pp. 30:1–30:6
(2018)

36. Turchetta, M., Kolobov, A., Shah, S., Krause, A., Agarwal, A.: Safe reinforcement
learning via curriculum induction. In: Proceedings of the Annual Conference on
Advances in Neural Information Processing Systems (NeurIPS), pp. 12151–12162
(2020)

37. Xiang, W., Tran, H.D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation
and safety verification for piecewise linear systems with neural network controllers.
In: Proceedings of the Annual American Control Conference (ACC), pp. 1574–1579
(2018)

38. Zeng, X., Lin, W., Yang, Z., Chen, X., Wang, L.: Darboux-type barrier certificates
for safety verification of nonlinear hybrid systems. In: Proceedings of the 2016
International Conference on Embedded Software (EMSOFT), pp. 1–10 (2016)

39. Zhao, H., Zeng, X., Chen, T., Liu, Z., Woodcock, J.: Learning safe neural network
controllers with barrier certificates. In: Proceedings of the International Sympo-
sium on the Dependable Software Engineering. Theories, Tools, and Applications
(SETTA), pp. 177–185 (2020)

40. Zhao, H., Zeng, X., Chen, T. Liu, Z., Woodcock, J.: Learning safe neural network
controllers with barrier certificates. Formal Aspects Comput., 1–19 (2021). https://
doi.org/10.1007/s00165-021-00544-5

41. Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis framework
for verifiable reinforcement learning. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
686–701 (2019)

http://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1808.00924
http://arxiv.org/abs/1501.04578
https://doi.org/10.1007/s00165-021-00544-5
https://doi.org/10.1007/s00165-021-00544-5

490 Z. Yang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

HYBRIDSYNCHAADL: Modeling and Formal

Analysis of Virtually Synchronous CPSs in AADL

Jaehun Lee1, Sharon Kim1, Kyungmin Bae1(B) ,
and Peter Csaba Ölveczky2

1 Pohang University of Science and Technology, Pohang, Korea
kmbae@postech.ac.kr

2 University of Oslo, Oslo, Norway

Abstract. We present the HybridSynchAADL modeling language and
formal analysis tool for virtually synchronous cyber-physical systems
with complex control programs, continuous behaviors, bounded clock
skews, network delays, and execution times. We leverage the Hybrid
PALS equivalence, so that it is sufficient to model and verify the simpler
underlying synchronous designs. We define the HybridSynchAADL
language as a sublanguage of the avionics modeling standard AADL
for modeling such designs in AADL, and demonstrate the effectiveness
of HybridSynchAADL on a number of applications.

1 Introduction

Many cyber-physical systems (CPSs) are virtually synchronous networks of hy-
brid components with continuous behaviors combined with sophisticated con-
trollers. They should logically behave as if they were synchronous—in each iter-
ation of the system, all components, in lockstep, read inputs and perform tran-
sitions which generate outputs for the next iteration—but have to be realized
in a distributed setting, with clock skews and message passing communication.
Examples of such CPSs include avionics and automotive systems [34,42], net-
worked medical devices [5,30], and other distributed control systems such as the
steam-boiler benchmark [1], where the underlying infrastructure often guaran-
tees bounds on clock skews, network delays, and local execution times.

The uptake of automated formal analysis of such CPSs is challenging, since:

1. The combination of large “discrete” state spaces, caused by interleavings due
to asynchronous communication, and continuous behaviors, taking into ac-
count clock skews, network delays, and sampling/actuation times (based on
imprecise clocks) makes direct automatic model checking analysis infeasible.

2. To enable formal analysis to a large user base, the modeling language for
such CPSs, with complex control programs, should be well-known for CPS
developers, and should be integrated into mature modeling environments.

To confront these challenges, we present in this paper the HybridSynch-
AADL modeling language and analysis tool, which address them as follows:
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 491–504, 2021.
https://doi.org/10.1007/978-3-030-81685-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_23&domain=pdf
http://orcid.org/0000-0002-6430-5175
http://orcid.org/0000-0002-0708-3721
https://doi.org/10.1007/978-3-030-81685-8_23

492 J. Lee et al.

1. To dramatically reduce both the modeling complexity and the state space
caused by asynchronous communication, we use the Hybrid PALS equiva-
lence [8], which says that the underlying synchronous design—where all com-
ponents execute in lockstep, and there is no asynchronous message passing—
satisfies the same properties as the asynchronous distributed system.

2. The HybridSynchAADL modeling language is a subset of the avionics
modeling standard AADL [22] and its behavioral annex to model control
programs, and captures a synchronous subset of AADL with continuous
behaviors. We have also integrated modeling and formal analysis of Hybrid-
SynchAADL models into the OSATE modeling environment for AADL.

Providing formal semantics and analysis for HybridSynchAADL, with its
expressive control program formalism, continuous behaviors, and clock skews,
and having to cover all possible continuous behaviors based on imprecise clocks,
is challenging. We combine Maude [19] and the SMT solver Yices [21] to provide
such a semantics, as well as symbolic reachability analysis of bounded invariant
properties. To make the analysis feasible, our tool also implements a state-space
reduction method that merges symbolic states for Maude-with-SMT to signifi-
cantly improve the performance of symbolic reachability analysis. We illustrate
the use of the HybridSynchAADL language and tool—and compare its effec-
tiveness with other state-of-the-art CPS analysis tools—on a number of hybrid
CPS applications, including distributed drones that communicate to reach the
“same” location, or fly in formation, without crashing into each other.

Our tool extends the SynchAADL tool [7,9,10] for distributed real-time sys-
tems without continuous behaviors, where the time when an event takes place
can be abstracted away, so there is no need to consider clock skews, and any
(sufficiently expressive) explicit-state model checker can be applied. In contrast,
HybridSynchAADL must model continuous behaviors and clock skews, and
must analyze all possible behaviors based on when the continuous components
are sampled and actuated, which depend on the imprecise local clocks. The tool
is available at https://hybridsynchaadl.github.io.

2 Preliminaries

PALS and Hybrid PALS. When the infrastructure guarantees bounds Γ on clock
skews, network delays, and execution times, the PALS pattern [4,36] reduces
the problems of designing and verifying virtually synchronous distributed real-
time systems to the much simpler problems of designing and verifying their
underlying synchronous designs: Given a synchronous system design SD , bounds
Γ , and a period p of each round, the PALS transformation gives the asynchronous
distributed real-time system PALS (SD , Γ, p), which is stuttering bisimilar to SD .

The synchronous design SD is formalized as the synchronous composition of
state machines with input and output ports [36]. In each iteration, all machines
simultaneously perform a transition, which includes reading inputs, changing the
local state, and generating outputs (for the next iteration).

https://hybridsynchaadl.github.io

Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL 493

Hybrid PALS [8] extends PALS to virtually synchronous CPSs with physical
environments that exhibit continuous behaviors. The physical environment EM

of a machine M has real-valued parameters �x = (x1, . . . , xl). The continuous
behaviors of �x are modeled by ordinary differential equations (ODEs) that specify
different trajectories on �x. EM also defines which trajectory the environment
follows, as a function of the last control command received by EM .

The local clock of a machine M can be seen as a function cM : R≥0 → R≥0,
where cM (t) is the value of the local clock at time t, with ∀t ∈ R≥0, |cM (t)−t| < ε
for ε > 0 the maximal clock skew [36]. In its ith iteration, a controller M samples
the values of its environment at time cM (i ·p)+ts, where ts is the sampling time,
and then executes a transition. As a result, the new control command is received
by the environment at time cM (i · p) + ta, where ta is the actuating time.

AADL. The Architecture Analysis & Design Language (AADL) [22] is an indus-
trial modeling standard used in avionics, aerospace, automotive, medical devices,
and robotics to describe an embedded real-time system. In AADL, a component
type specifies the component’s interface (e.g., ports) and properties (e.g., peri-
ods), and a component implementation specifies its internal structure as a set of
subcomponents and a set of connections linking their ports. An AADL construct
may have properties describing its parameters, declared in property sets. The
OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

An AADL model describes a system of hardware and software components.
Software components include threads that model the application software and
data components representing data types. System components are the top-level
components. A port is a data port, an event port, or an event data port. A
component can have different modes and mode-specific property values, sub-
components, etc. Mode transitions are triggered by events.

Thread behavior is modeled as a guarded transition system with local vari-
ables using AADL’s Behavior Annex [23]. When a thread is activated, transitions
are applied until a complete state is reached. The dispatch protocol determines
when a thread is executed. A periodic thread is activated at fixed time intervals.

Maude with SMT. Maude [19] is a language and tool for formally specifying and
analyzing distributed systems in rewriting logic. System states are specified as
elements of algebraic data types, and transitions are specified using rewrite rules.
In addition to its explicit-state analysis methods for concrete states, Maude pro-
vides SMT solving and symbolic reachability analysis for constrained terms φ ‖ t,
which symbolically represent all instances of the term t(x1, . . . , xn) satisfying the
constraint φ(x1, . . . , xn) [40], using connections to Yices2 [21] and CVC4 [14].

3 The HYBRIDSYNCHAADL Modeling Language

This section presents the HybridSynchAADL language for modeling virtually
synchronous CPSs in AADL. HybridSynchAADL can specify environments
with continuous dynamics, synchronous designs of distributed controllers, and

494 J. Lee et al.

nontrivial interactions between controllers and environments with respect to
imprecise local clocks and sampling and actuation times.

The HybridSynchAADL language is a subset of AADL extended with
property set Hybrid SynchAADL. We use a subset of AADL without changing
the meaning of AADL constructs or adding a new annex—the subset has the
same meaning for synchronous models and distributed implementations—so that
AADL experts can easily develop and understand HybridSynchAADL models.

property set Hybrid_SynchAADL is
Synchronous: inherit aadlboolean applies to (system);
isEnvironment: inherit aadlboolean applies to (system);
ContinuousDynamics: aadlstring applies to (system);
Max_Clock_Deviation: inherit Time applies to (system);
Sampling_Time: inherit Time_Range applies to (system);
Response_Time: inherit Time_Range applies to (system);

end Hybrid_SynchAADL;

Environment Components. An environment component models real-valued state
variables that continuously change over time. State variables are specified using
data subcomponents of type Base_Types::Float. Each environment component
declares the property Hybrid_SynchAADL::isEnvironment => true.

An environment component can have different modes to specify different
continuous behaviors (trajectories). A controller command may change the mode
of the environment or the value of a variable. The continuous dynamics in each
mode is specified using either ODEs or continuous real functions as follows:

Hybrid_SynchAADL::ContinuousDynamics =>
"dynamics1" in modes (mode1), . . ., "dynamicsn" in modes (moden);

In HybridSynchAADL, a set of ODEs over n variables x1, . . . , xn, say,
dxi

dt = ei(x1, . . . , xn) for i = 1, . . . , n, is written as a semicolon-separated string:

d/dt(x1) = e1(x1, . . . , xn); . . . ; d/dt(xn) = en(x1, . . . , xn);

If a closed-form solution of ODEs is known, we can directly specify concrete
continuous functions, which are parameterized by a time parameter t and the
initial values x1(0), . . . , xn(0) of the variables x1, . . . , xn:

x1(t) = e1(t, x1(0), . . . , xn(0)); . . . ; xn(t) = en(t, x1(0), . . . , xn(0));

An environment component interacts with discrete controllers by sending its
state values, and by receiving actuator commands that may update state vari-
ables or trigger mode (and hence trajectory) changes. This behavior is specified
in HybridSynchAADL using connections between ports and data subcompo-
nents. A connection from a data subcomponent d inside the environment to an
output data port o declares that the value of d is “sampled” by a controller. A
connection from an environment’s input port i to d declares that a controller
command arrived at i updates the value of the data subcomponent d.

Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL 495

Controller Components. Discrete controllers are usual software components in
the Synchronous AADL subset [7,9]. A controller component is specified using
the behavioral and structural subset of AADL: hierarchical system, process,
thread components, and thread behaviors defined by the Behavior Annex [23].

A controller receives the state of the environment at some sampling time,
and sends a controller command to the environment at some actuation time.
Sampling and actuation take place according to the local clock of the controller.

Hybrid_SynchAADL::Max_Clock_Deviation => time;
Hybrid_SynchAADL::Sampling_Time => lower bound .. upper bound;
Hybrid_SynchAADL::Response_Time => lower bound .. upper bound;

The top-level system component declares the following properties to state
that the entire model is a synchronous design with a period T :

Hybrid_SynchAADL::Synchronous => true; Period => T;

Communication. In HybridSynchAADL, connections are constrained for syn-
chronous behaviors: no connection is allowed between environments, or between
environments and the enclosing system components.

All (non-actuator) outputs of controller components generated in an iteration
are available to the receiving controller components at the beginning of the next
iteration. As explained in [7,9], delayed connections between data ports meet
this requirement. Therefore, two controller components can be connected only
by data ports with delayed connections: Timing => Delayed.

Interactions between a controller and an environment occur instantaneously
at the sampling and actuating times of the controller. Because an environment
does not “actively” send data for sampling, every output port of an environment
must be a data port, whereas its input ports could be of any kind.

4 The HYBRIDSYNCHAADL Tool

This section introduces the HybridSynchAADL tool supporting the modeling
and formal analysis of HybridSynchAADL models. The tool is an OSATE
plugin which: (i) provides an intuitive language to specify properties of models,
(ii) synthesizes a rewriting logic model from a HybridSynchAADL model, and
(iii) performs various formal analyses using Maude combined with SMT solving.

Specifying Properties. The tool’s property specification language allows the user
to specify time-bounded invariant and reachability properties as propositional
formulas whose atomic propositions are AADL Boolean expressions.

A “named” atomic proposition can be declared in HybridSynchAADL as
follows, where each identifier is fully qualified with its component path:

proposition [id]: AADL Boolean Expression

496 J. Lee et al.

Fig. 1. Interface of the HybridSynchAADL tool.

The following named invariant property holds if, for every (initial) state sat-
isfying the initial condition ϕinit , all states reachable within the time bound
τbound satisfy the invariant condition ϕinv .

invariant [name]: ϕinit ==> ϕinv in time τbound

A reachability property (the dual of an invariant) holds if a state satisfying
ϕgoal is reachable from some state satisfying ϕinit within the time bound τbound .

reachability [name]: ϕinit ==> ϕgoal in time τbound

Tool Interface. The tool first statically checks whether a given model is a valid
model that satisfies the syntactic constraints of HybridSynchAADL.

HybridSynchAADL provides two analysis methods. Symbolic reachability
analysis can verify that all possible behaviors satisfy a given requirement;1 if not,
a counterexample is generated. Randomized simulation repeatedly executes the
model until a counterexample is found, by randomly choosing concrete sampling
and actuating times, nondeterministic transitions, etc.

Our tool also provides portfolio analysis that combines symbolic reachability
analysis and randomized simulation. HybridSynchAADL runs both methods
in parallel using multithreading, and displays the result of the analysis that ter-
minates first. Symbolic analysis can guarantee the absence of a counterexample,
whereas randomized simulation is effective for finding “obvious” bugs.

Figure 1 shows the interface of our tool that is fully integrated into OSATE.
The left editor shows the code of FourDronesSystem in Sect. 5, the bottom
right editor shows its graphical representation, and the top right editor shows
two properties in the property specification language. The HybridSynchAADL
menu contains three items for constraint checking, code generation, and formal
analysis. The Portfolio Analysis item has already been clicked, and the Result
view at the bottom displays the analysis results in a readable format.
1 Symbolic analysis currently only supports polynomial continuous dynamics, since

the Yices2 SMT solver does not support general classes of ODEs.

Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL 497

Tool Implementation. We have (in our report [33]) developed a Maude-with-
SMT semantics for HybridSynchAADL that formalizes our modeling language
and implements our tool’s analysis commands. Maude is suitable to capture the
expressive control program language, the hierarchical structure of systems, and
communication. Symbolic rewriting with SMT allows us to analyze infinite states
and all possible behaviors caused by sampling and actuation times with imprecise
clocks, where continuous dynamics can be encoded in SMT [18,26].

Nontrivial control programs with many conditional branches and guarded
transitions typically involve a large number of symbolic states; to reduce the
number of results of executing one iteration of the system, we have implemented
a state merging optimization technique [11] that merges two symbolic states into
one using disjunction and generalization. As shown in the report [33], this state
merging dramatically improves the performance of symbolic analysis and makes
the formal analysis feasible for such distributed hybrid systems.

The HybridSynchAADL tool uses OSATE’s code generation facilities to
synthesize a Maude model from the HybridSynchAADL model. It then invokes
Maude and an SMT solver to check whether the model satisfies given invariant
and reachability requirements. Our tool is implemented in around 6,200 lines of
Maude code and around 8,600 lines of Java and Xtend code.

5 Case Study: Collaborating Autonomous Drones

This section shows how virtually synchronous CPSs for controlling distributed
drones—which collaborate to achieve common goals, such as rendezvous and
formation control—can be modeled and analyzed in HybridSynchAADL.

Rendezvous of Multiple Drones. Consider N drones, where vectors �xi and �vi, for
1 ≤ i ≤ N , denote the position and velocity of the i-th drone. The continuous
dynamics of the i-th drone is specified by the ordinary differential equation
�̇xi = �vi. The controller samples the drone’s position and velocity, and gives
the new velocity value to the environment as a control command. The goal of
rendezvous is for all drones to arrive near a common location simultaneously.

Figure 2 shows the AADL architecture of our rendezvous model for four
drones. Each drone is connected to two other drones to exchange positions.
A drone component consists of an environment (with the drone’s position and
velocity) and its controller. Figure 3 shows the implementation of the top-level
component, a Drone system component, an Environment system component, and
a thread component for a drone controller in HybridSynchAADL.

In each round, the controller obtains the position �x from its environment at
its sampling time. The position of the connected drone was sent in the previous
round. The controller determines a new velocity to synchronize its movement
with the other drones using a distributed consensus algorithm [39]. The environ-
ment changes its position according to the velocity indicated by its controller,
where the new velocity �v becomes effective at its actuation time.

498 J. Lee et al.

FourDronesSystem

Drone1 Drone2 Drone3 Drone4

Drone

Environment Controller
�x

�v

out

in

Fig. 2. The AADL architecture of four drones (left), and a drone component (right).

Fig. 3. A HybridSynchAADL model for four distributed drones.

Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL 499

Verification. We analyze the following properties up to bound 500 ms using
HybridSynchAADL portfolio analysis: (i) drones do not collide (safety), and
(ii) all drones can eventually gather together (rendezvous).

invariant [safety]: ?initial ==> not ?collision in time 500;
reachability [rendezvous]: ?initial ==> ?gather in time 500;

We define three propositions: initial, defining the range of initial positions
of the four drones dr1, dr2, dr3, and dr4; collision, where two drones collide if
the (horizontal and vertical) distance between them is less than 0.1; and gather,
indicating that the distance between each pair of drones is less than 1. For
example, collision and initial are defined as follows.

proposition [initial] :
abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and
abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and
abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and
abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01;

proposition [collision] :
(abs(dr1.env.x - dr2.env.x) < 0.1 and abs(dr1.env.y - dr2.env.y) < 0.1) or
...
(abs(dr3.env.x - dr4.env.x) < 0.1 and abs(dr3.env.y - dr4.env.y) < 0.1);

The analysis result is shown in the Result view at the bottom of Fig. 1.
There is a witness for rendezvous, obtained by symbolic reachability analysis in
1.7 seconds. A counterexample for safety is found by randomized simulation in
1.5 seconds, since initial does not constrain the speed of the drones. In [33],
we add initial velocity constraints, and verify that safety holds up to the time
bound by symbolic reachability analysis in 15 minutes.

6 Experimental Evaluation

We compare the performance of HybridSynchAADL’s symbolic analysis with
four reachability analysis tools for hybrid automata, HyComp [18], SpaceEx [24],
Flow* [17], and dReach [31], on models of rendezvous and formation control for
distributed drones, and on networked thermostats (adapted from [6,29]). We use
simplified models with less complex control; otherwise, most of the other tools
time out (see [33] for results on more complex models). We use two invariant
properties for each model: Inv�, which holds, and Inv⊥, which does not hold.

To use the other tools, we have “encoded” the synchronous designs of the
HybridSynchAADL models as networks of hybrid automata. Each component
is modeled as a hybrid automaton with three modes: starting a new round,
sampling, and controller transition/actuation. The behavior of a controller is
encoded as single jumps. We use flat hybrid automata (obtained by HYST [12])
for Flow* and dReach, which do not support networks of hybrid automata.

We measure the execution times for analyzing the invariant properties up to
bound 500 ms, with a timeout of 60 minutes. For HybridSynchAADL, we use

500 J. Lee et al.

Table 1. HybridSynchAADL vs. HyComp, SpaceEx, dReach, and Flow*.

Model Tool

Inv� Inv⊥

N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

Time B Time B Time B Time B Time B Time B

R
en

d
(s

in
g
le

)

HSADDL 2.0 5 3.9 5 5.8 5 2.4 3 4.2 3 5.9 3
HyComp 0.8 5 4.0 5 17.2 5 8.9 3 11.5 3 192.6 3
SpaceEx 8.0 5 2230.3 3 4.5 1 5.1 3 2676.6 3 T/O -
dReach 1382.7 3 107.1 1 T/O - T/O - T/O - T/O -
Flow* 3552.8 4 2725.5 2 1205.2 1 167.3 3 380.4 2 838.0 3

F
o
rm

(s
in

g
le

)

HSAADL 3.0 5 7.3 5 7.9 5 15.5 4 2.5 2 5.2 2
HyComp 13.3 5 41.3 5 182.1 5 T/O - 2.6 2 20.3 2
SpaceEx 91.9 2 2.8 1 114.8 1 T/O - T/O - T/O -
dReach 139.0 1 T/O - T/O - T/O - T/O - T/O -
Flow* 1464.7 2 873.4 1 T/O - T/O - 45.3 1 291.3 2

T
h
er

m
o
st

a
t HSAADL 2.7 5 4.7 5 7.8 5 7.6 5 15.3 5 10.7 4

HyComp 1.6 5 8.5 5 37.9 5 2.6 5 15.5 5 43.1 4
SpaceEx 2.3 5 696.4 3 34.5 1 2.2 5 T/O - T/O -
dReach 341.6 3 57.5 1 T/O - T/O - T/O - T/O -
Flow* 3196.4 5 1240.7 2 977.7 1 15.5 3 1718.1 4 T/O -

R
en

d
(d

o
u
b
le

) HSAADL 3.7 4 37.8 4 6.9 4 1.4 2 16.3 2 2.8 2
SpaceEx 1147.6 3 81.1 1 T/O - 15.2 2 T/O - T/O -
dReach 2156.2 3 274.3 1 T/O - T/O - T/O - T/O -
Flow* 232.5 2 230.1 1 T/O - 2.2 2 25.4 2 2613.8 1

a specialized version of Maude with Yices 2.6 for polynomial arithmetic [44]. For
SpaceEx, we use PHAVer for linear dynamics, and STC for nonlinear polynomial
dynamics. For Flow*, we use adaptive steps, and TM orders 1 (for single) and
2 (for double). We use the default precision for dReach, and BMC for HyComp.
We have run all experiments on Intel Xeon 2.8GHz with 256 GB memory.

The results are summarized in Table 1, as execution times (seconds) over time
bounds (B · 100ms), with N the number of components. The results for “Rend
(double)” (rendezvous with double-integrator dynamics, where control input is
given by acceleration instead of velocity) do not include HyComp, which does
not support nonlinear polynomial dynamics. For Inv�, Table 1 shows the largest
time bound for which the tool could prove the absence of counterexamples.
Often, tools timed out when trying to verify that Inv� holds up to time bound
500.2 For Inv⊥, the table shows the smallest bound for which the tool found
counterexamples.3 As seen, HybridSynchAADL outperforms the other tools
in most cases, in particular for complex models with larger N .

2 E.g., for “Rend (single)” with N = 4, HybridSynchAADL needs 5.8 seconds for
B = 5, whereas SpaceEx needs 4.5 seconds for B = 1 and timed out for B > 1.

3 Flow* occasionally found (spurious) counterexamples at smaller bounds, because of
over-approximation by the Taylor model flowpipe construction.

Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL 501

7 Related Work

Our tool can model check virtually synchronous CPSs with both complex control
programs and continuous behaviors (and imprecise local clocks, etc.), whereas
most formal tools are strong at analyzing either discrete or continuous behaviors.
The latter includes analysis tools for hybrid automata [13,18,24], which do not
deal well with the “discrete complexity” (e.g., control programs) of CPSs.

The Hybrid Annex [2,3] allows specifying continuous behaviors in AADL,
but message delays, clock skews, etc., are not taken into account. Controllers
are defined in Hybrid CSP instead of in AADL’s convenient Behavioral Annex.
Another hybrid annex is proposed in [38], and an AADL sublanguage, AADL+,
in [35]. None of these languages support automated formal correctness analysis.

Hybrid PALS models with simple controllers are encoded as logical formulas
and analyzed by dReal in [8]. However, there is no tool support, and so CPSs
must be manually modeled as SMT formulas in [8]. In contrast, we provide a
tool for modeling Hybrid PALS models using a well-known modeling standard.

Our work is also related to almost-synchronous systems, including approxi-
mate synchrony [20], quasi-synchrony [15,16,28,32], GALS [27,37], time-triggered
architectures [41,43], etc. Our method makes it possible to verify such systems
with continuous behaviors, which are typically not considered in related work.

8 Concluding Remarks

We have presented the HybridSynchAADL modeling language and formal
analysis tool for modeling and analyzing the synchronous designs—and, by the
Hybrid PALS equivalence, also the corresponding asynchronous distributed real-
time system with bounded clock skews, network delays, and execution times—
of virtually synchronous networks of hybrid systems with potentially complex
control programs in the modeling standard AADL. Our tool provides randomized
simulation and symbolic reachability analysis, and is fully integrated into the
OSATE modeling environment for AADL. We have shown that in most cases,
HybridSynchAADL’s symbolic analysis outperforms state-of-the-art hybrid
systems reachability analysis tools on a number of distributed hybrid systems.

Currently, HybridSynchAADL’s symbolic analysis is restricted to systems
with (nonlinear) polynomial continuous dynamics, because the underlying SMT
solver, Yices2, cannot deal with general classes of ODEs. We should therefore
integrate Maude with ODE solvers such as dReal [25] and Flow* [17].

Acknowledgments. This work was supported in part by the National Research
Foundation of Korea (NRF) grants funded by the Korea government (MSIT)
(No. 2019R1C1C1002386 and No. 2017M3C4A7068175).

502 J. Lee et al.

References

1. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial
Applications. LNCS, vol. 1165. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0027227

2. Ahmad, E., Dong, Y., Wang, S., Zhan, N., Zou, L.: Adding formal meanings to
AADL with Hybrid Annex. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS,
vol. 8997, pp. 228–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15317-9 15

3. Ahmad, E., Larson, B.R., Barrett, S.C., Zhan, N., Dong, Y.: Hybrid Annex: An
AADL extension for continuous behavior and cyber-physical interaction modeling.
In: Proceedings of ACM SIGAda HILT 2014. ACM (2014)

4. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proceedings of RTSS.
IEEE (2009)

5. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based devel-
opment of a PCA infusion pump reference model: Generic infusion pump (GIP)
project. In: Proceedings of HCMDSS-MDPnP 2007. IEEE (2007)

6. Bae, K., Gao, S.: Modular SMT-based analysis of nonlinear hybrid systems. In:
Proceedings of FMCAD, pp. 180–187. IEEE (2017)

7. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
its formal analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 651–667. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24559-6 43

8. Bae, K., Ölveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of
virtually synchronous distributed hybrid systems. In: Proceedings of HSCC. ACM
(2016)

9. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of Mul-
tirate Synchronous AADL. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 94–109. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-06410-9 7

10. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude
tool. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 59–62.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 4

11. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms for rewrit-
ing modulo SMT. Sci. Comput. Program. 178, 20–42 (2019)

12. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: A source transformation and trans-
lation tool for hybrid automaton models. In: Proceedings of HSCC 2015. ACM
(2015)

13. Bak, S., Duggirala, P.S.: Hylaa: A tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of HSCC 2017. ACM (2017)

14. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

15. Baudart, G., Bourke, T., Pouzet, M.: Soundness of the quasi-synchronous abstrac-
tion. In: Proceedings of FMCAD, pp. 9–16. IEEE (2016)

16. Caspi, P., Mazuet, C., Paligot, N.R.: About the design of distributed control sys-
tems: The quasi-synchronous approach. In: Voges, U. (ed.) SAFECOMP 2001.
LNCS, vol. 2187, pp. 215–226. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45416-0 21

https://doi.org/10.1007/BFb0027227
https://doi.org/10.1007/BFb0027227
https://doi.org/10.1007/978-3-319-15317-9_15
https://doi.org/10.1007/978-3-319-15317-9_15
https://doi.org/10.1007/978-3-642-24559-6_43
https://doi.org/10.1007/978-3-642-24559-6_43
https://doi.org/10.1007/978-3-319-06410-9_7
https://doi.org/10.1007/978-3-319-06410-9_7
https://doi.org/10.1007/978-3-642-28872-2_4
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/3-540-45416-0_21
https://doi.org/10.1007/3-540-45416-0_21

Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL 503

17. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

18. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: An SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46681-0 4

19. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

20. Desai, A., Seshia, S.A., Qadeer, S., Broman, D., Eidson, J.C.: Approximate syn-
chrony: An abstraction for distributed almost-synchronous systems. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 429–448. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 25

21. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

22. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis and Design Language. Addison-Wesley (2012)

23. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL Behaviour Annex - experiments and roadmap. In: ICECCS. IEEE
(2007)

24. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

25. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

26. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Proceedings of
FMCAD. IEEE (2013)

27. Girault, A., Ménier, C.: Automatic production of globally asynchronous locally
synchronous systems. In: Sangiovanni-Vincentelli, A., Sifakis, J. (eds.) EMSOFT
2002. LNCS, vol. 2491, pp. 266–281. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45828-X 20

28. Halbwachs, N., Mandel, L.: Simulation and verification of asynchronous systems
by means of a synchronous model. In: Proceedings of ACSD 2006. IEEE (2006)

29. Henzinger, T.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-
5 13

30. Kim, C., Sun, M., Mohan, S., Yun, H., Sha, L., Abdelzaher, T.F.: A framework for
the safe interoperability of medical devices in the presence of network failures. In:
Proceedings of ICCPS 2010. ACM (2010)

31. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

32. Larrieu, R., Shankar, N.: A framework for high-assurance quasi-synchronous sys-
tems. In: Proceedings of MEMOCODE 2014. IEEE (2014)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-319-21668-3_25
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/3-540-45828-X_20
https://doi.org/10.1007/3-540-45828-X_20
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-662-46681-0_15

504 J. Lee et al.

33. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: HybridSynchAADL: Modeling and for-
mal analysis of virtually synchronous CPSs in AADL. manuscript, January 2021.
https://hybridsynchaadl.github.io//docs/techrep.pdf

34. Leen, G., Heffernan, D., Dunne, A.: Digital networks in the automotive vehicle.
Comput. Control Eng. J. 10(6), 257–266 (1999)

35. Liu, J., Li, T., Ding, Z., Qian, Y., Sun, H., He, J.: AADL+: A simulation-
based methodology for cyber-physical systems. Front. Comput. Sci. 13(3), 516–538
(2018). https://doi.org/10.1007/s11704-018-7039-7

36. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theor. Comput. Sci. 451, 5–27
(2012)

37. Potop-Butucaru, D., Caillaud, B.: Correct-by-construction asynchronous imple-
mentation of modular synchronous specifications. Fundam. Inform. 78(1), 131–159
(2007)

38. Qian, Y., Liu, J., Chen, X.: Hybrid AADL: A sublanguage extension to AADL. In:
Proceedings of MEMOCODE 2014. ACM (2013)

39. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Con-
trol. Springer, London (2008). https://doi.org/10.1007/978-1-84800-015-5

40. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Log. Algebraic Methods Program. 86(1), 269–297 (2017)

41. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algo-
rithms. IEEE Trans. Software Eng. 25(5), 651–660 (1999)

42. Steiner, W., Bauer, G., Hall, B., Paulitsch, M., Varadarajan, S.: TTEthernet
dataflow concept. In: 2009 Eighth IEEE International Symposium on Network
Computing and Applications, pp. 319–322. IEEE (2009)

43. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincent, A., Caspi, P., Di
Natale, M.: Implementing synchronous models on loosely time triggered architec-
tures. IEEE Trans. Comput. 57(10), 1300–1314 (2008)

44. Yu, G., Bae, K.: Maude-SE: A tight integration of Maude and SMT solvers. In:
Proceedings of International Workshop on Rewriting Logic and Its Applications
(2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://hybridsynchaadl.github.io//docs/techrep.pdf
https://doi.org/10.1007/s11704-018-7039-7
https://doi.org/10.1007/978-1-84800-015-5
http://creativecommons.org/licenses/by/4.0/

Computing Bottom SCCs Symbolically
Using Transition Guided Reduction

Nikola Beneš, Luboš Brim, Samuel Pastva(B), and David Šafránek

Faculty of Informatics, Masaryk University, Brno,
Czech Republic

{xbenes3,brim,xpastva,safranek}@fi.muni.cz

Abstract. Detection of bottom strongly connected components (BSCC)
in state-transition graphs is an important problem with many applica-
tions, such as detecting recurrent states in Markov chains or attractors
in dynamical systems. However, these graphs’ size is often entirely out of
reach for algorithms using explicit state-space exploration, necessitating
alternative approaches such as the symbolic one.

Symbolic methods for BSCC detection often show impressive perfor-
mance, but can sometimes take a long time to converge in large graphs.
In this paper, we provide a symbolic state-space reduction method for
labelled transition systems, called interleaved transition guided reduction
(ITGR), which aims to alleviate current problems of BSCC detection by
efficiently identifying large portions of the non-BSCC states.

We evaluate the suggested heuristic on an extensive collection of 125
real-world biologically motivated systems. We show that ITGR can eas-
ily handle all these models while being either the only method to fin-
ish, or providing at least an order-of-magnitude speedup over existing
state-of-the-art methods. We then use a set of synthetic benchmarks to
demonstrate that the technique also consistently scales to graphs with
more than 21000 vertices, which was not possible using previous methods.

Keywords: Bottom SCC · Symbolic algorithm · Boolean network

1 Introduction

Finding strongly connected components (SCCs) is a basic problem in graph
theory. It is impractical or even impossible for large graphs to find SCCs using
explicit depth-first search, motivating the study of symbolic SCCs computation.
The structure of SCCs in a graph is captured by its quotient graph, obtained
by collapsing each SCC into a single node. This graph is acyclic, thus defines a
partial order on the SCCs. Bottom SCCs (BSCCs) are SCCs corresponding to
leaf nodes in the quotient graph (alternatively referred to as Terminal SCCs).

Detection of BSCCs is an important problem with many applications. For
example, in Markov chains and Markov decision processes, the recurrent states
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 505–528, 2021.
https://doi.org/10.1007/978-3-030-81685-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_24

506 N. Beneš et al.

belong to terminal SCCs [1,11,38]. In LTL model checking, the detection of bot-
tom SCCs is used during the decomposition of the property automaton to speed
up the model checking procedure [52]. Another example of an application where
detection of BSCCs is crucial is detecting non-terminating sections of parallel
programs written in C or C++ [55]. In models of dynamical systems, which are
of our primary interest, BSCCs correspond to so-called attractors that determine
the long-term behaviour of the system [43]. Identification of attractors has many
important applications, including communication protocols [4,47], systems biol-
ogy [31,40], mathematical physics [26], ecology [54], epidemiology [42], etc. In
biology, the possibility of reaching a particular phenotype of a living cell is indi-
cated by the presence of a specific attractor [40]. The knowledge of attractors
then unlocks the path towards cell control [33], reprogramming [49] and even
regenerative medicine [17]. Consequently, detection of BSCCs is a fundamen-
tal task important not only in computer-aided verification but also many other
disciplines.

Our motivation to develop a new symbolic approach to find BSCCs comes
from the need to handle extremely large graphs representing labelled transition
systems that encode the behaviour of complex real-world concurrent processes.
In particular, assuming we deal with finite-state systems, such large transition
systems are typically generated from models encoded in a compact formalism
such as process calculi, Petri nets, Boolean networks [32,57], their combina-
tions [6] or other higher-level modelling languages. For such transition systems,
the limits of general symbolic SCC algorithms also define the limits of realistic
applications.

In most cases, the size of a transition system generated from a model is expo-
nential in the number of concurrently interacting entities. For example, in the
case of biological systems, the number of entities is typically ranging from several
hundred to hundreds of thousands. Despite strong simplifications employed at
the side of models, the size of respective transition systems rarely falls below 106

states and is usually much bigger [23,27,44]. Thus, the need to tackle large tran-
sition systems gives us a solid motivation to revisit the algorithmics for BSCC
detection.

In general, it is possible to find all BSCCs as a part of a general SCC
decomposition algorithm. There is a rich history of research on computing SCCs
symbolically. An algorithm based on forward and backward reachability per-
forming O(n2) symbolic steps was presented by Xie and Beerel in [59]. Bloem
et al. present an improved O(n · log n) algorithm in [7]. Finally, an O(n) algo-
rithm was presented by Gentilini et al. in [25]. This bound has been proved to be
tight in [16]. In [16], the authors argue that the algorithm from [25] is optimal
even when considering more fine-grained complexity criteria, like the diameter
of the graph and the diameter of the individual components. Ciardo et al. [62]
use the idea of saturation [20] to speed up state exploration when computing
each SCC in the Xie-Beerel algorithm and compute the transitive closure of the
transition relation using a novel algorithm based on saturation.

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 507

Our approach is motivated by the fact that techniques working very well for
full SCC decomposition do not help to sufficiently accelerate BSCC detection.
At the same time, some heuristics, such as saturation, can provide a meaningful
impact even when using simpler algorithms [62]. The key novelty of our method
lies in a heuristic called transition guided reduction that filters the state space by
reflecting the possibility of transitions to appear in BSCCs. This step allows to
remove some states not belonging to any BSCC, and that way reduce the transi-
tion system under analysis to be tractable by the modified Xie-Beerel algorithm
with saturation [62].

To target specific characteristics of transition systems representing dynam-
ical systems, e.g., those generated by Boolean networks (BNs) [32,57], several
specialised symbolic SCC decomposition methods have been developed. Since
systems for our evaluation come primarily from BNs, we also discuss these spe-
cialised methods here. A BN consists of Boolean variables, each having a Boolean
update function. Update functions change the state of the variables. The seman-
tics of a BN is a transition system where the states are the possible valuations
of the variables, and the transitions are induced by the execution of the update
functions. Some of the existing algorithms utilise the synchronous update seman-
tics (updates of all variables executed synchronously) that significantly simplifies
the problem [24]. However, it is known that synchronous update can produce
unrealistic behaviour [37,53]. Models with asynchronous update (concurrently
executed updates of variables) are closer to reproducing the real behaviour [15].
For the evaluation of our method, we consider asynchronous BNs. Various spe-
cialised techniques of BSCC detection have been developed for asynchronous
BNs, including BDDs [24,46,56,60], optimisation [34,35], algebraic-based meth-
ods [29], SAT [28], answer set programming [45], concurrency theory [14], sam-
pling [61], or network structure decomposition [18,21]. Moreover, detection of
BSCCs is also present as a necessary step in cell reprogramming [41,49] and cell
control [2,33] based on BNs. To the best of our knowledge, existing methods
specialised for asynchronous BNs do not satisfactorily handle huge models (hun-
dreds of variables and beyond). The best state-of-the-art tools [21,56] are not
yet able to robustly work with BNs of such size. We believe that the generally
applicable heuristic we propose in this paper can significantly shift the present
technology towards massive real-world applications (thousands of variables and
beyond).

The main contribution of this paper is a novel symbolic method for BSCCs
detection in state-transition graphs of huge labelled transition systems for which
the problem cannot be handled by existing algorithms. We introduce a novel
reduction technique, called interleaved transition guided reduction (ITGR),
which aims to enable the use of existing methods by removing large portions
of the irrelevant non-BSCC states. The method relies on the observation that
BSCCs in real-world systems rarely employ all transition labels available. There-
fore, if a state s can fire a transition with a label that is not employed by some
BSCC reachable from s, after applying ITGR, s is eliminated. As a result, all
paths in the remaining state space only perform transitions with labels employed

508 N. Beneš et al.

by their reachable BSCCs. What makes the method truly competitive is the
interleaving of multiple processes, each of which performs the reduction for
a different transition label. The completion of faster processes speeds up the
remaining parts of the computation, which would be otherwise intractable.

To show the real-world benefits of our method, we use a wide collection of
models and compare the prototype implementation of ITGR to the state-of-
the-art tool CABEAN [56] as well as to our own implementation of the Xie-
Beerel BSCC detection algorithm [62]. In particular, we consider a set of 125
real-world asynchronous BNs selected from publicly available Boolean network
repositories, and show that ITGR can easily handle all these models, while either
being the only method to finish the computation or providing at least an order-
of-magnitude speedup over existing methods. Additionally, we analyse a set of
200 even larger but structurally similar synthetic BNs, which generate transition
systems with approximately 21000 states. We show that ITGR is the only method
that can consistently handle systems of this magnitude.

2 Preliminaries

To represent a wide variety of large discrete systems, we consider the abstraction
generally known as labelled transition systems:

Definition 1. Let L be a non-empty set of labels. A labelled transition system
over L is a pair T = (S, { a−→ | a ∈ L}), where S is a finite non-empty set of
states, and for each a ∈ L, a−→ ⊆ S × S is a transition relation.

When (s, s′) ∈ a−→, we write s
a−→ s′, and when (s, s′) ∈ a−→ for some

a ∈ L, we simply write s → s′. When there is a path s1 → s2 → . . . → sn,
we write s1 →∗ sn. Each labelled transition system T can be seen as a directed
state-transition graph GT = (S,E), whose vertices are the states of T and whose
edges are given by the transition relations, i.e. (s, s′) ∈ E ⇐⇒ s → s′. This
formalism can naturally describe a wide variety of modelling frameworks with
built-in nondeterminism, such as Petri nets, Boolean networks, or multi-valued
regulatory networks.

We assume to have a symbolic representation of a labelled transition system
that allows us to perform symbolic set operations on the subsets of S (union ∪,
intersection ∩, difference \, subset test ⊆, pick an element Pick, etc.) as well as
apply the following operations using the associated transition relations:

Post(a,X) = {s′ ∈ S | ∃s ∈ X.s
a−→ s′}

Pre(a,X) = {s ∈ S | ∃s′ ∈ X.s
a−→ s′}

CanPost(a,X) = {s ∈ X | ∃s′ ∈ S.s
a−→ s′}

We further assume a symbolic complexity model where the complexity of
each such operation is in O(1). Additionally, we use the notation AllPost(X) =⋃

a∈L Post(a,X) for all successors and AllPre(X) =
⋃

a∈L Pre(a,X) for all

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 509

predecessors. However, the symbolic complexity of these operations is in O(|L|).
Finally, we assume that the labels in L are sorted based on the order in which
they influence the variables in the symbolic representation (as in, for example,
an ordered binary decision diagram [10]). As a consequence, we index the labels
and write L = {a1, . . . , a|L|}.

Now let us recall a few basic definitions from graph theory in order to define
the BSCC detection problem for labelled transition systems:

Definition 2. Let G = (V,E) be a directed graph. A subset C ⊆ V is a strongly
connected component (SCC) of G iff it is a maximal subset such that for all pairs
v, v′ ∈ C, there is a path from v to v′.

A strongly connected component C is called bottom (or terminal, BSCC in
the following) when there is no edge going from any v ∈ C to any v′ ∈ V \ C.

For a given s ∈ V , we write SCC(s) to denote the strongly connected com-
ponent that contains s. Furthermore, we say that a set X is SCC-closed when
X =

⋃
x∈X SCC(x). This means that every SCC of G is either included in X,

or is completely disjoint with X. As an example, a set of all reachable vertices
from any given initial set is SCC-closed. When |SCC(x)| = 1 and (x, x)
∈ E,
the SCC is called trivial.

For a set X ⊆ V , we sometimes use the term the basin of X to denote the
set of all the vertices that have a path to a state in X, formally basin(X) = {u |
∃v ∈ X : u →∗ v}. Note that although the name is motivated by the notion
of attractor basins in dynamical systems, we use it in a more generalised form
here, i.e. we do not require X to be a BSCC.

Problem 1. Let T be a labelled transition system and GT its corresponding
state-transition graph. The problem of bottom strongly connected component
detection (BSCC detection) is to identify all subsets of S that correspond to the
bottom strongly connected components of GT .

A detailed analysis of optimal symbolic asymptotic complexity of a full SCC
decomposition can be found in [16]. However, the authors in [16] use a slightly
different complexity model, where operations like AllPost and AllPre also
assume O(1) complexity. However, their observations about the relationship
between problem complexity and graph (or component) diameter are very rele-
vant.

3 Basic Symbolic BSCC Detection

First, we discuss a BSCC detection algorithm from [62], which will form our
baseline going forward. In [62], the authors discuss several symbolic approaches
to SCC and BSCC computation, as well as fair cycle detection using various
symbolic algorithms, and compare them on large systems from computer science.

In particular, the paper points out that more complex approaches, like the
lock-step method [7], work well for full SCC decomposition but do not bring much
benefit to the detection of BSCCs. However, the authors do highlight the benefits

510 N. Beneš et al.

Algorithm 1: Basic BSCC detection algorithm with saturation.
1 Function BSCC(universe ⊆ S)
2 while universe �= ∅ do
3 pivot ← Pick(universe);
4 basin ← Bwd∗({pivot}, universe);
5 forward ← {pivot};
6 repeat
7 (fixpoint, forward) ← Fwd(forward, universe);
8 until fixpoint or forward �⊆ basin;
9 if forward ⊆ basin then

10 Output(forward);

11 universe ← universe \ basin;

12 Function Bwd∗(reachable, universe)
13 repeat
14 (fixpoint, reachable) ← Bwd(reachable, universe);
15 until fixpoint;
16 return reachable;

17 Function Bwd(reachable, universe)
18 for i ∈ |L| . . . 1 do
19 pre ← universe ∩ Pre(ai, reachable);
20 if pre �⊆ reachable then
21 return (false, reachable ∪ pre);

22 return (true, reachable);

of basin saturation [19] as a heuristic to speed up the state space search. What
we present here is therefore the Xie-Beerel algorithm [59], adapted to BSCC
detection with saturation, based on the notes from [62] (we have rewritten the
pseudocode to better match the presentation style and background of this paper,
though).

The method is summarised in Algorithm 1, which shows the main procedure
(BSCC) as well as the reachability procedures Bwd and Bwd∗, which we also
use in the later sections. We omit the pseudocode for Fwd and Fwd∗, as they
are identical to the Bwd case, only swapping Pre for Post.

Reachability and Saturation. The forward and backward reachability proce-
dures are divided into two methods each, Fwd, Bwd, Fwd∗ and Bwd∗. Since
they are functionally symmetrical, we only explicitly discuss backward reacha-
bility, with everything directly translating to forward reachability as well.

Bwd performs a single backward reachability step and returns the new set
of states together with an indication of whether a fixed point has been reached
(i.e. whether no new states have been discovered). Note that in classical satu-
ration, once Bwd selects some ai, it is typically applied repeatedly. However,
for our primary application domain (Boolean networks), multiple subsequent
applications of a single transition would not yield any benefit; we thus use this

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 511

observation to simplify the pseudocode. In other cases, the recommended app-
roach is to follow [19].

Bwd∗ then simply wraps Bwd into a cycle that actually computes the full
fixed point of the reachable set. This separation into two sub-procedures allows
us to perform reachability step-by-step or even interleave multiple reachability
procedures (which will come into play later). Remember that for saturation to
work well, the ordering of labels needs to follow the ordering of variables in the
symbolic representation.

Xie-Beerel Algorithm. The main algorithm relies on the well-known observa-
tion that for a fixed pivot vertex, the SCC of this vertex can be computed as
the intersection of vertices forward and backward reachable from pivot. When
searching for BSCCs, we can easily extend this with two extra observations:
First, pivot is in a BSCC when only the SCC itself is forward-reachable from
pivot. Second, a vertex backward-reachable from pivot is either in the same
SCC as pivot (in which case it is in a BSCC iff pivot is in a BSCC), or it is
not in a BSCC.

Based on these two extra observations, the original algorithm is modified in
two ways: First, not just the SCC around pivot, but all backward-reachable
vertices are eliminated at the end of each iteration. Second, the backward reach-
ability from pivot is computed in full, as these are the vertices we can eliminate.
However, the forward reachability is terminated early if it leaves the backward-
reachable set, since this implies that pivot does not belong to a BSCC.

The asymptotic complexity of this algorithm (in terms of symbolic opera-
tions) is O(|L| · |S|), which follows from the fact that every vertex will appear in
basin exactly once but may need O(|L|) operations to be discovered. Note that
optimal symbolic algorithms for BSCC detection are expected to have linear
asymptotic complexity. That is, however, assuming a model where AllPost is
an O(1) operation, not O(|L|). This may be reasonable for some (in particular
synchronous) systems, but as demonstrated in [19], saturation is typically more
effective in practice, even though it is not asymptotically optimal in this model.

In [62], the authors show very impressive performance numbers for this simple
algorithm. However, there are two drawbacks, which we believe can be improved
significantly. And as we demonstrate in the evaluation, while powerful, this algo-
rithm certainly has limits on some real-world models.

First, the performance of this method is directly tied to the selection of the
pivot vertex. If the BSCCs of the graph are relatively small, the probability
of picking a right pivot is also tiny (remember, even an SCC with 2100 vertices
is only a minuscule fraction of a graph with 21000 vertices). As a consequence,
the algorithm may require a lot of pivots to explore the entire graph. Second,
the overall complexity is limited by the diameter of the whole graph instead of
the diameter of the BSCCs. Even if the pivot is picked perfectly, the algorithm
still has to explore each BSCC’s whole basin sequentially. To some extent, this
is inevitable; however, as we hope to demonstrate in the next section, it is not
always necessary.

512 N. Beneš et al.

Algorithm 2: Core reduction principle
1 Function Reduce(pivots, universe)
2 forward ← Fwd∗(pivots, universe);
3 extendedComponent ← Bwd∗(pivots, forward);
4 bottom ← forward \ extendedComponent;
5 if universe �= forward then
6 basin ← Bwd∗(forward, universe);
7 universe ← universe \ (basin \ forward);

8 if bottom �= ∅ then
9 basin ← Bwd∗(bottom, universe);

10 universe ← universe \ (basin \ bottom);

11 return universe;

To sum up, Algorithm 1 is a powerful tool for the detection of BSCCs. How-
ever, it performs best in graphs where the BSCCs either form a large portion
of the state space or have basins of small diameter, allowing the algorithm to
converge quickly.

4 Transition Guided Reduction

a

a

Fig. 1. Example of transition guided reduction. Square nodes show the pivots set used
for this reduction (in this case, the states that can fire transition a). Double-drawn
states are the BSCCs of the graph. The green area then shows the extendedComponent

induced by the two a transitions, and the blue area is the bottom set. The striped
states are the basins of the two sets, which are eliminated in this reduction. (Color
figure online)

In this section, we introduce a technique that we call transition guided reduction
(TGR) to eliminate a large portion of non-BSCC states. Algorithm 1 can then
perform much better on this reduced state space.

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 513

We present the technique in two steps: First, in Algorithm 2, we present the
core principle of the reduction procedure and prove its correctness. This approach
is generally applicable to any directed graph. Then in Algorithm 3 we show how
to apply Algorithm 2 in the context of a labelled transition system. Here, we
can exploit the knowledge of the transition labels to guide the reduction.

The reduction principle is described in Algorithm 2 and illustrated in Fig. 1.
Given a set of pivot states and the current universe of all considered states, the
method starts by computing forward—the set of all states reachable from the
pivot states. Using this forward set, we then compute the extendedComponent
of the given pivot states. Formally, an extended component of set X is a subset
X ′ ⊆ S that contains all states from X, as well as all paths between the states in
X. It is a superset of the union

⋃
x∈X SCC(x) but also contains all paths (and

SCCs on these paths) that lead between the elements of this union.
We can observe the following properties:

– The forward set is SCC-closed, as it is the result of a reachability procedure.
Thus any state that can reach but is not contained in forward is not a part
of any BSCC.

– The set bottom (i.e. forward\extendedComponent) is also SCC-closed (as it
is the difference of two SCC-closed sets). Notice that if this set is not empty,
it must contain at least one BSCC, and also that any state that can reach
bottom but is not contained in it is necessarily not a part of any BSCC.

The algorithm then computes the two sets of states that definitely do not
contain a BSCC according to these observations and discards these sets from
the state space. This is done on lines 5–7 and 8–10, respectively.

Now we can formulate the following theorem:

Theorem 1. If state s ∈ universe is discarded by Algorithm 2, then it is not
part of any BSCC.

Proof. The proof follows from the two previous observations. If the state s is
removed on line 7, it means s can reach a state s′ ∈ forward. Since the set
forward is SCC-closed, we get SCC(s)
= SCC(s′). State s therefore does not
belong to a BSCC.

Similarly, if the state s is removed on line 10, then it means s can reach
a state s′ ∈ bottom, and again due to the fact that bottom is SCC-closed, the
state s does not belong to a BSCC. ��

However, this does not provide any guidance as to which pivots should we
select for the reduction or why. This is addressed in Algorithm 3. Here, we go
through all the available transitions a ∈ L and select as the pivots the set of all
the states that can fire a (notice that pivots in Fig. 1 also correspond to such
states). As a result, all BSCCs that use a are contained in extendedComponent
and all BSCCs that do not use a, but a is performed in their basin are contained
in the bottom set. This effectively separates the BSCCs based on the transitions
that they use.

514 N. Beneš et al.

Algorithm 3: Transition Guided Reduction
1 Function TGR(universe ⊆ S)
2 for a ∈ L do
3 universe ← Reduce(CanPost(a, universe), universe);
4 if CanPost(a, universe) = ∅ then
5 L ← L \ a;

6 return universe;

Finally, notice that if all transitions of a certain type are eliminated, we
remove a from L completely. In large systems, this can significantly reduce the
overhead of the Fwd/Bwd procedures that have to iterate through L.

To better describe the cases in which this reduction works well, let us first
formally define the following:

Definition 3. Given a labelled transition system T and a state s, the fire set
F (s) is the subset of transition labels F (s) ⊆ L that can be fired in state s, i.e.
a ∈ F (s) ⇔ ∃s′ ∈ S : s

a−→ s′. A transitive fire set F ∗(s) is the union of all the
fire sets F (s′) of all the states s′ reachable from s (i.e. s →∗ s′).

Notice that for any two states such that s →∗ s′, it holds that F ∗(s′) ⊆ F ∗(s).
This also means that in any SCC, the transitive fire set of all states is the same.

Theorem 2. Let s be an arbitrary state and s′ be a state of a BSCC such that
s →∗ s′. If F ∗(s)
= F ∗(s′), Algorithm 3 discards the state s.

Proof. Since s →∗ s and F ∗(s)
= F ∗(s′), it follows that F ∗(s′) ⊂ F ∗(s).
Let a ∈ F ∗(s) \ F ∗(s′) be arbitrary and let us consider the iteration of the
main loop when a is selected. Assume that s has not been discarded in any of
the previous iterations (otherwise, the proof is already finished). Let E be the
extendedComponent computed in the current iteration. Then s is either in E,
or s can reach E, because a ∈ F ∗(s).

If s
∈ E, but s can reach E, then s is eliminated on line 7 of Algorithm 3
as part of the forward basin. When s ∈ E, it holds that s′ ∈ bottom, since
a
∈ F ∗(s′). However, since s →∗ s′, we know that s is removed on line 10
because it belongs to the basin of the bottom set. ��

However, note that the other implication does not hold. That is, these are
not the only states that Algorithm 3 eliminates (this can be also seen in Fig. 1).

Based on this theorem, we can derive two extra observations which help to
explain the effectiveness of the reduction:

Corollary 1. If a transition system T has a trivial BSCC, then the whole basin
of this SCC is discarded by Algorithm 3.

Corollary 2. If a state s is not discarded by Algorithm 3, then all paths starting
in s in the reduced state space only use the same transitions as contained in
BSCCs reachable from s.

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 515

The first corollary follows from the fact that F ∗(s) = ∅ iff s is a trivial BSCC.
The second corollary is essentially a rephrasing of Theorem 2, but it highlights
an important property of the reduction: if some transition label is not used by
a BSCC, all states in its basin that use it will be eliminated. In our experience,
real-world systems rarely use all available labels in all BSCCs (unless most of the
state space is just a single large BSCC). Thus by using this pre-processing step,
we can greatly simplify the work of Algorithm 1 by pruning “easily identifiable”
non-BSCC states.

There is one more point to be made here: Algorithm 1 has to walk the entire
depth of the BSCC basins, which can be substantial. Meanwhile, our approach
can often “skip ahead” because it is not starting from a single pivot but rather
a larger subset of states. However, this may not always be sufficient. In practice,
some transitions may be much harder to reduce than others. We address this
problem in the next section.

5 Interleaved Transition Guided Reduction

While TGR can significantly reduce the number of states Algorithm 1 needs to
consider, TGR itself iterates transitions in an arbitrary order which can signifi-
cantly influence the speed and number of steps the reduction needs to perform.
Removing a transition potentially reduces the number of states which subse-
quent reductions need to consider. It is thus beneficial to perform the “easiest”
reductions first, as this can greatly simplify the following “harder” cases.

However, determining which reductions are “easy” and which are “hard”
is not a simple problem. We could try to use additional structural information
about the system to determine this, but that would limit us to a specific subclass
of models. Instead, we let the algorithm determine this dynamically on the fly.

Our approach is summarised in Algorithm 4. Instead of reducing one tran-
sition relation at a time, we interleave all reductions in one procedure. This
is done by creating a number of processes, one per each a ∈ L, that we run
in an interleaving fashion. The processes work in two phases: Forward and
ExtendedComponent. The goal of a process in the Forward phase is to
compute the value of the forward set starting from the states that enable an a-
transition, and then switch to the ExtendedComponent phase, in which the
goal of the process is to compute the corresponding extendedComponent set.
The computation proceeds using the one-reachability-step functions Fwd and
Bwd, which we defined in Algorithm 1. Every process has its process variables
that are local to each process, but their values are kept between steps: The set
reach represents the part of forward that has already been discovered; the set
component represents the part of extendedComponent that has already been
discovered; the variable weight is explained below; and the variable phase holds
the current phase of the process (Forward or ExtendedComponent).

The process selected for execution in each iteration (line 31) is the one with
the smallest weight. The weight of a process is determined by the size of the
symbolic representation of the set it is currently expanding (reach in the first

516 N. Beneš et al.

Algorithm 4: Interleaved Transition Guided Reduction
1 Process ItgrWorker(a ∈ L)

process variables: reach, component, weight, phase
shared variables : L, universe, processes

2 initialisation:
3 reach ← CanPost(a, universe);
4 weight ← NodeCount(reach);
5 phase ← Forward;

6 step if phase is Forward:
7 (fixpoint, reach) ← Fwd(reach ∩ universe, universe);
8 weight ← NodeCount(reach);
9 if fixpoint then

10 if universe �= reach then
11 basin ← Bwd∗(reach);
12 universe ← universe \ (basin \ reach);

13 component ← CanPost(a, universe);
14 weight ← NodeCount(component);
15 phase ← ExtendedComponent;

16 step if phase is ExtendedComponent:
17 (fixpoint, component) ← Bwd(component, reach ∩ universe);
18 weight ← NodeCount(component);
19 if fixpoint then
20 bottom ← (reach ∩ universe) \ component;
21 if bottom �= ∅ then
22 basin ← Bwd∗(bottom, universe);
23 universe ← universe \ (basin \ bottom);

24 if CanPost(a, universe) = ∅ then
25 L ← L \ {a};

26 stop current process (remove it from processes);

27 Function ITGR(universe ⊆ S)
28 processes ← {ItgrWorker(a) | a ∈ L};
29 initialise all processes;
30 while processes �= ∅ do
31 p ← MinByKey(processes, weight);
32 run one step of p;

33 return universe;

phase, component in the second). For BDDs (or MDDs), this is the number of
nodes in the decision diagram (NodeCount). The algorithm thus prioritises
processes that have the potential to advance quickly because they will use fast
symbolic operations.

Notice that the universe variable is shared by all processes and needs to be
now taken into account in multiple places. This means that whenever one process
discards some states from universe, all processes benefit from this change. This

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 517

update can be performed safely because whenever Algorithm 4 discards some
states, the discarded set is SCC-closed.

Because both Algorithm 3 and Algorithm 4 compute the same states for
forward and extendedComponent (modulo the states eliminated by other reduc-
tions), Theorem 1 and Theorem 2 remain valid for Algorithm 4 as well. The only
difference is that this approach should be much more resilient to a bad ordering
of transition relations.

Finally, let us note that this approach should be quite simple to parallelise
to some extent. If w parallel workers are available, the algorithm can advance
w processes at a time instead of picking a single process. However, we do not
pursue this approach in this paper as the other methods we use as a reference
are also not parallelised.

6 Evaluation

To see how ITGR affects the performance of attractor detection for real-life
systems, we implemented the method for asynchronous Boolean networks (BN),
a common logical modelling framework used predominantly in systems biology.

Using this implementation, we aim to support the following claims:

1. ITGR performs significantly better than available state-of-the-art tools (for
Boolean networks) on real-world models.

2. On realistic Boolean networks, ITGR easily scales to 1000 or more variables,
which is not possible with other methods.

3. Interleaving plays a crucial role in making ITGR competitive.

To evaluate the first claim, we compare our implementation with the tool
CABEAN [56] on a set of 125 real-world Boolean networks with up to 350 vari-
ables. We then generate a pseudo-random set of 200 networks with similar struc-
tural characteristics to our real-world benchmarks, but with up to 1100 variables.
We show that ITGR can successfully deal with models of this magnitude as well.
Finally, we compare the performance of ITGR with the basic attractor detection
algorithm as well as with “sequential” TGR on both benchmark sets, showing
that ITGR is overall faster and is the only method able to handle the large
benchmarks efficiently.

The whole set of benchmarks, as well as the implementation of all the algo-
rithms in Rust, is available as a paper artefact at Zenodo1. Additionally, the
method is successfully employed by our tool AEON that facilitates long-term
analysis of Boolean networks [3].

Before we present the actual benchmark results, let us also first briefly com-
ment on the modelling paradigm chosen (Boolean networks) and the actual setup
used to perform the measurements.

1 https://doi.org/10.5281/zenodo.4709882.

https://doi.org/10.5281/zenodo.4709882

518 N. Beneš et al.

6.1 Boolean Networks

A Boolean network, as the name suggests, consists of n Boolean variables, each
variable having an associated update function bi. The state space of the network
consists of 2n Boolean variable valuation vectors, {0, 1}n. Each update function
takes the current state of the network and produces a new value that is assigned
to the associated variable, bi : {0, 1}n → {0, 1}. We assume the update func-
tions can be applied non-deterministically, resulting in an asynchronous updating
scheme. This is not the only updating scheme used in practice (e.g. synchronous
or generalised asynchronous can be used as well) but is generally considered to
cover the possible behaviour of the biological system well.

Typically, an update function of a particular variable x only depends on a
smaller subset of the system variables. In such a case, we say that these variables
regulate x (specifically, y regulates x if the update function of x depends on
the value of y). The number of such regulations in a Boolean network can be
viewed to represent the connectedness or structural complexity of the network in
general. In short, the more regulations the network has, the more complex update
functions it contains, possibly resulting in more complex behaviour. Variables
and regulations together form a directed regulatory graph.

A Boolean network with an asynchronous updating scheme fits naturally into
our definition of a labelled transition system. The state space of the network vari-
ables corresponds with S, i.e. S = {0, 1}n. Each transition ai of L corresponds
to the application of the i-th Boolean update function bi to the i-th Boolean
variable, i.e. (s, s′) ∈ ai ⇔ s′ = s[i ← bi(s)] ∧ s′
= s.

When dealing with Boolean networks, BSCCs are typically referred to as
attractors. The rationale behind this term is that the BSCCs are the states
where the fair runs of any system eventually converge to—the behaviour is thus
attracted towards these states. In the following, we use these two terms inter-
changeably.

As a symbolic representation, the most natural choice for Boolean networks
are Reduced Ordered Binary Decision Diagrams (ROBDD, or BDD) [10], as
these can be easily used to represent sets of Boolean vectors. We do not make any
specific optimisations with regards to variable ordering, but to enable saturation-
like reachability, we assume that the ordering of transitions a1, . . . , an follows
that of the variables in the ROBDD that they update.

Since a Boolean network consists of n Boolean variables, a set of states of
such a network can be seen as a Boolean formula (represented as a BDD) over the
network variables. Here, a state belongs to such a set iff it represents a satisfying
assignment of this formula – a fairly standard approach to state-space encoding
using BDDs. To apply a particular update function, we must first construct a
BDD describing all states where the update function should change the value of
its associated variable (note that this BDD can be reused in subsequent steps).
By computing an intersection of a state set with this BDD (yielding the result
of the CanPost operation) and then performing a “bit flip” of the updated
variable in the result BDD, we obtain a set of successor states with respect to
this one update function (i.e. Post). Similarly, we can obtain CanPre and Pre.

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 519

6.2 Benchmark Set-Up

Real-world Models. To provide the best possible real-world evaluation of
our method, we have collected all the models from publicly available Boolean
network repositories that we were aware of, and that support the universally
accepted SBML-qual format [12] for model transfer. Specifically, our benchmark
set includes models available through GINsim [13], Cellcollective [30], Biomod-
els [39] and the COVID-19 disease map project [48]. Together, the benchmark
set consists of 125 models, peaking at 351 variables and 1100 regulations, respec-
tively.

Note that some of these models contain Boolean constants (also called inputs
or parameters) that can be specified by the user. For such models, we performed
a simple parameter sampling to determine if some of the valuations result in non-
trivial attractors, as these are the main focus of this paper. If such valuation was
found, we have used it in our benchmark set. However, for the vast majority of
models (approximately 90%), there were either no tunable parameters or the
sampling did not find any significant changes in the structure of attractors.

Environment. We ran all the benchmarks on a machine with a modest 4-core
i7 4790 and 32 GB of RAM. However, none of the benchmarks used more than
one core at a time, and typical memory consumption was significantly below
1 GB. Hence our evaluation should be reproducible even using a much slower
machine.

We have measured the runtime for each model using the standard Unix time
utility, with a one-hour timeout per benchmark model. We have run a large
portion of the benchmarks repeatedly but have not observed any significant
variance in runtime; we thus only report average runtime values.

CABEAN. In the real-world performance test, we compare our method to
the tool CABEAN [56]. To the best of our knowledge, CABEAN is both the
most recent and the most advanced tool that targets the detection of non-trivial
attractors in asynchronous Boolean networks. Other tools that we know of (such
as [14,21,36]) are not built for systems of the size we are dealing with (for exam-
ple, due to explicit state-space representation). CABEAN focuses on Boolean
network reprogramming, but as a necessary component of this process, it also
provides state-of-the-art methods for attractor detection. Specifically, CABEAN
uses symbolic manipulation using BDDs, just as our method, but implements
advanced decomposition techniques [50] to reduce the state space of the network.

6.3 Real-World Networks

The core of our results is summarised in Fig. 2. On the left, we see a comparison
of total successfully completed benchmarks by both CABEAN and ITGR, and
on the right, we have relative speedup for each individual benchmark. On the
right, we only show benchmarks that took CABEAN more than one second to
complete (remaining models would be normally easy to compute even without
any special techniques).

520 N. Beneš et al.

1s 10s 1min 10min 1h

50

75

100

125

Runtime (logarithmic)

C
om

pl
et

ed
in

st
an

ce
s

CABEAN

ITGR

1s 10s 1min 10min 1h
0.1s

1s

10s

1min

10min

1h

CABEAN (logarithmic)
IT

G
R

(l
og

ar
it

hm
ic

)

CABEAN-OK
CABEAN-FAIL

10
x

10
0x

Fig. 2. The left plot shows the total number of benchmarks that each tool has com-
pleted before a certain time limit. The dashed line represents CABEAN, whereas the
solid line shows our ITGR implementation. On the right, the graph displays the rela-
tive runtime between CABEAN and ITGR. The dotted lines represent 10x and 100x
speedup compared to CABEAN. The solid circles are the benchmarks where CABEAN
successfully computed the attractors. The crosses represent the benchmarks where
CABEAN was able to finish the decomposition but failed to extract the actual attrac-
tors. Notice that we use logarithmic scaling for the time in both graphs.

In this test, ITGR completed all but one benchmark in less than 1 min. The
one remaining case took almost 15 min to complete. However, the reduction
process for this model was also quite fast at roughly 100 s. The rest of the com-
putation was spent on identifying the 352 non-trivial attractors in the remaining
state space (together, the attractors account for almost 285 states – by far the
largest we have seen in any model). Out of the 125 benchmarks, we uncovered
non-trivial attractors in exactly 40 models (however, this also includes 6 models
with only small 2- or 4-state attractors).

On the other hand, CABEAN failed to compute attractors for 19 of these
125 models (15.2%). Upon closer inspection, all but one of these 19 benchmarks
contained non-trivial attractors, which means CABEAN failed for 45% of models
with non-trivial attractors.

However, we note that on some models, CABEAN did not simply timeout
but actually terminated early due to a segfault. While this behaviour does not
seem to be directly linked to the total size of the attractors, it certainly appears
to be more common in such networks. We have seen this happen in networks
with relatively small attractors, while other networks (even one with a 230-
state attractor) were completed successfully. We hypothesise that this occurs

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 521

when the decomposition is (at least partially) successful but does not reduce the
complexity of the network enough to continue with attractor search2.

These failed attempts are visualised in the right plot using crosses, as they
represent an interesting lower-bound approximation on the performance of this
decomposition technique. Overall, the plot shows that for the vast majority
of models, ITGR provides an order of magnitude (10x) speedup compared to
CABEAN, with some (especially larger) models attacking or exceeding the 100x
speedup threshold.

Overall, we have shown that ITGR is capable of solving all publicly available
problem instances (that we know of), and it outperforms current state-of-the-art
decomposition methods with the median of 16x speedup (77x average). Natu-
rally, we also compared the actual attractors found by CABEAN and ITGR,
and we are happy to report that we found no inconsistencies between the two
methods.

6.4 Pseudo-random Networks

Next, we set out to test the limits of ITGR on larger models than the ones avail-
able in the public repositories today. Specifically, we wanted to test networks
with 1000 or more Boolean variables. While such a number is arguably not pos-
sible to achieve in a single hand-made model, fully or semi-automated machine
learning techniques [5,8,22,51] are making models of this magnitude much more
approachable.

Pseudo-Random BNs. To create a benchmark set of larger models, we have
decided to generate pseudo-random networks structurally similar to our real-
world benchmark set. Biological systems, specifically protein and gene regulatory
networks, are known to follow certain properties of small-world networks [9,
58]. However, aside from other differences, they are directed and typically quite
sparse (our real-world benchmark set has the average node degree of 4.3). This
makes most common random network models unsuitable for this specific task.
For example, the famous Watts–Strogatz model would, in this case, assume that
the average degree is significantly larger than ln(1000) ∼ 7.

We have thus first measured the relative in- and out-degree distributions
in the regulatory graphs of our real-world networks and then generated ran-
dom networks by sampling from this distribution to approximate the real-world
dataset. Additionally, regulatory graphs of Boolean networks are essentially
always weakly connected. In each model, we have thus filtered out all vari-
ables except the largest weakly connected component. Note that this makes the
dataset slightly skewed towards more connected networks (i.e. more challeng-
ing), as these have a higher chance of being weakly connected when randomly
generated. However, it is still well within the connectivity limits expected based
on the real-world dataset.
2 Developers of CABEAN have confirmed that this assumption is essentially accurate,

i.e. for some structurally complex networks with large non-trivial attractors, the tool
can segfault instead of timing-out.

522 N. Beneš et al.

To generate the boolean functions, we have measured that 80.7% of the regu-
lations in the real-world dataset are positively monotonous, with the remaining
being negatively monotonous (monotonicity is typically expected in biological
networks). Each regulation was thus assigned monotonicity based on this dis-
tribution, and a function was generated by randomly choosing between ∧ and
∨ when connecting the positive/negative literals. Note that this does not cover
the full spectrum of possible Boolean functions, but it is well within reason for
biological networks, where some techniques tend to even implicitly assume the
function is just a simple conjunction/disjunction of literals.

1s 10s 1min 10min 1h

50

75

100

125

Runtime (logarithmic)

C
om

pl
et

ed
in

st
an

ce
s TGR

ITGR

Basic

1s 10s 1min 10min 1h
0

25

50

75

100

Runtime (logarithmic)

C
om

pl
et

ed
in

st
an

ce
s

TGR

ITGR

Basic

Fig. 3. Runtime comparison of ITGR, “sequential” TGR and the basic symbolic BSCC
detection. The left plot shows the real-world benchmark set with up to 350 variables
per model. On the right, we see the medium synthetic benchmark ranging from 50 to
1100 variables. Note that the large synthetic benchmark (∼ 1000 variables only) is not
shown, as ITGR was the only method capable of actually completing these models. All
the time axes have a logarithmic scale.

Performance. In the end, we have obtained two benchmark sets: A medium set
with 100 networks ranging from 50 to 1100 variables, and one large benchmark
set, also with 100 models, but all with ∼ 1000 variables and ranging from 2471 to
5099 regulations. Out of these 200 models, we discovered non-trivial attractors
in 61 of them.

The runtime for the medium benchmarks is summarised in Fig. 3 (right).
Here, we see that ITGR successfully completed all instances within 10 min. For
the large benchmark set, ITGR consistently finished 98% of the models within 5
to 10 min. The remaining two outliers took 28 and 55 min to complete. Similar
to what we saw in the real-world benchmark, these models contained very large
non-trivial attractors (the largest having again more than 280 states) and were
thus not limited by the speed of the reduction but by the diameter of the actual
attractors.

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 523

Additionally, for each reduction procedure, we kept track of the actual num-
ber of reachability iterations that needed to be performed (specifically, how many
times we applied line 21 of Bwd as shown in Algorithm 1, or the same line in
Fwd). For all models, this number was well below 10 000 iterations, which is
quite low considering the procedure needed to evaluate up to 1100 transition
relations. In particular, this supports our hypothesis that ITGR works well due
to typically short distances between states that can fire individual transitions.

6.5 Interleaving Performance Impact

Finally, we would like to evaluate the influence of smart interleaving on the
performance of ITGR. For this purpose, we consider three algorithms:

1. the basic symbolic algorithm with saturation as described in Sect. 3;
2. TGR, as described in Sect. 4, applied to variables in the order in which they

appear in the network declaration (that is, without any interleaving);
3. the full ITGR as described in Sect. 5.

Keep in mind that all three approaches use the same implementation of
symbolic representation and differ only in the actual attractor detection. Also,
TGR/ITGR use the basic algorithm to actually identify attractors once the
reduction is completed. Any speedup between TGR and the basic algorithm
can be thus directly attributed to the state-space reduction, while any speedup
between ITGR and TGR is due to the introduction of interleaving.

For the real-world benchmarks (up to 350 variables) and medium synthetic
benchmarks (50 to 1100 variables), the comparison is presented in Fig. 3. Here,
we see that the basic algorithm is indeed not generally sufficient for large net-
works, finishing only 62 of the 125 real-world models and only 5 of the medium
synthetic benchmarks (the main reason was typically poor pivot selection; how-
ever, some instances also timed out due to long reachability procedures).

The difference between TGR and ITGR is not as drastic for real-world mod-
els. TGR finished in 122/125 instances but was consistently slower than ITGR,
especially on larger models (on one instance, we have even seen a 55 min vs 2.9 s
speedup, i.e. more than 1000x). However, as we look into even larger graphs with
the medium synthetic benchmark set, ITGR easily outperforms TGR, which
completed only 26/100 instances.

Finally, for the large benchmarks, all with ∼ 1000 variables, we have ITGR
completing all benchmarks within the 1-h timeout (with 98% finishing within
10 min); no other method has finished any of the 100 models within this limit.
This leaves ITGR as the only implementation in this comparison capable of
successfully analysing networks with 1000 or more Boolean variables.

7 Conclusions

In this paper, we present a novel symbolic method for BSCC detection in state-
transition graphs of labelled transition systems, called interleaved transition

524 N. Beneš et al.

guided reduction (ITGR). The method relies on the observation that BSCCs
in real-world systems rarely employ all transition labels available. Therefore, if
a state s can fire a transition with a label that is not employed by some BSCC
reachable from s, after applying ITGR, s is eliminated. As a result, all paths in
the remaining state space only perform transitions with labels employed by their
reachable BSCCs. If the system has only trivial BSCCs, this solves the problem
completely. For non-trivial BSCCs, this may make the problem tractable using
previously known techniques.

ITGR relies on smart interleaving to prioritise the elimination of “symbol-
ically easier” transitions. Completing the reduction in this order allows ITGR
to subsequently simplify the analysis of transitions which would initially be too
complex to handle.

We tested the method on a large benchmark set of real-world Boolean net-
works (up to 350 variables) as well as randomly generated benchmarks (up to
1100 variables) with similar structural properties. Our experiments show that
ITGR significantly outperforms the state-of-the-art tool CABEAN and can eas-
ily handle all models from both benchmark sets, pushing the boundary of what
was previously possible in this field.

References

1. Abrahám, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model
checking by SCC reduction. In: 2010 Seventh International Conference on the
Quantitative Evaluation of Systems, pp. 37–46. IEEE (2010)

2. Baudin, A., Paul, S., Su, C., Pang, J.: Controlling large Boolean networks with
single-step perturbations. Bioinformatics 35(14), i558–i567 (2019)

3. Beneš, N., Brim, L., Kadlecaj, J., Pastva, S., Šafránek, D.: AEON: attractor bifur-
cation analysis of parametrised boolean networks. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12224, pp. 569–581. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 28

4. Beneš, N., Brim, L., Pastva, S., Šafránek, D.: Digital bifurcation analysis of TCP
dynamics. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
339–356. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 19

5. Berestovsky, N., Nakhleh, L.: An evaluation of methods for inferring Boolean net-
works from time-series data. PLoS ONE 8(6), e66031 (2013)

6. Berestovsky, N., Zhou, W., Nagrath, D., Nakhleh, L.: Modeling integrated cellular
machinery using hybrid Petri-Boolean networks. PLOS Comput. Biol. 9(11), 1–13
(2013)

7. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in nlogn symbolic steps. In: Formal Methods in Computer-Aided
Design, pp. 37–54. Springer (2000)

8. Bonnaffoux, A., et al.: WASABI: a dynamic iterative framework for gene regulatory
network inference. BMC Bioinformatics 20(1), 1–19 (2019)

9. Bork, P., Jensen, L.J., Von Mering, C., Ramani, A.K., Lee, I., Marcotte, E.M.:
Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. 14(3),
292–299 (2004)

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-17465-1_19

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 525

11. Buchholz, P., Katoen, J.P., Kemper, P., Tepper, C.: Model-checking large struc-
tured Markov chains. J. Logic Algebraic Program. 56(1), 69–97 (2003)

12. Chaouiya, C., et al.: SBML qualitative models: a model representation format and
infrastructure to foster interactions between qualitative modelling formalisms and
tools. BMC Syst. Biol. 7(1), 1–15 (2013)

13. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory net-
works with GINsim. In: van Helden, J., Toussaint, A., Thieffry, D. (eds.) Bacterial
Molecular Networks, pp. 463–479. Springer, New York (2012). https://doi.org/10.
1007/978-1-61779-361-5 23

14. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization
of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O.,
Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12982-2 10

15. Chatain, T., Haar, S., Kolčák, J., Paulevé, L., Thakkar, A.: Concurrency in Boolean
networks. Nat. Comput. 19(1), 91–109 (2020)

16. Chatterjee, K., Dvořák, W., Henzinger, M., Loitzenbauer, V.: Lower bounds for
symbolic computation on graphs: strongly connected components, liveness, safety,
and diameter. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 2341–2356. SIAM (2018)

17. Cherry, A.B.C., Daley, G.Q.: Reprogramming cellular identity for regenerative
medicine. Cell 148(6), 1110–1122 (2012)

18. Choo, S.M., Cho, K.H.: An efficient algorithm for identifying primary phenotype
attractors of a large-scale Boolean network. BMC Syst. Biol. 10(1), 95 (2016)

19. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy
for symbolic state—space generation. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 328–342. Springer (2001)

20. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for
symbolic state-space exploration. Int. J. Softw. Tools Technol. Transf. 8(1), 4–25
(2006)

21. Gan, X., Albert, R.: General method to find the attractors of discrete dynamic
models of biological systems. Phys. Rev. E 97, 042308 (2018)

22. Gao, S., Sun, C., Xiang, C., Qin, K., Lee, T.H.: Learning asynchronous Boolean
networks from single-cell data using multiobjective cooperative genetic program-
ming. IEEE Transactions on Cybernetics (2020)

23. Garćıa-Gómez, M.L., Ornelas-Ayala, D., Garay-Arroyo, A., Garćıa-Ponce, B., de
la Paz Sánchez, M., Álvarez-Buylla, E.R.: A system-level mechanistic explanation
for asymmetric stem cell fates: arabidopsis thaliana root niche as a study system.
Sci. Rep. 10(1), 1–16 (2020)

24. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous
versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17),
1917–1925 (2008)

25. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms. vol. 3, pp. 573–582. SIAM (2003)

26. Grebogi, C., Ott, E., Yorke, J.A.: Chaos, strange attractors, and fractal basin
boundaries in nonlinear dynamics. Science 238(4827), 632–638 (1987)

27. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thi-
effry, D.: Integrative modelling of the influence of MAPK network on cancer cell
fate decision. PLOS Comput. Biol. 9(10), 1–15 (2013)

https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1007/978-3-319-12982-2_10

526 N. Beneš et al.

28. Guo, W., Yang, G., Wu, W., He, L., Sun, M.I.: A parallel attractor finding algo-
rithm based on Boolean satisfiability for genetic regulatory networks. PLOS ONE
9(4), 1–10 (2014)

29. Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random
Boolean networks. In: Proceedings of the Fourth European Conference on Artificial
Life (ECAL97), pp. 67–75. MIT Press (1997)

30. Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov,
A., et al.: The Cell Collective: toward an open and collaborative approach to sys-
tems biology. BMC Syst. Biol. 6(1), 96 (2012)

31. Huang, S., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors
from a gene network dynamics and developmental perspective. Seminars Cell Dev.
Biol. 20(7), 869–876 (2009)

32. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

33. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular
regulatory networks. Sci. Rep. 3, 2223 (2013)

34. Klarner, H., Bockmayr, A., Siebert, H.: Computing symbolic steady states of
boolean networks. In: W ↪as, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014.
LNCS, vol. 8751, pp. 561–570. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11520-7 59

35. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap
spaces of Boolean networks. Nat. Comput. 14(4), 535–544 (2015)

36. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the genera-
tion, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770–772
(2017)

37. Klemm, K., Bornholdt, S.: Stable and unstable attractors in Boolean networks.
Phys. Rev. E 72(5), 055101 (2005)

38. Kučera, A., Stražovský, O.: On the Controller Synthesis for Finite-State Markov
Decision Processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821,
pp. 541–552. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156 44

39. Le Novere, N., et al.: Biomodels database: a free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems. Nucleic
Acids Res. 34(suppl 1), D689–D691 (2006)

40. MacArthur, B.D., Ma’ayan, A., Lemischka, I.R.: Systems biology of stem cell fate
and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10(10), 672–681 (2009)

41. Mandon, H., Su, C., Pang, J., Paul, S., Haar, S., Paulevé, L.: Algorithms for the
sequential reprogramming of Boolean networks. IEEE/ACM Trans. Comput. Biol.
Bioinf. 16(5), 1610–1619 (2019)

42. Matouk, A.: Complex dynamics in susceptible-infected models for COVID-19 with
multi-drug resistance. Chaos, Solitons Fractals 140, 110257 (2020)

43. Mendes, N.D., Henriques, R., Remy, E., Carneiro, J., Monteiro, P.T., Chaouiya, C.:
Estimating attractor reachability in asynchronous logical models. Front. Physiol.
9, 1161 (2018)

44. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection
in large Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(1), 31–42
(2019)

45. Mushthofa, M., Schockaert, S., De Cock, M.: Computing attractors of multi-valued
gene regulatory networks using fuzzy answer set programming. FUZZ-IEEE 2016,
1955–1962 (2016)

https://doi.org/10.1007/978-3-319-11520-7_59
https://doi.org/10.1007/978-3-319-11520-7_59
https://doi.org/10.1007/11590156_44

Computing Bottom SCCs Symbolically Using Transition Guided Reduction 527

46. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and
analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS, vol. 4695, pp. 233–247. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75140-3 16

47. Nga, J., Iu, H.H., Ling, B.W.K., Lam, H.K.: Analysis and control of bifurcation
and chaos in average queue length in TCP/RED model. Int. J. Bifurcation Chaos
18(08), 2449–2459 (2008)

48. Ostaszewski, M., et al.: COVID-19 disease map, building a computational reposi-
tory of SARS-CoV-2 virus-host interaction mechanisms. Sci. Data 7(1), 1–4 (2020)

49. Pardo, J., Ivanov, S., Delaplace, F.: Sequential reprogramming of biological network
fate. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp.
20–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3 2

50. Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards
the control of Boolean networks. In: International Conference on Bioinformatics,
Computational Biology, and Health Informatics, pp. 11–20 (2018)

51. Razzaq, M., Paulevé, L., Siegel, A., Saez-Rodriguez, J., Bourdon, J., Guziolowski,
C.: Computational discovery of dynamic cell line specific Boolean networks from
multiplex time-course data. PLoS Comput. Biol. 14(10), e1006538 (2018)

52. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-based decom-
position of the property Büchi automaton for faster model checking. In: Tools and
Algorithms for the Construction and Analysis of Systems. pp. 580–593. Springer
(2013)

53. Saadatpour, A., Albert, I., Albert, R.: Attractor analysis of asynchronous Boolean
models of signal transduction networks. J. Theor. Biol. 266(4), 641–656 (2010)

54. Steffen, W., et al.: Trajectories of the earth system in the anthropocene. Proc.
Natl. Acad. Sci. 115(33), 8252–8259 (2018)

55. Štill, V., Barnat, J.: Local nontermination detection for parallel C++ programs. In:
Software Engineering and Formal Methods. pp. 373–390. Springer, Cham (2019)

56. Su, C., Pang, J.: CABEAN: a software for the control of asynchronous Boolean
networks. Bioinformatics (2020)

57. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3),
563–585 (1973)

58. Van Noort, V., Snel, B., Huynen, M.A.: The yeast coexpression network has a
small-world, scale-free architecture and can be explained by a simple model. EMBO
Rep. 5(3), 280–284 (2004)

59. Xie, A., Beerel, P.A.: Implicit enumeration of strongly connected components and
an application to formal verification. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 19(10), 1225–1230 (2000)

60. Yuan, Q., Mizera, A., Pang, J., Qu, H.: A new decomposition-based method for
detecting attractors in synchronous Boolean networks. Sci. Comput. Program. 180,
18–35 (2019)

61. Zhang, S.Q., Hayashida, M., Akutsu, T., Ching, W.K., Ng, M.K.: Algorithms for
finding small attractors in Boolean networks. EURASIP J. Bioinformatics Syst.
Biol. 2007, 4–4 (2007)

62. Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected components and
fair cycles using saturation. Innovations Syst. Softw. Eng. 7(2), 141–150 (2011)

https://doi.org/10.1007/978-3-540-75140-3_16
https://doi.org/10.1007/978-3-540-75140-3_16
https://doi.org/10.1007/978-3-030-31304-3_2

528 N. Beneš et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Implicit Semi-Algebraic Abstraction
for Polynomial Dynamical Systems

Sergio Mover1(B), Alessandro Cimatti2,
Alberto Griggio2, Ahmed Irfan3, and Stefano Tonetta2

1 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

sergio.mover@lix.polytechnique.fr
2 Fondazione Bruno Kessler, Trento, Italy

3 Stanford University, Stanford, USA

Abstract. Semi-algebraic abstraction is an approach to the safety verifi-
cation problem for polynomial dynamical systems where the state space
is partitioned according to the sign of a set of polynomials. Similarly
to predicate abstraction for discrete systems, the number of abstract
states is exponential in the number of polynomials. Hence, semi-algebraic
abstraction is expensive to explicitly compute and then analyze (e.g., to
prove a safety property or extract invariants).

In this paper, we propose an implicit encoding of the semi-algebraic
abstraction, which avoids the explicit enumeration of the abstract states:
the safety verification problem for dynamical systems is reduced to a cor-
responding problem for infinite-state transition systems, allowing us to
reuse existing model-checking tools based on Satisfiability Modulo The-
ory (SMT). The main challenge we solve is to express the semi-algebraic
abstraction as a first-order logic formula that is linear in the number of
predicates, instead of exponential, thus letting the model checker lazily
explore the exponential number of abstract states with symbolic tech-
niques. We implemented the approach and validated experimentally its
potential to prove safety for polynomial dynamical systems.

1 Introduction

Non-linear dynamical systems are characterized by continuous evolution result-
ing from ordinary differential equations containing non-linear polynomials. Prov-
ing safety properties for non-linear dynamical systems is extremely challenging,
and several approaches have been proposed. Semi-automatic deductive verifi-
cation techniques based on theorem proving include proving hybrid programs
using differential dynamic logic [27] or hybrid Cyber Physical System (CPS)
using Hybrid Hoare Logic (HHL) [21]). Among various automatic techniques
(e.g., [30]), an important line of work applies symbolic model checking to abstrac-
tions of hybrid systems, both with, using qualitative predicate abstraction [34].
Unfortunately, the problem with the above techniques is twofold. On one side,
the abstractions are often unable to precisely lift important information, thus

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 529–551, 2021.
https://doi.org/10.1007/978-3-030-81685-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_25

530 S. Mover et al.

resulting in an abstract system that is not strong enough to prove the prop-
erty. On the other side, the abstraction computation may be too expensive to
compute, especially in the non-linear case.

To tackle the first problem, we consider the semi-algebraic decomposition for
dynamical systems of [32]. The idea is to build an abstraction from a given set of
polynomials, partitioning the concrete state space according to the sign of each
polynomial. The abstraction is exact : there is a transition from an abstract state
to another abstract state if and only if there is (at least) a concrete transition
from the two concretizations of the abstract states. Semi-algebraic decomposition
is also appealing because it can be made more precise adding new polynomials.

The abstraction can be computed by means of logical operations (by repeat-
edly checking the satisfiability of quantifier-free formulas interpreted over the
reals). However, the second problem remains: the explicit computation of the
abstraction is extremely costly, since it requires the enumeration of all possi-
ble transitions between abstract states, which are exponential in the number of
considered polynomials.

Interestingly, an effective use of abstraction is at the core of the most suc-
cessful verification techniques for discrete infinite-state transition systems. The
technique of predicate abstraction [16] was originally adapted for symbolic veri-
fication in [9] and then optimized in [19]. This idea has been further developed
in implicit predicate abstraction [35], which eliminates the burden of an up-front
exponential blowup in the computation of the abstract states by embedding the
abstraction in the symbolic encoding of the transitions. This approach has been
used also in combination with IC3 [1,5,6].

In this paper, we propose a new approach to the verification of dynamical
systems with non-linear polynomial dynamics based on the use of semi-algebraic
decomposition. The contributions of the paper are the following:

– We cast the problem of computing and verifying properties of dynamical sys-
tems using the semi-algebraic decomposition in the framework of verification
via implicit predicate abstraction (i.e., a first-order logic characterization of
the semi-algebraic decomposition abstraction). Thus, we apply SMT-based
model checking techniques to prove safety properties of polynomial dynami-
cal systems.

– We define a linear symbolic encoding for the abstraction. Note that the naive
formulation of the predicate abstraction problem (which follows from the
explicit computation approach proposed in [32]) is not effective in practice:
in fact, the number of abstract states is exponential in the total number of
polynomials that define the abstraction, and the encoding requires to enumer-
ate all the possible pairs of abstract states to check the existence of an abstract
transition. We exploit the properties of the LZZ formulation to define a con-
cise encoding that is linear in the number of the polynomials, hence making
the approach feasible in practice.

– We implement and experimentally evaluate the approach. The results show
how the reduction to the verification of discrete infinite-state transition sys-
tems is complementary to reachability analysis techniques and proves cases
that were previously out of reach for the state-of-the-art tools.

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 531

Outline: The rest of the paper is structured as follows: Sect. 2 gives an overview
of the approach with a motivating example; Sect. 3 provides the background def-
initions; Sect. 4 shows the naive encoding of the abstraction, while in Sect. 5 we
derive the linear encoding and define the related implicit semi-algebraic abstrac-
tion; in Sect. 6, we present the experimental results; in Sect. 7, we discuss the
related work and, finally, in Sect. 8, we draw some conclusions and directions for
future work.

2 Overview of the Approach

Consider a verification problem (adapted from [22]) on the non-linear dynamical
system with two variables x and y, and differential equations ẋ = −2y, ẏ = x2.
We want to prove that the system cannot reach the set of bad states (x + 2)2 +
y2−1 ≤ 0 (i.e., it never leaves the safe region (x+2)2+y2−1 > 0) when starting
from the initial set of states x − y − 1

2 ≥ 0 ∧ x + 2 > 0. Note that although in
this example the evolution of the system is not restricted, our approach can deal
with the more general case in which the evolution is constrained by an invariant
condition that must always hold. The system is safe and avoids the set of bad
states (see system’s dynamic in Fig. 1a).

We can prove that the system is safe by first constructing and then model
checking a discrete semi-algebraic abstraction [32]: given the set of polynomials
A := {x − y − 1

2 , x + y + 1
2 , x + 2}, the semi-algebraic abstraction partitions

the state space according to the sign ({>,<,=}) of the polynomials in A (an
example of abstract state is the state x + 2 > 0 ∧ x − y − 1

2 < 0 ∧ x + y + 1
2 < 0

represented as 1© in Fig. 1b). There exists a transition from an abstract state to
another one if the two states are neighbors and there exists at least one trajectory
of the dynamical system going from one state to the other. The existence of such
condition can be checked using the LZZ algorithm [22], which checks if a semi-
algebraic set ψ is a differential invariant for a polynomial dynamical system
f when its execution is restricted to the domain H (another semi-algebraic
set). The algorithm reduces the invariant check to the satisfiability of the Non-
Linear Real Arithmetic Theory formula LZZψ,f ,H(Z), where Z is a set of real-
valued variables. We can systematically check if there exists a transition from an
abstract state s1 to the abstract state s2 proving that s1 is not invariant when
restricted to the domain s1 ∨ s2 (i.e., checking that LZZs1,f ,s1∨s2(Z) is false).

Furthermore, we can use an algorithm, called LazyReach [32], to compute the
forward set of reachable abstract states starting from the initial states. As usual,
if no abstract states intersect the set of bad states then the system is safe, and the
reachable set of abstract states is a continuous invariant for the system. Figure 1b
shows the state space of the dynamical system: the initial and bad states of the
verification problem (represented with the green and red region respectively),
the solution of the polynomials from A (represented as blue lines), and further
superimpose the set of reachable abstract states and transitions (represented
as numbered circles and arrows between the circles). The abstraction shown in
Fig. 1b is the result after applying LazyReach to the verification problem.

532 S. Mover et al.

Fig. 1. Safety verification problem and reachable states of the abstraction for the non-
linear dynamical system ẋ = −2y, ẏ = x2, bad states (x + 2)2 + y2 − 1 ≤ 0 (red
circle), and initial set of states x − y − 1

2
≥ 0 ∧ x + 2 > 0 (green region). Figure (a)

shows the verification problem and the system’s vector field. Figure (b) shows the
reachable abstract states and the transitions of the algebraic abstraction (numbered
circles and arrows) computed using LazyReach and the differential invariant (green and
gray regions) obtained from the set of polynomials A = {x − y − 1

2
, x + y + 1

2
, x + 2}

(blue lines), computed using Implicit Abstraction. Abstract states represent different
combinations of signs for the abstraction’s polynomials. Examples of abstract states
are 1© x+2 > 0∧x−y− 1

2
< 0∧x+y+ 1

2
< 0, 2© x+2 > 0∧x−y− 1

2
= 0∧x+y+ 1

2
< 0,

and 3© x + 2 > 0 ∧ x − y − 1
2

= 0 ∧ x + y + 1
2

= 0. (Color figure online)

A main challenge for the LazyReach algorithm is to explicitly enumerate the
reachable states and transitions among them, since their number is exponential
in the number of polynomials A (i.e., the number of total states is already 3|A|).
For the example above, where we have 3 polynomials, the maximum number of
states would be 27, with an even bigger number of transitions (e.g., one must
consider the transition between each pair of neighbouring abstract states). Even
if LazyReach enumerates the reachable abstract states on-the-fly, the explosion
in the number of states and transitions is still a bottleneck. Our implementation
of LazyReach applied to the above example explores a total of 9 states and checks
the existence of 27 transitions, taking about 12 s to complete.

A possible solution to tackle the state explosion problem is the DWCL algo-
rithm, proposed in [32]. The DWCL algorithm1 tries to reduce the number of
abstract states by checking if the sign of a polynomial a ∈ A is invariant, that
is if:

1 We provide the main intuition behind the DWCL algorithm and we refer the reader
to [32] for a detailed exposition.

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 533

– the sign of the polynomial a does not change in the initial states (i.e., the
predicate a �� 0, with ��∈ {<,>,=}, holds for all the initial states); and

– a �� 0 is a continuous invariant for the dynamical system (this can be checked
with LZZa��0,f ,H(Z)).

When a predicate a �� 0 is a continuous invariant, the algorithm strengthens the
invariant of the dynamical system (by adding a �� 0 to the invariants), allowing to
remove a from the set of polynomials A. While the DWCL algorithm may already
find a strong-enough invariant to prove the safety property, the algorithm falls
back to the LazyReach algorithm in the general case to explore the abstract
state space, hopefully with a strengthened invariant domain and a smaller set
of polynomials. In practice, the state-space explosion problem of LazyReach still
exists in the case “not enough” polynomials are sign-invariant, as it happens in
our motivating example. In the example, no polynomials are sign-invariant2: this
means that the DWCL algorithm will not remove any polynomials from the set
A and LazyReach will still suffer from the state-space explosion problem.

The semi-algebraic abstraction is a specific instance of predicate abstrac-
tion [16] of the dynamical system f . For discrete-state systems, there exist effi-
cient algorithms to either explicitly compute the abstraction using Satisfiability
Modulo Theory (SMT) solvers [19,20] or to implicitly represent the abstraction
and directly verify a safety property (e.g., implicit predicate abstraction [35]).
Since these algorithms work on a fully symbolic representation of the abstract
state space, they can cope with the state-space explosion due to the number of
predicates of the abstraction. However, applying the same symbolic-state tech-
niques to compute or verify the semi-algebraic abstraction is still challenging,
mainly because it requires to express the transition relation T (X,X ′) of the
semi-algebraic abstraction in a first-order logic formula. We notice that such
transition relation T can be directly obtained from the abstraction’s definition3:

∃Z.

(∨
(s1,s2)∈3A

s1(X) ∧ s2(X ′) ∧ (¬LZZs1,f ,s1∨s2(Z))

)
.

The above transition relation enumerates all the possible pairs of abstract states
and its size is exponential in the number of polynomials in A. The additional
variables Z are copies of the state variables of the system and are used to encode
the LZZ condition. Clearly, even creating such formula is not scalable and hinders
the application of the standard abstraction and verification techniques used for
discrete systems. Note that, while the LZZ algorithm works for semi-algebraic
sets (i.e., the candidate invariant ψ and the invariant states H are both arbitrary
Boolean combinations of non-linear arithmetic terms), here we apply LZZ to

2 The differential-cut (DC) and the differential divide-and-conquer (DDC) proof rules
used in DWCL fail for all the polynomials from A, so DWCL would not remove any
polynomial.

3 For clarity, here we do not include additional constraints in the transition relation,
such as the neighborhood relation, which instead we consider later in Sect. 4.

534 S. Mover et al.

check the existence of a transition between two abstract states, hence we still
have to explicitly enumerate the abstract transitions.

Our main contribution, presented in Sect. 5, is a compact formulation of the
above transition relation that has a size linear in the number of the polynomials
A. The steps to obtain such exponentially smaller transition are:

1. We specialize the LZZ formula ¬LZZs1,f ,s1∨s2(Z) to encode the existence of
a transition between two abstract states s1 and s2. The resulting formula is a
disjunction, and each disjunct encodes the necessary and sufficient condition
for a continuous transition to s2 to exist, either inside the set s1(Z) or outside
the set ¬s1(Z). Intuitively, we obtain a specific encoding for checking the
existence of an abstract transition, instead of reusing the LZZ as a “black
box”.

2. We “lift” the above disjunction to the disjunction of all the abstract states,
obtaining the formula:

∃Z.(InsExplf (X,X ′, Z) ∨ OutExplf (X,X ′, Z)),

where InsExplf (X,X ′, Z) encodes the “inside condition” for all the pairs of
transitions (and similarly for the “outside condition” OutExplf (X,X ′, Z)).

3. The formula InsExplf (X,X ′, Z) still contains an explicit enumeration on
the pairs of abstract states. We show how we obtain an equivalent formula,
InsSymbf (X,X ′, Z), that encodes the same condition for each polynomial
a ∈ A in the abstraction, obtaining a linear, instead of exponential, encoding.
We apply the same reasoning on OutExplf (X,X ′, Z).

We then use the concise transition relation of T to obtain a symbolic tran-
sition system SImpl,P that implicitly encodes the semi-algebraic abstraction for
the dynamical system f with the polynomials A and predicates P = {a ��
0 | a ∈ A ∧ ��∈ {>,<,=}}. Technically, instead of computing the predicate
abstraction, we encode an implicit abstraction [35]. Consequently, we avoid the
expensive quantifier elimination step. We can then verify the safety property on
the transition system SImpl,P using an SMT-based model checking algorithm. We
use the algorithm from [4], since SImpl,P contains non-linear arithmetic formulas.
Our approach verifies the example of Fig. 1 and finds the continuous invariant:

(x − y <
1
2

∨ x ≥ −2) ∧ (x − y ≥ 1
2

∨ x + y ≥ −1
2
) ∧ (x − y ≥ 1

2
∨ x + y > −1

2
),

which is shown in the union of the green and gray regions in Fig. 1b.

3 Preliminaries

In this work, we consider first order logic formulas in the theory of non-linear
arithmetic over the reals (NRA). We denote with φ(X) the formula φ containing
free variables from the set X = {x1, . . . , xn}. We simplify the notation of the
formula φ(X) to φ when the set X is clear from the context.

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 535

Invariant Verification for Polynomial Dynamical Systems

Safety Verification of Dynamical Systems. Given a set of variables X we write
X = [x1, . . . , xn]T to specify a vector containing all the variables in X ordered
lexicographically. We use the subscript Xi to access to the i-th element of the
vector. We focus on polynomial dynamical systems of ordinary differential equa-
tions (ODEs) Ẋ = f(X), where Ẋ is the vector of first-order derivatives of the
variables X and f(X) is a vector of polynomials (i.e., f i(X) is a polynomial).
The safety verification problem consists of proving that every trajectory of the
dynamical system Ẋ = f(X) starting inside the initial set of states ψ and while
being inside the evolution domain constraints H remains inside the safe set of
states φ. We write the problem using the differential dynamic logic [27] formula:

ψ → [Ẋ = f(X) & H]φ, (1)

asserting that if the system is in a state satisfying the pre-condition φ (the initial
states) this implies (→ operator) that all the trajectories evolving according to
the ODE Ẋ = f(X) and evolution domain H (box modality []) will satisfy the
post-condition φ (the safe states). Formally, the system is safe if:

∀x0 ∈ ψ.∀τ ≥ 0.∀t ∈ [0, τ].((ϕ(x0, t) ∈ H) → ϕ(x0, t) ∈ φ),

were the differentiable function ϕ : R
n+1 → R

n, such that d
dt (ϕ(x0, t)) =

f(ϕ(x0, t)), is the solution to the initial value problem x0 ∈ R
n (i.e., ϕ(x0, t)

describes the state the dynamical system f reaches after t ∈ R time when start-
ing in the initial state x0).

The problem of proving the system is safe can be reduced to find a formula
θ(X) such that: i) H ∧ ψ → θ, ii) θ → [Ẋ = f(X) & H] θ, and iii) θ → φ.
θ(X) is a continuous invariant [28] that contains the initial states and that is
contained in the safe states.

LZZ Algorithm [22]. The LZZ algorithm reduces the problem of checking if θ is
a continuous invariant to checking the validity of the following formula:

LZZθ,f ,H(X) =̇ ((θ(X) ∧ H(X) ∧ Inf ,H(X)) → Inf ,θ(X))∧ (2)
((¬θ(X) ∧ H(X) ∧ In−f ,H(X)) → ¬In−f ,θ(X)),

where the formula Inf ,γ(X) for the ODEs f and the formula γ represents the set
of states which will evolve inside the set γ for some non-zero time in the future.
Respectively, the formula In−f ,γ(X) represents the set of states evolved inside
the set γ for some non-zero time in the past, and −f represents the dynamical
system evolving in “reverse”. Note that the construction of the formula Inf ,γ(X)
assumes γ to be in disjunctive normal form (DNF):

γ =
∨

d∈disj(γ)

∧
a��0∈pred(d)

a(X) �� 0,

536 S. Mover et al.

where disj(γ) are the disjuncts of a formula γ, pred(d) are the predicates in the
disjunct d, and ��∈ {>,≥}4. The formula Inf ,γ(X) is defined as:

Inf ,γ(X) =
∨

d∈disj(γ)

∧
a��0∈pred(d)

Inf ,a��0(X). (3)

The formula Inf ,a��0(X) encodes the set for a single predicate a �� 0 using the Lie
derivatives of the polynomial a(X). The i-th Lie derivative Li

f a of a polynomial
a(X) with respect to the ODEs f is defined recursively as:

L
(0)
f a =̇ a, L

(i)
f a =̇

∂

∂X
L

(i−1)
f af .

Inf ,a>0(X) encodes that the first non-zero Lie derivative of a must be positive
in order for the trajectories of the system to enter the set a > 0 and stay inside
the set for a positive time5(see [22] and [12] for a thorough explanation):

Inf ,a>0(X) =̇
∨

0≤i≤Na,f

(∧
0≤j<i

L
(j)
f a = 0 ∧ L

(i)
f a > 0

)
, (4)

Inf ,a≥0(X) =̇ Inf ,a>0(X) ∨
∨

0≤i≤Na,f

L
(i)
f a = 0, (5)

where Na,f is an integer constant and is an upper bound on the minimum integer
number r (called rank) such that L

(r)
f a �= 0 (for all x ∈ R

n). Na,f can be
computed using Gröbner basis as explained in [22].

In the following, we will only use the fact that the formula Inf ,γ(X) for the
DNF formula γ is the DNF formula where Inf is applied to the predicates (as
shown in Formula (3)).

Semi-Algebraic Abstraction [32]. The semi-algebraic abstraction of the dynami-
cal system Ẋ = f(X) partitions its state space with respect to a set of polyno-
mials A =̇ {a1, . . . , am}. The abstraction is the (explicit state) transition system
SA =̇ 〈3A, If,A, Tf,A〉 where:

– 3A =̇ {s =
∧

a∈A
a �� 0 |��∈ {>,<,=}} is the set of abstract states;

– If,A =̇ {s ∈ 3A | s ∧ ψ is satisfiable} is the set of abstract initial states; and
– Tf,A ⊆ 3A × 3A is the abstract transition relation. A transition (s1, s2) ∈ Tf,A

if:
• s1 is an abstract state adjacent to s2. The abstraction exploits the con-

tinuity assumption on f and does not allow the system to transition
directly from a state where a predicate is greater than 0 (e.g., a > 0) to a
state where the same predicate is less than 0 (e.g., a < 0), and vice-versa.

4 Later we also consider equalities (i.e., predicates of the form a = 0). The construction
of Inf ,a=0(X) can be found in [12].

5 In our implementation we encode Inf ,a>0(X) using the remainders of the Lie deriva-
tive, as in [12].

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 537

The abstraction does not visit two abstract states containing predicates
with opposite signs, forcing instead to visit the intermediate state where
the predicate is equal to 0.

• There exists a continuous trajectory from s1 to s2. This condition corre-
sponds to checking that the following differential dynamic logic formula
is not valid (i.e. s1 is not a differential invariant when restricting the
evolution domain to s1 ∨ s2):

s1 → [Ẋ = f(X) & s1 ∨ s2]s1,

which can be checked using the sound and complete LZZ algorithm, i.e.
checking the satisfiability of the first-order formula ¬LZZs1,f ,s1∨s2(Z)).

Since the number of states 3A is finite we can compute the set of reachable states.
The concretization of this set, θ contains the initial states and is a differential
invariant. If θ further implies the safe states ψ, then we prove the safety verifi-
cation problem 1. However, the computation of the abstract transition relation
is exponential in the number of polynomials in A because we would need to
enumerate all the possible pairs of transitions (s1, s2) ∈ 3A × 3A.

Predicate Abstraction

A symbolic transition system S is a tuple S =̇ 〈V, I, T 〉, where V is a set of (state)
variables, I(V) is a formula representing the initial states, and T (V, V ′) is a
formula representing the transition relation. A state s of S is an interpretation
of the state variables V . A (finite) path π of S is a finite sequence π =̇ s0, s1, . . . , sk

of states with the same domain and interpretation of symbols in the signature Σ
such that s0 |= I and for all i, 0 ≤ i < k, si, s

′
i+1 |= T . We say that a state s is

reachable in S iff there exists a path of S ending in s. Given a formula P (V) and
a transition system S, the invariant verification problem, denoted with S |= P ,
checks if for all the finite paths s0, s1, . . . , sk of S, for all i, 0 ≤ i ≤ k, si |= P .

Predicate Abstraction [16] partitions the concrete system S = 〈V, I, T 〉
according to a finite set of predicates P =̇ {p1, . . . , pk} in a finite symbolic tran-
sition system:

ŜP = 〈VP, ÎP(VP), T̂P(VP, V ′
P
)〉

using a new abstract Boolean variable vp for each predicate p (VP =
{vp | v ∈ V } is the set of those new variables). The abstraction relation
HP(V, VP) =̇

∧
p∈P

vp ↔ p(V) defines how a set of concrete states is abstracted
to the abstract states. We compute the abstraction of a formula ψ(V) by exis-
tentially quantifying the concrete variables V :

ψ̂P(VP) =̇ ∃V.(ψ(V) ∧ HP(V, VP)).

Similarly, we compute the abstract transition relation for T (V, V ′):

T̂P(VP, V ′
P
) =̇ ∃V, V ′.(T (V, V ′) ∧ HP(V, VP) ∧ HP(V ′, V ′

P
)).

538 S. Mover et al.

The above formulation is sufficient to compute the predicate abstraction for an
infinite-state transition system S = 〈V, I, T 〉 and a set of predicates P. However,
the main challenge in computing the abstraction is to eliminate the quantifiers,
since quantifier elimination is expensive to compute.

Implicit Predicate Abstraction. Implicit Predicate Abstraction [35] is a model
checking algorithm that avoids computing the abstract version of the initial
states, safety property, and transition relation, instead it encodes the existence
of a path in the abstract system. It exploits the fact that the abstraction induces
an equivalence relation among concrete states of the system (i.e., two concrete
states are equivalent if they belong to the same abstract state) and that this
relation can be expressed as a quantifier free formula:

EQP(V, V) =̇
∧
p∈P

p(V) ↔ p(V). (6)

We use the equivalence EQP(V, V) to relate two sets of concrete states and
we encode the problem of reaching a set of target states ¬P in k steps of the
transition system S as follows:

BMCk
P

=̇ I(V 0) ∧ EQP(V 0, V
0
) ∧∧

1≤h<k

(
T (V

h−1
, V h) ∧ EQP(V h, V

h
)
)

∧ T (V
k−1

, V k) ∧

EQP(V k, V
k
) ∧ (¬P (V

k
)).

The formula BMCk
P

is satisfiable iff there exists a path in the abstract transition
system ŜP of length k starting from the (abstracted) initial states ÎP(VP) and
reaching the (abstracted) bad states ¬̂P P(VP).

4 Explicit Computation of the Semi-Algebraic
Abstraction

We frame the problem of computing the semi-algebraic abstraction as a predicate
abstraction problem. This formulation allows us to use the standard techniques
to compute or analyze the predicate abstraction for discrete systems.

We consider the invariant verification problem ψ → [Ẋ = f(X) & H]φ as
in Eq. (1) and a set of polynomials A = {a1, . . . , am} for the abstraction. We
construct a symbolic transition system of the semi-algebraic abstraction:

ŜP =̇ 〈VP, ÎP(VP), T̂P(VP, V ′
P
)〉,

where the set of predicates of the abstraction is P = {a �� 0 | a ∈ A ∧ ��∈ {>,<
,=}}, and the set of abstract variables VP is defined as in Sect. 3 (i.e., the abstrac-
tion contains a Boolean variable vp for each predicates p ∈ P). We similarly use
the formula HP(X,VP) to describe the equivalence relation of the concrete states.

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 539

The formulas ÎP(VP) and ¬̂P P(VP) are the semi-algebraic abstraction of the initial
states ψ and of the unsafe states ¬φ:

ÎP(VP) =̇ ∃X.(ψ(X) ∧ HP(X,VP)), ¬̂P P(VP) =̇ ∃X.(¬φ(X) ∧ HP(X,VP)),

and we obtain the abstraction by existentially quantifying the concrete variables
X. The definition of the abstract transition relation T̂P(VP, V ′

P
), which differs

from the encoding of the semi-algebraic decomposition, is:

T̂P(VP, V ′
P
) =̇ ∃X,X ′.

(
N(X,X ′) ∧ H(X) ∧ H(X ′)∧ (7)

HP(X,VP) ∧ HP(X ′, V ′
P
) ∧ ∃Z.TA(X,X ′, Z)

)
,

where N(X,X ′) encodes the adjacent relation between abstract states:

N(X,X ′) =
∧
a∈A

(
(a(X) < 0 → a(X ′) ≤ 0) ∧ (a(X) > 0 → a(X ′) ≥ 0)

)
,

and TA(X,X ′, Z) encodes the existence of a transition in the dynamical system
f for each pair of abstract states (s1, s2) ∈ 3A:

TA(X,X ′, Z) =̇
∨

(s1,s2)∈3A

(
s1(X) ∧ s2(X ′) ∧ ¬LZZs1,f ,s1∨s2(Z)

)
. (8)

Theorem 1. The transition systems SA and ŜP are bisimilar.

Corollary 1. ŜP |= ¬¬̂P P(VP) implies ψ → [Ẋ = f(X) & H]φ.

Proof (sketch). The proof follows directly from Theorem 1. ��

While the encoding of the transition relation T̂P(VP, V ′
P
) is symbolic, it (and

in particular the sub-formula TA(X,X ′, Z)) explicitly enumerates an exponential
number of abstract pairs of states. Clearly, this encoding is not practical and
defeats the purpose of using symbolic techniques to compute the abstraction.

5 Linear Encoding of the Semi-Algebraic Abstraction

Specializing the LZZ Formula for Checking Abstract Transitions

The construction of the semi-algebraic abstraction uses the formula
¬LZZs1,f ,s1∨s2(Z) to encode the existence of a transition from the abstract state
s1 to the abstract state s2. We observe that here the LZZ algorithm is applied
to formulas with a specific structure – the abstract states s1(Z) and s2(Z), in
contrast to arbitrary semi-algebraic sets as in the general case of LZZθ,f ,H(X)
where the formulas θ and H are in DNF. Instead, in the case of LZZs1,f ,s1∨s2(Z),

540 S. Mover et al.

each abstract state si(X) assigns a sign to each polynomial a ∈ A and is rep-
resented as conjunctions of predicates si = a1 ��1 0 ∧ a2 ��2 0 ∧ . . . am ��m 0,
where ��j∈ {>,<,=}. We will write the conjunction representing a state si(X)
as

∧
a��0∈si

a(X) �� 0. Also note that the evolution domain constraints are also
a disjunction of two abstract states s1 ∨ s2.

We specialize Eq. (2) to the specific case of LZZs1,f ,s1∨s2(Z). We will use
such specialization to obtain a compact (linear in the number of polynomi-
als) encoding later in the section. Instantiating the formula (2) to the case of
LZZs1,f ,s1∨s2(Z), we get:

LZZs1,f ,s1∨s2 (Z) =̇

((s1(Z) ∧ (s1(Z) ∨ s2(Z)) ∧ Inf ,s1∨s2 (Z)) → Inf ,s1 (Z))∧ (9)
((¬s1(Z) ∧ (s1(Z) ∨ s2(Z)) ∧ In−f ,s1∨s2 (Z)) → ¬In−f ,s1 (Z))

Applying the Boolean identities: (α ∧ (α ∨ β)) ↔ α, (¬α ∧ (α ∨ β)) ↔ ¬α ∧ β

⇐⇒ ((s1(Z) ∧ Inf ,s1∨s2 (Z)) → Inf ,s1 (Z))∧ (10)
((¬s1(Z) ∧ s2(Z) ∧ In−f ,s1∨s2 (Z)) → ¬In−f ,s1 (Z))

Rewriting the implication and applying De Morgan’s laws:

⇐⇒ (¬s1(Z) ∨ ¬Inf ,s1∨s2 (Z) ∨ Inf ,s1 (Z))∧ (11)
(s1(Z) ∨ ¬s2(Z) ∨ ¬In−f ,s1∨s2 (Z) ∨ ¬In−f ,s1 (Z))

Expanding the definition of In(Eq. (3)) :Inf ,α∨β =̇ (In−f ,α ∨ Inf ,β)

In−f ,α∨β =̇ (In−f ,α ∨ In−f ,β)

⇐⇒ (¬s1(Z) ∨ ¬(Inf ,s1 (Z) ∨ Inf ,s2 (Z)) ∨ Inf ,s1 (Z))∧ (12)
(s1(Z) ∨ ¬s2(Z) ∨ ¬(In−f ,s1 (Z) ∨ In−f ,s2 (Z)) ∨ ¬In−f ,s1 (Z))

Applying the Boolean identities: (¬(α ∨ β) ∨ α) ↔ (¬β ∨ α), (¬(α ∨ β) ∨ ¬α) ↔ ¬α

⇐⇒ (¬s1(Z) ∨ ¬Inf ,s2 (Z) ∨ Inf ,s1 (Z))∧ (13)
(s1(Z) ∨ ¬s2(Z) ∨ ¬In−f ,s1 (Z)).

Note that, while In does not distribute over arbitrary Boolean formulas
(see [12]), when we expand the definition of Inf ,s1∨s2 (Eq. (12)), the formula
s1 ∨ s2 is in DNF. Thus, Formula (13) is equivalent to the initial Formula (9) of
LZZs1,f ,s1∨s2(Z). We then write the negation of the Formula 13 as:

¬LZZs1,f ,s1∨s2(Z) =̇ (s1(Z) ∧ Inf ,s2(Z) ∧ ¬Inf ,s1(Z))∨ (14)
(¬s1(Z) ∧ s2(Z) ∧ In−f ,s1(Z)).

Linear Encoding of the Semi-Algebraic Transition Relation

In the following steps, we revise the formula TA(X,X ′, Z) that encodes the exis-
tence of the transitions in the abstraction, still enumerating all possible pairs
of states, using the specialized LZZ encoding from Eq. (14). We substitute the
subformula ¬LZZs1,f ,s1∨s2(Z) with the specialized LZZ encoding (Eq. (16)); we
then distribute the conjunction s1(X) ∧ s2(X ′) over the disjunction present in
the definition of ¬LZZs1,f ,s1∨s2(Z) (Eq. (17)), and then over possible pairs of

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 541

states (Eq. (18)). We rename the two disjuncts in Eq. (18) as InsExplf (X,X ′, Z)
and OutExplf (X,X ′, Z)) (Eq. (19)). The formulas InsExplf (X,X ′, Z) and
OutExplf (X,X ′, Z)) still enumerate explicitly the abstract states. However, each
of these formulas is a conjunction of predicates, application of the Inf operator
to a conjunction of predicates, and negations of the application of Inf .

TA(X,X ′, Z) =̇

∃Z.
∨

(s1,s2)∈3A

(s1(X) ∧ s2(X ′) ∧ ¬LZZs1,f ,s1∨s2(Z)) (15)

⇐⇒ ∃Z.
∨

(s1,s2)∈3A

(
s1(X) ∧ s2(X ′) ∧ ((s1(Z) ∧ Inf ,s2(Z) ∧ ¬Inf ,s1(Z))∨

(¬s1(Z) ∧ s2(Z) ∧ In−f ,s1(Z)))

)

(16)

⇐⇒ ∃Z.
∨

(s1,s2)∈3A

(
(s1(X) ∧ s2(X ′) ∧ s1(Z) ∧ Inf ,s2(Z) ∧ ¬Inf ,s1(Z))∨

((s1(X) ∧ s2(X ′) ∧ ¬s1(Z) ∧ s2(Z) ∧ In−f ,s1(Z))

)

(17)

⇐⇒ ∃Z.

(
∨

(s1,s2)∈3A (s1(X)∧s2(X
′)∧s1∧Inf ,s2 (Z)∧¬Inf ,s1 (Z))∨

∨
(s1,s2)∈3A (s1(X)∧s2(X

′)∧¬s1∧s2∧In−f ,s1 (Z))

)
(18)

⇐⇒ ∃Z.(InsExplf (X,X ′, Z) ∨ OutExplf (X,X ′, Z)). (19)

We now show how we obtain a formula InsExplf (X,X ′, Z) with a linear
size. We expand the definition of the formula InsExplf (X,X ′, Z) with respect
to the predicates in s1 and s2. Recall that each abstract state is a conjunction
of predicates obtained from the set of polynomial A (i.e., s =̇

∧
a∈A

a ��a 0, ��a∈
{>,<,=}) and that we use a �� 0 ∈ s to enumerate the predicates in s.

InsExplf (X,X ′, Z) =̇
∨

s1,s2∈3A

(∧
a��0∈s1

a(X) �� 0 ∧
∧

a��0∈s2

a(X ′) �� 0∧ (20)

∧
a��0∈s1

a(Z) �� 0 ∧
∧

a��0∈s2

Inf ,a��0(Z)∧

∨
a��0∈s1

¬Inf ,a��0(Z)

)
.

In the above formula, we used De Morgan rules to rewrite the formula
¬∧

a��0∈s1
Inf ,a��0(Z) as the formula

∨
a��0∈s1

¬Inf ,a��0(Z). We express the for-
mula InsExplf (X,X ′, Z) as an enumeration of the predicates, over the variables
X and X ′, determining the abstract states s1 and s2, instead of the pairs of
abstract states:

542 S. Mover et al.

InsSymbf (X,X ′, Z) =̇
∧

a∈A,��∈{>,<,=}

(
a(X) �� 0 → a(Z) �� 0

)
∧ (21)

∧
a∈A,��∈{>,<,=}

(
a(X ′) �� 0 → Inf ,a��0(Z)

)
∧

∨
a∈A,��∈{>,<,=}

(
a(X) �� 0 ∧ (¬Inf ,a��0(Z))

)
.

Lemma 1. InsExplf (X,X ′, Z) and InsSymbf (X,X ′, Z) are equivalent.

Proof (sketch).
⇒) We show that μ |= InsExplf (X,X ′, Z) implies μ |= InsSymbf (X,X ′, Z).
Since μ |= InsExplf (X,X ′, Z) we have that μ is an interpretation for one of the
disjuncts on the possible pairs of states of InsExplf (X,X ′, Z):∧

a��0∈s1

a(X) �� 0 ∧
∧

a��0∈s2

a(X ′) �� 0 ∧
∧

a��0∈s1

a(Z) �� 0∧
∧

a��0∈s2

Inf ,a��0(Z) ∧
∨

a��0∈s1

¬Inf ,a��0(Z).

Hence, there exist two (and exactly two) abstract states s1, s2, such that
μ |= s1(X) and μ |= s2(X ′). This means that any predicate a �� 0 �∈ s1 is
such that μ �|= a �� (X) and similarly for predicates not in the state s2 for
the variables X ′ (recall that, given a polynomial a ∈ A, the possible abstrac-
tion predicates a > 0, a < 0, and a = 0 are mutually exclusive). We show
that μ is an interpretation for all the conjuncts in InsSymbf (X,X ′, Z). We

have that μ |= ∧
a∈A,��∈{>,<,=}

(
a(X) �� 0 → a(Z) �� 0

)
since for all a ∈ A,

μ |= a(X) �� 0 → a(Z) �� 0 (when a ∈ s1 we have μ |= a(Z) ��
0, while when a �∈ s1 the implication trivially holds). Similarly, this hap-
pens for

∧
a∈A,��∈{>,<,=}

(
a(X) �� 0 → a(Z) �� 0

)
. We can see the disjunction:∨

a∈A,��∈{>,<,=}
(
a(X) �� 0 ∧ (¬Inf ,a��0(Z))

)
as:

∨
a��0∈s1

(
a(X) �� 0 ∧ (¬Inf ,a��0(Z))

)
∨

∨
a��0 	∈s1

(
a(X) �� 0 ∧ (¬Inf ,a��0(Z))

)
.

We have that μ satisfies the first disjunct (and hence the whole disjunction)
because when a �� 0 ∈ s1 we have that μ |= ∨

a��0∈s1
¬Inf ,a��0(Z).

⇐) We show that μ |= InsSymbf (X,X ′, Z) implies μ |= InsExplf (X,X ′, Z). As
before, we notice that are only two predicates s1, s2 such that μ |= s1(X) and
μ |= s2(X ′) and that all the predicates not in s1 and not in s2 do not hold in μ.
Thus, from μ |= InsSymbf (X,X ′, Z) we have that

μ |=
∧

a∈s1

a(Z) �� 0 ∧
∧

a∈s2

Inf ,a��0(Z) ∧
∨

a∈s1

¬Inf ,a��0(Z).

Hence, μ is a model for at least one of the disjuncts in InsExplf (X,X ′, Z). ��

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 543

We similarly define the compact encoding of OutExplf (X,X ′, Z):

OutSymbf (X,X ′, Z) =̇
∧

a∈A,��∈{>,<,=}

(
a(X) �� 0 → In−f ,a��0(Z)

)
∧ (22)

∧
a∈A,��∈{>,<,=}

(
a(X ′) �� 0 → a(Z) �� 0

)
∧

∨
a∈A,��∈{>,<,=}

(
a(X) �� 0 ∧ ¬a(Z) �� 0

)
.

Lemma 2. OutExplf (X,X ′, Z) and OutSymbf (X,X ′, Z) are equivalent.

Proof. The proof of Lemma 2 is similar to the proof of Lemma 1. ��
We now express the transition relation from Eq. (7) in a compact form:

T̂SymbP
(VP, V ′

P
) =̇ ∃X,X ′.

(
N(X,X ′) ∧ H(X) ∧ H(X ′)∧ (23)

HA(X,VP) ∧ HA(X ′, V ′
P
)∧

∃Z.(InsSymbf (X,X ′, Z) ∨ OutSymbf (X,X ′, Z))

)
.

Theorem 2. T̂P(VP, V ′
P
) and T̂SymbP

(VP, V ′
P
) are equivalent.

Proof. Follows directly from Lemma 2 and Lemma 1. ��

Implicit Semi-Algebraic Abstraction

The formula T̂SymbP
(VP, V ′

A
) represents the transition relation of the semi-

algebraic abstraction. Computing the finite-state transition system representing
the semi-algebraic abstraction requires to eliminate the existential quantifiers
from the initial states, transition relation, and safety property formulas. How-
ever, the above formula T̂SymbP

(VP, V ′
A
) contains non-linear real arithmetic terms

from the polynomials and the Lie derivatives we compute in Inf , so removing the
quantifiers from the formula requires to apply a quantifier elimination algorithm
(e.g., Cylindrical Algebraic Decomposition [8]) that does not scale, even when
the number of polynomials is small. Instead, we construct a symbolic transition
system that implicitly encodes the abstraction:

SImpl,P =̇ 〈X ∪ X ∪ Z,ψ(X) ∧ EQP(X,X), TImpl,P(X,X ′, Z) ∧ EQP(X ′,X ′)〉,
where

TImpl,P(X,X ′, Z) =̇ N(X,X ′) ∧ H(X) ∧ H(X ′)∧
(InsSymbf (X,X ′, Z) ∨ OutSymbf (X,X ′, Z)).

The above encoding is a an implicit predicate abstraction [35] that preserves
reachability properties and is such that:

544 S. Mover et al.

Theorem 3. SImpl,P |= P (X) if and only if ŜP |= ¬¬̂P P(VP).

Thus, we can model check the transition system SImpl,P |= P (X) to prove a
property P holds on the dynamical system. Note that, to this purpose, we can
apply standard SMT-based model checking algorithms.

The transition system SImpl,P doubles the state space introducing a copy
of the state variables X and encodes the equivalence relation between pairs
of concrete states in X and in X with the formula EQP(X,X) (c.f. For-
mula 6). The transition relation TImpl,P(X,X ′, Z) then encodes a transition in
the semi-algebraic abstraction with the linear encoding InsSymbf (X,X ′, Z) and
OutSymbf (X,X ′, Z). In this way, a transition in the transition system SImpl,P

corresponds to a transition in the semi-algebraic abstraction, and vice-versa.

6 Experimental Evaluation

Research Questions

We evaluate the performance of our approach (Implicit Abstraction) for the
verification of invariant properties on the semi-algebraic abstraction of dynamical
systems. Implicit Abstraction first encodes the semi-algebraic abstraction in a
transition system (as we show in Sect. 5), and then model checks the invariant
on the transition system with an off-the-shelf model checker. Our experiments
aim to answer the following research questions:
RQ 1: How does Implicit Abstraction compare with the LazyReach algo-
rithm [32], which explicitly enumerates the reachable states of the abstraction?
RQ 2: How does Implicit Abstraction compare with the DWCL algorithm [32],
which applies a divide-and-conquer strategy to reduce the number of polynomials
in the abstraction?

Experimental Setup

We implemented the construction of the implicit abstraction transition system
in Python using PySMT [11] to manipulate formulas, and SymPy [23] for poly-
nomial manipulation and Gröbner bases computation (i.e., to compute the Lie
derivatives’ ranks). We verify the implicit abstraction transition system with the
model checking algorithm for symbolic transition systems with NRA constraints
from [4]. The algorithm abstracts the non-linear transition system into a linear
transition system, which is checked by the algorithm in [6] and is implemented
using the MathSAT [7] SMT solver. We implemented both the LazyReach and
the DWCL algorithms in the same Python tool. Our implementation of DWCL
can use different backends to decide the satisfiability of NRA formulas, namely
MathSAT 6, the z3 SMT solver [25], or Mathematica [17].

We consider 90 invariant verification problems for dynamical systems from
the KeyMaera X theorem prover [10]. These problems are a superset of the
6 MathSAT uses a different decision procedure [4] than z3 and Mathematica based on

incremental linearization rather than cylindrical algebraic decomposition.

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 545

ones used in [32] and are used in the Applied Verification of Continuous and
Hybrid Systems (ARCH) competition [24]. We obtain a total of 180 benchmark
instances using, for each problem, two sets of polynomials for the semi-algebraic
abstraction7. The first set contains all the factors of the right-hand side of the
ODEs; the second set extends the first one by including also the Lie derivatives
of the polynomials. The latter set induces an abstraction that is more precise
but also has a larger state-space.

We evaluate the performance of the algorithms Implicit Abstraction,
LazyReach, and DWCL to solve the above verification problems. The underlying
problem requires to decide the satisfiability of NRA formulas, and the decision
procedures for this problem are efficient for different subsets of problems. For this
reason we further evaluate different configurations of the LazyReach and DWCL
algorithms using three different solvers for NRA formulas (MathSAT , z3 , and
Mathematica). Note that, while in principle, we could use multiple SMT back-
ends also in the model checking algorithm [4] and replace the MathSAT SMT
solver with another SMT solver (e.g., z3), this change would not significantly
impact the overall performance, because the algorithm abstracts the non-linear
formulas with linear ones where both MathSAT and z3 have comparable perfor-
mance.

We run the Implicit Abstraction, LazyReach, and DWCL algorithm on all
the 180 benchmark instances with a time out of 100 seconds, and we measure
the execution times to either prove (safe result) or find an abstract counterex-
ample (unknown result) for each instance. An archive containing the necessary
to reproduce the experiments is available online at http://www.sergiomover.eu/
cav2021.html.

Results

RQ 1 - Implicit Abstraction vs. LazyReach. From the cumulative plot in Fig. 2,
we see that Implicit Abstraction almost always outperforms LazyReach.

From the cumulative plot in Fig. 2a we see that Implicit Abstraction signif-
icantly outperforms LazyReach on safe instances. For better readability, in the
plot we only show the (virtual) portfolio algorithm running each configuration
of LazyReach, Virtual Best LazyReach, obtained by considering the best run
time among the different configurations of LazyReach using different backend
solvers. Virtual Best LazyReach solves a total of 42 safe instances, while Implicit
Abstraction solves 100 safe instances. The scatter plots shown in the first row
of Fig. 3 confirms the same intuition (note that the safe instances represented as
blue circles are mostly in the lower-right triangle of the plot).

Figure 2b shows the cumulative plot when verifying unknown instances. Note
that the total number of unknown instances in the benchmarks are much smaller
than the safe ones (combining the results of all the algorithms we have 123
safe instances, 19 unknown instances, and 38 still unsolved instances). From
7 The benchmarks have 321 sign-invariant polynomials (c.f. Sect. 2) over a total of

1089 polynomials that DWCL will use to split the state space.

http://www.sergiomover.eu/cav2021.html
http://www.sergiomover.eu/cav2021.html

546 S. Mover et al.

Fig. 2b, we see that the performance of Implicit Abstraction is comparable with
LazyReach, solving a total of 8 instances and 11 instances respectively.

RQ 2 - Implicit Abstraction vs. DWCL. From the cumulative plots in Fig. 2, the
Virtual Best DWCL solves 37 more instances than Implicit Abstraction. How-
ever, we also see from Fig. 2 that the global Virtual Best solves more instances
and is faster than Virtual Best DWCL. In fact, Implicit Abstraction is orthogonal
to DWCL and is comparable to DWCL when fixing either Mathematica or z3
(Implicit Abstraction solves 108 instances, DWCL Mathematica solves 109, and
DWCL z3 solves 114).

The scatter plots in the second row of Fig. 3 compare Implicit Abstraction
with DWCL MathSAT , DWCL Mathematica, and DWCL z3 . From these plots,
we see that there are several instances that are solved by only one of the two algo-
rithms compared in each plot. While we see similar data when comparing Implicit
Abstraction with Virtual Best DWCL (always in the scatter plots of Fig. 3), the
number of instances solved uniquely by Implicit Abstraction seems smaller. We
get a more precise picture of the complementarity of Implicit Abstraction, DWCL
Mathematica, and DWCL z3 from the diagrams in Fig. 4, where we can clearly
see that Implicit Abstraction is orthogonal to both DWCL Mathematica and
DWCL z3 . From the diagram, we see that when using a different backend (i.e.,
Mathematica or z3) DWCL solves a different set of instances. This difference in
performance using Mathematica and z3 is not surprising since Mathematica and
z3 uses different algorithms to solve formulas in NRA.

We further notice that Implicit Abstraction uses the MathSAT SMT solver
in the backend, and from our experiments (see again Fig. 3) DWCL MathSAT
performs quite poorly compared to both DWCL Mathematica and DWCL z3 .
While naively replacing MathSAT in the model checking algorithm we use [4]
would not provide a significant performance improvement, it is reasonable to
think that investigating a tighter integration with either z3 or Mathematica could
improve the model checking performance. However, we believe this integration
to be beyond the scope for this paper, where we enable the use of symbolic model
checking techniques to analyze the semi-algebraic decomposition.

7 Related Work

In this work, we focus on the (unbounded time) safety verification problem for
polynomial dynamical systems. Such problem is relevant when proving safety for
hybrid programs [27] with Keymaera X [10] or for hybrid CPS with the HHL
Prover [36]. Our reduction to transition systems may be used as sub-procedure
in both theorem provers to automate the search of a continuous invariant.

There exist different techniques to prove safety properties for polynomial
dynamical systems (see e.g., [13]): barrier certificates [18,29], first integrals [14],
and Darboux Polynomials [15]. All these techniques are orthogonal to semi-
algebraic abstraction, and can be used to find invariant polynomials to restrict
the abstract state space. Pegasus [33] implements all the above techniques, the
LazyReach, and DWCL algorithms. Our algorithm can be integrated in Pegasus.

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 547

Fig. 2. Plots the total number of instances (on the y axis) as a function of the cumu-
lative time (in seconds, on the x axis) took by Implicit Abstraction, LazyReach, and
DWCL to solve (a) safe and (b) unknown instances. The comparison includes the
results of LazyReach and DWCL using different (MathSAT , z3 , and Mathematica), as
well as virtual portfolios combining the best results obtained by a given algorithm when
run with multiple backends. We omit some configurations in (b) to improve readability.

The LZZ [22] procedure has been originally proposed to synthesize a continuous
invariant. Instead, we use the LZZ procedure to encode the abstract transition
relation, and then we prove a safety property in the abstraction. We also provide
a specialized encoding of LZZ to check the existence of abstract transitions.

The semi-algebraic abstraction [32] is a qualitative abstraction [34,37]. In
this work, we propose a different algorithm to verify semi-algebraic abstractions
that allows us to explore the abstract state-space symbolically, in contrast to
the LazyReach algorithm [32]. In principle, our technique is orthogonal to the
DWCL algorithm [32], since we could replace LazyReach, which is used in DWCL
as a sub-routine, with our approach (i.e., model check the implicit abstraction).

Relational abstraction [31] abstracts the dynamical system’s trajectories with
a discrete transition relation, reducing the verification problem on the continuous
system to a verification problem on the discrete system. The implicit encoding of
the semi-algebraic abstraction can be seen as an instance of relational abstrac-
tion, where a trajectory of the dynamical system is mapped to a sequence of
abstract transitions (similarly to what happen with relational abstractions for
time-sampled systems in [2,38]). Since relational abstractions can be composed
with each other (e.g., see [26]), we can strengthen the implicit semi-algebraic
abstraction encoding with a relational abstraction. This composition is useful
in the case the semi-algebraic abstraction cannot easily capture the system’s
behavior (e.g., a precise relation of the time elapsed in a transition [26]).

548 S. Mover et al.

Fig. 3. Scatter plots comparing the run time (in seconds) of Implicit Abstraction (on
the y axis) with LazyReach (first row, on the x axis) and DWCL (second row, on the x
axis). Blue circles represent safe verification problems. Red crosses are instances where
the algorithm found an abstract counterexample. When Implicit Abstraction runs for
more than the 100 s time out, we plot the instance on the vertical line marked as to,
and similarly for LazyReach and DWCL on the horizontal line.

Fig. 4. Diagrams representing the distribution of unique instances solved combining
different algorithms (DWCL Mathematica, DWCL z3 , and Implicit Abstraction). Each
set, displayed as a dotted circle enclosed by a dotted line, represents the set of instances
solved with one algorithm. The number shown in each partition is the number of
instances solved uniquely by the sets forming the partition. For example, the central
partition (i.e., the intersection of all the sets) of the diagram (a) shows that DWCL
Mathematica, DWCL z3 , and Implicit Abstraction solved the same set of 141 instances.

Predicate abstraction [16] is a commonly used abstraction techniques to verify
infinite-state systems. Several symbolic techniques [3,19,20] focus on the efficient
computation of the predicate abstraction. In principle, we can also use those
technique to explicitly compute the semi-algebraic abstraction. However, the
up-front, explicit computation of the abstraction is a bottleneck and can be
avoided with implicit predicate abstraction [35] when the goal is to verify a
safety property on the abstract system. We use implicit abstraction to obtain
an implicit encoding of the semi-algebraic abstraction. The transition system of

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 549

the semi-algebraic abstraction contains NRA formulas (the polynomials can be
non-linear or the Lie derivative of the polynomials are non-linear). While there
are few algorithms and tool that can verify such transition systems (e.g., [4]),
our technique is agnostic to the underlying model checking algorithm.

8 Conclusions and Future Work

In this paper, we addressed the safety problem of polynomial dynamical systems.
We built on the LZZ algorithm to define a symbolic encoding of the abstraction
based on a set of polynomials. The encoding is linear in the number of polynomi-
als and can be used to implicitly represent the abstraction without the need of
enumerating the abstract states, enabling the use of SMT-based model checking
techniques. The experimental evaluation showed that the approach is promising
and complementary to existing techniques solving a number of new instances.

The main directions for future works are, on one side, refining the abstraction
discovering new polynomials that are able to remove spurious abstract counterex-
amples, and, on the other side, the application of the approach to hybrid systems
where the continuous dynamics depends on the discrete state of the system.

Acknowledgements. S. Mover was partially supported by the academic chair “Com-
plex Systems Engineering”, École Polytechnique-ENSTA Paris-Télécom Paris-Thalés-
Dassault Aviation-Naval Group-DGA-Foundation ParisTech-FX and the AID project
“Validation of Autonomous Drones and Swarms of Drones”. A. Cimatti, A. Griggio,
and S. Tonetta were partially supported by ECSEL JU under grant agreement No
876852. The JU receives support from EU’s H2020 programme, Austria, Czech Repub-
lic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.

References

1. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). In: CAV, pp. 831–848 (2014)

2. Chen, X., Mover, S., Sankaranarayanan, S.: Compositional relational abstraction
for nonlinear hybrid systems. ACM Trans. Embedded Comput. Syst. 16(5), 187:1–
187:19 (2017)

3. Cimatti, A., Franzén, A., Griggio, A., Kalyanasundaram, K., Roveri, M.: Tighter
integration of bdds and smt for predicate abstraction. In: DATE, pp. 1707–1712.
IEEE (2010)

4. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

5. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: TACAS, pp. 46–61 (2014)

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods Syst. Des. 49(3), 190–218
(2016). https://doi.org/10.1007/s10703-016-0257-4

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS, pp. 93–107 (2013)

https://doi.org/10.1007/s10703-016-0257-4

550 S. Mover et al.

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

9. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191–202 (2002)

10. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: KeYmaera X: An axiomatic
tactical theorem prover for hybrid systems. In: CADE, pp. 527–538 (2015)

11. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

12. Ghorbal, K., Sogokon, A.: Characterizing Positively Invariant Sets: Inductive and
Topological Methods. CoRR abs/2009.09797 (2020). https://arxiv.org/abs/2009.
09797

13. Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking pos-
itive invariance of algebraic and semi-algebraic sets. Comput. Lang. Syst. Struct.
47, 19–43 (2017)

14. Goriely, A.: Integrability and nonintegrability of dynamical systems (2001)
15. Goubault, E., Jourdan, J., Putot, S., Sankaranarayanan, S.: Finding non-

polynomial positive invariants and lyapunov functions for polynomial systems
through darboux polynomials. In: ACC, pp. 3571–3578 (2014)

16. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

17. Inc., W.R.: Mathematica, Version 12.2, https://www.wolfram.com/mathematica,
champaign, IL, 2020

18. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: CAV, pp.
242–257 (2013)

19. Lahiri, S.K., Bryant, R.E., Cook, B.: A Symbolic Approach to Predicate Abstrac-
tion. In: CAV, pp. 141–153 (2003)

20. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate
abstraction. In: CAV, pp. 424–437 (2006)

21. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17164-2 1

22. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT, pp. 97–106 (2011)

23. Meurer, A., et al.: Sympy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017)

24. Mitsch, S., Munive, J.J.H.Y., Jin, X., Zhan, B., Wang, S., Zhan, N.: Arch-comp20
category report:hybrid systems theorem proving. In: ARCH20. EPiC Series in
Computing, vol. 74, pp. 153–174. EasyChair (2020)

25. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337–340
(2008)

26. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions
for hybrid systems. In: EMSOFT pp. 14:1–14:10 (2013)

27. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

28. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. Formal Methods Syst. Design 35(1), 98–120 (2009)

29. Prajna, S.: Barrier certificates for nonlinear model validation. Autom. 42(1), 117–
126 (2006)

https://doi.org/10.1007/3-540-07407-4_17
https://arxiv.org/abs/2009.09797
https://arxiv.org/abs/2009.09797
https://doi.org/10.1007/3-540-63166-6_10
https://www.wolfram.com/mathematica
https://doi.org/10.1007/978-3-642-17164-2_1

Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems 551

30. Roohi, N., Prabhakar, P., Viswanathan, M.: HARE: a hybrid abstraction refine-
ment engine for verifying non-linear hybrid automata. In: TACAS, pp. 573–588
(2017)

31. Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and
hybrid systems. In: CAV, pp. 686–702 (2011)

32. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gen-
eration for polynomial continuous systems. In: VMCAI, pp. 268–288 (2016)

33. Sogokon, A., Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: a framework
for sound continuous invariant generation. In: FM, pp. 138–157 (2019)

34. Tiwari, A.: Abstractions for hybrid systems. Formal Methods Syst. Des. 32(1),
57–83 (2008)

35. Tonetta, S.: Abstract model checking without computing the abstraction. In: FM,
pp. 89–105 (2009)

36. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: ICFEM, pp. 382–399 (2015)

37. Zaki, M.H., Denman, W., Tahar, S., Bois, G.: Integrating abstraction techniques
for formal verification of analog designs. J. Aerosp. Comput. Inf. Commun. 6(5),
373–392 (2009)

38. Zutshi, A., Sankaranarayanan, S., Tiwari, A.: Timed relational abstractions for
sampled data control systems. In: CAV, pp. 343–361 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

IMITATOR 3: Synthesis of Timing
Parameters Beyond Decidability

Étienne André(B)

Université de Lorraine, CNRS, Inria, LORIA,
54000 Nancy, France

Andre.Etienne@lipn13.fr

Abstract. Real-time systems are notoriously hard to verify due to non-
determinism, concurrency and timing constraints. When timing con-
stants are uncertain (in early the design phase, or due to slight vari-
ations of the timing bounds), timed model checking techniques may not
be satisfactory. In contrast, parametric timed model checking synthe-
sizes timing values ensuring correctness. IMITATOR takes as input an
extension of parametric timed automata (PTAs), a powerful formalism
to formally verify critical real-time systems. IMITATOR extends PTAs
with multi-rate clocks, global rational-valued variables and a set of addi-
tional useful features. We describe here the new features and algorithms
offered by IMITATOR 3, that moved along the years from a simple proto-
type dedicated to robustness analysis to a standalone parametric model
checker for timed systems.

Keywords: Parametric timed automata · Parameter synthesis ·
Real-time systems

1 Introduction

Real-time systems are often used in critical environments, and may be verified
using formal methods. Such systems are notoriously hard to verify due to nonde-
terminism, concurrency and timing constraints. Timed model checking provides
designers with techniques to formally verify a real-time system. However, timed
model checking may not always be fully satisfactory: First, in the early design
phase, timing constants may not be known and, without them, model checking
is not possible; Second, at runtime, timing constants may vary (due to uncertain
bounds, or to processor clock drifts), in which case the model checking result
may not hold anymore. In contrast, parametric timed model checking synthesizes
timing values ensuring the system correctness.

Parametric timed automata (PTAs) are a powerful formalism to reason
about, and formally verify critical real-time systems [5]. PTAs are finite state

This work is partially supported by the ANR-NRF French-Singaporean research pro-
gram ProMiS (ANR-19-CE25-0015).

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 552–565, 2021.
https://doi.org/10.1007/978-3-030-81685-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_26&domain=pdf
http://orcid.org/0000-0001-8473-9555
https://www.loria.science/ProMiS/
https://doi.org/10.1007/978-3-030-81685-8_26

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 553

Fig. 1. Examples of graphical outputs

automata extended with clocks, i.e., real-valued variables evolving linearly, that
can be compared with either integer constants or parameters in guards (con-
straints to take a transition) and invariants (constraints to remain in a location).

IMITATOR takes as input networks of “IMITATOR PTAs” (IPTAs) extending
PTAs with several convenient features such as stopwatches, multi-rate clocks or
global shared rational-valued variables.

IMITATOR answers variants of the following problem:

Parameter synthesis problem:
Input: A network of IPTAs A and a specification ϕ
Problem: Synthesize the set of parameter valuations for which A satisfies ϕ

IMITATOR answers this problem by synthesizing sets of parameter valuations
in the form of a finite disjunction of linear constraints over the parameters.

IMITATOR is a command-line only tool; its input is text-based (partially
inspired by HyTech syntax [41]) and is “human-readable”, different from, e.g.,
XML. IMITATOR produces standardized result files (that can be possibly parsed
from external tools), and can produce graphical outputs, such as in Fig. 1.

The expressive power (i.e., ease to write a complicated model in a compact
manner) of the tool has been largely improved since IMITATOR 2.5 [17], and
IMITATOR is now a parametric timed model checker taking as inputs a model
and a property, implementing various synthesis algorithms.

2 An Expressive Input Language

Parametric Timed Automata (PTAs). Timed automata (TAs) [3] extend finite-
state automata with clocks, i.e., real-valued variables evolving at the same rate 1,

554 É. André

that can be compared to integers along edges (“guards”) or within locations
(“invariants”). Clocks can be reset (to 0) along transitions. PTAs extend TAs
with (timing) parameters, i.e., unknown rational-valued constants [5].

Example 1. In the model in Fig. 2 (that goes beyond the syntax of PTAs, see
Example 2), there are four locations, depicted as rounded rectangles. Invariants
are depicted using dotted rectangles. In the invariant of location working, clock x
is compared to parameter ptotal . The guard of the transition from coffee to
working compares clock t to pcoffee ; this clock t is reset to 0 along this transition.

IMITATOR Parametric Timed Automata (IPTAs). IMITATOR takes as input
models described as networks of IMITATOR parametric timed automata
(IPTAs). IPTAs extend PTAs with a set of useful features, described in the
following.

Global Rational-Valued Variables. Global variables (called “discrete”) can be
defined, and are part of the discrete part of a state, together with locations
(and different from clocks and parameters that are part of the continuous part).
Global variables in IMITATOR are exact rationals, following exact arithmetics
(as opposed to, e.g., floating-point arithmetic that can accumulate errors and
lead to faulty assertions). Exact rationals are encoded in IMITATOR using the
GNU MP library. Such discrete variables can be updated along transitions, and
can also be part of the clock guards and invariants; in fact, virtually any linear
expression over clocks, parameters and discrete variables can be used in guards,
invariants and updates. Non-linear arithmetic expressions over sole discrete vari-
ables are allowed too.

Automata Synchronization. IPTAs can be synchronized together on shared
actions, or by reading shared variables. All variables (clocks, parameters, dis-
crete) are potentially global in IMITATOR. This allows users to define models
component by component.

Arbitrary Flows. Since version 3.0, IMITATOR supports arbitrary (constant)
flows for clocks; this way, clocks do not necessarily evolve at the same time, and
can encode different concepts from only time: temperature, amount of comple-
tion, continuous cost... Their value can increase or decrease at any predefined rate
in each location, and can become negative. In that sense, IMITATOR’s clocks are
closer to continuous variables (as in hybrid automata) rather than TAs’ clocks;
nevertheless, we keep the name clock for sake of backward-compatibility. This
makes IMITATOR support a parametric extension of multi-rate automata [2].
This notably includes stopwatches, where clocks can have a 1- or 0-rate [36].

Additional Syntax Improvements. Beyond the aforementioned increase of the
syntactic expressive power, the syntax was enhanced with accepting locations
(that can be used in properties), global constants, “if... then... else” con-
ditions in updates, and with the ability to include model fragments from different

https://gmplib.org/

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 555

Fig. 2. An IPTA example: writing papers and drinking coffee

files (new syntax #include(modelpart.imi)). Several simplifications were made
to the syntax to keep it “human-readable”. For example, location workingFast of
Fig. 2 is written in IMITATOR syntax as follows:

loc workingFast: invariant x <= pTotal flow{x’ = 2}

Translations. Finally, translations of the model are available to other model
checkers such as HyTech [41] and Uppaal [42] (in both cases, not all features
can be translated since some of the features of IMITATOR do not exist in the
target tool, e.g., Uppaal does not support parameters nor complex linear con-
straints over clocks (only “diagonal”)). Graphical translations of the model are
also available to JPEG, PDF and LATEX formats.

Example 2. Consider the IPTA in Fig. 2, modeling a researcher writing papers.
The model features two clocks t (measuring the time when needing a coffee)
and x (measuring the amount of work done on a given paper), both initially 0.
Their rate is always 1, unless otherwise specified (e.g., in workingFast). Initially,
the researcher is working (location working) on a paper, requiring an amount of
work ptotal . When the paper is completed (guard x = ptotal), the IPTA moves
to location finished. From there, at any time, the researcher can start working
on a new paper (transition back to working, updating x and t).

Alternatively, after at least a certain time (guard t ≥ pneed), the researcher
may need a coffee; this action can only be taken until a maximum number of
coffees have been drunk for this paper (nb ≤ max − 1), where nb is a dis-
crete global variable recording the number of coffees drunk while working on

556 É. André

the current paper. When drinking a coffee (location coffee), the work is obvi-
ously not progressing (ẋ = 0). Drinking a coffee takes exactly pcoffee time units
(guard t = pcoffee back to location working). Observe that, from the second paper
onwards (transition labeled with restart), the researcher is already half-way of
her/his need for a coffee (parametric update t ← 0.5 × pneed [22]).

Also, whenever 80% of the work is done (guard x ≥ 0.8×ptotal), the researcher
may work twice as fast (location workingFast, with a rate 2 for clock x). In that
case, (s)he needs a coffee faster too (0.6 × pneed).

All three durations pcoffee , pneed and ptotal are timing parameters. We fix
their parameter domains as follows: pcoffee , ptotal ∈ [0,∞) and pneed ∈ [1,∞).
The maximum number of coffees max ∈ [0,∞) is also a parameter; observe that
it is (only) compared to the discrete variable nb, and therefore can be seen as a
“discrete parameter”—which is allowed by the liberal syntax of IMITATOR.

The example in Fig. 2 could not be modeled with Uppaal due to the presence
of timing parameters, stopwatches, multi-rate clocks and non-0 update. It may be
modeled using HyTech; however, most algorithms implemented in IMITATOR
(even the most basic ones, such as liveness synthesis) do not exist in HyTech,
as HyTech mainly focuses on basic state space computation.

3 A Variety of Synthesis Algorithms

The formalism of networks of IPTAs is “highly undecidable” for most problems.
Indeed, while several problems are decidable for timed automata (notably the
reachability [3]), most interesting problems become undecidable in the presence
of timing parameters [5,8] , notably when such parameters are unbounded [35].
On top of this, multi-rate automata together with linear constraints over the
clocks also yield undecidability [2]. Finally, the mere use of stopwatches, even
without the aforementioned extensions, brings undecidability [36]. Also note
that, in contrast to several existing model checkers, IMITATOR offers the use
of unbounded rational variables, therefore with an infinite domain. For all these
reasons, it is always possible to find examples of IPTAs for which the algorithms
implemented in IMITATOR would not terminate with an exact (sound and com-
plete) result. The rational behind IMITATOR is therefore to follow a “best-effort”
approach, by:

– using aggressive optimizations and abstractions (e.g., [11,19,45]), leading to
termination for most case studies in practice;

– outputting over- or under-approximated results, i.e., the set of synthesized
parameter valuations may be larger or smaller than the exact result.

IMITATOR outputs a standardized result (in a text file), that contains the syn-
thesized constraint with a set of information, and notably the validity of the
constraint, i.e., whether the set of valuations is exact (sound and complete), pos-
sibly over-approximated, possibly under-approximated, or potentially invalid i.e.,
when both under-approximating and over-approximating heuristics were used.

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 557

By default, IMITATOR attempts to synthesize an exact result; only when some
specific options are used (e.g., a limit on the number of states explored, or on
the computation time), approximations may be used. These approximations are
conservative for most algorithms; for example, if an approximation is used for
safety synthesis, then the result will be under-approximated (i.e., the system is
safe for all synthesized valuations—even though some more safe valuations may
exist).

IMITATOR offers two main classes of synthesis: i) Witness (or counter-
example), which attempts to exhibit at least one parameter valuation satisfying
the property; often, IMITATOR still outputs a symbolic set of valuations (i.e.,
a linear constraint over the parameters), but stops the analysis as soon as one
such set is found. ii) Normal synthesis, where IMITATOR attempts to synthesize
all parameter valuations satisfying the property.

Properties include reachability (denoted by “EF”, following the TCTL syn-
tax), safety (denoted by “AGnot”), liveness, deadlock-freeness, robustness, and
some others.

Throughout this section, we exemplify the main synthesis algorithms of IMI-
TATOR on Example 2.1 All the results synthesized in the following are exact
(sound and complete), unless otherwise specified.

Safety. A first algorithm of IMITATOR is safety synthesis, i.e., synthesizing
parameter valuations for which a discrete state (location and/or valuation of
the discrete variables) is unreachable for all runs. For example, one synthesize
the valuations for which it is impossible to drink any coffee, i.e., it is impossible
to reach the coffee location of the “researcher” automaton of Fig. 2.

#synth AGnot(loc[researcher] = coffee)

The result is: max ∈ [0, 1) ∨ (
max ≥ 1 ∧ ptotal <

pneed

10
)

Let us explain this result. The first disjunct is trivial: if the researcher is not
allowed to drink any coffee (max < 1), the transition to coffee (guarded by
“nb ≤ max −1”) can never be taken. The second disjunct is, despite the relative
simplicity of this model, less trivial: assume for illustration that pneed = 10 and
ptotal = 1, and let us show that the researcher is still able to start drinking
a coffee in this situation. After the first paper completion (action restart), we
have x ← 0 and t ← 5. After one time unit in location working (x = 1 and
t = 6), the researcher moves to workingFast, and can immediately move to coffee
(guard t ≥ 0.6 × pneed is now satisfied). This scenario, that can be seen on the
parametric state space output by IMITATOR (see Fig. 1a), is also possible for
larger values of ptotal . This explains the strict inequality ptotal < pneed

10 .

1 All finishing executions for our example using IMITATOR 3.0 “Cheese” ea560fd on a
Dell XPS 13 7390 Intel� CoreTM i7-10510U CPU @ 1.80 GHz running Linux Mint
20 Ulyana terminate within < 1 s. All examples and results can be found at [9].

https://github.com/imitator-model-checker/imitator/releases/tag/v3.0.0

558 É. André

Reachability. Reachability can be seen as the opposite of safety, i.e., the goal is
to synthesize parameter valuations for which a discrete state is reachable for at
least one run. For example, one can ask for the valuations for which it is possible
to drink at least one coffee:

#synth EF(loc[researcher] = coffee)

The result is max ≥ 1 ∧ ptotal ≥ pneed

10 , which is obviously the complement of the
result synthesized for the aforementioned safety property.

One can also synthesize valuations for which it is possible to drink at least
five coffees while working on some article (i.e., nb ≥ 5).

#synth EF(loc[researcher] = coffee & nb >= 5)

The result is max ≥ 5 ∧ ptotal ≥ 37
10 × pneed .

Minimum-Time Reachability. Minimal-time synthesis [12] aims at synthesizing
parameter valuations minimizing the time needed to reach a discrete state. Here,
we can ask for the valuations for which it is possible to finish an article after
drinking at least 2 coffees:

#synth EFtmin(loc[researcher] = finished & nb >= 2)

The result is ptotal

2 + pneed + 2 × pcoffee ≤ 2 ∧max ≥ 2 and the minimal time is 2.
That is, any of these valuations guarantee the reachability of a state where the
researcher has drunk 2 coffees, and the minimum time is 2 (recall that pneed ∈
[1,∞)).

Optimal Parameter Reachability. One can ask here for the valuations for which
the value of a given parameter is minimized or maximized when reaching a given
state. Let us ask for the valuations minimizing the value of ptotal when finishing
a paper after drinking (at least) 3 coffees.

#synth EFpmin(loc[researcher] = finished & nb >= 3, pTotal)

The result is max ≥ 3 ∧ ptotal = 2.1 ∧ pneed = 1. Observe that pcoffee is not
involved in this constraint (contrarily to minimum-time synthesis); indeed, the
time spent in drinking coffee does not impact the total duration of the work
(ptotal), as the progress of clock x is stopped in coffee.

Parametric Deadlock Freeness. Deadlocks are states in which no discrete action
can be taken, and time cannot elapse (“timelock”). Such situations may denote
ill-formed models. IMITATOR offers an algorithm [7] synthesizing parameter val-
uations for which the model is deadlock-free. In case of “early termination”
(predefined bound on the depth of the state space or on the computation time),
a backward procedure synthesizes a subset of correct (deadlock-free) valuations.

#synth DeadlockFree

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 559

For this property, the analysis does not terminate, as the state space is infinite
(unbounded rational-valued parameters, unbounded variable nb) and IMITATOR
needs to explore it as a whole to deduce deadlock-freeness for our example.

Adding a bound on the depth of the state space (option -depth-limit 40)
yields termination, with a pair of constraints: an under-approximated positive
constraint (i.e., valuations that are guaranteed to be deadlock-free) max < 16 ∨
(max ≥ 16 ∧ ptotal < 27

2 pneed), and an over-approximated negative constraint
(i.e., valuations that might be deadlocked) max ≥ 16∧ptotal ≥ 27

2 pneed . Observe
that both constraints are complementary, i.e., IMITATOR is sure that the former
set is deadlock-free, and is not sure that the latter set contains deadlocks. (Note
that, in fact, the model is very likely to be deadlock-free for all valuations, even
though IMITATOR is not able to show it.)

Liveness Synthesis. A new feature of IMITATOR 3 is cycle synthesis, i.e., param-
eter valuations for which there exists an infinite run, possibly passing infinitely
often by a given discrete state (Büchi condition). IMITATOR uses by default
an original algorithm by Laure Petrucci and Jaco van de Pol based on NDFS
extended with parametric subsumption and pruning [45] (other algorithms, such
as BFS, are also available [11]). In our running example , one can ask for the
valuations for which the researcher infinitely often writes papers after drinking
(at least) 3 coffees for each of them.

#synth CycleThrough(loc[researcher] = finished & nb >=3)

The result is max ≥ 3 ∧ ptotal ≥ 2.1 × pneed .

Robustness. Inherited from earlier versions of IMITATOR, one can apply the
inverse method [29] (also called trace preservation [21]) that, given a reference
parameter valuation, synthesizes the set of parameter valuations for which the
set of “traces” (discrete behaviors, i.e., abstracting time information away) is
the same as for this reference valuation.

#synth TracePreservation(pTotal = 10, pNeed = 5, pCoffee = 3, max = 3)

The result is:
(
3 × pneed > ptotal ≥ 2 × pneed ∧ max ∈ [2, 3)

) ∨ (
2.1 × pneed >

ptotal ≥ 2 × pneed ∧ max ≥ 3
)
. The synthesized constraint can be seen as a

characterization of the robustness of the original parameter valuation.

Synthesis Using Patterns. Another way to specify properties is to use a set of pre-
defined observer patterns [6,28]. Observer patterns are translated into observer
automata (called reachability testing in [1]), and their correctness reduces to
reachability. This procedure is transparent to the user, i.e., (s)he only needs to
specify the pattern and IMITATOR takes care of the translation and synthesis.
IMITATOR patterns specify the order between actions, extended with (possibly
parametric) timing information. The syntax is detailed in the user manual, and
the semantics is given in [6].

For example, one can synthesize the set of valuations such that, every time
the researcher restarts a new article, (s)he completes it within 5 time units. That

560 É. André

is, every occurrence of the restart action must be followed within (at most) 5
time units by the done action.

#synth pattern(everytime restart then eventually done within 5)

A part of the valuations set is: max ≥ 6 ∧ 5 − 6 × pcoffee ≥ ptotal ≥ 4.7 × pneed .
A graphical 2D representation projected onto ptotal and pcoffee (setting

pneed = 2 and max = 3) is given in Fig. 1b.

Other Algorithms. IMITATOR features a number of additional algorithms,
including i) non-Zeno infinite run synthesis [27], ii) behavioral cartography [16]
that partitions the parameter space into tiles where the discrete behavior is uni-
form, or iii) parametric reachability preservation, that takes as input a discrete
state and a reference valuation, and synthesizes valuations for which this dis-
crete state is reachable iff it is reachable for the reference valuation [25]. The two
latter algorithms can be distributed over a cluster, showing interesting results,
and can be used to perform reachability synthesis while being faster than the
normal reachability synthesis algorithm for some benchmarks [14,15]. Finally,
compositional verification for a subclass of IPTAs (a parametric extension of
event-recording automata [4]) was proposed in [24].

4 Distribution

IMITATOR is distributed under the terms of the GNU General Public License.
Its source code is therefore publicly available, and benefited from several contrib-
utors’ additions. IMITATOR is available online2, together with its documentation,
and a benchmarks library [26].

IMITATOR depends on several libraries. Notably, the core engine relies on
the Parma Polyhedra Library (PPL) [32] for the computation of symbolic states.
As a consequence, IMITATOR can be cumbersome to compile. For this reason,
standalone binaries are available for all Linux-like systems. A Docker version3

(made by Jaime Arias) and a prototype Web service4 are available too.
An extensive user manual, explaining all algorithms and providing users with

a full description of the input syntax for models and properties, is available [10].

5 A Selection of Applications

IMITATOR was applied to a variety of both academic and industrial case stud-
ies over the last few years. These applications range within several domains,
including real-time systems, testing and monitoring, cybersecurity, or hardware
verification. One can cite:

2 https://www.imitator.fr.
3 https://hub.docker.com/r/imitator/imitator/.
4 https://imitator.lipn.univ-paris13.fr/.

https://www.gnu.org/licenses/gpl-3.0.html
https://www.imitator.fr
https://hub.docker.com/r/imitator/imitator/
https://imitator.lipn.univ-paris13.fr/

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 561

– the parametric verification of an asynchronous memory circuit by ST-
Microelectronics (from a model described in [37]),

– verification of parametric scheduling problems by Astrium Space Transporta-
tion [40] and ArianeGroup SAS [13],

– analysis of music scores [38],
– verifying the multi-processor image processing system of an unmanned aerial

aircraft with uncertain periods, as a benchmark made public by Thales [46],
– parametric pattern matching and monitoring of logs from the automative

industry [20],
– synthesis of timing/cost parameters in attack-fault trees [23,31],
– testing product lines using parametric constraints [44],
– verification of an industrial asynchronous leader election algorithm by Thales

using IMITATOR combined with abstractions [18],
– performing parametric opacity analyses for timed automata [30], and
– synthesis of parameter valuations guaranteeing liveness properties for the

Bounded Retransmission Protocol [11].

6 Related Tools

HyTech [41] was the first model checker for hybrid systems (a class of for-
malisms beyond PTAs), including parameters; it is not maintained anymore.

Uppaal [42] is a state-of-the-art tool for modeling and verifying systems
modeled as networks of timed automata and extended with variables and
data structures; while Uppaal became a major tool for model checking timed
automata, it does not support parametric verification, and the use of clocks is
restricted to comparing one clock with one constant or with another clock, while
IMITATOR allows a liberal syntax based on polyhedra.

RomÉo [43] performs parameter synthesis for parametric time Petri nets
with inhibitor arcs [47].

While RomÉo shares similarities with IMITATOR, it does not support (exten-
sions of) timed automata, and notably not multi-rate clocks.

SpaceEx [39] is a tool for verifying hybrid systems. It is not specifically ded-
icated to parameter synthesis, and mainly targets safety and reachability, in
contrast to IMITATOR that proposes multiple synthesis algorithms.

IMITATOR’s input syntax also shares some similarities with that of PHAVer-
Lite [33] (a fork of PHAVer and predecessor of SpaceEx, that uses PPLite [34]
instead of PPL [32]), coming from the fact that both IMITATOR and PHAVerLite
originate from the HyTech syntax.

7 Perspectives

To gain some further speed for models that require less expressiveness (notably
no strict inequality nor rational-valued variables), offering to replace PPL [32]
with PPLite [34], or using standard 32-bit integers instead of GNU MP rationals
is on our agenda.

562 É. André

Acknowledgement. While the author has been the main developer of IMITATOR
since 2008, several colleagues brought very valuable enhancements, notably Camille

Coti and Sami Evangelista [14] (on distributed algorithms), Nguy Hoàng Gia [27]
(on non-Zeno algorithms), Vincent Bloemen [12] (on minimal-time synthesis), Laure
Petrucci and Jaco van de Pol [11] (on NDFS-based cycle synthesis), and Jaime Arias
for multiple practical enhancements. Many thanks to Dylan Marinho for a careful
rereading of this paper, and to Stephan Merz for useful suggestions.

References

1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability test-
ing for timed automata. TCS 300(1–3), 411–475 (2003). https://doi.org/10.1016/
S0304-3975(02)00334-1

2. Alur, R., et al.: The algorithmic analysis of hybrid systems. TCS 138(1), 3–34
(1995). https://doi.org/10.1016/0304-3975(94)00202-T

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994).
https://doi.org/10.1016/0304-3975(94)90010-8

4. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of
timed automata. TCS 211(1–2), 253–273 (1999). https://doi.org/10.1016/S0304-
3975(97)00173-4

5. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601. ACM,
New York, NY, USA (1993). https://doi.org/10.1145/167088.167242

6. André, É.: Observer patterns for real-time systems. In: Liu, Y., Martin, A. (eds.)
ICECCS, pp. 125–134. IEEE Computer Society, July 2013. https://doi.org/10.
1109/ICECCS.2013.26

7. André, É.: Parametric deadlock-freeness checking timed automata. In: Sampaio,
A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 469–478. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46750-4 27

8. André, É.: What’s decidable about parametric timed automata? STTT 21(2), 203–
219 (2019). https://doi.org/10.1007/s10009-017-0467-0

9. André, É.: Artifact for IMITATOR 3.0, April 2021. https://doi.org/10.5281/zenodo.
4723415

10. André, É.: IMITATOR user manual, January 2021. https://github.com/imitator-
model-checker/imitator/releases/download/v3.0.0/IMITATOR-user-manual.pdf

11. André, É., Arias, J., Petrucci, L., Pol, J.: Iterative bounded synthesis for effi-
cient cycle detection in parametric timed automata. In: TACAS 2021. LNCS, vol.
12651, pp. 311–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72016-2 17

12. André, É., Bloemen, V., Petrucci, L., van de Pol, J.: Minimal-time synthesis for
parametric timed automata. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 211–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17465-1 12

13. André, É., Coquard, E., Fribourg, L., Jerray, J., Lesens, D.: Scheduling synthe-
sis for a launcher flight control using parametric stopwatch automata. In: Keller,
J., Penczek, W. (eds.) ACSD, pp. 13–22. IEEE (2019). https://doi.org/10.1109/
ACSD.2019.00006

14. André, É., Coti, C., Evangelista, S.: Distributed behavioral cartography of timed
automata. In: Dongarra, J., Ishikawa, Y., Atsushi, H. (eds.) EuroMPI/ASIA, pp.
109–114. ACM, September 2014. https://doi.org/10.1145/2642769.2642784

https://doi.org/10.1016/S0304-3975(02)00334-1
https://doi.org/10.1016/S0304-3975(02)00334-1
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1145/167088.167242
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1007/978-3-319-46750-4_27
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.5281/zenodo.4723415
https://doi.org/10.5281/zenodo.4723415
https://github.com/imitator-model-checker/imitator/releases/download/v3.0.0/IMITATOR-user-manual.pdf
https://github.com/imitator-model-checker/imitator/releases/download/v3.0.0/IMITATOR-user-manual.pdf
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-72016-2_17
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1007/978-3-030-17465-1_12
https://doi.org/10.1109/ACSD.2019.00006
https://doi.org/10.1109/ACSD.2019.00006
https://doi.org/10.1145/2642769.2642784

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 563

15. André, É., Coti, C., Nguyen, H.G.: Enhanced distributed behavioral cartography
of parametric timed automata. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 319–335. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 21

16. André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15349-5 5

17. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9 6

18. André, É., Fribourg, L., Mota, J.-M., Soulat, R.: Verification of an industrial asyn-
chronous leader election algorithm using abstractions and parametric model check-
ing. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 409–424.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5 19

19. André, É., Fribourg, L., Soulat, R.: Merge and conquer: state merging in para-
metric timed automata. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS,
vol. 8172, pp. 381–396. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02444-8 27

20. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty.
In: Lin, A.W., Sun, J. (eds.) ICECCS, pp. 10–20. IEEE Computer Society (2018).
https://doi.org/10.1109/ICECCS2018.2018.00010

21. André, É., Lime, D., Markey, N.: Language preservation problems in parametric
timed automata. LMCS 16, January 2020. https://doi.org/10.23638/LMCS-16(1:
5)2020

22. André, É., Lime, D., Ramparison, M.: Parametric updates in parametric timed
automata. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol. 11535, pp.
39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21759-4 3

23. André, É., Lime, D., Ramparison, M., Stoelinga, M.: Parametric analyses of attack-
fault trees. In: Keller, J., Penczek, W. (eds.) ACSD, pp. 33–42. IEEE (2019).
https://doi.org/10.1109/ACSD.2019.00008

24. André, É., Lin, S.-W.: Learning-based compositional parameter synthesis for event-
recording automata. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS,
vol. 10321, pp. 17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60225-7 2

25. André, É., Lipari, G., Nguyen, H.G., Sun, Y.: Reachability preservation based
parameter synthesis for timed automata. In: Havelund, K., Holzmann, G., Joshi,
R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 50–65. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9 5

26. André, É., Marinho, D., van de Pol, J.: A benchmarks library for extended timed
automata. In: Loulergue, F., Wotawa, F. (eds.) TAP (2021). (to appear)

27. André, É., Nguyen, H.G., Petrucci, L., Sun, J.: Parametric model checking timed
automata under non-zenoness assumption. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 35–51. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 3

28. André, É., Petrucci, L.: Unifying patterns for modelling timed relationships in
systems and properties. In: Moldt, D., Rölke, H., Störrle, H. (eds.) PNSE, vol.
1372, pp. 25–40. CEUR-WS, June 2015

29. André, É., Soulat, R.: The Inverse Method. FOCUS Series in Computer Engineer-
ing and Information Technology, p. 176, ISTE Ltd and John Wiley & Sons Inc.
Hoboken (2013)

https://doi.org/10.1007/978-3-319-25423-4_21
https://doi.org/10.1007/978-3-319-25423-4_21
https://doi.org/10.1007/978-3-642-15349-5_5
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-030-11245-5_19
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1007/978-3-319-02444-8_27
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.23638/LMCS-16(1:5)2020
https://doi.org/10.23638/LMCS-16(1:5)2020
https://doi.org/10.1007/978-3-030-21759-4_3
https://doi.org/10.1109/ACSD.2019.00008
https://doi.org/10.1007/978-3-319-60225-7_2
https://doi.org/10.1007/978-3-319-60225-7_2
https://doi.org/10.1007/978-3-319-17524-9_5
https://doi.org/10.1007/978-3-319-17524-9_5
https://doi.org/10.1007/978-3-319-57288-8_3
https://doi.org/10.1007/978-3-319-57288-8_3

564 É. André

30. André, É., Sun, J.: Parametric timed model checking for guaranteeing timed opac-
ity. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 115–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 7

31. Arias, J., Budde, C.E., Penczek, W., Petrucci, L., Sidoruk, T., Stoelinga, M.:
Hackers vs. Security: attack-defence trees as asynchronous multi-agent systems.
In: Lin, S.-W., Hou, Z., Mahony, B. (eds.) ICFEM 2020. LNCS, vol. 12531, pp.
3–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63406-3 1

32. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Programm. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

33. Becchi, A., Zaffanella, E.: Revisiting polyhedral analysis for hybrid systems. In:
Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 183–202. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32304-2 10

34. Becchi, A., Zaffanella, E.: PPLite: zero-overhead encoding of NNC polyhedra. Inf.
Comput. 275, 104620 (2020). https://doi.org/10.1016/j.ic.2020.104620

35. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6 6

36. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 12

37. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
FMSD 34(1), 59–81 (2009). https://doi.org/10.1007/s10703-008-0061-x

38. Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed music scores. In:
ICMC. Michigan Publishing, August 2013

39. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

40. Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling
problems using the inverse method. In: Reynolds, M., Terenziani, P., Moszkowski,
B. (eds.) TIME, pp. 73–80. IEEE Computer Society Press, September 2012.
https://doi.org/10.1109/TIME.2012.10

41. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. STTT 1(1–2), 110–122 (1997). https://doi.org/10.1007/s100090050008

42. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). https://doi.org/10.1007/s100090050010

43. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2 6

44. Luthmann, L., Gerecht, T., Stephan, A., Bürdek, J., Lochau, M.: Minimum/max-
imum delay testing of product lines with unbounded parametric real-time con-
straints. J. Syst. Softw. 149, 535–553 (2019). https://doi.org/10.1016/j.jss.2018.
12.028

https://doi.org/10.1007/978-3-030-31784-3_7
https://doi.org/10.1007/978-3-030-31784-3_7
https://doi.org/10.1007/978-3-030-63406-3_1
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/978-3-030-32304-2_10
https://doi.org/10.1016/j.ic.2020.104620
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/s10703-008-0061-x
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1109/TIME.2012.10
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1016/j.jss.2018.12.028
https://doi.org/10.1016/j.jss.2018.12.028

IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability 565

45. Nguyen, H.G., Petrucci, L., van de Pol, J.: Layered and collecting NDFS with
subsumption for parametric timed automata. In: Lin, A.W., Sun, J. (eds.)
ICECCS, pp. 1–9. IEEE Computer Society, December 2018. https://doi.org/10.
1109/ICECCS2018.2018.00009

46. Sun, Y., André, É., Lipari, G.: Verification of two real-time systems using para-
metric timed automata. In: Quinton, S., Vardanega, T. (eds.) WATERS, July 2015

47. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch
Petri nets. J. Univ. Comput. Sci. 15(17), 3273–3304 (2009). https://doi.org/10.
3217/jucs-015-17-3273

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.1109/ICECCS2018.2018.00009
https://doi.org/10.3217/jucs-015-17-3273
https://doi.org/10.3217/jucs-015-17-3273
http://creativecommons.org/licenses/by/4.0/

Formally Verified Switching Logic
for Recoverability of Aircraft Controller

Ratan Lal1(B), Aaron McKinnis2, Dustin Hauptman2, Shawn Keshmiri2,
and Pavithra Prabhakar1

1 Kansas State University, Manhattan, KS, USA
{ratan,pprabhakar}@ksu.edu

2 Department of Aerospace, University of Kansas, Lawrence, KS, USA
{amckinnis,dhauptman,keshmiri}@ku.edu

Abstract. In this paper, we investigate the design of a safe hybrid con-
troller for an aircraft that switches between a classical linear quadratic
regulator (LQR) controller and a more intelligent artificial neural net-
work (ANN) controller. Our objective is to switch safely between the
controllers, such that the aircraft is always recoverable within a fixed
amount of time while allowing the maximum time of operation for the
ANN controller. There is a priori known safety zone for the LQR con-
troller operation in which the aircraft never stalls, over accelerates, or
exceeds maximum structural loading, and hence, by switching to the
LQR controller just before exiting this zone, one can guarantee safety.
However, this priori known safety zone is conservative, and therefore,
limits the time of operation for the ANN controller. We apply reach-
ability analysis to expand the known safety zone, such that the LQR
controller will always be able to drive the aircraft back to the safe zone
from the expanded zone (“recoverable zone”) within a fixed duration.
The “recoverable zone” extends the time of operation of the ANN con-
troller. We perform simulations using the hybrid controller corresponding
to the recoverable zone and observe that the design is indeed safe.

1 Introduction

Different types of controller designs have been investigated for aircraft control,
such as Linear Quadratic Regulators [28], Fuzzy Logic (FL) [8], and Artificial
Neural Networks [26]. The LQR controllers provide an optimal controller for
linear time invariant (LTI) systems that minimizes a quadratic cost function
and guarantees stability and robustness. Though the LQR design is not directly
applicable to non-linear systems, often non-linear systems are approximated by
linear systems via linearization around the equilibrium point, thus enabling the
application of the LQR based design. Although the LQR controller provides
good performance for LTI systems [28], studies have shown that the ANN con-
trollers have better performance in the presence of uncertain environments [26].
The ANN controller is especially suitable for adaptive flight control applications,

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 566–579, 2021.
https://doi.org/10.1007/978-3-030-81685-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_27

Formally Verified Switching Logic for Recoverability of Aircraft Controller 567

where system dynamics are dominated by unknown nonlinearities [19]. An air-
craft can experience a number of issues that may cause failures in the system.
Things like over-acceleration can cause the aircraft to gain too much energy and
enter into unstable modes, while rapid de-acceleration and hard maneuvers will
cause increased structural loading, leading to broken lifting platforms. Another
issue is that of stall, in which the airflow over the lifting section crosses a “criti-
cal angle of attack”, compromising the lift generation. All of these problems can
occur as a function of the control input or as external disturbances, such as high
wind gust, further complicating the problem. Though ANN-based adaptive con-
trollers are capable of handling these situations, guaranteeing safe functionality
of these systems remains a challenge due to the complexity of these controllers.
So, we have LQR-based controllers on one hand, that are efficient in nominal
conditions, and are simple enough to be amenable to analysis, and sophisticated
ANN-based controllers on the other hand that can handle difficult environmental
conditions, but are, at the same time, too complex to be amenable to analysis.
Our solution is a “hybrid controller” consisting of a simplex like architecture [7],
wherein, we switch between the ANN and LQR controller in such a way that
safety is guaranteed by the switching logic, that is, the aircraft is always recov-
erable from a stall within a fixed amount of time if it occurs.

Our broad objective is to find an ANN-based controller that can improve
performance in uncertain environments. To achieve this goal, we need to train
the ANN-controller, however, it is risky to train an ANN controller during a real
flight test as it poses a safety risk. Hence, the solution we propose is to switch
between a traditional LQR controller and the ANN controller in such a way that
safety is guaranteed. More precisely, we allow the ANN controller to operate
while the aircraft remains within a “safe zone” from which the LQR controller
can guarantee that the aircraft never stalls. When the ANN controller is on the
verge of leaving the safe zone, we switch to the LQR controller. However, these
expert determined safe zones are often too conservative (small), thereby not
providing sufficient time of operation for the ANN controller. A longer duration
of operation for the ANN controller is desirable for the learning process, so we
provide a method to extend the safe zone to a larger set (“recoverable zone”),
which guarantees that the aircraft recovers within a fixed amount of time if a stall
occurs. The recoverable zone computation is performed using formal methods
based reachable set computation, thereby providing a formally verified switching
component decision procedure that guarantees the safe operation of the aircraft.

We consider a dynamic model of a fixed-wing aircraft, with six-degrees-of-
freedom (6-DOF), which is used as an experimental platform to employ a hybrid
controller that consists of an intelligent and automatic switching between an
LQR and an ANN based controller. The aircraft dynamics consists of a decoupled
longitudinal and lateral linear time invariant dynamics, with a decoupled state-
feedback LQR controller for each component. For our simulations, we consider
an ANN controller that combines aircraft guidance and control systems and
performs end-to-end mapping from error states to control surface values, in order
to fly along a straight line with steady state wings-level and altitude hold.

568 R. Lal et al.

We have performed Hardware in The Loop (HITL) simulation of the hybrid
controller in conjunction with the the 6-DOF differential equations, on the air-
craft avionics using the open source software, QGroundControl. Our simulations
exhibit that the number of sample iterations for which ANN controller actions
are performed while ensuring safe flying, increases as the learning space (recov-
erable zone) is expanded.

2 Related Work

Artificial Neural Networks have been widely used in many control applications,
such as automatic generation control of interconnected power systems [41],
irrigation scheduling [37], micro-turbine power plant [36], solar binding [4],
robotics [1,6], and aircraft control [17]. ANN is popularly used in flight con-
trol [19], robot control [25] as well as for non-linear systems [42].

Verification has been extensively applied to dynamical systems, and focus
on over-approximation based methods including predicate abstraction [3,22],
state-space exploration based fix-point computation [14], Hamilton-Jacobi based
methods [2], symbolic state space exploration based methods [16], Satisfiabil-
ity Modulo Theory (SMT) based methods [20,21,23,38], and counter-example
guided abstraction-refinement based methods [24,31,32].

Recent studies [40] compare several neural network verification algorithms.
Formal verification of feedforward neural networks with different activation func-
tions, such as ReLU [18] and Lipschitz-continuous functions [33], have been
studied. Different verification problems have been considered including output
range analysis [10], and robustness analysis [15]. Verification methods include
those based on reduction to satisfiability solving [18], optimization solving [12],
abstract interpretation [35], abstraction-refinement [30], and linearization [13].
Verification of ANN with feedback controllers has been explored [11].

In this paper, one of the problems we study is stall. The stall could occur
due to many reasons. Researchers have developed different techniques to avoid
or recover from the stall. Deep stall has been studied [27], which is an uncon-
trollable state at which the angle of attack (AOA) increases automatically and
will be locked at a certain AOA which is far beyond the critical angle of attack.
A stall due to wing has been studied [39]. The stall avoidance/recovery have
been studied [9]. Here, we present a hybrid controller consisting of ANN and
LQR controller similar to simplex design [7], which will not only recover, but
also provide more learning space for the ANN controller to explore. Our hybrid
controller is different from the simplex design [7] in many perspectives. Our
hybrid controller makes the decision between ANN and LQR control input via
safety checking performed based on an under-approximation reach set, which is
computed off-line. However, in the work [7], the analysis is performed based on
an over-approximation reach set. Also, in the work [7], an initial set is known;
however, in our work, a target set (“safe zone”) is known and the initial set is
unknown.

Formally Verified Switching Logic for Recoverability of Aircraft Controller 569

3 Hybrid Controller Architecture

In this section, we provide details of the hybrid controller architecture which is
shown in Fig. 1. It has mainly four components: (a) Aircraft dynamics, (b) LQR
controller (c) ANN controller, and (d) Switching logic. For the aircraft dynamics,
we consider a 6-DOF model of the fixed wing aircraft. The hybrid controller
consists of the LQR and the ANN controller, and the switching logic; the LQR
and the ANN controller each receive the state of the aircraft periodically (which
is obtained from the aircraft dynamics model in the simulations) and compute
the inputs to the aircraft. The switching logic decides which input is fed back to
the aircraft (dynamics) at each sample time, based on the current state of the
system. The state of the system (dynamics) is updated according to the input
selected. We note that the details of the ANN controller is not important for
the correctness of this work, since the safety is guaranteed even when the ANN
control is considered as a black box. However, we adapt the ANN controller
from the work [34] for the ANN component of the hybrid controller. We briefly
describe the important aspects of the aircraft dynamics, LQR controller and the
switching logic.

Fig. 1. Hybrid controller architecture Fig. 2. Switching Logic for LQR
and ANN controller

3.1 Aircraft Dynamics

We start with a brief description of the aircraft states and motion. The aircraft
has 3 axes, the roll axis (I), pitch axis (J) and yaw axis (K) as shown in Fig. 3.
Motion occurs in two planes, the longitudinal, axes (I) and (K), and lateral,
axes (I) and (J), which are often considered to be decoupled.

In the longitudinal plane, the states are, velocity (V), angle of attack (α),
pitch angle (θ) and pitch rate (q), and control inputs are thrust (δt) and elevator

570 R. Lal et al.

Fig. 3. Overview of aircraft

deflection δe. All the states and control inputs are shown in Fig. 3. The angle
of attack (α) is the angle between the roll axis (I) and the direction of velocity
(V). The pitch angle (θ) is the angle between the roll axis (I) and the horizontal
axis. The pitch rate (q) is the rate of change in the pitch angle θ. When the
pitch angle (θ) changes, the lateral plane rotates and the roll and yaw axes will
change to I1 and K1, respectively. The thrust (δt) generates a force that is used
to move the aircraft forward along the roll axis, and the elevator deflection (δe)
is a control surface located at the rear of the aircraft which primarily controls
the pitch angle (θ). The longitudinal dynamics is a linear dynamics of the form
ẋlon = Alonxlon + Blonulon, where xlon = [V, α, θ, q]′, ulon = [δt, δe]′, and Alon

and Blon are specific matrices.
In the lateral plane, the states are, side-slip angle (β), roll angle (φ), roll rate

(p) and yaw rate (r), and control inputs are aileron deflection (δa) and rudder
deflection (δr). The states and control inputs are shown Fig. 3. The angle of
side-slip (β) is the angle between the roll axis (I) and the direction of incoming
airflow. When the roll axis I rotates, the pitch axis (J) and the yaw axis (K)
will change to J2 and K2, respectively. The roll angle (φ) is the angle between J
and J2. The roll rate (p) is the rate of change in the roll angle (φ). The yaw rate
(r) is the rotational rate of change in the yaw axis (K). The aileron deflection
(δa) is the control surface which is used to control the rotation of the roll axis
(I). The rudder deflection (δr) is the control surface which is used to control the
rotation of the yaw axis (K). The lateral dynamics is a linear dynamics of the
form ẋlat = Alatxlat + Blatulat, where xlat = [β, φ, p, r]′, ulat = [δa, δr]′, and Alat

and Blat are specific matrices.

Formally Verified Switching Logic for Recoverability of Aircraft Controller 571

3.2 LQR Controller

Linear Quadratic Regulator (LQR) controller for a linear dynamics ẋ = Ax+Bu
is an optimal controller that minimizes a quadratic cost function (J). It is a linear
state feedback controller of the form −Kx, where K is referred to as the gain
matrix. The closed loop dynamics is given by ẋ = (A − BK)x; which is the
system behavior when controller by the LQR controller. Since the longitudinal
and lateral dynamics of the aircraft are decoupled, we have an LQR controller
for each component with gains Klon and Klat, resulting in corresponding closed
loop systems, ẋlon = (Alon − BlonKlon)xlon and ẋlat = (Alat − BlatKlat)xlat.

3.3 Switching Algorithm for the Safety of ANN Controller

Stall is one of the important issues for any aircraft. Stall is a condition in which
the angle of attack surpasses a critical bound and greatly decreases lift genera-
tion. Consequently, the aircraft will start rapidly descending. Additional prob-
lems occur when the aircraft encounters large accelerations, primarily about the
roll and yaw axes, which can lead the aircraft into an unstable spiral mode, a
dangerous and usually unrecoverable event. Finally, rapid maneuvers can lead to
large loads on the aircraft structure, causing permanent deformation or breaking
the structure altogether. Generally, exact constraints for these problems cannot
be found due to the complexity of aircraft motion. However, a set of safe con-
straints has been generated for the testbed aircraft by examining previous flight
test data in which problems did not occur.

The objective of the switching logic is to arbitrate the switching between the
LQR and ANN based controllers, while maintaining safety and at the same time
providing ANN controller the maximum opportunity to operate, and thereby
learn. Our premise is that we have some known safe zone S give by an expert
in which LQR controller actions are safe, that is, if we apply control input u =
−Kx, when x ∈ S, to the LTI dynamics of the aircraft, then the aircraft never
stalls. However, if we apply control input u′ obtained by the ANN controller at
a state x ∈ S, we cannot ensure that the system never stalls. Computing such
a safe zone for an ANN controller would be computationally hard. Hence, the
switching algorithm computes the effect of applying u′ computed by the ANN
controller, and decides to pass it on to the system, if it infers that the system
will be safe in the next step. Otherwise, it outputs the input suggested by the
LQR controller. In either case, it ensures that the system is in the S region at all
times during the operation of the flight. The details of the switching algorithm
are provided in Fig. 2.

The performance of the hybrid controller depends on the safe zone. The safe
zone obtained by expert advice is often conservative. Hence, we provide a method
to extend the safe zone (“recoverable zone”) for which the switching algorithm
guarantees that the system is always recoverable within the fixed duration if it
occurs. Next, we provide the details of computing the recoverable zone.

572 R. Lal et al.

4 Computation of Recoverable Zone

In this section, we provide the details of computing a recoverable zone for the
fixed time T > 0. Our broad goal is to compute all those states from which the
given safe zone S can be reached within the time T > 0 for an LTI dynamics
of aircraft which is in the form of ẋ = (A − BK)x, where K is an LQR control
gain matrix. This is the problem of computing the backward reach set of a linear
system

ẋ = Cx (1)

where C = A − BK. The solution of a linear system ẋ = Cx is given by
x(t) = eCtx(0), where x(t) is the state of the system at time t. Hence, we define
the backward reach set for a given linear closed loop system as follows:

Definition 1. [Backward Reach Set] Given a linear closed loop system ẋ = Ax,
a time horizon T > 0, and a final set of states Xf , the backward reach set
ReachB(Xf , A, [0, T]) is defined as follows:

ReachB(Xf , A, [0, T]) = {x | ∃ t ∈ [0, T], eAtx ∈ Xf}.

Next, we formally define the recoverable zone in terms of backward reach set.

Definition 2. [Recoverable Zone] Given system in Eq. (1), a time horizon T >
0, and a safe zone S, a recoverable zone S ′ is defined as follows:

S ′ = ReachB(S, C, [0, T]).

The computation of the recoverable zone S ′ can be alternatively tackled using a
forward reachability analysis on the following transformed equation.

ẋ = −Cx (2)

We define forward reach set for a given linear closed loop system as follows:

Definition 3. [Forward Reach Set] Given a linear closed loop system ẋ = Ax, a
time horizon T > 0, and an initial set of states X0, forward reach set ReachF (X0,
A, [0, T]) is defined as follows:

ReachF (X0, A, [0, T]) = {eAtx0 | ∃ t ∈ [0, T],∃ x0 ∈ X0}.

Equation (2) is obtained from Eq. (1) by negating the right hand side. The
effect of the transformation is that the system now evolves backward in time.
We notice that the set of states that can reach S within time T from Equation
(1) (ReachB(S, C, [0, T])) is equal to the set of states reached using Equation (2)
from S in a given time horizon T > 0 (ReachF (S, C, [0, T])). Next, we formulate
this equivalence of forward and backward reach sets of the two systems, namely
Equations (1), (2) in Theorem 1.

Formally Verified Switching Logic for Recoverability of Aircraft Controller 573

Theorem 1. Given systems in Equation (1) and Equation (2), a time horizon
T > 0, a safe zone S, we have ReachF (S,−C, [0, T]) = ReachB(S, C, [0, T]).

The computation of the exact recoverable zone is complex because the solu-
tion of Equation (2) consists of exponential function, and there are no known
algorithms for solving constraints with exponential functions, unlike solvers for
linear and polynomial functions. Hence, several over-approximation methods
have been investigated [5,16,20,29,31,32]. An over-approximated recoverable
zone violates the property of the recoverable zone, that is, it contains point
that are not guaranteed to reach the safe zone within the time bound. In this
situation, the stall may not be recoverable if it occurs. Therefore, we compute
an under-approximation of the exact recoverable zone S ′ which is conservative,
nevertheless, ensures the safety of the switching algorithm.

4.1 Under-Approximation of Recoverable Zone

In this section, we provide a method to compute an under-approximation of the
exact recoverable zone S ′. While computing under-approximations are in general
hard, we use a simple idea that provides a practically viable under-approximation
for our purposes. Our broad approach is based on sampling, and consists of an
under-approximate reach set which is the union of the reach set at certain time
points, as opposed to all the points in the given interval. We sample the time
interval [0, T] at sample times that are multiples of r. Then, we compute forward
reach set from safe zone S under Equation (2) at sample times r, 2r, . . . , kr = T
and take their union, that is, the under-approximation of the recoverable zone

denoted Approx(S) is
k⋃

i=0

ReachF (S,−C, ir), where Reach(S,−C, ir) denotes the

forward reach set from S at time ir. Next, we show that Approx(S) is an under-
approximation of the recoverable zone S ′. We formulate this in Theorem 2.

Theorem 2. Given system in Equation (2), a time horizon T > 0, a safe zone
S, we have Approx(S) ⊆ ReachF (S,−C, [0, T]).

Note that Approx(S) converges to the exact recoverable zone S ′ as r → 0.

5 Experimental Analysis

In this section, we provide the details of our implementation of hybrid controller
architecture. Then, we present the experimental results.

5.1 Experimental Setup

The experimentation method for preliminary concept testing is a Hardware in
The Loop (HITL) simulation. The HITL runs the 6-DOF differential equations,
on the aircraft avionics, which are then propagated using a Runge-Kutta fourth
order integration method.

574 R. Lal et al.

Fig. 4. AFS 6.0 Fig. 5. HITL aggressive trajectory

This technique generates all aircraft states and control inputs that are nec-
essary to the operation of the switch. The main advantage of conducting these
simulations as an HITL rather than software simulations is that all the codes
will be tested on the actual hardware used for flight, showcasing any shortcom-
ings in computation power or integration missteps, which may impact flight test
success.

The current avionics, Autopilot Flight System (AFS) 6.0, consists of three
main components. Sensor data and outputs are handled by the Pixhawk 2.1 cube.
The onboard computer which runs the in-house designed guidance, navigation
and control (GNC) algorithms, as well as handles the state emulation is the
Nvidia Tegra Nano. The Tegra Nano is a low cost system, with a quad-core
CPU and a 128 core GPU. The final component is a 900 MHz telemetry unit
which serves as the communication between the aircraft and the ground station,
where the ground station provides a visual representation of the current aircraft
state as well as relevant GNC information. The ground station used for these
simulations is a modified version of the open source software, QGroundControl,
which is also used to generate way-points for the given area of operation. Figure 4
shows both the front and back sides of the custom avionics boards.

While in HITL, the ANN controllers are very stable due to being trained
with similar dynamic models to those that are used to propagate the simulation.
This makes it unlikely to see the switching logic in action as no control inputs
would be deemed unsafe, especially in grid or racetrack patterns that make
up the majority of flight test operations. To circumvent this, an oddly shaped
trajectory, shown in Fig. 5, with multiple sharp turns is used to ensure previously
un-visited states are achieved. The simulation is run for approximately one lap
of the given trajectory for each value of the time horizon shown in the following
section.

5.2 Experimental Results

In this section, we present the simulation results for the performance of hybrid
controller. For the simulation, we consider the safe zone provided by experts,
which are given in Table 1. We run the simulation for different recoverable zones,
which are computed for different values of time horizon T , namely, T = 0.05,

Formally Verified Switching Logic for Recoverability of Aircraft Controller 575

T = 0.15, T = 0.25, and T = 0.35 with time step τ = 0.05 unit. The simulation
results are shown in Figs. 6 and 7. The simulation results are plotted in Fig. 6
and Fig. 7 for longitudinal velocity and lateral angle of side-slip, respectively.

Fig. 6. Switching between ANN and LQR controller for the longitudinal velocity

Table 1. Safe zone for longitudinal and lateral state variables

Safe Zone V (Feet/sec.) α (Radians) θ (Radians) Q (Radians/sec.) β (Radians) φ (Radians) P (Radians/sec.) R (Radians/sec.)

Min −15 −0.087 −0.262 −0.262 −0.122 −0.785 −0.873 −0.349

Max 15 0.087 0.262 0.262 0.122 0.785 0.873 0.349

In both Figs. 6 and 7, we observe that the recoverable zone expands when
the time horizon T increases.

Fig. 7. Switching between ANN and LQR controller for the lateral angle of side-slip

Also, we observe that the number of sample iterations in which ANN con-
troller actions are performed, increases when the recoverable zone is expanded.
For instance, in Figs. 6 and 7, for T = 0.35, ANN controller actions have been

576 R. Lal et al.

performed from the sample iteration 1500 to 3000, which was not the case for
T = 0.25. For clarity, in Table 2, we present the number of sample iterations N
for both ANN and LQR controller in which their actions have been performed,
for different values of time horizon T .

Table 2. Number of sample iterations for ANN and LQR controller

N for T = 0.05 N for T = 0.15 N for T = 0.25 N for T = 0.35

ANN 3181 3269 3295 3345

LQR 220 132 106 56

Total 3401 3401 3401 3401

In Table 2, we observe that N grows for ANN controller when the time horizon
T increases, that is, the recoverable zone is expanded. However, N decreases for
LQR controller when T increases. This validate the fact that hybrid controller
framework provides ample time for the ANN controller to learn while ensuring
a safe flight.

5.3 Practical Challenges

The implementation of the hybrid controller proved to be complex in two ways.
First, the timing of the switching logic was important to the overall safety of the
project. When delays are introduced into the system, the current state of the
aircraft and the information the switch is making the decision on can become out
of sync. If the switching logic is behind the aircraft states it can make incorrect
calls on whether or not the aircraft is still safe, and cause the ANN to overextend
its operation, leading to a loss of control. This is made worse as aircraft have
large inertias and relatively slow time constants on control inputs meaning they
can become uncontrollable much quicker than most dynamic systems. This need
for extreme low latency operation caused many changes in the code structure
including a rewrite from Python to C++ and parallelization of applicable code.
The second practical problem is that the lack of full state feedback and low-
quality sensor data. Two of the aircraft states, angle of attack and sideslip angle,
cannot be directly measured by low cost systems. The easiest solution is to
employ a Kalman filtering technique to estimate these two states. However, if
the aircraft is experiencing a large perturbation away from the trim point, the
Kalman Filter can diverge very rapidly and feed incorrect information to the
switch about the relevant states. On top of this, many of the measured states
are taken using low-cost, off the shelf components. In a similar way, the use of
these components may introduce noise or a bias which could allow the aircraft
to go into the uncontrollable region without alerting the switch or the aircraft
operator. Low pass filtering is applied to attempt to deal with the noise, but the
imparted delay to the sensor data must also be taken into consideration.

Formally Verified Switching Logic for Recoverability of Aircraft Controller 577

6 Conclusions

We have developed a hybrid controller for an aircraft dynamics which provides
considerable amount of time to the ANN controller to operate and learn, while at
the same time guarantees the safe operation of the flight at all times. In future,
we will consider more sophisticated ANN controllers and investigate methods for
computing larger recoverable zones that allow for further increase of the ANN
operation time. Additionally, experimentation will be done with real flight tests,
moving past HITL simulations.

Acknowledgements. Pavithra Prabhakar was partially supported by NSF CAREER
Grant No. 1552668, NSF Grant No. 2008957, ONR YIP Grant No. N000141712577
and USDA Grant No. 2017-67007-26153. Also, this work was partially supported with
funding from National Aeronautics and Space Administration (NASA) Grant No.
NNX15AJ97H and Grant No. 80NSSC19C0102.

References

1. Abdelhameed, M.M.: Adaptive neural network based controller for robots. Mecha-
tronics 9, 147–162 (1999)

2. Akametalu, A.K., Fisac, J.F., Gillula, J.H., Kaynama, S., Zeilinger, M.N., Tomlin,
C.J.: Reachability-based safe learning with gaussian processes. In: Conference on
Decision and Control (2014)

3. Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embedded Comput. Syst. (TECS) 5, 152–199 (2006)

4. Argiriou, A.A., Bellas-Velidis, I., Kummert, M., André, P.: A neural network con-
troller for hydronic heating systems of solar buildings. Neural Netw. 17, 472–440
(2004)

5. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis
of piecewise-linear dynamical systems. Computation and Control. In: International
Workshop on Hybrid Systems (2000)

6. Azhar, M.A.H.B., Dimond, K.R.: Design of an FPGA based adaptive neural con-
troller for intelligent robot navigation. In: Proceedings Euromicro Symposium on
Digital System Design. Architectures, Methods and Tools (2002)

7. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: IEEE Real-Time Systems Symposium (2014)

8. Bhangal, N.S.: Design and performance of LQR and LQR based fuzzy controller
for double inverted pendulum system. J. Image Graph. 1, 143–146 (2013)

9. Brown, J.A.: Stall avoidance system for aircraft, 1986. US Patent 4,590,475 (1986)
10. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-

back systems using regressive polynomial rule inference. In: International Confer-
ence on Hybrid Systems: Computation and Control, (2019)

11. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NASA Formal Methods Symposium (2018)

12. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. CoRR, abs/1803.06567 (2018)

13. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and
Analysis (2017)

578 R. Lal et al.

14. Frehse, G., et al.: SpaceEX: scalable verification of hybrid systems. In: International
Conference on Computer Aided Verification (2011)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: IEEE Symposium on Security and Privacy (2018)

16. Girard, A.: Reachability of uncertain linear systems using zonotopes. Computation
and Control. In: International Workshop on Hybrid Systems (2005)

17. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep Neural Network Compression
for Aircraft Collision Avoidance Systems. arXiv e-prints (2018)

18. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. CoRR (2017)

19. Khosravani, M.R.: Application of neural network on flight control. Int. J. Mach.
Learn. Comput. 2, 882–885 (2012)

20. Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized linear
systems. In: International Conference on Embedded Software (2015)

21. Lal, R., Prabhakar, P.: Safety analysis using compositional bounded error approx-
imations of communicating hybrid systems. In: IEEE 56th Annual Conference on
Decision and Control (CDC) (2017)

22. Lal, R., Prabhakar, P.: Hierarchical abstractions for reachability analysis of prob-
abilistic hybrid systems. In: 56th Annual Allerton Conference on Communication,
Control, and Computing (Allerton) (2018)

23. Lal, R., Prabhakar, P.: Compositional construction of bounded error over-
approximations of acyclic interconnected continuous dynamical systems. In: ACM-
IEEE International Conference on Formal Methods and Models for System Design
(2019)

24. Lal, R., Prabhakar, P.: Counterexample guided abstraction refinement for polyhe-
dral probabilistic hybrid systems. ACM Trans. Embedded Comput. Syst. (TECS)
18, 1–23 (2019)

25. Lewis, F.W., Jagannathan, S., Yesildirak, A.: Neural Network Control of Robot
Manipulators and Non-linear Systems. CRC Press, Boca Raton (1998)

26. Mehri, M.: A comparison of neural network models, fuzzy logic, and multiple linear
regression for prediction of hatchability. Poult. Sci. 92, 1138–1142 (2013)

27. Montgomery, R.C., Moul, M.T.: Analysis of deep-stall characteristics of t-tailed
aircraft configurations and some recovery procedures. J. Airc. 3, 562–566 (1966)

28. Nair, V.G., Dileep, M.V., George, V.: Aircraft yaw control system using LQR and
fuzzy logic controller. Int. J. Comput. Appl. 45, 25–30 (2012)

29. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow com-
putations. In: International Conference on Hybrid Systems: Computation and Con-
trol (2011)

30. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: International Conference on Computer Aided Verifi-
cation (2010)

31. Roohi, N., Prabhakar, P., Viswanathan, M.: HARE: A Hybrid Abstraction Refine-
ment Engine for Verifying Non-linear Hybrid Automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 573–588. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 33

32. Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for
hybrid automata with affine dynamics. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (2016)

33. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. CoRR, abs/1805.02242 (2018)

https://doi.org/10.1007/978-3-662-54577-5_33

Formally Verified Switching Logic for Recoverability of Aircraft Controller 579

34. Shukla, D., Lal, R., Hauptman, D., Keshmiri, S.S., Prabhakar, P., Beckage, N.:
Flight test validation of a safety-critical neural network based longitudinal con-
troller for a fixed-wing UAS. In: AIAA AVIATION (2020)

35. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)

36. Sisworahardjo, N.S., El-Sharkh, M.Y., Alam, M.S.: Neural network controller for
microturbine power plants. Electr. Power Syst. Res. 78, 1378–1384 (2008)

37. Umair, S.M., Usman, R.: Automation of irrigation system using ANN based con-
troller. Int. J. Electr. Comput. Sci. (2010)

38. Veanes, M., Bjørner, N., Raschke, A.: An SMT approach to bounded reachability
analysis of model programs. In: International Conference on Formal Techniques for
Networked and Distributed Systems (2008)

39. Wang, T.: Aircraft wing stall control device and method, 1987. US Patent 4,702,441
(1987)

40. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks
survey. CoRR, abs/1810.01989 (2018)

41. Zeynelgil, H.L., Demiroren, A., Sengor, N.S.: The application of ANN technique
to automatic generation control for multi-area power system. Int. J. Electr. Power
Energy Systems (2002)

42. Zhang, T., Ge, S.S., Hang, C.C.: Adaptive neural network control for strict-
feedback nonlinear systems using backstepping design. Automatica 36, 1835–1846
(2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

SceneChecker: Boosting Scenario Verification
Using Symmetry Abstractions

Hussein Sibai(B) , Yangge Li , and Sayan Mitra

Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign, Urbana, USA

{sibai2,li213,mitras}@illinois.edu

Abstract. We present SceneChecker, a tool for verifying scenarios involving
vehicles executing complex plans in large cluttered workspaces. SceneChecker
converts the scenario verification problem to a standard hybrid system verifica-
tion problem, and solves it effectively by exploiting structural properties in the
plan and the vehicle dynamics. SceneChecker uses symmetry abstractions, a
novel refinement algorithm, and importantly, is built to boost the performance
of any existing reachability analysis tool as a plug-in subroutine. We evaluated
SceneChecker on several scenarios involving ground and aerial vehicles with
nonlinear dynamics and neural network controllers, employing different kinds of
symmetries, using different reachability subroutines, and following plans with
hundreds of waypoints in complex workspaces. Compared to two leading tools,
DryVR and Flow*, SceneChecker shows 14× average speedup in verification
time, even while using those very tools as reachability subroutines.

Keywords: Hybrid systems · Safety verification · Symmetry

1 Introduction

Remarkable progress has been made in safety verification of hybrid and cyber-
physical systems in the last decade [2–9]. The methods and tools developed have been
applied to check safety of aerospace, medical, and autonomous vehicle control sys-
tems [4,5,10,11]. The next barrier in making these techniques usable for more com-
plex applications is to deal with what is colloquially called the scenario verification
problem. A key part of the scenario verification problem is to check that a vehicle or an
agent can execute a plan through a complex environment. A planning algorithm (e.g.,
probabilistic roadmaps [12] and rapidly-exploring random trees (RRTs) [13]) generates
a set of possible paths avoiding obstacles, but only considering the geometry of the
scenario, not the dynamics. The verification task has to ensure that the plan can indeed

The authors are supported by a research grant from The Boeing Company and a research grant
from NSF (FMITF: 1918531). We would like to thank John L. Olson, Aaron A. Mayne, and
Michael R. Abraham from The Boeing Company for valuable technical discussions.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 580–594, 2021.
https://doi.org/10.1007/978-3-030-81685-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_28&domain=pdf
http://orcid.org/0000-0002-6053-1001
http://orcid.org/0000-0003-4633-9408
http://orcid.org/0000-0001-7082-5516
https://doi.org/10.1007/978-3-030-81685-8_28

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 581

be safely executed by the vehicle with all the dynamic constraints and the state esti-
mation uncertainties. Indeed, one can view a scenario as a hybrid automaton with the
modes defined by the segments of the planner, but this leads to massive models. Encod-
ing such automata in existing tools presents some practical hurdles. More importantly,
analyzing such models is challenging as the over-approximation errors and the analysis
times grow rapidly with the number of transitions. At the same time, such large hybrid
verification problems also have lots of repetitions and symmetries, which suggest new
opportunities.

We present SceneChecker, a tool that implements a symmetry abstraction-
refinement algorithm for efficient scenario verification. Symmetry abstractions signif-
icantly reduce the number of modes and edges of an automaton H by grouping all
modes that share symmetric continuous dynamics [14]. SceneChecker implements a
novel refinement algorithm for symmetry abstractions and is able to use any exist-
ing reachability analysis tool as a subroutine. Our current implementation comes with
plug-ins for using Flow∗ [4] and DryVR [6]. SceneChecker’s verification algorithm
is sound, i.e., if it returns safe, then the reachset of H indeed does not intersect the
unsafe set. The algorithm is lossless in the sense that if one can prove safety without
using abstraction, then SceneChecker can also prove safety via abstraction-refinement,
and typically a lot faster. SceneChecker can be found on figshare: https://figshare.com/
articles/software/CAV2021_reduce_v6_ova/14504352 and its website: https://publish.
illinois.edu/scenechecker/. An extended version of this paper is available online [1].

SceneChecker offers an easy interface to specify plans, agent dynamics, obstacles,
initial uncertainty, and symmetry maps. SceneChecker checks if a fixed point has been
reached after each call to the reachability subroutine, avoiding repeating computations.
First, SceneChecker represents the input scenario as a hybrid automaton H where modes
are defined by the plan’s segments. It uses the symmetry maps provided by the user to
construct an abstract automaton Hv. Automaton Hv represents another scenario with
fewer segments, each representing an equivalence class of symmetric segments in H.
A side effect of the abstraction is that upon reaching waypoints in Hv, the agent’s state
resets non-deterministically to a set of possible states. For example, in the case of rota-
tion and translation invariance, the abstract scenario would have a single segment for
any set of segments with a unique length in the original scenario. SceneChecker refines
Hv by splitting one of its modes to two modes. That corresponds to representing a set
of symmetric segments with one more segment in the abstract scenario, capturing more
accurately the original scenario1.

We evaluated SceneChecker on several scenarios where car and quadrotor agents
with nonlinear dynamics follow plans to reach several destinations in 2D and 3D
workspaces with hundreds of waypoints and polytopic obstacles. We considered dif-
ferent symmetries (translation and rotation invariance) and controllers (Proportional-
Derivative (PD) and Neural Networks (NN)). We compared the verification time of
SceneChecker with DryVR and Flow* as reachability subroutines against Flow* and
DryVR as standalone tools. SceneChecker is faster than both tools in all scenarios con-
sidered, achieving an average of 14× speedup in verification time (Table 1). In certain
scenarios where Flow* timed out (executing for more than 120 min), SceneChecker

1 A figure showing the architecture of SceneChecker can be found in the extended version [1].

https://figshare.com/articles/software/CAV2021_reduce_v6_ova/14504352
https://figshare.com/articles/software/CAV2021_reduce_v6_ova/14504352
https://publish.illinois.edu/scenechecker/
https://publish.illinois.edu/scenechecker/

582 H. Sibai et al.

is able to complete verification in as fast as 12 min using Flow* as a subroutine.
SceneChecker when using abstraction-refinement achieved 13× speedup in verifica-
tion time over not using abstraction-refinement in scenarios with the NN-controlled
quadrotor (Sect. 7).

Related Work. The idea of using symmetries to accelerate verification has been
exploited in a number of contexts such as probabilistic models [15,16], automata
[17,18], distributed architectures [19], and hardware [20,21]. Some symmetry utiliza-
tion algorithms are implemented in Murφ [22] and Uppaal [23].

In our context of cyber-physical systems, Bak et al. [24] suggested using symme-
try maps, called reachability reduction transformations, to transform reachsets to sym-
metric reachsets for continuous dynamical systems modeling non-interacting vehicles.
Maidens et al. [25] proposed a symmetry-based dimensionality reduction method for
backward reachable set computations for discrete dynamical systems. Majumdar et al.
[26] proposed a safe motion planning algorithm that computes a family of reachsets
offline and composes them online using symmetry. Bujorianu et al. [27] presented a
symmetry-based theory to reduce stochastic hybrid systems for faster reachability anal-
ysis and discussed the challenges of designing symmetry reduction techniques across
mode transitions.

In a more closely related research, we presented a modified version of DryVR
that utilizes symmetry to cache reachsets aiming to accelerate simulation-based safety
verification of continuous dynamical systems [28]. We developed the related tool
CacheReach that implements a hybrid system verification algorithm that uses sym-
metry to accelerate reachability analysis [29]. CacheReach caches and shares com-
puted reachsets between different modes of non-interacting agents using symmetry.
SceneChecker is based on the theory of symmetry abstractions of hybrid automata
we presented in [14]. We suggested computing the reachset of the abstract automaton
instead of the concrete one then transform it to the concrete reachset using symmetry
maps to accelerate verification. SceneChecker is built based on this line of work with
significant algorithmic and engineering improvements. In addition to the abstraction of
[14], SceneChecker 1) maps the unsafe set to an abstract unsafe set and verifies the
abstract automaton instead of the concrete one and 2) decreases the over-approximation
error of the abstraction through refinement. SceneChecker does not cache reachsets
and thus saves cache-access and reachset-transformation times and does not incur over-
approximation errors due to caching that CacheReach suffers from [29]. At the imple-
mentation level, SceneChecker accepts plans that are general directed graphs and poly-
topic unsafe sets while CacheReach accepts only single-path plans and hyperrectan-
gle unsafe sets. We show more than 30× speedup in verification time while having
more accurate verification results when comparing SceneChecker against CacheReach
(Table 1 in Sect. 7).

2 Specifying Scenarios in SceneChecker

A scenario verification problem is specified by a set of fixed obstacles, a plan, and an
agent that is supposed to execute the plan without running into the obstacles (e.g., see

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 583

Fig. 1B). For ground and air vehicles, for example, the agent moves in a subset of the 2D
or the 3D Euclidean space called the workspace. A plan is a directed graph G = 〈V,S〉
with vertices V in the workspace called waypoints and edges S called segments2. A
general graph allows for nondeterministic and contingency planning.

An agent is a control system that can follow waypoints. Let the state space of the
agent be X and Θ ⊆ X be the uncertain initial set. Let sinit be the initial segment in G
that the agent has to follow. From any state x ∈ X , the agent follows a segment s ∈ S
by moving along a trajectory. A trajectory is a function ξ : X × S × R

≥0 → X that
meets certain dynamical constraints of the vehicle. Dynamics are either specified by
ordinary differential equations (ODE) or by a black-box simulator. For ODE models, ξ
is a solution of an equation of the form: dξ

dt (x,s, t) = f (ξ (x,s, t),s), for any t ∈ R
≥0 and

ξ (x,s,0) = x, where f : X × S → X is Lipschitz continuous in the first argument. Note
that the trajectories only depend on the segment the agent is following (and not on the
full plan G). We denote by ξ .fstate, ξ .lstate, and ξ .dom the initial and last states and
the time domain of the time bounded trajectory ξ , respectively.

We can view the obstacles near each segment as sets of unsafe states, O : S →
2X . The map tbound : S → R

≥0 determines the maximum time the agent should spend
in following any segment. For any pair of consecutive segments (s,s′), i.e. sharing a
common waypoint in G, guard((s,s′)) defines the set of states (a hyperrectangle around
a waypoint) at which the agent is allowed to transition from following s to following s′.

Scenario JSON file is the first of the two user inputs. It specifies the scenario: Θ
as a hyperrectangle; S as a list of lists each representing two waypoints; guard
as a list of hyperrectangles; tbound as a list of floats; and O as a list of polytopes.
Output of SceneChecker is the scenario verification result (safe or unknown)
and a number of useful performance metrics, such as the number of mode-
splits, number of reachability calls, reachsets computation time, and total time.
SceneChecker can also visualize the various computed reachsets.

3 Transforming Scenarios to Hybrid Automata

The input scenario is first represented as a hybrid automaton by a Hybrid constructor.
This constructor is a Python function that parses the Scenario file and constructs the
data structures to store the scenario’s hybrid automaton components. In what follows,
we describe the constructed automaton informally. In our current implementation, sets
are represented either as hyper-rectangles or as polytopes using the Tulip Polytope
Library3.

2 We introduce this redundant nomenclature because later we will reserve the term edges to talk
about mode transitions in hybrid automata. We use waypoints instead of vertices as a more
natural term for points that vehicles have to follow.

3 https://pypi.org/project/polytope/.

https://pypi.org/project/polytope/

584 H. Sibai et al.

Scenario as a Hybrid Automaton. A hybrid automaton has a set of modes (or discrete
states) and a set of continuous states. The evolution of the continuous states in each
mode is specified by a set of trajectories and the transition across the modes are specified
by guard and reset maps. The agent following a plan in a workspace can be naturally
modeled as a hybrid automaton H, where sinit and Θ are its initial mode and set of
states.

Each segment s ∈ S of the plan G defines a mode of H (e.g. see Fig. 1A). The set
of edges E ⊆ S × S of H is defined as pairs of consecutive segments in G. For an edge
e ∈ E, guard(e) is the same as that of G. The reset map of H is the identity map. We
will see in Sect. 5 that abstract automata will have nontrivial reset maps.

Verification Problem. An execution of length k is a sequence σ := (ξ0,s0), . . . ,(ξk,sk).
It models the behavior of the agent following a particular path in the plan G. An exe-
cution σ must satisfy: 1) ξ0.fstate ∈ Θ and s0 = sinit, for each i ∈ {0, . . . ,k − 1}, 2)
(si,si+1) ∈ E, 3) ξi.lstate ∈ guard((si,si+1)), and 4) ξi.lstate = ξi+1.fstate, and 5) for
each i ∈ {0, . . . ,k}, ξi.dom ≤ tbound(si). The set of reachable states is ReachH :=
{σ .lstate | σ is an execution}. The restriction of ReachH to states with mode s ∈ S
(i.e., agent following segment s) is denoted by ReachH(s). Thus, the hybrid system
verification problem requires us to check whether ∀s ∈ S, ReachH(s)∩O(s) = /0.

4 Specifying Symmetry Maps in SceneChecker

The hybrid automaton representing a scenario, as constructed by the Hybrid
constructor, is transformed into an abstract automaton. SceneChecker uses symme-
try abstractions [14]. The abstraction is constructed by the abstract function (line 1 of
Algorithm 1) which uses a collection of pairs of maps Φ = {(γs : X → X ,ρs : S → S)}s∈S

that is provided by the user. We describe below how these maps are specified by the user
in the Dynamics file. These maps should satisfy:

∀ t ≥ 0,x0 ∈ X ,s ∈ S,γs(ξ (x0,s, t)) = ξ (γs(x0),ρs(s), t). (1)

where ∀s ∈ S, the map γs is differentiable and invertible. Such maps are called symme-
tries for the agent’s dynamics. They transform the agent’s trajectories to other symmet-
ric ones of its trajectories starting from symmetric initial states and following symmetric
modes (or segments in our scenario verification setting). It is worth noting that (1) does
not depend on whether the trajectories ξ are defined by ODEs or black-box simula-
tors. Currently, condition (1) is not checked by SceneChecker for the maps specified by
the user. However, in the following discussion, we present some ways for the user to
check (1) on their own. For ODE models, a sufficient condition for (1) to be satisfied
is if: ∀ x ∈ X ,s ∈ S, ∂γs

∂x f (x,s) = f (γs(x),ρs(s)), where f is the right-hand-side of the
ODE [30]. For black-box models, (1) can be checked using sampling methods. In realis-
tic settings, dynamics might not be exactly symmetric due to unmodeled uncertainties.
In the future, we plan to account for such uncertainties as part of the reachability anal-
ysis.

In scenario verification, a given workspace would have a coordinate system accord-
ing to which the plan (waypoints) and the agent’s state (position, velocity, heading

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 585

angle, etc.) are represented. In a 2D workspace, for any segment s ∈ S, an example
symmetry ρs would transform the two waypoints of s to a new coordinate system where
the second waypoint is the origin and s is aligned with the negative side of the hor-
izontal axis (see Fig. 1D). The corresponding γs would transform the agent’s state to
this new coordinate system (e.g. by rotating its position and velocity vectors and shift-
ing the heading angle). For such a pair (γs,ρs) to satisfy (1), the agent’s dynamics
have to be invariant to such a coordinate transformation and (1) merely formalizes this
requirement. Such an invariance property is expected from vehicles’ dynamics–rotating
or translating the lane should not change how an autonomous car behaves.

Dynamics file is the second input provided by the user in addition to the
Scenario file and it contains the following:

polyVir(X ′,s): returns γs(X ′) for any polytope X ′ ⊂ X and segment s ∈ S.
modeVir(s): returns ρs(s) for any given segment s ∈ S.
virPoly(X ′,s): returns γ−1

s (X ′), implementing the inverse of polyVir.
computeReachset(initset,s,T): returns a list of hyperrectangles over-
approximating the agent’s reachset starting from initset following segment s
for T time units, for any set of states initset ⊂ X , segment s ∈ S, and T ≥ 0.

5 Symmetry Abstraction of the Scenario’s Automaton

In this section, we describe how the abstract function in Algorithm 1 uses the functions
in the Dynamics file to construct an abstraction of the scenario’s hybrid automaton
provided by the Hybrid constructor. Given the symmetry maps of Φ , the symmetry
abstraction of H is another hybrid automaton Hv that aggregates many symmetric modes
(segments) of H into a single mode of Hv.

Modes and Transitions. Any segment s ∈ S of H is mapped to the segment ρs(s) in Hv

using modeVir. The set of modes Sv of Hv is the set of segments {ρs(s)}s∈S. For any
sv, tboundv(sv) = maxs∈S,sv=ρs(s) tbound(s). In the example of Sect. 4 (Fig. 1D), the seg-
ments in Hv are aligned with the horizontal axis and ending at the origin. The number of
segments in Hv would be the number of segments in G with unique lengths. The agent
would always be moving towards the origin of the workspace in the abstract scenario.
Any edge e = (s,s′) ∈ E of H is mapped to the edge ev = (ρs(s),ρs′(s′)) in Hv. The
guard(e) is mapped to γs(guard(e)) using polyVir which becomes part of guardv(ev) in
Hv. For any x ∈ X , reset(x,e), which is equal to x, is mapped to γs′(γ−1

s (x)) and becomes
part of resetv(x,ev) in Hv. In our example in Sect. 4, the γ−1

s (x) would represent x in
the absolute coordinate system assuming it was represented in the coordinate system
defined by segment s. The γs′(γ−1

s (x)) would represent γ−1
s (x) in the new coordinate

system defined by segment s′. The guardv(ev) would be the union of rotated hyperrect-
angles centered at the origin that result from translating and rotating the guards of the
edges represented by ev. The initial set Θ of H is mapped to Θv = γsinit(Θ), the initial
set of Hv. A formal definition of symmetry abstractions can be found in [1] (or [14]).

586 H. Sibai et al.

The unsafe map O is mapped to Ov, where ∀sv ∈ Sv,Ov(sv) = ∪s∈S,ρs(s)=svγs(O(s)).
That means that the obstacles near any segment s ∈ S in the environment will be mapped
to be near its representative segment ρs(s) in Hv.

A forward simulation relation between H and Hv can show that if Hv is safe with
respect to Ov, then H is safe with respect to O. More formally, if ∀sv ∈ Sv,ReachHv(sv)∩
Ov(sv) = /0, then ∀s ∈ S,ReachH(s)∩O(s) = /0 [14].

6 SceneChecker Algorithm Overview

A sketch of the core abstraction-refinement algorithm is shown in Algorithm 1. It con-
structs a symmetry abstraction Hv of the concrete automaton H resulting from the
Hybrid constructor. SceneChecker attempts to verify the safety of Hv using traditional
reachability analysis. SceneChecker uses a cache to store per-mode initial sets from
which reachsets have been computed and thus avoids repeating computations. An exam-
ple run is shown in Fig. 1.

Fig. 1. A simple scenario with a car following a plan with six segments is shown in B. Set of
initial positions (green square), unsafe set (grey), and the segments (black lines). The automaton
(A) has one mode per segment. Translation and rotation symmetries are used to abstract A to the
automaton C. The abstraction translates and rotates each segment of the original scenario to a
segment aligned with the x-axis and ends at the origin resulting in the segments (i.e. modes) s0

v
and s1

v . The unsafe set is transformed accordingly for each mode as shown in D. SceneChecker
computes the reachset of C which turns out to be unsafe; to illustrate the process this abstract
reachset transformed to the original scenario is shown in E. The colors refer to a different abstract
modes. The algorithm refines C to F by adding s2

v (same segment as s1
v but different guard). The

reachset of F is safe and the algorithm terminates (H). (The colored figure is available in the
online version of this paper)

The core algorithm verify (Algorithm 2) is called iteratively. If verify returns
(safe,⊥) or (unknown,⊥), SceneChecker returns the same result. If verify instead
results in (refine,s∗

v), splitMode (check the extended version of this paper [1] for the
formal definition) is called to refine Hv by splitting s∗

v into two modes s1
v and s2

v . Each of

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 587

Algorithm 1. SceneChecker(Φ = {(γs,ρs)}s∈S,H,O)
1: Hv,Ov ← abstract(H,O,Φ)
2: ∀s ∈ S,rv[s] ← ρs(s)
3: while True do
4: cache ← {sv �→ /0 | sv ∈ Sv}
5: result,s∗

v ← verify(rv[sinit],Θv,cache,rv,Hv,Ov)
6: if result = safe or unknown then return: result
7: else rv,Hv,Ov ← splitMode(s∗

v ,rv,Hv,Ov,H,O)

the two modes would represent part of the set of the segments of S that were originally
mapped to sv in rv. Then the edges, guards, resets, and the unsafe sets related to sv are
split according to their definitions.

The function verify executes a depth first search (DFS) over the mode graph of Hv.
For any mode sv being visited, computeReachset computes Rv, an over-approximation
of the agent’s reachset starting from initset following segment sv for time tboundv(sv).
If Rv ∩ Ov(sv) = /0, verify recursively calls sv’s children continuing the DFS in line 6.
Before calling each child, its initial set is computed and the part for which a reachset
has already been computed and stored in cache is subtracted. If all calls return safe,
then initset is added to the other initial sets in cache[sv] (line 12) and verify returns safe.
Most importantly, if verify returns (refine,s∗

v) for any of sv’s children, it directly returns
(refine,s∗

v) for sv as well (line 7). If any child returns unknown or Rv intersects Ov(sv),
verify will need to split sv. In that case, it checks if rv−1[sv] is not a singleton set and thus
amenable to splitting (line 10). If sv can be split, verify returns (refine,sv). Otherwise,
verify returns (unknown,⊥) implicitly asking one of sv’s ancestors to be split instead.

Correctness. SceneChecker ensures that all the refined automata Hv’s are abstractions
of the original hybrid automaton H (a proof is given in the extended version of this
paper [1]). For any mode with a reachset intersecting the unsafe set, SceneChecker
keeps refining that mode and its ancestors until safety can be proven or Hv becomes H.

Theorem 1 (Soundness). If SceneChecker returns safe, then H is safe.

If verify is provided with the concrete automaton H and unsafe set O, it will be the tradi-
tional safety verification algorithm having no over-approximation error due to abstrac-
tion. If such a call to verify returns safe, then SceneChecker is guaranteed to return safe.
That means that the refinement ensures that the over-approximation error of the reachset
caused by the abstraction is reduced to not alter the verification result.

Counter-examples. SceneChecker currently does not find counter-examples to
show that the scenario is unsafe. There are several sources of over-approximation
errors, namely, computeReachset and guard intersections. Even after all the over-
approximation errors from symmetry abstractions are eliminated, as refinement does,
it still cannot infer unsafe executions or counter-examples because of the other errors.
We plan to address this in the future by combining the current algorithm with systematic
simulations.

588 H. Sibai et al.

Algorithm 2. verify(sv, initset,cache,rv,Hv,Ov)
1: Rv ← computeReachset(initset,sv)
2: if Rv ∩Ov(sv) = /0 then
3: for s′

v ∈ children(sv) do
4: initset′ ← resetv(guardv((sv,s′

v))∩Rv)\cache[s′
v]

5: if initset′ �= /0 then
6: result,s∗

v ← verify(s′
v, initset′,cache,rv,Hv,Ov)

7: if result = refine then return: refine,s∗
v

8: else if result = unknown then break
9: if Rv ∩Ov(sv) �= /0 or result is unknown then

10: if |rv−1[sv]| > 1 then return: refine,sv

11: else return: unknown,⊥
12: cache[sv] ← cache[sv]∪ initset
13: return: safe,⊥

7 Experimental Evaluation

Agents and Controllers. In our experiments, we consider two types of nonlinear agent
models: a standard 3-dimensional car (C) with bicycle dynamics and 2 inputs, and a
6-dimensional quadrotor (Q) with 3 inputs. For each of these agents, we developed a
PD controller and a NN controller for tracking segments. The NN controller for the
quadrotor is from Verisig’s paper [9] but modified to be rotation symmetric (check the
extended version of this paper [1] for more details). Similarly, the NN controller for the
car is made rotation symmetric. Both NN controllers are translation symmetric as they
take as input the difference between the agent’s state and the segment being followed.
The PD controllers are translation and rotation symmetric by design.

Symmetries. We experimented with two different collections of symmetry maps Φs: 1)
translation symmetry (T), where for any segment s in G, γs maps the states so that the
coordinate system is translated by a vector that makes its origin at the end waypoint of
s, and 2) rotation and translation symmetry (TR), where instead of just translating the
origin, Φ rotates the xy-plane so that s is aligned with the x-axis, which we described
in Sect. 4. For each agent and one of its controllers, we manually verified that condition
(1) is satisfied for each of the two Φs using the sufficient condition for ODEs in Sect. 4.

Scenarios. We created four scenarios with 2D workspaces (S1-4) and one scenario with
a 3D workspace (S5) with corresponding plans. We generated the plans using an RRT
planner [31] after specifying a number of goal sets that should be reached. We modified
S4 to have more obstacles but still have the same plan and named the new version S4.b
and the original one S4.a. When the quadrotor was considered, the waypoints of the 2D
scenarios (S1-4) were converted to 3D representation by setting the altitude for each
waypoint to 0. Scenario S5 is the same as S2 but S5’s waypoints have varying altitudes.
The scenarios have different complexities ranging from few segments and obstacles to
hundreds of them. All scenarios are safe when traversed by any of the two agents.

We verify these scenarios using SceneChecker and CacheReach, each with two
instances, one with DryVR and the other with Flow*, implementing computeReachset.

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 589

We also use DryVR and Flow* as independent tools to verify the same scenarios.
The results of experiments with tools that involve DryVR (i.e., SceneChecker+DryVR,
CacheReach+DryVR, and DryVR) are stochastic and change between runs. The reason
is that each time DryVR is called, it randomly samples traces of the system from which
it computes the requested reachset. We fix the random seed for repeatable results in this
section. We show close averaging-based results on SceneChecker’s website.

SceneChecker is able to verify all scenarios with PD controllers. The results are
shown in Table 14 and plotted for C-S1 using SceneChecker+Flow* in Fig. 1.

Observation 1: SceneChecker offers fast scenario verification and boosts existing
reachability tools Looking at the two total time (Tt) columns for the two instances
of SceneChecker with the corresponding columns for Flow* and DryVR, it becomes
clear that symmetry abstractions can boost the verification performance of reachabil-
ity engines. For example, in C-S4.a, SceneChecker+DR was around 20× faster than
DryVR. In C-S3, SceneChecker with Flow* was around 16× faster than Flow*. In sce-
nario Q-S5, SceneChecker timed out at least in part because a computeReachset call
to Flow* timed out. Even when many refinements are required and thus causing sev-
eral repetitions of the verification process in Algorithm 1, SceneChecker is still faster
than DryVR and Flow* (C-S4.b). All three tools resulted in safe for all scenarios when
completed executions.

Observation 2: SceneChecker is faster and more accurate than CacheReach Since
CacheReach only handles single-path plans, we only verify the longest path in the
plans of the scenarios in its experiments. CacheReach’s instance with Flow* resulted
in unsafe reachsets in C-S1 and C-S4.b scenarios likely because of the caching over-
approximation error. In all scenarios where CacheReach completed verification besides
C-S4.b, it has more Rc and longer Tt (more than 30× in C-S2) while verifying simpler
plans than SceneChecker using the same reachability subroutine. In all Q scenarios,
both instances of CacheReach, with Flow* and DryVR, timed out.

Observation 3: More symmetric dynamics result in faster verification time
SceneChecker usually runs slower in 3D scenarios compared to 2D ones (Q-S2 vs. Q-
S5) in part because there is no rotational symmetry in the z-dimension to exploit. That
leads to larger abstract automata. Therefore, many more calls to computeReachset are
required.

We only used SceneChecker’s instance with DryVR for agents with NN-
controllers5. We tried different Φs. The results are shown in Table 2. When not using
abstraction-refinement, SceneChecker took 10.5, 130.95, and 74.15 min for the QNN-
S2, QNN-S3, and QNN-S4 scenarios, while DryVR took 5.22, 52.56, and 61.31 min for
the same scenarios, respectively. Comparing these results with those in Table 2 shows

4 Figures presenting the reachsets of the concrete and abstract automata for different scenarios
can be found in the extended version of this paper [1] as well as the machine specifications.

5 Check the extended version [1] for a discussion about our attempts for using other verification
tools for NN-controlled systems as reachability subroutines.

590 H. Sibai et al.

Ta
bl

e
1.

C
om

pa
ri

so
n

be
tw

ee
n

S
ce

n
eC

h
ec

ke
r,

D
ry

V
R

(D
R

),
Fl

ow
*

(F
*)

,a
nd

C
ac

h
eR

ea
ch

(C
ac

h
eR

).
B

ot
h

S
ce

n
eC

h
ec

ke
r

an
d

C
ac

h
eR

ea
ch

us
e

re
ac

ha
-

bi
lit

y
to

ol
s

as
su

br
ou

tin
es

.T
he

su
br

ou
tin

es
us

ed
ar

e
sp

ec
ifi

ed
af

te
r

th
e

‘+
’

si
gn

.Φ
is

T
R

.T
he

ta
bl

e
sh

ow
s

th
e

nu
m

be
r

of
m

od
e-

sp
lit

s
pe

rf
or

m
ed

(N
re

fs
),

th
e

to
ta

ln
um

be
r

of
ca

lls
to

co
m

p
u
te

R
ea

ch
se

t
(R

c)
,t

he
to

ta
lt

im
e

sp
en

ti
n

re
ac

hs
et

co
m

pu
ta

tio
ns

(R
t)

,a
nd

th
e

to
ta

lc
om

pu
ta

tio
n

tim
e

in
m

in
ut

es
(T

t)
.I

n
sc

en
ar

io
s

w
he

re
a

to
ol

ra
n

ov
er

12
0

m
in

,w
e

m
ar

ke
d

th
e

T
tc

ol
um

n
as

‘T
im

ed
ou

t’
(T

O
)

an
d

th
e

ot
he

r
on

es
as

‘N
ot

A
va

ila
bl

e’
(N

A
).

Sc
.

|S|
S
ce

n
eC

h
ec

ke
r+

D
R

C
a
ch

eR
+

D
R

D
R

S
ce

n
eC

h
ec

ke
r+

F*
C
a
ch

eR
+

F*
F*

N
re

fs
R

c
R

t
T

t
R

c
T

t
T

t
N

R
ef

s
R

c
R

t
T

t
R

c
T

t
T

t

C
-S

1
6

1
4

0.
14

0.
15

46
1.

73
1.

28
1

4
0.

51
0.

52
52

8.
20

2.
11

C
-S

2
14

0
0

1
0.

04
0.

65
42

4
19

.9
2

10
.5

7
0

1
0.

18
0.

79
19

2
30

.9
5

17
.5

2

C
-S

3
45

8
0

1
0.

04
4.

24
50

2
19

.3
3

71
.4

1
0

1
0.

11
4.

34
17

6
28

.6
4

73
.0

6

C
-S

4.
a

52
0

2
7

0.
26

4.
37

40
4

15
.8

4
94

.6
2

2
7

0.
80

4.
96

16
0

25
.9

8
61

.5
3

C
-S

4.
b

52
0

10
39

1.
43

8.
69

40
4

16
.0

6
96

.0
2

10
39

2.
83

31
.7

3
16

0
26

.0
7

60
.6

7

Q
-S

1
6

1
4

0.
04

0.
05

N
A

T
O

0.
25

1
4

13
.8

5
14

.1
3

N
A

T
O

30
.1

7

Q
-S

2
14

0
0

1
0.

04
0.

88
N

A
T

O
4.

97
0

1
3.

38
12

.6
2

N
A

T
O

T
O

Q
-S

3
45

8
0

1
0.

06
5.

9
N

A
T

O
46

.3
4

0
1

4.
98

62
.6

6
N

A
T

O
T

O

Q
-S

4.
a

52
0

0
1

0.
06

3.
17

N
A

T
O

56
.1

9
0

1
4.

8
34

.8
9

N
A

T
O

T
O

Q
-S

5
18

8
0

36
0.

85
3.

04
N

A
T

O
8.

03
N

A
N

A
N

A
T

O
N

A
T

O
T

O

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 591

that the speedup in verification time of SceneChecker is caused by the abstraction-
refinement algorithm, achieving more than 13× in certain scenarios (QNN-S4 using
Φ = T). SceneChecker+DR was more than 10× faster than DryVR in the same sce-
nario.

Table 2. Comparison between Φs. In addition to the statisitics of Table 1, this table reports the
number of modes and edges in the initial and final (after refinement) abstractions (|Sv|i, |Ev|i;
|Sv| f , and |Ev| f , respectively)

Sc NRef Φ |S| |Sv|i |Ev|i |Sv| f |Ev| f Rc Rt Tt

CNN-S2 6 TR 140 1 1 7 17 19 1.51 3.05

CNN-S4 9 TR 520 1 1 10 28 47 3.77 11.25

QNN-S2 3 TR 140 1 1 4 9 9 0.61 3.55

QNN-S3 5 TR 458 1 1 6 16 15 1.51 12.7

QNN-S4 4 TR 520 1 1 5 13 11 1.11 7.43

QNN-S2 0 T 140 7 19 7 19 8 0.53 1.38

QNN-S3 4 T 458 7 30 11 58 29 2.92 16.88

QNN-S4 0 T 520 7 30 7 30 13 1.32 5.34

Observation 4: Choice of Φ is a trade-off between over-approximation error and num-
ber of refinements The choice of Φ affects the number of refinements performed and
the total running times (e.g. QNN-S2, QNN-S3, and QNN-S4). Using TR leads to a
more succinct Hv but larger over-approximation error causing more mode splits. On the
other hand, using T leads to a larger Hv but less over-approximation error and thus fewer
refinements. This trade-off can be seen in Table 2. For example, QNN-S4 with Φ = T
resulted in zero mode splits leading to |Sv|i = |Sv| f = 7, while Φ = TR resulted in 4
mode splits, starting with |Sv|i = 1 modes and ending with |Sv| f = 5, and longer verifi-
cation time because of refinements. On the other hand, in QNN-S3, Φ = TR resulted in
Nref= 5, |Sv| f = 6, and Tt= 12.7 min while Φ =T resulted in Nref= 4, |Sv| f = 11, and
Tt= 16.88 min.

Observation 5: Complicated dynamics require more verification time Different vehicle
dynamics affect the number of refinements performed and consequently the verification
time (e.g. QNN-S2, QNN-S4, CNN-S2, and CNN-S4). The car appears to be less stable
than the quadrotor leading to longer verification time for the same scenarios. This can
also be seen by comparing the results of Tables 1 and 2. The PD controllers lead to more
stable dynamics than the NN controllers requiring less total computation time for both
agents. More stable dynamics lead to tighter reachsets and fewer refinements.

8 Limitations and Discussions

SceneChecker allows the choice of modes to be changed from segments to waypoints
or sequences of segments as well. The waypoint-defined modes eliminate the need for

592 H. Sibai et al.

segments of G to have few unique lengths, but only allow Φ = T. SceneChecker splits
only one mode per refinement and then repeats the computation from scratch. It has
to refine many times in unsafe scenarios until reaching the result unknown. We plan
to investigate other strategies for eliminating spurious counter-examples and returning
valid ones in unsafe cases. In the future, it will be important to address other sources of
uncertainty in scene verification such as moving obstacles, interactive agents, and other
types of symmetries such as permutation and time scaling. Finally, it will be useful to
connect a translator to generate scene files from common road simulation frameworks
such as CARLA [32], commonroad [33], and Scenic [34].

References

1. Sibai, H., Li, Y., Mitra, S.: SceneChecker: boosting scenario verification using symmetry
abstractions (2021). https://arxiv.org/abs/2011.10713

2. Frehse, G., et al.: SpaceEX: scalable verification of hybrid systems. In: CAV (2011)
3. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reachability

for linear systems. In: Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control, pp. 173–178. ACM (2017)

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid sys-
tems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

5. Duggirala, P.S., Fan, C., Mitra, S., Viswanathan, M.: Meeting a Powertrain verification chal-
lenge. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 536–543.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_37

6. Fan, C., Qi, B., Mitra, S., Viswanathan, M.: DRYVR: data-driven verification and composi-
tional reasoning for automotive systems. In: Majumdar, R., Kunčak, V. (eds.) CAV (2017)

7. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - a tool for verifica-
tion of neural network feedback systems: demo abstract, pp. 262–263. HSCC 2019. ACM,
New York, USA (2019). https://doi.org/10.1145/3302504.3313351

8. Tran, H.D., et al.: NNV: the neural network verification tool for deep neural networks and
learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV (2020)

9. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety properties of
hybrid systems with neural network controllers. In: ACM HSCC (2019)

10. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on Applied
Verification for Continuous and Hybrid Systems (2015)

11. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis
for nonlinear hybrid models with C2E2. In: CAV (2016)

12. Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–
580 (1996)

13. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical
report (1998)

14. Sibai, H., Mitra, S.: Symmetry abstractions for hybrid systems and their applications (2020).
https://arxiv.org/abs/2006.09485

15. Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic model
checking. In: CAV (2006)

16. Antuña, L.R., Araiza-Illan, D., Campos, S., Eder, K.: Symmetry reduction enables model
checking of more complex emergent behaviours of swarm navigation algorithms. In:
Towards Autonomous Robotic Systems TAROS, pp. 26–37 (2015)

https://arxiv.org/abs/2011.10713
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-21690-4_37
https://doi.org/10.1145/3302504.3313351
https://arxiv.org/abs/2006.09485

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 593

17. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Computer Aided Verifica-
tion, 28 June–1 July 1993, Elounda, Greece, Proceedings, pp. 463–478 (1993)

18. Clarke, E.M., Jha, S.: Symmetry and induction in model checking. In: Computer Science
Today: Recent Trends and Developments, pp. 455–470 (1995)

19. Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Methods in Computer Science [elec-
tronic only] 10 (2014)

20. Mann, M., Barrett, C.: Partial order reduction for deep bug finding in synchronous hardware.
In: TACAS 2020. LNCS, vol. 12078, pp. 367–386. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45190-5_20

21. Hu, Y., Shih, V., Majumdar, R., He, L.: Exploiting symmetries to speed up sat-based Boolean
matching for logic synthesis of FPGAs. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(10), 1751–1760 (2008). https://doi.org/10.1109/TCAD.2008.2003272

22. Ip, C.N., Dill, D.L.: Better verification through symmetry. In: Proceedings of the 11th IFIP
WG10.2 International Conference, pp. 97–111. CHDL 1993, North-Holland Publishing Co.,
Amsterdam, The Netherlands, The Netherlands (1993)

23. Hendriks, M., Behrmann, G., Larsen, K., Niebert, P., Vaandrager, F.: Adding symmetry
reduction to uppaal (2004)

24. Bak, S., Huang, Z., Abad, F.A.T., Caccamo, M.: Safety and progress for distributed cyber-
physical systems with unreliable communication. ACM Trans. Embed. Comput. Syst. 14(4)
(2015). https://doi.org/10.1145/2739046

25. Maidens, J., Arcak, M.: Exploiting symmetry for discrete-time reachability computations.
IEEE Control Systems Letters 2(2), 213–217 (2018)

26. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion planning.
Int. J. Robot. Res. 36(8), 947–982 (2017)

27. Bujorianu, M., Katoen, J.P.: Symmetry reduction for stochastic hybrid systems. In: 2008
47th IEEE Conference on Decision and Control : CDC; Cancun, Mexico, 9–2008. - T. 1, pp.
233–238. IEEE, Piscataway, NJ (2008). https://publications.rwth-aachen.de/record/100535

28. Sibai, H., Mokhlesi, N., Mitra, S.: Using symmetry transformations in equivariant dynamical
systems for their safety verification. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA
2019. LNCS, vol. 11781, pp. 98–114. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-31784-3_6

29. Sibai, H., Mokhlesi, N., Fan, C., Mitra, S.: Multi-agent safety verification using symmetry
transformations. In: TACAS 2020. LNCS, vol. 12078, pp. 173–190. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45190-5_10

30. Russo, G., Slotine, J.J.E.: Symmetries, stability, and control in nonlinear systems and net-
works. Phys. Rev. E 84(4), 041929 (2011)

31. Fan, C., Miller, K., Mitra, S.: Fast and guaranteed safe controller synthesis for nonlinear
vehicle models. In: Lahiri, S.K., Wang, C. (eds.) CAV (2020)

32. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban driv-
ing simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16
(2017)

33. Althoff, M., Koschi, M., Manzinger, S.: CommonRoad: composable benchmarks for motion
planning on roads. In: Proceedings of the IEEE Intelligent Vehicles Symposium (2017)

34. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: a language for scenario specification and scene generation, pp. 63–78. PLDI 2019,
ACM, New York, USA (2019). https://doi.org/10.1145/3314221.3314633

https://doi.org/10.1007/978-3-030-45190-5_20
https://doi.org/10.1007/978-3-030-45190-5_20
https://doi.org/10.1109/TCAD.2008.2003272
https://doi.org/10.1145/2739046
https://publications.rwth-aachen.de/record/100535
https://doi.org/10.1007/978-3-030-31784-3_6
https://doi.org/10.1007/978-3-030-31784-3_6
https://doi.org/10.1007/978-3-030-45190-5_10
https://doi.org/10.1145/3314221.3314633

594 H. Sibai et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Effective Hybrid System Falsification
Using Monte Carlo Tree Search Guided

by QB-Robustness

Zhenya Zhang1(B) , Deyun Lyu1 , Paolo Arcaini2 , Lei Ma1,3,4 ,
Ichiro Hasuo2 , and Jianjun Zhao1

1 Kyushu University, Fukuoka, Japan
zhang.zhenya.623@m.kyushu-u.ac.jp

2 National Institute of Informatics, Tokyo, Japan
3 University of Alberta, Edmonton, Canada

4 Alberta Machine Intelligence Institute, Edmonton, Canada

Abstract. Hybrid system falsification is an important quality assurance
method for cyber-physical systems with the advantage of scalability and
feasibility in practice than exhaustive verification. Falsification, given a
desired temporal specification, tries to find an input of violation instead
of a proof guarantee. The state-of-the-art falsification approaches often
employ stochastic hill-climbing optimization that minimizes the degree of
satisfaction of the temporal specification, given by its quantitative robust
semantics. However, it has been shown that the performance of falsifica-
tion could be severely affected by the so-called scale problem, related to
the different scales of the signals used in the specification (e.g., rpm and
speed): in the robustness computation, the contribution of a signal could
be masked by another one. In this paper, we propose a novel approach
to tackle this problem. We first introduce a new robustness definition,
called QB-Robustness, which combines classical Boolean satisfaction and
quantitative robustness. We prove that QB-Robustness can be used to
judge the satisfaction of the specification and avoid the scale problem
in its computation. QB-Robustness is exploited by a falsification app-
roach based on Monte Carlo Tree Search over the structure of the formal
specification. First, tree traversal identifies the sub-formulas for which it
is needed to compute the quantitative robustness. Then, on the leaves,
numerical hill-climbing optimization is performed, aiming to falsify such
sub-formulas. Our in-depth evaluation on multiple benchmarks demon-
strates that our approach achieves better falsification results than the
state-of-the-art falsification approaches guided by the classical quantita-
tive robustness, and it is largely not affected by the scale problem.

Keywords: Falsification · Signal temporal logic · Scale problem ·
Monte carlo tree search · Robust semantics · QB-Robustness

This work is supported in part by JSPS KAKENHI Grant No. 20H04168, 19K24348,
19H04086, JST-Mirai Program Grant No. JPMJMI20B8, Japan. Lei Ma is also sup-
ported by Canada CIFAR AI Program and Natural Sciences and Engineering Research
Council of Canada. Paolo Arcaini and Ichiro Hasuo are supported by ERATO HASUO
Metamathematics for Systems Design Project (No. JPMJER1603), JST.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 595–618, 2021.
https://doi.org/10.1007/978-3-030-81685-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_29&domain=pdf
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0003-3017-7977
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-8621-2420
http://orcid.org/0000-0002-8300-4650
http://orcid.org/0000-0001-8083-4352
https://doi.org/10.1007/978-3-030-81685-8_29

596 Z. Zhang et al.

1 Introduction

Cyber-Physical Systems (CPS) are hybrid systems that combine physical systems
(with continuous dynamics) and digital controllers (that are inherently discrete).
Being often safety-critical, their quality assurance is of great importance and
widely investigated by both academia and industry. The continuous dynamics
of hybrid systems leads to infinite search spaces, making their verification often
extremely difficult.

Falsification has been proposed as a more practically feasible approach that
tackles the dual problem of verification: instead of exhaustively proving a prop-
erty, falsification intends to uncover the existence of its violation with counterex-
amples. Formally, the problem is defined as follows. Given a model M taking an
input signal u and outputting a signal M(u), and a specification ϕ (a temporal
formula), the falsification problem consists in finding a falsifying input, i.e., an
input signal u such that the corresponding output M(u) violates ϕ.

The most pursued and successful approach to the falsification problem con-
sists in turning it into an optimization problem; we call it optimization-based
falsification. This is possible thanks to the quantitative robust semantics of tem-
poral formulas [14,19]. Robust semantics extends the classical Boolean satisfac-
tion relation v |= ϕ in the following way: it assigns a value �w, ϕ� ∈ R∪{∞,−∞}
(i.e., robustness) that tells not only whether ϕ is satisfied or violated (by the
sign), but also how robustly the formula is satisfied or violated.

Optimization-based falsification approaches adopt hill-climbing stochastic
optimization strategies to generate inputs to decrease robustness, which ter-
minate when they find an input with negative robustness, i.e., a falsifying input
that triggers the violation of the specification ϕ. Different optimization-based
falsification algorithms have been proposed (see [26] for a survey), and mature
tools (e.g., Breach [13] and S-TaLiRo [4]) have also been developed.

The scale problem is a recognized issue in optimization-based falsification [21,
40], which could arise when multiple signals with different scales are present in
the specification. Namely, it is due to the computation of robust semantics of
Boolean connectives, i.e., the way in which the robustness values of different
sub-formulas are compared and aggregated: such computation is problematic in
the presence of signals that take values having different order of magnitudes.

Example 1. As very simple example, let us consider the formula ϕ ≡
�[0,30](ϕ1 ∧ ϕ2), with ϕ1 ≡ gear < 6 and ϕ2 ≡ speed < 130. It is apparent
that ϕ1 is always satisfied (in any car model with 5 gears), and it has been
added in the specification as redundant check.1 According to robust seman-
tics, the Boolean connective ∧ is interpreted by minimum �, and the “always”
operator �[0,30] is interpreted by infimum

�
; the robustness of an atomic

formula f(x) < c is given by the margin c − f(x). Therefore, the robust-
ness of ϕ under the signal (gear , speed), where gear , speed : [0, 30] → R, is
1 Note that we built such a trivial example just to make the scale problem very easy

to understand. However, in general, the scale problem frequently occurs on much
less trivial specifications, as we will see in the experiments.

Effective Falsification Using MCTS Guided by QB-Robustness 597

�(gear , speed), ϕ� =
�

t∈[0,30]

((
6 − gear(t)

) 	 (
130 − speed(t)

))
. Note that the

robustness of ϕ1 is always in the order of units, while the robustness of ϕ2 is,
in general, in the order of tens. It is not difficult to see that, if both ϕ1 and
ϕ2 are satisfied, the robustness of ϕ will only depend on ϕ1 (because of the
minimum in the robust semantics of the logical connective). In this case, we say
that ϕ1 masks ϕ2. In such a case, a falsification approach relying on robustness
will be misled during the search. Note that, in this particular case, the only way
to falsify ϕ is to falsify ϕ2, because ϕ1 is always satisfied; therefore, falsifying
this relatively simple formula could be extremely difficult for state-of-the-art
optimization-based falsification approaches (as we will show and have confirmed
in the experiments).

In this paper, we propose a novel approach to tackle the scale problem in
optimization-based falsification. Our intuition and insights are that we should
try to avoid the comparison of robustness values of different sub-formulas, so
that one sub-formula does not mask the contribution of another one.

To achieve this, we first propose a new way of computing the satisfaction
of a formula that combines quantitative robust semantics and Boolean seman-
tics. We name the new semantics as QB-Robustness. QB-Robustness, for each
type of formula ϕ, requires selecting a sub-formula ϕk among its sub-formulas
{ϕ1, . . . , ϕK}. For ϕk, the quantitative robust semantics is computed, while for
the other sub-formulas the Boolean semantics is computed. Therefore, the com-
putation of QB-Robustness requires identifying a path Σ along the parse tree of
the formula ϕ, where visited sub-formulas are those for which the quantitative
robustness is computed. We prove that QB-Robustness, independently of the
selected Σ, is equivalent (in terms of sign and satisfaction) to the quantitative
robust semantics (and also to the Boolean one).

In general QB-Robustness is a useful tool for avoiding the scale problem of
falsification. By definition, the quantitative robustness of different sub-formulas
is never compared, so removing the main cause of the scale problem. It would
then make sense to use it for guiding the optimization-based falsification process.
However, QB-Robustness requires to choose a particular sequence Σ of sub-
formulas for which to compute the quantitative robustness. It is relatively easy to
show that some of them provide a better guidance than others to the falsification
search. Considering the previous example, if Σ contains ϕ1, we can encounter the
problem that the quantitative robustness of ϕ1 would not provide any guidance
(i.e., no big variations in the robustness values would be observed). On the other
hand, if Σ contains ϕ2, the quantitative robustness would have larger variations,
providing more effective guidance to the search.

Then, the key problem is how to select the best Σ, that enables the hill-
climbing optimization used in falsification to be more effective. In general,
although it is often difficult to know the best Σ in advance, it is still possi-
ble to learn it by observing sampling results using different Σ. Based on this
intuition, we propose a novel falsification approach that identifies the sequences
Σ that is more likely to be efficient, and uses them in the new falsification
trials. Our approach could be seen as an instantiation of the classical Monte

598 Z. Zhang et al.

Carlo Tree Search (MCTS) method [8,28], which is able to efficiently tackle the
exploration-exploitation tradeoff. In our context, exploration consists in incre-
mentally constructing the tree that represents all the possible sequences, and
exploitation consists in selecting the best Σ and running optimization-based
falsification in which QB-Robustness with Σ is used.

Overall, the major Contributions of this paper are summarized as follows:

– We propose a novel semantics (QB-Robustness) for STL formulas that com-
bines quantitative robustness and Boolean satisfaction. We prove that QB-
Robustness can be used to show the satisfiability of STL formulas;

– We define a falsification approach based on MCTS that exploits QB-
Robustness to address the scale problem;

– We implement the approach in the tool ForeSee, based on which, we per-
formed in-depth evaluation, demonstrating the effectiveness and advantage
of our approach compared with the state of the art.

Paper Structure. In Sect. 2, we introduce the preliminaries of the optimization-
based falsification. In Sect. 3, we introduce the novel STL semantics QB-
Robustness, and, in Sect. 4, we describe the MCTS-based falsification approach
that uses QB-Robustness. In Sect. 5, we describe the experiments and evaluation
results. Finally, we discuss most relevant work to ours in Sect. 6, and conclude
the paper in Sect. 7.

2 Preliminaries

In this section, we briefly review the falsification framework based on robust
semantics of temporal logic [14].

Let T ∈ R+ be a positive real. An M -dimensional signal with a time horizon
T is a function w : [0, T] → R

M . We treat the system model as a black box, i.e.,
its behaviors are only observed from inputs and their corresponding outputs.
Formally, a system model, with M -dimensional input and N -dimensional output,
is a function M that takes an input signal u : [0, T] → R

M and returns a signal
M(u) : [0, T] → R

N . Here the common time horizon T ∈ R+ is arbitrary.

Definition 1 (STL Syntax). We fix a set Var of variables. In Signal Temporal
Logic (STL), atomic propositions and formulas are defined as follows, respec-
tively: α ::≡ f(x1, . . . , xN) > 0, and ϕ ::≡ α | ⊥ | ¬ϕ | ∧

ϕ | ∨
ϕ | �Iϕ | ♦Iϕ |

ϕ UI ϕ Here f is an N -ary function f : R
N → R, x1, . . . , xN ∈ Var, and I is a

closed non-singular interval in R≥0, i.e., I = [a, b] or [a,∞), where a, b ∈ R and
a < b. �,♦ and U are temporal operators, which are usually known as always,
eventually and until respectively. The always operator � and eventually oper-
ator ♦ can also be considered as special cases of the until operator U , where
♦Iϕ ≡ � UI ϕ and �Iϕ ≡ ¬♦I¬ϕ. Other common connectives such as →,� are
introduced as syntactic sugar: � ≡ ¬⊥, ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

Definition 2 (Quantitative Robust Semantics). Let w : [0, T] → R
N be

an N -dimensional signal, and t ∈ [0, T). The t-shift wt of w is the signal

Effective Falsification Using MCTS Guided by QB-Robustness 599

wt : [0, T − t] → R
N defined by wt(t′) := w(t + t′). Let ϕ be an STL for-

mula. We define the robustness �w, ϕ� ∈ R ∪ {∞,−∞} as follows, by induction
on the construction of formulas.

�
and

⊔
denote infimums and supremums of

real numbers, respectively. �, the binary version of
�

, denotes minimum.

�w, f(x1, · · · , xN) > 0� := f
(
w(0)(x1), · · · ,w(0)(xN)

)

�w,⊥� := −∞ �w,¬ϕ� := −�w, ϕ�
�w,

∧
i ϕi� :=

�
i�w, ϕi� �w,

∨
i ϕi� :=

⊔
i�w, ϕi�

�w,�Iϕ� :=
�

t∈I∩[0,T]�w
t, ϕ� �w,♦Iϕ� :=

⊔
t∈I∩[0,T]�w

t, ϕ�

�w, ϕ1 UI ϕ2� :=
⊔

t∈I∩[0,T]

(
�wt, ϕ2� � �

t′∈[0,t)�w
t′
, ϕ1�

)

The original STL semantics is Boolean, given by a binary relation |= between
signals and formulas. The robust semantics refines the Boolean one in the fol-
lowing sense: �w, ϕ� > 0 implies w |= ϕ, and �w, ϕ� < 0 implies w |= ϕ, see [19,
Prop. 16].

2.1 Hill Climbing-Guided Falsification

So far, the falsification problem has received extensive industrial and aca-
demic attention. One possible approach direction by hill-climbing optimization
is an established field, too: see [2–4,10,13–15,17,26,29,36–39,42] and the tools
Breach [13] and S-TaLiRo [4]. We formulate the problem and the methodology,
for later use in describing our falsification approach.

Definition 3 (Falsifying Input). Let M be a system model, and ϕ be an STL
formula. A signal u : [0, T] → R

|Var| is a falsifying input if �M(u), ϕ� < 0; the
latter implies M(u) |= ϕ.

The use of quantitative robust semantics �M(u), ϕ� ∈ R∪{∞,−∞} in the above
problem enables the use of hill-climbing optimization.

Definition 4 (Hill Climbing-Guided Falsification). Assume the setting in
Definition 3, for finding a falsifying input, the methodology of hill climbing-guided
falsification is presented in Algorithm 1. Here, the function Hill-Climb makes
a guess of an input signal u′, aiming at minimizing the robustness �M(u′), ϕ�.
It does so, learning from the sampling history H that contains the previous
observations of input signals and their corresponding robustness values.

The Hill-Climb function can be designed based on various stochastic opti-
mization algorithms. Typically, at the early phase of the optimization, the pro-
posal of new input is usually based on random sampling; as the set of sampling
history grows larger, the algorithm takes various metaheuristic-based strate-
gies to achieve the optimization goal efficiently. Examples of such algorithms
include Covariance Matrix Adaption Evolution Strategy (CMA-ES) [7] (used in
our experiments), Simulated Annealing, Global Nelder Mead [32], etc.

600 Z. Zhang et al.

Algorithm 1. Hill climbing-guided falsification
Require: a system model M, an STL formula ϕ, and a time budget

1: function Hill-Climb-Falsify(M, ϕ)

2: initialize a placeholder u and rb ← ∞ � the best input signal and robustness
3: H ← ∅ � sampling history of input signals and robustness

4: while rb ≥ 0 and within the time budget do

5: u′ ← Hill-Climb(H) � run hill climbing based on sampling history

6: rb′ ← �M(u′), ϕ� � compute robustness

7: H ← H ∪ {(u′, rb′)} � update sampling history
8: if rb′ < rb then
9: rb ← rb′, u ← u′ � update the best input and robustness

10: return

{
u if rb < 0

Failure otherwise, that is, no falsifying input found within the budget

3 QB-Robustness

The scale problem is a known important issue that negatively affects the perfor-
mance of falsification, which arises when connective operators (i.e., conjunction
and disjunction) with operands that predicate on different signals appear in the
STL formula under falsification. According to the classic quantitative robust
semantics (see Definition 2), the robustness of those formulas is calculated based
on the comparison (minimum for conjunction, and maximum for disjunction)
between robustness values coming from the different operand sub-formulas. How-
ever, since different signals may differ in magnitude, the comparison may be
biased, such that one signal w may always (or often) mask the contribution of
the others, and, therefore, the final robustness may be dominated by this signal
w. Note that, although the scale problem affects connective operators, it is not
only local to the place of their application, but it is always propagated to the
robustness of the whole formula. The scale problem has been shown as a root
cause of the failure of many falsification problems [21,40].

In this work, we propose a novel approach for solving the scale problem in
falsification. Our approach consists in introducing a new semantics for STL that
does not suffer from the scale problem. Such new semantics will be used in a
falsification approach based on Monte Carlo Tree Search. We describe details of
the new semantics in this section, and the new falsification approach in Sect. 4.

The new proposed semantics, called QB-Robustness, combines quantitative
robustness and Boolean satisfaction. By construction, it never compares quanti-
tative robustness values that come from different sub-formulas, thus avoiding the
scale problem. QB-Robustness is defined for the whole STL formulas, except for
the “until” operator ϕ1 UI ϕ2, when ϕ1 is an arbitrary formula. We still support
it as “eventually” and “always” operators2, i.e., when ϕ1 = �. Note that this is
not a major limitation, as QB-Robustness still supports the majority of speci-
fications that are used in industry: indeed, in the experiments, we were able to

2 Recall from Definition 1 that the “eventually” and “always” operators are defined
in terms of the “until” operator.

Effective Falsification Using MCTS Guided by QB-Robustness 601

handle all the specifications used in falsification competitions [18], which collect
benchmarks from industrial case studies.

To better explain the computation of QB-Robustness, we introduce some
definitions. Let us first define the notion of immediate sub-formula for STL.

Definition 5 (Immediate Sub-Formulas). Let ϕ be an STL formula (see
Definition 1). We define the set ISForm(ϕ) of immediate sub-formulas of ϕ as
follows:

ISForm(α) := ∅ ISForm(⊥) := ∅ ISForm(¬ϕ) := ISForm(ϕ)

ISForm(
∧

i∈{1,...,K}
ϕi) := {ϕ1, . . . , ϕK} ISForm(

∨

i∈{1,...,K}
ϕi) := {ϕ1, . . . , ϕK}

ISForm(�Iϕ) := ISForm(ϕ) ISForm(♦Iϕ) := ISForm(ϕ)

Intuitively, the immediate sub-formula set of a connective (conjunction or dis-
junction) contains all its operands. For the other unary operators (temporal
operators, negation, etc.), its immediate sub-formula set is given by the imme-
diate sub-formula set of its argument.

The computation of QB-Robustness requires to select some nested immediate
sub-formulas. To this aim, we introduce the notion of sub-formula sequence.

Definition 6 (Sub-Formula Sequence). Let ϕ be an STL formula. A sub-
formula sequence Σ = σ1 · . . . · σL w.r.t. ϕ is defined as follows:

σ1 ∈ ISForm(ϕ) σl+1 ∈ ISForm(σl) with l = 1, . . . , L − 1

where the · is the concatenation operator in the sequence. We use Σk to denote
the kth element of Σ. Moreover, we denote the first element by Σhead, and the
last element by Σrear. We use Σhead to denote Σ without Σhead. We identify with ε
the empty sequence; when ISForm(ϕ) = ∅, we use ε as its sub-formula sequence.
We identify with Σϕ the set of all the sub-formula sequences rooted in ϕ.

To be specific, in a sub-formula sequence Σ, each element is one of the sub-
formulas of the previous element. This means that, for Boolean connectives, only
one of the operands is selected. Moreover, an atomic sub-formula predicating
over a single signal can only appear as the final element of a sequence. We
exploit these characteristics of Σ to define QB-Robustness, which combines the
quantitative robustness of the sub-formulas related to a given signal with the
Boolean satisfaction of the other sub-formulas. QB-Robustness, given a sequence
Σ, decides whether to compute the quantitative robust semantics or the Boolean
semantics of a sub-formula, by considering whether the sub-formula belongs to Σ
or not. This implies that, in the case of conjunction and disjunction, we evaluate
the quantitative robustness of the sub-formula in Σ and the Boolean satisfaction
of the other sub-formulas. Based on such intuition, we define the semantics of
our proposed QB-Robustness in Definition 7, and demonstrate its usefulness in
Theorem 1.

602 Z. Zhang et al.

Definition 7 (Semantics of QB-Robustness). Let ϕ be an STL formula as
defined in Definition 1, and Σ be a sub-formula sequence w.r.t. ϕ. For ϕ ≡∧

ϕi | ∨
ϕi, let ϕk ∈ ISForm(ϕ) be the first element Σhead of Σ, then we can

represent these two cases as ϕ ≡ ϕk ∧ ϕk | ϕk ∨ ϕk, where ϕk is the conjunction
(or disjunction, respectively) of the other formulas in ISForm(ϕ) \ {ϕk}. The
QB-Robustness QBRob(w, ϕ,Σ) of ϕ w.r.t. Σ is defined as follows:

QBRob(w, α, ε) := �w, α� QBRob(w,⊥, ε) := −∞
QBRob(w,¬ϕ,Σ) := −QBRob(w, ϕ,Σ)

QBRob(w, ϕk ∧ ϕk, Σ) :=
{

QBRob(w, ϕk, Σhead) if w |= ϕk

−∞ otherwise

QBRob(w, ϕk ∨ ϕk, Σ) :=
{

QBRob(w, ϕk, Σhead) if w |= ϕk

∞ otherwise

QBRob(w,�Iϕ,Σ) :=
�

t∈I

QBRob(wt, ϕ,Σ)

QBRob(w,♦Iϕ,Σ) :=
⊔

t∈I

QBRob(wt, ϕ,Σ)

We now prove that the semantics of QB-Robustness is equivalent (in the
sense of satisfaction) to the Boolean semantics, and so it can be used to show
violation of a specification in a falsification algorithm, as we do in this paper.

Theorem 1. Let ϕ be an STL formula. Given a signal w, for any Σ ∈ Σϕ, it
holds that QBRob(w, ϕ,Σ) > 0 implies w |= ϕ. Similarly, for any Σ ∈ Σϕ, it
holds that QBRob(w, ϕ,Σ) < 0 implies w |= ϕ.

Proof. We first recall from [19, Prop. 16] that �w, ϕ� < 0 implies w |= ϕ, and
that �w, ϕ� > 0 implies w |= ϕ. We prove Theorem 1 by induction on the
structure of the formula.

– Case ϕ = α. By Definition 7, QBRob(w, α, ε) > 0 indicates that �w, α� > 0
and hence w |= α, and QBRob(w, α, ε) < 0 that �w, α� < 0 and hence w |= ϕ.

– For the following cases, let us assume that Theorem 1 holds for an arbitrary
formula ϕ′ and its sub-formula sequence Σ′ that QBRob(w, ϕ′, Σ′) > 0 implies
�w, ϕ′� > 0, and that QBRob(w, ϕ′, Σ′) < 0 implies �w, ϕ′� < 0. We aim to
prove that Theorem 1 also holds for ϕ, resulting from the application of the
operator in each of the following cases to ϕ′, and Σ, the sub-formula sequence
of ϕ.

• Case ϕ = ϕ′ ∧ ψ, where ψ is an arbitrary formula. Let Σ = ϕ′ · Σ′, and
let us consider the two cases in which QBRob(w, ϕ,Σ) is negative and
positive separately:

∗ If QBRob(w, ϕ,Σ) < 0, there are two sub-cases:
· if QBRob(w, ϕ′, Σ′) < 0, then �w, ϕ′� < 0 (by assumption).
Then, by the robust semantics of conjunction, also �w, ϕ� < 0
holds, and so it does w |= ϕ.

Effective Falsification Using MCTS Guided by QB-Robustness 603

· if QBRob(w, ϕ′, Σ′) > 0, then �w, ϕ′� > 0 (by assumption).
Then, it holds w |= ψ by Definition 7, and, therefore, it holds
w |= ϕ.

∗ If QBRob(w, ϕ,Σ) > 0, it means that QBRob(w, ϕ′, Σ′) > 0 and
w |= ψ (by Definition 7). By assumption, if QBRob(w, ϕ′, Σ′) > 0,
then �w, ϕ′� > 0. Therefore, w |= ϕ.

• Case ϕ = �Iϕ
′. Let Σ = Σ′, and let us consider the two cases in which

QBRob(w, ϕ,Σ) is negative and positive separately:
∗ By Definition 7,QBRob(w, ϕ,Σ) < 0 indicates that there exists a
t ∈ I such that QBRob(wt, ϕ′, Σ) < 0. By assumption, it holds that
wt |= ϕ′. Then, by the semantics of the always operator �, it holds
that w |= ϕ.
∗ By Definition 7,QBRob(w, ϕ,Σ) > 0 indicates that for all t ∈ I it
holds that QBRob(wt, ϕ′, Σ) > 0. Then, by assumption, it holds that
for all t ∈ I, wt |= ϕ′. So, by the semantics of the always operator �,
it holds that w |= ϕ.

• Case ϕ = ¬ϕ′. Let Σ = Σ′, and let us consider the two cases in which
QBRob(w, ϕ,Σ) is negative and positive separately:

∗ By Definition 7, QBRob(w, ϕ,Σ) < 0 indicates that
QBRob(w, ϕ′, Σ′) > 0. By assumption, it holds that w |= ϕ′, and
therefore, w |= ϕ.
∗ By Definition 7, QBRob(w, ϕ,Σ) > 0 indicates that
QBRob(w, ϕ′, Σ′) < 0. By assumption, it holds that w |= ϕ′, and,
therefore, w |= ϕ.

• Proofs for the cases of ϕ = ϕ′ ∨ ψ and ϕ = ♦Iϕ
′ follow similar proof

patterns, and so are left to the readers.

We use an example to illustrate how QB-Robustness is used for checking the
satisfiability of an STL formula.

Example 2. Let w : [0, T] → R
2 be a 2-dimensional signal and ϕ = �I(ϕ1∨ϕ2)

be an STL formula where ϕ1 and ϕ2 are two atomic formulas. Intuitively, to
make ϕ falsified, there must exist t ∈ I such that wt |= ϕ1 and wt |= ϕ2. Let us
consider a non-trivial falsification problem in which, for most of the signals w,
sets {t ∈ I | wt |= ϕ1} and {t ∈ I | wt |= ϕ2} are non-empty and disjoint.

By Definition 7, given the sub-formula sequence Σ = ϕ1 of ϕ, the correspond-
ing QB-Robustness is QBRob(w, ϕ,Σ) =

�
t∈IQBRob(wt, ϕ1 ∨ ϕ2, ϕ1), i.e., it

takes the infimum of QBRob(wt, ϕ1 ∨ ϕ2, ϕ1) over t ∈ I. Again, by Definition 7,
for any t′ ∈ I, QBRob(wt′

, ϕ1 ∨ ϕ2, ϕ1) is computed as follows:

– if for a t′ ∈ I it holds wt′ |= ϕ2, then QBRob(wt′
, ϕ1 ∨ ϕ2, ϕ1) = ∞. Then, it

is impossible that
�

t∈IQBRob(wt, ϕ1 ∨ ϕ2, ϕ1) is given by QBRob(wt′
, ϕ1 ∨

ϕ2, ϕ1);
– if for a t′ ∈ I it holds wt′ |= ϕ2, then QBRob(wt′

, ϕ1 ∨ ϕ2, ϕ1) =
QBRob(wt′

, ϕ1, ε) = �wt′
, ϕ1�. In this case, QBRob(wt′

, ϕ1 ∨ ϕ2, ϕ1) has a
chance to determine the value of

�
t∈IQBRob(wt, ϕ1 ∨ ϕ2, ϕ1).

604 Z. Zhang et al.

Therefore, when Σ = ϕ1, it holds that QBRob(w, ϕ,Σ) =
�

t∈S�wt, ϕ1�, where
S = {t ∈ I | wt |= ϕ2}, i.e., the infimum of the quantitative robustness of ϕ1

on the interval when ϕ2 is violated. Indeed, once this value is negative, it means
that there exists a point t ∈ I when both ϕ1 and ϕ2 are violated; by the Boolean
semantics of always and disjunction, ϕ is violated.

4 MCTS-Based Falsification Guided by QB-Robustness

QB-Robustness never compares robustness values coming from signals with dif-
ferent magnitudes, and, therefore, it does not suffer from the scale problem. As
such, it could be used in falsification approaches instead of the classical pure
quantitative robustness.

However, a sub-formula sequence Σ is required when calculating QB-
Robustness, and such sequence is not unique (see Definition 7). Note that the
selection of the sequence can affect the performance of the numerical optimiza-
tion algorithms used in falsification. Let us consider ϕ ≡ �((gear < 6)∧(speed <
130)) as an example. As explained in Sect.1, numerical optimization will perform
better if guided by the robustness values coming from speed rather than by those
coming from gear . Therefore, in a falsification approach using QB-Robustness,
it is important to select an appropriate sub-formula sequence Σ.

By using the QB-Robustness, the problem of falsifying an STL formula ϕ
consists in finding both a signal w and a sub-formula sequence Σ such that
QBRob(w, ϕ,Σ) < 0. The selection of Σ is discrete, while the search for w is
numerical. In order to combine these processes that are different in nature, we
propose to adapt Monte Carlo Tree Search (MCTS) [8,28]. In the following, we
firstly give a brief introduction to MCTS in Subsect. 4.1, and then present the
application of MCTS to our falsification problem in Subsect. 4.2.

4.1 MCTS Background

MCTS exemplifies the “trial and error” philosophy, and has achieved a great
success over the past decade, most notably in fields such as the computer Go
game [35]. MCTS explores the action space given by the possible actions of
the system; for example, in the Go game, these are the positions where to put
the next stone. The approach builds a tree of sequences of actions, and assigns
rewards to the different branches. MCTS performs the search by iteratively tak-
ing the following four steps. See Fig. 1, where the general scheme is adapted to
our current setting, for illustration.

– Selection. It selects a node to expand or to reason about. Initially, selection has
no other choice than the root. When a node has multiple expanded children,
selection will be done according to the UCB1 [6] algorithm.

– Expansion. Child expansion happens after selection if the selected node has
unexpanded children. A child will be added to the tree during expansion.

– Playout. After a node is just expanded or a leaf is reached, playout is per-
formed for evaluating the node. The evaluation is given by a reward, which

Effective Falsification Using MCTS Guided by QB-Robustness 605

ϕ ϕ ϕ ϕ

ϕ1

ϕ11

ϕ1

ϕ11 ϕ11 ϕ11

ϕ1 ϕ1ϕ2 ϕ2

ϕ12

ϕ1

ϕ11

hill climbing guided
by QB-Robustness

a falsifying input found!
rwd : 0.8
visit : 1

rwd : 0.8
visit : 1

rwd : 0.8
visit : 1

rwd : 0.8
visit : 1

rwd : 0.2
visit : 1

selection by
UCB1 algorithm

Initialization Expansion Playout Backpropagation Selection Termination

rb ← QBRob(M(u), ϕ, Σ)
Σ ← ϕ1 · ϕ11

Hill-Climb({u, rb})

Fig. 1. The workflow of MCTS-based falsification guided by QB-Robustness. Let us
consider the falsification of an STL formula ϕ = �I (ϕ1 ∨ ϕ2), where ϕ1 = ϕ11 ∧ ϕ12.
Initially, there is only the root in the tree, so the algorithm selects it for expansion.
Then, the algorithm keeps on randomly selecting a child of a non-fully expanded node,
until a leaf node is reached. By reaching a leaf, a sub-formula sequence Σ has been
constructed; the algorithm performs playout using Σ, by running hill-climbing opti-
mization guided by the QB-Robustness with Σ, to estimate the reward of the path.
After playout, the algorithm backpropagates the reward and the number of visits from
the leaf to the root. When all the children of a node are expanded, selection is done
based on the UCB1 algorithm. After many loops, the algorithm has explored all the
possible sub-formula sequences in Σϕ, and it starts allocating more resources to those
branches where hill-climbing optimization progresses more smoothly. The algorithm
terminates either when a falsifying input is found, or when the budget is exhausted.

is a real number in [0, 1]. Reward can be interpreted differently in different
contexts. For example, in the Go game, the reward of a position is measured
by the winning rate when a stone is positioned there; this is estimated by
randomly playing the game until the end for n times, and then taking the
ratio nw

n of the number of winning as the winning rate.
– Backpropagation. Backpropagation updates the number of visits and the

reward of the nodes along the path from the node of playout to the root.
These data are used in subsequent loops to decide the branches to explore.

At the end, the action space will be sufficiently explored in an unbalanced man-
ner, by focusing on the most promising sub-spaces giving the highest rewards.

4.2 Proposed QB-Robustness-Guided Falsification Approach

We here propose a falsification framework based on MCTS in which, during tree
construction, we synthesize and select a sub-formula sequence that facilitates
the falsification progress the most, and, at the bottom layer of the tree, we run
numerical optimization to search for a falsifying input and provide feedback (i.e.,
backpropagation) to guide the sequence selection.

We formalize our algorithm in Algorithm 2 and visualize its execution in
Fig. 1. In the following, we elaborate on our approach.

606 Z. Zhang et al.

Algorithm 2. MCTS-based falsification guided by QB-Robustness
Require: a system model M, an STL formula ϕ, and the following tunable parame-

ters: a scalar c for UCB1, an MCTS budget BM , and a playout budget BP .

1: function MCTS
2: Σ init ← ϕ � the root denoted as a sequence with ϕ only
3: T ← {Σ init} � the MCTS search tree, initially root only
4: N ← (Σ init �→ 0) � visit count N initialized, defined only for root
5: R ← (Σ init �→ 0) � reward function R initialized
6: H ← (Σ init �→ ∅) � the sampling history of hill climbing
7: while ϕ not falsified and within the MCTS budget BM do
8: MCTSSearch(Σ init)

9: function MCTSSearch(Σ)
10: if ISForm(Σrear) �= ∅ then � the node has children
11: if Σ · ϕk ∈ T for all ϕk ∈ ISForm(Σrear) then � all children expanded

12: ϕk ← arg max
ϕi∈ISForm(Σrear)

(
R(Σ · ϕi) + c

√
2 ln N(Σ)

N(Σ · ϕi)

)
� selection by UCB1

13: else � unexpanded children exist
14: randomly select ϕk from {ϕk ∈ ISForm(Σrear) | Σ · ϕk �∈ T }
15: T ← T ∪ {Σ · ϕk} � expand a new child
16: N(Σ · ϕk) ← 0
17: H(Σ · ϕk) ← ∅

18: MCTSSearch(Σ · ϕk) � recursive call
19: R(Σ) ← max

ϕk∈ISForm(Σrear)
R(Σ · ϕk) � back propagation for reward

20: else � a leaf node reached
21: while within playout budget BP do � playout by hill-climbing falsification
22: u ← Hill-Climb(H(Σ)) � hill-climbing
23: rb ← QBRob(M(u), ϕ, Σhead)
24: if rb < 0 then � falsifying input found
25: return (u, rb)

26: H(Σ) ← H(Σ) ∪ {(u, rb)} � record sampling history

27: R(w) ← Rwd(rb, H(Σ))

28: N(Σ) ← N(Σ) + 1 � back propagation for visit count

We construct the tree in this way: each node represents a sequence of formu-
las, and each edge of a node is a sub-formula of the last element of the sequence
represented by the node. The root is initialized with a sequence holding ϕ only
(Lines 2–3) and some other properties including the number of visits to the differ-
ent nodes (Line 4), the reward (Line 5), and the history of hill-climbing sampling
(Line 6). The main process of MCTS consists in calling the MCTSSearch func-
tion iteratively with the root as argument (Line 8), until the exhaustion of the
MCTS budget or a falsifying input is found (Line 7). The MCTSSearch func-
tion (Line 9) goes through the four phases, namely selection, expansion, playout
and backpropagation, of the original MCTS algorithm.

Effective Falsification Using MCTS Guided by QB-Robustness 607

Selection. Selection happens when a node has children (Line 10) and these
have all been expanded (Line 11). It selects a child according to the UCB1 [6]
algorithm (Line 12) to take a balance between exploration and exploitation. The
exploitation is embodied by the reward R(Σ · ϕi)—the higher the reward is,
the more likely a falsifying input is found following that branch. Exploration,

instead, is considered via
√

2 ln N(Σ)
N(Σ·ϕi)

that is negatively correlated to the number
of visits to a child—the more the child was visited before, the less chance it will
be visited again. The scalar c is a tunable parameter that balances the trade-off
between exploration and exploitation. After a child Σ · ϕk is selected, it will be
taken as the argument of the next MCTSSearch loop (Line 18).

Expansion. If not all the children of a node have been expanded (Line 13), a
child will be expanded. Expansion consists in randomly selecting a child from
the unexpanded child list (Line 14), adding it to the tree (Line 15), initilizing
properties including the number of visits and history (Lines 16–17). After expan-
sion, the newly expanded child will be taken as the argument of the recursive
call to MCTSSearch (Line 18).

Playout. If a leaf node that has no children to expand is reached, the playout
phase will start to devise a reward for evaluating the visited path. In our context,
we define the reward based on the best robustness value that can be obtained
with the path; specifically, playout consists in running hill-climbing guided falsifi-
cation to search for a minimal robustness value (Line 22). Note that the sequence
Σ represented by a leaf node is actually the concatenation between ϕ and a sub-
formula sequence of ϕ. We extract the suffix of Σ, i.e., the sub-formula sequence,
to compute the QB-Robustness as a guidance to the hill-climbing optimization
(Line 23). If a negative QB-Robustness is found (Line 24), then the whole algo-
rithm can be terminated and the input signal u that triggers the negative QB-
Robustness can be returned as the falsifying input (Line 25); otherwise, the
sampling history of hill climbing will be saved (Line 26) so that the future play-
out at the same leaf can be restored from that context. After playout, the reward
of the leaf node will be updated based on the definition of the reward, which will
be introduced below. Reward Since our goal is to find a sequence Σ with which
hill-climbing optimization can minimize QBRob(w, ϕ,Σ) smoothly, we connect
the reward with the hill-climbing progress. Formally, given a sampling history
H, our reward (Line 27) is defined as Rwd(rb′,H) := max rbh−min ({rb′}∪rbh)

max rbh
,

where rbh is the history of robustness values in H.

Backpropagation. In MCTS, the playout result of a leaf is backpropagated to
the higher layer nodes along the path, so that the future selection on the high
layer is referred. Backpropagation updates two properties of each ancestor of the
leaf till the root, the reward (Line 19) and the number of visits (Line 28).

Remark 1 (Approach Complexity). With respect to classical falsification,
our approach introduces an exploration phase for searching the “best” sub-
formula sequence to instantiate QB-Robustness. The number of these sequences
corresponds to the number of atomic sub-formulas (and so the leaves of the

608 Z. Zhang et al.

Table 1. Benchmarks – STL specifications

Spec. ID Temporal specification in STL

AT1 �[0,30] (gear = 4 → speed > 35)

AT2 �[0,30] (gear = 4 → ♦[0,5] (rpm < 4300))

AT3 �[0,30] (speed < 130 ∧ gear < 5)

AT4 �[0,30] (speed < 135 ∧ rpm < 4780)

AT5 �[0,30] (rpm < 600 → ♦[0,10] (gear > 1))

AT6 �[0,30] (♦[0,5](speed < 120 ∨ rpm > 3500))

AT7 �[0,30] (rpm < 4750 ∧ gear < 5)

Spec. ID Temporal specification in STL

AT8 �[0,10] (speed < 50) ∨ ♦[0,30] (rpm > 2520)

AT9 ♦[10,30](speed < 50 ∨ speed > 60 ∨ rpm < 1000)

AT10 �[0,30] (gear = 4 → (speed > 35 ∧ ♦[0,5] (rpm < 4000)))

AT11 �[0,30] (♦[0,8] (gear = 1 → (speed < 20 ∧ rpm < 600)))

AT12 �[0,30] (gear < 3) ∨ �[0,30] (speed < 135 ∧ rpm < 4780)

AT13 �[0,30] ((gear = 4 → ♦[0,5] (rpm < 4000)) ∧ gear < 5)

AT14 �[0,30] (throttle = 0 ∨ brake = 0) → �[0,30] (speed < 110)

Spec. ID Temporal specification in STL

AT15 �[0,30]((rpm < 4770 ∨ �[0,1] (rpm > 1000)) ∧ ♦[0,5] (gear < 5))

AT16 �[0,30] (gear = 4 → ((♦[0,5] (rpm < 3000) ∧ (gear = 2 → speed < 20))))

AT17 �[0,5] (speed < 70 ∧ gear < 4) ∧ �[10,20](rpm < 4780) ∧ �[25,30](speed < 130)

AT18 �[0,30] ((gear = 4 → ♦[0,5] (rpm < 4250)) ∧ (gear = 3 → ♦[0,5] (rpm < 4700)) ∧ (gear = 2 → ♦[0,5] (rpm < 4800)))

AT19 �[0,30] ((gear = 1 → speed < 80) ∧ (gear = 2 → speed < 90) ∧ (gear = 3 → speed > 20) ∧ (gear = 4 → speed > 30))

AT20 �[0,29] (speed < 100) ∨ �[29,30](speed > 64) ∧ �[0,30] (rpm < 4770 ∨ �[0,1] (rpm > 700))

AT21 �[0,30] (throttle > 90 → ♦[0,10] (throttle < 30)) → �[0,30] (gear = 4 → ♦[0,5] (rpm < 4000))

AT22 �[0,30] (throttle > 70 → ♦[0,10](brake > 50)) → �[0,30](gear = 4 → speed > 35)

Spec. ID Temporal specification in STL

AFC1 �[11,50] (mode = 1 → μ < 0.228)

AFC2 ♦[0,50] (PedalAngle > 40) → �[11,50] (μ < 0.225)

AFC3 ♦[0,50] (EngineSpeed > 1000) → �[11,50] (μ < 0.225)

AFC4 �[0,50] (EngineSpeed > 910 ∨ PedalAngle > 25) → �[11,50] (μ < 0.225)

AFC5 ♦[0,50] (PedalAngle > 40) → �[11,50] (♦[0,8] (μ < 0.06))

AFC6 ♦[0,50] (PedalAngle > 40 ∧ EngineSpeed > 1000) → �[11,50] (♦[0,8] (μ < 0.06))

Spec. ID Temporal specification in STL

FFR1 �[0,5]((u1, u3 > 0 ∨ u1, u3 < 0) ∧ (u2, u4 > 0 ∨ u2, u4 < 0)) → �[0,5](¬(x1 > 3.9 ∧ x1 < 4.1) ∧ ¬(x3 > 3.9 ∧ x3 < 4.1))

FFR2 ¬(♦[0,5](�[0,2](x1 > 1.5 ∧ x1 < 1.7 ∧ x3 > 1.5 ∧ x3 < 1.7)))

tree). Considering that most of the time is spent on playout, the complexity of
our approach grows linearly with the number of atomic sub-formulas.

5 Experimental Evaluation

In this section, we present the experiments we conducted to evaluate the effec-
tiveness of the proposed approach. We first introduce the experiment setup
in Subsect. 5.1, and then we present the experimental evaluation results by
answering three research questions in Subsect. 5.2.

5.1 Experiment Setup

Simulink Models and Specifications As our benchmarks, we selected three
Simulink models frequently used in the falsification community (i.e., in the fal-
sification competitions [18]), and 30 specifications defined for them. All these
models are complicated hybrid systems with multiple input and output signals.
The specifications are STL formulas that formalize system requirements regard-
ing safety, performance, etc. Since we are interested in assessing the influence of
the scale problem to the performance of the compared falsification approaches,

Effective Falsification Using MCTS Guided by QB-Robustness 609

all the considered specifications predicate over, at least, two signals. Table 1
reports the 30 specifications under test. The IDs of the specifications identify
which models they belong to. A description of the three models and of their
specifications is as follows.

– Automatic Transmission (AT) [24] has two input signals, throttle ∈ [0, 100]
and brake ∈ [0, 325], and three outputs signals including gear, speed and
rpm. Most of the specifications we used formalize safety requirements of the
system. For instance, AT2 requires that when gear is as high as 4, rpm
should not be larger than 4300; AT3 is an adaptation of the example we used
in Sect. 1; AT10-12 reason about the relationship among the three output
signals; AT17 specifies three properties for three different time intervals; AT18
specifies different properties for different values of gear ; AT14, AT21 and
AT22 impose logical constraints on input signals, in addition to the property
under consideration.

– Abstract Fuel Control (AFC) [25] takes two input signals, PedalAngle ∈
[8.8, 70] and EngineSpeed ∈ [900, 1100], and outputs a ratio μ reflecting the
deviation of air-fuel-ratio from its reference value. The basic safety require-
ment to this system is that μ should not be deviated from the reference value
too much (AFC1); in addition to that, our specifications also reason about
the resilience of the system (AFC5 and AFC6), and impose input constraints
(AFC2-6).

– Free Floating Robot (FFR) [11] models robot moving in a 2-dimentional space.
It has four input signals u1, u2, u3, u4 ∈ [−10, 10] that are boosters for a robot,
and four output signals that are the position in terms of coordinate values
x, y and their one-order derivatives ẋ, ẏ. The specifications regulate the kinetic
properties of the robot: FFR1 requires the robot to pass an area around the
point (4, 4) under an input constraint, and FFR2 requires the robot to stay
in an area for at least 2 s.

Baseline Approach and Our Proposed Approach. In our experiments, we compare
the performances of our proposed approach with the baseline Breach approach.
We implemented our approach in the tool ForeSee, which stands for FORmula
Exploitation by Sequence trEE for falsification.

Breach is a state-of-the-art falsification tool that implements the classic fal-
sification workflow we introduced in Sect. 2. The quantitative robustness calcu-
lation in Breach is based on the robust semantics given in Definition 2. Breach
also encapsulates several stochastic optimization algorithms, such as CMA-ES,
Simulated Annealing, etc. The implementation of our ForeSee approach uses
Breach only for interfacing with the Simulink model and for the calculation
of quantitative robustness; instead, the calculation of QB-Robustness, and the
implementation of the MCTS algorithm are novel. Since CMA-ES has proved
to be the state-of-the-art stochastic algorithm [39], we select CMA-ES as our
backend optimizer for the playout phase.3

3 ForeSee is available at https://github.com/choshina/ForeSee.

https://github.com/choshina/ForeSee

610 Z. Zhang et al.

We apply the two approaches, ForeSee and Breach, to each benchmark spec-
ification reported in Table 1. Since both approaches are based on stochastic opti-
mization, we repeat each experiment for 30 times, as suggested by a guideline for
conducting experiments with randomized algorithms [5]. For each experiment,
both approaches have been given a total timeout BM of 900 s (see Algorithm 2).

Evaluation Metrics. As first evaluation metric, we compute the falsification rate
(FR) as the number of runs (out of 30) in which the approach returns a falsifying
input. Therefore, FR is an indicator of the effectiveness of an approach, i.e., it
reflects the ability of an algorithm to falsify the specification. As second evalua-
tion metric, we compute the average time (seconds), as average execution time
of the successful falsification runs. Therefore, the average time is an indicator
of the efficiency of the approach. We do not report the number of simulations
because these are consistent with the execution time.

Experiment Platform. In our experiments, we use Breach [13] (ver 1.2.13) with
CMA-ES (the state of the art). Breach accepts piece-wise constant signals as
input for the Simulink models; we use the same settings used in falsification
competitions [18]: we use piece-wise constant signals with five control points for
AT and AFC, and with four control points for FFR. As configuration of MCTS
(see Algorithm 2), we set the UCB1 scalar c to 0.2, and the playout budget
BP to 10 generations. The experiments have been executed on an Amazon EC2
c4.2xlarge instance (2.9 GHz Intel Xeon E5-2666 v3, 15 GB RAM).

5.2 Evaluation

We here analyze the experimental results using three research questions (RQs).

RQ1. Does the proposed approach perform better than state-of-the-art falsifica-
tion approaches?

In this RQ, we aim at assessing whether the proposed approach is indeed able
to tackle the scale problem in falsification and performs better than state-of-the-
art approaches. Table 2 reports, for each specification benchmark, the falsifica-
tion rate FR and the average execution time of our proposed approach ForeSee
and of the baseline Breach. The table further reports the difference of the two
metrics between the two approaches. We highlight in gray the best results in
which ForeSee has an FR of 15 units higher than Breach. We observe that
for 25 benchmarks out of 30, ForeSee has a better FR, and in 15 of these the
improvement is significant (selected in gray). Note that there are notable cases,
such as AT3, AT13, AT16, and AT17, in which Breach only finds at most two
falsifying inputs, while ForeSee finds always at least 29 falsifying inputs. In four
cases, Breach has a better FR: while for AT8, AFC6, and FFR2 the difference
is minimal, it is quite large for AT14. We further inspected such specification
and its corresponding model (see Table 1); we noticed that all the sub-formulas
in AT14 must be falsified to falsify the whole specification4, and they are all
4 Note that all binary connectives of AT14 are disjunctions; indeed, A → B is the

syntactic sugar for ¬A
⊔

B .

Effective Falsification Using MCTS Guided by QB-Robustness 611

Table 2. Falsification performance comparison between Breach and ForeSee on bench-
marks. Timeout: 900 s. FR in (/30), time in secs.

Breach ForeSee

FR time FR time ΔFR Δtime

AT1 12 67.0 29 90.3 +17 +23.3

AT2 18 208.5 30 155.5 +12 -53.0

AT3 0 - 29 87.3 +29 -

AT4 8 414.0 30 376.6 +12 -37.4

AT5 13 44.7 30 159.0 +17 +114.3

AT6 14 630.5 20 545.9 +6 -84.6

AT7 20 24.9 30 5.8 +10 -19.1

AT8 17 418.5 13 547.0 -4 +128.5

AT9 9 298.6 29 208.0 +20 -90.6

AT10 14 99.4 30 89.7 +16 -9.7

AT11 17 58.1 30 39.6 +13 -18.5

Breach ForeSee

FR time FR time ΔFR Δtime

AT12 5 379.2 28 381.4 +23 +2.2

AT13 2 75.2 29 98.3 +27 +23.1

AT14 24 184.9 1 601.5 -23 +416.6

AT15 1 66.1 9 331.8 +8 +265.7

AT16 1 13.0 30 6.7 +29 -6.3

AT17 0 - 30 208.8 +30 -

AT18 18 160.0 24 234.3 +6 +74.3

AT19 15 81.8 30 154.3 +15 +72.5

AT20 1 97.7 5 286.2 +4 +188.5

AT21 10 239.0 29 425.5 +19 +186.5

AT22 13 72.0 30 113.3 +17 +41.3

Breach ForeSee

FR time FR time ΔFR Δtime

AFC1 10 532.2 12 458.0 +2 -74.2

AFC2 12 546.9 30 218.3 +18 -328.6

AFC3 8 727.6 28 232.5 +20 -495.1

Breach ForeSee

FR time FR time ΔFR Δtime

AFC4 7 634.5 22 500.3 +15 -134.2

AFC5 8 576.9 9 322.0 +1 -254.9

AFC6 10 518.2 6 344.2 -4 -174.0

Breach ForeSee

FR time FR time ΔFR Δtime

FFR1 7 132.1 7 399.3 +0 +267.2

Breach ForeSee

FR time FR time ΔFR Δtime

FFR2 30 38.0 27 348.0 -3 +310.0

difficult to be falsified. In such a case, there is no best sub-formula sequence Σ:
therefore, the time spent by ForeSee in exploring different Σ does not provide
any improvement.

Regarding the time execution, there is no clear trend among the different
results: sometimes ForeSee is faster, other times Breach is. However, even in
the cases in which ForeSee is slower, it is still below the timeout by which it
manages to find a falsifying input (so, leading to better falsification rates).

RQ2. Does the proposed approach solve the scale problem effectively?
The benchmarks reported in Table 1 and experimented in RQ1, predicate

over signals having different scales and so they suffer from the scale problem.
RQ1 showed that ForeSee is very efficient in falsifying them. In this RQ, we want
to make a more systematic study of the effects of the scale problem; indeed, the
scale problem could manifest itself in different ways, depending on the difference
of the order of magnitudes of the different signals (e.g., speed [km/h] vs. rpm,
or speed [km/h] vs. rph). To assess this, we take six specifications from Table 1
and we artificially modify their outputs: namely, we multiply by 10k (with dif-
ferent k values depending on the specification) the speed of AT1, AT3, AT4,

612 Z. Zhang et al.

Table 3. Falsification performance under different scales. Each rescaled signal is
rescaled by 10k.

(a) AT1: speed × 10k

Breach ForeSee

k FR time FR time

-2 30 126.5 26 77.5

-1 25 64.4 29 107.9

0 12 67.0 29 90.3

1 9 92.4 28 81.8

2 9 131.9 30 94.2

min 9 64.4 26 77.5

max 30 131.9 30 107.9

mean 17 96.4 28 90.3

(b) AT3: speed × 10k

Breach ForeSee

k FR time FR time

-3 30 124.9 30 81.2

-2 30 135.9 28 82.6

-1 1 136.7 28 101.6

0 0 - 29 87.3

1 0 - 30 103.4

min 0 124.9 28 81.2

max 30 136.7 30 103.4

mean 12 132.5 29 91.2

(c) AT4: speed × 10k

Breach ForeSee

k FR time FR time

-2 29 247.2 29 329.4

-1 29 243.5 28 332.2

0 8 414.0 30 376.6

1 0 - 29 377.6

2 0 - 29 333.2

min 0 243.5 28 329.4

max 29 414.0 30 377.6

mean 13 301.6 29 349.8

(d) AT9: speed × 10k

Breach ForeSee

k FR time FR time

-1 11 202.6 28 259.8

0 9 298.6 29 208.0

1 10 197.4 29 221.2

2 28 175.4 29 248.9

3 30 162.6 29 209.6

min 9 162.6 28 208.0

max 30 298.6 29 259.8

mean 18 207.3 29 229.5

(e) AT15: rpm × 10k

Breach ForeSee

k FR time FR time

-5 20 138.3 6 222.3

-4 13 158.1 10 258.8

-3 4 144.6 5 313.6

-2 0 - 9 268.6

0 1 66.1 9 331.8

min 0 66.1 5 222.3

max 20 158.1 10 331.8

mean 10 126.8 8 279.0

(f) AFC3: EngineSpeed ×10k

Breach ForeSee

k FR time FR time

0 8 727.6 28 232.5

-1 18 574.2 29 284.1

-2 29 401.2 29 211.5

-3 30 215.0 29 230.1

-4 29 198.2 30 236.2

min 8 198.2 28 211.5

max 30 727.7 30 284.1

mean 23 423.2 29 238.9

and AT9; the rpm of AT15; and the EngineSpeed of AFC3. For each artificial
rescaling, both the Simulink model and the specification have been changed.5

We run ForeSee and Breach on these rescaled benchmarks. Table 3 reports the
experimental results for each k. The table also reports the minimum, maximum,
and mean results for FR and execution time. We observe that the performance of
Breach, in terms of FR, is very sensitive to the scale problem. Indeed, for all the
specifications, FR decreases with increasing or decreasing k; notable examples
are AT3 and AT4 in which Breach can (almost) always falsify with the mini-
mum k, but never falsifies with the maximum two k. This is the demonstration
of the effects of the scale problem on falsification approaches that only rely on
quantitative robust semantics where the robustness values of different signals are
compared. By looking at the results of ForeSee, instead, we observe that it is
much more robust and its FR performance is independent of the applied rescal-
ing. This clearly shows that our falsification approach guided by QB-Robustness
is successful in avoiding the scale problem.

5 Note that k = 0 corresponds to the experimental result in Table 2, and we report it
again for reference.

Effective Falsification Using MCTS Guided by QB-Robustness 613

Table 4. Falsification performance under different MCTS hyperparameters.

(a) Performance with varied c

AT17 AT19 AT21

c FR time FR time FR time

0 23 177.8 30 224.6 30 463.4

0.02 26 196.7 30 278.5 28 501.3

0.2 30 208.8 30 154.3 29 425.5

0.5 30 297.0 29 227.3 30 509.0

1.0 30 311.7 30 240.2 24 497.0

(b) Performance with varied BP

AT17 AT19 AT21

BP FR time FR time FR time

2 26 385.2 30 162.0 29 500.0

5 30 347.7 29 207.3 29 472.5

10 30 208.8 30 154.3 29 425.5

15 30 337.7 29 336.7 28 514.0

20 30 358.1 30 313.5 30 511.0

These results also allow us to show that the naive approach based on nor-
malization for solving the scale problem does not work, as also reported in [41].
Indeed, one may think that a solution for tackling the scale problem could be
to rescale the signals in a way to make them have the same order of magni-
tude. This is not a good approach. Let us consider the results in Table 3c for
AT4 (�[0,30] (speed < 135 ∧ rpm < 4780)). In this case, speed is multiplied by
10k. We may think that the best falsification result should occur when speed is
multiplied by 102, because this would make the two signals both in the order of
thousands. However, this rescaling is the one giving the worst result. The best
result is actually given by the rescaling making speed even smaller (i.e., k = −2
and k = −1). This means that the correct way for handling the scale problem
cannot be identified in advance, but we need an approach as ours that learns
during falsification the best strategy.

RQ3. How do the hyperparameters of MCTS influence the performance of the
proposed approach?

Our proposed approach is an instantiation of the Monte Carlo Tree Search
(MCTS) method [8,28] that can be configured with some hyperparameters,
namely the scalar c used by UCB1 (Line 12 in Algorithm 2), and the playout
budget BP (Line 21 in Algorithm 2), both used for balancing between explo-
ration and exploitation. Therefore, the performance of MCTS could be affected
by the values used for these hyperparameters. In this RQ, we try to assess
this. We selected three benchmarks specifications (AT17, AT19, and AT21) and
varied one hyperparameter while keeping the other fixed. Namely, we experi-
mented with c ∈ {0, 0.02, 0.2, 0.5, 1} and budget BP = 10 (see Table 4a), and
with BP ∈ {2, 5, 10, 15, 20} and budget c = 0.2 (see Table 4b). Looking at the
results of Table 4a for AT17 and AT21, there seems to be some influence by
the scalar c. In AT17, the worst result in terms of FR is obtained when c is 0,
meaning that MCTS only focuses on exploitation. AT17 is a specification that
suffers from the scale problem, as shown by the very bad performance of Breach
in Table 2; for such a specification, we need to perform some exploration to find
the best Σ: this explain the low performance of MCTS with c = 0. On the other

614 Z. Zhang et al.

hand, the worst FR performance of AT21 is given by the highest value c = 1
that requires MCTS to spend a lot of time in exploration. Since AT21 is not an
extremely difficult specification (indeed Breach has FR of 10 in Table 2), such
very conservative approach does not pay off, while more greedy approaches (i.e.,
with lower c) have better performance.

Looking at the results of Table 4b related to BP , it seems that there is no
too much influence. The only difference is given in AT17 with BP = 2 where
the FR is slightly lower than the other cases. This means that, provided that a
sufficiently large value for BP is given, ForeSee is not too sensitive to it.

6 Related Work

Quality assurance of CPS has been actively studied, due to its great signifi-
cance. Different approaches, including but not limited to model checking, theo-
rem proving, rigorous numerics, and nonstandard analysis [9,16,20,22,23,31,33],
have been proposed to solve the problem. However, due to the scalability issue
and existence of black-box components, those approaches are not widely applied
in the real-world systems.

The optimization-based falsification approach inherits the search-based test-
ing methodology, and is much more scalable than pure verification-based
approaches. The key issue of search-based testing is the exploration-exploitation
trade-off. This issue has been discussed for the verification of quantitative prop-
erties (e.g., [34]). In the falsification community, there have also been a lot
of works focusing on that, and these works tackle the problem from different
perspectives. Metaheuristics refers to high-level heuristic strategies that utilize
heuristics to improve the search efficiency. Several metaheuristic strategies have
been applied in falsification, such as Simulated Annealing [1], tabu search [10],
and so on. Coverage-guided falsification [2,10,15,29] aims to guide the search
using some coverage metrics, so that the search space is sufficiently explored.
Recently, machine learning techniques have also been applied to falsification to
enhance the search ability. For instance, Bayesian optimization [3,11,36] utilizes
an acquisition function to balance exploration and exploitation; Reinforcement
learning [27,37] naturally emphasizes on exploration.

The scale problem is a recognized issue [12,21,40] that is known to severely
affect the performance of falsification. In [40], we proposed a multi-armed bandit
approach to solve the problem in a specific setting, that is, safety properties with
Boolean connectives: �I (ϕ1 ∧ϕ2) and �I (ϕ1 ∨ϕ2). The approach is not appli-
cable to formulas having more nested sub-formulas, or even connectives having
more operands; therefore many of the benchmarks we used in Subsect.5.2 fall out
of the scope of [40]. The techniques introduced in [12,21] rely on explicit declara-
tion of input vacuity and output robustness. Compared to their approaches, our
method does not need that, but we learn the significance of each signal through
tree exploration and reward computation.

MCTS, as an effective search framework, has been applied in testing hybrid
systems. In [30], the authors applied an adaption of MCTS in testing, namely,

Effective Falsification Using MCTS Guided by QB-Robustness 615

adaptive press testing, to detect the potential dangerous cases of airborne col-
lision. A recent study of MCTS on hybrid system falsification is [39]. There,
the authors discretized the search space to construct the search tree, and then
applied MCTS to explore different sub-spaces. Compared to their approach, our
work aims to tackle the scale problem and so we exploit the structure of speci-
fication formulas to construct the tree search framework.

7 Conclusion and Future Work

Optimization-based falsification is a widely used approach for quality assurance
of CPS, that tries to find an input violating a Signal Temporal Logic (STL)
specification. It does this by exploiting the quantitative robust semantics of the
specification, trying to minimize its robustness. The performance of falsification
is affected by the scale problem in the presence of the comparison of robust-
ness values of sub-formulas predicating over signals having different scales. In
this paper, we propose QB-Robustness, a new STL semantics that does not
suffer from the scale problem, because it avoids such comparison. The compu-
tation of QB-Robustness requires to specify a sub-formula sequence telling for
which sub-formulas the quantitative robustness must be computed. We then
propose a Monte Carlo Tree Search (MCTS)-based falsification approach that
synthesizes a sub-formula sequence for QB-Robustness, and uses this for guiding
numerical optimization. Experimental results show that the proposed approach
achieves better falsification results than a state-of-the-art falsification tool that
uses standard quantitative robust semantics.

In the analysis of RQ1, we observed that, when the specifications have a par-
ticular structure, our approach has no advantage and, actually, it could decrease
the performance by trying to find a best sub-formula sequence that does not
exist for the current initial sampling. As future work, we plan to devise some
heuristics that could handle these cases: for example, we could perform a better
initial sampling (see Subsect. 2.1) that could provide a better initial guidance.

References

1. Abbas, H., Fainekos, G.: Convergence proofs for simulated annealing falsification
of safety properties. In: 50th Annual Allerton Conference on Communication, Con-
trol, and Computing, pp. 1594–1601. IEEE (2012)

2. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and
coverage-based falsification for embedded control systems. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 24

3. Akazaki, T., Kumazawa, Y., Hasuo, I.: Causality-aided falsification. In: Proceed-
ings First Workshop on Formal Verification of Autonomous Vehicles, FVAV@iFM
2017, Turin, Italy, 19th September 2017. EPTCS, vol. 257, pp. 3–18 (2017)

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-642-19835-9_21

616 Z. Zhang et al.

5. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, pp. 1–10. ACM New York (2011)

6. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2002)

7. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, pp. 1769–1776. IEEE (2005)

8. Browne, C., et al.: A survey of monte carlo tree search methods. IEEE Trans.
Comput. Intellig. AI Games 4(1), 1–43 (2012)

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

10. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 35

11. Deshmukh, J.V., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-
physical systems through bayesian optimization. ACM Trans. Embedded Comput.
Syst. 16(5), 170:1–170:18 (2017)

12. Dokhanchi, A., Yaghoubi, S., Hoxha, B., Fainekos, G.E.: Vacuity aware falsification
for MTL request-response specifications. In: 13th IEEE Conference on Automation
Science and Engineering, CASE 2017, Xi’an, China, 20–23 August 2017, pp. 1332–
1337. IEEE (2017)

13. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

14. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

15. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

16. Dreossi, T., Dang, T., Piazza, C.: Parallelotope bundles for polynomial reacha-
bility. In: Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control, HSCC 2016 pp. 297–306. ACM, New York (2016)

17. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

18. Ernst, G., et al.: ARCH-COMP 2020 category report: Falsification. In: ARCH20.
7th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH20). EPiC Series in Computing, vol. 74, pp. 140–152. EasyChair
(2020)

19. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26

Effective Falsification Using MCTS Guided by QB-Robustness 617

20. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 29

21. Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal
temporal logic. In: Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada,
16–18 April 2019, pp. 57–66 (2019)

22. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

23. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 34

24. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements
for automotive systems. In: 1st and 2nd International Workshop on Applied veRi-
fication for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Ger-
many, 14 April 2014/ARCH@CPSWeek 2015, Seattle, USA, 13 April 2015. EPiC
Series in Computing, vol. 34, pp. 25–30. EasyChair (2014)

25. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th Int. Conf. on Hybrid Systems:
Computation and Control, HSCC 2014, pp. 253–262. ACM, NY, USA (2014)

26. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
36(6), 45–64 (2016)

27. Kato, K., Ishikawa, F.: Learning-based falsification for model families of cyber-
physical systems. In: 2019 IEEE 24th Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 236–245 (December 2019)

28. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

29. Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of
hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711,
pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-
3 11

30. Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P., Owen, M.P.: Adaptive
stress testing of airborne collision avoidance systems. In: Digital Avionics Systems
Conference, 2015 IEEE/AIAA 34th, pp. 6C2-1. IEEE (2015)

31. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in Simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5 6

32. Luersen, M.A., Le Riche, R.: Globalized Nelder-mead method for engineering opti-
mization. Comput. Struct. 82(23), 2251–2260 (2004)

33. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018) https://doi.org/10.1007/978-3-319-63588-0

34. Seshia, S.A., Rakhlin, A.: Quantitative analysis of systems using game-theoretic
learning. ACM Trans. Embed. Comput. Syst. 11(S2), 55:1–55:27 (2012)

35. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2015)

https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-31424-7_34
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-319-63588-0

618 Z. Zhang et al.

36. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the fal-
sification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S.
(eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 1

37. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 27

38. Zhang, Z., Arcaini, P., Hasuo, I.: Hybrid system falsification under (in)equality
constraints via search space transformation. IEEE Trans. Comput. Aided Des.
Integr. Circ. Syst. 39(11), 3674–3685 (2020)

39. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

40. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-armed bandits for Boolean connectives in
hybrid system falsification. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 401–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 23

41. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: On the effectiveness
of signal rescaling in hybrid system falsification. In: Dutle, A., Moscato, M.M.,
Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 392–
399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76384-8 24

42. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shooting,
cegar-based falsification for hybrid systems. In: 2014 International Conference on
Embedded Software, EMSOFT 2014, New Delhi, India, 12–17 October 2014, pp.
5:1–5:10. ACM (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-95582-7_27
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-76384-8_24
http://creativecommons.org/licenses/by/4.0/

Fast Zone-Based Algorithms
for Reachability in Pushdown

Timed Automata

S. Akshay1(B) , Paul Gastin2 , and Karthik R. Prakash1

1 Department of CSE, Indian Institute
of Technology Bombay, Mumbai, India

{akshayss,karthikrprakash}@cse.iitb.ac.in
2 Université Paris-Saclay, ENS Paris-Saclay,
CNRS, LMF, 91190 Gif-sur-Yvette, France

paul.gastin@lsv.fr

Abstract. Given the versatility of timed automata a huge body of work
has evolved that considers extensions of timed automata. One extension
that has received a lot of interest is timed automata with a, possibly
unbounded, stack, also called pushdown timed automata (PDTA). While
different algorithms have been given for reachability in different variants
of this model, most of these results are purely theoretical and do not give
rise to efficient implementations. One main reason for this is that none of
these algorithms (and the implementations that exist) use the so-called
zone-based abstraction, but rely either on the region-abstraction or other
approaches, which are significantly harder to implement.

In this paper, we show that a naive extension, using simulations, of
the zone based reachability algorithm for the control state reachability
problem of timed automata is not sound in the presence of a stack. To
understand this better we give an inductive rule based view of the zone
reachability algorithm for timed automata. This alternate view allows
us to analyze and adapt the rules to also work for pushdown timed
automata. We obtain the first zone-based algorithm for PDTA which
is terminating, sound and complete. We implement our algorithm in
the tool TChecker and perform experiments to show its efficacy, thus
leading the way for more practical approaches to the verification of timed
pushdown systems.

Keywords: Timed automata · Zone-based abstractions · Pushdown
automata · Simulations · Reachability

1 Introduction

Timed automata [7] are a popular formalism for capturing real-time systems, and
of use for instance, in model checking of cyber-physical systems. They extend

This work was partly supported by ReLaX CNRS IRL 2000, DST/CEFIPRA/INRIA
project EQuaVE and SERB Matrices grant MTR/2018/00074.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 619–642, 2021.
https://doi.org/10.1007/978-3-030-81685-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_30&domain=pdf
http://orcid.org/0000-0002-2471-5997
http://orcid.org/0000-0002-1313-7722
http://orcid.org/0000-0003-4304-1382
https://doi.org/10.1007/978-3-030-81685-8_30

620 S. Akshay et al.

finite automata with real variables called clocks whose values increase over time;
transitions are guarded by constraints over these variables. The main problem
of interest is the reachability problem, which asks whether a given state can be
reached while satisfying the constraints imposed by the guards. This problem is
known to be PSPACE-complete (already shown in [7]). The PSPACE algorithm,
uses the so-called region-automaton construction, which essentially abstracts
the timed automaton into an exponentially larger finite automaton of regions
(collections of clock valuations), which is sound and complete for reachability.

Despite this complexity-theoretic hardness, the model of timed automata has
proved to be extremely influential and versatile, resulting in an enormous body
of work on its theory, variants and extensions over the past 25 years. Almost since
its inception, researchers also began to develop tools to extend from theoreti-
cal algorithms to solve practical problems. Such tools range from the classical
and richly featured tool UPPAAL [9,23] to the more recent open-source tool
TChecker [19], which have been used on industry strength benchmarks and per-
form rather well on many of them. These tools use a different algorithm for
reachability, where reachable sets of valuations are represented as zones and
explored in a graph. While a naive exploration of zones does not terminate, the
algorithms used identify different strategies [8,18,21], e.g., subsumption or simu-
lations, extrapolations, for pruning the zone-based exploration graphs, while pre-
serving soundness and completeness of reachability. While this does not change
the worst case complexity, in practice, the zone exploration results in much bet-
ter practical performance as it allows on-the-fly computation of reachable zones.
One could even argue that the wider adoption of timed automata paradigm in
the verification community has been a result of scalable implementations and
tools built on this zone-based approach.

In light of this, zone-based algorithms are often looked for to improve practi-
cal performance of extensions of timed automata as well. For instance, for timed
automata with diagonal constraints, classical zone-based approaches were shown
to be unsound [11,12], but recently, an approach has been developed which
adapts the existing construction and obtains fast zone-based algorithms [17].
In the present paper, we are interesting in adding a different feature to timed
automata, namely an unbounded lifo-stack. This results in a powerful model of
pushdown timed automata (PDTA for short), in which the source of “infinity”
is both from real-time and the unbounded stack. Unsurprisingly, this model and
its variants have been widely studied over the last 20 years with several old and
recent results on decidability of reachability, related problems and their complex-
ity, including [1–5,10,13–16]. A wide variety of techniques have been employed to
solve these problems, from region-based abstractions, to using atoms and systems
of constraints, to encoding into different logics etc. However, except for [4,5], to
the best of our knowledge, none of the others carry an implementation. In [5],
the implementation uses a tree-automaton implicitly based on regions and the
focus in [4] is towards multi-pushdown systems. A common factor of all these
works is that none of them consider zone-based abstractions.

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 621

In this paper, we ask whether zone-based abstractions can be used to decide
efficiently reachability questions in PDTA. We focus on the problem of well-
nested control-state reachability of PDTA, i.e., given a PDTA, an initial and
a target state, does there exist a run of the PDTA that starts at the initial
state with empty stack and reaches the target state with an empty stack (in
between, i.e., during the run, the stack can indeed be non-empty). As with
timed automata, our goal here is towards its applicability to build powerful
tools which could lead to wider adoption of the PDTA model and showcase its
utility to model-checking timed recursive systems. As the first step, we examine
the difficulties involved in mixing zones with stacks and point out that a naive
adaptation of the zone-based algorithm would not be sound. Then we propose
a new algorithm that modifies the zone-based algorithm to work for pushdown
timed automata. This is done in three steps.

– First we view the zone-graph exploration at the heart of the zone-based reach-
ability algorithm for timed automata as a least fixed point computation of
two inductive rules. When applied till saturation, they compute a sound and
complete finite abstraction of the set of all reachable zones.

– Next, this view allows us to generalize the approach in the presence of a stack
by adding new inductive rules that correspond to push and pop transitions,
and hence are specific to the stack operation. There are two main technical
difficulties in this. First, we need to ensure termination of the fixed point
computation, using a strong enough pruning condition of the (a priori infinite)
zone graph to ensure finiteness, while being sound and not adding spurious
runs. Second, we want to aggressively prune the graph as much as possible to
obtain an efficient zone-exploration algorithm. We show how we can minimally
change the condition of pruning in the zone exploration graph to achieve this
delicate balance. Indeed, in doing so we use a judicious combination of the
subsumption (or simulation) relation and an equivalence relation for obtaining
a fixed point computation for PDTA that is terminating, while being sound
and complete.

– Finally, we build new data structures that allow us to write an efficient algo-
rithm that implements this fixed point computation. While getting a cor-
rect algorithm is relatively simple, to obtain an efficient one, we must again
encounter and overcome several technical difficulties.

We implement our approach to build the first zone-based tool that efficiently
solves well-nested control state reachability for PDTA. Our tool is built on top
of existing infrastructure of TChecker [19], an open source tool and benefits
from many existing optimizations. We perform experiments to show the practi-
cal performance of multiple variants of our algorithm and show how our most
optimized version is vastly better in performance than other variants and of
course the earlier region-based approach on a suite of example benchmarks.

We note that our PDTA model differs slightly from the model considered
in [1,3], as there is no age on stack and time spent on stack cannot be com-
pared with clocks. Hence our model is closer to [10,16]. However, in [13], it was
shown that these two models are equivalent, more specifically, the stack can be

622 S. Akshay et al.

untimed without loss of expressivity (albeit with an exponential blowup). Thus
our approach can be applied to the other model as well by just untiming the
stack. There are other more powerful extensions [14,15] studied especially in the
context of binary reachability, where only theoretical results are known. We also
remark that the idea of combining the subsumption relation between zones with
an equivalence relation also occurs while tackling liveness, or Buchi acceptance,
in timed automata. This has been studied in depth [20,22,24], where the naive
zone-based algorithm does not work, forcing the authors to strengthen the simu-
lation relation in different ways. Though these problems are quite different, there
are surprising similarities in the issues faced, as explained in Sect. 3.

The structure of the paper is as follows: we start with preliminaries and move
on to the difficulty in using zones and simulation relations in solving reachability
in PDTA. Then, we introduce in Sect. 4 our inductive rules for timed automata
and PDTA and show their correctness. In Sect. 5, we present our algorithm and
helpful data-structural advancements. We show the experimental performance
in Sect. 6 and end with a brief conclusion. Proofs that are missing and more
experimental results can be found in the long version of the paper available
at [6].

2 Preliminaries

2.1 Timed Automata

Timed automata extend finite-state automata with a set X of (non-negative)
real-valued variables called clocks. We let Φ(X) denote the set of constraints
ϕ that can be formed using the grammar: ϕ :: = x ∼ c | x − y ∼ c | ϕ ∧ ϕ,
where x, y ∈ X, c ∈ N, ∼ ∈ {≤,≥, <,>}, where each x ∼ c is called an atomic
constraint. A clock valuation is a map v : X → R≥0 and is said to satisfy ϕ,
denoted v |= ϕ, if ϕ evaluates to true when each clock x ∈ X is replaced
with v(x). For δ ∈ R

≥0, we write v + δ to denote the valuation defined as
(v + δ)(x) = v(x) + δ for all clocks x. For R ⊆ X, we write [R]v to denote the
valuation obtained by resetting clocks in R, i.e., ([R]v)(x) = 0 if x ∈ R, and
([R]v)(x) = v(x) otherwise. Finally, v0 is the valuation that sets all clocks to 0.

A timed automaton A is a tuple (Q,X, q0,Δ, F), where Q is a finite set of
states, X is a finite set of clocks, q0 ∈ Q is an initial state, F ⊆ Q is the set of
final states and Δ ⊆ Q × Φ(X) × 2X × Q is a set of transitions. A transition
t ∈ Δ is of the form (q, g,R, q′), where q, q′ are states, g ∈ Φ(X) is the guard
of the transition and R ⊆ X is the set of clocks that are reset at the transition.
The semantics of a timed automaton A is given as a transition system TS (A)
over configurations. A configuration is a pair (q, v) where q ∈ Q is a state and
v is a valuation, with the initial configuration being (q0, v0). The transitions are
of two types. First, for a configuration (q, v) and δ ∈ R

≥0, (q, v) δ−→ (q, v + δ) is
a delay transition. Second, for t = (q, g,R, q′) ∈ Δ, (q, v) t−→ (q′, v′) is a discrete
transition if v |= g and v′ = [R](v). A run is an alternating sequence of delays
and discrete transitions starting from the initial configuration, and is said to be
accepting if the last state in the sequence is a final state.

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 623

2.2 Reachability, Zones and Simulations

The problem of control-state reachability asks whether a given timed automa-
ton has an accepting run. This problem is known to be PSPACE-complete [7],
originally shown via the so-called region abstraction. Note that, since TS (A) is
infinite, some abstraction is needed to get an algorithm. In practice however,
the abstraction used to solve reachability, e.g., in tools such as UPPAAL [23]
or TChecker [19] is the zone abstraction. A zone Z is defined as a set of val-
uations defined by a conjunction of atomic clock constraints. Given a guard
g and reset R, we define the following operations on zones: time elapse

−→
Z =

{v + δ | v ∈ Z, δ ∈ R
≥0}, guard intersection g ∩ Z = {v ∈ Z | v |= g} and reset

[R]Z = {[R]v | v ∈ Z}. The resulting sets are also zones. With this, we can define
the zone graph ZG(A) as a transition system obtained as follows: the nodes are
(state, zone) pairs and (q, Z) t−→ (q′, Z ′), if t = (q, g,R, q′) is a transition of A
and Z ′ =

−−−−−−−→
[R](g ∩ Z). The initial node is (q0, Z0 =

−−→{v0}) and a path in the zone
graph is said to be accepting if it ends at an accepting state. The zone graph is
known to be sound and complete for reachability, but as the graph may still be
infinite, this does not give an algorithm for solving reachability yet.

To obtain an algorithm, one resorts to different techniques such as extrapola-
tion or simulation. Here we focus on simulation relations which will lead to finite
abstractions. Given a timed automaton A, a binary relation
 on configurations
is called a simulation if whenever (q, v)
 (q′, v′), we have q = q′ and

– for each delay δ ∈ R
≥0, (q, v + δ)
 (q, v′ + δ) and

– for each t = (q, g,R, q1) ∈ Δ, if v |= g then v′ |= g and (q1, [R]v)
 (q1, [R]v′).

We often simply write v
q v′ instead of (q, v)
 (q, v′). We can now lift
this to sets Z,Z ′ of valuations as Z
q Z ′ if for all v ∈ Z there exists v′ ∈ Z ′

such that v
q v′. We say that node (q, Z) is subsumbed by node (q, Z ′) when
Z
q Z ′. As a consequence we obtain the following lemma.

Lemma 1. If (q, Z) t−→ (q1, Z1) in ZG(A) and Z
q Z ′, then (q, Z ′) t−→ (q1, Z
′
1)

and Z1
q1 Z ′
1.

Proof. Indeed, let v1 ∈ Z1 =
−−−−−−−→
[R](g ∩ Z). We find v ∈ Z and δ ≥ 0 such that

v |= g and v1 = [R]v+δ. Since Z
q Z ′, we find v′ ∈ Z ′ with v
q v′. We deduce
that v′ |= g and [R]v
q1 [R]v′, which implies v1
q1 v′

1 with v′
1 = [R]v′ + δ ∈

Z ′
1 =

−−−−−−−→
[R](g ∩ Z ′). ��

A simulation
 is said to be finite if for every sequence of nodes (q1, Z1),
(q2, Z2), . . . there exist two nodes (qi, Zi) and (qj , Zj) with i < j such that
qi = qj and Zj
qi

Zi. The importance of the finiteness is that it allows us
to stop exploration of zones along a branch of the zone graph: when a node
(qj , Zj) is reached which is subsumed by an earlier node (qi, Zi), we may cut
the exploration since all control states reachable from the latter are already
reachable from the former. For a timed automaton A, we call this pruned graph

624 S. Akshay et al.

as ZG�(A). Thus, if the simulation relation
 is finite, then ZG�(A) is finite,
sound and complete for control state reachability. We formalize this algorithm
in Sect. 4, using inductive rules.

Various finite simulations have been shown to exist in the literature, including
the famous LU-abstractions [8], and more recent G-abstractions based on sets
of guards [17]. Hence this theory indeed has resulted in better implementations
and is used in standard tools in this domain.

We will see that using simulation in the context of pushdown timed automata
is not always sound, in some cases we need a stronger condition to stop the explo-
ration. Towards this, we consider the equivalence relation on nodes induced by
the simulation relation: Z ∼q Z ′ if Z
q Z ′ and Z ′
q Z. We say that the simu-
lation
 is strongly finite if the induced equivalence relation ∼ has finite index.
Notice that strongly finite implies finite but the converse does not necessarily
hold. Fortunately, the usual simulations for timed automata, in particular the
LU-simulation and the G-simulation, are strongly finite.

2.3 Pushdown Timed Automata (PDTA)

A Pushdown Timed Automaton A is a tuple (Q,X, q0, Γ,Δ, F), where Q is a
finite set of states, X is a finite set of clocks, q0 ∈ Q is an initial state, Γ is the
stack alphabet, F ⊆ Q is the set of final states and Δ is a set of transitions. A
transition t ∈ Δ is of the form (q, g, op, R, q′), where q, q′ are states, g ∈ Φ(X) is
the guard of the transition and R ⊆ X is the set of clocks that are reset at the
transition, op is one of three stack operations: nop or pusha or popa for some
a ∈ Γ .

The semantics of a PDTA A is given as a transition system TS (A) over
configurations. A configuration here is a tuple (q, v, χ) where q ∈ Q is a state, v
is a valuation, χ ∈ Γ ∗ is the stack content, with the initial configuration being
(q0, v0, ε). The transitions are of two types. First, for a configuration (q, v, χ)
and δ ∈ R

≥0, (q, v, χ) δ−→ (q, v + δ, χ) is a delay transition. Second, for t =
(q, g, op, R, q′) ∈ Δ, (q, v, χ) t−→ (q′, v′, χ′) is a discrete transition if v |= g,
v′ = [R](v) and

– if op = nop, then χ′ = χ,
– if op = pusha then χ′ = χ · a,
– if op = popa, then χ = χ′ · a.

A run is an alternating sequence of delays and discrete actions starting from the
initial configuration. It is accepting if the last state in the sequence is final.

Our main focus is the well-nested control state reachability problem for
PDTA, which asks whether a configuration (q, v, ε) with q ∈ F is reachable,
where the stack is empty. Later, in Sect. 7, we remark how our solution can be
extended to solve general control state reachability, i.e., asking whether a con-
figuration (q, v, χ) with q ∈ F is reachable, possibly with a nonempty stack χ.

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 625

Fig. 1. A simple PDTA with 2 clocks {x, y}. Note that if we ignore the push/pop
actions we get a TA, say A.

Fig. 2. Zone graph with simulation edges for finiteness. Again ignoring push/pop
actions gives us a zone graph for the TA. Z0 is the initial zone.

3 Zones in PDTA and the Problem with Simulations

As mentioned earlier, zones are collections of clock valuations defined by conjunc-
tions of timing constraints, and exploring zones reached by a timed automaton
gives a sound and complete abstraction for state reachability. To make sure that
the exploration is finite we need to prune the graph and one way this is done by
simulation, i.e., not exploring paths from some nodes if they are “subsumed” by
earlier nodes visited in the graph. Consider Fig. 1, in which we ignore the pusha

and popa or we can think of them as internal actions. Then the usual zone-
graph construction with simulation would give the graph depicted in Fig. 2. In
this section, just for illustration we instantiate the simulation relation to be the
well-known LU-simulation (we do not give the definition here as it is not relevant
to what comes later, instead we refer to earlier work [8]). Using this, we obtain
that the rightmost node is subsumed by the previous one, and hence the dotted
simulation edge. If we did not do this we immediately observe that we get an
infinite graph with increasing sets of zones.

Now, our first question is whether this zone exploration with simulation can
be lifted to PDTA. In this example, if we were to add back the push/pop edges,
we get exactly the same Zone graph with annotations, and further, the final
state is indeed reachable. Hence, for this particular example we do obtain a
finite, sound and complete graph exploration. However, in general it turns out
that the procedure is not sound.

Consider the example in Fig. 3. In this example, again considering it as a TA
(ignoring the push/pops), we would get the zone graph below, which would be
finite, sound and complete for reachability in that TA. But if we consider it as a
PDTA, now doing the same does not preserve soundness. In other words, in the
PDTA, q3 is no longer reachable. However, in the zone graph we would conclude
that it is reachable due to the simulation edge. If, to fix this, we remove the
dotted simulation edge, then we will lose finiteness.

Thus, it seems that we have a difficult situation where zones with the simula-
tion relation, needed for termination, do not preserve soundness. This situation
resembles the situation studied in [20,22,24], where the authors study liveness
or Buchi-acceptance conditions in timed automata. Again in that situation, the

626 S. Akshay et al.

Fig. 3. A PDTA and its zone graph with simulation. With the simulation (dotted)
edges, q3 is reachable in the zone graph, but its not reachable in the PDTA.

naive algorithm with zone simulation does not work and the authors are forced
to strengthen the simulation relation in different ways.

Surprisingly, it turns out, that even in our very different problem setting of
reachability in PDTA, a similar solution works. That is, we replace simulation by
equivalence (defined in the previous section) as the pruning criterion. However,
there are two issues (i) it is not easy to prove its correctness and (ii) this is far
from efficient as shown in the experimental section. Our goal to use zones in the
first place was efficiency and hence we would like to prune the zone graph as
much as possible, i.e., we would like to use simulation edges as much as possible.
In the next two sections, we describe our fix. We first show a different view of
the exploration algorithm as a fixed point rule based approach. This allows us to
then describe our fix in the same language, which is much easier to understand
conceptually. Also as a corollary we will be able to show that using equivalence
everywhere also gives a correct algorithm. After proving the correctness of our
rule-based algorithm, we then tackle the challenges in implementing it.

4 Viewing Reachability Algorithms Using Rewrite Rules

In this section, our goal is to compute a set S of nodes of the zone graph of a
PDTA, as a least fixed point of a small set of inductive rules, such that a control
state q occurs in S, i.e., (q, Z) ∈ S for some Z iff q is reachable in the PDTA
from its initial state. To understand the rules and their correctness it is easier
to first visualize this on plain timed automata without any push-pop edges.

4.1 Rewrite Rules for Timed Automata.

Given a TA A = (Q,X, q0,Δ, F), the set S containing all reachable nodes of the
zone graph, can be obtained as the least fixed point of the following inductive
rules, with a natural deduction style of presentation.

start
S := {(q0, Z0)}

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 627

(q, Z) ∈ S q
g,R−−→ q′ Z ′ =

−−−−−−→
R(g ∩ Z) = ∅

Trans
S := S ∪ {(q′, Z ′)}

Let S∗ denote the set at the fixed point by starting with the start rule and
repeatedly applying the trans rule. It is easy to see that this computes the set
of all reachable nodes of the zone graph: the start rule starts with the initial
node and each application of trans rule takes a reachable node and applies a
transition of the automaton and includes the resulting node reached. However,
this set S∗ is a priori infinite since number of zones is infinite.

To make it finite we add a condition under which we will apply the transition
rule based on a finite simulation relation (let us denote it
) for A.

(q, Z) ∈ S q
g,R−−→ q′ Z ′ =

−−−−−−→
R(g ∩ Z) = ∅

Trans-�
S := S ∪ {(q′, Z ′)}, unless ∃(q′, Z ′′) ∈ S, Z ′
q′ Z ′′

Thus to obtain an algorithm, we would explore all nodes in the Zone graph
using a search algorithm (say DFS/BFS) and we would add a node only if it is
not subsumed by an already visited node, according to the simulation relation.
We explained in Sect. 2.2 that doing this preserves soundness and completeness
and gives a finite exploration.

Lemma 2. Let S∗
� denote any set obtained from the start rule and by repeatedly

applying Trans-
 till a fixed point is reached. Note that depending on the order
of applications we may have different sets. Then we have:

1. (finiteness) S∗
� is finite.

2. (soundness and completeness) For all q ∈ Q, a configuration (q, v) is reachable
from (q0, v0) in the TA A iff (q, Z) ∈ S∗

� for some zone Z.

We do not give the proof here as (i) it is only a reformulation of known results
and (ii) it will be subsumed by the much stronger theorem we prove next.

4.2 Rewrite Rules for PDTA

Let A = (Q,X, q0, Γ,Δ, F) be a PDTA, we will need not just a set but a tuple
of sets. More precisely, we maintain a set of nodes S called root nodes. For
each root node (q, Z) ∈ S, we also maintain a set of nodes, denoted S(q,Z). The
intuition is that root nodes are those that can be reached after pushing a symbol
to the stack, whereas S(q,Z) will be the set of nodes that can be reached from
(q, Z) with a well-nested run, i.e., starting with an empty stack and ending in
an empty stack. This is to avoid storing the stack contents in our algorithm,
which would be another source of infinity. Again, we use simulations to make
the computation finite. So we fix a strongly finite simulation relation
 for A.

Our inductive rules for the control state reachability of pushdown timed
automata are given in Table 1. Note that the internal rule is just the same as
for timed automata above. The start rule not only starts the set of nodes com-
putation but also the set of roots computation as described above. So the only

628 S. Akshay et al.

Table 1. Inductive rules for control state reachability of PDTA

Start
S := {(q0, Z0)}, S(q0,Z0) := {(q0, Z0)}

(q, Z) ∈ S (q′, Z′) ∈ S(q,Z) q′ g,nop,R−−−−−→ q′′ Z′′ =
−−−−−−→
R(g ∩ Z′) �= ∅

Internal
S(q,Z) := S(q,Z) ∪ {(q′′, Z′′)}, unless ∃(q′′, Z′′′) ∈ S(q,Z), Z′′ 	q′′ Z′′′

(q, Z) ∈ S (q′, Z′) ∈ S(q,Z) q′ g,pusha,R−−−−−−→ q′′ Z′′ =
−−−−−−→
R(g ∩ Z′) �= ∅

Push
S := S ∪ {(q′′, Z′′)}, S(q′′,Z′′) = {(q′′, Z′′)}, unless ∃(q′′, Z′′′) ∈ S, Z′′ ∼q′′ Z′′′

(q, Z) ∈ S

(q′′, Z1) ∈ S

(q′, Z′) ∈ S(q,Z)

(q′
1, Z

′
1) ∈ S(q′′,Z1)

q′ g,pusha,R−−−−−−→ q′′

q′
1

g1,popa,R1−−−−−−−→ q2

Z′′ =
−−−−−−→
R(g ∩ Z′) ∼q′′ Z1

Z2 =
−−−−−−−−→
R1(g1 ∩ Z′

1) �= ∅
Pop

S(q,Z) := S(q,Z) ∪ {(q2, Z2)}, unless ∃(q2, Z
′
2) ∈ S(q,Z), Z2 	q2 Z′

2

interesting rules are the Push and Pop rules. The push rule says that when a
push is encountered, then we must start exploring from a new root (i.e., context).
So the only complicated rule is the Pop rule. Here the intuition is that if we see
a push at a node and from a root equivalent to the root created from it, (i.e., its
context) we see a matching pop reaching a new node, then this push-pop context
is complete, and we can add this new node to the set of reachable nodes. This
is precisely the point where we need equivalence rather than simulation and this
will be made clear in the proof of the theorem below.

Theorem 1. Let S∗ and (S(q,Z))(q,Z)∈S∗ denote any tuple of sets obtained from
the start rule and by repeatedly applying the rules in Table 1 till a fixed point is
reached1. Note that we always have (q0, Z0) ∈ S∗. The following statements hold:

1. (finiteness) S∗ is finite and for each (q, Z) ∈ S∗, S(q,Z) is finite.
2. (completeness) For each (q, Z) ∈ S∗, if there exists a run (q, v, ε) ∗−→ (q′, v′, ε)

of A with {v}
q Z, then there exists (q′, Z ′) ∈ S(q,Z) such that {v′}
q′ Z ′.
3. (soundness) For each (q, Z) ∈ S∗, (q′, Z ′) ∈ S(q,Z) and v′ ∈ Z ′, there exists

a run in PDTA from (q, v, ε) to (q′, v′′, ε) with v ∈ Z and v′
q′ v′′.

Proof. 1. Note that only the Push rule creates new root nodes and the red
condition states that a new root node is added only if there isn’t already an
equivalent node in S∗. Since the simulation relation is strongly finite, the set
of roots S∗ must be finite. Also, before adding a node to some S(q,Z) with the
internal rule or the pop rule, we check that the node is not subsumed by an
existing one. Since the simulation relation is finite, this ensures that each set
S(q,Z) is finite.

1 As before, there could be several such sets depending on the order in which the rules
are applied.

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 629

Fig. 4. Construction for the completeness-push-pop last sub-case.

2. Let (q, Z) ∈ S∗ and assume that (q′, v′, ε) is reachable from some (q, v, ε)
with v
q Z, i.e., there exists a run (q, v, ε) = (q1, v1, χ1) → · · · → (qn, vn, χn) =
(q′, v′, ε). We will then show that vn
qn

Z ′ for some (qn, Z ′) ∈ S(q,Z). The proof
is by induction on n. Base case: For n = 1 we have q′ = q and v′ = v. The result
is obtained by taking Z ′ = Z. Notice that (q, Z) ∈ S(q,Z) follows immediately
from the start rule if q = q0, Z = Z0 or from the push-create rule.

Let us then assume that the statement holds for runs of length at most n−1.
Consider any run of the form (q, v, ε) = (q1, v1, χ1) → · · · → (qn, vn, χn = ε)
with v
q Z. Notice that its last transition (qn−1, vn−1, χn−1) → (qn, vn, χn)
cannot be a push transition (in the PDTA) since χn = ε. Hence, we have three
subcases, depending on the last transition.

– Time elapse. χn−1 = χn = ε, qn−1 = qn = q′, vn = vn−1+δ for some δ ∈ R
≥0.

Applying induction hypothesis, we have vn−1
q′ Z ′ for some (q′, Z ′) ∈ S(q,Z).

Since zones are closed under time elapse, we get Z ′ =
−→
Z ′ and by definition of

the simulation relation vn = vn−1 + δ
q′
−→
Z ′ = Z ′. This completes the case.

– Discrete internal transition. In this case χn−1 = χn = ε, t = qn−1
g,nop,R−−−−−→ qn,

vn−1 |= g and vn = [R]vn−1. Then applying induction hypothesis, there exists
(qn−1, Z

′) ∈ S(q,Z) such that vn−1
qn−1 Z ′. Now let Z ′′ =
−−−−−−→
R(g ∩ Z ′). From

the definition of the simulation relation we get vn
qn
Z ′′. Then, applying

the Internal rule, there exists (qn, Z ′′′) ∈ S(q,Z) such that Z ′′
qn
Z ′′′, with

possibly Z ′′′ = Z ′′. Hence, vn
qn
Z ′′
qn

Z ′′′, which completes the case.
– Pop transition. Then there exists 1 ≤ i < n − 1 such that the run has the

form: (q1, v1, ε) → . . . → (qi, vi, χi = ε)
pusha−−−−→ (qi+1, vi+1, χi+1 = a) → . . . →

(qn−1, vn−1, χn−1 = a)
popa−−−→ (qn, vn, χn = ε), where the push and pop are

matching transitions, i.e., |χj | ≥ 1 for all i < j < n − 1 (see Fig. 4). Then by
induction hypothesis at i, we have

vi
qi
Zi for some (qi, Zi) ∈ S(q,Z) . (1)

From the push transition we have

∃t = qi
g,pusha,R−−−−−−→ qi+1 ∈ Δ with vi |= g and vi+1 = [R]vi . (2)

Let Zi+1 =
−−−−−−→
R(g ∩ Zi). By definition of the simulation relation, we deduce

from vi
qi
Zi that vi+1
qi+1 Zi+1. We can apply the Push rule to obtain

(qi+1, Z
′
i+1) ∈ S∗ for some Z ′

i+1 ∼qi+1 Zi+1 (3)

possibly with Z ′
i+1 = Zi+1 as a special case.

630 S. Akshay et al.

Further the segment of run (qi+1, vi+1, a) → . . . (qn−1, vn−1, a) in the PDTA
never pops the symbol a (by choice, since otherwise the push and pop would
not be matching). Hence we will also have the same sequence of transi-
tions forming a run (qi+1, vi+1, ε) → . . . (qn−1, vn−1, ε). Using vi+1
qi+1

Zi+1 ∼qi+1 Z ′
i+1, we deduce that vi+1
qi+1 Z ′

i+1. By induction hypothe-
sis,

vn−1
qn−1 Zn−1 for some (qn−1, Zn−1) ∈ S(qi+1,Z′
i+1)

. (4)

Finally, we have the pop transition

t1 = qn−1
g1,popa,R1−−−−−−−→ qn ∈ Δ with vn−1 |= g1 and vn = [R1]vn−1 . (5)

We let Zn =
−−−−−−−−−−→
R1(g1 ∩ Zn−1). From vn−1
qn−1 Zn−1 and the definition of

the simulation relation we obtain vn
qn
Zn. Then, combining all the above

equations (1–5), and applying the Pop-rule we obtain some (qn, Z ′
n) ∈ S(q,Z)

with Zn
qn
Z ′

n (possibly Z ′
n = Zn). Finally we get vn
qn

Zn
qn
Z ′

n. This
completes the proof.

3. We will show that the following property is invariant by rule applications:

∀(q, Z) ∈ S, ∀(q′, Z ′) ∈ S(q,Z),∀v′ ∈ Z ′, there is a run (Inv)

(q, v, ε) ∗−→ (q′, v′′, ε) with v ∈ Z and v′
q′ v′′

The invariant holds initially, i.e., after application of the start rule. Indeed, in this
case we have S = {(q0, Z0)} and S(q0,Z0) = {(q0, Z0)}. Hence (q′, Z ′) = (q, Z) =

(q0, Z0) and for all v ∈ Z0 we can choose the empty run (q0, v, ε) 0−→ (q0, v, ε).
We show below that (Inv) is preserved by application of an internal/push/pop

rule. Therefore, the invariant still holds when reaching the fixed point, which
proves the soundness. Let us write S− and S−

(q,Z) for the sets before the appli-
cation of the rule and S and S(q,Z) for the sets after the application of the
rule.
Internal Rule. Let (q, Z) ∈ S = S−, (q′, Z ′) ∈ S(q,Z) and v′ ∈ Z ′. If (q′, Z ′) ∈
S−

(q,Z) then we get the result since (Inv) holds before applying the internal rule.

Otherwise, there is some (q1, Z1) ∈ S−
(q,Z) and a transition t = q1

g,nop,R−−−−−→ q′

with Z ′ =
−−−−−−→
R(g ∩ Z1).

By definition, there exists v1 ∈ Z1 such that v1 |= g and v′ = [R]v1 + δ for
some δ ≥ 0. Hence we have a run (q1, v1, ε)

t−→ δ−→ (q′, v′, ε). Since the invariant
holds before the internal rule, there is a run (q, v, ε) ∗−→ (q1, v

′
1, ε) with v ∈ Z and

v1
q1 v′
1. Now since
 is a simulation we obtain that (q1, v

′
1, ε)

t−→ δ−→ (q′, v′′, ε)
with v′
q′ v′′ and we are done.
Push Rule. Let (q, Z) ∈ S, (q′, Z ′) ∈ S(q,Z) and v′ ∈ Z ′. If (q, Z) ∈ S− then
we get the result since (Inv) holds before applying the Push rule. Otherwise, we
must have (q′, Z ′) = (q, Z) and we can choose the empty run (q, v′, ε) 0−→ (q, v′, ε).

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 631

Fig. 5. Construction for the soundness.

Pop Rule. Let (q, Z) ∈ S = S−, (q2, Z2) ∈ S(q,Z) and v′ ∈ Z2. Again, if
(q2, Z2) ∈ S−

(q,Z) then we get the result since (Inv) holds before applying the Pop
rule. Otherwise, by definition of the pop rule we have:

1. some (q′, Z ′) ∈ S(q,Z),

2. some push transition t = q′ g,pusha,R−−−−−−→ q′′,
3. some (q′′, Z1) ∈ S with Z1 ∼q′′ Z ′′ =

−−−−−−→
R(g ∩ Z ′),

4. some (q′
1, Z

′
1) ∈ S(q′′,Z1),

5. some pop transition t1 = q′
1

g1,popa,R1−−−−−−−→ q2,

with Z2 =
−−−−−−−−→
R1(g1 ∩ Z ′

1). The construction below is illustrated in Fig. 5.
Since v′ ∈ Z2, we get some v4 ∈ Z ′

1 such that v4 |= g1 and v′ = [R1]v4 + δ′

for some δ′ ≥ 0. Hence we have a run (q′
1, v4, a) t1−→ δ′

−→ (q2, v
′, ε).

Now, applying the invariant to (q′′, Z1) ∈ S, (q′
1, Z

′
1) ∈ S(q′′,Z1) and v4 ∈ Z ′

1,
we get a run (q′′, v3, ε)

∗−→ (q′
1, v

′
4, ε) with v3 ∈ Z1 and v4
q′

1
v′
4. Hence, we also

have a run (q′′, v3, a) ∗−→ (q′′, v′
4, a).

Let v′
3 ∈ Z ′′ =

−−−−−−→
R(g ∩ Z ′) ∼q′′ Z1 with v3
q′′ v′

3. we get some v2 ∈ Z ′

such that v2 |= g and v′
3 = [R]v2 + δ for some δ ≥ 0. Hence we have a run

(q′, v2, ε)
t−→ δ−→ (q′′, v′

3, a).
Finally, we apply the invariant to (q, Z) ∈ S, (q′, Z ′) ∈ S(q,Z) and v2 ∈ Z ′,

we get a run (q, v, ε) ∗−→ (q′, v′
2, ε) with v ∈ Z and v2
q′ v′

2.
By repeatedly applying the property of simulation
, we may extend the

run from (q′, v′
2, ε) with (q′, v′

2, ε)
t−→ δ−→ (q′′, v′′

3 , a) ∗−→ (q′
1, v

′′
4 , a) t1−→ δ′

−→ (q2, v
′′, ε)

where v3
q′′ v′
3
q′′ v′′

3 and v4
q′
1

v′
4
q′

1
v′′
4 . Finally v′
q2 v′′. Therefore, the

invariant holds after the pop rule. ��

5 Algorithm for PDTA Reachability via Zones

In this section, we describe Algorithm 1 implementing the fixed point computa-
tion defined by the inductive rules in Table 1. We describe the structure of the
algorithm and its main data-structures.

632 S. Akshay et al.

Notice first that the sets S and S(q,Z) for (q, Z) ∈ S can be alternatively
represented as a single set of pairs of nodes:

S = {[(q, Z), (q′, Z ′)] | (q, Z) ∈ S and (q′, Z ′) ∈ S(q,Z)} .

We can recover S as the first projection of S and S(q,Z) as the second projec-
tion of S filtered by the first component being (q, Z). We use both notations
below depending on which is more convenient. The start rule initializes S to
{[(q0, Z0), (q0, Z0)]}.

Let us consider first the rule for internal transitions. For each already dis-
covered pair of nodes [(q, Z), (q′, Z ′)] ∈ S (or (q′, Z ′) ∈ S(q,Z) with (q, Z) ∈ S),

we have to consider each possible internal transition q′ g,nop,R−−−−−→ q′′ and check
whether the node (q′′, Z ′′) with Z ′′ =

−−−−−−→
R(g ∩ Z ′) should be added to S(q,Z) or is

subsumed by an existing node. This is like a graph traversal. The set S stores
the already discovered pairs of nodes, and we will use a ToDo (unordered) list
to store the newly discovered nodes from which outgoing transitions should be
considered. The ToDo list should also consist of pairs [(q, Z), (q′, Z ′)] so that
when a new node (q′′, Z ′′) is discovered by an internal transition from (q′, Z ′)
we know to which set S(q,Z) it should be added.

As we can see from Theorem 1-soundness, given (q, Z) ∈ S, the set S(q,Z)

should consist of nodes reachable from (q, Z) via a well-nested run. Hence, when

dealing with a pair [(q, Z), (q′, Z ′)] ∈ S and we see a push transition q′ g,pusha,R−−−−−−→
q′′ with Z ′′ =

−−−−−−→
R(g ∩ Z ′), we should not try to add the pair (q′′, Z ′′) to S(q,Z) since

the corresponding run would not be well-nested. Instead, we should search for
a matching pop transition which could be taken after a well-nested run starting
from (q′′, Z ′′). This is why the push rule adds the new root (q′′, Z ′′) to S (unless
it is equivalent to an existing root). The pair of nodes [(q′′, Z ′′), (q′′, Z ′′)] is newly
discovered and added to the ToDo list for further exploration.

The push transition may be matched with several pop transitions (which
could be already discovered or yet to be discovered by the algorithm). To avoid
revisiting the push transition many times, it will be stored by the algorithm
in an additional set Spush. More precisely, we will store in Spush the tuple
[(q, Z), a, (q′′, Z ′′)] meaning that the root node (q′′, Z ′′) may be reached from
the root node (q, Z) via a well-nested run reaching some (q′, Z ′) followed by a
transition pushing a onto the stack.

Finally, assume that, when dealing with a pair [(q1, Z1), (q′
1, Z

′
1)] ∈ S, we see

a pop transition q′
1

g1,popa,R1−−−−−−−→ q2 with Z2 =
−−−−−−−−→
R1(g1 ∩ Z ′

1). We will check whether
it can be matched with an already visited push transition, stored in the set Spush

as a pair [(q, Z), a, (q′′, Z ′′)] with (q′′, Z ′′) = (q1, Z1). If this is the case, the pop
rule may be applied and the node (q2, Z2) added to S(q,Z) (unless it is subsumed
by an existing node). The newly discovered pair of nodes [(q, Z), (q2, Z2)] is also
added to the ToDo list for further exploration. Once again, the pop transition
may also be matched with push transitions that will be discovered later by the
algorithm. To avoid revisiting the pop transition many times, we store the tuple
[(q1, Z1), a, (q2, Z2)] in a new set Spop.

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 633

Data Structures. We use a data structure TLM to store the triple of sets
(S,Spush,Spop) and which is accessed with the following methods.

– TLM.create() creates the data structure with the three sets empty.
– TLM.add(q, Z, q′, Z ′) adds [(q, Z), (q′, Z ′)] to S.
– TLM.addPush(q, Z, a, q′, Z ′) adds [(q, Z), a, (q′, Z ′)] to Spush.
– TLM.addPop(q, Z, a, q′, Z ′) adds [(q, Z), a, (q′, Z ′)] to Spop.
– TLM.isNewRoot(q, Z) returns [false, Z ′] if there exists some (q, Z ′) ∈ S with

Z ′ ∼q Z, and returns [true, Z] otherwise.
– TLM.isNewNode(q, Z, q′, Z ′) returns false if ∃[(q, Z), (q′, Z ′′)] ∈ S with Z ′
q′

Z ′′, and returns true otherwise.
– TLM.isNewPop(q, Z, a, q′, Z ′) returns false if ∃[(q, Z), a, (q′, Z ′′)] ∈ Spop with

Z ′
q′ Z ′′, true otherwise.
– TLM.isNewPush(q, Z, a, q′, Z ′) returns false if [(q, Z), a, (q′, Z ′)] ∈ Spush, and

returns true otherwise.
– TLM.iterPop(q, Z, a) returns the list of (q′, Z ′) with [(q, Z), a, (q′, Z ′)] ∈ Spop.
– TLM.iterPush(a, q′, Z ′) returns the list of (q, Z), s.t. [(q, Z), a, (q′, Z ′)] ∈ Spush.

Concretely, the data structure should store sets of nodes (q, Z) and be able
to search or iterate through such sets. In order to make the algorithm slightly
faster, we will segregate our sets of nodes, with the name of the state. We will
use a hashmap in order to accomplish this task. See Fig. 6 where the concrete
data structure is depicted.

We will use a first level hashmap to store the set of roots S. To implement
TLM.isNewNode(q, Z, q′, Z ′), we first search for (q, Z) in the first level map, then
a pointer TLM[q][Z][0] will lead to a second level hashmap for the set of nodes
S(q,Z) and we search for (q′, Z ′) in this second level map. See Fig. 6(b).

To implement TLM.isNewPop(q, Z, a, q′, Z ′) and TLM.iterPop(q, Z, a), we first
search the root node (q, Z) in the first level map, then a pointer TLM[q][Z][2]
will lead to a second level hashmap storing the set of triples (a, q′, Z ′) such that
[(q, Z), a, (q′, Z ′)] ∈ Spop. To speed up the access, this second level pop map is
segregated first on the key a, then on the key q′ to get the list of corresponding
zones Z ′. See Fig. 6(c,d).

Finally, we also store the set Spush to implement TLM.
isNewPush(q, Z, a, q′, Z ′) and TLM.iterPush(a, q′, Z ′). Notice that Spush consists
of triples [(q, Z), a, (q′, Z ′)] where both (q, Z) and (q′, Z ′) are root nodes from
S. Notice also that for the iteration we fix the second node (q′, Z ′). To get an
efficient implementation, we first search the root node (q′, Z ′) in the first level
map, then a pointer TLM[q′][Z ′][1] will lead to a second level hashmap storing
the set of triples (a, q, Z) such that [(q, Z), a, (q′, Z ′)] ∈ Spush. To speed up the
access, this second level push map is segregated first on the key a, then on the
key q to get the list of corresponding zones Z. See Fig. 6(c,d).

634 S. Akshay et al.

Algorithm 1. PDTA Reachability Using Zones.
1: procedure PDTAReach
2: TLM.create()
3: TLM.add(q0, Z0, q0, Z0) � Start Rule
4: ToDo = {[(q0, Z0), (q0, Z0)]}
5: while ToDo �= ∅ do
6: [(q, Z), (q′, Z′)] = ToDo.get() � (q, Z) ∈ S ∧ (q′, Z′) ∈ S(q,Z)

7: for t = q′ g,op,R−−−−→ q′′ and Z′′ =
−−−−−−→
R(g ∩ Z′) �= ∅ do

8: if op = nop ∧ TLM.isNewNode(q, Z, q′′, Z′′) then
9: TLM.add(q, Z, q′′, Z′′) � Internal Rule

10: ToDo.add([(q, Z), (q′′, Z′′)])
11: else if op = pusha then
12: [isNew, Z1] = TLM.isNewRoot(q′′, Z′′)
13: if isNew == true then
14: TLM.add(q′′, Z′′, q′′, Z′′) � Push Rule
15: ToDo.add([(q′′, Z′′), (q′′, Z′′)])
16: end if
17: if TLM.isNewPush(q, Z, a, q′′, Z1) then
18: TLM.addPush(q, Z, a, q′′, Z1)
19: for (q2, Z2) in TLM.iterPop(q′′, Z1, a) do
20: if TLM.isNewNode(q, Z, q2, Z2) then
21: TLM.add(q, Z, q2, Z2) � Pop Rule
22: ToDo.add([(q, Z), (q2, Z2)])
23: end if
24: end for
25: end if
26: else if op = popa then
27: if TLM.isNewPop(q, Z, a, q′′, Z′′) then
28: TLM.addPop(q, Z, a, q′′, Z′′)
29: for (q3, Z3) in TLM.iterPush(a, q, Z) do
30: if TLM.isNewNode(q3, Z3, q

′′, Z′′) then
31: TLM.add(q3, Z3, q

′′, Z′′) � Pop Rule with q = q3, Z = Z3

32: ToDo.add([(q3, Z3), (q
′′, Z′′)]) � q2 = q′′, Z2 = Z′′

33: end if
34: end for
35: end if
36: end if
37: end for
38: end while
39: end procedure

We now show correctness of Algorithm 1. Note that TLM encodes a triple of
sets (S,Spush,Spop) defined by:

S = {[(q, Z), (q′, Z ′)] | (q′, Z ′) ∈ TLM[q][Z][0]}
Spush = {[(q, Z), a, (q′, Z ′)] | (a, q, Z) ∈ TLM[q′][Z ′][1]}
Spop = {[(q, Z), a, (q′, Z ′)] | (a, q′, Z ′) ∈ TLM[q][Z][2]}

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 635

Fig. 6. Two level map implementing the data structure TLM storing the sets S, Spush,
Spop.

636 S. Akshay et al.

Recall also the correspondence explained at beginning of Sect. 5 between a set
S of pairs of nodes, and the set of roots S together with the sets of nodes S(q,Z)

for (q, Z) ∈ S.

Theorem 2. The set S encoded by TLM computed by Algorithm 1 is a fixed
point obtained starting from the empty set by applying the inductive rules in
Table 1. Therefore, Algorithm 1 terminates and is sound and complete for well-
nested control state reachability of pushdown timed automata.

Proof (sketch).

1. For termination, if we look at our algorithm, we can clearly see that before
adding a pair of nodes to the ToDo list, we add the same pair to S with
TLM.add, and before that, we always check whether the pair is already in our
TLM or not (isNewNode or isNewRoot). Since the size of the TLM is always
bounded because we check either the first level map or the second level map
before adding, the outer while loop will be called only a finite number of
times. From this we can conclude that the algorithm will terminate.

2. For soundness we have prove that any change to the TLM is equivalent to
applying one of the rewrite rules to (S,Spush,Spop), which is already known
to be sound from Theorem 1. The changes to the TLM occur in lines 3, 9, 14,
21, 31. Since line 3 simply adds [(q0, Z0), (q0, Z0)] to S, it simulates the start
rule. For line 9, we can see that the pre conditions of internal rule Table 1
are met, with (q, Z) ∈ S, (q′, Z ′) ∈ S(q,Z), the if-statement (just above the
line) stating that there is an nop transition from q to q′, and Z ′′ = φ. Using
all these we can see that indeed the operation can be performed. Similar
arguments can be made for line 14, which simulates the push rule, and line
numbers 21, 31 both for the pop-rule.

3. For completeness we have to prove that after termination of the algorithm,
using (S,Spush,Spop) to encode TLM, we cannot use any of the rules men-
tioned in Table 1, to add anything extra to the TLM. Then from Theorem 1-
completeness we can conclude. For the start rule we can simply say that it
was definitely executed (Line 3), so it cannot be executed again. For the inter-
nal rule we argue that if it can be applied after termination, then it should
have been applied during execution. Since all transitions are considered in
the for-loop, and the conditions before line 9 checks all the preconditions of
the internal rule, it is certainly the case that a node (q′′, Z ′′) could not be
added because either it was already added, or (q′′, Z ′′′) ∈ S(q,Z), Z

′′
q′′ Z ′′′.
The argument for the push rule is similar. For the pop rule to be applied we
argue that there must be a push transition and a pop transition satisfying
the pre-conditions in the pop rule. Since both of these are already present
for zones in the TLM, we say that they must have been added to Spush and
Spop. We then concern ourselves with the order, arguing that if the push
transition was discovered later the node either must already have been added
(Line 21) or another node simulating the node must have been present in the
TLM (Line 20). A similar argument is made in case the order of discovery is
reversed.

For the full proof details, we refer the reader to the long version [6]. ��

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 637

6 Experiments and Results

Implementation We build on the existing architecture of an open-source tool for
analysis of timed automata, TChecker [19]. Our tool along with the benchmarks
we used is available at https://github.com/karthik-314/PDTA reachability and
more details can be found [6]. The input for our implementation are PDTA,
rather than TA so we modify TChecker in order to run our experiments. While
most of the TChecker file format will remain the same, the only place where we
make a change to the syntax of the input, will be the edges. TChecker uses the
following format, for its transitions,

edge:<Process>:<src>:<tgt>:<label>{
do:<Reset1(x=0)> ; <Reset2(y=0)> :
provided: <guard1(x==0)> && <guard2(y>=1)>}

The new format in order to incorporate the pushes and pops will be,

edge:<Process>:<src>:<tgt>:<label>{
do:<Reset1(x=0)> ; <Reset2(y=0)> :
provided: <guard1(x==0)> && <guard2(y>=1)>}
[<push/pop>:<symbol>]

In case the operation is nop, the square brackets are left empty.
We have implemented two variants of Algorithm 1 for PDTA and we will

compare these between each other and also with a region-based approach. More
precisely, we consider the following 3 algorithms:

– Simulation Based Approach (
LU): Direct implementation of Algo-
rithm 1.

– Equivalence Based Approach (∼LU): This is a variation of Algorithm 1,
with two methods changed,

• TLM.isNewNode(q, Z, q′, Z ′): Returns false if ∃[(q, Z), (q′, Z ′′)] ∈ S with
Z ′ ∼q′ Z ′′, and true otherwise.

• TLM.isNewPop(q, Z, a, q′, Z ′): Returns false if ∃[(q, Z), a, (q′, Z ′′)] ∈ Spop

with Z ′ ∼q′ Z ′′, and true otherwise.
As mentioned in Sect. 4, if instead of simulation, we just use equivalence
everywhere, we do obtain a correct algorithm for reachability in PDTA. Hence
it is interesting to compare it with the above approach.

– Region Based Implementation (RB): A previous implementation [5],
uses a region based approach in order to solve the non-emptiness problem in
PDTA. We note two features of the algorithm. First, it uses a tree-automaton
based approach for efficiency and correctness, but underlying it is the region
(rather than zone) construction. Second, it works only with closed guards,
while our approach works with closed and open guards.

We note the following important points regarding our implementation:

1. The
 used in our implementation will be
LU [8], without extrapolation
and with global clock bounds.

https://github.com/karthik-314/PDTA_reachability

638 S. Akshay et al.

2. The ToDo list used currently uses LIFO (stack) ordering for popping of ele-
ments. This corresponds to a DFS exploration of the zone-graph. But we can
use other data structures for this purpose as well, e.g., changing it to FIFO
would give us a BFS exploration etc.

3. Both the simulation based and equivalence based approach are tested on
PDTA with empty and non-empty languages, but we have ensured that both
of them return an answer only after the entire exploration has been completed.
In other words, we do not stop the exploration when we reach a final state.
This is to make fair comparisons, where we do not terminate because of being
“lucky” in encountering the final state early. Of course in practice we would
not do this. In contrast, we note that the RB approach is an on the fly
approach which returns non-empty as soon as the final state turns out to be
reachable.

All experiments are run on Intel-i5 10th Generation processor, with an 8GB
RAM, with a timeout of 120 seconds.

Benchmarks. We used a total of 10 benchmarks in our experiments, but parame-
terized several of them in order to test the scalability and to give us more insight
into performance comparisons. The benchmark and their parameterizations are
explained in [6]. We highlight only some salient points here. The benchmark B1

is the PDTA from Fig. 1. B2(k) is directly adapted from Fig. 3 with the constant
y ≤ 1 parametrized to y ≤ k, and k + 1 pops between q0 and q2. Note that
q3 is unreachable regardless of the value of k. Benchmarks B3, B4 are adapted
from [5] with B3 involving untiming of a stack age into normal clocks. B5, B6

involve significant interplay of push/pop edges and clocks and B6, B7 also have
open guards. More details can be found in [6]. We also note that automata B1,
B3(3, 4), B5(k1, k2), B8, B9(k1, k2) accept a nonempty language, while the rest
are empty. As described earlier this does not change the performance of the
simulation and equivalence based approaches, but may significantly change the
performance of the Region Based Approach.

Results Table 2 contains a selection of our experimental results; more can be
found in [6]. From the table, we conclude first that the zone based approach
is indeed faster than the Region Based Approach for all examples. Second, the
simulation based approach runs faster than the equivalence based approach for
all examples if the ToDo priority for removal remains the same. In fact, the
performance of the simulation based approach depends mostly on the size of the
PDTA, but the equivalence based approach is dependant on the constants used
in guards as well, which is even more the case for the region based approach.
Finally, our approach can easily handle closed and open guards.

Most of the timeouts that occurred during the experiments are due to Out of
Memory (OoM) kills, especially for larger sized PDTAs. For smaller sized PDTA
such as B2(100), the recorded number of nodes before timeout was 154700.

Regarding the performance, we would like to emphasize that B1, B2, B3, B4,
B7 were designed to compare the Zone approach to the region (RB) approach.

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 639

Table 2. Results on the Benchmarks. Time recorded in ms, and timeout (T.O.) used
is 120 s. OoM stands for Out of Memory kill. Results rounded up to 1 decimal. # nodes
refers to the number of nodes in the zone/region graph explored. In case of timeout
≥ n, refers to recorded number of nodes n before timeout occurred. NA in RB columns
represents that the region based approach does not handle open guards in transitions
(B6, B7 have open guards.)

Benchmark 	LU 	LU ∼LU ∼LU RB RB

Time # nodes Time # nodes Time # nodes

B1 0.2 17 0.2 17 235.6 4100

B2(10) 0.8 77 0.8 77 6835.8 30200

B2(100) 20.0 5252 20.7 5252 T.O ≥154700

B3(4, 3) 0.2 6 0.2 6 1043.8 14300

B3(3, 4) 0.2 9 0.2 9 98.8 3400

B4 0.2 8 0.1 8 0.3 17

B5(100, 10) 0.8 202 5.4 2212 OoM OoM

B5(100, 1000) 0.7 202 3564.3 201202 OoM OoM

B5(5000, 100) 23.2 10002 3429.3 1010102 OoM OoM

B6(5, 4, 1000) 0.3 30 611.8 30047 NA NA

B6(5, 4, 10000) 0.3 30 60271.9 300047 NA NA

B6(501, 500, 100) 38.2 3006 501.0 34799 NA NA

B7 112.4 4475 113.1 4475 NA NA

As a consequence these models are very simple and the number of explored nodes
remains almost the same regardless of whether we use ∼ or
 to prune, which
reflects in the times/sizes not being too different. However, the other examples
B5, B6 are more complex and have nodes that get pruned during exploration
(both using ∼ and
). Here we can see the clear improvement of
 over ∼ both
in terms of time taken and also of number of explored nodes.

7 Discussion and Future Work

In this paper, we examined how an unbounded stack can be integrated seamlessly
with zone-abstractions in timed automata. We would like to point out that two
easy extensions of our work are possible. First, as remarked earlier, our algorithm
checks for well-nested reachability, i.e., it requires to reach a final state with
empty stack for acceptance. But we can generalize this to general control-state
reachability by showing that a control state q is reachable in the PDTA (with
possibly a non-empty stack) iff some node (q, Z) is discovered by our algorithm
and added to some S(q′,Z′) (and not just to S(q0,Z0) as in the well-nested case).
While this idea is simple and requires only minor edits to the existing algorithm,
the proof of correctness requires more work and we leave this for future work.

640 S. Akshay et al.

Secondly, we can handle the model with ages in stack as in [1,3] with an
exponential blowup (thanks to [13]). However, an open question is whether this
blowup can be avoided in practice. As noted earlier, there exist extensions [14,15]
studied especially in the context of binary reachability, which are expressively
strictly more powerful, for which decidability results are known. It would be
interesting to see how we can extend the zone-based approach to those models.

Finally, it seems interesting to examine further the link to the liveness prob-
lem, possibly allowing us to transfer ideas and obtain faster implementations.
Another possibility would be to use the extrapolation operator (rather than, or
in addition to, simulation), which we have not considered in this work.

References

1. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, pp. 35–44 (2012)

2. Akshay, S., Gastin, P., Jugé, V., Krishna, S.N.: Timed systems through the lens
of logic. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, pp. 1–13 (2019)

3. Akshay, S., Gastin, P., Krishna, S.N.: Analyzing Timed Systems Using Tree
Automata. Logical Methods Comput. Sci. 14(2:8), 1–35 (2018)

4. Akshay, S., Gastin, P., Krishna, S., Roychowdhury, S.: Revisiting underapproxi-
mate reachability for multipushdown systems. TACAS 2020. LNCS, vol. 12078, pp.
387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 21

5. Akshay, S., Gastin, P., Krishna, S.N., Sarkar, I.: Towards an efficient tree automata
based technique for timed systems. In: 28th International Conference on Concur-
rency Theory, CONCUR 2017, 5–8 September 2017, Berlin, Germany, pp. 39:1–
39:15 (2017)

6. S. Akshay, Paul Gastin, and Karthik R. Prakash. Fast zone-based algorithms for
reachability in pushdown timed automata. CoRR arXiv preprint arXiv:2105.13683
(2021)

7. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

8. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24730-2 25

9. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

10. Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems
with continuous variables and unbounded discrete data structures. In: Antsaklis,
P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 64–85.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3 4

11. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods Syst.
Des. 24(3), 281–320 (2004)

https://doi.org/10.1007/978-3-030-45190-5_21
http://arxiv.org/abs/2105.13683
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/3-540-60472-3_4

Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata 641

12. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed
automata: forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FOR-
MATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005). https://
doi.org/10.1007/11603009 10

13. Clemente, L., Lasota, S.: Timed pushdown automata revisited. In: 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
6–10 July 2015, pp. 738–749 (2015)

14. Clemente, L., Lasota, S.: Reachability relations of timed pushdown automata. J.
Comput. Syst. Sci. 117, 202–241 (2021)

15. Clemente, L., Lasota, S., Lazić, R., Mazowiecki, F.: Timed pushdown automata
and branching vector addition systems. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017,
pp. 1–12. IEEE Computer Society (2017)

16. Dang, Z.: Pushdown timed automata: a binary reachability characterization and
safety verification. Theor. Comput. Sci. 1–3, 93–121 (2003)

17. Gastin, P., Mukherjee, S., Srivathsan, B.: Fast algorithms for handling diagonal
constraints in timed automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS,
vol. 11561, pp. 41–59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 3

18. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approx-
imations for efficient analysis of timed automata. In: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2011, 12–14 December 2011, Mumbai, India, vol. 13 of LIPIcs, pp. 78–89. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2011)

19. Herbreteau, F.: Gerald Point. Tchecker. https://github.com/fredher/tchecker
20. Herbreteau, F., Srivathsan, B., Tran, T.T., Walukiewicz, I.: Why liveness for timed

automata is hard, and what we can do about it. ACM Trans. Comput. Log. 21(3),
17:1–17:28 (2020)

21. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Com-
puter Science, LICS 2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 375–384.
IEEE Computer Society (2012)

22. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed Büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 69

23. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1), 134–152 (1997). https://doi.org/10.1007/s100090050010

24. Tripakis, S.: Checking timed Büchi automata emptiness on simulation graphs.
ACM Trans. Comput. Log. 10(3), 15:1–15:19 (2009)

https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/978-3-030-25540-4_3
https://doi.org/10.1007/978-3-030-25540-4_3
https://github.com/fredher/tchecker
https://doi.org/10.1007/978-3-642-39799-8_69
https://doi.org/10.1007/s100090050010

642 S. Akshay et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Security

Verified Cryptographic Code
for Everybody

Brett Boston1, Samuel Breese1, Joey Dodds1(B), Mike Dodds1,
Brian Huffman1, Adam Petcher2, and Andrei Stefanescu1

1 Galois, Inc., Portland, USA
jdodds@galois.com

2 Amazon Web Services, Seattle, USA

Abstract. We have completed machine-assisted proofs of two highly-
optimized cryptographic primitives, AES-256-GCM and SHA-384. We
have verified that the implementations of these primitives, written in a
mix of C and x86 assembly, are memory safe and functionally correct,
by which we mean input-output equivalent to their algorithmic specifica-
tions. Our proofs were completed using SAW, a bounded cryptographic
verification tool which we have extended to handle embedded x86. The
code we have verified comes from AWS LibCrypto. This code is identical
to BoringSSL and very similar to OpenSSL, from which it ultimately
derives. We believe we are the first to formally verify these implementa-
tions, which protect the security of nearly everybody on the internet.

Keywords: Cryptography · Automated reasoning · Verification

1 Introduction

Widely-used cryptographic libraries such as OpenSSL [20], BoringSSL [16], and
AWS LibCrypto [2] are an enticing target for formal verification. These libraries
are used, to a first approximation, by everybody—or at least the four billion
or so worldwide users of the internet. Each primitive in these libraries typically
consists of a modest amount of code, but these primitives loom large in both their
security and performance impact. Cryptographic primitives are also unusual in
that they have clearly defined specifications and very few dependencies, which
removes some major challenges from general-purpose verification. As a result, in
recent years many efforts have been made to verify cryptographic library code.

However, despite significant progress, widely-used cryptographic libraries
have resisted verification, at least for the versions of the primitives that are
used in practice. This is because these primitives are some of the most heavily
optimized pieces of code in existence. For a cloud service, every packet involves
a call to at least one cryptographic primitive, so even small optimizations will
have large performance and cost impacts. As a result, for AES and SHA there

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 645–668, 2021.
https://doi.org/10.1007/978-3-030-81685-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_31

646 B. Boston et al.

is an enormous gap in complexity between simple and easily verified high-level
reference implementations, and the highly optimized implementations used in
production.

Optimizations create several difficulties when verifying cryptographic prim-
itives. First, primitives are typically written in a mix of C and assembly. This
means that a verification tool must model both of these languages and the man-
ner in which they can interact. Furthermore, each optimization step inherently
increases the difficulty of verification, because each requires one or more the-
orems showing that the optimization is sound. To add to this, many of these
optimizations break the abstractions used in algorithm specifications. For exam-
ple, the SHA-384 specification is defined using a function called Sigma0 that
is unfolded and rearranged during the optimisation process (see Subsect. 6.1).
Solver-based automation typically struggles to recover these abstractions.

The verification of cryptographic code has seen huge advances in recent years.
Purpose-built libraries such as EverCrypt [21] can now match the performance of
hand-tuned OpenSSL. These correct-by-construction libraries may be the future,
but as of 2021 they have not yet seen wide mainstream adoption. Our aim as
formal methods practitioners is to verify the cryptographic code on which users
depend. What has been missing until now is the ability to verify the legacy
cryptographic code that runs in production for hundreds of millions of users.
This is the problem we solve.

Approach and Results. We have formally verified the memory safety and func-
tional correctness of two key cryptographic primitives, AES-256-GCM and SHA-
384 as they currently appear in the new AWS LibCrypto library (AWS-LC) [2].
AWS-LC is a general-purpose library maintained by Amazon Web Services for
use with AWS applications. We targeted these algorithms in particular because
they are used within AWS and included in the Commercial National Security
Algorithms Suite [18]. We chose a block cipher and a hashing algorithm in order
to cover multiple algorithm types and to be representative of other algorithms
in AWS-LC.

Cryptographic algorithms have fixed specifications which permit a narrow
range of designs, and as a result, implementations change slowly. The AES-
256-GCM and SHA-384 implementations in AWS-LC are identical to those in
Google’s BoringSSL library, and as a result, our proofs apply to it as well.
For these primitives, there are only small differences between BoringSSL and
OpenSSL, and we are confident our proofs would also apply to OpenSSL with
minor modifications.

Our proofs show that the implementations of AES-256-GCM and SHA-384
are input-output equivalent to formal specifications of their expected behaviour.
We write our specifications in Cryptol [11], a pre-existing high-level language
designed for use by cryptographic experts. Cryptol specifications are executable,
so our proofs establish that for any input, the implementation and specifica-
tion produce exactly the same result. To boot, our proofs guarantee that the
code is free of undefined behaviour such as memory safety errors, meaning that

Verified Cryptographic Code for Everybody 647

any remaining correctness errors are local to the code being proved and cannot
affect the calling context. We do not verify side-channel properties, nor do we
analyse cryptographic security properties of the AES-256-GCM and SHA-384
algorithms.

We performed these proofs using the Software Analysis Workbench
(SAW) [14]. SAW is an industrial verification tool designed to prove equiva-
lence properties between abstract specifications and lower-level, more optimized
implementations. SAW is a bounded verifier: loops must be verified under pre-
conditions that guarantee termination, and data-structures must be statically
allocated with bounded sizes.

We have run our proofs on fixed sizes of input data, i.e., fixed numbers of
bytes to be hashed/encrypted/decrypted. The number of loop iterations in these
algorithms are strictly fixed by the input size so this also implicitly bounds the
execution length. We chose these sizes so as to exercise all branches and boundary
conditions in the code and specification (in this, we follow Galois and AWS’s
previous work: see Chudnov et al. [7]). We discuss the scope and limitations of
our proof in Sect. 7.

Each proof of a cryptographic primitive in SAW has two stages. In the first,
the imperative input code is converted to a functional term using bounded sym-
bolic execution. This depends on a high-fidelity model of the input languages.
SAW already had an LLVM model used for C and C++ verification. For AES-
256-GCM and SHA-384 we developed a new SAW model of x86 assembly, along
with an interface with SAW’s existing LLVM model. As well as modeling core
x86, this also included modeling special-purpose instructions used to achieve high
performance. A successful conversion only occurs for well-defined programs, and
implies that the program is free of undefined behavior under the given precon-
ditions.

In the second stage of a SAW proof, the symbolic term is compared to a
specification term written in Cryptol. For many applications, SAW can discharge
these equivalences automatically, but this is where the optimizations in AES-256-
GCM and SHA-384 made verification much more challenging. The proof steps
involved cannot be discharged automatically by current solvers, so instead, our
proofs make careful use of rewriting logic to massage the terms into a form that
can be discharged. Some of these proof steps may be amenable to automated
solving in future.

Our proofs were developed collaboratively between a team of expert verifica-
tion engineers. As well as technical innovation, these proofs also required careful
proof engineering. By this, we mean the analog of software engineering—a com-
bination of proof design, tool design, and team working practices which makes it
possible to execute effectively on a verification goal. We found that to a degree,
proof engineering is software engineering; that is, successful proof engineering
has similarities to the practices needed when developing a challenging software
project.

Aside from proofs and tool capabilities, there is something else notable about
our project: we verify code that was never intended for formal verification. This

648 B. Boston et al.

is in contrast to many other efforts, which target systems that were designed with
assurance in mind. For example, Galois and AWS previously verified an Amazon
TLS library that was purpose-built as a high-assurance alternative to OpenSSL’s
TLS support [7], while in the EverCrypt library, code and proof were developed
in parallel, and even the API was designed to simplify specifications [21]. We
verify legacy code because this is the code that is actually used in AWS-LC and
its predecessors.

Contributions. The key contributions of this paper are as follows:

– Proofs of correctness for highly optimized versions of AES-256-GCM and
SHA-384, as they appear in AWS LibCrypto and BoringSSL.

– A verifier for mixed C and x86 code which allows precise reasoning about
functional correctness. This capability is built into the industrial verification
tool, SAW.

– A simple system of rewrite tactics which is powerful enough to allow verifi-
cation of highly optimised cryptographic algorithms.

– Lessons learned in proof engineering when applying an industry verification
tool to a challenging piece of legacy cryptographic code.

All proof scripts are available online1.

1.1 Related Work

There is a considerable amount of recent work in cryptographic verification,
representing a large space of application domains and design requirements. While
our work is widely applicable, we do not consider it a one-size-fits-all solution. We
discuss how a developer might choose between the many verified cryptography
efforts in Subsect. 7.2. Here we give an overview of projects that target C or
x86, or that are closely related technically. We do not review work on verifying
cryptographic security properties, which is orthogonal to the problem of verifying
that code matches algorithm.

The closest work to ours in terms of technical approach is Galois and AWS’s
previous work verifying the HMAC and DRBG primitives in the AWS s2n TLS
library [7]. Just as we do, they use SAW to verify production cryptographic code.
The main difference from our current project is the complexity of the primitives
verified. The HMAC and DRBG primitives are inherently simpler algorithms,
and are written in C, rather than x86. Furthermore, this code was designed
for verification, unlike the OpenSSL-derived code we target. In earlier work, Ye
et al. also verified C versions of HMAC and DRBG from OpenSSL using the
foundational Verified Software Toolchain (VST) [22].

The Everest project has developed verified C/x86 cryptographic library called
EverCrypt [5,10,21,23]. Recent results are extremely impressive, with perfor-
mance comparable to highly optimised OpenSSL code. However, EverCrypt
1 https://github.com/awslabs/aws-lc-verification.

https://github.com/awslabs/aws-lc-verification

Verified Cryptographic Code for Everybody 649

represent a different philosophy from ours, where the library and proof are co-
designed, and in some cases code is synthesized. This approach looks towards
a future where such libraries replace hand-written libraries like AWS-LC, Bor-
ingSSL, and OpenSSL. Our philosophy is complementary: we verify code as it
currently exists while we wait for the future to arrive.

EverCrypt also differs in that they use a proof-assistant style of reasoning
more similar to Coq or Isabelle. The advantage of this is that proofs are very
flexible—for example, they work for unbounded input sizes. However, the cost is
that proofs are relatively more verbose. Proof size is hard to estimate in Ever-
Crypt, because the proof and implementation are mixed, but the earlier Vale
paper [10] suggests that EverCrypt’s proof of AES-GCM uses 2000 lines of proof
library plus additional proof mixed in. In comparison, SAW is designed to auto-
mate reasoning where possible, and the proof of AES-256-GCM implementation
takes us less than 1000 lines of proof (including white-space and comments, for
attempted apples-to-apples comparison).

The CASM [17] project verifies x86-based cryptography taken from
OpenSSL, including SHA-256 (we verify SHA-384). CASM’s toolchain is sim-
ilar to ours, based on symbolic execution and SMT solvers. However, CASM
only examines functions over message blocks, rather than the whole SHA-256
algorithm. CASM also does not verify the most highly optimised versions of this
algorithm. For example, it omits x86 EVP and vector operations, two of the
main challenges.

Fiat Crypto [9] is a related approach, although it does not apply to the algo-
rithms proved in this paper. It foundationally generates portable C field arith-
metic implementations from a high level specification. Code synthesized by Fiat
Crypto has already been added to OpenSSL. Jasmin [1] is another foundational
synthesis approach. It generates high-performance vectorized x86 implementa-
tions. The Jasmin implementation of ChaCha20-Poly1305 outperforms similar
hand-optimized implementations. We have not seen Jasmin implementations of
SHA-2 or AES-GCM.

SAW’s approach has some similarities to model checking, in that it is a
bounded verification technique. However, proofs are based on symbolic execu-
tion, that is, construction of logical terms representing the program denotation,
and proofs are bounded on input buffer size, not program execution length perse.

2 Project Design Constraints

Our objective in this project was to verify the cryptographic code which is actu-
ally deployed, and to ensure it stays verified as it changes over time2. To do
this, we used continuous reasoning, a term due to Peter O’Hearn [19]. In contin-
uous reasoning, there is a tight connection between code, software engineering
process, and verification tools. Several recent industry projects have success-
fully used continuous reasoning practices. It was also important that our tools
2 In fact, we do not expect AES-256-GCM and SHA-384 to change often in AWS-LC,

but this work takes place in the context of a larger AWS-LC assurance project.

650 B. Boston et al.

maintain the existing institutional trust in the original codebase—this ruled out
whole-code replacements such as EverCrypt. This resulted in the following design
constraints:

– Proofs had to run on the executed code, rather than a model/abstraction.
This was to minimize the trusted base, and ensure that our proofs stayed in
sync with the code as it evolved.

– Proofs had to run automatically with a low enough time budget to integrate
with continuous integration checking. This ensures that errors are detected
at the time code is changing, which increases the probability of fixes.

– Proofs had to avoid modifications to the original source code, and instead
exist as separate supporting files. Our experience is that teams are typically
very reluctant to modify original source code, even with non-functional anno-
tations.

– The proof toolchain had to operate independently of the software build sys-
tem. This was to avoid introducing untrusted tools into critical development
pathways.

These constraints led us to use the SAW tool as our basis for verification [14].
Our project can be seen as a follow on to Galois and AWS’s prior verification
of AWS s2n which had many of the same design objectives [7]. Chudnov et al.
showed that SAW can be used for continuous reasoning for a relatively simple
piece of C cryptography. The difference in our current project is the inherent
difficulty of verifying the code.

3 AES-256-GCM and SHA-384 Proof Structure

Conceptually, SAW’s approach to proof works as follows. The tool symbolically
executes C and x86 code, resulting in a collection of functional terms. A term
describes every program output mathematically as a function of program inputs.
Once side conditions have been discharged, completion of symbolic execution also
implies that the program is safe: that is, memory safety errors cannot occur. In
the final step of the proof, these functional terms are compared to specifications
using a solver to determine whether they are equivalent.

Interfaces. At the top level of our proof, we verify the AWS LC primitives against
OpenSSL’s EVP interface3. OpenSSL and its descendants use this interface to
make it easy to swap out algorithms without exposing their implementations.
This complicates the verification task by hiding functions behind pointers and
union types. It has also attempted to remain largely backwards compatible for
years, resulting in an API that is not as clean as it might be otherwise. Perhaps
for these reasons, previous cryptographic verification projects have not verified
the EVP interface.

3 https://wiki.openssl.org/index.php/EVP.

https://wiki.openssl.org/index.php/EVP

Verified Cryptographic Code for Everybody 651

Fig. 1. Part of the EVP interface for AES-256-GCM.

SAW-Script Specifications. The top-level EVP specifications are defined in SAW-
script, the high-level control language for SAW. Figure 1 shows part of the SAW-
script EVP interface for AES-256-GCM. In its form, this interface consists of a
series of instructions in SAW-script, but in its effect, it is a Hoare-style pre/post
specification. The interface sets up symbolic memory (the pre-condition), sym-
bolically executes the function (crucible_execute_func), and then checks that
the resulting symbolic memory contains the correct values (the post-condition).

For AES, the main purpose of the pre-condition is to define the layout of
memory that results from the AES initialization function. Because we define
post-condition for the initialization function that match the specification given
here, we can end-to-end verify the common use case of initializing memory,
encrypting some input, and returning the result.

The script defines the memory pre- and post-conditions for the function using
points-to assertions. In SAW-script, we allocate symbolic memory at specific sizes
using the crucible_alloc commands. We can then use the points_to com-
mand to specify that a pointer points to symbolic memory. The ptr_to_fresh
command is a convenience function that allocates a pointer, and then initializes
it with symbolic memory.

SAW’s logic is less expressive than a full separation logic, but specifications
can naturally be interpreted in terms of separation, including the property that
memory cells do not overlap. To make the memory layout easier to understand,
consider the following separation logic triple, which roughly corresponds to the
layout defined in the SAW-script:

652 B. Boston et al.

{cipher data ptr �→ ctx... ∗ in ptr �→ in ∗ out ptr �→ (: [len])}
EVP_CipherUpdate(ctx_ptr, out_ptr, out_len_ptr, in_ptr, len){

cipher data ptr �→ cipher update(ctx...) ∗
in ptr �→ in ∗ out ptr �→ ctr32 encrypt(ctx, in)

}

Rather than syntactically divide the pre-condition and post-condition, as
in a Hoare triple, the two are divided by the call to crucible_execute_func,
which indicates symbolic execution of the target C or x86 function. Crucible
is the intermediate language for symbolic execution used by SAW. Internally,
the semantics of LLVM, x86, and other SAW input languages are defined by
translation to Crucible.

One reason for the complexity of these specification is that SAW differentiates
between data that is allocated and initialized and data that is just initialized.
Other verification tools tend to treat all allocated data as initialized (for example,
this is true of CBMC [8]). This is generally a sound approximation because C
compilers tend to behave predictably, but our approach is more accurate to the
specification of C.

Functional Specifications. The other role of SAW-script is to verify the connec-
tion between the implementation and algorithmic specification. In SAW, speci-
fication are written in Cryptol, a domain-specific language designed for crypto-
graphic specifications [11]. In the postcondition of the script, we use references to
Cryptol functions to map the outputs of running the program to the outputs of
our specification programs, ctr32_encrypt and cipher_update. The final lines
of the specification assert that the memory cells resulting from the program
must match the required values, i.e., those that would result from executing the
Cryptol specification.

We show ctr32encrypt in Fig. 2. This function defines the top-level behavior
of the CTR mode of encryption, which repeatedly increments an initialization
vector, encrypts the incremented value with the secret key, and performs an
XOR of that encryption with the plaintext.

The first line of the specification defines the type of the function, parame-
terized by type variable n. AES_GCM_Ctx is a structure used to maintain state
for the incremental interface to AES, which allows for data to be encrypted and
decrypted as it becomes available, rather than all at once. The [n][8] arguments
are sequences of bytes with length n.

The function body consists of a sequence comprehension. This takes input
bytes one at a time, and labels them with i, which draws from the sequence
counting up from ctx.len. The separate function EKij performs the encryption
step using the initialization vector and the key contained in the context. The
take and drop functions are used to convert the 64-bit length contained in the
context to a 32-bit number required by the EKij function.

Verified Cryptographic Code for Everybody 653

Fig. 2. Top-level Cryptol specification for AES update.

Another example of a functional specification is the following line describing
the Sigma0 function:

S0 x = (x >>> 28) ^ (x >>> 34) ^ (x >>> 39)

In the SHA-384 code, this function is implemented by the Perl code given
in Fig. 3. This does not execute directly, but rather generates assembly code,
which is what we verify. The instructions ror and xor correspond to the cryptol
operations >>> and ^ respectively.

In order to include the implementation here, some constants have been sub-
stituted, and we have extracted the relevant lines from around 20 other lines
calculating other parts of SHA. Those lines are mixed in with even more lines
of non-interfering SHA calculations, presumably in order to keep the processor
saturated. Symbolic execution allows us to reason just about these lines of code,
because interleaved instructions that don’t change the result of the computa-
tion in a relevant way will not be included when reasoning about the results of
individual computations.

Fig. 3. Perl implementation of internal SHA computation.

Notice also that the shift amounts are different between the functional speci-
fication and the code. In Cryptol, the shift amounts are 28, 34, and 39, but in the
implementation, we see shifts by 39− 34, 34− 28, and 28. This is a performance
optimisation, but it makes the proof effort more difficult. To close this gap, we
use a system of verified rewrites (see Sect. 6).

Verification Process. Once a specification has been defined, it must be veri-
fied. SAW divides verification into two phases: symbolic execution, and verifica-
tion of equivalence. Symbolic execution converts an imperative operation into a
functional term suitable for automated reasoning. Even without specifying the
expected high-level behaviour of the AES function, the memory layout defined

654 B. Boston et al.

in the pre-condition is enough for symbolic execution to complete, which has
the effect of proving the imperative code memory safe. We typically verify mem-
ory safety in this way before developing a specification. This lets us separate
concerns between functional and safety properties.

The final task once symbolic term has been generated is to compare it to
a specification term. SAW uses SMT solving to discharge these proofs, and in
most use cases, these can be completed automatically. However, the complexity of
the optimization stages in AES-256-GCM and SHA-384 makes the gap between
specification and implementation too large to be completely automated. SAW
solves this with a small tactic language embedded into SAW-script that supports
term rewriting. Each of these rewrites Sect. 6.

Modular Reasoning. Symbolic execution is a precise technique with hard limits
on its scalability. The AES-256-GCM and SHA-384 functions are too large to be
symbolically executed in their entirety. SAW solves this problem through using
a modular reasoning system called overrides. SAW treats specifications as exe-
cutable code that can be freely substituted for implementation functions. When
a function is verified equivalent to a Cryptol specification, calls to that function
can be overridden (i.e., replaced) during symbolic execution. As Cryptol speci-
fications are typically much less complex than implementations, this massively
increases the tractability of the verification task.

As a result, a typical SAW proof consists of a hierarchy of equivalence proofs.
The proof begins at the leaf functions, which are verified by symbolic execution.
The functions at the next level are then symbolically executed with the leaf func-
tions replaced by their specifications. These are then also added to the library
of verified functions. This proceeds until the top-level function is verified. One
of the main tasks when developing a SAW proof is defining these internal spec-
ifications (our proof is unusual in that we also needed a significant number of
rewrite rules).

We also use the override mechanism at the interface between C and x86
code. Functions in x86 are proved equivalent to Cryptol specifications, and these
specifications can then be used as overrides in the surrounding C context. This
approach works because we have defined a compatible memory model that works
for both C and x86 code—see Sect. 5 for more.

Finally, the override functionality can be used to assume specifications for
functionality that has been assumed, not verified. This is useful for library calls
that might be out of scope for a particular project, but that might be verified
in the future. For example, Chudnov et al.’s SAW proofs for s2n [7] use this
approach to parameterize the proofs of HMAC and DRBG over different prim-

Verified Cryptographic Code for Everybody 655

itives4. In our proofs, the only assumptions we make are that OPENSSL_malloc
and OPENSSL_free behave correctly.

4 SAW’s Verification Pipeline

SAW is structured as a pipeline of linked verification stages. The inputs to
the pipeline are, firstly, executable mathematical specifications for the top-level
function, and selected sub-functions; secondly, the compiled code, made up of
LLVM and embedded x86 binary code; and thirdly, a proof script which sets
up memory, identifies the mapping between Cryptol specifications and function
interfaces, and contains the rewrites that are applied to the resulting logical
terms. The verification pipeline then works as follows:

1. The x86 binary is extracted from the LLVM and decompiled into a CFG
representation that recovers the x86 instructions and control-flow structure.
This relies on a SAW sibling project called Macaw [12].

2. The x86 control-flow graph and LLVM code are divided into functions at the
interfaces identified in the SAW-script file.

3. Beginning at the leaves of the call-graph, each x86 and LLVM function is
symbolically executed, resulting in a term written in a intermediate language
called SAW-core. At this stage, any already-verified functions are substituted
for Cryptol overrides.

4. If a function has an associated Cryptol specification, it too is symbolically
executed, resulting in a specification term in SAW-core.

5. The function term and specification term are rewritten using the rewrites
defined in SAW-script.

6. The rewritten function and specification terms are proved equivalent through
a generic solver interface library called What4 [15].

Verification proceeds with functions progressively higher on the call-graph, until
the top-level equivalence is proved between code and specification.

While the structure of this pipeline is simple, making it work for real code
requires a significant amount of tool sophistication. SAW is the product of many
years of refinement and development, and we used many of the components in
this pipeline without modification.

Our C support is based on SAW’s LLVM support, which is mature, and
has been used in many other industry and government verification projects—for
example, Chudnov et al. [7]. While we do not claim complete coverage of the
standard, in practice we rarely need to add new C language features to SAW.
Likewise, Cryptol support is built into SAW and is designed to be symbolically
executed, so this part of the tool required no modifications. The Macaw and
What4 tools similarly functioned without modification.

4 In fact, we have now verified some of the primitives that were only assumed in
this previous work, meaning it should be possible to stitch these proofs together
end-to-end.

656 B. Boston et al.

Therefore, in this paper we focus on the new capabilities of the tool: our
symbolic execution of x86 instructions, and verified rewrites. For a more detailed
treatment of the SAW suite as a whole, readers should look at the SAW docu-
mentation and tutorial [13,14].

5 New Capability: x86 Semantics

The first SAW capability we developed for this project was symbolic execution
for x86 assembly code, including support for mixed C/x86 code. Doing this
required us to solve two problems. First, decompiling the binary into a series
of x86 instructions, and second, defining the semantics of instructions, which
mainly involves defining the model of memory.

To decompile we use Macaw, a SAW sibling project which is able to parse
Elf binaries and output a control-flow graph complete with the representation
of the x86 instructions [12]. We treat Macaw as a black box, and in fact any
decompiler with similar capabilities could serve in its place.

Once the CFG has been constructed, we apply our x86 semantics. For the
behaviour of individual instructions, we consulted the Intel manual. We note
that processor manuals contain errors, and hand-encoding the semantics could
also introduce errors. However, we have reasonable confidence in this encod-
ing because, in practice, most conceivable errors would immediately cause the
proof to fail. This is because cryptographic functions are very sensitive to small
changes: most small value errors would result in a dramatically different output.

Much more important and subtle is the memory model, which describes under
what conditions reads and writes to memory can occur, as well as describing
how reads and writes can be combined to store and retrieve values. Unlike C,
there are almost no accepted memory usage rules for assembly programming,
aside from the conventions used in a particular program and the Application
Binary Interface (ABI) for functions that can be called externally. Fortunately,
AES and SHA implementations are designed to be called by C programs. They
therefore must follow C-like conventions and respect the ABI. Memory is used
to get inputs and define outputs, read global constants, and maintain a stack for
storing temporary results. Functions always respect the boundaries of data as
provided. Because of this, we were able to adapt SAW’s well-tested model used
for LLVM support.

In SAW’s memory model, addresses are represented by a pair of integers: the
first integer is a base address, identifying an allocated memory region, while the
second is an offset into the region. Memory operations, such as pointer arithmetic
and pointer comparisons, are only well-defined for addresses in the same region.

Even after defining this model, we had to decide how to apply it within the
proof. There were two options: (i) modeling the entire memory as a single region,
and (ii) representing different objects as separate regions. The former is the more
flexible because it does not enforce any invariants on the way that memory is
used. Any read or write within the entire memory region is valid at any time.
This comes at an increased cost of manually specifying necessary invariants. For

Verified Cryptographic Code for Everybody 657

example, each function would have to manually encode the memory region it
might write to so that its calling function can predict all of the side effects of
calling it.

Instead, we take the second approach: automatically specifying such mem-
ory invariants as part of the way that memory can be used. This means that
some valid assembly will be impossible to verify. It could be completely safe
and correct, but because it violates the strict memory model we’ve chosen, our
tool will be unable to reason about it. On the other hand, the memory model
we chose works for all of the cryptographic assembly code we’ve run into, and
implementing the memory model in this way saves us a substantial amount of
specification and proof work.

It is not surprising that this approach works; The models and abstractions C
uses for memory are useful in assembly as well. Furthermore, the ABI and the C
memory model have heavily co-evolved, making the C memory model a natural
fit for assembly functions that match the ABI.

The memory model is applied by symbolic execution of the CFG that results
from Macaw. This symbolic execution has two main functions: efficiently update
a symbolic representation of memory, and discharge side conditions that must
hold in order for symbolic execution to continue. The result is a SAW-core term
representing the input-output behaviour of the x86 binary code.

6 New Capability: Verified Rewrites

The second SAW capability we developed was a simple language of term rewrites
for use in proofs.

After symbolic terms have been constructed from C, x86, or Cryptol, we
must prove equivalences between these terms. The design goal with SAW is that
these proofs are completed mostly automatically using SMT solvers. While this
has worked well in previous, less-complicated proofs, the functional terms that
result from AES-256-GCM and SHA-384 often proved to be intractable for the
solvers without preprocessing. This is exactly because these algorithms are so
heavily optimised, as we have discussed above.

In order to solve this, we introduce a language of equivalences between terms
that are themselves verified by the solver. By applying these rewrites, we can
close the gap between the more abstract Cryptol term and the optimized C/x86
term. These rewrites serve as a small tactic language for controlling the proof,
while preserving the principle that SAW proofs are mostly automatic.

To illustrate how this works, we consider an example rewrite from our SHA-
384 proof. In the Cryptol portion of our proof, we define the following function,
S0 (shortened for convenience from Sigma0):

S0 x = (x >>> 28) ^ (x >>> 34) ^ (x >>> 39)

In Cryptol, >>> and <<< are right and left rotation respectively, while ^ is XOR.
In order to complete the proof, we need to be able to rewrite occurrences of this
function. To do this, we define the following rewrite, Sigma0_thm:

658 B. Boston et al.

Sigma0_thm <- prove_folding_theorem

{{ \x -> (x ^ ((x ^ (x <<< 59)) <<< 58)) <<< 36 == S0 x }};

The left hand side of this equation is how symbolic execution interprets
the code in Fig. 3. The rotate-rights have been swapped to rotate-lefts, which
allows our semantics to model both types of instruction by rotate-left. In order
to swap the rotates, we subtract the rotate amount from 64, which is why we
have a different set of constants than we see in either the specification or the
implementation.

The solver verifies this equivalence for all possible values of x and saves it
with the name Sigma0_thm. In this case, we verify the equality using the ABC
solver [6] through What4, but different solvers can be applied as needed to
provide different equivalences.

Consider the following SAWscript command, which verifies an x86 function
matches its specification:

sha512_block_data_order_spec <-

crucible_llvm_verify_x86 m "<filename>" "sha512_block_data_order"

[("K512", 5120)] // Initialize global for round constants
true

sha512_block_data_order_spec

(do {

simplify (cryptol_ss ()); // std simplifications
simplify (addsimps thms empty_ss); // folding theorems
simplify (addsimp concat_assoc_thm empty_ss); // final theorem
w4_unint_yices ["S0", "S1", "s0", "s1", "Ch"]; // uninterpreted fns

});

Here, the do-block defines the order in which the simplification rewrite rules
are applied. The folding theorems thms contains 30 rewrite rules, including the
Sigma0_thm presented above. The concat_assoc_thm theorem normalizes the
concatenations that result from other proof rules. The final line of this script
instructs the Yices solver to treat certain functions as uninterpreted, including
the S0 function. This illustrates the usefulness of the rewriting support. Rather
than reasoning about the S0 function directly, we rely on the verified rewrites.
This allows us to abstract away from complexity that previously made the proof
infeasible for the solver.

Overall, the tactics we use for SAW proofs constitute a very simple decision
procedure, made up almost exclusively of user-supplied rewrites. The other main
mechanism we have for guiding proofs is the modular override system described
in Sect. 3, which allows us to decompose proof tasks into lemmas, at least at the
granularity of functions. In practice, we have found that these capabilities are
sufficient to meet the needs of proving cryptographic implementations correct
with respect to specifications.

Ultimately, we may find ourselves limited by the tools available in SAW for
controlling the proof process, particularly if we attempt to prove higher degrees
of abstraction between specification and implementation. These more manual
proofs largely fall outside of the scope of what SAW aims to do well. An ideal

Verified Cryptographic Code for Everybody 659

solution would be to export proof goals to Coq, Lean, or F*, all of which already
have highly-usable better tools for manual proof. Chudnov et al. have previously
demonstrated that SAW proofs about code and more abstract Coq proofs can
be connected in this way.

6.1 Role of Rewrites in AES-256-GCM and SHA-384 Proofs

Rewrites in SAW can be seen as a small tactic language, serving a similar purpose
to proof tactics in Coq or Isabelle. However, SAW occupies a very different point
in design space, because it is designed to maximize proof automation. Heavy use
of SMT-backed automation is the reason our proofs were feasible, but if the
automation makes poor choices, it can also obstruct the proofs. We use rewrites
along with appropriate choices of abstraction boundaries, to recover abstractions
that automation would not discover itself.

For example, consider the Sigma0_thm rewrite defined above. The solver can
verify the rewrite when supplied in isolation. However in the context of SHA,
the solver fails to identify this as a valuable fact. One reason is that S0 is a
function that is present in the Cryptol specification, but this abstraction is lost
when we symbolically execute an x86 function. The rewrites replace occurrences
of S0 with an uninterpreted function, pruning the proof space dramatically.

However, there is the trade-off in reintroducing such an abstraction. Even if
the abstraction holds locally, the functionality that calls that abstraction might
depend on the internal functionality. In that case, swapping out the code for
an uninterpreted function could actually turn a solvable goal into an unsolvable
one. The answer is to choose these rewrites carefully: this is one of the main
intellectual challenges in completing a proof. In general, this problem is unde-
cidable. For example the rewrite rules inferred may not terminate, this means
that at best it might be a guided special-purpose mode of solvers, rather than a
general purpose approach.

Our rewrites plug into SAW late in the pipeline, after many of SAW’s opti-
mizations. This means that rewrites sometimes have to compensate for earlier
optimizations. SAW is designed to aggressively optimize terms into a form suit-
able for the solver, and in some cases, this means breaking up abstractions that
would be useful in completing the proof. In these cases, our rewrites must operate
on the post-optimization proof term.

For example, in one case, it would have been desirable for our proof to use
the term:

{{ \x -> (slice_59_5_0 x) # (slice_0_59_5 x) == x <<< 59 }};

However, SAW discovered that it could drop off the operation on the final
byte of x, but to do so, it had to break up x into its constituent bytes. This
is a desirable optimization if the term is passed to the solver directly, because
the solver itself will reason at the level of bytes. However, this made writing an
appropriate rewrite for our proof much more challenging. We include the eventual
rewrite rule in Fig. 4. Again, a large amount of the intellectual challenge with our

660 B. Boston et al.

proof rested in finding appropriate rewrites that integrated with SAW’s existing
automation.

Fig. 4. Example rewrite rule. This rule is made much more complex by the fact it
happens after SAW’s existing term optimization phases.

7 Results and Lessons Learned

Our proofs run on the current version of AWS-LC [2] as of January 2021, built
using the default compiler flags. We verify the AVX implementation of SHA-384,
which is the current fastest implementation. Our AES-256-GCM proof uses the
code path for AESNI, CLMUL, and AVX instructions.

Proof Size and Composition. Our code can be broken down into top-level func-
tional specifications, top-level interface specifications, and proof scripts. The
top-level specifications are what must be understood in order to understand the
results of our proofs.

We have 168 lines of top-level interface specifications, which define the 8
interface functions that we’ve proved correct. Those functions specify memory
layouts for the interface functions and link them to the top-level functional spec-
ification. We have 435 lines of top-level functional specifications, which were only
slightly modified from specifications that we and others have used in previous
cryptographic verification projects. These are almost completely free of imple-
mentation details, and live in a specifications only repository, separate from the

Verified Cryptographic Code for Everybody 661

code. If the functional specifications were made any shorter, they would likely
also be less readable, so we believe they are close to optimal for their purpose.

The proof scripts consist of 1286 lines of intermediate function specifications,
rewrite rules, tactics, and proof running logic. These intermediate functions are
both proved and checked each time they’re called. As a result, they do not need
to be understood or trusted in order to believe the top level results.

Following continuous reasoning practice [19], our proofs are integrated into
the CI process for AWS-LC. We do not expect this code to change, but we have
adopted this practice as part of a larger AWS-LC assurance effort, including code
which does change more often. Quickcheck versions of our proofs run as GitHub
actions that take around 25 min5. The complete version runs on private systems
in 30 min, but using more cores and memory. A significant part of our proof and
tool development effort was dedicated to making sure proofs could run within
a time budget acceptable for CI (typically 1 h). For example, this sometimes
required introducing overrides to break the proof into smaller segments.

Achieving Trust in the Proof. SAW is designed to increase confidence in software,
but it cannot supply total certainty. A key question is therefore what parts of
the toolchain and proof must be trusted. For our proofs, the Trusted Code Base
(TCB) consists of:

– The top-level functional and interface specifications in the proof scripts.
– Library behavior that is assumed and then used in overrides. In our case, that
OPENSSL_malloc and OPENSSL_free behave correctly.

– The SAW and Cryptol toolchain, the tools themselves, the language models
of x86 and LLVM, the back-end SMT solvers, and ultimately the Haskell
runtime and other downstream infrastructure.

– Correctness of the compilation chain from LLVM to executable (for C code),
and correct execution of compiled code by the hardware.

– Any behaviours of code not covered by proofs at the fixed sizes we have
verified.

Although this TCB is significant, it is comparable in scale to similar verifica-
tion projects like EverCrypt [21]. The highest impact improvement would likely
proving the algorithms at arbitrary sizes. While we could throw computation
at running the proofs at a wide range of fixed input sizes, this would spend
computation and developer wait time with fairly little benefit. We believe an
inductive approach is achievable in future work and would allow us to verify the
algorithms once and for all.

In the mean time, we have covered some of the most-used block sizes, as well
as all code paths. Given we have verified the algorithm at fixed sizes, and the
code does not branch on input size, the only place that bugs could remain is the
looping behaviour at other sizes. We have inspected the dynamically bounded
loops in the code carefully to mitigate this possibility.

5 https://github.com/awslabs/aws-lc-verification/actions.

https://github.com/awslabs/aws-lc-verification/actions

662 B. Boston et al.

We could also shrink the TCB by applying foundational techniques such as
used in the Verified Software Toolchain project [3]. This would remove much of
the need to trust the tool itself. However, we believe doing this would make it
infeasibly expensive to develop a tool as complex as SAW, at least given current
foundational techniques.

Another important question is whether a correctness failure in the toolchain
could result in a proof that does not establish the result we expect. We believe
the probability of this is quite low. Our current best defense against this failure
of TCB is thorough testing and code review. SAW itself is a well-tested tool that
has been used for many projects. The language models have also been tested,
and it is unlikely that a behavioural bug could cause an incorrect specification
to be verified. For this to occur, several failures would need to occur at once.

As an aside, the intent of the people doing the proof, and the precise nature
of any external review should be considered when answering this question. A tool
bug is unlikely to result in a proof that falsely appears correct, assuming that
the proof effort is done in good faith. On the other hand, all tools have bugs,
and in most logic-based tools, bugs can allow the construction of false proofs
that appears superficially correct. In other words, for most current tools, trust
in verified code requires trust in the team and process producing the proof.

We believe the highest risk of accidental error lies in the specifications. It
is quite common for draft specifications to contain subtle discrepancies between
what users intends and the specification’s formal meaning. We mitigate this
with extensive manual audit. Every line of code we write is reviewed at least
once within the verification team, and once by AWS-LC domain experts. The
internal review ensures that our specifications are correct and that our style is
consistent with our guidelines. The external review allows us to ensure that we
have explained our proofs correctly, and that we have correctly specified the
functions in the context that they are being used.

Proof Engineering Process. The proofs were completed over six calendar months,
using approximately nine person-months engineering effort total. We consider
this to be an upper bound estimate as the proof effort was mixed in with tool
improvements, in particular for the less-mature x86 tooling. The core team con-
sisted of four engineers, with additional contributions from verification tooling
experts and AWS-LC domain experts. This project represented a significant
engineering effort, but for our project, this represented a good use of resources
to achieve a high level of confidence in the AWS-LC code. Proofs were completed
alongside more traditional assurance approaches, e.g., testing, fuzzing, and code
audits.

New proof techniques and tooling were a factor in our success, but there is no
single technical breakthrough that made these proofs possible. While combined
x86 and C verification is challenging, it would likely be possible (although not
easy) to add such a capability to a number of existing tools. Rather, a series of
tool extensions, design choices, and engineering working practices combined to
make the project feasible.

Verified Cryptographic Code for Everybody 663

Using SAW, we automated most of the trivial reasoning, which meant that
a majority of proof engineering was spent on legitimately difficult verification
problems. These mainly involved understanding the code being verified and using
rewrites to manually rearrange verification terms to make them amenable to
automated proving. Many of these steps could in principle be automated, but
in practice engineers sometimes needed to resort to clunky debugging measures.
We find it unsurprising that highly specialized code such as AWS-LC would
generate edge cases that challenge generic proof automation. For proofs of this
type, for now we believe completely automated proving is out of reach.

We take several steps to try to minimise engineer effort when building proofs.
The most important of these is to lean on automation wherever possible. One
example is that we try to avoid internal specifications, which are often the most
challenging part of the proof. Because SAW is a bounded verifier, internal specifi-
cations are just a performance optimization—given sufficient compute resources,
we could in principle symbolically execute the entire code-base. Of course, in
practice, internal specifications are needed to make the proof tractable. Our
practice is to prove functions at the largest scope which fits within our time
budget. By doing this, we are sometimes able to avoid specifying internal func-
tions that do relatively little computationally.

Another important strategy for us is to separate memory-safety proofs from
functional correctness proofs. We have found that much of the technical risk
in a verification project can be eliminated at the memory-safety stage. This is
where the verification tools are most likely to run into show-stopping bugs that
will put success of the project in jeopardy. Separating these concerns results
in proof terms that are smaller and easier to understand, so bugs are easier to
diagnose. Then, if we run into challenges during the correctness proving phase,
we can limit the cause to correctness properties, eliminating a large fraction of
the proof from consideration.

An important factor that enabled us to carry out these proofs is a team of
expert proof engineers who have built their skills over years. This project was
undertaken by a team which has worked continuously on verification projects for
four years. This expertise has given us a better understanding of what we can
attempt, and a far wider toolkit to dip into when things go wrong. We have seen,
anecdotally, similar evidence of improved verification capabilities from other
long-standing teams—for example, for the Project Everest, SeL4, and CompCert
projects. Long-standing teams of proof experts are still unusual, but we believe
they will be necessary to achieve the most ambitious proof engineering tasks,
just as they are in software and tool development.

A significant lesson that we have learned about proof engineering is that a
tool’s behaviour when it fails is more important than success. This is a critical
aspect of verification tools often overlooked in research papers. Many tools show a
demo where everything works, but in a proof engineering effort, the vast majority
of time is spent with a proof that does not work. In that sense, one of the most
critical aspects of a verification tool is what it does when the proofs are not
working. SAW provides some support for diagnosing errors, but there is a lot of

664 B. Boston et al.

room for improvement. It lacks tooling to allow proof engineers to easily inspect
and modify proof terms that are not successfully proving. Furthermore, it has
inefficiencies that can make repeatedly running and modifying proofs slow and
painful, increasing the pain of developing proofs and reducing the time that
engineers can spend on the real challenges of verification.

7.1 Trade-Offs When Building on Existing Verification Tools

As we saw in Sect. 6, rewriting is an example where SAW’s existing tooling made
some parts of our proof more awkward. It is reasonable to wonder whether we
could have modified SAW to allow more control of the rewriting pipeline. This
highlights an interesting trade-off that exists when developing proofs using a
more mature tool like SAW.

SAW has existed for a decade, and has been developed and improved itera-
tively over this time. Design decisions such as the order in which optimizations
occur can sometimes be baked deeply into the tool. This stands in contrast to
more experimental tools which often have short histories and a relatively clean
design that can be torn down and refactored easily. SAW also has an active user
community which relies on it for different verification and assurance tasks. The
main users are at Galois, Amazon Web Services, and in the US government.
This means that tool changes need wider approval from a community. Again,
this stands in contrast to research tools which often have a single designer who
is also the main user. The effect of this is that changes such as the introduction
of rewriting must be carefully designed to fit with SAW’s existing architecture.

The pay-off for these restrictions is an enormous increase in the power and
scope of what we can achieve with the tool. In the large, we have benefited
from many features that were developed by independent research teams. For
example, we rely on the Macaw decompiler, which we used off-the-shelf without
modification. The SAW LLVM semantics is likewise a product of many years
of research, which did not require any further work from us. In the small, SAW
embodies many, many clever tricks and pieces of good design that together make
verification of challenging problems more feasible. Sometimes working with a
mature tool imposes costs, but overall we believe it raises the bar for our work
in a way that easily justifies the cost.

An open question for us is how we can make such collaboration possible
across the verification community. Boogie [4] is a good example of a verifica-
tion technology that has seen use across different teams and institutions. Proof
assistants and SMT solvers are also widely used as a basis for new tools. How-
ever, there are still very few software verification tools that have seen significant
adoption. We believe such tools will be necessary in the future if we collectively
are to tackle larger and more complex verification problems.

7.2 Verified Code Generation Versus Verifying Existing Code

While the approach in this paper results in an artifact that may appear externally
similar to other state-of-the art verified cryptography efforts, there are some

Verified Cryptographic Code for Everybody 665

engineering factors that might influence which approach is most appropriate for
a particular cryptographic use-case. The approach of EverCrypt, Jasmin, Fiat,
and similar efforts require the user to produce code or a model in a language
that is specific to the verification system. While these systems have demonstrated
ability to produce efficient verified implementations, they cannot directly verify
existing code. Our approach verifies existing code without modification, and
there are several engineering benefits to this.

The most significant reason to verify existing code is that producing new code
or modifying existing code introduces risk. Modifying optimized cryptographic
code is particularly risky because it is complex, and because an error could have
a devastating impact on the security of the system. A software project may be
unwilling to accept the risk of modifying mature code, even if the new code
is formally verified. For example, OpenSSL and its variants have been tested
and audited over more than a decade, and this maturity is appealing to many
software projects. In our approach, the code is verified without any modification.
Zero new risk is introduced, and the verification process only increases trust in
the system. A related benefit is that the verified code maintains any existing
certifications, such as FIPS 140-2.

Another benefit of verifying existing code is that the verification works on
the programming languages that are already used in the project, and the build
pipeline does not require additional compilers or other tooling to support the
language of the verification system. Having the build depend on this tooling
can be risky because it is less familiar and less mature compared to the com-
pilers and build systems that are typically utilized. There is a risk that a build
pipeline could break or produce incorrect machine code due to a bug or lack of
understanding of the verification system. In contrast, our approach produces a
verification pipeline that is parallel to the build pipeline, and a failure in this
pipeline does not have any impact on the main build pipeline.

Many cryptographic applications do not have any legacy concerns and never
plan on maintaining or improving cryptographic code by hand. In those cases,
EverCrypt, Jasmin, and Fiat all produce trustworthy, high-performance imple-
mentations that might prove easier to use and understand than what is provided
by OpenSSL and its variants. Long-term support might be a concern, given these
are research tools. However the slow-moving nature of cryptographic code makes
it less likely that the implementations would need modification in the future.

8 Conclusion and Future Work

The purpose of formal verification is to allow users to be confident in the soft-
ware on which they depend. This is the reason that AWS-LC, BoringSSL, and
OpenSSL are excellent targets for formal verification. Nearly everyone who uses
the internet relies on this code for security, either through end-user software,
or through a cloud provider’s infrastructure. Our proofs show for the first time
that this kind of highly optimised, hand-written code matches its mathematical
specification. More importantly, we show that such code can be verified for a
reasonable amount of proof engineering effort.

666 B. Boston et al.

We do not consider our proofs the last word on this code—there are several
ways in which our work can be improved. Most importantly, we have not yet
verified the OpenSSL version of AES-256-GCM and SHA-384. Based on inspec-
tion of the code, we believe the proofs would only need small changes to the
term rewrites, but this is currently not a high priority in comparison to further
AWS-LC assurance work.

There are also several ways we could improve the proofs themselves. We
have verified this code at fixed input sizes. We believe we have covered all edge
cases, so the probability that bugs remain is low, but a size-agnostic proof would
be more complete. Our proofs also rely on term rewriting tactics to close the
gap between implementation and specification. These rewrites are specialized to
our application and are therefore the most fragile part of the proof. We believe
that, with further research, automated solvers could solve many of these logical
queries without the need for manual tactics (this would also make our proofs
less fragile against code change). Finally, our proofs say nothing about non-
functional security properties, such as timing or architectural side channels, nor
do they connect to cryptographic security proofs.

We are at an exciting moment for cryptographic verification. It is now possi-
ble to deploy verified cryptography without compromising on performance. We
are tantalisingly close to a world where most cryptographic traffic originates from
verified code, and where new cryptographic primitives are verified as a matter
of course. For our part, we consider AES-256-GCM and SHA-384 a stepping
stone to the real prize: a fully verified library of production-grade cryptographic
primitives. Stay tuned!

References

1. Almeida, J.B., et al.: The last mile: high-assurance and high-speed cryptographic
implementations. In: 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, 18–21 May 2020, pp. 965–982. IEEE (2020). https://doi.
org/10.1109/SP40000.2020.00028

2. Amazon Web Services: AWS libcrypto (AWS-LC) public preview. https://github.
com/awslabs/aws-lc

3. Appel, A.W.: Verified software toolchain. In: Goodloe, A.E., Person, S. (eds.) NFM
2012. LNCS, vol. 7226, p. 2. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28891-3 2

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

5. Bond, B., et al.: Vale: verifying high-performance cryptographic assembly code. In:
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, pp.
917–934. USENIX Association (August 2017)

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1109/SP40000.2020.00028
https://github.com/awslabs/aws-lc
https://github.com/awslabs/aws-lc
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-14295-6_5

Verified Cryptographic Code for Everybody 667

7. Chudnov, A., et al.: Continuous formal verification of Amazon s2n. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 430–446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 26

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

9. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: Proceedings
of the 40th IEEE Symposium on Security and Privacy, S&P 2019 (May 2019)

10. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy,
N.: A verified, efficient embedding of a verifiable assembly language. Proc. ACM
Program. Lang. 3(POPL), 63:1-63:30 (2019). https://doi.org/10.1145/3290376

11. Galois Inc.: Cryptol: the language of cryptography. https://cryptol.net/files/
ProgrammingCryptol.pdf

12. Galois Inc.: Macaw binary analysis framework. https://github.com/GaloisInc/
macaw

13. Galois Inc.: SAW tutorial. https://saw.galois.com/tutorial.html
14. Galois Inc.: Software analysis workbench (SAW). https://saw.galois.com/
15. Galois Inc.: What4 symbolic formula representation and solver interaction library.

https://github.com/GaloisInc/what4
16. Google: boringssl. https://boringssl.googlesource.com/boringssl
17. Lim, J.P., Nagarakatte, S.: Automatic equivalence checking for assembly implemen-

tations of cryptography libraries. In: Kandemir, M.T., Jimborean, A., Moseley, T.
(eds.) IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO 2019, Washington, DC, USA, 16–20 February 2019, pp. 37–49. IEEE
(2019). https://doi.org/10.1109/CGO.2019.8661180

18. National Security Agency: Commercial national security algorithm suite. https://
apps.nsa.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

19. O’Hearn, P.W.: Continuous reasoning: scaling the impact of formal methods. In:
Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2018, Oxford, UK, 9–12 July 2018, pp.
13–25. ACM (2018). https://doi.org/10.1145/3209108.3209109

20. OpenSSL cryptography and SSL/TLS toolkit. https://www.openssl.org
21. Protzenko, J., et al.: Evercrypt: a fast, verified, cross-platform cryptographic

provider. In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San Fran-
cisco, CA, USA, 18–21 May 2020, pp. 983–1002. IEEE (2020). https://doi.org/10.
1109/SP40000.2020.00114

22. Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A., Appel, A.W.:
Verified correctness and security of mbedtls HMAC-DRBG. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, 30 October–03 November 2017, pp. 2007–2020. ACM (2017). https://doi.
org/10.1145/3133956.3133974

23. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a veri-
fied modern cryptographic library. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03 November
2017, pp. 1789–1806. ACM (2017). https://doi.org/10.1145/3133956.3134043

https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/3290376
https://cryptol.net/files/ProgrammingCryptol.pdf
https://cryptol.net/files/ProgrammingCryptol.pdf
https://github.com/GaloisInc/macaw
https://github.com/GaloisInc/macaw
https://saw.galois.com/tutorial.html
https://saw.galois.com/
https://github.com/GaloisInc/what4
https://boringssl.googlesource.com/boringssl
https://doi.org/10.1109/CGO.2019.8661180
https://apps.nsa.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://doi.org/10.1145/3209108.3209109
https://www.openssl.org
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3133956.3133974
https://doi.org/10.1145/3133956.3134043

668 B. Boston et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Not All Bugs Are Created Equal, But
Robust Reachability Can Tell the

Difference

Guillaume Girol1(B), Benjamin Farinier2,
and Sébastien Bardin1

1 Université Paris-Saclay, CEA, List,
Gif-sur-Yvette, France

{guillaume.girol,sebastien.bardin}@cea.fr
2 TU Wien, Vienna, Austria

benjamin.farinier@tuwien.ac.at

Abstract. This paper introduces a new property called robust reacha-
bility which refines the standard notion of reachability in order to take
replicability into account. A bug is robustly reachable if a controlled input
can make it so the bug is reached whatever the value of uncontrolled
input. Robust reachability is better suited than standard reachability in
many realistic situations related to security (e.g., criticality assessment or
bug prioritization) or software engineering (e.g., replicable test suites and
flakiness). We propose a formal treatment of the concept, and we revisit
existing symbolic bug finding methods through this new lens. Remark-
ably, robust reachability allows differentiating bounded model checking
from symbolic execution while they have the same deductive power in the
standard case. Finally, we propose the first symbolic verifier dedicated
to robust reachability: we use it for criticality assessment of 4 existing
vulnerabilities, and compare it with standard symbolic execution.

1 Introduction

Context. Many problems in software verification are encoded as reachability
queries of some undesired condition—a bug, the exploitation of a vulnerability,
etc. When a verification engine establishes that a certain buggy location in the
program is reachable, an input triggering the bug is reported to the developer so
that it can be fixed. In the case of techniques based on an under-approximation of
program behaviors, like Symbolic Execution (SE) [9] or Bounded Model Check-
ing (BMC) [13], we even have in principle the guarantee that the reported issue
is real (correctness): there are no false positives.

Problem. Yet, things are more subtle in practice, as some bugs can be triggered
reliably whereas others only happen in very specific and highly improbable initial

This work has been partially supported by ANR (grant ANR-20-CE25-0009-TAVA)
and ERC (grant agreement 771527-BROWSEC).

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 669–693, 2021.
https://doi.org/10.1007/978-3-030-81685-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_32&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_32

670 G. Girol et al.

conditions. While standard reachability cannot tell the difference, this distinc-
tion is crucial in many real-life scenarios related to security (bug triage, bug
prioritization, criticality assessment) or software engineering (test suite replica-
bility and the problem of flaky tests [42]). For example, fuzzers are able to detect
so many bugs [38] that they can lead to “bug triage issues” [30]. If each replicable
(reliably-triggered) bug is hidden by dozens of more fragile ones in the reports
of a verification engine, it is hard to focus development effort efficiently. Also,
if one is only interested in vulnerability reports, bugs which cannot be reliably
triggered may even be dismissed as “not exploitable” altogether.

Goal and Challenges. Our goal is to develop a formal framework able to dis-
tinguish replicable bugs from fragile bugs, and amenable to automatic software
verification—precisely, we want to be able in practice to find such replicable bugs.
This is challenging as we need to avoid any quantitative [37] or probabilistic rea-
soning [2,34], insofar as they would hinder automation on real examples—these
techniques are often either restricted to finite-state systems [2,34] or rely on
highly expensive model counting solvers [11,39].

Proposal. Our approach consists in partitioning inputs of the program into con-
trolled inputs and uncontrolled inputs. This lets us refine the concept of reachabil-
ity into robust reachability : a (buggy) location of a program is robustly reachable
if there exist controlled inputs, such that for all uncontrolled inputs, this location
is reached. In other words, with adequate input we do not need luck.

We typically focus on security scenarios where an attacker provides controlled
input in one go, without knowledge of uncontrolled input – typically sending a
malicious crafted file to obtain remote code execution or privilege escalation. We
deliberately exclude interactive attack scenarios and weaker interpretations like
“bugs replicable most of the time” in order to keep proof methods tractable.

Proving robust reachability is harder than standard reachability. While we
show that robust reachability is expressible in formalisms like branching tempo-
ral logics [14], hyperproperties [16] or hyper temporal logic [15], there exist no
efficient automated analysis methods for these formalisms at the software level
(for Turing-complete languages). Therefore, we investigate dedicated verification
techniques, revisiting standard methods (SE, BMC) for standard reachability as
well as some of their standard companion optimizations.

Our prototype of Robust Symbolic Execution (RSE) relies on the ability of
state of the art Satisfiability Modulo Theory (SMT) solvers [4] to generate models
for universally quantified formulas [25,27,44], which comes with a performance
and completeness cost—yet we report promising results.

Contributions. We claim the following contributions.

– We formally introduce the concept of robust reachability (Sect. 4) and moti-
vate its use (Sect. 2), giving practical examples where standard reachability
leads to false positives in practice (whatever the underlying verification tech-
nology). We also characterize robust reachability in terms of temporal logic
and hyperproperties, and compare it with non-interference (Sect. 4);

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 671

– We revisit Symbolic Execution (SE) [9] and Bounded Model Checking (BMC)
[13] and show how they can be lifted to the robust case (Sect. 5). While
they both have the same deductive power in the standard case, they do not
anymore in the robust setting—yet, path merging allows Robust SE to pace
up with Robust BMC. Finally, we show how to adapt standard optimizations
for Symbolic Execution and Bounded Model Checking;

– We implement and evaluate1 (Sect. 6) the first symbolic execution engine ded-
icated to robust reachability, namely Binsec/RSE. We show how to use it
for criticality assessment of 4 existing vulnerabilities (CVEs), and compare it
with standard symbolic execution. RSE appears to be tractable with reason-
able overhead, yielding false-positive-free symbolic reasoning.

We believe robust reachability is an important sweet spot in terms of expressive-
ness and tractability, allowing to highlight serious bugs in practical situations.
We hope this first step will pave the way to more refinements and applications
of robust reachability.

2 Motivation

In this section we show why standard reachability is not always a good fit for
bug finding, as it cannot distinguish between replicable bugs and fragile bugs.

Fig. 1. Simple stack buffer overflow

Stack Canaries. Consider the program presented in Fig. 1. It suffers from a
stack buffer overflow: if variable n is greater than 8 (the size of buffer), then
0x61 will be written to stack memory above buffer. For high enough n, this
will overwrite the return address (Fig. 1b, line 3) of function victim and make
the program jump to an unexpected program location when victim returns.
1 The tool, benchmark and data are available at https://github.com/binsec/cav2021-

artifacts and https://zenodo.org/record/4721753.

https://github.com/binsec/cav2021-artifacts
https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753

672 G. Girol et al.

Mitigations for such programming errors exist, like Stack Smashing Protec-
tion (SSP) [18]. This technique consists in pushing a randomly-chosen constant
value called a canary at the top of the stack in the prologue of each function, and
checking that this value is intact before returning. If the canary has been tam-
pered with, the program exits to prevent exploitation (Fig. 1b, line 11). Here,
SSP prevents the attacker from overwriting the return address of victim, as
doing so also overwrites the canary with 0x61616161. This will be detected at
line 10 of Fig. 1b with probability 1−2−32 on a 32-bit architecture: the only way
to pass through it is to have the canary value equal to 0x61616161. Hence, the
buffer overflow in this program is not exploitable anymore.

Table 1. Standard reachability is not a good criterion to measure the protection of
SSP on the program of Fig. 1.

Prog.

Fig. 1

Ground truth Standard

reachability

Binsec [23] Angr [46] Robust

reachability

Binsec/RSE

No SSP Vulnerable Vulnerable

✓

Vulnerable ✓ Vulnerable ✓ Vulnerable

✓

Vulnerable

✓

SSP Protected Vulnerable

✗

Vulnerable ✗ Vulnerable ✗ Protected ✓ Protected ✓

The Problem with Standard Reachability. Can the attacker hijack
the control flow without triggering SSP? We can model this security ques-
tion as a standard reachability query over inputs controlled input and
global random value. The attacker succeeds if line 12 is reachable with the
additional condition that the return address of victim is overwritten with an
unexpected address.

Unfortunately, this standard reachability query is satisfiable with the canary
global random value equal to 0x61616161 and controlled input equal to
e.g., 42. And indeed, binary-level SE tools Angr [46] or Binsec [23] do report
the bug as reachable (cf. Table 1). Yet, this answer is unsatisfying as this only
happens with a very low probability: it may not be considered a plausible attack.
Hence, it turns out that SE can yield false positives in practice—especially in a
security context.

Proposal: Robust Reachability. We label controlled input as a controlled
input and global random value as an uncontrolled input. There exists no value
of controlled input such that victim returns to an address tampered with
independently of the value of global random value. We thus say that our
exploitation condition (line 12) is not robustly reachable. We can automatically
verify this intuition. We adapted the SE engine of Binsec to robust reachability:
our tool finds the vulnerability when we disable the protection (by labelling the
canary as controlled input) and does not find it anymore when the protection is
present. This shows that robust reachability can model the protection provided
by SSP, while standard reachability cannot.

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 673

This phenomenon is not restricted to stack protectors. We identify in Table 2
several situations where standard reachability may lead to false positives, unlike
robust reachability. Note that some cases (randomisation based protections,
uninitialized reads) concern binary-level issues, and cannot be observed from
a source-level analysis.

Discussion. Consider the slightly different problem of reaching line 11 in Fig. 1b.
It is reachable for all values of the canary except 0x61616161, hence it is not
considered robustly reachable – all values of uncontrolled input should lead to
line 11. This restriction is deliberate. A more quantitative approach would hinder
automation. For similar reasons, we limit ourselves to non-interactive scenarios,
where the attacker input is chosen before uncontrolled input are known. We will
further motivate these choices in Sects. 4.1 and 6.4.

Despite these deliberate restrictions, our case studies (Sect. 6.2) show the
versatility of robust reachability. In the example above, we distinguish inputs
controlled by an attacker (a bad guy) from inputs which he cannot influence
(see also e.g.libvncserver in Sect. 6.2). But with doas (Sect. 6.2), we distinguish
inputs controlled by the system administrator (the good guy) from those which
vary on each execution. Other situations are possible, for instance deterministic
inputs versus non-deterministic ones like in the case of flaky tests [42]—where
there are neither good nor bad guys. Robust reachability can help in all these
situations either assessing the “quality” of a given trigger or test suite (criticality,
replicability), generating “good” triggers or test suites, or proving their absence.

Table 2. Program constructs for which standard reachability yields fragile input

Randomisation

based protections

Standard reachability models randomized or arbitrary values like canaries

or ASLR as attacker-chosen values. This voids such protections. See also

Fig. 1 and libvncserver in Sect. 6.2

Uninitialized reads With standard reachability, the attacker can choose the initial content of

uninitialized memory. For example he can choose it to contain a password

or a secret. See also doas in Sect. 6.2

Underspecified

initial state

A bug which is unreachable in normal operating conditions can become

reachable if, e.g., one leaves the stack location completely free. Then the

bug only happens with pathological initial state

Undefined behavior A bug in a branch depending on undefined behavior is still technically

reachable, but not robustly reachable. Note that even machine code has

some undefined behaviors

Interactions with

the environment

Contrary to robust reachability, standard reachability lets the attacker

use system calls and interactions by e.g.letting him choose the date to

nanosecond precision, as if the environment helped him

Opaque functions One can abstract complex functions (crypto functions, malloc) as black

boxes returning a fresh, symbolic value. Standard reachability allows the

attacker to choose these values, yielding fragile triggers

3 Background

Consider a program P and S the set of its possible states. Each state s ∈ S is
labeled by a program location λ(s) ∈ L. Execution of the program is represented

674 G. Girol et al.

by a (one-step) successor relation →∈ S × S; its transitive reflexive closure is
denoted by →�. For a finite trace t ∈ S� and s, s′ ∈ S two states, we write
s →�

t s′ if t starts with s, ends with s′ and follows →. The initial state s0(y)
depends on the program input y. For a location � ∈ L and input y we write y � �
if s0(y) →� s where λ(s) = �. Additionally, for a trace t ∈ S�, we write y �t � if
s0(y) →�

t s where λ(s) = �. We use trace for successions of states and path for
successions of locations. By abuse of notation, the path corresponding to a trace
t ∈ S� is λ(t) ∈ L�. For a path π, we denote its length |π| and we write y � π if
∃t ∈ S�. λ(t) = π ∧ y �t � where � is the final location of π.

Definition 1 (standard reachability). Given a program P , a location � ∈ L
is reachable if ∃y. y � �.

It is often useful to consider the case of reaching a location � with a state s
satisfying some predicate φ. This can be reduced to standard reachability by
adding if (φ) /*new target*/ at the target location.

Definition 2 (correctness, completeness). Let V : (P, l) �→ {1,0} be a ver-
ifier taking as input a program P and a location �:

– V is correct when for all P, �, if V(P, �) = 1 then � is reachable in P ;
– V is complete when for all P, �, if � is reachable then V(P, �) = 1;
– If V also takes an integer bound as input, V is k-complete when for all integers

k and P, �, if ∃y. ∃t ∈ S�. |t| ≤ k ∧ y �t � then V(P, �, k) = 1.

In general, verifying reachability is undecidable, so verifiers cannot be both cor-
rect and complete. Correct verifiers can still be k-complete as k-completeness
can be thought of as completeness for finite-path systems.

Data: bound k, target �
for path π in GetPaths (k) do

if π goes through � then
φ := GetPredicate(π)
if ∃y. φ is satisfiable
then

return true
end
return false

(a) SE

Data: bound k, target �
φ := ⊥
for path π in GetPaths (k) do

if π goes through � then
φ := φ ∨ GetPredicate(π)

end
if ∃y. φ is satisfiable then return true

else return false

(b) BMC

Fig. 2. Reachability of � with SE and BMC

Symbolic Execution (SE) and Bounded Model Checking (BMC). SE [9]
incrementally explores all paths in the program (up to, say, a bound k) and
when an explored path reaches the target location �, checks that this path is

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 675

indeed executable. This is performed by converting a path π to an SMT formula
pcπ, called path constraint, which has input y as its only free variable and is
equivalent to y � π, i.e., a path is executable if and only if its path constraint is
satisfiable. Conversely, BMC [13] considers the program as a whole and builds
a SMT formula expressing that one of the paths of length at most k leads to
�. It is equivalent to the disjunction of the path constraints of these paths. The
target is reachable in k steps at most if and only if this formula is satisfiable.

These algorithms are detailed in Fig. 2, where GetPredicate turns a path
into its path constraint and GetPaths(k) yields all paths below size bound k.

Proposition 1. SE and BMC have the same expressive power: both are correct
and k-complete.

Interestingly, we show in Sect. 5 this is not true anymore with robust reachability.

Solvers. SE and BMC commonly discharge their satisfiability queries to SMT
solvers [4] which take formulas as input, and output whether they are satisfiable
(along with a model) or not. Typical queries are expressed in the quantifier-free
fragments of well known theories (linear integer arithmetic, bitvectors, arrays,
etc.) where SMT solvers perform well in practice. In case of an undecidable
theory, we can use incomplete solvers (possibly answering unknown), at the
price of k-completeness.

4 Robust Reachability

4.1 Definition

We introduce the new notion of robust reachability. We partition the input y into
the controlled input a and the uncontrolled input x—we denote y � (a, x). Let
A and X be the sets of possible controlled and uncontrolled inputs respectively.
A location is robustly reachable when the attacker can choose controlled input
a ∈ A without having to rely on specific values of the uncontrolled input x ∈ X
to reach his target. Input a is then called a robust trigger—otherwise it is a
fragile trigger.

Definition 3 (Robust reachability). A location � ∈ L is robustly reachable
if ∃a.∀x. (a, x) � �. This definition depends on the partition of inputs.

Proposition 2. Robust reachability implies standard reachability. The converse
implication does not hold.

Discussion. As already mentioned at the end of Sect. 2, our definition of robust
reachability specifically targets a threat model where the attacker speaks first,
unaware of uncontrolled inputs. It deliberately excludes interactive systems
where the attacker can choose some input, then receive some program output
possibly leaking uncontrolled input, and then choose some more input depend-
ing on what was received. Modeling such situations requires additional quantifier

676 G. Girol et al.

alternations, which deeply impact the performance of proof methods and cripple
automation, as shown in Sect. 6.4.

Likewise, a bug triggered for all uncontrolled inputs but one is not robustly
reachable according to Definition 3. A quantitative definition of robust reach-
ability could take into account the proportion of uncontrolled inputs triggering
a bug. This hints at works about model counting [11,39], but the problem at
hand is actually harder. Consider the following alternative definition: (i) find
amax ∈ A such that a maximal proportion of uncontrolled inputs x lead to
�: (amax, x) � �; (ii) measure how robustly � can be reached by computing
the proportion of uncontrolled inputs x such that (amax, x) � �. Current model
counting algorithms can only tackle problem (ii) along one path, and we argue in
Sect. 6.4 that even (ii) alone is considerably more expensive than our SMT-based
approach.

In other words, Definition 3 is a tradeoff to keep robust reachability amenable
to automated verification. This does not prevent it from meeting its main goal:
drawing the attention on more serious bugs. Some may of course be missed, but,
as our case studies will show (Sect. 6), a good number will be found.

In the rest of this section, we review a few related properties and see how
much they overlap with, but do not remove the need of, robust reachability.

4.2 Relation with Non-interference

We partition inputs and outputs of a system into either high (highly classified)
or low (public, e.g. observable). A system satisfies non-interference [31] when low
outputs do not depend on high inputs, implying that secrets cannot leak. Robust
reachability can be reformulated in a very non-interference-sounding phrasing:
uncontrolled inputs (call them high) must not interfere with the attacker reaching
the target location (the low output). Let us clarify this link.

Formally, let high input be uncontrolled input x, and low input be controlled
input a. Let low output be whether control flow reached location �. Non inter-
ference of the resulting system means that ∀a, x, x′. ((a, x) � � ⇐⇒ (a, x′) � �).

Proposition 3. If � is (standardly) reachable and the system satisfies non-
interference with the high/low partition described above, then � is robustly reach-
able. The converse is false.

Robust reachability requires a single value of the controlled input a for which
reachability of � is guaranteed but says nothing for other values of a, whereas
non-interference constrains the system to behave much more independently of
uncontrolled input than robust reachability but says nothing of reachability.

4.3 Interpretation in Terms of Hyperproperty

Robust reachability and its negation are not trace properties: the observation of
a single trace is never enough to prove or disprove them. For example, observing

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 677

a single trace reaching target � with input (a, x) is both compatible with � being
robustly reachable (if all other inputs (a, x′), x′ ∈ X also reach �), and with �
not being robustly reachable (if some other x′ is such that (a, x′) does not reach
�). Robust reachability and its negation thus belong to the more general class of
hyperproperties [16], i.e. statements relating several traces.

More specifically, Clarkson et al. [16] show that any hyperproperty is the
intersection of a hypersafety hyperproperty (i.e.something bad cannot hap-
pen) and a hyperliveness hyperproperty (something good will eventually hap-
pen). Hypersafety is generally thought as easier to prove, notably with self-
composition [6]. Unfortunately, robust reachability and its negation are pure
hyperliveness in the general case: no finite set of finite traces can falsify them.
However, in some conditions, they degenerate partly into hypersafety:

Proposition 4. If the domain X of uncontrolled inputs is finite, then the nega-
tion of robust reachability is not pure hyperliveness (i.e., it has a non-trivial
hypersafety component).

Proof. Robust reachability of � can be proved by finding controlled input a ∈ A
such that for all uncontrolled input x ∈ X one observes a trace starting with
input (a, x) and reaching �. When X is finite, this means that a finite observation
can disprove non-(robust reachability). This is the definition of hypersafety.

This idea—trying to observe a hopefully small set of traces which together prove
robust reachability—is crucial for algorithms and leads to our use of path merg-
ing in Sect. 5.3.

4.4 Interpretation in Terms of Temporal Logic

Computational Tree Logic (CTL). CTL [14] is a temporal logic over the tree
of possible traces. Let L be a labeling which maps states to the set of (atomic)
predicates they satisfy. If � is a predicate, the CTL formula � is satisfied by all
systems whose initial state s0 verifies � ∈ L(s0). If φ is a CTL formula and s a
state, then EXφ expresses that φ holds in at least one (direct) successor of s,
and AFφ that all traces arising from s eventually reach a state from which φ
holds. CTL introduces other operators, not needed here.

Proposition 5. It is possible to express robust reachability with CTL.

Proof. Let S ′ � S ∪ A ∪ {si} where si is a new state, let →′�→ ∪{(si, a) | a ∈
A} ∪ {(a, s0(a, x)) | a ∈ A, x ∈ X}, and let L′(s) be equal to L(s) if s ∈ S and
∅ otherwise. Then � is robustly reachable if, and only if EXAF� is true in the
new extended system (S ′,→′, L′) with si as initial state.

HyperLTL. It is also possible to express robust reachability in the temporal
logic HyperLTL [15], which allows to reason over sets of traces π, assuming we
have an atomic predicate ≡v stating that the first states of two traces have the
same value for variable v. Robust reachability of � can then be expressed as
∃π.∀π′.F�π ∧ (π ≡a π′ → F�π′), where F�π denotes that trace π goes through �.
In other words, there exists a trace π reaching � s.t. all traces sharing the same
controlled input also reach �.

678 G. Girol et al.

4.5 Robust Reachability and Automatic Verification

The previous classification does not help us find an efficient software verification
method for robust reachability. Indeed, while efficient CTL model checkers exists
for the finite case [12] or very specific formalisms such as pushdown systems
[47], most efforts in (general) software verification have been directed towards
the verification of safety temporal formulas or simple termination [17] (formulas
of the form AFϕ). Moreover, temporal logics like HyperLTL [15] suffer the same
limitations, and checking for both reachability and non-interference is probably
too strong a requirement in practice. Finally, one can prove the absence of robust
reachability by proving the absence of standard reachability. It is thus possible to
use existing algorithms for unreachability, based e.g.on invariant computation,
at the price of even larger over-approximation than when they are used for their
original purpose. This kind of approach is not our focus. In this paper we look
for correct verifiers able to prove robust reachability (and report robust triggers)
rather than to disprove it.

5 Automatically Proving Robust Reachability

We now extend SE and BMC to the robust case.

5.1 Robust Bounded Model Checking

As mentioned in Sect. 3, BMC determines the reachability of a location � by
building a family of SMT formulas ϕk(a, x) equivalent to ∃t ∈ S�. |t| ≤ k ∧
(a, x) �t �. ϕk expresses that � is reachable in less that k steps. Then one proves
that � is reachable if and only if ∃k.∃a.∃x. ϕk(a, x). This extends to robust
reachability:

Proposition 6. If the domain of uncontrolled input X is finite or the system has
finitely many paths, then � is robustly reachable if and only if ∃k.∃a. ∀x. ϕk(a, x).

Proof. (⇐=) comes directly from the definition of ϕk. (=⇒). If � is robustly
reachable, let a0 be a robust trigger. The set of paths P arising from inputs in
{a0} × X is finite (bounded either by X or the number of paths in the system),
and ∀x.

∨
π∈P pcπ(a0, x) holds. Let k = 1 + maxπ∈P |π|. All paths in P are

unrolled in ϕk so
∨

π∈P pcπ(a0, x) =⇒ ϕk(a0, x) and thus ∀x. ϕk(a0, x).

As a result, it is enough to replace the condition “∃y. φ is satisfiable” by
“∃a. ∀x. φ is satisfiable” in Fig. 2b.

Corollary 1. The resulting algorithm, robust BMC, is correct w.r.t.robust
reachability. If the domain of uncontrolled input X is finite or the system has
finitely many paths, then robust BMC is also k-complete.

The finiteness hypothesis is required: if a program reaches a location after
having executed a loop an unbounded, uncontrolled number of times, then robust
BMC has to unroll an unbounded number of paths to prove robust reachability.

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 679

5.2 Robust Symbolic Execution

Similarly to BMC, we check that a path π robustly reaches the target by check-
ing the satisfiability of ∃a. ∀x.pcπ(a, x), instead of ∃a.∃x. pcπ(a, x). This means
replacing “∃y. φ is satisfiable” by “∃a. ∀x. φ is satisfiable” in Fig. 2a. Unfortu-
nately the resulting algorithm, robust SE, is not exactly what we want, as it
proves a stronger property.

Definition 4 (Single-path robust reachability). A location � ∈ L is single-
path robustly reachable if ∃π ∈ L�. ∃a.∀x.∃t ∈ S�. λ(t) = π∧ (a, x) �t �. In other
words, the path used to reach � is the same regardless of the uncontrolled input.

Proposition 7. Single-path robust reachability implies robust reachability. The
converse implication does not hold.

Proposition 8. Robust SE is correct and k-complete w.r.t.single-path robust
reachability.

Proof. By construction, pcπ(a, x) is equivalent to (a, x) � π so ∃π. ∃a.
∀x.pcπ(a, x) is equivalent to single-path robust reachability of the last location
of π.

Corollary 2. Robust SE is correct but incomplete for robust reachability.

Interestingly, the expressive powers of SE and BMC, which are the same for
standard reachability, diverge when extended to robust reachability.

5.3 Path Merging

Path merging [33] (a.k.a. state joining) consists in identifying “close” paths lead-
ing to the same location and replacing them by a merged path (summary).
With original path constraints pcπ1

and pcπ2
, the merged path constraint is

pcπ1
∨pcπ2

. This is only an optimization in the standard setting, with no impact
on k-completeness. The situation is different in the robust setting.

Data: bound k, target �
1 φ := ⊥
2 for path π in GetPaths (k) do
3 if π goes through � then
4 φ := φ ∨ GetPredicate(π)
5 if ∃a. ∀x. φ is satisfiable then
6 return true

7 end
8 return false

Algorithm 1: RSE+: Robust SE
with systematic path merging

1 void main(a, x) {

2 if (x) x++; // π1

3 else x--; // π2

4
5 if (!a) bug();

6 }

Fig. 3. An example where path merging
is required

680 G. Girol et al.

Consider the program in Fig. 3: the bug is robustly reachable with con-
trolled input a = 0, but the control flow takes one of two paths π1 and π2

depending on the value x of uncontrolled input. This bug will not be found by
robust SE as defined previously, as neither π1 nor π2 fulfills the satisfiability
criterion ∃a.∀x.pcπi

(a, x). However, if π1 and π2 are merged, then the bug is
found because ∃a.∀x.pcπ1

(a, x)∨pcπ2
(a, x) is satisfiable. This leads us to robust

SE with systematic path merging (RSE+, Algorithm1), better fit to robust
reachability.

Proposition 9. Robust SE with systematic path merging (RSE+) is correct for
robust reachability. If the domain of uncontrolled input X is finite or the system
has finitely many paths, then it is also k-complete.

Proof. For k-completeness: If � is robustly reachable, let a0 be a robust trigger.
The set of paths P arising from inputs in {a0} × X is finite (bounded either by
X or the number of paths in the system). Let k = 1 + maxπ∈P |π|. For bound
k, when GetPaths has output all paths in P ,

∨
π∈P pcπ =⇒ φ so ∃a.∀x. φ is

satisfiable.

In conclusion, path merging improves the completeness of robust SE. This is
surprising because path merging is merely optional in standard SE.

5.4 Revisiting Standard Optimizations and Constructs

Some optimizations commonly used in SE are not correct nor complete anymore
in a robust setting. We show here how to adapt them.

Data: program entrypoint �0, bound
k

1 P := {�0}
2 while P �= ∅ do
3 Take a path π out of P
4 if |π| > k then continue
5 if ∃a, x. pcπ unsat then

continue
6 yield π
7 P := P ∪ {children paths of π}
8 end

Algorithm 2: Implementation of
GetPaths with path pruning

uncontrolled int x;

if (x<10) { /* a */ }

else { /* b */ }

/* c */
if (x>20) {

/* d */
if (x>30) { /* e */ }

else { /* f */ }

}

Fig. 4. Failure case for universal path
pruning

Incremental Path Pruning [3,48]. When a path has an unsatisfiable path
constraint, all its descendent paths are also infeasible. For example, the path
acd in Fig. 4 has path constraint x < 10 ∧ x > 20, which is unsatisfiable. One
can prune this path, i.e.stop exploring it and its children acde and acdf.

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 681

Data: entrypoint �0, bound k
P := {�0}
while P �= ∅ do

Take a path π out of P
if |π| > k then continue
if ∃a. ∀x. pcπ unsat then

/* Skip MaybeMerge to

disable path

merging */

P := MaybeMerge(π, P)
continue

end
yield π
P :=
P ∪ {children paths of π}

end

Algorithm 3: GetPaths with
universal path pruning

1 Function MaybeMerge(π, P)

2 Choose u a transitive child of the
last location of π (ideally, a strict
postdominator of the second to
last location of π)

3 Let π′ the longest strict prefix of π.
4 Let U the set of paths from π′ to u
5 if ∃a. ∀x.

∨
π′′∈U π′′ is SAT then

6 Merge paths in U and add the
result to P

7 end
8 return P

Algorithm 4: Incomplete path
merging for universal path pruning

In Fig. 2a this would be an optimization of GetPaths: as shown in Algorithm
2, one checks that the path constraint of currently explored paths are satisfi-
able, and if not, the paths at fault are pruned, and their children paths are not
explored. As a result, we now issue satisfiability queries in two occasions: during
GetPaths to prune paths (Algorithm 2, line 5), and when validating a candidate
reaching path (Fig. 2a, line 5). Pruning queries and validation queries must be
treated differently.

Robust SE is obtained from SE by adding a universal quantifier to valida-
tion queries but not pruning queries. The path constraint for path a in Fig. 4
is pca = x < 10 but ∃a. ∀x.pca is false. Same applies for b. If we added a
universal quantifier to pruning queries—which we call universal path pruning,
see Algorithm 3—we would prune a and b, and incorrectly conclude that c is
not robustly reachable. In other words, Symbolic Execution with universal path
pruning (denoted RSE∀) is correct but not complete.

Universal path pruning, however, conveys an interesting intuition: the full
if branch below acd in Fig. 4 is not robustly reachable, because ∀x. x > 20 is
false. With normal path pruning and RSE+, we would needlessly explore these
paths. To take advantage of this, we keep RSE∀ but improve its completeness
with path merging, as depicted in Algorithm4.

The main idea is that when a set of paths are to be pruned, they may pass
the universal pruning test ∃a.∀x.pc when merged together. One way to find
such sets of paths is the use the Control Flow Graph (CFG) of the program. For
example when trying to prune π = a in Fig. 4, we know by invariant of the set
P of paths to be explored that π′ = ε the empty path passes the universal test.
We compute the strict postdominator u = c of π′: when the paths from π′ to c
join again, they pass the pruning test again. We then replace π by this merged
path in the set P of paths to be explored.

682 G. Girol et al.

Note that computing a postdominator is not required for correction. In our
implementation, we cannot compute the exact CFG at the binary level so the
chosen u may be wrong. In line 5 of Algorithm 4 we check that we picked cor-
rectly, and otherwise, merging failed and we prune π. Despite the heuristic app-
roach, the technique proves useful, as we will see in Sect. 6.

We denote Robust SE with universal path pruning and path merging as
RSE∀+. It is correct and less incomplete than RSE∀.

controlled unsigned int a;

uncontrolled unsigned int x;

assume(x < a);

if (false) bug();

Fig. 5. Unsound assumption, in pseudo-C.

Assumptions. It is common to model
complex parts of the system by intro-
ducing their result as a symbolic input
z and then assume that z satisfies
the required properties. For example,
Address Space Layout Randomisation
(ASLR) for the stack pointer could be
modeled by adding an assumption that
esp ∈ [m,M] where m and M are in-
lined constant values. In standard SE this would be translated to an assertion
esp0 ∈ [m,M] conjoined to the path constraint pcπ, where esp0 is the initial
value of esp. Actually, in standard SE and BMC, assertions and assumptions
are dealt with identically.

In a robust setting, to the contrary, adding an assumption ψ to a path con-
straint yields ψ =⇒ pcπ, while adding an assertion φ yields pcπ ∧ φ. Addi-
tionally, assumptions which mix controlled and uncontrolled inputs can make
the algorithms above unsound without adaptation: in Fig. 5, reachability of bug
maps to the SMT query ∃a.∀x. x < a =⇒ ⊥. It is satisfiable, with a = 0,
which makes the premise false. However, this does not correspond to an exe-
cutable path. Actually, formalizing robust reachability assuming ψ(a, x) naively
by ∃a.∀x. (ψ(a, x) =⇒ a, x � �) does not imply standard reachability anymore.
A slight adaptation is needed:

Definition 5 (Robust reachability under assumption). A location � is
robustly reachable under the assumption of ψ when

∃a. ((∃x. ψ(a, x)) ∧ (∀x. (ψ(a, x) =⇒ (a, x) � �)))

This definition preserves the implication from robust to standard reachability.
The algorithms we presented are easily adapted to take it into account.

Interestingly, in the robust case, SE and BMC cannot handle assertions and
assumptions in the same way anymore.

Concretisation and Other Optimizations. When path constraints along a
path become too complex, some variables can be concretized : their symbolic
value can be replaced by a concrete one [21,29,45]. Formally, concretizing a
variable u to value 42 corresponds to adding an assertion u = 42. This sacrifices
k-completeness for tractability. Actually, any additional constraint can be added,
and several common optimizations (e.g., domain shrinking, path filtering) can be
seen through this lens. These optimizations must be taken with care in the robust

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 683

setting. First, considering them as assumptions instead of assertions would be
incorrect. Second, if the value of the concretized variable ultimately depends
semantically on uncontrolled input, the path does not pass universal validation
anymore: for example, when concretizing x to 42, ∃a. ∀x.pc(a, x) ∧ x = 42 is
unsatisfiable because ∀x. x = 42 is false. As a result, locations visited further
on this path become robustly unreachable. In other words, concretisation only
works on controlled or constant values.

5.5 About Constraint Solving

Adaptations to robust reachability require solvers to deal with one alternation
of quantifiers. Most theories become undecidable with quantifiers. Dedicated
algorithms exist for a few decidable quantified theories, e.g.the array property
fragment [7] or Presburger arithmetic [8]. For other theories, generic methods
like E-matching [40] and MBQI [27] have proven rather efficient, although not
complete. Sound approximations [25] also have been proposed to reduce quan-
tified formulas to quantifier-free ones. In our experiments, the newly introduced
quantifier associates to an increase in the frequency of time-outs and memory-
outs, as seen in Sect. 6.3 and specifically Table 4.

6 Proof-of-Concept of a Robust Symbolic Execution
Engine

6.1 Implementation

We propose Binsec/RSE, the first symbolic execution engine dedicated to
robust reachability. We base our proof-of-concept on Binsec [23], a binary
executable formal analysis engine written in OCaml and already used in sev-
eral significant case studies [19,20,43]. For the sake of experimental evaluation
(Sect. 6.3) we actually implement five variants of robust reachability: RSE (basic
approach in Sect. 5.2 with existential path pruning Sect. 5.4), RSE+ (the same
plus systematic path merging, Sect. 5.3), RSE∀ (RSE with universal path prun-
ing, Algorithm 3), RSE∀+ (same, with path merging during path pruning,
Algorithm 4), and RBMC (Sect. 5.1). Binsec/RSE emits quantified formu-
las in the theory of bitvectors and arrays (arrays are used to model memory)
which are then solved by the quantified solver Z3 [22]. We reuse the recent ROW
simplification [26] to reduces the number of array indexations. The source code
of Binsec/RSE, the test suite and the case studies of this section are available
for reproduction at https://github.com/binsec/cav2021-artifacts and https://
zenodo.org/record/4721753.

6.2 Case Studies: Exploitability Assessment for Vulnerabilities

We show here how Binsec/RSE (unless otherwise specified, the RSE+ variant)
can help in vulnerability assessment. Especially, we demonstrate that robust

https://github.com/binsec/cav2021-artifacts
https://zenodo.org/record/4721753
https://zenodo.org/record/4721753

684 G. Girol et al.

reachability allows deeper insights into a bug than standard reachability, by
replaying 4 existing vulnerabilities.

CVE-2019-15900 in doas. doas is a utility granting higher privileges to users
specified in a configuration file. User IDs are sometimes parsed incorrectly and
left uninitialized. We look for a vulnerable configuration file denying root access
to the attacker such that the (flawed) executable reliably grants root access to
the attacker. For simplicity we assume that the system has no named users and
groups and the configuration file has two lines.

Binsec/RSE with standard reachability reports that root access is granted
with a configuration file containing permit :("@@@@@ when the initial memory
address 0xffefffff contains the group ID of the attacker and the stack starts
at 0xfff0001f. This is a typical “false positive in practice”: these conditions
may vary unpredictably across executions so we cannot conclude regarding the
exploitability of the flaw.

With robust reachability where the configuration file is controlled but the
initial state of memory is not, Binsec/RSE reports in less than 10 s that root
access is granted reliably to the attacker when the configuration file contains deny
:4 and permit b%@)@@(. This is more useful, but b%@)@@(We test therefore if
any other given user name is also affected by running the analysis with this user
name concretized in the initial state. By this method, we proved that the flaw
is also robustly reachable for wwww, a possible typo of a usual user name, as well
as all two-letter lowercase user names.

In other words, if the system administrator grants privileges to a non existing
user by mistake, he may unknowingly grant them to the attacker instead. Here,
robust reachability provides us with invaluable insight about the severity of a bug
where standard reachability fails.

CVE-2019-20839 in libvncserver. An attacker-chosen null-terminated string
is copied by an unbounded strcpy into a 108-bytes buffer, leading to a stack
buffer overflow. Exploitability is not guaranteed: null bytes cannot be copied, the
executable is protected by SSP, etc.. Starting from the vulnerable function, we
ask whether it is possible to return to the address 0xdeadbeef, chosen arbitrarily.

Binsec/RSE reports that for standard reachability, the bug can be reached
when: (1) the stack starts at 0xfff00000; (2) the initial value of the return
address of the function is 0; (3) the gs segment starts at 0xf7f00000; (4) the
stack canary is 0x01010180; (5) neither system call in the function fails; (6) file
descriptor 0 is free; (7) the input path has a specific value. The attacker cannot
prepare such a state, so this is another false positive in practice.

With robust reachability, when only the input buffer is controlled and not the
stack canary, Binsec/RSE fails to prove or disprove exploitability in 24 h. How-
ever, if we mark the canary as controlled, Binsec/RSE finds an exploit in about
15 min. This suggests the canary brings a real protection against exploitation.

CVE-2019-14192 in U-boot. U-boot is an open-source boot-loader, popular
for embedded boards. When booting over Network File System (NFS), U-boot
does not validate the length field of some network packets. This length is sub-

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 685

tracted 16 and used as a size to be copied. If a malicious packet declares a length
of less than 16, computation underflows and leads to a buffer overflow.

We encode the situation as follows: the input network packet is controlled,
the IP address of the victim is constant, the NFS state machine is initialized
to expect the appropriate packet type and all other values are uncontrolled.
Binsec/RSE with the RSE∀+ variant (RSE+ times out here) proves in about
2 min that a memory copy of more than 4GB is robustly reachable, which is a
strong indication of the criticality of this denial-of-service vulnerability.

CVE-2019-19307 in Mongoose. Mongoose is an embedded networking
library. When receiving large MQTT packets, the length of the parsed packet
can be computed as 0. The parsing loop does not advance and is thus infinite. We
look for network packets whose length is parsed as 0 but are accepted as valid.
Binsec/RSE proves in less than a second that such situations are robustly
reachable when only the network packet is controlled, confirming exploitability.

6.3 Experimental Evaluation

Research Questions. We now seek to investigate in a more systematic way
the following research questions:

Table 3. The 46 reachability problems selected for our evaluation

Type Description Controlled variable

Real Vulnerability CVE-2019-14192 (U-boot) Network packet

CVE-2019-20839 (libvncserver) Socket path

CVE-2019-19307 (mongoose) Network packet

CVE-2019-15900 (doas) Configuration file

CVE-2015-8370 (grub, simplified) Password entry

CTF Flare-on 2015 1 & 2 Text entry

Nintendo Coding Game Input to hash

function to invert

Manticore Text entry

Function inversion musl (strptime, strverscmp, atoi, strtol) Preimage

busybox (chmod mode and ip parsing)

μclibc (fnmatch)

openssl (base64 decoding)

Synthetic Motivating example of [25] and variants Coefficients to affine

function

Motivating example of [24, Figure 2.2] Text entry

SSP bypass See Sect. 2 Overflowing buffer

ASLR bypass 2 examples Various

Undefined behavior Overflow flag after 3-bit shl in x86 None

Other Various Various

686 G. Girol et al.

RQ1 Precision: What is the best algorithm for robust reachability in terms of
correctness and completeness?

RQ2 Gain associated to robustness: Is standard SE subject to false positives
and does robust reachability avoid them in practice?

RQ3 Path pruning: Does universal path pruning (Sect. 5.4) help explore less
paths than normal path pruning?

RQ4 Performance: What is the overhead of robust reachability?

Protocol. We base our analysis on a set of 46 reachability problems on binary
executables from various architectures (i686-windows-pc, i686-linux-gnu and
armv7-linux-gnu) presented in Table 3. The average trace length for reachable
problem instances is 809 instruction-long, with a maximum of 18k instructions.
The problems fall into two categories: real code and synthetic examples (e.g.code
designed to be analysed). For each executable, Binsec/RSE determines if a cer-
tain location is robustly reachable from a certain initial state. If this is the case
a model is output by Binsec/RSE, and compared to a ground truth obtained
by manual analysis. Tests were run on Intel Xeon E-2176M(12)@4.4 GHz and we
use Z3 4.8.7. Results are classified as follows:

Correct Binsec/RSE proves the expected result, i.e. it either reports a robust
trigger or rightfully proves the absence of such a trigger;

False positive a fragile trigger is reported;
Inconclusive Binsec/RSE reports no trigger but search was incomplete or the

solver returned unknown at some point;
Resource exhaustion timeout is an hour and memory usage is capped to 7 GB.

Table 4. Comparison of standard and robust algorithms over our 46 test cases

SE BMC RSE∀ RSE∀+ RSE RSE+ RBMC

Correct 30 22 30 34 37 44 32

False positive 16 14

Inconclusive 16 11 7 1

Resource exhaustion 10 1 2 2 13

Total time (s) 2725 36911 3947 4374 13590 11534 47784

. . . w/o resource exhaustion 2725 911 3947 3589 6390 4334 984

Precision (RQ1). As expected, robust variants do not report any false pos-
itives, and path merging increases completeness. RSE variants with universal
path pruning (RSE∀, RSE∀+) are less complete than those with existential path
pruning, but they are less prone to timeouts. This is the case of CVE-2019-14192
in U-boot (Sect. 6.2), for example. RBMC suffers from path explosion (time out)
much more often than RSE variants. Overall, Robust SE with path merging and

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 687

existential path pruning is the most promising method among those presented
here, with 44/46 correct answers. RSE∀+ is less complete but terminates more
often.

Note that two interesting test cases in the “real” category of Table 3 need
path merging to prove robust reachability: one where a pointer with uncontrolled
alignment is passed to memcpy, and one where a branch depends on the result
of IO. These situations are common programming idioms, demonstrating the
importance of path merging.

Gain Associated to Robustness (RQ2). We compare standard SE with
RSE+, the most precise algorithm of RQ1. Standard reachability has about 30%
false positives while robust reachability has none, at the cost of slightly more
timeouts.

There are no false positives in code in the “real” category, except in CVE
replays. Our interpretation is that well-functioning programs are designed to
behave the same regardless of the uncontrolled environment: concrete mem-
ory layout, stack canaries, etc.. Robust reachability becomes decisive on buggy
code, notably with undefined behavior. This is also illustrated by case studies
(Sect. 6.2).

Path Pruning (RQ3). We compare RSE∀, which features universal path prun-
ing, to RSE, which features usual path pruning. Comparison is limited to test
runs of more than a second which succeed with both methods. This is to prevent
comparing a run where Binsec/RSE proves that the target is reachable and
stops, to a run where Binsec/RSE does not find the target and explores the
whole program. RSE∀ explores 17% less paths and interprets 21% less instruc-
tions than RSE. This comes at the price of more universally quantified SMT
queries: the average time per SMT query goes up by 25%. Overall the run time
of both methods is very close.

With path merging, the difference in paths explored disappears: RSE∀+
explores 1% less paths and instructions than RSE+. This is due to the fact
that for some tests, path merging “unlocks” some new paths. Overall, RSE∀+
is 6% slower than RSE+ on successful, terminating tests.

Performance (RQ4). In this question, we compare the run time of robust
algorithms to SE. Comparison is done on the same basis as before, except that
we count timeouts. RSE+ is 74% slower than standard SE on geometric aver-
age. This is mostly due to newly introduced time-outs (up to 260× slower) since
median slowdown is only 15%. RSE∀ is more consistently slower with about 30%
slowdown in both geomean and median. This is mainly explain by increased
solver time (universal path pruning queries). RSE∀+ is close in median slow-
down, but path merging introduces new timeouts and drives the average slow-
down up to 62%. RSE+ has a low overhead compared to standard SE, except for
a few time-outs (2/46).

688 G. Girol et al.

6.4 Additional Considerations

We excluded interactive systems and quantitative approaches from our definition
of robustness (Definition 3, Sect. 4.1) to keep automated proof methods tractable.
We motivate this choice by experimentally showing that these alternatives yield
significant overhead. Technical details are provided in Appendix A.

Quantitative Reasoning and Model Counting. We could imagine refining
our definition of robust reachability, looking for some controlled input for which
the number of uncontrolled inputs allowing to reach the intended target is max-
imal (or, above a certain threshold). Although we have already observed that
model counters do not directly solve this problem (Sect. 4.1), we can lower bound
its runtime cost by the cost of determining the number of uncontrolled x satis-
fying a path constraint for some given controlled input a0. We experimentally
measured it with SearchMC [39] and SMTApproxMC [11], two of the few model
counters supporting the SMTlib2 format and the QF BV theory. We compare
this to our “all-or-nothing” qualitative approach on our 4 CVE case-studies: the
quantitative approach is here several orders of magnitude slower than our qual-
itative method—SMTApproxMC always times out while SearchMC is at least
400× slower.

Interactive Systems and Quantifier Alternations. We estimate the cost
of adding more quantifier alternations in order to deal with interactive systems
(Sect. 4.1), by modifying queries on the two of our case studies where interactive
input makes sense (libvncserver and doas, cf. Sect. 6.2). RSE+ in this setting
does not terminate within 24 h, highlighting the fact that current SMT solvers
have a very hard time generating models for quantified formulas beyond ∃∀. It
seems to be a fundamental issue as none of Z3 [22], Boolector [41] and CVC4 [5]
is able to prove in less than 1 h that ∀z. ∃a. a XOR 1 = z holds over 32-bit
bitvectors.

7 Related Work

Broadly speaking, we are interested in defining a subclass of comparatively more
interesting bugs amenable to automation. We review related prior attempts.

Automatic Exploit Generation (AEG). These approaches seek to demon-
strate the impact of a bug by automatically generating an exploit from
it [1,10,36]. This is complementary to robustness, which focuses on replicabil-
ity. Actually, both techniques could be advantageously combined, as a replicable
exploit is clearly more threatening than a fragile one. Current AEG methods
being based on symbolic methods, adapting them for robustness looks feasible.

Quantitative Reasoning and Model Counting. Several approaches rely on
probabilities or counting to distinguish important issues from minor ones—for
example (quantitative) probabilistic model checking [2,34] or quantitative infor-
mation flow analysis [37]. Robust reachability could be refined in such a way.
Yet, current quantitative approaches do not scale on software, as they often rely

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 689

either on the finite-state hypothesis, or on model counting solvers [32], which are
only at their beginning (see Sects. 4.1 and 6.4).

Flakiness. The opposition between flaky tests and sturdy tests [42, section 6.3]
is close to that between robustly reachable bugs and normally reachable bugs.
A test is flaky when it is reachable, but not robustly reachable under the parti-
tion of inputs where controlled inputs are deterministic inputs and uncontrolled
inputs are non-deterministic inputs. Flakiness is thus a particular case of (non-)
robustness. Especially, our tool can help find non-flaky tests.

Fairness. Fairness assumptions in model checking [35] aim at discarding traces
considered as unrealistic and avoiding false alarms from the user point of view.
While the goal is rather similar to ours, the two techniques are very different:
fairness assumptions typically require certain sets of states to be visited infinitely
often along a trace, while robust reachability requires that a trace cannot be
influenced by uncontrolled input w.r.t.a given reachability property.

Symbolic Execution and Quantifiers. Finally, while symbolic execution is
commonly performed with quantifier-free constraints, a notable exception is
higher-order test generation [28], where Godefroid proposes to rely on universally
quantified uninterpreted functions (∀∃ queries) in order to soundly approximate
opaque code constructs. Higher-order test generation and robust reachability
are complementary as they serve two different purposes: robust reachability can
only be used in a modest way for opaque code constructs (finding controlled
inputs for which their value does not matter), while higher-order test genera-
tion is inadequate for robust reachability, as it would be as if the attacker could
choose the controlled inputs knowing the uncontrolled ones.

8 Conclusion

We introduce the novel concept of robust reachability, that we argue is better
suited than standard reachability in several important scenarios for both security
(e.g., criticality assessment, bug prioritization) and software engineering (e.g.,
replicable test suites). We formally define and study robust reachability, discuss
how standard symbolic methods to prove reachability can be revisited to deal
with the robust case, design and implement the first robust symbolic execution
engine and demonstrate its abilities in criticality assessment over 4 CVEs. We
believe robust reachability is an important sweet spot in terms of expressiveness
and tractability. We hope this first step will pave the way to more refinements
and applications of robust reachability.

A Details on the Experiments Supporting Sect. 6.4

We reuse the notations of the discussion in Sect. 4.1.

Model Counting. For simplicity, consider single-path robust reachability of �
along a path with path constraint pc(a, x). It is equivalent to ∃a.∀x. pc(a, x).

690 G. Girol et al.

A more quantitative approach would be to consider amax s.t.the ratio r(amax)
of x satisfying pc(amax, x) is maximal. The larger r(amax), the more robustly
reachable �. We try to experimentally get an idea of the cost of computing
this. Determining amax is an open problem, but we can lower bound the full
computation time by the time to compute r(amax) from amax. As the algorithms
below are randomized, we can measure the time to compute r(a0) for any a0.

We collect the path constraint of the first path standardly reaching the target
in our 4 case studies of Sect. 6.2. We arbitrarily choose a0 satisfying ∃x. pc(a0, x),
and compare the time to (dis)prove ∀x.pc(a0, x) with Z3 to the time to approxi-
mate r(a0) with two of the few model counters supporting SMTlib2 input in
the QF BV theory: SearchMC [39] (with tolerance ε = 0.8 and confidence
1 − δ = 0.95) and SMTApproxMC [11] (with tolerance ε = 0.8 and 1 itera-
tion). We found no tool supporting arrays, so arrays were blasted. As shown in
Table 5, the quantitative approach is orders of magnitude slower in all cases, and
especially in the one case where it is indeed significantly more precise than our
qualitative approach (u-boot).

Table 5. All-or-nothing (Z3) vs quantitative (SearchMC, SMTApproxMC) approaches:
runtime and lower bound on r(a0). Timeout (TO) is 2,400 s.

doas libvncserver u-boot mongoose

Z3 0.02 s 0% 0.01 s 0% 0.07 s 0% 0.04 s 100%

SearchMC 9.4 s 10−13 4.8 s 10−12 190.6 s 25% 35.1 s 59%

SMTApproxMC TO – TO – TO – TO –

Quantifier Alternations. We want to model a leak in ASLR in libvncserver
(Sect. 6.2): the attacker knows about an address z and wants to use the bug
to jump to z. The corresponding property is: for all values2 of z, there exists
an attacker input a such that for all other uncontrolled inputs x, control flow
is diverted to z. This uses another universal quantifier, which we exclude in
our definition of robust reachability to keep satisfiability queries tractable. We
implemented this for libvncserver (additional quantification on the target jump
address) and doas (additional quantification on the user and group ID of the
attacker, and the typoed user name): RSE+ does not terminate within 24 h.

References

1. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Auto-
matic exploit generation. Commun. ACM 57(2), 74–84 (2014)

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 75

2 Without a null byte, but we ignore this detail for the sake of simplicity.

https://doi.org/10.1007/3-540-61474-5_75

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 691

3. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A Survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 1–39 (2018)

4. Barret, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability. IOS Press (2009)

5. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

6. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: CSF 2004 Workshop (2004)

7. Jaffar, J., Santosa, A.E., Voicu, R.: A CLP method for compositional and inter-
mittent predicate abstraction. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI
2006. LNCS, vol. 3855, pp. 17–32. Springer, Heidelberg (2005). https://doi.org/10.
1007/11609773 2

8. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Beyond quantifier-free inter-
polation in extensions of Presburger arithmetic. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 88–102. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18275-4 8

9. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

10. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on binary
code. In: S&P 2012 (2012)

11. Chakraborty, S., Meel, K., Mistry, R., Vardi, M.: Approximate probabilistic infer-
ence via word-level counting. In: AAAI, vol. 30, no. 1 (2016)

12. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 44

13. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

14. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

15. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

16. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

17. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 37

18. Cowan, C., et al.: StackGuard: automatic adaptive detection and prevention of
buffer-overflow attacks (1998)

19. Daniel, L.A., Bardin, S., Rezk, T.: Binsec/Rel: efficient relational symbolic execu-
tion for constant-time at binary-level. In: S&P 2020. IEEE (2020)

20. David, R., et al.: BINSEC/SE: a dynamic symbolic execution toolkit for binary-
level analysis. In: SANER 2016. IEEE (2016)

21. David, R., et al.: Specification of concretization and symbolization policies in sym-
bolic execution. In: ISSTA 2016. ACM (2016)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/11609773_2
https://doi.org/10.1007/11609773_2
https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/11817963_37

692 G. Girol et al.

22. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

23. Djoudi, A., Bardin, S.: BINSEC: binary code analysis with low-level regions. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 212–217. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 17

24. Farinier, B.: Decision procedures for vulnerability analysis. Ph.D. thesis, Université
Grenoble-Alpes (2020)

25. Farinier, B., Bardin, S., Bonichon, R., Potet, M.-L.: Model generation for quantified
formulas: a taint-based approach. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10982, pp. 294–313. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96142-2 19

26. Farinier, B., David, R., Bardin, S., Lemerre, M.: Arrays made simpler: an efficient,
scalable and thorough preprocessing. In: LPAR-22 (2018)

27. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

28. Godefroid, P.: Higher-order test generation. In: PLDI 2011. ACM (2011)
29. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.

In: PLDI 2005. ACM (2005)
30. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-

ing: SAGE has had a remarkable impact at Microsoft. Queue 10(1), 20–27 (2012)
31. Goguen, J.A., Meseguer, J.: Security policies and security models. In: S&P 1982.

IEEE (1982)
32. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satis-

fiability. IOS Press (2008)
33. Hansen, T., Schachte, P., Søndergaard, H.: State joining and splitting for the sym-

bolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 76–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04694-0 6

34. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 512–535 (1994). https://doi.org/10.1007/BF01211866

35. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program.
ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

36. Heelan, S.: Automatic generation of control flow hijacking exploits for software
vulnerabilities. Master’s thesis, University of Oxford (2009)

37. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: ACSAC
2010. ACM Press (2010)

38. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: 21st USENIX
Security Symposium. USENIX Association (2012)

39. Kim, S., McCamant, S.: Bit-vector model counting using statistical estimation.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 133–151.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 8

40. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 13

41. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0: system description. J. Satisfia-
bility Boolean Model. Comput. 9(1), 53–58 (2015)

42. O’Hearn, P.W.: Incorrectness logic. In: POPL (2020)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.1007/978-3-319-96142-2_19
https://doi.org/10.1007/978-3-319-96142-2_19
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-319-89960-2_8
https://doi.org/10.1007/978-3-540-73595-3_13

Not All Bugs Are Created Equal, But Robust Reachability Can Tell 693

43. Recoules, F., Bardin, S., Bonichon, R., Mounier, L., Potet, M.L.: Get rid of inline
assembly through verification-oriented lifting. In: ASE 2019. IEEE (2019)

44. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 42

45. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
ESEC/FSE-13. ACM (2005)

46. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: SP 2016 (2016)

47. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theor.
Comput. Sci. 549, 127–145 (2014)

48. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005). https://doi.org/10.1007/11408901 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-39799-8_42
https://doi.org/10.1007/11408901_21
http://creativecommons.org/licenses/by/4.0/

A Temporal Logic for Asynchronous
Hyperproperties

Jan Baumeister1 , Norine Coenen1 , Borzoo Bonakdarpour2 ,
Bernd Finkbeiner1 , and César Sánchez3(B)

1 CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

2 Michigan State University, East Lansing, USA
3 IMDEA Software Institute, Madrid, Spain

cesar.sanchez@imdea.org

Abstract. Hyperproperties are properties of computational systems
that require more than one trace to evaluate, e.g., many information-flow
security and concurrency requirements. Where a trace property defines
a set of traces, a hyperproperty defines a set of sets of traces. The tem-
poral logics HyperLTL and HyperCTL* have been proposed to express
hyperproperties. However, their semantics are synchronous in the sense
that all traces proceed at the same speed and are evaluated at the same
position. This precludes the use of these logics to analyze systems whose
traces can proceed at different speeds and allow that different traces take
stuttering steps independently. To solve this problem in this paper, we
propose an asynchronous variant of HyperLTL. On the negative side,
we show that the model-checking problem for this variant is undecid-
able. On the positive side, we identify a decidable fragment which covers
a rich set of formulas with practical applications. We also propose two
model-checking algorithms that reduce our problem to the HyperLTL
model-checking problem in the synchronous semantics.

1 Introduction

Hyperproperties [8] extend the conventional notion of trace properties [1] from a
set of traces to a set of sets of traces. In other words, a hyperproperty stipulates a
system property and not the property of just individual traces. Many interesting
requirements in computing systems are hyperproperties and cannot be expressed
by trace properties. Examples include (1) a wide range of information-flow secu-
rity policies such as noninterference [14] and observational determinism [28],

This work was funded in part by Madrid Regional Government under project
“S2018/TCS-4339 (BLOQUES-CM)”, by Spanish National Project “BOSCO
(PGC2018-102210-B-100)”, by the German Research Foundation (DFG) as part of
the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), by the European Research Council (ERC) Grant OSARES
(No. 683300), and by the United Stated NSF SaTC Award 2100989.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 694–717, 2021.
https://doi.org/10.1007/978-3-030-81685-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_33&domain=pdf
http://orcid.org/0000-0002-8891-7483
http://orcid.org/0000-0003-2066-1511
http://orcid.org/0000-0003-1800-5419
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0003-3927-4773
https://doi.org/10.1007/978-3-030-81685-8_33

A Temporal Logic for Asynchronous Hyperproperties 695

Fig. 1. Program P1 Fig. 2. Program P2 Fig. 3. K with a self-
loop

(2) sensitivity and robustness requirements in cyber-physical systems [27], and
(3) consistency conditions such as linearizability in concurrent data structures [5].

HyperLTL [7] is a temporal logic for hyperproperties that enriches LTL with
quantifiers allowing explicit and simultaneous quantification over multiple exe-
cution traces. For example, the observational determinism security policy [28]
stipulates that any two executions that start in two low-equivalent states (i.e.,
states whose value of publicly observable variables are the same), should remain
in low-equivalent states. This property can be expressed in HyperLTL as the
following formula, called ϕOD,∀π.∀π′.(lπ ↔ lπ′) → �(lπ ↔ lπ′). However,
the semantics of HyperLTL (and other formal languages for hyperproperties)
is synchronous, meaning that they completely abstract away the notion of time
passage. In HyperLTL, all traces proceed at the same speed, as all temporal
operators move the position on all traces simultaneously. Consider the program
P1 in Fig. 1, where input values 0 and 1 are possible for high-secret variable h.
This renders two possible traces shown in Fig. 4a that satisfy ϕOD.

The synchronous semantics of HyperLTL has a shortcoming which has prac-
tical implications as well: formulas are not invariant under stuttering. Note that,
contrary to LTL, disallowing the use of ◯ does not make the formula invari-
ant under stuttering, as traces can still stutter independently. This limits the
scope of application of HyperLTL to only those settings where different traces
can be perfectly aligned. For example, consider program P2 in Fig. 2, where
line �4 in P1 is refined to its intermediate code using a register that stores the
value l + 1 and then stores this value in memory location l in lines �4 and
�5, respectively. Applying the synchronous semantics of HyperLTL results in
declaring a violation of ϕOD in the second position. This, however, is not an
accurate interpretation of ϕOD (assuming that an attacker only has access to the
memory footprint and not the CPU registers or a timing channel), as the two
traces are stutter equivalent with respect to the state of variable l. In fact, the
synchronous semantics of HyperLTL may incorrectly identify good programs as
bad because it ignores the notion of relative time between traces. This prob-
lem is generally amplified in Kripke structures where self-loops correspond to
non-deterministic choices that model that the system may remain in a state for
some arbitrary time. For instance, consider K in Fig. 3 and HyperLTL formula
∀π.∀π′.((bπ ↔ bπ′) U �(aπ ↔ aπ′)). Only pairs of traces that take the self-loop
the same number of times satisfy this formula. However, since the goal of employ-
ing a self-loop is typically to make the duration of staying in a state irrelevant,
this semantics is too restrictive.

696 J. Baumeister et al.

Fig. 4. Synchronous vs. asynchronous semantics for HyperLTL.

Besides HyperLTL, other logics have been proposed that allow trace quan-
tification, for example, Hμ [15], which extends the linear time μ-calculus [3] with
path quantifiers and indexed next operators. For Hμ, the model-checking prob-
lem is in general undecidable, but two fragments, the k-synchronous, k-context
bounded fragments, have been identified for which model checking remains
decidable [15].

In this paper, we propose an asynchronous temporal logic for hyperproperties.
Our main motivation is to be able to reason about execution traces according
to the relative order of the sequences of actions in each trace but not about the
duration of each action. Software is inherently asynchronous, and so is hardware
in many cases if one abstracts the execution platform or many features of the
execution platform like pipelines, caches, memory contention, etc. We call our
temporal logic Asynchronous HyperLTL or in short, A-HLTL. The key addition is
the notion of trajectory that controls the relative speed at which traces progress
by chosing at each instant which traces move and which traces stutter. For
example, the trajectory shown in Fig. 4c for the two traces of the program in
Fig. 2 allows the lower trace to stutter in the first position while the upper trace
advances. On the contrary, in the third position, the upper trace stutters while
the lower trace moves from the second to the third position. This trajectory
enables identification of stutter equivalence of the two traces with respect to
state variable l and, hence, successful verification of observational determinism.
In order to reflect the notion of trajectories in our logic, we lift the syntax
of HyperLTL by allowing a trajectory modality. This way, the corresponding
formula for observational determinism in A-HLTL is the following:

ϕOD
def= ∀π.∀π′.E.(liπ ↔ liπ′) → �(loπ ↔ loπ′)

where E denotes the existence of a trajectory for temporal operator �. The
A-HLTL formula for the Kripke structure in Fig. 3 is ∀π.∀π′.E.((bπ ↔ bπ′) U
�(aπ ↔ aπ′)). A-HLTL allows us to reason about relational properties between
two different systems that differ on timing, like for example, translation valida-
tion [22], which relates executions of the target code with the source code with
respect to a (trace or hyper) property.

We show an encoding of the PCP problem into model-checking a formula of
the shape ∀π.∀π′.E.(�ψ1(π, π′)∧�ψ2(π, π′)), which implies that model-checking
A-HLTL is undecidable, even for the universal fragment. On the positive side,

A Temporal Logic for Asynchronous Hyperproperties 697

we show two decidable fragments of A-HLTL. The first algorithm is based on
a stuttering construction in which we modify the Kripke structure to accept all
stuttering expansions of the original paths. This algorithm can handle fragment
∀π1 . . . πn.E.ψ, where the ψ is a phase formula, a class of safety formulas that
appear in many hyperproperties and are the building block of expressing trace
equivalence. Our second algorithm uses an acceleration construction to convert
a finite sequence of transitions that do not change phase, into a single tran-
sition. This algorithm is able to handle formulas with arbitrary quantification
but a simpler kind of phase formulas. A-HLTL is, thus, the first logic for hyper-
properties that can express the major asynchronous hyperproperties of interest
within decidable fragments. Moreover, A-HLTL is the first logic for asynchronous
hyperproperties with a practical model checking algorithm. Both algorithms use
internally HyperLTL model-checking as a building block. However, the reduc-
tion from A-HLTL model-checking into HyperLTL requires modifying both the
formula and the model in a highly non-trivial way, to encode the exitence of
trajectories. The choice of using HyperLTL model-checking as a building block
is based on the existence of tools, but it does not imply that asynchronous prop-
erties of interest can be expressed in HyperLTL directly.

We have evaluated the stuttering construction on two sets of cases studies: a
range of compiler optimizations and an SPI bus protocol. In both case studies,
we were able to prove system correctness using our reduction from A-HLTL to
synchronous HyperLTL.

Organization. The rest of the paper is structured as follows. Section 2 con-
tains the preliminaries, and Sect. 3 introduces A-HLTL and presents examples
of properties expressible in A-HLTL. Section 4 describes the decidable frag-
ments and present procedures for the model-checking problem. Section 5 shows
that the model-checking problem for general A-HLTL formulas is undecidable
and present the lower-bound complexity. Experimental results are presented
in Sect. 6. Finally, Sect. 7 discusses the related work, while Sect. 8 concludes.
Detailed proofs appear in the longer version of this paper in [4].

2 Preliminaries

Let AP be a set of atomic propositions and Σ = 2AP be the alphabet, where
we call each element of Σ a letter. A trace is an infinite sequence σ = a0a1 · · ·
of letters from Σ. We denote the set of all infinite traces by Σω. We use σ(i)
for ai and σi for the suffix aiai+1 · · · . A pointed trace is a pair (σ, p), where
p ∈ N0 is a natural number (called the pointer). Pointed traces allow to traverse
a trace by moving the pointer. Given a pointed trace (σ, p) and n > 0, we use
(σ, p) + n as a short for (σ, p + n). We denote the set of all pointed traces by
PTR = {(σ, p) | σ ∈ Σω and p ∈ N0}.

Two pointed traces (σ, p) and (σ′, p′) are stuttering equivalent if there are two
infinite sequences of indices p = i0 < i1 . . . and p′ = j0 < j1 . . . such that for all
k ≥ 0 and for all l ∈ [ik, ik+1) and l′ ∈ [jk, jk+1), σ(l) = σ′(l′). A pointed trace

698 J. Baumeister et al.

(σ′, p′) is a stuttering expansion of (σ, p) if there is a sequence p′ = j0 < j1 < . . .
such that for all k ≥ 0 and for all l ∈ [jk, jk+1), σ(p + k) = σ′(l). We say that σ
is stuttering equivalent to σ′ if (σ, 0) is stuttering equivalent to (σ′, 0), and that
σ′ is a stuttering expansion of σ if (σ′, 0) is a stuttering expansion of (σ, 0).

A Kripke structure is a tuple K = 〈S, Sinit , δ, L〉, where S is a set of states,
Sinit ⊆ S is the set of initial states, δ ⊆ S × S is a transition relation, and
L : S → Σ is a labeling function on the states of K. We require that for each
s ∈ S, there exists s′ ∈ S, such that (s, s′) ∈ δ.

A path of a Kripke structure is an infinite sequence of states s(0)s(1) · · · ∈
Sω, such that s(0) ∈ Sinit and (s(i), s(i + 1)) ∈ δ, for all i ≥ 0. A trace of a
Kripke structure is a trace σ(0)σ(1)σ(2) · · · ∈ Σω, such that there exists a path
s(0)s(1) · · · ∈ Sω with σ(i) = L(s(i)) for all i ≥ 0. Abusing notation we use
σ = L(ρ) to denote that σ is the trace corresponding to path ρ. We denote by
Traces(K, s) the set of all traces of K with paths that start in state s ∈ S, We
denote by Traces(K, A) the set of all traces that start from some state in A ⊆ S
and Traces(K) as a short for Traces(K, Sinit).

HyperLTL. HyperLTL [7] is a temporal logic that extends LTL [19,21] for
hyperproperties, which allows reasoning about multiple execution traces simul-
taneously. The syntax of HyperLTL is:

ϕ ::= ∃π.ϕ
∣
∣ ∀π.ϕ

∣
∣ ψ

ψ ::= aπ

∣
∣ ψ ∨ ψ

∣
∣ ¬ψ

∣
∣ ◯ ψ

∣
∣ ψ U ψ

where π is a trace variable from an infinite supply of trace variables. The intended
meaning of aπ is that proposition a ∈ Σ holds in the current time in trace
π. Trace quantifiers ∃π and ∀π allow reasoning simultaneously about different
traces of the computation. Atomic predicates aπ refer to a single trace π. Given
a HyperLTL formula ϕ, we use Vars(ϕ) for the set of trace variables quantified
in ϕ. A formula ϕ is well-formed if for all atoms aπ in ϕ, π is quantified in ϕ
(i.e., π ∈ Vars(ϕ)) and if no trace variable is quantified twice in ϕ. Given a set
of traces T , the semantics of a HyperLTL formula ϕ is defined in terms of trace
assignments, which is a (partial) map from trace variables to indexed traces
Π : Vars(ϕ) ⇀ PTR. The trace assignment with empty domain is denoted by
Π∅. We use Dom(Π) for the subset of Vars(ϕ) for which Π is defined. Given a
trace assignment Π, a trace variable π, a trace σ and a pointer p, we denote
by Π[π → (σ, p)] the assignment that coincides with Π for every trace variable
except for π, which is mapped to (σ, p). Also, we use Π + n to denote the trace
assignment Π ′ such that Π ′(π) = Π(π) + n for all π ∈ Dom(Π) = Dom(Π ′).
The semantics of HyperLTL is:

Π |=T ∃π.ϕ iff for some σ ∈ T , Π[π → (σ, 0)] |=T ϕ

Π |=T ∀π.ϕ iff for all σ ∈ T , Π[π → (σ, 0)] |=T ϕ

Π |=T ψ iff Π |= ψ

Π |= aπ iff a ∈ σ(p), where (σ, p) = Π(π)

A Temporal Logic for Asynchronous Hyperproperties 699

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |= ¬ψ iff Π �|= ψ

Π |=◯ψ iff (Π + 1) |= ψ

Π |= ψ1 U ψ2 iff for some j ≥ 0 (Π + j) |= ψ2

and for all 0 ≤ i < j,(Π + i) |= ψ1

Note that quantifiers assign traces to trace variables and set the pointer to the
initial position 0. We say that a set of traces T is a model of a HyperLTL formula
ϕ, denoted T |= ϕ whenever Π∅ |=T ϕ. A Kripke structure K is a model of a
HyperLTL formula ϕ, denoted by K |= ϕ, whenever Traces(K) |= ϕ.

3 Asynchronous HyperLTL

We introduce a temporal logic A-HLTL as an extension of HyperLTL to express
asynchronous hyperproperties.

Trajectories. To model the asynchronous passage of time, we now introduce the
notion of a trajectory, which chooses when traces move and when they stutter.
Let V be a set of trace variables and let I ⊆ V. The I-successor of a trace
assignment Π, denoted by Π + I, is the trace assignment Π ′ such that Π ′(π) =
Π(π) + 1 if π ∈ I and Π ′(π) = Π(π) otherwise. That is, the pointers of indices
in I advance by one step, while the others remain the same. A trajectory t :
t(0)t(1)t(2) · · · for a formula ϕ is an infinite sequence of non-empty subsets of
Vars(ϕ). Essentially, in each step of the trajectory one or more of the traces
make progress. A trajectory is fair for a trace variable π ∈ Vars(ϕ) if there are
infinitely many positions j such that π ∈ t(j). A trajectory is fair if it is fair
for all trace variables in Vars(ϕ). Given a trajectory t, by ti, we mean the suffix
t(i)t(i + 1) · · · . Furthermore, for a set of trace variables V, we use TRJV for set
of all trajectories for indices from V.

3.1 Syntax and Semantics of Asynchronous HyperLTL

The syntax of Asynchornous HyperLTL is:

ϕ ::= ∃π.ϕ | ∀π.ϕ | Eψ | Aψ

ψ ::= aπ | ¬ψ | ψ1 ∨ ψ2 | ψ1 U ψ2 |◯ψ

where a ∈ AP, π is a trace variable from an infinite supply V of trace variables, E
is the existential trajectory modality and A is the universal trajectory modality.
The intended meaning of E is that there is a trajectory that gives an interpre-
tation of the relative passage of time between the traces for which the temporal
formula that relates the traces is satisfied. Dualy, A means that for all trajec-
tories, the resulting alignment makes the inner formula true. It is important

700 J. Baumeister et al.

to note that there is no nesting of trajectory modalities and that all temporal
operators in a formula are interpreted with respect to a single modality.

We use the usual syntactic sugar for Boolean operators true def= aπ ∨ ¬aπ,
false def= ¬true, ϕ1 ∧ ϕ2

def= ¬(¬ϕ1 ∨ ¬ϕ2), and the syntactic sugar for temporal
operators �ϕ

def= true U ϕ, ϕ1 → ϕ2
def= ¬ϕ1 ∨ ϕ2, and �ϕ

def= ¬�¬ϕ, etc.
As before, we use trace assignments for the semantics of A-HLTL. Given

(Π, t) where Π is a trace assignment and t a trajectory, we use (Π, t) + 1 for
the successor of (Π, t) defined as (Π ′, t′) where t′ = t1, and Π ′(π) = Π(π) + 1 if
π ∈ t(0) and Π ′(π) = Π(π) otherwise. We use (Π, t) + k as the k-th successor
of (Π, t).

The satisfaction of an asynchronous HyperLTL formula ϕ over a trace assign-
ment Π and a set of traces T , denoted by Π |=T ϕ is defined as follows:

Π |=T ∃π.ϕ iff for some σ ∈ T : Π[π → (σ, 0)] |=T ϕ

Π |=T ∀π.ϕ iff for all σ ∈ T : Π[π → (σ, 0)] |=T ϕ

Π |=T Eψ iff for some t ∈ TRJDom(Π). (Π, t) |= ψ

Π |=T Aψ iff for all t ∈ TRJDom(Π). (Π, t) |= ψ

(Π, t) |= aπ iff a ∈ Π(π)(0)
(Π, t) |= ¬ψ iff (Π, t) �|= ψ

(Π, t) |= ψ1 ∨ ψ2 iff (Π, t) |= ψ1 or (Π, t) |= ψ2

(Π, t) |= ◯ψ iff (Π, t) + 1 |= ψ

(Π, t) |= ψ1 U ψ2 iff for some i ≥ 0 : (Π, t) + i |= ψ2 and
for all j < i : (Π, t) + j |= ψ1

We say that a set T of traces satisfies a closed sentence ϕ, denoted by T |= ϕ,
if Π∅ |=T ϕ. We say that a Kripke structure K satisfies an A-HLTL formula ϕ
(and write K |= ϕ) if and only if we have Traces(K, Sinit) |= ϕ.

3.2 Examples of A-HLTL

We illustrate the expressive power of A-HLTL by introducing the asynchronous
version of well-known properties.

Linearizability. [16] requires that any history of execution of a concurrent data
structure (i.e., sequence of invocation and response by different threads) matches
some sequential order of invocations and responses:

ϕLNZ
def= ∀π.∃π′.E.�(historyπ ↔ historyπ′)

where history denotes method invocations (and not the actual execution of the
internal instructions of the concurrent library) by the different threads and the
response observed, trace π ranges over the concurrent data structure and π′

ranges over its sequential counterpart.

A Temporal Logic for Asynchronous Hyperproperties 701

Goguen and Meseguer’s Noninterference (GMNI). [14] stipulates that, for all
traces, the low-observable output must not change when all high inputs are
removed:

ϕGMNI = def= ∀π.∃π′.E.(�λπ′) ∧ �(loπ ↔ loπ′)

where λπ′ expresses that all of the high inputs in the current state of π′ have
dummy value λ, and denotes low-observable output proposition.

Not never Terminates. [18] requires that for every initial state, there is a ter-
minating trace and a non-terminating trace:

ϕNNT
def= ∀π.∃π′.∃π′′.E.(π[0] = π′[0] = π′′[0]) → (� termπ′ ∧ �¬termπ′′)

Termination-Insensitive Noninterference. [25] requires that for two executions
that start from a low-observable states, information leaks are permitted if they
are transmitted purely by the program’s termination behavior. That is, the pro-
gram may diverge on some high inputs and terminate on others:

ϕTIN
def= ∀π.∀π′.E.

(

lπ ↔ lπ′
)

→
(

(�¬termπ ∨ �¬termπ′) ∨
�(termπ ∧ termπ′ ∧ lπ ↔ lπ′)

)

Termination-Sensitive Noninterference. [2] Termination-sensitive noninterfer-
ence is the same as termination insensitive, except that it forbids one trace to
diverge and the other to terminate:

ϕTSN
def= ∀π.∀π′.E.

(

lπ ↔ lπ′
)

→
(

(�¬termπ ∧ �¬termπ′) ∨
�(termπ ∧ termπ′ ∧ lπ ↔ lπ′)

)

4 Model-Checking A-HLTL

In this section, we show the decidability of the model-checking problem for two
classes of A-HLTL formulas using two different algorithms:

(1) a stuttering construction in which we modify the Kripke structure K to
accept all stuttering expansions of paths in K; and

(2) an acceleration construction in which the modified Kripke structure accel-
erates jumping directly to the synchronization points.

In both cases the problem is reduced to model-checking HyperLTL formulas,
which is known to be decidable [7,12]. We describe each construction separately.

702 J. Baumeister et al.

4.1 The Stuttering Construction

We consider first A-HLTL formulas of the form ∀π1 . . . πn.E.ψ. We will then
extend our results to the ∃∗ fragment, to handle the A trajectory modality and to
a larger collection of predicates. The class of temporal formulas ψ that we handle
are called admissible formulas, and are defined as the Boolean combination of:

1. any number of state formulas, which may relate propositions pπi
of different

traces arbitrarily;
2. any number temporal formulas (called monadic temporal formulas), each of

which only uses one trace variable and is invariant under stuttering (guaran-
teed for example by forbidding the use of ◯), and

3. one phase formula, which is an invariant that can relate different traces in a
restricted way (see below).

Given an admissible formula ψ, we use ψph for its phase formula, and we use
ψ[ψph � ξ] for the formula that results from ψ by replacing ψph with ξ. Since ψph

occurs only once in ψ, we use the fact that ψph appears with a single polarity.
We present here the construction for positive polarity which is the case in all
practical formulas (the case for negative polarity is analogous).

The algorithm has two parts. First, we generate the stuttering Kripke struc-
ture Kst whose paths are the stuttering expansions of paths in the original Kripke
structure K. Then, we modify the admissible formula ψ into ψsync such that
K |= ∀π1 . . . πn.E.ψ if and only if Kst |= ∀π1 . . . πn.ψsync . We describe each of the
concepts separately.

Phase Formulas. We first define atomic phase formulas (
∧

p∈P pπi
↔ pπj

) which
are characterized by (πi, πj , P), where P ⊆ AP and πi and πj are two different
trace variables. We use color to refer to a valuation of the variables in P . Essen-
tially, an atomic phase formula asserts that all propositions in P coincide in
both traces at all points in time, that is, both traces exhibit the same sequence
of colors. Since the passage of time proceeds at different speeds in the different
traces—according to the trajectory—atomic phase formulas state the traces for
πi and πj are sequences of phases of the same color, where corresponding phases
may have different lengths. A phase formula is formed from atomic formulas as
follows:

�
(∧

p∈P 1

pπ1
i

↔ pπ1
j

∧ · · · ∧
∧

p∈P k

pπk
i

↔ pπk
j

)

We use P : {(π1
i , π1

j , P 1), . . . , (πk
i , πk

j , P k)} for the collection of predicates and
trace variables that characterize a phase formula.

Stuttering Kripke Structure. We start from K and create Kst that accepts the
stuttering expansions of traces in K. First, the alphabet of atomic propositions is
enriched with a fresh proposition st , that is APst = AP∪{st}, to encode whether
the state represents a real move or a stuttering move. Given K = 〈S, Sinit , δ, L〉,
the stuttering Kripke structure is Kst = 〈Sst , Sinit , δ

st , Lst〉 where:

A Temporal Logic for Asynchronous Hyperproperties 703

– Sst = S ∪ {sst | s ∈ S} contains two copies of each state in S, where we use
sst to denote the stuttering state that corresponds to s;

– δst = δ ∪ {(s, sst)} ∪ {(sst , sst)} ∪ {(sst , s′) | for every (s, s′) ∈ δ}.
– Lst(s) = L(s) for s ∈ S, and Lst(sst) = L(s) ∪ {st}.

The construction generates a Kripke structure Kst which is linear in the size of
the original Kripke structure K. It is easy to see that every stuttering expansion
of a path of K has a corresponding path in Kst, where the repeated version of
state s is captured by state sst . Conversely every path ρ′ in Kst whose trace
satisfies ��¬st can be turned into its “stuttering compression” by removing
all stuttering states, which is a path of K. Note that the constraint ��¬st
guarantees that there are infinitely many non-stuttering positions in ρ′, so ρ
is well-defined. Hence, this constructions provides a one-to-one correspondence
between a trajectory toguether with a tuple of traces of K, and the corresponding
tuple of traces of Kst.

State and Monadic Formulas are not Affected by Trajectories. State formulas
are relational formulas that are evaluated at the beginning of the computation.
Temporal monadic formulas only refer to one trace variable and are stuttering
invariant by definition. Therefore, none of these formulas are affected by the
stuttering induced by a trajectory, as the relative stuttering among traces does
not affect their truth valuation. We first note that given a trace assigned for each
of the trace variables in Vars(ϕ) the truth value of state formulas and monadic
formulas does not depend on the trajectory chosen.

Phase Alignment of Asynchronous Sequences. We use the stuttering in Kst to
encode the relative progress of traces as dictated by a trajectory. We will now
introduce synchronous HyperLTL formulas to reason in Kst about the corre-
sponding states during the asynchronous evaluation in K. The important con-
cept is that of “phase changes”, which are the points in a trace σ at which the
valuation of the predicates P in an atomic phase formula (πi, πj , P) change. Let
Π be a trace assignment for traces in K that maps πi to a pointed trace (σ, l).
We say that in assignment Π, trace variable πi is about to change phase with
respect to (πi, πj , P) if for some p ∈ P either p ∈ σ(l) but p /∈ σ(l+1) or p /∈ σ(l)
but p ∈ σ(l+1). Note that in Kst the next relevant letter (the one corresponding
to σ(l+1) is the first letter that is not a stuttering letter). Formula changeP (πi)
captures that the next non-stuttering step of πi is a phase change (with respect
to predicates in P and therefore with respect to atomic phase formula α):

changeP (πi)
def=

∨

p∈P

pπi
�↔◯(stπi

U pπi
)

A phase change for πi in atomic phase formula (πi, πj , P) implies that πj must
also proceed to change phase. The second observation is that when πi and πj

are not changing phases, any choice that the trajectory makes will preserve the
valuation of the atomic phase formula.

704 J. Baumeister et al.

We now capture formally this intuition as formulas. Predicate move(πi)
def=

◯(¬stπi
) indicates whether trace variable πi will move (and not stutter) at a

given instant of the computation. The following temporal formula captures the
consistency criteria of phase changes as a synchronized decision for moving traces
πi and πj related by an atomic phase formula (πi, πj , P):

align(πi,πj ,P)
def=

⎛

⎜
⎝

(move(πi) ∧ move(πj)) → (changeP (πi) ↔ changeP (πj)) ∧
(move(πi) ∧ ¬move(πj)) → ¬changeP (πi) ∧

(¬move(πi) ∧ move(πj)) → ¬changeP (πj)

⎞

⎟
⎠

We will reduce the model-checking problem in A-HLTL to checking in Kst that
tuples of traces that align phase changes—for all atomic phase formulas— satisfy
all sub-formulas of the specification ψ. The following two formulas express that
all atomic phase formulas align, and that all traces are fair (all traces eventually
move):

phase def=
∧

(πi,πj ,P)∈P
align(πi,πj ,P) fair def=

∧

πi∈{π1...πn}
��¬st i

We will then check in Kst that all stuttering traces that align phases and are fair
satisfy the desired formula ψ, that is (�phase ∧ fair) → ψ. Note that all those
tuples of traces that do not align phases are ruled out in the antecedent.

A final technical detail in the construction is that we must guarantee that
for all tuples of paths of K there are stuttering expansions that are fair and
align phases, and that they have the same number of phases. Otherwise, there
are paths of K that cannot be aligned, which inevitably leads to a violation
of ψph. It could be the case that some tuple of traces of K cannot possibly
align the phase changes corresponding to all atomic phase formulas. This can
happen in two cases: (1) when two traces have different number of phases, and
(2) when there is a circular dependency between the atomic formulas that force
the trajectory to synchronize the traces in incompatible orders. The first case is
captured by:

missalign def=
∨

(πi,πj ,P)

(

�¬changeP (πi)
)

�↔
(

�¬changeP (πj)
)

The second case is captured by the following formula, where cycles(ψph)
are the sequences of atomic formulas that form a simple cycle, that is
[(π0, π1, P 0), (π1, π2, P 1) . . . (πk, π0, P k)] such that the second trace variable is
the first trace variable of the next atomic phase formula, circularly (see Ex. 1
below):

block def=
∨

C∈cycles(ψph)

(∧

(πi,πj ,P)∈C

changeP (πi) ∧ ¬changeP (πj)
)

A Temporal Logic for Asynchronous Hyperproperties 705

Essentially, block encodes whether the set of traces involved cannot proceed
without violating phase, because align forbids all traces involved to move. Hence,
the formula phase U (missalign ∨ block) captures to those traces of Kst that
contain an aligned prefix of computation that lead to a miss-alignment or a
block. The proof of correctness shows that given a tuple of traces of K, if there
is a trajectory that aligns the phase changes (which must exist if there is a
trajectory that makes ψph true), then all trajectories that respect �phase will
also align the phase changes (and also satisfy ψph).

We are finally ready to describe the synchronous phase formula ψsync . First,
this formula is only evaluated against tuples of fair traces, which correspond to
the stuttering extensions of paths of K. Then, the phase formula ψph is translated
into a formula that captures (1) that following a phase alignment cannot lead
to a block or to two traces changing phases a different number of times, and (2)
that if phases are aligned then ψph holds. Formally,

ψsync
def
= fair → ψ[ψph � ψ′], where ψ′ =

(
¬(phase U (missalign ∨ block)) ∧
�phase → ψph

)

Example 1. We illustrate the previous definitions with the Kripke structures
K1, K2 and K3 in Fig. 5 and their stuttering variants Kst

1 , Kst
2 and Kst

3 Consider
formula ∀π1.∀π2.E.�(aπ1 ↔ aπ2). Consider the following trace assignments:

Π1(π1) → {} {st} {a} . . .

Π1(π2) → {} {} {a} . . .

Π2(π1) → {} {a} {a} . . .

Π2(π2) → {} {} {a} . . .

Π3(π1) → {a} {} {} . . .

Π3(π2) → {a} {} {a} . . .

Consider the trace assignment Π1 on the left, where π1 is a trace of Kst
1

corresponding to the path of K1 that visits s1, and π2 corresponds to the
path that visits s2. This trace assignment aligns the atomic phase formula
(π1, π2, {a}) at all positions. In particular, at position 0, we have change{a}(π1),
but ¬change{a}(π2), and ¬move(π1) and move(π2), as align{a} requires.

Fig. 5. Kripke structure K1 (left), K2 (middle) and K3 (right).

706 J. Baumeister et al.

Π(π1) �→ {} {} {a} {c} . . .

Π(π2) �→ {} {} {b} {a} . . .

Π(π3) �→ {} {} {c} {b} . . .

Consider now the trace assignment Π2 in the
middle, where again π1 corresponds to the path
in Kst

1 that visits s1 and π2 the path that vis-
its s2. In this case, we have ¬align{a} at posi-
tion 0 because change{a}(π1) and ¬change{a}(π2)
hold, and both move(π1) and move(π2). Consider

now Π3 on the right, where π1 corresponds to the path of Kst
2 that vis-

its s3 and π2 to the path of Kst
2 that visits s4. In this case align{a} holds

at 0 and missalign holds at 1 because at 1, �¬change{a}(π1) holds, but not
�¬change{a}(π2). Therefore, phase U (missalign ∨ block) holds for Π3. Finally,
consider ∀π1.∀π2.∀π3.E.�(aπ1 ↔ aπ2 ∧ bπ2 ↔ bπ3 ∧ cπ3 ↔ cπ2) and the
trace assignment Π of Kst

3 shown below on the left. In this case phase holds
at position 0 and block holds at position 1. This is because change{a}(π1) and
¬change{a}(π2), change{b}(π2) and ¬change{b}(π3), and change{c}(π3) and also
¬change{c}(π1). This illustrates that it will not be possible to align all three
atomic phase formulas.

We are now ready to state the main result of this section.

Theorem 1. Let K be a Kripke structure and ψ an admissible formula. Then,
K |= ∀π1 . . . πn.E.ψ if and only if Kst |= ∀π1 . . . πn.ψsync.

Dually, to show that the ∃∗ fragment is decidable, we consider replacing ψph by
the formula

ψesync
def= fair ∧ ψ[ψph � (�phase ∧ ψph)]

Theorem 2. Let K be a Kripke structure and ψ an admissible formula. Then
K |= ∃π1 . . . πn.E.ψ if and only if Kst |= ∃π1 . . . πn.ψesync.

The proof of Theorem 2 takes a witness tuple and trajectory in K and shows
that the induced tuple in Kst is fair, satisfies �phase and that the valuation of
ψph is preserved. Similarly, as before, tuples of traces of Kst that are fair and
follow phase alignments induce a trajectory on their stuttering compression that
also preserve ψph.

Corollary 1. The problems of model-checking ∀∗ admissible A-HLTL formulas
and ∃∗ admissible A-HLTL formulas is decidable.

We finally consider the negation of phase formulas, called co-phase formulas,
which are formulas of the form �¬R where R a conjunction of atomic phase
formulas. Interestingly, deciding co-admissible formulas (consisting of Boolean
combinations of state-formulas, monadic temporal formulas and one co-phase
formula in positive polarity) is easier than before, as one can turn the co-phase
formula into a monadic formula enumerating all the violations of the atomic
phase formulas (p ∈ P such that pπi

�↔ pπj
) turns the atomic phase formula into

(�pπi
∧ �¬pπj

) ∨ (�¬pπi
∧ �pπj

)

. It follows that model-checking co-admissible
formulas is also decidable (for both ∀∗ and ∃∗). Note that an admissible formula

A Temporal Logic for Asynchronous Hyperproperties 707

in negative polarity is a co-admissible formula in positive polarity (and vice
versa). Finally, since K |= ∀π1 . . . ∀πn.A.ψ if and only if K �|= ∃π1 . . . ∃πn.E.¬ψ,
it follows that model-checking is also decidable for the A modality for both
admissible and co-admissible formulas (in both polarities), and for both the ∀∗

and ∃∗ fragments.

Theorem 3. Model-checking ∀∗ or ∃∗ admissible and co-admissible formulas is
decidable both for formulas with E and formulas with A.

4.2 The Accelerating Construction

The admissible formula in the stuttering construction can express many formulas
of interest, but the quantifier structure admits no quantifier alternation. We now
consider a second decidable fragment for A-HLTL formulas consisting of formulas
with arbitrary quantification Q1π1.Q2π2.QnπnE.ψ such that Qi ∈ {∀,∃}, but
where ψ is an admissible formula where all atomic phase formulas use the same
atomic predicates P ⊆ AP. We call these admissible formulas simple admissible
formulas. The proof of decidability proceeds this time by creating the accelerated
Kripke structure Kacc, where paths jump in one step to the next phase change,
and reducing to a HyperLTL model-checking problem on Kacc.

Accelerated Kripke Structure. The main idea of the acceleration construction is
to convert a finite sequence of transitions in K that only change phase in the last
transition into a single transition in Kacc. Also, an infinite sequence of transitions
with no phase change is transformed into a self-loop around a sink state. The
alphabet remains the same, AP. Given K = 〈S, Sinit , δ, L〉, the accelerated Kripke
structure is Kacc = 〈Sacc , Sinit , δ

acc , Lacc〉 where:

– Sacc = S ∪ {s⊥ | s ∈ S} contains two copies of each state in S, where we use
s⊥ to denote the sink state associated with s. We use color(s) for the phase
of s, that is, the concrete valuation in s of the Boolean predicates in P of the
atomic phase formula.

– For every states s, s′ ∈ S such that color(s) �= color(s′), if there is a finite
path ss2s3 . . . sns′ in K such that color(s) = color(s2) = · · · = color(sn), then
we add a transition (s, s′) to δacc . These transitions model the jump at the
frontier of phase changes. Additionally, if s can be a sink we add a transition
(s, s⊥) and a self-loop from s⊥ to itself.

– Lacc(s) = L(s) for s ∈ S, and Lacc(s⊥) = L(s).

This construction can, with standard techniques, be enriched to encode the
satisfaction of the temporal monadic formulas along paths of K, and then also
accelerate the fairness conditions (annotating the accepting states reached along
the accelerated paths) into Kacc.

Relating Paths to Accelerated Paths. We now define two auxiliary functions to
aid in the proof.

708 J. Baumeister et al.

– The first function, acc, maps paths in K into paths in Kacc. Let s be an
arbitrary state of K and ρ : ss1s2s3 . . . an outgoing path from s. Either there
are infinitely many phase changes in ρ or only finitely many changes. We
create the path ρ′ = acc(ρ) as follows. The initial state of ρ, that is, s, is
preserved. The states sij

in σ that are color changes (that is color(sij−1) �=
color(sij

) are also preserved, while the states sk with color(sk−1) = color(sk)
are removed from ρ. If there are only finitely many color changes in ρ, with r
being the last state preserved, then we pad the path with rω

⊥, so ρ′ is also an
infinite path. It is easy to see that ρ′ is a path of Kacc outgoing s. It is also
easy to see that the phase changes in ρ and ρ′ are the same.

– The second map, dec, takes a path ρ′ : ss′
1s

′
2 . . . of Kacc and maps it to a path

of K as follows. For every transition (s′
i, s

′
i+1) in ρ such that s′

i+1 is not of the
form r⊥, there is a finite path r1r2 . . . rm in K from s′

i into s′
i+1 that visits

only states with the same color as s′
i, except si+1 that is a color change. In

ρ, we insert r1r2 . . . rm between s′
i and s′

i+1. Now, if for some j, s′
j is of the

form r⊥ then s′
k = r⊥ for all k > j. In K there must an infinite path from s′

j

that only visits the same color as s′
j . We remove all successor states after the

first such r⊥ state and replace it with one such infinite path.

Given a trace assignment Π for formula Q1π1. . . . Qnπn.E.ψ that assigns
Π(πi) = (σi, 0) for every i and a path assignment Π ′ for formula
Q1π1.Qnπn.ψ that assigns Π ′(π)i = (σ′

i, 0), we write acc(Π) = Π ′ if the
paths that generate the corresponding traces are related by acc. Similarly we
defined dec(Π ′) = Π. It is easy to show from the construction above that if
Π |= Eψ then acc(Π) |= ψ, and if Π ′ |= ψ then dec(Π ′) |= Eψ.

The main result for the accelerating construction follows immediately from
this observation and allows to reduce the model-checking problem to HyperLTL.

Theorem 4. Let K be an arbitrary Kripke structure, Q1π1.Qnπn.E.ψ such
that ψ is a simple admissible formula. Then K |= Q1π1. . . . QnπnE.ψ if and only
if Kacc |= Q1π1. . . . Qnπn.ψ.

4.3 Decidable Practical A-HLTL Formulas

We revisit the properties expressed in Sect. 3.2.

– Linearizability. The property ϕLNZ is of the form ∀π.∃π′.E.�(historyπ ↔
historyπ′) where the temporal formula is a simple admissible formula. There-
fore ϕLNZ is decidable by the accelerating construction.

– Goguen and Meseguer’s non-interference. The property ϕGMNI is expressed
by ∀π.∃π′.E.(�λπ′) ∧ �(loπ ↔ loπ′), that is, a Boolean combination of a
monadic temporal formula and a simple admissible formula. Therefore, ϕGMNI

is decidable by the acceleration algorithm.
– Not never terminates. Formula ϕNNT is simply a Boolean combination of

state formulas and monadic temporal formulas: ∀π.∃π′.∃π′′.E.(π[0] = π′[0] =
π′′[0]) → (� termπ′ ∧ �¬termπ′′), so it is again decidable by the accelera-
tion construction.

A Temporal Logic for Asynchronous Hyperproperties 709

– Termination-insensitive noninterference. To handle ϕTIN we rewrite the for-
mula as follows

ϕTIN
def= ∀π.∀π′.E.

(

lπ ↔ lπ′
)

→
(

(�¬termπ ∨ �¬termπ′) ∨
�

(

(lπ ∧ termπ) ↔ (lπ′ ∧ termπ′)
)

)

Note that (lπ ∧ termπ) can be turned into a state predicate of π. This formula
is equivalent because the last case is evaluates precisely to lπ ↔ lπ′ when both
traces terminate. This formula can be handled by the stuttering construction.

– Termination-sensitive noninterference. Similarly, to handle ϕTSN we rewrite
the formula as

ϕTSN
def= ∀π.∀π′.E.

(

lπ ↔ lπ′
)

→
(

(�¬termπ ∧ �¬termπ′) ∨
�

(

(lπ ∧ termπ) ↔ (lπ′ ∧ termπ′)
)

)

This is again equivalent because the last case again is the only relevant case
when both paths terminate. Again, this case is covered by the stuttering
construction.

5 Undecidability and Lower-Bound Complexity

In this section, we show that the general problem of model-checking A-HLTL
is undecidable. Then, we show a polynomial reduction from the synchronous
HyperLTL model-checking into A-HLTL model-checking, which shows that even
for those A-HLTL formulas for which the model-checking is decidable, this prob-
lem is no easier than the corresponding problem for HyperLTL, which is known
to be PSPACE-hard in the size of the Kripke structure.

Theorem 5. Let K be a Kripke structure and ϕ be an asynchronous HyperLTL
formula. The problem of determining whether or not K |= ϕ is undecidable.

Proof (sketch). We reduce the complement of the post correspondence problem
(PCP) [23,26] to the A-HLTL model checking problem. PCP consists of a set of
dominos, for example, of the form [w

v] = {[b
ca], [a

ab], [
ca
a], [abc

c]} and the problem
is to decide whether there is a sequence of dominos (with possible repetitions),
such that the upper and lower finite strings of the dominos are equal. A solution
to the above set of dominos is the sequence [a

ab][
b
ca][ca

a][a
ab][

abc
c]. We map a given

set of dominos to a Kripke structure that allows arranging the dominos in a
sequence (see Fig. 6 for an example), where v and w indicate lower and upper
words, respectively, domi is for each domino [wi

vi
], and proposition lc marks

whether or not a new letter is processed. The A-HLTL formula in our reduction
is the following such that domπw

def=
∨

i∈[1..k] dom
i
πw

:

ϕpcp
def= ∀πw∀πv.E.

(

ϕtype → (ϕdomino ∨ ϕword)
)

710 J. Baumeister et al.

Fig. 6. Mapping from PCP to model checking A-HLTL (only construction for dominos
[w1

v1
] = [b

ca
] and [w4

v4
] = [abc

c
] are shown).

where ϕtype
def=

(

(wπw
∧ ¬vπw

) U endπw

)

∧
(

(¬wπv
∧ vπv

) U endπv

)

ϕdomino
def= �(domπw

↔ domπv
) ∧ �

k∨

i=1

domi
πw

�↔ domi
πv

ϕword
def= �(lcπw

↔ lcπv
) ∧ �

∨

l∈Σpcp

(lπw
�↔ lπv

)

The intention of formula ϕpcp is that the Kripke structure is a model of the
formula if and only if the original PCP problem has no solution. Intuitively,
formula ϕtype forces trace πw (respectively, πv) to traverse only the traces labeled
by w (respectively, v) to build a w-word (respectively, v-word). Formula ϕdomino

establishes that the trajectory aligns the positions at which the domino indices
are checked and at last once the index is different. Finally, formula ϕword captures
if πw and πv are aligned to compare the letters, at least one pair of the letters
prescribed by the existential trajectory are different. In the detailed proof in [4],
we show that the constructed Kripke structure satisfies formula ϕpcp if and only
if the answer to deciding PCP is negative. ��

Theorem 5 above implies that there is no algorithm to decide the model-
checking problem correctly for every formula and every system. However, as we
saw in Sect. 4 for some formulas the model-checking problem is decidable. We
now show that in these cases the problem is at least as hard as model-checking
HyperLTL, which is known to be PSPACE-hard [7,24].

Theorem 6. Given a HyperLTL formula ϕ and a Kripke structure K there is a
A-HLTL formula ϕ′ and a Kripke structure K′ such that K′ is linear in the size
of K, ϕ′ is polynomial on the size of ϕ and K |= ϕ if and only if K′ |= ϕ′.

The proof proceeds as follow. Giving K we build a Kripke structure K′ that
alternates between real states in K and synchronization states. Then the formula

A Temporal Logic for Asynchronous Hyperproperties 711

is transformed to force alternations at every other step, therefore forcing the
trajectory to synchronize (see [4] for details). Since the model-checking problem
for HyperLTL is PSPACE-hard on the size of the Kripke structure, the same
follows for A-HLTL.

Corollary 2. For asynchronous HyperLTL formulas, the model checking prob-
lem is PSPACE-hard in the size of the system.

6 Case Studies and Evaluation

We applied our algorithm for the ∀∗
πE A-HLTL fragment to several examples.

After manually reducing the asynchronous model checking problem to a syn-
chronous one, we use MCHyper [10,11] to check our property. MCHyper is a
model checker for synchronous HyperLTL that can handle formulas with up to
one quantifier alternation. It computes the self composition of the system and
composes it with the formula automaton. ABC [6] is then used as the backend
tool checking the reachability of a violation.

Our reduction from the asynchronous to the synchronous semantics follows
the stuttering construction described in Sect. 4.1. To model check a system
against an A-HLTL formula, we first add a stuttering input to the system that
forces the system to stutter in the current state. The transformed formula ensures
that the stuttering guarantees synchronous phase changes. In future work, we
will fully automate our reduction resulting in a verification tool for asynchronous
hyperproperties from the decidable fragment. We now describe the various case
studies1. All our experiments were performed on a MacBook Pro with a 3.3 GHz
processor and 16 GB of RAM running MacOS 11.1.

6.1 Compiler Optimizations

We modeled the source and target programs of different compiler optimization
techniques (from [20]) as finite state machines encoded as circuits, and used asyn-
chronous hyperproperties to prove the correspondence between both programs.
We analyzed the following optimizations:

– Common Branch Factorization (CBF), where expressions occurring in both
branches of a conditional are factored out;

– Loop Peeling (LP), which consists in unrolling of a loop that is executed at
least once;

– Dead Branch Elimination (DBE), that is, removing conditional checks and
their branches that are unreachable; and

– Expression Flatting (EF), which splits complex computations into several
explicit steps.

1 The experimental data is publicly available at https://github.com/reactive-systems/
MCHyper in case-studies/asynchronous-hyperltl_2021.

https://github.com/reactive-systems/MCHyper
https://github.com/reactive-systems/MCHyper

712 J. Baumeister et al.

Table 1. Verification times of MCHyper and system sizes in number of latches (#ls)
and and-gates (#ands) for the case studies.

Optimizations
System Size

Time (s)
#ls #ands

EF 12 64 0.6

DBE 16 128 0.8

CBF 16 145 2.7

LP 28 514 365.9

CBF+DBE 16 137 11.4

CBF+DBE+EF 20 175 10.0

CBF+EF 20 180 1.7

EF+LP 41 8642 1315.2

Propery
System Size

Time (s)
#ls #ands

SPI-correct 30 175 65.7

SPI-term 33 296 155.8

(a) Compiler Optimizations (b) SPI

Besides evaluating each optimization individually, we also examined several
combinations of these optimizations. Each optimization affects the alignment
between source and target program, so synchronous hyperproperties fail to rec-
ognize the correspondence between both programs. Using asynchronous hyper-
properties instead allows us to compensate for this misalignment by stuttering
the programs accordingly. Essentially, each optimization is checked against the
following A-HLTL formula in which π represents traces from the source program
and π′ traces from the target program:

∀π.∀π′.E.(
∧

i∈I

iπ ↔ iπ′) → (�
∧

o∈O

oπ ↔ oπ′)

This formula states that for all pairs of traces that initially agree on the inputs
from the set I there exists a trajectory that aligns the phase changes of the
outputs in set O. We use the stuttering construction and MCHyper to verify
that in all cases the source and target programs go through the same phases
of possibly different length. The results of this case study are summarized in
Table 1(a). We note that A-HLTL model-checking subsumes the approach in [20]
based on construction of a buffer automaton to reason about the alignment of
executions.

6.2 SPI Bus Protocol

The Serial Peripheral Interface (SPI) is a bus protocol that supports a single
main component’s communication with multiple secondary components. Each
secondary can be selected individually by the main via the secondary’s own ss
(“secondary select”) input signal. If a secondary is enabled (that is, if ¬ss holds
as the secondary select is “active low”), it reads the mosi (main out, secondary
in) signal and writes to the miso (main in, secondary out) wire.

A Temporal Logic for Asynchronous Hyperproperties 713

We verify the behavior of a single SPI secondary component that receives
an input which it sends to the main component upon request. This behavior
should always be the same, independent of when the secondary is enabled or
how fast the bus protocol’s “serial clock” (sclk) set by the main component ticks
compared to the secondary’s internal clock. The A-HLTL formula we check is
the following (see observational determinism in Sect. 1):

∀π.∀π′.E.

⎛

⎜
⎜
⎝

∧

i∈{in,init}
iπ ↔ iπ′

∧
SPI input assumptions

⎞

⎟
⎟
⎠

→ �

⎛

⎜
⎝

(misoπ ∧ ¬sclkπ ∧ ¬ssπ)
↔

(misoπ′ ∧ ¬sclkπ′ ∧ ¬ssπ′)

⎞

⎟
⎠

This formula (called SPI-correct in Table 1(b)) ensures that for all pairs of
traces π and π′ that agree on the initial configuration, on the input, and addi-
tional SPI input assumptions, there is a trajectory that aligns their relevant
behavior. We consider it relevant that both secondaries agree on their miso out-
put whenever they are enabled and the sclk is low. Checking miso only when
the sclk is low is sufficient as changes on miso only occur at falling edges of
the sclk . The SPI input assumptions are required to guarantee the implicit
assumptions of the protocol, for example, that the sclk behaves as an infinitely
ticking clock. By introducing additional variables and applying logical transfor-
mations, we obtain an equivalent formula that syntactically lies in the fragment
of the stuttering construction. Again, we reduce this model checking problem to
the synchronous semantics and use MCHyper to perform the verification.

In a second experiment, we modified the system to send the value only once
and checked it for termination insensitive noninterference SPI-term (see Sects. 3.2
and 4.3). In our setup, we use the variable term to flag that the secondary has
sent the full value. In the premise of the formula, we require that the input value
is equal on both traces and again assume that the inputs conform to the SPI
protocol. The conclusion checks if both secondaries have sent the same values
by using additional variables that are set together with term. The results of this
case study are summarized in Table 1(b).

7 Related Work

The study of specific hyperproperties, such as noninterference, dates back to the
seminal work by Goguen and Meseguer [14] in the 1980s. The first systematic
study of hyperproperties is due to Clarkson and Schneider [8].

It is well-known that classic specification languages like LTL cannot express
hyperproperties. There are two principal methods with which the standard logics
have been extended to express hyperproperties:

– The first method is the quantification over variables that identify specific
paths or traces. The temporal logics LTL, CTL∗ have been extended with
quantification over traces and paths, resulting in the temporal logics Hyper-
LTL and HyperCTL∗ [7]. There are also extensions of the μ-calculus, most

714 J. Baumeister et al.

recently, the temporal fixpoint calculus Hμ [15], which extends the linear time
μ-calculus [3] with path quantifiers and indexed next operators.

– The second method is the addition of the equal-level predicate E to first-order
and second-order logics, like MPL, MSO, FOL, and S1S, which results in the
logics FOL[E], S1S[E], MPL[E], MSO[E] [9,13].

HyperCTL∗, MPL[E], and MSO[E] are branching-time logics, we therefore
focus in the following on the linear-time logics HyperLTL, Hμ, FOL[E], and
S1S[E]. Among these logics, HyperLTL is the only logic for which practical
model-checking algorithms are known [10,11,17]. For HyperLTL, the algorithms
have been implemented in the model checkers MCHyper and bounded model
checker HyperQube. As discussed in this paper, HyperLTL is limited to syn-
chronous hyperproperties.

FOL[E] can express a limited form of asynchronous hyperproperties. As
shown in [9], FOL[E] is subsumed by HyperLTL with additional quantification
over predicates. Using such predicates as “markers,” one can relate different
positions in different traces. However, only a finite number of such predicates
is available in each formula. S1S[E] is known to be strictly more expressive
than FOL[E] [9], and conjectured to subsume Hμ [15]. For S1S[E] and Hμ, the
model checking problem is in general undecidable; for Hμ, two fragments, the k-
synchronous, k-context bounded fragments, have been identified for which model
checking remains decidable [15]. Even though some asynchronous properties can
be expressed in these decidable fragments of Hμ, there is no systematic study to
characterize practical properties that can be encoded. Like S1S[E] and Hμ, asyn-
chronous HyperLTL has an (in general) undecidable model checking problem.
However, in this paper we have identified decidable fragments of asynchronous
HyperLTL that can express observational determinism, noninterference, and lin-
earizability. A-HLTL is thus the first logic for hyperproperties that can express
the major asynchronous hyperproperties of interest within decidable fragments.
Furthermore, asynchronous HyperLTL is the first logic for asynchronous hyper-
properties with a practical model checking algorithm.

8 Conclusion

We have introduced A-HLTL, a temporal logic to describe asynchronous hyper-
properties. This logic extends HyperLTL with trajectory modalities, which con-
trol when a trace proceeds and when it stutters. Synchronous HyperLTL corre-
sponds to a trajectory that always moves all paths in a lock-step manner. This
notion of trajectory allows to define formulas that are invariant under stuttering,
paving the way for relevant model-checking optimizations such a partial order
reduction and abstraction-refinement techniques in the context of hyperproper-
ties. We show that model-checking A-HLTL formulas is in general undecidable,
and identify two fragments of A-HLTL formulas, which cover a rich set of security
requirements and can be decided by a reduction to HyperLTL model-checking.
This in turn has allowed us to the reuse the existing model-checker MCHyper.

A Temporal Logic for Asynchronous Hyperproperties 715

Future work includes the study of larger decidable fragments (that encom-
pass both fragments studied here), extending the logic allowing several trajec-
tory modalities, as well as their implementation in practical tools. Extending
bounded model-checking [17] to A-HLTL is another interesting research prob-
lem. Asynchronous hyperproperties are important for applying a logic-based
verification approach to verify hyperproperties for software programs, because
the relative speed of the execution of programs depends on many factors like the
compiler, hardware, execution platform and concurrent running programs, that
the analysis must tolerate. Therefore, future work includes adapting techniques
for infinite-state software model-checking, like deductive methods, abstraction,
etc. to verify A-HLTL properties of software systems.

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21, 181–185
(1985)

2. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 333–348. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88313-5 22

3. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its
temporal logic. In: Proceedings of the 13th Annual ACM Symposium on Principles
of Programming Languages (POPL 1986), pp. 173–183. ACM (1986)

4. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. CoRR, abs/2104.14025 (2021)

5. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018, Part II. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03421-4 2

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

7. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

9. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2019), pp. 1–13. IEEE (2019)

10. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019, Part I. LNCS, vol. 11561, pp. 121–139.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

11. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL
and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part I. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3

716 J. Baumeister et al.

12. Finkbeiner, B., Rabe, M.N., Sánchez, C.: A temporal logic for hyperproperties.
CoRR, abs/1306.6657 (2013)

13. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In: 34th
Symposium on Theoretical Aspects of Computer Science, STACS 2017, 8–11 Mar
2017, Hannover, Germany, pp. 30:1–30:14 (2017)

14. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of the IEEE Symposium on Security and Privacy, pp. 11–20 (1982)

15. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for asyn-
chronous hyperproperties. Proc. ACM Program. Lang. 5(POPL), 1–29 (2021)

16. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

17. Hsu, T.-H., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyper-
properties. In: TACAS 2021, Part I. LNCS, vol. 12651, pp. 94–112. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72016-2 6

18. Lamport, L.: “Sometime” is sometimes “not never” - on the temporal logic of
programs. In: Proceedings of the Seventh Annual ACM Symposium on Principles
of Programming Languages (POPL 1980), pp. 174–185. ACM Press (1980)

19. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer-Verlag,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

20. Namjoshi, K.S., Tabajara, L.M.: Witnessing secure compilation. In: Beyer, D.,
Zufferey, D. (eds.) VMCAI 2020. LNCS, vol. 11990, pp. 1–22. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-39322-9 1

21. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science (FOCS), pp. 46–57 (1977)

22. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

23. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc.
52, 264–268 (1946)

24. Rabe, M.N.: A Temporal Logic Approach to Information-flow Control. PhD thesis,
Saarland University (2016)

25. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential
programs. High. Order Symb. Comput. 14(1), 59–91 (2001)

26. Sipser, M.: Introduction to the Theory of Computation. MIT Press, Boston (2012)
27. Wang, Y., Zarei, M., Bonakdarpour, B., Pajic, M.: Statistical verification of hyper-

properties for cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS)
18(5s), 92:1–92:23 (2019)

28. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop (CSFW), p. 29 (2003)

https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-3-030-39322-9_1
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170

A Temporal Logic for Asynchronous Hyperproperties 717

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Product Programs in the Wild:
Retrofitting Program Verifiers to Check

Information Flow Security

Marco Eilers(B) , Severin Meier, and Peter Müller

Department of Computer Science, ETH Zurich,
Zurich, Switzerland

{marco.eilers,peter.mueller}@inf.ethz.ch

Abstract. Most existing program verifiers check trace properties such
as functional correctness, but do not support the verification of hyper-
properties, in particular, information flow security. In principle, prod-
uct programs allow one to reduce the verification of hyperproperties to
trace properties and, thus, apply standard verifiers to check them; in
practice, product constructions are usually defined only for simple pro-
gramming languages without features like dynamic method binding or
concurrency and, consequently, cannot be directly applied to verify infor-
mation flow security in a full-fledged language. However, many existing
verifiers encode programs from source languages into simple intermediate
verification languages, which opens up the possibility of constructing a
product program on the intermediate language level, reusing the exist-
ing encoding and drastically reducing the effort required to develop new
verification tools for information flow security.

In this paper, we explore the potential of this approach along three
dimensions: (1) Soundness: We show that the combination of an encod-
ing and a product construction that are individually sound can still be
unsound, and identify a novel condition on the encoding that ensures
overall soundness. (2) Concurrency: We show how sequential product
programs on the intermediate language level can be used to verify infor-
mation flow security of concurrent source programs. (3) Performance:
We implement a product construction in Nagini, a Python verifier built
upon the Viper intermediate language, and evaluate it on a number of
challenging examples. We show that the resulting tool offers acceptable
performance, while matching or surpassing existing tools in its combina-
tion of language feature support and expressiveness.

1 Introduction

Since computer programs increasingly handle sensitive user data and commu-
nicate using encryption, it is vital that programs do not leak secret data such
as private keys to attackers, that is, that they are information flow secure. One
way of formalizing information flow security is noninterference, a so-called 2-
hyperproperty, i.e., a property of pairs of executions of the program.
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 718–741, 2021.
https://doi.org/10.1007/978-3-030-81685-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_34&domain=pdf
http://orcid.org/0000-0003-4891-6950
http://orcid.org/0000-0001-7001-2566
https://doi.org/10.1007/978-3-030-81685-8_34

Product Programs in the Wild 719

Noninterference can be checked by type systems [45] and static analyses [22].
However, complex language features (such as concurrency) and noninterference
properties (such as termination sensitivity) generally require the expressiveness
of deductive verification. In recent years, many automated and expressive verifi-
cation tools have been developed for a wide range of programming languages, but
most of these tools are limited to trace properties (properties of single program
traces) and cannot prove hyperproperties such as noninterference.

The problem we address in this paper is how to retrofit existing program
verifiers to check noninterference. Compared to building noninterference veri-
fiers from scratch, which can take years when targeting substantial subsets of
real-world programming languages, this approach would allow us to reuse most
aspects of existing verifiers, such as the semantic representation of language fea-
tures and proof search algorithms. Moreover, it naturally allows one to verify
combinations of correctness and noninterference properties.

In principle, existing program verifiers can be used to verify hyperproperties
by reducing them to trace properties via self-composition [6] or product pro-
grams [4,5]. However, self-composition does not allow modular verification [48],
and product programs have generally been defined only for simple languages
without features like dynamic method binding or concurrency [4,18]. Applying
product constructions to programs written in complex languages would therefore
require defining and implementing new and complex product constructions for
every new verifier.

We explore a more efficient approach here: We leverage the fact that most
automatic deductive verifiers are organized into a custom frontend, which
encodes a source program into an intermediate verification language (IVL),
and a reusable backend, which verifies the IVL program using generic proof
search engines. Boogie [3], Viper [35], and Why3 [21] are examples of such IVLs,
which power a large number of program verifiers; for instance Boogie is used by
Dafny [29], VCC [13], Spec# [30], and GPUVerify [8], Why3 [21] by Frama-C [14]
and Krakatoa [20], and Viper [35] by Vercors [10], Prusti [2], and Nagini [17].
The ubiquitiy of this architecture offers a chance to retrofit existing verifiers to
check noninterference by performing the product construction on the level of the
IVL (an approach that is already used by SymDiff [27] for the related problem
of program equivalence). The resulting architecture, which allows one to reuse
both the frontend and the backend of the existing verifier, is shown in Fig. 1.

Performing the product construction on the IVL-level has three major advan-
tages over a product construction on the source program: (1) It cleanly separates
the encoding of the source language (which tends to be complex for full-fledged
languages) from the product construction. (2) The product construction is much
simpler since IVLs are small, sequential languages. (3) The product construction
can be reused across all verifiers built on the same IVL. Overall, this architecture
therefore has the potential to make existing verifiers information flow aware with
substantially less effort than building a new tool from scratch.

Even though this approach has strong advantages, there are several open
questions that must be addressed to make it useful and widely applicable:

720 M. Eilers et al.

Fig. 1. Proposed architecture for information flow verifiers. The existing encoding from
source to IVL (frontend) as well as the proof search (backend) can be reused. The
product construction needs to support only the (relatively small) IVL and can be
reused across different verifiers.

1. Soundness: Given an IVL encoding and a product construction that are indi-
vidually sound, is the resulting combination always sound as well?

2. Concurrency: There is a substantial number of verifiers that verify concurrent
source programs by encoding them into (sequential) IVLs. Can we soundly
verify information flow security of concurrent programs based on the a prod-
uct program of the sequential IVL encoding?

3. Performance: Product constructions cause a performance penalty for verifica-
tion. Does this overhead prevent the construction of useful verification tools
in practice?

In this paper, we answer these three questions. We focus our investigation
on modular product programs [18], a kind of product program that allows mod-
ular verification and is well-suited for precise specification and verification of
information flow security. We make the following contributions:

– We show that the combination of sound IVL encodings and sound product
constructions can indeed be unsound in practically-relevant cases. We identify
a novel condition on IVL encodings that ensures the soundness of the overall
workflow. We show how to adjust existing unsound encodings on the example
of a commonly-used encoding for dynamically-bound method calls (Sect. 3).

– We show for the common case of data race free programs using locks that
it is possible to verify both possibilistic and probabilistic noninterference for
concurrent programs using sequential product programs. Furthermore, we
demonstrate that existing criteria for verifying information flow security are
insufficient in this setting; we provide alternative criteria that are sound and
show how to encode them in a product program (Sect. 4).

– We implement the approach for Nagini [17], an automated, modular verifi-
cation tool for a large subset of Python, built on top of the Viper IVL [35].
We evaluate the performance impact of the product construction and show
that, while worse than a custom-made information flow verifier, performance
is acceptable for real-world use (Sect. 5). Our implementation and evaluation
are available as an artifact [16].

Product Programs in the Wild 721

These results demonstrate that the proposed approach can indeed be used to
retrofit an existing verifier to soundly check information flow security, even for
concurrent programs. The resulting tool, made with only a fraction of the effort
required for the development of a new verifier, can compete with custom-made
tools in its expressiveness at an acceptable performance cost.

2 Preliminaries

In this section, we introduce the necessary background about noninterference
and product programs.

2.1 Noninterference

A common way of formalizing information flow security is noninterference [23].
Informally, noninterference specifies that the secret (or high) inputs of a pro-
gram do not influence the values of its public (or low) outputs. We will not
define a formal semantics here, but just assume that there is a steps-to relation
〈s, σ〉 → 〈s′, σ′〉 that relates program configurations consisting of a store σ and
a statement s.

We formalize noninterference as a property of pairs of program executions
(that is, a 2-hyperproperty [12]) as follows:

Definition 1. A program s with a set of input variables I and output variables
O, of which some subsets Il ⊆ I and Ol ⊆ O are low, satisfies noninterference
iff for all σ1, σ2 and σ′

1, σ
′
2, if ∀x ∈ Il. σ1(x) = σ2(x) and 〈s, σ1〉 →∗ 〈skip, σ′

1〉
and 〈s, σ2〉 →∗ 〈skip, σ′

2〉 then ∀x ∈ Ol.σ
′
1(x) = σ′

2(x).

Note that in this definition (and throughout this paper unless stated other-
wise), we do not consider non-terminating executions, i.e., we focus on verifying
termination-insensitive noninterference.

2.2 Modular Product Programs

Proving hyperproperties requires reasoning about multiple (here, two) execu-
tions of a program. However, hyperproperties can be reduced to properties of a
single execution by using self-composition [6] or product programs [4]. The idea
is to duplicate a program’s state space by creating two renamed copies of all
variables, one for each execution (we write x(i) for the ith renaming of variable
x, and lift this notation to expressions), and to transform each statement so that
it has the effect of the original statement on both copies of the state. Unlike self-
composition, which achieves this effect by simply duplicating every statement,
modular product programs [18] do not duplicate loops and method calls, and
instead encode differing control flow through activation variables, which repre-
sent, for each execution, whether or not it is active (i.e., it executes the code) at
the current point in the program. This approach results in a structural alignment

722 M. Eilers et al.

Fig. 2. A modular product program (on the right) of the program on the left.

of both program executions, which allows one to use method specifications and
loop invariants that relate both executions, as we discuss below. We denote the
product of statement s under activation variables p1 and p2 as �s�p̊.

Figure 2 shows an example program and the respective product program. For
both functions, the product program duplicates the parameters of the original
function and adds boolean activation variables p1 and p2. Control structures
like conditionals are encoded by creating a set of new activation variables (lines
4–7). For example, p1t represents whether the first execution is active in the then-
branch of the conditional, which is the case if it was active at the beginning of
the function and the if-condition is true for the first execution. Conversely, p2e
represents whether the second execution is active in the else-branch. Primitive
statements like assignments are then executed under the condition that their
execution is active at the current point in the execution (lines 8–11). Crucially,
the method call to bar is not duplicated; it is executed if at least one execution
is active at the call site, and the values of the current activation variables are
passed to the function, meaning that if an execution is inactive at the call site,
no state changes will be performed for that execution in the called method.

Because a single method call in the product represents the calls from both
executions, one can reason about method calls modularly in terms of relational
specifications, i.e., specifications that relate behavior of two executions of the
method, as opposed to unary specifications that describe only a single execution.
Relational specifications are encoded as ordinary specifications in the product
program that relate parameters from the two different executions.

As an example, assume that bar prints the value of its input z, which must
therefore be low. We can express this as a (relational) precondition low(z), which
can be encoded as the precondition p1 ∧ p2 ⇒ z1 = z2 in the product of bar.

Events the attacker can observe (such as I/O) must not happen depending on
a secret, to avoid leaking secret data. It is, thus, useful to express in specifications
that the control flow at the current program point is low, i.e., whether the current
statement is executed does not depend on secret data. This property is denoted in
specifications as lowEvent. We generally write
P �p̊ for the encoding of assertion
P under activation variables p1 and p2;
lowEvent�p̊ is then defined as p1 = p2.

Product Programs in the Wild 723

A unary (that is, non-relational) predicate Q, such as a standard method
pre- or postcondition, is encoded in the product program as applying to each
active execution, i.e.,
Q�p̊ is defined as p1 ⇒ Q(1) ∧ p2 ⇒ Q(2).

Compared to type systems and taint analyses, verification based on product
programs allows for much more precise reasoning. Assume for example that foo’s
parameter x is high. Nonetheless, we can show that the example does not leak
information, since the precondition of bar, low(z), will always be fulfilled (y > 0
is true independently of the value of x). In contrast, security type systems would
flag y as high, since it is assigned to under a high guard, leading to imprecision.

In addition to ordinary noninterference, modular product programs can also
be used to encode more advanced security properties, including termination-
sensitive noninterference, value-dependent sensitivity [36], and a form of declas-
sification [18].

3 Sound Products of IVL Encodings

In this section, we address the first question from the introduction, namely,
whether we can soundly combine an existing encoding into an IVL with a product
construction. We first describe the proposed architecture in greater detail. Then
we show a potential soundness issue and define a sufficient criterion on the IVL
encoding for the entire approach to be sound. Finally, we discuss an example of
a common encoding pattern that violates the criterion, show that it is indeed
unsound, and propose an alternative sound encoding.

3.1 Proposed Architecture

The architecture proposed in the introduction (Fig. 1) enables the construction of
information flow aware verifiers with relatively little effort, by reusing most of the
frontend encoding of the source language to an IVL as well as the entire backend
proof search. The only major change that is necessary is that the frontend and
potentially the IVL have to be extended to allow for the use of information flow
assertions in specifications. Crucially, the frontend does not have to know their
meaning; it can treat relational source-level assertions like low(e) like ordinary
unary predicates and simply translate them to their counterparts on the IVL
level. IVL-level relational assertions will then be translated to ordinary assertions
during the product transformation.

In the remainder of this paper, we will generally assume that the existing
IVL encoding is used unchanged, and point out when changes need to be made.

3.2 Soundness Issue

Surprisingly, combining a sound encoding from source language to IVL with
a sound IVL-level product construction may result in a verification technique
that is unsound in the presence of relational specifications. Consider the source
program in Fig. 3 (left), where P is some predicate.

724 M. Eilers et al.

Fig. 3. Example of an encoding that is unsound in our setting. The program on the left
can be encoded into a conditional statement (identical to the source program, modulo
language syntax) or to the program on the right; the latter leads to unsoundness if P
is a relational predicate.

A frontend could encode the body of foo into an identical (modulo syntax)
conditional statement on the IVL level (assuming the IVL provides conditionals,
assignments, and assert statements). Alternatively, it could produce the encoding
shown in Fig. 3 (right), which directly asserts a sufficient precondition of the
source program. If P is a unary predicate, both encodings are sound: If they
verify, the original program is correct. However, if P(y) is a relational predicate,
for instance, low(y), then the encoding on the right is unsound : low(5) and low(7)
are trivially true (since 5 = 5 and 7 = 7), so the assertion in the encoded program
trivially passes, yet the original program is clearly incorrect: If x is greater than
7 in one execution but less in the other, y will have different values in both
executions, and will therefore not be low.

The underlying reason is that the encoding on the right does not encode
the exact behavior of the source program; it encodes a verification condition
computed by the frontend that is sound if assertions are unary, but may not be
sound for relational assertions.

We will now (1) formalize this intuition and derive a sufficient condition for
the soundness of an encoding in this approach, and (2) show an example of this
problem occurring in real frontends, and describe how it can be solved.

3.3 Soundness Criterion

We write Σ and S for states and statements of the source language, and σ and s
for states and statements of the IVL. States may contain, for example, a mutable
heap and a variable store. For simplicity, we assume that both source and IVL
statements contain a statement skip that represents a finished computation. We
also assume that there is a small-step transition relation → for both languages,
and that the standard notion of Hoare triple validity � {P}s{Q} is defined for
the IVL. We let P and Q range over (source and IVL level) assertions from a
standard assertion language extended with low(e) and lowEvent, and assume a
standard definition of assertion validity for pairs of states.

We define an encoding to be a triple 〈α,∼=, β〉, where α : S → s is an encoding
from source statements to statements of the target language (i.e., the IVL), β
similarly encodes assertions to the target language, and ∼= relates source language
states to corresponding target language states.

Product Programs in the Wild 725

We first define the desired relational soundness property, which expresses
that if an encoded Hoare triple holds for the encoded program, then the original
property holds for all pairs of executions of the source program:

Definition 2. 〈α,∼=, β〉 is relationally sound iff, for all S,Σ1, Σ2, Σ
′
1, Σ

′
2, P,Q,

if � {
β(P)�p̊}�α(S)�p̊{
β(Q)�p̊} and Σ1, Σ2 � P and 〈S,Σ1〉 →∗ 〈skip, Σ′
1〉

and 〈S,Σ2〉 →∗ 〈skip, Σ′
2〉, then Σ′

1, Σ
′
2 � Q.

Product programs represent the operational behavior of two program execu-
tions by the operational behavior of a single product program execution. The
unsoundness shown before is caused by the fact that the encoding into the IVL
does not reflect the operational behavior of the conditional statement (replacing
it by an assertion of a sufficient precondition) and, thus, the resulting product
does not soundly reflect two executions of the source program.

We call an encoding that preserves the operational behavior of the source
program operational : It encodes every step of the source program into some
number of steps of the target program so that c initial states result in matching
end states. Similarly, it encodes specifications from the source level into target-
level specifications that hold in matching states. We can formalize this intuition
by requiring that the source and target programs are connected by the simulation
relation ∼=:

Definition 3. 〈α,∼=, β〉 is an operational encoding if: (1) for all Σ,Σ′, σ, S, S′,
if 〈S,Σ〉 → 〈S′, Σ′〉 and Σ ∼= σ, then 〈α(S), σ〉 →∗ 〈α(S′), σ′〉 for some σ′ s.t.
Σ′ ∼= σ′, and (2) if Σ ∼= σ then Σ � P iff σ � β(P).

Note that this notion allows the encoding to overapproximate the behaviors
of the source program, i.e., admit steps that are not possible on the source level,
but not vice versa.

For the example in Fig. 3, it is easy to see that this criterion is fulfilled by
the left encoding: the source and IVL programs are identical (modulo syntax),
matching states are identical states (modulo state encodings), and the behav-
ior of both programs is identical. The encoding on the right, however, is not
operational: While the left program modifies the state, the right program never
performs any state modification.

We now show that operationality is sufficient for relational soundness:

Theorem 1. If 〈α,∼=, β〉 is operational then it is relationally sound.

Note that operationality is a sufficient but not necessary condition; encodings of
verification conditions may be sound for relational verification as well. The main
advantage of applying the operationality criterion instead of directly reasoning
about relational soundness is that, since operationality represents the simple
notion that the IVL program performs equivalent steps and equivalent state
changes to the source program, it is intuitive and easy to check whether a given
encoding is operational. Additionally, some encodings (like the one Vercors uses
for parallel blocks) are not operational, but can be seen as simplified versions of
a possible operational encoding that generate the same proof obligations; these
can also be quickly identified as relationally sound.

726 M. Eilers et al.

3.4 Practical Relevance

In most existing frontends, the encoding of virtually all source language con-
structs is operational; the main appeal of IVLs is, after all, that frontends do
not have to compute verification conditions, but can instead “compile” input pro-
grams into an IVL without worrying about the verification process itself. How-
ever, many frontends still use non-operational encodings at least for some lan-
guage constructs. Examples for this are VCC’s encoding of local blocks, Dafny’s
encoding of calls on traits, Prusti’s encoding for loops, and Nagini’s encoding of
dynamically-bound calls, which we will discuss in detail in the next subsection.
Additionally, as we will discuss in Sect. 4, all encodings of concurrent source
languages into sequential IVLs necessarily have some non-operational elements.

Where non-operational encodings are used, this is often intentional to enable
modular verification, since operational encodings for some language constructs
are inherently non-modular (see the example in the next subsection). In prac-
tice, one can therefore use the operationality criterion to quickly check that the
existing encoding is sound for the vast majority of source language statements,
and subsequently check the few remaining ones for relational soundness in detail.

3.5 Example: Dynamically-Bound Calls

In this section, we show a real example of an unsound encoding of dynamically-
bound calls that violates the operationality criterion, and show how to derive a
sound alternative.

Statically-bound method calls, i.e., calls whose exact target is fixed at com-
pile time, can be encoded as procedure calls on the IVL level, which yields an
operational encoding if the operational semantics of the IVL treats calls analo-
gously to the source semantics. The IVL verifier might later reason about calls in
terms of pre- and postconditions instead of actually performing a call, but this
transformation is not relevant here as long as the product program is constructed
before such a desugaring step.

However, the same approach does not work for dynamically-bound calls,
i.e., calls whose target is chosen at runtime based on the type of the call’s
receiver. Since the implementation to be executed is generally not known during
modular verification, it is not possible to encode dynamically-bound calls as
procedure calls with the usual operational semantics (and existing IVLs do not
offer dynamically-bound calls). Therefore, dynamically-bound calls are typically
(e.g., in Dafny and Nagini) directly encoded using the method specification.
Additional, separate proof obligations enforce that all overrides of a method
respect behavioral subtyping [33], i.e., live up to the specification of the overridden
method.

Consider method A.foo in Fig. 4 (left), which returns a constant integer and
guarantees in its postcondition that the result is low. A dynamically-bound call
a.foo(), where a has the static type A, will be encoded as an assertion of the
(here, trivial) precondition of A.foo, followed by an assumption of the postcon-
dition (we ignore side effects here for simplicity).

Product Programs in the Wild 727

Fig. 4. Example of a problematic method override. B.foo overrides A.foo and has a
compatible specification, but the implementations return different values.

This encoding is sound if foo has a purely unary specification, without any
relational parts. However, it does not fulfill our operationality criterion: The
semantics of the source program performs a call to an implementation of foo
(selected based on the dynamic type of a), whereas the IVL encoding directly
encodes the proof obligations (similarly to the example from Fig. 3).

Since the encoding is not operational, we have to check whether it is still
relationally sound. Method B.foo in Fig. 4 (right), which overrides A.foo, shows
that it is not. B.foo’s contract is identical with that of A.foo, so behavioral
subtyping holds trivially. B.foo’s implementation satisfies the contract because
it also returns a constant (but, importantly, a different one). Now, if a client
calls a.foo() and, depending on a secret, the dynamic type of a is either A or B,
then, depending on the secret, the result will be either 0 or 1. With the standard
encoding of dynamically-bound calls outlined above, however, the client will
assume the postcondition of A.foo and will therefore incorrectly conclude that
the returned result is low.

To avoid this unsoundness while retaining the ability to use relational specifi-
cations1, the problematic encoding must be replaced, either with an operational
one, or with a different non-operational encoding that is sound for relational spec-
ifications. The former option is not applicable here: An operational encoding for
dynamically-bound calls would essentially have to case split on the dynamic type
of the receiver and invoke the appropriate override. Since such an encoding is
inherently non-modular (all possible overrides need to be known), we follow the
alternative option: we give an example of a non-operational, but sound encoding.

For our new encoding we exploit the fact that the standard encoding is
unsound only if the two executions of the program resolve the dynamically-
bound call to two different implementations, that is, if the dynamic types of the
receiver differ in the two executions. We reflect this observation by adjusting
the encoding of pre- and postconditions as follows: (1) If the postcondition of
a method guarantees that an expression is low, we assume this at the call site
only if the dynamic type of the receiver is also low, that is, the calls in the two
program executions are resolved to the same implementation. (2) Similarly, if a
precondition requires that the call is a low event, we enforce that the receiver
type is low in addition to the usual criterion for low events. Low events typically
perform observable behavior such as I/O; it is therefore important that the same
observable behavior is produced, independent of the receiver type. The meaning
of low-assertions in preconditions remains unchanged, because the requirement of

1 One could, of course, forbid the use of relational specifications in some places to
trivially avoid the unsoundness; this, however, is typically not useful in practice.

728 M. Eilers et al.

a method to receive low arguments is independent of the invoked implementation
and must, thus, not be weakened. lowEvent-assertions are generally not allowed
in postconditions, where they add no expressiveness.

We encode this adjustment as follows:

low(e)�p̊
postr

= (p(1) = p(2) ∧ type(r(1)) = type(r(2))) ⇒ e(1) = e(2)

lowEvent�p̊
prer

= p(1) = p(2) ∧ type(r(1)) = type(r(2))

where type(e) represents the dynamic type of expression e,
P �p̊
postr

is the encod-
ing of P in the postcondition of a call with receiver r, and
P �p̊

prer
represents the

same for the precondition. We leave the remaining encoding untouched, meaning
that we can summarize the resulting encoding as follows:

1. We keep the existing check for behavioral subtyping for all overrides; this
prevents, for example, that A.foo is overridden with a method that simply
returns a secret value and therefore leaks information into the result.

2. We keep the existing encoding of dynamically-bound calls as an assert fol-
lowed by an assume, but interpret low(e) in preconditions and lowEvent in
postconditions as shown above.

In the example above, this encoding lets the caller assume that the result is
low only if it can prove that the dynamic type of a is low.

The adjusted encoding is indeed sound:

Theorem 2. Let Sc be of the form x:=r.m(), where r has static type A, and
let preA.m and postA.m be the pre- and postcondition of A.m. Assume that the
implementation of A.m and its overrides fulfill their specifications and satisfy
behavioral subtyping. Then the described encoding of Sc is relationally sound.

Note that this encoding is incomplete, since it is not aware that two different
receiver types can lead to the same implementation being called (e.g., if one
type inherits from the second and does not override the called method). Alter-
native encodings could explicitly represent this possibility. Conversely, one could
approximate further (while remaining sound) by requiring the receiver values to
be low, not just their types, in encodings that do not model dynamic types.

4 Product Programs and Concurrency

Automated verification of information flow security for concurrent programs is
challenging because one needs to reason about a pair of executions that may have
different thread interleavings. In fact, we are aware of only one tool that currently
allows this, SecC, which automates SecCSL, a concurrent separation logic for
information flow security proofs [19]. A product construction applied directly
to concurrent programs would have to faithfully represent all combinations of
potential thread interleavings, which makes verification infeasible. Consequently,
to the best of our knowledge, no such product construction exists.

Product Programs in the Wild 729

For trace properties, many existing verifiers avoid reasoning about all possible
thread interleaving by employing a program logic (such as concurrent separation
logic [38]) that essentially reduces verification to sequential reasoning and allows
concurrent verification problems to be encoded into sequential IVLs. Examples
for such verifiers include Vercors and Nagini (using the Viper IVL), as well as
Chalice [32], VCC, and Spec# (using the Boogie IVL).

In this section, we show how to use IVL-level product programs to extend
such verifiers to handle information flow. We first describe how existing IVL
encodings for concurrent languages work, and subsequently show how we can
use similar principles to apply an IVL-based product construction, and which
additional proof obligations we must fulfill to ensure that no flows exist as a
result of concurrency. We will do this for two different notions of information
flow security for concurrent programs, possibilistic and probabilistic noninterfer-
ence; however, the principles behind the approach may also extend to alternative
notions of information flow security such as observational determinism [49].

Our goal is to describe a technique that applies to a wide range of source
languages, IVLs, proof techniques, and encodings. Therefore, we focus on the
high-level concepts, instead of formalizing them for one specific setting.

4.1 Concurrent IVL Encodings

Since all IVLs we are aware of are sequential languages, encodings from con-
current source languages to IVLs do not model the exact behavior of the origi-
nal language, in particular, the aforementioned thread interleavings (i.e., these
encodings are non-operational). Instead, they encode a verification condition
that ensures that the original program is correct for every possible thread inter-
leaving.

While the exact proof techniques differ between frontends, and can be based
for example on Concurrent Separation Logic (CSL) [38] or ownership [13,24,26],
they generally follow a common pattern [31]: They prove that the source pro-
gram is data race free, which ensures that thread interactions need to be con-
sidered only at well-defined synchronization points, for instance, upon acquiring
or releasing a lock. The code between such interaction points can be considered
to execute without interference from other threads, and thus can be reasoned
about as if it were sequential.

We focus on locks here, but other synchronization primitives are handled
analogously. Program logics based on CSL or ownership systems formally connect
a lock and the heap locations it protects, such that these locations may be
accessed only while holding the respective lock. In addition, they associate locks
with an invariant that constrains the values of the heap locations it protects.
When acquiring a lock, a thread may assume that this lock invariant holds,
and when releasing a lock, it has to prove that the invariant is reestablished. A
frontend can encode this into an IVL as depicted in Fig. 5.

Our solution for information flow verification in concurrent programs follows
the same basic approach: We exploit that code between lock operations can
be considered to execute without interference, and that we can therefore use

730 M. Eilers et al.

Fig. 5. Standard IVL encoding of lock operations. Inv(l) denotes the invariant con-
straining the memory protected by lock l .

ordinary sequential product programs to reason about this code. To capture
the thread interactions at synchronization points, we extend lock invariants to
contain relational assertions (which can prescribe that some values protected by
the lock are low), and add additional checks around lock operations to ensure
that they do not give rise to unwanted information flow.

4.2 Possibilistic Noninterference

For concurrent programs, standard noninterference is too strict a prop-
erty because concurrent programs are usually non-deterministic. One way of
approaching this problem is to instead verify possibilistic noninterference, which
enforces that high information does not influence the possible values of low out-
puts, i.e., if some combination of low output values is reachable from an initial
state, then the same combination of low output values must still be reachable
using some possible thread schedule after arbitrarily changing the high inputs.
Possibilistic noninterference can be defined as follows:

Definition 4. A program s with a set of input variables I and output variables
O, of which some subsets Il ⊆ I and Ol ⊆ O are low, satisfies possibilistic
noninterference iff for all σ1, σ2 and σ′

1, if ∀x ∈ Il. σ1(x) = σ2(x) and 〈s, σ1〉 →∗

〈skip, σ′
1〉 then 〈s, σ2〉 →∗ 〈skip, σ′

2〉 for some σ′
2 s.t. ∀x ∈ Ol.σ

′
1(x) = σ′

2(x).

Note that this property allows high inputs to influence the probability of
different outputs and may therefore not be desirable in all scenarios; we discuss
a stronger notion of noninterference in the next subsection.

Since we build on a proof technique that ensures data race freedom, we can
see each program trace as a sequence of local operations and lock operations by
specific threads, where (1) every local operation depends only on previous (local
or lock) operations of the same thread, and (2) every lock operation depends
only on the previous local operations of the same thread and all previous lock
operations (of arbitrary threads). As a result, we can (akin to partial order
reduction) rearrange segments freely as long as we retain the overall order of lock
operations and the order of operations of every specific thread; in particular, we
can rearrange a trace so that it consists of a number of segments, such that in
each segment, one thread executes any number of local operations and then one
lock operation.

Product Programs in the Wild 731

Fig. 6. Statement encoding for possibilistic information flow security. For loops, we
check that the loop guard is low, ensuring that termination is also low.

Based on this observation, we impose proof obligations that ensure the fol-
lowing property: For every program trace with some schedule and some low and
high inputs, and for arbitrary different high inputs, there exists a second trace
such that: (1) Both traces include the same lock operations performed by the
same threads, in the same order, and (2) at each lock operation, the lock’s invari-
ant holds; in particular, the relational assertions of the lock invariant correctly
relate the state protected by the lock in both traces.

To enforce this property, we devise four proof obligations that can be checked
thread-locally:

1. Every lock operation o is a low event, i.e., if a thread executes o in the first
execution, it will also execute o in the second execution.

2. Termination of the local code before the lock operation does not depend on
secret data; i.e., if lock operation o is reached in the first trace, it will also be
reached in the second trace.

3. o operates on the same lock in both executions, i.e., the lock is low.
4. If o releases the lock, i.e., makes a new lock state public, this lock state fulfills

the relational invariant, meaning that heap operations meant to be low are
indentical in both executions after the lock operation.

Note that, even though the lock operations of both traces are closely aligned,
their local operations may differ. For instance, a thread may branch on a high
guard as long as no lock operation is performed before the control flow re-joins.

The above checks are sufficient to satisfy Definition 4. The proof goes by
induction on the number of segments of the traces and leverages the soundness
of sequential verification within each segment.

Encoding. The aforementioned checks can simply be checked as part of the
encoding of lock operations. We adjust the encoding from Fig. 5 for possibilistic
noninterference as shown in Fig. 6. For thread acquire and release, the assertions
of lowEvent and low(l) directly ensure properties (1) and (3). Assuming and
asserting the lock invariant works as in the standard IVL encoding for concurrent
programs, but now this invariant can be relational, ensuring property (4). The
condition on while loops is used to ensure property (2), which can be done simply

732 M. Eilers et al.

Fig. 7. Possibilistic information flow violation via a secret-dependent lock release. The
Cell state 4 is visible to other threads only if secret is True.

by asserting that the loop condition is low for every loop in the program (we
assume, for simplicity, that there is no infinite recursion).

Discussion. With our verification technique, the product construction on the
IVL level does not need to be aware of concurrency in any way; applying the
standard sequential product construction to the updated encoding is sufficient
to ensure possibilistic noninterference in concurrent programs.

To the best of our knowledge, we are the first to consider possibilistic infor-
mation flow in a setting with locks, and therefore the first to propose that the
order of lock operations must be constrained. The example in Fig. 7 demonstrates
that this requirement is indeed necessary to prevent unwanted information flow:
The CellLock protects the val field of a Cell object, which is intended to be low.
The code unconditionally sets the field to two constants (first to 4, then to 5),
which should be allowed since the constants are low. However, whether the lock
is released while the cell has value 4 depends on a secret. As a result, when a
different thread acquires the lock and sees that the value is 4, this leaks that the
secret must have been true.

Another example that illustrates the requirement to ensure that high data
does not influence which lock a lock operation accesses can be found in Fig. 8.
Here, two locks are created, and thread 1 acquires the first one. Thread 2
acquires, depending on the secret, either the same lock or a different one. This
influences the possible results of the program: If both threads acquire the same
lock, then the print statements of one thread cannot be interleaved with those
of the other, otherwise they can. As a result, if the attacker observes the pattern
1212 (or any other interleaving of 1s and 2s), they know with certainty that the
two threads acquired different locks and secret must therefore be False.

The necessity to prevent termination differences in a concurrent setting has
been recognized before in work on security type systems [45].

Product Programs in the Wild 733

Fig. 8. Possibilistic information flow violation through locks. If secret is true, both
threads acquire the same lock, and their critical sections cannot be interleaved.

Fig. 9. Example of probabilistic information flow. With a non-deterministic scheduler,
secret does not influence the set of possible outputs, but a greater secret leads to
higher probability of seeing a final cell value of 2.

4.3 Probabilistic Noninterference

Possibilistic noninterference is too imprecise for many applications. Figure 9 illus-
trates the problem: The final value of c. val can be either 1 or 2, that is, possi-
bilistic noninterference holds. However, with most schedulers, a final value of 2
is much more likely for greater secret values than for lower values because the
assignment of 1 is more likely to happen before the assignment of 2.

A stronger notion of noninterference that forbids such leaks is probabilistic
noninterference, which requires that two executions from low-equivalent initial
states will produce the same low outputs with the same probabilities.

Definition 5. A program s with a set of input variables I and output variables
O, of which some subsets Il ⊆ I and Ol ⊆ O are low, satisfies probabilistic
noninterference iff for all σ1, σ2 and σ′

1, if ∀x ∈ Il. σ1(x) = σ2(x) and 〈s, σ1〉 →∗

〈skip, σ′
1〉 with probability p then 〈s, σ2〉 →∗ 〈skip, σ′

2〉 with probability p for
some σ′

2 s.t. ∀x ∈ Ol.σ
′
1(x) = σ′

2(x).

The information flow in Fig. 9 is caused by secret data influencing the tim-
ing of thread 2, which in turn may affect the relative order of modifications of
shared variables. To prevent secrets from influencing the timing of operations, we
additionally assert that every branch condition in the program is low, meaning
that the two executions will always follow the same code path, which leads to
the adjusted encoding in Fig. 10. Note that the check that branch conditions are
low must also be performed for any implicit branches; e.g., with the encoding of

734 M. Eilers et al.

Fig. 10. Statement encoding for probabilistic information flow security.

dynamically-bound calls shown before, we must now assert that the type of the
receiver of every such call is low. Also note that since we enforce that branches
are low, the lowEvent conditions we showed in the possibilistic encoding will
be trivially fulfilled and can be omitted here. However, we still need to assert
that acquired and released lock references are low. This last requirement has not
been discussed in previous work (whereas forbidding high branches is standard
practice in type systems and program logics [36]).

With this adjusted encoding, probabilistic noninterference can be verified
using simple assertions in the IVL encoding and subsequently performing a stan-
dard product construction on the IVL level. So, in summary, this approach lets
us extend existing verifiers for concurrent programs to verify both possibilistic
and probabilistic noninterference with very small changes in the frontend, and
without requiring any changes on the level of the IVL (except the ability to write
relational specifications) and the product construction.

5 Implementation and Evaluation

In this section, we evaluate the performance of the proposed architecture, by
extending the previously information flow unaware Nagini verifier for Python [17]
according to our design. We will first briefly describe Nagini and the adaptations
we needed to make, then evaluate the performance overhead generated by the
product transformation, and subsequently evaluate the implementation on a
number of information flow examples, comparing it to SecC [19] in the process.

5.1 Nagini

Nagini is an automated verifier for statically-typed Python 3 programs. It sup-
ports a large subset of the Python language, comprising features like exception
handling, polymorphism, dynamic field creation, and concurrency. Reasoning
about some of these features is quite intricate even without the overhead of a
product construction, so we believe that Nagini is a good target to evaluate the
performance of the proposed architecture for verifiers for complex languages.

Product Programs in the Wild 735

Nagini encodes Python programs and their specifications into the Viper IVL
[35], and then uses Viper’s backend verifiers to automatically verify those pro-
grams using the Z3 SMT solver [34]. For concurrent programs, Nagini uses
an encoding similar to the one described in Sect. 4, using implicit dynamic
frames [44] (a flavor of separation logic [38,40]) to prove data race freedom; as a
result, we could modify its existing encoding as shown in Sect. 4 to prove both
possibilistic and probabilistic noninterference for concurrent programs. Nagini’s
existing encoding from Python to Viper is almost entirely operational, we only
adapted the encoding of dynamically-bound calls as shown in Sect. 3.5.

We extended Nagini’s existing specification language to include information
flow specifications and implemented the modular product program transforma-
tion for 2-hyperproperties for the existing Viper AST (enriched, again, with new
AST nodes for information flow specifications). For convenience, we also slightly
extended the Viper-based product transformation to directly transform state-
ments that Nagini previously encoded using gotos, such as break and continue
statements. The Viper extension for product programs2 and the extended version
of Nagini3 are open source and available online.

5.2 Performance Overhead of the Product Construction

Our first goal is to evaluate the performance overhead generated by the product
construction. We compared the verification times of Nagini’s entire functional
test suite with and without the product transformation enabled. The test cases
range from small programs targeting specific language or specification constructs,
to realistic code examples taken from programming tutorials. We ran each test
five times on a warmed up JVM with the information flow extension enabled and
disabled, without adding any information flow specifications. Our test system
was a 12 core AMD Ryzen 3900X with 32 GB of RAM running Ubuntu 20.04.1.

All tests report the same results with and without the product transforma-
tion, meaning that completeness is not impacted by the extension, and that we can
indeed still reason about the entire language subset supported by Nagini. With-
out the product transformation, each test case takes between 3 and 9 s, with the
majority taking between 3 and 5. For most cases, enabling the product construc-
tion leads to an increase in verification time that is clearly acceptable (less than
11% for half the tests, less than 30% for three quarters, and less than 100% for 90%
of the tests). For five test cases, the slowdown is a factor between 5 and 12, and a
single outlier (a quicksort implementation) has a slowdown factor of 17.5 and a
resulting verification time of two minutes. We believe that the main reason for the
large slowdown for these particular test cases is the use of quantifiers in their spec-
ifications (e.g., to specify properties of all elements in a list). Quantifier handling is
difficult for automated verification in general, because unbounded chains of quan-
tifier instantiations can occur during the proof search [15], and this problem seems
to be exacerbated when using the product encoding.

2 https://github.com/viperproject/silver-sif-extension.
3 https://github.com/marcoeilers/nagini.

https://github.com/viperproject/silver-sif-extension
https://github.com/marcoeilers/nagini

736 M. Eilers et al.

Table 1. Programs evaluated for proving information flow security. We show the total
lines of code (LOC) including implementation and specification but excluding whites-
pace, lines of specification and proof annotation (Ann.), the property we proved (Prop.,
where NI = noninterference, TNI = termination sensitive noninterference, PS = pos-
sibilistic noninterference) and the verification time in seconds (T), averaged over five
runs.

LOC Ann. Prop. T

banerjee 77 21 NI 5.19

constanzo 21 12 NI 5.39

darvas 38 18 NI 4.20

example 27 12 NI 5.39

Example-decl 27 12 NI 5.76

Example-term 8 4 TNI 3.59

joana-1-tl 22 7 NI 3.87

joana-2-bl 13 5 NI 3.64

joana-2-t 12 4 NI 3.72

joana-3-bl 36 15 TNI 3.55

joana-3-br 33 14 TNI 4.60

joana-3-tl 23 9 TNI 4.50

joana-3-tr 25 10 TNI 4.19

joana-13-l 11 2 NI 4.54

LOC Ann. Prop. T

kusters 28 12 NI 4.35

naumann 27 17 NI 8.46

product 39 18 NI 11.35

smith 39 21 NI 6.81

terauchi1 10 3 NI 3.59

terauchi3 19 6 NI 3.69

terauchi4 18 8 NI 3.97

Fig. 4 19 6 NI 3.82

loop leak [45] 53 17 PS 4.92

high loop 24 11 PS 4.19

Fig. 7 23 8 PS 4.37

Fig. 8 36 15 PS 4.40

Fig. 9 34 15 PS 4.57

We conclude that the performance impact of the product transformation is
acceptable for most examples, but can be significant for programs with complex
functional specifications.

5.3 Expressiveness and Comparison with SecC

In a second step, we evaluated the expressiveness and performance of our imple-
mentation on a number of challenging examples from the literature. In partic-
ular, we use the examples from the original paper about modular product pro-
grams [18] (sequential examples collected from various previous papers, trans-
lated to Python) and from this paper, both shown in Table 1, as well as examples
taken from SecC [19], the only other automated verification tool for concurrent
programs we are aware of, shown in Table 2. The latter table includes the CDDC
case study [36], which models an embedded device that interacts simultaneously
with multiple users and classified networks. Our examples represent the state
of the art in automated information flow verification, requiring semantic rea-
soning that would not be possible in a type system, and using complex infor-
mation flow specifications including declassification, termination-sensitive non-
interference, and value-dependent sensitivity [36]. As mentioned before, these
features can be easily encoded into modular product programs using existing
techniques [18].

Nagini was able to verify all examples, which demonstrates that our approach
can handle concurrent implementations and express complex noninterference
properties. For the examples from Table 1, Nagini takes only between 3 and 12 s
each. As for the tests from SecC, Nagini takes around five seconds for three

Product Programs in the Wild 737

Table 2. Comparison with SecC. We show the total lines of code and lines of speci-
fication for Nagini (LOCN , AnnN) and SecC (LOCS , AnnS), the property we proved
(Prop., where NI = noninterference, PR = probabilistic noninterference) and the veri-
fication time in seconds in both tools (TN and TS) and in Nagini without the product
construction (TNP), averaged over five runs.

LOCN AnnN LOCS AnnS Prop. TS TN TNP

SecC CAV 40 13 50 11 PR 1.33 4.21 3.56

SecC CDDC 278 105 214 47 PR 21.20 52.20 8.60

SecC CT 64 35 211 159 PR 1.87 5.41 3.97

SecC DB 100 48 256 167 NI 2.75 182.60 6.23

SecC Encrypt 29 12 49 18 NI 1.45 4.76 3.66

of them, 52 s for the CDDC case study, and 183 s for an example involving a
large number of quantifiers. We believe that 52 s for a complex case study is
still acceptable, whereas the slowest example demonstrates that extensive use of
quantifiers will lead to problematic performance in practice.

Table 2 shows that SecC is much faster than our implementation. How-
ever, SecC was designed and implemented for information flow verification from
scratch, without being able to reuse code from an existing verifier, whereas
our extended Nagini implementation could be implemented with minimal effort.
Besides this crucial difference, Nagini and SecC differ in many other ways, e.g., in
their supported language features, automation (see the table for required anno-
tations), and specification styles. As a result, direct performance comparisons
between the two are difficult; in fact, the unmodified version of Nagini without
the product construction already takes more time than SecC on four out of five
examples, likely as a result of the overhead required for modeling more complex
language features.

6 Related Work

There are various existing type systems (e.g., [37,45]) and static analyses
(e.g., [11,22]) for proving information flow security. Compared to verification
based on product programs, these are more automated, but less precise. More-
over, there are dedicated program logics for information flow verification, such
as SecCSL [19], Covern [36], and Veronica [42], all of which allow proving prob-
abilistic noninterference for concurrent programs based on different reasoning
techniques. The implementation of the former in SecC is the only existing tool
that automates information flow verification for concurrent programs, see Sect. 5.

Relational logics, such as Relational Hoare Logic [7] and Cartesian Hoare
Logic [46], allow proving general relational program properties, which includes
noninterference. However, while they tackle a more general problem, they gen-
erally work only for sequential programs. Some tools automate information flow
verification using self-composition, e.g., for C [9] and for Java [41]. Compared to

738 M. Eilers et al.

modular product programs, this approach generally does not allow for modular
proofs of information flow security [18,48].

Modular product programs were presented by Eilers et al. [18]. Other forms of
product programs differ in the way executions are interleaved. While some keep
executions in lock step [4], like modular product programs, others do not describe
a deterministic product construction and allow for arbitrary interleavings [5]. In
particular, Shemer et al. [43] propose property-directed self-composition, which
dynamically determines how to compose and interleave different executions
based on the property to be verified. Similarly, Strichman and Veitsman [47]
propose a product-like construction that interleaves recursive functions whose
executions are not in lock step. Recently, Pick et al. [39] showed how to auto-
matically infer information flow specifications on modular product programs,
which can likely be combined with the approach examined in this paper.

To the best of our knowledge, SymDiff [27] for the Boogie IVL is the only
existing tool that constructs product programs on an IVL-level. SymDiff is a
tool for differential program verification, which requires reasoning about pairs of
executions of two different (but related) programs and is thus similar to hyper-
property verification; in fact, SymDiff has also been used to verify noninterfer-
ence in the past [1]. The authors of SymDiff have proposed different techniques
for modularly proving mutual function summaries, similar to relational specifi-
cations, one of which uses a kind of product construction [25,28]. However, they
do not examine potential soundness problems arising from this approach, nor do
they discuss if it can be applied to concurrent source programs.

7 Conclusion

We presented an approach for retrofitting existing IVL-based program verifiers
to check information flow security using product programs. This approach allows
reusing existing frontends to reduce the required implementation effort. We have
shown when this technique is sound, that it can incorporate concurrency, and
that it can be implemented in an existing verifier with acceptable performance.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: USENIX Security Symposium, pp. 53–70.
USENIX Association (2016)

2. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA),
147:1–147:30 (2019)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

https://doi.org/10.1007/11804192_17

Product Programs in the Wild 739

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

5. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35722-0 3

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

7. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL, pp. 14–25. ACM (2004)

8. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPUVerify: a
verifier for GPU kernels. In: OOPSLA, pp. 113–132. ACM (2012)

9. Blatter, L., Kosmatov, N., Le Gall, P., Prevosto, V., Petiot, G.: Static and dynamic
verification of relational properties on self-composed C code. In: Dubois, C., Wolff,
B. (eds.) TAP 2018. LNCS, vol. 10889, pp. 44–62. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92994-1 3

10. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 9

11. Chen, Z., Chen, L., Xu, B.: Hybrid information flow analysis for Python bytecode.
In: IEEE WISA, pp. 95–100. IEEE Computer Society (2014)

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

13. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invari-
ants in concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 480–494. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 42

14. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

15. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

16. Eilers, M., Meier, S., Müller, P.: Product Programs in the Wild: Retrofitting Pro-
gram Verifiers to Check Information Flow Security (Artifact) (2021). https://doi.
org/10.5281/zenodo.4724854

17. Eilers, M., Müller, P.: Nagini: a static verifier for Python. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 596–603. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 33

18. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 502–529. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 18

19. Ernst, G., Murray, T.: SecCSL: security concurrent separation logic. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 208–230. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 13

20. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73368-3 21

https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-319-92994-1_3
https://doi.org/10.1007/978-3-319-92994-1_3
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.5281/zenodo.4724854
https://doi.org/10.5281/zenodo.4724854
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21

740 M. Eilers et al.

21. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

22. Giffhorn, D., Snelting, G.: A new algorithm for low-deterministic security. Int. J.
Inf. Secur. 14(3), 263–287 (2014). https://doi.org/10.1007/s10207-014-0257-6

23. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20. IEEE Computer Society (1982)

24. Goubault, É., Ledent, J., Mimram, S.: Concurrent specifications beyond lineariz-
ability. In: OPODIS. LIPIcs, vol. 125, pp. 28:1–28:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018)

25. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38574-2 20

26. Jacobs, B., Piessens, F., Leino, K.R.M., Schulte, W.: Safe concurrency for aggregate
objects with invariants. In: SEFM, pp. 137–147. IEEE Computer Society (2005)

27. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 54

28. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: ESEC/SIGSOFT FSE, pp. 345–355. ACM (2013)

29. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

30. Leino, K.R.M., Müller, P.: Using the Spec# language, methodology, and tools
to write bug-free programs. In: Müller, P. (ed.) LASER 2007-2008. LNCS, vol.
6029, pp. 91–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13010-6 4

31. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9 27

32. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with
Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS,
vol. 5705, pp. 195–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03829-7 7

33. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

35. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

36. Murray, T.C., Sison, R., Engelhardt, K.: COVERN: a logic for compositional ver-
ification of information flow control. In: EuroS&P, pp. 16–30. IEEE (2018)

37. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java informa-
tion flow. Software release (2006). http://www.cs.cornell.edu/jif

https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/s10207-014-0257-6
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-13010-6_4
https://doi.org/10.1007/978-3-642-13010-6_4
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
http://www.cs.cornell.edu/jif

Product Programs in the Wild 741

38. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

39. Pick, L., Fedyukovich, G., Gupta, A.: Automating modular verification of secure
information flow. In: FMCAD, pp. 158–168. IEEE (2020)

40. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

41. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java
programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31762-0 15

42. Schoepe, D., Murray, T., Sabelfeld, A.: VERONICA: expressive and precise con-
current information flow security. In: CSF, pp. 79–94. IEEE (2020)

43. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 9

44. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. Program.
Lang. Syst. 34(1), 2:1-2:58 (2012)

45. Smith, G.: Principles of secure information flow analysis. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27. Springer, Boston (2007). https://doi.org/10.1007/
978-0-387-44599-1 13

46. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
PLDI, pp. 57–69. ACM (2016)

47. Strichman, O., Veitsman, M.: Regression verification for unbalanced recursive func-
tions. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016.
LNCS, vol. 9995, pp. 645–658. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48989-6 39

48. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

49. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: CSFW, p. 29. IEEE Computer Society (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-31762-0_15
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1007/978-0-387-44599-1_13
https://doi.org/10.1007/978-0-387-44599-1_13
https://doi.org/10.1007/978-3-319-48989-6_39
https://doi.org/10.1007/978-3-319-48989-6_39
https://doi.org/10.1007/11547662_24
http://creativecommons.org/licenses/by/4.0/

Constraint-Based Relational Verification

Hiroshi Unno1,2(B), Tachio Terauchi3, and Eric Koskinen4

1 University of Tsukuba, Ibaraki, Japan
uhiro@cs.tsukuba.ac.jp

2 RIKEN AIP, Tokyo, Japan
3 Waseda University, Tokyo, Japan

4 Stevens Institute of Technology, New Jersey, USA

Abstract. In recent years they have been numerous works that aim to
automate relational verification. Meanwhile, although Constrained Horn
Clauses (CHCs) empower a wide range of verification techniques and
tools, they lack the ability to express hyperproperties beyond k-safety
such as generalized non-interference and co-termination.

This paper describes a novel and fully automated constraint-based
approach to relational verification. We first introduce a new class of pred-
icate Constraint Satisfaction Problems called pfwCSP where constraints
are represented as clauses modulo first-order theories over predicate vari-
ables of three kinds: ordinary, well-founded, or functional. This general-
ization over CHCs permits arbitrary (i.e., possibly non-Horn) clauses,
well-foundedness constraints, functionality constraints, and is capable of
expressing these relational verification problems. Our approach enables
us to express and automatically verify problem instances that require
non-trivial (i.e., non-sequential and non-lock-step) self-composition by
automatically inferring appropriate schedulers (or alignment) that dic-
tate when and which program copies move. To solve problems in this
new language, we present a constraint solving method for pfwCSP based
on stratified CounterExample-Guided Inductive Synthesis (CEGIS) of
ordinary, well-founded, and functional predicates.

We have implemented the proposed framework and obtained promis-
ing results on diverse relational verification problems that are beyond
the scope of the previous verification frameworks.

Keywords: Relational verification · Constraint solving · CEGIS

1 Introduction

We describe a novel constraint-based approach to automatically solving a wide
range of relational verification problems including k-safety, co-termination [6,
10], termination-sensitive non-interference (TS-NI) [63], and generalized non-
interference (GNI) [40] for infinite-state programs.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 742–766, 2021.
https://doi.org/10.1007/978-3-030-81685-8_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_35&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_35

Constraint-Based Relational Verification 743

A key challenge in relational property verification is the discovery of rela-
tional invariants which relate the states of multiple program executions. How-
ever, whereas most prior approaches must fix the execution schedule1 (e.g., lock-
step or sequential) [8,20,21,42,54,57], a recent work by Shemer et al. [50] has
proposed a method to automatically infer sufficient fair schedulers to prove the
goal relational property. Importantly, the schedulers in their approach can be
semantic in which the choice of which program to execute can depend on the
states of the programs as opposed to the classic syntactic schedulers such as
lock-step and sequential that can only depend on the control locations. How-
ever, their approach requires the user to provide appropriate atomic predicates
and is not fully automatic. Moreover, they only support k-safety properties. A
recent work has proposed a method for automatically verifying non-hypersafety
relational properties but only for finite state systems [19].

Meanwhile, today’s constraint-based frameworks are also insufficient at
automating relational verification. The class of predicate constraints called Con-
strained Horn Clauses (CHCs) [13] has been widely adopted as a “common inter-
mediate language” for uniformly expressing verification problems for various pro-
gramming paradigms, such as functional and object-oriented languages. Example
uses of the CHCs framework include safety property verification [29,30,35] and
refinement type inference [33,36,53,56,66]. The separation of constraint gener-
ation and solving has facilitated the rapid development of constraint generation
tools such as RCaml [56], SeaHorn [30], and JayHorn [35] as well as efficient
constraint solving tools such as SPACER [37], Eldarica [32], and HoIce [14].
Unfortunately, CHCs lack the ingredients to sufficiently express these relational
verification problems.

In this paper we introduce automated support for relational verification by
generalizing CHCs and introducing a new class of predicate Constraint Sat-
isfaction Problems called pfwCSP. This language allows constraints that are
arbitrary (i.e., possibly non-Horn) clauses modulo first-order theories over pred-
icate variables that can be functional predicates, well-founded predicates or ordi-
nary predicates. We then show that, thanks to the enhanced predicate vari-
ables, pfwCSP can express non-hypersafety relational properties such as co-
termination [11], termination-sensitive non-interference (TS-NI) [63], and gen-
eralized non-interference (GNI) [40]. In addition, our approach effectively quan-
tifies over the schedule, expressing arbitrary fair semantic scheduling thanks to
non-Horn clauses and functional predicates (functional predicates are needed to
express fairness in the presence of non-termination which is needed for prop-
erties like co-termination and TS-GNI). The flexibility allows our approach to
automatically discover a fair semantic schedule and verify difficult relational
problem instances that require non-trivial schedules. We prove that our encod-
ings are sound and complete. Expressing relational invariants with such flexible
scheduling is not possible with CHCs. However, pfwCSP retains a key benefit of
CHCs: the idea of separating constraint generation from solving.

1 The notion of schedule is also often called an alignment in literature.

744 H. Unno et al.

We next present a novel constraint solving method for pfwCSP based on strat-
ified CounterExample-Guided Inductive Synthesis (CEGIS) of ordinary, well-
founded, and functional predicates. In our method, ordinary predicates represent
relational inductive invariants, well-founded predicates witness synchronous ter-
mination, and functional predicates represent Skolem functions witnessing exis-
tential quantifiers that encode angelic non-determinism. These witnesses for a
relational property are often mutually dependent and involve many variables
in a complicated way (see the extended report [58] for examples). The synthe-
sis thus needs to use expressive templates without compromising the efficiency.
Stratified CEGIS combines CEGIS [51] with stratified families of templates [55]
(i.e., decomposing templates into a series of increasingly expressive templates)
to achieve completeness in the sense of [34,55], a theoretical guarantee of conver-
gence, and a faster and stable convergence by avoiding the overfitting problem
of expressive templates to counterexamples [44]. The constraint solving method
naturally generalizes a number of previous techniques developed for CHCs solv-
ing and invariant/ranking function synthesis, addressing the challenges due to
the generality of pfwCSP that is essential for relational verification.

We have implemented the above framework and have applied our tool PCSat
to a diverse collection of 20 relational verification problems and obtained promis-
ing results. The benchmark problems go beyond the capabilities of the existing
related tools (such as CHCs solvers and program verification tools). PCSat has
solved 15 problems fully automatically by synthesizing complex witnesses for
relational properties, and for the 5 problems that could not be solved fully
automatically within the time limit, PCSat was able to solve them semi-
automatically provided that a part of an invariant is manually given as a hint.

2 Overview

2.1 Relational Verification Problems

k-safety. Consider the following program taken from [50] that uses a summation
to calculate the square of x, and then doubles it.

doubleSquare(bool h, int x) {
int z, y=0;
if (h) { z = 2*x; } else { z = x; }
while (z>0) { z--; y = y+x; }
if (!h) { y = 2*y; }
return y;

}

This program also takes another input h and, if the value of h is true, calculates
the result differently. The classical relational property termination-insensitive
non-interference (TI-NI) says that, roughly, an observer cannot infer the value
of high security variables (h in this case) by observing the outputs (y). This is a
2-safety property [17,54]: it relates two executions of the same program. In this

Constraint-Based Relational Verification 745

example, we ask whether two executions that initially agree on x (i.e., x1 = x2)
will agree on the resulting y (i.e., y1 = y2). The subscripts in these relations
indicate copies of the program: x1 is variable x in the first copy of the program
and x2 is variable x in the second copy. More generally, k-safety means that if
the initial states of a k-tuple of programs satisfy a pre-relation Pre, then when
they all terminate the k-tuple of post states will satisfy post-relation Post .

The literature proposes many ways to reason about k-safety including meth-
ods of reducing a multi-program problem to a single-program problem, such
as through self-composition [8,54,57], product programs [7], and their vari-
ants [21,46,50,52,59]. Their key challenge is that of scheduling : how to interleave
the programs’ executions so that invariants in the combined program are able to
effectively describe cross-program relationships. Indeed, as proved by [50], ver-
ifying this example with the näıve lock-step scheduling is impossible with only
linear arithmetic invariants while linear arithmetic invariants suffice with a more
“semantic” scheduling that schedules the copy with h1 = false to iterate the
loop twice per each iteration of the loop in the copy with h2 = true.

In this paper, we will describe a way to pose the scheduling problem as a part
of a series of constraints so that the search for an effective scheduler is relegated
to the solver level. In our approach, a k-safety verification problem is encoded as
a set of constraints containing (ordinary) predicate variables that represent the
scheduler to be discovered and a relational invariant preserved by the scheduler.
Specially, we introduce a predicate variable inv that represents a relational invari-
ant and for each A ⊆ {1, . . . , k}, a predicate variable schA(˜V1, . . . , ˜Vk) where ˜Vi

are the variables of the ith program, and add constraints that say that if the
predicate is true, then the programs whose index are in A will step forward
while the rest remain still and also inv is preserved by the step. For soundness,
it is important to constrain the scheduler to be fair, i.e., at least one program
that can progress must be scheduled to progress if there is a program that can
progress. As we shall show in Sect. 4, non-Horn clauses are essential to expressing
the fairness constraint. Roughly, the idea is to use a clause with multiple posi-
tive predicate variables (i.e., head disjunction) to say “if the relational invariant
holds, then at least one of the unfinished programs must be scheduled to progress.”

Our approach is similar to and is inspired by the approach of [50] that also
infers a fair semantic scheduler. However, their approach requires the user to
provide sufficient atomic predicates manually and is not fully automated. By
contrast, our approach soundly-and-completely encodes the k-safety verification
problem together with scheduler inference as a set of constraints thanks to the
expressiveness of pfwCSP, and automatically solves those constraints by the
stratified CEGIS algorithm (cf. Sect. 7 for further comparison).

Co-termination. Now consider the following pair of programs.

P cot
1 : while (x>0) { x = x - y; }

P cot
2 : while (x>0) { x = x - 2 × y; }

746 H. Unno et al.

A (non-safety) relational question is whether these programs P cot
1 and P cot

2 agree
on termination [6,10]. In general they do not: if, for example, P cot

1 is executed
with x < 0 and P cot

2 with x > 0∧y = 0, the first will terminate while the second
will diverge. However, under the pre-relation Pre ≡ x1 = x2 ∧ y1 = y2, they will
agree on termination: the first program terminates iff the second one does. The
property falls outside of the k-safety fragment as it cannot be refuted by finite
execution traces. It is worth noting that termination-sensitive non-interference
(TS-NI) is the conjunction of TI-NI and co-termination of two copies of the same
target program with Pre equating the copies’ low inputs.

Proving co-termination, like k-safety, can be aided by scheduler and we can
again use our constraints over predicate variables. But this is not enough. We
need additional constraints to ensure that whenever one of the two has ter-
minated, the other is also guaranteed to terminate. To address this, we next
introduce well-founded predicate variables. These predicate variables will appear
in our generalized language of constraints as terms of the form wfr(˜Vi, ˜V ′

i), where
the relation wfr must be discovered by the constraint solving method. (In Sect. 5
we describe how to achieve this through our stratified CEGIS algorithm.) For
the above example, our stratified CEGIS algorithm and our tool PCSat auto-
matically discovers (1) a schedule where the two programs step together when
x1 > 0 and x2 > 0, (2) a relational invariant that implies that if the first pro-
gram is terminated, then either the second program is terminated or y2 ≥ 1
(and vice-versa), and (3) well-founded relations that (combined with the rela-
tional invariant) witness that if the loop has terminated in the second program
(x2 ≤ 0) but not in the first (x1 > 0), then a transition in the first is well-
founded (and vice-versa). In Sect. 4, we show how co-termination problems can
be soundly-and-completely encoded in pfwCSP.

Generalized Non-interference. Now consider the following program.

gniEx(bool high, int low) {
if (high) {

int x = *int; if (x >= low) { return x; } else { while (true) {} }
} else {

int x = low; while ($*^bool$) { x++; } return x;
}

}

The ∗int (resp. ∗bool) above indicates an integer (resp. a binary) non-
deterministic choice. Termination-insensitive generalized non-interference (TI-
GNI) [40] is an extension of non-interference to non-deterministic programs, and
it says that for any two copies of the program with possibly different values for
the high security input (high in this example) and with the same value for the
low security input (low in this example), if one copy has a terminating execution
that ends in some output (the final value of x in this example), then the other
copy has either a terminating execution ending in the same output or a non-
terminating execution. The termination-sensitive variant (TS-GNI) strengthens
the condition by asserting that if one copy has a terminating execution then the

Constraint-Based Relational Verification 747

other copy has a terminating execution that ends in the same output. Both GNI
variants are ∀∃ hyperproperties and fall outside of the k-safety fragment.

Verifying GNI requires handling non-determinism. Note that non-
determinism occurs both demonically (i.e., as ∀) and angelically (i.e., as ∃)
in GNI. While handling demonic non-determinism is straightforward in a
constraint-based verification since the term variables are implicitly universally
quantified, handling angelic non-determinism is less straightforward.

Fig. 1. Overview of the contributions and how they achieve a constraint-based strategy
for relational verification.

Our approach handles finitary angelic non-determinism like ∗bool by adding
non-Horn clauses with head disjunctions that roughly express the condition “the
relational invariant remains true in one of the finitely many next step choices”.
To handle infinitary non-determinism like ∗int, we introduce functional predicate
variables denoted f(˜V , r). In these terms, f is a predicate variable to be discov-
ered but with a new wrinkle: this predicate involves a return value r and the
interpretation of f is a total function over ˜V . For this example, we introduce
the term f(˜V , r) where r represents the value chosen non-deterministically at
∗int and ˜V are program variables and prophecy variables that represent the final
return values of the demonic copy. For this example, PCSat automatically dis-
covers the predicate r = ret1 where ret1 is the prophecy variable for the return
value of the demonic copy. With it, PCSat is able to verify TS-GNI and TI-GNI
of this example. We remark that functional predicates are also used to encode
scheduler fairness in the presence of non-termination and is needed to ensure
soundness for properties like co-termination and TS-GNI. In Sect. 4.3, we show
how TI-GNI and TS-GNI can be soundly-and-completely encoded in pfwCSP.

2.2 Challenges and Contributions

There are several challenges that we face in supporting relational verification
problems with a constraint-based approach. The subsequent sections of this
paper are organized around addressing those challenges as follows:

– We first ask how to generalize the constraint language to go beyond CHCs
to express a more general class of relational verification problems. To this
end, in Sect. 3, we present a new language called predicated constraint satis-
faction problems (pfwCSP), which incorporate non-Horn clauses, (ordinary)

748 H. Unno et al.

predicate variables, well-founded predicate variables, and functional predicate
variables.

– We next return to the above relational verification problems –k-safety, co-
termination, and generalized non-interference– and describe how pfwCSP can
express each of them in a sound and complete manner in Sect. 4.

– The next major contribution of our research is a novel stratified CEGIS algo-
rithm for solving pfwCSP constraints. Our approach integrates advanced ver-
ification techniques: stratified family of templates [55] and CEGIS of invari-
ants/ranking functions [14,26,28,45]. While the individual ideas have been
proposed previously, they have only been designed for less expressive frame-
works such as CHCs, and substantial extensions are needed to combine and
apply them to the new pfwCSP framework as we shall show in Sect. 5.

– We next turn to an implementation and experimental validation on a diverse
collection of 20 relational verification problems, consisting of k-safety prob-
lems from Shemer et al. [50] and new co-termination and GNI problems in
Sect. 6. As far as we know, none of the existing automated tools other than
our new tool called PCSat can solve them.

In sum, Fig. 1 depicts each of these sections and how, together, they enable
relational verification. For space, extra materials are deferred to the extended
report [58].

3 Predicate Constraint Satisfaction Problems pfwCSP

As discussed in Sect. 2, CHCs are insufficient to express important relational
verification problems. In the section we introduced a generalized language of
constraints called pfwCSP. The language of constraint satisfaction problems
(CSP) permits non-Horn clauses, predicate variable terms, including those for
functional predicates and well-founded relations (pfw). We now define pfwCSP.

Let T be a (possibly many-sorted) first-order theory with the signature Σ.
The syntax of T -formulas and T -terms is:

(formulas) φ:: = X(˜t) | p(˜t) | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2

(terms) t:: = x | f(˜t)

Here, the meta-variables x and X respectively range over term and predicate
variables. The meta-variables p and f respectively denote predicate and function
symbols of Σ. We use s as a meta-variable ranging over sorts of the signature
Σ. We write � for the sort of propositions and s1 → s2 for the sort of functions
from s1 to s2. We write ar(o) and sort(o) respectively for the arity and the
sort of a syntactic element o. A function f represents a constant if ar(f) = 0.
We write ftv(φ) and fpv(φ) respectively for the set of free term and predicate
variables that occur in φ. We write x̃ for a sequence of term variables, |x̃| for
the length of x̃, and ε for the empty sequence. We often abbreviate ¬φ1 ∨ φ2 as
φ1 ⇒ φ2. We henceforth consider only well-sorted formulas and terms. We use
ϕ as a meta-variable ranging over T -formulas without predicate variables.

Constraint-Based Relational Verification 749

We now define a pCSP C (with ordinary but without well-founded and func-
tional predicate variables) to be a finite set of clauses of the form

ϕ ∨
(

∨�
i=1 Xi(˜ti)

)

∨
(
∨m

i=�+1 ¬Xi(˜ti)
)

(1)

where 0 ≤ � ≤ m. We write ftv(c) for the set of free term variables of a clause
c. The set of free term variables of C is defined by ftv(C) =

⋃

c∈C ftv(c). We
regard the variables in ftv(c) as implicitly universally quantified. We write fpv(C)
for the set of free predicate variables that occur in C. A predicate substitution
σ is a finite map from predicate variables X to closed predicates of the form
λx1, . . . , xar(X).ϕ. We write σ(C) for the application of σ to C and dom(σ) for
the domain of σ. We call σ a syntactic solution for C if fpv(C) ⊆ dom(σ) and
|=

∧

σ(C). Similarly, we call a predicate interpretation ρ a semantic solution for
C if fpv(C) ⊆ dom(ρ) and ρ |=

∧

C.

Remark 1. The language pCSP generalizes over existing languages of con-
straints. CHCs can be obtained as a restriction of pCSP where � ≤ 1 in (1)
for all clauses. We can also define coCHCs as pCSP but with the restriction that
m ≤ � + 1 for all clauses. A linear CHCs is a pCSP that is both CHCs and
coCHCs.

We next extend pCSP to pfwCSP by adding well-foundedness and function-
ness constraints. A pfwCSP (C,K) consists of

– a finite set C of pCSP-clauses over predicate variables and
– a kinding function K that maps each predicate variable X ∈ fpv(C) to its kind:

any one of •, ⇓, or λ which respectively represent ordinary, well-founded, and
functional predicate variables.

We write ρ |= WF (X) if the interpretation ρ(X) of the predicate variable X is
well-founded, that is, sort(X) = (s̃, s̃) → � for some s̃ and there is no infinite
sequence ṽ1, ṽ2, . . . of sequences ṽi of values of the sorts s̃ such that (ṽi, ṽi+1) ∈
ρ(X) for all i ≥ 1. We write ρ |= FN (X) if X is functional, that is, sort(X) =
(s̃, s) → � for some s̃ and s, and ρ |= ∀x̃ : s̃.(∃y : s.X(x̃, y))∧∀y1, y2 : s.(X(x̃, y1)∧
X(x̃, y2) ⇒ y1 = y2) holds. We call a predicate interpretation ρ a semantic
solution for (C,K) if ρ is a semantic solution of C, ρ |= WF (X) for all X such
that K(X) =⇓, and ρ |= FN (X) for all X such that K(X) = λ. The notion of
syntactic solution can be similarly generalized to pfwCSP.

Definition 1 (Satisfiability of pfwCSP). The predicate satisfiability problem
of a pfwCSP (C,K) is that of deciding whether it has a semantic solution.

Remark 2. Recall that we assume that the T -formulas ϕ in pCSP clauses do not
contain quantifiers. The assumption, however, is not a restriction for pfwCSP
because we can Skolemize quantifiers using functional predicates.

750 H. Unno et al.

4 Relational Verification with Constraints

We now present reductions from relational verification problems to pfwCSP, thus
enabling a new route to automation of these problems. We begin with k-safety,
and then move toward liveness and non-determinism, which are thorny problems
in the relational setting. We first provide some basic definitions and notations.

Programs. We consider programs P1,. . . ,Pk on variables ˜V1,. . . ,˜Vk, respectively.
A state of the program Pi is a valuation of the variables ˜Vi. We represent such
a valuation by a sequence of values ṽ such that |ṽ| = | ˜Vi|. We assume that each
Pi is defined by the predicate Ti(˜Vi, ˜Vi

′
) denoting its one-step transition relation

i.e., Ti(ṽ, ṽ′) implies that evaluating Pi one step from the state ṽ reaches the
state ṽ′. We also assume that there is a predicate Fi(˜Vi) that represents the
final states of the program such that Fi(ṽ) and Ti(ṽ, ṽ′) implies ṽ = ṽ′, i.e., the
program self-loops when it reaches a final state. We say that a state ṽ (multi-
step) reaches a final state ṽ′ in the evaluation of Pi, written ṽ �i ṽ′, if there
exists a non-empty finite sequence of states π such that π[1] = ṽ, π[|π|] = ṽ′,
Ti(π[j −1], π[j]) for all 1 < j ≤ |π|, and Fi(ṽ′). We write ṽ �i ⊥ if there exists a
non-terminating evaluation from ṽ in Pi, i.e., if there exists an infinite sequence
of states � such that �[1] = ṽ, Ti(�[j −1],�[j]) for all 1 < j, and ¬Fi(�[j]) for
all 0 < j. We note that a program may be non-deterministic, that is, Ti(ṽ, ṽ′)
and Ti(ṽ, ṽ′′) may both be true for some ṽ′ �= ṽ′′.

4.1 k-Safety

A k-safety property is given by predicates Pre(˜V) and Post(˜V) that respectively
denote the pre and the post relations across the k-tuple.

Definition 2 (k-safety). The k-safety property verification problem is to decide
if the following holds:

∀ṽ = ṽ1, . . . , ṽk.∀ṽ′ = ṽ1
′, . . . , ṽk

′.Pre(ṽ) ∧
∧

i∈[k] ṽi �i ṽi
′ ⇒ Post(ṽ′)

That is, any k-tuple of final states reachable from a k-tuple of states satisfying
the precondition satisfies the post condition. For instance, the TI-NI verification
from Sect. 2.1 is a 2-safety property where P1 and P2 are copies of the same
program, Pre states that the low inputs of the two programs are equal (i.e.,
x1 = x2 in the example), and Post states that the low outputs of the two
programs are equal (i.e., y1 = y2 in the example).

We now describe a new way to pose the k-safety relational verification prob-
lem via constraints written in pfwCSP. We write [k] for the set {1, . . . , k}. We
define P+[k] = {S ⊆ [k] | S �= ∅}. Let ˜V = ˜V1,. . . ,˜Vk be a k-tuple of vectors,
corresponding to the variables of the k programs.

Definition 3 (k-safety through constraints). We define pfwCSP con-
straints CS be the set of following clauses:

Constraint-Based Relational Verification 751

(1) Pre(˜V) ⇒ inv(˜V)
(2) inv(˜V) ∧

∧

i∈[k] Fi(˜Vi) ⇒ Post(˜V)
(3) For each A ∈ P+[k],

inv(˜V) ∧ schA(˜V) ∧
∧

i∈A Ti(˜Vi, ˜Vi

′
) ∧

∧

i∈[k]\A
˜Vi = ˜Vi

′ ⇒ inv(˜V ′)
(4) For each A ∈ P+[k], inv(˜V) ∧ schA(˜V) ∧

∨

i∈[k] ¬Fi(˜Vi) ⇒
∨

i∈A ¬Fi(˜Vi)
(5) inv(˜V) ∧

∨

i∈[k] ¬Fi(˜Vi) ⇒
∨

A∈P+[k] schA(˜V).

Here, inv and schA (for each A ∈ P+[k]) are ordinary predicate variables.
Roughly, the predicate variables schA describe a scheduler. The scheduler stipu-
lates that when schA(ṽ1, . . . , ṽk) is true, each Pi such that i ∈ A takes a step from
the state ṽi while the others remain still. Note that the scheduler is semantic in
the sense that which programs are scheduled to be executed next can depend on
the current states of the programs. Clauses (1)–(3) assert that inv is an invari-
ant sufficient to prove the given safety property with the scheduler defined by
schA’s. Clauses (4) say that if an inv-satisfying state is such that the processes
in A are allowed to move and some program has not yet terminated, then at
least one process in A has not yet terminated. Clause (5) says that any state
satisfying inv has to satisfy some schA. Clauses (4) and (5) ensure the fairness
of the scheduler, that is, at least one unfinished program is scheduled to make
progress if there is an unfinished program.

Theorem 1 (Soundness and Completeness of CS). The given k-tuple of
programs satisfies the given k-safety property iff CS is satisfiable.

We note that the soundness direction crucially relies on scheduler fairness. The
completeness is with respect to semantic solutions (cf. Definition 1) and it is
only “relative” with respect to syntactic solutions: a syntactic solution only
exists when the predicates of the background theory are able to express sufficient
invariants and schedulers (impossible in general for any decidable theory when
the class of programs is Turing-powerful as in our case when the background
theory of predicates is QFLIA).

It is important to note that CS is not CHCs because clause (5) has a head
disjunction. CS may be seen as a constraint-based formulation of the approach
proposed in [50]. However, their approach requires the user to provide sufficient
predicates manually and is not fully automated, while our approach can fully
automatically solve the problems by constraint solving (cf. Sect. 5).

Example 1. The formalization allows flexible scheduling. For instance, for the TI-
NI example from Sect. 2.1, our approach is able to infer the predicate substitution
that maps sch{1}, sch{2}, and sch{1,2} to λ˜V .h1 ∧ ¬h2 ∧ z1 = 2z2, λ˜V .¬h1 ∧ h2 ∧
z2 = 2z1, and λ˜V .(h1 ∧ ¬h2 ⇒ z1 + 1 = 2z2) ∧ (¬h1 ∧ h2 ∧ z2 + 1 = 2z1)
respectively, where ˜V is the list of the variables in the two program copies. The
inferred predicates stipulate that the copy with h = true is scheduled to execute
the loop two times per every loop iteration of the copy with h = false. The
extended report [58] shows the pfwCSP encoding of the example. A solution
generated by PCSat is also shown in [58].

752 H. Unno et al.

4.2 Co-termination

Intuitively, co-termination means that if one program terminates, then a second
program must terminate [6,10]. This can also be thought of as a form of relational
termination problem.2

Definition 4 (Co-termination). The co-termination verification problem is
to decide if for all ṽ1, ṽ2 such that Pre(ṽ1, ṽ2), if ṽ1 �1

˜v′
1 then ṽ2 ��2 ⊥.

Roughly, the property says that from any pair of states related by Pre, if P1

terminates, then P2 must also terminate. Note that this is an asymmetric prop-
erty. A symmetric version can be obtained by also asserting the property with
the positions of the two programs exchanged. The symmetric version implies,
assuming that there is at least one execution from any Pre-related state, that
from any pair of Pre-related states, all executions from one state terminates iff
all executions from the other one do as well. We now present an encoding of
conditional co-termination in pfwCSP.

Definition 5 (Co-termination through constraints). Let ˜V = ˜V1, ˜V2. We
define pfwCSP constraints CCoT be the set of following clauses:

(1) Pre(˜V) ∧ fnb(˜V , b) ⇒ inv(0, b, ˜V)
(2) inv(d, b, ˜V) ∧ ¬F1(˜V1) ∧ ¬F2(˜V2) ⇒ (−b ≤ d ∧ d ≤ b ∧ b ≥ 0)

(3a) inv(d, b, ˜V) ∧ schFT(d, b, ˜V) ∧ T2(˜V2, ˜V2

′
) ∧ (F1(˜V1) ∨ F2(˜V2) ∨ d′ = d − 1) ⇒

inv(d′, b, ˜V1, ˜V2

′
)

(3b) inv(d, b, ˜V) ∧ schTF(d, b, ˜V) ∧ T1(˜V1, ˜V1

′
) ∧ (F1(˜V1) ∨ F2(˜V2) ∨ d′ = d + 1) ⇒

inv(d′, b, ˜V1

′
, ˜V2)

(3c) inv(d, b, ˜V) ∧ schTT(d, b, ˜V) ∧ T1(˜V1, ˜V1

′
) ∧ T2(˜V2, ˜V2

′
) ⇒ inv(d, b, ˜V1

′
, ˜V2

′
)

(4a) inv(d, b, ˜V) ∧ schFT(d, b, ˜V) ∧ ¬F1(˜V1) ⇒ ¬F2(˜V2)
(4b) inv(d, b, ˜V) ∧ schTF(d, b, ˜V) ∧ ¬F2(˜V2) ⇒ ¬F1(˜V1)
(5) inv(d, b, ˜V) ∧ (¬F1(˜V1) ∨ ¬F2(˜V2)) ⇒

∨

a∈{TT,FT,TF} scha(d, b, ˜V)

(6) inv(d, b, ˜V) ∧ F1(˜V1) ∧ ¬F2(˜V2) ∧ T2(˜V2, ˜V2

′
) ⇒ wfr(˜V2, ˜V2

′
)

Here, schTT, schFT, and schTF are 2-specialization of the k-safety scheduler of
Definition 3. Clauses (3x)’s are similar to (3) of Definition 3 and assert that inv
is an invariant under the scheduler. Clauses (4x)’s and (5), like (4) and (5) of
Definition 3, are used to ensure the scheduler fairness. However, they are insuffi-
cient for co-termination as a non-terminating copy can be scheduled indefinitely
leaving the other copy unscheduled. Clauses (1) and (2) are added to amend the
issue. In (1), fnb is a functional predicate variable that is used to select a bound
b, and (2) asserts that the difference d between the numbers of steps taken by the
two copies is within b in any state in inv when neither copy has terminated. Note
that d is initialized to 0 by (1) and properly updated in (3x)’s. Finally, by using
the well-founded predicate variable wfr, (6) asserts that if P1 has terminated,
then so must eventually P2.
2 The property has also been called relative termination [31].

Constraint-Based Relational Verification 753

Theorem 2 (Soundness and Completeness of CCoT). The given pair of
programs co-terminate iff CCoT is satisfiable.

As with Theorem 1, the soundness direction relies on scheduler fairness.

Example 2. Via the encoding, our PCSat tool is able to verify the symmetric
co-termination example from Sect. 2.1 by automatically inferring the solution
described there. For space, the concrete constraint set and solution are given in
the extended report [58].

4.3 Generalized Non-interference

We now turn to another relational property that cannot simply be captured by
k-safety or co-termination. So-called termination-insensitive (resp. -sensitive)
generalized non-interference (resp. TI-GNI, TS-GNI) are ∀∃ hyperproperties:
from any pre-related pair of states whenever one side can take a move to a post
state, there must be a way for the other side to also move to a post state such that
the post-relation holds. As remarked in Sect. 2, verifying GNI requires reasoning
about both demonic (i.e., for all) and angelic (i.e., exists) non-determinism.

Definition 6 (TI/TS-GNI). The GNI verification problem is to decide if the
following holds. If Pre(ṽ1, ṽ2) and ṽ1 �1 ṽ1

′ then (TI-GNI) (∃ṽ2
′.ṽ2 �2 ṽ2

′ ∧
Post(ṽ1

′, ṽ2
′)) ∨ ṽ2 �2 ⊥; or (TS-GNI) ∃ṽ2

′.ṽ2 �2 ṽ2
′ ∧ Post(ṽ1

′, ṽ2
′).

Note that our definition is parameterized by Pre and Post . The standard GNI
definitions [40] can be obtained by letting P1 and P2 be copies of the same target
program and letting Pre be the predicate equating the low inputs of the copies
and Post be the predicate equating the low outputs of the copies.

To formalize the pfwCSP encodings of the GNI verification problems,
we define a relation U2 to be one such that T2(ṽ, ṽ′) ⇔ ∃r.U2(r, ṽ, ṽ′) and
U2(r, ṽ, ṽ′) ∧ U2(r, ṽ, ṽ′′) ⇒ ṽ′ = ṽ′′. Roughly, U2 is a function version of the
transition relation T2 with the extra parameter r to make the non-deterministic
choices explicit.

We now show the pfwCSP encodings of TI-GNI and TS-GNI. The key idea
is to augment the encodings for k-safety and/or co-termination with functional
predicate variables and prophecy variables that respectively represent the non-
deterministic choices of the angelic side (i.e., P2) and the final outputs of the
demonic side (i.e., P1).

Definition 7 (TI-GNI through constraints). We define pfwCSP con-
straints CTIGNI as CS in Definition 3 for k = 2 but with the following modifi-
cations:

(m1) The parameters representing the inputs and outputs of P1 is extended with
prophecy variables p̃ where |p̃| = |˜V1|. Accordingly, each occurrence of ˜V1 is
replaced by p̃, ˜V1, and each occurrence of ˜V1

′
is replaced by p̃′, ˜V1

′
.

(m2) Pre is replaced by Pre ′ which is defined by Pre ′(p̃, ˜V1, ˜V2) ⇔ Pre(˜V1, ˜V2),
i.e., the prophecy values are unconstrained in the precondition.

754 H. Unno et al.

(m3) F1 is replaced by F ′
1 defined by F ′

1(p̃, ˜V1) ⇔ F1(˜V1).
(m4) T1 is replaced by T ′

1 defined by T ′
1(p̃, ˜V1, p̃

′, ˜V1

′
) ⇔ T1(˜V1, ˜V1

′
) ∧ p̃ = p̃′.

(m5) Post is replaced by Post ′ defined by Post ′(p̃, ˜V1, ˜V2) ⇔ (p̃ = ˜V1 ⇒
Post(˜V1, ˜V2)), i.e., if the prophecy was correct then the original post con-
dition must hold.

(m6) Each occurrence of T2(˜V2, ˜V2

′
) is replaced by fnr(p̃, ˜V2, r) ∧ U2(r, ˜V2, ˜V2

′
)

where fnr is a functional predicate variable.

Modifications (m1)–(m5) concern prophecy variables. They are initialized arbi-
trarily as shown in (m2), propagated unmodified through the transitions as
shown in (m4), and finally checked if they match P1’s outputs in (m5). Mod-
ification (m6) adds functional predicate variables to express the angelic non-
deterministic choices of P2. The functional predicate variables shift the onus of
making the right choices to the solver’s task of discovering sufficient assignments
to them. Importantly, the functional predicate takes the prophecy variables as
parameters, thus allowing dependence on the final outputs of the demonic side.

Definition 8 (TS-GNI through constraints). We define pfwCSP con-
straints CTSGNI as CCoT in Definition 5 but with modifications of Definition 7
except (m3) and (m5), and with the following modifications:

(m3’) F1 is replaced by F ′
1 defined by F ′

1(p̃, ˜V1) ⇔ F1(˜V1) ∧ p̃ = ˜V1.
(m5’) The clause inv(p̃, ˜V1, ˜V2) ∧ F ′

1(p̃, ˜V1) ∧ F2(˜V2) ⇒ Post(˜V1, ˜V2) is added.

CTSGNI is similar to CTIGNI except that it contains the difference bound and well-
foundedness constraints to handle the “co-termination” aspect of TS-GNI, i.e.,
if P1 terminates and makes an output then P2 must also be able terminate and
make a matching output. One subtle aspect of the encoding is that (m3’) modifies
the final state predicate for P1 to enforce co-termination only when the prophecy
is correct. However, it is worth noting that TS-GNI is not a conjunction of TI-
GNI and co-termination. For instance, the GNI example from Sect. 2.1 satisfies
TS-GNI but does not satisfy co-termination.

Theorem 3 (Soundess and Completeness of TI-GNI). The given pair of
programs satisfy TI-GNI iff CTIGNI is satisfiable.

Theorem 4 (Soundess and Completeness of TS-GNI). The given pair
of programs satisfy TS-GNI iff CTSGNI is satisfiable.

The soundness directions are proven by “determinizing” the angelic choices by
solutions to the functional predicate variables and reducing the argument to
those of k-safety and co-termination. The completeness directions are proven by
“synthesizing” sufficient angelic choice functions from program executions.

Example 3. Via the encoding, our PCSat tool is able to verify the TS-GNI
example from Sect. 2.1 by automatically inferring not only the functional pred-
icate described there but also relational invariants and well-founded relations
given in the extended report [58]. For space, the concrete constraint set is also
given in [58].

Constraint-Based Relational Verification 755

Remark 3. The angelic non-determinism encoding can be optimized by
using head disjunctions when the non-determinism is finitary (i.e.,
maxṽ|{ṽ′ | T2(ṽ, ṽ′)}| is finite) instead of using functional predicate variables.
For this, we modify clauses (3) and (3x)’s of Definition 7 and 8 to contain mul-
tiple positive occurrences of inv where each occurrence represents one of the
finitely many possible choices.

Remark 4. Recall that we allow any program to be non-deterministic. The k-
safety and co-termination encodings treat non-determinism in all programs as
demonic, whereas the GNI encodings treat those in one program (i.e., P1) as
demonic and those in the other program (i.e., P2) as angelic. In general, an
arbitrary program can be made angelic by applying the transformation done in
the angelic side of GNI encodings (to factor out non-determinism).

5 Constraint Solving Method for pfwCSP

We describe a CEGIS-based method for finding a (syntactic) solution of the given
pfwCSP (C,K). Our method iterates the following phases until convergence.
The iteration maintains and builds a sequence σ of candidate solutions and a
sequence E of example instances where E(i) are ground clauses obtained from C by
instantiating the term variables and serve as a counterexample to the candidate
solution σ(i−1), for each i-th iteration. The iteration starts from E(1) = ∅.

Synthesis Phase: We check if (E(i),K) is unsatisfiable. If so, we stop by return-
ing E(i) as a genuine counterexample to the input problem (C,K). Otherwise, we
use the synthesizer STB (cf. Sect. 5.1) to find a solution σ(i) of (E(i),K), which
will be used as the next candidate solution.

Validation Phase: We check if σ(i) is a genuine solution to (C,K) by using an
SMT solver. If so, we stop by returning σ(i) as a solution. Otherwise, for each
clause c ∈ C not satisfied by σ(i), we obtain a term substitution θc such that
dom(θc) = ftv(c) and �|= θc(σ(i)(c)). We then update the example set by adding
a new example instance for each unsatisfied clause (i.e., E(i+1) = E(i) ∪ { θc(c) |
c ∈ C∧ �|= σ(i)(c) }), and proceed to the next iteration.

The above procedure satisfies the usual progress property of CEGIS: discov-
ered counterexamples and candidate solutions are not discovered again in suc-
ceeding iterations. Furthermore, as discussed in Sect. 5.1, by carefully designing
the synthesizer STB by incorporating stratified CEGIS, we achieve complete-
ness in the sense of [34,55]: if the given pfwCSP (C,K) has a syntactic solution
expressible in the stratified families of templates, a solution of the pfwCSP is
eventually found by the procedure. In Sect. 5.1, we discuss the details of the
synthesis phase. There, for space, we focus on the theory of quantifier-free linear
integer arithmetic (QFLIA). For space, we defer the details of the unsatisfiability
checking process to the extended report [58].

Remark 5. The implementation described in Sect. 6 contains an additional phase
called resolution phase for accelerating the convergence. There, we first apply

756 H. Unno et al.

unit propagation repeatedly to the given E(i) to obtain positive examples E(i)+

of the form X(ṽ) and negative examples E(i)− of the form ¬X(ṽ). We then
repeatedly apply resolution principle to the clauses in the input clauses C and
the clauses E(i)+ ∪ E(i)− to obtain additional positive and negative examples.

5.1 Predicate Synthesis with Stratified Families of Templates

We describe our candidate solution synthesizer STB . STB performs a template-
based search for a solution to the given example instances. As we shall show, our
approach allows searching for assignments to all predicate variables (of all three
kinds) in the given instance which is important because satisfying assignments to
different predicate variables often inter-dependent. There, however, is a trade-off
between expressiveness and generalizability. With less expressive templates like
intervals, we may miss actual solutions. But with very expressive templates like
polyhedra, there could be many solutions, and a solution thus returned is liable
to overfitting, i.e., the solution to the example instances becomes too specific
to be an actual solution to the original input clauses. [44] discusses a similar
overfitting issue in the context of grammar-based synthesis.

Fig. 2. Stratified families of templates

Our remedy to the issue is stratified families of predicate templates, inspired
by a similar approach proposed in the context of predicate abstraction with
CEGAR [34,55]. Initially, we assign each predicate variable a less expressive
template and gradually refine it in a counterexample-guided manner: if no solu-
tion exists in the current template, we generate and analyze an unsat core to

Constraint-Based Relational Verification 757

identify the parameters of the families of templates that should be updated. The
stratification of templates thus automatically pushes the template to an expres-
sive one (e.g., polyhedra) when it needs to. Importantly, with our approach,
expressive templates are not always used but only when they should be used.

Stratified Families of Templates. We have designed three stratified families
of templates shown in Fig. 2, respectively for ordinary (•), well-founded (⇓), and
functional (λ) predicate variables. First, for each ordinary predicate variable X,
we prepare the stratified family of templates T •

X(nd ,nc, ac, ad) with unknowns
ci,j,k’s to be inferred and its accompanying constraint φ•

X(nd ,nc, ac, ad). The
body of T •

X is a DNF with affine inequalities as atoms. The parameter nd (resp.
nc) is the number of disjuncts (resp. conjuncts). The parameter ac is the upper
bound of the sum of the absolute values of coefficients ci,j,k (k > 0), and ad is
the upper bound of the absolute value of ci,j,0.

Secondly, for each functional predicate variable X, we prepare the strati-
fied family of templates T⇓

X(np,nl ,nc, rc, rd , dc, dd) with unknowns ci,j,k’s and
c′
i,j,k’s and its accompanying constraint φ⇓

X(np,nl ,nc, rc, rd , dc, dd). T⇓
X repre-

sents the well-founded relation induced by a piecewise-defined lexicographic affine
ranking function [2,39,39,60,61] where ri,j is the affine ranking function tem-
plate for the j-th lexicographic component of the i-th region specified by the
discriminator Di. The parameter np (resp. nl) is the number of regions (resp.
lexicographic components). The parameters rc, rd , dc, dd are the upper bounds
of (the sums of) the absolute values of unknowns, similar to ac and ad of T •

X .
The first conjunct of T⇓

X asserts that the return value of each ranking functions
is non-negative. The second and the third conjuncts assert that the discrimi-
nators cover all relevant states. Note that discriminators may overlap, and for
such overlapping regions, the maximum return value of the ranking functions is
used. The fourth conjunct asserts that the return value of the piecewise-defined
ranking function strictly decreases from x̃ to ỹ. Here, DEC i,j(x̃, ỹ) asserts that
the return value of the lexicographic ranking function for the i-th region at x̃
is greater than that for the j-th region at ỹ. It follows that for any substitu-
tion θ for the unknowns in T⇓

X , θ(T⇓
X) represents a well-founded relation. Our

implementation PCSat uses a refined version of T⇓
X shown in the extended

report [58].
Finally, for each functional predicate variable X, we prepare the stratified

family of templates Tλ
X(nd ,nc, dc, dd , ec, ed) with unknowns ci,j ’s and c′

i,j,k’s
and its accompanying constraint φλ

F (nd ,nc, dc, dd , ec, ed). Tλ
X characterizes a

piecewise-defined affine function with discriminators D1, . . . , Dnd−1 and branch
expressions e1, . . . , end . The parameter nc is the number of conjuncts in each
discriminator. The parameters dc, dd , ec, ed are the upper bounds of (the sums
of) the absolute values of unknown, similar to ac and ad of T •

X . Note that for
any substitution θ for the unknowns in Tλ

X , θ(Tλ
X)(x̃, r) expresses a total function

that maps x̃ to r.
Next, we give the details of the candidate solution synthesis process. Let

p̃ ∈ Z
n where n is the number of parameters summed across all templates, and

758 H. Unno et al.

let Tα
X(p̃) and φα

X(p̃) (for α ∈ {•,⇓, λ}) project the corresponding parameters.
Each p̃ ∈ Z

n induces a solution space �p̃� � {T (p̃)[θ] | θ |= Con(p̃)} where
T (p̃)[θ] � {X �→ θ(TK(X)

X (p̃)) | X ∈ fpv(C)} and Con(p̃) �
∧

X∈fpv(C) φ
K(X)
X (p̃).

Let p̃1 ≤ p̃2 be the point-wise ordering. Note that �p̃� is a finite set for
any p̃ ∈ Z

n, and p̃1 ≤ p̃2 implies �p̃1� ⊆ �p̃2�. We start the CEGIS process
with some small initial parameters p̃(0) (the parameters will be maintained as
a state of the CEGIS process). The synthesis phase of each iteration tries to
find a solution θ ∈ �p̃(i)� to the given example instances (E ,K) where p̃(i) are
the current parameters. This is done by using an SMT solver for QFLIA to
find θ satisfying

∧

T (p̃(i))[θ](E) ∧ θ(Con(p̃(i))). If such θ is found, we return
T (p̃(i))[θ] as the candidate solution for the next validation phase of the CEGIS
process. Note that, by construction of the templates, the solution is guaranteed
to assign each well-founded (resp. functional) predicate variable a well-founded
relation (resp. total function). Otherwise, no solutions to the given example
instances (E ,K) can be found in �p̃(i)�, and we update the parameters to some
p̃(i+1) > p̃(i) such that �p̃(i+1)� contains a solution for (E ,K). Here, it is important
to do the update in a fair manner [34,55], that is, in any infinite series of updates
p̃(0), p̃(1), . . . , every parameter is updated infinitely often (the details are deferred
to below). By the progress property and the fact that every �p̃� is finite, this
ensures that every parameter is updated infinitely often in an infinite series of
CEGIS iterations. We thus obtain the following property.

Theorem 5. Our CEGIS-procedure based on stratified families of templates is
complete in the sense of [34,55]: if there is p̃ and σ ∈ �p̃� such that σ is a
syntactic solution to the given pfwCSP (C,K), a syntactic solution to (C,K) is
eventually found by the procedure.

Note that, while the solution space of each stratum (i.e., �p̃(i)�) is finite, our
procedure searches the infinite solution space obtained by taking the infinite
union of the solution spaces of the template family strata (i.e.,

⋃

i∈ω �p̃(i)�).

Remark 6. Our template-based synthesis simultaneously finds ordinary, well-
founded, and functional predicates that are mutually dependent through the
given (E ,K). This means that templates for different kinds of predicate variables
are updated in a synchronized and balanced manner, which benefits the synthesis
of mutually dependent witnesses for a relational property (see the extended
report [58] for examples).

Updating Parameters of Template Families via Unsat Cores. We now describe
the parameter update process. We first obtain the unsat core of the unsatisfi-
ability of

∧

T (p̃(i))[θ](E) ∧ θ(Con(p̃(i))) from the SMT solver. We then analyze
the core to obtain the parameters of template families, such as the number of
conjuncts and disjuncts, that have caused the unsatisfiability. Here, there could
be a dependency between predicate variables and in such a case our unsat core
analysis enumerates all the involved predicate variables from which we obtain
the parameters of template families to be updated. We then increment these

Constraint-Based Relational Verification 759

parameters in some fair manner, by limiting the maximum differences between
different parameters to some bounded threshold, and repeatedly solve the result-
ing constraint until a solution is found. Thus, the parameters of stratified families
of templates are grown on-the-fly guided by the reasons for unsatisfiability. We
found that a careful design of parameter update strategies important for scaling
the stratified CEGIS to hard relational verification problems. The manual tun-
ing, however, is tiresome and suboptimal. We leave as future work to investigate
methods for automatic tuning of parameter update strategies.

6 Evaluation

To evaluate the presented verification framework, we have implemented PCSat,
a satisfiability checking tool for pfwCSP based on stratified CEGIS. PCSat sup-
ports the theory of Booleans and the quantifier-free theory of linear inequalities
over integers and rationals. The tool is implemented in OCaml, using Z3 [41] as
the backend SMT solver. We ran the tool on a diverse collection of 20 relational
verification problems, consisting of k-safety, co-termination, and GNI problems.
Though we have manually reduced them to pfwCSP using the presented method
in Sect. 4, this process can be easily automated. The full benchmark set is pro-
vided in the extended report [58]. All experiments have been conducted on
3.1 GHz Intel Xeon Platinum 8000 CPU and 32 GB RAM with the time limit of
600 s.

The experimental results are summarized in Table 1. The columns “Time (s)”
and “#Iters” respectively show elapsed wall clock time in seconds and numbers
of CEGIS iterations. PCSat solved 15 verification problems fully automatically
and 5 problems labeled with the symbol † and/or ‡ semi-automatically. For the 4
problems labeled with †, we manually provided small hints for invariant synthesis
(interested readers are referred to [58]). The provided hints for all but SquareSum
are non-relational invariants that can be inferred prior to relational verification
by using a CHCs solver or an invariant synthesizer. For the 2 problems labeled
with ‡, we manually chose the initial value for the parameters of the template
family for ordinary predicate variables to reduce the elapsed time. This can be
automated by running PCSat with different initial values in parallel.

The problems DoubleSquareNI h**, HalfSquareNI, ArrayInsert, and
SquareSum are k-safety verification problems obtained from [50] that require non-
lock-step scheduling.3 The problems DoubleSquareNI h** are generated from
Example 1 by a case analysis of the valuation for the boolean variables h1 and h2.
PCSat solved all the k-safety problems but SquareSum fully automatically. The
tool Pdsc proposed in [50] can verify them but requires the user to provide the
atomic predicates for expressing relational invariants and schedulers. The prob-
lems CotermIntro1 and CotermIntro2 are asymmetric co-termination problems
obtained from the symmetric problem in Example 2 and are verified by PCSat
fully automatically. The problems TS GNI h** are generated from Example 3 by
3 We omitted ArrayIntMod from [50] because its verification requires the theory of

arrays which the current version of PCSat does not fully support.

760 H. Unno et al.

a case analysis and are verified by PCSat with small non-relational hints. We
have also tested PCSat on various TS-GNI (SimpleTS GNI1, SimpleTS GNI2,
InfBranchTS GNI) and TI-GNI problems (TI GNI h**) and obtained promis-
ing results. As far as we know, no existing tools can verify these non-k-safety
relational problems.

Furthermore, manual inspection of the PCSat’s output logs for the GNI
problems that required hints revealed that the functional predicate synthesis
appears to be the main bottleneck of the current version. In fact, we confirmed
that the problems can be solved in less than 10 s if appropriate functional pred-
icates for angelic non-determinism are manually provided. As future work, we
plan to investigate methods for improved functional predicate synthesis.

7 Related Work

7.1 Relational Verification

There has been substantial work on verifying relational properties. They include
program logics, type systems, or program analysis frameworks such as abstract
interpretation and model checking [1,5,9,19,25,52,62], program transformation
approaches such as self-composition or product programs [4,7,15,20,21,42,47,
54,57,64], and various other approaches [3,18,23,46,59]. We refer to [43] for an
excellent survey. However, most prior automatic approaches address only the k-
safety fragment [17,54] and cannot verify non-k-safety (actually, not even hyper-
safety) properties such as co-termination, TS-NI, TI-GNI, and TS-GNI [6,11,40].
The only exception that we are aware is the recent work by Coenen et al. [19] that
proposes a sound method for automatically verifying ∀∃ hyperproperties such
as GNI for finite state systems. To our knowledge, we are the first to propose a
sound-and-complete approach to automatically verifying these non-hypersafety
properties for infinite state programs.4

A key task in many relational verification methods, including ours, is the
discovery of relational invariants which relate the states of multiple program
executions. While most prior approaches are limited to fixed execution schedule
(or alignment) such as lock-step and sequential [7,8,20,21,42,54,57], a recent
work by Shemer et al. [50] has proposed a k-safety property verification method
that automatically infers fair schedulers sufficient to prove the goal property.
Importantly, the schedulers in their approach can be semantic in which the
choice of which program to execute can depend on the states of the programs
as opposed to the classic syntactic schedulers such as lock-step and sequential
that can only depend on the control locations. Our approach also infers such fair
semantic schedulers, and as remarked before, they enable solving instances like
doubleSquare that are difficult for previous approaches. However, [50] requires

4 However, [19] can verify (relational) temporal properties, whereas we only support
functional properties that are given by pre and post conditions of whole program
runs. We leave as future work to investigate methods for verifying relational temporal
properties of infinite state programs.

Constraint-Based Relational Verification 761

Table 1. Experimental results of PCSat on the relational verification benchmarks

Program Time (s) #Iters Program Time (s) #Iters

DoubleSquareNI hFT 17.762 42 HalfSquareNI 11.853 35

DoubleSquareNI hTF 26.495 55 ArrayInsert‡ 118.671 73

DoubleSquareNI hFF 2.944 9 SquareSum†‡ 337.596 117

DoubleSquareNI hTT 4.055 11 SimpleTS GNI1 5.397 14

CotermIntro1 19.322 80 SimpleTS GNI2 8.919 26

CotermIntro2 15.871 73 InfBranchTS GNI 2.607 4

TS GNI hFT† 47.083 78 TI GNI hFT† 4.389 16

TS GNI hTF 5.076 17 TI GNI hTF 2.277 6

TS GNI hFF 7.174 24 TI GNI hFF 2.968 6

TS GNI hTT† 23.495 53 TI GNI hTT 4.148 22

the user to provide appropriate atomic predicates and is not fully automatic.
By contrast, our approach soundly and completely encodes the problem as a
constraint satisfaction problem and fully automatically verifies hard instances
like doubleSquare by constraint solving.

Furthermore, our work extends the fair semantic scheduler synthesis to
beyond k-safety problems like co-termination, TI-GNI and TS-GNI, in a sound
and complete manner. We note that the extensions are non-trivial and involves
delicate uses of functional predicate variables and well-founded predicate vari-
ables to ensure scheduler fairness in the presence of non-termination as well as
uses of prophecy variables and functional predicate variables to handle angelic
non-determinism. The higher-degree of automation and the extension to non-
k-safety properties are thanks to the expressive power of our novel constraint
framework pfwCSP.

7.2 Predicate Constraint Solving

Our pfwCSP solving technique builds on and generalizes a number of techniques
developed for CHCs solving as well as invariant and ranking function discovery.
Most closely related to our constraint solving method are CEGIS-based [51] and
data-driven approaches to solving CHCs [14,22,24,26,27,38,44,45,48,49,65]. As
remarked before, the new pfwCSP framework is strictly more expressive than
CHCs and extending the prior techniques to the new framework is non-trivial.

Our stratified CEGIS is inspired by the idea of stratified languages of predi-
cates proposed in the context of predicate abstraction with CEGAR [34,55]. It
is also similar in spirit to the work by Padhi et al. [44], but they use a stratified
family of grammars. Also none of these prior works use unsat cores for updating
the language/grammar stratum, synthesize well-founded relations and functional
predicates, or support non-Horn clauses.

762 H. Unno et al.

Our class of pfwCSP constraints is related to existentially-quantified Horn
clauses (E-CHCs) introduced by Beyene et al. [12]. E-CHCs does not have
non-Horn clauses or functional predicate variables. However, it has disjunc-
tive well-foundedness constraints which are similar to our well-founded predicate
variables. Also, existential quantifiers can be used to encode head disjunctions
and functional predicates. We conjecture that pfwCSP and E-CHCs are inter-
reducible, but it is not trivial to fill the gap. Also, inter-reducibility is a desirable
feature: different formats may have different benefits. For relational verification,
as we have shown, pfwCSP enables direct sound-and-complete encodings of the
problems. For instance, head disjunctions allow direct encoding of scheduler
fairness and finitary angelic non-determinism (cf. Remark 3). And, functional
predicate variables can be explicitly given necessary-and-sufficient parameters
to encode angelic non-determinism and difference bounds for ensuring scheduler
fairness in the presence of non-termination. The tight encodings also lead to
reduction in search space and benefited the constraint solving.

8 Conclusion

We have introduced the class pfwCSP of predicate constraint satisfaction prob-
lems that generalizes CHCs with arbitrary clauses, well-foundedness constraints,
and functionality constraints. We have then established a program verification
framework based on pfwCSP by showing that (1) pfwCSP can soundly-and-
completely encode various classes of relational problems of infinite-state non-
deterministic programs, including hard instances of k-safety, co-termination,
and termination-sensitive generalized non-interference that benefit from state-
dependent scheduling/alignment (Theorems 1–4), and (2) existing CHCs solving
and invariants/ranking function synthesis techniques can be adopted to pfwCSP
solving and further improved with the idea of stratified CEGIS for simultane-
ously achieving completeness (Theorem 5) and practical effectiveness.

In future work we plan to investigate ways to improve functional predicate
synthesis, automatic tuning of parameter update strategies for constraint solving,
and whether a constraint-based approach (and the techniques presented in the
present paper) can be extended to reason about relational temporal properties
such as the ones expressed in hyper temporal logics [16,25].

Acknowledgments. We thank the anonymous reviewers for their suggestions. This
work was supported by ONR grant # N00014-17-1-2787, JST ERATO HASUO Meta-
mathematics for Systems Design Project (No. JPMJER1603), and JSPS KAKENHI
Grant Numbers 17H01720, 18K19787, 19H04084, 20H04162, 20H05703, and 20K20625.

References

1. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A relational logic for
higher-order programs. J. Funct. Program. 29, E16 (2019)

Constraint-Based Relational Verification 763

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

3. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: PLDI (2017)

4. Asada, K., Sato, R., Kobayashi, N.: Verifying relational properties of functional
programs by first-order refinement. In: PEPM (2015)

5. Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting
semantics and its application to static analysis of information flow. In: POPL
(2017)

6. Barthe, G.: An introduction to relational program verification (2020)
7. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.

In: FM (2011)
8. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.

In: CSFW (2004)
9. Benton, N.: Simple relational correctness proofs for static analyses and program

transformations. In: POPL (2004)
10. Beringer, L.: Relational bytecode correlations. J. Log. Alg. Meth. Pro. 79(7), 483–

514 (2010)
11. Beringer, L., Hofmann, M.: Secure information flow and program logics. Arch.

Formal Proofs (2008)
12. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn

clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 61

13. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II: Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday (2015)

14. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10805, pp. 365–384. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89960-2 20

15. Churchill, B.R., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment
for equivalence checking. In: PLDI (2019)

16. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF (2008)
18. Clochard, M., Marché, C., Paskevich, A.: Deductive verification with ghost moni-

tors. In: PACMPL, vol. 4, no. POPL (2020)
19. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:

Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

20. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3 20

21. Eilers, M., Müller, P., Hitz, S.: Modular product programs. TOPLAS 42(1), 1–37
(2020)

https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20

764 H. Unno et al.

22. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE learn-
ing for synthesizing invariants and contracts. PACMPL 2(OOPSLA), 1–25 (2018)

23. Farzan, A., Vandikas, A.: Automated hypersafety verification. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 200–218. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 11

24. Fedyukovich, G., Zhang, Y., Gupta, A.: Syntax-guided termination analysis. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 124–143.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 7

25. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

26. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 5

27. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: POPL (2016)

28. Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using
extremal counterexamples. In: PLDI (2015)

29. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI (2012)

30. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

31. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38574-2 20

32. Hojjat, H., Rümmer, P.: The Eldarica horn solver. In: FMCAD (2018)
33. Jhala, R., Majumdar, R., Rybalchenko, A.: HMC: verifying functional programs

using abstract interpreters. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 470–485. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 38

34. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 33

35. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
Java programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
352–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 19

36. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: PLDI (2011)

37. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

38. Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. CoRR
abs/1501.04725 (2015)

39. Leike, J., Heizmann, M.: Ranking templates for linear loops. LMCS 11(1) (2015)
40. McCullough, D.: Noninterference and the composability of security properties. In:

SP (1988)

https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-319-96145-3_7
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-38574-2_20
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1007/978-3-642-22110-1_38
https://doi.org/10.1007/11691372_33
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-08867-9_2

Constraint-Based Relational Verification 765

41. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

42. Naumann, D.A.: From coupling relations to mated invariants for checking infor-
mation flow. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 279–296. Springer, Heidelberg (2006). https://doi.org/10.
1007/11863908 18

43. Naumann, D.A.: Thirty-seven years of relational hoare logic: remarks on its prin-
ciples and history. CoRR abs/2007.06421 (2020)

44. Padhi, S., Millstein, T., Nori, A., Sharma, R.: Overfitting in synthesis: theory and
practice. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 315–334.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 17

45. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: PLDI (2016)

46. Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in rela-
tional verification. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS,
vol. 10981, pp. 164–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96145-3 9

47. Reynolds, J.C.: The Craft of Programming. Prentice Hall (1981)
48. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data

driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6 31

49. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 388–411. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38856-9 21

50. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 9

51. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: ASPLOS (2006)

52. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
PLDI (2016)

53. Terauchi, T.: Dependent types from counterexamples. In: POPL (2010)
54. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,

C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

55. Terauchi, T., Unno, H.: Relaxed stratification: a new approach to practical com-
plete predicate refinement. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp.
610–633. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46669-
8 25

56. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: PPDP
(2009)

57. Unno, H., Kobayashi, N., Yonezawa, A.: Combining type-based analysis and model
checking for finding counterexamples against non-interference. In: PLAS (2006)

58. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification
(2021). http://www.cs.tsukuba.ac.jp/∼uhiro/

59. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 571–591.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 30

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/11863908_18
https://doi.org/10.1007/11863908_18
https://doi.org/10.1007/978-3-030-25540-4_17
https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-662-46669-8_25
https://doi.org/10.1007/978-3-662-46669-8_25
http://www.cs.tsukuba.ac.jp/~uhiro/
https://doi.org/10.1007/978-3-319-63390-9_30

766 H. Unno et al.

60. Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 43–62. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38856-9 5

61. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412–431. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8 22

62. Volpano, D.M., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Compt. Secr. 4(2–3), 167–187 (1996)

63. Volpano, D.M., Smith, G.: Eliminating covert flows with minimum typings. In:
CSFW (1997)

64. Zaks, A., Pnueli, A.: CoVaC: compiler validation by program analysis of the cross-
product. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 35–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0 5

65. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI (2018)
66. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: ICFP (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-38856-9_5
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0_5
http://creativecommons.org/licenses/by/4.0/

Pre-deployment Security Assessment
for Cloud Services Through Semantic

Reasoning

Claudia Cauli1(B), Meng Li2, Nir Piterman1, and Oksana Tkachuk2

1 University of Gothenburg, Gothenburg, Sweden
2 Amazon Web Services, Seattle, U.S.A.

Abstract. Over the past ten years, the adoption of cloud services has
grown rapidly, leading to the introduction of automated deployment tools
to address the scale and complexity of the infrastructure companies and
users deploy. Without the aid of automation, ensuring the security of
an ever-increasing number of deployments becomes more and more chal-
lenging. To the best of our knowledge, no formal automated technique
currently exists to verify cloud deployments during the design phase. In
this case study, we show that Description Logic modeling and inference
capabilities can be used to improve the safety of cloud configurations.
We focus on the Amazon Web Services (AWS) proprietary declarative
language, CloudFormation, and develop a tool to encode template files
into logic. We query the resulting models with properties related to secu-
rity posture and report on our findings. By extending the models with
dataflow-specific knowledge, we use more comprehensive semantic rea-
soning to further support security reviews. When applying the developed
toolchain to publicly available deployment files, we find numerous vio-
lations of widely-recognized security best practices, which suggests that
streamlining the methodologies developed for this case study would be
beneficial.

1 Introduction

The term Infrastructure as Code (IaC) refers to the practice of configuring,
provisioning, and updating systems resources from source code files, which are
compiled into atomic instructions and then executed to deploy the desired archi-
tecture [29]. The advantage of handling code, instead of manually provisioning
resources, lies in the capability to use version control systems, orchestration
frameworks, and automated testing tools as part of the deployment process.
In addition to instructions relevant for resource creation, dependencies, and
updates, IaC configuration files contain information about settings, dataflow,
and access control. In a time when cloud companies provide customers with
simple-to-launch, albeit extremely powerful infrastructure, it is crucial to auto-
matically and provably verify the security of such systems.

In this study, we investigate IaC deployment frameworks and how these
are formally modeled and reasoned upon. We explore the usage of description
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 767–780, 2021.
https://doi.org/10.1007/978-3-030-81685-8_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_36&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_36

768 C. Cauli et al.

logics (DLs) as a conceptual-modeling formalism that is expressive, decidable,
and equipped with mature tooling. We argue that formal reasoning techniques
applied to deployment templates are an immensely valuable tool for developers
and security engineers by substantially aiding the automation of time-consuming
security reviews; helping them to detect complex logical errors at earlier stages;
and, containing the costs that finding and fixing security issues at later stages
would cause. As the prevalence of cloud infrastructure increases, in addition to
experts, automated reasoning tools could benefit inexperienced users as well.

System Studied. We focus on the Amazon Web Services proprietary IaC tool,
CloudFormation, the first to be introduced at a large scale, over ten years ago.
AWS, cloud provider within Amazon, serves millions of customers worldwide.
These include private businesses as well as government, education, nonprofit, and
healthcare organizations. While the cloud provider is responsible for the faithful
deployment of the customers’ desired configurations, it is the customer’s duty
to make sure that these comply with the security requirements of their business
context. Few management tools of this scale exist. Notable mentions are Ter-
raform [37], Microsoft Azure’s Resource Manager [28], Google Cloud’s Deploy-
ment Manager [19], and the recently introduced OASIS standard TOSCA [6].

Goal of Study. Our goal is to improve the quality of the security analyses that
are performed over IaC configurations pre-deployment; and by doing so, their
overall security. With this study, we investigate the application of description
logics to the formalization and reasoning over IaC deployments. In particular, we
are interested in three aspects: (i) whether proposed cloud configurations comply
with security best practices, (ii) how to aid customers in building more secure
infrastructure before deploying it, and (iii) to what extent formal automated
techniques can support manual pre-deployment security reviews.

Challenges. Little research has been done so far on the possibility to formalize
IaC languages, and no research has been done to devise a logic that is well-suited
to reason about cloud infrastructure. By nature, cloud infrastructure interacts
with an open environment that is, at best, only partially known. In particu-
lar, external-facing APIs and users participate in these interactions. By design,
cloud services allow for the composition of smaller components into large infras-
tructure, the complexity of which creates a challenge with respect to security.
Our models should capture the connectivity of resources, the flow of information
that spans across multiple paths, and the rich security-related data available
in IaC configuration files. This is further complicated by the need for a query
language for verification and falsification, able to express that mitigations must
be present (vs. may be absent), and security issues must be absent (vs. may be
present). Importantly, we need practical tools that support the implementation
of all these parts and that can scale to real-world IaC configurations.

Our Contribution. We provide a framework to encode IaC into description
logic, and investigate its effectiveness in answering configuration queries and
reasoning about dataflow, trust boundaries, and potential issues within the sys-
tem. Specifically, we test DLs reasoning capabilities to infer new facts about

Security Assessment for Cloud Services Through Semantic Reasoning 769

underspecified resources (such as those not included in a given deployment but
used by it) and leverage DLs open-world assumption to perform verification and
refutation, depending on the property being checked. We formalize additional
security knowledge that allows for checking system-level semantic properties; i.e.,
properties that consider the nature of the cloud environment and more complex
reachability over an inferred graph representation of the infrastructure.

Throughout the study, we make four novel contributions: (i) the formaliza-
tion and logical encoding of AWS CloudFormation (Sect. 3); (ii) a technique to
express security properties (Sect. 4); (iii) the experimental evaluation of encod-
ing and query times, accounting for the most common security issues that we
found over publicly available IaC templates (Sect. 5); and (iv) an extension that
enables semantic dataflow reasoning (Sect. 6). Our tool is implemented in Scala
and available online [14]. We include preliminaries in Sect. 2; discuss related work
in Sect. 7; and conclude in Sect. 8.

2 Preliminaries

Description Logics. DLs are a family of logics well suited to model relation-
ships between entities. They provide the logical foundation of the well-known
Web Ontology Language [20,23,32], for which extensive tool support exists (e.g.,
the Protégé editor and off-the-shelf reasoners such as FaCT, HermiT, and Pel-
let [18,30,36,39]). We introduce the description logic ALC [1,24,34], Attributive
Logic with Complement, and two additional features that are relevant for our
study. ALC formulae are built from symbols from the alphabets NC , of atomic
concept names; NR, of role names; and NI , of individual names. These are
the DL equivalents of FOL unary predicates, binary predicates, and constants,
respectively. ALC concept expressions are built according to the grammar:

C,D ::= ⊥ | � | A | ¬C | C � D | C � D | ∃r.C | ∀r.C

where A is an atomic concept from the set NC ; C,D are possibly complex con-
cepts; and r is a role from the alphabet NR. Terminological knowledge is repre-
sented via general concept inclusion axioms C �D. As an example, in the remain-
der of this paper we will refer to two standard axioms that enforce the domain
and range of binary relations: dom(r, C) ≡ ∃r.��C and ran(r, C) ≡ ∃r−.��C.
Assertional knowledge is represented via concept assertions C(a) and role asser-
tions r(a, b). In this paper, we will use three additional operators: inverse roles,
functionality constraints, and complex role inclusions. The first, denoted r−,
encodes the converse of the binary relationship r. The second enforces binary
relationships to be functional. The third, written r ◦ s � t, establishes that the
chaining of the two relationships r and s implies the relationship t, and can
be used to implement transitivity (when r = s = t). A model of a DL knowl-
edge base is an interpretation I, over a domain Δ, that satisfies all the axioms
and assertions contained and implied by the knowledge base. For the purpose of
our application, we leverage two classical inference problems: satisfiability and
instance retrieval, whose full definitions are found in standard textbooks [2,3].

770 C. Cauli et al.

AWS CloudFormation. AWS CloudFormation, cfn, provides users with a
declarative programming language and a framework to provision and manage
over 500 resources spread across 70 services [15].1 Services are products such as
storage, databases, and processors, and their interface is implemented through
resources, which are the actual modules that users declare and deploy. Their
declaration is done by writing one or more so-called CloudFormation Templates
(JSON-formatted configuration files). Within a template, users configure settings
and communication of the desired resource instances. As an example, let us
consider one of the most widely known storage products within AWS: the Simple
Storage Service S3 (also illustrated in Listings 1.1 and 1.2). The CloudFormation
interface for S3 consists of two resources: S3::Bucket and S3::BucketPolicy. A
Bucket is a single unit of storage whose properties include encryption, replication,
and logging settings, which can be viewed as the bucket’s own configuration
parameters. They could also be references to other resources that are connected
to the current one, e.g., the unique ID of another bucket where logs are stored.
A BucketPolicy is a resource that links an access control policy to a bucket. All
the properties that can be instantiated and the structure of resource-types such
as S3::Bucket and S3::BucketPolicy are given in the CloudFormation Resource
Specification [15]. The resource specification is a collection of files that prescribe
resource properties and their allowed values. Provided that a configuration file is
valid with respect to the specifications, an IaC deployment environment compiles
it into instructions that are then executed to provision the requested resources
in the correct dependency order and with the desired settings.

3 Formalization and Encoding of IaC Deployments

"ResourceType":
"S3:: Bucket": {

"Properties":{
"BucketName" : "String",
"LoggingConfiguration ": {

"Type": "LoggingConfiguration",
"Required": false } ... }},

"PropertyTypes": ...,
"S3:: Bucket.LoggingConfiguration ":{

"Properties": {
"DestinationBucketName":{

"Type": "String",
"Required": false },

"LogFilePrefix ":{
"Type": "String",
"Required": false }}}

Listing 1.1. S3::Bucket specification

While setting up this case study, we found
it convenient to come up with a formal-
ization, of both IaC resource specifica-
tions and IaC configuration files, to use as
an intermediate representation during the
encoding process. This was also needed
since we could not find suitable research
in the area (although some preliminary
research on IaC formalization does exist:
e.g., the PhD thesis in [12]). As mentioned
in Sect. 2, users consult the resource spec-
ifications to find out what fields and val-
ues are allowed when declaring a resource.
Intuitively, these provide a sort of type-
system, or JSON schema, against which configuration files must validate. Con-
figuration files contain the resource declarations of the instances that the user
wishes to deploy. Let us illustrate this with some examples. Listing 1.1 shows
a snippet of the S3::Bucket resource-type specification. In addition to the main
1 As of August 2020, exact number is Region-dependent.

Security Assessment for Cloud Services Through Semantic Reasoning 771

resource type, the specification includes definitions for its subproperties, their
types, and whether these are required. Although the example only shows string
properties, in general, allowed properties values range over objects, arrays, and
primitive types such as integers, doubles, longs, strings, and booleans. Listing
1.2, on the other hand, shows a common usage scenario of the S3 storage service,
where a bucket with basic configuration is used to store the desired data. The
instance has logical ID ConfigS3Bucket, is of type S3::Bucket, and specifies two
top-level properties, BucketName and LoggingConfiguration. It is easy to see
that this instance declaration validates against the resource specification of List-
ing 1.1. This snippet is taken from one of the benchmark deployments evaluated
in Sect. 5 (StackSet 15) and, incidentally, it violates a security best practice: “no
bucket should store its own logs.” Such formalization has been instrumental to
capture infrastructure configurations, resources settings and inter-connections,
and to precisely and automatically encode it into DL.

"ConfigS3Bucket ": {
"Type": "AWS::S3::Bucket",
"Properties":
"BucketName ": “ConfigStore”,
"LoggingConfiguration ": {

"DestinationBucketName":
“ConfigStore”,

"LogFilePrefix ":“config-bucket-
logs/”}}

Listing 1.2. S3::Bucket instance
declaration

Encoding. We translate IaC specifica-
tions into DL terminological knowledge,
and IaC configurations into assertional
knowledge. The conceptual modeling fea-
tures needed to model the former include
axioms to define domain and range of
properties, requiredness, and functional-
ity. These give us enough expressivity to
infer qualities of nodes that are under-
specified, such as those that are referenced by a template but not declared in it
(e.g., already deployed and running elsewhere), whose configuration is unknown.
To give readers an intuition of the encoding procedure, let us look at the equa-
tion below, which contains some of the axioms and assertions generated by the
translation of the code in Listings 1.1 and 1.2.

SpecS3::Bucket = { dom(bucketName,BUCKET), ran(bucketName, String),
(Funct bucketName), ..., dom(destinationBucket, LOGCONFIG),
ran(destinationBucket,BUCKET), ... }

Config = { BUCKET(ConfigS3Bucket), bucketName(ConfigS3Bucket, “ConfigStore”),

loggingConfig(ConfigS3Bucket, x), destinationBucket(x,ConfigS3Bucket),

logFilePrefix(x, “config-bucket-logs”) }

4 Security Properties Specification

We group properties into three categories that reflect their high-level meaning:
security issues, mitigations, and global protections to security concerns. We view
these in analogy to must and may specifications, which one would use to express

772 C. Cauli et al.

that an issue may be present (vs. must be absent) or that a protection must be
in place (vs. may be missing). Each property type is matched to a corresponding
query structure, which aids the translation of security requirements into formal
specifications and implements different fail/pass logics. Queries are written as
description logic expressions whose outcome can be one of UNSAT, SAT with no
instance found (SAT/0), and SAT with instances (SAT/+). These are achieved
by running a satisfiability check, possibly followed by an instance retrieval call.

Mitigations are configurations of single resources that reduce the likelihood of a
security event. In order to pass, these checks must be verified. Examples are:

M1 “All buckets must keep logs,”
M2 “Only buckets that host websites can have a public preset ACL,” and
M3 “Data stores must have backup or versioning enabled.”

Security Issues are configurations that potentially increase exposure to security
concerns. In order to pass, these checks must be falsified. Examples are:

I1 “There may be a bucket that is not encrypted,”
I2 “Encrypted bucket that sends events to a not-encrypted queue,” and
I3 “There may be a networking component that opens all ports to all.”

Global Protections are more general mitigations, applied on single resources
or as configuration patterns, whose presence and proper configuration ensures
protection over the system as a whole. Examples are:

P1 “There is an alarm configured to perform an action when triggered,” and
P2 “There is a configuration recorder logging changes to the infrastructure.”

We refer the reader to the repository in [14] for the properties specification files.2

5 Application to Existing Infrastructure

We now discuss the application of our approach to real-world IaC deployments.
We analyze AWS CloudFormation specification and configuration files, showing
that the approach is practical, scalable, and identifies potential security issues.

Operation of the Tool. We develop a tool that performs three main tasks. First,
the encoding of the cfn resource specifications into formal models (Resource
Terminologies).3 Second, the encoding of the actual cfn configuration files, also
called StackSet, into formal models (Infrastructure Model). Third, inference and
query answering for a set of predefined queries. We use the OWLApi [22] for the
encoding phase, and JFact [39] as the inference engine.

2 https://tiny.cc/PropertiesSpecifications.
3 Available here: https://tiny.cc/ResourceTerminologies.

https://tiny.cc/PropertiesSpecifications
https://tiny.cc/ResourceTerminologies

Security Assessment for Cloud Services Through Semantic Reasoning 773

Table 1. Evaluation results (mean times in millisec).

ID N NRT ENC Nα INF USAT SAT0 SAT+

05 6 6 44.53 814 30.64 0.67 – 2.46

11 8 8 79.22 917 37.09 0.72 – 2.86

03 10 7 59.94 886 35.65 0.64 2.23 1.56

09 10 9 76.33 940 38.66 0.68 5.03 2.96

02 11 8 76.73 1194 49.99 0.85 2.66 2.02

01 16 7 94.95 1007 43.38 0.66 3.96 1.83

08 19 8 87.66 1051 50.93 0.78 5.40 3.23

10 30 9 89.07 1177 71.23 0.86 2.62 2.08

06 30 12 102.00 1666 108.30 1.05 – 4.91

12 31 21 185.06 2798 301.61 4.99 24.93 36.43

13 51 32 241.17 3835 608.09 7.16 38.56 47.93

14 73 31 264.56 4143 847.36 2.83 51.36 19.20

15 79 21 313.40 4596 901.18 2.86 – 17.55

04 132 33 363.58 4834 2100.85 2.94 162.95 23.21

07 508 21 1005.46 10161 15834.14 7.34 40.86 13.52

Experimental Setup. We run our tool on 15 CloudFormation StackSets openly
available on GitHub. Regarding metrics, we define the infrastructure size as
the numbers of both declared resources (N) and their types (NRT). The latter
determines which resource terminologies are imported into the final encoded
model and thus influences its size, measured in number of logical axioms (Nα).
The smallest StackSet has 6 resources and 6 resource types, the largest has 508
resources and 21 resource types. We implement 50 properties from the ScoutSuite
collection [35] that are applicable at design time and, thus, over IaC deployment
files. Of the 50 properties, 29 are mitigations, 18 are security issues, and 3 are
global protections. We conduct our evaluation on an Intel Core i5 with 16 GB
RAM and perform warmup runs and clear the heap before each measurement.
This tuning helps to minimize the impact of just-in-time compilation and to
reduce the likelihood of garbage collection during the measured benchmark runs.

Results Evaluation. The average compilation time of the entire cfn resource
specifications (542 files) was 940 ms. Table 1 reports the results of our experi-
mental evaluation. StackSets are sorted by number of resources. For each, we
measure the time taken by the stackset encoding (ENC), inference (INF), and
query answering task (grouped by outcome: UNSAT, SAT with no instances, and
SAT with instances). As we can see from the table, the encoding time increases
with the infrastructure’s size, producing larger models that require longer infer-
ence times. Average query answering times increase accordingly. UNSAT queries
have shorter average answering times than those evaluating to SAT/0 or SAT/+
(UNSAT proofs are found before a SAT outcome can be deduced). In addition,

774 C. Cauli et al.

once a query is proved SAT, we invoke a procedure for instances retrieval to
determine whether satisfying instances are present or not. The specific infrastruc-
ture configuration and its size are the main influencing factors of query answer-
ing times. Considering that the average template has about 50–100 resources,
and templates having 100–500 resources are rare, the results suggest that our
approach scales to real-world IaC templates. For example, StackSet 04 has 132
resources, is encoded in 363 ms, classified in 2.1 s, and has a max average per-
query time of 162 ms. Assuming a pool of 100 checks to be run, the automated
modeling and verification of such an infrastructure would take, in the worst-case,
around 18 s.

5.1 Found Security Issues

Across all 15 deployments, we run 15 × 50 = 750 checks: 608 pass and 142 fail. Of
the 142 failing checks, 73 do not return any instance and 69 return one or more
instances (i.e., they fail with a SAT/+ outcome). Such a difference is due to the
nature of the single check and its definition of failure. A global protection check
fails when no instance implementing the protection is found; a security issue
check fails whenever is possible (SAT/0 or SAT/+); and a mitigation check fails
when no instance is found. We consider SAT/+ findings particularly important,
as they do not only witness a potential security issue but also an actual mis-
configuration. In particular, the 69 SAT/+-failing checks fail on 239 resource
instances, with the most found issues being:

Missing or misconfigured encryption 131
Missing or misconfigured logging 46

Missing or misconfigured versioning/backup/replication 44
Missing User password reset requirement 12

Misconfigured authorization 3
Misconfigured networking configuration 3

The 73 findings returning no instances fall into two groups: the absence of any
monitoring or alarming system is very frequent, as is the dependency on external
resources whose security posture cannot be assessed.

Absent global monitoring/alarming/logging protection 41
Usage of external resources with unknown configuration 32

6 Semantic Reasoning About Dataflows

To conclude our study, we manually craft two proof-of-concept models of terms
related to cloud security (ontologies). We use these to extend the formalization
of the CloudFormation IaC specification that was automatically generated by
our tool. Such domain-specific ontologies formalize several common cloud terms,

Security Assessment for Cloud Services Through Semantic Reasoning 775

"CustomerData": {
"Type": "AWS::S3:: Bucket",
"Properties ": {

"LoggingConfig ": {
"DestinationBucket ": "

AccessLog" }}},

"TopicSubscription":{
"Type": "AWS::SNS:: Subscription",
"Properties ": {

"Endpoint ": "devs@mail",
"Protocol ": "email",
"TopicArn ": "AccessTopic" }}

"TestData": {
"Type": "AWS::S3:: Bucket",
"Properties ": {

"LoggingConfig ": {
"DestinationBucket ": "

AccessLog" }}},

"AccessLog": {
"Type": "AWS::S3:: Bucket",
"Properties ": {

"NotificationConfig" : {
"TopicConfig" : {

"Topic ":" AccessTopic" }}}},

"AccessTopic": {
"Type": "AWS::SNS:: Topic" ... }

Fig. 1. Sample template: accounts prod (left) and test (right).

such as account, deployment, authenticated and unauthenticated users; generic
dataflow terms, such as storage, process, nodes, and flows of different kind; and
service-specific dataflow terms. By adding these on top of the underlying IaC
formal specification, we can reason about the higher-level business logic and
reachability of the infrastructure, and we can abstract it and visualize it in a
more convenient way. This is where the full inference power of description logics
comes into play. Such an inference power would be hard to achieve with an alter-
native encoding (e.g., using a modal logic). Let us illustrate how this technique
is applied to system-level analyses of interest for a security review: dataflow
and trust boundary analyses. A trust boundary is a portion of a system whose
components trust each other and where data can securely flow. Multiple trust
boundaries may exist within one system. Dataflows that travel across bound-
aries may introduce security issues and should be carefully reviewed. In Fig. 1,
we see an example of such a situation, where the infrastructure is deployed across
two accounts, prod and test, sharing resources AccessLog and AccessTopic. In
our encoding, we use the so-called DLs inclusion axioms to rewrite properties
that (when chained) imply the existence of a more general relation and to infer
additional characteristics of nodes. For example, in the following list axioms 2–
7 formalize the relationships of “logging to” and “sending notifications to” a
resource, which imply the existence of a transitive dataflow between nodes; and
axioms 8–9 allow to infer that the node devs@mail is an external node.

LoggingConfig ◦ DestinationBucket � logsTo (1)

TopicArn− ◦ Endpoint � sendsNotifications (2)
NotificationConfig ◦ TopicConfig ◦ Topic � sendsNotifications (3)

logsTo � dataflow (4)
sendsNotifications � dataflow (5)

dataflow ◦ dataflow � dataflow (6)
∃Protocol.{“email”} � ∀Endpoint.EmailAddress (7)

EmailAddress � ExternalNode (8)

776 C. Cauli et al.

This encoding enables us to compute a succinct dataflow diagram from
the reasoned IaC configuration (see Fig. 2), and to formally verify properties
that usually require a manual analysis of the infrastructure and its underlying
graph representation. E.g., the question, “can data flow from the customer-data
bucket to the outside?” can now be formalized as a DL formula and, using a

Fig. 2. Dataflow extracted from Fig. 1

reasoning engine, the existence of a
dataflow that starts on the customer-
data bucket and reaches the devs@mail
node can now be inferred. We
note that, due to the structure of
the TopicSubscription resource, this
dataflow could not have been detected
with simple reachability analysis on a
graph built without the aid of seman-
tic reasoning. Moreover, the dataflow
diagram highlights another potential
source of information leakage: testers being exposed to customer access infor-
mation. This needs to be mitigated by enforcing the proper trust boundaries, in
particular, by adding a dedicated access log storage for customer-data bucket in
the prod account.

7 Related Work

To the best of our knowledge, the problem of formally verifying the design of a
cloud infrastructure in its entirety has not been addressed before. Formal reason-
ing techniques have been successfully applied to different aspects of the cloud,
e.g. networks and access policies [4,5,7,16]. Non-formal tools exist that recom-
mend and run checks against already deployed resources [13,35], or scan IaC tem-
plates [10,11,38] for syntactical patterns violating security best practices. These
checks overlap considerably and can be expressed in our framework as well.
The disadvantages of such tools are that checks are local to single components,
can be performed only post-deployment, need complex configurations, access
permissions, or even manual interaction. The CFn-Linter [10] has a rule-based
component that users can extend with custom syntax checks, but none of the
rules currently available focus on security. The CFn-nag linting tool [11] checks
compliance to best practices only locally to the single resources; e.g., it cannot
detect issues such as “there is an events queue, receiving from a bucket with
critical functionality, that may not be encrypted” or “there might be a user that
is shared by multiple policies” (which would go against the least privilege prin-
ciple); as well as including in its analysis external resources that are referenced
by the template being linted.

Regarding our choice of logic, large-scale configuration problems have been
tackled with description logic before [26,27]. Simpler first-order logic formulas
with operators to represent object-oriented interface relationships could be used
to model IaC specifications. However, such an encoding would only partially

Security Assessment for Cloud Services Through Semantic Reasoning 777

solve our problem, which is more complex because our overall goal is to do
formal semantic analyses (e.g., dataflow and threat modeling). Semantic-based
approaches, even DL-based, are being used to do conceptual modeling of security
engineers’ expertise with the provable and explainable inference capabilities of
logics. As an example, we refer the reader to the OWASP “Ontology-driven
Threat Modeling” project [31] that aims at the formalization of security-related
knowledge in the context of different types of computer systems by means of
description logic ontologies. In contrast to logic programming languages, such
as Datalog, DLs inherently support functionality axioms and the existence of
anonymous individuals within a domain that is assumed to be open. These are
supported out-of-the-box without the need for an additional, more complex,
axiomatization or encoding. In particular, we took advantage of DL’s open-
world assumption to implement, in our properties encoding, verification and
falsification. Another alternative to DLs as a modeling language would be to use
3-valued models with labels on states and transitions and apply model checking
[8,9]. However, expressive branching-time logics [25,33] have not been studied
in the context of 3-valued models and we are also not aware of tool support at
the level available for DLs (cf. [17,21]).

8 Conclusion and Future Work

Throughout this case study, we investigated the usage of description logics-
based semantic reasoning to evaluate the security of cloud infrastructure pre-
deployment. We encoded Amazon Web Services’ Infrastructure as Code specifi-
cations and configurations into description logic models and verified the presence
and absence of potential security issues. We showed how this approach enables
deeper system-level analyses such as dataflow analysis. All results can be gen-
eralized to other existing IaC tools. While working on this project, we inter-
acted with developers on two occasions. First, for the benchmark templates used
in our experimental evaluation, we contacted the owners, told them about the
misconfigurations, and discussed potential security implications. Second, within
AWS, security engineers use a technique based on this paper for security reviews
of AWS products before they are launched, helping developers fix real issues
pre-deployment. In the process, we received valuable feedback that we used for
improving precision and reducing the number of false-positive results. We plan
to continue researching for an even better-fitting description logic formalism,
query language, three-valued semantics, and decision procedures for verification
and falsification of properties relevant to security analyses, such as dataflows,
trust boundaries, and threat modeling.

Acknowledgements. This research is supported by the ERC consolidator grant D-
SynMA under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 772459) and by Amazon Web Services.

778 C. Cauli et al.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

3. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook of Knowledge
Representation, Foundations of Artificial Intelligence, vol. 3, pp. 135–179. Elsevier
(2008)

4. Backes, J., et al.: Reachability analysis for AWS-based networks. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 231–241. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 14

5. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: FMCAD, pp. 1–9. IEEE (2018)

6. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

7. Bouchenak, S., Chockler, G.V., Chockler, H., Gheorghe, G., Santos, N., Shraer,
A.: Verifying cloud services: present and future. Operating Syst. Rev. 47(2), 6–19
(2013)

8. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

9. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
281–293. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
8 26

10. The AWS CloudFormation Linter (2020). https://github.com/aws-
cloudformation/cfn-python-lint. Accessed 15 Oct 2020

11. The CFnNag Linting Tool (2020). https://github.com/stelligent/cfn nag. Accessed
15 Oct 2020

12. Challita, S.: Inferring models from Cloud APIs and reasoning over them: a tooled
and formal approach. (Inférer des modèles à partir d’APIs cloud et raisonner
dessus: une approche outillée et formelle). Ph.D. thesis, Lille University of Sci-
ence and Technology, France (2018)

13. Infrastructure Security, Compliance, and Governance (2020). http://www.
cloudconformity.com/. Accessed 04 Aug 2020

14. CloudFORMAL: Prototype Implementation. http://github.com/claudiacauli/
CloudFORMAL. Accessed 15 Oct 2020

15. Resource Specification (2020). https://docs.aws.amazon.com/
AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html. Accessed
13 Aug 2020

16. Cook, B.: Formal reasoning about the security of Amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 3

17. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: the modal transition
system analyser. In: ASE, pp. 475–476. IEEE Computer Society (2008)

https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/978-3-540-27836-8_26
https://doi.org/10.1007/978-3-540-27836-8_26
https://github.com/aws-cloudformation/cfn-python-lint
https://github.com/aws-cloudformation/cfn-python-lint
https://github.com/stelligent/cfn_nag
http://www.cloudconformity.com/
http://www.cloudconformity.com/
http://github.com/claudiacauli/CloudFORMAL
http://github.com/claudiacauli/CloudFORMAL
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-resource-specification.html
https://doi.org/10.1007/978-3-319-96145-3_3

Security Assessment for Cloud Services Through Semantic Reasoning 779

18. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

19. Google Deployment Manager. https://cloud.google.com/deployment-manager.
Accessed 28 Jan 2021

20. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

21. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: a software model-checker for verification
and refutation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
170–174. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 18

22. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

23. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)

24. Krötzsch, M., Simancik, F., Horrocks, I.: A description logic primer. CoRR
abs/1201.4089 (2012)

25. Kupferman, O., Grumberg, O.: Buy one, get one free!!! J. Log. Comput. 6(4),
523–539 (1996)

26. McGuinness, D.L., Resnick, L.A., Isbell, C.L., Jr.: Description logic in practice: a
classic application. In: IJCAI, pp. 2045–2046. Morgan Kaufmann (1995)

27. McGuinness, D.L., Wright, J.R.: Conceptual modelling for configuration: a descrip-
tion logic-based approach. AI EDAM 12(4), 333–344 (1998)

28. Microsoft Azure Resource Manager (2020). https://azure.microsoft.com/en-us/
features/resource-manager/. Accessed 28 Jan 2021

29. Morris, K.: Infrastructure as Code: Managing Servers in the Cloud. O’Reilly Media,
Inc. (2016)

30. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015)

31. OWASP Ontology-driven Threat Modeling. https://github.com/OWASP/OdTM.
Accessed 14 May 2021

32. Patel-Schneider, P., Grau, B.C., Motik, B.: OWL 2 web ontology language direct
semantics (second edition). W3C recommendation, W3C (December 2012). http://
www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/

33. Sattler, U., Vardi, M.Y.: The hybrid µ-calculus. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 76–91. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 7

34. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

35. Multi-cloud Security Auditing Tool (2020). http://github.com/nccgroup/
ScoutSuite. Accessed 4 Aug 2020

36. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

37. Terraform. https://www.terraform.io/. Accessed 28 Jan 2021
38. Static Analysis Security Scanner for Terraform (2020). https://tfsec.dev/. Accessed

10 May 2021
39. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.

In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 26

https://cloud.google.com/deployment-manager
https://doi.org/10.1007/11817963_18
https://azure.microsoft.com/en-us/features/resource-manager/
https://azure.microsoft.com/en-us/features/resource-manager/
https://github.com/OWASP/OdTM
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
https://doi.org/10.1007/3-540-45744-5_7
http://github.com/nccgroup/ScoutSuite
http://github.com/nccgroup/ScoutSuite
https://www.terraform.io/
https://tfsec.dev/
https://doi.org/10.1007/11814771_26

780 C. Cauli et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Synthesis

Synthesis with Asymptotic Resource
Bounds

Qinheping Hu(B), John Cyphert, Loris D’Antoni,
and Thomas Reps

University of Wisconsin-Madison, Madison, USA
{qhu28,jcyphert,ldantoni,treps}@wisc.edu

Abstract. We present a method for synthesizing recursive functions
that satisfy both a functional specification and an asymptotic resource
bound. Prior methods for synthesis with a resource metric require
the user to specify a concrete expression exactly describing resource
usage, whereas our method uses big-O notation to specify the asymp-
totic resource usage. Our method can synthesize programs with complex
resource bounds, such as a sort function that has complexity O(n log(n)).

Our synthesis procedure uses a type system that is able to assign an
asymptotic complexity to terms, and can track recurrence relations of
functions. These typing rules are justified by theorems used in analysis
of algorithms, such as the Master Theorem and the Akra-Bazzi method.
We implemented our method as an extension of prior type-based synthe-
sis work. Our tool, SynPlexity, was able to synthesize complex divide-
and-conquer programs that cannot be synthesized by prior solvers.

1 Introduction

Program synthesis is the task of automatically finding programs that meet a
given behavioral specification, such as input-output examples or complete for-
mal specifications. Most of the work on program synthesis has been devoted to
qualitative synthesis, i.e., finding some correct solution. However, programmers
often want more than just a correct solution—they may want the program that
is smallest, most likely, or most efficient. While there are some techniques for
adding a quantitative syntactic objective in program synthesis [12]—e.g., finding
a smallest solution, or a most likely solution with respect to some distribution—
little attention has been devoted to quantitative semantic objectives—e.g., syn-
thesizing a program that has a certain asymptotic complexity.

Recently, Knoth et al. [16] studied the problem of resource-guided program
synthesis, where the goal is to synthesize programs with limited resource usage.
Their approach, which combines refinement-type-directed synthesis [18] and
automatic amortized resource analysis (AARA) [9], is restricted to concrete
resource bounds, where the user must specify the exact resource usage of the
synthesized program as a linear expression. This limitation has two drawbacks:
(i) the user must have insights about the coefficients to put in the supplied
c© The Author(s) 2021

A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 783–807, 2021.
https://doi.org/10.1007/978-3-030-81685-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_37&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_37

784 Q. Hu et al.

bound—which means that the user has to provide details about the complex-
ity of code that does not yet exist; (ii) the limitation to linear bounds means
that the user cannot specify resource bounds that involve logarithms, such as
O(log n) and O(n log n), common in problems based on divide and conquer.

In this paper, we introduce SynPlexity, a type-system paired with a type-
directed synthesis technique that addresses these issues. In SynPlexity, the
user provides as input a refinement type that describes both the functionality
and the asymptotic (big-O) resource usage of a program. For example, a user
might ask SynPlexity to synthesize an implementation of a sorting function
with resource usage O(n log n), where n is the length of the input list. As in
prior work, SynPlexity also takes as input a set of auxiliary functions that the
synthesized program can use. SynPlexity then uses a type-directed synthesis
algorithm to search for a program that has the desired functionality, and satisfies
the asymptotic resource bound. SynPlexity’s synthesis algorithm uses a new
type system that can reason about the asymptotic complexity of functions. To
achieve this goal, this type system uses two ideas.
1. The type system uses recurrence relations instead of concrete resource poten-

tials [9] to reason about the asymptotic complexity of functions. For example,
the recurrence relation T (u) ≤ 2T (� u

2 �) + O(u) denotes that on an input of
size u, the function will perform at most two recursive calls on inputs of size
at most � u

2 �, and will use at most O(u) resources outside of the recursive
calls.1 For a given recurrence relation, our type system uses refinement types
to guarantee that a function typed with this recurrence relation performs the
correct number of recursive calls on parameters of the appropriate sizes.

2. These typing rules are justified by classic theorems from the field of analysis
of algorithms, such as the Master Theorem [5], the Akra-Bazzi method [1],
or C-finite-sequence analysis [13].

Guéneau et al. observed that reasoning with O-notation can be tricky, and
exhibited a collection of plausible-sounding, but flawed, inductive proofs [8, §2].
We avoid this pitfall via SynPlexity’s type system, which establishes whether
a term satisfies a given recurrence relation. SynPlexity uses theorems that
connect the form of a recurrence relation—e.g., the number of recursive calls,
and the argument sizes in the subproblems—to its asymptotic complexity. In
particular, the SynPlexity type system does not encode inductive proofs of
the kind that Guéneau et al. show can go astray.

SynPlexity can synthesize functions with complexities that cannot be han-
dled by existing type-directed tools [16,18], and compares favorably with existing
tools on their benchmarks. Furthermore, for some domains, SynPlexity’s type
system allows us to discover auxiliary functions automatically (e.g., the split
function of a merge sort), instead of requiring the user to provide them.
1 The recurrence relation above is one possible instantiation of the Master Theorem [5,

§4.5 and §4.6]; it can also be instantiated as T (u) ≤ 2T (� u
2 �) + O(u). The type system

makes use of certain templates for instantiating the algorithm-analysis theorems that
we use. The use of templates means that the type system does not use all possible
instantiations, but all instantiations used in the type system are valid ones.

Synthesis with Asymptotic Resource Bounds 785

Contributions. The contributions of our work are as follows:

– A type system that uses refinement types to check whether a program satisfies
a recurrence relation over a specified resource (Sect. 3).

– A type-directed algorithm that uses our type system to synthesize functions
with given resource bounds (Sect. 4, Sect. 5).

– SynPlexity, an implementation of our algorithm that, unlike prior tools,
can synthesize programs with desired asymptotic complexities (Sect. 6).

Complete proofs and details of the type system can be found in the technical
report [11].

2 Overview

In this section, we illustrate the main components of our algorithm through an
example. Consider the problem of synthesizing a function prod that implements
the multiplication of two natural numbers, x and y. We want an efficient solution
whose time complexity is O(log x) with respect to the value of the first argument
x. In Subsect. 2.1, we show how existing type-directed synthesizers solve this
problem in the absence of a complexity-bound constraint. In Subsect. 2.2, we
illustrate how to specify asymptotic bounds in type-directed synthesis problems.
In Subsect. 2.3, we show how the tracking of recurrence relations can be used to
establish complexity bounds as well as guide the synthesis search.

2.1 Type-Directed Synthesis

We first review one of the state-of-the-art type-directed synthesizers, Synquid,
through the aforementioned example—i.e., synthesizing a program prod that
computes the product of two natural numbers. In Synquid, the specification is
given as a refinement type that describes the desired behavior of the synthesized
function. We specify the behavior of prod using the following refinement-type:

prod :: x:{Int | v ≥ 0} → y:{Int | v ≥ 0} → {Int | v = x ∗ y}.

Here the types of the inputs x and y, as well as the return type of prod are
refined with predicates. The refinement {Int | v ≥ 0} declares x and y to be
non-negative, and the refinement {Int | v = x∗y} of the return type declares the
output value to be an integer that is equal to the product of the inputs x and y.
In addition to the specification, the synthesizer receives as input some signatures
of auxiliary functions it can use. The specifications of auxiliary functions are also
given as refinement types. In our example, we have the following functions:

even :: x:Int → {Bool | x mod 2 = 0} dec :: x:Int → {Int | v = x − 1}
double :: x:Int → {Int | v = x + x} div2 :: x:Int → {Int | v = �x

2�}
plus :: x:Int → y:Int → {Int | v = x + y}

786 Q. Hu et al.

With the above specification and auxiliary functions, Synquid will output
the implementation of prod shown in Eq. (1).

prod = λx.λy. if x==0 then x else plus y (prod (dec x) y) (1)

Synquid uses a sophisticated type system to guarantee that the synthesized
term has the desired type. Furthermore, Synquid uses its type system to prune
the search space by only enumerating terms that can possibly be typed, and
thus meet the specification. Terms are enumerated in a top-down fashion, and
appropriate specifications are propagated to sub-terms. As an example, let us see
how Synquid synthesizes the function body—an if-then-else term—in Eq.
(1), which is of refinement type {Int | v = x∗y}. Synquid will first enumerate an
integer term for the then branch—a variable term x. Then, with the then branch
fixed, the condition guard must be refined by some predicate ϕ under which the
then branch (the term x refined by v = x) fulfills the goal type {Int | v = x∗y},
i.e., ∀x, y ≥ 0.ϕ ∧ v = x =⇒ v = x ∗ y. With this constraint, Synquid identifies
the term x == 0 as the condition. Finally, Synquid propagates the negation of
the condition to the else branch—the else branch should be a term of type
{Int | v = x ∗ y} with the path condition x �= 0—and enumerates the term plus
y (prod (dec x) y) as the else branch, which has the desired type.

The program in Eq. (1) is correct, but inefficient. Let us count each call to an
auxiliary function as one step; and let T (x) denote the number of steps in which
the program runs with input x. The implementation in Eq. (1) runs in Θ(x) steps
because T (x) satisfies the recurrence T (x) = T (x−1)+2, implying T (x) ∈ Θ(x).
Because, Synquid does not provide a way to specify resource bounds, such as
O(log x); one cannot ask Synquid to find a more efficient implementation.

2.2 Adding Resource Bounds

In our tool, SynPlexity, one can specify a synthesis problem with an asymp-
totic resource bound, and can ask SynPlexity to find an O(log x) implementa-
tion of prod. To express this intent, the user needs to specify (1) the asymptotic
resource-usage bound the synthesized program should satisfy, (2) the cost of
each provided auxiliary function, and (3) the size of the input to the program.

Asymptotic Resource Bound. We extend refinement types with resource annota-
tions. The annotated refinement types are of the form 〈τ ; α〉 where τ is a regular
refinement type, and α is a resource annotation. The following example asks the
synthesizer to find a solution with the resource-usage bound O(log u):

prod :: 〈x:{Int | v ≥ 0} → y:{Int | v ≥ 0} → {Int | v = x ∗ y}, O(log u)〉

Cost of Auxiliary Functions. The auxiliary functions supplied by the user serve
as the API in terms of which the synthesized program is programmed. Thus, the
resource usage of the synthesized program is the sum of the costs of all auxiliary
calls made during execution. We allow users to assign a polynomial cost O(ua),

Synthesis with Asymptotic Resource Bounds 787

for some constant a, or a constant cost O(1) to each auxiliary function. Here, u
is a free variable that represents the size of the problem on which the auxiliary
function is called.

In the prod example, all auxiliary functions are assigned constant cost, e.g.,
we give even the signature even :: 〈x:Int → {Bool | x mod 2 = 0}, O(1)〉.
Size of Problems. The user needs to specify a size function, size:τ → Int, that
maps inputs to their sizes, e.g., when synthesizing the sorting function for an
input of type list, the size function can be λl.|l|—the length of the input list.
In the prod example, the size function is size = λx.λy.x.

2.3 Checking Recurrence Relations

We extend Synquid’s refinement-type system with resource annotations, so that
the extended type system enforces the resource usage of terms. The idea of the
type system is to check if the given function satisfies some recurrence relation. If
so, it can infer that the function also satisfies the corresponding resource bound.
For example, according to the Master Theorem [3], if a function f satisfies the
recurrence relation T (u) ≤ T (� u

2 �) + O(1) where u is the size of the input, then
the resource usage of f is bounded by O(log u). Checking if a function satisfies a
given recurrence relation can be performed by checking if the function contains
appropriate recursive calls—e.g., if a function contains one recursive call to a
sub-problem of half size, and consumes only a constant amount of resources in
its body, then it satisfies T (u) ≤ T (� u

2 �) + O(1).
The following rule is an example of how we connect recurrence annotations

and resource bounds.

x : τ1, f : τ1 → τ2, Γ � t :: 〈τ2; ([1, �u
2 �], O(1))〉

Γ � (fix f. λx.t) :: 〈τ1 → τ2; O(log u)〉

The rule instantiates the Master Theorem example above. Note that, the anno-
tation ([1, � u

2 �], O(1)) states that the function body contains up to one recursive
call to a problem of size � u

2 �, and the resource usage in the body of t (aside from
calls to f itself) is bounded by O(1). The rule states that if the function body
t of type τ2 contains one recursive call to a sub-problem of size � u

2 �, then the
function will be bounded by O(log u).

The implementation of prod shown in Eq. (2) runs in O(log x) steps.

prod = λx. λy.if x == 0 then x else (2)
if even x then double (prod (div2 x) y)

else plus y (double (prod (div2 x) y))

To check that, SynPlexity’s type system counts the number of recursive calls
along any path of the function. There are three paths (two nested if-then-else
terms) in the program, and at most one recursive call along each path. Also,
one can check that the problem size of each recursive call is no more than � x

2 �.

788 Q. Hu et al.

Fig. 1. SynPlexity syntax.

Fig. 2. SynPlexity types.

For example, the recursive call prod (div2 x) y calls to a problem with size
div2 x, which is consistent with [1, � u

2 �], and u is x because size x y = x. In
addition, the condition that the resource usage of the body is bounded by O(1)
is satisfied because only auxiliary functions with constant cost are called.

3 The SYNPLEXITY Type System

In this section, we present our type system. First, we give the surface lan-
guage and the types, which extend the Synquid liquid-types framework with
resource annotations (Subsect. 3.1). Then, we show the semantics of our language
(Subsect. 3.2). Finally, we present SynPlexity’s type system (Subsect. 3.3),
which our synthesis algorithm uses to synthesize programs with desired resource
bounds.

3.1 Syntax and Types

Syntax. Consider the language shown in Fig. 1. In the language, we distinguish
between two kinds of terms: elimination terms (E-terms) and introduction terms
(I-terms). E-terms consist of variable terms, constant values c, and application
terms. Condition guards and match scrutinies can only be E-terms. I-terms are
branching terms and function terms. The key property of I-terms is that if the
type of any I-term is known, the types of its sub-terms are also known (which is
not the case for E-terms).

Types. Our language of types, presented in Fig. 2, extends the one of Syn-
quid [18] with recurrence annotations, which are used to track recurrence rela-
tions on functions. To simplify the presentation, we ignore some of the features of
the type system of Synquid [18] that do not affect our algorithm. In particular,

Synthesis with Asymptotic Resource Bounds 789

we do not discuss polymorphic types and the enumerating strategy that ensures
that only terminating programs are synthesized. However, our implementation
is built on top of Synquid, and supports both of those features.

Logical expressions are built from variables, constants, arithmetic operators,
and other user-defined logical functions. Logical expressions in our type system
can be used as refinements ϕ, size expressions φ, or bound expressions ψ. Refine-
ments ϕ are logical predicates used to refine ordinary types in refinement types
{B | ϕ}. We usually use a reserved symbol v as the free variable in ϕ, and let
v represents the inhabitants, i.e., inhabitants of the type {B | ϕ} are valuations
of v that satisfy ϕ. For example, the type {Int | v mod 2 = 0} represents the
even integers. Size expressions and bound expressions are used in recurrence
annotations, and are explained later.

Ordinary types includes primitive types and user-defined algebraic datatypes
D. Datatype constructors C are functions of type τ1 → . . . →τn → D. For exam-
ple, the datatype List(Int) has two constructors: Cons : Int → List(Int) →
List(Int), and Nil : List(Int). Refinement types are ordinary types refined
with some predicates ψ, or arrow types. Note that, unlike Synquid’s type sys-
tem, SynPlexity’s type system does not support higher-order functions2—i.e.,
arguments of functions have to be non-arrow types. All occurrences of τi and τ
in arrow types x1 :τ1 → . . . →xn :τn →y : τ have to be ordinary types or refined
ordinary types. We will discuss this limitation in Sect. 7.

We use recFun to denote the name of the function for which we are perform-
ing type-checking, and args to denote the tuple of arguments to recFun. For
example, in the function prod shown in Eq. (1), recFun=prod and args=x y.
An environment Γ is a sequence of variable bindings x : γ, path conditions ϕ,
and assignments for variables recFun and args.

Recurrence Annotations. Annotated types are refinement types anno-
tated with recurrence annotations. A recurrence annotation is a pair
([c1, φ1]f, . . . , [cn, φn]f; O(ψ)) consisting of (1) a set of recursive-call costs of
the form [ci, φi]f, and (2) a resource-usage bound of the form O(ψ). Intu-
itively, a recurrence annotation tracks the number ci of recursive calls to f
of size φi in the first element [c1, φ1]f, . . . , [cn, φn]f of the pair, as well as the
asymptotic resource usage of the body of the function (the second element
O(ψ)). Using these quantities, we can compute a recurrence relation describ-
ing the resource usage of the function recFun. For example, the recurrence
annotation ([1, u − 1]f, [1, u − 2]f; O(1)) corresponds to the recurrence relation
Tf(u) ≤ Tf(u − 1) + Tf(u − 2) + O(1).

A recursive-call cost [c, φ]f associated with a function f denotes that the body
of f can contain up to c recursive calls to subproblems that have sizes up to the
one specified by size expression φ. A size expression, φ, is a polynomial over a
reserved variable symbol u that represents the size of the top-level problem. In
our paper, a problem with respect to a function g :: x1 :τ1 → . . . →xn :τn →y :τ
is a tuple of terms e1 . . . en, to which g can be applied—i.e., ei has type τi for all
2 However, the type system can be extended to support restricted higher-order func-

tions (Sect. 5).

790 Q. Hu et al.

i from 1 to n. For the problems of function g, the size of each problem is defined
by a size function sizeg—a user-defined logical function that has type τ1 →
. . . →τn →Int; i.e., it takes a problem of g as input and outputs a non-negative
integer. In the body of g, we say that a recursive-call term g e1 . . . en satisfies a
size expression φ if for all x1, . . ., xn, sizeg �e1� . . . �en� ≤ [(sizeg x1 . . . xn)/u]φ,
where the xi’s are the arguments of g and the �ei�’s are the evaluations of ei

on input x1 . . . xn. (See Sect. 3.2 for the formal definition of �·�.) Note that one
annotation can contain multiple recursive-call costs, which allows the function
to make recursive calls to sub-problems with different sizes. We often abbreviate
〈τ, (O(1))〉 as τ and omit f in recursive-call costs if it is clear from context.

A resource bound O(ψ) of a non-arrow type specifies the bound of the
resource usage strictly within the top-level-function body. A resource bound
in a signature of an auxiliary function f specifies the resource usage of f . Bound
expressions ψ in O(ψ) are of the form ua logb u + c where a, b, and c are all
non-negative constants, and u represents the size of the top-level problem.

Example 1. In the function prod (Eq. (2)), the recursive-call term prod (div2
x) y satisfies the recursive-call cost [1, � u

2]�, because sizeprod = λz.λw.z, and

sizeprod �(div2 x)� �y� = �div2 x� = �x
2� = [(sizeprod x y)/u]�u

2 �.

3.2 Semantics and Cost Model

We introduce the concrete-cost semantics of our language here. The semantics
serves two goals: (1) it defines the evaluation of terms (i.e., how to obtain values),
which can be used to compute the sizes of problems in application expressions,
and (2) it defines the resource usages of terms.

Besides the syntax shown in Fig. 1, implementations of auxiliary functions
can contain calls to a tick function tick(c, t), which specifies that c units of a
resource are used, and the overall value is the value of t. Note that in our synthesis
language, we are not actually synthesizing programs with tick functions. We
assume that tick functions are only called in the implementations of auxiliary
functions. In the concrete-cost semantics, a configuration 〈t, C〉 consists of a term
t and a nonnegative integer C denoting the resource usage so far. The evaluation
judgment 〈t, C〉 ↪→ 〈t′, C +CΔ〉 states that a term t can be evaluated in one step
to a term (or a value) t′, with resource usage CΔ. We write 〈t, C〉 ↪→∗ 〈t′, C+CΔ〉
to indicate the reduction from t to t′ in zero or more steps. All of the evaluation
judgments are standard. Here we show the judgment of the tick function, where
resource usage happens.

〈tick(c, t), C〉 ↪→ 〈t, C + c〉 Sem-Tick

For a term t, �t� denotes the evaluation result of t, i.e., 〈t, ·〉 ↪→∗ 〈�t�, ·〉.
Example 2. Consider the following function that doubles its input.

fix double.λx.if x = 0 then 0 else tick(1,2 + double(x-1)).

Synthesis with Asymptotic Resource Bounds 791

Let tbody denote the function body if x=0 then 0 else tick(1,2+double(x-1)).
The result of evaluating double on input 5 is 10, with resource usage 5.

〈(fix double.λx.tbody)5, 0〉
↪→ 〈if 5=0 then 0 else tick(1,2+double(4)), 0〉
↪→ 〈if false then 0 else tick(1,2+ double(4)), 0〉
↪→ 〈tick(1,2+double(4)), 0〉 ↪→ 〈2+double(4), 1〉
↪→ 〈2+(fix double.λx.tbody)4, 1〉 ↪→∗ 〈4+double(3), 2〉 ↪→∗ 〈10+double(0), 5〉
↪→ 〈10+(if 0=0 then 0 else tick(1,2+double(0-1))), 5〉
↪→ 〈10+(if true then 0 else tick(1,2+double(0-1))), 0〉 ↪→ 〈10+0, 5〉

With the standard concrete semantics, the complexity of a function f is
characterized by its resource usage when the function is evaluated on inputs of
a given size.

Definition 1 (Complexity). Given a function fix f.λy.t of type : τ1 → τ2,
with size function sizef : τ1 → N, and suppose that for any possible input x,
the configuration 〈(fix f.λy.t)x, 0〉 can be reduced to 〈v, Cx〉 for some value
v. Then, if Tf : N → N is a function such that, for all, u ≥ 0, Tf (u) =
supx s.t. sizef (x)=u Cx, we say that Tf is the complexity function of f .

Note that Definition 1 assumes that the top-level term (fix f.λy.t)x can be
reduced to some value. Thus, Definition 1 only applies to terminating programs.

Definition 2 (Big-O notation). Given two integer functions f and g, we say
that f dominates g, i.e., g ∈ O(f), if ∃c, M ≥ 0. ∀x ≥ c. g(x) ≤ Mf(x).

In the rest of the paper, we use Tf to denote the complexity function of the
function f , and we say the complexity of f is bounded by a function g if Tf ∈
O(g). As an example, the complexity of the double function shown in Example
2 is Tdouble(u) := u, and hence Tdouble(u) ∈ O(u).
Auxiliary functions. We allow users to supply signatures for auxiliary func-
tions, instead of implementations. It is an obligation on users that such sig-
natures be sensible; in particular, when the user gives the signature 〈τ1 →
{B | ϕ(v, y)}, O(ψ(u))〉 for auxiliary function f , the user asserts that there exists
some implementation fix f.λy.t of f , such that: 1) for any input x, the output
of f on x satisfies ϕ, i.e., ϕ(�(fix f.λy.t)x�, x) is valid; and 2) for any input
x, the complexity of f is bounded by ψ(u), i.e., Tf (u) ∈ O(ψ(u)). Signatures
always over-approximate their implementations, as illustrated by the following
example.
Example 3. The signature doubleRelaxed :: 〈x:Int → {Int | v ≤ 3 ∗ x}, O(u2)〉
describes an auxiliary function that computes no more than the input times
3, and has quadratic resource usage. Note that the function double shown in
Example 2 can be an implementation of this signature because �double(x)� =
2 ∗ x ≤ 3 ∗ x, and the complexity function Tdouble(u) = u is in O(u2).

792 Q. Hu et al.

3.3 Typing Rules

The typing rules of SynPlexity are inspired by bidirectional type checking [17]
and type checking with cost sharing [16]. Recall that we use recFun to denote
the name of the function for which we are performing type-checking, and args
to denote the tuple of arguments to recFun.

An environment Γ is a sequence of variable bindings of the form x : γ,
path conditions ϕ, and assignments of the form x = ϕ for recFun and the
components of args. SynPlexity’s typing rules use three judgments: 1) Γ �
t :: γ states that t has type γ, 2) Γ � γ1 <: γ2 states that γ2 is a subtype of γ1,
and 3) Γ � γ � γ1|γ2 states that γ1 and γ2 share the costs in γ

Subtyping. The subtyping relations between refinement types are relatively
standard and can be found in the technical report [11]. The subtyping relations
between annotated types allow us to compare resource consumption of recurrence
annotations. The following is the rule for comparing recursive-call costs.

c′ > c Γ |= ∀u. φ′ ≥ φ

Γ � [c, φ] <: [c′, φ′]
<:-Rec

For example, if one branch of some branching term has type 〈τ, ([1, � u
3 �], O(ψ))〉,

it can be over-approximated by a super type 〈τ, ([1, � u
2 �], O(ψ))〉. The idea is

that the resource usage of an application calling to a problem of size � u
2 � will be

larger than the resource usage of the application calling to a smaller problem of
size � u

3 � (assuming all resource usages are monotonic).
Subtyping rules also allow the type system to compare branches with a dif-

ferent number of recursive calls. For example, base cases of recursive proce-
dures have no recursive calls, and thus have types of the form 〈τ, ([], O(ψ))〉.
With subtyping, these types can be over-approximated by types of the form
〈τ, ([c, φ], O(ψ))〉.
Cost Sharing. When a term has more than one sub-term in the same path,
e.g., the condition guard and the then branch are in the same path in an ite
term, the recursive-call costs of the term will be shared among its sub-terms. The
sharing operator α � α1|α2 partitions the recursive-call costs of α into α1 and
α2—i.e., the sum of the costs in α1 and α2 equals the cost in α. The following
is the sharing rule for a single recursive-call cost:

c1, c2 ≥ 0 c1 + c2 ≤ c

Γ � [c, φ] � [c1, φ] | [c2, φ]
S-Pot

Other sharing rules can be found in the technical report [11]. The idea is that
a single cost c can be shared as two costs c1 and c2 such that their sum is no
more than c. An annotation can be shared as two parts if every recursive cost
[ci, φi] in it can be shared as two parts [c1

i , φ1] and [c2
i , φ2]. Finally, annotations

can also be shared as more than two parts.

Synthesis with Asymptotic Resource Bounds 793

Table 1. Annotations that can be used to instantiate the rule T-Abs.

Bound (B) Recurrence relation Annotation (A)
Master Theorem O(log u) T (u) ≤ T (� u

d �) + O(1), d ≥ 2 ([1, � u
d �]; O(1)), d ≥ 2

O(u log u) T (u) ≤ dT (� u
d �) + O(u), d ≥ 2 ([d, � u

d �]; O(u)), d ≥ 2
Akra–Bazzi O(u log u) T (u) ≤ T (u

2
) + T (� u
2 �) + O(u) ([1, 	 u

2
], [1, � u
2 �]; O(u))

C-Finite Seq. O(u) T (u) ≤ T (u − d) + O(1), d ≥ 1 ([1, u − d]; O(1)), d ≥ 1
O(u2) T (u) ≤ T (u − d) + O(u), d ≥ 1 ([1, u − d]; O(u)), d ≥ 1

Example 4. There are multiple ways to share the recurrence annotation
([1, � u

2 �], [1, � u
2 �]; O(u)):

Γ � ([1, �u
2 �], [1, �u

2 �]; O(u)) � ([1, �u
2 �], [1, �u

2 �]; O(u)) | ([], O(u)),

where one annotation contains both recursive-call costs [1, � u
2 �], [1, � u

2 �]; and the
other contains no recursive-call cost. And

Γ � ([1, �u
2 �], [1, �u

2 �]; O(u)) � ([1, �u
2 �]; O(u)) | ([1, �u

2 �]; O(u)),

where each annotation contains one recursive-call cost.

Function Terms. The rule T-Abs shown below is really a rule-schema that is
parameterized in terms of an annotation (A) for a function body t, and a resource
bound (B) for the function term. If the function body t has some recurrence
relation described by the annotation A, then the function f will satisfy the
resource-usage bound B. Some example patterns are shown in Table 1.3

Γ ′ = [recFun ← f][args ← x1 . . . xn]Γ
γf = 〈x1 : τ1 → . . . → xn : τn → τ, (B)〉

Γ ′; x1 :〈τ1, O(1)〉; . . . ; xn :〈τn, O(1)〉; f : γf � t :: 〈τ, (A)〉
Γ � fix f.λx1 . . . λxn.t :: 〈x1 : τ1 → . . . → xn : τn → τ, (B)〉T-Abs

For example, if the annotation of the function body is ([1, � u
2 �]; O(1)), then the

resource bound in the function type will be O(log u), i.e., the resource usage of
f is bounded by O(log(sizef x1 . . . xn)).

At the same time, the rule stores the name f of the recursive function into
recFun, and its arguments as a tuple into args.

Example 5. We use a function fix bar.λx.if x = 1 then 1 else 1+bar(div2 x)
to illustrate the first pattern in Table 1. The body of bar has the annotated type
([1, � u

2 �]; O(1)) because (i) there exists only one recursive call to a sub-problem
whose size is half of the top-level problem size u, and (ii) the resource usage
inside the body is constant (with the assumption that all auxiliary functions

3 The patterns shown in Table 1 are those we used in the implementation. Patterns
capturing other recurrence relations can be added to the type system if needed.

794 Q. Hu et al.

have constant resource usage). This type appears in row 1, column 4 of Table 1.
Consequently, the recurrence relation of bar is T (u) ≤ T (� u

2 �) + O(1) (row 1,
column 3), where T (u) is the resource usage of bar on problems with size u.
Finally, according to the Master Theorem, the resource usage of bar is bounded
by O(log u) (row 1, column 2).

Branching Terms. In rule T-If, the condition has type Bool with refinement
ϕe. Two branches have different types—the then branch follows the path condi-
tion ϕe, and the refinement ϕ of the branch term, while the else branch follows
the path condition ¬ϕe. By having both branches share the same recurrence
annotation, T-If can introduce some imprecision. In particular, if the branches
belong to different complexity classes, the annotation of the conditional term
will be the upper bound of both branches.

Γ � α � α1|α2 Γ � e :: 〈{Bool | ϕe}, α1〉
Γ, ϕe � t1 :: 〈{B | ϕ}, α2〉 Γ, ¬ϕe � t2 :: 〈{B | ϕ}, α2〉

Γ � if e then t1 else t2 :: 〈{B | ϕ}, α〉 T-If

The rule T-Match is slightly different: (1) there can be more than two
branches, (2) all branches have the same type 〈τ, α2〉, and (3) variables in each
case Ci (x1

i . . . xn
i) are introduced in the corresponding branch.

Γ � α � α1|α2 Γ � e :: 〈τs, α1〉
Ci = τ1 → . . . →τn →τs Γ ; x1

i : τ1; . . . ; xn
i : τn � ti :: 〈τ, α2〉

Γ � match e with |i Ci (x1
i . . . xn

i) �→ ti :: 〈τ, α〉 T-Match

E-terms. The typing rules for E-terms are shown in Fig. 3. The two rules
for application terms are the key rules of our type system. Let us first look
at the E-RecApp rule for recursive-call terms. Recall that the recursive-call
annotation tracks the number of recursive calls and the sizes of sub-problems.
If the term f e1 . . . en is a recursive call—i.e., Γ (recFun) = f—the number
of recursive calls in one of the recursive-call costs will increase by one—i.e.,
[ck, φk] in the premise becomes [ck + 1, φk] in the conclusion. Also, we want
to make sure that the size of the subproblem this application term is called
on satisfies the size expression φk. If each callee term is refined by the pred-
icate ϕi, i.e., Γ � ei :: 〈{Bi | ϕi}, αi〉 , then the fact that the size of the
problem e1 . . . en satisfies φk can be implied by the validity of the predicate∧m

i=1[yi/v]ϕi ⇒ (size y1 . . . ym ≤ [size Γ (args)/u]φk). We introduce validity
checking, written Γ |= ϕ , to state that a predicate expression ϕ is always true
under any instance of the environment Γ .

Example 6. Recall Eq. (2). According to the rule T-RecApp, the recursive call
prod (div2 x) y has type 〈{Int | v = � x

2 � ∗ y}, ([1, u
2]); O(1)〉. Note that the

first argument (div2 x) has type {Int | v = � x
2 �}, the second argument y has

Synthesis with Asymptotic Resource Bounds 795

Fig. 3. Typing rules of E-terms

type {Int | v = y}, the size function is sizeprod = λz.λw.z, and the arguments
in the context are Γ (args) = x y. Therefore, the following predicate is valid:

[y1/v](v = �x

2 �) ∧ [y2/v](v = y)⇒sizeprod y1 y2 = [sizeprod Γ (args/u)]�u
2 �

⇔ (y1 = �x

2 �) ∧ (y2 = y)⇒y1 = �x

2 �.

The rule E-App states that callees have types τi, and the resource
usage does not exceed the bound O(ψ) in the annotation. Similar to the
E-RecApp rule, the size of the problem g calls to is [sizeg y1 . . . ym/u]
with the premise

∧m
i=1[yi/v]ϕi. The validation checking

∧m
i=1[yi/v]ϕi ⇒(

[sizeg y1 . . . ym/u]ψg ∈ O([size Γ (args)/u]ψ)
)

in the rule states that for any
instance of Γ , the size of the problem in the application term is in the big-O
class O([size Γ (args)/u]ψ). Note that the membership of big-O classes can
be encoded as an ∃∀ query. The query is non-linear, and hence undecidable in
general. However, we observed in our experiments that for many benchmarks
the query stays linear. Furthermore, even when the query is non-linear, existing
SMT solvers are capable of handling many such checks in practice.

796 Q. Hu et al.

3.4 Soundness

We assume that the resource-usage function ψ and the complexities T of each
function are all nonnegative and monotonic integer functions—both the input
and the output are integers. We show soundness of the type system with respect
to the resource model. The soundness theorem states that if we derive a bound
O(ψ) for a function f, then the complexity of f is bounded by ψ.

Theorem 1 (Soundness of type checking). Given a function fix
f.λx1 . . . λxn.t and an environment Γ , if Γ � fix f.λx1 . . . λxn.t :: 〈τ, O(ψ)〉,
then the complexity of f is bounded by ψ.

Our type system is incomplete with respect to resource usage. That is, there
are functions in our programming language that are actually in a complexity
class O(p(x)), but cannot be typed in our type system. The main reason why
our type system is incomplete is that it ignores condition guards when building
recurrence relations, and over-approximates if-then-else terms by choosing the
largest complexity among all the paths including even unreachable ones.

4 The SynPlexity Synthesis Algorithm

In this section, we present the SynPlexity synthesis algorithm, which uses
annotated types to guide the search of terms of given types.

4.1 Overview of the Synthesis Algorithm

The algorithm takes as input a goal type f : 〈τ, O(ψ)〉, an environment Γ that
includes type information of auxiliary functions, and the size functions for f
and all auxiliary functions. The goal is to find a function term of type 〈τ, O(ψ)〉.

The algorithm uses the rules of the SynPlexity type system to decompose
goal types into sub-goals, and then applies itself recursively on the sub-goals
to synthesize sub-terms. Concretely, given a goal γ, the algorithm tries all the
typing rules, where the type in the conclusion matches γ, to construct sub-goals:
for each sub-term t in the conclusion, there must be a judgment Γ � t :: γ′

in the premise; thus, we construct the sub-goal γ′—the desired type of t. For
each I-term rule, the type of each sub-term is always known, and thus a fixed
set of sub-goals is generated. For each E-term rule, the algorithm enumerates
E-terms up to a certain depth (the depth can be given as a parameter or it
can automatically increase throughout the search). If the algorithm fails to solve
some sub-goal using some E-term rule, it backtracks to an earlier choice point,
and tries another rule.

Because the top-level goal is always a function type, the algorithm always
starts by applying the rule T-Abs, which matches the resource bound O(ψ) using
Table 1 to infer a possible recurrence annotation for the type of the function body.
Also T-Abs constructs a sub-goal type for the function body. In the rest of this
section, we assume that goals are not function types.

Synthesis with Asymptotic Resource Bounds 797

Algorithm 1: GenerateE(Γ, γ, d)
Input : Context Γ , goal type γ = 〈{B | ϕ}, α〉, depth bound d

1 for t ← EnumerateE(Γ, d, B) do
2 if CheckE(t, Γ, γ) then return t

3 return ⊥

Synthesizing E-Terms. The algorithm for synthesizing E-terms is shown in
Algorithm 1. It enumerates each E-term t—with depth up to d—that satisfies
the base type B in the goal γ := 〈{B | ϕ}, ([c1, φ1]..[cn, φn]; O(ψ))〉 from the
context Γ . For each such E-term t, the algorithm checks whether t satisfies the
goal type with a subroutine CheckE, which operates as follows.

When t is a variable term, CheckE checks the refined type of t against the
goal. When t is an application term, CheckE first checks if the total number of
recursive calls in the term t exceeds the bound

∑
i ci, and if it does, the term t is

rejected. Otherwise, CheckE checks the sizes of sub-problems of recursive calls
in t. Formally, to check if a recursive application term f(t1, .., tm) is consistent
with some [ck, φk], the algorithm queries the validity of the following predicate

(
m∧

i=1
[yi/v]ϕi ⇒(sizef (y1 .. ym) = [sizef (Γ (args))/v]φk)),

where the yi’s are fresh variables, and the ϕi’s are the refinements of terms
ti’s. If the sizes of sub-problems are not consistent with the recursive-call costs
[c1, φ1]..[cn, φn], the term t is rejected. Note that one recursive call can possibly
satisfy more than one [ck, φk]. The algorithm enumerates all possible matches.
Finally, CheckE checks the refined type of t against the goal.

Checking the validity of auxiliary application terms is similar. CheckE needs
to establish that the following predicate holds, which asserts that the resource
usage of an auxiliary function does not exceed the bound O(ψ).

m∧

i=1
[yi/v]ϕi ⇒(

[sizeg y1..ym/v]ψg ∈ O([size Γ (args)/v]ψ)
)

.

Recall that the above query is undecidable in general, and is checked with best
effort by an SMT solver in SynPlexity.

Synthesizing I-Terms. Algorithm 2 shows the algorithm for synthesizing I-
Terms. GenerateI first tries to synthesize an E-term for the goal γ (line (1)).

If there is no E-term that satisfies the goal, and the match bound m is greater
than 0, GenerateI chooses to apply the rule T-Match lines (2)–(8). First, it
enumerates candidate scrutinees s, which are E-terms of some data type. Then
it generates match patterns according to the type of s (line (3)), updates the
goal with a new recursive-call cost (line (4)), and generates case terms ti for
each pattern pattern[i] (lines (5)–(7)). The subroutine UpdateCost is used to

798 Q. Hu et al.

subtract the recursive-call cost usage from the cost in γ. Finally, if all case terms
are found, the algorithm constructs the corresponding match-term and returns
it.

If there is no match-term satisfying the goal, GenerateI applies the rule
T-If to synthesize a term of the form if cond then tT else tF , and performs
three steps to construct sub-goals for sub-terms cond, tT , and tF : (1) it enumer-
ates the condition guard cond (line (10)) of type bool; (2) it updates the cost in
the goal γ (line (11)); and (3) it propagates sub-goals to the two branches tT and
tF with cond and ¬cond as the path condition (lines (12) and (13)), respectively.
Finally, if both tT and tF are found, the algorithm constructs the corresponding
if-term and returns it as a solution (line (14)).

Optimization. Algorithm 2 discussed above is based on bidirectional type-
guided synthesis with liquid types (Synquid [18]). Therefore, liquid abduction
and match abduction, two optimizations used in Synquid, can also be used in
SynPlexity. These two techniques allow one to synthesize the branches of if-
and match-terms, and then use logical abduction to infer the weakest assumption
under which the branch fulfills the goal type.

Algorithm 2: GenerateI(Γ, γ, d, m).
Input : Context Γ , goal type γ, depth bound d, match bound m

1 if t ← GenerateE(Γ, γ, d) then return t
2 if m > 0 then for s ← EnumerateE(Γ, d, dataT ype) do
3 patterns ← GeneratePatterns(Γ, TypeOf(s))
4 γ′ ← UpdateCost(s, γ)
5 for i ∈ [1, Size(patterns)] do
6 ti ← GenerateI(UpdateContext(Γ, s == patterns[i]), γ′, d, m − 1)
7 if ti == ⊥ then return ⊥
8 return Match s with |i patterns[i] → ti

9
10 for cond ← EnumerateE(Γ, d, Bool) do
11 γ′ ← UpdateCost(s, γ)
12 tT ← GenerateI(UpdateContext(Γ, cond), γ′, d, m)
13 tF ← GenerateI(UpdateContext(Γ, ¬cond), γ′, d, m)
14 if tT �= ⊥ ∧ tF �= ⊥ then return If cond then tT else tF

15 return ⊥

Example 7. We illustrate in Fig. 4 how the algorithm synthesizes the O(log x)
implementation of prod presented in Eq. (2). We omit the type contexts in the
example. We will use “??” to denote intermediate terms being synthesized (i.e.,
holes in the program). At the beginning, the type of ??1 (i.e., the term we are
synthesizing) is an arrow type with resource bound O(log u) specified by the
input goal. In this example, SynPlexity applies to the arrow type the rule

Synthesis with Asymptotic Resource Bounds 799

Fig. 4. Trace of the synthesis of an O(log x) implementation of prod.

T-Abs, parameterized according to the first rule in Table 1. This step produces
the sub-problem of synthesizing the function body ??2, whose annotation is
([1, � u

2 �]; O(1))—which means that ??2 should contain at most one recursive call
to sub-problems with size � u

2 �.
Next, SynPlexity chooses to fill ??2 with an if-then-else term (by

applying the T-If rules) with three sub-problems: the condition guard ??3, the
then branch ??4 and the else branch ??5. Note that here we share the num-
ber of recursive calls [1, u

2] as follows: 0 recursive calls in the condition guard,
and 1 in the then branch and the else branch. The left arrow E-App shows
how SynPlexity enumerates terms and checks them against the goal types of
sub-problems. For example, to fill ??4, SynPlexity enumerates terms of type
〈{Int | v = x ∗ y ∧ x = 0, ([1, u

2]; O(1))〉 , which are restricted to contain at most
one recursive call to prod. In Fig. 4, SynPlexity has picked the term x to fill
??4. The refinement type of the variable term x is {Int | v = x ∧ x = 0} where
x = 0 is the path condition. To check that x also satisfies the type of ??4, the
algorithm needs to apply rule E-SubType, and check that, for any v and x,
v = x ∧ x = 0 implies v = x ∗ y ∧ x = 0, and [0, � u

2 �] is approximated by [1, � u
2 �].

After applying another T-If rule for ??5, SynPlexity produces three
new sub-problems ??6, ??7, and ??8. When enumerating terms to fill ??7,
SynPlexity finds an application term double (prod (div2 x) y) that sat-
isfies the goal 〈{Int | v = x ∗ y ∧ x mod 2 = 0, ([1, � u

2 �]; O(1))〉 . To
check that the size of the problem in the recursive call prod (div2 x)
y satisfies the recursive-call cost [1, � u

2 �], the type system first checks the
refinement of the callee. The refinement of the first argument (div2 x) is
ϕ1 := v = � x

2 �. The refinement of the second argument y is ϕ2 := v = y. Conse-
quently, the size of the sub-problem prod (div2 x) y satisfies [1, � u

2 �] because
[z/v]ϕ1 ∧ [w/v]ϕ2 =⇒ size z w = [(size x y)/v]� u

2 �, which can be simplified

800 Q. Hu et al.

to z = � x
2 � ∧ w = y =⇒ z = � x

2 �. (Recall that the size function for prod is
size := λz.λw.z.)

The algorithm is sound because it only enumerates well-typed terms.

Theorem 2 (Soundness of the synthesis algorithm). Given a goal type
〈τ, O(ψ)〉 and an environment Γ , if a term fix f.λx1..λxn.t is synthesized by
SynPlexity, then the complexity of f is bounded by ψ.

5 Extensions to the SynPlexity Type System

In this section, we introduce two extensions to the SynPlexity type system.

Recurrence Relations with Correlated Sizes. The type system shown in
Sect. 3 only tracks sub-problems with independent sizes. For example, consider
the recurrence relation T (u) = T (l) + T (r) + O(1), where the variables l and
r are correlated by the constraint l + r < u. This relation is needed to rea-
son about programs that manipulate binary trees or binary heaps, where l and
r represent the sizes of the two children. To support such a recurrence rela-
tion, we extend SynPlexity’s type system with recursive-call costs of the form
[1, l], [1, u − 1 − l], where l is a free variable. When correlated recurrence rela-
tions are present, the synthesis algorithm will: (1) match the first enumerated
recursive-call term to [1, l], and instantiate the size l with s, where s is the size
of the recursive-call term (s should be smaller than the size u of the top-level
function); and (2) use the size s of the recursive-call term computed in step 1 to
constrain the algorithm to enumerate only recursive-call terms of sizes at most
u − 1 − s.

Synthesis of Auxiliary Functions. Most of the existing type-directed
approaches require the input to the problem to contain all needed auxiliary
functions. With SynPlexity, some of the auxiliary functions needed to solve
synthesis problems with resource annotations can be synthesized automatically.

For example, consider the problem prod described in Sect. 2. In this problem,
we observe that one of the provided auxiliary functions, div2, strongly resembles
one of the elements of the recurrence relation, T (u) ≤ T (� u

2 �) + O(1), needed to
synthesize a program with the desired resource usage. In particular, we know that
one needs an auxiliary function that can take an input of size u and produce an
output of size � u

2 �. In this example, the required auxiliary function div2 merely
needs to divide the input by 2 (and round down), but in certain cases it might
need a more precise refinement type than merely changing the size of the input.
For example, the auxiliary function split used by merge sort needs to split the
input list xs into two lists v1 and v2 that are half the length of the input and
such that elems(v1) � elems(v2) = elems(xs). However, all we know from the
refinement is that the output lists must be half the length of the original list.

Although we do not know what this auxiliary function should do exactly, we
can use the size constraint appearing in the recurrence relation to define part

Synthesis with Asymptotic Resource Bounds 801

of the refinement type we want the auxiliary function to satisfy. SynPlex-
ity builds on this idea and incorporates an (optionally enabled) algorithm,
SynAuxRef, that while trying to synthesize a solution to the top-level syn-
thesis problem also tries in parallel to synthesize auxiliary functions that can
create sub-problems with the size constraints needed in the recurrence relation.
To address the problem mentioned above—i.e., that we do not know the exact
refinement type the auxiliary function should satisfy—SynAuxRef enumerates
auxiliary refinements, which are possible specifications that the auxiliary func-
tion aux we are trying to synthesize might satisfy.

Synthesis with Higher-Order Functions. Although SynPlexity does not
support higher-order functions in general, it can solve restricted but practical
problems with higher-order functions. The restriction supported introduces four
assumptions on the synthesis problems. First, we assume that the resource usage
of any function argument g is constant, i.e., g : 〈τ, O(1)〉. Second, arrow-type
arguments in recursive calls in the synthesized program are the same as the
arrow-type arguments of the top-level function. For example, in the body of a
higher-order function fix f.λgλxλy.t, all recursive application terms must be of
the form f(g, ,) where can be any well-typed term. Third, we assume that the
sizes of outputs of functions as arguments do not affect the asymptotic resource
usage of the synthesized programs. Finally, arrow-type arguments cannot appear
in size functions.

We extend the syntax and the type system of SynPlexity to support the
restricted problems (the detail of this extension can be found in the technical
report [11]). We also modify the synthesis algorithm to prune E-terms that break
the second or third restriction mentioned above.

To support the second restriction (i.e., that we need to call the same function
arguments in recursive calls), the synthesis algorithm first stores the function
arguments of the top-level functions. Later, when a recursive call is enumer-
ated, the synthesizer checks whether the recursive call has the same function
arguments, and rejects the candidate if it does not.

To support the third restriction (i.e., that the behavior of function arguments
should not affect the resource usage), the synthesis algorithm avoids enumerat-
ing nested application terms where the resource usage of the outer application
depends on the value of an inner application term that calls a function argument.

6 Evaluation

In this section, we evaluate the effectiveness and performance of SynPlexity,
and compare it to existing tools.4 We implemented SynPlexity in Haskell on
top of Synquid by extending its type system with recurrence annotations as
presented in Sect. 3. The detailed results can be found in the technical report
[11].
4 All the experiments were performed on an Intel Core i7 4.00 GHz CPU, with 8 GB

of RAM. We used version 4.8.9 of Z3. The timeout for each benchmark was 10 min.

802 Q. Hu et al.

6.1 Comparison to Prior Tools

We compared SynPlexity against two related tools: Synquid [18] and ReSyn
[16], which are also based on refinement types.

Benchmarks. We considered a total of 77 synthesis problems: 56 synthesis
problems from ReSyn (each benchmark specifies a concrete linear-time resource
annotation), 16 synthesis problems from Synquid (which do not include resource
annotations) that are not included in ReSyn, and 5 new synthesis problems
involving non-linear resource annotations. In these synthesis problems, synthesis
specifications and auxiliary functions are all given as refinement types. For 3
of the new benchmarks, the auxiliary function required to split the input into
smaller ones is not given—i.e., the synthesizer needs to identify it automatically.

The three solvers (SynPlexity, Synquid, and ReSyn) have different fea-
tures, and hence not all synthesis problems can be encoded as synthesis bench-
marks for a single solver. In the rest of this section, we describe what benchmarks
we considered for each tool, and how we modified the benchmarks when needed.

Synquid: Synquid does not support resource bounds, so we encoded 77 syn-
thesis problems as Synquid benchmarks by dropping the resource annotations.
Synquid returns the first program that meet the synthesis specification, and can-
not provide any guarantees about the resource usage of the returned program.
Synquid can solve 75 benchmarks, and takes on average 3.3s. For 10 benchmarks
Synquid synthesizes a non-optimal program—i.e., there exists another program
with better concrete resource usage. For example, on the ReSyn-triple-2 bench-
mark (where the input is a list xs), Synquid found a solution with resource usage
O(|xs|2), while both SynPlexity and ReSyn can synthesize a more efficient
implementation with resource usage O(|xs|). The two benchmarks that Syn-
quid failed to solve include the new benchmark SynPlexity-merge-sort’. In
this benchmark, the auxiliary function required to break the input into smaller
inputs is not given, without which the sizes of solutions become much larger.
Therefore Synquid times out.

ReSyn: We ran ReSyn on the 56 ReSyn benchmarks with the corresponding
concrete resource bounds. We could not encode 16 problems because ReSyn does
not support non-linear resources bounds—e.g., the bound log |y| in the AVL-
insert Synquid benchmark. ReSyn solved all 56 benchmarks with an average
running time of 18.3 s.

SynPlexity: We manually added resource usages and resource bounds to exist-
ing problems to encode them for SynPlexity. For Synquid benchmarks with-
out concrete resource bounds, we chose well-known time complexities as the
bounds, e.g., we added the resource bound O(u log u) to the Sort-merge-sort
problem. For the ReSyn benchmarks, we translated the concrete resource usage
and resource bounds to the corresponding asymptotic ones—e.g., for the ReSyn-
common’ benchmark with the concrete resource bound |ys|+|zs|, we constructed
a SynPlexity variant with the asymptotic bound O(u) and a size function
λys.λzs.|ys| + |zs|. We could not encode 3 synthesis problems as SynPlexity

Synthesis with Asymptotic Resource Bounds 803

benchmarks: two of them involved higher-order functions that do not satisfy
the assumptions introduced in Sect. 5, and the other one has an exponential
resource-usage bound O(2u) (the Tree-create-balanced problem from Synquid).

SynPlexity solved 73 benchmarks with an average running time of 8.1s.
Unlike Synquid, SynPlexity guarantees that the synthesized program sat-
isfies the given resource bounds. After extending the implementation to sup-
port the restrictions discussed in Sect. 5, SynPlexity solved 5/6 benchmarks
with higher-order functions. For 10 benchmarks, SynPlexity found programs
that had better resource usage than those synthesized by Synquid. Further-
more, SynPlexity can encode and solve 9 problems that ReSyn could not
solve because the resource bounds involve logarithms. However, SynPlexity
cannot encode and solve 2 benchmarks that involve higher-order functions and
do not satisfy the restrictions introduced in Sect. 5. SynPlexity could solve 3
problems that required synthesizing both the main function (e.g., SynPlexity-
merge-sort) and its auxiliary function (e.g., a function splitting a given list into
two balanced partitions). No other tool could solve the SynPlexity-merge-sort’
benchmark.

Finding. SynPlexity can express and solve 73/77 benchmarks. SynPlex-
ity has comparable performance to existing tools, and can synthesize programs
with resource bounds that are not supported by prior tools.

6.2 Pruning the Search Space with Annotated Types

SynPlexity uses recurrence annotations to guide the search and avoids enu-
merating terms that are guaranteed to not match the specified complexity. We
compared the numbers of E-terms enumerated by SynPlexity and Synquid
for 56 benchmark on which both tool produced same solutions. Synquid always
enumerated at least as many E-terms as SynPlexity, and SynPlexity enu-
merated strictly fewer E-terms for 26/56 benchmarks. For these 26 benchmarks,
SynPlexity can on average prune the search space by 6.2%. For example, in
one case (BST-delete) SynPlexity enumerated 2,059 E-terms, while Synquid
enumerated 2,202.

Finding. On average, SynPlexity reduces the size of the search space by
6.2% for approximately half of the benchmarks.

7 Related Work

Resource-Bound Analysis. Rather than determining whether a given pro-
gram satisfies a specification, a synthesizer determines whether there exists a
program that inhabits a given specification. The branch of verification that we
draw upon for resource-based synthesis is resource-bound analysis [20].

Within the literature on automated resource-bound analysis, there are meth-
ods that extract and solve recurrence relations for imperative code [2,4,7,15].

804 Q. Hu et al.

However, these methods are unlike the type system presented in this work
because they extract concrete complexity bounds as recurrence relations, and
then solve the recurrences to find a concrete upper bound on resource usage.
The dominant terms of the resulting concrete bounds can then be used to state
a big-O complexity bound. In contrast, we want to synthesize programs with
respect to a big-O complexity directly, which is more similar to the manual rea-
soning of [6,8]. Thus, if we were to use these techniques for our problem, the
first step in our synthesis algorithm would be to pick a concrete complexity
function given a big-O complexity, and then reverse the verification problem
with regards to that concrete complexity. However, for any big-O complexity,
there are an infinite number of functions that satisfy that complexity, which
presents a significant challenge at the outset. Our design choice also has some
drawbacks. As noted in [8], reasoning compositionally with big-O complexity is
challenging due to the hidden quantifier structure of big-O notation. Thus, to
maintain soundness our type system has to sacrifice precision and generality in
some places. For example, when a function has multiple paths, our type system
over-approximates by choosing the largest complexity among all the paths.

Another set of methods to generate resource bounds are type-based [9,10,14,
19]. As we discussed throughout the paper, the complexities generated by these
methods are concrete functions and not expressed with big-O notation, although
[19] is sometimes able to pattern match a case of the Master Theorem. These
type systems differ from ours in a few ways. The AARA line of research [9,10,14]
is able to assign amortized complexity to programs, but is not able to generate
logarithmic bounds. [19] is also able to perform amortized analysis; however, the
technique is not fully automated, and instead requires the user to provide type
annotations on terms, which are then checked by the type system.

Type- and Resource-Aware Synthesis. The SynPlexity implementation is
built on top of Synquid [18] a type-directed synthesis tool based on refinement
types and polymorphism. The work that most closely resembles ours is ReSyn
[16]. As in our work, they combine the type-directed synthesizer Synquid with
a type system that is able to assign complexity bounds to functional programs.
The type system used in ReSyn is based on one originally used in the context of
verification [10]. That work uses a sophisticated type system to assign amortized
resource-usage bounds to a given program. The type system of ReSyn differs
from the one presented in Sect. 3 in a few significant ways.

As highlighted earlier, ReSyn automatically infers bounds on recursive func-
tions using amortized analysis and is restricted to linear bounds, whereas our
system is able to synthesize complexities of the form O(na logb n + c).

Another difference is that ReSyn synthesizes programs with a concrete com-
plexity bound. This approach has advantages and disadvantages. For instance, it
places an extra burden on the human to provide the correct bound with precise
coefficient. On the other hand, the user might want an implementation that has
a complexity with a small coefficient, whereas our system provides no guarantee
that the complexity of an implementation will have a small coefficient in the
dominant term: SynPlexity only guarantees asymptotic behavior.

Synthesis with Asymptotic Resource Bounds 805

ReSyn can synthesize programs with higher-order functions, which are sup-
ported only in a restricted manner by SynPlexity. To handle higher-order
functions, ReSyn attaches resource units to types, which gives it resource poly-
morphism. Moreover, costs of inputs with function types can be written generally
as polymorphic types (i.e., costs can be polymorphic with respect to the size of
the specific input types). SynPlexity does not have asymptotic resource poly-
morphism because it cannot directly compose unknown big-O functions (i.e.,
the complexity of higher-order inputs). We envision that with carefully crafted
restrictions on the resource annotations of higher-order functions, SynPlexity
could handle synthesis problems involving such functions, e.g., assuming that the
complexity of input functions is known and the refinements of input functions
are precise enough. Detailed discussion about these restrictions can be found in
Sect. 5 and the technical report [11]. Because big-O functions cannot be directly
composed, developing a more general extension to SynPlexity that supports
higher-order functions is a challenging direction for future work.

Acknowledgments. Supported, in part, by a gift from Rajiv and Ritu Batra; by
multiple Facebook Research Awards; by a Microsoft Faculty Fellowship; by NSF under
grants 1420866, 1763871, and 1750965; and by ONR under grants N00014-17-1-2889
and N00014-19-1-2318. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors, and do not necessarily reflect
the views of the sponsoring entities.

References

1. Akra, M., Bazzi, L.: On the solution of linear recurrence equations. Comput.
Optim. Appl. 10, 195–210 (1998)

2. Albert, E., Arenas, P., Genaim, S., Puebla, Germán, P.: Closed-form upper bounds
in static cost analysis. J. Autom. Reasoning 46, 161–203 (2011) https://doi.org/
10.1007/s10817-010-9174-1

3. Bentley, J.L., Haken, D., Saxe, J.B.: A general method for solving divide-and-
conquer recurrences. ACM SIGACT News 12(3), 36–44 (1980)

4. Breck, J., Cyphert, J., Kincaid, Z., Reps, T.: Templates and recurrences: better
together. In: Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI (2020)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3nd edn. The MIT Press, Cambridge (2009)

6. Eberl, M.: Proving divide and conquer complexities in Isabelle/HOL. J. Autom.
Reasoning 58(4), 483–508 (2016). https://doi.org/10.1007/s10817-016-9378-0

7. Flores Montoya, A.: Cost Analysis of Programs Based on the Refinement of Cost
Relations. Ph.D. thesis, TU Darmstadt (2017)

8. Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: formalizing asymp-
totic complexity claims via deductive program verification. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 533–560. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 19

9. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analy-
sis. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 357–370 (2011)

https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1007/s10817-010-9174-1
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1007/978-3-319-89884-1_19

806 Q. Hu et al.

10. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ml. In: The International
Conference on Computer Aided Verification, CAV (2012)

11. Hu, Q., Cyphert, J., D’Antoni, L., Reps, T.: Synthesis with asymptotic resource
bounds. arXiv preprint arXiv:2103.04188 (2021)

12. Hu, Q., D’Antoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 21

13. Kauers, M., Paule, P.: The Concrete Tetrahedron: Symbolic Sums, Recurrence
Equations, Generating Functions, Asymptotic Estimates. Springer, Cham (2011)
https://doi.org/10.1007/978-3-7091-0445-3

14. Khan, D.M., Hoffmann, J.: Exponential automatic amortized resource analysis.
In: International Conference on Foundations of Software Science and Computation
Structures. FoSSaCs (2020)

15. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-linear reasoning for invariant syn-
thesis. In: ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL (2018)

16. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-guided program
synthesis. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 253–268 (2019)

17. Pierce, B.C., Turner, D.N.: Local type inference. ACM Trans. Program. Lang. Syst.
(TOPLAS) 22(1), 1–44 (2000)

18. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. ACM SIGPLAN Notices 51(6), 522–538 (2016)

19. Wang, P., Wang, D., Chlipala, A.: Timl: A functional language for practical com-
plexity analysis with invariants. Proc. ACM Program. Lang. 1(OOPSLA), 1–26
(2017)

20. Wegbreit, B.: Mechanical program analysis. In: Communications of the ACM
(1975)

http://arxiv.org/abs/2103.04188
https://doi.org/10.1007/978-3-319-96145-3_21
https://doi.org/10.1007/978-3-7091-0445-3

Synthesis with Asymptotic Resource Bounds 807

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Program Sketching by Automatically Generating
Mocks from Tests

Nate F. F. Bragg1, Jeffrey S. Foster1, Cody Roux2,

1 Tufts University, Medford, MA 02155, USA
{nate,jfoster}@cs.tufts.edu

2 Draper Laboratory, Cambridge, MA 02140, USA
croux@draper.com

3 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
asolar@csail.mit.edu

Abstract. Sketch is a popular program synthesis tool that solves for
unknowns in a sketch or partial program. However, while Sketch is pow-
erful, it does not directly support modular synthesis of dependencies,
potentially limiting scalability. In this paper, we introduce Sketcham,
a new technique that modularizes a regular sketch by automatically
generating mocks—functions that approximate the behavior of complete
implementations—from the sketch’s test suite. For example, if the func-
tion f originally calls g, Sketcham creates a mock gm from g’s tests and
augments the sketch with a version of f that calls gm. This change allows
the unknowns in f and g to be solved separately, enabling modular syn-
thesis with no extra work from the Sketch user. We evaluated Sketcham
on ten benchmarks, performing enough runs to show at a 95% confidence
level that Sketcham improves median synthesis performance on six of our
ten benchmarks by a factor of up to 5× compared to plain Sketch, in-
cluding one benchmark that times out on Sketch, while exhibiting similar
performance on the remaining four. Our results show that Sketcham can
achieve modular synthesis by automatically generating mocks from tests.

Keywords: Program synthesis, mocks, Sketch

1 Introduction

Program synthesis by sketching, as embodied by the Sketch synthesis tool [30],
is a popular technique that has been applied to a wide variety of problems
[5,7,13,14,15,16,18,22,29]. A Sketch input (henceforth a sketch) is a program
written in a C-like language augmented with holes, unknown constants, and gen-
erators, unknown expressions. The solution for a sketch is specified using test
cases called harnesses, also written in the Sketch language, that make assertions
about the results of to-be-synthesized code. Sketch searches for a solution using
counterexample-guided inductive synthesis (CEGIS), which alternately synthe-
sizes a candidate solution and then uses a verifier to check the assertions; any
counterexamples from verification feed into the next round of synthesis [27].

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12759,

and Armando Solar-Lezama3

pp. 808–831, 2021.
https://doi.org/10.1007/978-3-030-81685-8_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_38&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_38

Program Sketching by Automatically Generating Mocks from Tests 809

One key challenge of using Sketch is that it does not specifically support
modular synthesis. More precisely, even if an input sketch is divided into a num-
ber of functions that call each other, Sketch solves them all together. This ap-
proach potentially limits scalability, as SAT formulas created by Sketch can grow
quite quickly as function calls are inlined. A Sketch user could potentially work
around this by manually replacing calls to to-be-synthesized functions with calls
to Sketch models [24], which are mocks, i.e., functions that, in place of full imple-
mentations, approximate the desired behavior with a specification in the form
of assertions about individual cases. However, writing additional specifications
is both time consuming and redundant with developing the original sketch.

In this paper, we introduce Sketcham (short for Sketch and Mocks), a novel
technique that converts a regular sketch problem into a modular sketch problem
by automatically generating mocks from harnesses. More specifically, suppose
Sketcham is given a sketch in which function f calls g and g is tested by harness h.
Sketcham first converts h into a mock gm that has the same function signature as
g but whose body encodes the assertions from h. Then, Sketcham augments the
original sketch with new code in which f calls gm instead of g, thereby allowing
f to be synthesized separately from g. Thus, by converting tests (harnesses) to
mocks (specs), Sketcham enables modular synthesis without extra work from the
user. Section 2 gives an overview of Sketcham.

Sketcham generates the new, modular sketch problem using a sequence of
three algorithms. First, Sketcham traverses the original sketch to build a map-
ping A from function names to a set of assertions in which each function is called.
Note that we place some limitations of the assertions—e.g., they can contain at
most one function call—to guarantee we can always translate them from harness
assertions to mock assertions. Next, Sketcham traverses A, generating a mock
fm for each function f ∈ dom(A), where fm encodes the assertions in A(f). Fi-
nally, Sketcham generates new mock harnesses that are the same as the original
harnesses, except they call mocks instead of the underlying functions. Section 3
presents Sketcham’s core algorithms.

We implemented Sketcham as an additional pass to Sketch, which we evalu-
ated on ten benchmarks. We found a high variance in running time, both under
Sketch and under Sketcham. To account for this difference, we used the Clopper-
Pearson method [6], running each configuration (synthesis tool–benchmark com-
bination) up to 1,487 times, reaching 95% confidence that the true median run-
ning time lies within 20% of the experimental median, excluding failures and
runs exceeding a 60 minute timeout. We found that, for six of ten benchmarks,
Sketcham runs up to 5× faster than Sketch; for one benchmark Sketcham is up
to a factor of 0.98× slower; for the remaining three benchmarks, performance is
indistinguishable. We examined one benchmark, deduplication of elements in an
array, in detail. We found that the performance improvement is largely due to
a mock that does a thorough job representing the function it mocks, and that
the performance improvement occurs during the CEGIS synthesis phase rather
than the CEGIS verification phase. Section 4 presents our evaluation.

810 N. F. F. Bragg et al.

1 int[n] dedup(int n, int[n] vs,

2 ref int sz) {

3 int[n] svs=sort(n, vs); int[n] res;

4 sz = ??; // 0

5 for(int i=??; i<n; ++i) { // 0

6 int j = expr({sz,i}, {PL,MI}); // sz-1

7 if(...){//sz==0||svs[i]>res[j]

8 res[sz] = svs[i];

9 sz = expr({sz,i}, {PL,MI}); // sz+1

10 }}

11 return res;

12 }

13 int[n] sort(int n, int[n] vs) {

14 int m=..., r=..., i=..., j=...;

15 int[m] as = sort(vs[0::m]);

16 int[r] bs = sort(vs[m::r]);

17 while(exprBool({i, j, n}, {PL})) // i+j<n

18 /* add as[i++] or bs[j++] to vs */

19 return vs;

20 }

(a) dedup and sort (simplified).

h_dedup

dedup

sort

h_sort

(b) Original harnesses.

h_dedup’’

dedup’

sort_mock

h_sort’

h_dedup’

dedup_mock

(c) Mock harnesses.

1 harness void h_sort(int n,

2 int[n] vs) {

3 int[n] svs = sort(vs);

4 for(int i=0; i<n-1; ++i)

5 assert svs[i] <= svs[i+1];

6 /* also elts(vs)=elts(svs) */

7

8 }

ê

model int[n] sort_mock(int n, 1

int[n] vs) { 2

int[n] svs = sort_uf(vs); 3

for(int i=0; i<n-1; ++i) 4

assume svs[i] <= svs[i+1]; 5

/* also elts(vs)=elts(svs) */ 6

return svs; 7

} 8

(d) Translating sort’s test harness into a mock.

Fig. 1: Sketcham applied to deduplication via sorting.

In summary, Sketcham demonstrates that modular synthesis can be achieved
by automatically generating mocks from tests (specs from harnesses) without
additional user effort.

2 Overview

To illustrate Sketcham, consider Figure 1a, which shows a simplified sketch
whose solution deduplicates an array of integers. This sketch makes use of Sketch
holes ??, which are unknown constants, and generators such as expr(vars, ops),
which is an unknown expression composed of variables vars combined with

Program Sketching by Automatically Generating Mocks from Tests 811

operands ops, including PL for addition and MI for subtraction. The correct
solutions for the holes and generators are shown in end-of-line comments.

At the top of Figure 1a, function dedup takes a length n and array vs, and it
returns the deduplicated array and, by reference, the deduplicated array’s length
sz (in Sketch, functions can only have at most one return value, hence the return-
by-reference sz). The dedup function begins by calling another function, sort,
to sort the array (line 3). Then it initializes sz to a hole and loops through
the array (lines 4-5). In each iteration, it computes an expression j of sz and i

(line 6) used in a conditional guard (line 7; details of guard not shown). If the
condition holds, the element at position i is copied into res and sz is updated;
otherwise the element is ignored. Finally, dedup returns the result array res.

The sort function (line 13) takes the length and array and returns a sorted
array. This particular sketch is for merge sort. Here the programmer knows
that merge sort involves sorting two sub-arrays but isn’t sure about the details.
After some initialization (not shown), it makes two recursive calls to sort sub-
arrays (lines 15 and 16). Then it loops over the sorted sub-arrays, merging the
elements into array vs, which is returned. The loop guard (line 17) uses a different
generator, exprBool(vars, ops), that generates arithmetic comparisons (<, <=,
etc) among expressions generated by calling expr(vars, ops).

Harnesses and Mocks. To test the expected behavior of dedup and sort, the
sketch also includes two harnesses, h_dedup and h_sort. Figure 1b shows the
call graph of the sketch with the harnesses, and the left side of Figure 1d shows
a portion of h_sort (we omit h_dedup for brevity). This harness calls sort and
then makes assertions about the results, e.g., that the output array is sorted.
Harnesses are distinguished from regular functions by the keyword harness, and
their arguments are treated as universally quantified. Thus, h_sort tests that
for all n and arrays vs of length n, the sort function is correct.

To solve this synthesis problem, Sketch converts dedup, sort, and a har-
ness into a single SAT formula and then uses CEGIS to find a solution. This
approach works, but the formula passed to the solver is large, because it con-
tains both functions’ worth of code, and complex, because reasoning about the
code in dedup requires simultaneously reasoning about the code in sort. Thus,
mashing together both functions into a single SAT formula potentially limits the
scalability of Sketch.

The key idea of Sketcham is to observe that this sketch is actually modular—
it has been divided into two functions, each with their own tests. Sketcham takes
advantage of this modularity by creating a new synthesis problem that includes
mock versions of functions in the sketch, which can then be used to enable
separate reasoning about each function.

The right side of Figure 1d shows sort_mock, the mock version of sort.
The mock has the same signature as sort, but instead of containing the actual
sorting code, it contains assertions from h_sort about sort’s expected behavior.
In detail, in place of calling sort, the mock calls a fresh uninterpreted function
sort_uf on line 3. Then it makes assumptions (rather than assertions) about
the result array svs (line 5), and finally returns svs (line 7). The mock itself is a

812 N. F. F. Bragg et al.

int doub(int m) {

return m * 2;

}

harness void h(int n) {

int out = doub(n * 10);

assert out == (n + n) * ??;

}

(a) Double.

model int doub_mock(int m) {

int out = doub_uf(m);

assume (0 == m%10) =⇒
out == (m/10 + m/10) * ??;

return out;

}

(b) Mock double.

Fig. 2: The double function and its mock.

Sketch model (indicated by the model keyword), and where the mock is called,
Sketch will replace the call with the assumptions in the model’s body [24].

Next, Sketcham creates new code that uses the mock, as shown in Figure 1c.
(Here the dashed, greyed boxes are for functions and harnesses that are generated
but do not improve solving time; see Section 4.2.) In particular, dedup' is the
same as dedup, except it calls sort_mock instead of sort, and h_dedup'' is the
same as h_dedup but it calls dedup' instead of dedup.

The final sketch includes h_dedup'', h_dedup' (a trivial harness that calls a
mocked dedup), and h_dedup—in that order—as well as the harnesses for sort.
Sketcham searches for a solution for each harness in order, i.e., it tries to solve
h_dedup'' first. Notice that, critically, when Sketcham solves h_dedup'', it need
not consider the code of sort, but rather only its specification as encoded in the
mock. In practice, this means that Sketcham can solve h_dedup'' up to 18.1×
faster than Sketch solves h_dedup, a significant speedup.

Moreover, sort_mock encodes the specification of sort, so once Sketcham
solves h_dedup'', it has found a solution for h_dedup as well. To preserve cor-
rectness, Sketcham keeps the original harnesses such as h_dedup, because mocks
with partial specifications can lead to partially incorrect solutions to the har-
nesses using them. However, even in these cases, the counterexamples they gener-
ate can still help more quickly narrow the synthesis search space for the original
harness, and lead to an ultimately valid solution.

Quantifier Elimination. In Figure 1d, the translation from harness to mock
was straightforward: the call to the mocked function becomes a call to an un-
interpreted function, and asserts become assumes. Sometimes, however, the
translation is more complex. Consider the sketch in Figure 2a, which includes a
function doub that doubles its input and a harness h that calls doub(n*10) and
asserts the result is (n+n)*?? for some hole.

Notice this assertion only describes arguments of the form n*10 for some n,
i.e., implicitly there must exist some m such that m = n*10 for the assertion to
hold. Sketcham performs quantifier elimination [1,4] on such nested existentials,
following the approach of Kuncak et al. [17]. Figure 2b shows the resulting mock.

Program Sketching by Automatically Generating Mocks from Tests 813

Input
Program

Output
ProgramSketch Frontend

Sketch
Backend

Parse and
Optimize

Sketcham

BuildAssertMap

GenerateMocks

A

MockHarnesses

p′, F

p
CEGIS

pm

Sketch IR Hole assignment

Fig. 3: Sketcham architecture

Here, in the assumption, n is replaced by witness candidate m/10. Because m is
an integer, we also add a precondition that m is evenly divisible by 10.

We note that Sketcham includes quantifier elimination for completeness, and
in our evaluation we consider the sketch in Figure 2a. However, we did not find
quantifier elimination necessary for our other benchmarks.

3 The Sketcham Algorithm

Next we more formally describe Sketcham, which is implemented as a pass within
Sketch as shown in Figure 3. The presentation that follows reflects this Sketch
implementation without loss of generality of the core algorithm for converting
tests to mocks. The Sketch frontend consumes the input sketch and transforms
it into the Sketch intermediate representation (Sketch IR), which is passed to the
Sketch backend. Sketch IR encodes first-order logic augmented with theories of
arithmetic, arrays, functions, and more, as discussed below. When the backend
loads the IR, it performs loop unrolling, function inlining, and other transforma-
tions that are needed by the solver [26], yielding a program p. Standard Sketch
then uses CEGIS to solve the synthesis problem, outputting a hole assignment
that the frontend uses to produce the solved sketch. Sketcham modifies this pro-
cess by inserting, after optimization, a mock rewriting phase, described below,
that transforms p into the augmented program pm for CEGIS.

We formalize Sketcham on the fragment of Sketch IR shown in Figure 4. Here
types are omitted, and we assume the sketch is type-correct. A program sketch
p is a sequence of harness and function definitions. A harness definition h tags
a function definition as a test harness. A function definition d is given named
parameters1 and a body, which is a sequence of statements. Statements s are

1 For simplicity, we assume parameter names are unique across the whole program.

814 N. F. F. Bragg et al.

p ::= (h | d)*

h ::= harness d

d ::= def f (x , . . . , x) { s* }
s ::= x := e | return e | assert φ | assume φ

e, φ, ψ ::= f (e , . . . , e) | uop e | e bop e | n | x | ?? x

uop ::= ¬ | -
bop ::= ∧ | ∨ | ⊕ | =⇒ | = | + | - | * | / | %

x, y ∈ variable names G ∈ graphs A : f → Φ

f, g ∈ function names Φ ∈ set of φ F : f → f

Fig. 4: Sketcham’s fragment of Sketch IR

assignments, returns, assertions, and assumptions. The most critical expressions
e in our algorithm are function calls f (e , . . . , e) with their arguments. The
detailed grammar for the remaining expressions is unimportant in the remainder
of this section, but for completeness we show expressions for unary and binary
logical and arithmetic operations uop e and e bop e; constants n; variables x ;
and named holes ?? x . Below, we sometimes use the metavariables φ and ψ in
place of e to indicate an expression used for Boolean-valued formulas.

Given the input Sketch IR program p as shown in Figure 3, Sketcham creates
the output sketch by first calling BuildAssertMap (Algorithm 1) to build
mapping A from function names to assertions from tests of those functions. Next,
GenerateMocks (Algorithm 2) uses A to construct mocks for functions in the
domain of A, yielding program p′, which includes the original sketch p plus those
mocks. This step also returns a mapping F from the original function names to
the corresponding mock names. Finally, MockHarnesses (Algorithm 3) creates
the output sketch pm, which augments p′ with copies of the original sketch’s
harnesses, except the copies call the mocks instead of the original functions.

Critically, during this last step, holes are not renamed when the harnesses are
copied. Moreover, the newly generated harnesses are prepended to the sketch.
Thus, when CEGIS tries solving each harness in pm in order, it will first find
solutions that are consistent with the mocks. Then when it reaches the original
harnesses (which must remain in case there is information in them not captured
by the mocks—see discussion of GenerateMocks below), CEGIS can use the
information it already derived from the mocks to find the ultimate solution to
the original problem.

In the remainder of this section, we describe each step of the algorithm in
detail. Below, we capitalize the names of sets of a given metavariable (e.g., Φ is
a set of formulas φ, etc.), and we use vector notation to indicate arrays (e.g., ~s
is an array of statements s).

Building the assertion mapping. Each mock expresses the specification of an
original function as it is encoded by that function’s tests. To start, Sketcham
collects assertions from those tests into an assertion mapping. Algorithm 1 builds

Program Sketching by Automatically Generating Mocks from Tests 815

Algorithm 1 Mock rewriting: building the assertion map

Input: p - the sketch
Output: A - finite map of function names to sets of assert formulas
1: function BuildAssertMap(p)
2: A← ∅
3: Φ← {φ | assert φ ∈ p} . all solver-reachable asserts in p
4: Φ0 ← {φ ∈ Φ | 0 = |f(. . .) ∈ φ|} . asserts with 0 function calls
5: Φ1 ← {φ ∈ Φ | 1 = |f(. . .) ∈ φ|} . asserts with 1 function call
6: for all f ∈ Φ1 do
7: Φf ← Φ0 ∪ {φ ∈ Φ1 | f ∈ φ} . asserts with 0 calls, or 1 call to f
8: Ψ ← Φ \ Φf

9: while Ψ 6= ∅ do
10: X ← FV(Ψ) . inputs and holes free in Ψ
11: Ψ ← {φ ∈ Φf | X ∩ FV(φ) 6= ∅}
12: Φf ← Φf \ Ψ
13: end while
14: A[f]← Φf

15: end for
16: end function

the assertion mapping A from the input sketch p. The algorithm begins by
initializing A to empty and Φ to the set of all assertions from all tests in p.
It then selects two subsets of Φ. The set Φ0 contains all assertions that do not
include calls to any functions, and the set Φ1 contains all assertions that include
exactly one function call. We exclude assertions with multiple function calls
so that mocks are standalone, to conform to the technical requirements Sketch
imposes on models. As a consequence, we exclude some terms that present no
such concerns (e.g., conjunctions of otherwise unrelated terms), as translating
them to assumptions may be much more complex or even impossible. We leave
extending BuildAssertMap to more assertion patterns to future work.

For each function f called in an assertion in Φ1, on line 7 we next compute the
set Φf from Φ0 (the assertions that hold throughout each test, including at calls
to f) and the subset of Φ1 that refers to f . For example, consider the assertion
in h_sort in Figure 1d. This code refers to the result of calling sort(n, vs),
so Φ1 = {φi(sort(n,vs))}, where the φis capture the assertions in h_sort.
Additionally, if we picked, say, a loop unrolling bound of 4, then Sketch would
implicitly assert n<4, resulting in Φ0 = {n<4}. In general, Φ0 might contain
additional assertions that are irrelevant to the calls in Φ1. For example, loop
unrolling for harness h_dedup (not shown) might add another bound m<4 to Φ0

for sort. However, such irrelevant assertions will not change the resulting mock.

In some cases, we cannot add assertions in Φf to A because other asser-
tions on the same variables interfere. For example, suppose the sketch includes
assert f(x) and assert g(x). Then Φf might not completely characterize
f—the assertion in Φf is valid only if assert g(x) also holds, which puts an
unknown (until the full sketch is solved) constraint on x. Thus, in this case, our
algorithm discards the assertions in Φf . More specifically, on line 9, the loop

816 N. F. F. Bragg et al.

Algorithm 2 Mock rewriting: generate mocks

Input: p - the sketch
Input: A - output of Algorithm 1
Output: p′ - the sketch augmented with mock definitions
Output: F - finite mapping from an original function name to its mock
1: function GenerateMocks(p, A)
2: F ← ∅, p′ ← p
3: for all f 7→ Φ ∈ A do
4: def f(~x){. . .}← the definition of f in p
5: fu ← FreshName(f)
6: ~s← []
7: Φ0 ← {φ ∈ Φ | 0 = |f(. . .) ∈ φ|}
8: Φ1 ← {φ ∈ Φ | 1 = |f(. . .) ∈ φ|}
9: for all φ ∈ Φ1 do . convert asserts into assumes

10: f(~e)← the lone function call in φ
11: φu ← φ[f(~e) := fu(~x)] . substitute uninterpreted function
12: Ψ ← {xi = ei | 0 ≤ i < |~x|} . equate parameters to arguments
13: φ′ ← (

∧
Φ0) ∧ (

∧
Ψ) =⇒ φu . the condition where φ holds

14: φ′′ ← JFV(φ);Ψ ` φ′
K

15: ~s.append(assume φ′′)
16: end for
17: fm ← FreshName(f)
18: F [f]← fm
19: dm ← def fm(~x){

~s
return fu(~x)

}

. create the mock definition

20: p′.insert(dm)
21: end for
22: end function

removes any φ ∈ Φf whose free variables overlap with free variables outside of
Φf . The process iterates in case free variable dependencies cascade. For example,
the existence of assert g(x) would eliminate assert f(x-y), which would in
turn eliminate assert f(y). The result is the transitive closure of the allowable
assertions about each function.

Generate mocks. Next, Algorithm 2 iterates through each function in the domain
of A, generating a corresponding mock to add to the augmented sketch p′. As
it does so, it also builds a map F from function names to the names of the
generated mocks.

For each f 7→ Φ ∈ A, GenerateMocks begins by finding the definition of f
and creating a corresponding freshly named uninterpreted function fu. It then
initializes ~s, the assumptions to be inserted into the new mock body, to empty.
Then, from each asserted formula φ ∈ Φ, the algorithm creates a formula φu by
substituting the single function call f(~e) in φ with a call fu(~x), where ~x are the
formal parameters of f (line 11). Notice this call to fu is the same no matter the

Program Sketching by Automatically Generating Mocks from Tests 817

Algorithm 3 Mock rewriting: mock harnesses

Input: p′ - the sketch from Algorithm 2
Input: F1 - the name map from Algorithm 2
Output: pm - the sketch augmented with mock harnesses
1: function MockHarnesses(p′, F)
2: G← CallGraph(p′), pm ← p′

3: for i← 1, maximum mock call graph depth do
4: Fi+1 ← ∅
5: for all def g(~y){~s} ∈ Callers(G, domFi) do . similarly, harness def

6: g′ ← FreshName(g)
7: d′ ← def g′(~y){

{s[f := f ′ | f 7→ f ′ ∈ Fi] | s ∈ ~s}
}

. respectively, harness def

8: pm.insert(d′, before g)
9: Fi+1[g]← g′

10: end for
11: end for
12: end function

original call to f , which ensures the generated mock conforms to the technical
requirements Sketch imposes on models. To encode the actual information at
the call site, we next add a precondition. The algorithm constructs φ′ (line 13),
which is an implication denoting that φu holds if the ancillary asserts Φ0, and
the equalities xi = ei from the call to f hold. One nuance we elide here is that
Sketch augments all function calls with an additional explicit path condition
parameter that captures conditional branches taken up to the point of the call,
which makes it easier for Sketch to translate the IR into a SAT formula. For
soundness, we include this path condition as a premise of φ′ and assign fu the
path condition >. Note that our implementation trims Φ0 before adding it to φ′

to the subset containing only the variables in ~e.
Next, the algorithm performs quantifier elimination on φ′, yielding φ′′ (line 14).

More precisely, JFV(φ);Ψ ` φ′K eliminates variables in FV(φ) from φ′, searching
for witnesses in Ψ . Then, φ′′ is added to ~s as an assume, and the loop continues
until all mappings for f have been handled.

Finally, on lines 17-19 the algorithm computes a fresh Sketch name fm for f ,
adds a mapping to F , and creates function definition dm for fm. The function fm
takes the same arguments as f , assumes all formulas in ~s, and returns fu on fm’s
arguments. Thus, when fm is called, the assertions about f from its original test
suite in p are assumed on fm’s arguments, as we saw in Section 2. The definition
dm is added to p′, and mock generation continues until all mappings in A have
been traversed.

New mock harnesses. The last step of Sketcham adds calls to the mocks gener-
ated by GenerateMocks. One näıve approach would be to simply replace each
call to f with a call to fm for all f 7→ fm ∈ F . However, this will not work for
two reasons. First, we need a full solution for the holes in all functions, including

818 N. F. F. Bragg et al.

those that are mocked. Replacing calls to f with calls to fm would remove many
constraints on the holes in f , underconstraining their solutions. Second, as we
saw earlier the template for f might contain additional information excluded by
BuildAssertMap, so replacing f by fm might underconstrain f ’s callers.

Our solution is to create an output sketch that includes both the original
sketch—including all calls to f in their original form—and duplicate sketch code
that calls fm in place of f . The duplicated code refers to the same holes as
the original sketch. Hence, information derived from the duplicated code can
potentially greatly speed up solving of the original code.

Algorithm 3 shows MockHarnesses, which creates this duplicate code. The
algorithm begins by constructing a call graph G from the sketch p′ from the
previous step. Note that none of the mocks in p′ are called yet, so the call graph
is the same as for the original sketch. Next, the algorithm duplicates the sketch
one level of the call stack at a time, starting at the mocks and working up toward
the harnesses. To limit duplication, e.g., for mocks called by recursive functions
whose duplication would loop infinitely, the algorithm bounds the duplication
depth. For each level i, it iterates through all functions g ∈ Callers(G, domFi),
meaning functions g that call a function in the domain of Fi. It duplicates each
such g, replacing calls to functions f ∈ domFi with calls to Fi[f], and then adds
the duplicated function to the sketch. Since g has now been renamed, g 7→ g′ is
added to a new mapping Fi+1, and calls to it are duplicated in the next iteration,
repeating until reaching the root of the call graph or the maximum duplication
depth. Note the process is the same for both regular function definitions and for
functions that are harnesses.

For example, suppose harness h calls function g, which in turn calls function
f , and assume GenerateMocks created fm and gm. Then in the first iteration,
MockHarnesses creates a duplicate h′ that calls gm and a duplicate g′ that
calls fm. In the next and final iteration, it creates a duplicate h′′ that calls g′.

When we insert the duplicate functions, we insert them before the original
functions. This ensures that when we insert the duplicate harnesses that call the
mocks, Sketch will solve those harnesses before solving the original ones.

4 Evaluation

We evaluated Sketcham on ten benchmarks, running each from 11 to 1487 times
until reaching statistically significant results. We found that, for six of ten bench-
marks, Sketcham performs up to 5× faster than Sketch, for one benchmark
Sketcham is slower by a factor of up to 0.9×, and for the remaining three bench-
marks performance is indistinguishable. We examined the benchmark dedup
(Figure 1) in depth and found that, as suspected, overall performance improve-
ment is due to improved synthesis time when using sort_mock.

Implementation. Sketcham comprises approximately 1075 lines of C++ code
within the Sketch backend. The user enables Sketcham with -mock and specifies
the max mock duplication depth via --bnd-mock-depth, which defaults to 3.

Program Sketching by Automatically Generating Mocks from Tests 819

Because they clone and then rearrange the input Sketch IR program, the
run time of Algorithms 1-3 is approximately linear in the number of functions
and the number of asserts in the sketch. Our implementation covers the features
given as part of the Sketch IR fragment in Figure 4, with the modification that
we explicitly depict assignment, which Sketch IR does not require because it
structurally hashes expressions to yield a compact in-memory representation [26].
We also note that Sketch includes additional features that we leave to future
work, such as complex harness types, and that quantifier elimination is currently
restricted to arithmetic expressions.

Benchmarks. We used the following benchmarks:

– double, the integer doubling program given in Figure 2.
– absval , the absolute value function.
– fib, the linear-time Fibonacci function. The specification requires its output

to be equivalent to the exponential time algorithm.
– datetime, a simplified implementation of the C strptime function. This func-

tion accepts a format that it uses to parse a date/time string.
– boyerMoore, which implements the Boyer Moore string search algorithm [3].
– regex , a regular expression matching engine and compiler.
– spellcheck , a program that suggests a corrected version of its input using the

Levenshtein edit distance from entries in a dictionary.
– minpair , uses edit distance to find the closest pair out of an array of values.
– dedupm, deduplication with merge sort from Figure 1, and dedupi, dedupli-

cation with insertion sort.

Sketch has a multitude of configuration options that can have a large effect on
performance. The middle portion of Table 1 gives values for the four options that
differ across the benchmarks: int type, whether Sketch uses symbolic integers (in
either a bit-vector encoding or a sparse encoding [26]) or native integers [28];
int bits, the number of bits per integer; loop unroll, the maximum loop unrolling
depth; and func inline, the maximum depth of function call inlining.

We selected values for these options that reflected each benchmark’s design
and demonstrated pronounced run time differences from Sketch to Sketcham, as
follows. double and absval use Sketch’s defaults. fib tests recursively computing
the Fibonacci sequence up to the tenth entry, so function call inlining is set
accordingly. regex is required to reject bad matches, which requires higher un-
rolling and inlining. datetime, boyerMoore, spellcheck , and minpair need higher
loop unrolling to iterate over long strings. These last three and both dedups also
do much better using native integers. The dedups also run unreasonably slowly
with more bits or higher unroll, so we reduced the amount of unrolling. In all
our benchmarks, any configuration options not discussed here were left as their
defaults, including the mock duplication depth, with the default of 3.

Methodology. All measurements were taken on a 3.2 GHz AMD Ryzen 5 1600
system with 32GB of RAM. We found that while most benchmarks consistently

820 N. F. F. Bragg et al.

int int loop func Sketch runs Sketcham runs
lines holes type bits unroll inline total failed total failed

double 8 1 symbolic 5 8 5 17 0 17 0
absval 69 9 symbolic 5 8 5 17 0 17 0
fib 46 4 symbolic 6 8 10 20 0 65 0
datetime 177 3 symbolic 11 20 5 11 11 17 0
boyerMoore 136 16 native 7 13 5 17 0 153 19
regex 357 5604 symbolic 5 30 7 17 0 17 0
spellcheck 94 5 native 5 9 5 17 0 17 0
minpair 113 3 native 5 10 5 17 0 22 2
dedupi 73 1134 native 2 4 5 1487 88 762 23
dedupm 80 9008 native 2 4 5 648 281 88 16

Table 1: Benchmark config options and characteristics.

perform within half an order of magnitude under both Sketch and Sketcham,
in a few cases synthesis time varies by as much as two and a half orders of
magnitude. To account for this variance during our evaluation, we repeatedly
ran each benchmark until achieving statistical significance, between 11 and 1487
times, as listed in the rightmost portion of Table 1. Each run was executed with
the system otherwise almost totally idle to minimize interference. While most
runs completed successfully, we exclude those that exceed a 60 minute timeout
or fail to synthesize due to exhausting system memory or a crash within Sketch.
To give an idea of the problem size, the leftmost portion of Table 1 lists the
numbers of lines and holes per benchmark.

As other work has observed [9], performance evaluation methodologies that
lack rigor can lead to misleading and incorrect conclusions. To avoid this prob-
lem, we collect enough data to calculate a percentile’s confidence interval (CI)
at a given confidence level (CL). We employ the classic Clopper-Pearson [6] (or
“exact”) method using the probabilities of the Binomial distribution to itera-
tively calculate confidence intervals for a given dataset. While other methods
are often used, many of these assume an underlying Gaussian distribution. The
underlying distributions for our measurements are not known and do not appear
to be Gaussian, a case the exact method handles correctly.

Run time variance is not correlated across configurations, so the number of
runs needed for significance can differ from Sketch to Sketcham, as reflected
in the “total” columns of Table 1. We ran each configuration repeatedly until
measurements met two statistical significance conditions. First, that they reach
a 95% CL that the population median lies within at most a 20% CI around
the sample median. For example, for a sample median of 100 s, the population
median might lie between 90 s and 110 s, or between 98 s and 118 s, depending
on the underlying distribution. Second, the CI must range entirely between the
first and third quartiles to increase the confidence that the median measurements
adequately reflect the underlying distribution. In seven out of ten benchmarks
these two conditions were sufficient to yield CIs that did not overlap across Sketch

Program Sketching by Automatically Generating Mocks from Tests 821

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(a) double

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(b) absval

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(c) fib

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(d) datetime

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(e) boyerMoore

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck
(f) regex

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck
(g) spellcheck

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(h) minpair

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(i) dedupi

Sketch Sketcham
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

absval
Sketch Sketcham

0

10

20

30

40

50

60

boyerMoore

Sketch Sketcham
0.0

0.5

1.0

1.5

2.0

2.5

3.0

datetime
Sketch Sketcham

0

50

100

150

200

250

300

350

400

dedup_i

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m
Sketch Sketcham

0.0

0.1

0.2

0.3

0.4

0.5

double

Sketch Sketcham
0

10

20

30

40

50

60

70

80

fib
Sketch Sketcham

0

200

400

600

800

minpair

Sketch Sketcham
0

20

40

60

80

100

regex
Sketch Sketcham

0

20

40

60

80

100

120

140

spellcheck

(j) dedupm

Fig. 5: Total time (s). Times are drawn as notched box plots, which give the
distribution’s median inside a notch indicating its confidence interval. As usual,
the box extends to the first and third quartiles, and whiskers extend to the
full distribution. To better focus on the data, we truncate some whiskers. Note
differing y-axis scales both here and below.

and Sketcham, which allows for statistically significant performance claims about
these benchmarks.

4.1 Performance

Figure 5 shows the running times of Sketch and Sketcham on our benchmarks.
The distribution of times is shown as notched box plots. The boxes extend from
the first to the third quartile, with the median shown as a mid-line. The CI is
indicated by the notch. The whiskers extended to the minimum and maximum
values (some whiskers are truncated to allow for a closer view of the median).

Following standard practice, we conclude that two configurations have a sta-
tistically significant difference in performance if their CIs do not overlap, as there
is then high probability that the median times of the distributions are different.

822 N. F. F. Bragg et al.

We see that for six of the ten benchmarks, Sketcham is faster than Sketch, while
one is marginally slower and three display no significant performance change. We
investigated each benchmark’s performance in detail, discussed next. The per-
formance differences we report are ratios of the run time of Sketch to Sketcham
for a given benchmark. Due to uncertainty we report speedup ranges for the me-
dian, comparing the opposite extents of each CI. This ranges from, at minimum,
the ratio of the faster end of Sketch’s CI to the slower end of Sketcham’s CI, up
to, at maximum, the ratio of the slower end of Sketch’s CI to the faster end of
Sketcham’s CI.

The times shown are total run time, which can be broken down into synthesis,
verification, and overhead time. For Sketcham, overhead can further be broken
down into mock construction and normal Sketch overhead. The total runtime
overhead of mock construction is less than 0.4% for all benchmarks except regex
(3%) and both dedups (∼20%). In most cases, this time was dominated by the
GenerateMocks and BuildAssertMap phases.

The double benchmark’s performance is approximately the same in both
cases. In fact, the CIs overlap almost completely, suggesting the performance
may be dominated by constant factors in Sketch.

The absval benchmark is also approximately the same. It is another simple
program that Sketch solves very quickly, and as such the mocks only add to the
verification time.

The fib benchmark asserts that, on integers 0 to 9, the to-be-synthesized
linear-time Fibonacci implementation returns the same result as an exponential-
time implementation. In Sketch, the calls to the exponential-time algorithm
cause a slowdown. But since Sketcham replaces calls to the exponential-time
algorithm with calls to a (constant-time) mock, Sketcham achieves a speedup
of 3.8–4.5×. While it is difficult to make out in the plot, the median and CI lie
immediately above the first quartile for Sketcham.

The datetime benchmark fails to synthesize in Sketch due to memory ex-
haustion, but it consistently synthesizes in just a few seconds using Sketcham.
Investigating further, we found the bottleneck is a function that parses strings
into integers in a loop that converts digits and adds them to a running total.
For example, the digit sequence abc is converted to the integer 100*a+10*b+c.
This conversion loop is unrolled to the maximum bound by Sketch, and the in-
put strings are of varying sizes, which is encoded as a separate formula for each
possible length. The SAT conversion algorithm translates symbolic arithmetic
formulas according to combinations of possible values of their subformulas, which
results in very large SAT formulas in this case. Later in the conversion, these
are merged back together in another quadratic operation. Due to the number
of formulas and overall formula size, this eventually exhausts memory. While
Sketcham technically faces the same issue, it does so after decomposing the
sketch into smaller formulas, and thus these limits are never approached.

The boyerMoore benchmark runs 4–5× faster under Sketcham than Sketch.
The reason is similar to the previous case. boyerMoore includes a generator that
constructs arithmetic expressions that add and subtract a small set of values

Program Sketching by Automatically Generating Mocks from Tests 823

including a hole. Sketch constructs these expressions recursively so they grow
quickly, with the total number of terms determined exponentially by the degree of
function inlining, and the resulting expressions have high symmetry, both factors
that slow down solving, further compounded by the location of this expression
deep within the sketch. Because Sketcham breaks the problem’s dependencies,
this expression can be synthesized separately from the rest of the program, which
proceeds much more quickly.

The regex benchmark’s overall performance using Sketcham is statistically
significantly slower by a factor of 0.98×, which is a minimal difference in practice.
The main mocked function here performs compilation of a regular expression
into instructions for a virtual machine. Because compilation is recursive, it is
difficult to give a specification that Sketcham can use. It is instead given by
example with an exhaustive set of subproblems, which greatly increases the
number of harnesses to solve. While most harnesses keep similar performance
and the slowest harness is 8% faster in Sketcham, this is not enough margin to
improve overall solve time.

The spellcheck benchmark using Sketcham sees a speedup of 1.5×, while
minpair performs roughly the same (0.89–1.04×). Both rely on the same Lev-
enshtein edit distance algorithm. The harness for this algorithm, which is the
most time-consuming in either sketch, runs last in both settings, which reveals
the source of the performance difference between the two benchmarks. minpair
is dominated by synthesis time and spellcheck by verification time, which means
that harnesses for the minimum pair function are more difficult to synthesize
than for the spellcheck function, and so the former accumulates more state within
the solver that is compounded when solving the Levenshtein harness. This slows
it down enough to decrease the overall performance. On the other hand, the im-
provement of spellcheck is distributed across all individual harnesses, and across
both synthesis and verification time, more than making up for the time it takes
to construct and solve the mock harnesses.

Finally, the dedups show a notable performance improvement with Sketcham.
In both dedupi and dedupm, the problem is large and complex enough that plain
Sketch struggles with it. Sketcham eliminates the interactions of holes across the
deduplication and sorting functions, which speeds up synthesis by a factor of
1.3–1.9× for dedupi and 1.003–1.5× for dedupm.

4.2 Case Study: Deduplication

Next, we examine the performance of dedupi and dedupm in detail, as they
illustrate the strengths and weaknesses of Sketcham. We break our discussion
into comparisons of solving time across harnesses and comparisons of CEGIS
synthesis time to CEGIS verification time.

Time to Solve Each Harness. Both dedupi and dedupm are structured the same
way, and Sketcham creates the harnesses and mocks shown in Figure 1c for both.
Figure 6 breaks down the total times for dedupi and dedupm, grouped by the

824 N. F. F. Bragg et al.

Sketch
h_sort

Sketch
h_dedup

Sketcham
h_sort'
h_sort

Sketcham
h_dedup'
h_dedup''
h_dedup

0

20

40

60

80

100

120

140

160

dedup_i

Sketch
h_sort

Sketch
h_dedup

Sketcham
h_sort'
h_sort

Sketcham
h_dedup'
h_dedup''
h_dedup

0

100

200

300

400

500

600

dedup_m

(a) dedupi

Sketch
h_sort

Sketch
h_dedup

Sketcham
h_sort'
h_sort

Sketcham
h_dedup'
h_dedup''
h_dedup

0

20

40

60

80

100

120

140

160

dedup_i

Sketch
h_sort

Sketch
h_dedup

Sketcham
h_sort'
h_sort

Sketcham
h_dedup'
h_dedup''
h_dedup

0

100

200

300

400

500

600

dedup_m
(b) dedupm

Fig. 6: Harness time (s)

harnesses for sort and for dedup. We exclude overheads such as time spent in
mock construction, parsing the input, and reassembling the output.

We make several observations. First, comparing the first and third columns
within each subfigure, we see the time for solving h_sort is the same for Sketch
and Sketcham. This makes sense because h_sort' adds no information—it calls
mocked sort and then immediately asserts the same specification as in the mock.
Note that, while the trivial h_sort' harness could be elided here, creating an
analogous harness would be useful if the harness accidentally contained a con-
tradiction. In such a case, Sketcham would almost instantly decide the harness
is unsatisfiable, whereas Sketch could spend an arbitrary amount of time rea-
soning about the computation in the actual called function before detecting the
contradiction.

Second, comparing the second and fourth columns within each subfigure,
we see that the CI of h_dedup using Sketcham lies well below the CI using
Sketch. The speed improves by a factor of 3.2–4.7× for dedupi and 2.2–4.9× for
dedupm. Examining this result in detail, we find that Sketcham works exactly
as intended: h_dedup'' calls the mocked sort, enabling it to synthesize quickly
and assign holes correctly, which are then simply verified when checking h_dedup

(and h_dedup' is trivial, similarly to h_sort').
Third, also comparing the second and fourth columns, we see the variance

in performance for Sketch is much greater than for Sketcham. Investigating fur-
ther, we found this occurs for two reasons. First, the specification in h_sort is
weak enough2 that sometimes an incorrect hole assignment for sort satisfies the
verifier and is only discovered while synthesizing h_dedup, forcing the solver to
backtrack at great cost and simultaneously consider the holes in both functions.
Second, even when the solver finds a correct assignment for sort, it includes the

2 In addition to the specification we have supplied, a complete specification of sort

relies on the existence of a permutation function over the array’s indices.

Program Sketching by Automatically Generating Mocks from Tests 825

Sketch Sketcham
0

50

100

150

200

250

300

350

400

dedup_i synthesis
Sketch Sketcham

0.0

0.2

0.4

0.6

0.8

1.0

1.2

dedup_i verification

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m synthesis
Sketch Sketcham

0

10

20

30

40

50

60

dedup_m verification

(a) dedupi synth.

Sketch Sketcham
0

50

100

150

200

250

300

350

400

dedup_i synthesis
Sketch Sketcham

0.0

0.2

0.4

0.6

0.8

1.0

1.2

dedup_i verification

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m synthesis
Sketch Sketcham

0

10

20

30

40

50

60

dedup_m verification
(b) dedupm synth.

Sketch Sketcham
0

50

100

150

200

250

300

350

400

dedup_i synthesis
Sketch Sketcham

0.0

0.2

0.4

0.6

0.8

1.0

1.2

dedup_i verification

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m synthesis
Sketch Sketcham

0

10

20

30

40

50

60

dedup_m verification

(c) dedupi verif.

Sketch Sketcham
0

50

100

150

200

250

300

350

400

dedup_i synthesis
Sketch Sketcham

0.0

0.2

0.4

0.6

0.8

1.0

1.2

dedup_i verification

Sketch Sketcham
0

200

400

600

800

1000

1200

1400

dedup_m synthesis
Sketch Sketcham

0

10

20

30

40

50

60

dedup_m verification
(d) dedupm verif.

Fig. 7: Synthesis and verification time (s)

entire formula again while solving h_dedup, resulting in a much larger problem
and corresponding variability. In contrast, with Sketcham, h_dedup'' is decou-
pled from sort, eliminating these issues.

Fourth, we observe that both Sketch and Sketcham can solve h_sort about
10× faster for dedupi than for dedupm. Overall, merge sort is more challenging for
Sketch than insertion sort (note that since Sketch finitizes the problem by, e.g.,
unrolling loops, asymptotic complexity does not play a role). More surprisingly,
synthesizing h_dedup is also faster for dedupi compared to dedupm. We believe
this occurs because synthesis of h_dedup must sometimes recover from a bad
hole assignment from h_sort, which will be quicker for dedupi, and because the
easier synthesis of dedupi means the solver accumulates less state, such as conflict
clauses, that would otherwise slow down solving subsequent harnesses.

Finally, we begin to get a clearer picture of the divergence between dedupi

and dedupm. In dedupi, h_dedup synthesis is the performance driver, and the
improvement using Sketcham has a significant impact on total performance im-
provement. In dedupm it is overshadowed by h_sort, which dominates to the
point that improvement elsewhere is not as significant a contributor. Combined
with the overhead of mock construction, this leads to a less pronounced improve-
ment in total performance.

Synthesis and Verification Time. Figure 7 shows the times for the CEGIS synthe-
sis phase and verification phase for each benchmark under Sketch and Sketcham.
Not shown are the overheads of mock construction, parsing, etc., which for dedupi

we found took 3–4s in Sketch versus 17–19s in Sketcham, and for dedupm took
90–96s in Sketch versus 201–207s using Sketcham. We believe much of the dif-
ference between these could be eliminated with additional engineering effort.

Looking at verification times in Figures 7c and 7d, we see that while the veri-
fication times for Sketch and Sketcham are different, they are still relatively close:
Sketcham is 0.81–0.86× slower for dedupi and 1.12–1.16× faster for dedupm. In

826 N. F. F. Bragg et al.

contrast, comparing synthesis times in Figures 7a and 7b, we see a more signif-
icant speedup for Sketcham over Sketch: 1.59–2.55× for dedupi and 1.28–2.28×
for dedupm. Moreover, if we compare synthesis and verification time, we see that
the overall solving time for both benchmarks is dominated by synthesis time.
Indeed, we observed even greater synthesis speedups on other benchmarks in-
cluding fib (4.2–5.1×) and boyerMoore 5.2–6.9×, but the most extreme of which
was spellcheck , which saw synthesis speed up by 308.4–345.7× using Sketcham.
Thus, we find that Sketcham’s performance improvements come from reducing
synthesis time by introducing mocks that decrease the number of holes that need
to be considered at once.

4.3 Discussion

In general, we found that Sketch’s performance is unpredictable in practice,
which is influenced by factors such as the solver’s random seed. For example,
in terms of overall solving time, our experimental runs included several outliers
(not shown in Figure 5) near the 60 minute timeout. In these cases, Sketch
essentially makes a very poor initial guess for the holes, and verification produces
counterexamples that do not add much information. Both Sketch and Sketcham
exhibit this issue.

Moreover, often what seem like minor changes in the program sketch or con-
figuration options can result in totally different solver behavior, and hence perfor-
mance. One example of this was boyerMoore, which turned out to be non-linearly
sensitive to the loop unrolling parameter. This benchmark was also extremely
fickle about the problem formulation—holes in what seemed to be innocuous lo-
cations would lead to timeouts in both Sketch and Sketcham. Another example
is dedup, which initially had a specification that omitted a requirement that the
output array did not have a negative length. Without this constraint, the per-
formance benefit of Sketcham was overwhelmed by the variability of the solver
exploring ultimately impossible scenarios.

Overall, our results suggest that while Sketcham can’t always outperform
plain Sketch, it performs best on problems split into functions whose tests cover
the behavior the sketch actually relies on while being easier to compute than the
functions’ actual implementations. While Sketcham affected the performance of
both CEGIS phases, the best improvements were observed when the solving time
of dependencies was dominated by the synthesis phase. For programs with these
properties, Sketcham can exhibit a performance improvement of as much as 5×
overall, with synthesis time improvements alone of up to 345.7×. Moreover, in
some cases, such as datetime, Sketcham can solve problems that are out of reach
of plain Sketch. For programs where these properties do not hold, Sketcham
performance is typically similar to plain Sketch.

5 Related Work

There are several threads of related work.

Program Sketching by Automatically Generating Mocks from Tests 827

Program Synthesis with models. As discussed earlier, our work builds on
work by Singh et al. [24], who propose manually created models for Sketch.
While Sketcham relies on the core algorithm of that work, Sketcham frees the
Sketch user from needing to write models, because we create mocks automat-
ically from normal sketches. Mariano et al. [18] use algebraic specifications to
model libraries. In contrast, our approach derives specifications from the input
program’s assertions, without requiring the programmer to add annotations.

Deriving mocks and specs from tests. Saff et al. [21] use the capture and re-
play of actual test executions to automatically generate mock dependencies with
the goal of speeding up test execution. Fazzini et al. [8] further generalize this
capture-and-replay technique to consistently model the environment of a mo-
bile app under test, allowing for testing apps that use an inconsistent resource
like a database or network device. Both of these target normal testing rather
than synthesis. Nguyen et al. [19] leverage symbolic execution over input-output
test pairs to perform program repair. However, they use these tests to model
individual expressions instead of modeling entire functions. The insight under-
lying these approaches is similar to ours, however Sketcham is capable of both
input-output pairs and general properties, and does not rely on either concrete
or symbolic execution of tests.

Component-based synthesis. Gulwani et al. [10] model programs using logical
input-output relations to synthesize loop-free bit-vector programs. Shi et al. [23]
combine many solutions that each only partially meet a specification into one
that meets the entire specification. Both approaches limit the synthesis search
space by building their solutions from the bottom up, from a selection of base
components. Smith and Albarghouthi [25] prune the search space using bottom
up algebraic rewriting of the program into an equivalent normal form. In contrast
to these, Sketcham derives its benefits from breaking apart input sketches from
the top down, at function level granularity.

Modular synthesis using symbolic or actual execution. Samak et al. [22] de-
rive specifications of class methods using symbolic execution and use them to
synthesize a replacement shim class one method at a time. Van Geffen et al. [31]
use symbolic execution to model abstract virtual machines to modularly syn-
thesize a compiler one instruction at a time. In contrast, because our approach
derives mocks directly from the input’s assertions, we need not consider the code
itself when modeling it. Hua et al. [11] modularize the synthesis of library calls
through execution of actual partial programs. In contrast, we attempt to avoid
called functions entirely by relying on their inferred specifications.

Other approaches. Bod́ık et al. [2] finalize incomplete programs using angelic
nondeterminism. In contrast, Sketcham does not introduce arbitrary angelic val-
ues, but instead constrains any angelic-like behavior using a function’s inferred
specification. Huang et al. [12] use a divide-and-conquer strategy to iteratively
split synthesis problems according to heuristics. In contrast, Sketcham splits
problems structurally in a single pass. Polikarpova et al. [20] speed up synthesis
through modular verification using refinement types. In contrast, our approach
achieves a similar kind of modularity without being type-directed.

828 N. F. F. Bragg et al.

6 Conclusion

This paper presents Sketcham, a new technique for decomposing program
sketches during synthesis by turning a function’s test suite into a mock that
a caller can invoke in place of that function, thereby allowing separate reasoning
about callers and callees. Sketcham gathers asserts from tests into a specifica-
tion for each function which it embodies as a Sketch model. We implemented
Sketcham as an additional pass with Sketch and evaluated it on a set of ten
benchmarks. Our rigorous evaluation strategy ensured at a confidence level of
95% that our measurements demonstrate performance gains of as much as 5×,
including one benchmark that otherwise timed out on Sketch. Based on these re-
sults, we believe that automatically generating mocks from tests with Sketcham
is a promising new approach for achieving modular synthesis.

Acknowledgments

We would like to thank Norman Ramsey, Milod Kazerounian, and the anony-
mous reviewers for their helpful comments. This research was supported in part
by a Draper Fellowship.

References

1. Bjørner, N.: Linear quantifier elimination as an abstract decision procedure. In:
Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 316–
330. Springer, Heidelberg (2010). https://doi.org/https://doi.org/10.1007/978-3-
642-14203-1 27

2. Bod́ık, R., et al.: Programming with angelic nondeterminism. In: Proceedings
of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, pp. 339–352. ACM, New York (2010).
https://doi.org/https://doi.org/10.1145/1706299.1706339

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977). https://doi.org/https://doi.org/10.1145/359842.359859

4. Bradley, A.R., Manna, Z.: The calculus of computation: decision procedures with
applications to verification. Springer, Berlin (2007), oCLC: 255687662

5. Cheung, A., Solar-Lezama, A., Madden, S.: Using program synthesis for social rec-
ommendations. In: Chen, X., Lebanon, G., Wang, H., Zaki, M.J. (eds.) 21st ACM
International Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012, pp. 1732–1736. ACM, Hawaii,
USA (2012). https://doi.org/https://doi.org/10.1145/2396761.2398507, http://

dl.acm.org/citation.cfm?id=2396761
6. Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits il-

lustrated in the case of the binomial. Biometrika 26(4), 404–413 (1934).
https://doi.org/https://doi.org/10.1093/biomet/26.4.404, publisher: Oxford Aca-
demic

7. Ellis, K., Ritchie, D., Solar-Lezama, A., Tenenbaum, J.: Learning to infer graphics
programs from hand-drawn images. In: Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 31, pp. 6059–6068. Curran Associates, Inc. (2018)

https://doi.org/https://doi.org/10.1007/978-3-642-14203-1_27
https://doi.org/https://doi.org/10.1007/978-3-642-14203-1_27
https://doi.org/https://doi.org/10.1145/1706299.1706339
https://doi.org/https://doi.org/10.1145/359842.359859
https://doi.org/https://doi.org/10.1145/2396761.2398507
http://dl.acm.org/citation.cfm?id=2396761
http://dl.acm.org/citation.cfm?id=2396761
https://doi.org/https://doi.org/10.1093/biomet/26.4.404

Program Sketching by Automatically Generating Mocks from Tests 829

8. Fazzini, M., Gorla, A., Orso, A.: A framework for automated test mocking of
mobile apps. In: Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), NIER track, pp. 1204–1208 (Sep 2020),
iSSN: 2643–1572

9. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous Java per-
formance evaluation. ACM SIGPLAN Notices 42(10), 57–76 (2007).
https://doi.org/https://doi.org/10.1145/1297105.1297033

10. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, pp. 62–73. ACM, New York (2011).
https://doi.org/https://doi.org/10.1145/1993498.1993506

11. Hua, J., Zhang, Y., Zhang, Y., Khurshid, S.: EdSketch: execution-driven sketch-
ing for Java. Int. J. Softw. Tools Technol. Transf. 21(3), 249–265 (2019).
https://doi.org/https://doi.org/10.1007/s10009-019-00512-8

12. Huang, K., Qiu, X., Shen, P., Wang, Y.: Reconciling enumerative and deduc-
tive program synthesis. In: Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 1159–1174.
PLDI 2020, Association for Computing Machinery, New York, June 2020.
https://doi.org/https://doi.org/10.1145/3385412.3386027

13. Inala, J.P., Polikarpova, N., Qiu, X., Lerner, B.S., Solar-Lezama, A.: Synthesis of
recursive ADT transformations from reusable templates. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 247–263. Springer, Heidelberg (2017).
https://doi.org/https://doi.org/10.1007/978-3-662-54577-5 14

14. Inala, J.P., Singh, R., Solar-Lezama, A.: Synthesis of domain specific CNF encoders
for bit-vector solvers. In: Creignou, N., Berre, D.L. (eds.) Theory and Applica-
tions of Satisfiability Testing - SAT 2016–19th International Conference, Bordeaux,
France, July 5–8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9710,
pp. 302–320. Springer (2016). https://doi.org/https://doi.org/10.1007/978-3-319-
40970-2 19

15. Jeon, J., Qiu, X., Fetter-Degges, J., Foster, J.S., Solar-Lezama, A.: Syn-
thesizing framework models for symbolic execution. In: Proceedings of
the 38th International Conference on Software Engineering, pp. 156–167.
ICSE 2016, Association for Computing Machinery, New York, May 2016.
https://doi.org/https://doi.org/10.1145/2884781.2884856

16. Jeon, J., Qiu, X., Solar-Lezama, A., Foster, J.S.: JSketch: sketching for Java. In: Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
(ESEC/FSE). Tool Demo Track, pp. 934–937. ACM, Bergamo, Italy, September
(2015)

17. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In:
Proceedings of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 316–329. PLDI 2010, ACM, New York (2010).
https://doi.org/https://doi.org/10.1145/1806596.1806632

18. Mariano, B., et al.: Program synthesis with algebraic library specifi-
cations. Proc. ACM Program. Lang. 3(OOPSLA), 132:1–132:25 (2019).
https://doi.org/https://doi.org/10.1145/3360558

19. Nguyen, T.V., Weimer, W., Kapur, D., Forrest, S.: Connecting program synthesis
and reachability: automatic program repair using test-input generation. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 301–318. Springer,
Heidelberg (2017). https://doi.org/https://doi.org/10.1007/978-3-662-54577-5 17

https://doi.org/https://doi.org/10.1145/1297105.1297033
https://doi.org/https://doi.org/10.1145/1993498.1993506
https://doi.org/https://doi.org/10.1007/s10009-019-00512-8
https://doi.org/https://doi.org/10.1145/3385412.3386027
https://doi.org/https://doi.org/10.1007/978-3-662-54577-5_14
https://doi.org/https://doi.org/10.1007/978-3-319-40970-2_19
https://doi.org/https://doi.org/10.1007/978-3-319-40970-2_19
https://doi.org/https://doi.org/10.1145/2884781.2884856
https://doi.org/https://doi.org/10.1145/1806596.1806632
https://doi.org/https://doi.org/10.1145/3360558
https://doi.org/https://doi.org/10.1007/978-3-662-54577-5_17

830 N. F. F. Bragg et al.

20. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from
polymorphic refinement types. In: Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation -
PLDI 2016, pp. 522–538. ACM Press, Santa Barbara, CA, USA (2016).
https://doi.org/https://doi.org/10.1145/2908080.2908093

21. Saff, D., Artzi, S., Perkins, J.H., Ernst, M.D.: Automatic test fac-
toring for Java. In: Proceedings of the 20th IEEE/ACM International
Conference on Automated software engineering, ASE 2005, pp. 114–
123. Association for Computing Machinery, New York, November 2005.
https://doi.org/https://doi.org/10.1145/1101908.1101927

22. Samak, M., Kim, D., Rinard, M.C.: Synthesizing replacement
classes. Proc. ACM Programm. Lang. 4(POPL), 52:1–52:33 (2019).
https://doi.org/https://doi.org/10.1145/3371120

23. Shi, K., Steinhardt, J., Liang, P.: FrAngel: component-based synthesis with
control structures. Proc. ACM Programm. Lang. 3(POPL), 73:1–73:29 (2019).
https://doi.org/https://doi.org/10.1145/3290386

24. Singh, R., Singh, R., Xu, Z., Krosnick, R., Solar-Lezama, A.: Modular
synthesis of sketches using models. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 395–414. Springer, Heidelberg (2014).
https://doi.org/https://doi.org/10.1007/978-3-642-54013-4 22

25. Smith, C., Albarghouthi, A.: Program synthesis with equivalence reduction. In:
Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 24–47. Springer,
Cham (2019). https://doi.org/https://doi.org/10.1007/978-3-030-11245-5 2

26. Solar Lezama, A.: Program synthesis by sketching. Ph.D. thesis, EECS De-
partment, University of California, Berkeley, December 2008. http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html

27. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z.
(ed.) APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009).
https://doi.org/https://doi.org/10.1007/978-3-642-10672-9 3

28. Solar-Lezama, A.: The sketch programmers manual. Tech. rep, MIT, February 2020
29. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia,

S.: Sketching stencils. In: Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2007,
pp. 167–178. Association for Computing Machinery, San Diego, June 2007.
https://doi.org/https://doi.org/10.1145/1250734.1250754

30. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.:
Combinatorial sketching for finite programs. In: Shen, J.P., Martonosi, M.
(eds.) Proceedings of the 12th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2006,
San Jose, CA, USA, 21–25 October, 2006, pp. 404–415. ACM (2006).
https://doi.org/https://doi.org/10.1145/1168857.1168907

31. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthe-
sizing JIT compilers for in-kernel DSLs. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 564–586. Springer, Cham (2020).
https://doi.org/https://doi.org/10.1007/978-3-030-53291-8 29

https://doi.org/https://doi.org/10.1145/2908080.2908093
https://doi.org/https://doi.org/10.1145/1101908.1101927
https://doi.org/https://doi.org/10.1145/3371120
https://doi.org/https://doi.org/10.1145/3290386
https://doi.org/https://doi.org/10.1007/978-3-642-54013-4_22
https://doi.org/https://doi.org/10.1007/978-3-030-11245-5_2
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
https://doi.org/https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/https://doi.org/10.1145/1250734.1250754
https://doi.org/https://doi.org/10.1145/1168857.1168907
https://doi.org/https://doi.org/10.1007/978-3-030-53291-8_29

Program Sketching by Automatically Generating Mocks from Tests 831

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Counterexample-Guided Partial
Bounding for Recursive Function

Synthesis

Azadeh Farzan and Victor Nicolet(B)

University of Toronto, Toronto, Canada
{azadeh,victorn}@cs.toronto.edu

Abstract. Quantifier bounding is a standard approach in inductive pro-
gram synthesis in dealing with unbounded domains. In this paper, we
propose one such bounding method for the synthesis of recursive func-
tions over recursive input data types. The synthesis problem is specified
by an input reference (recursive) function and a recursion skeleton. The
goal is to synthesize a recursive function equivalent to the input func-
tion whose recursion strategy is specified by the recursion skeleton. In
this context, we illustrate that it is possible to selectively bound a subset
of the (recursively typed) parameters, each by a suitable bound. The
choices are guided by counterexamples. The evaluation of our strategy
on a broad set of benchmarks shows that it succeeds in efficiently syn-
thesizing non-trivial recursive functions where standard across-the-board
bounding would fail.

1 Introduction

Most computational tasks can be broken into logical units, many of which involve
evaluating a function over a data collection. Recursively defined data types are
broadly used to implement these collections. In functional languages, recursive
functions implement computations over these recursive data types. Consider a
typical scenario where a programmer has implemented a function f over a col-
lection C by defining a recursive data type A and implementing f as a recur-
sive function fooA. Later, the programmer may need a different implementation
fooB of f over a different data type B; perhaps B is better suited for an opti-
mized implementation of f , or the programmer now needs an implementation
of a new function g (in addition to f) over the collection C and the data type
B is a much better choice than A for implementing g efficiently. Ideally, the
programmer should not have to start from scratch implementing fooB .

In this paper, we propose a generic and efficient algorithm for synthesizing
recursive functions in such contexts. Our synthesis problem is specified by the
following three components: (1) a recursive reference implementation that pre-
cisely defines the functionality, (2) a high level recursion skeleton that specifies
a recursion strategy (i.e. a traversal plan over the new recursive data type) for

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 832–855, 2021.
https://doi.org/10.1007/978-3-030-81685-8_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_39&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_39

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 833

the target code, and (3) a mapping, called representation function, that converts
an instance of the new data type to one of the old data type (of the reference
implementation), and establishes that the two are different implementations of
the same concept.

Let us illustrate our problem setup with the aid of an example. Consider the
standard A-labelled binary trees, recursively defined as T → Nil | Node(A, T, T)
for an arbitrary type A, and the maximum in-order prefix sum (mips)

Fig. 1. Maximum in-order prefix sum

function depicted on the
right. mips maintains a pair
of values: sum, which keeps
track of the sum of the ele-
ments it has traversed so
far, and mps, which main-
tains the maximum value
over all such sums. This ref-
erence implementation pre-
cisely defines the functional specification for a function f .

Suppose that the programmer needs an alternative implementation that can
be efficiently parallelized, and
therefore, opts for the divide-
and-conquer recursion skeleton
depicted on the right. The par-
tially defined code specifies that the tree should be traversed in a manner that
each subtree is processed separately, and then the results should be combined by
a function join. It does not, however, specify what computation is performed;
the implementation of join and the initial value for s0 are unknown. In this
example, labeled binary trees are the recursive data type for both the reference
implementation and the target of synthesis. In cases like this, the representation
function simply becomes the identity function.

Our algorithm reduces the problem to a set of recursion-free synthesis prob-
lems, which are solved using existing synthesis tools. It synthesizes the unknown
computations for join and s0, and therefore produces the divide-and-conquer
implementation of mips on binary trees:

At the high level, the problem of synthesizing a new recursive function can be
framed as checking the validity of formulas of the type ∃f∀x : θ.φ(f, x, . . .) where
θ is a recursive data type (i.e. x ranges over a set of inductively defined terms),
f is the target recursive function, and the ellipses stand in for all the relevant
components of our specific problem statement as outlined before. Elements of
type θ are unbounded in two different dimensions: the recursive structure can be
of arbitrary size and each element of it belongs to an unbounded (data) domain.
A straightforward way of under-approximating the unbounded specification is
to bound the universal quantifier ∀x : θ in both dimensions. The synthesis prob-
lem is reformulated to synthesize the function from a bounded set of examples

834 A. Farzan and V. Nicolet

which are concrete bounded elements of the data type with concrete elements in
them. This can be done by applying a counterexample-guided inductive synthesis
(CEGIS) [34] algorithm in the straightforward way.

Alternatively, one can attempt to tackle the two dimensions independently.
The quantifier ∀x : θ can be bounded in one dimension, i.e. recursive structures of
bounded size can be considered, and yet the elements of these bounded structures
can range over unbounded domains. More formally, the universal quantification
is instantiated over a finite set of bounded-depth terms, denoted by set T , and
the resulting specification becomes ∃f.∀a ∈ D.

∧
t∈T φ(f, t) where a are the

free variables of the terms in T and of non-recursive type D. This bounding
reduces the original problem to a standard functional synthesis problem (over
unbounded data domains) that can be discharged to one of the many known
solvers, employing a variety of techniques for it. The set of terms in T can
still be discovered in a counterexample guided loop in the spirit of CEGIS, and
therefore this algorithm can be viewed as a symbolic CEGIS variant.

The thesis of this paper is that forcing bounds on all recursively typed vari-
ables is unnecessary and can be avoided algorithmically. A subset of variables can
retain their unbounded quantification and yet the problem can be reduced to a
recursion-free functional synthesis instance. Recall the mips example. The join
function takes two trees, l and r, and a value a as an input. The recursion-free
specification for join can retain a universal quantifier on all trees for l and limit
its bounded exploration to r. In other words, one can successfully synthesize the
join function from examples enumerating a few small candidate trees for r and
treating h(l) (i.e. the result of the computation on l) and not l itself for the
inductive enumeration of examples for synthesis. We discuss in the paper how
this information can be algorithmically derived from the specific components of
our synthesis problem: the reference implementation, the recursion skeleton, and
the representation function.

Beyond the decision on what quantifiers should be bounded, the synthe-
sis algorithm also needs to determine a set of terms that are used to bound
these quantifiers. We propose an algorithm that discovers these bounds guided
by counterexamples in a refinement-style loop. We show that this algorithm is
sound, satisfies the expected weak-progress property that other CEGIS instances
have, and is parsimonious in a precise sense. We have implemented this algo-
rithm as a prototype synthesis tool Synduce and demonstrate that Synduce
can efficiently synthesize recursive functions from specifications.

2 Background and Notation

The notation introduced in this section is used for formalizing the result of
applying recursive functions to symbolic inputs.

Terms. We make use of a set of symbols that are partitioned into terminal
symbols Σ, non-terminal symbols N , and an infinite set of typed variables V.
There is a unique symbol ◦? that stands for a hole. Terms are defined by the

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 835

grammar T → x | T T where x is a symbol, and T T is a function application.
These are the relevant classes of terms:

– Concrete terms T (Σ) are those containing only terminal symbols. Every con-
crete term can be interpreted and has a concrete value.

– Symbolic terms T (Σ,V) are those containing terminal symbols or variables.
– Closed terms T (Σ,N) are those containing terminal or non-terminal symbols,

but no variables.
– Applicative terms T (Σ,N ,V) are those containing any symbol except the hole

symbol.
– Contexts T (Σ,N ,V, ◦?) are those with at least one hole. A one-hole context

C[] is a context with a single occurrence of ◦?, and C[t] stands for the term
formed by replacing the single hole in C[] with the term t.

Two terms are equal, denoted by t =α t′ (standard alpha conversion), iff there
exists two injective substitutions σ : FV (t) → V \ (FV (t) ∪ FV (t′)) and σ′ :
FV (t′) → V \ (FV (t) ∪ FV (t′)) such that σt = σ′t′ (i.e. syntactically equal).

A symbolic term t can be expanded into a term t′ iff there exists a substi-
tution σ : FV (t) → T (FV (t′) ∪ Σ) that substitutes the free variables of t for
symbolic terms with the free variables of t′ such that t′ = σt. The relation �
over symbolic terms, is a partial order defined as, t � t′ iff t can be expanded
into t′. A single variable is the maximal element according to this partial order
and concrete terms (of any depth) are minimal elements.

Recursive Functions. This paper focuses on recursive functions f : τ → D
with terms of a recursive type (τ or θ) as input, and an output of type D. These
functions can be executed on concrete or symbolic input terms of type τ . We
assume all functions can be translated to recursion schemes as defined below:

Definition 1 ([26]). A recursion scheme is a tuple P = 〈Σ,N ,R, Λ〉 where:

– Σ is a ranked alphabet of terminals
– N is a finite set of typed non-terminals.
– R is a finite set of rewrite rules, each in one of the following shapes (m ≥ 0):

(pure) F x1 . . . xm → t

(pattern matching) F x1 . . . xm p → t

where the xi are variables, p is a symbolic term, t is an applicative term in
T (Σ ∪ N ∪ {x1, . . . , xn}), and F is a non-terminal.

– Λ : τ → D is a distinguished non-terminal symbol whose defining rules are
always pattern-matching rules.

We associate with each recursion scheme P a notion of reduction. A redex is
an applicative term of the form F σx1 . . . σxm σp for a substitution σ : V →
T (Σ,N ,V) and rule F x1 . . . xm p → t in R. The contractum of the redex
is σt. The one-step reduction relation �→⊆ T (Σ,N ,V) × T (Σ,N ,V) is defined
by C[s] �→ C[t] whenever s is a redex, t is a contractum and C[] is a one-hole
context. A recursion scheme is deterministic iff for any redex F s1 . . . sm there

836 A. Farzan and V. Nicolet

is exactly one rule l → r (in R) which matches that redex, i.e. there exists a
substitution θ such that F s1 . . . sm = θ l.

Given a recursion scheme P = 〈Σ,N ,R, Λ〉 and a term s ∈ T (Σ,N ,V),
L(P, s) denotes the language of (Σ∪N ∪FV (s))-labelled trees resulted from the
maximal rewriting of the term s with the one-step reduction relation associated
to P. If P is deterministic, then L(P, s) is a singleton (the term s reduces to only
one possible term), and �s�P denotes the unique resulting term. This notion of
reduction is slightly different from the one used in [26], in that we do not require
the substitution to be closed.

Symbolic Evaluation. For any function f that can be defined as a recursion
scheme, the symbolic evaluation of f on input s is simply �s�f . In other words,
f(s) = �s�f . In this view, recursive functions and the corresponding recursion
schemes are interchangeable. For a recursion scheme 〈Σ,N ,R, Λ〉 representing a
function f and a variable x, f(x) and Λ x become two different ways of referenc-
ing the same concept. In this paper, we assume that all recursion schemes to be
deterministic total functions. Specifically, they terminate on all inputs; symbolic
evaluation (or the equivalent reduction) of a symbolic term always terminates.

Types Notation. We use capital letters A,B,C, and D to refer to base types,
which are scalar types (int,bool, char, . . .) or unlabeled products of scalar types
(e.g. int× int). Our focus is on functions that take as input elements of recursive
variant (or sum) types denoted by τ, θ, We denote by κ1, . . . , κn the con-
structors of a variant type τ with n variants. Each constructor is assimilated to
a terminal symbol τ1 × . . . × τk → τ , where k ≥ 0. We assume that all recursive
types define finite structures, that is, one can always construct a term of type
τ with a finite number of constructors and elements of base type. x : τ denotes
the judgement x is of type τ , and ∀x : τ denotes the universal quantification of
all variables x of type τ .

In this setting, where we distinguish base types and recursive types, we dif-
ferentiate bounded terms, which are symbolic terms where all free variables
are of base type (in VB), and unbounded terms where some variables can be
of recursive type. An unbounded term t is a symbolic term of finite size, but
there are infinitely many bounded terms that are expansions of t.

3 Formal Definition of the Synthesis Problem

The synthesis problem solved in this paper is defined by three components: a
reference recursive function f : τ → D, a representation function r : θ → τ
that maps inputs of the target function to those of f , and a recursion skeleton
for the target function. All three components are formally modelled by recursion
schemes (Definition 1). f and r are standard recursive functions representable by
deterministic recursion schemes. The recursion scheme for the recursion skeleton
S[Ξ] : θ → D includes a special set Ξ of symbols as a subset of its terminal
symbols, which correspond to the unknown components for synthesis. These
unknowns stand for constants or functions that have to be synthesized.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 837

At the high level, the solution to the synthesis problem is the definition of a
new recursive function. At the low level, each of the unknowns in Ξ need to be
given a definition. In each problem instance, it is assumed that f and S[Ξ] use a
common set of terminal symbols Σ that belong to a background theory T (e.g.
linear integer arithmetic). Formally, the solution is identified by a mapping Z
from the unknowns Ξ to function definitions λx1. . . . λxn.t where n ≥ 0 and t is
a symbolic term in T (Σ, {x1, . . . , xn}) (a concrete term if n = 0). Let S[Ξ/Z] be
the recursion scheme obtained by replacing the unknowns Ξ by their definition
in Z. Any solution Z that satisfies the following specification is a valid solution:

Ψ ≡ ∀x : θ,S[Ξ/Z](x) = (f ◦ r)(x)

Example 1. We use a problem instance with the goal of synthesizing a recursive
function on tree paths as a running example of this paper. Recall the mips func-
tion given in Fig. 1. Suppose that we want to transform it to a function on tree
paths1 as an alternative data type to labelled binary trees. For an A-labelled tree
(of type Tree), Path is a datatype defined by the following grammar:

Path → Top | Zip((�|⊥), A,Tree,Path)

Intuitively, a path decomposes a tree as shown on the right.
The path Zip(�, a, ta,Zip(⊥, b, tb,Zip(�, c, tc, x))), from the root
to a leaf decomposes the tree into the subtrees ta, tb, and tc.

f :

⎧
⎪⎪⎨

⎪⎪⎩

Λf t → G (0, 0) t
G s Nil → s
G s Node(a, l, r) → G (L a (G s l)) r
L a (s, m) → (s + a,max (s + a, m))

The synthesis problem is
specified by three recursion
schemes. The recursion scheme
f , on the right, models the
function mips from Fig. 1. Λf is
the non-terminal corresponding to the main function mips and G is an auxiliary
function. An additional non-terminal L is used to mirror the tuple decomposition
done by the let-binding in the code of mips.

r :

⎧
⎨

⎩

Λr Top → Nil
Λr Zip(�, a, t, z) → Node(a, t, Λr z)
Λr Zip(⊥, a, t, z) → Node(a, Λr z, t)

The second recursion scheme is
the representation function r from
paths to trees. The input path
is recursively decomposed by the
rewrite rules, and Node is constructed recursively on the right or on the left
depending on the first value contained in the Zip constructor.

S[s0, gl, gr] :

⎧
⎨

⎩

ΛS Top → s0

ΛS Zip(�, a, t, z) → gl a (Λf t) (ΛS z)
ΛS Zip(⊥, a, t, z) → gr a (Λf t) (ΛS z)

The last recursion
scheme specifies the recur-
sion skeleton of the tar-
get function with un-
knowns s0, gl and gr. It traverses the input path, making recursive calls (ΛS z)
on paths, and calling the reference function on subtrees (Λf t). The goal is then
to synthesize implementations of s0, gl and gr such that S[s0, gl, gr] is equivalent
to f ◦ r.

1 This example is from [24], which calls this data type zipper.

838 A. Farzan and V. Nicolet

4 Recursion-Free Approximations

A system of recursion-free equations models an approximation of the full func-
tional specification Ψ for a recursive synthesis problem instance.

Definition 2. Given two sets of terminals Σ and Ξ, a system of recursion-free
equations is a finite set of constraints {ei = e′

i} where e, e′ ∈ T (Σ ∪ Ξ,VB).

We denote by {ei = e′
i}i∈I the set of constraints of the system, and {xj}1≤j≤n ≡⋃

i∈I FV (ei) ∪ FV (e′
i) are the free variables in the system. The above system

defines a synthesis problem where Σ is the signature of some theory T and Ξ is
the set of unknowns to be synthesized. A solution Z to this synthesis problem
is a mapping from Ξ to function definitions. Z is valid iff the following formula
is valid:

∀x1 : D1. . . . ∀xn : Dn.
∧

i∈I

(ei = e′
i)[Ξ/Z]

where (ei = e′
i)[Ξ/Z] denotes the term in which the unknowns Ξ have been

replaced by their definition in Z. In the rest of the paper, we consider systems of
recursion-free equations where the set of terminals Σ and the set of unknowns Ξ
are fixed and the same as in the main synthesis problem of Sect. 3. We say that
a system E ′ is a sound approximation of a system E (E ′ � E) (or the synthesis
problem Ψ) when any solution of E (or Ψ) is also a solution of E ′.

4.1 Partially Bounded Quantification

Consider the formal definition of the synthesis problem in Sect. 3. Bounding the
quantifiers consists in expressing the problem on a finite set of bounded terms.
This bounding effectively eliminates recursion; recursive calls can be inlined a
bounded number of times. Yet, since the free variables of the bounded term are
universally quantified over an infinite base domain, a bounded term t of type θ
represents an infinite set of concrete inputs (of bounded size).

We propose a different strategy for bounding the quantifiers: we aim to
instantiate the quantifier on a finite set of bounded and unbounded terms such
that the resulting specification is not recursive. To start, we instantiate the uni-
versal quantifier by a finite set of arbitrary symbolic terms T . Our first approx-
imation then becomes the set of constraints:

E(T) = {S[Ξ](t) = (f ◦ r)(t) |t ∈ T} (1)

The set of constraints E(T) can be seen as a synthesis problem where free
variables are universally quantified and the unknowns in Ξ are to be synthesized.
E(T) is not guaranteed to be a system of recursion-free equations for all choices
of T . For an arbitrary symbolic term t, calls to recursive functions may appear in
subterms of S[Ξ](t) and (f ◦ r)(t). Restricting T to bounded terms would yield
a recursion-free system after symbolic evaluation of both sides of the equation.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 839

This, however, is too restrictive. There may exist unbounded terms t where
the equation S[Ξ](t) = (f ◦ r)(t) can be rewritten to an equivalent recursion-
free equation. Intuitively, in an applicative term (resulting from the symbolic
evaluation of a recursive function f) the simple subterms of the form f(x) where
x is a variable can be eliminated by replacing f(x) with a single variable a of
type D which now stands for the result of the invocation of f on any x.

Definition 3. A symbolic term t is maximally reducible (t is a MR-term) by a
recursion scheme P = (Σ,N ,R, Λ) iff �t�P is an applicative term in T (Σ,N ,V)
such that replacing all subterms of the form (Λ x) (where x ∈ V) by a fresh
variable x′ /∈ FV (t) yields a symbolic term.

Example 2. The term z = Zip(�, a, t, Top) where a is an integer and t is of type
Tree is maximally reducible by f ◦ r and S[s0, gl, gr] (cf. Example 1). First we
have r(z) = �z�r = Node(a, t,Nil) and (f ◦ r)(z) = G (L a (Λf t)) Nil . If Λf t
is replaced by (a1, a2) (of type int × int), then the term can be reduced further
to (a1 + a,max(a1 + a, a2)). For the other function, we have S[s0, gl, gr](z) =
gl a (Λf t) s0. If Λf t is also replaced by (a1, a2), then the term reduces to the
symbolic term gl a (a1, a2) s0. Note that z is an unbounded term, since t is a
variable representing a tree of arbitrary depth.

If every term in T is maximally reducible by both (f ◦ r) and S[Ξ], then
every call to a recursive function can be eliminated in E(T). Note that this
new sufficient condition for E(T) to be recursion free is strictly weaker than the
condition of having the terms in T to be bounded; a maximally reducible term
need not be a bounded term.

Definition 4. A set of constraints E(T) = {S[Ξ](t) = (f ◦ r)(t) |t ∈ T} is
well-formed iff every t ∈ T is maximally reducible by f ◦ r and S[Ξ].

A well-formed set of constraints E(T) can be transformed to a system of
recursion-free equations. For each free variable x : θ in E(T), a fresh variable
a : D is added and the subterms (f ◦ r)(x) and S[Ξ](x) are replaced by a in
every constraint. We call this rewriting step recursion elimination over D. Note
that the calls to f ◦ r and S[Ξ] are both replaced by the same variable, since
their equivalence is part of the specification of the synthesis problem.

The transformation described above produces a recursion-free system of equa-
tions, but it does not always yield a sound abstraction, specifically when f ◦ r
is not onto D. There may exist a solution of Ψ that is not a solution of the
resulting system of equations. This can be fixed by having additional constraints
(invariants) on the fresh variables. Let Imf : D → bool a predicate such that
f ◦ r is onto {c | c : D ∧ Imf (c)}. Then, the abstraction is sound if the choices
for a : D are limited to when Imf (a) holds.

Example 3. Recall Example 1. The maximum in-order prefix sum is not onto
int × int, since the second element of the pair is always a positive integer. The
constraint Imf (x, y) = y ≥ 0 is required to make the function onto. In Example 2,
a2 must be a positive integer.

840 A. Farzan and V. Nicolet

Definition 5. Let T be a set of maximally reducible terms by f ◦ r and S[Ξ],
and Imf a predicate such that f ◦ r is onto {c | c : D ∧ Imf (c)}. We denote
by E(T) the equation system obtained by rewriting each constraint in E(T) to a
recursion free equation, through recursion elimination over {c | c : D ∧ Imf (c)}.

In the synthesis problem defined by E(T), the variables introduced by recur-
sion elimination are universally quantified over their restricted range. The exact
encoding of the range restriction by Imf depends on the implementation of a
synthesis oracle.

Proposition 1. Z is a solution of E(T) iff Z is a solution of E(T).

The proof follows from the construction of E(T) based on E(T). Combining this
with the fact that E(T) results from bounding the universal quantifications in
Ψ , we can conclude that E(T) approximates Ψ .

Theorem 1 (Sound approximation). If T is a set of maximally reducible
terms by f ◦ r and S[Ξ], E(T) is a sound approximation of Ψ .

By construction, any solution of the functional specification Ψ is a solution
of the system of equations E(T).

Example 4. Let T = {Top, Zip(�, a, t, Top), Zip(⊥, a,Nil, z)} be a set of terms,
where a : int, t : Tree and z : Path. Top is a concrete term, therefore maximally
reducible. We saw in Example 2 that Zip(�, a, t, Top) is a MR-term. With a
similar reasoning, one can conclude that Zip(⊥, a,Nil, z) is a MR-term; note
how the term differs in which subterm is unbounded depending on the first
component of the Zip. Therefore, E(T) is a well-formed set of constraints and by
substituting Λf t and ΛS z for (a1, a2) (where a1 : int and a2 ∈ {v : int|v ≥ 0}),
we obtain the following recursion-free system of equations:

E(T) =

⎧
⎨

⎩

0, 0 = s0,
a1 + a,max(a1 + a, a2) = gl a (a1, a2) s0

a1 + a,max(a1 + a, a2) = gr a s0 (a1, a2)

with free variables a : int, a1 : int and a2 ∈ {v : int|v ≥ 0}.

In contrast to a canonical CEGIS setting, where the approximation is the
specification projected over a finite set of concrete terms, our abstraction is
over an infinite set of concrete terms represented by a finite set of symbolic
terms. In the original functional specification, the equational constraint (f ◦
r)(x) = S[Ξ](x) ranges over all possible terms x of type θ. In the abstraction

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 841

E(T), the universally quantified variables are the free variables of the terms in
the equations, which correspond to the variable symbols of scalar type used in
the symbolic terms of T , modulo the introduction of fresh variables during the
rewriting of the set of constraints E(T) to the system of equations E(T).

4.2 Refining Systems of Equations

Our approximation, the system of equations E(T), is parametric on a set of
maximally reducible terms T . This approximation can be refined by adding terms
to T , since for any two set of terms R and T such that R ⊆ T , E(R) � E(T).

The convergence of the refinement process depends on the terms added at
each step. We present our refinement algorithm in the next section, but the
main insights behind it, not tied to specific algorithmic choices, are captured by
Propositions 2 and 3.

Proposition 2. Let T be a set of MR-terms and Z be a solution of E(T). Then
for any term t′ such that there exists t ∈ T s.t t � t′, Z is a solution of E(T∪{t′}).

This proposition implies that if Z is a spurious solution, then a counterex-
ample term showing that it is not a solution of Ψ is necessarily not expanded
from a term in T . We also learn that T should ideally be an antichain of � at
every refinement round, since adding expanded terms does not strengthen the
approximation.

Proposition 3. Given two terms t and t′ such that t � t′ (i.e. t′ is an expansion
of t) and a set of MR-terms T such that ∀x ∈ T,¬(x � t ∧ t � x), we have
E(T ∪ {t}) � E(T ∪ {t′}).

Adding the less expanded term (i.e. t) yields both a more general approximation
and a more compact one. In other words, given a choice, always choose the least
expanded term as the counterexample for refinement.

5 Synthesis Algorithm

Our synthesis algorithm computes a sequence of approximations of the functional
specification Ψ from Sect. 3. Each approximation is a system of equations of the
form E(T) (Definition 5). The approximations are incrementally refined until
the synthesis solution for one is also a valid solution for the synthesis problem
specified by Ψ .

842 A. Farzan and V. Nicolet

Initialize T, U

Synthesize E(T)

No solution.

Verify Z

Solution Z.

Generalize
xC → uC ∈ U

(Sec. 5.2)

Expand
uC → T ′, U ′

(Sec. 5.1)

Z

Ctex. xC

U ← U \ {uC}uC

T ← T ∪ T ′

U ← U ∪ U ′

Fig. 2. Approximation refinement algorithm.

Figure 2 illustrates the
work flow of our algo-
rithm. At the beginning of
each iteration, a solution of
the system of recursion-free
equations E(T) is synthe-
sized. If no solution is found,
then there is no solution for
the original synthesis prob-
lem, since the E(T) is guar-
anteed to be a sound approx-
imation (Theorem 1). If a
solution Z is found, then Z
is verified against Ψ and if
it passes, then it is returned
as a solution. Otherwise, the
verifier returns a counterexample term xC . By Proposition 2, xC cannot be an
expansion of any term in T , and new terms related to xC have to be added to
T in the spirit of refinement.

The algorithm additionally keeps track of a set U of non-maximally reducible
terms, which intuitively represents the set of inputs not covered by the current
approximation. The sets T and U are complementary in a precise sense: T ∪U is
always a boundary of �. A boundary (of a partial order) is an antichain C such
that for any bounded term t, there is some c in C such that c � t.

The counterexample xC is necessarily an expansion of some term uC ∈ U .
But since uC is by definition not maximally reducible, one cannot just remove
it from U and add it to T . The Expand step takes uC as an input and produces
two sets T ′ and U ′ to update the current sets T and U and repair the boundary
before the loop restarts.

The figure on the right is a graphical repre-
sentation of the boundary repair. The sets T (in
blue) and U (in red) initially form a boundary.
This boundary is updated by removing the term
uC and adding U ′ and T ′ (the results of the Expand
step) to form a new boundary. The fact that T ∪ U
always forms a boundary is a required invariant
of this refinement loop: (i) T , as a parameter of
E(T), is required to be an antichain (as discussed
in Sect. 4.2), and (ii) the Generalize step relies on the assumption that U is an
antichain containing all the terms not yet sufficiently expanded to be in T .

We rely on existing tools/techniques for the steps Synthesize and Verify of
Fig. 2. In the following, we describe the Initialize, Expand, and Generalize steps of
the algorithm.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 843

Initialization. There is a straightforward way to initialize T and U : apply the
Expand component to a single variable x of type θ and take the resulting sets
T of maximally reducible terms and U of non-maximally reducible terms. The
Expand step is described in the next section. For Example 1, a variable x of type
Path is expanded to produce T = {Top} and U = {Zip(⊥, a, t, z),Zip(�, a, t, z)}
with variables a, t, and z of the appropriate types.

5.1 Expand : Producing Maximally Reducible Terms

Given an input term uC , Expand generates two sets T ′ and U ′ such that the terms

T ′ = ∅, U ′ = {uC};
while T ′ = ∅ do

Pick u0 in U ′;
S = ExpandOnce(u0);
T ′, U ′′ = Partition(S);
U ′ = (U ′ \ u0) ∪ U ′′;

end
return T ′, U ′

in T ′ are maximally reducible by both f ◦ r and
S[Ξ]. The computation of these terms is done by
expanding the input term uC until a set of maxi-
mally reducible terms is found. The algorithm on
the right illustrates the process. At each step, a
term u0 is picked from the set of non-maximally
reducible terms U ′. This term is expanded once,
by a call to ExpandOnce (which is described
later). The resulting set of terms is then parti-
tioned into a set of maximally reducible terms T ′

and a set of non-maximally reducible terms U ′′; the latter is used to update U ′.
The choice of u0 at the first line of the loop is important for the termination

of the algorithm. There may be an infinite sequence of expansions if the u0’s are
adversarially chosen. There always exists a finite sequence of expansions yielding
bounded terms which are by definition maximally reducible. A breadth-first
exploration of all expansions is one such strategy that ensures the termination
of the algorithm.

ExpandOnce. The input of ExpandOnce is a term u0 that is not maximally
reducible. The following proposition characterizes u0 and the reason for its non-
reducibility:

Proposition 4. Let u0 ∈ T (Σ,V) and g = (Σ,N ,R, Λ) a recursion scheme. u0

is not maximally reducible by g iff there exists a subterm of �u0�g of the form
s = F t1 . . . tn x, where F ∈ N and F �= Λ, the terms t1 . . . tn are applicative
terms, and x ∈ FV (u0).

The proof by cases on the subterms of u0 is given in the extended version of
this paper [7]. In order to take a step towards making u0 maximally reducible,
the variable x needs to be expanded. Expanding x into a term guarantees some
rule F x1 . . . xn p → t ∈ R can be used to reduce u0 further. Such a rule is
guaranteed to exist for a recursion scheme representing a total function.

Next, we define how u0 is expanded at a variable x identified by Proposition 4.
u0 can be written as C[x] for some one-hole context C[]. Assume the type β
of x has constructors κ1, . . . κn where each κi has type γi → β. The pointwise
expansion of u0 at x is the set of terms {C[κ1(x1)], . . . , C[κn(xn)]} where each
xi is a variable (or a tuple) of variables of type γi.

844 A. Farzan and V. Nicolet

In summary, ExpandOnce first identifies a variable x in u0 (Proposition 4)
that needs to be expanded and then performs the pointwise expansion of u0 at
x and returns the resulting set of terms.

One important feature of ExpandOnce is that terms are expanded only where
needed. Proposition 4 identifies the precise location (i.e. x) where expanding is
necessary and ignores locations where it is not.

Example 5. Recall Example 1. Suppose u0 = Zip(�, a, t, z) is a (symbolic) path
and an input to ExpandOnce, where a is an integer, t is of type Tree, and z
is of type Path. u0 is not maximally reducible and has to be expanded. Note
that r(u0) = Node(a, t, Λr z) and therefore (f ◦ r)(u0) = G (L a (Λf t)) (Λr z).
The subterm (Λr z) blocks the reduction of the term starting with G, because
z blocks the reduction of Λr z and therefore, u0 has to be expanded at z. The
pointwise expansion of u0 at z yields the terms u1 = Zip(�, a, t, Top), u2 =
Zip(�, a, t,Zip(�, a′, t′, z′)), and u3 = Zip(�, a, t,Zip(⊥, a′, t′, z′))}. Note that
the tree element t need not be expanded; we showed in Example 2 that u1 is
maximally reducible and therefore, the expansion loop stops and returns T ′ =
{u1} and U ′ = {u2, u3}.

Consider the symmetric term Zip(⊥, a, t, z) acquired by replacing the � in
u0 with ⊥. The expansion of this term yields T ′ = Zip(⊥, a,Nil , z) and U ′ =
{Zi(⊥, a,Node(a′, l, r), z)}. Note that unlike the case for u0, the tree element of
the path has to be expanded and the path element need not be expanded.

5.2 Counterexample Generalization

The generalization of the counterexample xC is the unique term uC ∈ U such
that uC � xC . The term uC is guaranteed to exist because the algorithm main-
tains the invariant that T ∪ U is a boundary, and it is unique since U is always
an antichain.

Example 6. After initialization, the synthesis solver attempts to find a solution
for the system of equations given in Example 4. One possible solution is

s0 = (0, 0) gl(a, (s1,m1), (s2,m2)) = a + s1,max(m1, a + s1)

together with a similar solution for gr. But the solution for gl is incorrect;
the first component should be a + s1 + s2 (i.e. the sum of both partial sums
and the label of the node). The verifier returns a counterexample of the form
xc = Zip(�, 1,Node(?),Zip(�,−2,Node(?), ?)) where the question marks stand
for concrete subterms of the appropriate type. These subterms are ignored. The
counterexample is generalized by selecting u2 = Zip(�, a, t, Zip(�, a′, t′, z′))
(where u2 � xC), the term that was stored in U after the expansion described
in Example 5. This determines where the algorithm must unfold the path one
more time to build a stronger approximation.

We report in Sect. 7 that Synduce succeeds in finding a solution for this
example with 3 refinement rounds in 1.57 s, whereas the symbolic CEGIS
(described in Sect. 1) times out after 10 min over 6 refinement rounds.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 845

5.3 Algorithm Properties

Soundness. Under the assumption that the steps Synthesize and Verify are
soundly implemented, the overall algorithm is sound. By construction, T is
always a set of maximally reducible terms. Therefore, E(T) is a guaranteed to
be a sound approximation of Ψ by Theorem 1. The soundness of the verification
oracle guarantees that any returned solution is in fact a solution of the synthesis
problem specified by Ψ .

Weak Progress. Consider the naive algorithm that would expand T by simply
adding the counterexample xC to it; xC is a maximally reducible term after
all. This naive algorithm satisfies a weak progress property, namely that, the
spurious solution Z from any round will not be a solution in any future round.
Our algorithm does something more sophisticated and therefore it has to be
argued that the same weak progress property holds. First, Expand satisfies the
following property that guarantees T ∪ U to always be a boundary:

Proposition 5. Let t be some symbolic term and T ′, U ′ be the results of the call
to Expand(t). Then T ′ ∪ U ′ is a boundary of the set {t′|t � t′}.

Let uC be the generalization of xC . Proposition 5 guarantees that Expand
computes and adds all possible expansions of uC to T . This in turn implies
that there always exists a term t � xC in the updated set T (after the call to
Expand), which rules xC out as a spurious solution in all future rounds. Note
that the algorithm relies on the existence of uC in U . For this, it requires T ∪ U
to be a boundary.

Parsimony. Finally, we can show that our algorithm is parsimonious with the
selection of the terms for T in the following precise way:

Theorem 2. [Parsimony] Let us assume (T,U) is a boundary that our algo-
rithm reaches in some round, then (T,U) is optimal in the following two senses:

– for every t ∈ T ∪ U there is no MR-term t′ such that t′ � t.
– there is no non-empty subset T ′ of T and set U ′ such that (T \ T ′) ∪ U ′ is a

boundary and E(T \ T ′) � E(T).

Intuitively, all the terms in T are expanded to the extent necessary and
no proper subset of T can form a boundary that maintains the same precise
approximation that T ∪ U induces. The full proof appears in [7].

6 Implementation

Our approach is implemented in Synduce [36], a tool written in OCaml [22],
and the inputs are recursive functions and datatypes written in Caml.

846 A. Farzan and V. Nicolet

6.1 Verification and Synthesis Oracles

Synduce uses bounded model checking to implement Verify from Fig. 2. A
bounded check for the validity of a synthesis solution Z is encoded as the validity
of the formula ∧t∈T ∀a ∈ FV (t).S[Ξ/Z](t) = (f ◦r)(t) for a set of bounded terms
T . Z3 [25] is used as the backend SMT solver, which produces a counterexample
in the form of a term for which at least one equality constraint is invalid.

Synduce spends most of its time in the Synthesize box of Fig. 2. Since the
input to Synthesize is guaranteed to be a recursion-free synthesis specification,
any off-the-shelf syntax-guided synthesis (SyGuS) [4] solver that supports the
standard language [29] can be used to implement Synthesize. We use CVC4 [5]
for the results presented in this section.

A SyGuS problem is specified by a grammar describing the space of programs
to be synthesized and a set of constraints. In this case, the grammar is generated
from the type of the functions to be synthesized (the unknowns in Ξ), which
can be inferred from the constraints where they appear. Instances of generic
grammars for integers and booleans can be found in the SyGuS language spec-
ification [29], and these grammars for base types can be combined into tuples
in a straightforward manner. The constraints are the equations of the system,
with the addition of the predicates constraining the domain of the variables, i.e.
Imf from Definition 5. Each recursion-free equation e = e′ is translated to a
constraint of the form ¬(

∧
v∈FV (e)∪FV (e′) Imf (v)) ∨ e = e′ where Imf (v) is the

predicate associated to the variable v.

6.2 Baseline Method

The goal of our experimentation is to evaluate the efficiency and efficacy of the
proposed partial quantifier bounding approach for synthesis of recursive pro-
grams. Since there is no available (automated) tool that solves the specific prob-
lem posed in this paper, we implemented the symbolic CEGIS technique (as
outlined in Sect. 1) to serve as a baseline. To be precise, the algorithm of Fig. 2
is modified by removing the Generalize and Expand steps; the symbolic coun-
terexample returned by the verification at each step is added directly to the set
of terms instead of being generalized. The set T is also initialized as a set of
bounded terms of some minimal depth, depending on the particular definition
of the data type. Note that since the baseline method is counterexample-guided,
it is better than the more straightforward finitization techniques, for example,
manual finitization by a preset bound.

We also implemented the concrete CEGIS method (outlined in Sect. 1) to
confirm that the symbolic CEGIS is the better choice. Symbolic CEGIS solves 6
more benchmarks than concrete CEGIS, and does better time-wise in the vast
majority of the rest. Detailed results are given in the extended version of this
paper [7].

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 847

6.3 Optimizations

We implemented a few simple, straightforward and generic (i.e. they can be
incorporated in any SyGuS solver) optimizations. These aim to compensate for
the brittleness of the SyGuS solvers, which can fail for very simple constraints
for no good reason. Here is a brief overview of these optimizations, which are
applicable to any system of equations (baseline’s and ours):

– Syntactic definitions, which are those that define an unknown function ξ
unequivocally in the form of ξ(x1, . . . , xn) = t, can be identified quickly and
eliminated from the synthesis task to simplify it.

– A system of equations can be split into independent subsystems by identifying
an independent subsets of equations. A subset of equations is independent if
it constrains a subset of the unknowns that does not appear in the rest of the
set of equations. Identification of independent subsystems generates simpler
subproblems.

– Instead of starting from a default initial state, we can start from a set of
terms that makes for an interesting first round and consequently saves a few
refinement rounds from the solution. We form a set of initial terms by using
the Expand routine to expand enough terms such that each unknown appears
in at least one constraint in the approximation for the first round.

These optimizations are applied to both the baseline method and our algo-
rithm for the purpose of evaluation. The extended version of this paper [7]
includes more detailed evaluation of them and experimental results illustrating
their precise impact on each algorithm.

7 Evaluation

We evaluate Synduce on a broad set of benchmarks. Our benchmarks are
grouped into six categories. Table 1 lists all the benchmarks, grouped accord-
ingly. Each category, shares the same representation function and polymorphic
recursion skeleton, but a different reference implementation is used to specify
the synthesis problem. The recursion skeletons (and the representation func-
tions) are polymorphic and therefore reusable. Only 9 different skeletons and
4 different representation functions were used across our 43 benchmarks. More
details about the benchmarks, including the simple 9 utilized skeletons, appear
in the extended version of this paper [7].

7.1 Case Studies

Changing Tree Traversals. An example of this category is the mips example
used in the introduction. The reference function is a natural implementation
of a function with a post- or in-order traversal of a binary tree. The target
is an equivalent implementation corresponding to the divide-and-conquer tree
homomorphism style recursion.

848 A. Farzan and V. Nicolet

From Trees to Paths. A tree path (zipper in [24]) is a data structure used
to represent a tree together with a subtree that is the focus of attention. Our
running example belongs in this category. The other benchmarks in this category
are from [24].

Enforcing Tail Recursion. In this category, the reference implementation
is a direct-style recursion on the data structure, while the recursion skeleton
specifies that an accumulator should be used to make the function tail-recursive.
Tail recursive functions generally compile to more efficient code.

Combining Traversals. Suppose a collection of existing implementations com-
putes different functions with different traversals of the same data structure. If in
some larger context all of these functions need to be computed, combining them
can lower the amortized cost. In this set of benchmarks, we synthesize automati-
cally the implementation that corresponds to traversing the data structure with
a single recursion strategy, combining the computations into one.

Tree Flattening. These benchmarks target the synthesis of an implementation
on the more complex plane tree data structure from a reference implementation
on the simpler binary tree data structure.

Parallelizing Functions on Lists. Parallelizing a function on lists can be
seen as the translation of a recursive function on cons-lists to a homomorphic
function on lists built with the concatenation operator. These benchmarks are
from [8,9,23].

7.2 Experimental Results

To best of our knowledge, there are no available tools that can be directly com-
pared against Synduce. We can transform our specification to a format that
can be accepted by Leon [18]. However, the latter does not succeed in solving
even the simplest of our benchmarks (e.g. sum in the list function parallelization
category), likely due to the fact that the required deductive rules are missing.
We comment on the rest of the available tools in Sect. 8.

Table 1 presents the results of comparing Synduce against the baseline
method. Both techniques use symbolic counterexamples, and therefore, the com-
parison can highlight the performance impact of our partial bounding algorithm.
The most important point of comparison is the overall synthesis time. In 9 out
of 43 benchmarks, the baseline method times out. In another 5 cases, it outper-
forms the baseline by two orders of magnitude. In the easiest of the benchmarks,
i.e. when the overall synthesis time of the baseline is in tens of milliseconds, the
two methods are equally good within a small margin of error. The bold number
in each row highlights the fastest synthesis time.

Amongst the 9 benchmarks for which the baseline algorithm times out, 7 are
cases where Synduce takes advantage of partial bounding by leaving some quan-
tifiers unbounded. The baseline algorithm in these cases requires more terms and
terms of higher complexity in the finite approximations. Two of the 9 benchmarks
(post-order mps and sum + mts + mps) are cases where the set of maximally

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 849

Table 1. Experimental Results. Benchmarks are grouped by categories introduced in
Sect. 7.1. # steps indicates the number of refinement rounds. Tlast is the elapsed time
before the last call to the SyGuS solver in the last refinement step before timeout.
All times are in seconds. The best time is highlighted in bold font. A ‘-’ indicates
timeout (> 10min). The “Inv” column indicates if codomain constraints were required.
Experiments are run on a laptop with 16G memory and an i7-8750H 6-core CPU at
2.20 GHz running Ubuntu 19.10.

Class Benchmark Inv.
Synduce Baseline Method

time # steps Tlast time # steps Tlast

sum no 0.03 2 0.01 0.04 3 0.02
max no 0.33 1 0.00 0.34 2 0.01

max 2 no 0.25 1 0.00 0.34 2 0.01
Changing min no 0.23 1 0.00 0.32 2 0.01

Tree min-max no 0.85 3 0.15 73.16 3 0.06
Traversals max weighted path no 0.09 3 0.03 0.07 3 0.02

sorted in-order no 0.01 1 0.00 43.97 4 1.98
pre-order poly. no 16.09 2 0.06 - 4 0.97

mips yes 0.29 2 0.04 - 4 2.70
in-order mts yes 0.41 2 0.04 - 4 4.84

post-order mps yes 132.14 4 82.56 - 6 39.29
sum no 0.07 2 0.02 0.06 3 0.02

From height no 0.90 1 0.00 1.24 5 0.43
Tree to max weighted path no 0.15 2 0.03 0.12 3 0.03
Path max w. path (hom) no 0.01 1 0.00 1.42 4 0.69

leftmost odd no 0.01 1 0.00 - 4 0.27
mips yes 1.57 3 0.50 - 7 322.45

Enforcing sum no 0.02 2 0.01 0.03 3 0.02
Tail mts no 5.86 2 0.02 115.58 3 0.06

Recursion mps no 1.68 2 0.02 0.34 3 0.03
Combining mts + sum no 9.71 2 0.02 5.42 3 0.03
Traversals sum + mts + mps yes 0.26 3 0.12 - 3 0.04

sum no 0.07 3 0.04 0.07 2 0.01
Tree product no 0.07 2 0.01 0.16 2 0.01

Flattening max of heads no 0.21 2 0.02 0.18 3 0.03
max of lasts no 0.21 2 0.02 0.33 3 0.03

max sibling sum no 5.26 2 0.03 2.72 3 0.04
sum no 0.08 1 0.00 0.30 3 0.04

sum of even elts. no 0.10 1 0.00 0.39 3 0.04
length no 0.07 1 0.00 0.22 4 0.05
last no 0.01 1 0.00 0.03 2 0.01

Parallelizing product no 0.07 1 0.00 0.31 3 0.04
Functions polynomial no 0.07 1 0.00 0.71 5 0.10

on hamming no 0.10 1 0.00 0.46 3 0.04
Lists min no 0.02 1 0.00 0.08 2 0.01

is sorted no 3.45 2 0.11 3.12 4 0.14
linear search no 0.08 1 0.00 0.35 3 0.04
line of sight no 0.86 2 0.09 7.67 4 0.34

mts yes 0.10 1 0.00 4.80 4 0.08
mps yes 0.09 1 0.00 4.73 4 0.08

mts and mps combined yes 0.38 2 0.11 210.84 6 36.77
mss yes 4.82 3 1.53 - 6 24.23

count max elements no 138.20 1 0.00 - 3 0.46

850 A. Farzan and V. Nicolet

reducible terms is exactly the set of bounded terms (i.e. one cannot take advan-
tage of partial bounding), but Synduce still outperforms the baseline because it
adds smaller terms to the abstraction through generalization and produces less
complex problems for the backend synthesis oracle. In summary, both counterex-
ample generalization and the partial bounding yield big practical advantages in
comparison with the baseline symbolic CEGIS algorithm.

It is noteworthy that whenever an instance is hard, the majority of the time
is spent in the Synthesize step. This becomes nearly 100% of the time for the
baseline algorithm whenever it times out. The weakness of the baseline method
lies in the fact that the recursion-free instances generated by it are too difficult
to solve by the backend solver. The timeout occurs within a few refinement
rounds (at most 7) when the baseline algorithm gets stuck in the Synthesize step
attempting to solve a prohibitively difficult recursion-free synthesis instance.

Across all benchmarks, our algorithm generally requires fewer refinement
rounds than the baseline method. The few exceptions are the cases where the
synthesis oracle gets lucky in producing a good solution when the target pro-
grams are very simple, for example in the case of the sum and product bench-
marks of the flat tree category.

Finally, to isolate the precise contribution of the partial bounding idea, we
evaluated the effect of each optimization on each algorithm. The applicability of a
particular optimization highly depends on the particular set of constraints, which
in turn depends on the specific benchmark and the algorithm (ours vs baseline)
producing the constraints. Our synthesis algorithm yields more general and more
succinct constraints, to which the optimizations are more often applicable. Of
the 9 cases where Synduce succeeds and the baseline method times out, 7 are
due to the inapplicability of these (simple) optimizations. Synduce outperforms
the baseline algorithm with all optimizations turned off for both. The detailed
results are given in the extended version of this paper [7].

8 Related Work

Synthesizing recursive programs is a challenging task, and several automated
techniques have tackled the problem with different specifications of the problem
and different approaches to the solution.

Finitization, for example by bounding the depth of unbounded inputs or
the number of recursive calls or loop iterations, is a straightforward way of
dealing with unboundedness in synthesis [4,37] and verification [10]. In [32,33],
high-level synthesis techniques use domain specific knowledge to finitize input
programs. Quantifier instantiation, i.e. replacing quantified terms with ground
terms, is commonly used in theorem proving and verification, and has also been
useful in synthesis [31]. Our proposed algorithm can be viewed in the spirit of
quantifier instantiation, with the major difference that (universally) quantified
terms are replaced with other (universally) quantified terms which are still over
an unbounded domain, yet with fewer degrees of freedom in unboundedness.

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 851

Synthesis through Program Transformation. Our precise problem state-
ment is inspired by the transformation system developed by Burstall and Dar-
lington [6]. They set to automate the task of transforming an initial program
specified as a set of first-order recursion equations into a more efficient program,
by altering the recursive structure. Their approach is based on transformation
rules and semi-automatic. They use specific rules, e.g. associativity of a data
operation, to perform the transformations and such rules do not generalize well.
We defer the reasoning about the operations on the data to an SMT solver, and
therefore need not rely on such rules. Techniques based on program transforma-
tion have been applied to the synthesis of special classes of recursive programs
before [13,15]. For example, the work in [1] focuses on tail recursion and a lot of
attention has been given to producing divide-and-conquer recursions in the way
of automated parallelization [2,8,23].

Synthesizing Recursive Functional Programs. Inductive techniques were
developed to construct recursive programs from input/output examples [35], and
this approach has been extended in more recent work [16,17]. The latter two are
examples of an analytical approach to program synthesis in which programs are
constructed from the analysis of examples. Other recent approaches are search-
based methods. Escher [3] synthesizes recursive functions from user-provided
components by interactively asking for more examples from the user. λ2 [11]
synthesizes data structure transformations from input/output examples using
higher-order functions.

Tools like λ2 and Escher can be complementary to Synduce in a more
general context of recursion synthesis. The user can try to synthesize an imple-
mentation of a recursive function over a simple data type using λ2 or Escher
using input/output examples with a higher chance of success. This then serves
as the reference implementation input to Synduce which can aim for a more
sophisticated implementation over a more complex recursive datatype.

Myth [27], Myth2 [12] and SynQuid [28] use type information to direct
the search for a program satisfying a specification. In Myth, this specification
is a set of input/output examples. Myth2 generalizes this approach by treat-
ing examples as limited types. The specification for Synquid is a polymorphic
refinement type, and the tool synthesizes an implementation of the given type
using components provided by the user. Type-based approaches work well within
the expressivity of refinement-types as specifications, but refinement types can-
not express constraints for all desired synthesis tasks. Our specification is strictly
stronger than both input/output examples and refinement types.

In SyntRec [14], reusable templates are used to facilitate the synthesis of
algebraic data type (ADT) transformations. The reusable templates are meant to
lessen the burden of the user in specifying the search space of the programs to be
synthesized every time. The recursion skeletons in our framework are effectively
(reusable) polymorphic recursion templates. The user can be provided with a
library of common recursive datatypes with representation functions mapping
between these types, and useful recursion skeletons on these datatypes. Syn-
tRec [14] synthesizes ADT transformations from a functional specification. In

852 A. Farzan and V. Nicolet

contrast, our tool takes this transformation as input (the representation func-
tion) and synthesizes a function from ADT to a base type.

Leon [18], a deductive verification and synthesis framework, can synthesize
recursive functions from first-order specifications with recursive predicates. In
Sect. 7, we commented on a comparison of Leon against Synduce.

Higher-Order Recursion Schemes. We use recursion schemes as a model for
our programs, but our contribution has very little to do with the original work
introducing this model. Higher-order recursion schemes have been introduced
for model checking functional programs [19–21,30]. Pattern matching recursion
schemes, introduced in [26], provide a model for functional programs that manip-
ulate ADTs. We use them as an accurate description of a class of functions on
ADTs and the notion of reduction associated with them as a crisp way of for-
mulating symbolic evaluation.

9 Discussion and Future Work

We have demonstrated that partial bounding of quantifiers can be a power-
ful tool for the synthesis of recursive programs. Circumventing the unnecessary
bounding of some quantifiers leads to simpler instances of recursion-free synthesis
subtasks that can be handled by the current tools. Moreover, our counterexam-
ple generalization also yields simpler terms for bounding the quantifiers that
have to be bounded. This is the result of our focus being on a class of recur-
sive functions that perform structural recursion (i.e. recursion that deconstructs
its inputs). This, together with our specific problem setup, takes the guesswork
out of counterexample generalization and provides the means for a constructive
counterexample generalization scheme which is demonstrably effective.

The reliance on structural recursion, therefore, limits the class of reference
implementations and recursion skeletons that can define an acceptable synthesis
instance in our framework. Another limitation tied to the input model is that
the output of the recursive functions has to belong to the base (non-recursive)
types to accommodate the reduction of the problem to one that can be solved
by a backend solver. Consequently, the unknowns in a target recursion scheme
have to all be functions from base types to base types.

In our problem setup, the recursion strategy (given by the recursion skeleton)
is an integral part of the specification since it is used to communicate program-
mer intent. Expecting a complete recursion skeleton may be viewed as another
limitation of our technique. For example, the mts (maximal tail sum) function
can be computed as function on a list maintaining only one integer value (i.e.
the current value of the maximum tail sum), yet, to implement mts in a divide-
and-conquer strategy, another computation, the sum of the elements of the list,
has to be performed alongside this one. It would be great if the user can ask
for a divide-and-conquer recursion strategy without having to know that the
additional computation of sum is required as well.

Ideally, the user should be permitted to provide an incomplete recursion skele-
ton which sufficiently communicates the intent and leave the recursion skeleton

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 853

to be completed automatically by the synthesis procedure. This is a tricky prob-
lem. There are not only many recursion strategies to choose from, but each choice
also leads to unboundedly many ways to organize the computation on data. This
adds yet another dimension of unboundedness to the synthesis problem beyond
the two already tackled in this paper. Note that in other recursion synthesis
work such as [3,12,14,28], new operations on data are not synthesized, and in
contrast drawn from an existing pool of operations. Therefore, this particular
problem does not apply in those contexts.

Finally, our method currently does not take into account invariants over
recursive data types, e.g. an invariant that specifies that a tree is a binary search
tree. Some properties of the datatypes can be encoded through the representation
function, e.g. the associativity of the concatenation operator in the category
of list parallelization benchmarks. Incorporating the more general invariants in
future work will broaden the expressivity of the framework in handling more
interesting problems.

References

1. Abrahamsson, O., Myreen, M.O.: Automatically introducing tail recursion
in CakeML. In: Wang, M., Owens, S. (eds.) TFP 2017. LNCS, vol. 10788, pp.
118–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89719-6 7

2. Ahmad, M.B.S., Cheung, A.: Automatically leveraging MapReduce frameworks for
data-intensive applications. In: Proceedings of the 2018 International Conference
on Management of Data, SIGMOD 2018. ACM (2018)

3. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934–950. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-39799-8 67

4. Alur, R., et al.: Syntax-guided synthesis. In: 2013 Formal Methods in Computer-
Aided Design, pp. 1–8. IEEE (2013)

5. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

6. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977)

7. Farzan, A., Nicolet, V.: Counterexample-guided partial bounding for recur-
sive function synthesis (Extended Version). https://www.cs.toronto.edu/∼azadeh/
resources/papers/cav21-extended.pdf

8. Farzan, A., Nicolet, V.: Synthesis of divide and conquer parallelism for loops. In:
Proceedings of the 38th ACM Conference on Programming Language Design and
Implementation, PLDI 2017 (2017)

9. Fedyukovich, G., Ahmad, M.B.S., Bodik, R.: Gradual synthesis for static paral-
lelization of single-pass array-processing programs. In: Proceedings of the 38th
ACM Conference on Programming Language Design and Implementation, PLDI
2017 (2017)

10. Feldman, Y.M.Y., Padon, O., Immerman, N., Sagiv, M., Shoham, S.: Bounded
quantifier instantiation for checking inductive invariants. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 76–95. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 5

https://doi.org/10.1007/978-3-319-89719-6_7
https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://www.cs.toronto.edu/~azadeh/resources/papers/cav21-extended.pdf
https://www.cs.toronto.edu/~azadeh/resources/papers/cav21-extended.pdf
https://doi.org/10.1007/978-3-662-54577-5_5

854 A. Farzan and V. Nicolet

11. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM Conference on Pro-
gramming Language Design and Implementation, PLDI 2015 (2015)

12. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis:
a type-theoretic interpretation. In: Proceedings of the 43rd ACM Symposium on
Principles of Programming Languages, POPL 2016 (2016)

13. Hamilton, G.W., Jones, N.D.: Distillation with labelled transition systems. In: Pro-
ceedings of the ACM 2012 Workshop on Partial Evaluation and Program Manip-
ulation, pp. 15–24. PEPM 2012. ACM (2012)

14. Inala, J.P., Polikarpova, N., Qiu, X., Lerner, B.S., Solar-Lezama, A.: Synthesis of
recursive ADT transformations from reusable templates. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 247–263. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 14

15. Itzhaky, S., et al.: Deriving divide-and-conquer dynamic programming algorithms
using solver-aided transformations. In: Proceedings of the 2016 ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pp. 145–
164. ACM (2016)

16. Katayama, S.: An analytical inductive functional programming system that avoids
unintended programs. In: Proceedings of the 2012 Workshop on Partial Evaluation
and Program Manipulation, PEPM 2012 (2012)

17. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: an expla-
nation based generalization approach. J. Mach. Learn. Res. 7(15), 429–454 (2006)

18. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive func-
tions. In: Proceedings of the 2013 International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013 (2013)

19. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of the 36th ACM Symposium on Principles of
Programming Languages, POPL 2009 (2009)

20. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM Conference on Program-
ming Language Design and Implementation, pp. 222–233, PLDI 2011 (2011)

21. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proceedings of the 37th
ACM Symposium on Principles of Programming Languages, POPL 2010 (2010)

22. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.11: Documentation and user’s manual, p. 823 (2019)

23. Morihata, A., Matsuzaki, K.: Automatic parallelization of recursive functions using
quantifier elimination. In: Proceedings of the 10th International Conference on
Functional and Logic Programming, FLOPS 2010 (2010)

24. Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The third homomorphism the-
orem on trees: downward & upward lead to divide-and-conquer. In: Proceedings of
the 36th ACM Symposium on Principles of Programming Languages, POPL 2009
(2009)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Ong, C.H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: Proceedings of the 38th ACM Sym-
posium on Principles of Programming Languages, POPL 2011 (2011)

https://doi.org/10.1007/978-3-662-54577-5_14
https://doi.org/10.1007/978-3-540-78800-3_24

Counterexample-Guided Partial Bounding for Recursive Function Synthesis 855

27. Osera, P.M., Zdancewic, S.: Type-and-example-directed Program Synthesis. In:
Proceedings of the 36th ACM Conference on Programming Language Design and
Implementation, PLDI 2015 (2015)

28. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymorphic
refinement types. In: Proceedings of the 37th ACM Conference on Programming
Language Design and Implementation, PLDI 2016 (2016)

29. Raghothaman, M., Reynolds, A., Udupa, A.: The SyGuS Language Standard Ver-
sion 2.0, p. 22 (2019)

30. Ramsay, S.J., Neatherway, R.P., Ong, C.H.L.: A type-directed abstraction refine-
ment approach to higher-order model checking. In: Proceedings of the 41st ACM
Symposium on Principles of Programming Languages, POPL 2014 (2014)

31. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21668-3 12

32. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.:
Sketching stencils. In: Proceedings of the 28th ACM Conference on Programming
Language Design and Implementation, PLDI 2007 (2007)

33. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures.
In: Proceedings of the 29th ACM Conference on Programming Language Design
and Implementation, PLDI 2008 (2008)

34. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems, pp.
404–415, ASPLOS XII (2006)

35. Summers, P.D.: A methodology for LISP program construction from examples. J.
ACM 24(1), 161–175 (1977)

36. Victor, N.: Synduce. https://github.com/victornicolet/Synduce
37. Yang, W., Fedyukovich, G., Gupta, A.: Lemma synthesis for automating induction

over algebraic data types. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol.
11802, pp. 600–617. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30048-7 35

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-21668-3_12
https://github.com/victornicolet/Synduce
https://doi.org/10.1007/978-3-030-30048-7_35
https://doi.org/10.1007/978-3-030-30048-7_35
http://creativecommons.org/licenses/by/4.0/

PAYNT: A Tool for Inductive Synthesis
of Probabilistic Programs

Roman Andriushchenko1 , Milan Češka1(B) , Sebastian Junges2 ,
Joost-Pieter Katoen3 , and Šimon Stupinský1

1 Brno University of Technology, Brno, Czech Republic
ceskam@fit.vutbr.cz

2 University of California, Berkeley, USA
3 RWTH Aachen University, Aachen, Germany

Abstract. This paper presents PAYNT, a tool to automatically synthe-
sise probabilistic programs. PAYNT enables the synthesis of finite-state
probabilistic programs from a program sketch representing a finite fam-
ily of program candidates. A tight interaction between inductive oracle-
guided methods with state-of-the-art probabilistic model checking is at
the heart of PAYNT. These oracle-guided methods effectively reason
about all possible candidates and synthesise programs that meet a given
specification formulated as a conjunction of temporal logic constraints
and possibly including an optimising objective. We demonstrate the per-
formance and usefulness of PAYNT using several case studies from dif-
ferent application domains; e.g., we find the optimal randomized protocol
for network stabilisation among 3M potential programs within minutes,
whereas alternative approaches would need days to do so.

1 Introduction

Probabilistic programs are a powerful modelling language to describe systems
containing probabilistic uncertainty. Their correctness and efficiency can be
described as a set of declarative temporal constraints. Various verification tools
cater for automating their a posterior verification: does a program satisfy a spec-
ification? Here, we focus on finite-state programs and consider specifications
given as (conjunction of) temporal logic constraints. The automated verifica-
tion of such constraints is supported by probabilistic model checkers such as
Storm [19], Prism [35] or Modest [27].

These model checkers typically require a fixed program or a fixed model. This
is not always in line with their intended usage: To keep development costs man-
ageable and development cycles fast, system designs are preferably verified as

This work has been partially supported by the Czech Science Foundation grant
GJ20-02328Y and the ERC AdG Grant 787914 FRAPPANT, NSF grants 1545126,
1646208 and 1837132, DARPA contracts FA8750-18-C-0101 (AA), FA8750-20-C-0156
(SDCPS), by Berkeley Deep Drive, and by Toyota under the iCyPhy center.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 856–869, 2021.
https://doi.org/10.1007/978-3-030-81685-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_40&domain=pdf
http://orcid.org/0000-0002-1286-934X
http://orcid.org/0000-0002-0300-9727
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-81685-8_40

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 857

 ...
 while((rand() % 3) < ?1) {
 a = ?2 + 1;
 }
 ...

 ...
 while((rand() % 3) < 3) {
 a = a + 1;
 }
 ...

 ...
 while((rand() % 3) < 2) {
 a = a + 1;
 }
 ...

 ...
 while((rand() % 3) < 1) {
 a = a + 1;
 }
 ...

 ...
 while((rand() % 3) < 2) {
 a = a + 1;
 }
 ...

synthesizer

Fig. 1. The workflow of the synthesis process.

early as possible. However, at early design stages not all system details are known
or they are deliberately left out, and systems or their models are incomplete—
they contain holes. A hole may e.g., reflect a partially implemented controller
for a complex system or an unspecified component for wireless communication.

A key aspect of the design cycle is to explore these designs, i.e., to do design
space exploration. The verification challenge now is to analyze all combinations of
fixing the hole with a concrete behavior/subsystem and reveal (Pareto-)optimal
designs. Alternatively, designs should be robust for engineering choices made
downstream, e.g., a system should ideally not depend on the specific character-
istics of a single communication interface. Verifying that every combination of
options satisfies the specification ensures that changes in available components
do not need to trigger a redesign.

The application areas above require to reason about the presence and absence
of designs (aka: realizations) satisfying a specification in a family of designs. To
allow for efficient reasoning it is crucial that this family is concisely represented.
A convenient way to describe such a family is to use sketching [2,45]. A sketch
can be thought of as a program (or model) with holes, naturally fitting the use
case outlined above.

Clearly, enumerating single realizations is unfeasible in the light of the combi-
natorial design space explosion. Instead, the prevalent approach connected with
sketching is based on inductive synthesis. The idea is to analyze a single realiza-
tion and generalize the analysis results to a set of realizations, often using the
notion of counterexamples. In probabilistic programs, such a notion is challeng-
ing, as counterexamples are typically complex objects [1].

Driven by a range of applications, there has been significant algorithmic
progress in the analysis of probabilistic program sketches and temporal logic
constraints over the last years. Baier et al. [14] explored the use of sym-
bolic model-checking methods so as to consider sets of realizations at once.
Češka et al. [12] used abstraction-refinement on sets of realizations and com-
plemented this with a counterexample-guided inductive synthesis approach [11].
The latter two approaches have recently been integrated [3] and yield a speed up
of multiple orders of magnitude over a baseline that enumerates all realizations.

This paper presents PAYNT1 (Probabilistic progrAm sYNThesizer) that
takes a program sketch, concisely describing a finite family of finite Markov

1 Available at https://github.com/gargantophob/synthesis.

https://github.com/gargantophob/synthesis

858 R. Andriushchenko et al.

chains (MCs), and a specification, and finds a family member (aka: realization)
that (potentially optimally) satisfies the specification, see Fig. 1. The design of
PAYNT is rooted in oracle-guided synthesis and enables the flexible combination
of a variety of state-of-the-art algorithms. For efficiency purposes, key algorithms
are implemented within the Storm [19] model checker that dominated recent
tool comparisons [24]. To deliver flexibility, the tool is built in a modular fashion
on top of a python API. To ease the learning curve, the tool takes a conservative
extension to the widespread Prism language as input.

PAYNT aims at two user groups: First, it provides a development plat-
form for alternative algorithmic approaches, e.g. exploiting recent neurosym-
bolic approaches to find good designs. The tool provides the interface to define
sketches and all baseline algorithms under one roof. Secondly, the analysis of
sets of realizations is a valuable backend for automatic engines, e.g., when syn-
thesizing finite-state controllers for partially observable MDPs (POMDPs) [33].

Related work. The synthesis problems for parametric probabilistic systems can
be divided into two categories.

Topology synthesis, akin to aim of PAYNT, assumes a finite set of parameters
affecting the MC topology. Finding a realization satisfying a given reachability
property is NP-complete in the number of parameters [13], and can be naively
solved by analysing all individual family members. An alternative [14] is to
model the MC family by a Markov decision process (MDP) and use off-the-shelf
MDP model-checking algorithms. The ProFeat [14] and QFLan [47] tool take
this approach to quantitatively analyze alternative designs of software product
lines [23,36]. These tools are limited to small families. To improve the scalability,
inductive methods based on abstraction-refinement over the MDP representa-
tion [12], and counter-example guided inductive synthesis (CEGIS) for MCs [11]
have been proposed. As shown by the Maze model in Sect. 5, the topology syn-
thesis is closely linked to controller synthesis for POMDPs, a popular model for
planning in AI under uncertainty. Other recent approaches to POMDP controller
synthesis include the use of neural network oracles (obtained by reinforcement
learning) to guide the search [48] and adaptive learning schemes based on imi-
tation learning [30]. Note that the problem of sketching probabilistic programs
that fit given data as studied, e.g., in [39,44], is different.

Parameter synthesis considers models with a fixed topology but with uncer-
tain parameters associated to transition probabilities (or rates). It aims to ana-
lyze how the MC (or MDP) behaviour depends on the parameter values. Scalable
approximate parameter synthesis techniques treat identical parameters in differ-
ent transitions independently [10,42] and have been implemented in Storm [19]
and Prism [35]. Exact approaches construct rational functions for symbolic
reachability probabilities [16] and were improved in [18,25,29]. This approach
has been also applied to problems such as model repair [4,40].

Both synthesis problems can be attacked by search-based techniques that
do not ensure an exhaustive exploration of the parameter space. These include
evolutionary techniques [26,38] and genetic algorithms [22]. Their combination

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 859

service
requester

service
provider

power
manager

observe
queue size

determine
power profile

generate
request

request queue

process request

Fig. 2. The server for request processing.

with parameter synthesis has been pursued in [8] and is implemented in the tool
RODES [9] to synthesize robust systems.

2 Using PAYNT

We exemplify the usage of PAYNT by the following synthesis problem.
Consider a server for request processing depicted in Fig. 2. Requests are gen-

erated (externally) in random intervals and upon arrival stored in a request
queue of capacity Qmax. When the queue is full, the request is lost. The server
has three profiles – sleeping, idle and active – that differ in their power con-
sumption. The requests are processed by the server only when it is in the active
state. Switching from a low-energy state into the active state requires additional
energy as well as an additional random latency before the request can be pro-
cessed. We further assume that the power consumption of request processing
depends on the current queue size. The operation time of the server is random
but finite.

The server is controlled by a power manager (PM) that observes the cur-
rent queue size and then sets the desired power profile. More precisely, the PM
distinguishes between four queue occupancy levels determined by the threshold
levels T1, T2, and T3. These values are controllable parameters that denote which
fraction of the queue capacity is occupied. In other words, the PM observes the
queue occupancy of the intervals: [0, T1] , (T1, T2] etc. For each occupancy level,
the PM changes to the associated power profile P1, . . . , P4 ∈ {0, 1, 2}, where
numbers 0 through 2 encode the profiles sleeping, idle and active, respectively.

PAYNT takes as an input a sketch – a program description in the PRISM
(or JANI) language containing some undefined parameters (holes) with associ-
ated options from domains. A PRISM program consists of one or more reactive
modules that may interact with each other using synchronization. A module
has a set of (bounded) variables that span its state space. Possible transitions
between states of a module are described by a set of guarded commands of the
form:

[action] guard → p1 : update1 + pn : updaten

If the guard evaluates to true, an update of the variables is chosen according to
the probability distribution given by expressions p1 through pn. The actions are
used to force two or more modules to make the command simultaneously (i.e. to
synchronize). The holes can appear in guards and updates. Replacing each hole
with one of its options yields a complete program with the semantics given by a

860 R. Andriushchenko et al.

finite-state Markov chain. The following sketch describes the PM (the modules
implementing the other components of the server are omitted for brevity).

module PM
pm : [0..2] init 0; // 0 - sleep, 1 - idle, 2 - active
[sync0] q <= T1*QMAX -> (pm’=P1);
[sync0] q > T1*QMAX & q <= T2*QMAX -> (pm’=P2);
[sync0] q > T2*QMAX & q <= T3*QMAX -> (pm’=P3);
[sync0] q > T3*QMAX -> (pm’=P4);

endmodule

In our example, we consider the following holes and domains describing:
the thresholds T1 ∈ {0, 0.1, 0.2, 0.3, 0.4}, T2 ∈ {0.5}, T3 ∈ {0.6, 0.7, 0.8, 0.9}2,
the corresponding power profiles P1, . . . , P4 ∈ {0, 1, 2}, and the queue capacity
Qmax ∈ {1, . . . , 10}. The resulting sketch describes a design space of 10·5·4·34 =
16, 200 different power managers where the average size of the underlying MC
(of the complete system) is around 900 states.

The goal is to find the concrete power manager, i.e., the instantiation of
the holes, that minimizes power consumption while the expected number of lost
requests during the operation time of the server is below 1. Such specification Φ
is formalized as a list of temporal logic formulae in the PRISM syntax:

R{"lost"}<= 1 [F "finished"] R{"power"}min=? [F "finished"]

Using the sketch and the specification Φ, PAYNT effectively explores the design
space and finds a hole assignment inducing a program that satisfies Φ, provided
such assignment exists. Otherwise, it reports that such design does not exist.
For the example, PAYNT produces the following output containing the hole
assignment and the quality wrt. Φ of the corresponding program:

hole assignment: QMAX=5,T1=0,T2=0.5,T3=0.7,P1=1,P2=2,P3=2,P4=2
R[exp]{"lost"}=0.6822759696 [F "finished"]
R[exp]{"power"}min=9100.064246 [F "finished"]

The obtained optimal power manager has queue capacity 5 with thresholds (after
rounding) at 0, 2 = �5 · 0.5� and 3 = �5 · 0.7�. In addition, the power manager
always maintains an active profile unless the request queue is empty, in which
case the device is put into an idle state. This solution leads to the expected
number of lost requests of ≈ 0.68 < 1 and the power consumption of 9,100 units.
PAYNT computes this optimal solution in one minute. This is three times faster
than a naive enumeration of all solutions.

Let us consider a more complex variant of the synthesis problem inspired by
the well-studied model of a dynamical power manger for complex electronic sys-
tems [5,21]. The corresponding sketch describes around 43M available solutions
with an the average MC size of 3.6k states. While enumeration needs more than
1 month to find the optimal power manager, PAYNT solves it within 10 h.
2 Note that this simply ensures that T1 < T2 < T3. PAYNT further supports restric-

tions—additional constraints on parameter combinations.

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 861

3 Synthesis of Probabilistic Programs

We formalize the synthesis problems supported by PAYNT and briefly present
state-of-the-art synthesis algorithms; more details can be found in [3,11,12].

Problem Statement

Sketch. PAYNT uses sketches to define the set of designs. Let P be a sketch
containing holes from the set H = {Hk}k with Rk being the set of options
available for hole Hk. Let R =

∏
k Rk denote the set of all hole assignments

(realizations), P[r] denote the program induced by a substitution r ∈ R and Dr

denote the underlying MC. Note that the size of the set R is exponential in |H|.

Specification. PAYNT supports conjunctions of specifications with reachability
and expected rewards. For a set T of target states, reachability properties ϕ ≡
P��λ[F T] with λ ∈ [0, 1] and ��∈ {<,≤, >,≥} express that the probability
to reach T relates to λ ∈ [0, 1] according to ��. Expected reward properties
ϕ ≡ E��λ[F T] express that the expected reward accumulated before T is reached
relates to λ ∈ R

+ according to ��∈ {<,≤}. Let P[r] |= ϕ denote that the
program P[r] induced by the realisation r satisfies ϕ. For a specification Φ =
{ϕi}i∈I given by a finite set of properties, we write P[r] |= Φ to denote ∀i ∈ I :
P[r] |= ϕi.

Synthesis problems. PAYNT is able to answer two types of synthesis questions
for a PRISM sketch P with a set R of realizations and a specification Φ:

Feasibility: Find a realization r ∈ R such that P[r] |= Φ.

Maximality: For property ϕmax, find a realization r∗ ∈ R such that

r∗ ∈ arg max
r∈R

{P[P[r] |= ϕmax] | P[r] |= Φ} .

Variants of the maximal synthesis problem for expected rewards and minimiza-
tion are defined analogously. PAYNT also supports a relaxed variant of max-
imal synthesis, ε-maximal synthesis: find a realization r∗ such that P[r∗] |= Φ
and P[P[r∗] |= ϕmax] ≥ (1−ε) · maxr∈R {P[P[r] |= ϕmax] | P[r] |= Φ} for a given
ε ∈ (0, 1].

Existing Synthesis Methods

Synthesis methods can be classified into two orthogonal groups: i) complete
methods allowing to prove non-existence or optimally of the given problem,
and ii) incomplete methods leveraging various smart search strategies and evo-
lutionary algorithms [22,26,38]. While its architecture is flexible, the current

862 R. Andriushchenko et al.

Fig. 3. Oracle-guided synthesis (adapted from [3]).

release of PAYNT is built around state-of-the-art complete methods. As a base-
line and reference algorithm, the tool implements the so-called one-by-one app-
roach [15] which simply enumerates through each realization r ∈ R. The design-
space explosion renders this approach unusable for large problems, necessitating
the usage of advanced techniques that exploit any structure of the family of
MCs.

Oracle-guided synthesis. At the heart of PAYNT is an oracle-guided induc-
tive synthesis approach [31,32,46]. A learner selects a realization r and passes
it to an oracle. The oracle answers whether r satisfies Φ and, crucially, gives
additional information, usually a counter-example (CE), whenever this is not
the case. PAYNT implements two orthogonal different oracles: (a) an inductive
oracle CE examines single realizations to infer statements about other realiza-
tions [11]. (b) a deductive oracle AR (Abstraction Refinement) argues about sets
of realizations by considering (an aggregation of) these realizations at once [12].
PAYNT supports the combined use of these two oracles as a hybrid synthesis
method [3].

Figure 3 [3] illustrates the communication between the learner and the two
oracles. The Abstr-Oracle analyzes a sub-family R with 3 possible outcomes: 1)
it proves that all its realizations satisfy Φ, i.e., that the synthesis problem is
feasible, or 2) it proves that all its realizations violate Φ, i.e., the learner can
safely discard R, or 3) the analysis is inconclusive and it returns safe bounds on
the best- and worst-case behavior of all realizations in R wrt. Φ. The CE-Oracle
analyzes a realization r and either proves that r satisfies Φ or it generalizes r
into a subfamily R′. The learner can discard R′ since it is guaranteed that all
its realizations violate Φ. In the hybrid approach, the CE-Oracle exploits the
bounds in order to compute smaller CEs allowing a better generalization. The
learner maintains a queue of subfamilies R′ ⊆ R that has to be further processed
and also controls which oracle is used based on their previous performance.

4 Tool Architecture of PAYNT

PAYNT is implemented on top of the probabilistic model checker Storm [19].
While the high-performance parts were implemented in C++, we use a python
API to flexibly construct the overall synthesis loop. For SMT-solving, we use

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 863

Fig. 4. The tool architecture (Color figure online)

Z3 [37]. PAYNT takes a PRISM [35] or JANI [7] sketch and a set of tempo-
ral properties, and returns a satisfying realization, if such exists. Otherwise, it
reports that no such realization exists.

Figure 4 depicts a high-level view on the tool architecture, which primarily
consists of components for family handling (purple), chain building (green)
and model checkers (red).

The family handlers are used to store information about the previously cov-
ered design space: Member enumeration simply iterates over all realizations. The
SAT representation stores a SAT-formula describing unexplored realizations and
uses the SMT solver Z3 for linear (bounded) integer arithmetic to retrieve the
next candidate realization. The subfamily queue stores a collection of unexplored
subfamilies and refines these subfamilies as hyper-rectangles. The chain builders
take as input a single assignment r ∈ R or a set R′ ⊆ R of realizations, and
produce an representation of the MC or a quotient MDP, respectively in the
internal memory model of the model checkers. The model checkers are then used
to verify these chains. They either output yes/no or, in the case of MDPs, pro-
vide lower and upper bounds on satisfiability probabilities. PAYNT includes a
module for counterexample generation by using either a MaxSat [17,49] or a
greedy state-expansion [3] approach.

Figure 4 also illustrates three analysis loops that mirror the behaviour of
1-by-1 enumeration (the baseline), CEGIS and AR. The 1-by-1 approach sim-
ply iterates over all possible realizations until a satisfying one is obtained. The
CEGIS loop additionally constructs counterexamples to each unsatisfying real-
ization r ∈ R, yielding a whole subset R′ ⊆ R of realizations that are pruned
from the family. In contrast to this enumeration, the AR loop constructs and
model checks MDPs from the subfamily queue and subsequently refines these
subfamilies if the obtained bounds on satisfiability yield inconclusive results.

864 R. Andriushchenko et al.

Table 1. Case study statistics and PAYNT synthesis times versus the naive 1-by-1 enu-
meration. Two problems per model are considered: an optimal synthesis problem (hard)
and a feasibility problem (easy). In both cases, all realizations need to be explored to
prove optimality and unsatisfiability, resp. Values indicated with ∗ are estimates.

Model Number of parameters Family size Average MC size 1-by-1 enumeration Tool performance

Hard Easy

DPM 16 43M 3.6k 35 days * 9.3 h 1.1 h

Maze 22 9.4M 0.2k 1.8 days* 1 h 54min

Herman 7 3.1M 1.1k 1.5 days * 17min 1.1min

Pole 17 1.3M 5.6k 1 day * 8.5min 5 s

Grid 8 65k 1.2k 32min 37 s 21 s

The hybrid approach combines both AR and CEGIS approaches and switches
between the two loops mid-execution. In particular, the integrated method exe-
cutes the abstraction-refinement loop and, whenever it encounters an undecid-
able family that needs to be split, CEGIS takes a chance at analyzing it for
a limited time period. If some family members are excluded based on a coun-
terexample, the CEGIS engine updates the corresponding SAT representation
to ensure it does not analyze the same member twice. There are two additional
links that couple the AR and CEGIS loops and enable efficient integrated anal-
ysis. First is the use of bounds from MDP model checking during the greedy
CE generation to allow the construction of larger family-aware conflicts. Since
these bounds are associated with the states of the quotient MDP MR for the
(sub-)family and counterexamples are constructed as sub-MCs of the MC Dr,
r ∈ R, in the integrated setting we construct Dr directly from MR, to save time
on converting bound values between the two chains.

The implementation of PAYNT is composed of 30 Python modules contain-
ing 7k source lines of code. These metrics consider only our implementation and
do not include the extensions contributed to Storm and its Python API, invoked
by PAYNT. All modules adhere to coding conventions for the Python code PEP
8 [41,43] and are documented with Sphinx for automatic generation of docu-
mentation. The specific logic components are tested with unit tests to maintain
their correct functionality. Regression tests verify the accuracy and correctness
of the synthesis results. Our tests currently cover more than 90% of the source
code lines.

5 Performance Evaluation and Applicability

Table 1 lists the results of PAYNT on two variants (hard and easy) of five
different case studies from various domains taken from [11,12]. Further on, we
demonstrate the applicability of PAYNT and interpret the synthesis results for
two of these case studies. All experiments are run on an Ubuntu 19.04 machine
with Intel i5-8300H (4 cores at 2.3 GHz) and using up to 8 GB RAM, with all
the algorithms being executed single-threaded. The artefact allowing to repro-
duce the experiments is avaiable at https://doi.org/10.5281/zenodo.4726056.

https://doi.org/10.5281/zenodo.4726056

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 865

Maze. This synthesis problem can be seen as an instance of POMDP controller
synthesis. A robot is deployed at a random location inside a known maze, see
Fig. 5. The robot is only equipped with a simple wall sensor, and cannot distin-
guish maze cells with identical sets of surrounding walls such as cells 1 and 3,
and cells 11 through 13. Observation-equivalent cells are indicated by the same
color in Fig. 5. Possible actions are movements in the four cardinal directions.
Movements are subject to a random error: e.g., upon moving east, with a small
probability the robot actually moves west. We sketch a robot controller that
helps it to reach the exit of the maze (cell 12). The controller may use a single
bit of memory initially having the value 0. The holes in this sketch are taken
actions (where to steer, how to change the memory bit) based on the current
observation (detected walls, current memory state). This sketch describes a fam-
ily of 9.4M candidate programs. Our goal is to find a realization that minimizes
the expected number of steps to reach the exit.

Fig. 5. The spatial structure of Maze. Cells
with identical sets of surrounding walls are
depicted with similar colors. The arrows
depict the synthesized controller. (Color
figure online)

Using the inductive synthesis tech-
niques, PAYNT explores the set of
candidate realizations in an hour (1-
by-1 enumeration takes more than one
day) and synthesizes the controller
depicted in Fig. 5. Here arrows repre-
sent the steering direction based on
the current memory value (number
at the base of an arrow), as well
as the corresponding memory update
(number at the tip of an arrow). For
instance, a robot in cell 1 goes west
if the memory value is 0 and goes
east otherwise, without changing the
memory in either case. A robot at cell
0 always goes east and sets its memory
bit to 1. The synthesized controller is
optimal. If a robot reaches a cell with a unique set of enclosing walls (cells 0,
2 and 4), then it knows its precise position within the maze and can navigate
to the exit. Similarly, navigating north from cells 11 or 13 ensures to eventually
reach cells 0 or 4. If the robot is deployed in an orange or purple cell, then it
has to ‘try’ one possible direction in order to recognize its position within the
maze. For example, a robot deployed at cells 5–10 will first go north (recall that
the initial memory value is 0), from where it can determine its cell. Note that in
this observation group it is indeed more beneficial to first explore north since the
robot is twice as likely to be initially deployed at locations 5/7/8/10, as com-
pared to locations 6 and 9. The expected time to reach the exit for this policy is
≈9.8 steps. Note that this cannot be improved by adding more memory to the
controller.

866 R. Andriushchenko et al.

Herman. This case study considers a token ring with an odd number of stations
that are connected by a unidirectional ring. Each station has a Boolean flag,
observable by itself and by its successor in the ring. A station has a token when
the two flags it observes are identical. A good configuration is a situation in
which only one station has a token. All other configurations are faulty. A token
protocol is self-stabilizing, if the ring gets from a faulty configuration into a good
configuration. The performance can be measured as stabilization time, i.e., the
expected number of rounds to reach a good configuration.

We sketch a variant of Herman’s randomized self-stabilization protocol [6,28,
34]. In this protocol, all stations behave the same3. The protocol is synchronized,
and in every round a station without token flips its flag. Every station that has
a token must choose whether to pass a token (by setting its flag accordingly). In
the original protocol this choice is the resolved on a single (biased) coin flip. We
are interested in the synthesis of alternatives. We give each station an additional
single bit of memory and the choice between 25 different coin biases. The param-
eters in the sketch are the choice of a coin based on the memory value as well
as the memory updates. By resolving the choices, we obtain the same protocol
for each station. The parameter combinations yield a family of 3.1M programs
and the goal of the synthesizer is to identify the one that minimizes stabilization
time from an initial configuration (all flags true). For a sketch describing a sys-
tem with 5 stations, PAYNT finds the optimal protocol in around 18 min, while
the 1-by-1 enumeration takes more than a day. The obtained optimal strategy
relies on initially using the most fair coins available (bias ≈ 0.25) and keeping
the memory bit at 1. Whenever a process eventually decides to keep the token,
the memory is reset to 0 and the process starts using highly unfair coins (bias
≈ 0.07), implying that the process is more likely to keep its token for a long
time until it is eventually passed further. Using this strategy, the system can on
average stabilize in four rounds.

References

1. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07317-0 3

2. Alur, R., et al.: Syntax-guided synthesis. In: Proceedings of the IEEE International
Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 1–17,
October 2013

3. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P.: Inductive synthesis for
probabilistic programs reaches new horizons. In: TACAS 2021. LNCS, vol. 12651,
pp. 191–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-
2 11

3 In such anonymous networks, stabilization cannot be solved in a deterministic
way [20].

https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-030-72016-2_11
https://doi.org/10.1007/978-3-030-72016-2_11

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 867

4. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

5. Benini, L., Bogliolo, A., Paleologo, G.A., Micheli, G.D.: Policy optimization for
dynamic power management. IEEE Trans. CAD Integr. Circ. Syst. 18(6), 813–833
(1999)

6. Bruna, M., Grigore, R., Kiefer, S., Ouaknine, J., Worrell, J.: Proving the Herman-
protocol conjecture. In: ICALP, LIPIcs, vol. 55, pp. 104:1–104:12. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2016)

7. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

8. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158
(2018)

9. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: RODES: a
robust-design synthesis tool for probabilistic systems. In: Bertrand, N., Bortolussi,
L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 304–308. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66335-7 20

10. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Inf. 54(6), 589–623
(2017)

11. Češka, M., Hensel, C., Junges, S., Katoen, J.-P.: Counterexample-driven synthesis
for probabilistic program sketches. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 101–120. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 8

12. Češka, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov
chains. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 172–
190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 10

13. Chonev, V.: Reachability in augmented interval Markov chains. In: Filiot, E.,
Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp. 79–92. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30806-3 7

14. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45–75 (2018)

15. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14, 589–612
(2012)

16. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

17. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debug-
ging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11936-6 11

18. Dehnert, C., et al.: PROPhESY: a probabilistic parameter synthesis tool. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-319-66335-7_20
https://doi.org/10.1007/978-3-030-30942-8_8
https://doi.org/10.1007/978-3-030-30942-8_8
https://doi.org/10.1007/978-3-030-17465-1_10
https://doi.org/10.1007/978-3-030-30806-3_7
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-11936-6_11
https://doi.org/10.1007/978-3-319-21690-4_13

868 R. Andriushchenko et al.

19. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

20. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

21. Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilis-
tic models for quality-of-service software engineering (t). In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 319–330,
November 2015

22. Gerasimou, S., Calinescu, R., Tamburrelli, G.: Synthesis of probabilistic models for
quality-of-service software engineering. Autom. Softw. Eng. 25(4), 785–831 (2018)

23. Ghezzi, C., Sharifloo, A.M.: Model-based verification of quantitative non-functional
properties for software product lines. Inf. Softw. Technol. 55(3), 508–524 (2013)

24. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17502-3 5

25. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

26. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comp. Surv. 45(1), 11:1–11:61 (2012)

27. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

28. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
29. Hutschenreiter, L., Baier, C., Klein, J.: Parametric markov chains: PCTL complex-

ity and fraction-free Gaussian elimination. GandALF. EPTCS 256, 16–30 (2017)
30. Inala, J.P., Bastani, O., Tavares, Z., Solar-Lezama, A.: Synthesizing programmatic

policies that inductively generalize. In: ICLR (2020)
31. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based

program synthesis. In: ICSE, pp. 215–224. ACM (2010)
32. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta

Informatica 54(7), 693–726 (2017)
33. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially

observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)
34. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic verification of Herman’s

self-stabilisation algorithm. Formal Aspects Comput. 24(4), 661–670 (2012)
35. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

36. Lanna, A., Castro, T., Alves, V., Rodrigues, G., Schobbens, P.Y., Apel, S.: Feature-
family-based reliability analysis of software product lines. Inf. Softw. Technol. 94,
59–81 (2018)

37. Lindemann, C.: Performance modelling with deterministic and stochastic Petri
nets. SIGMETRICS Perform. Eval. Rev. 26(2), 3 (1998)

38. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: WOSP/SIPEW, pp. 105–116. ACM (2010)

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs 869

39. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: PLDI, pp. 208–217. ACM (2015)

40. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy app-
roach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17524-9 21

41. Peters, T.: The Zen of Python. PEP 20 (2004). https://www.python.org/dev/
peps/pep-0020/

42. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

43. van Rossum, G., Warsaw, B., Coghlan, N.: Style guide for Python code. PEP 8
(2001). https://www.python.org/dev/peps/pep-0008/

44. Saad, F.A., Cusumano-Towner, M.F., Schaechtle, U., Rinard, M.C., Mansinghka,
V.K.: Bayesian synthesis of probabilistic programs for automatic data modeling.
In: Proceedings of the ACM on Programming Languages, vol. 3(POPL), pp. 1–32
(2019)

45. Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis, USA (2008)
46. Solar-Lezama, A., Rabbah, R., Bod́ık, R., Ebcioğlu, K.: Programming by sketching

for bit-streaming programs. In: PLDI, pp. 281–294. ACM (2005)
47. Vandin, A., ter Beek, M.H., Legay, A., Lluch Lafuente, A.: QFLan: a tool for the

quantitative analysis of highly reconfigurable systems. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 329–337. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 19

48. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. In: International Conference on Machine Learning,
pp. 5045–5054. PMLR (2018)

49. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.:
High-level counterexamples for probabilistic automata. Logical Meth. Comput. Sci.
11(1) (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-17524-9_21
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.1007/978-3-319-95582-7_19
http://creativecommons.org/licenses/by/4.0/

Adapting Behaviors via Reactive
Synthesis

Gal Amram1, Suguman Bansal2, Dror Fried3(B), Lucas Martinelli Tabajara4,
Moshe Y. Vardi4, and Gera Weiss5

1 Tel-Aviv University, Tel Aviv-Yafo, Israel
2 University of Pennsylvania, Philadelphia, USA

suguman@seas.upenn.edu
3 The Open University of Israel, Ra’anana, Israel

dfried@openu.ac.il
4 Rice University, Houston, USA

{lucasmt,vardi}@rice.edu
5 Ben-Gurion University of the Negev, Beersheba, Israel

geraw@bgu.ac.il

Abstract. In the Adapter Design Pattern, a programmer implements
a Target interface by constructing an Adapter that accesses an existing
Adaptee code. In this work, we present a reactive synthesis interpretation
to the adapter design pattern, wherein an algorithm takes an Adaptee
and a Target transducers, and the aim is to synthesize an Adapter trans-
ducer that, when composed with the Adaptee, generates a behavior that
is equivalent to the behavior of the Target. One use of such an algorithm
is to synthesize controllers that achieve similar goals on different hard-
ware platforms. While this problem can be solved with existing synthesis
algorithms, current state-of-the-art tools fail to scale. To cope with the
computational complexity of the problem, we introduce a special form of
specification format, called Separated GR(k), which can be solved with
a scalable synthesis algorithm but still allows for a large set of realistic
specifications. We solve the realizability and the synthesis problems for
Separated GR(k), and show how to exploit the separated nature of our
specification to construct better algorithms, in terms of time complexity,
than known algorithms for GR(k) synthesis. We then describe a tool,
called SGR(k), that we have implemented based on the above approach
and show, by experimental evaluation, how our tool outperforms current
state-of-the-art tools on various benchmarks and test-cases.

1 Introduction

Inspired by the well known adapter design pattern [18], we study the use of
reactive synthesis for generating adapters that translate inputs meant for a tar-
get transducer to inputs of an adaptee transducer. Consider, as one motivating
example, the practice of adding code to an operating system that mitigates the
risk posed by newly discovered hardware vulnerabilities like Spectre and Melt-
down [23,26]. While the discovery of such vulnerabilities puts constraints on how
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 870–893, 2021.
https://doi.org/10.1007/978-3-030-81685-8_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_41&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_41

Adapting Behaviors via Reactive Synthesis 871

the hardware can be used, the patch of the operating system (called adapter in
this paper) takes upon itself to take care of running all applications without
change [25]. It does so by allowing applications of the existing interface, while
adapting their operation in way that ensures that the system is not exposed to
the new threat.

Formally, we propose the following synthesis problem: given two finite-state
transducers called Target and Adaptee, synthesize a finite-state transducer called
Adapter such that

Adaptee ◦ Adapter � Target .

The symbol ◦ stands for standard transducer composition and the symbol �

stands for an equivalence relation, a generalization of sequential equality, which
we explain below. In words, we want an Adapter that stands between an Adaptee
and its inputs and guarantees, such that the composition Adaptee ◦ Adapter is
equivalent to Target . In the vulnerability patching example, Adaptee is a model
of the constrained hardware and Target is a model of the hardware as used before
the discovery of the vulnerability, without the new constraints. The Adapter that
we generate models the patch that mediates between the vulnerable hardware
and applications that are not aware of the vulnerability.

In our setting, an input to the synthesis algorithm is the equivalence relation
along with the specification of the adaptee and of the target. While the problem
of synthesizing an adapter such that Adaptee ◦ Adapter is sequentially equal to
Target may be useful in some cases [32], we study here a more general prob-
lem. This is called for by applications such as the vulnerability covering patches
described above. Specifically, we allow our users to specify an equivalence rela-
tion between Adaptee ◦ Adapter and Target that is not necessarily sequential
equality. In this paper, we propose to use ω-regular properties [20] for specifying
this equivalence relation, as follows. We assume, without loss of generality, that
the outputs of both the Target and the Adaptee are assignments to disjoint sets
of atomic propositions. We then consider sequences of pairs of such assignments
that correspond to zipped runs of Adaptee ◦Adapter and of Target over the same
input. Having this set of sequences in mind, the user specifies a set of temporal
properties using an ω-regular formalism such as LTL or Büchi automata. The
transducer Adaptee ◦ Adapter is considered equivalent to Target if all the prop-
erties that the user specified are satisfied for each sequence in the set [19]. Note
that the equivalence relation can be very different than sequential equality, it
can, for example, say that Adaptee ◦Adapter must be, in a way, a “mirror image”
of Target , as demonstrated by the cleaning robots example in Sect. 4.1, where
Target is a robot that cleans some rooms and Adaptee ◦ Adapter is a robot that
clean all the rooms that Target did not clean.

The solution that we propose in this paper consists of two phases: we first
transform the transducers to transition systems and arrive at a game structure
that is more amenable for game-based techniques. Then we make use of the spe-
cific form of the resulting game and some simplifying assumptions about the form
of the equivalence properties to solve the game efficiently. The game structures
that we analyze consist of pairs of transition systems called Input and Output ,

872 G. Amram et al.

accompanied by a set of ω-regular properties that specify equivalence relation
between the two, as described above. The game that we solve is, then, to find a
controller that reads the assignments to the variables of the Input and produces
a valid sequence of assignments to the variables of the Output such that all the
properties are satisfied. The translation of the transducers to this game structure
is rather direct, as elaborated in Sect. 4. The Input transition system is gener-
ated from the Target transducer and the Output transition system is generated
from the Adaptee transducer. This is because we want the Adapter , which we
generate from the controller as described below, to consider the behavior of the
Target and to translate it to a command that generates an equivalent behaviour
of Adaptee. Once we find a controller that solves the game, we can transform it
to an Adapter as we detail in Sect. 4.

The synthesis problem that we defined so far is as hard computationally as
general LTL synthesis and is thus double exponential in the worst case [37]. To
cope with this difficulty, we propose to use a well known fragment of LTL called
GR(k). GR(k) generalizes the GR(1) subset of LTL [9], a practical fragment
of LTL for which a feasible reactive synthesis algorithm exists (see, e.g., [8,28,
33]). Furthermore, GR(k) formulas are known to be highly expressive, as they
can encode most commonly appearing LTL industrial patterns [15,29,30] and
DBA properties (see related works for details). In addition to using GR(k),
since the Input and Output in our model are separated transition systems, with
separated sets of atomic propositions, we focus on properties that separate input
and output variables. That is, our specification has the form

∧k
i=1(φi → ψi),

where the φi and ψi are conjunctions of LTL GF (Globally in the Future) formulas
over Input variables only and Output variables only respectively. We call this
model Separated GR(k). We show through several case-studies that this fragment
of LTL suffices to specify a range of useful equivalence relations.

We study the problems of realizability and synthesis on Separated GR(k)
game. For that, we first consider a sub-problem of solving a weak Büchi game.
Then we identify and make use of a property of separated games that we call
delay property : the system can delay its response to the environment indefinitely
as long as it remains in the same connected component of the game graph.
This allows us to decide the realizability of Separated GR(k) in O(|ϕ| + N)
symbolic operations, and to synthesize a controller for a realizable specification
in O(|ϕ|N) symbolic operations, where ϕ is the Separated GR(k) specification,
and N is the size of the state-space. Thus, Separated GR(k) games are easier to
solve that solving GR(k) games which require O(Nk+1k!) operations [35]. This
demonstrates the efficiency of our framework, since |ϕ| tends to be smaller than
N and in most practical cases, |ϕ| ∈ O(log(N)).

The benefits of the complexity-theoretic improvement are reflected in empiri-
cal evaluations on our case studies of separated GR(k) formulas. We demonstrate
that while separated GR(k) formulas are challenging for state-of-the-art synthe-
sis tools, a symbolic BDD-based implementation of our algorithm solves them
scalably and efficiently.

The rest of the paper is organized as follows: Sect. 2 introduces necessary
preliminaries. Separated GR(k) games are introduced and formulated in Sect. 3.

Adapting Behaviors via Reactive Synthesis 873

In Sect. 4 we describe how to use Separated GR(k) games synthesis to generate
the adapter transducer, and introduce several use-cases. Next, we turn to solving
separated GR(k) games. An overview of our solution approach and a necessary
property for correctness of algorithm, called the delay property, is given in Sect. 5.
A complete symbolic algorithm is presented in Sect. 6. An empirical evaluation
on case-studies is presented in Sect. 7. Finally, in Sects. 8 and 9 respectively, we
give related work and conclude. Detailed proofs appear in the full version of the
paper [3].

2 Preliminaries

General Definitions. Given a set of Boolean variables V, a state over V is
an assignment s to the variables in V. We describe s as the subset of V that
is assigned True in s. The set of primed variables of V is V ′ = {v′ | v ∈ V}.
Then s′ = {v′ | v ∈ s} is the primed state s′ over V ′. An assertion over V is
a Boolean formula over variables V. A state s satisfies an assertion ρ over the
same variables, denoted s |= ρ, if ρ evaluates to True by assigning true to the
elements of s. We define the projection of a state s on a subset U ⊆ V as denoted
by s|U = s ∩ U . We extend the notion of projection to a set of states S ⊆ 2V by
defining S|U = {s|U | s ∈ S}.

Our specification is a special form of Linear Temporal Logic (LTL). LTL [36]
extends propositional logic with infinite-horizon temporal operators. The syntax
of an LTL formula over a finite set of Boolean variables V is defined as follows:
ϕ:: = v ∈ V | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Fϕ | Gϕ. Here X (Next), U (Until),
F (Eventually), G (Always) are temporal operators. The semantics of LTL can
be found in [5, Chapter 5].

We model the adapters as transducers. A transducer is a deterministic finite-
state machine with no accepting states, but with additional output alphabet and
an additional function from the set of states to the output alphabet. A formal
definition of a transducer is not required for this paper.

The algorithms developed in this paper are symbolic, i.e. manipulate implicit
representations of sets of states. To this end, we use Binary Decision Diagrams
(BDDs) [10] to represent assertions. For a BDD B and sets of variables V1, · · · Vn,
we write B(V1, . . . ,Vn) to denote that B represents an assertion over V1∪· · ·∪Vn.
For a state s over V, we write s |= B(V) to denote that the assertion that B
represents is satisfied by the state s. BDDs support several symbolic operations:
conjunction (∨), disjunction (∧), negation (¬), and extraction of variables using
the ∃ and ∀ operators. We measure time complexity of a symbolic algorithm
by a worst case #symbolic-operations it performs. A discussion on a rigorous
treatment of BDD operations can be found in the paper’s full version [3].

Game Structures and Games. We follow the notations of [9]. A game struc-
ture GS = (I,O, θI , θO, ρI , ρO) defines a turn-based interaction between an
environment and a system players. The input variables I and output variables
O are two disjoint sets of Boolean variables that are controlled by the envi-
ronment and system, respectively. The environment’s initial assumption θI is an

874 G. Amram et al.

assertion over I, and the system’s initial guarantee θO is an assertion over I ∪O.
The environment’s safety assumption ρI is an assertion over I ∪ O ∪ I ′, where
the interpretation of (i0, o0, i ′

1) |= ρI is that from state (i0, o0) the environment
can assign i1 to the input variables. W.l.o.g, we assume that ρI is deadlock free,
i.e., for all (i0, o0) there exists an i1 s.t. (i0, o0, i ′

1) |= ρI . Similarly, the system’s
safety guarantee ρO is an assertion over I ∪O∪I ′ ∪O′, where the interpretation
of (i0, o0, i ′

1, o
′
1) |= ρO is that from state (i0, o0) when the environment assigns i1

to the input variables, the system can assign o1 to the output variables. Again,
w.l.o.g, we assume that ρO is deadlock free, i.e., for all (i0, o0, i ′

1) there exists an
o1 s.t. (i0, o0, i ′

1, o
′
1) |= ρO.

A play over GS progresses by the players taking turns to assign values to their
own variables ad infinitum, where the players must satisfy the initial conditions
at the start and the safety conditions thereafter. Formally, a play π = s0, s1, . . . is
an infinite sequence of states over I∪O such that s0 |= θI ∧θO and (sj , s

′
j+1) |=

ρI∧ρO for all j ≥ 0. A play prefix is either a play or a finite sequence of states that
can be extended to a play. Then a strategy is a function f : (2I∪O)+ × 2I → 2O

such that if s0, . . . , sm is a play prefix, (sm, i ′) |= ρI and f(s0, . . . , sm, i) = o,
then (sm, i ′, o′) |= ρO. Intuitively, a strategy directs the system on what to
assign to the output variables, depending on the history of a play and the most
recent assignment by the environment to the input variables. A play prefix is
said to be consistent with a strategy f if for all states sj = (ij , oj) in that
prefix, f(s0, . . . , sj−1, ij) = oj for all j ≥ 0. A strategy is memoryless if it only
depends on the last state and the most recent assignment to the input variables.
Formally, a memoryless strategy is a function f : (2I∪O) × 2I → 2O such that if
(sm, i ′) |= ρI and f(sm, i ′) = o, then (sm, i ′, o′) |= ρO.

A game is a tuple (GS , ϕ) where GS is a game structure over inputs I and
outputs O and ϕ is an LTL formula over I ∪ O called a winning condition. A
play π is winning for the system if π |= ϕ. A strategy f wins from state s if every
play π from s that is consistent with f is winning for the system. A strategy
f wins from S, where S is an assertion over I ∪ O, if it wins from every state
s |= S. The winning region of the system is the set of states from which it has a
winning strategy. A strategy f is winning if for every state i |= θI there exists
a state o ∈ 2O such that (i , o) |= θO and f wins from (i , o). In this paper, we
have the following games that are defined over the following winning conditions.

– Reachability games: F(ϕ) where ϕ is an assertion over I ∪ O.
– Safety games: G(ϕ) where ϕ is an assertion over I ∪ O.
– Büchi games: GF(ϕ) where ϕ is an assertion over I ∪ O.
– GR(k) games:

∧k
l=1(

∧nl

i=1 GF(ϕl,i) → ∧ml

j=1 GF(ψl,j)) where all ϕl,i and ψl,j

are assertions over I ∪ O.

Given a game (GS , ϕ), realizability is the problem of deciding whether a win-
ning strategy for the system exists, and synthesis is the problem of constructing
a winning strategy if one exists. We note that a realizability check can be reduced
to the identification of the winning region, W : A winning strategy exists iff for
all i |= θI there exists o ∈ 2O such that (i , o) |= θO and (i , o) ∈ W . Hence, the
synthesis problem can be solved by constructing a strategy that wins from W .

Adapting Behaviors via Reactive Synthesis 875

Game Graphs and Weak Büchi Games. The game graph for a game
structure GS is the directed graph (V,E) with vertices V = 2I∪O and edges
E = {(s, t) | (s, t′) |= ρI ∧ ρO}. Intuitively, vertices are states over I and O,
and edges represent valid transitions between states according to the safety con-
ditions. The game graph can be useful for analyzing the structural properties of
a game structure via graph-theoretical properties.

A finite path in a directed graph (V,E) is a sequence v0, . . . , vn ∈ V + such
that (vj , vj+1) ∈ E for all 0 ≤ j < n. An infinite path v0, v1, . . . ∈ V ω is similarly
defined. A vertex u is said to be reachable from another vertex v if there is a
finite path from v to u. A strongly connected component (SCC) of a directed
graph (V,E) is a maximal set of vertices within which every vertex is reachable
from every other vertex. It is well known that SCCs partition the set of vertices
of a directed graph, and that the set of SCCs is partially ordered with respect
to reachability. Also note that every infinite path ultimately stays in an SCC.

Let (GS ,GFϕ) be a game with a Büchi winning condition, and let S0 . . . ,Sm

be the set of SCCs that partition the game graph of GS . We say that (GS ,GFϕ)
is a weak Büchi game if, given the set F of states that satisfy the assertion ϕ,
for every SCC Si, either Si ⊆ F or Si ∩ F = ∅. Thus, the SCCs of a weak Büchi
game are either accepting components, meaning all of its states are contained in
F , or non-accepting components, meaning none of its states is present in F . As a
consequence, a play in a weak Büchi game is winning for the system if the play
ultimately never exits an accepting component. Similarly, a strategy is winning
for the system if it can guarantee that every play will ultimately remain inside
an accepting component.

3 Separated GR(k) Games

Our framework relies on the core idea of reducing the problem of adapter genera-
tion to synthesizing a Separated GR(k) game, which we define in this section. At a
high-level, a separated GR(k) differentiates from a regular GR(k) game in a sepa-
ration between input and output variables in both the game structure and winning
condition. We show in later sections that the separation of variables leads to algo-
rithmic benefits to the synthesis problem. Formally we have the following.

Definition 1. A game structure GS = (I,O, θI , θO, ρI , ρO) separates variables
over input variables I and output variables O if:

– The environment’s initial assumption θI is an assertion over I only.
– The system’s initial guarantees θO is an assertion over O only.
– The environment’s safety assumption ρI is an assertion over I ∪ I ′ only.
– The system’s safety guarantee ρO is an assertion over O ∪ O′ only.

The interpretation of a game structure which separates variables is that the
underlying game graph (V,E) is the product of two distinct directed graphs over
disjoint sets of variables: GI over the variables I ∪I ′, and GO over the variables
O ∪ O′. For J ∈ {I,O}, the vertices of GJ correspond to states over J and
there is an edge between states s and t if (s, t′) |= ρJ .

876 G. Amram et al.

Next, the notion of separation of variables extends to games with GR(k)
winning conditions as follows:

Definition 2. A GR(k) winning condition ϕ over I ∪ O separates variables
w.r.t. I and O if ϕ =

∧k
l=1(

∧nl

i=1 GF(ϕl,i) → ∧ml

j=1 GF(ψl,j)) such that each ϕl,i

is an assertion over I and each ψl,j is an assertion over O.

A Separated GR(k) game is a GR(k) game (GS , ϕ) over I ∪ O in which both
GS and ϕ separate variables w.r.t. I and O.

A major observation is that in a game played over a separated game structure,
the actions of the two players are independent: the environment’s actions do
no limit the system’s actions, and vice versa. In later sections we see how this
observation leads to algorithmic improvements in solving separated GR(k) games
over a regular GR(k) game. Specifically, in Sect. 4 we see how to use Separated
GR(k) games to generate the adapter transducer. In Sects. 5 and 6 we discuss
algorithms for realizability and synthesis of Separated GR(k) games.

4 From Transducers to Separated GR(k)

We describe, using an end-to-end-example, how adapter transducer generation
can be reduced to synthesis of Separated GR(k) games.

We begin with user-provided Target and Adaptee transducers. These trans-
ducers model the behavior of a system that we want to use (Adaptee) and the
behavior of a system that we want to emulate (Target). For example, the transi-
tion systems in Fig. 1 formulates the following scenario. (1) Target is an hardware
interface that we want to support, such that the U (up) and the D (down) com-
mands send the hardware from mode s0 to modes s1 and s2, respectively, from
which the S (stay) command keeps the system looping at the chosen mode. (2)
Adaptee that is a hardware that we can use that also has three modes, but which
does not allow the command S after U . Instead, it allows a D command that
switches the mode back to s0.

s0S|¬t1 ∧ ¬t0

s1

s2

Target

U | t1 ∧ ¬t0

D | ¬t1 ∧ t0

S | ¬t1 ∧ t0

S | t1 ∧ ¬t0

s0S | ¬a1 ∧ ¬a0

s1

s2

Adaptee

U | ¬a1 ∧ a0

D | a1 ∧ ¬a0

D | ¬a1 ∧ ¬a0

S | a1 ∧ ¬a0

Fig. 1. An example of Target and Adaptee transducers. In this example, the ti and ai

variables encode the binary representation of the mode being moved to.

Adapting Behaviors via Reactive Synthesis 877

The second step is a formulation of the equivalence relation, where we define
the type of emulation that we require. In our example we want to maintain the
following property: if Target visits a mode si infinitely often for a certain input
sequence, then so does Adaptee ◦ Adapter . This can be expressed in LTL as:

2∧

i=0

GF(bint(si)) → GF(bina(si))

where bint(si) denotes the binary representation of mode si using variables t1, t0,
and similarly for bina(si) using variables a1, a0. Note that in this example we
cannot just synthesize an adapter that cycles through all modes in Adaptee ◦
Adapter infinitely often, since the Adaptee transducer does not allow that.

As a third step, to generate a separated GR(k) game, we translate the Target
and Adaptee transducers to Input and Output transition systems as depicted, for
example, in Fig. 2. Since Adaptee and Target are two separate transducers, each
with its own structure, it is natural to model these as two separate transition
systems on distinct variables. Thus, the transition systems are produced by the
well known projection construction that turns an FST into a FSA that accepts
the output language of the transducers [32]. Note that in our setting Target is
translated to Input and Adaptee is translated to Output . This may appear as a
role inversion to readers. We propose it because the role of the controller in our
setting is to translate the behavior of Target to an equivalent behavior of the
Adaptee.

¬t1 ∧ ¬t0

¬t1 ∧ t0

t1 ∧ ¬t0

Input

¬a1 ∧ ¬a0

¬a1 ∧ a0

a1 ∧ ¬a0

Output

Fig. 2. A direct translation of the Target transducer to an Input transition system and
of the Adaptee transducer to an Output transition system.

These separate transition systems, together with the specification described
above, form a Separated GR(k) that, as a fourth step, we can feed to the Sep-
arated GR(k) synthesis algorithm. The output of the algorithm is a transducer
called Controller, that maps runs of Input to runs of Output , as shown, in our
example, in Fig. 3. This, in fact, connects the output of the Target to the output
of the Adaptee.

As a final step, from the controller we can construct the Adapter using the
formula Adapter = Adaptee−1 ◦ Controller ◦ Target . This means that Adapter
contains an internal model of the Target and of the Adaptee. These internal

878 G. Amram et al.

s0¬t1 ∧ ¬t0 | ¬a1 ∧ ¬a0 s1

¬t1 ∧ ¬t0 | ¬a1 ∧ a0

¬t1 ∧ t0 | ¬a1 ∧ a0

¬t1 ∧ ¬t0 | ¬a1 ∧ ¬a0

¬t1 ∧ t0 | ¬a1 ∧ ¬a0

t1 ∧ ¬t0 | ¬a1 ∧ ¬a0

t1 ∧ ¬t0 | a1 ∧ ¬a0

Fig. 3. A controller that reads runs of the Input transition system and generates runs
of the Output transition system such that the specified Separated GR(2) formula is
guaranteed to be true.

models are used to translate inputs to expected outputs of the adapter, then
feed them to the controller, and then feed the output of the controller to the
reverse of Adaptee to generate an input to Adaptee that emulates the behaviour
of Target . Note that it is possible to invert transducers symbolically [21].

4.1 Additional Usages of Our Technique

We give two more examples to demonstrate uses of Separated GR(k).

Cleaning Robots. This example demonstrates how one can use our technique
to fulfill tasks that have not been covered by an execution of an existing trans-
ducer. Consider a cleaning robot (the Target transducer) that moves along a
corridor-shaped house, from room 1 to room n. The robot follows some plan
and accordingly cleans some of the rooms. Our goal is to synthesize a con-
troller that activates a second cleaning robot (the Adaptee transducer) that
follows the first robot and cleans exactly those rooms left uncleaned. Each
robot controls a set of variables indicating which room they are in and which
rooms they have cleaned, and additionally the original robot controls a vari-
able indicating whether it is done with its cleaning. Our controller is required
to fulfill requirements of the form: GF(done) ∧ GF(!in:cleani) → GF(out :cleani),
GF(done) ∧ GF(in:cleani) → GF(!out :cleani).

Railway Signalling. This example demonstrates how one can use our tech-
nique to improve the quality of an existing transducer. We consider a junction
of n railways, each equipped with a signal that can be turned on (light in green)
or off (light in red). Some railways overlap and thus their signals cannot be
turned on simultaneously. We consider an overlapping pattern where railways
1–4 overlap, and similarly 3–6, 5–8, and so on.

An existing system (the Target transducer) was programmed to be strictly
safe in order to avoid accidents, so it never raises two signals simultaneously.
We want to improve the system’s performance by synthesizing a controller that
reads the assignments that the existing transducer produces and accordingly
assign values to the signals in such a way as to produce both safe and maximal

Adapting Behaviors via Reactive Synthesis 879

valuations: the ith signal is turned on if and only if the signal of every rail
that overlaps with the ith rail is off. Furthermore, we want to maintain liveness
properties of the Target system: (1) every signal that is turned on infinitely often
by the existing system must be turned on infinitely often by the new system as
well, and (2) if a signal is turned on at least once every m steps (where m is a
parameter of the specification) by the existing system, then the same holds for
the new system.

Note that, in terms of the GR(k) formula, this example is similar to the
“hardware” example that we gave; we want to emulate the Target ’s execution.
The crux of the example lies in its Adaptee. Here, unlike in the explanatory
example, the Adaptee is not a given hardware, but rather a virtual component
that the user introduced to improve the Target performance. In this case the
Adaptee produces safe and maximal signals.

5 Overview for Solving Separated GR(k) Games

The adapter generation framework described in Sect. 4 relies on synthesizing
a controller from a separated GR(k) game. In this section and the next, we
describe how to solve separated GR(k) games. This section gives an overview of
the algorithm in Sect. 5.1 and describes a necessary property, called the delay
property, in Sect. 5.2. The delay property is necessary to prove correctness of our
synthesis algorithm. Later, Sect. 6 gives the complete algorithm and proves its
correctness.

5.1 Algorithm Overview and Intuition

Following Sect. 3, we are given a Separated GR(k) game that consists of a game
structure GS and a winning condition in a GR(k) form ϕ =

∧k
l=1 ϕl, where

ϕl =
∧nl

i=1 GF(al,i) → ∧ml

j=1 GF(gl,j). Let G be the game graph of GS . Consider
an infinite play π in GS . Like every infinite path on a finite graph, π eventually
stabilizes in an SCC S. Due to separation of variables, the game graph G can
be decomposed into an input graph GI and an output graph GO. Then the
projection of S on the inputs is an SCC SI in GI , and the projection of S on
the outputs is an SCC SO in GO. The input side of π converges to SI whereas
the output side π converges to SO.

Now, let S be an SCC with projections SI on GI and SO on GO. Then
we call S accepting if for every constraint ϕl, where l ∈ {1, . . . , k}, one of the
following holds:

All guarantees hold in S. For every j ∈ {1, . . . , ml}, there exists o ∈ SO such
that o |= gl,j .

Some assumption cannot hold in S. There exists j ∈ {1, . . . , nl} such that
for all i ∈ SI , i �|= al,j .

Then from the definition of an accepting SCC we have the following: a strat-
egy that makes sure that every play converges to an accepting SCC, in which

880 G. Amram et al.

all the relevant guarantee states are visited, is a winning strategy for the system
in (GS , ϕ). To synthesize such a strategy, we do the following: (i) synthesize a
strategy fB for which every play converges to an accepting SCC; (ii) synthesize
a strategy ftravel that travels within every accepting SCC, satisfying as many of
the gl,j guarantees as possible. (iii) construct an overall winning strategy f that
works as follows: the system plays fB until reaching an accepting SCC S, then
the system switches to ftravel to satisfy as many of the gl,j guarantees in S as
possible; if the environment moves the play to a non-accepting SCC, the system
can start playing fB again to reach a different accepting SCC.

The strategy fB can be found by synthesizing the weak Büchi game
(GS ,GF(acc)), where acc is the assertion that accepts exactly those states that
belong to accepting SCCs (note that (GS ,GF(acc)) is a well defined weak Büchi
game). ftravel can be constructed by simply finding a path in SO that satisfies
the maximum number of guarantees.

A complication arises however when switching between ftravel and fB , since
it is conceivable that while the system is following ftravel , the environment could
move to a different SCC that is outside of the winning region of fB . Thus, it
is not clear that we can combine these strategies to make an overall winning
strategy for the system. To show that we can indeed combine both strategies,
we need the following property that we call the delay property : if (i1, o1) is a
state in the winning region of fB , and (i2, o0) is a state for which there is a
path in GI from i1 to i2 and a path in GO from o0 to o1, then (i2, o0) is also
in the winning region of fB . We formally state and prove the delay property in
Sect. 5.2. In Sect. 6 we give details of the construction of fB , ftravel and the use
of the delay property to prove correctness of the overall winning strategy f .

5.2 The Delay Property

The delay property essentially says that if an SCC S is contained in the winning
region, and the environment moves from S unilaterally to a different SCC S′,
then S′ is also in the winning region of the system. In this section, we prove that
the Büchi game (GS ,GF(acc)) where GS = (I,O, θI , θO, ρI , ρO), as defined in
Sect. 5.1, satisfies the delay property. Throughout this section, we write GI and
GO to denote the graphs over 2I and 2O, respectively, as in Sect. 5.1. We start
with the following lemma that states that the system can still win in spite of a
single step delay.

Lemma 1. Let i0, i1 ∈ 2I such that (i0, i ′
1) |= ρI , and assume that the system

can win from (i0, o0). Then the system can also win from (i1, o0).

Proof. Let f be a winning strategy for the system from (i0, o0). We construct a
winning strategy fd from (i1, o0). Intuitively, fd acts from state (i1, o0) as if it
were following f from state (i0, o0), with a delay of a single step: the input in
the current step is used to choose the output in the next step.

We use f to define fd inductively over play prefixes of length m ≥ 1, by setting
fd((i1, o0), . . . , (im, om−1), im+1) = f((i0, o0), . . . , (im−1, om−1), im). Note that

Adapting Behaviors via Reactive Synthesis 881

fd is well defined since GS separates variables: from state (i , o), the outputs
that can be chosen for the successor state depend only on o, and not on i .
Note that by this definition, for every play (i1, o0), (i2, o1), . . . , (im+1, om), . . .
consistent with fd, the play (i0, o0), (i1, o1), . . . , (im, om), . . . is consistent with
f . We remark that we define fd only for proving the lemma, and it is not part
of our solution.

Next, we show that fd is winning from (i1, o0). Take a play
(i1, o0), (i2, o1), . . . , consistent with fd. By the construction, (i0, o0), (i1, o1), . . .
is consistent with f . Since this is a play on a weak Büchi game, after some point
it must remain in a single SCC S, say from state (ij , oj). Since f is a winning
strategy, the SCC S must be accepting. Then oj , oj+1, . . . is an infinite path in
the SCC S|O, and ij , ij+1, . . . is an infinite path in the SCC S|I . Consequently,
(i1, o0), (i2, o1), . . . converges to an SCC Ŝ in which Ŝ|I = S|I and Ŝ|O = S|O.
Since the conditions for an SCC D to be accepting depend only on the relation
between D|I and D|O, we have that Ŝ is accepting since S is accepting as well.

��
We can now prove the delay property, following by straightforward induction

from Lemma 1.

Theorem 1 (Delay Property Theorem). Let i0, . . . , in ∈ (2I)+ be a path
in GI , and for m ≥ 0, let o−m, . . . , o0 ∈ (2O)+ be a path in GO. Assume that
the system can win from (i0, o0). Then the system can also win from (in, o−m).

Proof. From (in, o−m), the system can simply ignore the inputs and follow the
path in GO to o0. Let (in+m, o0) be the state at that point in some play. Note
that there is a path between in and in+m, and therefore there is a path between
i0 and in+m. If the system can win from (i0, o0) then by using Lemma 1 in
the induction steps, the system can win by induction from (i , o0) for all i such
that there is a path in between i0 and i . Therefore, the system can win from
(in+m, o0), and by consequence from (in, o−m). ��

A corollary of Theorem 1 is the following statement about the structure of
the winning region of the weak Büchi game B = (GS ,GF(acc)) as defined in
Sect. 5.1.

Corollary 1. The winning region of B is a union of SCCs.

Proof. Let (i , o) be a state in the winning region of B, let (î , ô) be a state in
the same SCC S of (i , o), and let S|I and S|O be the projections of S on GI
and GO, respectively. Then there is a path i0, . . . , in for some n ≥ 0 in S|I such
that i0 = i and î = in. Similarly, there is a path o−m, . . . , o0 for some m ≥ 0 in
S|O such that ô0 = o and ô = o−m. Then by the delay property of Theorem 1,
the vertex (î , ô) = (in, o−m) is also in the winning region of B. ��

We use Theorem 1 and Corollary 1 in the proof of correctness of the overall
winning strategy f , as described in Sect. 6.2.

882 G. Amram et al.

6 Algorithms for Solving Separated GR(k) Games

In this section we provide the exact details of our synthesis algorithm for Sep-
arated GR(k) games, as described in Sect. 5.1. Since constructing fB involves
defining and solving a weak Büchi game, we first describe these in Sect. 6.1.
We remark that our weak Büchi game synthesis algorithm works for all weak
Büchi games, and not just for the special weak Büchi game defined in Sect. 5.1.
Specifically, it works even when the underlying game structure does not sepa-
rates variables. Next, in Sect. 6.2, we complete the algorithm construction and
describe the correctness of our overall synthesis algorithm.

6.1 Realizability and Synthesis for Weak Büchi Games

We present a symbolic algorithm to solve synthesis of a weak Büchi game. When
represented in explicit state-representation, weak Büchi games are known to be
solved in linear-time in the size of the game [12,27]. In this section, we adapt
the algorithm from [12,27] to symbolic state-space representation. For sake of
exposition, we give an overview of the algorithm and then present our symbolic
modification.

Overview Given a weak Büchi game, recall that each SCC in its game graph
G is either an accepting SCC or a non-accepting SCC. The goal is to find the
winning regions in the weak Büchi game. This can be done by backward induc-
tion on the topological ordering of the SCCs as follows. Let (S0, . . .Sm) be a
topological sort of the SCCs in G.

Base Case: Consider all terminal partitions, say Sj , . . . ,Sm; that is, every SCC
from which no other SCC is reachable. In this case, plays beginning in a terminal
SCC will never leave it. Therefore, all states of terminal SCCs that are accepting
are in the winning region of the system and all states of terminal SCCs that are
non-accepting are not in the winning region of the environment.

Induction Step: Let
−→
S = (Si+1, . . . , Sm), and suppose that the set

⋃ −→
S has

been classified into winning regions for the system W s
i+1 and the environment

W e
i+1, respectively. Let

−→
S new = (Sj ,Sj+1, . . . ,Si) be the SCCs from which all

edges leaving the SCC lead to an SCC in
−→
S . Further, let A and N be the unions

of all accepting SCCs and all non-accepting SCCs in
−→
S new, respectively. Then

the basic idea is as follows: The system can win from s ∈ N if and only if it can
force F(W s

i+1) from s. Analogously, the system can win from s ∈ A if and only if
it can force G(A ∪ W s

i+1) from s. Hence, by solving these reachability and safety
games, we can update W s

i+1 and W e
i+1 into W s

j and W s
j that partition the larger

set
⋃

(Sj , . . . , Sm) into winning regions for the system and the environment. The
winning strategy can be constructed in a standard way as a side-product of the
reachability and safety games in each step, see for example [40,41].

Adapting Behaviors via Reactive Synthesis 883

Symbolic Algorithm for Weak Büchi Games. Given a weak Büchi game
B = ((I,O, θI , θO, ρI , ρO),GF(acc)) with BDDs representing θI , θO, ρI , ρO
and acc, our goal is to compute a BDD for the winning region and to synthe-
size a memoryless winning strategy for the system. The construction follows a
fixed-point computation that adapts the inductive procedure described in the
overview: In the basis of the fixed point computation, the winning region is
the set of accepting terminal SCCs; in the inductive step, the winning region
includes winning states by examining SCCs that are higher in the topological
ordering on SCCs. In what follows we describe a sequence of BDDs that we con-
struct towards constructing the overall BDD for the winning region. We use the
notation X to denote a set of variables over I ∪ O. For the sake of the current
construction, memoryless strategies are given in the form of BDDs over X ,X ′,
for further details on the BDDs constructions see the full version for details [3].

BDD constructions. We start by constructing a BDD for a predicate that indi-
cates whether two states in a game structure are present in the same SCC. Let
predicate Reach(s, t′) hold if there is a path from state s over I ∪ O to state t
over I ∪ O in the game structure GS . Similarly, a predicate Reach−1(s, t′) holds
if and only if Reach(t, s′) holds. BDDs for Reach and Reach−1 can be computed
in O(N) symbolic operations using the transition relation of the game structure.
Then, a BDD indicating if two states share the same SCC, is constructed in
O(N) symbolic operations by SCC(X ,X ′) := Reach(X ,X ′) ∧ Reach−1(X ,X ′).

Next, we construct a BDD for the union of the terminal SCCs, required by
the basis of induction for the construction of the winning region. Let predi-
cate Terminal(s) hold if state s over I ∪ O is present in a terminal SCC. Then
Terminal(X) := ∀X ′ : Reach(X ,X ′) → SCC(X ,X ′). Therefore, given BDDs for
Reach and SCC, the construction of Terminal requires O(1) symbolic operations.

Computing the Winning Region. We now describe the fixed-point computa-
tion to construct a BDD for the winning region in a weak Büchi game. Let
Reachability(M,N)(X) denote a BDD generated by solving a reachability game
that takes as input a set of source states M and target states N and outputs
those states in M from which the system can guarantee to move into N . Simi-
larly, let Safety(M,N)(X) denote a BDD generated by solving a safety game that
takes as input a set of source states M and target states N and outputs those
states in M from which the system can guarantee that all plays remain inside the
set N . These constructions are standard, details can be found in [20, Chapter 2].

Now, let Win(s) denote that state s over I ∪ O is in the winning region.
Then, Win(X) is the fixed point of the BDD Win Aux defined below, where
the construction essentially follows the high-level algorithm description. The
BDD Acc(X) represents the formula acc encoding the set of accepting states.
In addition, DCi(X) is the union

⋃ −→
S of the Downward-Closed set of SCCs,

i.e. the SCCs that have already been classified into winning or not-winning,
and DCi

new(X) is the union
⋃ −→

S new of the SCCs in DCi(X) that were not in
DCi−1(X). Finally, Ni(X) is the subset N of non-accepting states in DCi

new(X),
and Ai(X) is the subset A of accepting states in DCi

new(X). We then define
Win Aux as follows.

884 G. Amram et al.

Base Case.
1: Win Aux0(X) := Terminal(X) ∧ Acc(X)
2: DC0(X) := Terminal(X)

Inductive Step.
1: DCi+1(X) := ∀X ′ : Reach(X ,X ′) → (SCC(X ,X ′) ∨ DCi(X ′))
2: DCi+1

new(X) := DCi+1(X) \ DCi(X)
3: Ni+1(X) := DCi+1

new(X) ∧ ¬Acc(X)
4: Ai+1(X) := DCi+1

new(X) ∧ Acc(X)
5: Win Auxi+1(X) := Win Auxi(X) ∨ Reachability(Ni+1(X),Win Auxi(X))(X)

∨Safety(Ai+1(X),Ai+1(X)∨Win Auxi(X))(X)

To explain the construction of Win, note that a state s in DCi+1(X) is
winning in one of these cases: (i) s is a winning state in DCi(X). (ii) s is a
non-accepting state in DCi+1(X) from which the system can force the play
into a winning state in DCi(X). This set of states can be obtained from
Reachability(Ni+1(X),Win Auxi(X))(X). (iii) s is an accepting state in DCi+1(X) from
which the system can guarantee that every play that leaves the accepting SCC
moves into a winning state in DCi(X). This set of states can be obtained from
Safety(Ai+1(X),Ai+1(X)∨Win Auxi(X))(X).

Finally, to check realizability, construct the BDD ∀I(InitIn(I) →
∃O(InitOut(O) ∧ Win(I ∪ O))), where InitIn(I) and InitOut(O) are BDDs repre-
senting θI and θO, respectively. This BDD is equal to true iff B is realizable.

The fixed-point computation can be extended in a standard way to also
compute a BDD representation Fb(X,X ′) of the winning strategy fB , such that
(s, (i′, o′)) |= Fb(X,X ′) iff fB(s, i) = o, as we elaborate in the full version [3].
We then have the following theorem that follows our construction.

Theorem 2. Realizability and synthesis for weak Büchi games can be done in
O(N) symbolic steps.

Proof Outline. The proposed construction symbolically implements the induc-
tive procedure of the explicit algorithm. Hence, it correctly identifies the system’s
winning region. It remains to show that the algorithm performs O(N) symbolic
operations. First of all, the constructions of SCC and Terminal take O(N) sym-
bolic operations collectively. It suffices to show that in the i-th induction step,
solving the reachability and safety games performs O(|DCi+1 \DCi|) operations.
This can be proven by a careful analysis of the operations and the sizes of result-
ing BDDs using standard results on safety and reachability games. ��

6.2 Realizability and Synthesis for Separated GR(k) Games

We finally make use of the elements obtained so far towards solving synthesis for
Separated GR(k) games. Our construction follows the overview from Sect. 5.1.
To recall, we describe and construct two auxiliary strategies fB and ftravel and
combine them to generate the final strategy f . We use the delay property theorem
from Sect. 5.2 to prove the correctness of our algorithm.

Adapting Behaviors via Reactive Synthesis 885

We are given a Separated GR(k) game structure GS = (I,O, θI , θO, ρI , ρO)
and a winning condition ϕ =

∧k
l=1 ϕl, where ϕl =

∧nl

i=1 GF(al,i) →∧ml

j=1 GF(gl,j)). We first represent GS and ϕ as BDDs by standard means. We
then define and construct the following.

Constructing fB . Auxiliary strategy fB is the winning strategy of the system
player in a weak Büchi game constructed form the separated GR(k) game. To
construct a weak Büchi game, we first construct, in O(|ϕ| + N) symbolic opera-
tions, a BDD Acc(I∪O) that describes the set of accepting states. The construc-
tion is standard. Next, let acc be the assertion represented by Acc (the assertion
defined in Sect. 5.1). Then the weak Büchi game is B = (GS ,GF(acc)). Finally,
we construct fB as the winning strategy of B, following Sect. 6.1.

Constructing ftravel . For the construction of ftravel , we arbitrarily order all guar-
antees that appear in our GR(k) formula: gar0, . . . , garm−1. For each guarantee
gar j , we construct a reachability strategy fr(j) that, when applied inside an
SCC SO in the output game graph GO, moves towards a state that satisfies gar j

without ever leaving SO. In case no such state exists in SO, fr(j) returns a distin-
guished value ⊥. Note that this strategy can entirely ignore the inputs. We equip
ftravel with a memory variable mem that stores values from {0, . . . , m−1}. Then
ftravel(s, i) is operated as follows: for mem,mem+1, . . . we find the first mem+j
(mod m) such that the SCC of s includes a gar j-state, and activate fr(mem+j)

to reach such state. If no guarantees can be satisfied in S, we just return an
arbitrary output to stay in SO. The construction of ftravel requires O(|ϕ|N) sym-
bolic BDD-operations as we need to construct m reachability strategies (clearly,
m ≤ |ϕ|).

Constructing the overall strategy f. Finally, we interleave the strategies fB and
ftravel into a single strategy f as follows: given a state s and an input i, if
s |= Acc(X) (that is, if s is an accepting state), then set f(s, i) = ftravel(s, i);
otherwise set f(s, i) = fB(s, i). Whenever f switches from fB to ftravel , the
memory variable mem is reset to 0. The next lemma proves that if fB is winning
then so is f .

Lemma 2. If fB is a winning strategy for the weak Büchi game B =
(GS ,GF(acc)), then f is a winning strategy for the Separated GR(k) game
(GS , ϕ).

Proof. Since fB is a winning strategy, then for every initial input i |= θI there
is an initial output o |= θO such that (i, o) is in the winning region of GS.
We show that playing f always keeps the play in the winning region of GS, and
therefore the play eventually converges to an accepting SCC. Once this happens,
following ftravel guarantees that ϕ is satisfied. We know that as long as the play
is in the winning region of B, following fB will keep it inside the winning region.
Therefore, when we switch from fB to ftravel we must be inside the winning
region and, by definition of f , in some accepting SCC S. Then ftravel makes sure
that as long as the environment remains in S|I , the projection of S over the

886 G. Amram et al.

inputs, the system remains in S|O, the projection of S over the output. Thus all
in all the play remains in the winning region of S.

Therefore, the only way that the play can leave the winning region is if,
when the system is in a state (i0, o0) and chooses some output o−m according to
ftravel , the environment chooses input in such that the play leaves S and moves
to a state (in, o−m) in a different SCC of G. Note, however, that in this case
there is a path from i0 to in and a path from o−m to o0 (since by construction
ftravel remains in the same SCC in GO). Since (i0, o0) is in the winning region,
by Theorem 1 we have that (in, o−m) is in the winning region as well. ��

Final Results. Given Lemma 2, we can obtain our final results on synthesis
and realizability of Separated GR(k) games, as follows. Given a Separated GR(k)
game (GS , ϕ), construct acc and solve the weak Büchi game (GS ,GF(acc)). Then
construct fB, ftravel and f as described above. If realizable, then fB is a winning
strategy and from Lemma 2 we have that f is a winning strategy for (GS , ϕ).
If (GS ,GF(acc)) is unrealizable, then the environment can force every play to
converge to a non-accepting SCC. Since the GR(k) winning condition cannot be
satisfied from a non-accepting SCC, (GS , ϕ) is also not realizable. Thus we have
the following theorem, see [3] for full details.

Theorem 3. Realizability for separated GR(k) games can be reduced to realiz-
ability of weak Büchi games.

The final result on solving Separated GR(k) games is then as follows, see [3]
for full details.

Theorem 4. Let (GS , ϕ) be a separated GR(k) game over the input/output
variables I and O, respectively. Then, the realizability and synthesis problems for
(GS , ϕ) are solved in O(|ϕ|+N) and O(|ϕ|N) symbolic operations, respectively,
where N = |2I∪O|.

Proof Outline. Realizability and synthesis follow Lemma 2 and Theorem 3. It is
left to analyze the number of symbolic operations for constructing fB and then
f . In symbolic operations, constructing acc takes O(|ϕ| + N), and computing
the winning region W for (GS ,GF(acc)) takes O(N). Checking realizability can
be done by checking if for every initial input i there is an initial output o such
that (i, o) ∈ W , which takes O(1). The winning strategy fB can be computed
in the process of computing W , taking the same number of operations (see [3]
for details). Finally, constructing ftravel takes O((#gars)N) ≤ O(|ϕ|N), where
gars are all guarantees GF(gi,�) that appear in ϕ. Therefore, constructing f takes
O(|ϕ|N) symbolic operations in total. ��

Note that this result is an improvement over the complexity of synthesizing
GR(k) games in general [35].

Adapting Behaviors via Reactive Synthesis 887

7 Implementation and Evaluation

We have implemented our Separated GR(k) framework for realizability and syn-
thesis in a prototype tool SGR(k). The tool implements our symbolic algorithm
using the CUDD [39] package for BDD manipulation. Our tool is evaluated on a
suite of benchmarks created from the examples described in Sect. 4.

Benchmark Suite. We have created a suite of parametric benchmarks from
the three examples described in Sect. 4. Our suite consists of 38 realizable spec-
ifications. The parametric versions of the examples are described here.

The multi-mode hardware example is a generalization of the example pre-
sented at the beginning of Sect. 4. It is parameterized by the number of bits n
and has 2n modes. The Target can move from mode 0 to any mode and stay
there, while the Adaptee can only move from mode 0 to odd-numbered modes,
and up and down between modes 2i and 2i + 1. The specification consists of 2n
variables. We generate 10 such benchmarks with n ∈ {1, . . . , 10}.

The cleaning robots example is parameterized in the number of rooms. For
a scenario with n rooms, the specification is written over 4n + 1 variables. We
create 10 such benchmarks with n ∈ {1 . . . , 10}.

The railways signalling example consists of two parameters: a junction of
n railways and the frequency parameter m. With parameters n and m, the
specification consists of (2 + 2�log m�)n variables. We generate 18 benchmarks
with n ∈ {2, . . . , 10} and m ∈ {2, 3}.

Experimental Setup and Methodology. We evaluate our tool against
Strix [1,31], the current state-of-the-art tool for LTL synthesis and SYNTCOMP
2020 winner of 3 out of 4 tracks [2]. In order to run our benchmarks on Strix, we
transform the benchmarks (a game structure and a winning condition) into an
LTL formula that characterizes the same winning plays using the strict semantics
from [22]. To the best of our knowledge, there is no other synthesis/realizability
tool that operates on GR(k) specifications.

We compare the running time for checking realizability. For this, we compare
the running time of realizability checks of each benchmark on both tools. Every
benchmark is tested 10 times on both tools. We do this to account for the
randomness introduced during BDD construction due to the automatic variable
ordering by CUDD. For each benchmark we evaluate (a) the number of executions
on which the tools terminate and (b) the mean running time over 10 executions.

All experiments were executed on a single node of a high-performance com-
puter cluster consisting of an Intel Xeon processor running at 2.6 GHz with
32 GB of memory with a timeout of 10 mins.

Observations and Inferences. Our experiments clearly demonstrate the scal-
ability and efficiency of our tool in solving Separated GR(k) formulas.

Figure 4 plots the mean running time for the three benchmarks. We further
report the mean values in Table 1. The table rows refer to the benchmarks we

888 G. Amram et al.

(a) Multi-Mode Hardware (b) Railway Signalling

(c) Cleaning Robots

Fig. 4. Mean running time for different classes of benchmarks.

examine, and the columns refer to the value of the parameter n. As an example,
for the specification Cleaning(3), SGR(k)’s mean running time is 0.07 s. (row
titled Cleaning(n); SGR(k), column titled 3) and Strix’s mean realizability check
running time is 58.3 s. (row titled Cleaning(n);Strix), column titled 4). Cells
reading ‘TO’ indicate experiments reached a timeout.

The results show that our tool solves a significantly larger number of bench-
marks than Strix. On the few benchmarks which Strix solves, our tool outperforms

Table 1. Mean realizability check running times (sec.)

n 1 2 3 4 5 6 7 8 9 10

MultiMode(n) SGR(k) 0.06 0.05 0.05 0.06 0.06 0.08 0.1 0.19 0.46 1.07

Strix 0.13 0.29 TO TO TO TO TO TO TO TO

Cleaning(n) SGR(k) 0.05 0.05 0.07 0.09 0.16 0.26 0.63 1.16 1.78 2.43

Strix 0.31 0.75 58.3 TO TO TO TO TO TO TO

Railways(n, 2) SGR(k) - 0.11 0.17 0.71 3.88 11.8 15.1 40.8 219 TO

Strix - 382 TO TO TO TO TO TO TO TO

Railways(n, 3) SGR(k) - 0.07 0.36 1.67 8.39 29.8 50.3 102 TO TO

Strix - 381 TO TO TO TO TO TO TO TO

Adapting Behaviors via Reactive Synthesis 889

it by several orders of magnitude. Although the running time may vary depend-
ing on the automatic variable ordering chosen by CUDD, we do not believe it
would vary enough to significantly change the results. Specifically, we calculated
the 99% confidence interval for our results, and validated that for all data points
our tool’s entire interval lies below the entire interval for Strix.

Only three benchmarks were unsolvable by our tool (in the sense that the
majority of the 10 executions timed out). The three benchmarks are the railway
signal examples with (n = 10,m = 2), (n = 9,m = 3), and (n = 10,m = 3).
These benchmarks consist of a large number of variables (54, 40, and 60, respec-
tively), making them particularly challenging. All executions of the remaining
benchmarks were solved in less than 4 mins by our tool.

We also examined the number of solved executions per benchmark. Our tool
solved all 10 executions for 35 out of 38 benchmarks. These are the 35 bench-
marks that appear as solved in Fig. 4. For the railway signalling benchmark with
(n = 10,m = 2), our tool solved 2 out of 10 executions. In contrast, Strix was not
able to solve even one execution for 31 out of 38 benchmarks. Even increasing
the timeout to 8hrs only allowed Strix to solve a single additional benchmark. In
total, Strix and our tool verified realizability of 7 benchmarks and 36 out of 38
benchmarks, respectively. In summary, our experiments demonstrate that our
tool is able to solve specifications which are challenging for existing tools.

8 Related Work

The Adapter design pattern was introduced in [18], and has been used in many
software contexts since. Our interpretation of the pattern is inspired by automata
based description of the pattern proposed by Pedrazzini [34]. We reformulated
the problem as synthesis of reactive controllers that compose with existing sys-
tems to achieve a temporal specification, e.g. [7,13,17]. Note that our work differs
from such frameworks in its variables separation feature. A work with a concept
similar to adapting behaviors is the Shield synthesis that studies the problem
in which a synthesized controller corrects safety violations of an existing con-
troller [24]. Note that in contrast, our problem is mostly concerned about liveness
adaptation.

Reactive synthesis of LTL winning conditions is 2EXPTIME complete in the
size of the formula [37], making it difficult to scale for applications. An approach
to overcome the computational barrier has been to investigate fragments and
variants of LTL with lower complexity for synthesis [4,14,16]. One such frag-
ment is GR(k) [9], that offers a balance between efficiency and expressiveness.
Specifically, GR(k) games are known to be efficient as they are solved in expo-
nential time in the number of conjunctions k rather than exponential in the
state-space [35]. Several studies have also shown that GR(k) specifications are
highly expressive. As evidence, all properties expressed by deterministic Büchi
automata (DBA) can be expressed in GR(k) [16], where a study of commonly
appearing LTL patterns has shown that 52 of 55 patterns are DBA proper-
ties [15,29]. DBA properties have also been identified as common patterns in
robotics applications [30].

890 G. Amram et al.

Finally, Separated GR(k) games exhibit the delay property, which intuitively
means that the system can win even after delaying its action for a finite amount of
time while ignoring the environment before “catching up” with the environment.
While this is reminiscent of asynchrony in reactive systems [6,38], a further
exploration of relations between asynchrony and the delay property is required.

9 Conclusion

This paper presents a reactive systems-based model of the adapter design pat-
tern. We model the adapters as transducers and reduce the problem of finding
an Adapter transducer for a given Adaptee and Target systems, to the problem
of synthesizing strategies for Separated GR(k) games. Through an analysis of
theoretical complexity and algorithmic performance, we show that realizability
and synthesis of Separated GR(k) games is efficient and scalable. Furthermore,
by outperforming Strix, an existing state-of-the-art synthesis tool, we show that
algorithms for the Separated GR(k) class of specifications add value to the port-
folio of reactive synthesis tools.

The benefits of separation of input and output variables were previously
shown in the context of Boolean Functional Synthesis [11]. Through this work,
we showed that separation also leads to practically viable solutions in temporal
reactive synthesis, specifically when encoding the types of equivalence relations
that appear in reactive adaptation (where properties of runs of the first system
are compared to properties of runs of the other). Since the systems may be loosely
coupled, i.e., they may not run on the same clock, specifications that impose
joint temporal constraints on the two systems may not be realizable. Thus, our
proposition to use the type of equivalence that separated GR(k) formulas allow,
gives users the power needed for comparing the overall behaviors of the systems
while allowing realizability and efficient synthesis.

The results presented in this paper encourage future studies on the separa-
tion of variables in a broader context. For instance, reason about variants of
the adapter design pattern that do not separate variables all the way through.
That is to say, variants that translate to more general GR(k) specifications in
which the separation appears in the input and output systems but not in the
specification itself. One could further study the notion of separation of variables
in more the general LTL specifications. Another direction is to consider systems
that gets two types of input: from the input system (i.e. the Target) as well as
from an environment. We believe that these future directions would enable the
development of tools for synthesis from temporal specifications with a focus on
expressing practical applications as well as ensuring scalability and efficiency.

Acknowledgements. We thank Supratik Chakraborty and Dana Fisman for use-
ful comments. Work is supported in part by NSF grant 2030859 (CRA’s CIFellows
Project), NSF grants IIS-1527668, CCF-1704883, IIS-1830549, an award from the
Maryland Procurement Office, ISF grant 2714/19, and by the Lynn and William
Frankel Center for Computer Science.

Adapting Behaviors via Reactive Synthesis 891

References

1. Strix website. https://strix.model.in.tum.de/
2. The Reactive Synthesis Competition - SYNTCOMP 2020 Results. http://www.

syntcomp.org/syntcomp-2020-results/
3. Amram, G., Bansal, S., Fried, D., Tabajara, L.M., Vardi, M.Y., Weiss, G.: Adapting

behaviors via reactive synthesis (2021). CoRR abs/2105.13837 http://arxiv.org/
abs/2105.13837

4. Amram, G., Maoz, S., Pistiner, O.: GR(1)*: GR(1) specifications extended with
existential guarantees. In: ter Beek, M.H., McIver, A., Oliveira, J. (eds.) FM 2019.
LNCS, vol. 11800, pp. 83–100. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 7

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Bansal, S., Namjoshi, K.S., Sa’ar, Y.: Synthesis of asynchronous reactive programs

from temporal specifications. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018.
LNCS, vol. 10981, pp. 367–385. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96145-3 20

7. Bansal, S., Namjoshi, K.S., Sa’ar, Y.: Synthesis of coordination programs from
linear temporal specifications. In: Proceedings of POPL (2019)

8. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Interactive presentation: automatic hardware synthesis from specifications: a case
study. In: Proceedings of DATE (2007)

9. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

11. Chakraborty, S., Fried, D., Tabajara, L.M., Vardi, M.Y.: Functional synthesis via
input-output separation. In: Proceedings of FMCAD (2018)

12. Chatterjee, K.: Linear time algorithm for weak parity games (2008). CoRR
abs/0805.1391 http://arxiv.org/abs/0805.1391

13. Ciolek, D., Braberman, V., D’Ippolito, N., Piterman, N., Uchitel, S.: Interaction
models and automated control under partial observable environments. IEEE Trans.
Softw. Eng. 43(1), 19–33 (2016)

14. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of IJCAI (2013)

15. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of ICSE (1999)

16. Ehlers, R.: Generalized rabin(1) synthesis with applications to robust system syn-
thesis. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 101–115. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20398-5 9

17. Fried, D., Legay, A., Ouaknine, J., Vardi, M.Y.: Sequential relational decomposi-
tion. In: Proceedings of LICS (2018)

18. Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education India, Reading (1995)

19. Grabmayer, C., Endrullis, J., Hendriks, D., Klop, J.W., Moss, L.S.: Automatic
sequences and zip-specifications. In: Proceedings of LICS (2012)

20. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research (2002)

https://strix.model.in.tum.de/
http://www.syntcomp.org/syntcomp-2020-results/
http://www.syntcomp.org/syntcomp-2020-results/
http://arxiv.org/abs/2105.13837
http://arxiv.org/abs/2105.13837
https://doi.org/10.1007/978-3-030-30942-8_7
https://doi.org/10.1007/978-3-030-30942-8_7
https://doi.org/10.1007/978-3-319-96145-3_20
https://doi.org/10.1007/978-3-319-96145-3_20
http://arxiv.org/abs/0805.1391
https://doi.org/10.1007/978-3-642-20398-5_9
https://doi.org/10.1007/978-3-642-20398-5_9

892 G. Amram et al.

21. Hu, Q., D’Antoni, L.: Automatic program inversion using symbolic transducers.
In: SIGPLAN, pp. 376–389, June 2017

22. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Proceedings of SYNT (2016)

23. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: Proceedings
of (S&P 2019) (2019)

24. Könighofer, B., et al.: Shield synthesis. Formal Meth. Syst. Des. 51(2), 332–361
(2017)

25. Koruyeh, E.M., Khasawneh, K.N., Song, C., Abu-Ghazaleh, N.: Spectre returns!
speculation attacks using the return stack buffer. In: Proceedings of USENIX
(2018)

26. Lipp, M., et al.: Meltdown: Reading kernel memory from user space. In: Proceed-
ings of USENIX (2018)

27. Loding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS
2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44929-9 36

28. Maoz, S., Ringert, J.O.: Synthesizing a lego forklift controller in GR(1): a case
study. In: Proceedings of SYNT (2015)

29. Maoz, S., Ringert, J.O.: GR(1) synthesis for LTL specification patterns. In: Pro-
ceedings of ESEC/FSE (2016)

30. Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T.: Specification
patterns for robotic missions. IEEE Trans. Softw. Eng. 1 (2019)

31. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Proceedings of CAV (2018)

32. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

33. Ozay, N., Topcu, U., Murray, R.M.: Distributed power allocation for vehicle man-
agement systems. In: Proceedings of CDC-ECC (2011)

34. Pedrazzini, S.: The finite state automata’s design patterns. In: Champarnaud, J.-
M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 213–219. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48057-9 19

35. Piterman, N., Pnueli, A.: Faster solutions of rabin and streett games. In: Proceed-
ings of LICS (2006)

36. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS (1977)
37. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of

POPL (1989)
38. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.

In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

39. Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0 (2015). http://
vlsi.colorado.edu/∼fabio/CUDD/cudd.pdf

40. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to
safety LTL synthesis. In: HVC 2017. LNCS, vol. 10629, pp. 147–162. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70389-3 10

41. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:
Proceedings of IJCAI (2017)

https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-48057-9_19
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
https://doi.org/10.1007/978-3-319-70389-3_10

Adapting Behaviors via Reactive Synthesis 893

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Causality-Based Game Solving

Christel Baier1 , Norine Coenen2 , Bernd Finkbeiner2 , Florian Funke1 ,
Simon Jantsch1 , and Julian Siber2(B)

1 Technische Universität Dresden,
Dresden, Germany

{christel.baier,florian.funke,
simon.jantsch}@tu-dresden.de

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{norine.coenen,finkbeiner,julian.siber}@cispa.de

Abstract. We present a causality-based algorithm for solving two-
player reachability games represented by logical constraints. These games
are a useful formalism to model a wide array of problems arising, e.g.,
in program synthesis. Our technique for solving these games is based on
the notion of subgoals, which are slices of the game that the reachabil-
ity player necessarily needs to pass through in order to reach the goal.
We use Craig interpolation to identify these necessary sets of moves and
recursively slice the game along these subgoals. Our approach allows us
to infer winning strategies that are structured along the subgoals. If the
game is won by the reachability player, this is a strategy that progresses
through the subgoals towards the final goal; if the game is won by the
safety player, it is a permissive strategy that completely avoids a sin-
gle subgoal. We evaluate our prototype implementation on a range of
different games. On multiple benchmark families, our prototype scales
dramatically better than previously available tools.

1 Introduction

Two-player games are a fundamental model in logic and verification due to their
connection to a wide range of topics such as decision procedures, synthesis and
control [1,2,6,7,11,21]. Algorithmic techniques for finite-state two-player games
have been studied extensively for many acceptance conditions [20]. For infinite-
state games most problems are directly undecidable. However, infinite state
spaces occur naturally in domains like software synthesis [34] and cyber-physical
systems [23], and hence handling such games is of great interest. An elegant clas-
sification of infinite-state games that can be algorithmically handled, depending

This work was partially supported by DFG grant 389792660 as part of TRR 248
– CPEC, see https://perspicuous-computing.science, the Cluster of Excellence EXC
2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence Strategy), DFG-
projects BA-1679/11-1 and BA-1679/12-1, the Research Training Group QuantLA
(GRK 1763), and by the European Research Council (ERC) Grant OSARES (No.
683300).

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 894–917, 2021.
https://doi.org/10.1007/978-3-030-81685-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_42&domain=pdf
http://orcid.org/0000-0002-5321-9343
http://orcid.org/0000-0003-2066-1511
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0001-7301-1550
http://orcid.org/0000-0003-1692-2408
http://orcid.org/0000-0003-0842-0029
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-81685-8_42

Causality-Based Game Solving 895

on the acceptance condition of the game, was given in [14]. The authors assume a
symbolic encoding of the game in a very general form. More recently, incomplete
procedures for solving infinite-state two-player games specified using logical con-
straints were studied [4,18]. While [4] is based on automated theorem-proving
for Horn formulas and handles a wide class of acceptance conditions, the work
in [18] focusses on reachability games specified in the theory of linear arithmetic,
and uses sophisticated decision procedures for that theory.

In this paper, we present a novel technique for solving logically represented
reachability games based on the notion of subgoals. A necessary subgoal is a
transition predicate that is satisfied at least once on every play that reaches
the overall goal. It represents an intermediate target that the reachability player
must reach in order to win. Subgoals open up game solving to the study of cause-
effect relationships in the form of counterfactual reasoning [28]: If a cause (the
subgoal) had not occurred, then the effect (reaching the goal) would not have
happened. Thus for the safety player, a necessary subgoal provides a chance to
win the game based on local information: If they control all states satisfying
the pre-condition of the subgoal, then any strategy that in these states picks a
transition outside of the subgoal is winning. Finding such a necessary subgoal
may let us conclude that the safety player wins without ever having to unroll
the transition relation.

On the other hand, passing through a necessary subgoal is in general not
enough for the reachability player to win. We call a subgoal sufficient if indeed
the reachability player has a winning strategy from every state satisfying the
post-condition of the subgoal. Dual to the description in the preceding para-
graph, sufficient subgoals provide a chance for the reachability player to win
the global game as they must merely reach this intermediate target. The two
properties differ in one key aspect: While necessity of a subgoal only considers
the paths of the game arena, for sufficiency the game structure is crucial.

We show how Craig interpolants can be used to compute necessary subgoals,
making our methods applicable to games represented by any logic that supports
interpolation. In contrast, determining whether a subgoal is sufficient requires a
partial solution of the given game. This motivates the following recursive app-
roach. We slice the game along a necessary subgoal into two parts, the pre-game
and the post-game. In order to guarantee these games to be smaller, we solve
the post-game under the assumption that the considered subgoal was bridged for
the last time. We conclude that the safety player wins the overall game if they
can avoid all initial states of the post-game that are winning for the reachability
player. Otherwise, the pre-game is solved subject to the winning condition given
by the sufficient subgoal consisting of these states. This approach does not only
determine which player wins from each initial state, but also computes sym-
bolically represented winning strategies with a causal structure. Winning safety
player strategies induce necessary subgoals that the reachability player cannot
pass, which constitutes a cause for their loss. Winning reachability player strate-
gies represent a sequence of sufficient subgoals that will be passed, providing
an explanation for the win. All missing proofs for our theoretical results can be
found in the full version of this paper [3].

896 C. Baier et al.

The Python-based implementation CabPy of our approach was used to com-
pare its performance to SimSynth [18], which is, to the best of our knowledge,
the only other available tool for solving linear arithmetic reachability games.
Our experiments demonstrate that our algorithm is competitive in many case
studies. We can also confirm the expectation that our approach heavily benefits
from qualitatively expressive Craig interpolants. It is noteworthy that like Sim-
Synth our approach is fully automated and does not require any input in the
form of hints or templates. Our contributions are summarized as follows:

– We introduce the concept of necessary and sufficient subgoals and show how
Craig interpolation can be used to compute necessary subgoals (Sect. 4).

– We describe an algorithm for solving logically represented two-player reacha-
bility games using these concepts. We also discuss how to compute represen-
tations of winning strategies in our approach (Sect. 5).

– We evaluate our approach experimentally through our Python-based tool
CabPy, demonstrating a competitive performance compared to the previ-
ously available tool SimSynth on various case studies (Sect. 6).

Related Work. The problem of solving linear arithmetic games is addressed
in [18] using an approach that relies on a dedicated decision procedure for quan-
tified linear arithmetic formulas, together with a method to generalize safety
strategies from truncated versions of the game that end after a prescribed number
of rounds. Other approaches for solving infinite-state games include deductive
methods that compute the winning regions of both players using proof rules [4],
predicate abstraction where an abstract controlled predecessor operation is used
on the abstract game representation [38], and symbolic BDD-based exploration
of the state space [15]. Additional techniques are available for finite-state games,
e.g., generalizing winning runs into a winning strategy for one of the players [31].

Our notion of subgoal is related to the concept of landmarks as used in
planning [22]. Landmarks are milestones that must be true on every successful
plan, and they can be used to decompose a planning task into smaller sub-tasks.
Landmarks have also been used in a game setting to prevent the opponent from
reaching their goal using counter-planning [32]. Whenever a planning task is
unsolvable, one method to find out why is checking hierarchical abstractions for
solvability and finding the components causing the problem [36].

Causality-based approaches have also been used for model checking of multi-
threaded concurrent programs [24,25]. In our approach, we use Craig interpo-
lation to compute the subgoals. Interpolation has already been used in similar
contexts before, for example to extract winning strategies from game trees [16]
or to compute new predicates to refine the game abstractions [10]. In [18], inter-
polation is used to synthesize concrete winning strategies from so called winning
strategy skeletons, which describe a set of strategies of which at least one is
winning.

Causality-Based Game Solving 897

2 Motivating Example

Consider the scenario that an expensive painting is displayed in a large exhibition
room of a museum. It is secured with an alarm system that is controlled via a
control panel on the opposite side of the room. A security guard is sleeping at
the control panel and occasionally wakes up to check whether the alarm is still
armed. To steal the painting, a thief first needs to disable the alarm and then
reach the painting before the alarm has been reactivated. We model this scenario
as a two-player game between a safety player (the guard) and a reachability
player (the thief) in the theory of linear arithmetic. The moves of both players,
their initial positions, and the goal condition are described by the formulas:

Init ≡ ¬r ∧ x = 0 ∧ y = 0 ∧ p = 0 ∧ a = 1 ∧ t = 0,

Guard ≡ ¬r ∧ r′ ∧ x′ = x ∧ y′ = y ∧ p′ = p

∧ ((t′ = t − 1 ∧ a′ = a) ∨ (t ≤ 0 ∧ t′ = 2)), (sleep or wake up)
Thief ≡ r ∧ ¬r′ ∧ t′ = t

∧ x + 1 ≥ x′ ≥ x − 1 ∧ y + 1 ≥ y′ ≥ y − 1 (move)
∧ (x′ �= 0 ∨ y′ �= 10 =⇒ a′ = a) (alarm off)
∧ (x′ �= 10 ∨ y′ �= 5 ∨ a = 1 =⇒ p′ = p), (steal)

Goal ≡ ¬r ∧ p = 1.

The thief’s position in the room is modeled by two coordinates x, y ∈ R with
initial value (0, 0), and with every transition the thief can move some bounded
distance. Note that we use primed variables to represent the value of variables
after taking a transition. The control panel is located at (0, 10) and the painting
at (10, 5). The status of the alarm and the painting are described by two boolean
variables a, p ∈ {0, 1}. The guard wakes up every two time units, modeled by
the variable t ∈ R. The variables x, y are bounded to the interval [0, 10] and t to
[0, 2]. The boolean variable r encodes who makes the next move. In the presented
configuration, the thief needs more time to move from the control panel to the
painting than the guard will sleep. It follows that there is a winning strategy for
the guard, namely, to always reactivate the alarm upon waking up.

Although it is intuitively fairly easy to come up with this strategy for the
guard, it is surprisingly hard for game solving tools to find it. The main obstacle
is the infinite state space of this game. Our approach for solving games repre-
sented in this logical way imitates causal reasoning : Humans observe that in
order for the thief to steal the painting (i.e., the effect p = 1), a transition must
have been taken whose source state does not satisfy the pre-condition of (steal)
while the target state does. Part of this cause is the condition a = 0, i.e., the
alarm is off. Recursively, in order for the effect a = 0 to happen, a transition
setting a from 1 to 0 must have occurred, and so on.

Our approach captures these cause-effect relationships through the notion of
necessary subgoals, which are essential milestones that the reachability player has
to transition through in order to achieve their goal. The first necessary subgoal
corresponding to the intuitive description above is

898 C. Baier et al.

C1 = (Guard ∨ Thief) ∧ p �= 1 ∧ p′ = 1.

In this case, it easy to see that C1 is also a sufficient subgoal, meaning that all
successor states of C1 are winning for the thief. Therefore, it is enough to solve
the game with the modified objective to reach those predecessor states of C1

from which the thief can enforce C1 being the next move (even if it is not their
turn). Doing so recursively produces the necessary subgoal

C2 = (Guard ∨ Thief) ∧ a �= 0 ∧ a′ = 0,

meaning that some transition must have caused the effect that the alarm is
disabled. However, C2 is not sufficient which can be seen by recursively solving
the game spanning from successor states of C2 to C1. This computation has an
important caveat: After passing through C2, it may happen that a is reset to
1 at a later point (in this particular case, this constitutes precisely the winning
strategy of the safety player), which means that there is no canonical way to
slice the game along this subgoal into smaller parts. Hence the recursive call
solves the game from C2 to C1 subject to the bold assumption that any move
from a = 0 to a′ = 1 is winning for the guard. This generally underapproximates
the winning states of the thief. Remarkably, we show that this approximation is
enough to build winning strategies for both players from their respective winning
regions. In this case, it allows us to infer that moving through C2 is always a
losing move for the thief. However, at the same time, any play reaching Goal
has to move through C2. It follows that the thief loses the global game.

We evaluated our method on several configurations of this game, which we
call Mona Lisa. The results in Sect. 6 support our conjecture that the room size
has little influence on the time our technique needs to solve the game.

3 Preliminaries

We consider two-player reachability games defined by formulas in a given logic
L. We let L(V) be the L-formulas over a finite set of variables V, also called state
predicates in the following. We call V ′ = {v ′ | v ∈ V} the set of primed variables,
which are used to represent the value of variables after taking a transition.
Transitions are expressed by formulas in the set L(V ∪ V ′), called transition
predicates. For some formula ϕ ∈ L(V), we denote the substitution of all variables
by their primed variant by ϕ[V/V ′]. Similarly, we define ϕ[V ′/V].

For our algorithm we will require the satisfiability problem of L-formulas to
be decidable and Craig interpolants [13] to exist for any two mutually unsat-
isfiable formulas. Formally, we assume there is a function Sat : L(V) → B

that checks the satisfiability of some formula ϕ ∈ L(V) and an unsatisfiability
check Unsat : L(V) → B. For interpolation, we assume that there is a function
Interpolate : L(V) × L(V) → L(V) computing a Craig interpolant for mutually
unsatisfiable formulas: If ϕ,ψ ∈ L(V) are such that Unsat(ϕ ∧ ψ) holds, then
ψ =⇒ Interpolate(ϕ,ψ) is valid, Interpolate(ϕ,ψ) ∧ ϕ is unsatisfiable, and
Interpolate(ϕ,ψ) only contains variables shared by ϕ and ψ.

Causality-Based Game Solving 899

These functions are provided by many modern Satisfiability Modulo Theories
(SMT) solvers, in particular for the theories of linear integer arithmetic and linear
real arithmetic, which we will use for all our examples. Note that interpolation is
usually only supported for the quantifier-free fragments of these logics, while our
algorithm will introduce existential quantifiers. Therefore, we resort to quantifier
elimination wherever necessary, for which there are known procedures for both
linear integer arithmetic and linear real arithmetic formulas [29,33].

In order to distinguish the two players, we will assume that a Boolean vari-
able called r ∈ V exists, which holds exactly in the states controlled by the
reachability player. For all other variables v ∈ V, we let D(v) be the domain
of v, and we define D =

⋃{D(v) | v ∈ V}. In the remainder of the paper, we
consider the variables V and their domains to be fixed.

Definition 1 (Reachability Game). A reachability game is defined by a tuple
G = 〈Init ,Safe,Reach,Goal〉, where Init ∈ L(V) is the initial condition, Safe ∈
L(V ∪ V ′) defines the transitions of player SAFE, Reach ∈ L(V ∪ V ′) defines the
transitions of player REACH and Goal ∈ L(V) is the goal condition.

We require the formulas (Safe =⇒ ¬r) and (Reach =⇒ r) to be valid.

A state s of G is a valuation of the variables V, i.e., a function s : V → D
that satisfies s(v) ∈ D(v) for all v ∈ V. We denote the set of states by S, and we
let SSAFE be the states s such that s(r) = false, and SREACH be the states s such
that s(r) = true. The variable r determines whether REACH or SAFE makes the
move out of the current state, and in particular Safe ∧ Reach is unsatisfiable.

Given a state predicate ϕ ∈ L(V), we denote by ϕ(s) the closed formula we
get by replacing each occurrence of variable v ∈ V in ϕ by s(v). Similarly, given
a transition predicate τ ∈ L(V ∪V ′) and states s, s′, we let τ(s, s′) be the formula
we obtain by replacing all occurrences of v ∈ V in τ by s(v), and all occurrences
of v′ ∈ V ′ in τ by s′(v). For replacing only v ∈ V by s(v), we define τ(s) ∈ L(V ′).
A trap state of G is a state s such that (Safe ∨Reach)(s) ∈ L(V ′) is unsatisfiable
(i.e., s has no outgoing transitions).

A play of G starting in state s0 is a finite or infinite sequence of states
ρ = s0s1s2 . . . ∈ S+ ∪ Sω such that for all i < len(ρ) either Safe(si, si+1) or
Reach(si, si+1) is valid, and if ρ is a finite play, then slen(ρ) is required to be
a trap state. Here, len(s0 . . . sn) = n for finite plays, and len(ρ) = ∞ if ρ is
an infinite play. The set of plays of some game G = 〈Init ,Safe,Reach,Goal〉
is defined as Plays(G) = {ρ = s0s1s2 . . . | ρ is a play in G s.t. Init(s0) holds}.
REACH wins some play ρ = s0s1 . . . if the play reaches a goal state, i.e., if there
exists some integer 0 ≤ k ≤ len(ρ) such that Goal(sk) is valid. Otherwise, SAFE
wins play ρ. A reachability strategy σR is a function σR : S∗SREACH → S such that
if σR(ωs) = s′ and s is not a trap state, then Reach(s, s′) is valid. We say that
a play ρ = s0s1s2 . . . is consistent with σR if for all i such that si(r) = true
we have si+1 = σR(s0 . . . si). A reachability strategy σR is winning from some
state s if REACH wins every play consistent with σR starting in s. We define
safety strategies σS for SAFE analogously. We say that a player wins in or from
a state s if they have a winning strategy from s. Lastly, REACH wins the game G
if they win from some initial state. Otherwise, SAFE wins.

900 C. Baier et al.

We often project a transition predicate T onto the source or target states of
transitions satisfying T , which is taken care of by the formulas Pre(T) = ∃V ′.T
and Post(T) = ∃V. T . The notation ∃V (resp. ∃V ′) represents the existential
quantification over all variables in the corresponding set. Given ϕ ∈ L(V), we
call the set of transitions in G that move from states not satisfying ϕ, to states
satisfying ϕ, the instantiation of ϕ, formally:

Instantiate(ϕ,G) = (Safe ∨ Reach) ∧ ¬ϕ ∧ ϕ′.

4 Subgoals

We formally define the notion of subgoals. Let G = 〈Init ,Safe,Reach,Goal〉 be a
fixed reachability game throughout this section, where we assume that Init∧Goal
is unsatisfiable. Whenever this assumption is not satisfied in our algorithm, we
will instead consider the game G′ = 〈Init ∧¬Goal ,Safe,Reach,Goal〉 which does
satisfy it. As states in Init ∧Goal are immediately winning for REACH, this is not
a real restriction.

Definition 2 (Enforceable transitions). The set of enforceable transitions
relative to a transition predicate T ∈ L(V ∪ V ′) is defined by the formula

Enf(T ,G) = (Safe ∨ Reach) ∧ T ∧ ¬∃V ′.
(
Safe ∧ ¬T

)
.

The enforceable transitions operator serves a purpose similar to the controlled
predecessors operator commonly known in the literature, which is often used in a
backwards fixed point computation, called attractor construction [37]. For both
operations, the idea is to determine controllability by REACH. The main difference
is that we do not consider the whole transition relation, but only a predetermined
set of transitions and check from which predecessor states the post-condition of
the set can be enforced by REACH. These include all transitions in T controlled
by REACH and additionally transitions in T controlled by SAFE such that all other
transitions in the origin state of the transition also satisfy T . The similarity with
the controlled predecessor is exemplified by the following lemma:

Lemma 3. Let T be a transition predicate, and suppose that all states satisfying
Post(T)[V ′/V] are winning for REACH in G. Then all states in Pre(Enf(T,G)) are
winning for REACH in G.

Proof. Clearly, all states in Pre(Enf(T,G)) that are under the control of REACH
are winning for REACH, as in any such state they have a transition satisfying T
(observe that Enf(T,G) =⇒ T is valid), which leads to a winning state by
assumption.

So let s be a state satisfying Pre(Enf(T,G)) that is under the control of SAFE.
As Pre(Enf(T,G))(s) is valid, s has a transition that satisfies T (in particular,
s is not a trap state). Furthermore, we know that there is no s′ ∈ S such that
Safe(s, s′)∧¬T (s, s′) holds, and hence there is no transition satisfying ¬T from
s. Since Post(T)[V ′/V] is winning for REACH, it follows that from s player SAFE
cannot avoid playing into a winning state of REACH. ��

Causality-Based Game Solving 901

We now turn to a formal definition of necessary subgoals, which intuitively
are sets of transitions that appear on every play that is winning for REACH.

Definition 4 (Necessary subgoal). A necessary subgoal C ∈ L(V∪V ′) for G
is a transition predicate such that for every play ρ = s0s1 . . . of G and n ∈ N

such that Goal(sn) is valid, there exists some k < n such that C(sk, sk+1) is
valid.

Necessary subgoals provide a means by which winning safety player strategies
can be identified, as formalized in the following lemma.

Lemma 5. A safety strategy σS is winning in G if and only if there exists a
necessary subgoal C for G such that for all plays ρ = s0s1 . . . of G consistent
with σS there is no n ∈ N such that C(sn, sn+1) holds.

Proof. “ =⇒ ”. The transition predicate Goal [V/V ′] (i.e., transitions with end-
points satisfying Goal) is clearly a necessary subgoal. If σS is winning for SAFE,
then no play consistent with σS contains a transition in this necessary subgoal.
“⇐=”. Let C be a necessary subgoal such that no play consistent with σS con-
tains a transition of C. Then by Definition 4 no play consistent with σS contains
a state satisfying Goal . Hence σS is a winning strategy for SAFE. ��

Of course, the question remains how to compute non-trivial subgoals. Indeed,
using Goal as outlined in the proof above provides no further benefit over a
simple backwards exploration (see Remark 15 in the following section).

Ideally, a subgoal should represent an interesting key decision to focus the
strategy search. As we show next, Craig interpolation allows to extract partial
causes for the mutual unsatisfiability of Init and Goal and can in this way provide
necessary subgoals. Recall that a Craig interpolant ϕ between Init and Goal is
a state predicate that is implied by Goal , and unsatisfiable in conjunction with
Init . In this sense, ϕ describes an observable effect that must occur if REACH
wins, and the concrete transition that instantiates the interpolant causes this
effect.

Proposition 6. Let ϕ be a Craig interpolant for Init and Goal. Then the tran-
sition predicate Instantiate(ϕ,G) is a necessary subgoal.

Proof. As ϕ is an interpolant, it holds that Goal =⇒ ϕ is valid and Init ∧ ϕ
is unsatisfiable. Consider any play ρ = s0s1 . . . of G such that Goal(sn) is
valid for some n ∈ N. It follows that ¬ϕ(s0) and ϕ(sn) are both valid.
Consequently, there is some 0 ≤ i < n such that ¬ϕ(si) and ϕ(si+1) are
both valid. As all pairs (sk, sk+1) satisfy either Safe or Reach, it follows that(
Instantiate(ϕ,G)

)
(si, si+1) is valid. Hence, Instantiate(ϕ,G) is a necessary sub-

goal. ��
While avoiding a necessary subgoal is a winning strategy for SAFE, reaching a

necessary subgoal is in general not sufficient to guarantee a win for REACH. This
is because there might be some transitions in the necessary subgoal that produce

902 C. Baier et al.

the desired effect described by the Craig interpolant, but that trap REACH in a
region of the state space where they cannot enforce some other necessary effect
to reach goal. For the purpose of describing a set of transitions that is guaranteed
to be winning for the reachability player, we introduce sufficient subgoals.

Definition 7 (Sufficient subgoal). A transition predicate F ∈ L(V ∪
V ′) is called a sufficient subgoal if REACH wins from every state satisfying
Post(F)[V ′/V].

Example 8. Consider the Mona Lisa game G described in Sect. 2.

C1 = (Guard ∨ Thief) ∧ p �= 1 ∧ p′ = 1

qualifies as sufficient subgoal, because REACH wins from every successor state as
all those states satisfy Goal . Also, every play reaching Goal eventually passes
C1, and hence C1 is also necessary. On the other hand,

C2 = (Guard ∨ Thief) ∧ a �= 0 ∧ a′ = 0

is only a necessary subgoal in G, because SAFE wins from some (in fact all) states
satisfying Post(C2).

If the set of transitions in the necessary subgoal C that lead to winning states
of REACH is definable in L then we call the transition predicate F that defines it
the largest sufficient subgoal included in C. It is characterized by the properties
(1) F =⇒ C is valid, and (2) if F ′ is such that F =⇒ F ′ is valid, then either
F ≡ F ′, or F ′ is not a sufficient subgoal. Since C is a necessary subgoal and
F is maximal with the properties above, REACH needs to see a transition in F
eventually in order to win. This balance of necessity and sufficiency allows us to
partition the game along F into a game that happens after the subgoal and one
that happens before.

Proposition 9. Let C be a necessary subgoal, and F be the largest sufficient
subgoal included in C. Then REACH wins from an initial state s in G if and only
if REACH wins from s in the pre-game

Gpre = 〈Init ,Safe ∧ ¬F,Reach ∧ ¬F,Pre(Enf(F,G))〉.

Proof. “ =⇒ ”. Suppose that REACH wins in G from s using strategy σR. Assume
for a contradiction that SAFE wins in Gpre from s using strategy σS . Consider
strategy σ′

S such that σ′
S (ωs′) = σS (ωs′) if (Safe ∧ ¬F)(s′) is satisfiable, and

else σ′
S (ωs′) = σ′′

S (ωs′), where σ′′
S is an arbitrary safety player strategy in G. Let

ρ = s0s1 . . . be the (unique) play of G consistent with both σR and σ′
S , where

s0 = s. Since σR is winning in G and C is a necessary subgoal in G, there must
exist some m ∈ N such that C(sm, sm+1) is valid. Let m be the smallest such
index. Since F =⇒ C, we know for all 0 ≤ k < m that ¬F (sk, sk+1) holds.
Hence, there is the play ρ′ = s0s1 . . . sm . . . in Gpre consistent with σS . The state
sm+1 is winning for REACH in G, as it is reached on a play consistent with the

Causality-Based Game Solving 903

winning strategy σR. Hence, we know that F (sm, sm+1) holds, because F is the
largest sufficient subgoal included in C. If (Reach ∧F)(sm, sm+1) held, we would
have that Pre(Enf(F,G)(sm) holds: a contradiction with ρ′ being consistent with
σS , which we assumed to be winning in Gpre. It follows that (Safe∧F)(sm, sm+1)
holds. We can conclude that (Safe ∧ ¬F)(sm) is unsatisfiable (i.e., sm is a trap
state in Gpre), because in all other cases SAFE plays according to σS , which cannot
choose a transition satisfying F . However, this implies that Pre(Enf(F,G)(sm)
holds, again a contradiction with ρ′ being consistent with winning strategy σS .
“⇐=”. If REACH wins in Gpre they have a strategy σR such that every play
consistent with σR reaches the set Pre(Enf(F,G)). As F is a sufficient subgoal,
the states Post(F) are winning for REACH by definition. It follows by Lemma 3
that all states satisfying Pre(Enf(F,G)) are winning in G. Combining σR with a
strategy that wins in all these states yields a winning strategy for REACH in G. ��

5 Causality-Based Game Solving

Lemma 9 in the preceding section foreshadows how subgoals can be employed
in building a recursive approach for the solution of reachability games. Before
turning to our actual algorithm, we describe a way to symbolically represent
nondeterministic memoryless strategies. As discussed in [18], there is no ideal
strategy description language for the class of games we consider. Our approach
allows us to describe sets of concrete strategies as defined in Sect. 3 with linear
arithmetic formulas. This framework will prove convenient for strategy synthesis,
i.e., the computation of winning strategies instead of simply determining the
winner of the game.

5.1 Symbolically Represented Strategies

We will represent strategies for both players using transition predicates S ∈
L(V ∪ V ′), henceforth called symbolic strategies, where we only require that
(S =⇒ (Safe ∨ Reach)) is valid. A sequence s0 . . . sn ∈ S+ is called a play
prefix if it is a prefix of some play in G, (¬Goal)(sj) holds for all 0 ≤ j ≤ n,
and sn is not a trap state. We say that a play prefix ρ = s0 . . . sn conforms to a
symbolic reachability strategy S if for all j < n we have that S(sj , sj+1) holds
whenever sj ∈ SREACH (and analogously for safety strategies). A play conforms
to S if all its play prefixes conform to S. We say that S is winning for REACH in s
if all plays from s that conform to S are winning for REACH and all play prefixes
s0 . . . sn ∈ S∗SREACH from s that conform to S are such that (S ∧ Reach)(sn)
is satisfiable (and analogously for SAFE). The second condition ensures that the
player cannot be forced to play a transition outside of S by their opponent while
the play has not reached a trap state or Goal , and in particular guarantees the
existence of a concrete strategy (as defined in Sect. 3) conforming to S.

Lemma 10. If REACH (SAFE) has a winning symbolic strategy in s, then REACH
(SAFE) has a concrete winning strategy in s.

904 C. Baier et al.

Proof. Let S by a symbolic winning strategy for REACH. Let σR be any reach-
ability strategy such that for all play prefixes ωs ∈ S∗SREACH that conform to
S the formula S(s, σR(ωs)) is valid. Such a function is guaranteed to exist, as
(S∧Reach)(s) is satisfiable for all such play prefixes by definition. Furthermore,
σR is winning as all play prefixes of plays consistent with σR conform to S, and
hence all these plays are winning by assumption. The proof for SAFE is analogous.

��
This representation allows us to specify nondeterministic strategies, but clas-

sical memoryless strategies on finite arenas (specified as a function σ : SREACH → S
or SSAFE → S) can also be represented in this form using a disjunction over for-
mulas

∧
v∈V(v = s(v) ∧ v′ = σ(s)(v)) for varying s ∈ S.

The following lemma shows that a necessary subgoal directly yields a sym-
bolic strategy for SAFE if the subgoal is, in a certain sense, locally avoidable by
SAFE. It will be our main tool for synthesizing safety player strategies.

Lemma 11. Let C be a necessary subgoal for G and suppose that
Unsat(Enf(C,G)) holds. Then, Safe ∧ ¬C is a winning symbolic strategy for
SAFE in G.

5.2 A Recursive Algorithm

We now describe our algorithm which utilizes necessary subgoals to decompose
and solve two-player reachability games (Algorithm 1). It is incomplete in the
sense that it does not return on every input (Sect. 5.3 discusses special cases
with guaranteed termination). If the algorithm returns on input G, it returns
a triple (R,SREACH,SSAFE), where (1) R is a state predicate characterizing the
initial states that are winning for REACH in G, (2) SREACH is a symbolic strategy
for REACH that wins in all initial states satisfying R, and (3) SSAFE is a symbolic
strategy for SAFE that wins in all initial states satisfying Init ∧¬R. The returned
safety strategy SSAFE is such that ¬SSAFE is a necessary subgoal that SAFE can
avoid locally in the game G restricted to intial states Init ∧¬R (see Lemma 11).

Algorithm 1 works as follows. States satisfying Init and Goal are immediately
winning for REACH and thus always part of the returned formula R. Following
the discussion at the beginning of Sect. 4, further analysis considers the game
starting in the remaining initial states I = Init ∧ ¬Goal . If there is no such
state, we may return that all initial states are winning (line 5). Here, REACH
wins from R without playing any move, and hence SREACH = false is a valid
winning symbolic strategy (winning symbolic strategies are only required to
provide moves in prefixes that have not seen Goal so far). We may choose SSAFE

arbitrarily as there is no initial state winning for SAFE.
If the algorithm does not return in line 5, a necessary subgoal C between I and

Goal is computed by instantiating a Craig interpolant ϕ for the two predicates
(lines 6 and 7, see also Proposition 6). We break up the remaining description of
the algorithm into three parts, which correspond to the main cases that occur
when splitting the game along the subgoal C.

Causality-Based Game Solving 905

Algorithm 1: Reach(G)
In : reachability game G = 〈Init ,Safe,Reach,Goal〉
Out: triple (R, SREACH, SSAFE) s.t.

– R ∈ L(V) represents the set of initial states winning for REACH;
– SREACH is a winning symbolic reachability strategy for states in R;
– SSAFE is a winning symbolic safety strategy for states in Init ∧ ¬R.

1 begin
2 R ← Init ∧ Goal
3 I ← Init ∧ ¬Goal
4 if Unsat(I) then
5 return R, false, false

6 ϕ ← Interpolate(I ,Goal)
7 C ← Instantiate(ϕ, G)
8 if Unsat(Enf(C , G)) then
9 return R, false,Safe ∧ ¬C

10 Gpost ← 〈Post(C)[V ′/V],Safe ∧ ϕ,Reach ∧ ϕ,Goal〉
11 Rpost, S

post
REACH, S

post
SAFE ← Reach

(Gpost

)

12 F ← C ∧ Rpost[V/V ′]
13 if Unsat(Enf(F , G)) then

14 return R, false,Safe ∧ ¬F ∧ (ϕ =⇒ Spost
SAFE)

15 if Sat((Reach ∨ Safe) ∧ ϕ ∧ ¬ϕ′ ∧ ¬Goal) then
16 F ← F ∨ Goal [V/V ′]
17 ϕ ← false

18 Gpre ← 〈I,Safe ∧ ¬F ,Reach ∧ ¬F , Pre(Enf(F , G))〉
19 Rpre, S

pre
REACH, S

pre
SAFE ← Reach

(Gpre

)

20 return R ∨ Rpre,

21 combine(Spre
REACH, F, Spost

REACH),

22 (¬ϕ =⇒ Spre
SAFE) ∧ (ϕ =⇒ Spost

SAFE)

Case 1: SAFE can avoid the subgoal C. If the necessary subgoal C qualifies
for Lemma 11, we can immediately conclude that SAFE is winning for all states
statisfying I (lines 8 and 9). An instance of this case occurs if the interpolant
describes a bottleneck in the game which is fully controlled by SAFE. The winning
symbolic reachability strategy is Safe ∧ ¬C in this case (line 9), and we will
assume that safety strategies returned by recursive calls of the algorithm are
essentially negations of necessary subgoals that can be avoided by SAFE.

If Lemma 11 is not applicable, we next find those transitions in C that move
into a winning state for the safety player. This is achieved by analyzing the
post-game (line 10):

906 C. Baier et al.

Gpost = 〈Post(C)[V ′/V],Safe ∧ ϕ,Reach ∧ ϕ,Goal〉.

Its initial states are exactly the states one sees after bridging the subgoal C. In
order to make sure that Gpost is, in some sense, easier to solve than G, we restrict
both Safe and Reach to ϕ, which is the interpolant used to compute the subgoal
C. This has the effect of removing all transitions in states not satisfying ϕ,
making them trap states. For the safety player this makes Gpost easier to win
than G as all plays ending in such a trap state without seeing Goal before are
winning for SAFE in Gpost. Hence we formally have:

Lemma 12. If S is a winning symbolic reachability strategy from s in Gpost,
then S is also winning from s in G.

Due to the restriction to ϕ, intuitively REACH wins from a state s in Gpost if
they can win from s in G while staying inside the interpolant ϕ. In other words,
REACH must guarantee that the necessary subgoal C is not visited again in the
play. Still, the set Rpost, as returned in line 11 by the recursive call to Algorithm 1
on Gpost, is a sufficient subgoal in G, by the above lemma. Furthermore, if SAFE
can avoid all states satisfying Rpost (see line 13), then this also implies a winning
strategy from all initial states in I. The reason is that REACH can only win by
eventually visiting a state from which they can win without leaving ϕ again, as
(Goal =⇒ ϕ) is valid. This is not possible if SAFE can avoid all states in Rpost.

In this case we construct SSAFE as follows. We assume that ¬Spost
SAFE is a nec-

essary subgoal that can be locally avoided in Gpost from all states satisfying
Post(C)[V ′/V] ∧ ¬Rpost, and furthermore, we know that F := C ∧ Rpost[V/V ′]
can be locally avoided in G (line 13). Intuitively, playing according to Spost

SAFE in
Gpost yields a strategy for SAFE which avoids Goal and may move back into a
state satisfying ¬ϕ, which forces REACH to bridge the subgoal C again in order
to win. It follows that F ∨ (ϕ ∧ ¬Spost

SAFE) is a necessary subgoal from I that
can be locally avoided by SAFE in G, and the corresponding symbolic strategy
is Safe ∧ ¬F ∧ (ϕ =⇒ Spost

SAFE) (we additionally intersect the negated neces-
sary subgoal with Safe to ensure that the symbolic strategy only includes legal
transitions).

So far, the subgoal was such that SAFE could avoid it entirely, or at least
avoid all states from which REACH would win when forced to remain inside the
post-game. If this is not the case, then we also need to consider the pre-game
(line 18):

Gpre = 〈I,Safe ∧ ¬F ,Reach ∧ ¬F ,Pre(Enf(F ,G))〉.
which intuitively describes the game before bridging the interpolant C for the
last time. The exact definition of F will depend on whether C perfectly partitions
the game or not. In both cases F will be the largest sufficient subgoal contained
in a necessary subgoal, which lets us apply Proposition 9 to conclude that the
initial winning regions of G and Gpre coincide.

Case 2: The Subgoal Perfectly Partitions G. We say that ϕ perfectly parti-
tions G if (Reach∨Safe)∧ϕ∧¬ϕ′∧¬Goal is unsatisfiable (cf. line 15). Intuitively,

Causality-Based Game Solving 907

this means that there is no transition that “undoes” the effect of the subgoal C. If
this holds, then the restriction of Gpost to states satisfying ϕ is de facto no longer
a restriction, as no play can reach such a state anyway after passing through the
subgoal. This intuition is formalized by the following lemma.

Lemma 13. Assume that ϕ perfectly partitions G, and let s be a state satisfying
Post(C)[V ′/V]. Then REACH wins from s in Gpost if and only if REACH wins from
s in G.

It follows that F = C ∧ Rpost[V/V ′] is the largest sufficient subgoal included
in C. By Proposition 9, the same initial states are winning for REACH in Gpre

and in G. In this case, we construct the desired safety strategy (line 22) as

SSAFE = (¬ϕ =⇒ Spre
SAFE) ∧ (ϕ =⇒ Spost

SAFE),

where ¬S
pre/post
SAFE are assumed to be necessary subgoals avoidable by SAFE in the

corresponding subgames. Intuitively, the combined strategy consists of following
Spre

SAFE as long as one remains in the pre-game, which, by induction hypothesis,
allows SAFE to avoid all transitions from F if starting in Rpre. If the play crosses
C ∧ ¬F , the strategy is to play according to the winning strategy of the post-
game.

A symbolic strategy for REACH can be given by combining pre- and post-
strategies as follows (line 21):

combine(Spre
REACH, F,Spost

REACH) := (Pre(Spost
REACH) =⇒ Spost

REACH)

∧ ((¬Pre(Spost
REACH) ∧ Pre(F)) =⇒ F)

∧ ((¬Pre(Spost
REACH) ∧ ¬Pre(F)) =⇒ Spre

REACH)

∧ (Pre(Spost
REACH) ∨ Pre(F) ∨ Pre(Spre

REACH)).

This represents a nested conditional strategy that prefers the strategies of the
subgames in the priority order Spost

REACH, F , and finally Spre
REACH. The reason for this

order is that the winning condition in the post-game coincides with the global
winning objective (to reach Goal), while in the pre-game REACH tries to reach a
winning state in the post-game. The set F is exactly the bridge between these
two. The last condition makes sure that the strategy only includes transitions of
states in which it is winning.

Case 3: The subgoal does not perfectly partition G. If Sat((Reach ∨
Safe) ∧ ϕ ∧ ¬ϕ′ ∧ ¬Goal) is true in line 15, we can no longer assume that F is
the largest sufficient subgoal in C. The reason is that SAFE may win in Gpost by
moving out of the subgame, but if this move leads to a winning state for REACH in
G, then such a strategy is winning in Gpost, but not in G. So we can only assume
that F is sufficient (this follows by Lemma 12). In order to apply Proposition
9 we extend F by all transitions that move directly into Goal (line 16). This
immediately yields a necessary and sufficient subgoal, and so again Proposition
9 applies to Gpre (line 18). We could have also added Goal -states to F in Case

908 C. Baier et al.

2, but we have observed that not doing so improves the performance of our
procedure considerably.

The reachability strategy is composed of Spre
REACH, F , and Spost

REACH exactly as in
Case 2 (line 21). As all transitions in F are losing for SAFE, and these are the only
ones that are removed in Gpre, essentially SAFE can play using the same strategies
in G and Gpre. We implement this by setting ϕ to false (line 17), in which case
SSAFE (line 22) equals (true =⇒ Spre

SAFE) ∧ (false =⇒ Spost
SAFE) ≡ Spre

SAFE.
Finally, we formally state the partial correctness of the algorithm, using the

ideas from above.

Theorem 14 (Partial correctness). If Reach(G) returns (R,SREACH,SSAFE),
then

– R characterizes the set of initial states that are winning for REACH in G,
– SREACH is a winning symbolic reachability strategy from R,
– SSAFE is a winning symbolic safety strategy from Init ∧ ¬R.

Remark 15 (Simulating the attractor). Note that Craig interpolants are
by no means unique. If we choose the interpolation function so that
Interpolate(I,Goal) always returns Goal (this is a valid interpolant), Algo-
rithm 1 essentially simulates the attractor. In this case the subgoal C (line 7)
contains exactly the transitions that move directly into Goal . All states in
Post(C)[V ′/V] are then winning for REACH and hence Rpost would be equiva-
lent to Post(C)[V ′/V], which implies that C ≡ F holds in this case. The new
goal states in Gpre are set to Pre(Enf(F,G)), which are exactly the states in
Pre(C) that either are controlled by REACH, or such that all their transitions are
included in F . Hence the set Pre(Enf(F,G)) is exactly the classical controlled
predecessor.

One effect of slicing the game along general subgoals is that the initial pred-
icate of the post-game (which describes all states satisfying the post-condition
of the subgoal) may be satisfied by many states that do not necessarily need
to be considered in order to decide who wins from the initial states of G (for
example, because they are not reachable from any initial state, or cannot reach
Goal). This can be a drawback if the (superfluous) size of the subgames makes
them hard to solve. Notably, this is in general less of an issue for approaches
based on unrolling of the transition relation: The method of solving increasingly
large step-bounded games [18] will only consider states that are reachable from
Init , while backwards fixpoint computations will not explore states that do not
reach Goal . A way of coping with this is to provide additional information on the
domains of variables, whenever this is available (we discuss the effect of bounding
variable domains in Sect. 6). Indeed, in the case where all variable domains are
finite, Algorithm 1 is guaranteed to terminate, as shown in the next subsection.

5.3 Special Cases with Guaranteed Termination

Deciding the winner in the types of games we consider is generally undecid-
able (see [18] for the case that L is linear real arithmetic). Since Algorithm 1

Causality-Based Game Solving 909

returns a correct result whenever it terminates, this implies that it cannot always
terminate. In this section, we give two important cases in which we can prove
termination.

Theorem 16. If the domains of all variables in G are finite, then Reach(G)
terminates.

Remark 17 (Time complexity). The termination argument in the proof yields
a single-exponential upper bound on the runtime of the algorithm, where the
input size is measured in the number of concrete transitions of the game. This
is because in both recursive calls the subgames may be “almost” as large as the
input – they are only guaranteed to have at least one concrete transition less.

We now show that, under certain assumptions, our algorithm also terminates
for games that have a finite bisimulation quotient. To this end, we first clarify
what bisimilarity means in our setting. A relation R ⊆ S × S over the states of
G is called a bisimulation on G, if

– for all (s1, s2) ∈ R the formulas Goal(s1) ⇐⇒ Goal(s2), Init(s1) ⇐⇒
Init(s2) and r(s1) ⇐⇒ r(s2) are valid (recall that r holds exactly in states
controlled by REACH).

– for all (s1, s2) ∈ R and s′
1 ∈ S such that (Safe ∨ Reach)(s1, s

′
1) holds, there

exists s′
2 ∈ S such that (Safe ∨ Reach)(s2, s

′
2) holds, and (s′

1, s
′
2) ∈ R.

– for all (s1, s2) ∈ R and s′
2 ∈ S such that (Safe ∨ Reach)(s2, s

′
2) holds, there

exists s′
1 ∈ S such that (Safe ∨ Reach)(s1, s

′
1) holds, and (s′

1, s
′
2) ∈ R.

We say that s1 and s2 are bisimilar (denoted by s1 ∼ s2) if there exists a bisim-
ulation R such that (s1, s2) ∈ R. Bisimilarity is an equivalence relation, and
it is the coarsest bisimulation on G. The equivalence classes are called bisim-
ulation classes. As the winning region of any player can be expressed in the
μ-calculus [39] and the μ-calculus is invariant under bisimulation [9], it follows
that bisimilar states are won by the same player.

Lemma 18. Let R be a bisimulation on G. If (s1, s2) ∈ R, then REACH wins
from s1 in G if and only if REACH wins from s2 in G.

We will assume that for each bisimulation class Si there exists a formula
ψi ∈ L(V) that defines Si, formally: For all s ∈ S, ψi(s) holds if and only if
s ∈ Si. Furthermore, we will assume that the interpolation procedure respects ∼,
formally: Interpolate(ϕ,ψ) is equivalent to a disjunction of formulas ψi. Such an
interpolant exists if ψ or ϕ already satisfy this assumption.

Theorem 19. Let G be a reachability game with finite bisimulation quotient
under ∼ and assume that all bisimulation classes of G are definable in L. Fur-
thermore, assume that Interpolate respects ∼. Then, Reach(G) terminates.

910 C. Baier et al.

6 Case Studies

In this section we evaluate our approach on a number of case studies. Our pro-
totype CabPy2 is written in Python and implements the game solving part of
the presented algorithm. Extending it to returning a symbolic strategy using the
ideas outlined above is straightforward. We compared our prototype with Sim-
Synth [18], the only other readily available tool for solving linear arithmetic
games. The evaluation was carried out with Ubuntu 20.04, a 4-core Intel®

Core™ i5 2.30 GHz processor, as well as 8 GB of memory. CabPy uses the
PySMT [19] library as an interface to the MathSAT5 [12] and Z3 [30] SMT
solvers. On all benchmarks, the timeout was set to 10 min. In addition to the
winner, we report the runtime and the number of subgames our algorithm visits.
Both may vary with different SMT solvers or in different environments.

6.1 Game of Nim

Game of Nim is a classic game from the literature [8] and played on a number of
heaps of stones. Both players take turns of choosing a single heap and removing
at least one stone from it. We consider the version where the player that removes
the last stone wins. Our results are shown in Fig. 1. In instances with three heaps
or more we bounded the domains of the variables in the instance description, by
specifying that no heap exceeds its initial size and does not go below zero.

Following the discussion in Sect. 5.3, we need to bound the domains to ensure
the termination of our tool on these instances. Remarkably, bounding the vari-
ables was not necessary for instances with only two heaps, where our tool CabPy
scales to considerably larger instances than SimSynth. We did not add the same
constraints to the input of SimSynth, as for SimSynth this resulted in longer
runtimes rather than shorter. In Game of Nim, there are no natural necessary
subgoals that the safety player can locally control.

The results (see Fig. 1) demonstrate that our approach is not completely
dependent on finding the right interpolants and is in particular also competitive
when the reachability player wins the game. We suspect that SimSynth performs
worse in these cases because the safety player has a large range of possible moves
in most states, and inferring the win of the reachability player requires the tool
to backtrack and try our all of them.

6.2 Corridor

We now consider an example that demonstrates the potential of our method in
case the game structure contains natural bottlenecks. Consider a corridor of 100
rooms arranged in sequence, i.e., each room i with 0 ≤ i < 100 is connected
to room i + 1 with a door. The objective of the reachability player is to reach

2 The source code of CabPy and our experimental data are both available at
https://github.com/reactive-systems/cabpy. We provide a virtual machine image
with CabPy already installed for reproducing our evaluation [35].

https://github.com/reactive-systems/cabpy

Causality-Based Game Solving 911

CabPy SimSynth

Heaps Subgames Time(s) Time(s) Winner
(4,4) 19 1.50 10.44 REACH

(4,5) 23 1.92 12.74 SAFE

(5,5) 23 1.99 85.75 REACH

(5,6) 27 2.90 91.66 SAFE

(6,6) 28 3.04 Timeout REACH

(6,7) 31 3.76 Timeout SAFE

(20,20) 88 94.85 Timeout REACH

(20,21) 94 113.04 Timeout SAFE

(30,30) 128 364.13 Timeout REACH

(30,31) 135 404.02 Timeout SAFE

(3,3,3)b 23 13.63 2.85 SAFE

(1,4,5)b 32 7.00 289.85 REACH

(4,4,4)b 33 50.55 24.39 SAFE

(2,4,6)b 38 19.77 Timeout REACH

(5,5,5)b 33 127.89 162.50 SAFE

(3,5,6)b 40 86.56 Timeout REACH

(2,2,2,2)b 39 84.79 213.79 REACH

(2,2,2,3)b 41 102.01 Timeout SAFE

Fig. 1. Experimental results for the Game of Nim. The notation (h1, . . . , hn) denotes
the instance played on n heaps, each of which consists of hi stones. Instances marked
with b indicate that the variable domains were explicitly bounded in the input for
CabPy.

CabPy SimSynth

r Subgames Time(s) Time(s) Winner
10 10 0.57 3.93 SAFE

20 20 1.23 20.48 SAFE

40 40 3.42 121.96 SAFE

60 60 7.36 Timeout SAFE

80 80 17.72 Timeout SAFE

100 100 26.36 Timeout SAFE

Fig. 2. Experimental results for the Corridor game. The safety player controls the door
between rooms r − 1 and r.

room 100 and they are free to choose valid values from R
2 for the position in

each room at every other turn. The safety player controls some door to a room
r ≤ 100. Naturally, a winning strategy is to prevent the reachability player from
passing that door, which is a natural bottleneck and necessary subgoal on the
way to the last room.

The experimental results are summarized in Fig. 2. We evaluated several ver-
sions of this game, increasing the length from the start to the controlled door.

912 C. Baier et al.

The results confirm that our causal synthesis algorithm finds the trivial strategy
of closing the door quickly. This is because Craig interpolation focuses the sub-
goals on the room number variable while ignoring the movement in the rooms
in between, as can be seen by the number of considered subgames. SimSynth,
which tries to generalize a strategy obtained from a step-bounded game, strug-
gles because the tool solves the games that happen between each of the doors
before reaching the controlled one.

6.3 Mona Lisa

The game described in Sect. 2 between a thief and a security guard is very well
suited to further assess the strength and limitations of both our approach as well
as of SimSynth. We ran several experiments with this scenario, scaling the size
of the room and the sleep time of the guard, as well as trying a scenario where
the guard does not sleep at all. Scaling the size of the room makes it harder
for SimSynth to solve this game with a forward unrolling approach, while our
approach extracts the necessary subgoals irrespective of the room size. However,
scaling the guard’s sleep time makes it harder to solve the subgame between
the two necessary subgoals, while it only has a minor effect on the length of the
unrolling needed to stabilize the play in a safe region, as done by SimSynth.

The results in Fig. 3 support this conjecture. The size of the room has almost
no effect at all on both the runtime of CabPy and the number of considered
subgames. However, as the results for a sleep value of 4 show, the employed com-
bination of quantifier elimination and interpolation introduces some instability
in the produced formulas. This means we may get different Craig interpolants
and slice the game with more or less subgoals. Therefore, we see a lot of potential
in optimizing the interplay between the employed tools for quantifier elimina-
tion and interpolation. The phenomenon of the runtime being sensitive to these
small changes in values is also seen with SimSynth, where a longer sleep time
sometimes means a faster execution.

6.4 Program Synthesis

Lastly, we study two benchmarks that are directly related to program synthesis.
The first problem is to synthesize a controller for a thermostat by filling out an
incomplete program, as described in [4]. A range of possible initial values of the
room temperature c is given, e.g., 20.8 ≤ c ≤ 23.5, together with the temperature
dynamics which depend on whether the heater is on (variable o ∈ B). The
objective for SAFE is to control the value of o in every round such that c stays
between 20 and 25. This is a common benchmark for program synthesis tools
and both CabPy and SimSynth solve it quickly (see Fig. 4). The other problem
relates to Lamport’s bakery algorithm [26]. We consider two processes using this
protocol to ensure mutually exclusive access to a shared resource. The game
describes the task of synthesizing a scheduler that violates the mutual exclusion.
This essentially is a model checking problem, and we study it to see how well
the tools can infer a safety invariant that is out of control of the safety player.

Causality-Based Game Solving 913

CabPy SimSynth

Size Sleep Subgames Time(s) Time(s) Winner
10 × 10 - 7 0.61 4.79 SAFE

20 × 20 - 7 0.60 25.26 SAFE

40 × 40 - 7 0.61 157.62 SAFE

10 × 10 1 10 4.22 20.31 SAFE

20 × 20 1 11 4.34 36.44 SAFE

40 × 40 1 11 4.65 226.14 SAFE

10 × 10 2 13 5.88 7.40 SAFE

20 × 20 2 14 5.98 60.00 SAFE

40 × 40 2 13 5.92 270.48 SAFE

10 × 10 3 18 26.58 13.94 SAFE

20 × 20 3 17 26.19 115.53 SAFE

40 × 40 3 18 27.85 290.12 SAFE

10 × 10 4 30 175.27 13.96 SAFE

20 × 20 4 22 204.79 60.08 SAFE

40 × 40 4 27 123.95 319.47 SAFE

CabPy SimSynth

Size Sleep Subgames Time(s) Time(s) Winner
10 × 10 - 7 0.61 4.79 SAFE

20 × 20 - 7 0.60 25.26 SAFE

40 × 40 - 7 0.61 157.62 SAFE

10 × 10 1 10 4.22 20.31 SAFE

20 × 20 1 11 4.34 36.44 SAFE

40 × 40 1 11 4.65 226.14 SAFE

10 × 10 2 13 5.88 7.40 SAFE

20 × 20 2 14 5.98 60.00 SAFE

40 × 40 2 13 5.92 270.48 SAFE

10 × 10 3 18 26.58 13.94 SAFE

20 × 20 3 17 26.19 115.53 SAFE

40 × 40 3 18 27.85 290.12 SAFE

10 × 10 4 30 175.27 13.96 SAFE

20 × 20 4 22 204.79 60.08 SAFE

40 × 40 4 27 123.95 319.47 SAFE

Fig. 3. Experimental results for the Mona Lisa game.

CabPy SimSynth

Name Subgames Time(s) Time(s) Winner
Thermostat 6 0.44 0.39 SAFE

Bakery 46 18.25 Timeout SAFE

CabPy SimSynth

Name Subgames Time(s) Time(s) Winner
Thermostat 6 0.44 0.39 SAFE

Bakery 46 18.25 Timeout SAFE

Fig. 4. Experimental results for program synthesis problems.

For our approach, this makes no difference, as both players may play through a
subgoal and the framework is well suited to find a safety invariant. The forward
unrolling approach of SimSynth, however, seems to explore the whole state
space before inferring safety, and fails to find an invariant before a timeout.

7 Conclusion

Our work is a step towards the fully automated synthesis of software. It tar-
gets symbolically represented reachability games which are expressive enough
to model a variety of problems, from common game benchmarks to program
synthesis problems. The presented approach exploits causal information in the
form of subgoals, which are parts of the game that the reachability player needs
to pass through in order to win. Having computed a subgoal, which can be done
using Craig interpolation, the game is split along the subgoal and solved recur-
sively. At the same time, the algorithm infers a structured symbolic strategy
for the winning player. The evaluation of our prototype implementation CabPy

914 C. Baier et al.

shows that our approach is practically applicable and scales much better than
previously available tools on several benchmarks. While termination is only guar-
anteed for games with finite bisimulation quotient, the experiments demonstrate
that several infinite games can be solved as well.

This work opens up several interesting questions for further research. One
concerns the quality of the returned strategies. Due to its compositional nature,
at first sight it seems that our approach is not well-suited to handle global
optimization criteria, such as reaching the goal in fewest possible steps. On the
other hand, the returned strategies often involve only a few key decisions and
we believe that therefore the strategies are often very sparse, although this has
to be further investigated. We also plan to automatically extract deterministic
strategies from the symbolic ones [5,17] we currently consider.

Another question regards the computation of subgoals. The performance of
our algorithm is highly influenced by which interpolant is returned by the solver.
In particular this affects the number of subgames that have to be solved, and
how complex they are. We believe that template-based interpolation [27] is a
promising candidate to explore for computing good interpolants. This could be
combined with the possibility for the user to provide templates or expressive
interpolants directly, thereby benefiting from the user’s domain knowledge.

References

1. Alur, R., Moarref, S., Topcu, U.: Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 501–516. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 49

2. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 251–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 14

3. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-
based game solving. CoRR (2021). https://arxiv.org/abs/2105.14247, long version
with appendix

4. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based app-
roach to solving games on infinite graphs. In: Principles of Programming Languages
(POPL). ACM, New York (2014). https://doi.org/10.1145/2535838.2535860

5. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-based methods
for circuit synthesis. In: Formal Methods in Computer-Aided Design (FMCAD).
IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987592

6. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. Electron. Notes Theor. Comput. Sci.
190(4), 3–16 (2007). https://doi.org/10.1016/j.entcs.2007.09.004

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007. In Commemoration of Amir Pnueli

8. Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math.
3(1/4), 35–39 (1901). https://doi.org/10.2307/1967631

https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-41540-6_14
https://arxiv.org/abs/2105.14247
https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1109/FMCAD.2014.6987592
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.2307/1967631

Causality-Based Game Solving 915

9. Bradfield, J.C., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem,
J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and Practi-
cal Reasoning, vol. 3, pp. 721–756, North-Holland (2007). https://doi.org/10.1016/
s1570-2464(07)80015-2

10. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75698-9 2

11. Chen, Y., T̊amov̊u, J., Belta, C.: LTL Robot Motion Control based on Automata
Learning of Environmental Dynamics. In: International Conference on Robotics
and Automation. IEEE (2012). https://doi.org/10.1109/ICRA.2012.6225075

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

13. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957). https://doi.org/10.
2307/2963594

14. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-
state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 536–550. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-
0 36

15. Edelkamp, S.: Symbolic exploration in two-player games: preliminary results. In:
The International Conference on AI Planning & Scheduling (AIPS), Workshop on
Model Checking (2002)

16. Eén, N., Legg, A., Narodytska, N., Ryzhyk, L.: SAT-based strategy extraction
in reachability games. In: Conference on Artificial Intelligence (AAAI) (2015).
https://ojs.aaai.org/index.php/AAAI/article/view/9752

17. Ehlers, R., Moldovan, D.: Sparse positional strategies for safety games. In: Workshop
on Synthesis (SYNT), EPTCS (2012). https://doi.org/10.4204/EPTCS.84.1

18. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proc. ACM
Program. Lang. 2(POPL) (2017). https://doi.org/10.1145/3158149

19. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

20. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

21. Harding, A., Ryan, M., Schobbens, P.-Y.: A new algorithm for strategy synthe-
sis in LTL games. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 477–492. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
31980-1 31

22. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks in planning. J. Artif.
Intell. Res. 22(1), 215–278 (2004)

23. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthe-
sis for climate controller using Uppaal Tiga. In: Raskin, J.-F., Thiagarajan, P.S.
(eds.) FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75454-1 17

24. Kupriyanov, A., Finkbeiner, B.: Causality-based verification of multi-threaded pro-
grams. Concur. Theory (CONCUR) (2013). https://doi.org/10.1007/978-3-642-
40184-8 19

25. Kupriyanov, A., Finkbeiner, B.: Causal termination of multi-threaded programs.
Comput. Aided Verification (CAV) (2014). https://doi.org/10.1007/978-3-319-
08867-9 54

https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1007/978-3-540-75698-9_2
https://doi.org/10.1109/ICRA.2012.6225075
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1007/3-540-44685-0_36
https://ojs.aaai.org/index.php/AAAI/article/view/9752
https://doi.org/10.4204/EPTCS.84.1
https://doi.org/10.1145/3158149
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-540-31980-1_31
https://doi.org/10.1007/978-3-540-31980-1_31
https://doi.org/10.1007/978-3-540-75454-1_17
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-642-40184-8_19
https://doi.org/10.1007/978-3-319-08867-9_54
https://doi.org/10.1007/978-3-319-08867-9_54

916 C. Baier et al.

26. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093

27. Leroux, J., Rümmer, P., Subotić, P.: Guiding Craig interpolation with domain-
specific abstractions. Acta Informatica 53(4), 387–424 (2016). https://doi.org/10.
1007/s00236-015-0236-z

28. Menzies, P., Beebee, H.: Counterfactual theories of causation. In: Zalta, E.N.
(ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Metaphysics
Research Lab (2020)

29. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 243–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
89439-1 18

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

31. Narodytska, N., Legg, A., Bacchus, F., Ryzhyk, L., Walker, A.: Solving games with-
out controllable predecessor. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 533–540. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 35

32. Pozanco, A., E-Mart́ın, Y., Fernández, S., Borrajo, D.: Counterplanning using goal
recognition and landmarks. In: International Joint Conference on Artificial Intelli-
gence (IJCAI) (2018). https://doi.org/10.24963/ijcai.2018/668

33. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du I congres de Mathématiciens des Pays Slaves (1929)

34. Ryzhyk, L., Chubb, P., Kuz, I., Le Sueur, E., Heiser, G.: Automatic device driver syn-
thesis with termite. In: Symposium on Operating Systems Principles (SOSP). Asso-
ciation for Computing Machinery (ACM) (2009). https://doi.org/10.1145/1629575.
1629583

35. Siber, J.: The Virtual Machine containing CabPy (2021). https://doi.org/10.6084/
m9.figshare.14493804.v3

36. Sreedharan, S., Srivastava, S., Smith, D.E., Kambhampati, S.: Why can’t you do
that HAL? Explaining unsolvability of planning tasks. In: International Joint Con-
ference on Artificial Intelligence (IJCAI) (2019). https://doi.org/10.24963/ijcai.
2019/197

37. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-59042-0 57

38. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. Formal Meth.
Comput. Aided Des. (FMCAD) (2014). https://doi.org/10.1109/FMCAD.2014.
6987617

39. Zappe, J.: Modal μ-calculus and alternating tree automata. In: Grädel, E., Thomas,
W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp.
171–184. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4 10

https://doi.org/10.1145/361082.361093
https://doi.org/10.1007/s00236-015-0236-z
https://doi.org/10.1007/s00236-015-0236-z
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_35
https://doi.org/10.1007/978-3-319-08867-9_35
https://doi.org/10.24963/ijcai.2018/668
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1145/1629575.1629583
https://doi.org/10.6084/m9.figshare.14493804.v3
https://doi.org/10.6084/m9.figshare.14493804.v3
https://doi.org/10.24963/ijcai.2019/197
https://doi.org/10.24963/ijcai.2019/197
https://doi.org/10.1007/3-540-59042-0_57
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1007/3-540-36387-4_10

Causality-Based Game Solving 917

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Abate, Alessandro II-3
Agarwal, Pratyush I-341
Akshay, S. I-619
Albert, Elvira II-863
Alur, Rajeev I-249
Amram, Gal I-870
André, Étienne I-552
Andriushchenko, Roman I-856
Arcaini, Paolo I-595
Armstrong, Alasdair I-303
Arquint, Linard I-367
Ayoun, Sacha-Élie II-827

Backes, J. II-851
Bae, Kyungmin I-491
Baier, Christel I-894
Baier, Daniel II-195
Bak, Stanley I-263
Balunovic, Mislav I-225
Bansal, Suguman I-870
Bardin, Sébastien I-669
Barrett, Clark II-461
Batz, Kevin II-524
Baumeister, Jan I-694
Bayless, S. II-851
Bendík, Jaroslav II-313
Beneš, Nikola I-505
Berzish, Murphy II-289
Beyer, Dirk II-195
Biere, Armin II-363
Bodeveix, Jean-Paul II-337
Bonakdarpour, Borzoo I-694
Boston, Brett I-645
Bozzano, Marco II-209
Bragg, Nate F. F. I-808
Breese, Samuel I-645
Brim, Luboš I-505
Brown, Kristopher II-461
Brunel, Julien II-337

Campbell, Brian I-303
Carpenter, Taylor I-249
Cauli, Claudia I-767

Češka, Milan I-856
Chakraborty, Supratik II-911
Chalupa, Marek II-887
Chatterjee, Krishnendu I-341
Chemouil, David II-337
Chen, Guangke I-175
Chen, Jiayu I-225
Chen, Mingshuai I-443, II-524
Chen, Taolue I-175
Chen, Xiaohong II-477
Chiari, Michele II-387
Christakis, Maria I-201, II-777
Cimatti, Alessandro I-529, II-209
Clochard, Martin I-367
Coenen, Norine I-694, I-894
Cogumbreiro, Tiago I-403
Constantinides, George II-626
Cyphert, John I-46, I-783

D’Antoni, Loris I-84, I-783
DaCosta, D. II-851
Dahlqvist, Fredrik II-626
Dan, Andrei I-225
Day, Joel D. II-289
Dodds, Joey I-645
Dodds, Mike I-645
Dutertre, Bruno II-266
Dwyer, Matthew B. I-137

Eilers, Marco I-718
Eisenhut, Jan II-411
Elad, Neta I-317
Elbaum, Sebastian I-137
Eniser, Hasan Ferit I-201

Fang, Wang I-151
Farinier, Benjamin I-669
Farzan, Azadeh I-832
Ferlez, James I-287
Fernandes Pires, Anthony II-209
Finkbeiner, Bernd I-694, I-894
Foster, Jeffrey S. I-808
Fried, Dror I-870
Friedberger, Karlheinz II-195

920 Author Index

Fu, Yu-Fu II-149
Funke, Florian I-894

Ganesh, Vijay II-289
Gardner, Philippa II-827
Gastin, Paul I-619
Genaim, Samir II-863
Giacobbe, Mirco II-3
Girol, Guillaume I-669
Gnad, Daniel II-411
Goel, Shilpi I-26
Gopinath, Divya I-3
Griggio, Alberto I-529, II-209
Guan, Ji I-151
Gupta, Aarti II-461
Gupta, Ashutosh II-911

Hahn, Ernst Moritz II-651
Hallé, Sylvain II-500
Hamilton, Nathaniel I-263
Hasuo, Ichiro I-595, II-75
Hauptman, Dustin I-566
Heljanko, Keijo II-363
Hermanns, Holger I-201
Hobor, Aquinas II-801
Hoffmann, Jörg I-201, II-411
Holtzen, Steven II-577
Hu, Qinheping I-84, I-783
Huffman, Brian I-645
Hur, Chung-Kil II-752

Immerman, Neil I-317
Irfan, Ahmed I-529, II-461
Itzhaky, Shachar I-110, II-125
Ivanov, Radoslav I-249

Jacobs, Bart II-27
Jacobs, Swen II-435
Jansen, Nils II-602
Jantsch, Simon I-894
Jewell, K. II-851
Johnson, Andrew I-380
Johnson, Taylor T. I-263
Jonáš, Martin II-209
Jones, B. F. II-851
Joshi, S. II-851
Jovanović, Dejan II-266
Junges, Sebastian I-856, II-553, II-577,

II-602

Kaminski, Benjamin Lucien II-524
Katoen, Joost-Pieter I-443, I-856, II-524
Keshmiri, Shawn I-566
Khedr, Haitham I-287
Kim, Dongjoo II-752
Kim, Jinwoo I-84
Kim, Sharon I-491
Kimberly, Greg II-209
Kincaid, Zachary I-46, II-51
Klas̆ka, David II-887
Kokologiannakis, Michalis I-427
Koskinen, Eric I-742
Kothari, Yugesh I-201
Kovács, Laura I-317
Kremer, Gereon II-231
Kulczynski, Mitja II-289
Kura, Satoshi II-75

Lal, Ratan I-566
Lange, Julien I-403
Launchbury, N. II-851
Lee, Insup I-249
Lee, Jaehun I-491
Lee, Juneyoung II-752
Lefaucheux, Engel II-172
Leow, Wei Xiang II-801
Leutgeb, Lorenz II-99
Li, Jianlin I-201
Li, Meng I-767
Li, Pengfei II-728
Li, Yangge I-580
Lin, Anthony W. II-243
Lin, Wang I-467
Lin, Zhengyao II-477
Liu, Jiaxiang II-149
Liu, Zhiming I-467
Lluch Lafuente, Alberto II-411
Lonsing, Florian II-461
Lopes, Nuno P. II-752
Lopez, Diego Manzanas I-263
Lyu, Deyun I-595

Ma, Lei I-595
Maksimović, Petar II-827
Mandrioli, Dino II-387
Manea, Florin II-289
Mann, Makai II-461
Mansur, Muhammad Numair II-777
Mariano, Benjamin II-777
Markgraf, Oliver II-243

Author Index 921

Martin-Martin, Enrique II-863
Matheja, Christoph II-524
Mathews, N. II-851
McKinnis, Aaron I-566
Meel, Kuldeep S. II-313
Meier, Severin I-718
Merayo, Alicia II-863
Millstein, Todd II-577
Mitra, Sayan I-580
Mohan, Anshuman II-801
Mora, Federico II-289
Moser, Georg II-99
Mover, Sergio I-529
Müller, Peter I-367, I-718, II-704
Musau, Patrick I-263

Navas, Jorge A. I-201, II-777
Nicolet, Victor I-832
Niemetz, Aina II-231
Noller, Yannic I-3
Nowotka, Dirk II-289

Ölveczky, Peter Csaba I-491
Oortwijn, Wytse I-367
Osama, Muhammad II-447
Ouaknine, Joël II-172

Pal, Neelanjana I-263
Pappas, George I-249
Parthasarathy, Gaurav II-704
Păsăreanu, Corina S. I-3
Pastva, Samuel I-505
Pathak, Shreya I-341
Pavlogiannis, Andreas I-341
Peleg, Hila I-110
Pereira, João C. I-367
Pereira, Mário II-677
Perez, Mateo II-651
Petcher, Adam I-645
Peyras, Quentin II-337
Piterman, Nir I-767
Polikarpova, Nadia I-110
Prabhakar, Pavithra I-566
Pradella, Matteo II-387
Prakash, Karthik R. I-619
Preiner, Mathias II-231
Pulte, Christopher I-303
Purser, David II-172

Rain, Sophie I-317
Rakamarić, Zvonimir II-626
Ravara, António II-677
Reinhard, Tobias II-27
Reps, Thomas I-46, I-84, I-783
Rong, Dennis Liew Zhen I-403
Roşu, Grigore II-477
Roux, Cody I-808
Rowe, Reuben N. S. I-110
Roy, Diptarko II-3
Rubio, Albert II-863
Ryou, Wonryong I-225

Šafránek, David I-505
Sagiv, Mooly I-317
Sakr, Mouhammad II-435
Salvia, Rocco II-626
Sánchez, César I-694
Santos, José Fragoso II-827
Schewe, Sven II-651
Schröer, Philipp II-524
Sergey, Ilya I-110
Seshia, Sanjit A. II-553, II-577, II-602
Sewell, Peter I-303
Shi, Xiaomu II-149
Shoukry, Yasser I-287
Shriver, David I-137
Sibai, Hussein I-580
Siber, Julian I-894
Simner, Ben I-303
Singh, Gagandeep I-225
Singher, Eytan II-125
Slobodova, Anna I-26
Solar-Lezama, Armando I-808
Somenzi, Fabio II-651
Song, Fu I-175
Stan, Daniel II-243
Stefanescu, Andrei I-645
Strejček, Jan II-887
Stupinský, Šimon I-856
Summers, Alexander J. II-704
Sumners, Rob I-26
Sun, Youcheng I-3
Swords, Sol I-26

Tabajara, Lucas Martinelli I-870
Tang, Xiaochao I-467
Terauchi, Tachio I-742
Tkachuk, Oksana I-767
Toman, Viktor I-341

922 Author Index

Tomovic̆, Lukás̆ II-887
Tonetta, Stefano I-529
Torfah, Hazem II-553
Tran, Hoang-Dung I-263
Tremblay, Hugo II-500
Trentin, P. II-851
Trinh, Minh-Thai II-477
Trivedi, Ashutosh II-651
Tsai, Ming-Hsien II-149

Unadkat, Divyesh II-911
Unno, Hiroshi I-742, II-75
Usman, Muhammad I-3

Vafeiadis, Viktor I-427
Van den Broeck, Guy II-577
van der Berg, Freark I. II-690
Vardi, Moshe Y. I-870
Vazquez-Chanlatte, Marcell II-577
Vechev, Martin I-225

Wahl, Thomas I-380
Wang, Bow-Yaw II-149
Wang, Qiuye I-443
Wang, Yuting II-728
Weimer, James I-249
Weiss, Gera I-870
Wijs, Anton II-447
Wojtczak, Dominik II-651

Wolf, Felix A. I-367
Worrell, James II-172
Wu, Jinhua II-728
Wüstholz, Valentin I-201, II-777

Xu, Xiangzhe II-728
Xue, Bai I-443

Yang, Bo-Yin II-149
Yang, Xiaodong I-263
Yang, Yahan II-461
Yang, Zhengfeng I-467
Yin, Zhenguo II-728
Ying, Mingsheng I-151
Yu, Emily II-363

Zeng, M. Q. II-851
Zeng, Xia I-467
Zeng, Zhenbing I-467
Zhan, Naijun I-443
Zhang, Hongce II-461
Zhang, Yedi I-175
Zhang, Yidan I-467
Zhang, Zhenya I-595
Zhao, Jianjun I-595
Zhao, Zhe I-175
Zhu, Shaowei II-51
Zicarelli, Hannah I-403
Zuleger, Florian II-99

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Invited Papers
	NNREPAIR: Constraint-Based Repair of Neural Network Classifiers
	1 Introduction
	2 Background
	3 Example
	4 Approach
	4.1 Intermediate-Layer Repair
	4.2 Last-Layer Repair
	4.3 Combining Experts

	5 Evaluation
	5.1 Scenarios
	5.2 Experiment Set-Up
	5.3 Results
	5.4 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Balancing Automation and Control for Formal Verification of Microprocessors
	1 Introduction
	2 Our FV Tools
	3 Challenges of Verifying a Single x86 instruction
	3.1 Front-End and Microcode Verification
	3.2 Verification of Execution Units
	3.3 Regressions

	4 FGL
	4.1 Example
	4.2 Extracting Boolean Variables
	4.3 Composing Boolean Functions

	5 Conclusion
	References

	Algebraic Program Analysis
	1 Introduction
	2 Regular Algebraic Program Analysis
	2.1 Transition-Formula Interpretations
	2.2 Weak Interpretations

	3 Semantic Foundations
	3.1 Semantic Equations
	3.2 Abstract Interpretation
	3.3 Discussion

	4 Interprocedural Analysis
	4.1 Motivation: Newtonian Program Analysis
	4.2 Algebraic Program Analysis for Linear Equations
	4.3 Discussion

	5 Termination Analysis
	5.1 Non-terminating State-Formula Interpretations
	5.2 The Instantiation of the Recipe

	6 Recap
	7 Related Work
	8 Open Problems
	References

	Programmable Program Synthesis
	1 Introduction
	1.1 A Synthesis Tale
	1.2 Programmable Synthesis Frameworks

	2 An Overview of Programmable Program Synthesis
	2.1 Why Isn't Existing Work in Synthesis Programmable?
	2.2 What Does a Programmable Synthesis Framework Look Like?

	3 Programmable-Synthesis Specifications
	3.1 Semantics-Guided Synthesis
	3.2 Adding Quantitative Syntactic Objectives

	4 Programmable-Synthesis Solvers
	4.1 General Solving Procedures for SemGuS Problems
	4.2 Meta Algorithms for Solving SemGuS Problems

	5 The Future of Programmable Synthesis and SemGuS
	5.1 What Are We Working on Next?
	5.2 What Can the Synthesis Community Do?

	References

	Deductive Synthesis of Programs with Pointers: Techniques, Challenges, Opportunities
	1 Introduction
	2 State of the Art
	2.1 Specifications
	2.2 The Basics of Deductive Synthesis
	2.3 Synthesis with Recursion and Auxiliary Functions
	2.4 Implementation and Empirical Results

	3 Proof Search
	3.1 Pruning via Proof Strategies
	3.2 Prioritization via a Cost Function

	4 Completeness
	4.1 Recursive Auxiliaries
	4.2 Pure Reasoning

	5 Quality of Synthesized Programs
	5.1 Performance
	5.2 Readability

	6 Applications
	6.1 Program Repair
	6.2 Data Migration and Serialization
	6.3 Fine-Grained Concurrency

	References

	AI Verification
	DNNV: A Framework for Deep Neural Network Verification
	1 Introduction
	2 Background
	3 DNNV Overview
	3.1 Input Formats
	3.2 Network Simplification
	3.3 Property Reduction
	3.4 Input and Output Translation

	4 Implementation
	4.1 Supporting Reuse and Extension
	4.2 Usage

	5 Study
	6 Conclusion
	References

	Robustness Verification of Quantum Classifiers
	1 Introduction
	2 Quantum Data and Computation Models
	3 Quantum Classification Algorithms
	3.1 Basic Definitions
	3.2 An Illustrative Example

	4 Robustness
	5 Robust Bound
	6 Robustness Verification Algorithms
	7 Evaluation
	7.1 Quantum Bits Classification
	7.2 Quantum Phase Recognition
	7.3 Cluster Excitation Detection
	7.4 The Classification of MNIST
	7.5 Robustness Verification

	8 Conclusion
	References

	BDD4BNN: A BDD-Based Quantitative Analysis Framework for Binarized Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Binarized Neural Networks
	2.2 Binary Decision Diagrams

	3 BDD4BNN Design
	3.1 BDD4BNN Overview
	3.2 CC2BDD: Cardinality Constraints to BDDs
	3.3 Region2BDD: Input Regions to BDDs
	3.4 BNN2CC: BNNs to Cardinality Constraints
	3.5 BDD Model Builder

	4 Applications: Robustness Analysis and Interpretability
	4.1 Robustness Analysis
	4.2 Interpretability

	5 Evaluation
	5.1 Performance of BDD Encoding
	5.2 Robustness Analysis
	5.3 Interpretability

	6 Related Work
	7 Conclusion
	References

	Automated Safety Verification of Programs Invoking Neural Networks
	1 Introduction
	2 Overview
	3 Approach
	3.1 Neuro-Aware Program Analysis
	3.2 Neural-Network Analysis

	4 Experimental Evaluation
	4.1 Benchmarks
	4.2 Implementation
	4.3 Setup
	4.4 Results

	5 Related Work
	6 Conclusion
	References

	Scalable Polyhedral Verification of Recurrent Neural Networks
	1 Introduction
	2 Related Work
	3 Background
	3.1 Threat Model
	3.2 Long Short-Term Memory (LSTM)
	3.3 Speech Preprocessing
	3.4 Verification Using DeepPoly Abstract Domain

	4 Overview of Prover
	5 Scalable Certification of LSTMs
	5.1 Computing Polyhedral Abstractions of LSTM Operations
	5.2 Abstraction Refinement via Optimization

	6 Certification of Speech Preprocessing
	7 Experimental Evaluation
	7.1 Speech Classification
	7.2 Image Classification
	7.3 Motion Sensor Data Classification

	8 Conclusion
	References

	Verisig 2.0: Verification of Neural Network Controllers Using Taylor Model Preconditioning
	1 Introduction
	2 Problem Statement
	3 Background: Neural Networks as Taylor Models
	4 Taylor Model Preconditioning and Shrink Wrapping
	4.1 Taylor Model Preconditioning
	4.2 Shrink Wrapping

	5 Implementation
	6 Benchmarks
	7 Experiments
	8 Conclusion
	References

	Robustness Verification of Semantic Segmentation Neural Networks Using Relaxed Reachability
	1 Introduction
	2 Preliminaries and Problem Formulation
	2.1 ImageStars
	2.2 Range of a Specific Input in an ImageStar
	2.3 Semantic Segmentation Networks and Reachability
	2.4 Adversarial Attacks and Robustness
	2.5 Robustness Verification Problem Formulation

	3 Reachability of SSNs Using Relaxed ImageStars
	3.1 Reachability of a Transposed (Dilated) Convolutional Layer
	3.2 Relaxed Reachability of a ReLU Layer
	3.3 Reachability of a Pixel-Classification Layer

	4 Verification Algorithm
	5 Evaluation
	5.1 Robustness and Sensitivity of Different Network Architectures
	5.2 Verification Performance
	5.3 Reducing Verification Time with Relaxation
	5.4 Conservativeness of Different Relaxation Heuristics

	6 Related Work
	7 Conclusion
	References

	PEREGRiNN: Penalized-Relaxation Greedy Neural Network Verifier
	1 Introduction
	2 Problem Formulation
	3 PEREGRiNN Overview
	4 PEREGRiNN Enhancements
	4.1 Sum-of-Slacks Penalty
	4.2 Max-Slack Conditioning Priority
	4.3 Layer-wise-Weighted Penalty
	4.4 Initial Counterexample Search by Sampling

	5 Experiments
	5.1 Adversarial Robustness Verification Task
	5.2 Ablation Experiments
	5.3 Comparison with Other NN Verifiers

	6 Discussion: Analogy to SAT Solvers
	7 Conclusion
	References

	Concurrency and Blockchain
	Isla: Integrating Full-Scale ISA Semantics and Axiomatic Concurrency Models
	1 Introduction
	2 Implementation
	2.1 Symbolic Execution for Sail
	2.2 Checking a Litmus Test
	2.3 Syntactic Dependency Analysis
	2.4 Web Interface

	3 System Litmus Tests
	4 Results and Comparisons
	References

	Summing up Smart Transitions
	1 Introduction
	2 Preliminaries
	3 Sum Logic (SL)
	4 Decidability of SL
	4.1 A Decidable Fragment of SL
	4.2 SL Undecidability

	5 SL Encodings of Smart Transitions
	5.1 SL Encoding Using Implicit Balances and Sums
	5.2 Completeness Relative to a Translation Function
	5.3 SL Encodings Using Explicit Balances and Sums

	6 Experiments
	7 Related Work
	8 Conclusions
	References

	Stateless Model Checking Under a Reads-Value-From Equivalence
	1 Introduction
	1.1 Motivating Example
	1.2 Our Contributions

	2 Preliminaries
	2.1 Concurrent Model
	2.2 Partial Orders

	3 Reads-Value-From Equivalence
	4 Verifying Sequential Consistency
	4.1 Algorithm for VSC
	4.2 Practical Heuristics for VerifySC in SMC

	5 Stateless Model Checking
	6 Experiments
	7 Conclusions
	References

	Gobra: Modular Specification and Verification of Go Programs
	1 Introduction
	2 Gobra in a Nutshell
	2.1 Basics
	2.2 Interfaces
	2.3 Concurrency

	3 Encoding
	4 Implementation and Evaluation
	5 Related Work and Conclusion
	References

	Delay-Bounded Scheduling Without Delay!
	1 Introduction
	2 Delay-Bounded Scheduling
	2.1 Basic Computational Model
	2.2 Free and Round-Robin Scheduling
	2.3 Delay-Bounded Round-Robin Scheduling

	3 Abstract Closure for Delay-Bounded Analysis
	3.1 Respectful Actions
	3.2 From Delay-Bounded to Delay-Unbounded Analysis

	4 Efficient Delay-Unbounded Analysis
	5 DrUBA with Unbounded-Domain Variables
	5.1 The Fixed-Thread Case
	5.2 The Unbounded-Thread Case

	6 Evaluation
	6.1 Results
	6.2 Unbounded-Thread Experiments

	7 Discussion of Related Work
	8 Conclusion
	References

	Checking Data-Race Freedom of GPU Kernels, Compositionally
	1 Introduction
	2 Overview
	2.1 Challenges of GPU Programming
	2.2 Memory Access Protocols by Example

	3 Access Memory Protocols
	4 DRF-Preserving Transformations of Protocols
	4.1 Aligning Protocols
	4.2 Splitting Protocols into Symbolic Traces

	5 Implementation
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	GENMC: A Model Checker for Weak Memory Models
	1 Introduction
	2 Memory Model Requirements
	3 Tool Architecture
	4 Supporting New Memory Models
	4.1 Supporting the Linux Kernel Memory Model (LKMM)

	5 Supporting New Languages and Libraries
	6 Error Detection and Reporting
	7 Other Performance Enhancements to GenMC
	8 Conclusion
	References

	Hybrid and Cyber-Physical Systems
	Synthesizing Invariant Barrier Certificates via Difference-of-Convex Programming
	1 Introduction
	2 A Bird's-Eye Perspective
	3 Mathematical Foundations
	4 Invariant Barrier-Certificate Condition as BMIs
	4.1 Invariant Barrier-Certificate Condition
	4.2 Encoding as BMI Optimizations

	5 Solving BMI Optimizations via DCP
	5.1 Difference-of-Convex Decomposition
	5.2 Reduction to LMIs
	5.3 Finding the Initial Solution

	6 Incorporating in a Branch-and-Bound Framework
	7 Experimental Results
	8 Related Work
	9 Conclusion
	References

	An Iterative Scheme of Safe Reinforcement Learning for Nonlinear Systems via Barrier Certificate Generation
	1 Introduction
	2 Preliminaries
	3 Synthesis of Safe Controller via Learning and Verification
	3.1 Training of Safe Controller
	3.2 Safety Verification with Barrier Certificates

	4 Algorithm
	5 Experiments
	6 Related Work
	7 Conclusion
	References

	HYBRIDSYNCHAADL: Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL
	1 Introduction
	2 Preliminaries
	3 The HYBRIDSYNCHAADL Modeling Language
	4 The HYBRIDSYNCHAADL Tool
	5 Case Study: Collaborating Autonomous Drones
	6 Experimental Evaluation
	7 Related Work
	8 Concluding Remarks
	References

	Computing Bottom SCCs Symbolically Using Transition Guided Reduction
	1 Introduction
	2 Preliminaries
	3 Basic Symbolic BSCC Detection
	4 Transition Guided Reduction
	5 Interleaved Transition Guided Reduction
	6 Evaluation
	6.1 Boolean Networks
	6.2 Benchmark Set-Up
	6.3 Real-World Networks
	6.4 Pseudo-random Networks
	6.5 Interleaving Performance Impact

	7 Conclusions
	References

	Implicit Semi-Algebraic Abstraction for Polynomial Dynamical Systems
	1 Introduction
	2 Overview of the Approach
	3 Preliminaries
	4 Explicit Computation of the Semi-Algebraic Abstraction
	5 Linear Encoding of the Semi-Algebraic Abstraction
	6 Experimental Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References

	IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability
	1 Introduction
	2 An Expressive Input Language
	3 A Variety of Synthesis Algorithms
	4 Distribution
	5 A Selection of Applications
	6 Related Tools
	7 Perspectives
	References

	Formally Verified Switching Logic for Recoverability of Aircraft Controller
	1 Introduction
	2 Related Work
	3 Hybrid Controller Architecture
	3.1 Aircraft Dynamics
	3.2 LQR Controller
	3.3 Switching Algorithm for the Safety of ANN Controller

	4 Computation of Recoverable Zone
	4.1 Under-Approximation of Recoverable Zone

	5 Experimental Analysis
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Practical Challenges

	6 Conclusions
	References

	SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions
	1 Introduction
	2 Specifying Scenarios in SceneChecker
	3 Transforming Scenarios to Hybrid Automata
	4 Specifying Symmetry Maps in SceneChecker
	5 Symmetry Abstraction of the Scenario's Automaton
	6 SceneChecker Algorithm Overview
	7 Experimental Evaluation
	8 Limitations and Discussions
	References

	Effective Hybrid System Falsification Using Monte Carlo Tree Search Guided by QB-Robustness
	1 Introduction
	2 Preliminaries
	2.1 Hill Climbing-Guided Falsification

	3 QB-Robustness
	4 MCTS-Based Falsification Guided by QB-Robustness
	4.1 MCTS Background
	4.2 Proposed QB-Robustness-Guided Falsification Approach

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	Fast Zone-Based Algorithms for Reachability in Pushdown Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Reachability, Zones and Simulations
	2.3 Pushdown Timed Automata (PDTA)

	3 Zones in PDTA and the Problem with Simulations
	4 Viewing Reachability Algorithms Using Rewrite Rules
	4.1 Rewrite Rules for Timed Automata.
	4.2 Rewrite Rules for PDTA

	5 Algorithm for PDTA Reachability via Zones
	6 Experiments and Results
	7 Discussion and Future Work
	References

	Security
	Verified Cryptographic Code for Everybody
	1 Introduction
	1.1 Related Work

	2 Project Design Constraints
	3 AES-256-GCM and SHA-384 Proof Structure
	4 SAW's Verification Pipeline
	5 New Capability: x86 Semantics
	6 New Capability: Verified Rewrites
	6.1 Role of Rewrites in AES-256-GCM and SHA-384 Proofs

	7 Results and Lessons Learned
	7.1 Trade-Offs When Building on Existing Verification Tools
	7.2 Verified Code Generation Versus Verifying Existing Code

	8 Conclusion and Future Work
	References

	Not All Bugs Are Created Equal, But Robust Reachability Can Tell the Difference
	1 Introduction
	2 Motivation
	3 Background
	4 Robust Reachability
	4.1 Definition
	4.2 Relation with Non-interference
	4.3 Interpretation in Terms of Hyperproperty
	4.4 Interpretation in Terms of Temporal Logic
	4.5 Robust Reachability and Automatic Verification

	5 Automatically Proving Robust Reachability
	5.1 Robust Bounded Model Checking
	5.2 Robust Symbolic Execution
	5.3 Path Merging
	5.4 Revisiting Standard Optimizations and Constructs
	5.5 About Constraint Solving

	6 Proof-of-Concept of a Robust Symbolic Execution Engine
	6.1 Implementation
	6.2 Case Studies: Exploitability Assessment for Vulnerabilities
	6.3 Experimental Evaluation
	6.4 Additional Considerations

	7 Related Work
	8 Conclusion
	A Details on the Experiments Supporting Sect.6.4
	References

	A Temporal Logic for Asynchronous Hyperproperties
	1 Introduction
	2 Preliminaries
	3 Asynchronous HyperLTL
	3.1 Syntax and Semantics of Asynchronous HyperLTL
	3.2 Examples of A-HLTL

	4 Model-Checking A-HLTL
	4.1 The Stuttering Construction
	4.2 The Accelerating Construction
	4.3 Decidable Practical A-HLTL Formulas

	5 Undecidability and Lower-Bound Complexity
	6 Case Studies and Evaluation
	6.1 Compiler Optimizations
	6.2 SPI Bus Protocol

	7 Related Work
	8 Conclusion
	References

	Product Programs in the Wild: Retrofitting Program Verifiers to Check Information Flow Security
	1 Introduction
	2 Preliminaries
	2.1 Noninterference
	2.2 Modular Product Programs

	3 Sound Products of IVL Encodings
	3.1 Proposed Architecture
	3.2 Soundness Issue
	3.3 Soundness Criterion
	3.4 Practical Relevance
	3.5 Example: Dynamically-Bound Calls

	4 Product Programs and Concurrency
	4.1 Concurrent IVL Encodings
	4.2 Possibilistic Noninterference
	4.3 Probabilistic Noninterference

	5 Implementation and Evaluation
	5.1 Nagini
	5.2 Performance Overhead of the Product Construction
	5.3 Expressiveness and Comparison with SecC

	6 Related Work
	7 Conclusion
	References

	Constraint-Based Relational Verification
	1 Introduction
	2 Overview
	2.1 Relational Verification Problems
	2.2 Challenges and Contributions

	3 Predicate Constraint Satisfaction Problems pfwCSP
	4 Relational Verification with Constraints
	4.1 k-Safety
	4.2 Co-termination
	4.3 Generalized Non-interference

	5 Constraint Solving Method for pfwCSP
	5.1 Predicate Synthesis with Stratified Families of Templates

	6 Evaluation
	7 Related Work
	7.1 Relational Verification
	7.2 Predicate Constraint Solving

	8 Conclusion
	References

	Pre-deployment Security Assessment for Cloud Services Through Semantic Reasoning
	1 Introduction
	2 Preliminaries
	3 Formalization and Encoding of IaC Deployments
	4 Security Properties Specification
	5 Application to Existing Infrastructure
	5.1 Found Security Issues

	6 Semantic Reasoning About Dataflows
	7 Related Work
	8 Conclusion and Future Work
	References

	Synthesis
	Synthesis with Asymptotic Resource Bounds
	1 Introduction
	2 Overview
	2.1 Type-Directed Synthesis
	2.2 Adding Resource Bounds
	2.3 Checking Recurrence Relations

	3 The SYNPLEXITY Type System
	3.1 Syntax and Types
	3.2 Semantics and Cost Model
	3.3 Typing Rules
	3.4 Soundness

	4 The SynPlexity Synthesis Algorithm
	4.1 Overview of the Synthesis Algorithm

	5 Extensions to the SynPlexity Type System
	6 Evaluation
	6.1 Comparison to Prior Tools
	6.2 Pruning the Search Space with Annotated Types

	7 Related Work
	References

	Program Sketching by Automatically Generating Mocks from Tests
	1 Introduction
	2 Overview
	3 The Sketcham Algorithm
	4 Evaluation
	4.1 Performance
	4.2 Case Study: Deduplication
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Counterexample-Guided Partial Bounding for Recursive Function Synthesis
	1 Introduction
	2 Background and Notation
	3 Formal Definition of the Synthesis Problem
	4 Recursion-Free Approximations
	4.1 Partially Bounded Quantification
	4.2 Refining Systems of Equations

	5 Synthesis Algorithm
	5.1 Expand : Producing Maximally Reducible Terms
	5.2 Counterexample Generalization
	5.3 Algorithm Properties

	6 Implementation
	6.1 Verification and Synthesis Oracles
	6.2 Baseline Method
	6.3 Optimizations

	7 Evaluation
	7.1 Case Studies
	7.2 Experimental Results

	8 Related Work
	9 Discussion and Future Work
	References

	PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs
	1 Introduction
	2 Using PAYNT
	3 Synthesis of Probabilistic Programs
	4 Tool Architecture of PAYNT
	5 Performance Evaluation and Applicability
	References

	Adapting Behaviors via Reactive Synthesis
	1 Introduction
	2 Preliminaries
	3 Separated GR(k) Games
	4 From Transducers to Separated GR(k)
	4.1 Additional Usages of Our Technique

	5 Overview for Solving Separated GR(k) Games
	5.1 Algorithm Overview and Intuition
	5.2 The Delay Property

	6 Algorithms for Solving Separated GR(k) Games
	6.1 Realizability and Synthesis for Weak Büchi Games
	6.2 Realizability and Synthesis for Separated GR(k) Games

	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion
	References

	Causality-Based Game Solving
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Subgoals
	5 Causality-Based Game Solving
	5.1 Symbolically Represented Strategies
	5.2 A Recursive Algorithm
	5.3 Special Cases with Guaranteed Termination

	6 Case Studies
	6.1 Game of Nim
	6.2 Corridor
	6.3 Mona Lisa
	6.4 Program Synthesis

	7 Conclusion
	References

	Author Index

