

Twining

Twining

Anastasia Salter

and

Stuart Moulthrop

Amherst College Press

Amherst, Massachusetts

Copyright © 2021 by Anastasia Salter and Stuart Moulthrop

Some rights reserved

This work is licensed under the Creative Commons Attribution-NonCommercial

4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

References to internet websites (URLs) were accurate at the time of writing.

Neither the author nor Amherst College Press is responsible for URLs that may

have expired or changed since the manuscript was prepared.

Published in the United States of America by Amherst College Press

DOI: http://dx.doi.org/10.3998/mpub.12255695

ISBN 978-1-943208-24-1 (paper)

ISBN 978-1-943208-25-8 (OA)

http://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.3998/mpub.12255695

Contents

INTRODUCTION. Why Twine?

CHAPTER T-1. Twine as Platform

CHAPTER P-1. From Links to Stories

CHAPTER T-2. Twine (R)evolutions

CHAPTER P-2. Variation

CHAPTER T-3. Twine and the Question of Literature

CHAPTER P-3. Generation

CHAPTER T-4. Queer Twine and Camp

CHAPTER P-4. Too Much Twine

CHAPTER T-5. Twine and the Critical Moment

CHAPTER P-5. Conceptual Twining

CONCLUSION. Forever Twine

APPENDIX I. Interview with Chris Klimas

APPENDIX II. Interview with Dan Cox

APPENDIX III. Bonus Practical Chapter: Beyond Twine

Introduction

Why Twine?

In March 2020, classrooms around the world were abruptly

shuttered and life moved online. In an interactive

storytelling class at the University of Central Florida (UCF)

that semester, we were in the middle of a unit on interactive

fiction, working with Twine and discussing strategies for

crafting hypertextual narratives. Twine is a platform for

personal storytelling and individual disruption on an

increasingly corporate web. The software, and the work it

enables, is deceptively simple: the visual interface

emphasizes approaching creation through metaphors of

passages and links. Thanks to its combination of educator-

friendly development decisions—the software platform is

free to use, easy to access through a browser without

installation, and well documented with a beginner-friendly

learning curve—Twine makes frequent appearances in

courses of this kind around the world. However, this

association might suggest a tool for beginners, to be used

and moved beyond. Twine is more than that—as a platform,

it can be the destination as well as a tool for making the

journey to creating interactive works.

We started that class meeting with a round of exquisite

corpses (if you’ll forgive the term): writing story beginnings

on paper and folding away all but the last words and passing

them around the room to take unexpected twists. The stories

took dark turns almost immediately—the news was already

grim, and Twine didn’t present much of an escape. Each

class meeting opened with an apology for the examples

featured. So many of the most powerful works made in Twine

draw us into moments of despair: Zoë Quinn’s Depression

Quest, with its simulation of the struggles of moving forward

with clinical depression; Anna Anthropy’s Queers in Love at

the End of the World, which places the player in fleeting last

moments with a lover; Michael Lutz’s vision of horror and

abuse in My Father’s Long, Long Legs—the list goes on and

does not include many of the escapist narratives still

inextricably linked to our expectations of games. In the

moment, some of these works became even more loaded,

resonating differently as we played through our fears.

This is not to say Twine is only a tool for making

depressing things or that Twine and hypertext must go hand

in hand with crisis, struggle, and turmoil. However, Twine is

a tool that particularly resonates for those with something

personal to say, and Twine’s importance and visibility on the

web have often risen correspondingly with conflict (there is

more to say about this in chapters T-4 and T-5). At a time

when our technology is increasingly complex, sealed in tiny

boxes and inscrutable to most of its users, Twine is

transparent and open. At a time when our software is

produced by large teams, with most of the production

members hyperfocused on a project part, Twine allows a

single person to develop an interactive experience

holistically, without relying on any external specialist’s

knowledge. Twine is a tool for resisting the dominant

interactive storytelling of our times and, as such, tends to be

a tool for chronicling resistance and struggle.

But to return to the classroom the teaching of the theory

and practice of interactive storytelling is an interwoven

challenge of competing histories and terms. To gamers, the

history has been written by mainstream game design

companies and with increasingly cinematic visuals

accompanying lavish environments. To electronic literature

authors and scholars, it is a history told in competing

platforms and continually deprecated tools, pushed to their

limits for narrative experiments. To interactive fiction players

and authors, it is a history of textual play and riddles, told in

parsers and, sometimes, in hypertexts. Crafting a course in

this area requires navigating these competing histories as

well as students’ own very different visions of what

interactive storytelling should become.

Twine doesn’t fit into any one of these histories—it moves

freely among all three. Created by independent software

developer Chris Klimas and released in 2009, Twine has

gone through several iterations and includes a range of

story formats that extend the underlying editor’s capabilities

to allow creators to build a wide variety of stories and other

textual constructions. The second iteration of Twine, Twine 2,

extended the accessibility of the platform by bringing a

browser-based version of the development tool to users

(Klimas). The things both Twine and Twine 2 allow users to

make are united by their emphasis on choice, as Twine is at

its heart a system for making passages and links that the

user navigates to different ends. These choice-based

systems can in turn become, in the hands of different

makers, a platform for making games, crafting electronic

literature, building simulations, documenting experiences,

or telling interactive fictions. The resulting range of works

confounds inclusion in the categories of “game” or “story,” a

false binary we will question throughout this work.

To return to our classroom, we were approaching Twine first

through this lens as a user-friendly tool: at its base, Twine

offers a graphical framework for making hyperlinked

content, most often compacted into a single hypertext

markup language (HTML) file (barring external resource files,

such as images and sounds) for easy web distribution and

longevity of access. Twine’s tagline in the GitHub repository,

where the history of the code is embodied in versions and

iterations spanning years, describes it succinctly as “a tool

for telling interactive, nonlinear stories” (Klimas). It is open-

source and user-friendly, often recommended to newcomers

to interactive making for whom code and procedural, rules-

driven thinking is unfamiliar. In a classroom of students from

different backgrounds, with varying knowledge of

programming, Twine can be an equalizer—the quality of the

story created has little to do with expertise in code but

instead is driven by the honesty of the narrative and the

crafting of the experience.

These are the Twine concepts we were working through

together, offering players choices but then restricting them

to produce manageable—and meaningful—narrative play. In

that final, in-person meeting, we didn’t know that we

wouldn’t be seeing one another for a long time, that our

daily choices would be changing, as the restrictions and

rules under which we operate were abruptly rewritten for

public safety. We didn’t know when we’d see the new fears

of public spaces change—indeed, we still don’t know. The

broader landscape of the communities making interactive

narratives is still shifting to adapt as I write this. The Game

Developers Conference was canceled, with online talks

replacing the largest annual gathering of the games

industry. LudoNarraCon 2020 and NarraScope 2020, two

celebrations of narrative video games and interactive fiction,

respectively, moved online to streaming video rather than

physical gatherings. We will address these types of

gatherings, and their role in shaping Twine and the

surrounding community, throughout the work—while Twine

exists online, such physical convenings have been a part of

building Twine’s influence.

It is thus no surprise that when the students’ Twine stories

were finally submitted online, weeks later, many of them

dealt with COVID-19. The original final project for the class

was simplified in favor of Twine’s spiritual compatriot Bitsy, a

graphical, web-based platform for small games with

constrained, pixelated graphics and an emphasis on

exploration and dialogue. The interactive stories of the rest

of the semester frequently reacted to the moment—students

built games about being confined in a room or dodging

viruses in the one-way aisles of a grocery store; stories

captured the claustrophobia of the home or invited players

into social-isolation baking. Stress and fear and boredom

fueled these interactive works, made for the browser,

playable quickly, resonating with one another in exchanges

through the class discussion forums.

One genre that persists in interactive fiction—particularly

of the parser variety, where players input combinations of

nouns and verbs to interact with a system, solve puzzles,

and progress in a narrative—is the locked room. (One of our

practical examples, Twine Box in chapter P-5, puts a twist on

this theme.) A digital kindred of the physical escape room,

the locked room in adventure games always presents the

player with a variant on the same challenge: to get out. By

contrast, the games that COVID-19 has inspired focus on the

internal struggles of staying in. Within the locked room,

players struggle with internalized anxiety, domestic tasks,

and monotony. The threat of the external is ever-present, but

the resistance of temptation and need to leave dominates.

This theme recurs in the Twine games posted to events like

the “Quarantine Game Jam.” G. Deyke and Damon L.

Wakes’s Quarantine Quest entry in the jam (figure 1) opens

with the real and moves quickly into the surreal, imagining

nightmare scenarios and inviting the player to reflect

through them (Deyke and Wakes). Games like these emerge

in the moment, without the need for large investments in

time or capital, and with no delay between the moment of

completion and release.

This is where Twine excels—in the internal, the personal,

and the immediate. We could take any large event and find

similar traces—Twine games responding to the 2016 election

in the US and to Brexit; Twine jams at the height of the

cultural war of Gamergate; Twine games responding to

incidents of police brutality—Twine games as protest, as

documentation, as an emotional response to a moment.

Twine is part of a growing category of tools that focus on

allowing rapid procedural creativity, removing barriers of

both hardware and knowledge. It also removes barriers in

distribution, allowing for the rapid sharing of whatever is

made, removing gatekeepers and creating an ease of “free”

distribution (in the sense that any online trafficking is free).

Twine’s accessibility for making is key to its impact. Using

Twine and Bitsy for remote coursework allowed us not to

worry about the power of any student’s computer: even

students with Chromebooks or long-outdated machines

could still load a web browser on even a limited internet

connection and easily make, and play, the works these tools

create. Twine is an ideal tool for this moment in teaching but

also for this moment in living and making.

Figure 1: Killing time in the interior space of Quarantine Quest (Deyke

and Wakes)

Defining Twine

When you first open Twine’s interface to make something,

you are presented first with a request to name your story,

followed by the opening of the screen to a grid with a single,

untitled passage waiting for editing. The interface

immediately communicates the basic instructions:

placeholder text reading “Double-click this passage to edit

it” waits for a rewrite. This opening explicitly recommends a

story, but works produced in Twine go under many names:

games, interactive fiction, stories, websites, quizzes,

resources, essays, and so forth. Klimas notes this

“confounding” variety as a strength of the platform he hopes

only increases: “I also want it to be even more confounding,

that not only can the world be unable to decide whether

things made with Twine are stories or games, but also

whether they’re sprawling commercial masterpieces or

intensely personal stories. I want people—not gamers, not

readers, just people—to experience something they love

unabashedly and never realize it was made with Twine”

(sub-Q).

Twine doesn’t offer a blueprint for what these confounding

works might become, but its interface does encourage

certain approaches: the size of a passage box, and the very

term passage, encourages creators to think and work in

nodes. The omission of any fixed structure for the

organization of links allows for any thought to become a

connection, with works emerging as the creator moves from

thought to thought. Passages are easily reorganized and

moved, but their position has no impact on the story

structure, offering authors a flexible design board for

rethinking as they work.

Because it defies such easy categorization, Twine as a

platform sits among many fields of study that we will draw

on throughout this volume. Twine works evoke commentary

on literary and aesthetic choices as well as design elements

that center interaction and play. In this book, we will draw

on the disciplines of literature (electronic and otherwise),

film and media studies, games and software studies, and

perhaps others as needed to make sense of Twine’s

influence. We hope the variety of our discussion is less

“confounding” than thought-provoking or revealing, but in

the words of an old hypertext fiction, “there is no simple way

to say” what Twine means to us and the worlds in which we

work—which brings us to another complexity (Joyce). This

book contains more than commentary. Meant for active

exploration as well as critical understanding, the book pairs

each chapter of reflection with a chapter of practical

exercises. Whatever else Twine may be, it is first for us a

means for making.

However, as we reflect on Twine in 2020 in a time of

international social distancing, we are also reminded that

Twine’s making is situated. Twine is continually reimagined

in dialogue with cultural forces—and as a result of its

continual usage in resisting the corporate hegemony of the

games industry and the social-media-dominated,

commercially platformized web. Twine encountered a surge

of critical attention and visibility in 2014, at the height of

Gamergate, a cultural war driven by misogyny and a

reductive, purist view of gaming that left no room for the

type of game-making that Twine enables. This attention took

what is still a community-driven tool within games and

interactive fiction spaces and moved it dramatically into the

spotlight in a way that similar platforms, such as Inform 7,

have rarely been centered, forever associating Twine with

the culture wars even as its influence extends beyond that

moment. Laura Hudson drew the popular gaze to Twine with

her article on the phenomenon in the New York Times, which

highlighted Twine (and Zoë Quinn’s game Depression Quest)

as the spark that fueled the raging conflict. Hudson calls

Twine “the video-game technology for all” and, in doing so,

cements Twine’s centrality to alternative, personal game-

making (Hudson). This emphasis on Twine’s influence in

games communities can be viewed as a reaction to the lack

of inclusivity in mainstream gaming spaces, as Carolyn Petit

pointed out in her 2013 essay on Twine’s importance: “When

games are by the people—by women and gay people and

poor people and the culturally marginalized and kids

growing up in Iran and not just primarily by the people who

are paid to make them by companies selling products

designed to appeal to as many customers as possible—they

will inevitably be for the people, too. Twine is a small but

important step in this direction” (Petit).

To its developers, Twine is a platform for making

hypertextual things—a platform whose capabilities are

continually being extended and reimagined in light of users’

creative interventions. To its critics and advocates, Twine is a

tool for resistance and even revolution—for defiance and

reimagining the future of genres of media production that

were otherwise closed and stagnant.

In the introduction to the pivotal Twine-centered collection

Videogames for Humans, merritt k calls Twine the force

behind a “quiet revolution”: “Taken up by nontraditional

game authors to describe distinctly nontraditional subjects

—from struggles with depression, explorations of queer

identity, and analyses of the world of modern sex and dating

to visions of breeding crustacean horses in a dystopian

future—the Twine movement to date has created space for

those who have previously been voiceless within games

culture to tell their own stories, as well as to invent new

visions outside of traditional channels of commerce” (merritt

k).

That collection documents Twine’s revolutionary potential

through the words of many of Twine’s most influential

creators, including Anna Anthropy, Christine Love, Zoë

Quinn, and many others whose work we encounter here. To

call such creative forces “users” of software is reductive—

these creators have contributed to the platform, directly and

indirectly, and provided the blueprints of how Twine works

can explore the poetics of choice and its absence.

As scholars, we are admittedly adjacent to this revolution,

looking in at least partly from the outside—and, some might

argue, looking down from the relative privilege and financial

comfort of the so-called ivory tower (although in the wake of

COVID-19, that same tower’s foundations are shaking, if not

collapsing). This positionality also impacted our approach to

interviews, and we frequently relied upon existing material

rather than ask for further time and resources from the

creators whose work we engage here. We understand and

acknowledge the limitations (and risks) of the academic

gaze. Yet our relationship with Twine is still personal, and it

is this thinking that guides our approach to Twine

throughout the book: the histories we tell acknowledge our

relationships with the platform, its creators, and the works

herein. Our work with Twine is entangled with our own

histories—this book was written alongside several years of

reading, making, and teaching with Twine. The final

manuscript was submitted during the first uncertain months

of COVID-19-enforced social distancing, which in turn

reshaped our collective relationship with the web.

Scholarship is always driven by one’s own perspective and

position but is not always forthright about this connection.

We argue here that Twine works demand personal and

emotional engagement as well as theoretical and

intellectual engagement and that, at times, these lenses are

inseparable.

About the Book

This book is unlike a lot of academic projects. Its concerns

range from autoethnography to close reading to something

like critical code studies, from the abstractions of Wallace

Stevens to the polychrome delights of “trash spinning.” It is

both a critical study and a guide to creative practice. The

mixed nature of the work flows from our subject, which is

both a tool for making and a made thing. Twine is an

unlikely proposition—a software platform crafted entirely by

volunteers, some of whom have never met in person, and a

worldwide community of creators who explore and expand

the platform. To understand this phenomenon, we do a kind

of history, or tell stories, primarily about the decade from

2009 to 2019 but with inevitable references to earlier

moments—and also the present, as current events are very

much with us.

About that “us”—the book is written in two voices, both of

whom will say “I” on some occasions and may speak of

themselves in the third person, though generally, you will

find a broadly inclusive “we.” Though we wrote this book

together in equal measure, we are different people, one a

scholar in midcareer, the other an old hand closer to the

end. To compare great with small, it is worth remembering

the way Deleuze and Guattari open A Thousand Plateaus,

observing that “since each of us was several, there was

already quite a crowd” (Deleuze and Guattari 3). Like most

people loosely aligned with the digital humanities—and

there may be no other way to toe that line—we are by turns

creative and reflective. We make things with various tools

and platforms and think about the implications of what we

and others have made. In some cases, the making and the

thinking may be hard to tell apart, which is fine.

Above all, this book is a fusion of theory and practice. That

is why we called it what we did: Twining, a noun derived

from a verb, a name for an action or activity. The

organization of this book encourages you to take up Twine’s

invitation. Each section alternates between reflection and

making. The treatments of theory (broadly construed) are

labeled as T-X and position Twine as a platform and examine

its trajectory of influence across cultural forms and domains.

The practical segments, labeled as P-X, start with the

fundamentals of Twine making, then explore different

techniques and trajectories drawing upon ideas from the

Twine creators whose work is examined throughout. Each

example of practice includes its source code and thus can be

modified, prodded, and remixed for your own purposes.

Access this source code directly through the project’s

GitHub repository, Twining, at

https://github.com/AMSUCF/Twining.

https://github.com/AMSUCF/Twining

Note that throughout this work, references and URLs are

given to projects that are, like the web itself, unstable. The

reference locations provided are the last available versions

of those resources: in some cases, they can be accessed via

the Wayback Machine, but in other cases, they are lost to

the web. We hope through this work to play a small part in

preserving this important history of contributions through

our discussions, citations, and screenshots but acknowledge

that even as Twine will continue to change, even the source

code for these examples (and, indeed, GitHub itself) might

eventually disappear.

The narratives and play-centered examples focus on the

personal, literary, expressive potential of Twine, and we

hope they provide seeds for your own making. Throughout,

we also point to the resources already created and shared

within the Twine community, such as the open-source Twine

Cookbook (Cox). We cover a few of Twine’s major technical

variations or story formats, generally sticking with the

Chapbook format and others currently popular among

makers and writers, although those trends are subject to

change as new voices enter the authorial sphere.

Community resources like the Cookbook and similar online

documents offer tools for taking your next steps in Twine

making.

In the first theoretical chapter, T-1, we position Twine as a

platform, looking at the influence of open-source ethos on

development and positioning it in relationship to other tools

both hypertextual and games-leaning. What makes Twine

appeal to marginalized communities in the forgotten corners

of the web, and how is this positioning distinct from the tools

that have preceded it (and will, perhaps inevitably, follow)?

How does Twine’s relationship to code and not-code play an

integral role in its reception and cultural rise? The practical

section similarly introduces Twine but with a lens toward

making, introducing the fundamental practices of passages

and links and exploring the underlying assumptions of the

code.

The first practical chapter, P-1, introduces the interface

and operating framework of Twine, laying out basic concepts

and nomenclature. Each practical chapter works through a

series of exercises or projects. The series in chapter P-1

explores basic hypertext linking, moving from linear to

multilinear examples, exploring some of the creative and

cognitive challenges of linked writing along the way. The

mechanisms introduced are sufficient to create an

expressive work in Twine: indeed, some of the most powerful

works created make no use of the more elaborate

mechanisms of code and audiovisual enhancement covered

in the later chapters.

The second theoretical chapter, T-2, takes an

autoethnographical lens to Twine, unraveling the

complexities of thinking of Twine as a tool for simultaneously

making things and challenging culture. Twine is intensely

personal as a platform—the most lasting and powerful

stories that have emerged from it are often raw, vulnerable,

and passionate. Our connection to it is similarly personal

and grounded in both our own histories with the web and

hypertext and our communities of practice. We begin by

positioning Twine and this relationship, thinking through

Twine as a tool and using our own lens to get at the “why” of

Twine: Why is Twine significant now, in a media landscape

where hypertext has become mundane? In the practical

section of chapter two, we dive into variation, examining

Twine’s take on the variable and looking across the range of

Twine’s capabilities.

The second practical chapter, P-2, addresses the theme of

variation on several levels: the potential for variable text

within Twine works, the multiplicity of styles available to

Twine writers, and the variations of the software itself,

ranging across story formats and scripting resources. The

examples move beyond simple node-link replacement to

explore techniques in which Twine texts can change either

between readings or as we read them, in response to random

selection or reader choices. This chapter includes two

projects using Harlowe, a story format with more robust

scripting support.

The third theory chapter, T-3, takes up the (for some)

uncomfortable question of how Twine works fit into literary

traditions—if at all. It works through commentaries on two

Twine works, John McDaid’s We Knew the Glass Man (2019)

and Porpentine’s With Those We Love Alive (2014). The first

work looks back in irony toward high modernism, invoking

the ghost of Wallace Stevens. The second work lives in a

more contemporary world of dark fantasy and the milieu of

independent game creation. These works are discussed both

as narratives and as technical achievements, with a detailed

examination of parts of their code. To understand With Those

We Love Alive as a game, it is compared to Valve’s classic

Portal series, another story of mothers, daughters, and

dungeons.

Chapter P-3 builds on the concepts of textual variation

introduced in the previous practical chapter to explore the

idea of text generation: assembling readable content by

selecting from a set of components according to some

logical procedure. The chapter introduces a primary design

pattern, the substitution grammar, which will be used in

later chapters. This chapter moves deeper into

programming, considering a more ambitious use of variables

in Chapbook as well as the inclusion of JavaScript code, an

especially powerful affordance of this story format.

In chapter T-4, we turn our attention from the text to

Twine’s visual and dynamic aesthetics and the visual play at

work in camp works built in Twine. Positioning this play with

color, animation, and throwback web elements in

relationship to camp, we consider the rise of Twine as a

platform for queer storytelling and resistant play. Through

an examination of works that have come to define Twine’s

influence, we note how the association of Twine with

marginalized creators and the poetics of queer storytelling

have shaped the platform. Given the dominant

heteronormativity and transphobia of the wider games

discourse, we note the importance of queer Twine as a point

of departure and resistance.

Chapter P-4 explores the “too much”-ness of Twine, with

projects exploring ways to add excess through movement,

audiovisuals, and external JavaScript libraries such as Kate

Compton’s powerful procedural grammar, Tracery. In these

exercises, we explore the practical side of developing camp

Twine and explore the techniques Twine creators have used

to break their players’ expectations of the medium while

incorporating aesthetic playfulness, visual extremes, and

novelty.

In the last of the theory chapters, T-5, we bring together

the insurgent impulses of camp Twine and the claims of

literary legacy by looking at Twine works in a critical

moment—both a moment of crisis (inevitably) and an

opportunity for critical intervention or decision. The ultimate

focus of this chapter is Anna Anthropy’s game of apocalypse,

Queers in Love at the End of the World (2013), which we

examine through lenses including queer gaming and game

narrative generally, reading it against Davey Wreden’s art

game The Beginner’s Guide (2015) as well as other

references in various media.

The final practical chapter, P-5, is devoted to projects that

move beyond technique to concept. Its series of examples

explore various ways stories and games made with Twine

can call attention to and investigate their own forms and the

nature of stories, games, and language itself. Using

Chapbook exclusively, the chapter covers almost no new

technical material but is intended instead to consolidate

practical understanding and emphasize the connection

between technical exploits and the development of

meaning.

Following the last practical chapter is a conclusion that

takes up skeptical questions about Twine concerning its

aesthetics, its creative community, and its economic basis.

Though acknowledging a mixed outlook, especially in the

last area, the chapter offers three arguments for the

continued development of Twine, based on the “cognitive

mapping” of platform capitalism, the contribution of

computational creativity to language, and, ultimately, on

unabashedly personal investments in a multigenerational

project.

Three supplementary sections round out the book: an

interview conducted with Chris Klimas during our early

research, an interview with Dan Cox, author of the Twine

Cookbook and other key resources, and a bonus practical

chapter that bridges Twine techniques to forms of web

coding independent of that platform. While these

techniques go beyond Twine, they demonstrate Twine’s role

as part of an ecosystem and its educational potential as a

path to other web development platforms and approaches.

On a technical note, wherever possible, examples will be

updated in the online edition of this work to reflect changing

Twine standards. However, obsolescence is inevitable, and in

that spirit, we hope to provide both the context and the way

of thinking for working with Twine as well as code in the

hopes that one of these things will outlive the other. When

preservation is no longer viable, this work will serve as a

record of the Twine that was and hopefully provide some

inspiration for what comes after. The future of Twine will

likely be more fragmented than its current iteration—

already, different story formats within Twine require different

syntaxes and focus on more specialized use cases or ways of

thinking about making. Given that, it is important to attend

to the specifics of the practical chapters and note the

formats each example is coded to use.

As an open-source platform, Twine reflects its creators’

dedication to making a tool that could be used widely and

freely. This book is similarly open access, intended as a gift

back to the Twine community. We particularly hope that in

the coming years, as Twine continues to serve as a platform

for sharing and imagining the future, our words will in some

way provide a starting point for new voices.

Finally, we want to express gratitude to a number of

people who have helped us finish this project. We thank our

editor at Amherst College Press, Beth Bouloukos, and the

readers of our first draft, who have made the book

substantially better, as well as the technical editorial team

from Scribe Inc. for their detailed attention. Noah Wardrip-

Fruin of the University of California, Santa Cruz, gave crucial

feedback on parts of the manuscript. Colleagues and

graduate students at UCF and the University of Wisconsin–

Milwaukee have shaped our thinking and tested our code.

Dan Cox’s Twine resources and work, as well as his

generosity in engaging with drafts and technical errors in

this volume, have been invaluable. Any remaining errors are

our own. Thank you to all the creative voices reflected here

—and particularly to Chris Klimas for Twine itself.

Works Cited

Cox, Dan, ed. “iftechfoundation / twine-cookbook.” 2017.

GitHub. Accessed 2019.

https://github.com/iftechfoundation/twine-cookbook.

Deleuze, Gilles, and Félix Guattari. A Thousand Plateaus:

Capitalism and Schizophrenia. Translated by Brian

Massumi. University of Minnesota Press, 1987.

https://github.com/iftechfoundation/twine-cookbook

Deyke, G., and Damon L. Wakes. “Quarantine Quest.” itch.io,

April 2020. https://gdeyke.itch.io/quarantine-quest.

Hudson, Laura. “Twine, the Video-Game Technology for All.”

New York Times, November 19, 2014.

https://www.nytimes.com/2014/11/23/magazine/twine-

the-video-game-technology-for-all.html.

Joyce, Michael. afternoon, a story. Tinker’s Dam Press, 1986.

Klimas, Chris. “klembot / twinejs.” Github, 2019.

https://github.com/klembot/twinejs.

merritt k, ed. Videogames for Humans: Twine Authors in

Conversation. Instar Books, 2015.

Petit, Carolyn. “Power to the People: The Text Adventures of

Twine.” GameSpot, January 21, 2013.

https://www.gamespot.com/articles/power-to-the-people-

the-text-adventures-of-twine/1100-6402665/.

sub-Q. “Developer Interview: Chris Klimas.” August 20,

2015. https://sub-q.com/developer-interview-chris-

klimas/.

http://www.itch.io/
https://gdeyke.itch.io/quarantine-quest
https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-all.html
https://github.com/klembot/twinejs
https://www.gamespot.com/articles/power-to-the-people-the-text-adventures-of-twine/1100-6402665/
https://sub-q.com/developer-interview-chris-klimas/

CHAPTER T-1

Twine as Platform

We have introduced Twine, and indeed, Twine has more

widely been studied, primarily through the works it enables.

This raises a preliminary question: What is Twine for, and

what do we call the things it makes? This simple question

holds the shadow of a much larger history of definitional

tension surrounding games and what “counts.” More

importantly, who gets to decide what—and, by extension,

who—counts as part of the discourse of game design? The

shadow of a history of misogyny, exclusion, racism, labor

abuses, and general awfulness in video game culture looms

large over this question. We will wrestle with Twine’s place

(and our own) in this history throughout our study of Twine,

and if you engage in the making of Twine works as our

practical chapters invite you to do, you, too, might find

yourself facing questions of where your work fits—and what

it should be called.

In academic circles, the desire for definitional clarity might

be understood through the discourse of formalism or

(broadly) the placement and understanding of a work

according to its structure. And formally speaking, Twine

works are near immediately recognizable unless their

creators go through significant work modifying the final

interface: while each story format (a set of rules that overlay

Twine’s central logic) has its signature interface design, the

general structure of passage-driven, hyperlinked narrative

holds. The two generations of the Twine editor are

fundamentally similar, as the dominant metaphors remain

consistent, but they differ in the details. Rather like a

branching Twine narrative, the history of Twine and its

significance as a platform is a threaded, nonlinear tale, and

how we tell it depends on where we begin in defining Twine

works. This is no small decision, so before we make it, let me

move toward a definition that will resist completion and

finality as we move through this work. The front page of

www.twinery.org offers a straightforward summary of the

platform that notably makes no mention of games, a

deliberate omission we will return to shortly:

You don’t need to write any code to create a simple story

with Twine, but you can extend your stories with

variables, conditional logic, images, CSS, and JavaScript

when you’re ready.

Twine publishes directly to HTML, so you can post your

work nearly anywhere. Anything you create with it is

completely free to use any way you like, including for

commercial purposes.

Twine was originally created by Chris Klimas in 2009

and is now maintained by a whole bunch of people at

several different repositories. (Klimas, “Twine”)

This initial definition suggests that Twine works are, most

fundamentally, stories. The reality is more complicated.

Twine has been used recursively as a tool to build tutorials;

rhetorically as a tool for arguments and essays; abstractly

for poetry and generative art; and educationally for making

materials across disciplines, to name only a few instances.

More recently, the Twine Cookbook, maintained by Dan

Cox, breaks down these features into usable demos across

the many versions, or formats, of Twine. The Cookbook notes

that the terms used in Twine are intended to be not

limitations but opportunities: “Anything made using Twine

can be called by any name. They are no rules on naming

http://www.twinery.org/

conventions and everything from experimental games to

more traditional novels can be created in Twine. Everything

is welcome. In general, the Twine editor calls individual

projects Stories” (Cox, “iftechfoundation / twine-cookbook”).

When we call Twine a software platform for the

development of games and interactive stories, we risk being

simultaneously reductive and overgenerous with our

description: not all things made with Twine fall into these

easy categories, and as a software platform, Twine can make

pretty much any genre of interactive text the user envisions.

The term software platform evokes Lev Manovich’s

discussions of the power of “cultural software” in shaping

(and allowing users to shape) culture, from Adobe Photoshop

and Flash to Microsoft’s Visual Studio (Manovich 3). Within

this space, Manovich argues for the need for software

studies focusing on a range of categories of application:

within his hierarchy, Twine falls perhaps most easily into the

category of “media software” or content creation software

broadly (Manovich 24). It is in its resemblance to the tools of

this category (graphical interface–driven metaphors of

making) rather than the programming-driven category that

Manovich describes as falling outside of this mainstream

thanks to the dividing line of code: “Today, a typical

professional graphic designer, film editor, product designer,

architect, music artist—and certainly a typical person

uploading videos to YouTube or adding photos and video on

her/his blog—can neither write nor read software code.

(Being able to read and modify HTML markup, or copy

already pre-packaged lines of JavaScript code is very

different from programming)” (Manovich 31).

The dismissal of basic web development as “different”

from programming in Manovich’s parenthetical is notable,

particularly as the book Software Takes Command was

published in 2013—the same year public media attention

was drawn to Anna Anthropy’s “Twine revolution,” where she

offered an explanation of Twine’s appeal that similarly put it

in a category separate from programming: “This last year . . .

people have really adopted Twine, which is a free tool for

making text games. And aside from being free, it’s really not

programming at all—if you can write a story, you can make a

Twine game” (Ellison).

Both Manovich and Anthropy draw a line around

programming, a term that carries with it heavy baggage of

gatekeeping and a recent history of exclusion (again, the

shadow of who counts—and who owns—the culture of Silicon

Valley and its global influence looms large). They focus their

gazes on something else: the type of cultural software that

allows anyone to make, presuming some foundational digital

literacy. This association of Twine with the absence of

programming is, of course, illusory: as you will experience in

the practical chapters, Twine is entangled with code, and the

code is at some level inescapable. “Code” itself has many

layers of meaning and nuance: markup languages such as

HTML primarily annotate and structure content, while

scripting languages such as JavaScript center on

interactivity. Twine adds its own layers over both, but in

simplifying, it also imposes its own new structures and

abstractions. While the graphical user interface (GUI)

significantly draws the user into hyperlinked visual making,

the passage boxes awaiting content must ultimately be

programmed in that strict rules must be followed to ensure

readability following the procedures of Twine’s underlying

machine. This contradiction is at Twine’s heart: it is a piece

of cultural software that allows a user to build complex

interactivity toward many ends, and it invites the user into a

rabbit hole of complexity where the entryway is paved with

language, not code. As the user moves forward, Manovich’s

dismissal might even be reassuring: this disguised HTML,

and precorralled JavaScript, is not programming at all.

This allure of Twine is, of course, not true at a fundamental

level: Twine is code, and Twine-making is programming, but

its structures are designed with user experience at the

forefront. The tension between what Twine makes easy and

what Twine makes possible is immense, and as is common to

communally supported software projects, the complexity of

entry to Twine has risen with its increased versatility even as

the variety of entry points and tutorials available has also

grown, complete with whole texts dedicated to learning

Twine: Melissa Ford’s Writing Interactive Fiction and Anna

Anthropy’s Making Games with Twine. Both of these books

are notably aimed at the game development community of

Twine.

Twine and Games

Though the definition of Twine provided on its own website

omits the term games, a history of the platform that begins

with usage (or starts in the tutorials, textbooks, and

examples that have gained notoriety) cannot escape the

term games. This term is hotly contested, all the more so as

of 2019, as I type these words five years after the

anniversary of Gamergate (whose specter haunts Twine and

this work). In their provocatively titled book Real Games,

Mia Consalvo and Christopher Paul examine the contested

definitions of game and its impact on what gets studied,

critiqued, and ultimately preserved: “Game studies

academics are themselves variably interested in what

constitutes a real game as a way to legitimate the field and

define an area of study. What gets left out of structuralist

arguments is the value judgment going into labels such as

game or not game. If something is not a game, then it is

decidedly less important from the field’s perspective”

(Consalvo and Paul xxv–xxvi).

In opening this volume, it is tempting to position Twine as

a games platform and to categorize Twine works as games.

Developing such a common framework would give us the

language of games studies for addressing Twine’s value—

and critiquing its structures—but more urgently, it would

also give us an easy case for Twine’s significance. Such a

claim would likely not go uncontested for long: in an entire

volume dedicated to reclaiming and examining cases of “not

games” ranging from Facebook games to walking simulators,

Consalvo and Paul do not mention Twine or even interactive

fiction. The “not games” they identify as edge cases are in

many ways closer to gamelike expectations than Twine

works. This is not to say there has been no intersection of

this discourse: indeed, there is a fundamental awareness of

formalism embedded in Twine. Twine creators have wrestled

with the question of the platform’s game-ness and, in doing

so, give us an entry point into positioning Twine as a form.

The extremism with which the word game is regulated

inspired the Twine metawork Is This a Game? released by

the Game Police in 2013. The work asks users humorously to

consider the degradation of language that might result if the

player calls the work in question a game. This “linguistic

singularity” path, if pursued, results in the player faced only

with the word game repeating meaninglessly. Commenting

on the game’s message, critic Steve Haske observed,

“Meanwhile, you can choose to change your mind,

rescinding your decision to call this thing a game. It creates

an interesting food-for-thought Catch-22: if you opt out,

then you haven’t just played a game. If you don’t, you may

not have the ‘game’ experience you thought you would

(though you can confusingly find an inherent design)”

(Haske).

Figure 2 captures the rhetorical style of the game (or not

game), which deliberately uses a mostly unmodified version

of the Twine Sugarcane style sheet, capturing the aesthetic

associated with Twine most widely at the time. The game

later takes this a step further, demonstrating how its

meaning eventually collapses under the weight of the word

game by literally replacing all other previously displayed

text and offering only the same word as a choice. While

perhaps unsubtle, this work is very much a product of its

time, offering a playable entry point into the controversy

over whose work counts in the game world.

This controversy was not one with merely academic

stakes. In the same year, the literal “game police” of Steam

Greenlight were deciding whether a Twine game, Depression

Quest, could be included on the game storefront. Being

present on Steam opens up a market of opportunities for a

designer, and Zoë Quinn’s work, tagged by them as

“interactive (non)fiction,” would be the subject of hostility

and debate. While the game was released in 2013 and had

already been recognized as a game within independent

spaces (including winning Best Narrative Game at Boston

FIG and Official Selection at Indiecade 2013), one of the

most popular discussion threads on the Steam Greenlight

page asked, “Can this be counted as a game?” (Quinn).

Figure 2: Is This a Game? escalates questions of formalism

Also in 2013, as questions of game-ness were rising

around the independent-developer scene, critic Leigh

Alexander offered a provocation on Twitter in defense of the

type of experiences represented by Depression Quest and

other works: “When people say games need objectives in

order to be ‘games,’ i wonder why ‘better understanding

another human’ isn’t a valid ‘objective.’ . . . Games need

‘challenges’ and ‘rules,’ isn’t ‘empathy’ a challenge, aren’t

preconceptions of normativity a ‘rule’[?]” (Alexander).

Alexander’s tweet was not well received and escalated the

debate as others joined in defending the formalist approach

as essential to drawing lines to define the object of study.

Designer and critic Raph Koster responded to this

provocation with a blog post entitled “A Letter to Leigh” that,

among other critiques of noninteractivity, asked why the

games don’t in turn show more empathy for him as a player:

“But I also find myself looking to the future, where I hope the

games have empathy for the player, rather than the other

way around, because it is a far harder artistic, and empathic,

challenge to understand an opposing point of view than it is

to present one’s own. I’ll be entertained by a rant I agree

with, and angered by a rant I don’t, but a debate is far more

likely to change my mind” (Koster).

Darius Kazemi’s “On Formalism” offers a playable response

to that letter, taking a quote from Koster and centering it on

the screen while offering a critique of Twine as a platform

through code. It opens unassumingly, presenting as a classic

Twine 1.X1 work with the hallmarks of SugarCube (a story

format for Twine with a side bar and restart button). Press

“click to continue,” however, and the screen breaks free. The

passage starts to move, and the player’s clicks turn into a

weapon gradually reducing the words to nothing (as shown

in figure 3). When the game was posted by Porpentine to the

Free Indie Games blog in 2013, it inspired a debate about

the definitions of interactivity and dialogue (Porpentine, “On

Formalism”).

In these critiques, formalism is a stand-in for the larger

debate of where games begin and end—a debate that is

used primarily to exclude and gatekeep—that also asks us to

question our relationship with games and the assumptions

that the very term makes us bring to our interactions with a

work. Game designer Robert Yang’s own blog post in

response to Koster’s (entitled, recursively, “A Letter to a

Letter”) further highlights the problematic aspects of

Koster’s claim, which Kazemi’s work makes playable (while

resisting “dialogue”): “I do think that you imply that this

inability to separate content from form is an inherent

(formal) weakness of personal games and the ways they

mean things. That, because these games can’t fit into a

formalist frame, they are thus less gamelike. Instead, I’d

argue that this is a weakness of a traditional formalist

approach: mechanics are often boring / limit what authors

can do with games. . . . ‘Dialogue,’ on an oppressor’s terms,

rarely results in empathy” (Yang).

Figure 3: The weaponization and transformation of “On Formalism”

after clicking

In labeling something as a game, we might limit it;

similarly, in labeling something not a game, we potentially

exclude it, and its creators, from the discourse of games and

what games might be. These challenges are worth pausing

on here, as we operate with an awareness and interest in

Twine’s place as a hypertextual platform but also see the

undeniable significance of claiming this platform in the

name of games: not just for what it does for Twine but for

what it does for games. It is no coincidence that these

definitional debates accompany the cultural challenges to

Twine, which we will examine in more detail throughout this

book. Given these tensions, I want to stress that in

examining Twine as a platform, we are not taking a formalist

lens; instead, we want to consider how Twine’s affordances

have played a role in making certain types of experiments

easier. To start with a simple claim, many of the games and

experiences that have been made in Twine center on the

personal, and the platform’s affordances seem to map well

to expressions that put the mechanics of choice—and denial

of choice—at the forefront.

In her examination of the framing of Twine as a game

platform alongside these tensions, Alison Harvey notes that

the community’s fundamental ethos plays a major role in

framing the type of work produced: while many game tools

offer tutorials based on shooting and conflict, Twine

collections and tutorials place their emphasis on “a different

set of preferred affordances” (Harvey 98). Look at the

tutorials for Stencyl, GameMaker, Unity, and so forth:

mechanics of movement, violence, and acquisition dominate

the expressive palette, pushing early designers to imitate

that which is already established (as broadening the

vocabulary of a graphical game is a different challenge than

empowering verbs in Twine). Similarly, game designer and

Twine luminary Mattie Brice expressed her thoughts on

games as objects in response to these debates:

There is much to be said in the way of a game’s form.

How is it structured, and how does that structure make a

difference? Let’s say someone submits something that

doesn’t look like a poem to a poetry contest. The judges

don’t necessarily go “This isn’t a poem, therefore, it is

not worth considering.” Rather, the form itself critiques

the established genre, it says “I’m a poem, and what are

you going to do about it?” The formal genres in writing

are for convenience only—ultimately, the kind of

criticism needed for flash fiction, prose poems, short

stories, novellas, and novels, is ultimately one in [sic]

the same. Maybe everything is really just poetry.

Boundaries, bones of old men before us, are only there

to be transgressed. (Brice)

As a platform, Twine inherits this contradiction. It is

structurally familiar and formally suggests so many

antecedents that it does not at first glance appear

transgressive—and yet it transgresses and transforms.

Transforming Hypertext

If we limit the lens of Twine as a platform to games, we

ignore the other spaces that Twine has transformed,

including hypertext itself and interactive fiction more

broadly. Drawing on interviews with developers and

community members as well as the embodied history of

Twine within forums, mailing lists, and the code database,

we will position Twine as a communal, open-source project.

Positioning Twine alongside other platforms of the web

(including precursors HyperCard, Storyspace, and Flash)

offers insight into Twine’s significance, which is not only a

matter of interface and affordances. We will consider Twine’s

positioning within communities such as Glorious

Trainwrecks, Tumblr, itch.io, and Philome.la and how the

circulation and discourse within these spaces have shaped

Twine’s life-span and influence. Astrid Ensslin and Lyle

Skains observe that Twine’s rise is a rejection of exclusivity

and platform control enabling a “writerly reader,” or

“(w)reader”: this “(w)readerly empowerment through co-

creation of narrative meaning cannot be imposed through

forms, texts, and theories that imply exclusivity of access

and assume that deconstructivist thought can be

implemented through manifest literary materiality. Instead,

http://www.itch.io/
http://www.philome.la/

movements like the Twine community and participatory

social media writing have shown that genuine wreadership

has to come from users themselves, driven by the aesthetic

and social needs of their own communities . . . and the

desire to get published as an experimental creative writer”

(Ensslin and Skains). While Twine is “owned” in a sense—

and, with the increased control of the Interactive Fiction

Technology Foundation (IFTF) over its future, communally

owned—it is not a closed or corporate platform, and its

output is entirely open to reverse engineering, making it a

purer form of hypertext in that it fundamentally compiles

into open web standards.

Twine is responsive to its moment and the platforms that

precede it: most of the earlier platforms are united by their

reliance on proprietary, corporate-owned technologies. The

web is littered with the unplayable or occasionally emulated

remains of works built on these platforms: Apple’s

HyperCard, perhaps the first popular hypertext platform,

vanished as the company shifted direction; Eastgate’s

Storyspace supported hypertext works sold on removable

media that are now almost entirely unplayable; and so forth.

The proprietary ecosystems and walled gardens of currently

popular ecosystems for games and electronic literature, such

as iOS and Android, are similarly fraught with demands for

continual updates that, if unmet, render work unplayable.

By contrast, the web’s standards have been relatively

reliable. It would be an exaggeration to say that HTML is still

what it once was—open a browser source of the original

HTML and HTML 5 and compare, and the tags are certainly

similar, but the act of translation required is daunting.

Fundamentally, we rely on this backward compatibility: we

assume that all other platforms might fail us, but the web

lives on. The dominant force in emulation is the Internet

Archive: Jason Scott and his team have made it possible to

reexperience many of the works created on platforms that

have fallen by the wayside.

There are many visual entry points into hypertext, but

most of them bring with them expectations of a corporate

purpose or information architecture–driven organization

system. Adobe Dreamweaver, with its drag-and-drop

interface elements and GUI-driven editor, is in stark contrast

to the playfulness of Flash. The WordPress interface (and

similar content management systems) emphasizes a

separation between form and content, offering modifiable

themes and blocks of content that do not easily lend

themselves to narrative. Meanwhile, opening up an .html file

and starting from scratch can quickly become a logistical

nightmare when it comes to tracking: nonlinear work

requires fragmentation, and those fragmentations require

significant marking with IDs (and tracking of past links) to

navigate. In an early reflection on hypertext literacy, “Nonce

upon Some Times,” Michael Joyce notes that the “paradox”

of hypertext relies on rereading, and that same rereading

makes development difficult without a dedicated tool for

visualizing the work:

Hypertext fiction in some fundamental sense depends

upon rereading (or the impossibility of ever truly doing

so) for its effects. Yet in a sufficiently complex and richly

contingent hypertext it is impossible to reread even a

substantial portion of the possible sequences. Indeed for

any but a reader who has consciously blazed his way

through the thicket (breadcrumbs, in fact, have become

a technical term for computer tools designed to keep

track of the reading of hypertexts) it is unlikely that

successive readings by a single reader will be in any

significant way alike. Even in less vigorous hypertext

systems such as current instantiations of the World Wide

Web, bereft of the systematic memory that shapes

possible readings, the linked surfaces of possibility

themselves compound. (Joyce)

Joyce writes in the earliest stages of hypertext, before the

link became utilitarian and familiar, so transparent as to

become unremarkable. However, he draws our attention to

the ways hypertextual linking can be playful, creative, and

confounding, defying the utilitarian future of the web.

Reconsidering Joyce’s concept of hypertext, and

particularly his emphasis on defining the link, Emily Short

notes, “From the perspective of more than twenty years

later, many of Joyce’s observations feel like first pen-and-

paper cartographical attempts on a territory that has now

been explored very extensively on foot” (Short). The type of

nuanced links that Joyce and Short describe were not built

into the initial Twine but evolved thanks to user-developers

pushing Twine’s utility forward. Among those, one of the

most significant developments is the cycling link, a structure

that allows the user to click and replace a piece of text

repeatedly from a set of options prewritten by the designer.

(We retrace this evolution in the next practical chapter,

concentrating on textual variation.) Porpentine documented

the impact of Leon Arnott’s cycling link macro in a blog post

examining Candy Ant Princess, a game by Whisperbat that

makes extensive use of the system to allow the player to

make aesthetic choices that occasionally impact play. As

Porpentine summarizes, this makes the difference between

creating passages for every link and treating links as choices

directly, as shown in figure 4 (Porpentine, “Live Free, Play

Hard”).

Though this will seem an odd observation in a book about

Twine, in many ways, Twine appears unnecessary. It is an

interface built on top of hypertext: everything that can be

accomplished in Twine can be accomplished with HTML and

JavaScript, albeit with more difficulty. Thus considered as a

platform, Twine is not about the resulting work; it is entirely

about the means of production. At the same time, Twine’s

particular mechanisms (the things that each generation, and

each story format, makes easy) transform the resulting work,

with cycling links as just one example of the expanding

vocabulary Twine offers with each iteration. Twine’s tools

allow creators to create new poetics of the link and

particularly allow someone who might use Twine next to pick

up and expand those poetics with relative ease. The

consistency of the interface shapes the experience and the

player’s expectations for what a Twine work can be.

Figure 4: Choosing clothing in Twine 1.X with and without cycling links

Twine’s construction as a tool for facilitating a type of web

production is far from unique. WYSIWYG (What You See Is

What You Get) web editors have been around for almost as

long as websites themselves, from the built-in tools of

community hubs such as GeoCities and Angelfire to the

unwieldy, mangled-code-generating FrontPage and

Dreamweaver, but without the writerly metaphor that

Twine’s story assumption foregrounds. All this is a

roundabout way of saying that what Twine makes easy is

superficially simple but difficult in practice. The shortcuts

are not just pragmatic code solutions but also visual

navigation, and thus the most crucial element of Twine for

many users is the GUI itself. To recall Steven Johnson’s

Interface Culture, the link is the center of hypertext, the first

marker of meaning-making in digital navigation whose

current ubiquity makes us forget its initial impact: “Ask any

Web user to recall what first lured him into cyberspace;

you’re not likely to hear rhapsodic descriptions of a twirling

animated graphic or a thin, distorted sound clip. No, the

eureka moment for most of us came when we first clicked on

a link, and found ourselves jettisoned across the planet. The

freedom and immediacy of that movement—shuttling from

site to site across the infosphere, following trails of thought

wherever they led us—was genuinely unlike anything before

it” (110).

It is this origin point of the link where we find Twine: a

realization of the “freedom and immediacy” of Johnson’s

web, built on top of not a game interface but a hypertextual

one that would shape its affordances and the expectations

of its users going forward.

Contextualizing Twee

A short history of Twine starts not with Twine itself but with a

scripting language called Twee, based on an earlier writing

system called TiddlyWiki, a tool for creating user-modifiable

hypertexts, or wikis. Twee lacks the visual interface of Twine

but encodes the fundamental underlying mechanics: it is

the scripting language that precedes the graphical interface.

In the interview he gave for this book (appendix I), Klimas

described TiddlyWiki’s self-modifying codex as too limited

for the types of hypertexts he wanted to create—thus he set

out to visualize a better tool, which would become Twee:

I ran across this technology called TiddlyWiki, and it was

this really clever thing where it was this self-modifying

Web page. . . . You download it to your computer, you

can edit it, it’s like a wiki but there’s no server

component to it at all, and so it’s like a very simple . . .

DIY hypertext. And so I started editing and playing out

stuff in there and experimenting with that medium . . .

and it just got very disorienting, actually, to try to edit it

from inside . . . where I’d click links, and follow them,

and it’s like—where am I? And so I’d get lost in my own

stuff, and that was sort of the genesis: I want to build a

tool that will help me do this better. (Klimas, appendix I)

In his oral history of Twee, Dan Cox notes that several

derivative works perform a similar function, using output to

bridge to other formats: Cradle, or UnityTwine (2015); Yarn

(2015); Tweego (2013); Twee2 (2015); Entweedle (2015);

and Entwee (2016); among others (Cox, “An Oral History of

Twee”). The range of these should not necessarily be

confused with influence—many of these projects are driven

by the needs of their developers.

TiddlyWiki creator Jeremy Ruston remembers the allure of

early web wikis that inspired his design of the system and

particularly the idea of breaking out a single document

model of development, which in turn would inspire Twee and

Twine:

The allure of the wiki for me was the feeling that it could

eventually disrupt the prevailing paradigm of print-

oriented documents and emails.

After watching people use wikis for a few years, I

noticed that power users made extensive use of the

ability to open multiple wiki pages at once in several

browser tabs, making it easier for them to compare and

review pages, to copy text between them and to act as a

sort of queue of pages yet to be read.

I felt that this ability to manipulate multiple pages at

once was central to the ability to refactor a wiki, and it is

generally accepted that a wiki that is lovingly refactored

tends to be more useful. And yet, standard wiki user

interfaces have always been designed exclusively for

the presentation and manipulation of single pages at

once. (Ruston)

The newest iteration of TiddlyWiki maintains that concept

of nonlinear organization, inviting users with the question,

“Have you ever had the feeling that your head is not quite

big enough to hold everything you need to remember?”

(TiddlyWiki). This evokes similar nonlinear tools built around

organization, such as Evernote and Microsoft OneNote. The

original Twee website maintained by Klimas in 2005 explains

Twee’s origin as emerging from his desire to have a text-

driven interface for working with TiddlyWiki:

Twee is a supersimple markup language for TiddlyWikis.

It was invented when Chris spilled water on his laptop’s

trackpad, which knocked it out of commission

temporarily, and he still wanted to work on his

TiddlyWiki.

In short, Twee lets you turn plain text files that look

like this:

:: Twee [systemConfig]

Twee is a supersimple [[markup language]] for

~TiddlyWikis.

. . . into living, breathing TiddlyWikis. Right now, it

allows you to target the latest version of TiddlyWiki,

TiddlyWiki 1.2.39, Twinkie, and iPods. It also includes

untwee, a tool that converts existing TiddlyWikis to Twee

source code. (Klimas, “Code and Other Oddments”)

The legacy of the text version comes through in the

earliest graphical iterations of Twine. In Twine 1.X, users

were not by default introduced to the concept of

incorporating Cascading Style Sheets (CSS) and JavaScript

into their work. Jane Friedhoff describes Twine’s original user

interface as using the “corkboard paradigm,” which

essentially means that Twine offers the same visual space

and freedom as rearranging materials on a corkboard,

including ease of movement and the ability to get a big-

picture perspective. She notes, “This kind of visual, spatial

practice is relatively rare in the coding world (outside of

patching languages, such as MaxMSP), but it is very similar

to the way many writers plan and organize their stories”

(Friedhoff).

The passage interface did not distinguish between, or

provide a specific space for, adding such code, leaving users

to follow tutorials to incorporate “tagging” to mark special

passages for this purpose. Twine 2.X is more elaborate in its

initial assumptions and includes by default a separate style

sheet and scripting area, with boilerplate guidance for

incorporating CSS to properly link to the tags and structures

of Twine. Twine 2’s most dramatic innovation is the browser-

based editor, which offers the next level of accessibility for

users unable to install software. The 2.X editor is still not

ideal for use outside of a desktop or laptop computer

(similarly, Twine works are mobile-passable but only mobile-

friendly when intentionally modified by the designer with

the touchscreen user in mind). This shift reflects a shift in

assumptions about the use cases for Twine, which have over

time fallen more into classroom usage as well as general

interest as an introductory development tool.

The story formats—or rulesets and paradigms that provide

different ways of making in Twine (discussed in more detail

in chapter P-1)—included in Twine 1.X are Jonah, Sugarcane,

and Responsive. Later, SugarCube and Snowman would

appear. By far the dominant story format for designers was

Sugarcane (and by extension, SugarCube): the other two

pushed more specific aesthetics onto users. The format

called Jonah emphasizes the single page, requiring text that

is designed to stretch and accrete rather than replacing one

passage with another. Twine 2 removes the awkwardness of

Twine’s original distinction between a .tws source file and

the .html output, removing the need for tracking and

preservation of both the Twine editor’s code and the

browser’s readable output. From a preservation standpoint,

this strengthens Twine’s longevity, as the final .html is its

own complete archive. Notably, a tool for reverse

engineering .html works in Twine 1.X now exists, which

eliminates the need to have the source file in order to

investigate the complete work. As a platform, Twine is thus

continually expanding outward in the hands of its users. The

Twine 2 Monogatari story format, for instance, allows users to

build from the Twine syntax to create web-friendly visual

novels (Pinheiro).

Twine’s Spread

Traditionally, platform studies approaches have examined

corporate-controlled ecosystems, usually regulated by the

producer of the hardware or software in question (Bogost

and Montfort). Open-source platforms raise different

questions and simultaneously offer clearer attribution,

thanks to the documentation of contributions on platforms

such as GitHub and murkier ownership and control. Friedhoff

notes that the lack of a regulated distribution model is

essential to the success of Twine’s more queer, erotic,

political, and otherwise experimental titles that would likely

not make it past the review standards of most other

platforms (Friedhoff). Simply put, most Twine works would

not—could not—exist in the wild without Twine’s self-

distributed, easily spreadable modality.

The Interactive Fiction Database (IFDB), an archive of

digital writing now sponsored by IFTF, primarily chronicles

work by designers who came in contact with or embraced

the term interactive fiction for their work, while the curation

blog Free Indie Games—founded by Terry Cavanagh and

featuring several developers, including Porpentine—offers a

counterhistory heavily emphasizing Twine from 2012 to

2014 (Free Indie Games).

Probing the history of Twine through the IFDB returns a few

false starts: humorously, Anna Anthropy’s Twine iteration of

Nintendo Power’s 1990 feature Dragon Warrior Text

Adventure is listed under this date despite having been

published in 2013. The game is primarily notable for its

nostalgia (Nintendo Power and Anthropy). While this is one

of the more extreme examples of Twine as a

preservation/emulation tool, this trend continues in the

second earliest publication noted: the 2006 entry for Escape

from the Crazy Place refers to the 2017 version of what the

authors call “a preposterous blob of literary jelly” that has

previous lives in physical text, classic HTML, and the 2006

version in the Text Adventure Development System (TADS;

Guest and Etheridge). The work is also an instance of

collaborative Twine-writing, as its lead author describes in

the Glorious Trainwrecks post announcing the Twine version:

Written over 33 years, Escape from the Crazy Place is a

sprawling TWINE game with over 90,000 words of text. It

is also an example of exquisite corpse writing,

combining the talents of around twenty different

authors. Some wrote just a passage or two, others wrote

dozens.

This new TWINE version was originally intended to be

a trimmed-down, more polished version of the 2006

TADS 2 version, but myself and my friends Loz Etheridge

and Mark Bailey got a bit carried away, and somehow or

other the 2017 version ended up being two-and-a-half

times the size of the original. The game will continue to

expand as I intend never to stop adding to it. (Guest)

TADS, originally released in 1988 and last updated in

2006, stands in contrast to Twine in its code-focused

approach that resembles the programming language C. It

also offers a different, code-grounded vision than another

system often mentioned in the same breath as Twine:

Inform 7. Created in 1993 by Graham Nelson, Inform 7 is

Twine’s most popular cousin in the interactive fiction arena.

Inform 7 boasts the appeal of “natural language processing

correlation between system and output” that has been

noted in early interactive fiction platform studies: Alex

Mitchell and Montfort note that both TADS and Inform, the

dominant interactive fiction creation platforms as they were

writing in 2009, are driven by software objects and that the

model of object-oriented, category-driven programming, in

turn, suggests a “simulationist” approach to design (Mitchell

and Montfort). Mitchell and Montfort draw the term

simulationism from the interactive fiction community,

defined as “the tendency towards deeper and less abstract

simulation of physical (and possibly emotional) properties of

the game world, not for limited domains that the author has

chosen, but as a general framework,” with corresponding

challenges for development: “Interactive fiction systems

already face the problem of generating human-like text to

describe situations arising in games. The list of objects in a

drawer is generated from the underlying world model. The

problem with simulationist IF is that this becomes a

magnitude more complicated” (Mitchelhill).

Twine is the antithesis of this model. Originating in

JavaScript (a non-object-oriented programming language

that arguably has become more object-oriented as a result

of increased pressures on web interactivity), Twine lacks the

strict structures and classes of its C-esque counterparts.

While it is possible to build a world model within it that

might be termed simulationist—see our discussion of

Porpentine’s With Those We Love Alive in chapter T-3—such

development is not built into the system in the way that

Inform 7 has responded to the needs of designers building

complex world models.

Other platforms for the creation of interactive fiction are

more pragmatic in their approach to potential users,

recognizing that a knowledge of programming is required to

progress in developing with their tools. To return to Inform 7,

its system visuals are secondary to text, and the authoring

of natural language follows the most orderly rules of coding:

while the blank page of an open Inform 7 game might look

like a Microsoft Word document at first glance, freedom of

writing style exists only inside the quotation marks that

delineate strings. The rigor of the language is necessary for

Inform 7’s primary metaphors—the designer must first

create the world and then define the rules by which the

player might interact with that creation. Thus the structures

of basic Inform 7 look like sentences but follow

predetermined rules, as in this example:

The Office is a room. The description of Office is “Despite

all your best intentions of cleaning, the office is covered

in papers, none of them useful.” The desk is a supporter

in the Office. The laptop is on the desk.

Instead of booting the laptop:

say “The last thing you want to do is see the state of

your emails.”

Note some of the conventions: quotation marks indicate a

string, or a sequence of characters that the language will

not attempt to parse and understand. All the other

sentences must be readable to the parser: words such as

description and supporter are defined in Inform and create

certain properties. The “instead” rule allows the system to

intercept certain verbs and respond—so if the player tries to

type “boot the laptop,” the phrase after it will appear to

discourage them from continuing down that path of action.

Once broken down, the structures and demands of the

language on the writer become apparent immediately (even

before the would-be creator descends into the more clearly

programmatic metaphors of data structures, logic, and

event-driven “scenes” that enable a complex state of play).

Mitchell and Montfort end their analysis of Inform and TADS

with a reminder that “it is useful to consider the less-than-

obvious ways in which these systems might influence the

shaping of stories and worlds” (Mitchell and Montfort). To

extend this argument, I noted that it is necessary to consider

the less-than-obvious ways in which these platforms are

reconstructing game culture.

The original Twine macros reveal the code intensity behind

the extension of links in the early formatting and syntax of

Twine’s vocabulary. To return to the poetics of the cycling

link, the macro was described in its creator’s introductory

post on Glorious Trainwrecks as a simple enhancement:

“This simply produces a link whose text cycles between a

number of values whenever you click on it. It otherwise

leads nowhere. You can use it as a silly clicky trinket, a

cheap alternative to the <<replace>> macro, or (as

detailed below) as an input interface element” (Twine).

In 2012 (right before Twine’s rise on the scene), Montfort

and Short noted in their examination of the state of

interactive fiction that the move to the browser was driving

pushes for change in platforms that typically had ignored

and standardized the aesthetics of the user interface:

Presenting IF in a browser window generates its own new

set of player and author expectations. Typography and

text styling has for a long time been at best a secondary

concern: interpreters on different operating systems

present text in different ways, in different fonts, colors,

and marginal arrangements. Traditionally, the tools used

by the IF community have offered the author only

limited control over this presentation. Portability across

a large number of platforms (including small-screen

mobile devices and computers being run with a screen

reader by blind players) was often considered more

important than the ability to craft a specific visual

experience, and providing an attractive textual surface

was often seen as the job of the interpreter creator

rather than the author of a specific game. (Montfort and

Short)

We return to this question of the interface in more detail

later in this work, with chapter T-5’s examination of Twine’s

entanglement with camp aesthetics. However, it is

important to note that Twine’s rise as a competitor to other

interactive fiction platforms comes from both the ease of

making and the ease of spreading work.

Open-Sourcing Twine

Placing Twine’s history alongside this other most dominant

platform for writing interactive fiction, Inform 7, illuminates

their important differences as well as their fundamental

similarities as platforms driven by their user communities. At

NarraScope 2019, the first conference hosted by the IFTF,

both Klimas and Inform 7 creator Graham Nelson offered

“state of the platform” talks to audiences of players,

developers, and scholars.

Klimas addressed the past and future of Twine for his

audience. This moment was part of a shift in Twine’s history,

as Klimas documented some of the challenges of Twine as

well as his hopes for the platform’s future in the hands of the

organization. At the core of his aspiration is Twine’s

commitment to open-source and open-access. The open-

source nature of Twine has not been without its

consequences. In 2018, Netflix released “Bandersnatch,” a

groundbreaking episode of its Black Mirror series in which

suitably equipped viewers could select links to determine

the unfolding of the narrative—an embrace of interactive

video, or hypertext, or choose-your-own-adventure gaming,

depending on perspective. Significantly, “Bandersnatch”

also involved at least a glancing encounter with Twine. The

“Bandersnatch” creative team has acknowledged using

Twine, among other applications, in preparing the treatment

(roughly speaking, the prototype) for the project (Rubin).

Creator Charlie Brooker described Twine as the tool that

assisted in his big-picture thinking for the episode: “Every

time I had an idea I put it in a box, and you can move them

around. It’s a bit like making a giant patchwork quilt”

(Rubin). In his NarraScope talk, Klimas reports reaching out

to the “Bandersnatch” team but receiving only resounding

silence. This reaction was probably predictable, given

problematic claims of influence, authorship, and credit that

crop up regularly in show business. There was, for instance,

an ongoing lawsuit from the publisher Chooseco over the

use of the choose-your-own-adventure concept, to which the

company claims proprietary rights (Kaminsky).

Setting the “Bandersnatch” story aside, Klimas pointed to

similar uses of Twine as a prototyping tool for professional,

profitable endeavors ranging from the choose-your-own-

adventure graphic novel Romeo and Juliet by Ryan North to

the opening sequence of the game Firewatch but also pulled

up a more stark testament to Twine’s lack of financial

support even as he showed this economic potential. (At the

time, the Patreon to support Twine was at less than $800 a

month.) This echoed discussions of financial realities in

narrative games that are unavoidable: the conference

opening keynote included shots of a game in progress,

abandoned for being too expensive to viably complete.

Nelson, speaking during the Q&A, noted, “I’m not doing

anything to help that,” reflecting on the type of ambitious

game that the developer works on and the realities of the

limitations of open-source tools: “We’re making a really good

box,” but “every step you take along that road makes it

harder to get access to what’s outside” (Nelson).

Chris Klimas noted in his discussion at Narrascope that he

is aware of the challenges that arise when the user drawn to

Twine by the promise of no programming seeks more control

over the logic of their play and hits the wall of code and

assumptions that go with it. Reflecting on the question,

“How do you assist people in getting over that wall?” Klimas

pointed to his then current work on the story format

Chapbook, introduced at the conference. In his initial guide,

Klimas planned a section labeled “Advanced” but expected

that it would need a disclaimer: “You’ll need to understand

JavaScript.” (We discuss JavaScript in passing in upcoming

practical chapters and in some depth in chapter P-3, where

an example explores the integration of JavaScript code

within Chapbook.)

This decision reflects a constant tension at the heart of

design work on the platform: the balance of ease of use and

capabilities. To again evoke the spirit of the dearly departed

Flash platform, the breakdown of this balance can cause

users to flee to new platforms or encourage them to never

upgrade—many users stuck with old versions of Flash not

just because of financial investment but because of the

learning curve that went with each iteration’s significant

extension of the base feature set into a more and more

algorithmic world. This resistance is also a reminder of the

incredible frustration that can await the artist and writer in a

world of ever-changing and proprietary tools; by contrast,

the open-source tool offers the hope of consistency or at

least the promise of continued availability.

With that said, our venture into Twine as a platform will

not be without its challenges, and the interface underlies a

greater complexity than you might expect. Chris Klimas

noted that even some of the most fundamental functionality

of Twine is more complex for the user than it might at first

appear: “Plugging images into Twine, which is a really basic

idea, is hard. You have to understand how URLs work.

There’s the comfort and the size of the box” (Klimas, “Twine:

Past, Present, Future”). Twine’s “box” of utility is continually

growing, from the 2006 Twee with its off-putting lack of

graphical interface, to the first Twine GUI in 2009, to the

2014 Twine 2, which looked to the web as a work-around for

the frustrations presented by the walled garden of the Apple

Store and Android Market.

The reach of Twine is also increasing: Twine 2.3.1’s

downloadable version (functional on Windows, Linux, and

Mac) has reportedly exceeded twenty-five thousand

downloads. The Twine community as of Klimas’s 2019 report

included 3,000 members on a Discord chat and 2,300 on the

unofficial subreddit. In his own assessment of Twine’s reach,

Klimas observed three main groups using Twine, all with

different needs. Creative professionals (mostly game

designers) using Twine as a prototyping tool, from the Netflix

“Bandersnatch” team to the writers of the indie game

Firewatch, rarely release those early iterations but may

acknowledge Twine in postmortems on their work. Educators

such as the authors of this book are the second primary user

group, with Twine’s reach extending to classrooms in India

and well outside of game design programs (frequently as an

alternative to the traditional paper-writing research

assignments of many disciplines). And of course, finally,

Klimas noted the indie creators and the recognition their

work has brought Twine in a range of communities. These

voices range from those distributing work on itch.io and

Steam to artists exhibiting at the Whitney Biennial. Klimas

observed that reaching (and keeping up with) this audience

presents its own challenges, offering, self-deprecatingly,

“I’m really not cool, and these people tend to be really cool.”

The Twine platform was “adopted” as a recognized

platform by the IFTF, a decision driven by the need for

maintenance and institutional support. The Twine committee

of the IFTF consists primarily of the developers responsible

for building the story formats and tutorials that power the

Twine community: Leon Arnott, Thomas Michael Edwards,

Dan Cox, M. C. DeMarco, David “Greyelf” Tarrant, Colin Marc

(stepped down 2019), and Klimas. This team is notably less

diverse than the set of indie artists we highlight throughout

this work, and tensions between the community and the

guiding developers can be high—as Klimas observed, people

frequently blame an imagined “they” for changes in Twine

rather than seeing open-source projects as authored by

dedicated creators donating their time to the project. Code

authorship is visible when discussing an open-source project

like Twine, but in some ways, that leads to less of a sense of

http://www.itch.io/

creative control. The economics of this model are perhaps

unsustainable: challenges include basic finances, such as

paying to become a registered or “signed” application to

enable users to more easily install the Twine platform on

their computers. Other ambitious goals, such as modernizing

the development workflow to add a Twine package manager

and collaborative tools, are likely out of reach and also raise

their own questions: If we cannot even easily define what

Twine makes, who should—and will—decide where Twine

goes?

In an inherently decentralized community, there are whole

groups who use Twine but aren’t part of the conversations

about the future. The same challenges we face defining

Twine’s scope also make it difficult to plan its development

road map, which, as Klimas noted, requires balancing the

needs and requests of the experts versus the teachers and

students working with Twine in classroom settings without

code experience, who are thus perhaps less likely to post

concerns and issues in GitHub. Even the decision about

where to place resources changes the platform’s reach.

Klimas and collaborators abandoned a plan to move the

Twine support forum to Stack Overflow, a popular website for

coding support, given the emphasis on programming and

the conventions that might be particularly daunting to

newcomers. Previous community hubs, such as Google

Groups and the Twine forums, have run into problems of

spam and moderation, while gamer-favored platforms such

as Discord and Reddit bring in whole new potentials for

toxicity.

As we will argue throughout this work, Twine’s in-

betweenness is its strength: it is the source of the platform’s

influence and what makes Twine relevant in conversations

ranging from the future of education to the unrealized

potential of electronic literature to the need to transgress

existing boundaries in games. As cultural software, it is itself

hypertextual, linked into communities that may never

themselves intersect. Its survival and evolution to this point,

refusing to diverge toward a commercial approach, is both

admirable and unusual and ultimately the source of Twine’s

revolution.

Works Cited

Alexander, Leigh (@leighalexander). “When people say

games need objectives in order to be ‘games,’ i wonder

why ‘better understanding another human’ isn’t a valid

‘objective.’” Twitter, April 8, 2013.

https://twitter.com/leighalexander/status/32115211302

1448193.

Bogost, Ian, and Nick Montfort. “Platform Studies: Frequently

Questioned Answers.” Digital Arts and Culture, 2009.

http://bogost.com/writing/platform_studies_frequently_q

u_1/.

Brice, Mattie. “Triptychs.” Mattie Brice’s website, April 13,

2013. http://www.mattiebrice.com/triptychs/.

Consalvo, Mia, and Christopher A. Paul. Real Games: What’s

Legitimate and What’s Not in Contemporary

Videogames. MIT Press, 2019.

Cox, Dan, ed. “iftechfoundation / twine-cookbook.” 2017.

GitHub, 2019.

https://github.com/iftechfoundation/twine-cookbook.

———. “An Oral History of Twee.” Digital Ephemera, June 8,

2019. https://videlais.com/2019/06/08/an-oral-history-

of-twee/.

Ellison, Cara. “Anna Anthropy and the Twine Revolution.”

Guardian, April 10, 2013.

https://www.theguardian.com/technology/gamesblog/20

13/apr/10/anna-anthropy-twine-revolution.

https://www.twitter.com/leighalexander
https://twitter.com/leighalexander/status/321152113021448193
http://bogost.com/writing/platform_studies_frequently_qu_1/
http://www.mattiebrice.com/triptychs/
https://github.com/iftechfoundation/twine-cookbook
https://videlais.com/2019/06/08/an-oral-history-of-twee/
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy-twine-revolution

Ensslin, Astrid, and Lyle Skains. “Hypertext: Storyspace to

Twine.” In The Bloomsbury Handbook of Electronic

Literature, edited by Joseph Tabbi, 295–310.

Bloomsbury, 2017.

Free Indie Games (blog). “About.” Accessed July 29, 2019.

http://www.freeindiegam.es/about/.

Friedhoff, Jane. “Untangling Twine: A Platform Study.”

Proceedings of the 2013 DiGRA International

Conference, 2013, 10.

Guest, J. J. “Escape from the Crazy Place.” Glorious

Trainwrecks, February 21, 2017.

https://www.glorioustrainwrecks.com/node/6547.

Guest, J. J., and Loz Etheridge. “Escape from the Crazy

Place.” Interactive Fiction Database, 2006.

https://ifdb.tads.org/viewgame?id=ny5d87fqbeh3pnuz.

Harvey, Alison. “Twine’s Revolution: Democratization,

Depoliticization, and the Queering of Game Design.”

GAME 1, no. 3 (2014).

https://www.gamejournal.it/3_harvey/.

Haske, Steve. “‘Is This a Game?’ Forces You to Contemplate

the Philosophical Definition of Games.” Complex, June 9,

2013. https://www.complex.com/pop-culture/2013/06/is-

this-a-game-forces-you-to-contemplate-the-

philosophical-definition-of-games.

Johnson, Steven. Interface Culture: How New Technology

Transforms the Way We Create and Communicate. San

Francisco, CA: Harper, 1997.

Joyce, Michael. “Nonce upon Some Times: Rereading

Hypertext Fiction.” Modern Fiction Studies 43, no. 3

(1997): 579–97.

Kaminsky, Michelle. “Chooseco, ‘Choose Your Own

Adventure’ Trademark Owner, Sues Netflix over

‘Bandersnatch.’” Forbes, January 14, 2019.

https://www.forbes.com/sites/michellefabio/2019/01/14/

http://www.freeindiegam.es/about/
https://www.glorioustrainwrecks.com/node/6547
https://ifdb.tads.org/viewgame?id=ny5d87fqbeh3pnuz
https://www.gamejournal.it/3_harvey/
https://www.complex.com/pop-culture/2013/06/is-this-a-game-forces-you-to-contemplate-the-philosophical-definition-of-games
https://www.forbes.com/sites/michellefabio/2019/01/14/chooseco-choose-your-own-adventure-trademark-owner-sues-netflix-over-bandersnatch/

chooseco-choose-your-own-adventure-trademark-owner-

sues-netflix-over-bandersnatch/.

Klimas, Chris. “Code and Other Oddments.” Gimcrack’d,

March 28, 2006.

https://web.archive.org/web/20060328165735/http://gi

mcrackd.com/etc/src/.

———. “Twine: Past, Present, Future.” IFTF Narrascope

Conference, June 15, 2019.

https://2019.narrascope.org/pages/schedule.html.

———. “Twine Is an Open-Source Tool for Telling Interactive,

Nonlinear Stories.” Twinery.org, 2019.

https://twinery.org/.

Koster, Raph. “A Letter to Leigh.” Raph Koster’s website,

April 9, 2013.

https://www.raphkoster.com/2013/04/09/a-letter-to-

leigh/.

Manovich, Lev. Software Takes Command. Bloomsbury,

2013.

Mitchelhill, James. “Simulationism and IF (Long).” Google

Groups, October 1, 2005.

https://groups.google.com/forum/#!msg/rec.arts.int-

fiction/o-Y2qK8_KLE/Qrwmdv0L5k4J .

Mitchell, Alex, and Nick Montfort. “Shaping Stories and

Building Worlds on Interactive Fiction Platforms.”

eScholarship, December 2009.

https://escholarship.org/uc/item/6pk7s4n6.

Montfort, Nick, and Emily Short. “Interactive Fiction

Communities: From Preservation through Promotion and

Beyond.” Dichtung Digital 41 (September 2012).

http://www.dichtung-digital.org/2012/41/montfort-

short/montfort-short.html#10.

Nelson, Graham. “Opening Inform.” IFTF Narrascope

Conference, June 15, 2019.

http://emshort.com/narrascope/talk.html.

https://www.forbes.com/sites/michellefabio/2019/01/14/chooseco-choose-your-own-adventure-trademark-owner-sues-netflix-over-bandersnatch/
https://web.archive.org/web/20060328165735/http://gimcrackd.com/etc/src/
https://2019.narrascope.org/pages/schedule.html
http://www.twinery.org/
https://twinery.org/
https://www.raphkoster.com/2013/04/09/a-letter-to-leigh/
https://groups.google.com/forum/#!msg/rec.arts.int-fiction/o-Y2qK8_KLE/Qrwmdv0L5k4J
https://escholarship.org/uc/item/6pk7s4n6
http://www.dichtung-digital.org/2012/41/montfort-short/montfort-short.html#10
http://emshort.com/narrascope/talk.html

Nintendo Power, and Anna Anthropy. “Dragon Warrior Text

Adventure—Details.” Interactive Fiction Database,

August 2, 2013. https://ifdb.tads.org/viewgame?

id=vbs1pvv73c2p18i2.

Pinheiro, Haroldo de Oliveira. “haroldo-ok / twine-

monogatari.” GitHub, 2019. https://github.com/haroldo-

ok/twine-monogatari.

Porpentine. “Live Free, Play Hard: The Week’s Finest Free

Indie Games.” Rock Paper Shotgun, April 28, 2013.

https://www.rockpapershotgun.com/2013/04/28/live-

free-play-hard-the-weeks-finest-free-indie-games-26/.

———. “On Formalism (Darius Kazemi).” Free Indie Games

(blog), April 25, 2013.

http://www.freeindiegam.es/2013/04/on-formalism-

darius-kazemi/.

Quinn, Zoë. “Steam Greenlight: Depression Quest.” Steam,

December 4, 2013.

https://steamcommunity.com/sharedfiles/filedetails/?

id=200770535.

Rubin, Peter. “How the Surprise New Interactive Black Mirror

Came Together.” Wired, December 28, 2018.

https://www.wired.com/story/black-mirror-bandersnatch-

interactive-episode/.

Ruston, Jeremy. “History of TiddlyWiki.” TiddlyWiki,

September 23, 2014.

https://tiddlywiki.com/static/History%2520of%2520Tiddl

yWiki.html.

Short, Emily. “Links and Structures from Michael Joyce to

Twine.” Emily Short’s Interactive Storytelling (blog),

July 27, 2019. https://emshort.blog/2019/07/27/michael-

joyce-on-hypertext-links/.

TiddlyWiki. Accessed December 20, 2018.

https://tiddlywiki.com/.

https://ifdb.tads.org/viewgame?id=vbs1pvv73c2p18i2
https://github.com/haroldo-ok/twine-monogatari
https://www.rockpapershotgun.com/2013/04/28/live-free-play-hard-the-weeks-finest-free-indie-games-26/
http://www.freeindiegam.es/2013/04/on-formalism-darius-kazemi/
https://steamcommunity.com/sharedfiles/filedetails/?id=200770535
https://www.wired.com/story/black-mirror-bandersnatch-interactive-episode/
https://tiddlywiki.com/static/History%2520of%2520TiddlyWiki.html
https://emshort.blog/2019/07/27/michael-joyce-on-hypertext-links/
https://tiddlywiki.com/

Twine, Leon. “Twine Macro: << Cyclinglink >>.” Glorious

Trainwrecks, January 28, 2013.

https://www.glorioustrainwrecks.com/node/5020.

Yang, Robert. “A Letter to a Letter.” Radiator (blog), April 10,

2013. https://www.blog.radiator.debacle.us/2013/04/a-

letter-to-letter.html.

1 For readers not familiar with this software naming convention, 1.X indicates

any of several serialized releases in the first series of an application (1.1,

1.2.3, 1.999, etc.), 2.X indicates any release in the second series, and so

on.

https://www.glorioustrainwrecks.com/node/5020
https://www.blog.radiator.debacle.us/2013/04/a-letter-to-letter.html

CHAPTER P-1

From Links to Stories

◊ Twining is not simply a how-to book, so the step-by-

step examples in this chapter are accompanied by

comments designed to put practical learning in context.

If for some reason you’re more interested in the

instructions alone, you’ll find each action item set like

this paragraph, boxed and marked with a special

character. We’ll use this convention for all the practical

chapters.

Supporting materials for this chapter can be found online at

https://github.com/AMSUCF/Twining. For most of our

examples, you’ll find two documents: a web page (.html),

which is the finished version of the project, plus a plain text

file (.txt) containing all the code we discuss. In projects with

multiple pieces (or “passages,” as you’ll shortly learn to call

them), we’ve indicated the passage to which the code

belongs.

We’re providing these resources as an invitation to tinker,

play, and remix. There are two ways to make our code your

own. The Twine 2 application allows you to import any

published Twine file you find as a web page. The procedure

is discussed later in this chapter. You can import any of our

examples and see all the structure and code. On the other

hand, if you want to work through our examples step-by-

step, you may want to copy and paste from the text files to

save yourself a lot of tedious typing.

https://github.com/AMSUCF/Twining

Getting Ready to Write

You can access Twine via the web at www.twinery.org. There

are two options: download a local copy or use the program

online. We recommend downloading and installing if you

can. The online version is fine for beginners, but it limits

more advanced work (involving external files, for instance).

Also, somewhat confusingly, the stories you build using the

online tool are accessible only in the browser and computer

you built them from. They are not stored on a server and the

link cannot be shared, which can be problematic for

newcomers.

Twine is available from Twinery at no charge, with versions

for Windows (32- and 64-bit), Mac OS, and Linux. Installation

is straightforward: download and run the appropriate

installer. Twine will set up necessary files and permissions.

You’ll find a new folder named “Twine” in your Documents

directory, where data files associated with your various

Twine projects (called “stories” by default) will reside. An

icon for the Twine application will appear in your list of

programs and in the appropriate system folder where

applications are stored.

On rare occasions, things don’t go so smoothly. Depending

on how your system is configured, you may encounter

pushback from antivirus software. You might, for instance,

see a warning about a supposed vulnerability called

“WS.Reputation.1.” Appearances to the contrary, this is not

the name of a malicious virus code lurking in the Twine

installer. “WS.Reputation.1” is a designation applied by

makers of antivirus software to programs that serve small or

niche audiences. Such programs, they imply, aren’t

circulated widely enough to have a reliable reputation.

There are usually straightforward ways around any obstacles

your antivirus software presents. At worst, you might have to

http://www.twinery.org/

open a quarantine folder, click on the Twine installer, and

give it an exemption. You should only have to do this once.

We considered not mentioning antivirus problems. Most

people will never run into them. If you do, you should feel

safe using installers downloaded from Twinery. The Twine

developers understand the risks of malicious software and

maintain their code responsibly. It is at least ironic, and not a

little insulting, to question their reputation. We tell this story

because it highlights Twine’s identity and ethos. You pay

nothing for Twine—though you should consider making a

contribution for its support. The program is nonproprietary,

open-source software, supported and advanced by expert

volunteers and a community of users. Twine belongs to a

culture sharply different from that of giant corporations with

hundreds of millions of sales. While you can use Twine for all

sorts of things—journalism, education, research, and so on—

it is designed for one basic task: telling complex, interesting

stories. The rest of this chapter will help you get started with

that.

Interface and Controls

Launch the Twine application by clicking on its icon. Since

the installer may not place the icon on your desktop, you

may need to look for it in the appropriate Applications folder

on your system. After launching, you should see something

like this:

Figure 5: Twine library view

You’re looking at a Twine library. This one has contents, but

yours will contain no stories if you have done a fresh

installation. The larger panel on the left will include a visual

representation or thumbnail for each story you create. You

can sort this collection in various ways. Each thumbnail is a

square containing one or more circles. The circles stand for

the subdivisions or passages in your story. They are

arranged in a way that roughly imitates their layout in the

Twine structure editor. (More about both passages and

structure is just ahead.) Thumbnails can be helpful if you are

trying to find a specific Twine story in a crowded library, but

they are impressionistic.

To the right of the library panel, you’ll see a stack of

operators, or function buttons. The most important of these

is the prominent green button labeled “+ Story.” You’ll use

this operator to begin a new story. Next in the stack is

“Import from File,” which is a way to find and import existing

Twine stories that may be located outside of your Twine

folder. This function will be useful later in your Twine career,

especially if you change computers or collaborate with other

writers.

Below the import operator is “Archive,” a function that

creates a copy of your entire current library. You should use

this tool early and often. Don’t worry too much about

storage space, unless your system is unusually constrained.

Today’s storage devices are designed with graphics and

video in mind, and in many cases, Twine stories, which are

mostly made up of words, take up only a tiny share of

available space. Feel free to archive as often as you like.

Remember to use a sensible naming convention for the

resulting files.

Below “Archive” is the “Formats” operator, which shows all

the story formats available in your Twine application. Story

formats are presentational interfaces for Twine stories.

Interfaces probably need less of an explanation today than

they did in the last century. You’re probably familiar with the

way web pages can change as you view them on different

devices and browsers. In effect, browsers and devices are

interfaces. The contents of the web page exist in a file that

various interfaces process for display. Something similar

happens with Twine. Your story contents go into an output

file, which Twine processes using a designated story format

to determine what appears on the user’s screen.

You are not required to choose a story format. The default

format for Twine at this writing is Harlowe. A newer format

called Chapbook will install as an inactive alternative.

Chapbook is a simple, readable scheme designed to help

people use Twine without encountering too much complexity

—though it is quite good at supporting more advanced

techniques. In our opinion, Chapbook provides excellent

ways to move from simple to more ambitious creative uses.

The material covered in the present chapter is the same for

both formats, though we will rely largely on Chapbook in

later practical chapters. Switching to Chapbook and making

it your default story format is quite easy. We’ll discuss it in

the next practical chapter.

The “Formats” operator offers a choice of formats built into

the Twine application. At this writing, that set includes

Chapbook, Harlowe, and two even earlier formats, Snowman

and SugarCube. You can find documentation and projects

using these schemes online. Because Twine is an open-

source application based on the core technologies of the

web, anyone who wants to can build improvements and offer

them to the world. Software never sleeps. The “Formats”

operator allows you to add new formats as they are

developed. Many Twine users do this seldom or never. At

some point, though, a remarkably elegant and useful new

format may give you the itch to switch.

Below “Formats” is an operator called “Language,” which

lets you localize Twine to any of thirteen national languages.

Below this is a “Help” operator, which takes you to the wiki

at Twinery. Continuing down the screen, after a small gap,

we find two buttons marked by a representation of the sun

(left) and moon (right). These buttons toggle the

background and text colors used in any story format. In the

dark theme, which is active by default, words appear in a

light color against a dark background. The light theme

reverses this arrangement. The choice of theme is largely a

matter of preference. Some find the dark theme more

dramatic, maybe suited to dystopian or gothic moods. Those

less aesthetically inclined may find the dark theme hard to

read in low light, preferring dark text against a bright

background. This setup has worked pretty well for books,

after all.

There are two text indicators at the very bottom of the

stack. One identifies the version of Twine you are using, with

a link to the credit screen for that build. Note—and please

use—the included link for donations. Like public radio and

TV, Twine depends on a combination of pride, love, and guilt.

Every donation helps. The final item is a link to a bug-

reporting channel, should you encounter anything in Twine

that seems clearly dysfunctional. Use this link by all means

—bug reports help everyone—but always ask yourself if the

trouble could have been caused by some mistake in your

use of Twine rather than the program itself.

Twine is nowhere near as complicated in its interface as

some commercial products we use regularly, but it does

have more than one menu of functions. We’ve just discussed

the one that appears at the top level of the library view.

Another will show up after you have opened a story file. You

can access this menu by clicking on the name of your story,

which appears at the lower left of your screen, or on the

black triangle that may be visible next to your story name.

(Longer story names make the triangle invisible.) When you

unfold this menu, you will see nine options. We’ll only

discuss the last two, “View Proofing Copy” and “Publish to

File.” In fact, we’ll defer “Publish to File” to the end of this

chapter. “View Proofing Copy” produces a very useful

printout of your story with the contents of each passage,

including the script elements we will describe in later

chapters. We’re not quite sure how the passages are sorted

in this report, possibly from graph position or order of

creation, but they’re all included, and each is set off by a

dotted line. This draft view can be of great help if your story

has very many passages or if you’ve lost your way in the

process of composing.

Key Terms

Before we start doing things with Twine, we need to define

some basic terms. A story is a Twine work, indicated in the

library by a title and thumbnail. It is interesting to think of

possible alternatives to this word. The strongest tension, of

course, is between story and game, as we discuss in the

theory chapters, but we could also consider other metaphors

for branching texts. Labyrinths? Mazes? Webs? Weaves?

However, story is the word Klimas chose because Twine is

first and foremost a storytelling tool. You may take this term

loosely and think of your work as a news or feature story, or

the kind of instructional story used in teaching, or the

unfolding story-of-play that belongs to games, but

everything tends to be some kind of story.

As we have seen in chapter T-1, Twine has a story of its

own. Twine’s relationship to earlier hypertext systems is

complicated but close enough for some comparisons.

Hypertext programs generally adopt a scheme called a

directed graph—typically, a stylized tree made of boxes and

lines—in which the reader’s attention is meant to move from

one division or node to another. Adapting this idea to

literature, George P. Landow, the first theorist and

rhetorician of hypertext, renamed nodes as lexias, deriving

the term from the French literary theorist Roland Barthes, in

whose work Landow found a conceptual basis for hypertext

(Landow 2–3). Like early hypertext itself, the term lexia was

eventually eclipsed by other usages, such as page, post, and

tweet.

In many ways, Klimas’s term for a textual unit, passage,

represents a second coming of the lexia. A passage is a

discrete body of material that may contain words, still or

moving images, and sound cues. Passages are displayed one

by one as a reader moves through a Twine story. (We don’t

yet know of a Twine story format that displays more than one

passage at a time, or a good reason for building one, but

never say never.) You can put as much or as little

information into a passage as you like. Twine passages tend

to be relatively terse, though some writers put multiple

paragraphs into their passages. Long before Twine, the first

hypertext writers faced a similar aesthetic problem: Why put

a lot of text into a lexia if the point is to replace it with

something else? A famous early hypertext paper contrasted

“holy scrollers,” who preferred longer, unbroken texts, to

“card sharks,” who thought the contents of a lexia should fit

the dimensions of a file card (Halasz 838). Though the

sharks still dominate, both traditions are still with us, often

within single works. As Twine writers like Porpentine and

Anna Anthropy show, varying the length of passages can be

highly effective. There are no absolute rules about passage

length. If you need a long passage, write one. Scroll if you

want to—but don’t consider it mandatory.

The last of our three crucial terms is link, the active aspect

of any directed-graph system. We’ll begin our practical work

with Twine by describing how to make links, but before we

get there, we need to explain what links essentially are.

Links have become an invisible part of everyday life in the

internet age. You use one kind of link, the type described by

Hypertext Transport Protocol, or HTTP, every time you move

from one web page to another—but what exactly are you

doing?

The World Wide Web has led us to identify links with words

or phrases set off in special colors or images that invite a

click or tap. This sense comes into play every time we say

something like “Go to the main Twinery page and follow the

third link on the left.” Such expressions may be inevitable,

but they’re also inaccurate. Visual traces are only one aspect

of hypertext linking. We could also describe a link in terms

of its underlying code—in, for instance, HTML:

Get your Twine here!

http://www.twinery.org/

If we keep in mind the infrastructure that underlies any

visible trace of a hypertext link, we begin to understand that

links are, like all programming code, hyperlinguistic

(Galloway 165). They are simultaneously meaningful in

more than one mode. The HTML anchor tag (<A> . . .)

usually surrounds some readable text. That text is often

meaningful as part of a sentence. The anchor tag itself has

meaning as a bit of web coding, and that code in turn is

significant to another piece of software, a browser

application, which converts it into an expression in machine

language. When your computer receives this machine

instruction, it retrieves and displays the indicated

information.

Links are more than just markers on a screen. In the most

complete sense, a link is a transition—an action or event—

associated with multiple signatures or traces: the immediate

words of the text, to which the link is anchored; the

underlying code that specifies what the link will do; and a

third aspect that we have not yet explored, which we will

discuss in greater detail later in this chapter.

Figure 6: Two passages connected by a link

In terms of the hypertext graph, which we will call

structure, the link is represented by a line with an arrow at

one or both ends, showing the possibility of transition from

one passage to another. Hypertext systems do not always

display graph structure—consider the World Wide Web—but

graphical mapping can be very important in building

complex narratives like hypertexts and games.

To summarize, when we say link, we may refer to any or all

these aspects:

1. Some anchoring text or image

2. Underlying software code

3. A representation in the story’s structure map

4. An action, typically replacing one passage with

another

The most important item in this list is the last. As the poet

and designer Johanna Drucker says, digital writing is always

“more event than entity” (Drucker 31). The point of a

hypertext or other kind of digital fiction is that it allows

things to happen, often in response to choices by a

reader/player. In a sense, all language—certainly all

storytelling—is a happening of some sort. In Twine and

systems like it, this active aspect of the text is particularly

central. This distinction will be important as we shift our

conception from literary texts to games, which must be

actively played.

Example 1.1: A Simple, Circular Story

Action requires planning. Stories need to be written, and

digital stories have to be designed or structured as well.

You’ll eventually divide your time between the words of your

story and its logical layout, but everything begins at that

primary, verbal level—what you choose to say—so let’s start

there.

◊ Launch Twine if you haven’t already.

A dialogue box will open asking for a title. You can

call this story anything you like, though we recommend

calling it The Ostrich. Click that green button on the

right labeled “+ Story.” At the title prompt, enter “The

Ostrich.”

Here’s what your screen should look like—a view into the

Twine structure editor:

Figure 7: Beginning a new story

The background of the structure editor is a grid system

with two scales, or rules, bold and fine. These lines are just a

visual convenience for people who like to line things up

neatly. They don’t affect the function or underlying code of

your story. Within this grid is “Untitled Passage.” Below the

title, you can faintly see the message “Double-click this

passage to edit it”—which is a bit like the label on that

bottle Alice finds in Wonderland—Drink me. Who could

resist?

◊ Double-click the untitled passage.

When you double-click the passage, the structure editor is

replaced by the passage editor, which is a specialized text

processor. It looks like this:

Figure 8: Passage after opening

Here’s where we’ll begin writing, but first have a look at

the elements that sit above the editing window. The first is a

title bar. Every passage needs a title, preferably a unique

title, for reasons that will become apparent shortly. (In fact,

you can give two passages the same name in Twine, but this

is a bad idea unless you know what you are doing.)

Below the title bar is a space where you can add tags to

your passage. Tags are further ways of identifying the

passage and can be used to sort, group, and otherwise

process them. If the main title is a tag’s given name

(“Chris”), a tag might be its family name (“Klimas”). So if our

Chris passage has relations, they might all be tagged as

Klimases. There are other ways to use tags, including in

more sophisticated, code-intensive operations, but this is a

starter example, so we won’t add any tags.

◊ Type “the last thing” into the title area.

Now that we know what we’re writing, let’s get ready to

enter some text. As you’ll see, there’s a small twist to

negotiate here, but we can begin sensibly enough by

blanking out the existing text before adding our own.

◊ Select (drag over) the phrase “Double-click this

passage to open it,” then press “Delete” on your

keyboard.

You might expect this operation to yield a nice, blank

writing area. It doesn’t. Out of their desire to make their

program superfriendly, Twine’s developers have decided to

display a page of hints every time you begin editing. This

quick reference includes directions about formatting text,

working with special symbols, making links—the subject to

which we are coming—and some advanced topics. This is all

very useful information, though we wonder if you really need

to see it every time you start to write. Go ahead and erase

these notes before entering your own text—and don’t worry,

you can find all this information on the Twine wiki by

clicking the “Help” button.

◊ Place your cursor to the right of the bullet (•) in the

text editing area. Type any character.

The helpful page disappears, and you have a blank space

in which to write. Well, almost blank—for some reason, that

bullet character remains. Don’t worry, though, it won’t

appear when your text is displayed.

◊ In the writing space, enter the following text:

. . . on this of all mornings, the last thing anyone

wants to see is an ostrich.

This text is a recommendation, not a requirement. Feel

free to write other words as you move through this example.

Just be sure to put in links where they are specified. We’re

coming to those.

◊ Click on the “X” at the top right of the editing window.

The editing window will close, returning you to the

structure editor, where you should see a passage named

“the last thing,” with the sentence you just typed visible

inside the square. In the upper left corner of the square, you

should see a small, circular icon in green and white. This

icon, which looks to some people like a rocket ship, marks

the passage from which play will begin.

With only one passage, we don’t have anything like a real

Twine story or a hypertext yet. The magic begins with a

second passage. We’re going to add one now. You might

expect to repeat the process we used to create our first

passage, and in fact, you could do so—but if we use that

method, we’ll miss an elegant and charming aspect of Twine.

◊ Double-click your passage. In the text editor, add a

pair of square brackets on either side of the word

ostrich, making your text look like this:

. . . on this of all mornings, the last thing anyone

wants to see is an [[ostrich]].

Use right and left square brackets—the keys to the right of

the letter P on your keyboard—not parentheses or curly

braces. Twine looks for these specific characters and won’t

recognize substitutes. Also, if you are following closely,

you’ll put the period outside of the right set of brackets.

There’s no great harm if you get that detail wrong. (In later

examples, however, precise punctuation may matter quite a

bit.)

◊ Click the “X” to close this passage . . . and behold!

Treasure this moment. It’s your first step into hypertext. It

is also your first experience of a very beautiful thing: Twine

automatically creating a new passage to complete a link.

Most people take this little transaction for granted, but some

early hypertext systems did not include this feature. The

World Wide Web makes no attempt at all to manage

structure. For these reasons, Twine’s automatic link creation

makes an old hypertext writer smile. It’s a sweet hack. More

important, creating passages automatically makes building

complex structures a fluid, coherent process, giving a major

boost to creativity.

If you look at the structure editor now, you’ll see two

passages (boxes), with a curved, arrowheaded line between

them. Structurally speaking, you now have the beginnings

of a genuine Twine story.

◊ Double-click on the “ostrich” passage to edit its text.

Set your cursor to the left of the first line and type the

following:

But here it is, maybe slightly larger than life, in the

middle of your Auntie Integer's sunroom. A flightless

bird with eyes the size of [[gumballs]].

As you may guess, typing those double brackets around

the word gumballs automatically links the “ostrich” passage

to a third passage called “gumballs.”

◊ Return to the structure view; open this new, blank

passage; and enter a third paragraph:

Once, for an entire week between the ages of two and

two-point-one, your entire vocabulary consisted of the

word "gumball," which became the name of every person

and object as well as the lone verb in your dramatic

revision of the human language. Now, somehow, the

occurrence of this word makes you vaguely

[[uncomfortable]].

If you do this right, you’ll summon up a third link to a

fourth passage, which is automatically titled

“uncomfortable.”

◊ Open that passage and enter a last chunk of text:

"!!!" says the ostrich, also apparently unsettled.

But you speak Human, not Ostrich. You take a step

closer.

"!!!," the ostrich reasserts.

You carefully blink each of your eyes in succession, an

old trick for stabilizing realities. It is unmistakably

an ostrich;

This time we didn’t end with an automatic link. That’s

because we’re going to join this fourth passage back to the

first one—ironically called “the last thing.” Doing this will let

us demonstrate a second powerful technique for making

links in Twine.

◊ At the end of your text in the current passage,

following the semicolon, add the following text:

[[and . . .->the last thing]]

Here you see a second way to define a link in Twine: by

adding the symbol -> (a two-character rendering of an

arrow) plus the name of an existing passage. Links made in

this way can run anywhere you like, not just from new to

newer but into and among existing passages as well. The

name of the destination passage (“the last thing”) must be

spelled exactly as it appears in the structure graph, and

unlike destinations in HTML links, it is not placed in

quotation marks.

Our first story, The Ostrich, is now complete. Properly

assembled, it forms a simple loop. To see how the loop works

in practice, we’ll need to play it through.

Playing through the Story

Twine provides two main ways of checking the operation of a

story, each associated with a button you will see to the left

of the “+ Passage” button. Moving from right to left, the first

of these is “Play.” To its left is “Test.” The “Play” button

shows the story pretty much exactly as it will appear to your

reader. “Test” adds debugging tools, which become useful as

you begin building more ambitious things.

◊ Click the “Play” button.

You should find yourself looking at the text you wrote in

the first passage, called “the last thing.” If you are using the

Harlowe story format (still the default at this writing) and did

not change from dark to light themes, the letters will be

light-on-dark. If you have switched to Chapbook, you’ll see

something resembling a printed page. The final word of the

passage, ostrich, should appear in a style that indicates the

starting point of a link: blue in Harlowe or underlined in red

for Chapbook. If any of these details are wrong, click the “X”

in the upper right corner of the window to return to the

structure view. Reopen the problematic passage and check

what you wrote.

Suppose you found a mistyped character in the third of

our four passages (“gumball”). After you make the

correction, you can press the “Play” button again and move

through the story from the first passage. With only four

passages, this is just mildly annoying, but once your stories

stretch to dozens of passages, you won’t want to return to

the top. Fortunately, Twine allows you to make any passage

the start of the story. Let’s make “gumball” the beginning.

◊ Return to structure view if you are not there already.

Hover over the “gumball” passage. A row of buttons

appears. Slide your cursor down and to the right, then

click once on the button marked with three dots (. . .).

A menu appears. Choose the first option, “Start Story

Here.”

The “gumball” passage now has the green rocket ship,

indicating that it is the start of the story. If you use the

“Play” or “Test” buttons now, you’ll automatically begin with

“gumball.” Resetting your start passage can be essential in

building longer stories—but be careful. If you change the

start passage for editing purposes, remember to change it

back. When you export or publish your Twine story,

whatever passage is currently marked as the start will

become the entry point. If you send out a story and readers

complain that it seems to start in the middle, that might be

because you forgot to reset the start passage. (With

hypertext, though, you can always say you wanted things

that way.)

◊ Use the “Start Story” procedure to set “the last thing”

as the start passage again. Then play through the

entire story, following the single link at the end of each

passage. Visit all four passages and make sure the final

link takes you back to “the last thing.”

Our Ostrich story shows one legitimate use of Twine, but

not the best or most interesting. The Ostrich has only one

reading sequence. Even if we move the start point, the

reader will always follow the same path around the loop.

Every passage has only one exit, leading inevitably to the

next. The Ostrich is the sort of story we might find on

printed pages, which is fine, but Twine can do more than

imitate print.

It is tempting to say this story is not a hypertext, but that

claim could be controversial. Theodor Holm Nelson, who

invented the term, insisted that “hypertext is the most

general form of writing” (Nelson 3/2). According to Nelson,

writing in fixed succession—the paragraphs of a newspaper

story, for instance—artificially limits language. Even without

computers, writing tends toward multiple arrangements or

sequences. You can open a book to any page you like. To

return to newspapers or web pages, think of the way your

eye might drift from one story to an item in another column

or space, then back again. For Nelson, multiple sequences

are the natural order; linear chains, like our Ostrich story,

bury their heads in constraint, ignoring other possibilities.

What happens if we explore those possibilities? Doing so

would lead us away from the conventions of single-stream

media (books, film, video) in the direction of other things,

including hypertexts and computer games. This turn has

obvious creative consequences, but it can also be a

technical matter. We can measure how hypertextual a story

is in terms of link density, the ratio of passages to links. The

Ostrich has a link density of 1.0, with exactly one link per

passage. Other values are possible. Consider a story with

five passages and a total of seven links among them. That

story has a link density of 5 to 7, or 1.4. We might say that a

true hypertext should have a link density greater than 1. We

might also say that link density will generally fall

somewhere between 1.0 and 2.0—which may seem strange,

considering there is no formal constraint on the number of

links you can put into a passage. However, not all

constraints are formal. Consider the following example.

Example 1.2: Overflow

◊ Start a new story in Twine. Name it Overflow. Create a

new passage, title it “Overflow,” and type in the

following text:

Let me make one thing perfectly clear: I am in no way

responsible for whoever or whatever devoured the sun.

◊ Type double square brackets around each word in the

sentence. (You can either include or exclude the colon

and period, as you like.) You should end up with

something like this:

[[Let]] [[me]] [[make]] [[one]] [[thing]] [[perfectly]]

[[clear:]] [[I]] [[am]] [[in]] [[no]] [[way]]

[[responsible]] [[for]] [[whoever]] [[or]] [[whatever]]

[[devoured]] [[the]] [[sun.]]

◊ When you are finished typing, click the “X” in the

upper right corner to return to structure view. Consider

the results.

Twine will happily anchor a link on every word in a sentence

or every word in a passage. You could even . . .

[[l]][[i]][[n]][[k]] [[e]][[v]][[e]][[r]][[y]] [[c]]

[[h]][[a]][[r]][[a]][[c]][[t]][[e]][[r]]

. . . if you were entirely mad. Of course, Twine will generate

a destination passage for everything you link. In the case of

Overflow, we end up with a total of twenty-one passages—

the original plus twenty possible successors. Think for a

moment about the time it will take to write unique text for

each of those twenty passages (as we’ve actually done in

the completed version in the digital version of this book).

Now consider writing at least one outward link from each of

those passages. And what if every successor passage

needed more than one link out? Before you knew it, you’d

have a completely unmanageable project. One early

hypertext writer, Shelley Jackson, encountered this problem

while working on her celebrated fiction Patchwork Girl in

1995. She began by making links at will, starting threads

and branches that expanded in all directions. After a while,

she found the proliferation of links downright monstrous. In

a later interview, she called the resulting structure map a

“Brillo pad” of tangled lines. So much for the first draft. “I

erased all the links,” she said. Then she started over with a

more careful approach (Jackson).

Link explosions can be troublesome. Yet strangely, there

are at least two important digital fictions in which each word

in every lexia behaves like a link: Michael Joyce’s afternoon

(1990; the first thing called a hypertext fiction) and Judd

Morrissey and Lori Talley’s The Jew’s Daughter (2000). In the

Twine era, Porpentine’s Howling Dogs contains at least one

passage in which every word is linked. How did these writers

manage to avoid the Brillo pad of madness?

If every link system implies a conceptual tree or bush, the

answer to explosive growth is simple: cut back the excess.

Trim judiciously. Think topiary gardens, not jungles. Let’s

consider a more sensible example.

Example 1.3: The Reign of the Two

Doors

◊ Start a new story called The Reign of the Two Doors

(holding nose for pun). Enter the following text in a new

passage also called “The Reign of the Two Doors”:

You find yourself in the two-door universe. It was

slightly less expensive than the three- or four-door

models and all we could afford.

◊ Below the text you just entered, enter the following:

[[Go through the left door->Not Right]]

[[Go through the right door]]

Before going on, let’s introduce a useful Chapbook feature

designed especially for the kind of story we’re telling here.

It’s called a fork. A fork is a visual device for presenting a

small set, usually a pair of links. If you’re using Harlowe,

don’t worry—the fork is convenient but not essential.

◊ Add a greater-than sign, or right angle bracket, before

each link, like so:

>[[Go through the left door->Not Right]]

>[[Go through the right door]]

The angle bracket notation creates the fork. Its visual

effect is subtle but pleasing: a fine line appears between the

two links. The online Chapbook guide

(https://klembot.github.io/chapbook/guide/) provides

advanced information about restyling the appearance of

forks. You can include this effect or not, depending on your

taste.

https://klembot.github.io/chapbook/guide/

As you can see, this story is written in an idiom many

Twine fictions share with parser-based interactive fictions

and the kind of multipath novel usually called “choose your

own adventure.” The reader/player is addressed in the

second person. For scene-setting, we use the present

progressive tense. Link anchors, which substitute for

command-line typing in interactive fiction, use the

imperative mood and describe some action—in this case,

movement through space carried out by the reader/player’s

persona.

Each of our twin links uses one of the main linking styles

available in Twine. The leftward exit names a specific

destination passage that, since it does not previously exist,

will now be created. The rightward link calls into being a

passage named for its anchoring text.

Looking at the structure graph, you’ll see that we have two

fresh passages to deal with: “Not Right” and “Go through

the right door.” Let’s handle the second of these (“Not

Right”) first:

◊ Open the passage called “Not Right” and enter the

following text:

You find yourself in the Place of No Winning. It is a

simple room with, of course, two doors.

[[The Init Door->The Reign of the Two Doors]]

[[The Exit Door->The Reign of the Two Doors]]

The point here is that both doors from this passage lead

back to the start point, closing a loop. There are two doors

because this is a two-door universe. If you’d prefer one,

that’s fine. The reference to winning (or its opposite) is a

matter of judgment. Maybe the player wants to stay in the

loop. Who are we to say?

◊ Open the passage called “Go through the right door”

and enter the following text:

Advancing boldly through the dexterior portal, you find

yourself in another version of the same stupid room.

Someone is trying to make a point, you suppose.

[[Left! Maybe it will work this time->Not Right]]

[[Right!]]

For the record, dexterior is not an actual word, though

maybe it should be. By now, you should grasp the general

design of this story: there are two links (or doors) from every

passage. So far, at least, one of them always leads to the so-

called fail passage, locking the player into the loop.

However, there is a bit more to the story.

◊ Return to structure by closing the current passage.

Open the new passage called “Right!” and type the

following text:

Right. Always take the door on the right. You get it

now.

[[Always right->The Reign of the Two Doors]]

[[Left Behind]]

In this passage, we do the perhaps all-too-predictable

thing, capriciously breaking the left/right pattern. The first

link leads back to the beginning, while the second, left-hand

door leads on. This is an entirely voluntary decision, of

course. You could be kinder to your player/reader and avoid

such perversity. When it comes to link patterns, the rules are

up to you.

◊ Return to structure. Open the new passage called

“Left Behind” and type the following text:

Moving at last through the door the writer apparently

doesn't want you to take, you begin to float above the

confines of the labyrinth, leaving fools behind.

Rise up, you lovely winner.

Players of Davey Wreden’s metagame, The Stanley

Parable, will recognize the two-door controversy (Wreden,

Stanley Parable). This rising-up business is an abject steal

from Wreden’s next offering, The Beginner’s Guide, which

we’ll address in the conclusion of this book, even though it is

not a Twine work. The player’s upward motion expresses a

universal figure or trope. Given a loop or labyrinth, there are

three possible actions: make your way to the center, find

some way out, or rise above the whole thing. It is no

coincidence that we find ourselves referring to a video game

and reaching beyond the realm of hypertext fiction (and

indeed Twine). The current generation of Twine creators

think of themselves as game developers as well as

storytellers, and they occupy the same social and economic

space as independent game developers. As we’ll see in

chapter T-2, they’re part of the conflicts that come with that

contested space. Many Twine stories are explicitly designed

as games, with rules, consequential decisions, winning and

losing outcomes, and even scoring systems. Porpentine’s

Ultra Business Tycoon III (Porpentine, Ultra Business Tycoon

III) and Seth Alter’s RocketJump-ification (Alter) are excellent

examples.

For some, Twine works belong entirely within the game

world. Others see Twine works as hypertexts encompassed

within a larger group of creative products called cybertexts.

That term was coined many years ago by Espen Aarseth,

who went on the become one of the founding theorists of

computer games. Cybertexts include games but also any

other undertaking without a fixed sequence of presentation,

where “non-trivial effort” is required to experience the work

(Aarseth 2). There’s much more to say about Twine stories

and games both here and in the chapters that follow, but for

the moment, there’s more to say about our example, both as

story and as hypertext.

The Reign of the Two Doors has a respectably hypertextual

link density of 2.0: there are two ways out of every passage.

Yet it requires no more than six passages, since, in five of

those passages, only one link runs to a nonexisting passage,

expanding the structure. (In the “Not Right” passage, both

links bend back to the beginning.) You can build as many

links as you want, provided many or most do not expand

your inventory of passages. This is the technique used by

both Porpentine in Howling Dogs (Porpentine, Howling Dogs)

and Joyce in afternoon (Joyce). In the former, the overlinked

passage presents a field of linked words that mainly go to

the same place, except for the one that doesn’t. Joyce uses a

different but similar technique in which a few words in each

lexia will “yield” a connection to a specific other lexia

(Joyce). Every other word in the lexia is implicitly linked to a

default destination. This design was made possible by a

clever feature of Storyspace (Bolter, Joyce, and Smith), the

early hypertext system for which afternoon served as the

test file.

The third example mentioned earlier, The Jew’s Daughter

(Morrissey and Talley), arrives at universal link coverage

very differently. In Morrissey and Talley’s story, which is, in

fact, less a hypertext fiction than an example of digital text

generation, clicking any word on the current screen feeds

the word to a program that composes a new passage

beginning with that word. This revolutionary technique goes

beyond predefined passages and links, but you may want to

keep it in mind even so. Because it offers access to

programming resources like JavaScript, Twine allows you to

work with dynamic, variable, and even logically generated

text. These are more advanced subjects, so we reserve them

for later chapters, beginning with P-3.

Our Reign of the Two Doors example shows that it’s

possible, even with basic tools, to manage links and story

structures, avoiding explosive overload. Links and linking

strategies take a wide variety of forms. The Reign of the Two

Doors shows what we might call navigational linking, tied to

the movement of a virtual character or point of view through

a described space. A close cousin of this approach is

procedural linking, where the anchoring text describes an

action involving the persona: “You shut the door”; “The

ostrich says nothing”; “The Twinebot emits another burst of

story,” and so on. Also quite popular is conversational

linking, where the anchors are options for responsive

speech. For instance,

The high commissioner shoots you an arctic stare and

says, "Twine. Really?" You answer:

[["It is the way among my people."->Way]]

[["Who said anything about Twine?"->No Way]]

[["Hey, is that an ostrich?!"->Way Out]]

All these linking strategies—navigational, procedural, and

conversational—share a common feature of composition.

They divide the visible space of the passage into two parts:

an upper section that advances the story and a lower part

that contains the link anchors (perhaps set off as a fork). We

could say the upper part is definitive or diegetic, reporting

what happens or has happened in the world of the fiction,

while the lower portion is hypothetical, consisting of

language still in play. We’ll call this arrangement a bifold

construction.

The alternative, which we’ll call a unified construction,

brings the links directly into the diegetic text. Here is a

thumbnail example:

Every morning, [[the old man->Hubert]] comes to search

our [[trash bins]]. He is impeccably dressed and

obviously from the [[Ministry->Darkness]].

As you can see, this passage consists only of narration—

strictly speaking, the direct report of an unidentified

narrator. There is no second-person address and no

reader/player persona. There are link anchors, but they fit

into the diegesis instead of pulling away from it, as is often

the case in the bifold scheme. These features give the

example a stronger resemblance to conventional literary

fiction than to interactive fiction or choose your own

adventures. The unified or in-line treatment of links was a

signature of early hypertext fiction, whose writers

sometimes set themselves (perhaps regrettably) against the

older interactive fiction tradition of parser-based games.

Very roughly speaking, bifold construction accentuates

the gamelike qualities of Twine stories, while the unified

approach plays to literary interests; but this distinction can

never be absolute. In the 1980s and ’90s, some hypertext

writers said of their work, “This is not a game” (see McDaid).

In the following decades, however, stories and games

inevitably converged. In a later hypertext from the web era,

one of us revised the claim, declaring, “This is not not a

game” (Moulthrop). Today’s Twine writers dispense with

single and double negatives alike. Klimas’s use of “story”

notwithstanding, many Twine creators call their products

games and even “videogames,” as in merritt k’s

groundbreaking and essential anthology, Videogames for

Humans (merritt k).

However controversial the claim to game identity may be,

it will not go away. Twine stories can be games, and Twine

games tell stories. One interest or the other may dominate,

but both will be present. In fact, many Twine writers exploit

this dynamic, alternating the two types of construction,

writing some passages in the double-decked way and others

with the all-in-one pattern. Two of the most impressive Twine

stories, Porpentine’s With Those We Love Alive and Howling

Dogs, display this strategy. Know and consider your options.

Nothing requires you to address a player persona (the

eponymous “you”). Likewise, no law says that Twine stories

have to imitate print fiction. At its best, Twine allows us to

explore the spaces between those alternatives, refining a

new art form as we go.

Example 1.4: Don’t Think of an

Elephant

Here’s a fourth example exploring what can happen if you

let your links mingle with the rest of the text.

◊ Start a new Twine story. Title it Don’t Think of an

Elephant.

◊ Add a new passage. Title it “Don’t Even Think.” In this

passage, type the following:

At dawn, the [[Elephant Men->Elephant]] will come for

your skull. But meanwhile, as Uncle Jed always told you,

[[the night]] is as long as you want it to be.

Just, you know, don't think. You know. Of it.

◊ Close the text editor and return to the structure editor.

You should see two links running from your first

passage—one to a new passage called “Elephant” and

the other to “the night.”

◊ Open the “Elephant” passage and enter the following

text:

Hyperintelligent pachydermatoids from an exoplanet we

haven't found yet are here to avenge humanity's crimes

against the elephants. Evidently, they will be satisfied

with just one trophy. That would be you.

Why they chose you remains a mystery, though it could

have something to do with the illegal safari they caught

you on. And that elephant gun with the smoke coming out

of it.

The senior Elephant Man asks if you have any [[last

words]].

Yes, this is one of those tales about exoplanetary

pachydermatoids. This story also appears to have a link

density of 2, like another example we might recall. If this

story follows the earlier pattern, we might expect it to have

two tracks: one leading to happiness and the other,

otherwise. Let’s finish the darker destiny first.

◊ Open the passage called “last words” and enter the

following:

Evidently, you don't.

There are no links from this passage. It is in every sense a

dead end. With the less fortunate outcome covered, let’s see

what lies along the other track.

◊ Return to the structure editor and find the passage

titled “the night.” Open it and enter the following:

As, for instance, that first night in the Algarve, when

Georges-Marie said, "La, but it is [[so big-

>Elephant]]!"

Meaning the room, or the bed, possibly. But you

[[flattered]] yourself.

◊ Back to structure. Two links, as always, one already

pointing conveniently back to “Elephant.” The other

runs to a new passage called “flattered.” Open that one

and enter this text:

"Not the [[Hermes->Elephant]]," Georges-Marie objects.

"It flatters not the slightest. Goes immediately into

wrinkles. And the gray does nothing for you."

This was on the night train to St. Petersburg. You

remember the cocktails with prices in Korean, the

waiters in their tricorn hats, the endless fields of

[[elephant grass]].

As in The Reign of the Two Doors, we’re throwing some

curves. The general rule here is to avoid any word or phrase

that makes us think of an elephant—references to things of

a large scale or a gray and baggy suit. But now there’s this

link to “elephant grass.” Remember, in Two Doors, this was

where we challenged the player/reader to win by reversing

logic. Think we’ll do the same now?

◊ Open the passage titled “elephant grass” and enter

the following:

Oh dear. You meant to say "[[potatoes->Elephant]]."

[[Oops->Elephant]].

Sometimes Twine stories are simply cruel. Save the

elephants.

With a couple of exceptions—the additional passage on

the way out and the tragi-farcical ending—this story is

structurally identical to The Reign of the Two Doors. Instead

of explicitly revealing the logic of its links, however, this

story works by implication and association—as language

tends to do, especially literary language. Perhaps this

difference represents a step away from the idiom of games,

at least games of a certain kind. But we could as easily say

that it connects logical play with wordplay. That might be a

promising match, at least in stories more graceful and

sophisticated than this one.

Exporting and Sharing Twine Stories

One last detail needs attention before we finish with the

basics: how to make your Twine story available to friends,

strangers, editors, and teachers. There are many options for

circulating a story, but before you can circulate, you must

first export your work. This requirement applies even if you

are using the online version of Twine. Stories you build

online are accessible only using the current browser and

computer: they are stored locally to your computer. If you

send the web address (URL) of an online Twine story,

recipients will not be able to view it, as the material is not

stored online.

◊ In the structure editor, look at the bottom left area of

the window. You should see an icon that resembles a

house. Click this icon to return to your library. In the

library, find the thumbnail that represents the story you

wish to export. Next to the title and time stamp for each

thumbnail, you’ll see an icon that looks like a gear

wheel. Click this icon to reveal a menu. The third item

in this menu is “Publish to File.” Select that item.

At this point, your operating system will go into its usual

file-saving routine, asking you where you want the results to

be stored. Pay close attention. In Windows and Mac OS,

saved files usually default to a Documents folder. Be sure

you know how to find that folder. When in doubt, change the

destination to the desktop, where items are immediately

visible.

Click the “Save” button in the file-saving dialogue to

complete the process. Twine now creates a single file

containing your story plus everything a web browser needs

to display it. This file is saved as a web page, with the file

extension .html.

Why a web page? you may ask. Why doesn’t Twine use

binary code or some arcane, proprietary format? Like the

World Wide Web and HTML, Twine is noncommercial, open-

source software. It uses free, accessible resources. For all its

limitations, HTML/HTTP is for most of us the most convenient

hypertext platform available. Exporting Twine stories as web

pages means they can be uploaded to a web server and

displayed either remotely or locally in virtually any browser.

The other advantage of HTML is accessibility of code, for

those who are motivated and prepared to read it. The file

format for every web page is plain text, which can be read

by built-in text processors such as Notepad (Windows) and

SimpleText (Mac OS). You do need to know what you’re

looking at, which in the case of Twine stories is not just basic

HTML but also quite a bit of JavaScript. JavaScript is an

auxiliary coding language (or scripting language) developed

to extend the function of web browsers. Much of the magic

of Twine depends on JavaScript.

If you are not a programmer, you don’t need to concern

yourself with any of the underlying code for your story. All

you need to know is that Twine pages require JavaScript to

function, so your server and browser must be configured to

allow for this. We’ve encountered at least one academic

course management system that prohibits script-enabled

web pages. Hopefully, that won’t happen to you. Talk to your

teachers or your system administrator if it does. If the

prohibition has no exceptions, there are work-arounds.

With export complete, you are ready to show your file to

others. The simplest way to do this is via email, again

provided your email system allows you to send web pages as

attachments. Any browser application can read a web page

immediately without going through a server. All your friends

and teachers need to do is download the attachment and

open it as a local file.

If you want a wider world to experience your work, you can

upload your HTML file to a web server. There are plenty of

free web hosts (Wix, Weebly, etc.). Many schools offer server

access for students. Always remember that information

shared on the web can be seen by nearly anyone in the

world, so don’t include sensitive details, names of private

persons, or other things that violate common sense. You

might also want to think about the audience you have in

mind for your Twine story. If the story contains material that

might disturb or trigger some people or might be

inappropriate for young children, include a disclaimer at the

beginning.

Works Cited

Aarseth, Espen J. Cybertext: Perspectives on Ergodic

Literature. Johns Hopkins Press, 1991.

Alter, Seth. RocketJump-ification. Subaltern Games, 2013.

Accessed June 6, 2020.

https://subalterngames.itch.io/rocketjumpification.

Bolter, Jay David, Michael Joyce, and John B. Smith.

Storyspace [hypertext system software]. Eastgate

Systems, 1990.

Drucker, Johanna. What Is? Nine Epistemological Essays.

Cuneiform Press, 2013.

Galloway, Alexander. Protocol. MIT Press, 2004.

Halasz, Frank. “Reflections on Notecards: Seven Issues for

the Next Generation of Hypermedia Systems.”

Communications of the ACM 31, no. 7 (1988): 836–52.

Jackson, Shelley. “Interview Part 5: Thinking outside the

Screen.” In Pathfinders, edited by Dene Grigar and

Stuart Moulthrop. Nouspace Press, 2015.

https://scalar.usc.edu/works/pathfinders/shelley-jackson.

https://subalterngames.itch.io/rocketjumpification
https://scalar.usc.edu/works/pathfinders/shelley-jackson

Joyce, Michael. afternoon, a story. Eastgate Systems, 1990.

Landow, George P. Hypertext 2.0. Johns Hopkins University

Press, 2006.

McDaid, John G. Uncle Buddy’s Phantom Funhouse

[hypermedia novel]. Eastgate Systems, 1993.

merritt k, ed. Videogames for Humans: Twine Authors in

Conversation. Instar Books, 2015.

Morrissey, Judd, and Lori Talley. The Jew’s Daughter. Self-

published, 2000. http://www.thejewsdaughter.com/.

Moulthrop, Stuart. “Reagan Library.” Little Magazine [CD-

ROM edition], 1999.

Nelson, Theodor H. Computer Lib/Dream Machines. Microsoft

Press, 1987.

Porpentine. Howling Dogs. Alien Dovecote, 2012.

http://slimedaughter.com/games/twine/howlingdogs/.

———. Ultra Business Tycoon III. Alien Dovecote, 2013.

http://slimedaughter.com/games/twine/tycoon/.

———. With Those We Love Alive. Alien Dovecote, 2014.

http://slimedaughter.com/games/twine/wtwla/.

Wreden, Davey. The Beginner’s Guide. Everything Unlimited,

2015.

———. The Stanley Parable. Galactic Café, 2011.

http://www.thejewsdaughter.com/
http://slimedaughter.com/games/twine/howlingdogs/
http://slimedaughter.com/games/twine/tycoon/
http://slimedaughter.com/games/twine/wtwla/

CHAPTER T-2

Twine (R)evolutions

Works built in Twine hearken back to early electronic

literature, evoking HyperCard and Eastgate hypertext

fictions, but their relationship with these established digital

forms is not straightforward (as we’ll discuss further in

chapter T-3). The reception and definition of Twine as a

platform recalls the many debates of definitions surrounding

electronic literature. Works in Twine have been included in

interactive fiction competitions, displayed at independent

games festivals, and built as part of interactive story jams.

However, despite Twine’s link to hypertext fiction, it has not

been as visible in the electronic literature community. In an

interview in Guardian, designer and writer Anna Anthropy

has called attention to the works in Twine as part of a

“revolution,” noting that they offer a solution to some of the

dehumanizing aspects of mainstream games: “I think that

what I want to see more of in games is the personal—games

that speak to me as a human being, that are relatable, which

is the opposite of the big publisher games that I see. People

who are creating personal games aren’t hundred-person

teams, they are people working at home, making games

with free software of their own experiences” (Ellison). Key

Twine works evoking this personal literary construct include

Nora Last’s Here’s Your Rape, Finny’s At the Bonfire, Anna

Anthropy’s Escape from the Lesbian Gaze, and Zoë Quinn,

Patrick Lindsey, and Isaac Schankler’s Depression Quest. We

examine these works (and many others) as part of

“Twining”—a practice, event, and platform that challenges

the existing discourse of several disciplines—and further

invite the reader to engage in their own personal making,

subversion, and reflection. Twining will, like Twine itself,

intertwine theory, practice, and poetics—we will weave

together principles of making with an examination of the

many Twines. Twine is simultaneously punk and childish,

new and retro, a return to nineties hypertext and a

procedurally driven rejoinder to web 2.0’s toxic “real self”–

driven social spheres of performance and harassment.

What follows is an autoethnography positioning Twine as a

force for culture, documenting and at times wrestling with

the emergence of Twine as a piece of cultural software—a

history of encounters, people, interfaces, and aesthetics that

situate Twine’s significance as a platform with queer,

feminist, and punk leanings. We apologize in advance for

what it does oddly but would argue that this oddness is

necessary for embracing what makes Twine Twine. As such,

in this chapter, we diverge into the “I,” drawing on Anastasia

Salter’s point of view (again, with apologies and

trepidation). In this rapid, personally situated history, we

consider Twine as a tool of disruption and invite you to join

us in asking, Why Twine?

Welcome to the Neighborhood

The appeal of Twine is the appeal of a GeoCities

neighborhood (my first virtual “home” was in Area 51—for

those unfamiliar, that was once the designated space for

science fiction fandom and home to many writers of another

important form of electronic literature—fan fiction). My

GeoCities site was populated by animated GIFs “adopted”

from online artists, webrings links to other preteens and

teenagers with rambling, and confessional web pages filled

with fandom, and most of my early writing (such as it was)

was done in the collaborative, free-form space of a role-

playing chatroom in my first fandom. (Which fandom is

irrelevant and omitted here for self-preservation. OK, it was

Mummies Alive!) Thankfully, any and all record of this

appears to have been erased by the death of the old-school

web (reader: do not view this as a challenge, please). These

websites gave birth to the similarly aesthetically challenged

chaos of MySpace, which similarly featured the web-1.0 look

of clashing backgrounds, bad animation, and lots of flashing

and moving parts—an aesthetic shown in figure 9, which we

will revisit in chapter T-4.

Figure 9: A typical ’90s website,

https://geocities.restorativland.org/Area51/Atlantis/2782/. Mine was

worse.

By contrast, Facebook is boring, uniform, and tiresome,

with a panopticon of profiles, all the same and

algorithmically monitored. Interactive fiction constructed in

parsers has always felt similarly off-putting to me—colorless

and gray. Inform 7 has the cookie-cutter visual look of

https://geocities.restorativland.org/Area51/Atlantis/2782/

corporate web 2.0, despite its decidedly rebellious lineage.

Twine, on the other hand, is the discordant, frequently

visually dissonant development tool that seems to have

grown up on GeoCities, MySpace, and LiveJournal.

But back to GeoCities: when I was happily linking my site

to others through webrings and banner exchanges, I was not

particularly aware that hypertextual narratives were a thing

(or even a thing other people did), and that is something I

suspect I have in common with many of the writer/designers

who discovered Twine. On reflection, I was participating in

their ilk—the interwoven narratives of self-inserted

characters appearing and reappearing in fan fiction traded

and rewritten had its moments. While I was generationally of

the right age to grow up on graphic adventure games and a

few text-game holdovers, I would not discover hypertext

fictions and electronic literature until a college class

directed me to the appropriate corners of the web and

required the purchase of an Eastgate CD that didn’t want to

run even then. That disk, Deena Larsen’s beautiful work

Samplers (1996), is still on my shelf for posterity’s sake

alongside many other unplayable pieces. As a platform,

Eastgate’s Storyspace was immediately off-putting to me:

anything that can’t be shared freely online or found in a

computer software store seemed to me (raised on fan fiction)

inaccessible. Hypertext fictions seemed better-suited to

thrive when made open on the web and lived alongside

GeoCities in nineties venues, including New River,

Postmodern Culture, and Iowa Review.

Prior to Twine, I built hypertextual narratives and scholarly

projects the old-fashioned way, with tons of files and links.

Built in Notepad and featuring the correspondingly horrific

coding styles of the 1990s and early 2000s, these projects

usually had inline styles, overly complex table layouts, and

even the occasional piece of animated text. (My first game,

built rebelliously as a JavaScript vocabulary quiz for a class

board game assignment, featured an entry portal so

complicated that no one could find it until I wrote out a

detailed instruction manual.) I left this style of web

development behind for years, lured in by the world and

tools of graphical game development. For years, the idea of

teaching something like Twine in the game design classes

where I would teach primarily Flash, XNA, and Unity would

have seemed laughable—getting students to care or see

text-based games as relevant was nearly impossible. In an

interactive narrative course I later developed, I brought in

Inform 7 in a pre-Twine concept, and students struggled with

both the text emphasis and the idea of making games that

were this complicated. The graphical world seemed to have

won.

But something happened. Flash died. I wrote it a eulogy,

slightly early but quickly proven final, released during the

same year as Gamergate. More on that later (Salter and

Murray). Gaming changed: it needed a new disruptive

platform, a space for metacommentary like the Flash games

that used to mock the standards and norms of console

games and mainstream gaming. And similarly, those

displaced, alienated, and boxed-in by web 2.0 would start

looking for tools to break out—tools that would be accessible

and would, most importantly, allow for rapid circulation and

distribution outside of gated platforms, software

installations, and expense. Twine would make a place for

itself as that platform.

What follows is my highly biased, timeline-jumping,

woefully incomplete narrative of why I think that is.

The University of Baltimore, or How I

Accidentally Was Present for the Birth

of Twine*

*(But Mostly Missed It)

I started my doctoral program at the University of Baltimore

(UB) in 2007. I ended up in a class with a cohort of

interesting fellow students, including Chris Klimas, who

would later be known as the creator of Twine. We had some

conversations about interactive fiction, but I did not, at the

time, realize I was talking to someone who would redefine

the term. Chris Klimas introduced himself to our cohort in

September 2007, noting that he came from a background

that mixed computer science and creative writing: “I’ve had

webby kinds of jobs for the past six years which started off

kind of amorphous, but by now I think I’ve figured out I’m a

web developer, not a designer. The line can be a fuzzy

one. . . . In general, I’m good at code but not so much

design. . . . Lately I’ve been writing hypertext. . . . If you’re

curious, I post my stories on gimcrackd.com” (Klimas, IDIA

student introductions). I still have slides and emails from

projects we collaborated on at UB, including an orientation

game designed for, of all things, a Motorola Razr phone. The

pace with which technology would advance was not

foreseeable even to us, immersed as we were in its potential.

Looking back at these projects, Chris’s (and for that matter,

my own) growing interest in accessibility in design is

apparent.

The TweeCode/Twine Google Group dated from 2006 to

2018, at which point it was superseded by other Twine

forums. Prior to Chris Klimas’s own enrollment at UB, he was

working on Tweebox 1.1, which was decidedly focused on

interaction over aesthetics, but the discussion in the Google

Group suggests he was starting to think about interface:

“Right now the color scheme’s pretty bland. This is sort of

intentionally so—I didn’t want it to be too distinctive—but

even so, it would be nice to offer a couple of color variations.

Either that or allow people to tweak the colors right from

http://www.gimcrackd.com/

Tweebox, though that might be a bit too much complexity to

give your average person” (Klimas, “What I’m Thinking

About”).

The “intentionally” bland look of this early Twine story

format, Jonah, is not so different from the default look of the

corporate web—but that would change. In an interview with

Gamasutra, Chris Klimas cited the influence of the

interaction design courses we both took at UB on Twine’s

move away from the computational interface to a graphical

one: “[Twine] might have been my graduate thesis,

originally, if I had the patience to complete one. . . . At the

time, I had been experimenting with ways to create

hypertext that were strongly code-oriented. I was studying

interaction design, so Twine was my attempt to make

something that would be friendly to people who were writers

more than coders” (Alexander). I’d also suspect the impact

of Eric Roberts’s course on learning and interactive media,

which we took together with others from the cohort. Sadly,

nearly all records of that class are, for me at least, lost to

time and poor memory.

The Twee documentation (which dates from Klimas’s time

at UB in 2009) reflects how different Twine was in this early,

grad-school incarnation. It’s decidedly geared toward

hypertextual narrative, not games: “Keep in mind that

hypertext is best described as a medium, not a genre. There

can be hypertext fiction, nonfiction—even poetry. But in this

document we’ll talk about hypertext prose” (Klimas, “What

Is Hypertext?”). Likewise, the discourse of the design

documentation is grounded in electronic literature: “Links

are the glue between passages. They are the equivalent of

being told to turn to another page in a nonlinear book; in

gamebooks, for example, you do this to make decisions for

the main character” (Klimas, “What is Hypertext?”). But this

isn’t the only possible kind of link. Deena Larsen describes a

whole taxonomy of links in “Fun Da Mentals: Rhetorical

Devices for Electronic Literature.” The original “Fun

Da Mentals” includes a coloring book section entitled

“Drowning in the Distance” that invites the reader to

connect imagery and passages with any tool that enables

linking. Twine appears currently on the list of recommended

tools alongside a number of other open-source tools for

manipulating and remixing content (Larsen).

The barriers to entry for the original Twee were high, but

that was not uncommon. At the time, the shift to

accessibility in tools-focused discourse in the digital

humanities was only beginning its rise, along with increased

interest in bringing these types of platforms to new users.

Both Chris and I were part of this interest and on the

outskirts of the digital humanities community—where, in

2011, the reader called Defining Digital Humanities would

include an essay where Stephen Ramsay observes that

“learn to build” might be more useful than “learn to code” as

a call for action in the digital humanities (Ramsay). He

particularly points toward the usefulness of the THATCamp

model in the sharing of methods of building—a space that

Twine itself was heading toward, albeit slowly.

THATCamp Games

The Humanities and Technology Camp—THATCamp—is a

peculiar institution, worthy of its own book that will

hopefully someday be written. It is an informal

“unconference” gathering of digital humanists, convened by

anyone with the will to organize and embrace the low- or no-

cost model. It appears repeatedly in the stories of early

digital-humanities community formation, best chronicled in

the Debates in the Digital Humanities volumes (Gold and

Klein). THATCamps vary wildly. Many THATCamp agendas

included sessions about games, with enthusiasts such as

myself sharing favorites and preaching their potential value

to humanists everywhere, but for most, the very idea of

games in the classroom still seemed challenging and out of

reach.

In 2011, I co-organized the first THATCamp Games with

Amanda Visconti at the University of Maryland, College Park.

The camp was held in January 2012 during a snowstorm,

with participants primarily including games scholars and

digital humanists. Twine was so far under the radar at that

point that even Klimas didn’t discuss it: he offered a

workshop on Flash game development with Flixel, an

unrelated precursor of sorts to Twine in (relative)

accessibility and usage if not in aesthetics. However, 2-D

game development of this kind was a very different

proposition than what would develop in Twine—Chris’s boot

camp description noted that “you should have some

previous experience with object-oriented programming”

(Salter and Visconti). The other boot camps were similarly

positioned. Darius Kazemi foreshadowed the growing

significance of HTML5 with a session on the Akihabara

framework for 2-D games in HTML, which required

programming experience; Bridget Blodgett (also from UB)

focused on text-based games using Inform 7; John Murray

looked at the Kinect Software Development Kit; James

Morgan and Marek Kapolka looked at GameMaker 8 (back

when there was a free version); and Todd Bryant shared

strategies for modding Civilization IV (Salter and Visconti).

Looking back over the open schedule, many of the

participants were looking for something like Twine—sessions

on games and literature, narrative design, games for

teaching arguments, queering games, and games and

gender all foreshadowed Twine’s eventual significance in

educational games discourse. Twine was introduced but not

yet dominant—reporting back after the event, Carly

Kocurek, a game researcher and historian, noted, “I came

back from THATCamp excited to play more with some of the

tools I’d had the opportunity to work with, but also excited

to spend some time with the tools I heard about but didn’t

get an opportunity to fiddle with hands-on at THATCamp

Games: Flixel, Unity, Inform 7, and Twine, among others”

(Kocurek).

Another attendee and designer, Sukey Argfored, posted

observations on Inform 7 that echoed both its allure and the

problems I’ve seen with it in class: “The nuts and bolts of

creating a game in Inform 7 may be simplified for non-

programmers, but they are still far too complicated to really

learn in an hour and a half session” (Argfored). We really

should have held a Twine boot camp, but it says a lot that

here, on the brink of 2012, even Chris Klimas himself didn’t

propose one for this venue. The explosion of Twine games

(which would in turn help push the open-source project

forward and create many of the resources on which Twine

developers currently rely) wouldn’t happen until a little

later. I started at this time pointing people to Twine, but

more the digital humanities crowd than the games crowd: in

my own world of graphics-focused coursework, with students

demanding better ways to build zombie shooters, there

didn’t seem to be a place for Twine in educational games

discourse—yet. For small projects and subversive gameplay,

we had Flash, which was highly visual, relatively quick and

well supported, and easy to circulate on all the pre-iPhone

platforms we could imagine.

Glorious Trainwrecks and the

Intervention of Anna Anthropy

While our THATCamp-ers were learning Inform 7, elsewhere,

others thinking inventively about games were discovering

Twine. The main page of Glorious Trainwrecks opens with a

provocation: “This site is about nothing, if it is not about

getting off your ass and creating. Wikipedia claims that

[people] used to stage trainwrecks (with empty trains, of

course) for the amusement of the general population. Would

the world not be a better place if we brought this tradition

back?” (Glorious Trainwrecks). The site turned ten years old

in April 2017, and since 2008, the moderators have

maintained a list of rapid game development tools on which

Twine features second (after Klik N Play, a graphical game

tool currently described as “free, terribly buggy, doesn’t

work on 64-bit, beloved by all”). The parenthetical for Twine

is more positive: “free, open-source, creates web-based text

games with a nice no-programming GUI interface.” The list

was last updated in 2012 and still links to Gimcrack’d,

Chris’s now defunct site that used to host the Twee wiki as

well as his own work. Leon Arnott (maintainer of the Harlowe

story format) turned the site into a resource for Twine poetics

and practices with a series of blog posts dating back to 2012

and covering topics including Twine page transitions and

CSS tricks, adding in external libraries such as jQuery and

extending the built-in JavaScript support with more dynamic

elements.

Glorious Trainwrecks is home to one facet of the rapid

game-making community that wasn’t Twine’s initial

audience but would come to define it, as Chris credited in

our interview:

I initially thought of [Twine] as this thing that was for . . .

serious writing, I guess, though serious writing is

obviously a loaded term. It wasn’t that I thought [Twine

work] was somehow better than a game, it was more

that I couldn’t see how you build a game out of it,

originally. And then everybody came along and proved

me wrong, basically. And that was the other piece of it. I

had zero awareness of the indie game scene at the time.

That was the thing that Anna Anthropy really

recognized, I think. I honestly credit her. . . . We’ll go

fifty-fifty for Twine’s success. Because she saw

something and was in a digital community I had no

relationship to. (see appendix I)

In June 2012, Anna Anthropy was interviewed in Rock,

Paper, Shotgun by Cara Ellison, who published the interview

as a Twine game: after a nod to GameMaker (which has since

gone very commercial), Anna Anthropy plugged Twine: “The

other thing I recommend to people who are making games

for the first time is Twine, which is a really simple tool for

making basically choose your own adventure sort of things—

very simple text stories—click here to do this—and it makes

games as web pages that you can put online” (Ellison). This,

along with similar Anna Anthropy interviews and posts, was

the introduction to Twine for many.

My interest in Twine had already been piqued by these

discussions, and I was rapidly working on my own (woefully

bad) experiments. I found inspiration and discovered a

better entry point into the community after a post from

Porpentine in the Twine Google Group on August 11, 2012:

“i’ve been working in Twine for a while and recently

discovered this group. Just posting a collection of the games

i’ve made along with my favorites from other people in the

indie game scene to show that Twine isn’t dead. There’s a

variety of tones and styles on display here so there’s sure to

be something you enjoy” (Porpentine, “collection of Twine

games from me and other people”). The list included many

of Porpentine’s own works, as well as Kitty Horrorshow’s

horror and a number of romantic and historical vignettes.

Many of these remain powerful, teachable works, and they

also demonstrated early on Twine’s range—from “surreal” to

“dripping horror” and beyond. I am a fan of Batman Is

Screaming, described here by its creator as “tiny, surreal”—

it presents the strangest merger of fan fiction tropes, Twine,

and body horror I’ve yet seen. It remains understudied,

probably because of the connection to that “other” woman-

driven, frequently queer, online community of storytelling:

fandom. More on that and other unusual works later.

Many others would find Twine during this surge thanks to

Porpentine, who would quickly become one of Twine’s most

respected creators. In an essay she has since deleted that

we quote here for its formative influence and power,

Porpentine described the appeal of Twine’s blank page as

something other than the white page of the word processor.

She particularly noted the value of Twine’s original

aesthetics, which I still appreciate myself—the black

background of Twine 1.X’s default story format lends itself to

a certain atmosphere, while the chunked passage formats

encourage thinking through fragments rather than

confronting the whole. As she observed,

So many people tell me their stories start to get personal

no matter how they start out.

Twine’s default color scheme is blue on black, not

black on white. Black on white is daylight, it’s mundane.

Twine invites us to write our secrets into the night. We

can make it light in a line of CSS, but that the default is

inverted feels non-trivial to me.

More significantly, when we write in natural language,

as opposed to code, we’re in the element of the diary,

the notepad, the confessional.

Our engines shape our output. We can’t pretend that

the history of game design has been designing on a

blank canvas or a white page. The history of game

design has been working with a canvas that screams at

you and changes shape and rejects your strokes if they

aren’t just right—working with machines. (Porpentine,

“Creation under Capitalism”)

Published in November 2012, this essay exemplified

everything that would make Twine important. Prior to my

focus on Twine, I was interested in another tool that has this

“personal” element, Adventure Game Studio. However,

Adventure Game Studio is far more difficult for

development, and the graphical narratives made with it

frequently take their lead from commercial adventure games

of the past rather than from text-based games. It and other

genre-driven engines force the user/creator into a certain

trajectory, demanding the embrace of dominant mechanics,

while Twine offers the freedom of the creator-defined verb—

the link—over any other interface.

Twine down the Rabbit Hole

As Twine became hip among the alternative gaming

community, I was inspired by its throwback aesthetic to start

playing with it not for game-making but for scholarship. The

first time I used Twine for my own scholarly work was in the

construction of Alice in Dataland, a project that began as

part of Anvil Academic’s abandoned (as far as I know) Built

Upon series in digital scholarship. I combined Twine with

other old-school hypertextual play throughout the project,

using animated GIFs, simple canvas animation, and

procedural play on classic forms such as Montfort’s

procedurally generated poem Taroko Gorge—all to explore

Alice’s rabbit hole as a metaphor for remediation,

remediated.

The project was not at all what the editorial board of Anvil

Academic had in mind—their vision of digital humanities

scholarship was data-driven, database-heavy, and “modern,”

not web-nostalgic. A year after the initial announcement of

my project and others being accepted, the editorial board

posted a commentary on the project’s failure, though that

commentary foreshadowed something larger: the failure of

the entire series, which as of 2020 has not published a

volume, perhaps due to their emphasis on “production

values: sophistication of interface design, complexity and

power of the underlying software engine, and other features

that (intuitively, at least) fall under the heading of

technology rather than scholarship or intellectual content.

The lone author, in other words, working without the support

of a digital scholarship lab, finds it hard to compete when

work is evaluated both for its technical sophistication and its

intellectual content” (Moody). This is certainly accurate;

particularly the demands of data-intensive work and

complex development have only grown in overhead.

But such commentary also echoes some of the criticisms

frequently aimed at Twine—criticisms that can be one of the

platform’s most important virtues. The lone creator, making

work in hypertext, may release on games platforms but will

never have work that echoes the technical style of their

storefront companions. Twine creators frequently don’t find a

home for their games alongside the corporate marketplaces,

which similarly forefront “production values” but instead

have played a role in shaping new spaces for personal

games. Similarly, I found my lone, strange Twine scholarly

project a more suitable home in Kairos, a journal dedicated

to multimodal rhetoric and thus full of experimental digital

scholarship exploring the form. Here I found the same

echoes of what Twine-makers were noting in games: Twine

games, intensely personal, developed by the “lone author”

in most cases, were easy to reject, to label as not-games—

and would become central to the discourse of game or not

game that was about to become much more than an

academic debate.

Gamergate, or How Twine Helped Fuel

a Culture War

In 2013, Zoë Quinn released a Twine game called Depression

Quest. Quinn also broke up with an abusive boyfriend. The

two events together would fuel the outbreak that we now

call “Gamergate,” which was essentially an onslaught of

toxic masculinity, online warfare, and misogyny that would

send several of its targets into hiding while fundamentally

changing the discourse of gaming culture and game studies

as a field. It put some academics into a hostile spotlight,

fueled by the rhetoric of “saving” games from the onslaught

of “feminists” and “social justice warriors” bent on ruining

games for cisgender, heterosexual white men.

The outcomes are a testament to the deep understanding

on the part of Zoë Quinn’s ex of what makes men on the

internet angry. The still-unfolding incident has been well

documented elsewhere, but Twine’s role as an inciting

platform, and eventually a platform for commentary and

resistance, is not so well known. Quinn recently published a

detailed account of their experiences in and after

Gamergate in Crash Override, covering both the roots of the

movement in domestic abuse and the calculated attacks of

their ex-partner and the years of coordinated harassment

that followed. In that work, Quinn never mentions Twine but

does discuss the works it enabled (they used Twine for both

Depression Quest and the Crash Override resources they

later developed for victims of similar attacks).

During Gamergate, Klimas came under attack as the

developer of Twine and alerted me when my name showed

up with his in the discussion on Gamergate forums. I’d

already linked the affordances of Twine to the Gamergate

movement in some early talks where I’d been working

through the significance of Depression Quest—as Quinn’s

work drew attention to the ways their ex used the existing

groups of misogynistic, angry white supremacist groups (the

same Donald Trump’s campaign would tap into only a few

years later), I was interested in what it was about Twine

itself, not just the content produced on Twine, that added

fuel to that culture war.

As a result of giving a talk of this kind at a conference that

also included an inclusivity-focused Wikipedia edit-a-thon, a

participant would put Zoë Quinn’s work on Wikipedia. Thus

Klimas’s name and mine would become linked by the

research of the same aforementioned posters mentioned.

The initial message from Klimas (with the appropriate title

“quinnspiracy”), dated October 2, 2014, directed my

attention to an Escapist magazine forum, where my name

had popped up as part of an elaborate conspiracy. For a

while, I screenshotted mentions (and put all my accounts

under two-factor authentication as a preemptive defense

mechanism), but it amounted to very little other than a

message from a colleague: “Wait, you’re part of a vast

conspiracy to bring down gaming from the all-powerful

throne of academia and you didn’t tell me?! I am so

disappointed in you. Thanks for the heads up.”

The conspiracy post noted my overlap with Klimas at UB

as well as the presence of Twine in my courses, linking us in

an elaborate conspiracy:

In summation, you have an edit-a-thon hosted and

facilitated by a Wikipedia admin who has been found

editing for hire in the past. During that edit-a-thon

someone registers an account at Stierch’s urging and

creates a bio for Zoe Quinn, less than an hour after

Stierch writes some mocking edits on her page about

video games linking to some social justice-style attack

on gamer culture. Stierch protects Quinn’s article from

deletion but does not remove blatantly promotional

language. The edit-a-thon was taking place at the

university where the creator of Twine, the software

Quinn’s game uses, works and one of the other

participants in the event that included the edit-a-thon

attended the same university as the creator of Twine at

the same time as the creator of Twine where she wrote

about emerging software useful for creating interactive

fiction and has since promoted Twine heavily in her work

and at seminars. It is definitely a very shady situation.

(link deliberately omitted)

I apologize for the rather lengthy quote, but I believe it

demonstrates something essential in how the Gamergate

discourse twisted community—among both academics and

game-makers and those of us in-between—into conspiracy.

The same story would later be added to the Gamergate wiki

as part of the entry on Wikipedia. Clearly, I could have

started and ended the history of my own involvement with

Twine here. Whoever did this research paid more attention to

my timeline than I had, though, in some ways, this

autoethnography is its own rejoinder—a history focused on

connections, not manipulation.

It was around this time that my entire scholarly focus

changed.

This sounds like an exaggeration, but it’s really not. Since

Gamergate, I’ve cut down on my participation in games-

centered research and spaces and instead focused on

electronic literature, social media, and particularly how open

platforms and communities can provide spaces for

resistance and expression. Taking a step back from games

also meant looking at the culture I’d long been part of as a

so-called geek and examining the role we’d collectively

played in shaping this moment.

This political bent started to inform my Twine workshops

and my larger scholarship, which I shared in a session

entitled “Lit Misbehaving” at the Modern Language

Association (MLA) convention in 2014. The Digital Rhetoric

Collaborative write-up of the session noted this focus:

“Given the sexual harassment that women encounter when

trying to form an identity as a game developer, Salter

suggested that Twine has potential to change the definition

of games and enrich the voices we hear in the gaming

community” (Sullivan). Such write-ups (and indeed, my own

work and the work of other feminist scholars at this moment)

insufficiently grounded the importance of trans women and

queer creators in leading the way, an omission in my own

early work that I hope to remedy in this project.

Amplified by the hashtags of the conference and the

realities of the moment, that year’s MLA panel also ended up

the subject of a weird blog post and YouTube video (edd77)

designed to encourage criticism from the Gamergate

loyalists, of which my personal favorite is a line-by-line

repost of the account with commentary from cool_boy_mew

reproduced in part here: “All in all, the feminists are the ones

invading our space and making everything worse in their

passage. These so called ‘heroes’ of feminism are completely

toxic and the feminists academics are a complete mess. . . .

We are not the monsters you make it out to be. If anything

YOU are the monster. I’ve never seen so much bullshit

disguised by a supposed drive to do good” (Irvine).

So obviously, after this type of scintillating commentary, I

and all the other “monstrous” feminists in games gave up

and went home.

Twine during Gamergate

Twine didn’t quiet down after Gamergate started—it got

louder. Several game-makers used it to comment on the

moment, with one of the most powerful coming from

D. Squinkifer via their game Quing’s Quest VII: The Death of

Videogames. The game was released as part of Ruin Jam

2014, a jam “open to anyone and everyone who has been, is

being, or plans to be accused of ruining the games industry”

(Sandel). The game (shown in figure 10) featured an over-

the-top narrative inspired by classic adventure games,

featuring a narrator exiled from Planet Videogames following

the Gamergate-analogous Culture War.

Figure 10: Like many people, I went out and bought the T-shirt

2014 was also the first year Twine entries outnumbered

parser interactive fiction pieces in the annual XYZZY

finalists. The shift from the relatively obscure influence of

the parser, with its resemblance to the command line and its

reliance upon an understanding of a verb-based interaction

system, was received with mixed reactions at the time.

While both hypertext and parser-based interactive fiction

already had—and continue to have—a long history, this shift

also served to bring new voices to the competition. As

Klimas commented, “There is no doubt that Twine and its

kind represent a different paradigm of interactive fiction.

But I think there’s more opportunity here for devotees of

parser IF than there is ill omen. Easy for me to say, right? I

created Twine. Of course I think this is a positive

development” (Klimas, “War, Pestilence, Famine”). Six years

later, the mix of tools suggests that Chris was correct and

there is no winner—Twine and Inform 7 coexist, both

bringing different opportunities to interactive fiction.

During this time of fallout and increased Twine visibility, I

was invited to serve as part of the editorial board for the

“Electronic Literature Collection—Volume 3,” or ELC3, the

latest volume in a series of compendiums compiled by the

Electronic Literature Organization (ELO). I wasn’t quite sure

what I was doing there, so I decided to make the most of it

and get Twine represented within the discourse of electronic

literature. This includes Quing’s Quest VII, despite—in fact,

in part because of—the dig at electronic literature within its

text: when the player suggests migrating to “planet

hypertext,” a character responds, “Is that even a real planet,

comrade? I thought it was a satellite. Is it inhabitable,

even?” (Squinkifer). The game is no kinder to academia:

“You’d be willing to climb all the way up that ivory tower,

comrade? Wow, I guess we’re in a more desperate situation

than I thought.”

Despite this skepticism of an admittedly often-closed ivory

tower, several Twine authors agreed to be part of the

collection, as shown in the index of the Twine keyword. We

addressed our goals in including these works in the

introduction to the volume: “In the Electronic Literature

Collection Volume 3, we knew we wanted to represent the

vital work happening in Twine, which hadn’t really existed as

a platform at the release of the ELCv2. However, this posed

many challenges, including the problem of asking people

who perhaps wouldn’t identify with this research community

or even the label ‘electronic literature’ to include their work

in an ongoing open-access space. While most Twine works

are released for free, several creators have been working to

find ways to receive at least some payment for their work, or

to leverage projects towards a career” (Boluk et al.).

The careful wording of this statement reflects some of my

own unease about potentially colonizing Twine work by

annexing it as “electronic literature.” While Klimas clearly

had that framework in mind while creating the tool, it is far

less visible in the current work or ongoing communal

discourse. The Twine works featured reflected some of the

works that had most influenced my own view of how games

could be reimagined. Quing’s Quest VII appears alongside

Anna Anthropy’s Hunt for the Gay Planet and Porpentine’s

With Those We Love Alive, both of which we will discuss at

length in later chapters.

In an interview following the publication of the ELC3, lead

editor Leonardo Flores commented on how this type of work

challenges existing definitions of electronic literature: “We

also need to account for the ubiquity of computing and

digital media. In the early days of the field, the distinction

between print and digital writing was a convenient and

rhetorically powerful trope. But now that most contemporary

writing is already ‘born digital’ (though designed for print-

based interfaces) its digitality has lost power as an indicator.

This raises a few questions: how much of an engagement

with digital and electronic media is enough for something to

be considered e-lit? And what distinguishes e-literature from

computationally intensive works such as videogames? How

e-literary is a work of e-lit?” (Offenhartz and Flores).

I appreciated the double-sidedness of this disruption. The

question of Twine’s inclusion had the potential to challenge

definitions of electronic literature with the same force as it

has challenged the definition of games. Positioning Twine in

the sphere of electronic literature—a space we both, with

various levels of comfort, inhabit—can be reductive but also

valuable for expanding the dialogue around the form. To

revisit the early discussion of Twine as a platform and

particularly that lingering question of “What is Twine for,

anyways?” one way of understanding Twine is through

Flores’s lens of third-generation electronic literature—a tool

for disrupting some of the field’s assumptions and points of

entry.

Teaching Twine

Throughout these various shifts in the tides of electronic

literature and games and their corresponding rocking of

Twine’s boat, I spent a lot of time teaching Twine. Workshops

that I used to teach with board games to avoid procedural

barriers to design were rethought in Twine, and I introduced

the tool to hundreds of students in the large courses I taught

at UCF. My workshops have primarily reached humanities

educators and librarians, who in turn often take Twine to

their students in various disciplines.

Alexis Lothian commented on Twine’s usefulness for

teaching after using Twine with her students following an

introduction in one of these workshops, noting that “Twine’s

structure of branching choices lends itself really well to

explorations of the ways that our day to day choices are

limited by dominant power structures” (Condis). She offered

the example of a game exploring the experience of a

nonbinary student continually asked to fit themselves into

gendered boxes that made no room for them—a metaphor of

play that particularly resonates with me, as most games

(and spaces) still make no space for those of us more

comfortable in-between.

Questions of accessibility more broadly are encoded in the

choice of Twine over other more visual platforms. Former

IFTF board member Flourish Klink noted that the

organization’s first two goals are to build a program to help

sustain the Twine community over the next twenty-plus

years and seek solutions for making interactive fiction

games more accessible to people with disabilities: “There

are many game genres that are difficult to make

accessible . . . not because of any failure on the part of the

developers, but because they simply require sight. On the

other hand, it should be easy for [players with disabilities] to

play an interactive fiction game . . . because interactive

fiction is usually developed by indies who don’t have

experience with accessibility, sometimes that falls by the

wayside. We plan to create resources to help those

developers, and to work with projects like Twine, Inform, etc

to make sure they have good accessibility tools” (Francis).

I explored this in a collaboration with UCF faculty and

students engaged in a cultural exchange program with

students from a school for low-vision students in Russia.

They developed a game that combined large text and audio

narrations—recorded themselves—with keyboard input

replacing the need to touch a particular quadrant of the

screen.

Working with Twine is usually part of my prototyping or

rapid development workflow rather than my more complex

work, simply because most things I want to make ultimately

demand breaking out of some of the Twine aesthetics. I also

resisted Twine 2.X initially (but have now embraced it), in

part thanks to the aesthetic changes—the online editor in

particular is too cheerful for me. I’ve spoken to others

quietly about the use of Twine to create works that have no

particular audience. The fragmented form lends itself to

journaling or exploration.

I am continually impressed by the ability of writers to use

Twine to respond to moments movingly and quickly. A recent

standout that quickly sparked discourse among academics is

September 7th, 2020, a stark work by Cait S. Kirby, released

in the summer following the initial wave of COVID-19. It

places the player on a reopened campus, confronting day-to-

day challenges:

You raise your hand. Your professor motions that it will

be a few minutes. She’s trying to answer other

questions, but each question takes longer than usual

due to masks and social distancing.

While you’re waiting, you look around. You see that a

neighboring student is not wearing a mask.

Do you motion for the student to put their mask on or

pull your own mask tighter? (Kirby)

By asking the player to make impossible choices in the

position of a high-risk student, the work pushes back on the

choices universities are already making for students in the

name of preserving a traditional experience of education. It

is the best of Twine: personal and cultural, making an

immediate impact in a charged moment of debate.

As we move out from the personal and gaze on Twine as a

cultural object, we believe this divergence provides a useful

framing to remember: Twine is personal, and our relationship

with it is continually reshaped by the moment in which we

use it. Twine is a platform but also a happening, and what’s

happening around Twine influences the expectations of

those who pick it up and renew it. The future (and present)

of Twine is in this trajectory of influence. As we will discuss

later, Twine works now emerge into interfaces and forms

ranging from print books to Netflix films to Unity games.

Twine can be a beginning and an end (as we examine in

chapter T-5, which delves further into queer Twine, camp,

and the evolution of the GeoCities aesthetic), and it can be a

beginning to new ends and new platforms.

Works Cited

Alexander, Leigh. “Game Creation for the Masses: What’s

Next for Twine.” Gamasutra, October 9, 2014.

https://gamasutra.com/view/news/227313/Game_creatio

n_for_the_masses_Whats_next_for_Twine.php.

Argfored, Sukey. “THATCamp Games: Inform 7.” TeLS

Webletter, January 21, 2012.

http://www.telswebletter.com/2012/01/21/thatcamp-

games-inform-7/.

Boluk, Stephanie, Leonardo Flores, Jacob Garbe, and

Anastasia Salter, eds. The Electronic Literature

Collection. Vol. 3. Cambridge, MA: Electronic Literature

Organization, February 2016.

http://collection.eliterature.org/3/.

Condis, Megan. “Composition Games: An Interview with

Dr. Alexis Lothian.” Unwinnable, August 6, 2016.

https://unwinnable.com/2016/08/08/composition-

games-an-interview-with-dr-alexis-lothian/.

edd77. Anastasia Salter on the Video Game Industry.

Accessed September 2019. YouTube video, 6:16.

https://www.youtube.com/watch?v=K-JBZ3fKVzQ.

Ellison, Cara. “Anna Anthropy and the Twine Revolution.”

Guardian, April 10, 2013.

https://www.theguardian.com/technology/gamesblog/20

13/apr/10/anna-anthropy-twine-revolution.

Francis, Bryant. “Interactive Fiction Foundation Formed to

Aid Twine, IFComp Growth.” Gamasutra, June 30, 2016.

https://www.gamasutra.com/view/news/276226/Interacti

ve_Fiction_foundation_formed_to_aid_Twine_IFComp_gro

wth.php.

Glorious Trainwrecks. March 29, 2018.

https://www.glorioustrainwrecks.com/.

https://gamasutra.com/view/news/227313/Game_creation_for_the_masses_Whats_next_for_Twine.php
http://www.telswebletter.com/2012/01/21/thatcamp-games-inform-7/
http://collection.eliterature.org/3/
https://unwinnable.com/2016/08/08/composition-games-an-interview-with-dr-alexis-lothian/
https://www.youtube.com/watch?v=K-JBZ3fKVzQ
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy-twine-revolution
https://www.gamasutra.com/view/news/276226/Interactive_Fiction_foundation_formed_to_aid_Twine_IFComp_growth.php
https://www.glorioustrainwrecks.com/

Gold, Matt, and Lauren Klein. “Debates in the Digital

Humanities.” Debates in the Digital Humanities, 2019.

https://dhdebates.gc.cuny.edu/.

Irvine, Spencer. “Too Few Feminists in Video Games, Says

Professor.” Accuracy in Academia, January 23, 2016.

https://www.academia.org/too-few-feminists-in-video-

games-says-professor/.

Kirby, Cait S. “September 7, 2020.” Accessed June 16, 2020.

https://caitkirby.com/downloads/Fall%202020.html.

Klimas, Chris. IDIA student introductions, September 18,

2007.

———. “War, Pestilence, Famine, Death, and Twine—Chris

Klimas.” Chris Klimas, April 22, 2014.

https://chrisklimas.com/blog/2014-04-22-129/.

———. “What I’m Thinking about for 1.1.” Google Groups,

December 4, 2006.

https://groups.google.com/forum/#!searchin/tweecode/R

ight$20now$20the$20color$20scheme$27s$20pretty$2

0bland%7Csort:date/tweecode/BDKuEUy3nYc/wpid6eJz

OTkJ.

———. “What Is Hypertext?” Twee Reference, October 1,

2009. http://twee-twine-doc.tiddlyspot.com/.

Kocurek, Carly A. “THATCamp Games Postmortem.” Carly A.

Kocurek (blog), February 14, 2012.

http://www.sparklebliss.com/thatcamp-games-

postmortem/.

K10blogger. “Info: A Look Back at the ’90s Internet.” Info

(blog), April 23, 2011.

http://randominfok10.blogspot.com/2011/04/look-back-

at-90s-internet.html.

Larsen, Deena. “Fun Da Mentals: How to Read and Write

Electronic Literature.” Fun Da Mentals, 2008.

http://www.deenalarsen.net/fundamentals/.

https://dhdebates.gc.cuny.edu/
https://www.academia.org/too-few-feminists-in-video-games-says-professor/
https://caitkirby.com/downloads/Fall%202020.html
https://chrisklimas.com/blog/2014-04-22-129/
https://groups.google.com/forum/#!searchin/tweecode/Right$20now$20the$20color$20scheme$27s$20pretty$20bland%7Csort:date/tweecode/BDKuEUy3nYc/wpid6eJzOTkJ
http://twee-twine-doc.tiddlyspot.com/
http://www.sparklebliss.com/thatcamp-games-postmortem/
http://randominfok10.blogspot.com/2011/04/look-back-at-90s-internet.html
http://www.deenalarsen.net/fundamentals/

Moody, Fred. “The New Digital Divide | Anvil Academic.”

Anvil Academic, October 23, 2013.

http://anvilacademic.org/the-new-digital-divide/.

Offenhartz, Jake, and Leonardo Flores. “Electronic Literature

in 2016: Definitions, Trends, Preservation, and

Projections.” Entropy, February 1, 2016.

https://entropymag.org/electronic-literature-in-2016-

definitions-trends-preservation-and-projections/.

Porpentine. “collection of Twine games from me and other

people.” Tweecode Google Group, April 11, 2012.

https://groups.google.com/g/tweecode/c/Jv_D7kx7CAo?

pli=1.

———. “Creation under Capitalism and the Twine

Revolution.” Nightmare Mode [Archived], November 25,

2012.

http://nightmaremode.thegamerstrust.com/2012/11/25/

creation-under-capitalism/.

Ramsay, Stephen. “On Building.” In Defining Digital

Humanities: A Reader, edited by Melissa Terras, Julianne

Nyhan, and Edward Vanhoutte. Ashgate Publishing,

2013.

Salter, Anastasia, and John Murray. Flash: Building the

Interactive Web. MIT Press, 2014.

Salter, Anastasia, and Amanda Visconti. “THATCamp

Games.” THATCamp Games, January 22, 2012.

http://thatcampgames.org/tcg-2012.

Sandel, Caelyn. “Ruin Jam 2014.” itch.io, September 14,

2014. https://itch.io/jam/ruinjam2014.

Squinkifer, D. Quing’s Quest VII: The Death of Videogames.

Self-published, September 1, 2014.

https://games.squinky.me/quing/.

Sullivan, Rachael. “Session 754 ~ Lit Misbehaving:

Responding to New and Changing Modes of Production.”

Digital Rhetoric Collaborative, February 3, 2014.

http://anvilacademic.org/the-new-digital-divide/
https://entropymag.org/electronic-literature-in-2016-definitions-trends-preservation-and-projections/
https://groups.google.com/g/tweecode/c/Jv_D7kx7CAo?pli=1
http://nightmaremode.thegamerstrust.com/2012/11/25/creation-under-capitalism/
http://thatcampgames.org/tcg-2012
http://www.itch.io/
https://itch.io/jam/ruinjam2014
https://games.squinky.me/quing/

http://www.digitalrhetoriccollaborative.org/2014/02/03/s

ession-754-lit-misbehaving-responding-to-new-and-

changing-modes-of-production/.

http://www.digitalrhetoriccollaborative.org/2014/02/03/session-754-lit-misbehaving-responding-to-new-and-changing-modes-of-production/

CHAPTER P-2

Variation

If there had been computers and the internet in ancient

Rome, they would most likely have been dedicated to

Mercury—emissary, messenger, trickster. The planet named

for this deity moves both backward and forward across the

sky. The element called Mercury is quicksilver, a physical

puzzle, fluid and solid at the same time, hard to hold. All

these attributes can be applied to computational media. The

great designer Alan Kay thought of personal computers as a

“metamedium,” a technology capable of mimicking or

assimilating others (Kay and Goldberg). The theorist Lev

Manovich has developed this insight to unfold the cultural

impact of software (Manovich 23). These ideas build on an

aphorism of H. Marshall McLuhan, who declared that the

content of one medium is always another medium (McLuhan

10). Alphanumeric text is a container for language, and

technologies like Twine bring text into the metamedium of

software. Words like contain and content may suggest a

static situation, like the nesting of Russian dolls, but actual

experience is more complex and organic. The embedding of

text in digital media more resembles the way very early

microbes were assimilated by slightly newer microbes,

eventually becoming the mitochondria in animal cells.

Which is to say, it’s more about biology than physics,

involving complexity, development, surprises. It’s alive!

These remarks bring us to the limits of theory, at least for

present purposes. This practical chapter introduces

possibilities beyond the basics covered in chapter P-1. The

seven projects described here explore variation in Twine,

both in how we use the software—looking at various

approaches to textual variation—and in the software itself,

surveying a variety of formats and structures available in

the Twine world. In this book, we generally prefer Chapbook,

the story format and coding environment best suited for

learning Twine. The last two of our examples shift to

Harlowe, a more powerful and somewhat more complex

alternative. As in the first practical chapter, each exercise is

a recipe you may follow as closely or loosely as you like. If

you carefully type or copy-and-paste the components, each

project should work as described within your local or online

instance of Twine. Alternatively, you might read through the

project descriptions, pick up their basic concepts, and adapt

them to your own ideas.

We’re all about variation here. Michael Joyce, the first

person to write something called a hypertext fiction,

famously said that, unlike print, “electronic text replaces

itself” (Joyce 232). Reflecting on that remark, the critic

N. Katherine Hayles wrote of “flickering signifiers,” bringing

the contingency of the moving image to the aesthetics of

literary writing (Hayles). These insights originated in the

days of cathode-ray tube monitors, when the flicker of

screen refresh was more noticeable than it is in high-

definition displays we use now. Yet the pixels that form our

words still replace themselves many times per second under

the control of software that can instantly recompose the

screen matrix. These changes may come in response to our

desires, or they may result from a glitch or accident—and

there is a third possibility, a software program whose

methodical rearrangement of elements produces something

unforeseen. This is the technique we will explore in this

chapter. We specialize in surprises.

◊ As in other practical chapters, action items will be

boxed and set off with the symbol you see at left, in

case you want to skip the contextualizing discussion

(more’s the pity) and go straight to keyboard practice.

We fondly hope you will read the context passages at

some point—ideally before you start building things—

but we’re just the writers.

Supporting materials for this chapter can be found online

at https://github.com/AMSUCF/Twining. See our discussion

at the beginning of chapter P-1 about using the .html and

.txt files to follow along or adapt our code to your own

purposes.

At this point, we need to say something more about story

formats. For the first five examples in this chapter, we will be

using Chapbook. We’ll switch back to Harlowe for the final

two. To change formats, launch Twine but do not open a

story (stay in library view). Click on the “Formats” option in

the right-hand column. You should see a radio-button list of

all available formats. Click the button next to Chapbook—

the highest numbered version if there is more than one. This

designates Chapbook as your default story format. Every

story you create from this point on will have Chapbook as its

format. Existing stories in other formats will not be affected.

They will still run in Harlowe, SugarCube, or whatever format

you made them in. Likewise, you can change the format for

any story during development—though that isn’t a good

idea if you’ve already begun to code.

Speaking of coding, you’ll find that the examples in this

chapter, and the chapters that follow, increasingly involve

various forms of code. We’ll start with CSS, a key element of

web page coding, moving on to the native instruction set of

Chapbook and its more powerful adjunct, JavaScript. We

https://github.com/AMSUCF/Twining

hope you won’t feel stressed about coding. We’ll make our

way in small and gradual steps, with what we hope will be

useful explanations at each step. There is an entire section

devoted to error-checking and debugging at the end of this

chapter.

Example 2.1: Loki on the Links

Before we get into deeper waters, let’s spend some time on

the most basic kind of variation that is possible in the

Chapbook format: changes to the story’s visual appearance,

using its main CSS. Style sheets are sections of a document

(sometimes independent documents themselves) containing

instructions to the web browser specifying how the elements

of a page should look. Though we speak of stories and

passages in Twine, remember that Twine is delivered through

a browser in the form of a page.

The simplest demonstration of this technique might

involve simply resetting text color and page background

(red text on magenta, midgray on deep black, blue on bluer,

and other questionable choices). However, remember our

discussion of hypertext links in the previous chapter, where

we raised the possibility of links that are not visibly marked,

as in Joyce’s afternoon. We can do something similar with

CSS in Chapbook. Hence the name of our example, Loki on

the Links, which, we promise, does not involve the god of

deceit playing golf with the god of thunder. (Unless that’s

where you think it needs to go. Just imagine the mulligans.)

◊ Open the Twine application on your computer or

connect to the online version at www.twinery.org. As

before, check your story formats to be sure Chapbook is

present and selected. If it is not already selected as the

http://www.twinery.org/

default format, make it so. Start a new story. Set its

format to Chapbook if it isn’t that way by default. You

can name your story anything you like. Name the first

passage “Loki’s work.” Here’s some suggested text:

The trickster has done it again, hiding the hypertext

links. Some words lead to [[Asgard]], some to

[[Midgard]], but which? [[Ship]], [[hammer]],

[[meadhorn]], [[goatsbreath]]. You feel a [[thunder]]

coming on.

If you test this story, it will come up in the usual way—

black text on a white background. The linked words will

display red underlining. We’ll leave the text and background

alone, but prepare to go all Loki on the links.

There are several ways to work with CSS in Twine. There is

a link in the left-hand pop-up menu that reads “Edit story

stylesheet.” There’s also the possibility of making a special

passage and assigning it “CSS” in its tag field. Both of these

mechanisms work for other story formats like Harlowe, but

Chapbook has its own way of doing things—as does

SugarCube, whose CSS features we discuss in chapter P-4.

To change the page styling in Chapbook, first return to the

structure view. Hover your mouse over the starting passage

of your story, the one with the green rocket. In the pop-up

menu, click on the black triangle or arrowhead, which

happens to be the “Test” button. You should see something

like this:

Figure 11: Test view in Chapbook

Two things about figure 11: First, the large arrow has been

added as a visual aid. Also, the state shown here is one step

ahead of our current progress. Once you’ve brought up the

“Test” interface, locate the four tabs at the top right. Click on

the one marked “Style.” Below the tabs, you should see an

option marked “CONFIG,” with a rotated triangle. (If it’s not

rotated, click on the triangle to make it so.) Below that is a

text window containing several lines of code. See where that

large arrow is pointing. Drag over all the lines in that text

window, being careful to select every character. Then do

whatever you normally do to copy text (CTRL-C, Apple-C,

right-click “Copy,” etc.).

For insurance, open a word processor or (preferably) a text

editor and paste in the lines you copied. It might be a good

idea to save this document somewhere convenient like your

desktop. Here’s what you should have in that saved file:

config.style.page.font: "Iowan Old

Style/Constantia/Georgia/serif 18"

config.style.page.color: "gray-9 on white"

config.style.page.link.font: "underline"

config.style.page.link.color: "gray-9"

config.style.page.link.lineColor: "red-8"

config.style.page.link.active.color: "red-8 on red-0"

config.style.page.header.font: "16"

config.style.page.header.link.font: "small caps"

config.style.page.footer.font: "16"

config.style.page.footer.link.font: "small caps"

If you’ve worked with CSS before, these lines should look

vaguely familiar. They’re not exactly what you see in web

coding, but they do what you might expect, laying down

specifications for several page elements. For each line,

changing the value on the right side of the colon will alter

what we see on-screen. The idiosyncratic style sheet you see

here is the default installed by Chapbook. We can override it

by installing a copy at a key point within the starting

passage of our story.

◊ Your story will have eight passages if you’re using our

suggested text. Seven radiate out from “Loki’s work.”

We’ll largely ignore the child nodes—you can fill them

in yourself if this project sparks your imagination. Open

“Loki’s work.” Reselect all those “config” lines you

copied and set aside. Paste them in ahead of the prose

you entered in our first step. At the end of your inserted

lines, on a separate line of their own, type two dashes:

--

Have a cookie or maybe a drink. You have just created

your first variables section in Chapbook. A variables section,

sometimes also called a variables block, contains

programming instructions that will not appear on the screen.

There’s no formal term for the visible part of the passage

code. In a web page, it would be the body, so we’ll call it the

text body. We’ll be doing quite a lot with variables and the

simple instruction set that comes with Chapbook, so you’ll

see more variables sections as we go.

Meanwhile, back to the one you just inaugurated. The

instructions you pasted in provide a basis for the variations

we desire. Let’s get to work.

◊ Find the line for config.style.page.link.font. Change its

right-hand value from “underline” to “none.” (Keep the

quotation marks.)

Now run your story. The red underline under the linked

words has disappeared, so we’ve made the first step toward

tricking up our links. However, if you hover over one of the

linked words, you’ll see that the word itself turns red. We can

fix that.

◊ Find the line for config.style.page.link.active.color.

Change its right-hand value from “red-8 on red-0” to

“gray-9.” (As before, keep the quotation marks.)

Run your story again. We’ve now gone about as far as we

can, using Chapbook’s config scheme alone, to disguise the

link words. We’ve replaced red styling on the active link with

an Open Color text color, “gray-9.” The effect isn’t perfect. If

you’re watching closely, you’ll see that the system cursor

still changes shape as the reader passes over a linked word.

At this point, our technical tinkering raises a question of

design. Maybe these two levels create just enough

uncertainty. Perhaps we just want our reader/players to look

very carefully at the words as they pass over them. (Which

suggests we might be doing something interesting with

spelling or typography later in the story.) Or maybe we don’t

want to make the game aspect of our story too hard. At some

point, many if not most technical decisions become design

decisions.

For the true child of Loki, there is a way to suppress the

cursor change on link hovering, though it involves levels of

JavaScript that go beyond Chapbook and Twine. A bit of web

searching should reveal those secrets, and we leave that

sleuthing and experimenting to you. As for the rest of our

story, that’s also yours to imagine. Those seven second-level

passages spurring out from “Loki’s work” suggest the

infamous Brillo pad problem we discussed in chapter P-1,

but maybe you can find a way to manage them. Maybe it is

a golf game after all.

Example 2.2: The Daily

This project makes up for the sprawl of its predecessor by

staying within a single passage. It shows how, working in

Chapbook, we can set conditions for the display of certain

bits of text using a modifier.

◊ With Chapbook as the default format, create a new

story and name it The Daily. (You can name it anything

you like, really.) When the story opens, double-click on

the supplied first passage and begin editing. Change

the name of the passage to “Good Day!” (In the past,

we’ve used systems that ruled out exclamation points

and other special characters in the names of elements,

but Twine is civilized about this.) In the text area of the

passage, type the following:

{now.weekdayName}

This is a strange expression, prosaically speaking, so let’s

give it some context. The main expression is enclosed in

curly braces. In Chapbook, curly braces mark an insert,

which is where code comes into contact with expressive text.

In this case, we’re inserting a variable called a lookup object.

This variable exposes certain information that is available to

Twine through the web browser—in this case, the name of

the day of the week on which you are reading this story. The

now object encodes a lot of useful information about the

time of access, including the current time in hours, minutes,

and seconds (no milliseconds—sorry). Though it’s not

important for this project, it’s worth knowing that any

information obtained in this way is accessed only once when

the object is accessed, which for our purposes means when

the passage is opened. JavaScript users may be familiar with

similar lookup objects that can be accessed by web pages on

the fly. Chapbook doesn’t support that kind of dynamism.

You get only one peek at the time, so don’t plan anything

that involves second-by-second updates, unless you’re

ready for advanced JavasScripting. If you’re willing to wait

twenty-four hours for things to change, it’s all good.

◊ Skip a line after the first line and type the following:

[if now.weekdayName === "Sunday"]

Our story begins with a dreadful hangover.

[if now.weekdayName === "Monday"]

Our story opens with a deep sense of dread. Not again.

[if now.weekdayName === "Tuesday"]

Our story starts out with a certain doomed resignation.

[if now.weekdayName === "Wednesday"]

Our story figures it might as well get on with itself.

[if now.weekdayName === "Thursday"]

Our story begins restlessly, eager to be over.

[if now.weekdayName === "Friday"]

Our story wants to know if it's 5:00 yet.

[if now.weekdayName === "Saturday"]

Our story will get back to you after this round of

drinks.

This seems a good time to point out that the lines

following the [if] clauses are arbitrary and replaceable.

Apologies if drinking and drudgery aren’t things you can or

wish to laugh at. Substitute other forms of daily variation if

you’d like.

As you’ve probably figured out, this mélange of code and

prose presents a different line for each day of the week. In

Chapbook, anything inside square brackets is a modifier. In

this case, we’re using seven if modifiers to check the value

in now.weekdayName. This example shows some notable

features of Chapbook’s coding style. First, notice that a

modifier is a self-contained, one-line expression. There’s no

need to wrap the line that follows in any kind of markup. By

rule, every line following a modifier is subject to the

conditions of that modifier (in this case, the if test) unless

another modifier occurs. There is a special modifier called

[continue] that can be used optionally to disengage the

previous modifier from subsequent text. We don’t need to

use it here because each of our modifiers terminates its

predecessor, and each modifier only applies to a single line.

Also, note the triple sequence of equal-signs. If you’ve

written any JavaScript, you probably remember that a

double equal-sign is used in that language to evaluate a

variable. The == symbol asks if the expression on the left

side is equal to the expression on the right. Because

Chapbook uses the double equal-sign for another purpose,

we need to triple up. JavaScript, Java, and C programmers

take note. At some point, you’ll probably slip up and type

== where you need ===. See our remarks on debugging at

the end of this chapter.

Finally, a word about the usefulness of this example, which

is admittedly dubious. People have written games and

stories in Twine and other systems using weekday-sensitive

expressions, but it’s a highly specialized effect. We’re

showing it to you here partly to make a point about testing

your code. You could spend 168 hours seeing if your story

works as intended. Or you could change the name value in

the first modifier to “Monday,” then “Tuesday,” then

“Wednesday,” and so forth, checking each time. You can

change your code any way you want in testing. Just

remember to change it back.

Example 2.3: Our Story Unfolds

(Stretchtext)

Here’s another relatively simple, one-passage project. We

confess to having had some fun with the writing. Also,

despite the Badger State references, for some reason, this is

a Western.

◊ Check to be sure Chapbook is your default story

format, make any necessary changes, and create a new

story. Name the default passage “Our Story Unfolds.”

(Or anything you like.) In the text area of the passage,

type the following:

Sheboygan Slim made a {reveal link: 'remark', text:

'rude and uncalled-for observation about the dubious

parentage of the Kenosha Kid, not omitting to cast doubt

upon the breeding of the horse he rode in on'}.

Let’s contextualize. We’re using an insert here—curly

braces—and the type of insert is a reveal link. This

expression places within the passage text a clickable link

that replaces the initial argument—in this case, the word

remark—with whatever follows the text attribute. You can

use double quotes in place of the single ones used here, just

be sure to close your quotes before the final curly brace.

Leave the period outside of the insertion.

You can write as much or as little text as you want. Word-

for-word replacements are often very effective, though in

this case, we’re implementing a concept called

“stretchtext,” in which one word or phrase is replaced by

something longer. The name stretchtext was invented by Ted

Nelson, who coined the word hypertext.

◊ After the first line and insert, add the following:

The Kid {reveal link: "replied.", text: "allowed as how

this being a free country, every honest feller was

entitled to his opinion, but wouldn't the gent be more

comfortable in some part of the territory where the

Kid's bowie knife wasn't hard up against his fifth

rib?"}

By now you probably understand how this structure works.

Notice that we pulled the terminal punctuation into the

initial argument because we’re changing it from a period to

a question mark when the second reveal happens. Small

details like this matter in Twine works.

All you need to do at this point is test. Your initial state

should look like this:

Sheboygan Slim made a remark.

The Kid replied.

Clicking each link unfolds its associated text. One

limitation (or flaw) of this example is the possibility of a

player opening the second link before the first. Perhaps you

can think of a way to use this bug as a feature: could you

write a stretchtext that rewards reading from the bottom up?

Example 2.4: Seamus, or Progress

This example is literally a shaggy-dog story. We have known

an actual Seamus, though he never told the joke in

question. There are two passages here. We use the [if]

modifier and another lookup object, passage.visits, to

control access to the second passage.

◊ Check to be sure Chapbook is your default story

format, swap it in if necessary, and create a new story.

Name the default passage “This Is Where You Are.” (This

name is referenced in a link, so change it at your own

risk.) In the text area of the passage, type the following:

[if passage.visits === 1]

You are in a dimly lit room filled with gray shapes.

[if passage.visits === 2]

You are in a dimly lit room filled with gray shapes, one

of which is moving.

[if passage.visits === 3]

You are in a dimly lit room filled with gray shapes, the

largest of which is moving rapidly toward you.

[if passage.visits === 4]

You are in a dimly lit room filled with gray shapes, the

largest of which is human-sized, covered with fur, and

leaping onto your chest.

[if passage.visits > 4]

You are in a dimly lit room with a big, friendly Irish

Wolfhound. Down, Seamus. Nice doggie!

That’s a fair amount of typing. There’s yet more to add to

this first passage, but let’s discuss the stack of modifiers

first. They may look familiar from example 2.2, where we set

up story openings for each day of the week. Here we’re

deploying five variations for the text of “This Is Where You

Are.” One replaces another each time the player clicks the

link at the bottom of the passage (to which we are coming).

This effect depends on the lookup object passage.visits,

which is a very handy feature of Chapbook. The story format

code silently maintains a record of every passage you visit

during a given play session, including the number of times

you return. The variable in question gives us access to that

count. At this point, you may be wondering where we go

when we leave “This Is Where You Are.” In fact, you go

nowhere:

◊ Add the following to what you have typed previously:

[[Ticktock ->Next]]

[if passage.visits < 5]

[[Ticktock ->This Is Where You Are]]

The workings of these new lines require some explanation.

As you can see, they are both standard, destination-specific

hypertext links of the kind you learned in chapter P-1.

However, they have some peculiarities. The first link, which

leads away from the present passage to one called “Next,” is

governed by the fifth of those modifiers you typed in the

first step, the one that reveals its text only when

passage.visits is greater than four. This may create some

confusion for those who are used to if structures with

parentheses or braces that mark off what they affect.

(Thanks to Noah Wardrip-Fruin for pointing this out.)

In Chapbook, a modifier applies to everything that follows

until another modifier occurs. A modifier can apply to

multiple lines even when separated by spaces. If we wanted

our first “Ticktock” link to be independent of the test

passage.visits > 4, we could put [continue] on a new line

immediately following. However, we want to offer the reader

a link to a new passage only if the visit count is five, when

all the preceding variations have been presented, so we

don’t break out of the if modifier for the first of our two links.

We disengage the first test with a second test, this time for

a value of passage.visits less than five. Chronologically, this

may look strange, since we’re previously covered the end of

the game; however, the logic of the instructions (as we’ve

written them, anyway) demands this bit of backwardness.

This second condition covers the first four loadings of the

page—because indeed, this page is designed to be loaded

five times in succession. The second link has the same

anchoring text as the link above it—the phrase “Ticktock”—

but its destination is not the external passage “Next” but

the present passage “This Is Where You Are.” It is perfectly

acceptable in Twine to link a passage to itself. When the visit

count reaches five, it is replaced by the first link.

For the first five turns in this story, the player remains at

the passage “This Is Where You Are” and each time sees a

link at the bottom labeled “Ticktock.” For a while, it just

returns us to the same place, updated. On the fifth click,

“Ticktock” leads to the passage “Next.” Using the same text

for the loop links and the eventual escape is a design

decision. In the grand tradition of interactive fiction, where

the difference between “twisty little passages” and “little

twisty passages” has been celebrated (Montfort 92–93), we

could have made the second link text “Tick Tock” (with a

second capital T), or “Tock Tick,” or maybe “Ding!” We’re

trying to be subtle here.

It only remains to write that next passage, which we admit

is more than a little ridiculous:

◊ Create a new passage named “Next” and enter the

following text:

_Have I ever told you the one about the priest, the

optician, and the Belgian national anthem? Seamus

inquires.

Yes, well, a talking wolfhound. Doubtless, you can think of

something better. Finish and test. Your first four clicks should

advance through the sequential descriptions. The fifth

should take you to the second passage.

In closing, we will note that this example shows how you

can develop multiple moments or beats of your story

without making a transition between passages. Structurally,

this suggests a way to reduce the number of passages in

stories and possibly a means of keeping thematically related

bits of your writing in the same unit of the map.

Example 2.5: Seating Chart

In our fifth project, we’ll demonstrate a classic technique

from games and simulations: the consequential combination

of two variables. This pattern of logic has a clear application

to real life, assuming you consider social etiquette and the

seating of dinner guests a part of real life. More to the point,

this example shows how to get extensive variation, and thus

replayability, from a relatively compact structure. We’ll also

learn some things about the way Chapbook handles

variables.

◊ Be sure Chapbook is your default story format, make it

so if necessary, and create a new story called The

Seating Chart (or what you will). Name the default

passage “Table 12.” The name will be used in a link, so

change it with care. There’s a fair amount of typing in

the initial passage, so let’s get some simple prose out of

the way first. Type the following:

You've almost finished the seating chart for the

Bunstables' annual beet roast and Scrabble tournament.

Just two places remain at table 12.

◊ So much for the setup. Now let’s get to the action.

Skip a line and enter the following, being very careful

to differentiate between curly braces and square

brackets and to close all sets of quotation marks.

In the first seat, let's put {cycling link for: "gent",

choices: ["someone","Lord Magnavox","Nasty

Louie","Cousin Sue"]}.

And on the left, {cycling link for: "lady", choices:

["someone else","Lady Splatt-Simple","Violet

Femme","Second Cousin Laraine"]}.

[[OK then! ->Decision]]

We’re using an insert here called a cycling link, which

creates a special kind of hypertext link. Instead of sending

us to a new passage, this link replaces its current anchor

with the next in a list, continuing through the list each time

it is clicked and cycling back to the start. This is an

enormously useful design element with great potential for

both text variation and the kind of consequential choices

upon which games depend. However, a cycling link is also

quite complicated syntactically. It will break if you forget the

colon after choices, which we do all the time. It will break

insidiously if you forget the colon after for, introducing your

variable. That is, the cycling element will work, but your

variable will not be assigned a value. You need to be very

careful when typing out a cycling link.

You can write cycling links without specifying a variable if

you simply want to allow for changes in readable text. We

want changes to have consequences, so we have a variable.

Every time the link anchor changes, its value is stored in the

variable specified by the for: argument. In the first instance

here, we have a choice of four people for the gent variable.

We get four more choices for lady in the second

construction. (We apply these quaint gender categories with

irony—Cousin Sue counts as a gent—but if the binary is

unacceptable, feel free to use different categories: left/right,

north/south?) The value of the respective variables will be

whatever the player has made it when she clicks “OK then!”

and heads to the next passage.

We’ll get to that passage in a moment, but let’s first

discuss what you might do with a cycling link. Two sets of

four options yield sixteen possible seating pairs, each of

which you might treat differently. Of course, remembering

the example of our overlinked sentence in example 1.2,

you’re not required to respond to every possibility—as you’ll

see, we’re only interested in a few pairings and will write a

generic response to cover those not featured. This strategy

of selection makes it possible to expand the range of choices

far beyond 4 × 4; though going to something like 12 × 12 or

16 × 16 might well be excessive.

What do we intend to do with the pairings we’ve singled

out as special? There has to be a moment of reckoning, but

that moment won’t necessarily come in the next passage.

Instead, we’ll give our player a pause to reflect.

◊ Twine has already created for us a passage called

“Decision.” Open that passage and enter the following

text:

You have seated {gent} next to {lady}.

All we’re doing in this line is confirming the choices the

player made through the cycling links in the previous

passage. We store the seating assignments in variables

called “gent” and “lady,” respectively. We use two variable

inserts to bring their values into the visible text. With the

variables announced, we offer an initial response to the

player’s choices.

◊ Skip a line and enter the following:

[if gent === "someone" || lady === "someone else"]

You do realize 'someone' is not an actual person, right?

[if gent === "Lord Magnavox" && lady === "Lady Splatt-

Simple"]

They'll SO enjoy reminiscing about how he threw her

younger brother from that balloon.

[if gent === "Nasty Louie" && lady === "Violet Femme"]

Now THERE'S a pair.

[if gent === "Cousin Sue" && lady === "Second Cousin

Laraine"]

Oh dear. Cousins.

Here we have a series of [if] modifiers, very similar to

those you have seen in previous examples. Note the use of

Boolean operators. And (&&) means both conditions must be

met for the following text to be revealed. Or (||) shows its

text if either condition is met. In terms of the story, we’ve

decided that the most interesting pairs are Lord Magnavox

and Lady Splatt-Simple, Louie and Violet, and the two

cousins. We’ve kept the list small to spare you typing; you

can probably see how it could be expanded. Notice that we

haven’t accounted for pairs that contain only one of our

interesting parties (e.g., Lord Magnavox and Second Cousin

Laraine). We’ll need to do that in the final passage. But first,

let’s finish “Decision.”

◊ Skip a line after the previously mentioned text and

enter the following:

[continue]

[[Hmm ->Table 12]]

[[Outcome]]

The [continue] modifier, which can also be written [cont]

or [cont’d], terminates the modifier that precedes it, which

in this case is the test for the two cousins. As we’ve noted,

conditional-display modifiers apply to all the text that

follows them, even after skipped lines, unless another

modifier occurs. That’s why we have [continue]. If we didn’t

use it here, our final links would appear only when both

cousins were selected. The links themselves are the

standard type. It’s worth noting that we give players an

option to rethink their selections at this point, in a (perhaps

feeble) effort to lend the game dramatic tension.

Uncertainty can be fun . . . so long as it’s temporary. Let’s

proceed to the moment of truth.

◊ Twine will have created a new passage called

“Outcome.” Open it and enter the following text:

happy: gent === "Nasty Louie" && lady === "Violet Femme"

veryHappy: gent === "Cousin Sue" && lady === "Second

Cousin Laraine"

unhappy: gent === "someone" && lady === "someone else"

veryUnhappy: gent === "Lord Magnavox" && lady === "Lady

Splatt-Simple"

--

Once again, you are looking at a variables section, as in

example 2.1. In the last few examples, we’ve dealt only with

variables that are automatically created as part of other

structures like the cycling link insert. However, you can also

make your own variables, which you do simply by assigning

them a value, using a colon. Remember those crucial two

dashes that divide the variables from the text body.

We create four variables here, reflecting four pairings with

which we’re either happy, very happy, unhappy, or very

unhappy. The way we do this may need some explaining,

especially if you’re familiar with variables from other

programming and scripting languages. In JavaScript, for

instance, we might approach the current design problem by

giving a specific value to a single variable, as shown in the

following code excerpt. Don’t enter this code—it’s for

comparison only.

//DO NOT TYPE THIS CODE INTO YOUR STORY!

var outcome = 0

if(gent == "Nasty Louie" && lady == "Violet Femme")

outcome = "happy"

if(gent == "Cousin Sue" && lady == "Second Cousin

Laraine") outcome = "very happy"

if(gent == "someone" && lady == "someone else") outcome

= "unhappy"

if(gent == "Lord Magnavox" && lady == "Lady Splatt-

Simple") outcome = "very unhappy"

There are more elegant ways to implement this logic in

JavaScript (e.g., a switch statement), but the point is that

Chapbook won’t allow anything like them. That’s because

we can’t use if conditions in the variables section. The [if]

modifier can only be used to conditionally reveal text, and

that can happen only in the text section of the passage, not

up in the attic where we keep the variables. We can

speculate that Klimas made this rule to minimize complexity

in Chapbook. It keeps the system simple for those who aren’t

ready for a lot of logical maneuvers—and crucially, it allows

a relatively simple work-around, which Chris kindly explains

in the Chapbook guide.

As you see in the material you did enter, in the code block

before the JavaScript example, we can render if tests

unnecessary. Instead of defining four states of a single

variable, we create a variable for each state and build our

conditions into the definitions of the variables. This

compromise keeps things simple but allows for

sophistication—one of the best features of Twine.

◊ With the variables section done and dusted, we can

move on to the text portion of the passage. Below the

double dashes that close the variables section, enter

the following text. You can skip a line after the dashes if

you like, though it is not required.

[if happy]

We're sure {gent} and {lady} will get on like a house

afire.

[if veryHappy]

Bringing {gent} and {lady} together is the only decent

thing you have ever done.

[if unhappy]

We're sure something happened, but no one can remember

what.

[if veryUnhappy]

The evil encounter between {lady} and {gent} was the

first step toward disaster.

We can use if conditions here because we are in the main

text body, not the variables section. Chapbook allows us to

do conditional checking for the presentation of text—and for

that purpose only. This code should be very familiar: it’s a

series of [if] modifiers providing tailored responses for each

of the four privileged outcomes we’ve laid out. We slip in the

values of lady and gent where they’re interesting and omit

them where they’re not (the generic case). Each text will

come up if its pairing condition is met—but what happens if

the player makes a match we haven’t provided for (for

instance, Nasty Louie and Lady Splatt-Simple?) Type on.

◊ Skip a line and enter the following:

[if !happy && !veryHappy && !unhappy && !veryUnhappy]

The evening was neither triumph nor disaster.

[continue]

{restart link, label: "Start over"}

When it precedes the name of a variable, the exclamation

point means “not.” In Chapbook, the “not” condition is met

either if the variable contains the Boolean value false or if

the variable has not been assigned a value. The condition

we match here is compound—all four must be false or empty.

If so, we assume the choice was one in which we’re not

especially interested, and we cover ourselves with an

evasive answer. At the end, we have our now familiar

[continue] modifier, then a structure you haven’t seen, the

restart link insert. This link has the same effect as clicking

the “RESTART” link in the Twine application: it wipes out the

values of all variables, including passage.visits, and gives us

a fresh start.

This example shows what we can do with the simple

affordances of Chapbook, but it also reveals some limitations

of that story format. For the sake of exploration, the final two

examples in this chapter will set Chapbook aside in favor of

Harlowe, an earlier and in some respects more powerful

alternative. There are good reasons to be familiar with more

than one format. The best way to learn any coding practice

is by reading other people’s code. At this writing, much of

that existing code uses Harlowe. When you look into these

other practices, you may find some of them appealing.

Remember, though, that it is not possible to mix Harlowe

and Chapbook code structures. (Maybe someday a story

format will permit this. Who knows?) You must declare your

story format before beginning a story. Let’s see what

happens if we declare differently.

Example 2.6: The Changing Room

(Harlowe)

◊ Create a new story in Twine and name it The Changing

Room or anything else you’d prefer. Open your story.

Along the bottom line of the Twine window, immediately

to the right of the story title, you’ll find a triangle. Click

it to expand a menu. The third item of this menu is

“Change Story Format.” Select that item and you will

see a list of available formats. If you’ve set Chapbook as

your default, it will appear as the current format for this

story. Switch to Harlowe by clicking its radio button. If

you have multiple versions of Harlowe available, choose

the one with the most recent release (e.g., Harlowe 3.1).

◊ Now create a new passage and name it “Changing

Room.” Notice the Twine authoring interface is

unaffected by the change in story formats. Story

formats only affect the way Twine code is passed to a

web browser for display. However, Twine being an open-

source, user-built system, each format comes with its

own dialect of code. The Twine world is a bit like Europe

—you can step across a border and find the language

very different from what you speak back home, so

there’s a reason to learn multiple languages. Consider

the following experience a lesson in language

immersion. Enter the following text into “Changing

Room”:

You (either: "are","find yourself","awaken","begin to

exist","materialize") in (either: "the UNREADY

ROOM","the CHANGE EXCHANGE","a SHIFTY SORT OF

LOCATION","a PLACE of POSSIBILITIES","ZONE UNKNOWN").

At first glance, Harlowe might not look all that different from

Chapbook. There’s the same in-line mix of programming

structures and narrative prose. Looking more closely, you’ll

see that Harlowe uses different characters for demarcation—

parentheses instead of curly braces and square brackets.

Both of those markers also occur in Harlowe, though not in

the present instance. The structure you’re seeing here is

called an (either:) macro. Macros are a bit like inserts in

Chapbook—they allow for textual variation according to

logical conditions.

The (either:) macro allows the writer to create a list of

elements from which Twine/Harlowe will automatically select

an item at random. As we’ll see in chapter P-3, the same

thing can be done in Chapbook, but not as elegantly as in

this holy macro. As you will surmise, we are inordinately

fond of (either:). It’s among the simplest ways we know, in

any coding idiom, of quickly creating a planetary cloud of

language, spinning it up, and seeing what rolls out. There is

only one thing about (either:) we can’t completely applaud

—its name. In English, the preposition either should only be

used with two alternatives—either my way or the highway.

Include a third option and you need another preposition.

Strictly speaking, this macro should have been called (one

of:), and in fact, there’s a structure with that name, and a

very similar function, in the interactive fiction language

Inform 7, to which we assign grammatical bragging rights.

Name-wince aside, consider the power of (either:). Here

we’ve applied it to the main verb clause and predicate of our

opening sentence, but we could give any word similar

treatment. While that might once again cast us back to

example 1.2 and its attempt to link all the words, an

extensive use of (either:) is more feasible. It’s only a matter

of writing some quick lists. Let’s do a bit of that now.

◊ Skip a line and enter the following:

There is a(either: " zither","n astrolabe","n

Earthkey"," chef's hat"," trilobite"," ghost weasel") to

the (either: "left","right","northeast","windward") of

a(either: " large","n obvious"," cryptic"," throbbing")

(either: "snowman","theater

critic","armoire","pyramid","tank trap").

Needless to say, you don’t have to use the words provided

here. Come up with your own absurdities, by all means.

Though do note the way we’ve finessed the a/an problem in

the first and third instances, adding a space before words

beginning with a consonant and a letter n with a trailing

space for words beginning with a vowel. You might also

notice that the option list in an (either:) macro can be as

long or short as you want and that every list is independent

—though you will need to think about possible combinations

in case of hookups that are ungrammatical or

unintentionally obscene.

◊ Skip a line and finish the passage:

You can see (either: "a blank wall","an [[Open Door!-

>Done]]","nothing of interest","a wall that is blank","a

blankish wall of a wall","a wall of blankness","the

blankest wall in the world","an unsatisfying wall")

here.

[[Change the world . . .->Changing Room]]

The macro at the start of this fragment should pique your

interest. The second option includes a link to another

passage. Yes, you can include a link as a possible selection

in an (either:) macro. Since this is one of eight options, and

since selections from an (either:) are effectively

unpredictable, it’s possible to run through quite a few

iterations before the link appears. It’s also possible for a

player who doesn’t expect the appearance of the link to

overlook it when it does show. In other words, this is a

questionable bit of design. You might want to treat your

player with greater respect.

Finally, you’ll notice that the link at the bottom of the

passage connects to the passage itself, functioning as a

refresh button. As we’ve said, that’s OK. All the (either:)

macros operate when the passage is reentered. The place

reconfigures itself. The 1:8 lottery for the exit link is run

again—if the player comes up lucky, it’s possible to move

on.

◊ The second passage, “Done,” will not be generated

automatically because its link structure occurs within a

macro. You’ll need to create it and enter within it the

following text. Using French is optional:

Plus ça change.

[[Try Again ->Changing Room]]

Example 2.7: Carousel

We’ll stay with Harlowe for our final example, which uses

another tasty macro called (live:). Like its corresponding

structure in Chapbook, the [after] modifier, (live:) defines a

span of time between the opening of the passage and some

further transformation. In Chapbook, we’re limited to the

display of text. Harlowe offers much more range, allowing us

to trigger any other macro after the delay. That includes the

intriguing macro (go-to:), whose counterpart in Chapbook is

undocumented and not officially supported. The (go-to:)

macro allows a code-defined transition from one passage to

another without player action. In the sweet, meticulously

turn-based world of Chapbook, that would be outrageous.

Let’s be outrageous. We’ll apologize later.

◊ This project has five smallish pieces. After starting a

new story and setting its format to Harlowe, you might

want to create all five passages. You can name them

numerically, “01” through “05.” (The zeroes are just for

show, and in fact, you can name your passages

anything you want, as long as you use the correct

names in your (go-to:) macros.) Open “01” and enter

the following:

Room 01

The Eye of Imus (click: "Eye") [(set: $hasAmulet to

false)]

(live: 2s)[

(if: $hasAmulet is false)[(go-to: "02")]

]

(stop:)

All our rooms will follow the same pattern. They will

contain an object—in this case, the Eye of Imus. (Doesn’t

bear thinking about.) For each of these objects, its main

noun will be the subject of a (click:) macro, which plants a

special hyperlink on the word or phrase supplied. When

activated, this link sets the value of a variable. We say this

with emphasis because it’s something you can’t do in

Chapbook, at least not in such a direct way. Harlowe allows

authors to set and reset variable values within the passage,

independent of passage transitions. This means that the

experience of a Harlowe-based story—for instance,

Porpentine’s With Those We Love Alive, discussed in the

next chapter—can be much more eventful than in basic

applications of Chapbook. Possibilities for action abound.

Curiously, the action here sets the value of a Boolean

variable, “$hasAmulet,” to false. (In Harlowe, variable names

begin with a dollar sign.) You might expect a click on the

name of a mystical object to activate that object or perhaps

add it to our inventory. We could have provided for these

possibilities, but as you’ll see, we only care about that

amulet. The other four items are MacGuffins.

Below the “Amulet” line, you’ll see the (live:) macro. The

argument “2s” means two seconds. That’s all the time the

player is allotted in any of the passages, which all contain a

variant of this macro. After two seconds, we perform a test

on “$hasAmulet,” and if it is false, we execute the (go-to:)

macro and flip to the second passage (or room). You’ll see a

(stop:) macro on the final line here. This macro terminates

the previous (live:). Theoretically, the timer will continue to

run if we don’t do this.

◊ Passages 02, 04, and 05 are nearly identical to 01, so

let’s write them in next. Then we’ll come back to the

crucial passage 03. Open each passage in turn and type

in the following text. The only changes are the names of

the mysterious objects and the destination passages in

the (go-to:) macros.

For passage 02

Room 02

The Stone of Blarney (click: "Stone") [(set: $hasAmulet

to false)]

{

(live: 2s)[

(if: $hasAmulet is false)[(go-to: "03")]

]

(stop:)

}

For passage 04

Room 04

The Chalice of Malice (click: "Chalice") [(set:

$hasAmulet to false)]

{

(live: 2s)[

(if: $hasAmulet is false)[(go-to: "05")]

]

(stop:)

}

For passage 05

Room 05

The Charm of Bracelets (click: "Charm") [(set:

$hasAmulet to false)]

{

(live: 2s)[

(if: $hasAmulet is false)[(go-to: "01")]

]

(stop:)

}

We’ve already explained the code contained in these

passages. As you’ve probably figured, they form a loop or

carousel, spinning the player from room to room with only

two seconds in each destination. More about this dubious

design later, but first a technical concern raised by

Dr. Wardrip-Fruin, who we should note has a graduate

degree in computer science. He wonders, “What will happen

if the word ‘Eye’ [in the first passage] isn’t clicked within the

first two seconds? Will we be testing an undefined variable?”

(Wardrip-Fruin). This question shows the difference between

actual expertise and whatever goes on in our heads. It also

shows the way Twine and Harlowe make life easy for foolish

experimenters. As best we can explain, with recourse to the

debug view that comes with Harlowe, the $hasAmulet

variable doesn’t exist for Twine until something is clicked, at

which point its value is either true or false. We do indeed

test for these values in the subsequent passages, but thanks

to Harlowe’s JavaScript roots, it has no qualms with

nonexistent variables. It gives the software equivalent of a

shrug and moves on.

However, do not expect such generous treatment from

other software entities, including Chapbook, which may

report an “unexpected error” when asked to do something

with a variable not previously defined.

Now back to the outlandish design of this project. Why two

seconds per passage? We chose that number arbitrarily for

purposes of demonstration. It’s almost certainly too short,

and it raises uncomfortable questions about ableist game

design. Lots of people have trouble reading short bursts of

text in a few seconds or may need more time to execute a

manual response. Arguably, we don’t need more games like

this one, even (or maybe especially) as a parody. We offer

the example with the perhaps foolish hope that its

autotransition mechanism may be used for more humane

purposes. See, for instance, Anna Anthropy’s Queers in Love

at the End of the World, about which we will have more to

say in the conclusion of this book.

◊ For whatever it may be worth, let’s finish the Carousel

of Story by entering the following text into passage 03:

Room 03

The Amulet of Immobility (click: "Amulet") [(set:

$hasAmulet to true)]

{

(live: 2s)[

(if: $hasAmulet is false)[(go-to: "04")]

(else:) [Congratulations, you have stopped the

Carousel.]

]

(stop:)

}

There are only two small variations here. Clicking on

“Amulet” sets “$hasAmulet” to true, which deactivates the

machinery of dislocation. In recognition of this fact, we set

an (else:) macro below the (if:), catching the happy

condition and reporting the same.

And so we have whirled our way from Chapbook to

Harlowe and from simple hypertext to dynamic games. In

the next chapter, we take a similar journey, this time on the

theoretical and critical side, considering how Twine’s various

trajectories intersect the grand arcs of literature and culture.

Bring the amulet.

Before you go, however, there’s a subject we need to

discuss at the risk of raising some anxiety—and you thought

you’d heard That Talk. We need to say some things about

debugging. Code requires close attention to both details of

expression (syntax) and arrangement of instructions (logic).

You may need some practice to work up this kind of

attention. Even for experienced hands, mistakes are

inevitable, so let’s consider how to manage them.

Debugging

There are basically two ways things can go wrong with a

Twine project. Sometimes a story works, meaning it does not

report any fatal errors but doesn’t work as intended. This is

usually a problem of logic or design. We’ll talk about those

problems in a bit. First, let’s discuss the more common and

annoying source of trouble, which is often typographic—you

forget a character or type the wrong one. The result, in the

current version of Chapbook, is what we call the Pink Screen

of Pain:

Figure 12: “Unexpected error” report in Chapbook

When code is not written properly, Chapbook reports an

“unexpected error”—now there’s an irony!—which can be as

useful as your mechanic saying “that wasn’t good” as smoke

pours out of your car. The error window does include two

links, “Go back” and “Hard restart,” that sometimes prove

useful, though in many cases (for instance, when there is no

previous passage), they don’t help at all. In most cases,

you’ll need to dig through your code to find technical or

syntactical mistakes.

If you use the “Test” feature instead of “Run,” Chapbook

will open a debugging window that may offer a more

detailed error report. For instance, it might say something

like

SyntaxError: missing] after element list

This hint alerts us to look for structures that use square

brackets and take the form of lists, including arrays. As a

general rule, you should look closely at (parentheses),

[square brackets], and {curly braces}; try not to mix them

up; and make sure that each left-hand character has a right-

hand counterpart. In the case of expressions where both []

and {} are required, such as the cycling link in Chapbook

(example 2.5), you may want to have a reference document

like the Chapbook guide open in your browser. We often

forget even basic syntactical forms if we haven’t written

code for a while. You don’t need to memorize rules if you can

look them up.

If your code contains several complicated expressions, and

thus multiple openings to error, here’s a technique to try.

Suppose you have a pair of variables containing extended

lists in the form of arrays with lots of typographic

complexity. Open a document in a word processor or

(preferably) text editor and cut one of the variables out of

your code, storing it in the document outside of Twine. If

your story runs without error after the change, you know

where the problem is. Sometimes you’ll have to make

multiple cuts and replacements to get things right. You

might think of this process as cornering the bugs.

Once you’ve dealt with each all-too-expected error, you

can move on to the more mysterious problems of logic. The

only way to solve these is to think through your code and its

consequences step by step. An example of that thinking

occurs at the end of example 2.7, where we mention a

critical note on our code given by an experienced software

designer. He caught a legitimate flaw in our design by

mentally inspecting the state of the system at a certain

moment of operation. You may find yourself thinking in code

after a while. (If you start dreaming in code, maybe you

need a break.)

Talking about debugging is essential, though as we said, it

may raise anxiety. The best nonchemical antidote to anxiety

is playfulness. Screwing up code on your local device is

unlikely to have terrible consequences in the larger world.

Yes, it can darken your mental weather, but hopefully, that

weather is changeable. So fail boldly if not better. No error is

ever unexpected. You’re going to foul things up. There’s a

reason that programmers use the names foo and bar for test

variables—as in FUBAR, effed up beyond all repair, which is

the fate of most complicated systems sooner or later. Fixing

those systems can be pleasurable. Eventually, you may even

learn to smile at your mistakes. They have value. Often we

need to make mistakes to investigate and learn. Try to

experience the pink screen without pain—frustration may be

unavoidable. The root word of error means wandering, which

can also mean exploring. There’s plenty of that still ahead.

You still have the amulet, right?

Works Cited

Hayles, N. Katherine. “Virtual Bodies and Flickering

Signifiers.” October 66 (Autumn 1993): 69–91.

Joyce, Michael. Of Two Minds: Hypertext Pedagogy and

Poetics. University of Michigan Press, 1995.

Kay, Alan, and Adele Goldberg. “Personal Dynamic Media.”

In The New Media Reader, edited by N. Wardrip-Fruin

and N. Montfort. MIT Press, 2003, 391–404.

Manovich, Lev. Software Takes Command. Bloomsbury,

2013.

McLuhan, H. Marshall. Understanding Media: The Extensions

of Man. McGraw Hill, 1964.

Montfort, Nick. Twisty Little Passages: An Approach to

Interactive Fiction. MIT Press, 2003.

Wardrip-Fruin, Noah. Personal correspondence. April 28,

2020.

CHAPTER T-3

Twine and the Question of Literature

Legacy?

Pfft!

—Xalavier Nelson Jr.

Whoever

Twine is generally described as a tool for telling stories that

involve what Espen Aarseth calls “non-trivial” engagement

or, as it is familiarly known, interactivity (Aarseth, Cybertext

2). Writers using Twine have made and continue to make

compositions of striking vision and sophistication, covering

a range of expressive possibilities. There are richly

conceived science fiction stories like Jedediah Berry’s

Fabricationist Dewit Remakes the World (Berry) and Tom

McHenry’s Tonight Dies the Moon (McHenry). There are deep

excursions into fantasy, such as Kevin Snow’s Beneath Floes

(Snow), Porpentine’s Howling Dogs (Porpentine, Howling)

and With Those We Love Alive (Porpentine, With Those), the

latter a subject of this chapter. Some works interrogate

terms and techniques of interactive storytelling, as in

Michael Lutz’s My Father’s Long, Long Legs (Lutz), which

visually tunnels into narrative, and D. Squinkifer’s Quing’s

Quest VII: The Death of Videogames (Squinkifer), which asks

hard questions about the putative ends of play. Twine writers

have created parodic tours de force, including Porpentine’s

Ultra Business Tycoon III (Porpentine, Ultra Business

Tycoon III), Kris Ligman’s You Are Jeff Bezos (Ligman), and

Jon Bois’s Bill Belichick Offseason Simulator (Bois).

The appeal of Twine crosses literary generations, as in the

work of John McDaid—to which we are coming—or Richard

Holeton’s Twine-based autobiography (Holeton). Resonance

and references can implicate nondigital work as well. Tonight

Dies the Moon opens with a sardonic quotation from David

Barthelme; Howling Dogs begins with a long passage from

Kenzaburo Oe; You Are Jeff Bezos is both a striking piece of

social commentary and an homage to Kafka’s

Metamorphosis.

This chapter asks a controversial question: Can Twine

works be thought about as literature? In some ways, the

obvious answer might be no. Many if not most Twine creators

call their works games, not fictions, essays, or plays.1 As

Astrid Ensslin and others have pointed out, game and story

need not be exclusive categories, and the categorization

itself can be questioned (Ensslin). Darius Kazemi, Twine

writer and game critic, has wisdom on this point:

I guess what I’m trying to say is: if games AREN’T

working for you as a tool for creative expression, don’t

give up on games, but also try some other stuff. Don’t

try and bend ideas to fit into the mold of “game.” MAYBE

try and bend “game” to fit to your idea, that might work

(I’m thinking of Twine games here, which bend the

concept of game so much that it makes traditional game

designers cranky that the authors have the audacity to

use the word “game.” This also works in the other

direction: please think about whether your Twine game

should be an essay instead.) (Kazemi)

Arguably, Twine works bend more than just the concept of

game. They ring changes on culture generally and writing in

particular. For that reason, they are hard to write about. As

we have said, one of the things that makes this book such a

strange combination of impulses is the way Twine sits

between cultural identities—story and game, art and

entertainment, personal statement and commercial

production. Categories are not good tools for thick

description. The emergence of Twine as a creative platform,

itself part of a software subculture that includes things like

interactive fiction, the demoscene, e-poetry, and

metagaming, is, as Johanna Drucker says of all digital

writing, less entity than event (Drucker). The event is still in

progress.

Twine creations are many things. Their frequent use of

meaningful choices brings them very close to games, as

some have defined them.2 They may include images, sound,

and temporal effects that make them comparable to film.3

For the most part, though, Twine works use words to describe

characters and tell stories. This begins to look like literature,

though the recognition may be more of resemblance than

identity.

As our epigraph from independent game designer Xalavier

Nelson Jr. reminds us, people who make things like Twine

games often distrust terms like legacy. These creators are

part of an active, vital art movement that lives very much in

its early century moment, still unfolding and far from

conclusion. And yet, as Nelson went on to say in the same

talk, “I’m going to DIE one day”—not for a long, long while,

we hope, but the sentiment is as real as it is universal

(Nelson). We all live in time, bringing anxieties to any

moment. The discomfort is twofold: legacy points backward

as well as forward. We inherit as well as bequeath. The

problem of the timeline can’t be dismissed, even with a

much-extended Pffft.

Trying to wind Twine works around some traditional literary

axis may be as risky as filing jazz under American popular

music or calling the Marvel Cinematic Universe (MCU)

cinematic. Those descriptions are valid, but they need

unpacking. Technically and aesthetically, the digital

fantasies of the MCU lie a long way from the heyday of

smoke-filled movie houses and celluloid film.4 It might be

more accurate to say, as film theorists have largely decided,

that digitally rendered works redefine cinema (Gaudreault

and Marion 154). As for jazz, it is every bit as American as

chattel slavery. It is the signature of a nation that should

never have been, or ever again be, dedicated to whiteness.

Both cases teach us this: time keeps running, but there’s no

escape from history.

Over multiple generations, any art is a dynamic system. Its

state will change both in gradual increments and abrupt,

shearwise jolts. Such disruptions involve both memory and

forgetting, and their tension generates waves of irony. My

first lesson in this effect came when I was very young,

listening to a song by Paul Simon called “A Simple Desultory

Philippic (or How I Was McNamara’d into Submission).” First

written in 1965 and revised for the album Parsley, Sage,

Rosemary and Thyme, the song is a broad, talking-blues

send-up of Bob Dylan (Simon and Garfunkel). In an

unmistakable twang, Simon reels off topical jokes on the

way to a final epiphany:

I’ve paid all the dues I’m going to pay

’Cause I learned the truth from Lenny Bruce

That all of my wealth won’t buy me health

So I smoke a pint of tea a day

I probably heard these words in 1969 or 1970. Like many

products of the sixties, the “Philippic” aged too fast. Even

then, it needed decoding—Lenny Bruce, celebrated bad boy

of standup; Robert S. McNamara, major architect of the

Vietnam war; tea, another word for pot; but what else was

Simon going on about? At that moment, Dylan the protest-

hero felt even more mythical than the recently broken-up

Beatles. My barely teenage self couldn’t process the cultural

grudge, and the second part of the song made things

murkier:

I knew a man, his brain was so small

He couldn’t think of nothing at all

Not the same as you and me

He doesn’t dig poetry

He’s so unhip that when you say Dylan

He thinks you’re talking about Dylan Thomas

Whoever he was

Though it probably explains a lot, please set aside the tiny

tragedy of a seventies teen learning stale material. Focus

instead on Simon’s cultural unpeeling—“Dylan Thomas,

whoever he was”—but remember, no internet. In 1970, if

you were lucky and relatively privileged, a parent or teacher

might tag the Welsh poet (1914–53) and quote something

more interesting than “Do not go gently.” You could then

appreciate the shade in Simon’s lyrics, the way they call out

a counterculture hooded in historical blindness. At the very

least, you could feel the divide between old world and new,

even as, confusingly, you sensed the truly hip denied it.

History favors convergence. Fifty years later, we had the

hyperirony of Bob Dylan’s 2016 Nobel Prize for Literature,

desultorily accepted a year later, which put the business of

1965/1966 in rather a different light. Dylan/Thomas:

“assuming that’s a distinction you observe, heh heh,” to

quote that other prophet of the terminal sixties, Thomas

Pynchon (Pynchon 411). Cultural fissures inevitably appear,

displacing now from then, but countervailing forces bend

toward atonement.

What, you may ask, do these vinyl memories of the very

late sixties have to do with Twine writing, born and bred in

the next century? It is a question of history, if not legacy.

The Twine platform and the writers who distinguish it are at

least convergently millennial, but the story to which they

belong begins well before 2001. The code resources on

which Twine is based, HTML and JavaScript, date from the

late 1980s and mid-1990s. The internet protocols that

underlie them were indeed mid- to late-sixties productions

(see Galloway). There is a history here.

Art tends to involve precedents. The kind of storytelling

commonly done with Twine has three main ancestors: game

books (choose-your-own-adventure stories), parser-based

text adventures (interactive fictions), and hypertext fictions.

A popular novel with optional reading schemes was

published in 1930 (Hopkins and Webster). Game books for

younger readers became broadly popular in the 1970s

(Nikolajeva). Interactive fiction made its debut in procedural

narratives like Oregon Trail in 1971 (Rawitch, Heinemann,

and Dillenberger) and Colossal Cave Adventure (Crowther)

five years later.5 Hypertext fiction began in the mid-1980s

with Judy Malloy’s Uncle Roger (Malloy) and Michael Joyce’s

afternoon: a story (Joyce, afternoon).

Opinions differ about whether these works belong to

literary history. At a certain point in the early history of

digital fiction, it was fashionable to accuse them of debasing

literature (see most notoriously Birkerts). Nonetheless,

figures associated with hypertext, such as Joyce, Shelley

Jackson, and John McDaid, have identified mainly as fiction

writers. Montfort aligns interactive fiction with the ancient

poetic genre of the riddle (Montfort 14). Aarseth argued for

an “ergodic literature” that includes interactive fiction and

word-based virtual environments (Aarseth, Cybertext). After

the turn of the century, however, Aarseth helped establish

the independence of computer games from literature and

other prior arts (Aarseth, “Computer Game Studies”).

These uncertainties also affect the Twine world. Some

influential Twine creators moved into game design after bad

experiences in college creative writing programs and game-

design academies (see Anthropy’s comments in Rise 95).

After Gamergate, Twine work has been strongly associated

with independent, insurgent game creation, especially queer

gaming. As merritt k says in the indispensable

manifesto/anthology Videogames for Humans, “Many of the

figures who have risen to prominence in Twine circles are

trans women. That trans women are recognized as the

leaders of an artistic scene is a fact worth appreciating in its

own right” (merritt k 12). We will say more about these

connections to resistant and alternative culture in the rest of

the book, especially chapter T-4. The present chapter looks

the other way across this divide, connecting Twine works at

least tentatively to a literary ethos—though with the present

very much in mind.

In this, we are responding to another point raised by

merritt k, who hopes to promote “more communication and

crossover between fringe game design and literary

communities” (merritt k 18). Communication never comes

without the risk of misunderstanding or disrespect,

especially in a cultural crisis. We need also to remember

Brice’s poignant survey of the literary landscape, already

cited but worth repeating here: “Boundaries, bones of old

men before us, are only there to be transgressed” (Brice).

This chapter unearths various bones and pays some

attention to old men, real and imagined. It does so, we hope,

in the spirit of connection merritt k evokes—though this is

hard. Reaching across historical gaps creates that effect

Jacques Derrida punningly called “hauntology.” In doing

hauntology, we need “to learn to live with ghosts, in the

upkeep, the conversation, the company, or the

companionship, in the commerce without commerce of

ghosts. To live otherwise, and better. No, not better, but

more justly. But with them. No being-with the other, no

socius without this with that makes being-with in general

more enigmatic than ever for us. And this being-with

specters would also be, not only but also, a politics of

memory, of inheritance, and of generations” (Derrida xviii).

Ghosts pose a serious problem for rationalist-materialist

theories of existence—much the same problem, Derrida also

taught, that lies in language itself. There is no “genuine

being-with the other,” no way past the enigma of otherness

—whoever he was—and yet we persist in naming names. We

tell ghost stories. Like cinema’s illusion of motion, the act of

naming invokes false presence and dubious ancestries. Unto

every Dylan, there will be some Thomas—doubtful if not

doubting, and technically speaking no relation, except that

in language and literature, there is nothing but relation,

however vexed. The house of Twine is haunted.

Final Fictions and Delta-T

Postmodern haunting is complicated. Our ghosts no longer

show up in the Dickensian holiday three-pack, but come

instead in trickier, fractal numbers. The return of the

repressed may cross hauntological registers in strange,

Escher-like loops. These radical effects are captured in a

work called We Knew the Glass Man, written by John G.

McDaid and crafted in Twine with the assistance of his son,

Jack McDaid (McDaid, Glass Man; all other citations of this

work are given in the text by passage name). The title,

which refers to Wallace Stevens’s “Asides on the Oboe,”

names an ancestral presence of literary modernism whose

effect on the work we will explore (Stevens). In its own way,

McDaid’s Glass Man recapitulates the Dylan/Thomas logic,

folding Stevens’s modernist abstractions over other cultural

signatures—science fiction, psychedelics, occultism, garage-

band rock, and, crucially for our purposes, Twine.

There is a literal haunting in the work. To echo our earlier

catchphrase, the signature of Glass Man might well be

“whoever he was,” with notable slippage under the pronoun.

The question applies most directly to Tyrell Rand Walker, the

main haunt of the story. Walker (“Ty”) was a friend of the

unnamed narrator from their days at Syracuse University. As

old readers of Sunday comics will recognize (see Falk and

Herman), his surname might as well be Phantom, the Ghost-

Who-Walks. His given name echoes the maker of the

replicants in Ridley Scott’s Blade Runner and in shortened

form suggests connection or binding (“tie”). The middle

name remains mysterious—Ayn Rand? Janice Rand from Star

Trek? “Rand” for random (as we will see)? This guesswork

seems appropriate, as Mr. Walker is made of mysteries. He

seems to have died six times under different circumstances.

These details are given in various funereal passages of Glass

Man:

1. Drowned in the surf off Cape May, New Jersey

(“Unitarian Church in Fayetteville”)

2. Fell to his death from a water tower while tripping

on acid (“Eighteen”; see also the passage “Remain

in Light,” where the same scene ends without the

fall)

3. Drove into a tree in Prospect Park, Brooklyn (“It Was

Quick”)

4. Blown up on TWA Flight 800, July 17, 1996 (“Beach

at Coney Island”)

5. Suffocated in his sleep by a fire that destroys 219

Clarendon Street (“A Jar in Tennessee”)

6. Died at home of undisclosed causes in 2016

(“Cemetery of Last Resort”)

This narrative uncertainty registers how, in every sense of

the phrase, times have changed. Heterocosms, inconsistent

or causally divergent world-models, were popular in the last

century. We could point to postmodernist fictions, from

Virginia Woof’s Orlando to Mark Danielewski’s House of

Leaves, or just as plausibly to popular entertainments, from

Rashomon to Spider-Man: Into the Spider-Verse. In this new

century, multiversal thinking seems to be on tap wherever

stories are told. Hypertext fiction is certainly part of this

phenomenon, and Twine along with it. Because hypertext

usually implies a graph, we might begin by reading from the

map:

Figure 13: Structure map of We Knew the Glass Man

This is the story structure of We Knew the Glass Man as it

appears when the output HTML file is opened in Twine. Much

can be learned about the design of the story from this graph.

There is an initial track from “Splash Screen” (far left) to a

passage from which many lines emanate, with an equal

number returning. This passage is called “Nighttime in the

Switching Yard,” echoing the title of a Warren Zevon song.

Zevon is another of the whoevers haunting this story. To the

left of the Switching Yard lie five linear tracks, each

containing at least one of the death scenarios (the first track

includes both “Unitarian Church in Fayetteville” and

“Eighteen”). At far left are two passages without linking lines

—and though they are important, we will pass over them for

the moment.

Each of the extended tracks ends with a passage that

loops back to the Yard. These ends-of-the-line have

numinous names: “Orphic Egg,” “Anguinum,” “Glain Neidr,”

“Aleph,” and the definitive “Egg MacGuffin.” Each passage

begins with the same sentence, then diverges. They

describe a relic passed down to Ty Walker from Arthur

“Buddy” Newkirk (more about him presently). The nature of

this object is hazy: it is an ancient Greek magic stone, a

Druidic talisman (twice), a chip off the Egg Stone of

Glastonbury, or a totem of unknown properties and origin,

vaguely recalled. The echoing endpoints round out the plan

shared by all five lines—begin with a reminiscence, arrive at

death and a funeral, finish with the arcane object.

McDaid alludes more than once to Jorge Luis Borges’s story

“The Aleph,” but the structure of Glass Man also recalls

another Borgesian model: the “heap of contradictory drafts”

that is the talisman of “The Garden of Forking Paths” (Borges

24). This literary assemblage, the fantastic novel from which

the story takes its name, appears to violate causality—major

characters vanish suddenly, change unaccountably, or

reappear after dying. The apparent inconsistencies are

intentional, illustrating a radical theory of time: “Unlike

Newton and Schopenhauer, [the novelist] did not think of

time as absolute and uniform. He believed it an infinite

series of times, in a dizzily growing, ever spreading network

of diverging, converging and parallel times” (Borges 28).

In much the same way, McDaid’s Glass Man seems

ontologically incoherent. Ty Walker dies in 1981, or 1996, or

2016. He meets his fate outside of Syracuse, in Brooklyn, on

a doomed airliner headed for France. Readers run into all

these possibilities as they move from passage to passage,

which brings us to the navigation scheme of Glass Man.

Once readers have passed from the Switching Yard onto

one of the five linear tracks, there are two mechanisms for

movement through the text: a button or pair of buttons to

the left of the body text6 and a linked expression at the end

of the passage. The buttons are marked with a three-dot

sigil, either ∵ or ∴. These symbols are conjunctions from

symbolic logic that mean because and therefore, as

hovering glosses on the buttons indicate. In a work that

plays fast and loose with causality, these linear operators

are inevitably ironic. The operator buttons allow movement

either back to the previous passage (because) or to the next

in the current line (therefore), but this arrangement does not

imply cause and effect. Setting these buttons aside, the

reader can advance to the next destination by clicking an

expression that occurs at the end of the body text:

Δt7

Like the pseudological buttons on the left, this in-text

operator carries a double sense. In physics, delta-t indicates

change over time—and indeed, clicking this button does

advance the timeline of the current reading, though it may

as easily take us back to something we have seen as forward

to unread material. Linear references are misleading in this

text. There is another way of understanding “change” and

“time,” if we factor in Borgesian possibilities. In addition to

in, over, or through, we might also consider of—a change of

time, time-streams, or continuities. Both “The Garden of

Forking Paths” and We Knew the Glass Man humanize post-

Newtonian time. Borges evokes the tragedy of a descendant

who must assassinate the man who tells him about the

greatness of his ancestor. McDaid offers a more prosaic

tragedy, suspected senile dementia:

My neurologist, Dr. George Zanniger, is an ass. The kids,

convinced that my memory is shot, set me up with an

appointment. In unctuous doctor-speak, he spooled out

his “As we get older,” speech. Reviewed my med list.

Made me touch my nose. Stand on one foot. Take the

goddamned Montreal Cognitive Assessment. Yes I can

count backwards from 100 by sevens. Draw a watch.

Recite the Invocation of Mnemosyne: Face Velvet Church

Daisy Red.

He wrote me up for a brain MRI, which will almost

certainly show absolutely nothing. Modern medicine is

the apotheosis of analytic hubris. If I recall

counterfactuals, if there are acausal lacunae in my

narrative timeline, it is not beta amyloid or TIAs. (“My

Neurologist Is an Ass”)

And so we arrive at another variation on whoever he was:

our nameless narrator, beset with plaques or brain bleeds—

or a condition best diagnosed in the Twilight Zone. If we

follow his insinuation, he is not just “unstuck in time,” in

Kurt Vonnegut’s phrase, but adrift across a series of

timelines (Vonnegut).

The narrator of Glass Man is haunted by stories, or the

sketchbook approximation of stories, or maybe by narrativity

itself. Just as plausibly, though, we can trace his problems to

bodily jeopardy, the fraught experience of an aging man in

an old house. Hauntings often involve houses, and this is

especially the case with Glass Man—though as Huckleberry

Finn might say, you will not fully appreciate the reference

unless you have read Uncle Buddy’s Phantom Funhouse by

Mr. John McDaid.

The Funhouse is an artifactual hypernovel consisting of

paper documents, audio tapes, and a set of digital files

created with Apple Computer’s long-obsolete HyperCard

application (see Moulthrop and Grigar). It was published by

Eastgate Systems as a multimedia assemblage in 1993

(McDaid, Uncle Buddy’s). Prefiguring both the surreal

architecture of House of Leaves (Danielewski) and the

unpeopled spookiness of Gone Home (Gaynor), Funhouse

incorporates a digital memory palace, a hyperlinked image

that maps its software components onto regions of an old

house. As in Glass Man, there are multiple dimensions to this

hauntology. The virtual house and its textual contents are

conveyed to the reader as the literary estate of a vanished

writer, Arthur “Buddy” Newkirk, described as a relative we

may not remember because of “lapses of memory or other

unspecified divergences” (“READ ME FIRST”). The Newkirk of

Funhouse is a contemporary of the Syracuse crowd, front

man and songwriter for the punk band called the Reptiles. In

Glass Man, he is an older, semilegendary science fiction

writer whom Ty’s friends regard with some awe, whose main

role involves passing the MacGuffin to Huck. What this

revisionist history means for the ficto-biography of John

McDaid is perhaps of interest mainly to his fans. Suffice to

say that the twenty-first-century Twine work Glass Man is

haunted by prior art, especially hypertextual experiments

from three decades back. In a sense, all Twine works share

this haunting, whether they know it or not.

Hypertext linking—the association of words, phrases, and

images with code that replaces or transforms the initial text

—operates in Funhouse through the HyperCard “stacks” that

make up its digital archive. Although there are sequential

links in most of these stacks, there are also disruptive and

digressive links on words, phrases, or images, making the

experience of reading Funhouse polylinear. In Glass Man,

hypertext is applied less fancifully, with most passages

limited to the linking scheme already described. This limited

connectedness points away, perhaps, from the

experimentation of the mid-1990s toward older conventions

of print fiction.

That shift may be related to the conceptual basis of the

work. Glass Man was published in an ongoing project of the

literary journal cream city review called i0, showcasing

works in which print and digital elements are equally

important. A page-bound version of McDaid’s story appears

in the print edition of the journal. In design and execution,

We Knew the Glass Man is a hybrid, bridging the domains of

book and software, haunted equally by technology and

literature.

In this sense, the major ghost of Glass Man, Thomas to its

Dylan, is the modernist poet Wallace Stevens.8 McDaid takes

as an epigraph the opening of “Asides on the Oboe,” a short

poem written in 1940 and published in the collection Parts

of a World (Stevens). For what it’s worth, Harold Bloom

considers this volume “Stevens’ most underrated book”

(Bloom 136). The poem is nearly contemporary with

Borges’s “Garden of Forking Paths,” published in 1941,

though the texts are related (if at all) only through the idea

of a “final,” or as Stevens would later say, “supreme

fiction”:9

The prologues are over. It is a question, now

Of final belief. So, say that final belief

Must be in a fiction. It is time to choose.

That last sentence stands out—maybe perversely so, if we

think for a moment like a certain hard-core traditionalist.

Stevens is a model of erudition and “quiet authority” on

whose work critics like Bloom, J. Hillis Miller, and Helen

Vendler have honed their critical insights (Vendler). He is

the acknowledged master of difficulty and abstraction.

According to Vendler, when a colleague complained of not

understanding Stevens’s writing, the poet replied, “That

doesn’t matter; what matters is that I understand it”

(Vendler). In other words, Wallace Stevens is not a writer to

take literally.

Yet when Stevens’s injunction to choose occurs in a work

of digital fiction, it has to be taken that way. An important

part of the ancestry of Twine and other platforms for

branching narrative lies in game books or choose-your-own-

adventure stories, where the “time to choose” comes at the

end of every narrative unit, as it does in Glass Man. The

cultural gulf between Wallace Stevens and game books is

about as great as anyone could imagine. There are those

who lament that divide and those who have tried to erase

it.10 Notable among these is Aarseth, whose study of

procedural narrative is based partly on The Money Spider, a

game-book from the 1980s (Aarseth, Cybertext 69–70).

McDaid’s cultural politics align with the levelers, which

makes his appropriation of Stevens odd and at least partly

ironic. “It is time to choose,” but despite the simplicity of the

sentence, its application to McDaid’s story is deeply

complicated—and perhaps not so literal after all. In Glass

Man, both time and choice defy simple understanding.

Ty Walker has six histories and six catastrophes. There is

no clear way to differentiate one from another. The

deceptively linear structure of the work tilts toward seriality

but leaves the reader and narrator in a state of haunting or

defective memory. Which time? What time? How do we

choose among them? McDaid’s story is fundamentally

anxious, yet if we turn to Stevens, we find the opposite, a

movement toward final clarity. There is considerably less

uncertainty about its central figure:

In the end, however naked, tall, there is still

The impossible possible philosophers’ man,

The man who has had the time to think enough,

The central man, the human globe, responsive

As a mirror with a voice, the man of glass,

Who in a million diamonds sums us up.

“The man who has had the time to think enough” can be

applied to McDaid’s story, but with questionable results. Ty

Walker has apparently had several worlds and times, and we

can wonder if the narrator will ever be able to think enough

about this enigma. The “central man” of the Twine story is

elusive, more impossible than possible. In the poem, by

contrast, the philosophers’ man unfolds in a series of

symbols: a globe, a mirror, diamonds. The globe is

encompassing, the mirror reflective, but the key lies in that

cascade of diamonds, shattering light into a constellation of

difference. Somehow this explosion of information “sums us

up.” What can this mean?

McDaid’s ghost story complicates such questions, warning

that the reference of any “us” becomes unstable across the

timelines. Are we the ones who mourned Ty at Coney Island,

or came to the funeral in Fayetteville, or watched him slip off

the tower outside of Syracuse? Recall Derrida: “No being-

with the other, no socius without this with that makes being-

with in general more enigmatic than ever for us.” If we apply

this hauntology to the texts in question, we might ask if the

first-person plural of 1940 includes a twenty-first-century

reader. How was it ever possible to sum up then and now

into an “us?” What does it mean to know the Glass Man in

the context of a fracturing that is not metaphoric but actual?

Considering this essential question—which is the question

with which this chapter began—we come to a major

difference between old and new, one with important

implications for understanding Twine work in relation to

literary tradition. The crux comes at the end of Stevens’s

poem, after its lament about the disruption of the idyll of

“jasmine scent” by “death and war”:

It was not as if the jasmine ever returned.

But we and the diamond globe at last were one.

We had always been partly one. It was as we came

To see him, that we were wholly one, as we heard

Him chanting for those buried in their blood,

In the jasmine haunted forests, that we knew

The glass man, without external reference.

To know the Glass Man, for Stevens, is to operate “without

external reference.” These are his last words on the subject.

Knowledge of the impossibly possible central man must be

internalized, unworldly, something outside of image,

association, and language. In sharp contrast, McDaid’s

fiction strains toward externalities, arguably on two levels.

The first reach toward external reference can be found

within the story world, in those talismanic stones at the end

of each timeline. In their mystic associations, they express a

yearning for enlightenment and presence. At a crucial point,

we get a unified vision of the stone:

The stone was unremarkable in that it was veridical.

Obstinately truthful. It just was. In the words of my

philosophy professor Fernando Molina, who received

dharma transmission from Clarence Irving Lewis, it

stood, oblivious, beyond any assortment of qualia in my

consciousness, a Ding an sich forever beyond direct

experience. Oh, I could have some epistemically lazy

notion that I knew about the stone, but Lewis would

have slapped me into clarity: there was no sense in

which I could make reliable, testable predictions about

future experience. For pragmatic phenomenologists—

which is how I had been trained—I was stuck in a

bracketed reality, with the stone regarded as real. But

any ontic claim was beyond me, denied by the stone’s

veridical centeredness, its da stehn while around it, the

rest of the cosmos revolved. (“Nighttime in the

Switching Yard”)

This centrality is a setup, betrayed to variation. The

stone’s fixed placement is belied, narratively speaking, by

what comes if we follow the links. The centering moment

occurs in that deeply nested passage called “Nighttime in

the Switching Yard.” The cosmos of the fiction revolves or

circulates around this point, the main junction from which

the death-tracks radiate and to which they return (see figure

13). That pattern reinforces the withdrawal of the thing-in-

itself. At the end of each track, the stone is painted with a

different mythology, until the reader clicks a locally final Δt

and returns to the Yard. Returning reasserts the stone’s

centrality. There may be “veridical centeredness,” but there

are also stories, and these accounts create tissues of

difference. Every such departure rules out any final “ontic

claim,” dissolving certainty into a blur of possibilities. Relic

becomes tchotchke, Egg Stone devolves to Egg MacGuffin.

After all, Glass Man belongs to consumer culture, which is

less a matter of object-oriented ontology than a cargo cult.

The reach toward external reference within the story goes

to pieces, but there is a second plane of externality in this

fiction that also demands attention. The reference, in this

case, is the text itself as a technical object. Although this

suggestion might seem outlandish for traditional, page-

bound literature, it is always appropriate for digital fictions

and is explicitly framed here. Naming a key passage

“Nighttime in the Switching Yard” calls out the operative

metaphor. It reminds us that we are in a system of

circulation, variation, and control. As noted, the title points

to Zevon’s song, a funked-up railroad blues about a

midnight train that “runs both ways,” much like the

recirculating fiction of Glass Man (Zevon). The song closes

with these words:

Listen to the train

Listen to the track

Taking “listen” in its metaphorical sense of attending or

considering, we might indeed ask how the tracks laid out

around “Switching Yard” shape our sense of its curious

system of stories and what mechanisms are at work in the

Yard.

The first notable thing about the “Switching Yard” passage

is its count of hypertext links—six instead of the three that

occur in most other passages—and the fact that five of these

links are anchored on phrases within the body text, as in

familiar hypertext fiction. Each in-line link points to the start

of one of the tracks, by which the Switching Yard lives up to

its name as a junction point. The sixth link, anchored on the

Δt symbol, does something more interesting. Here is its

underlying code (written in the Harlowe story format):

(set: $rand to (random: 1, $passageList's length))

(set: $randTarget to ($rand) of $passageList)

<div class="deltat">[[Δt|$randTarget]]</div>

The two set macros generate a random integer between 1

and the length of a variable called $passageList, then use

this variable to select an item from $passageList.

$passageList is an array, a special variable whose

components can be selected individually. The list itself is

defined in the other of those two unlinked passages at the

far right of the map in figure 13, the one with the title

“startup.” It contains the following:

(set: $passageList to (array: "Unitarian Church in

Fayetteville","College Was Half A Lifetime Ago","Glue On

The Tracks","Eighteen","One Of Ty's Songs","Orphic

Egg","Met On First Day Of College","Huck Never Lived On

Clarendon","Ty's Bag Of Tapes","It Was Quick","The

Apotheosis Of Analytic Hubris","Anguinum","Down In The

Basement","Beach At Coney Island","My Neurologist Is An

Ass","Mickey One--Garbage","Bend Of Convenience","Glain

Neidr","A Jar In Tennessee","How The Bodhidharma Came to

Philadelphia","Remain In Light","Brenda And Eddie, Or

The Grecian Urn","Radio Control Priest","Egg

MacGuffin","Cemetery Of Last Resort","I'm In Charge

Here","Rabbit Test Of The Apes","Night And

Swamp","Mystic Heated Wine","Aleph","Pret A

Enterrer","Covington"))

The array $passageList includes the names of all passages

in the five tracks. The scripting of the Δt link thus reveals a

double articulation. A reader of Glass Man could proceed

methodically through the in-line links in the Switching Yard,

entering each of the five timelines successively as they loop

down and back, but those attracted to the mysterious Δt will

have a different experience. They will drop into the textual

system at unpredictable points, often in the middle of an

extended meditation, able to grasp what is going on only

after returning to the Switching Yard several times. They

may thus see the system as doubly disrupted, both by its

unstable narrative contents and by the possibility of

arbitrary leaps into randomness. Listening to the track—

reading what its script ordains—suggests less a railroad than

a pinball machine, a tool for indeterminacy.

What can we do with this understanding of the digital text

as an “external reference” for McDaid’s Man of Glass? For

one, we can conclude that all the drifts and divergences of

Ty Walker’s history ultimately fall within an intentional

system, one that ties understanding to circulation,

repetition, and contradictory memories. For another, we can

recognize the importance of contingency, the activation of

outcomes not expected or foreseen, to the meaning of this

work. Embracing contingency identifies Glass Man as a

special kind of sign system, one that has been defined as “a

semibounded and socially legitimate domain of contrived

contingency that generates interpretable outcomes”

(Malaby).

This definition was not written for literary texts, and yet

Glass Man satisfies its terms. Realist fictions are inherently

“semibounded,” being invented accounts of plausibly real

experiences—an effect accentuated by the contradictory

fictions of Glass Man. There is certainly a claim to social

legitimacy, however ironized, in the invocation of Stevens.

How the work delivers “contrived contingency” should be

clear. On the last point, “interpretable outcomes” are what

Glass Man relentlessly reproduces through its rippling self-

disruptions. These terms that Glass Man fits so well were

proposed by the anthropologist Thomas Malaby as a

contribution to the theory of play. Here is his complete

sentence: “A game is a semibounded and socially legitimate

domain of contrived contingency that generates

interpretable outcomes” (Malaby 96).

The striking correspondence between McDaid’s Twine

fiction and Malaby’s definition of game raises an ultimate

question about its “external reference.” What if we can know

the Glass Man only through play? What if we say, in our

networked, algorithmic moment, that final belief must be in

a game?

Malaby’s definition is designed to break down the

“exceptionalism” that separates play from other human

experiences (Malaby 96). Stricter theories of games would

fail Glass Man on several points: it lacks evaluative

feedback, differentiated outcomes, and, above all, causal

logic (Juul 29). Yet with a certain suspension of disbelief, we

might find in McDaid’s Twine story elements of active

engagement. If, following the Borgesian logic, we are

dealing not with a disordered narrative but with limits of

conventional/Newtonian time, then we can understand the

repeated link signature Δt as a matter of practice—time for

change; change the time. “There is a Hand to turn the time,”

as Pynchon says just before the end of Gravity’s Rainbow

(Pynchon 760), though in the case of Glass Man, the act is

more click than crank, and the agency is not mystical but

human. In this gamelike, second-person context, the Hand

belongs to you. You find the time to choose; your

engagement turns over the time-streams.

However, even by the most generous standard, McDaid’s

fiction counts as a minimal game, at the limit of formal

requirements, like the “minimum labyrinth” imagined in

“The Garden of Forking Paths” (Borges 25). Its print-digital

hybridity registers a link to conventional poetry and fiction,

the Dylan Thomas side of the old Philippic. To the extent that

it flirts with choice-of-adventure fiction, the overture is at

least partly ironic. Yet the external reference of We Knew the

Glass Man does make an important statement with respect

to Twine and literature. It points toward writings more fully

identified with games—for if final belief must still be in a

fiction, the nature of that fiction is in play.

Δt, everybody.

With Those We Love Still Alive

Although it was published five years before We Knew the

Glass Man, Porpentine’s With Those We Love Alive seems in

many ways the younger work: produced by a writer under

thirty, untroubled by specific poetic hauntings, and, above

all, written in a way that weaves the intersecting lines of

fiction and game into an inviting moiré (Porpentine, With

Those). With Those We Love Alive takes us to a dark-fantasy

city ruled by a nightmarish, insectoid empress who lives on

human sacrifice. Despite its frequent horrors—warning for

“abuse” is given at the outset—the game has the immersive

potential of a darkly lucid dream, complemented by Brenda

Neotenomie’s entrancing soundtrack. Play begins with a

striking promise: “Please remember: nothing you can do is

wrong” (“please”).

This statement overturns a major convention of computer

game design, in which wrong options usually far outnumber

those that are in some way right (see Juul, Art). In contrast,

Porpentine offers blanket indemnity as we begin “living this

life.” McDaid’s temporally unstable ghost story implicitly

asks whoever he was, but that is not the only existential

question we can find in Twine works. For stories that

converge with games, the foundational questions include

Who will you be at the end of play? Who are you this time?

Character configuration is a mainstay of games, from

tabletop role-playing systems to console epics and

massively multiplayer online universes (see, e.g., Voorhees).

With Those We Love Alive has its own way with this

convention, offering the player/reader at the outset three

queries: birth month, “element,” and eye color. These factors

seem arbitrary, very different from those in other games

(races, tribes, professions, moral axes). The arbitrariness of

the options continues the iconoclasm of the opening

message. Although With Those We Love Alive is not a print-

digital hybrid like Glass Man, it takes up a similarly liminal

position between story and game, though on its own terms.

The birth month question is resolved by choosing from a

table of links. For the other two factors, Porpentine uses an

implementation of cycling text: clicking a word or phrase

replaces it with the next item in a list, the last option looping

back to the first.11 A conventional, transitional link (“Yes”)

locks in the current selection and advances to the next

passage. This naming sequence tells us something

important about Porpentine’s craft. Electronic text replaces

itself, but nothing says the replacement has to be simple or

instantaneous. Links may trigger scripted instructions as

well as direct transitions. Though passage-to-passage

transitions are common enough in With Those We Love

Alive, the naming sequence reminds us that Porpentine has

other options.

After the third query, we come to a link that will reveal our

name. If we choose to be born in the first month, taking

petal as our element and brown as eye color, we are called

“Sparna Jarndot.” Dialing in the seventh month, tears, and

green eyes names us “Cade Ophigloss.” Twelfth, fur, and

gray yield “Langloss Umdas.” Every configuration of

Porpentine’s three variables produces a unique name. There

are twelve possibilities for month, six for element, and ten

for eye color (including “Heterochromic” and “Nothing here

describes my eyes”). Multiplying 12 times 6 times 10 gives

us 720 possible names. To a nonprogrammer, this number

might suggest a maximalist or brute-force approach, a series

of 720 if/then conditions. Porpentine actually uses a more

efficient scheme, but the impression of large scope is correct

—With Those We Love Alive is notably bigger than Glass

Man, as is clear from its structure map:

Figure 14: Structure map of With Those We Love Alive

There are 267 passages here, compared with 38 for Glass

Man. References to print works have limited usefulness for

Twine, but the difference between short story and novella

gives a rough measure. The map comparison can also be

deceptive, however. Though there is a dense tissue of

linkage among the passages, there are also many more

passages without link lines than in McDaid’s structure.

Passages of this kind often contain code, as we saw in Glass

Man’s Switching Yard, and can also be invoked as in-line

elements in dynamically assembled passages. Both

strategies are used here. With Those We Love Alive is both

broad and deep, making intensive use of scripting.

A short digression is needed at this point. In just a few

years as a Twine creator, Porpentine has produced an

extraordinary range of work. With Those We Love Alive is

among her more formal, literary efforts. Chapter T-4 looks at

works that are more spontaneous, personal, and in-the-

moment. Perhaps inclining toward this side of her aesthetic,

Porpentine has called her process “trash spinning” (Kaye;

see further discussion in chapter T-4), but that term is hard

to square with With Those We Love Alive. The way

Porpentine transforms storytelling in this work seems

anything but discardable. There may be a lot of “spinning”

going on here, but the machinery behind it is impressive.

Noah Wardrip-Fruin, another pioneering maker and

theorist of digital writing, has written about an “ELIZA

effect,” in which computer programs appear larger and more

complicated than they actually are (Wardrip-Fruin,

Expressive 23). The term refers to a script used in an early

experiment in interactive text generation, undertaken in the

mid-1960s by the computer scientist Joseph Weizenbaum.

ELIZA mimicked the speech strategies of a Rogerian

therapist so successfully that users of the program,

interacting via teletype, behaved as if talking to a human

doctor (Wardrip-Fruin, Expressive 32). Despite this striking

functionality, the code for ELIZA is remarkably simple. It

exemplifies a programming concept called elegance, in

which compact expressions yield versatile results.

Porpentine’s naming system is notably elegant. Looking at

the code embedded in the “Name” passage reveals a chain

of if conditionals, but only 30, not 720. The script uses the

month selection to choose one of twelve first names

(everyone born in the first month is a “Sparna”), the

“element” factor to set the first syllable of the surname, eye

color the second. A few lines of code produce a large range

of variations.

Games produce “interpretable outcomes,” in Malaby’s

phrase, and gamelike stories do the same. They can be

understood as subjects of interpretation, or texts. In the case

of the naming ritual, the reader may wonder about larger

determinative effects. Will Sparna Jarndot have the same

options in the game as Caromine Melovir or Mia Hexador? Do

names matter, and if so, how?12

Reading a story/game hybrid requires a different

procedure than reading a print/hypertext hybrid such as

Glass Man. In Cybertext, Aarseth distinguishes between

scripton, a sign presented to a reader or player for

interpretation, and texton, the arrangement of systematic

signs whose activation produces readerly experience

(Aarseth, Cybertext 62). The multiparagraph, page-like

passages of McDaid’s story foreground the scriptonic,

aligned with traditional close reading. In contrast,

Porpentine’s passages tend, at least on first presentation, to

be terse and mainly descriptive, a common feature of some

textual games. Here, for instance, is the initial description of

the empress’s city.

The streets are narrow, winding, mazelike. Ropes span

between buildings like enormous spiderwebs blanketing

the city.

The temple is this way, across the dry canal.

The dream distillery is surrounded by scaffolding.

Return to the palace. (“City”)

Like McDaid’s Switching Yard, passages like “City” and

“Palace” are routing points, meant to be encountered many

times during the game. The metaphorical narrative train

runs both ways, out to other parts of the story and back.

However, the trips we take in this text are subject to more

complex manipulation. In Glass Man, the Switching Yard

remains constant in expression and function. In Aarseth’s

formalism, the work has “static dynamics” (Eskelinen 45). In

With Those We Love Alive, however, the switchyards can and

do change during play, both in visible text and invisible

logic. This is what Aarseth calls “intratextonic” dynamics,

indicating a program that can be flexibly configured. We can

understand this by looking at the code for “City”:

The streets are narrow, winding, [[mazelike]]. [[Ropes]]

span between buildings like enormous spiderwebs

blanketing the city. <<if $dead_person is "city">>A dead

person is watching you from a window.<<endif>>

The [[temple]] is this way, <<if $day gte 21>>across the

[[flooded]] canal.<<else>>across the [[dry]] canal.

<<endif>><<if $day gte 14 and $day lte 17>> [[Black

petals]] cover the temple steps.<<endif>>

<<if $day lt 7>>The dream distillery is surrounded by

[[scaffolding]].<<else>>The [[dream distillery]] has a

gruesome pull for you.<<endif>>

[[Return to the palace|Palace]]

There are ordinary links here, as in McDaid’s Yard, but also

several items enclosed not in the double square brackets of

standard hypertext, but in two pairs of angle brackets: <<

>>. These are in-line TwineScript statements, two if

conditions and an if/else. They refer to values stored in the

variables $dead_person and $day. If the value in the first

variable is “City,” the narration includes that ominous,

undead watcher. The other conditions test for values in $day

and adjust the description of the scene accordingly (“gte”

and “lte” mean greater-than- and less-than-or-equal,

respectively). The greatest value of $day mentioned here is

21, implying that With Those We Love Alive spans at least

three weeks of in-game time, although other scripts could

extend that range. Notably, the conditional block includes

links that will not otherwise be seen. If we have been

through at least seven game-days, for instance, the

scaffolding comes off the Dream Distillery and a link to the

corresponding passage asserts a “gruesome pull.” This

switching yard never sleeps; it remains in operation around

the clock, constantly reconfiguring expressions and

affordances as we conduct our in-game life.

If we want to understand the literary dimensions of

Porpentine’s work, we need to appreciate the way her code

entwines—pun very much intended—with the words that

evoke its world. We cannot rely solely on scriptonic readings,

looking only at what appears at any given moment of the

game. This level of language overlooks mechanisms of

generation and control not presented to the reader. These

mechanisms make a difference to reading because they

make or generate differences in the text presented. Any

momentary configuration exists in relation to other possible

expressions.

With Those We Love Alive goes quite far in exploring the

possibilities of Twine’s first-generation release.13 The work

includes third-party JavaScript extensions that add a routine

for cycling text, visual effects, and an audio handler for the

soundtrack. Making these miscellaneous resources work

seamlessly within one’s own design takes considerable

effort. In this case, we might say that Twine work at its best

is as much like producing as it is like songwriting—art forms

that have notably converged in the last half century.

Reading code requires us to account for linkage and

dependency as well as local effects. We can see how

$dead_person and $day work in the “City” passage, but in

what other structures are they implicated? Both variables

are introduced (declared) in a special passage called

“StoryInit,” whose instructions are performed when the

game begins. This placement means they are accessible and

alterable from any passage in the work. The variables are

eventually reset by code attached to a passage called

“sleep_process,” activated when the player-character returns

to her room and decides to sleep. Here is its script:

<<set $weather = random(1,7)>>

<<set $tasted = false>>

<<if $day neq 1>><<set $dead_person =

either("garden","workshop","city","lake","balcony","temp

le")>><<endif>>

<<if $hormone_day is 7>><<set $hormone_need = true>>

<<set $hormone_day = 0>><<endif>>

<<set $day += 1>><<set $hormone_day += 1>><<set $energy

= 1>>

Using the either macro to make a random selection from a

given list, the $dead_person variable distributes possible

encounters over six locations in the story, repositioning the

ominous figure while we rest. The crucial variable $day is

incremented. We also see five variables not previously

discovered: $weather, $tasted, $energy, and the related pair

$hormone_day and $hormone_need. The first randomly

assigns weather conditions. The second records whether the

player has sampled the liquor of stolen dreams in the Dream

Distillery. The $energy variable determines the player’s

ability to perform tasks in her workshop. As we can see, the

game applies both historical and budgetary constraints,

which brings us to $day and the two $hormone variables,

which need more detailed discussion.

As the name indicates, $day keeps time for the game,

incremented whenever we return to our chambers and click

a link commanding the player-character to sleep. Sleeping is

pivotal in With Those We Love Alive, in terms of diegesis,

gameplay, and the game’s overall concept. When the sleep

link is clicked, the screen fades momentarily to black. A

story transition may occur during sleep if $day or some

other variable reaches a crucial value. If no transition occurs,

we fade back to “Chambers.” This curious process is the

equivalent of McDaid’s Δt, the command with which we turn

the time, but time here has a distinctive character. The

visual effect and the possibility of repetition make the sleep

action more organic than discrete. In terms of story, the

sleep mechanism ties time to our in-game body. Ludically, it

connects progress to elective player action.14

The two $hormone variables relate to a major feature of

our in-game life: we play as a person in transition,

dependent on “estroglyphs” to maintain hormonal balance.

As we will see, this is only one aspect of Porpentine’s

complex treatment of embodiment, about which there is

much more to say both here and in chapter T-4. For the

moment, we should note that cycles of our fictional body

belong to a systematic representation of self and other, a

cybernetic world model. The game creator and theorist

Michael Mateas refers to “playable models” (Wardrip-Fruin,

How Pac-Man Eats). Likewise, Montfort identifies world-

modeling as a primary constituent of the form (Montfort).

More recently, we have come to think about such models in

and out of games in terms of algorithms, those often-unseen

mathematical abstractions that govern digitally connected

life.

Computer games are perhaps uniquely suited to comment

on this aspect of modernity, especially when they operate

satirically. One particularly strong example in this line is

Valve Software’s Portal, a geometrical puzzle game oddly

cross-bred with an in-house parody of Half-Life (Swift). Bo

Ruberg uses Portal as the basis for a remarkable “too-close

reading” of the game’s queer gender dynamics, to which we

will return (Ruberg 56–83). Reading without the lens of

queer theory, Michael Burden and Sean Gouglas extol the

game’s “algorithmic experience” in ways that resonate with

With Those We Love Alive. As they see it, Portal presents

the tension between the cold, hard certainty of

algorithms and the creativity and freedom of an art. It is

the tension between the algorithm’s simplification of

complex concepts versus the need for problematization

and criticism. It is the tension between a world without

questions and the inquiry that art embodies. It is the

tension between knowledge that emerges from the

algorithms of the scientific method and the human

knowledge encountered in art. All videogames are

algorithms, and therefore, Portal is an algorithmic

exploration of human struggle against algorithmic

processes. The game’s very nature is an adherence to

rules. Art’s very nature is to challenge rules, to the point

of defying definition. (Burden and Gouglas)

In this view, Portal counts as art because it establishes a

world-model and concomitant story—the player-character’s

struggle against a homicidal AI—that satirically pits the

algorithmic regularity of game software against the

antinormative impulses of art. As Burden and Gouglas see it,

Portal bends the nature of the computer game back upon

itself, yielding important insights into the human experience

of technology.

Setting aside obvious differences of platform and context,

we can find parallels between Burden and Gouglas’s

definitive art game and With Those We Love Alive. Both are

intensely algorithmic, intricately tied to logical constraints

and performance measures. Both are haunted by dangerous

maternal presences. Though the mute empress of

Porpentine’s game shows none of the chatty ex-humanity of

Valve’s GLaDOS, their homicidal regimes are similar.

Artistically speaking, both texts display edgy relationships

to their primary genres. Valve satirizes the paranoid fantasy

of Half-Life through the cartoonish antics of Aperture Labs.

Porpentine gives us a game in which “nothing you can do is

wrong,” challenging mainstream game design. It might

follow, then, that With Those We Love Alive also constitutes

a work of algorithmic art, pitting machinic procedure against

human striving and desire. Since the primary medium of this

work is written language, we might make a strong case for

integrating With Those We Love Alive with at least some

version of literary history, one that unifies story and game.

Two eminent critics of writing and technology, N. Katherine

Hayles and Alan Liu, have independently proposed replacing

the old name literature with more expansive terms—“the

literary” (Hayles 4–5) or, as Liu has it, “the future literary”

(Liu 8). Perhaps With Those We Love Alive offers a harbinger

and model of this future, but to fully understand its

prophetic potential, we need to examine more fully its

curious moral precept: nothing you can do is wrong.

We have earlier called this claim iconoclastic. It can also

be simply baffling even to the strongest reader. In an

important early review of With Those We Love Alive, Emily

Short begins with a classical reference. She quotes a

quatrain from the Bhagavad Gita in which Porpentine seems

to have found her title:

Better to live on beggar’s bread

with those we love alive,

than taste their blood in rich feasts spread,

and guiltily survive

The lines suggest a convenient moral axis for the game, a

call to renounce worldly pleasures in favor of ascetic

discipline. But With Those We Love Alive is not that kind of

game. As its unseen structures suggest, it does require a

kind of discipline, the regular round of rest and glyph

application. Likewise, any careful gameplay could be

interpreted as a renunciation of bad paths to reach the good,

but this game/story eludes such reductive conclusions. This

is not in any way a game of withholding or avoidance. We

are “living this life,” and in it, we face certain choices. One

such decision point particularly bothers Short:

The player has a choice: to be a person, one with others,

or to be separate and alone. This choice is presented in

isolation, before we understand how it will constrain us.

In what follows, we discover its importance. If we choose

to be one with others, we are then forced to participate

in the eradication of the princess-spores, going around

stomping the new-formed creatures to death. We can

show them mercy only if we have determined to

separate ourselves from the rest of humanity. I did not

like stomping them to death, and I did not like declaring

myself separate from all other people, and I also feared

letting them live to perhaps become new Empresses

(but the world building here is so allusive that it is hard

to know for sure what will happen if they survive). The

entire passage disturbed me regardless of which way I

played it. (Short)

Cognitive dissonance may be baked into algorithmic art,

where human-centered impulses collide with logical

procedures. We can separate ourselves from the monster-

aligned human community, or we can join the massacre of

the empress’s “mewling” daughter-spores, which is like

treading to death several litters of kittens. The moral axes in

this game are darkly drawn and complicated. We are often

forced to choose without a full grasp of the consequences.

Short is understandably displeased. “After this sequence,”

she notes, “we are invited to draw an icon representing what

we feel about this turn of events. My icon was a ball of

spikes” (Short 2014). This inscription is one of many that

players of With Those We Love Alive are invited to draw on

their bodies over the course of the story. Short reflects on

the procedure:

This was a strange and striking mechanic. It is arguably

inconvenient, in that it restricts the contexts in which

you can play this (probably not at work, or on the bus, or

right before a job interview) and it asks the player to do

something rather intimate in response to the game. It

incorporates a sensual experience, the touch of pen on

skin, and it asks the person drawing to think about how

they would inscribe certain ideas. And where to inscribe

them: I not only found myself thinking about how I

would draw a symbol representing, say, “chasm,” but

also where on myself I would put that symbol in order to

carry the most weight. Our bodies are geographical;

there are places on the skin that mean “vulnerable” and

parts that mean “strong” and parts that mean

“receptive, empathetic”; places that are scarred or

calloused. (Short)

The “intimacy” Short finds in this body-drawing has been

elsewhere suggested as a general aesthetic of Twine works.

Laura Hudson quotes the designer and critic Cara Ellison in

praise of “mechanics of intimacy” that stand in sharp

contrast to the kinetic and objectifying mechanics of

commercial game design (Hudson MM46). Porpentine’s

invitation to engage the “geographic” body offers a clear

instance of this approach.

Short is pragmatically skeptical about body-drawing—you

can’t play this at the office—but we may want to set aside

this objection. Perhaps this transgressive story/game is not

meant to be safe for work. When she asks players to ink

their flesh, Porpentine calls for a radical commitment of

presence. Drawing on our bodies asks us to be present both

to our personal geographies, as Short insightfully observes,

and to the fiction/game/mechanism in a way that is

outlandish and perhaps excessive, even if the ink washes

off. Porpentine’s glyph-play reorients and reasserts the

human with respect to the textual machine.

To grasp the full significance of this aesthetic move, we

need to return to the critical discussion of Portal, but with an

update and spoiler warning. We need to consider the last

word of the Portal saga (so far), the end of Portal 2 (Weier).

Ruberg revealingly notes that “Portal is a game about a

woman moving inside another woman,” exploring lesbian

and domme/sub themes in the relationship of GLaDOS and

Chell (Ruberg 80). If we factor in the second game, we can

see the entire trajectory of this weird/queer pairing (see

Moulthrop). In the ultimate scene of the second game, Chell

is offered a truce by a restored GLaDOS. She is free to “go

make some new disaster,” in the words of the closing-credits

song (Weier, Portal 2), but she will have to do this

somewhere other than Aperture Laboratories. Before this

moment, we have learned that the human seed of GLaDOS’s

personality was Chell’s mother, an innocent abducted into

the system. We watch GLaDOS purge the last traces of this

maternal presence from her cores, leaving us with a flicker of

suspense—will the now thoroughly inhuman AI kill us off at

last? Instead, GLaDOS sings a moving operatic aria (“Cara

mia addio”) and sets Chell free—but not before declaring

that she will replace human test subjects with robots from

now on.

In the last frames before the credits, Chell walks through

not a transdimensional portal but an ordinary door that

slams behind her. Ruberg reads Chell’s exit from the first

game as an expulsion from the monstrous/maternal body,

but it is tempting to take the final act of the second game

more literally (Ruberg 77–79). The door reopens to eject the

lost, beloved Companion Cube from the first game, then

shuts again forever. Chell turns away, and the last thing we

see through her eyes is an endless, post-Anthropocene

prairie. The impression is less of birth or release than

separation and exile. Jonathan Coulton’s closing song this

time is “Want You Gone,” a breakup ballad. As in the first

game, the credits roll over a company document. In Portal, it

was a gleeful performance evaluation. In the second game,

the form reads, “NOTICE OF TERMINATION.” Chell is given

her life back but she is dismissed from employment. The

murder-science machine doesn’t need human beings

anymore.

At first, there may seem little in common between this

moment in Portal 2 and Porpentine’s inky mechanic of

intimacy. Perhaps we could say that each disruptively winds

computer games around a different medium and genre.

Portal 2 replaces gameplay with cinema or machinima—

something we will see again in chapter T-5; With Those We

Love Alive moves from the procedurality of story-game to

the free space of embodied writing. These lines of flight do

not apparently converge—and that is precisely the point.

The Portal saga’s collision of algorithm and human desire

ends in separation. There may be a ghost in the final version

of its machine, but its lone human subject is cast into the

wilderness. With Those We Love Alive, in sharp contrast,

keeps humanity in the picture, reasserting embodiment in

the face of the machine. Porpentine extends the reach of her

imagination to our bodies—and remembering that promise

that we can do no wrong, to bodies that are implicitly

beloved.

In the song that ends the first Portal, GLaDOS dedicates

the “triumph” of her test regime for “the people who are still

alive,” a phrase that unwinds into several threads of

meaning. In one sense, it refers to Chell, who has managed

to avoid all the murderous traps; more metaphorically, it

also includes the player who has cleared the final level in a

nondead state; most directly, it applies to GLaDOS herself,

denying defeat to set up the sequel.

As Ruberg notes, alive is the keyword of Valve’s epic

(Ruberg 81). Of course, it also has pride of place in

Porpentine’s title. Perhaps we can use the slippery logic

applied to this term in Valve’s game to unwrap the enigma

of Porpentine’s opening promise. In playing the story-as-

game, we may well do things that prove to be wrong: such is

the algorithmic experience. The world-machine is morally

broken, and we are constrained by its flawed conception—

but never absolutely. Porpentine creates a fictional enclosure

that is semibounded, a permeable membrane. Her game

does not exclude our humanity but promotes our presence

as embodied selves. The poet Stevens in his day aspired to a

knowledge “without external reference.” In another century,

in the vastly different techno-social context of her

generation, Porpentine comes to the opposite conclusion. By

being present to her text, we become the beloved who are

still alive, and in this corporeal presence, offering our bodies

as scriptable surfaces, nothing we can do is wrong. As

Ruberg would put it, games awaken and serve our desire for

alternative solutions, for a range of experiences not bound

by traditional norms (Ruberg 11). As embodied in With

Those We Love Alive, perhaps this achievement defines “the

future literary” or a literary future, at least if we believe that

writing-as-art remains a human enterprise—so long, we

might say, as we have skin in the game. So long as that

remains the case, maybe nothing we can do with our

imaginations, as poets or as game-makers, can ever be

wrong.

Works Cited

Aarseth, Espen. “Computer Game Studies, Year One.” Game

Studies 1, no. 1 (July 2001).

http://gamestudies.org/0101/editorial.html.

———. Cybertext: Perspectives on Ergodic Literature. Johns

Hopkins University Press, 1997.

Anthropy, Anna. Rise of the Video Game Zinesters. Seven

Stories Press, 2012.

Berry, Jedediah. Fabricationist Dewit Remakes the World.

Self-published, 2015.

http://www.makoian.com/jedediah/fabricationist/Fabricat

ionistDeWit.html.

Birkerts, Sven. The Gutenberg Elegies: The Fate of Reading

in an Electronic Age. Farrar, Straus and Giroux, 1996.

Bloom, Harold. Wallace Stevens: The Poems of Our Climate.

Ithaca, NY: Cornell University Press, 1974.

Bogost, Ian. A Slow Year. Self-published, 2010.

http://bogost.com/games/aslowyear/.

Bois, Jon. Bill Belichick Offseason Simulator. SBNation, 2015.

https://www.sbnation.com/2015/3/31/7979801/bill-

belichick-offseason-simulator.

Borges, Jorge Luis. Labyrinths: Selected Stories and Other

Writings. Translated by Donald Y. Yates. New Directions,

1962.

Brice, Mattie. “Triptychs.” Mattie Brice’s website, accessed

September 21, 2019.

http://www.mattiebrice.com/triptychs.

Burden, Michael, and Sean Gouglas. “The Algorithmic

Experience: ‘Portal’ as Art.” Game Studies 12, no. 2

(2012).

http://gamestudies.org/1202/articles/the_algorithmic_ex

perience.

Consalvo, Mia, and Christian Paul. Real Games: What’s

Legitimate and What’s Not in Contemporary

http://gamestudies.org/0101/editorial.html
http://www.makoian.com/jedediah/fabricationist/FabricationistDeWit.html
http://bogost.com/games/aslowyear/
https://www.sbnation.com/2015/3/31/7979801/bill-belichick-offseason-simulator
http://www.mattiebrice.com/triptychs
http://gamestudies.org/1202/articles/the_algorithmic_experience

Videogames. MIT Press, 2019.

Crowther, Will. Colossal Cave Adventure. Self-published,

1976.

Danielewski, Mark. House of Leaves. Pantheon, 2000.

Derrida, Jacques. Spectres of Marx. Translated by Peggy

Kamuf. Routledge, 1994.

Drucker, Johanna. What Is? Nine Epistemological Essays.

Cuneiform Press, 2013.

Ensslin, Astrid. Literary Gaming. MIT Press, 2014.

Eskelinen, Markku. Cybertext Poetics: The Critical Landscape

of New Media Literary Theory. Continuum, 2012.

Falk, Lee, and Andrew Herman. The Phantom the Complete

Sundays Volume 6: 1957–1961 (Phantom, the Complete

Sundays 1957–1961). Hermes Press, 2019.

Fishelov, David. Dialogues with/and Great Books. Sussex

Academic Press, 2010.

Galloway, Alexander. Protocol: How Control Exists after

Decentralization. MIT Press, 2006.

Gaudreault, Andre, and Philippe Marion. The End of Cinema?

A Medium in Crisis in the Digital Age. New York:

Columbia University Press, 2015.

Gaynor, Steve. Gone Home. Fullbright, 2015.

Hayles, N. Katherine. Electronic Literature: New Horizons for

the Literary. University of Notre Dame Press, 2008.

Holeton, Richard. Dream Book. Unpublished Twine work,

2020.

Hopkins, Doris, and Mary Alden Webster. Consider the

Consequences. Century Company, 1930.

Hudson, Laura. “Twine, the Video-Game Technology for All.”

New York Times, November 19, 2014.

https://www.nytimes.com/2014/11/23/magazine/twine-

the-video-game-technology-for-all.html.

https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-all.html

Joyce, Michael. afternoon, a story. Tinker’s Dam Press, 1986.

Juul, Jesper. The Art of Failure: An Essay on the Pain of

Playing Video Games. MIT Press, 2013.

———. Half-Real: Video Games between Real Rules and

Fictional Worlds. MIT Press, 2005.

Kaye, Finch. “Beautiful Weapons.” New Inquiry, June 25,

2013. https://thenewinquiry.com/beautiful-weapons/.

Kazemi, Darius. “Fuck Videogames!” Tiny Subversions, 2013.

https://tinysubversions.com/fuckvideogames/#slide1.

Ligman, Kris. You Are Jeff Bezos. Self-published, 2018.

https://direkris.itch.io/you-are-jeff-bezos.

Liu, Alan Y. Laws of Cool: Knowledge Work and the Culture of

Information. University of Chicago Press, 2004.

Lutz, Michael. My Father’s Long, Long Legs. Correlated

Contents, September 23, 2013.

http://correlatedcontents.com/misc/Father.html.

Malaby, Thomas. “Beyond Play: A New Approach to Games.”

Games and Culture 2, no. 2 (2007): 95–113.

Malloy, Judy. Uncle Roger. The WELL, 1986.

McDaid, John. Uncle Buddy’s Phantom Funhouse. Eastgate

Systems, 1993.

———. We Knew the Glass Man. cream city review, 2019.

http://io.creamcityreview.org/43-

1/McDaid/WeKnewtheGlassMan_v1.1.html.

McHenry, Tom. Tonight Dies the Moon. Self-published, 2015.

https://tommchenry.itch.io/tonight-dies-the-moon.

merritt k, ed. Videogames for Humans: Twine Authors in

Conversation. Instar Books, 2015.

Montfort, Nick. Twisty Little Passages: An Approach to

Interactive Fiction. MIT Press, 2003.

Moulthrop, Stuart. “Deep Time in Play.” In “Small Screen

Fictions,” Paradoxa 29 (2018): 123–44.

https://thenewinquiry.com/beautiful-weapons/
https://tinysubversions.com/fuckvideogames/#slide1
https://direkris.itch.io/you-are-jeff-bezos
http://correlatedcontents.com/misc/Father.html
http://io.creamcityreview.org/43-1/McDaid/WeKnewtheGlassMan_v1.1.html
https://tommchenry.itch.io/tonight-dies-the-moon

Moulthrop, Stuart, and Dene Grigar. Traversals: The Use of

Preservation for Early Electronic Writing. MIT Press,

2017.

Myers, David. Games Are Not: The Difficult and Definitive

Guide to What Video Games Are. Manchester University

Press, 2017.

Nelson, Xalavier, Jr. “A Very Normal and Encouraging

Keynote.” NarraScope 2020, Interactive Fiction

Technology Foundation, keynote address, May 28, 2020.

Online. https://www.youtube.com/watch?

v=cXdAZip75j4.

Nikolajeva, Maria. Children’s Literature Comes of Age:

Toward a New Aesthetic. Routledge, 2015.

Porpentine. Howling Dogs. Self-published, 2012.

http://slimedaughter.com/games/twine/howlingdogs/.

———. Ultra Business Tycoon III. Self-published, 2013.

http://slimedaughter.com/games/twine/tycoon/.

———. With Those We Love Alive. Self-published, 2014.

http://slimedaughter.com/games/twine/wtwla/.

Pressman, Jessica. “The Strategy of Digital Modernism:

Young-Hae Chang Heavy Industries’ DAKOTA.” Modern

Fiction Studies 54, no. 2 (2008): 302–26.

Pynchon, Thomas. Gravity’s Rainbow. Viking, 1973.

Rawitch, Don, Bill Heinemann, and Paul Dillenberger. The

Oregon Trail. Minnesota Educational Computing

Consortium.

Ruberg, Bo. Video Games Have Always Been Queer. New

York University Press, 2019.

Short, Emily. “IF Comp 2014: With Those We Love Alive

(Porpentine, Brenda Neotenomie).” Emily Short’s

Interactive Storytelling (blog), accessed September 21,

2019. https://emshort.blog/2014/10/16/if-comp-2014-

https://www.youtube.com/watch?v=cXdAZip75j4
http://slimedaughter.com/games/twine/howlingdogs/
http://slimedaughter.com/games/twine/tycoon/
http://slimedaughter.com/games/twine/wtwla/
https://emshort.blog/2014/10/16/if-comp-2014-with-those-we-love-alive-porpentine-brenda-neotenomie/

with-those-we-love-alive-porpentine-brenda-

neotenomie/.

Simon, Paul, and Art Garfunkel. Parsley, Sage, Rosemary and

Thyme. Columbia, 1966.

Snow, Kevin. Beneath Floes. Bravemule, 2015.

http://www.bravemule.com/beneathfloes.

Squinkifer, D. Quing’s Quest VII: The Death of Videogames.

Self-published, September 1, 2014.

https://games.squinky.me/quing/.

Stevens, Wallace. Parts of a World. Alfred A. Knopf, 1943.

Swift, Kim. Portal. Valve Software, 2007.

Vendler, Helen. “Wallace Stevens’ Voice Was ‘Life-Saving.’”

New Republic, November 18, 2013.

https://newrepublic.com/article/115628/helen-vendler-

wallace-stevens.

Vonnegut, Kurt. Slaughterhouse Five. Delacorte Press, 1969.

Voorhees, Gerald. “The Character of Difference:

Procedurality, Rhetoric, and Roleplaying Games.” Game

Studies 9, no. 2 (November 2009).

http://gamestudies.org/0902/articles/voorhees.

Wardrip-Fruin, Noah. Expressive Processing: Digital Fictions,

Computer Games, and Software Studies. MIT Press,

2009.

———. How Pac-Man Eats. MIT Press, 2020.

Weier, Joshua. Portal 2. Valve Software, 2011.

Zevon, Warren. Night Time in the Switching Yard. Asylum,

1978.

1 The term poem might remain in play. Porpentine refers to Pierre Chevalier’s

Destroy / Wait as a “poem” in a comment. Anthropy has a category for

“Game Poems” on her website. Outside of the Twine world, Bogost has

https://emshort.blog/2014/10/16/if-comp-2014-with-those-we-love-alive-porpentine-brenda-neotenomie/
http://www.bravemule.com/beneathfloes
https://games.squinky.me/quing/
https://newrepublic.com/article/115628/helen-vendler-wallace-stevens
http://gamestudies.org/0902/articles/voorhees

published a series of Atari games meant to be understood as poems

(Bogost).

2 See the discussion of this criterion in Juul’s Half-Real, Myers’s Games Are

Not, and Consalvo and Paul’s Real Games. The question of what is and is

not a game has been vexed by the Gamergate culture war. Here as

elsewhere in this book we refer to various constructions nonexclusively.

Meaningful choices are one way to define games, but not the only way.

3 See chapter T-5, where we discuss Claudia Lo’s reading of Queers in Love at

the End of the World via slow cinema.

4 The exquisitely classical screen kiss that ends Avengers: Endgame proves

this by exception.

5 As Salter points out, this millennium-adjacent cohort is often described as

“the Oregon Trail generation.” See

https://mashable.com/2015/05/21/oregon-trail-generation/.

6 The appearance of these buttons is governed by one of the two unlinked

passages in the story structure—the lower one that appears blank. It

actually contains JavaScript instructions that assign the buttons their

symbols and functions.

7 The Δt expression has its most famous literary use in Pynchon’s Crying of

Lot 49 (1966), where it is associated with end-stage alcoholism (delirium

tremens, or the DTs) and a possible visionary experience. McDaid alludes to

this dark magic at several points in Uncle Buddy’s Phantom Funhouse. Δt is

also the logotype of McDaid’s personal brand, Torvex Communications—as

might be expected of a science fiction writer with a recurrent interest in

time travel.

8 McDaid’s overt engagement with Stevens inevitably recalls Jessica

Pressman’s important thesis about “digital modernism,” in which

contemporary writers “[adapt] literary modernism as a means for

challenging the status quo of electronic literature and our assumptions

about it” (Pressman 303). However, Pressman has in mind “works [that]

use central aspects of modernism to highlight their literariness, authorize

their experiments, and situate electronic literature at the center of a

contemporary digital culture that privileges images, navigation, and

interactivity over narrative, reading, and textuality.” Her primary example is

the cine-poem DAKOTA by Young-Hae Chang Heavy Industries, very distinct

from the narrative emphasis of hypertext fictions and Twine games.

9 This phrase comes from “Notes toward a Supreme Fiction,” published in

Transport to Summer (1947).

10 See the much more nuanced account of contemporary canon formation in

Fishelov’s Dialogues with/and Great Books (Fishelov).

11 We have encountered cycling links in the practical chapters and will come

to them again, but we should point out that this feature in Chapbook is

notably streamlined in comparison to the older constructions Porpentine

uses.

https://mashable.com/2015/05/21/oregon-trail-generation/

12 The syllables of the surname are written directly to the screen and are

thus purely local, but the given name is recorded in a variable, so it could

be used in other passages (which it is) and affect deeper logics of the game

(though it doesn’t). Salter points out the resemblance of this logic to that

used in meme generators, image-based name generators, and other recent

code crazes.

13 With Those We Love Alive was written using some version of the first

release of Twine, probably in the 1.4 series.

14 This rest-to-advance pattern is also used in Howling Dogs, where it is

explained more directly to the player.

CHAPTER P-3

Generation

In 2009, the year of Twine’s debut, the poet and

computational linguist Nick Montfort visited Taroko National

Park in the Republic of China, the site of a famously splendid

gorge on the Liwu River. Take a poet to the wilderness and

the result is usually a nature poem. Crossing that exposure

with computer science yields what is arguably a new kind of

nature poem. Written (we could also say “coded”) during the

flight home, Montfort’s Taroko Gorge is a poetry generator;

you can read (watch?) the work at nickm.com/taroko_gorge

(Montfort, Taroko Gorge). Its compact rules weave several

sets of words into a richly impressionistic account of

Montfort’s hike through the gorge—which is to say, a poem—

but the program runs on an endless loop, continually

scrolling from bottom to top, adding lines that are

apparently unique, made fresh every few seconds. This

feature turns the nature poem into something like a

simulation. Taroko Gorge captures in words the basis of

natural beauty: an endlessly surprising permutation of given

elements.

As we suggested in chapter P-2, electronic writing has a

particular affinity for permutation, which brings us to a

second important aspect of Taroko Gorge. Like the

community of Twine developers, Montfort believes strongly

in open-source software. He shares his poem-making code

with anyone who wants to adapt it. Another poet, J. R.

Carpenter, has written a collection called Generation(s)

consisting of her own reworkings of Montfort’s earlier

programs (Carpenter). Something similar, though less

http://www.nickm.com/taroko_gorge

overtly organized, happened with Taroko Gorge. Friends and

family of Montfort began swapping out the vocabulary in

Montfort’s program and restyling the poem in evocative and

sometimes parodic ways (e.g., Tokyo Garage and Takei,

George). The web page for the poem includes a table of

intervening authors with links to their versions. Montfort

ritually crosses out each name and reasserts his own at the

bottom of the list—less an exercise of ego than a playful

recognition that authorship isn’t what it used to be.

Taroko Gorge is not a Twine work, but perhaps a first

cousin. It is written in Python, a language popular with web

coders. Montfort has written other works in JavaScript, the

specialized programming language that provides an

infrastructure for Twine. However, the idea of generated text,

language programmatically assembled by combination or

random selection, belongs to every branch of the software

family. It is present in the naming ritual at the beginning of

With Those We Love Alive, discussed in the last chapter and

imitated in one of our practical exercises in this one. As

another of our examples will show, text generation can be

used to make static poems as well as endless simulations.

Most important for our purposes, exploring this practice will

show us more about the affordances and limitations of

Twine, building on our encounter with textual variation in

the previous practical chapter.

◊ As in other practical chapters, action items are boxed

and set off with the symbol you see at left, in case you

want to skip the contextual discussion. Examples in this

chapter use Chapbook exclusively.

Supporting materials for this chapter can be found online

at https://github.com/AMSUCF/Twining. See our discussion

https://github.com/AMSUCF/Twining

at the beginning of chapter P-1 about using the .html and

.txt files to follow along or adapt our code to your own

purposes.

Example 3.1: Mad Computer Libs

If we want to seem serious and dignified, we can describe

the subject of this example as a substitution grammar,

borrowing a scientific term from computational linguistics.

However, like many serious and dignified things, our subject

here is actually rooted in party games. In 1958, a pair of

comedy writers, Leonard Stern and Roger Price, published

Mad Libs, a book containing phrases, sentences, and

paragraphs for which the player was meant to supply

missing words, as outrageously as possible. In the “Mad-

Mad” era of cocktails and party games, the book was a huge

hit, even though it was hardly original. A generation earlier,

the surrealists invented a practice called the exquisite

corpse, in which standard patterns of language were

intentionally disrupted by sharing a text with multiple

authors, imposing new rules for each new writer, or allowing

each writer to see only the most recent fragment of the text.

Though neither the surrealists nor the comedians knew it,

they were working at the margins of computer science. In

1952, a British researcher named Christopher Strachey

created a program to generate love letters (Wardrip-Fruin).

Its sentence-template mechanism was closer to Mad Libs

than the surrealist game, and the title of our first project

reflects that fact (along with a glancing homage to Ted

Nelson’s Computer Lib/Dream Machines of 1974, the

manifesto of our movement). Give your fingers a good flex

before digging in. There are five passages, each with a fair

number of words to type.

◊ Create a new story and call it anything you like. We’ll

be using Chapbook, so select that story format if it is

not your default. Create a new passage and name it

“Step 1.” This name is referenced in a link, so change it

with caution. In the new passage, enter the following

text:

propNoun: 'Somebody'

--

Type a proper noun: the name of a real or imaginary

person, place or named thing, e.g., 'Louise Pringle,'

'Jimmy One Nose,' 'H.M.S. Winnebago.'

{text input for: 'propNoun'}

[[Next ->Step 2]]

We’re working here with a Chapbook feature you haven’t

seen yet, the text input insert. As you may suspect, this

insert creates a box into which the player is expected to

type something at will. When the player leaves the “Step 1”

passage, the contents of the input box are stored in the

variable propNoun. The initial value we assign in the

variables section shows up in the text-entry box and can be

used as a default if the player declines to type anything.

◊ Create another new passage and name it “Step 2.” It’s

very similar to “Step 1,” except we’re looking for an

adverb this time.

adverb: 'furiously'

--

Type an adverb, e.g. 'triumphantly,' 'softly,' 'twice.'

{text input for: 'adverb'}

[[Next ->Step 3]]

◊ Create another new passage and name it “Step 3.”

Enter the following text:

verb: 'ignores'

--

Select a verb:

{dropdown menu for: 'verb', choices: ['avoids',

'wrangles',

'removes','finagles','blasts','enjoys','terrifies','exha

usts','tickles','amuses']}

[[Next ->Step 4]]

We could have kept on with the text input insert, but for

the sake of exploration, we’ll instead use the dropdown

menu insert. It does pretty much what you’d expect,

creating an expandable menu from which the player is

expected to select. Obviously, it imposes more constraint

than free input, a move you may want to make from time to

time, even in such a minimally structured game. As with text

input, we assign an initial value (“ignores”) to the key

variable. This word comes up as the default selection. Each

time the player selects a word, it is assigned to the verb

variable. The final selection (or default, if no selection is

made) is passed on when the player clicks the “Next” link.

◊ Create another new passage and name it “Step 4.”

Enter the following text:

org: 'the Modern Language Association'

--

Select a civic organization:

{dropdown menu for: 'org', choices: ['Friends of

Linda','the Ancient Order of Voles', 'the Liars League',

'International Mothers Helpers','Men with Hats','the

Committee of the Hole']}

[[Next -> Step 5]]

Again, this step follows the pattern of the one that

preceded it: another dropdown menu, this time listing civic

organizations. Feel free to shorten, expand, or modify this

list. This project does not test for specific selections.

◊ We’re almost done. Create another new passage and

name it “Step 5.” Enter the following text:

enders: ["in bed","for a limited time","in stores

everywhere","as seen on TV","in your loudest

dreams","where not prohibited by law"]

ender: enders[Math.floor(random.fraction*enders.length)]

--

{propNoun} {adverb} {verb} {org} {ender}.

[[Play again? ->Step 1]]

The variable ender adds a final phrase to our basic noun-

adverb-adjective sentence. Coming unforeseen, it’s meant to

add a punchline, like the phrase people insufferably recite

after reading the contents of a fortune cookie—“in bed.” (It’s

still technically a punchline even if it’s dumb.) Joke-theory

aside, have a look at the code with which we deliver this

final phrase: it contains a trick you haven’t seen before,

which you will encounter again in the next project. The

variable enders is an array, a list of values (in this case,

strings) to which we can refer by number. The variable ender

contains a selection from the array, using a complicated but

powerful expression:

enders[Math.floor(random.fraction*enders.length)]

With a little variation, this is the same syntax used in

JavaScript to make a random selection from an array. We’re

deliberately mixing JavaScript and Chapbook syntax.1 In

JavaScript, we indicate an item of an array by using the

array name, followed by a number or expression in square

brackets. The first element of the array is enders[0], the

second is enders[1], and so on. The expression used here

resolves to an integer value between 0 and its maximum

range, inclusive of 0 but excluding the maximum. The floor()

function of the Math object, which rounds a fractional value

down to the next lowest whole number, comes from

JavaScript. The random.fraction lookup is from Chapbook—

the corresponding JavaScript would be Math.random().

Likewise, enders.length calls on the built-in length property

of JavaScript arrays. When we wrote the first draft of this

chapter, this technique was not documented; we discovered

it by experiment. Since all Twine formats communicate with

JavaScript, it’s always worth probing for hidden connections

—we’ll see another in example 3.5. Sometimes the attempt

is futile. It’s not always possible to mix JavaScript and

Chapbook features—some of our later examples in this

chapter will explore the limits—but in this case, it works to

welcome effect. We’ll give more details of this technique in

the next example.

First, though, we invite you to give our Mad Lib generator

a few spins. You can of course break and abuse its grammar

rules all you want. The next examples are more severe, if not

more serious.

Example 3.2: Subject-Verb-Object

Generation in Chapbook

◊ This example is quite compact, consisting of a single

passage and one line of code in the text body. All the

typing comes in the variables section. Create a new

story and name it anything you like. (We suggest S-V-O

as a handy nickname.) Start a new passage and name it

“Sentence me.” You can change this name if you want,

provided you reflect the change in the final link. Here

are the complete contents of the lone passage. Type

away!

subjs: ["Edgar","The cat","Edgar the

cat","Gorgomon","Stephane Grapelli's typewriter","An

astrolabe","Mrs. Macaleister","An implausible gravy"]

theSubj: subjs[Math.floor(random.fraction*subjs.length)]

verb:

["eschews","thrashes","adores","invalidates","steals","w

ithholds","accuses","dethrones"]

theVerb: verbs[Math.floor(random.fraction*verbs.length)]

objs: ["Niall","the planet Mercury","Episode Three","our

better angels","Stephane Grapelli's

typewriter","furiously","space and time","to no

discernible purpose"]

theObj: objs[Math.floor(random.fraction*objs.length)]

--

{theSubj} {theVerb} {theObj}.

[[Again! ->Sentence me]]

All the hard work comes at the top, in the variables section.

We define three arrays and three string objects, each one

containing a random selection from one of the arrays.

There’s one array/string pair each for subject, verb, and

object. We’ve already discussed the hybrid

Chapbook/JavaScript selection mechanism that made its first

appearance at the end of example 3.1. There’s no difference

in that structure here. The Chapbook expression

random.fraction resolves to a decimal between zero and

one, which is exactly the same as the JavaScript

Math.random() function. Multiplying by the length of the

array gives us a fractional number between zero and the

length of the array. So random.fraction might give us a value

of 0.356792. Suppose our array has seven items. Multiplying

that number by a value between 0 and 7, say 4, gives us

1.427168. Only integers can be used as array selectors, so

we need to do some rounding.

We use the JavaScript Math.floor() method to convert this

decimal to the next lowest integer. That’s because the

numbering of arrays begins with zero and stops one short of

the array’s length value. If the array Joey has seven items,

they’ll be as follows:

Joey[0]

Joey[1]

Joey[2]

Joey[3]

Joey[4]

Joey[5]

Joey[6]

There’s never a Joey[7]. Rounding down keeps us safely

within the range.

With the array selections conveniently stored in our three

respective string variables, all we need to do is deliver them,

which we do with a line of three variable includes on the

other side of the two dashes that close off the variables

section. Et voilà.

Example 3.3: S-V-O in JavaScript

This example is something of a digression, so we won’t go

through the process of breaking it down for sequential

construction. You can do the typing if you like. Even though

you’ll be typing in JavaScript, set your story up with

Chapbook. That may seem odd, but it’s time to reveal an

important Chapbook affordance: you can include extended

bits of JavaScript code in Chapbook passages. We’ll take

some first steps with this technique in the next few

examples. If you’re interested in going further, be sure to

read the final section of this chapter, where we offer some

important technical considerations.

It’s been possible to include JavaScript in Twine projects

from early on, but in version one of Twine, this code had to

be entered in specially marked passages. Twine 2 lets you

put JavaScript directly into story passages. You do this with

the JavaScript modifier, which is just what you see on the

first line. You will use a continue modifier eventually to

switch back to standard Chapbook mode.

◊ Here’s the text to type, if you’re inclined:

[JavaScript]

t=""

subjs = new Array("Edgar","The cat","Edgar the

cat","Gorgomon","Stephane Grapelli's typewriter","An

astrolabe","Mrs. Macaleister","An implausible gravy")

verbs = new

Array("eschews","thrashes","adores","invalidates","steal

s","withholds","accuses","dethrones")

objs = new Array("Niall","the planet Mercury","Episode

Three","our better angels","Stephane Grapelli's

typewriter","furiously","space and time","to no

discernible purpose")

t = subjs[Math.floor(Math.random()*subjs.length)] + " "

t += verbs[Math.floor(Math.random()*verbs.length)] + " "

t += objs[Math.floor(Math.random()*objs.length)] + "."

write(t)

[continue]

[[More ->Tales from the Script]]

The basic architecture of this example is similar to that in

3.2: we set up three arrays, containing subject nouns, verbs,

and object words or phrases. We make selections from the

arrays using the three-step procedure explained earlier—

generate a fraction, multiply by the array length, round

downward.2 The delivery mechanism is different. Variables

defined in JavaScript can’t be passed into Chapbook—this is

the first of those functional limitations we’ll need to explore.

Chapbook allows only one thing to be done with a JavaScript

variable, at least without some serious programming: you

can pass it to a custom method called write(). This method,

which should not be confused with the JavaScript /

document object model (DOM) method called

document.write(), does for the JavaScript variable what the

Chapbook insert does for Chapbook variables. It writes the

value into the visible text of the Twine passage. The value

we write here comes from the variable t, which we use to

build up our sentence one word at a time.

If you run this JavaScript-inflected example, you’ll see the

same output as in example 3.2: a subject-verb-object

sentence. Since we can achieve the same end without

wading into JavaScript, you may ask why we led you on this

tour. There’s a reason. In working with random selections,

you’ll sometimes want or need to do things that are not

possible in Chapbook. We’ll come to one of those cases in

our next example.

Example 3.4: Nonrepeating Randoms

and the Knuth Shuffle

Let’s start by identifying a problem:

Tell us your story

I am a red wheelbarrow painted orange

Shake the boards and howl

I am a red wheelbarrow painted orange

Shake the boards and howl

I am a red wheelbarrow painted orange

I am a red wheelbarrow painted orange

Struggle to define existence

Does this look like something someone has written? If so,

we might wonder about all that repetition: two of the eight

lines occur twice, and a third appears in quadruplicate.

Maybe this is the work of a neo-minimalist poet who is really

into repetition. Maybe these are lyrics from a song and the

repeated lines are connected to something that makes sense

musically. Or maybe this is just output from a bad text

generator.

Let’s suppose the generator in question works at the

sentence level: our next example (3.5) will feature one of

those. Perhaps this sentence-level generator just needs more

sentences to draw from, though it’s also possible its random-

selection tool has a basic flaw.

The fundamental tools for generating random numbers in

Chapbook are variations on an object named “d” for “die,”

the singular of “dice.” There are variants for integer ranges

of 4, 5, 6, 8, 10, 12, 20, 25, 50, and 100. We’ve already seen

random.fraction in use, where it does the same thing as the

JavaScript Math.random(). All these mechanisms have the

same weakness: like physical dice, they can produce the

same number twice (or more) in succession. In the Chapbook

guide, Klimas alludes to Tom Stoppard’s play Rosencrantz

and Guildenstern Are Dead, which opens with a coin flip that

stubbornly refuses to produce tails. A tenfold run of heads is

vanishingly unlikely in both the real world and software

(1024:1 against); but d.8 returning back-to-back threes is

much more probable. The odds may look long at 64:1, but

software often involves repeated and rapid iteration—not to

mention a thing called luck.

◊ In this example, we’ll eliminate the possibility of

repeating numbers for a defined range of random

selections. This can’t be done with Chapbook tools, so

we’ll turn to JavaScript. Create a new story in Twine

using the Chapbook format. (We’ll embed our JavaScript

in a Chapbook story.) Create a single passage and give

it a useful name. We call our version “Loopy.” Start with

these lines:

[JavaScript]

sourceArray = new

Array('Sunday','Monday','Tuesday','Wednesday','Thursday'

,'Friday','Saturday')

This bit should look familiar: it’s a standard array

declaration. We use the days of the week because they’re a

familiar sequence. The technique will work with a list of any

kind.

◊ Next, we’ll enter some more variables:

trackArray = new Array()

trackArray.push(99)

rNum = 99

The first of these lines creates an empty array called

trackArray. The second line uses the push() method to place

the number 99 into the first (and so far, only) position of

trackArray. In the third line, we declare a variable called

rNum and give it the value 99. The number 99 is essentially

arbitrary: we need to use the same number both for the first

array item and for rNum, but that number could be

anything.

◊ Next, we’ll write a JavaScript function:

function randy(){

while(trackArray.includes(rNum)){

rNum = Math.floor(Math.random()*sourceArray.length)

}

trackArray.push(rNum)

return sourceArray[rNum]

}

A function (also referred to as a custom method) is a group

of statements introduced by the keyword function and a set

of parentheses. The function body is then defined within a

set of curly braces. The statements within a function have a

special status. They are not immediately put into effect

(executed) but are held in reserve until the function is

activated or called. Statements in a function can be called

multiple times, often from diverse parts of a longer program.

This function contains a crucial piece: something called a

while loop. We’re using JavaScript in order to access this

structure—Chapbook does not include any kind of loop. By

contrast, there are two types of loops in JavaScript: limited

loops, usually for loops, that run a specific number of times,

and indefinite loops, which run as many times as needed

until their stop conditions are met. The indefinite loop we’re

using here runs while we’re waiting for a certain outcome.

While loops are enormously powerful. They are, in fact, the

only way to prevent repetition in a random-number

sequence.

Programmers tend to be wary of indefinite loops because,

in theory, they can turn into loops of a dangerous third kind:

infinite loops. Unless you are trying to outwit a being of pure

energy on Star Trek, infinite loops are bad.

Properly written, an indefinite loop is harmless. At the

dawn of computing machinery, indefinite loops were

avoided because they are inefficient, and computing cycles

cost real money back then. In the not-too-distant future, as

we recognize the energy impact of all our irresponsible

computing, opinion may once more turn against these

structures—though the worst offenders are cryptocurrencies

and porn. For the moment, concern is muted. Use while

while you can.

Our magic loop runs under one condition: the value of

rNum occurs somewhere within the array trackArray. If this

condition is true, we execute the line contained within the

loop, which generates a random value for rNum. This is, by

the way, the reason we set rNum initially to a number we

also push into trackArray. We need a match in order to get

our first generated random. Once we have that number, the

loop then checks if this value is in trackArray already—in

other words, if our number is used or unused. If the number

is fresh, the loop terminates. Outside of the loop, we push

our guaranteed-unique number onto the tracking array and

return the value in sourceArray (a day of the week) that

corresponds to that number. When a function returns a

value, it is fed back into other parts of the script or program.

Our little program eliminates repetition by sorting our

original array into a nonsequential pattern. This is like

shuffling a deck of cards. In fact, the scheme upon which

this program is very loosely based is called the Knuth shuffle

algorithm, named for the computer scientist Donald Knuth,

author of the classic textbook Literate Programming (Knuth).

Once we’ve established the basic principle of shuffling, we

can proceed to action.

◊ Here’s the last of the JavaScript:

for(var i=0; i<sourceArray.length; i++){

write(randy()+'
')

}

This is that other sort of loop, a for loop. It runs seven

times (the length of our source array) and calls our unique-

selection function (randy()) each time. Because we embed

the call to randy() in a write() statement (which you’ll

remember from the previous example), the result of the

selection is made part of the visible text.

◊ All that remains is the final Twine link, allowing us to

replay the whole business:

[continue]

[[Again ->Loopy]]

If you haven’t made any mistakes, this example should

display the seven days of the week in a differently

randomized order every time you reload its single passage.

Why is this outcome significant? Well, each of these seven-

day sequences is both random and nonrepeating; in the

second of our next pair of examples, you’ll see why that

matters. For the moment, though, let’s try a fresh approach

to text generation.

Example 3.5A: Situation Reports

(Passages)

◊ Create a new story using Chapbook. Call it anything

you like. This example is surpassed only by our too-

many-links experiment (1.2) for number of passages.

There are eleven in all, so the setup will involve a little

tedium. You can spare yourself some repetitive strain by

first creating ten new passages. Name each one

numerically from one to ten—we won’t count from zero

this time. Open each passage in succession and enter

the corresponding sentence from the following list—one

sentence to a passage. Do not include the numbers in

the passage text:

1. The specimen emits radiation in the X-band.

2. The density of the specimen appears to be increasing.

3. The specimen does not respond to repeated

perturbation.

4. Whoooo da good specimen?!

5. The specimen may be entirely anechoic.

6. The density of the specimen has in fact decreased.

7. Attempts to ascertain the origin of the specimen are

ongoing.

8. We were briefly unable to locate the specimen.

9. The specimen may have assimilated Technician

Anderson.

10. The specimen has no observable effulgence.

Remember when we promised an example of text

generation at the sentence level? Well, here it is. More

significantly, this generator also works at the passage level,

which is an interesting way to operate in Twine.

◊ There’s just one more passage to build now. Create a

new passage and name it “Readout.” Let’s start with its

variables section:

passages: ["1","2","3","4","5","6","7","8","9","10"]

passage1:

passages[Math.floor(random.fraction*passages.length)]

passage2:

passages[Math.floor(random.fraction*passages.length)]

passage3:

passages[Math.floor(random.fraction*passages.length)]

passage4:

passages[Math.floor(random.fraction*passages.length)]

passage5:

passages[Math.floor(random.fraction*passages.length)]

--

The first variable we create is an array called “passages.”

It simply stores the numerals from 1 to 10 as strings. Why

not an array of numbers, you may ask? This is because

passage names must be strings.

We’ve also set up five variables, each assigned a random

selection from “passages”—in other words, a selection of five

passages out of our set of ten. Yes, we can pick the same

passage more than once. I am a red wheelbarrow painted

orange. We’ll fix this in the next example. You may wonder

why we used a series of numbered variables instead of an

array. While we could type out a five-item array in the same

way we built our ten-piece array in the first line, all those

randomizations would create typographic chaos, with their

tricky embedding of elements. In JavaScript, we’d use a for

loop to fill our array by repeating the random-number

assignment five times. However, Chapbook has no loops at

this writing. (Who knows if they’ll be added later.) When you

have a relatively small number of items, sometimes a simple

series of variables will do.

◊ Now for the finishing touches, which follow directly

after the -- that closes the variables section:

Situation Report {now.date}:

{embed passage: passage1}

{embed passage: passage2}

{embed passage: passage3}

{embed passage: passage4}

{embed passage: passage5}

[align right]

[[Update ->Readout]]

And there it is, a tiny bit of sci-fi horror in five sentences,

making use of a very important Chapbook insert called

embed passage. As the name suggests, this modifier copies

the contents of the specified passage into the present

passage at the point indicated. Using SugarCube and

Harlowe, Twine writers have already developed similar

techniques into a very fine art. Random selection among a

range of passages—ideally a much larger set than the

present ten—can be a powerful tool for building an

unpredictable structure. It’s interesting enough if all we’re

doing is scooping up one sentence at a time, but there’s no

reason the embedded passage can’t contain Chapbook code

like our S-V-O substitution grammar from example 3.1. We’ll

demonstrate that idea in example 3.6. Randomly choosing

output from a set of independent generators could produce

very surprising and potentially delightful results. Or maybe

just the opposite. Such is the challenge of art.

Example 3.5B: The Horror . . . the

Nonrepeating Horror

Meanwhile, let’s take on a more approachable challenge:

modifying our passage-based generator so it won’t pick the

same passage twice. We already know how to do this for

selections from an internal array. Now we’ll adapt our

JavaScript code to integrate the Chapbook-based passage

selector from the previous example.

◊ Set up a new story using Chapbook. We’ll be using

JavaScript within Chapbook—with an interesting twist

or two.

Like 3.5A, this is a big one: eleven passages. There are two

ways to go here. Since the ten embeddable passages are

identical to those in 3.5A, you could start by duplicating and

renaming your version of that story. If you take this work-

saving option, open the passage called “Readout” and

delete its contents. Then you’re ready to go. If for some

reason you enjoy tedious typing, then start a fresh story and

repeat the procedure in the first step of example 3.5A: make

ten new passages and enter a sentence in each. Whichever

way you go, we’ll assume you have eleven passages, each

containing a sentence, and a passage called “Readout” with

no contents. Ready?

◊ We’ll start by entering a variables section in our new

version of “Readout”:

ep1: ''

ep2: ''

ep3: ''

ep4: ''

ep5: ''

--

You may ask yourself, Hey, aren’t we supposed to use

JavaScript for this thing? So why do we have a Chapbook

variables section? It turns out that Chapbook has an

originally undocumented quirk—if you declare a variable

first in Chapbook and then declare it again in JavaScript, you

can do more than pass the value of the variable for screen

display. Using this exploit, we can compute a value for a

variable using JavaScript, then pass it to a Chapbook insert.

(Klimas confirms this is permissible; he just overlooked the

possibility when he wrote the first version of the Chapbook

guide.) While we’re asking skeptical questions, you might

also ask why we’re using five separate variables instead of

an array. It turns out our JavaScript pass-through exploit

doesn’t work with arrays, at least at this writing. Oh well.

◊ With our obligatory Chapbook work out of the way,

let’s get started on the JavaScript. Enter the following:

[JavaScript]

sourceArray = new

Array('01','02','03','04','05','06','07','08','09','10')

trackArray = new Array()

trackArray.push(99)

rNum = 99

These lines should look familiar from example 3.4. They’re

the standard setup for our Knuth shuffle implementation.

The source array contains the names you gave to the arrays

that contain our sentences.

◊ Here’s the next piece of our JavaScript:

for(i=0; i<5; i++){

while(trackArray.includes(rNum)){

rNum = Math.floor(Math.random()*sourceArray.length)

}

trackArray.push(rNum)

if(i==0) ep1 = sourceArray[rNum]

if(i==1) ep2 = sourceArray[rNum]

if(i==2) ep3 = sourceArray[rNum]

if(i==3) ep4 = sourceArray[rNum]

if(i==4) ep5 = sourceArray[rNum]

This is our while loop again, this time wrapped not in a

function but in a for loop with five iterations. As before, we

push our guaranteed nonrepeating value onto trackArray.

That’s why we use a series of if tests to route our successive

selections into five distinct variables whose values can be

passed back to Chapbook.

◊ The remainder of the project is pure Chapbook. The

structures should be familiar:

[continue]

{embed passage: ep1}

{embed passage: ep2}

{embed passage: ep3}

{embed passage: ep4}

{embed passage: ep5}

[[Again ->Readout]]

The continue modifier shifts us back to Chapbook mode.

The embed inserts pull in the contents of the passages

whose names were selected (without repetitions!) in our

JavaScript shuffle maneuvers. That’s the project. It has all

the advantages of passage-based generation without the

flaw of inelegant repetition. The JavaScript-Chapbook trick

play shows again why it’s worth tinkering with code,

especially when it’s young. Software sometimes doesn’t

know its own strength.

Example 3.6: Free Verse, or You Get

What You Pay For

Two examples back, we promised a project that uses

embedded passages that generate text through local

computation. Ideally, we’d try embedding a passage

containing something like our S-V-O sentence generator.

Though we have something else in mind for this example,

let’s think through the S-V-O experiment first.

◊ To try later: set up a Chapbook story, create passages

named “bedfellow” and “testbed,” and copy the

Chapbook S-V-O code from example 3.2 into

“bedfellow.” In “testbed,” type the following:

{embed passage: 'bedfellow'}

{embed passage: 'bedfellow'}

{embed passage: 'bedfellow'}

Lo and behold, you can embed the same passage more

than once!3 Since “bedfellow” generates a plausibly fresh

sentence each time it’s accessed, you should end up with

three unique pieces of nonsense. The world needs more

nonsense.

With this conceptual exercise behind us, let’s turn to

something more concrete and hopefully less nonsensical: a

genuine free-verse generator. Free verse is poetry without

constrained rhyme or meter—low-hanging fruit for

demonstration purposes, though you could build out the

technique shown here to write more demanding forms, such

as haiku, sonnets, or villanelles. As in example 3.5A, we’ll

work at the level of complete lines. That decision raised the

specter of repetition in the earlier example, but as you’ll see,

we have no such worries here.

◊ Set up a Chapbook story called anything you like

(ours is called Free Verse). Create seven passages in

that story. Name the first one (the default starting

passage) “Versify.” Name the others “Opener,” “Middle

1,” “Middle 2,” “Middle 3,” “Middle 4,” and “Finisher.”

Open “Versify” and enter the following:

{embed passage: 'Opener'}

{embed passage: 'Middle 1'}

{embed passage: 'Middle 2'}

{embed passage: 'Middle 3'}

{embed passage: 'Middle 4'}

{embed passage: 'Finisher'}

[[Again ->'Versify']]

No mysteries here: our main passage embeds all six

subsequent passages in sequence, without any random

choices. That business happens in the embedded passages

themselves.

◊ Open “Opener” (that was awkward) and enter the

following:

r: random.d6

open (r === 1): 'something I heard no one say'

open (r === 2): 'now this'

open (r === 3): 'between some dreams I thought I heard'

open (r === 4): 'you might not believe this'

open (r === 5): 'this much the night allowed me'

open (r === 6): 'a spider spun this for me once'

--

{open}

This is a reasonably simple structure. To the variable r we

assign the results of the random.d6 function, which is an

integer between 1 and 6 inclusive. Next, we take a variable

called open and assign it a value based on r. In Harlowe or

JavaScript, we would use if statements or perhaps a switch

construction, but we’ve learned to work differently in

Chapbook (see example 2.4). We give the variable name,

enclose the condition we want to match in parentheses, and

after a colon, we give the value we want the variable to have

if the condition is met. In example 2.4, we used this

technique to create a scoring scale. Here it’s a randomizer.

(Notice we’re using one of the whole-number random

functions from Chapbook, this time without any funny

business.)

After we close the variables section, we simply insert the

variable. Chapbook automatically knows which permutation

has been chosen. It’s worth noting that when we perform the

insertion here, the action effectively migrates to our main

action passage, “Versify,” where the present passage

(“Opener”) is embedded. Anything made visible in an

embedded passage is made visible in the embedding

passage.

◊ As you may guess, the remaining five passages are

versions of “Opener” with different text. Here’s “Middle

1”:

r: random.d6

m_1 (r===1): 'water is a silence'

m_1 (r===2): 'a silence has come upon the waters'

m_1 (r===3): 'we are the sum of waters'

m_1 (r===4): 'drink your water in silence'

m_1 (r===5): 'the silence of waters'

m_1 (r===6): 'water is never really silent'

--

{m_1}

◊ Enter the following in “Middle 2”:

r: random.d6

m_2 (r===1): 'imagine the invention of water'

m_2 (r===2): 'every moment is the beginning of

invention'

m_2 (r===3): 'the spark of nothing less is this'

m_2 (r===4): 'for seeing the word so far'

m_2 (r===5): 'having carried words no further'

m_2 (r===6): 'water could not be silent'

--

{m_2}

◊ Enter the following in “Middle 3”:

r: random.d6

m_3 (r===1): 'quantify your blessings'

m_3 (r===2): 'render your account'

m_3 (r===3): 'spill out that bag of content'

m_3 (r===4): 'say what you contain'

m_3 (r===5): 'read the bill of particulars'

m_3 (r===6): 'gather up the washing'

--

{m_3}

◊ Enter the following in “Middle 4”:

r: random.d6

m_4 (r===1): 'dreams beasts sex'

m_4 (r===2): 'monkeys jewels and fabulous stories'

m_4 (r===3): 'a rock a mandarin a twisted pike'

m_4 (r===4): 'larks crows kingfishers calumets'

m_4 (r===5): 'gazettes and galley proofs'

m_4 (r===6): 'whelks whales and waterfowl'

--

{m_4}

◊ And finally, enter the following in “Finisher”:

r: random.d6

finish (r===1): 'and that was something said'

finish (r===2): 'and nothing more of time'

finish (r===3): 'and then the rain came'

finish (r===4): 'until we end our song'

finish (r===5): 'or this and nothing more'

finish (r===6): 'the machine stops'

--

{finish}

We’ll just say one more thing about this project: the

writing doesn’t aim at artistic merit, but it does stumble

closer to seriousness, or at least coherence, than our other

efforts. We do this to suggest the possibilities of this free-

verse generator, or something like it, as a genuine literary

device—or perhaps a gateway experience. Computational

poetry is an established and flourishing field. Substitution

grammars are just the beginning. More advanced work can

involve N-gram text generation, operations on large digital

text bases, and various forms of machine learning. If you

want to know more about the history of computational

poetry, check out Chris Funkhouser’s Prehistoric Digital

Poetry (Funkhouser, Prehistoric). For recent trajectories, see

his New Directions in Digital Poetry (Funkhouser, New

Directions), as well as the website of the School for Poetic

Computation: https://sfpc.io/.

Example 3.7: Game of Names (after

Porpentine)

We’ll finish with one from the heart. The naming ritual at the

beginning of Porpentine’s With Those We Love Alive creates

a moment of high enchantment. We’ve discussed its

mysteries in the previous critical chapter. Here we’ll subject

it to shameless imitation, partly for one more demonstration

of the creative possibilities of Twine, and mainly because we

think (well, one of us does) that making up character names

is huge fun.

◊ Create a new Chapbook story and call it what you will.

Make two passages. Name the starter passage “Choose

Your Time.” Name the other one “Your Name Will Be.”

Let’s start with the variables section in the first

passage. Open “Choose Your Time” and type the

following:

theDays:

['Scum','Monster','Tomb','Weed','Thirst','Fear','Scatter

']

theSeasons: ['Waking','Making','Darkening','Night']

--

https://sfpc.io/

We make two arrays, one for the seven days of a

fantastical week, the other for four eldritch seasons. This is

less detail than Porpentine works with; we need to keep

things manageable for demonstration purposes.

◊ After closing off the variables section with the

required double dashes, add the following to “Choose

Your Time”:

Today is a {dropdown menu for: 'theDay', choices:

theDays}day in the season of {dropdown menu for:

'theSeason', choices: theSeasons}.

[[So it is; who am I? ->Your Name Will Be]]

It’s our old friend, the dropdown menu. We could have

used cycling links as in the Porpentinian original, but no one

likes a robotic imitator. Going with the dropdown menu

insert also allows us to demonstrate a small but useful trick:

you can define your menu options as an array, up in the

variables section, then simply reference the array as the

argument to “choices” within the insert. If for some reason

you have a long menu of choices, this separation might be

convenient.

◊ Open the second passage, “Your Name Will Be.” This

passage has a long variables section, which we’ll break

into pieces. Start with this:

firsts: ['Drag','Mars','Mol','Bren','Hal','Dom']

seconds:

['rak','ra','della','bim','bang','rica','dottir','goth',

'gren','thing']

thirds:

['Hamble','Rumble','Storm','Mountain','River','Valley','

Moose','Squirrel']

fourths:

['hand','mind','foot','body','thumb','weasel','love','so

ng']

We have four arrays, each containing options for syllables

in a four-syllable name. We’ll have two kinds of names—

some that are generated from these arrays, and another set

arrived at differently.

◊ Here’s the next piece of the variables section in “Your

Name Will Be”:

nameFirst:

firsts[Math.floor(random.fraction*firsts.length)]

nameSecond:

seconds[Math.floor(random.fraction*seconds.length)]

nameThird:

thirds[Math.floor(random.fraction*thirds.length)]

nameFourth:

fourths[Math.floor(random.fraction*fourths.length)]

id: nameFirst+nameSecond + " " + nameThird+nameFourth

The four sequential variables receive random selections

from the syllable arrays. The combination of these variables

is assigned to the variable id. Note that the plus sign (+)

works here as a concatenation operator, simply sticking

together some strings. That’s because JavaScript (and

Chapbook) automatically changes the function of the plus

sign when a string is involved. (If only numbers are involved,

“+” signifies mathematical addition.)

◊ One more push to complete the variables section:

id (theDay==='Monster' && theMonth==='Waking'): 'Slam

Danghandle'

id (theDay==='Weed' && theMonth==='Making'): 'Leah

Romavant'

id (theDay==='Tomb' && theMonth==='Darkening'): 'Gnowth

Marvydink'

id (theDay==='Thirst' && theMonth==='Night'): 'Crassa

Foomstoffer'

id (theDay==='Fear' && theMonth==='Waking'): 'Blastgret

Stimsocket'

id (theDay==='Scatter' && theMonth==='Making'): 'Meera

Upfallen'

id (theDay==='Scum' && theMonth==='Darkening'): 'Kristel

Vannafoy'

id (theDay==='Monster' && theMonth==='Night'): 'Markie

Mistmother'

--

Don’t forget the dashes closing the variables section. Here

we have another instance of conditioned variables, as in

examples 2.4 and 3.6. We single out eight combinations of

day and season for special names not made from the

syllable sets. We throw in this feature arbitrarily, but it does

add some stakes to the naming game. There are twenty-

eight permutations of days and seasons and eight special

names, giving a 2:7 chance of obtaining one. If there were a

story attached to these two passages, maybe a character

with a special name would be treated differently than one

with a generic, generated name. Or maybe, as in With Those

We Love Alive, the name would essentially be a MacGuffin,

elaborately generated but not otherwise consequential.

Creativity is all about choices.

◊ The rest of the second passage is simple:

[align center]

Born on a {theDay}day of the {theMonth} month, you are:

~~{id}~~

[continue]

[[Try again? ->Choose Your Time]]

Finish and test. Who will you turn out to be?

So ends our encounter with text generators. Like other

applications of Twine, they may be silly, serious, or

somewhere in between. They can incline toward the party-

game fare of Mad Libs, to the revolutionary aesthetics of the

exquisite corpse, to the endlessly iterative fascination of

Taroko Gorge. Whichever way you turn, you’ll be working

with a system fundamentally dedicated to possibility,

variation, contingency, and play. Chapter T-4 looks at the

cultural implications of that iconoclastic, radically playful

turn.

Technical Notes on JavaScript and

Chapbook

This chapter has introduced the JavaScript modifier, opening

the door to hybrid constructions. If you’d like to explore that

path, you may want some experience with JavaScript first.

Our bonus practical chapter presents a series of projects

that work exclusively with JavaScript without touching

Twine. They might be a good place to start, and of course,

commercial guides to JavaScript authoring are abundant. An

excellent resource for creative applications is Montfort’s

Exploratory Programming for the Arts and Humanities

(Montfort, Exploratory). What follows here is fairly detailed

and is meant primarily for those who have become

interested in doing more ambitious things with JavaScript

and Twine.

A subject of great concern to modern programmers is the

order of operations—just when the computer processes your

instructions. In Chapbook/JavaScript hybrids, you need to

consider this issue in arranging your code. Let’s say you

have two custom methods or functions, A and B. Method A

invokes method B. In browser-based JavaScript, you can

place the definition of B after A in your code. Not so with

Chapbook, which in our experience will throw a pink fit if

you refer to a method you haven’t previously defined.

The order of operations also has implications beyond the

structure of code. If you’ve worked with JavaScript in web

pages, you may have encountered a situation where a

script’s behavior depends on where it is placed within the

page code. The “HEAD” division is usually safe, but not

always—if, for instance, your script needs to interact with an

element that is dynamically added to the page by another

script. The browser needs to load related elements before

your script operates on them. A similar problem can arise

with Chapbook if you write a script that changes a page

element and do not either (a) make the script dependent on

a user action, such as reloading the page, or (b) delay the

first execution of the script by using setTimeout() or

setInterval(). These are advanced topics that go beyond the

purview of this book, but we thought we’d mention them in

case Twine starts complaining that you’ve tried to modify a

“null” object.

Finally, a general note about the Twine/JavaScript

relationship. As we’ve noted, it’s incestuous. Twine runs in

JavaScript, so its hybridized structures are always a little . . .

kinky. On occasion, you may find that JavaScript

instructions, especially those with compound and complex

syntaxes, don’t behave as expected. JavaScript in Chapbook

is not quite the same as JavaScript in a conventional web

page. However, these instances are rare, and we can do a

remarkable range of things without running into difficulties.

As we’ve said, you can see more of those possibilities in the

bonus chapter at the end of this book.

Works Cited

Carpenter, J. R. Generation(s). Traumawien, 2010.

Funkhouser, Chris. New Directions in Digital Poetry.

Bloomsbury, 2012.

———. Prehistoric Digital Poetry. University of Alabama

Press, 2007.

Knuth, Donald. Literate Programming. Cambridge University

Press, 1983.

Montfort, Nick. Exploratory Programming for the Arts and

Humanities. MIT Press, 2016.

———. Taroko Gorge. 2009.

https://nickm.com/taroko_gorge/.

Nelson, Theodor H. Computer Lib/Dream Machines. Mindful

Press, 1987.

Wardrip-Fruin, Noah. “Christopher Strachey: The First Digital

Artist?” Grand Text Auto, August 1, 2005.

https://grandtextauto.soe.ucsc.edu/2005/08/01/christop

her-strachey-first-digital-artist/.

https://nickm.com/taroko_gorge/
https://grandtextauto.soe.ucsc.edu/2005/08/01/christopher-strachey-first-digital-artist/

1 Twine is built on JavaScript, so its relationship to various Twine dialects, like

Chapbook coding or Harlowe scripting, somewhat resembles that of an older

language to English—JavaScript : Chapbook || Latin : English. This is an

imperfect analogy, but it does help explain what’s going on when we blend

JavaScript and Chapbook syntax. It’s like dropping a Latin phrase into an

English sentence, exempli gratia.

2 For consistency, we are using the JavaScript generator for a random

fraction, Math.random(). However, we have accidentally discovered that it is

possible to substitute the Chapbook alternative, random.fraction, even

inside a JavaScript modifier!

3 At this point, a certain bad thought may come into your head: What if I

write a passage for embedding, which in turn embeds the passage that

embeds it? In other words,

Passage A embeds passage B

Passage B embeds passage A (which embeds B, which embeds A

embedding B, and so forth)

The saints in heaven cry when you do this. Also, your browser and JavaScript

make Twine knock it off after about a thousand iterations. Now you don’t have

to try this thing, right?

CHAPTER T-4

Queer Twine and Camp

Twine is inarguably situated in queer discourse: some of the

most influential designers and games produced with Twine

are narratives that center trans identity, dysphoria, coming

out, and coming of age as queer. Play with pronouns, bodies,

monstrosity, and eroticism is common, particularly in the

works of leading designers such as Porpentine, Anna

Anthropy, Christine Love, and many more. There are two

ways we might talk about Twine as queer. The first is

straightforward and thus overly simplistic: Twine is a

platform made rich by queer stories. If we were to define a

Twine canon, it would be impossible to do so without

including rich narratives of trans bodies in sci-fi horrors, of

lesbian cowgirls finding romance, of queers in love at the

end of the world—can we imagine making such a claim

about any other game platform? This distinction alone is

enough to place Twine works firmly on the margins of how

gaming is generally discussed, even in scholarly circles,

where an increased interest in queer gaming has permeated.

What is subtext elsewhere is firmly text in Twine—while it is

possible to construct depictions of unnuanced,

heteronormative relationships, the platform itself seems to

challenge such depictions and asks authors to reconsider

binary choices for richness of exploration. And this aspect,

perhaps, leads us to a less straightforward reading of Twine

as queer. Given its origins in open-source, its insistence on a

nostalgic interface that recalls early hypertext even as it

dismisses such antecedents, and its extreme potential for an

over-the-top aesthetic that recalls the days of GeoCities, is

Twine itself a queer platform?

The early web was delightfully queer: a walk down

memory lane through a 1999 feature in the sexualities

category suggests that “the gay, lesbian, bi, transgendered

and other anti-gender communities were ahead of the game

here,” noting the existence of a 540-page “tome the size

and shape of a computer manual” by Jeff Dawson in 1998

entitled Gay and Lesbian Online: Your Indispensable Guide

to Cruising the Queer Web (Gauntlett 327). It is hard to

imagine such a guide today—indeed, it is hard to recall the

type of mind-set that would have a writer typing out

websites such as the lengthy URL to For Queer Mice, a

website appropriately housed in the WestHollywood

neighborhood of GeoCities (Gauntlett 328).

Twine is a throwback to this aesthetic, drawing on what

artists Olia Liana and Dragan Espenschied define as a type

of digital folklore language in their unusual and important

volume documenting the types of web art practices that

often go derided or unremarked: “Users’ endeavors, like

glittering star backgrounds, photos of cute kittens and

rainbow gradients, are mostly derided as kitsch or in the

most extreme cases, postulated as the end of culture itself.

In fact this evolving vernacular, created by users for users, is

the most important, beautiful and misunderstood language

of new media” (Espenschied and Lialina). The examples

these artists draw on emphasize the feminine and the

decorative, two intertwined aesthetics that already attract

derision.

In the introduction to their mix of theoretical and

pragmatic examinations of this user-powered web, Liana and

Espenschied further note that the attention to the history of

dominant technologies means “we have studied the history

of hypertext, but not the history of Metallica fan web rings or

web rings in general,” a reminder that is particularly

compelling given whose web is centered by this divide

(Espenschied and Lialina).

Notably, popular coverage of these same artists’ project to

delve into the GeoCities archives and share their findings on

Tumblr has come with headlines like “Remember the

Hilarious Horror of Geocities” (Chan). This derision dismisses

the investment of individuals working in the web in a

tradition not so removed from outsider or visionary art,

which is defined by the American Visionary Art Museum as

“Art produced by self-taught individuals, usually without

formal training, whose works arise from an innate personal

vision that revels foremost in the creative act itself”

(“American Visionary Art Museum”). The personal web page

embodies shaping webrings, building coordinated

background sets and buttons to avoid HTML defaults,

crafting animated GIFs, and optimizing resolution to account

for limited modem bandwidth.

These individuals were the original artists-in-residence of

the web. Artist Richard Vijgen draws our attention to the

spatial metaphors of GeoCities through his project Deleted

City, which he described in an interview as capturing the

settler mind-set that GeoCities encouraged: “The idea that

in the beginning, cyberspace is an empty space that has to

be populated, was I think easily linked to this idea of

America being an ‘empty’ continent. . . . They provided web

space with a story, with a narrative” (Howard). Notably, the

most popular of the communities was Heartland, which

suggests a GeoCities with a highly normative main street:

“With an emphasis on ‘parenting, pets, and home town

values,’ the Heartland neighborhoods (including 41 suburbs

with names like Plains, Meadows, Prairie, and Woods) also

spoke to Geocities’ immense popularity with a specific

demographic: wealthy, white, and American, those with the

disposable income to become some of the net’s first users”

(Howard).

Step outside of “Main Street,” however, and the

neighborhoods change dramatically: WestHollywood offered

the forthright listing: “Gay, lesbian, bisexual and

transgendered” (GeoCities, “GeoCities—Neighborhoods”).

Notably, this same neighborhood was at the center of an

early case of online censorship when CyberPatrol blocked

the entire community rather than reviewing its content:

“The blocking of West Hollywood raises the issue of whether

it is possible to filter the Internet at all” (Wallace, “There

Goes the Neighborhood”). The pages linked in one archived

WestHollywood neighborhood hub tell a different story, to

list just a few:

Lesbian Epiphanies

GENDER is so confusing. ??

The Wonderful Homepage of Two Huge Indigo Girls

Fans (GeoCities, “Geocities WestHollywood LGBTQ”)

Such pages are arguably as much a part of the history of

hypertext as any novel associated with the history of

electronic literature, yet most of this work goes

undocumented outside of the work of a few web historians,

and the aesthetic expression of early queer hypertext (and

the communities it enabled) is typically treated separately

from the literary potential, despite the many impromptu

literary journals and narrative-driven spaces within these

neighborhoods (see figure 15), particularly on the fandom

side. Such pages often included personal touches along with

vivid color and images. These pages, taken collectively,

demonstrate a number of early solutions to personalizing

what was once more appropriately called the home page:

boring line rules were replaced with GIFs, including the

examples here of a rainbow bar or a spider moving across

the page. Visitor counters tracked one’s impressions, often

accompanied by guest books for leaving comments. Under-

construction GIFs of every variety reminded the viewer to

return to appreciate changes. Tiled backgrounds allowed for

smaller images to serve as the basis of extensive patterns.

And of course, the deeply personal nature of the web is well

reflected in the contact information and personal collection

of links that appear on these pages.

Figure 15: An example of a literary home page in WestHollywood,

emulated from 1996 (Twilite909)

To call these pages evidence of a camp aesthetic in the

early web would be oversimplifying matters—however, the

decorative elements here, taken to an extreme, produced

pages that live on for their visual infamy as a testament to

what hypertext can do.

Aesthetically, a classic model of hypertext in electronic

literature leaves much of the lifting to the words. The literary

model and heritage we’ve discussed thus far emphasize

hypertext not on interface (though it is certainly present)

but on structure, and several of the early platforms and

iterations of hypertext reflect that preoccupation. While

early Storyspace novels integrated graphics and works like

Shelley Jackson’s Patchwork Girl (1995) demonstrate the

platform’s ability to integrate graphics and use

visualizations to make the linking structures more visible,

the emphasis is on text first (see figure 16).

Figure 16: Different visual elements of Shelley Jackson’s Patchwork Girl

(1997)

By contrast, web-based hypertext is more inherently

multimediated, and authors experimenting with the web as

a platform frequently exercised their greater aesthetic

control. For example, Jackson’s My Body (1997) integrated

image maps, although many of the other aesthetic choices

of these works were functional. For example, My Body

incorporates small image fragments illustrating each page of

the body as the reader navigates the work, then uses the

standard practice of highlighting active and visited links in

different colors to demonstrate what the reader has already

explored. The work uses some of the affordances of

hypertext, such as image backgrounds, to create the tiled

repetition of the brushstrokes.

As a medium grounded not in text but in hypertext, with

the markup that entails, and adopted not necessarily by

makers of “literature” but by makers driven by games and

interactive media, broadly conceived, Twine is a platform

where aesthetic restraint is not so dominant. Indeed, one of

Twine’s defining characteristics is the ability to harness

layered, multimedia expressions of emotion rapidly, and

remixing is particularly easy for live works drawing on

everything from YouTube videos for backgrounds and music

to a digital art heritage of animated GIFs, vector graphics,

blinking text, and more. Twine thus offers a technological

throwback that recalls the age of GeoCities and an interface

that points back to HyperCard. The use of HTML tags and in-

line style hearkens back to when the web was filled with

animated GIFs and personalizing a page with everything

from animated GIFs to elaborate fantastical backgrounds

and blinking line-break bars was simply the norm. The

modern web has its own aesthetic: Facebook does not give

users leeway to change a color, much less a font.

This expressive space allows Twine artists to work in an

aesthetic uncommon to games: camp. Mark Booth homes in

on the challenge of defining camp: “The key to defining

camp lies in reconciling its essential marginality with its

evident ubiquity, in acknowledging its diversity while still

making sense of it” (Booth 66). Susan Sontag suggests that

camp is frequently intertwined with the decorative,

“emphasizing texture, sensuous surface, and style at the

expense of content,” explaining that “the hallmark of Camp

is the spirit of extravagance” (Sontag 59). Jack Babuscio

notes that Sontag obscures the queerness of camp, which is

essential to the camp of hypertext and Twine: “Camp is . . .

in part, a reaction to the anonymity, boredom, and

socialising tendencies of the technological society. Camp

aims to transform the ordinary into something more

spectacular. In terms of style, it signifies performance rather

than existence” (Babuscio 122).

Twine has been positioned as an outsider platform, a

connection Matt Kirschenbaum suggested in his survey of

the field in 2017: Twine seems aligned with punk and

disruptive, in spaces ranging from academic to industry. The

saga of Depression Quest (perhaps the most influential

Twine game in history) is a testament to the power of Twine

to anger. Feminist and queer code studies invite us to ask if

there is something about Twine that is responsible for this

potential—does the platform’s emphasis on accessible

disruption make it inherently queer or feminist? Making

such a claim is significantly risky and potentially painfully

reductive. David Halperin warns against a normalization that

pulls queer back into an abstraction: “A generic badge of

subversiveness, a more trendy version of ‘liberal’” (Halperin

341). Certainly, Twine’s subversiveness is well documented.

A case can be made that Twine’s ease of use and distribution

is the key to this subversion, and Leonardo Flores sets Twine

forth as part of the third generation of literature, with an

emphasis on accessibility: “The software tools at their

disposal are varied and increasingly lower the barrier to

entry, with programs like Twine, Unity, Javascript Libraries,

simple and free publication platforms (like Cheap Bots, Done

Quick! and Philome.la), and social media apps like Vine,

Instagram, Snapchat, GIPHY, and others” (Flores). Such tools

notably include many free corporate platforms appropriated

for the purpose of personal creativity.

Alongside these other tools of the third generation, Twine

evokes what Kathi Berens refers to as the “Try it Yourself”

http://www.philome.la/

model of e-literary intention: “As the technical barrier-to-

entry lowers, a wider range of people are empowered to ‘try

it yourself’ making digital art. They ‘reject or are unaware of’

e-lit’s aesthetic of difficulty. ‘Try it Yourself’ doesn’t prescribe

an aesthetic. It discloses an intention” (Berens). Porpentine

invokes a similar intention in an interview entitled “Beautiful

Weapons,” where she notes both Twine’s accessibility and

the role of herself and other queer designers in making it

popular. Porpentine describes Twine in the interview in terms

of conflict:

Twine is guerrilla warfare. It is cheaply-made pipe bombs

and land mines that can proliferate and crop up in the

dominant space. Besides being easy to create, it is not

enough that our art be beautiful. It must be a beautiful

weapon. We must ensure that our art is weaponized and

can destroy other things.

We can flood sites and the Web with our games

because it’s so easy to upload and share. There’s just no

obstacle to playing them—you just load it like a

webpage. We’re competing now with AAA games. That’s

what I mean by weaponization. It’s hard to argue with

that kind of viral, proliferating, breeding spirit. (Kaye)

This discussion of Twine’s accessibility allowing for the

ease of proliferation is notably part of the essential appeal of

modern hypertext and is what distinguishes web-driven

hypertext from the platforms associated with electronic

literature. Platforms such as StorySpace forefronted the

literary (as discussed in chapter T-3): this is not to say that

such platforms can’t be similarly accessible for creation, but

their models of distribution are more tightly controlled, and

the obstacles to their proliferation and play are intensely

different. Twine offers no obstacles—a concept can be built,

circulated, and played without specialized knowledge, which

lends itself to expressive works that can be rapidly

experienced and responsive to immediate discourse.

In this, Twine is an heir to Flash but without the baggage

of a browser extension. While Flash certainly brought an era

of weird casual games and experimental electronic literature

with it, the corporate control of the platform and the need

for an installed extension always limited its scope and

eventually its life-span (Salter and Murray). Flash emerged

because hypertext was seen as insufficient to the task of

play and marketing—Twine is a rebuttal and a reminder of

how much native web technologies can accomplish.

The open-source aspect of Twine is particularly resonant

with its use for queer and disruptive play, which Adobe’s

ownership of Flash (and the cost of development software)

inherently hindered by tying it to corporate economic

models that similarly make the iOS and Android app stores

less queer-friendly spaces. Twine’s queer potential has

previously been described primarily in terms of this type of

democratization: Alison Harvey notes that the queer

alternatives Twine provides for game-making are emerging

in part due to its lack of alignment with “games” as a

construct: “Because Twine was not conceptualized as a

technology of game-making, assumptions about what these

kinds of tools do are not embedded in its structure and

paratexts in the same way as other dedicated digital game

design programs” (Harvey 97). This returns us to our

opening discussion of Twine’s formalism: the mechanics

most associated with dominant game genres—violence,

acquisition, and conquest—are absent from the platform’s

affordances. They are possible but not embedded or default.

With that said, it is impossible to separate the history of

queer Twine from the history of queer gaming, particularly

given the number of Twine works examined here that make

explicit interventions in gaming discourse. Similarly, it is not

in the realm of electronic literature where most Twine works

seek to make their intervention but instead in the broader

context of the web and games. Matt Kirschenbaum’s jest of

Twine as punk occurred before its counterpart, an apparent

number-one hit of electronic literature born of Twine: the

special episode of the Netflix series Black Mirror called

“Bandersnatch,” discussed in chapter T-1. The mundane

focus of “Bandersnatch” on a cis, straight white man as a

lone-wolf game designer is the epitome of traditional games

discourse and does not seem to easily mesh with a

discussion of Twine’s punk potential. Instead, it emphasizes

exactly the qualities that many Twine creators react against.

Yet this is not an inherent refutation of Twine’s potential as a

disruptive force—rather, it is a reminder that the goals of the

creators and particularly the role queer designers have

played in shaping Twine’s aesthetics and its impact cannot

be separated from our discussion of Twine’s potential for

influence.

The queer creators who have shaped Twine have claimed a

different aesthetic place for the platform. Thus I argue that

Twine is not punk; it is camp. It is the potential of the web,

and its history, for decorative and dramatic play; it is the

invitation to excess and personal style; it is frequently too

much and does not collapse under the weight of style. Its

emphasis on in-line tags allows users to jump from blinking

text to rumbling to marquees and everything in between in

the space of a single passage. This is not to say that all work

in Twine is camp (it isn’t) or that Twine is uniquely a queer

game platform (it’s not, nor is it the only home of queer

gaming.) However, its fundamental embrace of the

aesthetics of an early, defiantly personal web makes Twine

an invitation to explore style and decoration, and the

resistant narratives queer Twine creators have produced

have embraced camp as a form of defiance against the

painfully traditional masculinity associated with gaming.

Camp and Porpentine

No work better demonstrates Twine’s potential for glorious

excess and camp than Porpentine’s Cry$tal Warrior Ke$ha

(2013), a tribute to the named pop artist whose anthem

“Warrior” plays in the background when the game is

launched. One reviewer describes that album as

demonstrating “Ke$ha’s willingness to experiment with

everything, up to and including hitherto unexplored corners

of the kitchen sink. There’s Animal’s scuzzy synthpop,

classic rock, EDM and, on occasion, dubstep. In ‘Crazy Kids’

we get all the above with bonus cut-and-paste points,

completely changing between genres like a light switch”

(Nellis). The music blasts the moment you open the browser

to Porpentine’s Cry$tal Warrior Ke$ha. Hover the mouse over

a link, and the bold turquoise lettering is replaced by larger,

bright-pink letters with a tiled, animated GIF of a pink star

flashing repeatedly behind the words. The story (set at a

concert from the artist’s perspective) quickly moves into the

absurd and fantastical as an attack interrupts the

performance and Ke$ha’s internal monologue responds:

your elite bodyguards/back-up dancers are undone.

it wasn’t just an energy attack. whoever did this had

chrono magic.

the time bomb didn’t kill them. it scattered them to

distant lonely worlds of time, temporal backwaters. they

could be the kid you meet on the street, the old woman

hobbling through her garden. (Porpentine, Cry$tal

Warrior Ke$ha)

Porpentine frequently introduces the supernatural

elements of her narratives with similar matter-of-fact

introductions. However, in this iteration, they are also

evocative of the imagery of Ke$ha’s album and concerts,

both infamous for theatricality and excess that the game

captures through rhythmic, spaced lines in a bold color

palette (see figure 17).

The game was announced on Porpentine’s Tumblr in 2013

with the message, “THIS GAME IS 100% CANON.” The

original post received 287 notes (mostly hearts and reblogs)

with comments including “The greatest game so far in 2013”

and “Play this now” (Porpentine, “PORPENTINE”). The

release location of Tumblr is particularly significant given

Tumblr’s role as a hub for queer culture and particularly

transgender, genderqueer, and gender-nonconforming

community building during this time (Fink and Miller). The

community building and role of queer trans aesthetics in

shaping Tumblr follows a trend of shifting from platform to

platform as corporate policies make some spaces

uninhabitable for queer discourse: the people reshape the

platform, and through their influence, “the website becomes

a laboratory for erotic experimentation, a canvas for the

collective depiction of trans desires, and a living archive of

sexual attraction” (Fink and Miller). This reimagining of

space recalls Kara Keeling’s framework of queer as

resistance in software: “Queer offers a way of making

perceptible presently uncommon senses in the interest of

producing a/new commons and/or of proliferating the senses

of a commons already in the making” (Keeling).

Figure 17: A pivotal moment of conflict in Cry$tal Warrior Ke$ha

(Porpentine)

While the experience of Cry$tal Warrior Ke$ha is short

(about fifteen minutes or less), it is memorable. Notably, this

game made Amanda Wallace’s Storycade list of three

recommended games to introduce people to Twine. Wallace’s

description of the game highlights the message about

popular culture and particularly its resistance to the antifan,

noting that just as the protagonist “fights off crowds of

haters,” so too can the game be used “to point out when

someone is going too far with their pop-culture hatred”

(Wallace, “3 Twine Games”).

This emphasis on fighting back against haters, and

particularly those who would limit her artistic expression, is

not just a theme of Ke$ha’s music but also a pivotal part of

her career. One poignant review notes that the game thus

has ongoing, and changing, resonance thanks to the singer

herself:

The year is 2013, and this is long before Dr. Luke and the

rape allegations became common knowledge, back

when Kesha was simply a pop princess crossed with a

glitter encrusted party girl. Back when she sang about

brushing her teeth with a bottle of Jack, back when she

sang to the misfits and the bad kids. Back when she

wasn’t held in contractual limbo, unable really to sing at

all.

Because the character in Porpentine’s game isn’t the

Kesha of 2016. She’s the 2013 Ke$ha, who was still

suffering in silence. Who was the symbol for at least one

developer, of being capable of facing down the haters

and surviving. Of smiling while doing it. (Hudgins)

This postassociation is particularly powerful given the

similar narratives of abuse and silencing of women that

would play out in the games industry, changing the game’s

significance and keeping it in the minds of many players.

Porpentine’s more literary games, from the darkness of

Howling Dogs (2012) to the bleak meditation on suicide in

Everything You Swallow Will One Day Come Up Like a Stone

(2014) and the psychologically haunting body horror With

Those We Love Alive (2014), attract the bulk of her critical

enthusiasm and praise. Cry$tal Warrior Ke$ha is something

else: a game that demands the player be immersed in a

world of pop music and feminist glitter just to play, a game

that’s lyrical components defy the nonfan to even

comprehend. Yet it deserves as canonical a place as

Porpentine’s other works, in part thanks to its crucial role in

cementing an essential part of Twine’s aesthetic potential—

excess. Mat Jones goes even further in his review of the

game: “It’s not very long and it’ll change your entire life.

You’ll view everything from this moment on as taking place

post-CRY$TAL WARRIOR KE$HA world and ensure that any

Game Of The Year list you produce from now until after the

universe consumes itself maintains a special place for it in

any Top Ten. All of time freezes in place and yet existence

carries on, morosely, as we’ve already reached the apex of

human achievement—perhaps that of any living being

known or unknown. We’ve limited reason to carry on”

(Jones).

It is impossible to talk about the game without positioning

this excess in relationship to the hypermasculinity of the

games industry—notably, the game appears on Zoë Quinn’s

“Top 10 Games of 2013,” released on Giant Bomb just as the

attacks on her would bubble up. They describe the game as

“best played outloud in a group of friends so that you can

collectively feel like badasses as you shout out MANTIS

VICTORY SCREAM together” (Quinn). As a Gamergate

snapshot, this captures the significance of the game in indie

discourse—unsurprisingly, the comment thread devolved

rapidly, with one moderator asking that people cease from

posting attacks with the note “Also, I don’t see any mention

of feminism in Zoe’s list, so I’ll be treating any mention of it

as off-topic, irrelevant, and distracting from a conversation

that should be happening about the games” (Quinn). While

the height of harassment would not start until August 2014,

the toxicity was already well seeded.

Another succinct review captures the game’s essence and

puts it firmly in conflict with AAA game development

expectations: “I finally played Cry$tal Warrior Ke$ha. CWK is

the Saints Row 3 of twine games, but it’s better because it’s

not full of a bunch of generic side missions masquerading

under the guise of absurdist premises. Instead CWK is part a

fuck you empowerment statement and part the greatest

Magical Girl video game I’ve ever played. It not only made

me appreciate Ke$ha, but it made me appreciate myself”

(M).

The empowerment seeded in Cry$tal Warrior Ke$ha is not

simply narrative or text—it is a defiance that runs through

the game’s entire over-the-top design. The game is bold and

attention-demanding, the soundtrack designed to blast and

impossible to ignore or silence without removing much of

the contextual meaning. The color choices are bold and

tacky; the imagery straight from Ke$ha’s album covers; and

the continual moments of animation and flashiness are

certainly worthy of a “magical” girl. Some of the

characteristic elements of camp twine emerge from an

examination of Cry$tal Warrior Ke$ha and its legacy: an

emphasis on the decorative and the excessive; an

unapologetically queer thrust to both narrative and design;

and an embrace of multimedia that can feel discordant or

cacophonic.

Porpentine’s work also embraces camp in process and

discourse. In an interview, Porpentine discusses her

approach to hypertext and making with Twine as “trash-

spinning,” emphasizing spontaneity and emergence of

meaning through the act of creation:

I’ve always just called it trash-spinning. Just like rolling

up trash. But most of my games are just spontaneous

improvisations where I roll up everything in my

environment and I wad them together. They’re a big,

crystalized trashy ball of everything that’s happened to

me over the 24 hours or 48 hours in which I made the

game. Like conversations, or you’ll notice how I

incorporate all of the music I’m listening to in my games.

It’s just very organic. Then I try to turn it into a weapon,

something people can feel. How can my emotions be

transmitted to another human being? A dart of nausea,

arousal, triumph, crying, even radical, transformative

joy. (Kaye)

This description of “radical, transformative joy” is, we

would argue, at the heart of what Twine brings to the web—

the very traits that Porpentine describes as allowing for

“trash-spinning.” Porpentine’s approach has inspired others,

particularly thanks to her role in amplifying the platform

through Tumblr and other queer, indie, and experimental

communities online. Her work is definitive of Twine’s camp

potential, but it is also in conversation with a number of

other creators who perform similar radical, transformative

acts with their work.

Much of the radical work of Porpentine is less grounded in

recognizable popular culture and moves into more

speculative, and surreal, territory. Porpentine’s compilation

of Twines works, “Eczema Angel Orifice,” includes a number

of contemplations on bodies. Unlike dys4ia (Anna Anthropy’s

original “empathy” game), Porpentine’s work centers the

physical and emotional experience through metaphor.

Porpentine described her embrace of the inhuman in an

interview: “A lot of my games have been kind of

submerged. . . . They’re written from a very dissociated

perspective where the point of view is almost smeared into

the environment. They have trouble conceiving of

themselves as a person” (Muncy).

Porpentine’s Girlwaste draws on the aesthetic of the retro

web, zines, and low-res art and particularly embodies this

reckoning with the physical body through a submerged,

inhuman self. The color palette is initially reminiscent of the

stark red, lined landscapes of Nintendo’s Virtual Boy, while

the “movement” recalls the earliest graphical RPGs, offering

the player arrows to navigate on the search for estrogen (see

figure 18). The lines of the body moving are emotionally

charged, and the transparency works to craft a sense of

incompletion and disconnection. The player encounters

others who help her out on the quest, such as a “slimebabe”

who “is not from this layer.” The monstrous bodies

accompany your personal need: selecting “ache” raises the

text “Your glands rumble. Icicles of withdrawal pierce

through the reverberation.”

Figure 18: Representative graphics from Porpentine’s Girlwaste

Queer, Camp Twine in the Wild

Another significant example, Christine Love’s Even Cowgirls

Bleed was released on Tumblr around the same time as

Ke$ha (2013 being the height of Twine camp, perhaps?)—

she posted with an important warning: “I was not feeling

great that day” (Love). In an interview, she elaborated on

the origin points: “The whole thing is based off something

that happened to me with a girl in real life. It left me feeling

pretty shitty, and . . . well, here’s the thing about crying

yourself to sleep: it seems like it’d work eventually, but

mostly it just gives you insomnia. . . . So after the second or

maybe third night of that, I decided I was sick of crying and

decided to funnel those feelings into something productive”

(Johnson).

The emphasis on sorrow rather than joy places a catharsis

at the heart of the game that leads in a far darker direction

than the bright colors immediately suggest. The game

chronicles a lesbian romance between two cowgirls amid

conflict, featuring an interface that removes all the black

and white usually associated with Twine in favor of shades of

orange and red. One reviewer describes how Christine Love

breaks the expected Twine interface to draw the player in:

During the passages where nothing much is happening,

the “Holster” button alternates between either side of

the screen, mimicking the in-game description of you

anxiously tossing your pistol from hand to hand. And

when the game starts to take a dark turn, you try to

carefully thread your crosshairs between the ominous

targets to what seems like a safe one, only for the text

layout to force the exact misfire you were trying to

avoid. Even if the player is not, in fact, a lesbian city

slicker with dreams of becoming a cowgirl, the

identification reinforced by the synchronicity between

the text and the player’s actions is enough to put you

into that mindset, however briefly (Maragos).

This use of the crosshairs is particularly jarring in a

narrative that includes significant eroticism and dialogue,

two things not associated with game genres that typically

ask players to look at the world through the lens of a gun.

The game forces the player to be conscious of violence, and

the potential for violence, throughout and asks the player to

“holster” as a metaphor for inaction. Christine Love is

particularly well known for her more visual works, such as

Digital: A Love Story (2010) and Ladykiller in a Bind (2016),

both built with Ren’Py, a more complex Python-driven game-

making tool influenced by Japanese anime aesthetics and

aimed at the development of visual novels. It is thus not

surprising that she brings some of these aesthetics to her

twine works, including Magical Maiden Madison (2013), a

story that unfolds surrounding sexual tensions following a

magical girl’s battle with a tentacle monster (Love).

Another exemplar of camp twine with an explicit political

emphasis is D. Squinkifer’s Quing’s Quest VII: The Death of

Videogames (2014). Released as part of RuinJam, an event

responding to the attacks on Zoë Quinn and the broader

abuses of Gamergate, the game features an animated

galactic background; bold, pink, and green text; and hover

effects with animated links (refer back to figure 10). The

game’s text is similarly filled with references and

commentary—the player finds themselves on a ship entitled

the Social Justice Warrior, in reference to the derisive label

given to feminist and queer influencers perceived as

pushing for representation in games and other media at the

cost of “quality” or “authenticity” (defined, of course, as

fidelity to canons centered on the stories of straight, cis,

white men). The character reflects on the “misogynerd”

claiming of gamer identity at the expense of those already

present, making games: “‘Gamers.’ That’s what the

misogynerds started calling themselves, once they invaded

your planet. To make it worse, they act as if this is the way

it’s always been, as if Videogames was a planet that they

alone discovered, as if your people hadn’t been there first”

(Squinkifer).

Ruberg responds to the queer experience of D.

Squinkifer’s Quing’s Quest as encapsulating both content

and aesthetics, noting that “the text shimmers and sparkles;

upbeat lounge music plays in the background. . . . The

game’s message is ultimately one that mixes sadness and

anger with hope” (Ruberg 219). Deeply embedded in classic

hypertext and games, the aesthetics are both familiar and

striking, but one reviewer describes the game’s fundamental

appeal as a power fantasy, bringing a twist to the video

game mechanics the work resists: “In a game where your

choices don’t matter at all, it was strange to find myself

feeling empowered at the completion. . . . I was left wanting

to fist-pump and dance, full of renewed energy to fight the

misogynerds I encounter everyday in my web space”

(Reynolds). Notably, the type of power explored in all these

examples is framed in terms of resistance—in particular,

placing the bold, antihaters battle royal of Cry$tal Warrior

Ke$ha alongside the dance battles and face-offs with

“misogynerds” in Quing’s Quest offers a commentary on the

dull predictability of combat in most game systems.

Other exemplars of queer twine have less connection to

camp aesthetic and instead push at the representational

narratives of games. For example, Anna Anthropy’s Queers

in Love at the End of the World (to which we will return in

chapter T-5) is a powerful example of a game that focuses on

the moments leading up to an ending and thus recalls Shira

Chess’s work on the queer narrative potential of games that

can “play in the middle spaces” rather than relying on the

moment of climax (Chess). Aesthetically, Queers in Love at

the End of the World does not match the other Twine games

discussed here—the palette is minimally altered from one of

Twine’s defaults, and the user’s attention is drawn to the

rapidly passing countdown of the ten seconds promised until

the world ends. The ending of the game is always abrupt,

and there’s no way to get a sense of completion, only

desperation. However, the game challenges expectations in

another way: it takes the expected pace of hypertext and

breaks it, pushing the user to frantic physicality as

expressed through the few verbs available and the need for

rapid action that is ultimately meaningless.

Anna Anthropy’s Twine and Punishment collects some of

her Twine games and is decidedly immersed in queer, camp

aesthetics, including the sardonic work The Hunt for the Gay

Planet and the prelude work Keep Dreaming, Space Cowgirl

(Anthropy). The Hunt for the Gay Planet is particularly

significant as a commentary on games culture, as the work

engages with the lack of queer representation in massively

multiplayer universes.

Sav Ferguson’s That Boy Is a Monstr takes a fantastical

spin on Grindr and makes more significant use of the

aesthetic expressiveness of Twine for its mock-app interface,

offering the player messages from characters with

usernames from “AngryBear” to “xWereSelkiex.” However,

the messages the player encounters are quickly revealed to

be darker. Sam’s reflections shared with the player

throughout the game are immediate and poignant,

emphasizing a personal voice: “With a glance, he’d see band

posters, polaroid’s with friends, those little triangle things—

bunting? rainbow and glittery, and fairy lights. Maybe if he

got up and looked at the polaroid’s, he’d see me with my old

girlfriend. Or me pre-T. Or, what if he looks at the band

posters too close and realises I just printed them myself? Is

he gonna think I’m a hipster? God I hope not. AM I a

hipster?” (Ferguson).

Aesthetically, the game includes pointers to its narrative—

the trans flag colors inform the gradient background, visible

even before the player is brought into the details of the

character’s struggle with rejection and discrimination from

the other users of Monstr. The metaphor of monstrous bodies

explored in Porpentine’s work is made more literal and

humorous through the character identities here. The game

also employs a list of references as part of the credits,

including an article serving as a point of inspiration: “More

Americans claim to have seen a ghost than a trans person”

(Williams).

The 2018 game Pirate Queen by twinegamesareboring is

described on its itch.io page as “gay as hell” and lacks many

of the aesthetics of the other examples profiled here but

demonstrates some of the key opportunities for

representation (twinegamesareboring, “Pirate Queen”).

Another work by the same author, “Didn’t,” similarly offers

representative play: “And remember when you were

fourteen-years-old, and her hair was chlorine-bleached and

her lips were blackberry-stained, and she kept asking is-

there-something-in-my-teeth, and you wanted to kiss her,

but you didn’t?” (twinegamesareboring, “Didn’t”). Such

works are part of an ecosystem of personal, usually

individually crafted games tagged as queer or LGBTQ on

itch.io, a platform whose economics are primarily grounded

in donations and a “pay what you can” system.

The visibility of Cry$tal Warrior Ke$ha and the other

games discussed here in game publications reviews is part

of its larger discursive impact and puts it alongside other

queer, camp Twine games that use the medium to push back

against all the dominant structures and assumptions that go

with the word game. Importantly, the queer Twine games

emphasized here were all originally released for free

(although occasionally released later as part of paid

collections) and thus are also not part of the traditional

economics of game production. As Harvey points out,

“Queerness acts as a destabilizing force, challenging norms

of who gets to be a producer and what should be made, but

it is wrought with the dangers and precarity of this position.

Operating beyond hegemonic spheres of production and

reproduction entails a number of real risks, and we should

be careful not to equate emancipatory promise with poorly

paid, insecure work and life below, on, or near the poverty

http://www.itch.io/
http://www.itch.io/

line, dependent on the vicissitudes of crowdfunding”

(Harvey 104). The larger discourse of games labor (and the

binaries and hegemonies of the games industry) is being

resisted through Twine but is far from dismantled.

The traditional economics of the game market leave little

room for experimentation or diversity in representation, as

Matt Conn points out in his discussion of the importance of

GaymerX and queer gaming communities: “In the transition

to 3D, as costs for game development skyrocketed in front of

a hungry market, risks hit an all-time low and the nearly

comically omnipresent white, straight, cisgendered, able-

bodied, thin, classically handsome main character became a

staple. Although there’s nothing wrong with making a game

about this guy, doing so over and over is akin to an entire

fleet of artists all painting the same man” (Conn). Conn’s

words evoke the embodied avatars of nearly every shooter,

the graphically enhanced but otherwise relatively

unchanging bodies we’ve inhabited awkwardly as players

through the decades.

Notably, that same transition to 3-D is often blamed for

the death of other narrative game genres that Twine

resembles—just as those genres have survived through

alternative market modalities, so too has hypertext

continued divorced from any models of clear profitability

(Salter). The reconciliation of queer gaming and the current

AAA labor market seems insurmountable. While queer

narratives are making headways in film in indie productions

(with notable recent standouts such as Booksmart,

Moonlight, and Call Me By Your Name all receiving critical

acclaim for coming-of-age stories of the type common to

Twine as well), queer-centric videogames are still relatively

absent. Indie successes such as Life Is Strange, Gone Home,

and Dream Daddy: A Dad Dating Simulator (discussed in

detail in Playing the Outsider, forthcoming from Bloomsbury)

are outliers, receiving more critical acclaim than financial

success and inspiring few commercial imitators.

Similarly, conferences such as Queerness and Games have

been central to increasing the awareness and visibility of

queer gamers, designers, critics, and scholars in games

discourse (Pozo, Ruberg, and Goetz), while queer game

studies is still even more marginal than feminist game

studies in the field. Discussions of queer representation in

electronic literature are even more unusual and not strongly

embedded in the theoretical or aesthetic models of the field.

At the same time, the designers of queer games resist some

of the discourse of scholarship and criticism that can take a

reductive approach. In 2015, Anna Anthropy exhibited a

new piece entitled Empathy Game to comment on the trend

of amplifying games by queer and marginalized creators as

a way of “understanding.” The game featured a pair of boots

with a pedometer, with one mile of walking equating to a

single point in the game. As Anna Anthropy described, “You

can get a high score on that game . . . but you’re probably

not going to beat mine. You can spend hours stomping

around in those boots and it will only bring you a fraction

closer to knowing what it’s like to be me, to be trans”

(D’Anastasio). Anthropy’s own work on indie game design

(and particularly the need for inclusive, accessible, game

design communities and tools outside of conventional

commercial platforms) predicted a rise in personal game

development that brought with it what Bo Ruberg called the

“queer games avant-garde” (Ruberg 6).

However, that queer games avant-garde must be

understood through the lens of attack and with an

awareness of risk. In June 2019, at NarraScope, D. Squinkifer

gave a talk entitled “How Making Videogames Turned Me

into a Depressed Gay Communist” in which they addressed

the making of videogames pre- and post-Gamergate through

an interactive, choice-driven performance piece. The piece

was augmented with a knock-off Google Glass that

highlighted the uneasy relationship with technology that

living in a “cyberpunk dystopia” evokes. They addressed

Gamergate directly through the choice to talk about 2014,

noting the lessons the hatred directed at designers left:

“When you’re part of any number of marginalized groups,

fame is an occupational hazard. . . . Before, I used to believe

in the fiction that there was no such thing as bad publicity.

That it was important to be bold and brave and

controversial. . . . But when the controversy isn’t over your

art or your ideas, but over your right to exist as a human

being . . . What can I even say? It’s terrifying.”

D. Squinkifer acknowledged a complicated relationship

with the concept of empathy, and indeed with the role of the

personal in game-making, noting that many players had

complained about the choice D. Squinkifer made to use the

second person (a common interactive fiction trope) in their

work: “When you write in the second person, and you bring

in your own very specific experiences, people start to

complain . . . you shouldn’t have used you, you should have

used I. So you continue to write in the second person,

knowing this, being more deliberate in creating these

disorienting feelings.”

D. Squinkifer noted that inviting players into their

experience is part of the goal of their work, even while

resisting the idea that this type of understanding could be

easily reached or that empathy for the marginalized was

more than a “commodity” to players and the industry: “I’d

also be lying if I said that getting people to understand me

doesn’t factor into why I make games. I make games based

on my own lived experiences, in hopes that other people will

relate to that experience in some way.”

While Zoë Quinn has written about the impact of

Gamergate on their life, and a few others have spoken

publicly, even the act of speaking invites further silencing.

The cycles of the alt-right that now occupy the attention of

internet researchers both in the academy and on technical

platforms are inescapable. As D. Squinkifer put it in their

talk, the idea that “you will never be accepted, and this

world has no place for you” is amplified. D. Squinkifer’s

performance is a reminder of the consequences of visibility

—that exposure, the currency of the web, was fundamentally

weaponized in Gamergate, and the awareness of that

weaponization cannot be reverted. The consequences of

Gamergate on game development (and its participants) are

still not known and perhaps cannot be apprehended.

Gamergate is not over. Indeed, as of 2019, Zoë Quinn left

Twitter briefly following extensive harassment after

recounting an experience of sexual harassment by a game

designer who later lost his life to depression (Penny). As one

critic powerfully recounted of the harassment without end,

“Some days it feels like the whole world is being held

hostage to male fragility. Sometimes it seems that there’s no

limit on what women, girls, and queer people are expected

to tolerate in order to protect men from a moment’s

uncomfortable self-reflection. Sometimes I don’t know who

to trust anymore” (Penny).

In the face of this toxicity, the queer, camp Twine that

persists is defiant in its very existence.

Works Cited

“American Visionary Art Museum—What Is Visionary Art?”

American Visionary Art Museum, February 1, 2019.

https://www.avam.org/.

Anthropy, Anna. “Twine and Punishment.” itch.io,

November 1, 2014. https://w.itch.io/twine-and-

punishment.

https://www.avam.org/
http://www.itch.io/
https://w.itch.io/twine-and-punishment

Babuscio, Jack. “The Cinema of Camp (AKA Camp and the

Gay Sensibility).” In Camp: Queer Aesthetics and the

Performing Subject: A Reader, edited by Fabio Cleto.

University of Michigan Press, 1999, 117–35.

Berens, Kathi. “Third Generation Electronic Literature and

Artisanal Interfaces: Resistance in the Materials.”

Electronic Book Review, May 2019.

http://electronicbookreview.com/essay/third-generation-

electronic-literature-and-artisanal-interfaces-resistance-

in-the-materials/.

Booth, Mark. “CAMPE-TOI! On the Origins and Definitions of

Camp.” In Camp: Queer Aesthetics and the Performing

Subject: A Reader, edited by Fabio Cleto. University of

Michigan Press, 1999, 66–79.

Chan, Casey. “Remember the Hilarious Horror of Geocities

with This Website.” Gizmodo, February 11, 2013.

https://gizmodo.com/remember-the-hilarious-horror-of-

geocities-with-this-we-5983574.

Chess, Shira. “The Queer Case of Video Games: Orgasms,

Heteronormativity, and Video Game Narrative.” Critical

Studies in Media Communication 33, no. 1 (January

2016): 84–94.

https://doi.org/10.1080/15295036.2015.1129066.

Conn, Matt. “Gaming’s Untapped Queer Potential as Art.”

QED: A Journal in GLBTQ Worldmaking 2, no. 2 (July

2015): 1–5.

D’Anastasio, Cecilia. “Why Video Games Can’t Teach You

Empathy.” Vice, May 15, 2015.

https://www.vice.com/en_us/article/mgbwpv/empathy-

games-dont-exist.

Espenschied, Dragan, and Olia Lialina. Digital Folklore. Merz

and Solitude, 2009.

Ferguson, Sav. That Boy Is a Monster, Long, Complete. 2017.

http://www.philome.la/TimesNTroubles/that-boy-is-a-

http://electronicbookreview.com/essay/third-generation-electronic-literature-and-artisanal-interfaces-resistance-in-the-materials/
https://gizmodo.com/remember-the-hilarious-horror-of-geocities-with-this-we-5983574
https://doi.org/10.1080/15295036.2015.1129066
https://www.vice.com/en_us/article/mgbwpv/empathy-games-dont-exist
http://www.philome.la/TimesNTroubles/that-boy-is-a-monstr/play

monstr/play.

Fink, Marty, and Quinn Miller. “Trans Media Moments:

Tumblr, 2011–2013.” Television & New Media 15, no. 7

(November 2014): 611–26.

https://doi.org/10.1177/1527476413505002.

Flores, Leonardo. “Third Generation Electronic Literature.”

Electronic Book Review, April 2019.

http://electronicbookreview.com/essay/third-generation-

electronic-literature/.

Gauntlett, David. “Digital Sexualities: A Guide to Internet

Resources.” sexualities 2.3 (1999): 327–32.

GeoCities. “GeoCities—Neighborhoods.” Internet Archive,

January 23, 1998.

https://web.archive.org/web/19990129033446/http://w

ww17.geocities.com/neighborhoods/.

———. “Geocities WestHollywood LGBTQ.” Geocities.Ws

Archive, 1999. http://www.geocities.ws/server2/.

Halperin, David M. “The Normalization of Queer Theory.”

Journal of Homosexuality 45, nos. 2–4 (2003): 339–43.

Harvey, Alison. “Twine’s Revolution: Democratization,

Depoliticization, and the Queering of Game Design.”

GAME 1, no. 3 (2014).

https://www.gamejournal.it/3_harvey/.

Howard, Tanner. “How Geocities Suburbanized the Internet.”

CityLab, January 22, 2019.

https://www.citylab.com/life/2019/01/geocities-archive-

netscape-browser-first-web-suburbs-aol/580285/.

Hudgins, Amanda. “Haters Gonna Hate.” Unwinnable,

September 1, 2016.

https://unwinnable.com/2016/09/01/haters-gonna-hate/.

Johnson, Jason. “Christine Love Explores Unbridled

Expectations, Lesbianism, and Jilted Love in Even

Cowgirls Bleed.” Kill Screen, February 27, 2013.

http://www.philome.la/TimesNTroubles/that-boy-is-a-monstr/play
https://doi.org/10.1177/1527476413505002
http://electronicbookreview.com/essay/third-generation-electronic-literature/
https://web.archive.org/web/19990129033446/http://www17.geocities.com/neighborhoods/
http://www.geocities.ws/server2/
https://www.gamejournal.it/3_harvey/
https://www.citylab.com/life/2019/01/geocities-archive-netscape-browser-first-web-suburbs-aol/580285/
https://unwinnable.com/2016/09/01/haters-gonna-hate/

https://killscreen.com/articles/even-cowgirls-bleed-

christine-love/.

Jones, Mat. “Indie Rock: Unravelling CHAOS JAM, a Twine-

Only Game Event.” Average Gamer, January 16, 2013.

http://www.theaveragegamer.com/2013/01/16/indie-

rock-unravelling-chaos-jam-a-twine-only-game-event/.

Kaye, Finch. “Beautiful Weapons.” New Inquiry, June 25,

2013. https://thenewinquiry.com/beautiful-weapons/.

Keeling, Kara. “Queer OS.” Cinema Journal 53, no. 2 (January

2014): 152–57. https://doi.org/10.1353/cj.2014.0004.

Love, Christine. “Love Conquers All Games.” Tumblr,

February 14, 2013.

https://loveconquersallgam.es/post/43092144216/this-

week-i-spent-the-day-making-a-game-in-twine.

M. “Cry$tal Warrior Ke$ha.” Abnormal Mapping, January 1,

2014.

https://abnormalmapping.wordpress.com/2014/01/01/cr

y-tal-warrior-ke-ha/.

Maragos, Nich. “Love Week: Twine.” Gaming Intelligence

Agency, September 13, 2013.

http://www.thegia.com/2013/09/13/love-week-twine/.

Muncy, Julie. “Porpentine’s New Twine Game Isn’t Just a

Twine Game.” Wired, September 13, 2017.

https://www.wired.com/story/porpentine-twine-game/.

Nellis, Krystina. “Kesha: Warrior.” Drowned in Sound,

November 30, 2012.

http://drownedinsound.com/releases/17369/reviews/414

5804.

Penny, Laurie. “Gaming’s #MeToo Moment and the Tyranny

of Male Fragility.” Wired, September 6, 2019.

https://www.wired.com/story/videogames-industry-

metoo-moment-male-fragility/.

https://killscreen.com/articles/even-cowgirls-bleed-christine-love/
http://www.theaveragegamer.com/2013/01/16/indie-rock-unravelling-chaos-jam-a-twine-only-game-event/
https://thenewinquiry.com/beautiful-weapons/
https://doi.org/10.1353/cj.2014.0004
https://loveconquersallgam.es/post/43092144216/this-week-i-spent-the-day-making-a-game-in-twine
https://abnormalmapping.wordpress.com/2014/01/01/cry-tal-warrior-ke-ha/
http://www.thegia.com/2013/09/13/love-week-twine/
https://www.wired.com/story/porpentine-twine-game/
http://drownedinsound.com/releases/17369/reviews/4145804
https://www.wired.com/story/videogames-industry-metoo-moment-male-fragility/

Phillips, LeAnne. “The Web of the Spider Woman.” GeoCities,

December 1, 1995.

http://www.geocities.ws/server2/homestead/westhollywo

od/1027/.

Porpentine. Cry$tal Warrior Ke$ha. Self-published,

January 12, 2013.

http://slimedaughter.com/games/twine/kesha/.

———. “PORPENTINE.” Tumblr, January 12, 2013.

https://porpentine.tumblr.com/post/40366802882/porpe

ntine-presenting-cry-tal-warrior-ke-ha-this.

Pozo, Diana, Bo Ruberg, and Chris Goetz. “In Practice:

Queerness and Games.” Camera Obscura: Feminism,

Culture, and Media Studies 32, no. 2 (95; September

2017): 153–63. https://doi.org/10.1215/02705346-

3925167.

Quinn, Zoë. “Zoe Quinn’s Top 10 Games of 2013.” Giant

Bomb, December 23, 2013.

https://www.giantbomb.com/articles/zoe-quinn-s-top-10-

games-of-2013/1100-4813/.

Reynolds, Kate. “Twine Quing’s Quest VII: The Death of

Videogames!” Storycade, September 11, 2014.

http://storycade.com/twine-quings-quest-vii-death-

videogames/.

Ruberg, Bo. Video Games Have Always Been Queer. New

York University Press, 2019.

Salter, Anastasia. What Is Your Quest? From Adventure

Games to Interactive Books. University of Iowa Press,

2014.

Salter, Anastasia, and John Murray. Flash: Building the

Interactive Web. MIT Press, 2014.

http://books.google.com/books?

hl=en&lr=&id=hhJmBAAAQBAJ&pgis=1.

Sontag, Susan. “Notes on Camp.” In Camp: Queer Aesthetics

and the Performing Subject: A Reader, edited by Fabio

http://www.geocities.ws/server2/homestead/westhollywood/1027/
http://slimedaughter.com/games/twine/kesha/
https://porpentine.tumblr.com/post/40366802882/porpentine-presenting-cry-tal-warrior-ke-ha-this
https://doi.org/10.1215/02705346-3925167
https://www.giantbomb.com/articles/zoe-quinn-s-top-10-games-of-2013/1100-4813/
http://storycade.com/twine-quings-quest-vii-death-videogames/
http://books.google.com/books?hl=en&lr=&id=hhJmBAAAQBAJ&pgis=1

Cleto. University of Michigan Press, 1999, 53–65.

Squinkifer, D. Quing’s Quest VII: The Death of Videogames.

Self-published, September 1, 2014.

https://games.squinky.me/quing/.

Twilite909. “Poet’s Corner.” GeoCities, October 20, 1996.

http://www.geocities.ws/server2/homestead/westhollywo

od/5032/.

twinegamesareboring. “Didn’t.” itch.io, June 15, 2018.

https://twinegamesareboring.itch.io/didnt.

———. “Pirate Queen.” itch.io, June 15, 2018.

https://twinegamesareboring.itch.io/pirate-queen.

Wallace, Amanda. “3 Twine Games to Introduce People to the

Medium.” Storycade, March 28, 2014.

http://storycade.com/3-twine-games-introduce-people-

medium/.

Wallace, Jonathan. “There Goes the Neighborhood.” Ethical

Spectacle, December 22, 1997.

http://www.spectacle.org/cs/holly.html.

Williams, Joe. “More Americans Claim to Have Seen a Ghost

Than a Trans Person.” Pink News, December 18, 2015.

https://www.pinknews.co.uk/2015/12/18/more-

americans-claim-to-have-seen-a-ghost-than-a-trans-

person/.

https://games.squinky.me/quing/
http://www.geocities.ws/server2/homestead/westhollywood/5032/
http://www.itch.io/
https://twinegamesareboring.itch.io/didnt
http://www.itch.io/
https://twinegamesareboring.itch.io/pirate-queen
http://storycade.com/3-twine-games-introduce-people-medium/
http://www.spectacle.org/cs/holly.html
https://www.pinknews.co.uk/2015/12/18/more-americans-claim-to-have-seen-a-ghost-than-a-trans-person/

CHAPTER P-4

Too Much Twine

If we return for inspiration to their provocative 2014 Twine

hypertext Quing’s Quest VII: The Death of Videogames,

D. Squinkifer takes on the specter of Gamergate by placing

the player in a retro, animated-GIF-background-bearing

space adventure where, driven from their home planet of

Video Games, the hero expresses a longing to “build

something again”: “You were born to build things. As a

member of the royal family of Videogames, building things is

in your blood. You grew up apprenticing under your elders,

whose queer, beautiful, complex structures you could only

dream of coming close to emulating someday. You listened

non-stop to their stories of the Golden Age of Videogames,

envying the creative freedom and abundance they enjoyed”

(Squinkifer).

D. Squinkifer’s words are an invitation to learn from the

elders, and in that mind-set, we look to several glorious,

powerful, campy Twine works for inspiration throughout this

and other practical sections. In this chapter, of all chapters,

we cannot begin to tell you what to “build.” If anything,

camp Twine is the invitation to excess, and aesthetic play,

which we will explore here as we explore existing

techniques.

◊ As in other practical chapters, action items are boxed

and set off with the symbol you see at left, in case you

want to skip the contextual discussion.

Supporting materials for this chapter can be found online

at https://github.com/AMSUCF/Twining. See our discussion

at the beginning of chapter P-1 about using the .html and

.txt files to follow along or adapt our code to your own

purposes.

Example 4.1: End Times

In this making chapter, we will primarily be working with

SugarCube, to continue our tour of Twine story formats.

SugarCube builds on the most popular of Twine’s first

iteration story formats, Sugarcane, and thus has a legacy of

useful macros built in to allow for versatile design. Start by

creating a new story and selecting SugarCube 2.X.

The timed mechanics of Queers in Love at the End of the

World create a sense of urgency that can lead to more

frantic choice—such timers can be used within a work to add

pressure to a conversation or pivotal moment, or they can

envelop a work, offering the reader a limited amount of time

in which to experience it (Anthropy). The Twine Cookbook

includes iterations of this fundamental mechanic in every

story format, which you can use to compare the complexity

and approach of each format (Cox).

SugarCube allows us to embed passages within other

passages easily, so we can think of our story as progressing

in fragments. Note the characteristics of SugarCube: like

HTML, SugarCube relies on < > to designate the beginning

and end of tags but adds a second layer to differentiate from

HTML itself. Thus HTML and SugarCube markup can

comfortably coexist, as in this code:

https://github.com/AMSUCF/Twining

◊ Let’s start by creating a passage entitled

“Countdown,” where our ticking timer will lurk as the

player progresses. Enter the following code into the

passage:

Planetary implosion in $seconds

seconds

<<silently>>

<<repeat 1s>>

<<set $seconds to $seconds--1>>

<<if $seconds gt 0>>

<<replace "#countdown">>Planetary implosion in

$seconds seconds<</replace>>

<<else>>

<<replace "#countdown">><</replace>>

<<goto "Lost">>

<<stop>>

<</if>>

<</repeat>>

<</silently>>

In this code, several elements are at work: first, the

$seconds variable holds the timer itself. Note that we

haven’t initiated a value for it here—we need to decide

when our timer begins and declare it elsewhere. We might

also change this variable to add complexity (for instance, if

we want the reader to be able to influence or extend the

timer through certain choices), so it’s best to keep its value

separate from the passage that displays its contents.

On its own, this passage doesn’t do anything, but it

provides the framework for counting time. Note the macros

that are similar to those in Harlowe: set still assigns a value,

and replace takes a parameter to replace the content. In

place of Harlowe’s (go-to:)—Chapbook has no equivalent—

we use goto, which similarly takes the name of a passage

and automatically reloads the page. This is similar to the

two-second countdowns we used earlier during our hunt for

the amulet in chapter P-2, but here we’ve isolated the timer

so we can use it across multiple passages.

◊ Next, let’s create the first passage of our narrative. We

don’t want to launch the timer immediately, so start by

altering the first passage (designated, as always, by the

rocket) to set up our prelude. Type the following into a

first passage labeled “Beginnings”:

You've come this far. The B Arc was full (too many

telephone sanitizers), first class was always out of

reach, and this hunk of junk about to take off is the

last ship off this rock before it hits. If only you knew

how to fly it.

[[Try.|Controls]]

Any need-driven quest will do for this conceit, or if you are

feeling existential, a final countdown along the lines of

Queers in Love at the End of the World is fitting (Anthropy).

For now, stick with a single link on this page to avoid the

need for multiple timer declarations—you can always add

that complexity later by duplicating the code we’ll place in

the next passage.

◊ Create another passage titled “Controls.” In this

passage, initialize the timer and include the

“Countdown” passage by typing the following code:

You're looking at buttons. Like, old school Wing

Commander, you're going to need a manual for this,

unlabeled buttons. You can hear your cell phone beeping

the warning alerts as you look for something marked

throttle.

https://media.giphy.com/media/CKRx4oUu3dzLa/source.gif

<<set $seconds to 30>>

<<include "Countdown">>

[[Press the green button|Green]]

[[Press the yellow button|Yellow]]

[[Press the red button|Red]]

[[Look for an index|Search]]

Include works much the way embed passage does in

Chapbook, inserting the passage where we’ve indicated. It’s

important to declare the variable sometime before we

embed the countdown timer for the first time, as otherwise,

you’ll see an odd error. We don’t need much text for any of

these options—the player is going to need to make some

fast, frantic decisions. We’ll come back to fleshing out the

paths in a moment, but first, let’s set up a default ending for

when the timer goes off.

◊ Create a passage entitled “Lost” and type the

following:

The rumbling lets you know it's too late--that, and the

sinking feeling.

The flames are the last thing you see.

We’ll also need to remove the user interface bar from the

side of the screen to avoid players backtracking from this

ending. You’ll notice that many Twine works remove these

user controls, particularly when it’s important to eliminate

backtracking.

https://media.giphy.com/media/CKRx4oUu3dzLa/source.gif

◊ Open the story JavaScript file and type the following:

UIBar.destroy();

Reload and you’ll see that the entire user interface bar has

been removed—this takes away some of the story format’s

built-in functionality but also eliminates lots of design

problems. This gives us a foundation, but it certainly isn’t

camp, and there’s a lot of room to expand even within our

short timer. We’ll use this base for the next several exercises

to start adding aesthetic enhancements and thinking about

the role of audiovisual elements in how we work with Twine.

Example 4.2: Changing Styles

We’ve focused thus far on the text and functionality of

Twine, not the look. However, Twine can integrate anything

from the web experience—it’s just a matter of figuring out

how to mesh your desired elements with the story format

you are using. Each story format has different strengths and

weaknesses when it comes to bringing in visuals, styling,

audio, and even video or animated elements.

Practically speaking, the more you know about CSS, the

more control you’ll have over Twine’s aesthetics. In

SugarCube 2, there are a few built-in tools to be aware of,

including a foundational set of style sheet rules that give us

more detailed control.

Let’s start with something simple. We’ll set each button

link to display in the appropriate color, then change the

background of the corresponding linked page to match by

setting up passage style sheets.

◊ Tag each of the three colored-button passages with a

corresponding color: red, green, and yellow. Open the

story style sheet and type the following:

body {

background-color: #A9A9A9;

color: white;

font-size: 200%;

}

a {

color: purple;

}

body.red {

background-color: red;

color: white;

font-size: 250%;

}

body.green {

background-color: green;

color: white;

font-size: 250%;

}

body.yellow {

background-color: yellow;

color: black;

font-size: 250%;

}

Note a few oddities in this style sheet: the first two

selectors control what you’ll see on any passage that doesn’t

have a style tag. Most of this is straightforward CSS, using

familiar elements of HTML—the body and a, or links. Even

though we don’t write links using <a> in SugarCube, the

markup we do write is translated forward to the standard

HTML element, and all the usual properties apply. Note that

we can use any color data format supported by CSS here—in

this example, there are both hexadecimal codes and color

names.

The tags we added to each passage are translated into

class tags accessible as modifications to the body—thus,

body.red, body.green, and body.yellow will each control the

corresponding tag’s styling. Test out your new design (be

warned, it’s a little garish). You’ll notice that passages that

are inserted into a tagged passage inherit the style of the

page they are inserted into by default. This means we can

use the countdown timer on any page, even as we add more

complexity to the style sheets.

◊ Now let’s add a bit more drama to the final page by

adding CSS animations to fade out the text. Open the

style sheet and add the following code:

.disappear {

opacity: 0;

animation-name: fadeOutOpacity;

animation-iteration-count: 1;

animation-timing-function: ease-in;

animation-duration: 5s;

}

@keyframes fadeOutOpacity {

0% {

opacity: 1;

}

100% {

opacity: 0;

}

}

Currently, we have defined a new class, but we haven’t

applied it anywhere in the code, so you won’t see any

changes in the text. Let’s break down this animation frame

by frame: this is a simple fade-out that diminishes the

opacity of the element from 1 (fully visible) to 0

(transparent) over time. It will only occur once (the

animation-iteration-count) and will last for five seconds (the

animation-duration). Depending on the impact you want,

you can change the pacing by specifying an animation-

timing-function. In this case, “ease-in” means it will start

slowly and speed up as it disappears, while “ease-out” would

do the opposite—try it and compare later. Importantly, the

code opacity: 0; specifies the default state when the

animation is not occurring—if we set this to 1, the text will

abruptly reappear after the animation ends.

◊ Now we need to apply our animation to an element.

Open the “Lost” passage and alter the text to match:

@@.disappear;The rumbling lets you know it's too late--

that, and the sinking feeling.

The flames are the last thing you see.@@

The @@ symbol is SugarCube’s way of marking the

beginning of in-line CSS. The second iteration of the symbol

indicates that this is where the in-line CSS ends. Anything

that you can apply in CSS can be added using these

properties, so it’s a simple way to create emphasis—let’s try

it with font color directly by going back and altering the

passage where the buttons are first introduced.

◊ Now open the story style sheet and add a new set of

classes:

.greenLink a { color: green; }

.redLink a { color: red; }

.yellowLink a { color: yellow; }

We’ll need to make corresponding changes in the

“Controls” passage:

You're looking at buttons. Like, old school Wing

Commander, you're going to need a manual for this,

unlabeled buttons. You can hear your cell phone beeping

the warning alerts as you look for something marked

throttle.

<<set $seconds to 30>>

<<include "Countdown">>

Press the @@.greenLink;[[green|Green]]@@ button

Press the @@.yellowLink;[[yellow|Yellow]]@@ button

Press the @@.redLink;[[red|Red]]@@ button

[[Look for an index|Search]]

Note that there are several other ways we could approach

this that just wouldn’t work. It’s important to reassign the

link to surround just the word we want to impact (this also

improves readability) and to use a class rather than trying to

change the color directly with .color. Using .color directly

creates the equivalent of a span with that color, which is

great for changing nonlink text but is ineffectual within a

link.

This is a highly visually motivated instance of using link

color classes for impact, but changing link colors can also be

a way to communicate meaning to the user that is

commonly used in Twine. For instance, Porpentine’s With

Those We Love Alive opens with a message to the user:

Before living this life, have a pen or sharpie nearby,

something that can write on skin.

Purple links change. Pink links move forward. The

colorblind version is here. (Porpentine)

Importantly, this gives insight into the mechanics that

assist in navigation. The monochromatic version, which is

optimized to not rely on color, instead uses italics to assist in

differentiating between links.

Example 4.3: Sound It Out

We’ve created the potential for drama with these changes,

and you might imagine layering them further to enhance

the impact. However, this is only the beginning of what we

can do with Twine. Some of the most effective games

incorporate audio, including With Those We Love Alive,

which addresses the audio in the next line of the

introduction: “There is music, so headphones are good. But

it’s okay if you can’t” (Porpentine; text formatting preserved

for clarity).

These disclaimers are also valuable reminders for our own

design philosophies: while using Twine’s full audiovisual

potential is exciting, we can keep the work accessible by

always providing other means of entry into any important

information the user needs to progress in or understand the

experience.

Some of the earliest examples of Twine audio integration

made use of existing music—for instance, it’s hard to

imagine Cry$stal Warrior Ke$ha without the titular artist’s

track blaring in the background. Looping music of that type

is typically declared outside of any particular passage, as it

is intended to play uninterrupted as the experience

progresses:

Audio is difficult to some extent in Twine for the same

reason audio is difficult on the web—logistically, you’ll need

to host your own audio files to ensure that they will remain

accessible. You may have the ability to record your own

audio for an experience, but if you do not, Creative

Commons licensed sound effects and music can give you a

palette of sounds and atmosphere to play with.

The Creative Commons search engine

(search.creativecommons.org) is currently optimized for

images but is in the process of expanding to incorporate

audio; in the meantime, their legacy search portal (available

through the same page) links out to several searchable

archives for media, although it is incumbent on the user to

verify that the results are truly Creative Commons licensed.

Freesound.org and Soundbible.com also have a large

database of options, although again, it’s important to verify

the contents.

We’ll play with two types of audio: atmospheric, which

loops in the background throughout play, and effect audio,

which is typically triggered when the player reaches a

particular passage or moment in the narrative. First, we’ll do

a simple audio file embedded in a passage that plays as the

end passage is triggered. We’ll use a free sound effect called

“Fire Burning Sound” recorded by JaBa and shared under a

Creative Commons Attribution 3.0 license (which means

we’ll need to list it accordingly in the credits section of our

game).

◊ For this exercise, it’s important to use the offline

version of Twine 2. You can create the audio macros in

the online editor, but you won’t be able to test them

using the local sound files on your system. First, we’ll

http://www.search.creativecommons.org/
http://www.freesound.org/
http://www.soundbible.com/

need to load them in using a “StoryInit” passage.

Create a passage with this name and type the

following:

<<cacheaudio "fireburning" "Fire_Burning-JaBa.mp3"

"Fire_Burning-JaBa.wav">>

HTML5 audio is tricky—not every browser supports every

audio file type, so when you have multiple versions

available, it is best to preload them all by using cacheaudio

to start the browser loading the audio files before you try to

play a sound. The browser chooses which file type to load

based on its preferences. If none of the file types are

compatible, your sound won’t play. The audio files must be

right next to your .html file in the folder for the path

structure in this example to work.

◊ Next, we’ll actually play the audio. Open and edit the

“Lost” passage. Add the following above the first line:

<<audio "fireburning" play>>

The audio element takes a reference to a cached audio file

and reaches back to find the source file preloaded by the

browser. The audio command to play will run as soon as the

page loads, but it can also be embedded in a link. There are

lots of modifiers available in SugarCube’s robust audio

macro library, which is one of the best-supported of any of

the story formats. The closest functionality currently for

Harlowe requires an external library, the Harlowe Audio

Library (Chapel, “Harlowe Audio Library”).

Let’s try one of the modifiers to fade out our sound as we

fade out our text. Modify the audio call to instead say the

following:

<<audio "fireburning" volume 0.5 fadeoverto 5 0>>

The volume argument takes a number from 1 to 0 and

plays the audio at the specified level relative to the source.

Obviously, it can be difficult to modulate this without

knowing how loudly your reader has set their speakers, so

think about using the volume modulation for balancing

different effects, such as ambient noises versus dramatic

interruptions. The fadeoverto argument takes two numbers:

The first is the number of seconds, which we’ve matched

here to the number of seconds on the text animation. The

second number is the level of the final volume.

Next, we’ll add looping background music. We’ll use a file

of “Creepy Background” sound effects, recorded by Daniel

Simon and shared under an Attribution 3.0 license.

◊ Start by caching the background audio files in the

“StoryInit” passage:

<<cacheaudio "background" "background.mp3"

"background.wav">>

Next, we’ll call the audio from the controls page of our

story but loop the audio.

<<audio "background" loop play>>

To avoid collision, we’ll also want to stop the audio loop

before we start the fire effect:

<<audio "background" stop>>

Incorporating images into a text-driven platform isn’t

necessary, but it can be powerful and provocative. Let’s

finish out the audiovisual exercise of this Twine by adding

some image elements and using SugarCube’s markup to

make the image active. Images can have three components

—a title, which provides a text caption; a link, which points

to another passage; and a setter, which activates when

clicked and alters the state of a variable.

◊ We haven’t done anything with the “find an index”

page in our pathways, so let’s start there. Open

“Search” and change the passage text to include the

following:

<<include "Countdown">>

You look for any text you can recognize, but there's

nothing helpful.

There are three well-worn buttons on the side of the

console, but instead of words, they only bear symbols

that you don't recognize. If they were letters, they'd

be been lost to oils and waste.

[img[shape.gif][one]]

[img[shape2.gif][two]]

[img[shape3.gif][three]]

You might as well press one.

As with audio, all the image files referenced need to be in

the folder with the .html file for this structure to work. It’s

also possible to use the image tag as an alternative to

traditional image markup within the CSS. This can be more

convenient when you’re already comfortable with

SugarCube’s markup.

◊ Let’s try changing the background color on our main

passages to a background image instead. Open the

story style sheet and add the following code:

body {

background-image: [img[stars.gif]];

color: white;

font-size: 200%;

}

Notice that this works with animated GIFs (as in this

example, a set of animated stars), and by default, it tiles the

image. This approach works best with retro background

effects, which tended to use repeated patterns rather than

stretching a single image to fit. Animated GIFs like this one

are used in many Twine works and are usually most effective

with a strong contrast to any text colors chosen.

Example 4.4: Tracery and External

Libraries

External libraries for Twine extend the capabilities of Twine

and frequently provide bridges for more easily pulling in

traditional JavaScript to the engine. There are extensive

options for SugarCube 2 macros online, including Chapel’s

Custom Macro collection, which includes particularly useful

tools such as pronoun templants and mouseover macros

(Chapel, “Custom Macros”). Macros frequently emerge when

more scripting-inclined Twine creators want to solve a

problem for one of their own works and choose to repackage

and share their solution with the community. Frequently,

those macros are integrated back into the core of story

format projects when they prove particularly useful.

In this exercise, we’ll pick one well-loved library to try.

Note that combining external libraries can be difficult, as

they may include conflict syntax or requirements. Let’s take

a look at Trice, a library that combines many elements into

one (incobalt). Created by Michael Thomét and inspired by

Matthew R. F. Balousek’s earlier library Twincery, Trice is a

2.X SugarCube-specific wrapper for Tracery that allows us to

play with generative techniques like those we explored in

our previous chapter. It’s easier to break down how Tracery’s

logic can be integrated with Twine by first approaching the

two separately.

Tracery works with grammars that are constructed of

symbols and rules: symbols are essentially arrays containing

a set of possible values, and once inserted, they choose a

particular value for that instance. Rules are more complex

patterns that combine fixed works and symbols to generate

text or images (more on that later).

◊ Let’s break this down in a simple example before we

combine Tracery and Twine. To work with this code on

its own, try the online visual editor at

https://beaugunderson.com/tracery-writer/ and type in

the following:

{

"origin": ["#codeVerbs# the #craftNouns#, #codeNouns#

#craftVerbs#"],

"craftNouns":

["album","backing","bargello","barkcloth","basting","bat

ik","batting","bearding","beading","betweens","bias","bi

nding","stitch","nesting","bobbin","tension","chainstitc

h","emblem","embroidery","frame","sash","gap","gapping",

"hoop","hooping","lettering","mirror","monogram","needle

","nippers","pantograph","tape","puckering","punching","

density","design","thread","broadcloth","block","border"

,"calico","charm","die","flannel","feeddogs","paper","sl

eeve","foot","fabric","loft","long

https://beaugunderson.com/tracery-writer/

arm","medallion","memory","motif","quilt","fiber","panel

","patch","value","unit","seam","fill","facing","hook","

scale","satin","punching"],

"craftVerbs":

["appliqué","bind","sew","hem","bridge","fill","press","

back","repeat","rotate","stabilize","thread","break","cu

t","tie","trim","verify","glaze","label","layer","piece"

,"corner"],

"codeNouns":

["algorithm","application","bootstrap","code","structure

","data","framework","stack","query","object","function"

,"variable","binary","bug","command","conditional","stat

ement","pattern","server","parameter","grid","pixel","re

solution","user","flow","element"],

"codeVerbs":

["decompose","debug","iterate","control","program","run"

,"embed","influence","bounce","optimize","mine","declare

","edit","design"]

}

Syntax-wise, Tracery is built on JSON: curly braces indicate

objects and thus surround the complete grammar, or all the

rules and symbols that make up a particular iteration of

Tracery logic. The hash marks indicate a substitution and

must surround a string of characters that matches one of the

symbols. Each symbol lists the name first (in quotation

marks, which delineates a string), followed by the list of

possibilities as an array. As with the generation we discussed

in chapter P-2, this allows for emergent play and can result

in combinations we don’t anticipate. The output to this first

iteration is fairly banal but demonstrates the simple

generative potential:

optimize the lettering, pixel trim

edit the puckering, pattern bind

design the paper, function glaze

influence the barkcloth, structure repeat

When we bring Tracery into Twine, the base elements

remain the same, but the syntax changes.

◊ The easiest way to work with Trice is to use their

bundled starter code, which draws in all the required

scripts. Download the repository from GitHub, and open

trice.html through the “Input file” option in the Twine

main menu. You’ll see the Tracery code in the story

JavaScript file, but that’s not everything—in the

example folder, you’ll see a project set up with the

Tracery libraries in a folder. Make sure you duplicate

that same file structure when working on this exercise,

or your code will break due to unmet dependencies.

Importantly, the full library won’t be loaded in time

for our first passage, so we’ll need a title screen. Create

a “Begin” passage and add text and a link:

Cut and Trace

[[Begin]]

Let’s start by generating some individual symbols: each

passage we create and tag with “grammar” will be part

of Tracery’s grammar. Create a new passage titled

“gCraftNouns,” tag it, and add one word per line to the

appropriate wordset:

basting

mirror

lettering

foot

fabric

calico

loft

tape

hooping

bargello

sleeve

block

border

Note that you don’t need any special characters; the

paragraph break alone sets up the conversion. This

eliminates the need for extensive syntax and, in doing so,

cuts back on some of the more frustrating aspects of

generative texts. Each passage can become a freewriting

exercise, and elements can be added easily as you expand

your code.

◊ Let’s test that our grammar is connected by going to

the “Begin” passage and generating a word:

<<trace "gCraftNouns">>

Remember, you can’t test through the Twine browser. Each

time you test a trace, you’ll need to export your file to .html

—otherwise, the browser won’t allow the files to access the

necessary libraries, so Tracery won’t run.

Note that whenever you invoke the library, you’ll use trace

to structure the command. This first simple stage just takes

one symbol as input, using the string for the passage name,

so make sure you type them exactly the same way. If you

neglected to tag the passage as grammar, it won’t import

properly. Trace is a macro, so it provides a SugarCube syntax

integration for the Tracery library. It’s very flexible: it can be

used to build entire rules and output full passages of

generative text. Let’s build a grammar with enough

complexity that we can give this a try.

◊ Following the same pattern as the “gCraftNouns”

passage, create a passage for “gCraftVerbs,”

“gCodeNouns,” and “gCodeVerbs.” Don’t forget to tag

each passage as a grammar. Next, we’ll test by going to

“Begin” and using a more complex trace:

<<trace "# gCodeVerbs# the # gCraftNouns#, # gCodeNouns# #

gCraftVerbs#">>

Notice a few changes from our simple call: if we are using

more than one symbol, we need to integrate the full Tracery

syntax with hash marks around each symbol’s name. This

also means we can start to integrate some of Tracery’s more

complex features, such as functions to make certain words

plural or change the tense.

◊ Let’s give this a try by extending our passage poetry

further. First, we’ll need some additional grammar

passages. Add a grammar passage titled “gColor” and

tagged grammar, and input the following text:

orange

blue

violet

yellow

pink

apricot

indigo

green

gray

black

white

◊ Next, edit the “Begin” passage to include the

following:

<<trace "# gCodeVerbs# the # gCraftNouns#, # gCodeNouns# #

gCraftVerbs#">>

<<trace "# gCraftNouns.capitalize# is #

gCodeNouns.a# . . .">>

<<trace "# gColor.a.capitalize# # gCodeNouns# #

gCraftVerbs.s#">>

Output on the “Begin” passage will vary every time you

revisit:

program the fabric, function back

Basting is a query . . .

An indigo stack threads

Note the modifiers from Tracery’s library in play here: .a

adds the appropriate article based on the starting letter of

the modified word, capitalize changes the first letter of the

modified word to capital, and .s pluralizes the word (usually

—but not always—correctly, so watch this one). The trace

macro isn’t the only way to integrate Tracery: sometimes we

want to generate text and save it for later. For that, we can

use the trace function.

◊ Let’s pick a noun and save it to a variable, and then

we can use it repeatedly in a generated text.

<<set $myNoun to trace("gCraftNouns")>>

$myNoun is $myNoun is $myNoun.

Now we can generate extensively within Tracery in text,

keeping in mind examples such as Kate Compton’s own

stylistic play—for more ideas, take a look at her site.

Generative content is also the emphasis of several

communities of play, and GitHub is home to a growing

“NaNoGenMo” collection of generated novels, made for

National Novel Generation Month, which includes Tracery

and other tools powering a range of works for inspiration.

Example 4.5: Mood Imagery

While generative text is endlessly playful, we can also use

Tracery to assist in generative components for imagery. (This

can also be accomplished without Tracery, but less

efficiently!) Tracery is popular with the bot-making

community for aesthetic bots, which are a Twine-adjacent

form of computational creativity that can result in endless

content. A great example is Kate Compton’s Tiny Space

Adventure bot (hosted @TinyAdv and powered by Cheap

Bots Done Quick, an easy-to-use hosting service for Tracery

bots), which results in content like the following:

https://www.twitter.com/TinyAdv

Figure 19: Examples of Kate Compton’s Tiny Space Adventure bot

While the code for this is quite complex (and lives here:

https://pastebin.com/YYtZnzZ0), looking at a fragment of it

reveals how Tracery can be used to make substitutions in

code:

"ship" : ["[gradID:#id#][bladeID:#id#][sideID:#id#]#

gradient#<g transform='translate(120, 100)

rotate(#digit# #digit#)'>#shipSide#<g

transform='scale(-1, 1)'> <use xlink:href='\\# #sideID#'>

</g></g>"],

"label" : "<text text-anchor=\"end\" fill=\"\\#FFFFFF\"

fill-opacity=\"0.4\" font-size=\"12\" font-

family=\"Verdana\" x=\"225\" y=\"250\">#shipName#

</text>",

"bg" : ["<rect fill='\\#000000' x='0' y='0' width='300'

height='300'/>#starField#"],

"star" : ["<circle fill='\\#FFFFFF' cx='#r255#'

cy='#r255#' r='#zeroone#.#digit#'/>"],

"starField" : ["#star# #star# #star# #star# #star# #star#

#star# #star# #star# #star# #star# #star# #star# #star# #star#

#star# #star# #star# #star# #star# #star#"],

https://pastebin.com/YYtZnzZ0

"svgImg" : ["<svg viewBox=\"0 0 256 256\" width=\"256\"

height=\"256\">#bg# #label# #ship#</svg>"],

"origin" : "{svg #svgImg#}"

Note particularly the SVG (Scalable Vector Graphics)

element, defined in “svgImg” and including elements

defined in succession: the ship is the product of much more

complex code but is then added to the mix along with a

label on top of a star field, which is generated from randomly

placed and sized circles defined in the “star” symbol. SVGs

are a web-friendly format defined mathematically and thus

friendly to resizing and responsive design. Most people work

with SVGs through graphical interfaces such as Illustrator,

but it’s also possible to work with simple or even complex

SVGs directly through the markup of their code. SVGs are

the heart of Tracery graphics. We’ll continue with our code

from exercise 4.4, since we’re already set up for Tracery

integration, and the language of code and crafting certainly

lends itself to visual accompaniment.

◊ First, let’s look at how SVGs work in SugarCube with

some basic code. Add the following to your “Begin”

passage:

<svg><line x1="0" y1="0" x2="200" y2="200" stroke-

width="1" stroke="white"/></svg>

You should see a diagonal white line beneath your text.

SugarCube supports in-line SVG in this format natively, but

only in some of its latest iterations—earlier examples and

other story formats cause more problems with SVGs. Line

designates the shape intended, and the two pairs of x- and

y-coordinates indicate the beginning and endpoints of the

line within the SVG. Stroke-width governs the width in

pixels, while stroke sets the color.

◊ Now let’s make it dynamic by first generating a color

to save in a variable and then using a variable as an

attribute within the SVG. To do this, we’ll use another

SugarCube macro, print, which will allow us to combine

the HTML markup with a variable:

<<set $myColor to trace("gColor")>>

<<print '<svg><line x1="0" y1="0" x2="200" y2="200"

stroke-width="1" stroke="' + $myColor + '"/></svg>'>>

Note that the code is mostly the same, but we need to use

$ to designate the variable—and watch the placement of the

single quotation marks to indicate when we’re asking

SugarCube to process the input versus just printing the

HTML directly.

Let’s build something more complicated. We’re going to

create graphics that might be used in a number of ways—

they might be art that changes without warning when the

player revisits a room or atmosphere background imagery to

set the mood for a scene. Let’s start by restricting our color

palette to create a more unified aesthetic. For this, it’s

easiest to work with color-safe HTML codes if you also want

to use the words in text, but you can also use hexadecimal

colors.

◊ Create a new passage titled “gNum,” and make sure

to tag it as grammar. Add a set of numbers—the range

will impact the size of the final line:

80

100

120

140

160

180

200

220

240

260

280

300

◊ Change the SVG code in “Begin” to the following:

<<set $myColor to trace("gColor")>>

<<set $myNum to trace("gNum")>>

<<print '<svg><line x1="0" y1="0" x2="'+$myNum+'"

y2="'+$myNum+'" stroke-width="1" stroke="' + $myColor +

'"/></svg>'>>

◊ Modify the contents of “gColor” to:

purple

blue

gainsboro

silver

gray

teal

navy

cyan

indigo

orchid

lavender

plum

◊ Now we’ll need to create a more complex SVG to add

dynamic design. This is going to require several

symbols to control our shape’s attributes, so create new

passages for each of the following. The bolded lines

should be the title of the passage, and every passage

must be tagged as grammar:

gY

50

100

150

200

250

300

350

400

450

gX

100

200

300

400

500

600

700

800

900

1000

gOpacity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Each of these will be used to control the corresponding

elements of a generative ellipse—assuming a canvas that is

1024 × 512 pixels, these numbers will let us distribute

shapes along the x and y space of the SVG. The opacity will

give us more dynamic colors through overlaps: note that

we’re not using an opacity of 0, as that would disappear, or

an opacity of 1, as that might lead to too abrupt of a layer.

Our existing “gNum” and “gColor” will complete the shape’s

features.

◊ Now we’re ready to add a Tracery rule as a passage.

This time, let’s use the SVG code for an ellipse and

create a passage titled “gEllipse” tagged as grammar.

Include the following code:

<ellipse cx=\"# gX#\" cy=\"# gY#\" rx=\"# gNum#\" ry=\"#

gNum#\" style=\"fill:# gColor#;stroke:# gColor#;stroke-

width:2;opacity:# gOpacity#\" />

Creating a passage to hold the ellipse properties will make

it easy to use Tracery to generate as many of these shapes

as we want, so we can potentially fill the screen with a

variety of overlapping ellipses. Notice how each property is

inserted using the Tracery symbol markup, and all the

quotation marks are escaped with \ to ensure the code

syntax is preserved when we run our trace.

◊ We have all the components now to create ellipses

from a passage. Instead of adding it to “Start,” let’s

create a new passage to hold this SVG. Let’s start by

using Tracery to create a dynamic link to the new

passage. In “Start,” add the following code:

<<set $myLink to trace("gCodeNouns.capitalize.a")>>

[[$myLink|Screen]]

Note that this reversal of the capitalize and a will result in

capitalization on the word, not the a, which can be useful

when you want a different rhythm to your style. It’s also

possible to use Trice directly to create rotating links that use

the keywords of the grammar—just include the name of the

grammar symbol in the link directly, like [[gCodeNouns]]—

but this structure works best when you have a reason for

using this dynamic link style, so we won’t include it here.

◊ In “Screen,” include the following code:

<<trace "<svg width='1024' height='512'># gEllipse# #

gEllipse# # gEllipse# # gEllipse# # gEllipse# # gEllipse# #

gEllipse# # gEllipse# # gEllipse# # gEllipse# # gEllipse# #

gEllipse# # gEllipse# # gEllipse# # gEllipse# # gEllipse# #

gEllipse# # gEllipse# # gEllipse#</svg>">>

This can look a little overwhelming. Like Kate Compton’s

star field in the background of her spaceship bot shown

earlier, we are using repetition of the generative element to

create a layered effect. Note that the SVG size needs to be

defined to ensure all our shapes display, so we declare the

width and height first, again escaping the quotation marks

to avoid errors. Watch the hash marks on repeating symbols,

as it is easy to end up with an error in this section of the

code. Note how we don’t need to use print in this instance,

as we are running the trace directly, eliminating the need to

store every one of these properties as a variable prior to use.

The output should look something like this:

Figure 20: Sample output from our Tracery SVG generation

Note that this is only the beginning of what we can do

with Tracery in Twine. SVGs can be scaled to fill the screen

and can incorporate generative text as an overlay. They can

be placed with CSS behind other elements to create a sense

of mood-specific backgrounds. You can even invite the

player to indicate a mood or color palette early in a play

experience or shift the colors gradually to reflect changes in

tone.

Consider how the colors set the tone of the opening

decisions in Porpentine’s With Those We Love Alive: the

opening scene lives against a backdrop of turquoise fading

into dark blue, reminiscent of the sea abstracted, with vivid

pink links against it. This palette, not coincidentally,

inspired some of the choices in this example. Note how

every element is thoughtfully integrated, from the choice of

link colors and fonts to the feel of the gradient across the

page. It is harmonious with some of the later palettes in the

same narrative, but those can be more immediately

unsettling: a deep magenta fading toward a violet-black

accompanies the words “Dead brown leaves cover inky black

lake. / Something is rising from the lake” (Porpentine).

Figure 21: Screenshot from With Those We Love Alive

These visual choices can further be layered with the other

elements we’ve discussed so far in this exercise. Consider

how unsettling a deep color palette might be alongside a

cheerful theme or how the alarming, unsettling aesthetics of

Michael Lutz’s more minimalist My Father’s Long, Long Legs

gradually alert the player to the wrongness of the family

dynamics (Lutz). Whether constrained or over the top,

atmospheric or full-on camp, the audiovisual elements of

Twine are not necessarily secondary to the text.

Works Cited

Anthropy, Anna. “Queers in Love at the End of the World.”

itch.io, 2013. https://w.itch.io/end-of-the-world.

Chapel. “Custom Macros.” TwineLab, 2019.

https://twinelab.net/custom-macros-for-sugarcube-2/#/.

———. “Harlowe Audio Library.” TwineLab, 2019,

https://twinelab.net/harlowe-audio/#/.

Cox, Dan, ed. “iftechfoundation / twine-cookbook.” 2017.

GitHub, 2019.

https://github.com/iftechfoundation/twine-cookbook.

incobalt. “incobalt /T rice.” 2018. GitHub, 2019.

https://github.com/incobalt/Trice.

Lutz, Michael. My Father’s Long, Long Legs. Correlated

Contents, September 23, 2013.

http://correlatedcontents.com/misc/Father.html.

Porpentine. “With Those We Love Alive.” Cambridge, MA:

Electronic Literature Organization, 2014.

http://collection.eliterature.org/3/work.html?work=with-

those-we-love-alive.

Squinkifer, D. Quing’s Quest VII: The Death of Videogames.

Self-published, September 1, 2014.

https://games.squinky.me/quing/.

http://www.itch.io/
https://w.itch.io/end-of-the-world
https://twinelab.net/custom-macros-for-sugarcube-2/#/
https://twinelab.net/harlowe-audio/#/
https://github.com/iftechfoundation/twine-cookbook
https://github.com/incobalt/Trice
http://correlatedcontents.com/misc/Father.html
http://collection.eliterature.org/3/work.html?work=with-those-we-love-alive
https://games.squinky.me/quing/

CHAPTER T-5

Twine and the Critical Moment

Figure 22: The previous century explained

What Crisis?

Centuries leave marks, such as the interesting signature of

the twentieth century shown here. Despite its generally

upward trend, this is not a world population graph, whose

roughly 6:1 slope would be considerably steeper than the

present line and whose curvature would be much more

acute. A closer guess might be something like the gross

domestic product for an industrialized nation, or perhaps the

Dow Jones index—though, on closer inspection, we’d expect

a sag around 1930, not the rise we see here. The steady

ascent in the latter half of the graph looks familiar, though

again the flattening after 1990 is at odds with the economic

record.

The data mapped here are not financial but linguistic and,

by extension, cultural. This chart shows the percentage

share of the word crisis in relation to all words in the Google

Books database of works in English. The values tracked are

minuscule in absolute terms—about 0.0017 percent at the

start, climbing to 0.005 percent around 1990—but the line’s

contours are revealing. The word grows about threefold in

frequency over the century. There is a flat stretch in the

twenties, spiking as we approach World War II, then a

plateau in the postwar decade. From about 1960 to 1995,

usage surges. During this period, there is a crisis at every

turn: missile crisis, population crisis, energy crisis, hostage

crisis, AIDS crisis, climate crisis, debt crisis, water crisis,

crisis on infinite Earths, everyone’s identity crisis, always in

progress.

Since the graph stops just before the new millennium, it

might seem of limited usefulness for thinking about

developments that start ten years later. However, consider

the last segment of the chart, the final decade of the old

century. Occurrences fall off to an uncertain plateau. The

word still has plenty of currency—how could it not in a time

of growing economic and environmental unease?—but

people have perhaps begun to have enough of it. With the

keyword deployed in so many combinations, any fresh

invention would face diminishing returns. On the evidence,

we passed peak crisis three decades ago, about the time

R.E.M.’s “It’s the End of the World as We Know It” turned into

a jejune earworm.

This chapter was first drafted before the coronavirus

outbreak of 2019. Reread in the summer of 2020, those first

paragraphs seem to tempt fate. Google’s database stops at

2012, so we can only guess how the graph will look ten

years from now. The decade from 2000 to 2010, not included

in the graph, shows a pronounced downward hook. Perhaps

by 2030, that trend will have reversed as pandemic crisis

ripples through the record, possibly joined by other dire

digrams. We are willing to bet, though, that the overall trend

holds.1 For a long while now, we’ve had all the crises we can

stand.

Especially when combined with the adjective existential,

the word crisis seems all too inevitably apocalyptic. As the

human-driven Anthropocene morphs into what cultural critic

Donna Haraway calls the “Cthulucene,” visions of

posthuman End Times overwhelm us (Haraway). At the

beginning of the midcentury crisis boom, Stanley Kubrick

and Terry Southern gave us Dr. Strangelove, or How I

Learned to Stop Worrying and Love the Bomb, a film in

which an insane Air Force commander triggers the end of

civilization (Kubrick). Nearly a half century later, at the other

end of the rising curve, Joss Whedon and Drew Goddard

offered The Cabin in the Woods, in which something very

similar happens, except the agent of doom is the “final girl”

of a literally diabolical slasher film—the sanest and most

moral person in the story (Whedon and Goddard). After peak

crisis, our sense of an ending turns strange and more than a

little toxic.

This chapter will eventually make its way, with some

digressions, to one Twine writer’s poignant response to this

predicament—Queers in Love at the End of the World, Anna

Anthropy’s game of apocalypse. We will return inevitably to

crisis—that’s where we live these days—but we set out

toward this destination with a deliberate swerve. Let’s

replace crisis with critical. Though technically this change

just swaps adjective for noun, there is an important shade of

difference. It is easy to imagine crisis as a final negative: no

way out, no alternative, no future. In contrast, the word

critical seems more negotiable, implying critical choices,

critical practice, critical (and these days, literal) distance. It

offers the chance to change the shape of certain curves. It

leaves room to swerve. As Borges’s labyrinth-novelist says, “I

leave to various futures, but not to all, my garden of forking

paths” (Borges 26). Some futures are more fortunate than

others. In Twine work as in life, the ability to choose is

crucial. Choosing critical over crisis lets us keep faith with

the root word krinein, which means to decide. This choice

emphasizes difference, oppositional response, and the

exploration of alternatives. It also connects powerfully to

elective action, a crucial part of games and play.

Critical Moments

Unlike crisis, which at least implicitly dramatizes itself as a

discrete event, critical moments can be flexibly invoked.

Turn the calendar to the first weeks of 2019. We’ve already

discussed the appearance of the Black Mirror

“Bandersnatch” episode, with its Twine connection and an

intriguing overture to branching narrative. A few weeks

later, Netflix rolled out another show, the miniseries Russian

Doll, with a radically different approach to story and play

(Headland, Babbit, and Lyonne). Like “Bandersnatch,”

Russian Doll focuses on a game coder, the fabulously

dissolute Nadia Vulvokov, who, like Stefan Butler, is dropped

unwittingly into a garden of forking paths. In a way, both are

under the control of a shadowy agency called Netflix, but

Nadia’s predicament does not involve viewer intervention.

Somewhere in the course of every episode, Nadia suffers a

bizarre or violent death—run over by a cab, fallen down

stairs, poisoned, shot, attacked in the subway by killer bees

—after which she returns to her initial position in the

episode, staring into a bathroom mirror at a party for her

thirty-sixth birthday. Nadia’s work as a game designer offers

a frame for understanding this iterative experience: like a

character failing to complete her quest, Nadia is destined to

keep replaying level 36.

Russian Doll deserves more detailed treatment both as a

disrupted narrative and as part of the unfolding saga of

binge TV, but we will confine ourselves to its juxtaposition

with “Bandersnatch” (Slade). The scheduling was most likely

coincidental, but all the same, it offers a meaningful

contrast. For all that it restricts most player choice to a pair

of alternatives, “Bandersnatch” subverts tele-cinematic

storytelling. Any choice greater than one affects at least a

small insurgency. Russian Doll reverses and atones for this

rupture, even though it was probably not intended for the

purpose. The series turns the ergodic breakpoint into a

stylistic device. Instead of the relative openness of a game,

it delivers what we might call a closed, gamelike arc, an

appearance of randomness and contingency that in fact

goes where television always goes, to singular narrative and

moral resolution. We could gloss Russian Doll in many ways

—Groundhog Day goes to Lower Manhattan, Memento with

millennials—but it would not be inaccurate to call it a let’s-

play video with unusually high production values. It is one

version of a game.

The pattern that emerges here is nothing new. Claude

Lévi-Strauss identified the basic structure in the 1960s, back

on the first step of our crisis escalator—a tension between

contingency and static balance. In his view, this dynamic

was as old as play itself:

All games are defined by a set of rules which in practice

allow the playing of any number of matches. Ritual,

which is also ‘played,’ is on the other hand, like a

favored instance of a game, remembered from among

the possible ones because it is the only one which

results in a particular type of equilibrium between the

two sides. The transposition is readily seen in the case of

the Gahuku-Gama of New Guinea who have learnt to

play football but who will play, several days running, as

many matches as are necessary for both sides to reach

the same score. . . . This is treating a game as a ritual.

(Lévi-Strauss 30–31)2

We can see a similar “transposition” in the swing from

“Bandersnatch” to Russian Doll. The closed, gamelike arc

treats game as ritual, preserving not harmony between

neighboring tribes but the power structure of an executive

culture, the singularity of authorized narrative that is part of

what Ruberg calls “chrononormativity” (Ruberg 25). This

complex is the target of that memorably self-parodic

paranoid branch in “Bandersnatch,” where the player makes

Stefan aware that he is under the control of an

entertainment network from the future. Welcome to

videoland. Lévi-Strauss could have heard a similar message

a year after his thoughts about game and ritual appeared in

English. We imagine him nodding as he tunes in to an

episode of The Outer Limits (1963–1965), which began each

week with a ritual message from the “Control Voice”:

There is nothing wrong with your television set. Do not

attempt to adjust the picture. We are controlling

transmission. If we wish to make it louder, we will bring

up the volume. If we wish to make it softer, we will tune

it to a whisper. We will control the horizontal. We will

control the vertical. We can roll the image; make it

flutter. We can change the focus to a soft blur or sharpen

it to crystal clarity. For the next hour, sit quietly and we

will control all that you see and hear. We repeat: there is

nothing wrong with your television set. (Wikipedia)

In many ways, the entire ergodic project, the

reimagination of storytelling under procedural intervention,

might be the afterlife of the Control Voice. In one of the

great ironies of human history, computing devices and the

internet were developed as adjuncts to the command-and-

control culture campily evoked in that old broadcast fantasy.

As the public flooded into the new cyberspaces, “everting”

them, as Steven Jones says, from fantasy worlds to everyday

habitations, the original control culture was replaced by

something we struggle to comprehend (Jones 2014).

Computer games play a major role in this understanding, so

it is not surprising to find games intimately concerned with

both control and voices. We will have further thoughts about

voices with respect to Davey Wreden’s Beginner’s Guide in

the next part of this chapter. For the moment, there is more

to say about the object of control, which Lévi-Strauss

describes as “equilibrium” (20). Such dynamic balances are

inherently fragile, especially under the impact of radically

destabilizing, disruptive technologies. There may have been

nothing wrong with our television sets—nothing the old

networks couldn’t fix—but normativity cannot hold when

video screen meets game processor, and the network

becomes an everted internet.

There would inevitably be attempts to restore the

supposed balance of forces between producer and

consumer. The appearance of a closed, gamelike arc in 2019

extends a long-running trend. Using similar techniques,

films like Groundhog Day (Ramis), Lola Rennt (Tykwer), and

Memento (Nolan) fed a vogue for “mind-game” cinema in an

increasingly game-obsessed era (see Elsaesser). Complex

narratives were carefully channeled into the popular

mainstream. Game ideas were adapted for all sorts of

screens. The ultimate accommodation came in 2011, when

the US Supreme Court ruled in Brown v. Entertainment

Merchants Association, affirming the cultural standing of

video games: “Like the protected books, plays, and movies

that preceded them, video games communicate ideas—and

even social messages—through many familiar literary

devices (such as characters, dialogue, plot, and music) and

features distinctive to the medium (such as the player’s

interaction with the virtual world). That suffices to confer

First Amendment protection” (Brown v. Entertainment

Merchants Association).

It may have seemed ironic that the author of his opinion

was Antonin Scalia, the conservative archon. Yet the attempt

to affiliate computer games with “books, plays, and movies”

is definitionally conservative. Defying disruption, it affirms

continuity between the present and the past. It envisions a

living, changing culture. (Irony floods back in if we replace

culture with Constitution.) In its way, the opinion is laudable,

though the harmonious world it imagines was pure judicial

fantasy. Even as Scalia wrote his ruling, the seeds of

Gamergate were germinating. They would take roughly a

year to flower into full evil, bringing backlash against those

who wanted to use games for concerted expression rather

than unreflective, unengaged fun.

By 2013, fun had become a fighting word. As Stephanie

Boluk and Patrick Lemieux point out, this controversy had

been a long time coming, starting the moment games

converged with video: “In the same way that the British land

enclosure of the eighteenth century transformed public land

into private property, so too has the videogame industry

worked to privatize the culture of games and play. Games

have been replaced by videogames and play has been

replaced by fun” (Boluk and Lemieux 8). Some might

quibble about the analogy with land enclosure, but the rest

of this observation is unimpeachable. The attempt to restore

cultural equilibrium, to subordinate gameplay under rituals

of consumption-oriented fun, would never succeed. Fun

comes in far too many varieties. Ruberg remarks,

“#GamerGate has gotten at least one thing right. It is no

coincidence that this backlash comes at the same time that

queerness is becoming a more central concern in games and

the dialogues that surround them. As Katherine Cross has

written, proponents of #GamerGate are driven by a fear that

video games are changing, that they will no longer belong

only to white, straight, cisgender men and boys. And that is

true” (Ruberg 13).

There is a reason this chapter, like the previous chapter on

Twine camp, returns inevitably to queer gaming and

particularly to the work of Bo Ruberg, who has brought us

the crucial recognition that video games “have always been

queer,” driven by a “core” impulse to explore “non-

normative desires” that speaks to and proceeds from alterity

(Ruberg 11). We embrace this idea because it does so much

to explain the ineradicable difference that marks ergodic

works. From the perspective of narrative normativity, they

represent an unruly, uncanny other. They are fundamentally,

deliberately, and joyfully abnormal. The critical moment of

Twine owes much to queer people and their ideas, as so

many have said before us. In learning to align our work as

queer, some straight folk will find a strong sense of

solidarity. This sentiment is deep but also hazardous.

Straight minds and bodies are not exposed to the traumas

visited on queer people. Queerness is an important place to

start—an essential “lens,” as Ruberg says—but Ruberg adds

a significant caution: “In using the word ‘queer’ itself,

straight, cisgender subjects must remain aware that their

experiences are never one and the same with those of

LGBTQ people (who themselves bring their own individual

perspectives to this work) and that their use of queerness as

a lens must come with an acknowledgement of and respect

for real, queer lives” (Ruberg 19). Both authors of this book

operate in public spaces as white, able-bodied academics in

heterosexual or straight-presenting relationships and thus

are not subject to the challenges of, aggression toward, and

harassment of those who are visibly queer, trans, or othered.

For her feminist work, one of us has felt a share of that

mistreatment. For his own unorthodoxies, the other has seen

nothing worse than some bad reviews. Limits and

obligations need to be made clear. The “lens” of alterity is

invaluable. It requires “acknowledgement,” respect, and

more importantly, a commitment to shared struggle, which

is the ethos to which this book aspires.

Normativities—economic, erotic, political, chrono-

biological—can be powerfully opposed by discourses of

difference—feminist, queer, nonwhite, neuro-atypical,

anticapitalist. Ruberg’s main claim, that video games have

always been queer, implies a larger, ongoing struggle. As

Boluk and Lemieux demonstrate, genuine play refuses the

“enclosure” of pleasure in any hegemonic funhouse. In

activating the reader as a player, all ergodic art forms—

interactive fictions, game books, hypertexts, games—

become at least fellow travelers in this insurgency. We need

to consider a broader picture, one that will allow us to place

queer games and Twine games in relation to other aspects of

their critical moment. This will take us to a work that is

outside of the Twine community and whose queerness seems

at least debatable but whose questions about games and art

are essential to our critical moment.

Turn Back from This Cave

For some, games are all about asking questions. Montfort

affiliates interactive fiction with the ancient form of the

riddle (Montfort 14). Every game in which we explore some

baffling space poses ontological questions: What is this

world? Why is it the way it is? Who am I in this place? What

do my interactions reveal? All world-games are basically

riddles; some are more direct than others in framing their

enigmas. In his two major efforts so far, Davey Wreden has a

way of putting the puzzles up front. The Stanley Parable

begs the question, parable of what? (Wreden and Pugh).

Similarly, coming to The Beginner’s Guide, we might ask,

Guide to what practice, activity, or way of being? Just what

are we beginning? (Wreden).

Many players of Stanley Parable come away with plausible

answers: the game is about free will and its paradoxical

denial; the game explores the tension between structure

and play or desire. These are not necessarily the best

answers, but they are at least reasonably related to the

experience of play. Beginner’s Guide, by contrast, is harder

to fix in a phrase. It’s about a broken friendship, about the

ethics of creativity, about the reasons for making game-

based art. The work may tell us something about the nature

and purpose of games. Which brings us to an important

question: Is Beginner’s Guide a game?3

The product is sold on Steam as a game, it has been

reviewed as a game, and, like Stanley Parable, its playable

spaces are assembled from components of other games

(Counter-Strike, Half-Life). It seems to belong at least

superficially to three divisions of the game market:

independent games, B-games, and walking simulators. Yet

the play experience of Beginner’s Guide is about as railed-in

as possible. As in Stanley Parable, there is voice-over

narration keyed to our progress through each level. The

plummy BBC announcer of the earlier game is replaced by

Wreden speaking as “Davey,” a character based on himself.

Davey guides us through sixteen chapters and an epilogue,

discrete levels ostensibly created by a shadowy figure called

“Coda” between October 2008 and June 2011.

We will consider Davey and Coda fictional constructs, thus

implicitly metaphorical—though what they represent is open

to question.4 The dates of Coda’s efforts align neatly with

the creative history of Stanley Parable, so some self-

reference seems inevitable. Beginner’s Guide seems ripe for

interpretation as psychomachia, the struggle between

halves of a divided self. At the same time, the work’s

slipperiness and complexity defy simplistic understanding.

Is it a collection of “weird and experimental” game levels, or

a unified production? (The presence of an epilogue—literally

a coda yet outside of the Coda collection—strongly suggests

the latter.) How should we characterize this effort? Is it a

game or a piece of theater, a game-flavored monologue?

Maybe Beginner’s Guide is more video than game—a game

collapsed into its own playthrough.

Beginner’s Guide has important resemblances to

machinima, game-derived linear video, but it also has

features inconsistent with that form. As Davey reminds us in

chapter 7 (“Down”), the work was built on the Source game

engine. It is not delivered in a video format but as a playable

download on Steam. Player action is allowed and often

required. In chapter 1 (“Whisper”), we are told we can exit

the game by stepping into an energy beam. As in Stanley

Parable, we can refuse the narrator’s suggestion—the beam

will kill us—but unlike in Stanley, refusal has no interesting

consequences; we just linger in a level we have already

explored. In chapter 4 (“Stairs”), we are asked to press

“Enter” to neutralize a speed limit that prevents us from

quickly climbing a set of stairs. We can withhold the action,

remaining in agonizingly slow ascent, or join in Davey’s

subversion of the original rules. These moments are

paradigmatic: the system allows us to act, but only in ways

that both move us along the rails and often violate an

insanely dilatory design.

If Beginner’s Guide is a game, it is arguably a queer one in

the most general meaning of the word, an exploration of

strange or deviant forms of play. Whoever or whatever he is,

Coda is less game designer than conceptual artist. His levels

carry absurd subtitles like “The Streetwise Fool,” “Pornstars

Die Too,” and “Items You Love at Members-Only Prices.” Coda

appears to be a latter-day surrealist. His games subvert

rational thought, substituting the inconsistent, associative

flow of dreams. Many of the chapters feel like transcriptions

of recurring nightmares—facing an audience across the

footlights, or a lecture hall backed by a devouring black hole

(been there), or a house with an endless cycle of cleaning

chores (there also). Images of prisons, real and symbolic,

occur with increasing frequency as the tour goes on.

There is also a sense in which Beginner’s Guide is literally

queer, or at least homo-antisocial. It is, after all, about the

intense and ultimately toxic affection of one man for

another. No sexual relationship is implied, and there seems

no need to imagine one, but in Davey’s account, which

dominates until the final chapter, there is certainly intimacy.

Davey cares deeply about his friend, whom he sees spiraling

into a crippling depression. Coda’s feelings are harder to

describe, but in the early years, at least he seems willing to

share his dream-games with Davey. In chapter 7, Coda

pranks Davey with a zip file said to contain the ultimate

game but which consists entirely of unopenable boxes—

woebegone fan that he is, Davey tries each one. Even if it is

actually the song of a divided self, the work deploys a fiction

of relationship. We remember Ruberg’s gloss of Portal as the

story of a woman wandering through another woman’s body

(Ruberg 23). By analogy, Beginner’s Guide shows us one

man interfering with another man’s imagination.

This recognition provides another reason to set Beginner’s

Guide apart from other works, even within the decidedly

offbeat family of walking simulators. The work is not just

queer but “weird” in the strict sense of the word: subject to

irrational or inexplicable influences. Beginner’s Guide is

haunted. We could speak literally of Davey as an uncanny

presence in Coda’s games or vice versa, but there is also a

ghostly influence from outside of the work. In 1962, Vladimir

Nabokov published Pale Fire, a novel whose story unfolds

through a series of annotations by a Russian émigré critic,

Charles Kinbote, written into the manuscript of a poem by a

recently deceased American writer, John Shade (Nabokov).5

Kinbote is an iconic example of an unreliable narrator, a

literary stalker who twists the dead man’s poem around his

personal delusions. One of the first scholars to explore the

Nabokovian resonance, Berkan Şimşek, describes the novel

as “a beginner’s guide to Beginner’s Guide” (Şimşek). There

are very suggestive echoes—the parasitic pseudofriendship

between artist and critic; misappropriation of an artwork;

gradual exposure of the commentator’s tampering with the

work he describes. There are also important differences

between the two stories. Kinbote is a madman who remains

entirely within the grip of his delusions; Davey undergoes a

crisis of recognition and achieves something like an

epiphany. There are reasons to suspect Kinbote may have

murdered Shade; all we have in Beginner’s Guide is a very

bitter breakup. Above all, there are no overt connections

between the two works, no allusions or intertextual

references, no clear reason to suspect Wreden has read Pale

Fire.

Whatever its resonances, the tension between Davey and

Coda defines the work’s descending narrative arc. At the

outset, Davey tells us Coda has withdrawn from the game

world. By publicizing Coda’s genius, Davey hopes to

encourage his friend to return to his art. As the tour of

Coda’s games proceeds, however, Davey’s intrusions

become more extensive and frequent and his commentary

increasingly negative. Chapter 7 alludes to a debate

between Davey and Coda over whether games should be

playable. In chapter 9 (“Escape”), Davey warns that “this

one is tough” and notes that Coda appears to be

“unraveling” because he “lacks a voice to tell himself when

enough is enough.” In chapter 12 (“Theater”), Davey says

Coda is “beginning to shut down,” as iron bars repeatedly

slam into the ground behind us. The text option that leads to

the solution in chapter 12 (“Mobius”) reads, “I can’t keep

making these.” After this, Coda’s supposed breakdown—or

the demise of his friendship with Davey—proceeds to a

climax. Chapter 14 (“Island”) runs through a series of

bewilderingly evocative dream images, ending with a

fleeting glimpse of a naked, weeping figure glimpsed

through prison bars. In chapter 15 (“Machine”), we play first

as an interrogator putting hard questions to a machine that

has stopped working. Eventually, we acquire a gun, which

we can turn on an image of the machine. As its surface flies

away, we see bits of computer code beneath.

Chapter 16 (“The Tower”) is the last in the dated

sequence. It is a “cold” level, Davey says. He tells us the

game seems to despise its player. Reflecting on his attempt

to celebrate meaning in Coda’s games, he confesses, “I feel

like I failed,” and “I don’t know this person.” Crucially, Davey

also reveals that he has made unannounced modifications to

some of the levels and that bringing Coda’s games to public

attention has brought him fame and fulfillment. Finally, after

ascending a series of twisty passages to the top of the tower,

we enter a gallery space. In the display panels are messages

from Coda to Davey accusing him of even deeper intrusion

into his designs. Davey has added the lampposts we have

seen in various levels, where they are claimed as evidence

of Coda’s interest in coherent play. Coda speculates that he

has added solutions to some of his games under Davey’s

influence. Above all, he indicts Davey for making his games

public without his permission—in effect, stealing his work.

He asks that Davey have nothing further to do with him:

“When I am around you, I feel physically ill.”

At this point, the game’s central fiction collapses. Chapter

16 is followed by an epilogue whose status is eminently

questionable. All the previous Coda games have dates of

composition. The epilogue has none. It looks like another of

Coda’s compositions, but the link has been severed. Who

dreamed this final dream, Davey or Coda? We cannot know

who these figures are to us now or if they were ever real.

Davey’s narration continues haltingly as we move through

the first of several dream transitions: railway station, tracks,

great house, museum, salt mine, station/museum again,

finally into something that may be a sculpture garden or a

set of ruins. Davey is with us at the outset, talking more to

himself than to the player (“solution, solution, solution”).

Eventually, he gives up.

Coda’s revulsion has shown Davey the awful depth of his

vanity, of his need for “more, more” doses of “external

validation.” He realizes he has misunderstood Coda: “Maybe

he just likes making prisons.” He apologizes for abandoning

the player—“I know I said I would be there to walk you

through this”—but he has work to do now, presumably the

beginning of a new art no longer dependent on externalities.

He signs off abruptly, leaving us alone to make our way

through a final set of passages to something we have seen

before: the energy beam from chapter 1. When we stepped

into the earlier instance, we found ourselves transported (in

what Davey called a “glitch”) through the ceiling of the

level, allowing us to look down on the maze we had just

traversed. Stepping into the final beam has the same effect,

though the vast scale of the maze we rise above suggests a

city, a continent, or a planet—also, strangely, the loops and

whorls of a fingerprint. Above us is a starry cosmos. The

screen goes black.

But the game is not quite over, at least as we understand

it. As is often the case in ambitious games, there is a song to

accompany the credit roll. The singer is the Canadian

vocalist Halina Heron. Music and lyrics are by Ryan Roth:

Turn back

Turn back from this cave

You said “let me prove that I’m brave,

Let me keep going.”

But the cave goes for miles

And miles and miles

And you’re so tired

But I know that you’re strong

So turn back,

Turn ba-a-ack.

Strictly speaking, a song over credits is paratextual. We

are not obligated to consider it part of the game’s main

business. However, after Coulton’s incisive anthems for

Portal and Portal 2, closing-credits songs have become more

salient, particularly in Valve productions. There is good

reason to suppose that, like “Still Alive” and “Want You

Gone,” the final song in Beginner’s Guide was commissioned

for the project. Beginner’s Guide is dedicated “to R,” who

could be the writer of the song, Wreden’s sometime

collaborator and soundman Ryan Roth. Though the

gameplay is over when we hear it, Roth’s song needs to be

considered in any attempt to understand the work—which is,

after all, as much video (in this case, music video) as game.

Ever since Plato, caves have been associated in the

scholarly mind with allegory. In Gamer Theory, McKenzie

Wark restyles Plato’s theater of sensual illusion into a game

arcade. This imagined space summarizes the all-enclosing

episteme of digital gaming (Wark 2). Perhaps this is the

forbidden zone we are called on to reject. At the same time,

sticking more closely to the terms of the Davey-Coda story

suggests another interpretation. The cave might stand for

the artistic catastrophe these two figures represent, the

interminable contest between fame-seeking, public-facing

expression (Davey) and an absolute formalism (Coda) that

doesn’t especially care if its prison-games can be played.6 In

this sense, the turn back is not a renunciation of gaming per

se—though it comes at the end of an artwork that is not-

quite-not a game—but perhaps a turn toward a better-

conceived ludic future.

Maybe. The next offering by Wreden and Roth, Absolutely:

A True Crime Story, does not seem especially promising in

this regard (Wreden and Roth). Built in RPG Maker, the game

is an ostensible “deconstruction” (Wreden’s word) of

Japanese role-playing games from the eighties and nineties.

For some reason, it features a protagonist named Keanu

Reeves, whom the player maneuvers around pixelated

streets to prove he is not a serial stabber—unless we decide

he is. Depending on our menu selections, he may also hand

out dime bags of “the good stuff.” This game seems less

oriented toward a future aesthetic than toward the campy

currency of games like Cry$tal Warrior Ke$ha—which have

their virtues, though they hardly renounce external

validation. As one reviewer noted, “For a meaningless

parody project, Absolutely: A True Crime Story does a great

job of showing just how compelling purposelessness [sic]

referentiality can be” (Gach).

Perhaps Wreden’s own turn back is not complete, or the

maneuver may be more complicated than the song leads us

to believe. There could be yet more moves in this dance—at

this writing, Wreden is advertising for collaborators on

another major project. Wark also imagines a turn away from

the cave of gamespace, but conceptual dervish that she is,

she continues the spin until she comes full circle, once more

facing the cave: “The gamer arrives at the beginnings of a

reflective life, a gamer theory, by stepping out of The Cave—

and returning to it. . . . If the gamer is to hold gamespace to

account in terms of something other than itself, it might not

be that mere shadow of a shadow of the real, murky,

formless that lurks like a residue in the corners. It might

instead be the game proper, as it is played in The Cave. . . .

The game shadows the real form of the algorithm” (Wark

19).

Stepping back into the cave is the work of “gamer theory,”

which (as we hope this book demonstrates) involves as

much playful practice as intellectual speculation. This

theory-at-work asks for an understanding of the formal

structures that underlie games: algorithms as well as the

cultural logics, which Wark calls “allegorithms,” in which

these forms participate. In its most powerful form, we find

gamer theory not in scholarly books but in games intended

for experimental or deviant/devious play. Twine has been an

important platform for efforts of this kind, and so it is to

Twine games we make our way at last.

Ends of the Beginning

Updating Wark with the insights of Ruberg, Boluk, and

Lemieux, we might say there are two possible avenues for

allegorithmic criticism, or the therapeutic queering of

games. One approach comes through theme or content:

exploring divergent characters, settings, and situations. The

thematic side of our critical moment is well represented in

Twine games. Works like D. Squinkifer’s Quing’s Quest VII,

discussed at length earlier, and Anthropy’s Hunt for the Gay

Planet (Anthropy, “Hunt”) come at heteronormativity in

game culture from the perspective of gay, trans, and gender-

fluid characters. Porpentine’s Ultra Business Tycoon III

(Porpentine), Tom McHenry’s Tonight Dies the Moon

(McHenry), and Kris Ligman’s You Are Jeff Bezos (Ligman,

“You Are Jeff Bezos”) satirize the obscenities of

contemporary capitalism and the neoliberal orthodoxies of

digital play. As Twine writers turn their attention to

assumptions and operations of gameplay—the point where

allegorithm meets algorithm—a second front of resistance

opens.

This approach reinterprets games and play structurally,

often at the level of basic player actions or game mechanics.

The mechanics of intimacy discussed in earlier chapters

present an opening to this strategy. Some years back, a

Twine creator called neongrey pushed intimate mechanics

across the species line in Cat Petting Simulator 2014

(neongrey). We have already noted Porpentine’s recruitment

of the player’s body as a writing surface in With Those We

Love Alive. Neongrey extends this embodied aesthetic to the

whole mammalian family. Petting a cat or some other

friendly, furry creature reactivates primate grooming

instincts lost long ago by naked apes. For humans not

prevented by allergies or other conditions, petting can be a

relaxing, centering, life-affirming experience. (Cats seem to

like it too, though generally on their terms.) Until the arrival

of something like William Gibson’s “simstim,” technologies

can only represent this experience through images or

symbols (Gibson). In conventional 3-D games, it would be a

matter of a button-press and a resulting set of animations,

maybe with a bass purr on the soundtrack. On a text-based

platform like Twine, the representation can go deeper—not

to mention more broadly in its implications.

In 2018 Ligman adapted neongrey’s concept and crossed

it with their own satiric agenda in Pet Cats, Save the World

(Ligman, “Pet Cats”). The title itself could be considered as

critique. Here is a game that calls out its play mechanic in

its name. That move might not be original—the Grand Theft

Auto series does something similar—but it prompts an

interesting question: What if more games were named for

their basic activities? The answer suggests GameStop

shelves filled with seventies-style generic packaging

sporting titles like Shoot Shoot and Get Shot XXVII, Mutilate

Undead Corpses LXV, and Jump Scare 4000. If nothing else,

Ligman’s forthright title nicely frames player expectations:

making some cats happy will adjust the moral arc of the

universe. Here are three passages in sequence from the

game:

You take a sip of your drink and settle into your seat,

allowing the delicious roasted warmth [of your favorite

coffee] to spread through you.

After a moment, you feel something brushing against

your ankle. You look down to find that a long-haired

smoky kitten of about 12 weeks has wandered over and

rubbed against your leg.

Pet the cat

You reach down with your free hand and gently stroke a

few fingers over the kitten’s back.

ICE has been dismantled.

Pet the cat again

The kitten rolls over onto their side for you, exposing

their soft belly. You pet them while deftly avoiding the

absolute terror zone.

In that same moment, a beloved old friend you’ve lost

touch with suddenly texts you.

Pet another cat (Ligman, “Pet Cats”)

And so forth, wonderfully. There are enough complications

to keep the game interesting. Failing to optimize your

textual choices for feline desire can result in a neutral

ending; persist in petting against the grain and you can find

yourself mauled and bitten at the bad end of the story.

However, it is easy enough to reach the good end: a

peaceful nap for you and your companion, with the state of

the US government, the entertainment industry, and your

character’s finances much improved. Neongrey’s earlier

game became a refuge for people reeling from Gamergate,

Brexit, and the 2016 US election. Ligman’s satiric variation

improves those psychic defenses.

Though in some ways just a modestly clever turn on a

charming concept, Pet Cats, Save the World engages

critically with game culture. Like neongrey’s simulator, it

explores an important alternative territory of desire, if not

gender-queer then something like species-quaint.7 In

making this turn, the game attacks another idol of game

culture, the fixation on epic or operatic narrative. Bogost has

complained that so many games involve huge, existential

threats to humanity and/or the universe, wondering why

there are not more games about quiet, ordinary human

experience (Bogost 18). Pet Cats answers this call with its

own mechanic of intimacy, but Ligman’s topical update of

the earlier game adds an ironic spin. We indeed save the

world, not with brutal heroics but through simple, animal

bliss. Yet for all its undeniable delight, there is something

bittersweet about this story. We may play ourselves into the

ultimate catnap, but in real life, we will awaken to a broken

universe where the effect of petting cats is only locally

magical. Sadly, the most likely word after wish fulfillment is

usually fantasy.

To fully understand Twine in its critical moment, we need

to consider a game that reverses the polarity of desire in

Ligman’s sad, sweet ode to joy—a game that is in many

ways a mirror image of his invention. This is Anna

Anthropy’s Queers in Love at the End of the World

(Anthropy, “Queers”). Where Pet Cats offers instant

gratification, this game inflicts equally swift and assured

loss. In place of wish fulfillment, it gives us a blank but no

less hyperreal apocalypse. In terms of its brief, broken

diegesis, it is not a beginner’s guide but a Dies Irae or hymn

of endings. Yet this game is also a remarkably clear response

to its critical moment. While it may not deliver the pleasures

of a warm body—this is precisely what the game denies us—

Queers in Love explains what it means to turn back, not so

much from the cave of aesthetic crisis but from the horror of

an impending future. In this respect, it may have its own

strange message of difference, struggle, and hope.

Love and Permadeath

Electronic text replaces itself many times a second.

Everything is wiped away and replaced either with the same

screen state or a different one. Through its pattern of action

and response inherited from both interactive fiction and

hypertext, Twine invites both use and abuse of this effect. At

its root, a digital computer is a logic processor, an adding

machine—and a clock. Those who balk at identifying text-

based works as video games because they generally lack

graphics might remember that video, like cinema, is a

technology of simulated motion. Motion implies time. As

Bogost and Montfort showed in Racing the Beam, every

video game is on the clock (Montfort and Bogost). This

includes games of electronic text. McDaid’s delta-t’s turn the

time. Ligman’s enchanting cats change the world, averting

an apocalypse. Other works, however, take apocalypse by

the horns. In Pierre Chevalier’s Destroy / Wait the player is

given those twin options with a series of objects: cities,

trees, love (Chevalier). Choosing wait temporizes, extending

the narrative. Destroy iterates the nightmare of history—and

this option always comes at the end of each chain of

evasion. The dark fatalism of that game is not the last word

in this line, however. Queers in Love spares us the waiting.

Queers in Love at the End of the World plays with time

across two registers. As its title indicates, it is set in an End

Times where we are doomed to read a fatal sentence:

“Everything is wiped away” (Anthropy, “Queers”). The

nature of the apocalypse is never spelled out—not that we

need it to be. Our time is filled with threats—as promised,

we’ve come back to crisis in the end. Some of us live in the

knowledge that the virus now rampant will likely kill us, and

people we love, if we cannot avoid infection. Other agencies

of doom are easy enough to imagine: climate convulsion,

fascist holocaust, nuclear war—or perhaps, to return to

fiction, just writerly imperative, driven by the sense that this

world can’t last.

If one hand of Anthropy’s clock sums up millennia of

human history, the second hand is just that: a counter that

works through a ten-second interval, graphically depicted as

a closing circle inside which we see how little time we have

left. This is a text game that diabolically permits almost no

time for reading, an engine of frustration and distraction.

Long ago, somewhere in Anna Anthropy’s early childhood,

this writer produced a hypertext fiction called Hegirascope

(Moulthrop, “Hegirascope”), which gives readers thirty

seconds to select an outbound link before it chooses for

them. At its debut, Michael Joyce called this work “the

hypertext that reads itself” (Joyce). By analogy, Queers in

Love would be the hypertext that withholds itself, even more

steadfastly refusing our desire to read, among other desires.

It gives us a mechanic not of intimacy but of stymied

gratification—specifically so because the story it lays out

describes desperate passion: “In the end, like you always

said, it’s just the two of you together. You have ten seconds,

but there’s so much you want to do: kiss her, hold her, take

her hand, tell her.”

Each of the verbs is hyperlinked, forming a fourfold gate

that promises further development of this poignant scene.

Here is one way the story can unfold:

[2—take]

You take her hand in yours, giving it a squeeze.

Look into her eyes.

Kiss her.

Put your hand up her skirt,

Just hold her hand.

[3—Just hold her hand]

Your fingers twine between hers. After all the forces that

tried to keep you and her apart, maybe just holding her

hand is enough.

[4a—twine]

What a powerful form of expression.

[4b—trying again, this time taking the link on “enough”]

Maybe it’s enough to know that they lost.

[5—No onward link; time runs out]

Everything is wiped away.

That final phrase is both diegetic and procedural or

ludonarrative: it announces the erasure of the lovers and

their world and at the same time a clearing of the textual

record. The final act in this game is permadeath, a halting

state that erases all traces of previous progress (Juul 86).8

However, the fatal passage includes two links, “Afterword”

and “Restart.” The first leads to a final statement, closing off

the game. The other offers a fresh try from the initial

passage (“In the end . . .”). In the record mentioned earlier,

the fatal passage comes after we have completed the

narrative line—twice actually, as we explore both branches

from the third passage. As we will explain later, this reading

was not produced entirely within the game. The wiping-away

passage will appear whenever the ten-second timer runs

out. In actual gameplay, this is likely to happen before the

player reaches the end of even a four-passage story line, and

some lines are longer. Thus until patience gives out, players

are likely to take the restart option multiple times,

reentering the hypertextual maze in an attempt to retrace

previous steps.

Ruberg and Claudia Lo, who each read Queers in Love with

notable insight, de-emphasize the deathwardness of the

narrative, legitimately concentrating on the larger,

processual aspects of play experience. For Ruberg, the game

exemplifies the queering of “chrononormative” in-game

death, a concept they call “permalife” (Ruberg). Lo makes a

revealing comparison between Anthropy’s game and so-

called slow cinema:

Expressing something as simple as recalling several

memories at once is a complicated affair that requires at

least four separate playthroughs. The ten-second limit

actually serves to stretch out time rather than compress

it. Like the lingering camera of slow cinema, the game

spins out time in an indulgent manner. Slow cinema

focuses on the unbelabored body, and its gaming

counterpart is the unresponsive body incapable of

acting quickly enough, or drastically enough, to satisfy

the player. To know what is happening, the player must

put in the work of reading, remembering, and racing

against the timer. If slow cinema redeploys boredom in

order to draw attention to “that genre’s insistent

disarticulation of the body onscreen from the body

offscreen,” then Queers redeploys panic in a similar way.

In short, the panic and anxiety of the player is

contrasted with the calm certainty of their character. (Lo

190)9

Lo’s reading is remarkable in several ways. She

understands hypertextual multiplicity with a clarity that has

eluded older critics. Bringing in the discourse of

embodiment from slow-cinema theory once again

illuminates the mechanics of intimacy. She also suggests,

importantly, the potential of this game to deconstruct its

form and medium.

We will work toward a similar end with perhaps a bit more

emphasis on the discontinuity of the action, in contrast to its

(quite real) para-cinematics. We take Lo’s point about

embodiment, though we will contextualize it differently.

Given the likelihood of repetition, we describe the fatalities

of Queers in Love as little permadeaths, after the French

metaphor for sexual ecstasy. This suggestion eroticizes play

and reading, but Queers in Love is, after all, a work of

disrupted erotic fiction—many traversals are considerably

more explicit than the one given earlier. As the title

announces, the desire in play here is specifically queer. We

can take this marking in its biopolitical sense, noting how

the game’s second-person address interpellates the player

as someone who desires a queer partner. Anthropy’s use of

she/her pronouns for the lover is interesting, as it throws

interpretive smoke at those still indoctrinated by patriarchy,

where the feminine object may look deceptively like the

default of straight, male poets. That history has no purchase

here. Straight people must imagine themselves as lesbian—

or better, recognize that gender reference and amatory

choice are no longer governed by binaries.

While its grand themes may be love and loss, along the

way, Queers in Love works through frustration and

satisfaction of desire. As Hegirascope tried to do in its day,

Queers in Love interrogates an ever-accelerating attention

economy. Any simple transcript of the work will fail to

capture its dynamic effects—something Ruberg and Lo also

make clear. As we have noted, the representation of game

narrative shown earlier does not record a single,

uninterrupted play session. Though it may look like what

Montfort calls a “traversal,” a completed run through an

interactive fiction, what you see here only simulates such a

procedure (Montfort 32).

To reach almost any conclusion, players will most likely

finesse or bypass the game’s primary rules of play. In the

case of the pseudotraversal, we reached the end of the story

line by repeatedly restarting the game and taking

screenshots of successive passages. Players with quicker

hands and eyes might manage without such maneuvers,

effectively speed-running the game; though, given the strict

economy of attention, this style of play must limit

comprehension. Playing through four passages in ten

seconds leaves 2.5 seconds for each—plenty of time to read

a quick sentence or phrase, but probably not enough for a

reflective choice among the four links in the second passage

or even the dual set in the third.

With this queering of play, Anthropy brings together the

discourses of ludus and eros. Reading about acts of desire

makes us desire to keep reading, holding to that middle

state of narrative arousal or hypertextual possibility from

which the circling clock inexorably excludes us. We can refer

to Ruberg’s chrononormativity and the ways queer games

oppose it. Ruberg acknowledges the role of player death in

disrupting traits like singularity and authority, though with

appropriate skepticism, since player death can also be a

component of reactionary fun (Ruberg 206). Arguably,

Anthropy’s disruptive design, with its petite-permadeath,

falls squarely on the side of critique. This will be clear if we

align her work with the examples used earlier in discussing

chrononormativity: “Bandersnatch” and Russian Doll. The

former is a genuine, if flawed, game, the latter a closed,

gamelike arc converting game to ritual. We can try to fit

Queers in Love into this binary scheme, perhaps on the

game side, but despite its context (Anthropy wrote it for the

Ludum Dare game jam in 2013), Queers in Love really

belongs neither to the pole positions nor anywhere between.

It is neither game nor ritual but antigame.

It is worth considering the several ways in which this

description applies. First, while the possibility of winning is

not an absolute requirement for games (see Juul), its

absence is often significant. Diegetically, Queers in Love is

unwinnable. Even if you reach the end of a narrative line

before the clock winds down, you will meet the same fate as

more dilatory players: everything will be wiped away. For all

that the endings represent glorious Liebestode, they are

also, symbolically speaking, versions of the same event, the

great permadeath of “everything.” We could apply the same

analysis on the ludic side. Does winning mean optimal

performance, speed-running to the end of a narrative line

with only hasty glimpses of its contents? This would seem a

strange requirement for a text game. Or should we define

winning in completist terms as exploration of all possible

story lines, an anthology or autopsy of all the game’s

possibilities? This solution shows more respect for

Anthropy’s prose, but what about the gameplay?

It is tempting to label Queers in Love an antigame

because it is deliberately unplayable, designed to exhaust

conventional ludic engagement. In fact, though, this work

may be too playable. Wark at one point defines the goal of

gamer theory as “to play at play itself, but from within the

game” (Wark 019). She has in mind a turn back to the cave

of gamespace duly informed by allegorithmic insight. It is

possible to understand Anthropy’s game in these terms:

recognizing the game’s insanely apocalyptic time scheme,

we speed-run or screen-shoot to “play at play.” However,

there are other opinions on the playability of play. David

Myers, whose neoformalism contrasts sharply with Wark’s

approach, says this about the hierarchy of playful forms: “If

you play with a simulation, it becomes a game; if you play

with a game it becomes just play; and if you play with play—

well, you can’t play with play: play pwnz”10 (Myers 26;

emphasis in original). Play is an absolute; we can play at

playing (theory-play), but if we attempt a twist on play itself,

we find ourselves played.

Arguably both Queers in Love and Beginner’s Guide lie at

the far end of Myers’s second division. Beginning as

simulations (of apocalypse in the first instance, of a gamer’s

portfolio in the second), they run through the territory of

game, emerging into a liminal zone on the other side. They

are in a way two expressions of a similar artistic crisis. Both

share a sense of divided purpose, encapsulated in Wreden’s

Davey/Coda pairing. Davey is biographer and interpreter,

social animal and extrovert, seeker of human truths. The

Davey side of Queers in Love shows in its story lines the

doomed desires of the fated lovers. Coda is a maker of

impenetrable prisons and unwinnable games, an

uncompromising, hermetical formalist. The Coda aspect of

Queers in Love is its diabolical dynamic, the time-lock that

repeatedly slams down a barrier, sealing us out.

Crisis is decisive, transformative, a point of decision or

choice. Played to its logical and artistic conclusion, neither

work remains simply a game, but the ways they resolve their

crises are diametrically different. The ultimate guidance of

Beginner’s Guide is “turn back.” The work is only nominally

a game, using affordances of digital play mainly to advance

its underlying monologue. It has more than half collapsed

from game to gamelike arc, or from game to ritual. Queers in

Love, on the other hand, manipulates game mechanics so

radically that for many players, the experience transforms

into pure, subversive play. We jump out of the game and

play back against its structures.

In a way, Queers in Love also turns us back from the

endless cavern of game-simulation-play, but with an

important difference. In its queering of gameplay, this work

turns crucially from crisis to critical practice. Davey deserts

us in the cave, headed off to forge the uncreated conscience

of his art. The creator of Queers in Love makes no such

departure. She does not need to. Her work is already

intensely engaged with its moment. It is, after all, a

relentless deconstruction of apocalyptic thinking. To

understand Anthropy’s achievement, it is useful to slide

back down the crisis-banister of the previous century, back

to the heyday of TV’s Control Voice—though the testimony

we seek will come not from television but a visionary novel:

Taking and not giving back, demanding that

“productivity” and “earnings” keep on increasing with

time, the System remov[es] from the rest of the World

these vast quantities of energy to keep its own tiny

desperate fraction showing a profit: and not only most of

humanity—most of the World, animal, vegetable, and

mineral, is laid waste in the process. The System may or

may not understand that it’s only buying time. And that

time is an artificial resource to begin with, of no value to

anyone or anything but the System, which sooner or

later must crash to its death, when its addiction to

energy has become more than the rest of the World can

supply, dragging with it innocent souls all along the

chain of life. Living inside the System is like riding

across the country in a bus driven by a maniac bent on

suicide. . . . He is waiting beside the door of the bus in

his pressed uniform. . . . As he nods you by, you catch a

glimpse of his face, his insane, committed eyes, and you

remember then, for a terrible few heartbeats, that of

course it will end for you all in blood, in shock, without

dignity—but there is meanwhile this trip to be on. . . .

Over your seat, where there ought to be an advertising

plaque, is instead a quote from Rilke: “Once, only

once . . .” One of Their favorite slogans. No return, no

salvation, no Cycle. (Pynchon 480)

These words were written between 1966 and 1971, on the

cusp of the first oil shock, though they track with depressing

accuracy our even later stage of capitalism and ecological

trauma. They come from a work of fiction, Gravity’s Rainbow,

that in some ways epitomizes the late-twentieth-century

counterculture, crying out for return, salvation, and Cycle

against extraction and dissipation. Like our later game-

fictions, the book was a crisis work, a push against artistic

limits. Its narrative famously collapses into fragmentation

and self-denial. It is also, in the root sense of the word, an

apocalypse or revelation, its final scene a vision of extinction

whose last word is replaced by a traumatic dash.

Despite the structural similarity of their abrupt endings,

there is a considerable difference between the novel and the

game. Pynchon’s bus rider will die in “blood, shock, without

dignity.” Anthropy elides agony in her erasures and in many

instances finishes her story lines with an affirmation: “When

she kisses you back, she’s telling you your needs are real.”

Or “So many people and institutions tried to pull you two

apart. They all failed.” Though in a millennial context,

they/them becomes an alternative pronoun choice,

Anthropy’s usage in this last case reminds us of the old

1960s Them, oppressors of Us, and thus of the fact that we

are still, in the new century, deeply concerned with systems.

Pynchon’s System—capitalized in every sense of the word—

appears as “a bus driven by a maniac bent on suicide.”

While we are still on that terrible trip in the new century, we

have access to other kinds of systems: computing machines,

platforms, networks, games.

The system of 2013 differs crucially from its counterpart in

1973. We may not own or control it in any ultimately

satisfying way, but we can at least try some strategic

interventions. Anthropy’s queer-critical perspective endows

her with the core wisdom of counterculture—namely, that

time is an artificial resource “of no value to anyone but the

System” (Pynchon). As Lo’s cinematic reading makes clear,

time is negotiable. Time is in play. Anthropy’s small-s system

—the queer loops of her Twining—values time in its own

nonnormative way. This new system is iterable: we can

restart the game. It is also permutable: we are invited to jam

or hack the game when it exceeds the bounds of play. With

whatever odds against success, we can even attempt to play

play itself. These ludic maneuvers amount to a major critical

achievement.

Queers in Love at the End of the World deconstructs

apocalypse, putting the terrible fatality of that all-too-

present event literally under erasure. Pynchon’s imperfect

sentence comes on the last page of a book. It delivers, even

as it fails to deliver, a final word. When “everything is wiped

away” on the self-replacing screen of a video game, there is

always the possibility of Cycle—sixty or so per second in fact

—of reboot, of return to the mischievous dominion of play.

We may yet be on that gas-guzzling bus of doom, its maniac

driver at the national wheel, but we dream of difference and

we have begun to express ourselves in the queer medium of

games. At the very least, we can take down that plaque

They hung over our seat. In place of “Once, only once,” we

can write—on our own flesh if need be—the graffito that is

Anna Anthropy’s afterword:

WHEN WE HAVE EACH OTHER WE HAVE EVERYTHING.

Works Cited

Anthropy, Anna. “Hunt for the Gay Planet.” Cambridge, MA:

Electronic Literature Organization, 2013.

https://collection.eliterature.org/3/work.html?

work=hunt-for-the-gay-planet.

———. “Queers in Love at the End of the World.” itch.io,

2013. https://w.itch.io/end-of-the-world.

Bogost, Ian. How to Do Things with Videogames. University

of Minnesota Press, 2011.

Boluk, Stephanie, and Patrick Lemieux. Metagaming:

Playing, Competing, Spectating, Cheating, Trading,

Making, and Breaking Videogames. University of

Minnesota Press, 2017.

Borges, Jorge Luis. Labyrinths: Selected Stories and Other

Writings. Translated by Donald Y. Yates. New Directions,

1962.

Brown v. Entertainment Merchants Association, 564 U.S. 786

(2011).

Chevalier, Pierre. Destroy / Wait. Lilinx, accessed June 2,

2020. http://lilinx.com/destroywait.

Elsaesser, Thomas. Puzzle Films: Complex Storytelling in

Contemporary Cinema. Blackwell, 2009.

Gach, Ethan. “The Beginner’s Guide Creators’ New Game Is

about Keanu Reeves Stabbing People.” Kotaku,

November 28, 2017. https://kotaku.com/1820805627.

Gibson, William. Neuromancer. Bantam Spectra, 1984.

https://collection.eliterature.org/3/work.html?work=hunt-for-the-gay-planet
http://www.itch.io/
https://w.itch.io/end-of-the-world
http://lilinx.com/destroywait
https://kotaku.com/1820805627

Haraway, Donna J. Staying with the Trouble: Making Kin in

the Chthulucene. Duke University Press, 2016.

Headland, Leslie, Jamie Babbit, and Natasha Lyonne, dir.

Russian Doll. 2019. Netflix.

House, Ryan. “The Author Interface: Rethinking Authorship

through Ludoliterary Analysis of The Stanley Parable and

The Beginner’s Guide.” Paradoxa 29 (2017): 99–122.

Jones, Steven. The Emergence of the Digital Humanities.

Routledge, 2014.

Joyce, Michael. Private conversation. October 1995.

Juul, Jesper. The Art of Failure: An Essay on the Pain of

Playing Video Games. MIT Press, 2013.

Klimas, Chris. Twine Past, Present, Future. Cambridge, MA:

NarraScope, 2019.

Kubrick, Stanley, dir. Dr. Strangelove, or How I Learned to

Stop Worrying and Love the Bomb. 1964. MGM.

Levi-Strauss, Claude. Savage Mind. University of Chicago

Press, 1962.

Ligman, Kris. “Pet Cats, Save the World.” itch.io, 2018.

https://direkris.itch.io/pet-cats-save-the-world.

———. “You Are Jeff Bezos.” itch.io, 2018.

https://direkris.itch.io/you-are-jeff-bezos.

Lo, Claudia. “‘Everything Is Wiped Away’: Queer Temporality

in Queers in Love at the End of the World.” Camera

Obscura 32, no. 2 (2017): 185–92.

Malaby, Thomas. “Institutions in Play: Practices of

Legitimation in Games.” In Playful Participatory

Practices. Edited by P. Abend and V. Ossa. Springer,

2020, 15–30.

McHenry, Tom. Tonight Dies the Moon. Self-published, 2015.

https://tommchenry.itch.io/tonight-dies-the-moon.

Montfort, Nick. Twisty Little Passages: An Approach to

Interactive Fiction. MIT Press, 2003.

http://www.itch.io/
https://direkris.itch.io/pet-cats-save-the-world
http://www.itch.io/
https://direkris.itch.io/you-are-jeff-bezos
https://tommchenry.itch.io/tonight-dies-the-moon

Montfort, Nick, and Ian Bogost. Racing the Beam: The Atari

Video Computer System. MIT Press, 2009.

Moulthrop, Stuart. “Hegirascope 2.” New River 3 (1997).

http://www.cddc.vt.edu/journals/newriver/moulthrop/HG

S2/Hegirascope.html.

———. “‘Turn Back from This Cave’: The Weirdness of The

Beginner’s Guide.” Journal of Gaming and Virtual Worlds

12, no. 1 (2020): 91–103.

Myers, David. Play Redux: The Form of Computer Games.

University of Michigan Press, 2010.

Nabokov, Vladimir. Pale Fire. G. P. Putnam’s Sons, 1962.

neongrey. “Cat Petting Simulator 2014.” itch.io, 2014.

https://neongrey.itch.io/pet-that-cat.

Nolan, Christopher. Memento. 2000. Newmarket Films.

Pellegrini, Guido. “‘The Beginner’s Guide’: Confessions of a

Game Designer.” PopOptiq, accessed June 2, 2020.

https://www.popoptiq.com/the-beginner/.

Porpentine. Ultra Business Tycoon III. Self-published, 2013.

http://slimedaughter.com/games/twine/tycoon/.

Pynchon, Thomas. Gravity’s Rainbow. Penguin, 1995.

Ramis, Harold. Groundhog Day. 1993. Columbia Pictures.

Ruberg, Bo. “Permalife: Video Games and the Queerness of

Living.” Journal of Gaming and Virtual Worlds 9, no. 2

(2017): 159–73.

Schoonover, Karl. “Wastrels of Time: Slow Cinema’s Laboring

Body, the Political Spectator, and the Queer.”

Framework: The Journal of Cinema and Media 53, no. 1

(2012): 65–78.

Simon, Matt. “All This Chaos Might Be Giving You ‘Crisis

Fatigue.’” Wired, June 4, 2020.

https://www.wired.com/story/crisis-fatigue/.

Şimşek, Berkan. The Beginner’s Guide for Play Fire: The

Medium’s Effects on Fictional Works. Academia,

http://www.cddc.vt.edu/journals/newriver/moulthrop/HGS2/Hegirascope.html
http://www.itch.io/
https://neongrey.itch.io/pet-that-cat
https://www.popoptiq.com/the-beginner/
http://slimedaughter.com/games/twine/tycoon/
https://www.wired.com/story/crisis-fatigue/

accessed June 2, 2020.

https://www.academia.edu/34959760/The_Beginners_G

uide_for_Play_Fire_The_Mediums_Effects_on_Fictional_W

orks.

Slade, David. “Bandersnatch.” Black Mirror, 2018. Netflix.

Tykwer, Tom. Lola Rennt. 1998. Prokino Filmverlein.

Wark, McKenzie. Gamer Theory. Cambridge, MA: Harvard

University Press, 2007.

Whedon, Joss, and Drew Goddard. The Cabin in the Woods.

2012. Lionsgate.

Wikipedia. S.v. “The Outer Limits (1963 TV Series).”

Accessed June 2, 2020.

https://en.wikipedia.org/wiki/The_Outer_Limits_(1963_T

V_series).

Wreden, Davey. The Beginner’s Guide. Everything Unlimited,

2015.

Wreden, Davey, and William Pugh. The Stanley Parable.

Galactic Cafe, 2011.

Wreden, Davey, and Ryan Roth. Absolutely: A True Crime

Story. dualryan, 2017.

1 In a nice bit of just-in-time journalism as this chapter was nearing

completion, Wired posted a story titled “All This Chaos Might Be Giving You

‘Crisis Fatigue’” (Simon).

2 Thomas Malaby, theorist of play and my colleague at University of

Wisconsin–Milwaukee, discusses this insight from Lévi-Strauss in his article

“Institutions in Play,” to which I am indebted (Malaby).

3 As we have said previously, this question has become infected by

Gamergate and needs to be framed carefully, which I have tried to do in the

article on which this section is partly based. See Moulthrop, “Turn Back.”

4 Coda could be based on an actual person; Wreden has been coy on the

subject, leaving us free to speculate (see, e.g., Klepek). The name has the

appearance of a handle or nomme de logiciel—Coda, a coder. In music and

writing, a coda is a final supplement, bringing a work to completion.

https://www.academia.edu/34959760/The_Beginners_Guide_for_Play_Fire_The_Mediums_Effects_on_Fictional_Works
https://en.wikipedia.org/wiki/The_Outer_Limits_(1963_TV_series)

5 The echoes of Nabokov were first brought to this writer’s attention by

Nathan Humpal, metadata librarian at University of Wisconsin–Milwaukee

and game scholar nonpareil. Having made the connection himself, he found

confirmation in Guido Pellegrini’s “‘The Beginner’s Guide’: Confessions of a

Game Designer” (Pellegrini). I am also indebted to my student Ryan House,

whose article on Wreden introduced me to Beginner’s Guide (House).

6 In a very humble way, we modeled this dilemma in our indefensibly ableist

carousel game in chapter P-2, example 2.7.

7 Salter points out here the importance of games like Catz and Dogz in

establishing interspecies affection as a theme of play. The Pokémon

universe deserves mention also in this regard.

8 This account is basically accurate, though it elides some details. Once

“everything is wiped away,” the player is locked into the terminal passage.

Before this point, it is possible to use the browser “Back” button, making

previous states of the reading technically accessible. Thus a record of play

is indeed lost at the ending, constituting permadeath. While it remains,

however, the usefulness of this record is tenuous. Using the “Back” function

on any passage except the first or last spawns a new ten-second clock that

runs concurrently with the original. The resulting fragmentation of the

game’s time scheme is more likely to produce bewilderment than coherent

reading.

9 The included quotation is from Schoonover’s article on slow cinema

(Schoonover).

10 That last word is hopelessly infected by its origins in toxic gamer culture. I

quote it not for its ideology of dominance but because it marks in stark

linguistic terms the limits of theory.

CHAPTER P-5

Conceptual Twining

In our fifth practical chapter, we turn from the technical to

the conceptual. In previous practicals, we built up a

repertoire of capabilities. You learned to do increasingly

sophisticated things with Twine: linked storytelling, textual

variation, formulaic text generation, and inclusion of other

media. We experimented with Harlowe, SugarCube, and

JavaScript. This chapter, which will rely exclusively on

Chapbook, will mainly use coding techniques we have

already presented, so it serves at least partly as a capstone,

reviewing and consolidating the work so far. Our emphasis

here is on using Twine in the service of various schemes and

ideas—what we call conceptual Twining.

The word concept can be hard to define with precision and

easy to toss around loosely. “Reality—what a concept!” as

Robin Williams’s Mork used to say. For the purposes of this

chapter, concept refers to an expression or design that

operates simultaneously on two levels. One of these is direct

or literal. In our five examples, we will build more or less

familiar Twine texts: fragmentary stories, little games,

riddles. Aside from whatever dubious charm these texts may

have in themselves, they invite further reflection on Twine

and its uses and perhaps on stories, games, and language

generally.

◊ We continue the typographic conventions of earlier

practical chapters, where invitation/instructions to type

in code fragments are boxed and marked with the

symbol you see here. You can, of course, skip either the

typing or the intervening explanations, though, in a

chapter dedicated to concept, those explanatory bits

are especially important.

Supporting materials for this chapter can be found online

at https://github.com/AMSUCF/Twining. See our discussion

at the beginning of chapter P-1 about using the .html and

.txt files to follow along or adapt our code to your own

purposes.

Example 5.1: Labyrinth

This project has a history. In 1991, Stuart wrote Victory

Garden, a long-form hypertext fiction developed with an

authoring tool called Storyspace, which was then under

development by Jay David Bolter and Michael Joyce. In those

days, many fewer people knew about the internet (then

called “Internet” with a big I), and the World Wide Web was,

no kidding, an application program, what we would today

call a web browser—only nobody in those days ever said,

“the Web,” with or without capital letters. Like text

adventures a decade or so earlier, hypertext was a fresh

concept. No one knew exactly what could be done with it,

though a few people had ideas.

The conception for Victory Garden was a big, tangled mass

of stories intersecting at various points. This was by no

means an original invention, as anyone up on their George

Eliot, John Dos Passos, or Richard Linklater will tell you, but

its application to digital media up to then had belonged

mainly to parser-based games. With all respect to that form,

some of us, including Michael Joyce and Judy Malloy, wanted

to try something different—a story that would change each

https://github.com/AMSUCF/Twining

time you read it, as Michael said—shifting the stress from

game to story.

Given that emphasis, readers needed to enter the

narrative thicket as unpredictably as possible, but the early

version of Storyspace made this difficult—it had no capacity

to choose a passage at random. With randomness

unavailable, the author reckoned the next best thing might

be confusion, so he designed an elaborate set of passages

with bifold links—a verbal labyrinth—in which it was hoped

readers might productively wander toward the main events,

discovering various predefined ways to get there.

To make this process of discovery more meaningful, the

labyrinth asked participants to build a sentence one word or

phrase at a time. At each place in the story, readers chose

between two candidates for the next word in the sentence.

The succeeding place repeated the sentence as it currently

stood and either offered another pair of choices or came to a

conclusion. That conclusion was a complete sentence that

somehow stamped the reader’s ticket for the ride that

followed.

Three decades is a long time, in which interactive

storytelling has made considerable progress, but we think

the old labyrinth concept remains useful. Our first project in

this chapter implements the labyrinth in Twine.

◊ Start a Twine story, change the story format to

Chapbook if necessary, and give it any title you like,

though Labyrinth seems an obvious suggestion. Change

the name of the default first passage to “Origin” and

enter the following text:

In the

>[[green bag]]

>[[vicinity of metaphor]]

Close this passage and have a look at your structure view.

You’ll see two linked passages, both so far unwritten. We’ll

get to one of them shortly, but for the moment, a note about

those right angle brackets (greater-than signs) at the left of

each link. In Chapbook, these symbols identify a fork, a

choice of two or more options that are set off typographically

when the passage is displayed.

To keep this chapter from growing tedious, we’ll only

explore one branch from the initial prompt—only one course

of the labyrinth, in technical terms. You are free to develop

the rest of the maze in your own way. The online materials

include a completed version of this project with all

possibilities written out, and we’ll discuss a few before we’re

done. For the moment, let’s pursue the green bag.

◊ In the passage labeled “green bag,” type the

following:

In the green bag

>[[we found]]

>[[it was possible]]

As you can see, each phrase plausibly extends this rather

strange sentence, and at the start of each passage, we

display the sentence as currently composed. The fork

construction gives us another two links and another pair of

auto-generated passages. Like spectators at a magic show,

we applaud the Amazing Klimas every time this trick comes

off. We’ll go with the first one, “we found.”

◊ In the passage labeled “we found,” type the following:

In the green bag we found

>[[the recipe for Detroit]]

>[[a rich deposit of language]]

Once again, we have a fork and a pair of resulting

passages—though don’t worry, we’re nearly at the end of

this line. This time, we’ll choose the top bunk.

◊ In the passage labeled “the recipe for Detroit,” type

the following:

In the green bag we found the recipe for Detroit

What follows from this declaration is negotiable. We have

a suggestion, but you can do differently if you like. You’ll

note we haven’t added terminal punctuation to our nearly

finished sentence. You could put in a period and then write

more sentences to follow, making this the first full passage

of a branching story in prose. Something like this: “In the

green bag we found the recipe for Detroit. ‘Put that back this

instant!’ the Chief Investigator thundered. Which we did, but

not before committing the contents to memory.”

Links out of such a passage, or a different passage of your

own invention, would then be up to you. Before we wrap this

project up, we’ll mention a variant outcome that turns the

labyrinth concept to another purpose. What if the completed

sentence functions not as the first line of a story but as the

title of a poem? All the other possible outcomes from the

labyrinth might work likewise so that the word-maze would

function as a hypertextual framework for a collection of

poems. There’s a lovely coincidence here: in the print

tradition, such a collection is often called a chapbook. Here’s

our version of the recipe for Detroit:

cars the size of cars

implying

a continent of erasure

in the scattering of a people

plus two ideas,

unpromising,

and the given name of an advertised lawyer

featuring seven types of ambiguity,

overlooking a sunrise, and

one sad invention

with statistics,

disaggregated,

with a warm place to put the results.

Poem notwithstanding, here is the structure map of our

verbal maze:

Figure 23: Structure map of the Labyrinth project

As you can see, our labyrinth offers seven other sentence

trajectories:

In the green bag we found a rich deposit of language

In the green bag it was possible to understand

In the green bag it was possible at last to dance

In the vicinity of metaphor turn steadily inward till the

answers come

In the vicinity of metaphor turn steadily inward and

drive with your clothes off

In the vicinity of metaphor proceed with all possible

noise

In the vicinity of metaphor proceed with

encompassing joy

In the completed version, there’s a bit of free verse or

prose poetry at the end of each one. We have used this

labyrinthine model in various classes over the years, and our

students have come up with many interesting applications

of the stepwise-approach concept: as introductions for other

sorts of creative work, such as video or music; as a test of

attitudes or preferences; and of course, the inevitable

guessing game with one or more ostensibly right answers.

Every game a riddle, as we’ll see in our final example.

Meanwhile, let’s continue with overtures and opening acts.

Example 5.2: Spooky

This example bears a certain resemblance to the first in that

it, too, is designed as a preamble or entry point for further

fiction. This one works more in generalities or atmosphere

instead of the specificity of a title or first line. The concept

here is mood-setting, foreshadowing, or coalescence—a

distillation or inspiration of horror. In addition to reviewing

our familiar method of randomized text selection, this

example also demonstrates an approach to page layout that

works around some basic limitations of Chapbook. No art

without constraints.

The first step of this exercise can take place either in or

out of Twine, as you like. You need a list of words and

phrases that might either come from or be associated with a

tale of horror. If you’ve read Mary Shelley or Poe or Lovecraft

or played Call of Cthulhu, this will be a cinch. You could write

your list on paper, in a convenient word processing

document, or in a Twine passage. If you’re going to do the

last, perform this first step before writing.

◊ Open a new story and name it Spooky. If you’re using

the default passage to write your list, you may want to

name it “List.” Otherwise, name your first passage

“wordcloud.”

Write the list as previously described. The length is up

to you. A set of ten items is probably minimal; twenty-

five feels like more than enough.

As you have probably guessed, we’ll use that word list as a

database for random selection with the substitution

grammar technique we demonstrated in chapters P-2 and P-

3. It should be very familiar by now.

◊ If you didn’t designate or set up a passage called

“wordcloud” in the previous step, do that now. Open

that passage and type the following:

words: []

--

We’ve started a variables section for the “wordcloud”

passage, and in that section, we have declared an array

variable called “words.” Fill in (the technical term is

populate) that array with the words and phrases in your list,

being careful to enclose each one in single quotation marks,

separated by commas. There’s no comma following the last

item. For reference, here’s a selection from our version of the

array:

'groan','splatter','apparition','testament','Abigail','u

nliving','rupture','invasion','ovuloid','pulsing

mass','pullulating','unquiet','blood-

chilling','viscera','abomination','immense','beyond the

veil','partly decomposed','unnatural

fusion','funebrous','rotting fruit','spoiled

meat','shambling','shade','axehead','severing','unreason

ing','revenant','shrieks'

◊ Now we’ll add one more line to our variables section,

immediately below the definition of the array:

theLink: words[Math.floor(random.fraction*words.length)]

Be careful to leave in place the two dashes that close

the variables section.

You’ve seen this code before, but it’s sufficiently

complicated to make a review worthwhile. We’re declaring a

variable, theWord, to hold a selection from the words array.

Selections from an array are made by putting a number into

[square brackets]. The complicated expression inside the

brackets will be processed into a convenient number—you’ll

remember the process. The random.fraction expression is

from Chapbook. It returns a decimal number between zero

and one. Multiplying that number by the length of the array

gives us another decimal greater than zero. We use the floor

method of the JavaScript Math object to round this fraction

down to the nearest integer, which will be between zero and

the length of the array minus one. All arrays are numbered

beginning with zero, so the last item has a number one less

than the overall length. That’s what we mean by convenient

number.

◊ Now that we have theLink, let’s serve it up. After the

two dashes closing the variables section, type the

following:

{theLink}

This insert calls on Twine to display whatever value is

stored in “theLink.”

Make sure “wordcloud” is identified as the start point of

your story, then run or test your project several times. You

should see one word or phrase from your shop of horrors

every time you restart. Since nothing prevents repetition,

you may see the same selection on successive tests, so be

patient. The more words and phrases in your array, the lower

the chance any item will repeat—though larger sets increase

your exposure to mistyping.

In case of repetition, we generally try up to five times

before assuming an error. If you see nothing on-screen,

check to be sure you entered the line in the previous step

properly, using curly braces, not square brackets. Assuming

no mistake there, check the definition of your array. It’s very

easy to forget a quotation mark or comma.

This might be a good time to reread our section on

debugging in chapter P-2. If you’re struggling to find the

problem, copy the contents of your array to a temporary

passage and replace them with one or two test words. Once

you’ve found the bug, or if your code was fine in the first

place, you are ready to proceed.

This project is designed to do a bit more than display one

word or phrase at a time. If you look at the completed

version in the online materials, you’ll see it presents a

scattering of words across the screen, each a live link.

Clicking on any of the horror words refreshes the screen with

a new set of links, likely at different positions, the better to

emphasize the randomness of the effect.

Making all this happen requires more than what we

currently have in the “wordcloud” passage. Let’s start by

getting just one of these horrifying links to appear.

◊ In the text body of “wordcloud”—the part below the

double dashes—take out the line we added in the

previous step and replace it with this:

[[{theLink}->wordcloud]]

This line has a lot going on, typographically. It starts with

double square brackets, the fundamental Twine convention

for creating a hypertext link. Inside the brackets, there’s a

set of curly braces around the name of our random-phrase

variable, “theLink,” and then the familiar basic syntax of a

stylized arrow -> pointing to the destination passage

“wordcloud.” Yes, that means this link reloads the passage

that contains it, a trick we’ve seen previously.

Now it’s time to test or run. You should see a single word or

phrase from your array as before, but this time hyperlinked.

Clicking on the link should change what is displayed,

though remember our earlier advice about possible

repetition. If you find errors, use the procedure we

recommended to root them out. If all is well, proceed.

So far, we haven’t done anything to introduce the

scattered or floaty design aesthetic that appears in the

finished version. We’ll add those pieces now.

◊ Edit the text body of “wordcloud,” adding lines above

and below the single line that is there presently, ending

up with this:

<div style="text-align: 5em">

[[{theLink}->wordcloud]]

</div>

If what you just typed looks like part of a web page,

congratulations, you know something about HTML, the basic

construction kit of the World Wide Web. More people should

be like you. We’ve pointed out that Twine is made of

JavaScript, which is also part of web infrastructure. It’s the

scripting language that extends the functionality of web

pages, and Twine stories are delivered in that form. Just as

we can slip JavaScript expressions into Chapbook en

passant, we can also turn to HTML when needed. The first

HTML effect we use here is the line break tag
. Two of

these tags in sequence, as we have here, create a skipped

line or vertical space on the screen.

Next, we introduce a division, or DIV, using the paired tags

or container <div></div>. A DIV is a block-level element of

a web page—or in this case, Twine passage—one that is set

off from previous elements as paragraphs are. (We could also

have used the P or paragraph container here.) Notice the tag

that introduces our DIV. It contains some added information:

<div style='text-indent: 5em'>

This tag calls on the third major element of web

technology, CSS. That invocation happens in the expression

style=. A style sheet, technically an inline style sheet, in this

case, modifies the appearance of the DIV to which it is

attached. Here we call for that element to be indented five

ems from the left margin. If you’re a graphic designer or

typographer, you know an em is the width of an em dash,

like this one—which varies with the font family and size

being used. Web designers prefer these relative

measurements nowadays. For our purposes, let’s just say it’s

a unit of horizontal space. (It’s a game of ems, not inches.)

If you run and test now, you should see your randomly

selected link offset from both the top and left of the window.

This is part of the effect we’re aiming at, but the full concept

involves multiple, randomly chosen links, placed differently

on the screen at each reload. We can get this to happen with

the tools at our disposal—HTML, CSS, and Chapbook—but

we’ll need to blend them into a slightly more complicated

cocktail. Let’s handle the vertical spacing first, as that’s the

more familiar part of the recipe.

◊ Once again edit the text body of “wordcloud.” Replace

the pair of
 tags with what you see here. Leave

everything else alone.

{vSpace}

<div style="text-align: 5em">

[[{theLink}->wordcloud]]

</div>

You’ve just replaced those
 tags with a variable

that doesn’t yet exist, so let’s take care of that. In your

variables section, below the line that defines theLink,

add the following:

breakers: ['
','

','

']

vSpace:

breakers[Math.floor(random.fraction*breakers.length)]

The breakers array contains three collections of

tags, which when applied will set our DIV at variable

distances from any element above it or from the top of the

screen. The vSpace variable contains one of these

collections (or strings). If you test your project at this point,

you should see the randomized link appearing at a variety of

vertical positions.

We could use the same array-selector strategy for the

initial DIV tag, using different values for the em spacing, but

this would involve a whole lot of repetitive typing. The only

thing we really need to change is the number that precedes

“em.” We achieve this effect by using a variable for vertical

spacing and using the Chapbook random function when we

generate that variable. Here’s the way it works:

◊ In the variables section of “wordcloud,” below the

material you added in the previous step, type in the

following:

hSpace: "<div style='text-indent:" + random.d10 + "em'>"

Pay superclose attention to the placement of single and

double quotation marks in this line—we need to use both.

We take the familiar inline style sheet and cut it apart where

the number occurs. Instead of that number, we insert the

expression random.d10, which generates an integer

between 1 and 10, inclusive. Notice we need the string ‘em’

and the closing angle bracket at the end. All this is enclosed

in a set of double quotation marks because it is a string, a

sequence of words and numbers treated as text. When we

invoke this string variable, it is added to the code of our

passage and treated by the browser as an HTML expression,

which is how browsers treat any text containing angle

brackets.

If you test your project now, your randomized link should

appear at unpredictable locations both horizontally and

vertically. At this point, we’ve built the core pieces of the

project, but there are still important elements missing. So

far, we only have one link in play, but we want several. We’ll

handle that feature next.

It might occur to you that all we need to do in order to

include more links is duplicate the code that brings in the

first link. That’s partly right, but we need to adjust things a

bit because of a certain feature of Chapbook. That story

format allows us to define variables only once, when the

passage loads into memory. So if we use our hSpace and

vSpace variables for additional links, they’ll have the same

vertical and horizontal offsets as the first one. That’s not

what we want. Here’s the work-around, beginning with the

vertical spacing:

◊ In the variables section of “wordcloud,” find the

section that handles vertical spacing. You can leave the

line that defines the breakers array as it is, but replace

the line that follows, the one that defines vSpace, with

the following:

vSpace1:

breakers[Math.floor(random.fraction*breakers.length)]

vSpace2:

breakers[Math.floor(random.fraction*breakers.length)]

vSpace3:

breakers[Math.floor(random.fraction*breakers.length)]

You can copy the original definition of vSpace and

paste it in three times to define its new companions. Be

sure to add the numerals that make these three

variables individual.

This new code creates a trio of variables, each with a

selection from the breakers array. Two or more of them may

have the same selection, but that’s not a problem for this

project. We only have room for a limited amount of vertical

spacing, anyway. Next, we’ll handle horizontal spacing:

◊ Replace the line that currently defines hSpace with

this set:

hSpace1: "<div style='text-indent:" + random.d10 +

"em'>"

hSpace2: "<div style='text-indent:" + random.d10 +

"em'>"

hSpace3: "<div style='text-indent:" + random.d10 +

"em'>"

Copying and pasting will work here as well, since the only

difference in these lines, as in the vertical spacing, is the

numeral that makes each horizontal spacer unique.

In order to support our scheme, we’ll also need three

servings of our link text. By now, the procedure should be

familiar:

◊ Replace the line that currently defines theLink with

this threesome:

theLink1:

words[Math.floor(random.fraction*words.length)]

theLink2:

words[Math.floor(random.fraction*words.length)]

theLink3:

words[Math.floor(random.fraction*words.length)]

Copying and pasting is fine, but once again, be sure

you’ve added the numbers to the variable names. No

other changes are necessary—we’re making three

unique selections from our words array, using the same

procedure each time, but with potentially a different

random selector.

Now we need to adjust the contents of the text body in

“wordcloud” to support three floating-horror links.

◊ Again, remember that we’re in the text body this time

and not the variables section. The code that currently

conjures up our solo link looks like this:

{vSpace}

{hSpace}

[[{theLink}->wordcloud]]

</div>

Veteran web coders may find this a bit disturbing

because having a closing tag like </div> without an

initial <div> tag is ordinarily an error. However, that

initial tag is loaded into the hSpace variable, so we’re

fine.

If we want three links, all we need to do is copy and

paste our link construction two times, making

necessary adjustments:

{vSpace1}

{hSpace1}

[[{theLink1}->wordcloud]]

</div>

{vSpace2}

{hSpace2}

[[{theLink2}->wordcloud]]

</div>

{vSpace3}

{hSpace3}

[[{theLink3}->wordcloud]]

</div>

Do not forget to change all three variable invocations—

for vertical spacing, horizontal spacing, and link text—

in each of the three segments. The numbers in the

variable names are crucial.

You can test at this point. You should see three live links,

randomly planted on your screen, in an arrangement that

changes each time you reload. Clicking any of the links will

cause a reload. If that’s what you’re seeing, you are ready to

proceed to the final stage of construction: offering the

reader a chance to leave the horrifying word cloud and enter

the story proper. We’ll specify that we may not make this

offer every time the passage loads, and if we do offer the

exit, we’ll do it only once per iteration. We’ll build these

features in four steps. The two in the middle are a bit

detailed, but the last is very simple, as is the first:

◊ Let’s add one final asset to our variables section. This

variable could be introduced anywhere in the section,

but we’ll put it below everything we currently have.

Add this line:

exitPos: random.d4

As you’ll remember, random.d4 returns a value of 1, 2,

3, or 4. We actually only need a range of 1 to 3, but that

would require a bit more tedious typing. Using the

virtual d4 slightly reduces the chances of our exit link

appearing, but this won’t be a problem.

If you want to improve the odds for the exit link, you

could use this instruction instead:

exitPos: Math.ceil(random.fraction*3)

The exitPos variable determines which of our three horror

links will be replaced by a link to the main story. Remember,

though, that we want the possibility of the escape link not

appearing in any given iteration. Doing that will involve one

last piece of detailed coding, described in our second step:

◊ In the main text body of the “wordcloud” passage,

find the first of the three link units. Delete it and

replace it with the following:

{vSpace1}

{hSpace1}

[if exitPos===1 && random.coinFlip]

[[Begin]]

[else]

[[{theLink1}->wordcloud]]

</div>

[continued]

The first two lines in this section are the same as in the

previous version—we’re still invoking the strings that create

randomized horizontal and vertical spacing. After that, there

are some changes. We introduce an if condition that makes

the display of our link to the “Begin” passage depend on two

factors: exitPos being 1, and the value of random.coinFlip

being true. There is a one in four chance of the former

condition (if we use d4) and a one in two chance of the

latter. That means a one in eight chance our first link will be

replaced with the story exit.

After the standard link to the “Begin” passage, there’s an

else statement, after which the rest of this code chunk is as

it was in the beginning, except for the [continued] statement

at the very end. This statement terminates the if/else logic

and lets us treat the next link segment independently.

You might want to test at this point. Keep trying until you

see your first link replaced by the link to “Begin.” If that

doesn’t happen after about ten attempts, you probably have

an error. Hopefully, this procedure will go fine, and you can

proceed to the third and penultimate step:

◊ Modify the remaining two link segments to have a

similar structure to the first, though remember to

change the crucial numbers—the value of exitPos and

the numbers of the spacer variables—as indicated.

Here’s what you should have:

{vSpace2}

{hSpace2}

[if exitPos===2 && random.coinFlip]

[[Begin]]

[else]

[[{theLink2}->wordcloud]]

</div>

[continued]

{vSpace3}

{hSpace3}

[if exitPos===3 && random.coinFlip]

[[Begin]]

[else]

[[{theLink3}->wordcloud]]

</div>

You don’t need to include [continued] after the third

option, as nothing follows it.

Now there’s just one easy thing to do, which we won’t

bother writing out as a formal instruction. Go back to your

structure map and find the new passage called “Begin.”

Write something unspeakably spooky there. For testing

purposes, you might also want a link back to “wordcloud.”

And so our maleficent mechanism is complete. On a

technical level, this project shows how to weave semi-

intricate cobwebs of code, grafting disembodied bits of

HTML into Chapbook with diabolical abandon. One code-

packed passage (“wordcloud”) can support endless cycles

and iterations or as many as your reader can stand.

Conceptually, this example builds on the tension between

anticipation and action—a main component of horror—or

between a fitful, recursive flow of possibilities and the

forward progress of conventional storytelling.

Like the labyrinth of our first example, the evocative links

of example 5.2 could be applied to other genres and

purposes besides the one suggested here. The links in our

example are based on a somewhat arbitrary collection of

words, but as we hinted, they might be drawn directly from

the text they precede. Readers in the waiting room would

thus encounter hints and teasers for what awaits beyond the

entry. Taking this concept further could bring us back to the

original motivation for the labyrinth in Victory Garden—

randomized beginnings. Suppose each of those brief

quotations from the work contained a live link to the

passage where its word or phrase occurs. In a sizeable work,

there could be a large constellation of starting points. If that

kind of sprawl is not desirable, various prefatory links might

cluster around a more limited number of options. The

alternation between link-scattering and reading ahead

might also be used between sections of a multipart work.

Possibilities abound. The horror . . .

Example 5.3: Active Measures

Let’s start this one with a disclaimer: we have nothing

against text adventures. Both authors of this book have

been significantly influenced by games of this kind, one of

us before the advent of computer graphics, the other

afterward. We belong to communities like ELO and IFTF,

where turn-based, procedural stories are treated with love

and respect. The Inform programming language, to which we

have frequently referred in this book, means much to us.

One of us, no kidding, has been known to dream in it.

However, as we pointed out all the way back in chapter P-

1, there are two ways to think about procedural storytelling.

One approach favors procedure, the other story. You will

recall we discussed contrasting ways to treat links in Twine,

either by separating them formally from the narrative, in the

manner of interactive fictions and game books, or by

planting the links in a single narrative stream, as in

hypertext fiction. The distinction is largely arbitrary, and

many writers do both, but this next exercise pits one mode

against the other. It’s a concept.

◊ Start a Twine story, remembering to use the Chapbook

story format, and call it Active Measures, or what you

will. Change the name of the default first passage to

“Action!” Yes, Twine allows exclamation points in

passage names, and you can name the passage

something else if you like, provided you make relevant

changes as we go. Enter the following text:

verbs: ['Take','Drop','Examine','Eat']

theVerb: verbs[Math.floor(random.fraction*verbs.length)]

--

Here it is again, our inevitable grammar of substitution. Do

we know how to do anything else with code? Maybe—see

the bonus practical chapter in the appendices. Do we want

to do anything else? Not all that much, apparently.

Note that we’re working on the variables section of our

passage, that’s what those two dashes on the final line

indicate. The topmost line of this code chunk declares an

array, which in this case is a comma-separated list of words

(strings) in a specific sequence. The second line defines a

variable called theVerb and assigns it a randomly chosen

item from the verbs array. But you knew that!

There’s quite a bit more to do with “Action!,” but we

should first say a few things about the design of this project.

The “Action!” passage will hold data and logic we’ll use to

generate randomized phrases on demand—again,

something we’ve done in many previous exercises. There will

be two other passages in this project, one calling back to

“Action!” in a self-perpetuating loop, and the other

representing the way out of that loop: the same pattern we

used in the previous example. We’ll come to these passages

eventually. Meanwhile, let’s build more of the “Action!”

passage. It’s pretty extensive.

◊ Enter three blank lines ahead of the double dashes.

Move your cursor up one line and type in the following.

There’s a lot of typing here. If you want to shorten any

of the arrays, feel free. You could also expand them

without causing any problems.

nouns: ['eyedropper','skillet','cleaning

robot','fishbowl','phrasebook']

theNoun: nouns[Math.floor(random.fraction*nouns.length)]

IVerbs:

['Jump','Cry','Scream','Wait','Pass','Breathe','Exist','

Persist','Think']

theIVerb:

IVerbs[Math.floor(random.fraction*IVerbs.length)]

directions:

['north','east','south','west','back','forward','up','do

wn','nowhere','anywhere','sideways','to pieces']

theDir:

directions[Math.floor(random.fraction*directions.length)

]

askTell: ['Ask','Tell','Notify','Enlighten','Inform']

theAskTell:

askTell[Math.floor(random.fraction*askTell.length)]

persons: ['Mr. Jones','Starbird','Flux

Man','Jimmy','Otto','Maisie','Hermione']

thePerson:

persons[Math.floor(random.fraction*persons.length)]

topics: ['astrometry','fine wines','outwitting the

Troll','contents of the box','the key','stuff']

theTopic:

topics[Math.floor(random.fraction*topics.length)]

As always, you do not need to put in these lines exactly as

they appear. You can (should!) substitute your own words in

any of these lists, provided yours are of the kind that is

called for—singular nouns in the nouns array, proper names

in the persons array, and so forth. As indicated, you can

delete or add items. Because we use the length parameter of

the array, you can change the size of the array without

breaking the code. Do be careful to use single quotes around

every word and make sure the commas go outside of the

quotation marks. In the selection lines, the ones that invoke

the Math object, pay close attention to the succession of

parentheses and square brackets.

You are building the raw materials for several generated

sentences or phrases. The next chunk of code contains the

templates for those phrases.

◊ Still within the “Action!” passage, below the last line

you typed before, enter the following:

phrase1: theVerb + ' the ' + theNoun

phrase2: theIVerb

phrase3: "Go " + theDir

phrase4: theAskTell + " " + thePerson + " about " +

theTopic

phrase5: "Give the " + theNoun + " to " + thePerson

phrase6: "Take the " + theNoun + " from " + thePerson

There are six variables, each containing a phrase

generated from the arrays and variables you previously

defined. As you can see, five of these phrases are multiword

combinations. Be careful to type spaces where they are

called for, around words like to and from. Notice that

phrase2 simply invokes the premade selection from IVerbs.

That’s because this phrase consists of a single word, an

intransitive verb like Jump or Wait.

That was quite a lot of detail, though we’re only about

halfway done with “Action!” Don’t worry, the rest of the

project is less verbose. After resting eyes, wrists, and fingers,

once more unto the breach.

◊ Still within the “Action!” passage, after the line that

defines phrase6, make a new line and type the

following:

theRoll: Math.ceil(random.fraction*6)

This line generates a random number between 1 and 6.

Chapbook offers a perfectly good way to do this—random.d6

—but we’ll eventually want to roll a seven-sided die, which

Chapbook does not provide for directly. That’s why we’re

using random.fraction rounded up with the JavaScript Math

object. Now one more push to finish the “Action!” passage.

◊ Find the double dashes that mark the end of your

variables section. If you inadvertently took them out at

some point, put them back. Below those dashes, type

the following:

[if theRoll===1]

[[{phrase1}->Scene]]

[if theRoll===2]

[[{phrase2}->Scene]]

[if theRoll===3]

[[{phrase3}->Scene]]

[if theRoll===4]

[[{phrase4}->Scene]]

[if theRoll===5]

[[{phrase5}->Scene]]

[if theRoll===6]

[[{phrase6}->Scene]]

If you can already tell what these lines do, congratulations

—you’re a Twine master! If they’re a mystery, read on. What

we have here is a sixfold chain of if conditions, tracking the

possible values of our virtual dice roll. You may recall that in

Chapbook, the if condition may be used only outside of the

variables section and only to control the display of text.

We’re meeting both requirements here, though the text

we’re displaying—contents of one of our phrase variables—

will show up within a passage other than the one we’re

working on here. Don’t freak, we’ll explain that in a bit.

Meanwhile, a bit more detail of the step you just

completed. The line following each of our if conditions

contains a hyperlink whose verbal content is one of our

variables. You saw this design pattern in the previous

example. Each of these links goes to the “Scene” passage.

It’s time to write that passage.

◊ The passage called “Scene” will be added to your

structure as soon as you close the “Action!” passage.

Open “Scene” and type what you see here:

{embed passage: 'Action!'}

{embed passage: 'Action!'}

{embed passage: 'Action!'}

{embed passage: 'Action!'}

Yes, it’s the same instruction four times, embedding four

instances of the “Action!” scene. Embedding opens or

activates the passage, so we get different content each time.

It’s as if we had a room containing doors that let us enter

varying versions of another room. If this idea isn’t working

for you, you’re not watching enough Doctor Who.

Science fiction aside, we can also explain this in terms of

programming. As we’ve seen, embedding is a superpowerful

technique that lets us keep all our gnarly code stuff in one

place, the better to refine it. If you’ve worked with object-

oriented programming, you’ll know the importance of

functions or methods, which are bits of code that can be

reused (or invoked) flexibly as a program operates. An

embedded, code-intensive passage does much the same

thing as a custom method in JavaScript or Objective C.

Chapbook is great for beginners but equally useful for more

ambitious coders—which you now are.

We’re almost ready to test our project, though we need

one slight change. By default, the passage marked as the

start of our story is “Action!” because it was created first.

While having an embedded passage so marked will not

cause your project to break, it also won’t put anything on

the screen. Select the “Scene” passage, hover your mouse

over it, and click on the three dots at the right of the pop-up,

which causes a menu to appear. Select “Start Story Here.”

Now play or test your story.

You should see four links, each displaying a phrase

composed by the generator code in “Action!” Click on any

link and the current view will refresh with four new links. So

far, all we have is another version of our text-generation

demos from chapter P-3 or example 5.2—though with

perhaps a twist on the content. However, we have one more

trick to add.

◊ Close the passage called “Scene” and reopen

“Action!” Find the line in the variables section that

defines theRoll. Change the 6 to a 7. You should have

this:

theRoll: Math.ceil(random.fraction*7)

This is a small change, but important. We’re now rolling a

(virtual) seven-sided die. Note our use of the ceil function to

round fraction to integer—this function rounds up to the

maximum value, eschewing zero. We’ll use this difference

for an important feature of the work.

◊ Right after the line you just worked on (the one

defining theRoll), add the following:

escapes: ['Refuse all further action','Prefer not

to','Declare an adventure strike','Stop suspending

disbelief','Stop putting up with this noise','Have about

enough of this']

theEscape:

escapes[Math.floor(random.fraction*escapes.length)]

This is one final array-and-selector combination,

allowing us to generate a phrase that will be uniquely

useful. Meanwhile, at the very bottom of “Action!,”

below the sixth if condition, add a seventh condition as

follows:

[if theRoll===7]

[[{theEscape}->Escape]]

We now have the possibility of throwing a lucky seven.

When that happens, the link that will come up in the

“Scene” passage will contain one of our “escape”

phrases, and it will be linked to a new passage called

“Escape.”

Close “Action!” and open that new passage. Type

anything you like there. We have:

And so our story begins for real.

You can test the project at this point. When “Scene” comes

up, you should see four links. There is a one in seven chance

one of these links will contain an “escape” phrase. Clicking

on a nonescape link refreshes “Scene” with four more links.

Technically speaking, you have just built a recursive

hypertext with the possibility of aleatory termination—look

at you! More to the point, you’ve participated, we’re

ashamed to admit, in a send-up of the adventure-game

idiom. All the nonescape options are based somewhat

loosely on the actions that may be taken in a text adventure.

“Take,” “Go,” “Ask/about”—even “Jump” and “Wait”—are

either valid or plausible verbs in systems like TADS or

Inform. If one were inclined to make fun of text adventures,

insinuating that true story is more like old-fashioned fiction,

this might be one way to do it. There’s your concept.

Whether this is something that needs to be done, we leave

to the reader’s judgment. If done at all, it must be with

affectionate understanding—sibling rivalry or something

equally childish. The next time someone shows us a text

adventure that makes fun of hypertext fiction, we promise to

smile. Yes, Sis, those links are as ridiculous as flared pants.

Of course, it is entirely possible to flip this binary script

and write a version of this concept where the real fun lies

with the action links—maybe they could do something other

than just refresh the screen. The conventional narrative in

this version might serve as the obstacle or distraction from

the proper story of player action.

Though this chapter is devoted more to concept than

technique, we can’t resist some technical reflection on the

exercise we’ve just completed. The “Action!” passage uses

code far less efficiently than would a comparable structure

in Harlowe or JavaScript. As we’ve seen in chapter P-3,

JavaScript permits the use of a structure called switch to

select one of several phrase templates on each run. Here we

have to generate all seven possibilities each time “Action!”

is embedded, or twenty-eight times every time “Scene” is

accessed.

Why don’t we care? Because we’re spoiled, twenty-first-

century code monkeys who casually toy with machines their

grandparents could barely imagine. For us, knocking

numbers around is cheap and easy. It’s worth remembering

that computation implies heat—every mathematical

operation uses energy—so if playing with Twine makes you

interested in learning more ambitious programming, be

advised that the world beyond the playground makes

harsher demands.

Example 5.4: The Tumblers, or a Tune

Out of Season

This project has two inspirations. One is Thomas Pynchon’s

attribution of “high magic to low puns” (Pynchon 95) The

other is Walt Kelly’s comic strip Pogo, in which we gamboled

through postwar America with the laid-back critters of

Okefenokee Swamp. Kelly also knew the power of puns: he

lampooned the corrosive Spiro T. Agnew as a snorting,

fuming “A. Gnu.” As we will see, he also had a certain way

with holiday songs:

Deck us all with Boston Charlie,

Walla Walla, Wash., an’ Kalamazoo!

Nora’s freezin’ on the trolley,

Swaller dollar cauliflower alley-garoo! (Kelly 9)

Seasonal mondegreenery1 will figure a bit later in our

project. First let’s consider the concept, which we admit has

more to do with hackery than even midrange magic. As in

previous examples, we’ll be introducing no new Twine

features, relying mainly on the cycling link modifier we used

in chapter P-3. Keeping that feature in mind, we start with

three recognitions:

1. A cycling link is much the same thing as a tumbler,

the numbered cylinder of a combination lock.

2. In the right context, numbers and words are

conveniently interchangeable.

3. A certain low pun comes to mind.

The mise-en-scène, or situational framing, is especially

important in this example. Let’s get to it.

◊ Start a new Twine story called anything you like—for

instance, Tumblers. Name the default first passage “A

Tune Out of Season.” In this passage, type the

following, or any variation you prefer:

Lunch with insufferable Uncle Buster in the Tumbolia

Room. You would do anything to escape. "Why was Ten

glancing so warily up the numberline?" the old man asks,

you suppose you should say rhetorically, though that's

far too nice a word. "Because . . . ?"

Do your best to stifle that groan if you know the punchline.

Yes, it’s an insufferable-uncle thing. It is also the absurd

structure on which we will build our not-so-high concept.

◊ Add a new paragraph to “A Tune Out of Season”:

Meanwhile, some conventioneers at the bar are attempting

a seasonal song, though it is the middle of {cycling

link for: 'month', choices: ['June', 'July', 'August']}.

They have some odd ideas about the lyrics:

We’ll get to those lyrics in a bit. First, a review of the

cycling link modifier. You’ll remember it designates a

variable—in this case, month—for which we supply choices

as a comma-separated list enclosed in square brackets. Yes,

that’s the same form used to define an array because the

option list of a cycling link is indeed an array. However,

instead of selecting from this array at random, which is our

usual method, we’ll let Twine do what it does with cycling

links, presenting them in sequence. Each time the player

clicks the linked month, it will move ahead to the next of the

three options, looping back to June from August. The

solution to this puzzle—don’t make us say it—consists of

three integers. We could offer all twelve months, but the

story says the song is out of season, so we’re using only the

summer months.

◊ Now let’s fill in what the chorus is singing in the next

room. This time we’ll use the full range of options:

"{cycling link for: 'song', choices: ['12 mummers

slumming', '11 typers griping', '10 Fords a-beeping', '9

maybes branching', '8 trades a-bilking', '7 swamps a-

brimming', '6 tweets a-braying', 'FIVE OLD SPRINGS!', '4

appalling nerds', '3 clenched pens', '2 hurtful shoves',

'AND A CARTRIDGE WITH A GAME FREE!']}."

Feel free to write your own variations. For the final line, we

considered “A SMART FRIDGE WITH SOME SPARE PEAS” and

in true Pogo idiom, “SOME CARTILAGE FOR YOUR TEARED

KNEE.” The words matter less than their ordinal position,

which is why our convention-goers are singing a sequential

carol at the wrong end of the calendar. By now, you may

know the final number in our virtual combination, though we

have one more alphanumeric trick to play:

◊ Add the following new paragraph:

To further unsettle your sanity, the folks at the next

table have started flinging breadsticks at one another.

They are about to proceed to the cutlery. "Let me put

this in a language you will understand," one of them is

saying: "{cycling link for: 'word', choices:

['MEIYOU','NE','NAY','NAE','IIYE','NON','NIX','NEM','NEI

N']}!"

You can have more or fewer options for word, but we’re

looking for a particular number, nein? With the final tumbler

in place, we need to make the combination testable.

◊ Add this link at the bottom of “A Tune Out of Season”:

[[Solution?]]

Close the passage and return to the structure map, where

you’ll find the new passage “Solution?” That’s where we’ll

check out the settings of the three cycling links. (Three

cycling links, two drop-downs, and a . . . sorry, that’s another

song.)

◊ In the passage titled “Solution?,” enter the following:

[if month === 'July' && song === '8 trades a-bilking' &&

word === 'NEIN']

"Is that the time?" you notice. "Gosh, late for that

root canal!" And out the door.

If our player has set the three cyclers to the correct set of

values—really, don’t make us say it—our hero gets to flee

Uncle Buster and his abominable puns. However, there are

323 possibilities for a wrong answer—(3 × 12 × 9) − 1—so

we need to allow for incorrect solutions.

◊ In the passage titled “Solution?” add the following:

[else]

You're stuck here until you solve the stupid riddle.

[[Keep trying->A Tune Out of Season]]

Hint: three numbers in sequence, horrible pun . . .

If you want to be especially kind to your player, you could

build an escalating series of hints, like so:

[else]

You're stuck here until you solve the stupid riddle.

[[Keep trying->A Tune Out of Season]]

[if passage.visits === 1]

Hint: three numbers in sequence, horrible pun . . .

[if passage.visits === 2]

Hint: three numbers in sequence, horrible pun, numerical

cannibalism . . .

[if passage.visits === 3]

OK, enough hints: BECAUSE SEVEN ATE NINE!

And there it is. This is, of course, an entirely nonserious

application of the combination-lock concept, but there’s no

reason it couldn’t be used less foolishly. The options in the

cycling links don’t have to contain or imply numbers, for

instance. The point of the game might be to choose the right

sequential settings, presumably in response to some

reasonably useful hint, with the cycling options sending the

narration or dialogue in meaningful directions. Say we’re in

a story called Room 112, set in a motel, and the combination

for each successive passage is the next address along the

hallway (114, 116, 118, and so forth), with the correct

settings of the cyclers advancing the story, revealing

complications among the characters and other things. Or

the combinations for successive passages might be

permutations of the original, or products of some

mathematical operation implied in the text. Or there could

be only one cycler in each of many passages, with a final

challenge to match some extended series of digits across all

of them. Also, of course, it’s possible to generate a fresh

solution each time the story runs—we leave further word-

number permutations to your imagination.

Example 5.5: Twine Box

Like the first project in this chapter, this last one has a

history, though its origin is more recent than that of the old

labyrinth. Twine Box was written in the pandemic spring of

2020, just as much of the world was entering lockdown.2 No

surprise that the project is about an enclosed space and the

contents of a box. It is also yet another riddle-text. The

concept for this project is not simply thematic, though—it is

also geometrical. Any box or cube can be flattened into the

pattern of a T:

Figure 24: Conceptual diagram of the Twine Box project

The six cells represent the sides of the box. You could print

this diagram, cut out the image, and fold it into a cube. This

image of a deconstructed box led to the architectural

scheme for our story: six rooms, each with four transitional

links leading to adjacent faces of the cube. You can add the

links to the diagram. Starting at the left edge of cell 1 and

working clockwise, you might label these links A through D.

Each link has a counterpart on the cell to which it is joined

in the cube. Link A connects to the right-hand edge of cell 6,

the top of the box. Link B connects to a matching link on the

left edge of cell 2. Link C goes on the shared edge with cell

5, and link D, at the bottom of cell 1, matches its partner on

the left edge of cell 4. The same logic will define the link

pairs in the remaining cells. If you’re extending the

alphabetic series, as we suggest, your last link pair will be

labeled L. There are twelve pairs in all.

Moving from geometry to story, let’s identify the six rooms

as follows:

1 Lecture Hall

2 Committee Room

3 Writers Room

4 Lunch Room

5 Scary Basement

6 Top of the World

These are, of course, fanciful assignments. When it comes

to Twine, some of us have a hard time sticking with realism.

Through a certain dream-logic, each of these rooms is

intended to be a place where our player character can

encounter suggestive traces of language—which is to say,

clues to the riddle. Let’s get started on the build.

◊ Start a new Twine story, making sure your format is

set to Chapbook, and name it Twine Box, or what you

will. Name the default passage “1 The Lecture Hall.”

Create five more passages and name each according to

the aforementioned scheme. In passage “1 The Lecture

Hall,” enter the following text:

Oak paneling, mangled chair-desks, lingering aura of

angst and ennui. At the battered podium, a vile cigar

smokes itself out. The ancient chalkboard could use

scrubbing. You can make out some words there:

Repeat for each of the five other passages. Here are

recommended texts for each:

The Committee Room

The door opens just enough to admit the owlish mug of

the deputy assistant secretary. "Private meeting," she

informs you. Inside, you hear privileged voices saying:

The Writers Room

When you attempt to peek in, an associate producer

rumbles, "GO PLAY IN THE STREET" and tosses a wad of

ill-considered passages toward your person. "CAN'T YOU

SEE WE'VE GOT AN I.F. TO FINISH HERE?" As the door

slams, you hear unstable voices shouting:

The Lunch Room

For some reason, nobody in here has any clothes on.

Guess we forgot to tell you it's a Naked Lunchroom! All

eyes stare at your overdressed self. As you back out the

door, you hear people muttering, "In your dreams." Also:

omygosh It's the SCARY BASEMENT!

An ancient bulb flickers feebly and surrenders to the

darkness. The room is filled with uncanny shapes . . .

canopic jars . . . eldritch apparatuses . . . a cleaner

of vacuum. A voice like an old cigar wails, "BEGONE!"

You are about to do just that when a hovering presence

appears, scrawling words across the skin of reality:

Top of the World

It's a cross between one of those revolving restaurants

and the bridge of some uncanonical starship. The

reception droid takes your soulprint and shows you to a

mediatronic terminal. You idly thumb some flashing red

indicators and jettison the city's antimatter core.

Diners at nearby tables murmur:

Eventually, there will be text following the colons in each

of the six passages, but before we come to that, let’s take

care of the navigational links.

◊ Open the passage “1 The Lecture Hall.” Below the

existing text, skip a line and add the following:

<div style="text-align: center">

[[3 Writers Room]] [[6 Top of the World]] [[4 Lunch

Room]] [[5 Scary Basement]]

</div>

There are more elegant ways to arrange these links, but

we’ll let function win over form for once. Our only concession

to formatting is an HTML DIV with centered alignment. We

require the player to visit all six rooms, which means you

need to be careful about the placement of links, making a

full traversal possible. Here are the link sets for the five

other passages:

2 Committee Room

[[3 Writers Room]] [[5 Scary Basement]] [[4 Lunch Room]]

[[6 Top of the World]]

3 Writers Room

[[6 Top of the World]] [[1 The Lecture Hall]] [[5 Scary

Basement]] [[2 Committee Room]]

4 Lunch Room

[[5 Scary Basement]] [[1 The Lecture Hall]] [[6 Top of

the World]] [[2 Committee Room]]

5 Scary Basement

[[3 Writers Room]] [[1 The Lecture Hall]] [[4 Lunch

Room]] [[2 Committee Room]]

6 Top of the World

[[3 Writers Room]] [[2 Committee Room]] [[4 Lunch Room]]

[[1 The Lecture Hall]]

Make the necessary additions to each passage and test

your project. You should be able to move from room to room,

and if you’re keeping track, you should visit all of them

eventually. Before we’re finished, each room will offer a set

of clues about the answer to the riddle, the contents of the

conceptual box. In order to ensure exposure to these clues,

we want the player to visit every room at least once. When

all rooms have been entered, we’ll display a new link in each

of the rooms to a seventh passage called “INSIDE,”

representing the interior of the box. Because there’s a

tedious amount of text involved in the if condition for our

inside link, we’ll set it up as an embedded passage.

◊ Create a new passage and name it “tracker.” Enter the

following:

[if r1 && r2 && r3 && r4 && r5 && r6]

GO [[INSIDE]]

We haven’t yet created any of those variables starting

with r—we’ll do that in the next step. An explanation about

the syntax first. Our r-series variables will be Booleans, with

possible values of true or false. Saying “if r1” asks if r1 has

the value true. We could write out “if r1 === true,” but

that’s more typing. Remember, the double ampersands

stand for the logical and operator, which means all six

subconditions much be true for the main condition to be

met.

When you close the “tracker” passage, you will see a new

passage called “INSIDE,” which we’ll leave blank for the

moment. First, we need to make sure our r-series variables (r

stands for room) are properly taken care of. We’re designing

our system so that all six variables need to be checked

whenever we enter a room. For that to happen, Twine needs

to know about those variables. So far, it doesn’t. There’s only

one proper solution to this problem: create a new starter

passage.

◊ Make a new passage and name it “And . . . box.” (Yes,

there’s a mixed metaphor here.) Enter the following into

this passage:

r1: false

r2: false

r3: false

r4: false

r5: false

r6: false

--

TWINE BOX

[[begin->1 The Lecture Hall]]

This is a title passage, with our six tracking variables

initially declared and set to false in the variables

section. Doing this will get us off on the right foot with

“tracker.”

Next, we have to allow each of our room-tracking variables

to become true.

◊ Open the passage “1 The Lecture Hall.” Insert two

blank lines in front of its current contents. Add the

following variables section:

r1: true

--

Make similar changes to the other five room passages,

changing the number part of the variable each time (r2

for the second room, r3 for the third, and so on).

Next, we need to embed the “tracker” passage in the link

options for each room.

◊ Open the passage “1 The Lecture Hall.” In the text

body, below the existing series of four links, add the

following:

{embed passage: 'tracker'}

Place this line within the HTML DIV container—before

the </div> tag. Repeat this procedure for each of the

other five room passages. You’ll be inserting the same

line in the same position for each.

Now the rules of our game are largely implemented. Each

time we visit a room, the “tracker” logic will check to see if

we have visited all six rooms, in which case it will display the

link to “INSIDE.” Each passage records its visited state in its

r variable. You should test your project at this point, visiting

each room. When you come to the last unvisited room, you

should see the “INSIDE” link.

We’ll continue to defer work on that climactic passage

because we need to provide the clues we want the player to

encounter in each room. In order to make this game

minimally playable, we’ll pick our clues randomly from large

sets, using our substitution grammar. However, we’ll want

clues of two kinds—right and wrong—so we’ll need two sets.

Again, we’ll handle this feature with embedded passages.

◊ Create a new passage and name it “right.” Enter the

following:

rt: ["thing with feathers","fairey obama","ancient

funnyman bob","and change","fingers crossed"]

theText: rt[Math.floor(random.fraction*rt.length)]

--

{theText}

The basic scheme here should be entirely familiar: define

an array, then a variable that holds one randomly selected

item from that array. Both of those things happen in the

variables section. In the main text body of this passage, we

display the contents of our selector variable. We’ve included

only a small selection from the array used in the finished

version of this project. You will want many more than five

options for both the “right” and “wrong” clue sets. You can

have as many as you want. As for the word those clues

indicate, you can probably figure that out, especially if you

remember a certain story from Greek mythology. Now let’s

take care of our not-so-helpful clues.

◊ Create a new passage and name it “wrong.” Enter the

following:

wt: ["seventh of six","if you can read this","this is

not a clue","time fades away","is time emits I","I is

another","you are not reading this"]

theText: wt[Math.floor(random.fraction*wt.length)]

--

{theText}

The form of this passage is identical to the “right”

passage. You’ll want to expand the set of options

considerably. The wrong-headed clues can be any

misleading or nonsensical expression. Technically, they

should not lead to the right solution, though as you’ll see,

it’s not a huge problem if they inadvertently do. Now that

we’ve set up our two clue sets, we need to make use of

them. We’ll do that in the next steps.

◊ Open passage “1 The Lecture Hall.” In the main text

body, following the sentence that ends in a colon, skip

a line and add the following:

{embed passage: 'cluetrain'}

Add the same line in the same position in the other five

rooms.

Our “cluetrain” passage will take selections from the

“right” and “wrong” clue sets, put them in a certain order,

and make them ready to appear in each of our rooms. Here’s

how all that is done:

◊ Create a new passage called “cluetrain”—embedding

a passage does not create that passage—and enter the

following:

<div style="text-indent: 2em">

[if random.coinFlip]

{embed passage: 'wrong'}

[continued]

{embed passage: 'right'}

[if random.coinFlip]

{embed passage: 'wrong'}

[continued]

[if random.coinFlip]

{embed passage: 'wrong'}

[continued]

</div>

Inside our familiar HTML DIV container you’ll see a series

of embed passage inserts. Yes, you can embed passages in

an embedded passage—just don’t embed a passage in itself,

as we’ve already cautioned. The player never suspects how

much bed-hopping is going on behind the scenes. In the

“cluetrain” passage, the first, third, and fourth embed the

“wrong” clue generator. The second embeds the “right”

generator. However, we add a coinflip if condition to all our

wrong-way clues, so they each have a fifty/fifty chance of

appearing. Notice we add a [continued] modifier to

terminate the if condition each time. Don’t omit that detail.

According to this scheme, our right-leading clue will

always appear, though it will sometimes be the first and

perhaps only clue. When the coin lands the right way for the

initial “wrong” embed, it will be the second clue. This

arrangement gives what we consider a minimally interesting

amount of variation, though that’s a subjective judgment.

It’s time to test the project again. You should see between

one and four clues following the introductory sentence each

time you visit a room. If all is well, you are ready to begin the

final stages.

◊ Because it is referenced in a conventional link, the

passage called “INSIDE” should already exist. (If it

doesn’t, go back and check the step in which you set

up the link to that passage in the embedded “tracker”

passage.) Open “INSIDE” and enter the following:

~~inside the box~~

So here we are--turning outside in--reaching the heart

of the matter--coming down to core.

Moment of truth . . . or not: _**what's in the box?**_

Those double asterisks and tildes, as well as the

underscores around the final phrase, are formatting

characters. Lots of dramatic effect here. The payoff is in the

selection, for which we’ll use a familiar device:

◊ Below what you typed in the previous step, enter the

following:

{cycling link for: 'answer', choices:

['puzzle','nothingness','illusion','ignorance','secrecy'

,'concealment','hope']}

**[[REVEAL]]**

Because of the basic scheme of the cycling link, the

options will always be presented in the order you code them.

The complete version of this project uses random.d6 to

branch among six variations of the cycling link, each with

the right answer in a different position. In this version, there

are also different wrong options in each version of the cycler.

For our purposes, though, let’s stay with the simple solution.

Now it only remains to test the outcome.

◊ The passage “REVEAL” should have been added to

your structure. Open it and enter the following:

[if answer==='hope']

Always.

[else]

The box retains its mystery. {restart link, label: 'Play

on'}

Besides revealing the answer to the riddle of the “Twine

Box” (but you knew), this final piece of code uses a

Chapbook feature we first saw in chapter P-2: the restart link

insert. As the name suggests, a restart link erases all system

and custom variables in play, including our r series of

trackers, and takes us back to our launch passage, which we

called “And . . . box.” Our six tracking variables are

redeclared there, reset to false, and we are ready to begin

anew.

We’ve made the design choice to have a fresh start after a

wrong guess, requiring the player to receive clues in all six

rooms before the “INSIDE” link appears again. If we wanted

to be more generous, we could have avoided the restart link

and used an ordinary link back to the lecture hall or any of

the other rooms.

And so the secrets of the mystery box have all been

revealed, and with that, our tour of conceptual Twine comes

to an end. We’ve dwelt heavily on riddles and puzzles in

these five exercises, but as we’ve seen in preceding

chapters, Twine can be used for many more purposes—

creative, expressive, analytical, persuasive, and even

therapeutic. What you find inside the Twine box, or what you

decide to put there, is entirely up to you.

At this point, we’re also very near the formal end of

Twining itself—the conclusion awaits—though as you might

expect from such a rambling and rambunctious enterprise,

even that final chapter will not really be the end. We invite

you to carry on with the appendices, including the interview

with Chris Klimas with which this project started and the talk

with Dan Cox that guided its growth. For those who still

haven’t had enough code tinkering, there is even a bonus

practical chapter that finds its way “Beyond Twine.”

Though if you’re like us, you can always find a bit of Twine

somewhere around the place.

Works Cited

Kelly, Walt. Deck Us All with Boston Charlie. New York: Simon

& Schuster, 1963.

Pynchon, Thomas. The Crying of Lot 49. Philadelphia:

Lippincott, 1966.

1 A mondegreen is a misheard lyric, such as “and Lady Mondegreen” for “and

laid him on the green” in “Barbara Allen,” or “’scuse me while I kiss this

guy” in Jimi Hendrix’s “Purple Haze.” The actual reading there is “kiss the

sky,” but what’s life without variety? We’re also hugely fond of another of

Walt Kelly’s festive mondegreens, “Good King Sauerkraut look out, on your

feets uneven . . .”

2 The completed version of this project included in the online materials, Twine

Box, was the basis for a somewhat different story called Dread Box, built on

the same six-room architecture. It appears in the first issue of Digital

Review. See http://thedigitalreview.com/issue00/dread-box/begin.html.

http://thedigitalreview.com/issue00/dread-box/begin.html

Conclusion

Forever Twine

Twine has been around for more than a decade now. There

have been two formal releases of the core software,

coordinated with four major story formats. Based on

download statistics, Twine has thousands of users around the

world, clustered largely in game development, academia,

and entertainment (Klimas). Major media outlets have

noticed the role of Depression Quest in Gamergate (see

Hudson) and Charlie Brooker’s use of Twine for the

“Bandersnatch” treatment. Something looking suspiciously

like a Twine game appeared in an episode of Cartoon

Network’s Adventure Time in 2016 (Han and Ito). However,

as we have previously noted, the best measure of Twine’s

cultural impact may be Videogames for Humans, the

massive compendium of Twine writers playing and

commenting on one another’s games that we have already

mentioned (merritt k). We could also point to the increasing

prevalence of Twine pieces in portfolios of aspiring game

designers and the platform’s formal relationship with the

IFTF, founded to assure continuity in the tools and

institutions of the text-based game community (Interactive

Fiction Technology Foundation).

These developments give reason to look forward another

ten years or more. The idea of doing creative things with

hypertext links and related scripting seems an indelible part

of digital culture. Twine supplies an important tool for this

work, so we imagine a future Twine, even a forever Twine.

This book has concentrated notably on works appearing

between (roughly) 2012 and 2018, which we might consider

a heyday or first harvest. We carefully avoid the term golden

age, which has a way of making those tagged with it feel

antique before their time. For true believers, at least, Twine

is timeless. We feel the work will go on, in and out of game,

art, and literary worlds. Twine or Twine-like efforts a decade

hence may be notably different from the games and fictions

we have profiled. In ten years, works in the Twine line could

be mainly auditory (see the next section), or graphical, or

generally used for psychotherapy, or written exclusively by

machines.

Before dreaming any further, however, we need to check

our perspective. Each author of this book has several

decades of intellectual, artistic, and personal investments in

digital storytelling across multiple platforms. Where Twine is

concerned, we teach with it and we make things with it.

Lately, we may have begun to think with it. We also have

our own oblique connections to the circumstances of Twine’s

creation: Anastasia explored theirs in chapter T-2; I will say

more about mine at the end of this chapter. As writers of a

book meant to promote Twine’s use and appreciation, we

have an obvious bias.

If You Can Read This . . .

Consider a more objective view. In 2017, the artist and critic

John Cayley, a field leader in digital literary arts, called for a

change of direction. In an article called “Aurature at the

End(s) of Electronic Literature,” he proposes a fundamental

move from visible text to sound—the aural delivery of words

spoken or synthesized using currently emerging home

entertainment platforms, so-called smart speakers like

Amazon’s Echo (Cayley, “Aurature”). Paradigm shifts are

inherently rivalrous. When you are trying to open a new

path, it’s necessary to point out the errors of other ways.

Accordingly, Cayley deprecates several electronic writing

practices, including some with roots in his own academic

program. When he comes to Twine, he is more dubious than

dismissive, though he raises serious questions: “In the case

of expressive hypertext—with choose-your-own-adventure

gaming capabilities—we can now point to Twine as a

platform still gaining significant popularity. But will it ever

end up supporting Twine-writers and designers

commercially, or as prominent literary practitioners?”

(Cayley, “Aurature”).

Cayley acknowledges Twine’s popularity, and he notes

Twine’s attachment to game culture. Beyond this, he seems

unimpressed, though that sentiment is understandable if

one knows the history. The reference to “expressive

hypertext” points back to earlier days of Cayley’s academic

program, before his arrival at Brown University, when figures

like Robert Coover, George P. Landow, and the computer

scientist Andries Van Dam made that university’s writing

program a center of literary and scholarly hypertext. This

project flourished from the early 1980s to the mid-1990s,

but its success was limited at best. Alice Bell’s generally

sympathetic account of hypertext fiction concedes that such

works were rarely read outside of college courses (Bell 166).

Seeing in Twine a hypertext revival, Cayley reasonably

wonders if this platform will suffer the same fate that befell

earlier systems, such as Brown’s Intermedia and Eastgate’s

Storyspace. However, his uncertainty about commercial

viability or popularity is tied to a deeper objection on

aesthetic grounds, a problem Cayley sees in other forms of

electronic writing as well. He calls this “the challenge to

reading”:

Formal bewilderment discourages reading and readers.

Reading is a learned practice; it is not innate to the

human animal. Asking readers to learn new forms is

asking them to extend their learning rather than

immediately offering them aesthetic experience. Of

course, some formally innovative artifacts will be of a

quality or importance that necessitates and rewards

extra learning and effort. Literary culture moves on. But

how will readers pick and choose amongst forms when

every artifact is formally distinct if not entirely outside of

any pre-existing formal categories? And how are they to

discover any quality or importance for the language of

the work if formal bewilderment makes it difficult or

impossible for them to read? (Cayley, “Aurature”)

Twine works are not the only subject of this critique. Plenty

of baffling, often bafflingly beautiful work exists in other

systems and contexts. Cayley names no names, but we

could cite a few examples: Mez Breeze’s linguistically

mutant m[ez]ang.elle (see Raley), Nick Montfort and

Stephanie Strickland’s oceanically vast Sea and Spar

Between (Montfort and Strickland), Jason Nelson’s trippily

fractal Sydney’s Siberia (Nelson, Sydney’s Siberia). Cayley

does mention Pry, the groundbreaking text/video app for

Apple iOS, one of whose developers came from Brown

(Cannizarro and Gorman). Though he concedes the

brilliance of this work, he worries that it, too, is a one-off.

Like the surrealist game levels of Wreden’s Coda, these

projects push against any number of common expectations

about language and text. Most are either singular

experiments or self-contained series. They invent new

categories rather than fall in with old ones, partly in

response to an explosion of technical possibility, possibly

also because tradition, canon, and even genre are to some

extent tainted by toxic ideas of hegemony.

Twine works bring new transgressions and their own

challenges to reading. We have just been looking at

Anthropy’s Queers in Love at the End of the World, which

deliberately makes conventional reading extremely difficult.

The work sabotages its own hypertextuality, tantalizing

players with clusters of links they can barely register, let

alone explore, before final erasure. This is undeniably a

challenge to reading—though as we and others have

argued, its intentional disruptions deliver an experience that

works toward cultural critique. Though Queers in Love is an

extreme instance, it nonetheless shows how Twine works

may answer Cayley’s challenges.

Conceived as textual games, Twine works are far less

formally bewildering than other forms of digital writing, such

as “expressive hypertexts.” One last comparison between

Queers in Love and its paleozoic ancestor Hegirascope may

be helpful here. In an evocation of early web browsing, the

older work jumps across many narrative lines, constantly

decentering the reader’s attention. Perhaps because she has

grown up in a web-saturated culture, Anthropy feels no need

to mimic this diffusion. She keeps her player focused on

variations of a single scenario even as she diabolically

contracts the time frame. The result is still narratively

disruptive, but it confronts the player with fragments of a

single encounter, not pieces of a world.1 Crucially, this

difference can be linked to the influence of game culture.

Queers in Love was built during a game jam whose theme is

circulation or sharing—ludum dare, to give (the world) a

game. For all its tricky difficulty, Anthropy’s work is still

intended for a certain kind of play—subversive and self-

canceling, perhaps, but play nonetheless.

In embracing games as an aesthetic framework, Twine

makers take up a coherent cultural identity, even as they

resist and transform it. Twine games may split off from other

forms of game culture, but they belong to increasingly well-

defined alternative communities centered on independent

games, narrative games, and interactive fictions. These

domains include “pre-existing formal categories” that

support critical judgment. In chapter T-3, we cited Short’s

revealing first response to With Those We Love Alive. That

review was written as part of the annual Interactive Fiction

Competition, a tradition of critical reception and recognition

with more than thirty years of history. Interactive fiction,

which either contains or overlaps with Twine work, is in fact

the most critically informed type of electronic writing.

However, would recognition by Short, Montfort, Andrew

Plotkin, Aaron Reed, or some other authority from the

interactive fiction world make someone, in Cayley’s terms, a

“prominent literary practitioner?” Much depends on the way

we define each item of this phrase.

Concerning prominence or recognition, Bell argues that

hypertext fiction and other digital literary practices must

break out of “niche” status (Bell 92). It might be objected

that most kinds of literature—and these days, even most

forms of popular entertainment—fall into niches of various

sizes (Moulthrop). But some niches are more accessible to

nonmembers than others. Fiction writers outside of the

genres (crime, thriller, science fiction, fantasy, romance,

Westerns) tend to do readings at bookstores in cities and

suburbs. At the peak of celebrity, we see them on TV talk

shows with large viewerships. Genre writers are more likely

to appear at community-focused conventions (cons) that do

not attract what is quaintly called a general audience.2

Likewise, makers of Twine games show up largely at game

jams and conferences, either industry-oriented or academic.

A writer can certainly be “prominent” in these circles—

known and respected by a few hundred people, many of

them other Twine writers. There are stirrings of wider

recognition. The website for the 2015 launch of The Late

Show with Stephen Colbert featured a Twine game, and

there are the Adventure Time and Black Mirror connections.

Porpentine has had a game commissioned by the Museum of

Contemporary Art in Chicago, and her games have been

shown in other museums. Anthropy has been interviewed

about her work on National Public Radio. If prominence

requires being known to millions, through Twitter, television,

or some other megamedium, the prize remains elusive—but

is this a problem?

As we have already hinted, the answer to that question is

implicated in how we understand the term literary. In

general, thanks to the efforts of people like N. K. Hayles,

Dene Grigar, Scott Rettberg, and Cayley himself, academia

seems more ready to accept electronic writing now than it

was in the 1990s. There were cracks in the wall of resistance

even then. Two early hypertext fictions, Joyce’s afternoon

and J. Y. Douglas’s I Have Said Nothing, were included in

W. W. Norton’s Postmodern American Fiction anthology

(Geyh, Leebron, and Levy). ELO has been a presence at the

annual MLA conferences for years and in 2018 was formally

recognized as an affiliated organization. Marjorie Perloff, a

defining figure in modern poetics, has written about the

significance of digital work in contemporary poetry (Perloff).

Hayles, among the first academic critics to recognize

electronic literature as a continuing project, sees it as part of

a reformist expansion of literary tradition (Hayles 4–5).

Rettberg, one of ELO’s first founders, suggests a more

progressive view: “Those waiting for the first ‘#1 bestseller’

of electronic literature are largely missing the point:

electronic literature is not about replacing print literary

culture, it is instead about extending storytelling and

poetics to the contemporary digital environment and

creating literary experiences specific to this cultural

moment. Electronic literature is experimental literature that

generates productive tests of particular admixtures of

literature and technology, but it is also fundamentally about

a sense of play and a sense of wonder” (Rettberg 203).

Despite these rapprochements, academic creative writing

programs still generally identify with poetry, literary

nonfiction, and the unmarked genre of nongenre fiction.

Twine work, and game culture generally, may be recognized

as a parallel or related activity, but it is not usually part of

the curriculum.3 We have already expressed our

ambivalence about Twine and literary tradition in chapters T-

3 and T-4. Twine work can connect to established forms and

practices, but it may just as genuinely go its own way.

Perhaps, as Rettberg says, we should simply celebrate

experiment and play.

In chapter T-4, we explored the influence in Twine work of

alternative, anti-elite aesthetics: retro-stylish kitsch and fan-

based camp. Twine carries forward an unruly, experimental

impulse last seen in the first decade of the World Wide Web.

This agenda has no strong regard for long-standing tradition

and may in fact subvert it—recall Xalavier Nelson’s first take

on legacy, noted in chapter T-3. To some extent, the queer-

gaming insurgency explored in chapters T-4 and T-5 reflects

a similar attitude. Given the tensions between Twine’s

outsider ethos and traditional culture, literary may not be

the identity most Twine writers aim for. A certain social

distance may be good for both sides. In the famous words of

Marx, “I DON’T WANT TO BELONG TO ANY CLUB THAT WILL

ACCEPT ME AS A MEMBER” (Marx 321).

Cayley’s third term is practitioners. Writers are by

definition practitioners, but Twine writers (or creators,

designers, developers) use practices that differ markedly

from the ones Cayley advocates. In at least its first stages,

his “aurature” involves the development of “skills” for

Amazon’s digital assistant, Alexa. An Alexa skill is a software

application the system can run in the background or in

response to a user’s spoken request (“Alexa, ask the listeners

about . . .”). Cayley’s demonstration project for aurature,

called The Listeners, uses an impressive range of design and

production techniques, including interactive sequencing

and processing of sound (Cayley, “The Listeners”). Twine

entails a much smaller and less sophisticated range of

activities: simple hypertext linking, textual substitution,

maybe some work with substitution grammars, all usually

intended for screen display—though as we saw in chapter P-

4, other media types can be used as well. Building a Twine

game generally presents a lower technical barrier to entry

than developing an Alexa skill.

Most important, Twine is an open-source application

supported by a noncommercial community. While the

programming tools used to develop an Alexa skill are not

proprietary, the considerable infrastructure on which it

depends—the system of digital monitoring and response

behind the Echo device—is intellectual property held by one

of the wealthiest corporations on the planet. This brings us

to the most difficult of Cayley’s hard questions: Can Twine

sustain its creative community commercially or

economically?

Twine and Hard Times

Before taking up this question, some important concessions

are in order. The invidious distinction between proprietary

and open-source software needs at least partial correction.

Nobody loves a Puritan, and we do not claim or wish to be

software saints. In art and everyday life, we use proprietary

systems. The world is big enough for both commercial and

noncommercial approaches to art. There are good reasons to

criticize Amazon’s desire to place live microphones in our

living rooms, but the disapproval of academics will not make

them go away. If we believe in technological realpolitik,

Cayley’s call for change is important. Taken more

sympathetically, aurature could allow artists to infiltrate

Amazon’s collective unconscious. (Alexa, delete the last

record.)

Further, we admit that Cayley’s economic skepticism

about Twine is hard to rebut. Like hypertext fictions before

them, most Twine works circulate in the public domain and

carry the curse of a gift economy. Once the public comes to

expect free access to art or entertainment, it is exceptionally

hard to return to a cash basis. Paywalls infamously fail. Many

of us do not believe in them in the first place, though it is

easier for tenured academics to aspire to such virtue and

feel an obligation to share freely. Those closer to the rope-

end of precarity may do what Anthropy and an increasing

number of Twine writers do: include a link inviting financial

support on the title pages of their projects. Those who find

that work important, especially in teaching, need to give as

generously as possible. Patreon and related subscription

schemes are another expedient, though Klimas recently

disclosed that his income from this channel amounts to less

than the minimum wage in his home state (Klimas).

Could these dismal conditions change? If the

“Bandersnatch” possibility ever yields something more than

a mirage, crossovers with emerging markets could be

facilitated by IFTF, which gives common identity and

purpose to those interested in parser games (especially on

the Inform platform), Twine work, and other branching

narrative systems. IFTF is not primarily academic and

welcomes interest from the entertainment industries. While

waiting for other opportunities, collaborations among the

current interactive fiction emphases might be equally

important. Twine/Inform hybrids could be intriguing, along

with various ventures to connect Twine and other platforms

to the Unity game system, particularly with an eye to mobile

applications. In her software development role at Spirit AI,

Short continues to explore the integration of artificial

intelligence with interactive narrative. Poet and system

designer Daniel C. Howe recently joined Tender Claws, the

independent software studio that created Pry. Howe’s new

system, Tendar, like Spirit’s Ally, focuses on algorithmically

generated interaction, with important implications across

the field of interactive fiction. IFTF could provide a crucial

framework for the integration of developments like these.

Visions of possibility aside, however, economic prospects

for Twine, in both infrastructure and artistic practice, remain

deeply uncertain—yet of what can this not be said?

Independent game development is as tenuous as any

garage-based art form. Developers may find refuge in

academia, more likely in game or media studies programs

than in older departments, but the state of higher education

throughout the developed world is parlous, with humanities

programs especially at risk. At this writing, the stresses

imposed by the coronavirus pandemic, both on enrollments

and state budgets, raise this risk to new levels.

Culture-war politics are implicated in this instability,

especially when it comes to public institutions, and attacks

on academics involved in game studies have been a part of

Gamergate and the larger alt-right movement of the US in

particular (see Chess and Shaw). But the root of the trouble

is the continuing fragility of postindustrial economies. This

insecurity may at first seem paradoxical. Twine’s first decade

coincided with the longest economic expansion in the

history of the US. That party may now be over, and the

benefits of the expansion were notoriously concentrated in

any case. If the current disaster exposes fundamental

weakness like the banking crisis of 2008—say, in student

loans, the retirement system, or international trade—we may

face a long and devastating economic depression.

Long ago, at the beginning of the last boom before this

one, Neal Stephenson published a novel of speculative

fiction featuring a global virtual-reality system with a social

center called “the Street.” (The GeoCities of old may have

been among his inspirations.) Being essentially a realist,

Stephenson salts his Tomorrowland with some sobering

observations: “In the real world-planet Earth, Reality, there

are somewhere between six and ten billion people. At any

given time, most of them are making mud bricks or field-

stripping their AK-47s. Perhaps a billion of them have

enough money to own a computer; these people have more

money than all of the others put together. Of these billion

potential computer owners, maybe a quarter of them

actually bother to own computers, and a quarter of these

have machines that are powerful enough to handle the

Street protocol” (Stephenson 24–25).

It is interesting to reread this passage in the 2020s.

Stephenson’s informed guess about world population holds

up, though the explosion of smartphones has blown out his

forecast of a billion computer owners by a factor of three.

More salient is the allusion to the have-nots, those folks with

the bricks and assault weapons. In its day, the remark

registered, no doubt cynically, the economic inequalities

that accompanied early phases of the information

revolution. There were strong concerns about a so-called

digital divide. Today, we are more concerned with wealth

gaps. “These people have more money than all of the others

put together” remains a true statement, but the size of the

apex class has greatly contracted. Also, the folks with the

AK-47s and AR-15s are no longer in mud-brick hinterlands

but in our state capitols and our nondigital streets. At this

writing, some of those streets are patrolled by National

Guard units in armored vehicles.

Instead of Stephenson’s Metaverse and Street, we have

Facebook, Twitter, Instagram, and other stretches of the

social media hellscape. The world those forces engender

may be very like the neoliberal inferno described in Snow

Crash, though it is hard now to imagine anything like the

entrepreneurial happy ending Stephenson gives that book.

That was another century. In this one, we face not only

economic instability but the subversion of democracies,

driven in the first instance by racists and gangsters and

exacerbated in some measure by refugee flows and, most

recently, by a worldwide biothreat. How long, it must be

asked, before we’re no longer the people with computers but

the ones with the rifles and wall-building bricks?

It’s not just institutions of popular art and education that

are imperiled—the entire civilization seems palpably at risk.

(These words, first written before the pandemic, seem even

more appropriate in 2021.) In such a dire context, why does

the future of Twine matter? True, the social martyrdom of a

Twine writer, Zoë Quinn, was the precipitating event for a

battle in the culture wars that laid down the pattern for

many to come (Warzel; see also LaFrance). Twine is

implicated in a critical moment that goes far beyond game

culture, but since that moment counts as a genuine crisis,

with outcomes that may include the end of the world as we

know it, we need to justify our perverse interest in

computerized games and clever ways to tell stories.

Can Twine save our world? No way! However, here is a

quick list of other things that offer no immediate and total

remedy:

mumblecore

crowdsourcing

ukuleles

food porn

live streaming

Lin-Manuel Miranda

polar bears

psilocybin

quantum gravity

Donna Haraway

the flightless cormorant

life on Mars (whatever that means to you)

the Five Virtues

slavery reparations

universal basic income

petting cats

This list, which takes off from the “litanies” of Bruno Latour

and Ian Bogost, is unordered and eminently debatable

(Bogost 38). Some of its items might seem potentially

redemptive, depending on one’s understanding of the

world’s problems. Many will not. The point of this list, like all

lists, is to assert totality over singularity. The list contains no

answer; the list is the answer. Which is to say, as Anthropy

teaches, the best way to stave off the moment when

everything is wiped away is to make the case for everything,

almost. No saviors, no panaceas, but many things may be

helpful in some fashion. Let us consider some ways in which

a world with Twine in it is preferable to one without. In an

epitome of this book itself, we offer three arguments:

conceptual, practical, and finally personal.

Maps and Algorithms

Plato and McKenzie Wark had their caves. The cultural critic

Fredric Jameson found allegory in a different sort of cavern,

the lobby of the Westin Bonaventure Hotel in Los Angeles,

circa 1984. Many who visited grand hotels in the 1980s had

similar experiences of disorientation and procedural

uncertainty—where do you suppose they’ve put the front

desk in this one? Jameson laid out the full implications of

this experience, which was always more than a complication

of check-in protocol. As Plato’s cave allegorizes the world of

phenomena, the Westin lobby brings home the contours of

late capitalism:

This latest mutation in space—postmodern hyperspace—

has finally succeeded in transcending the capacities of

the individual human body to locate itself, to organize

its immediate surroundings perceptually, and

cognitively to map its position in a mappable external

world. It may now be suggested that this alarming

disjunction point between the body and its built

environment—which is to the initial bewilderment of the

older modernism as the velocities of spacecraft to those

of the automobile—can itself stand as the symbol and

analogon of that even sharper dilemma which is the

incapacity of our minds, at least at present, to map the

great global multinational and decentered

communicational network in which we find ourselves

caught as individual subjects. (Jameson 39)

Not knowing where to check in is a signature of

postmodern experience, an effect produced by spaces, real

or hyperreal, that defy understanding. Never mind hotels:

think of the “decentered communicational network”—these

days, we call this thing the web, or the Twitterverse, or as

advertising types say with ominous familiarity, social. In

response to mutating hyperspace, Jameson calls for “an

aesthetic of cognitive mapping” (Jameson 44). That project

has many moving parts, but game culture is clearly one of

them. Wark’s gamer theory, exposing the allegories of power

behind algorithm, makes an obvious contribution. The same

might be said for Galloway’s insight that playing Civilization

III teaches us how that game’s algorithms intersect historical

understanding (Galloway 92). We have already noticed

Burden and Gouglas’s observation that Portal exemplifies

the making of art from “algorithmic experience” (Burden

and Gouglas).

As spatialized occasions for narrative, games literally

involve cognitive mapping. “Thinking with portals,” as

Burden and Gouglas explain, deconstructs Euclidean

geometry as well as the conventional, rectilinear design of

game levels. That operational geometry is also a key subject

in Beginner’s Guide, where Davey and Coda struggle, in

their curiously passive-aggressive way, over the need for

mazes to have solutions. As Wreden’s work demonstrates,

there is much more at stake in this contest than the

pragmatics of level design. Coda’s prisons are as much

existential as architectural. They are “analogons,” to borrow

Jameson’s word, of Coda’s dubious desire for privacy and

interiority. This is where the cognitive part of the mapping

project comes in.

Though many decades have elapsed since its discovery,

we still occupy something like the “hyperspace” Jameson

named. Gameplay illuminates the complexity and

irrationality of that space. Games can also bring to

consciousness several features of cybernetic infrastructure,

the reliance of our virtual environments on algorithms and

logical transactions. Through the mechanisms of player

death and regeneration, games bring home the power of

iteration or cyclic repetition, showing us in experiential

terms the form of software loops. By incorporating

randomized behavior, games make us aware of stochastic

outcomes, predictable but uncertain. By presenting

complicated simulations involving multiple agents, games

demonstrate the dependency of elements in a system and

the way such dependencies can lead to emergent or

unforeseen consequences. Above all, computer games

model contingency, the ability of situations to evolve

differently over multiple encounters. They reveal a world of

complex, systematic, but unpredictable possibility.

Jameson believed an aesthetic of cognitive mapping would

be essential to politics in the twenty-first century. In order to

address injustice, oppression, and ignorance, we need to

understand, in the deep way art makes possible, the baffling

structures of a world that is too large, too fast, and too

intricately detailed for ordinary human witness. To put this

much faith in imagination involves a huge dose of utopian

chutzpah, but we might venture some hypotheses anyway.

Perhaps a generation of gamers will be less inclined to call

for regime change in regions traumatized by imperialism; or

route tank trains full of volatile hydrocarbons through major

population centers; or mine the tar sands that fill the bomb

cars in the first place; or otherwise deny the fragility of our

critically damaged ecosystem; or fail to grasp that,

ironically, iteration only applies in software, so we can’t

reboot the West and replay from 1955 or 1820.

Coming to Code

Maybe, just maybe, playing and making computer games

can help us map the catastrophe, jam the machines, hijack

the bus of doom before everything is wiped away. The help

in question may be small—more in the way of ukuleles than

reparations—but it is something we can articulate. The

essayist Joan Didion was once asked to write on the abstract

subject of morality but swerved away, declaring, “My mind

veers inflexibly toward the particular” (Didion 160). We

follow her mental taillights. Our conceptual/political

argument was framed broadly to take in a large swathe of

game culture. Twine and its productions belong to that

domain but in a very peculiar way. Multimedia extensions

aside, Twine is fundamentally a text technology. Like Inform,

TADS, and other parser-driven platforms, Twine draws on the

considerable power of the written word to evoke and

manage playable spaces. We can make a second, more

pragmatic case for the importance of Twine, along with other

forms of interactive fiction, based on its engagement with

writing.

Interactive fiction is connective tissue, a ligament

anchoring the skeleton of language and literature to the

musculature of computing. (Flip those anatomical

metaphors if you wish.) We invoke the living body, since

that is what culture feels like to us, but we could also have

gone to geology, thinking of stratified bands in sediments

and the interlayers between them. That metaphor brings the

advantage of history, which is important here. As another

major critic, Alan Liu, has argued, a major task of humanist

work in this century is reassertion of cultural memory in the

face of amnesiac market forces (Liu 72). Twine and its

interactive fiction companions are helpful in this regard,

connecting practices from the precomputer world to those

that have evolved more recently. It is probably no

coincidence that Jay David Bolter, an important early

advocate of hypertext, and Short, perhaps our greatest

writer of interactive fiction, both started as classicists.

After its very early days, game development has followed

the organizational scheme of cinema: production involves

fairly large groups overseen by a lead designer. This is

necessary when the work involves many specialized skills,

such as AI programming, 3-D modeling, motion capture,

interface design, sound and voice production, and so on.

Because they do not take the exit ramp to graphics but stay

on the old textual blacktop, interactive fictions and Twine

games especially require no such division of labor. Most of

the Twine games we have discussed in this book are the

work of one or two people. As Anthropy says in her

manifesto for the independent game movement, Rise of the

Video Game Zinesters, text-based and simpler graphical

platforms allow artists to express radically personal visions

(Anthropy, Rise 18–19). Independent game creation

hearkens back, as we have said, to an earlier moment of

digital technology, when imaginations were less constrained

by mainstream expectations and corporate economies. Solo

and small-group work is not inherently virtuous, of course.

For every Anthropy or D. Squinkifer, there may be many

versions of Wreden’s Coda, pursuing visions that will never

connect with a wider audience. By the same token, large-

scale corporate teams can make thoughtful and genre-

redefining games, from Katamari Damacy and Portal to

Legend of Zelda: Breath of the Wild, Animal Crossing, and

Death Stranding. Meanwhile, there is a sweet spot between

solo and large-team efforts, where games like Gone Home,

Firewatch, and 80 Days flourish. However, single authorship

and very small collaborations have one important

advantage: they open development to people at the margins

of game culture.

This opening involves another kind of identity as well—it

bridges the cultural divide between programmers and

nonprogrammers, between those conversant with computer

code and those whose main expressive mode is natural

language. The leading contribution to this unification is

Graham Nelson’s revolutionary rewriting of the Inform

language, Inform 7, which uses something like English

syntax (Nelson, “Inform 7”). We have already said some

things about Inform 7 back in chapter T-1, noticing the way

its code tends to converge with ordinary language.

In Inform 7, statements are passed to a compiler program,

which in turn generates much less readable code that

establishes and populates a game space. At the same time,

these statements are also understandable as sentences in

the traditional sense. Playing on this ingenious overlay of

linguistic registers, writers from the interactive fiction world

have composed verses consisting entirely of well-formed

Inform 7 expressions. Here is one by a writer who goes by

the tag “Adjusting” (Adjusting). It riffs on Noam Chomsky’s

famous example of formal nonsense, colorless green ideas

sleep furiously:

Chomsky is a room.

A thought is a kind of thing.

Color is a kind of value.

The colors are red, green and blue.

A thought has a color. It is usually Green.

A thought can be colorful or colorless. It is usually

colorless.

An idea is a thought in Chomsky with description

“Colorless green ideas

sleep furiously.”

A manner is a kind of thing.

Furiously is a manner.

Sleeping relates one thought to one manner.

The verb to sleep (he sleeps, they sleep, he slept, it is

slept, he is

sleeping) implies the sleeping relation.

Colorless green ideas sleep furiously.

“It compiles,” one slightly skeptical commenter observes.

“It just doesn’t do much”—except compile, of course, which

the final line will not do in the absence of the lines that

precede it. The observation is correct as far as the compiled

game goes—there’s not much to do in the room called

“Chomsky”—but placing the exercise in a larger context, we

very much beg to differ. Wrapping Chomsky’s famous

example around the twin poles of poetry and programming

language is, culturally speaking, a whole lot indeed. It

demonstrates how the structure of language, which

Chomsky’s sleep of reason is meant to reveal, can be not

emptied out but doubly loaded—deeply Inform-ed, as it

were.

Twine is less formally ambitious than Inform 7. Because

Twine games branch off not from rule-based text adventures

but from link-based game books and hypertexts, they

generally have simpler infrastructures than parser games—

though a glance back at our discussion of With Those We

Love Alive in chapter T-2 complicates this claim. In its own

way, Twine also allows for relatively seamless connections

between natural and cybernetic language. The foundational

double-bracket convention for linking, with its automatic

expansion of the structure map, offers a prime example of

this effect. The Chapbook story format, intended to simplify

Twine writing for beginners, extends the principle

throughout the authoring process.

If we think about Inform 7 and Twine not just as clever,

marginal improvements to game development but as

interventions in literacy itself, their importance is evident.

Socially speaking, both platforms allow people without

programming backgrounds—often people alienated by the

cognitive and ideological signatures of conventional game

design—to build things with code. Even writers who never

go beyond simple linking schemes are introduced to the

structure editor. Working with this directed graph both

underscores the dual nature of digital production, scriptonic

content set within a textonic framework, and emphasizes

the possibilities for complex expression, a challenge to both

writers and programmers. In our classroom experience, a

significant number of beginners move beyond basic

hypertext, at the very least to conditional linking and

textual variation, both techniques that implicate aspects of

code such as variables and Boolean logic.

Outside of the classroom, where Twine writers are driven

mainly by aesthetic exploration, there is a clear path from

the basic Chapbook repertoire of links, forks, modifiers, and

inserts to more complex approaches like embedded

JavaScript. More venturesome creators may also find their

way to Harlowe, Snowman, and SugarCube, with their

broader arrays of programming tools. At each of these points

of advance, Twine users will find online references,

examples, and explanations in places like Cox’s Twine

Cookbook (Cox), Melissa Ford’s Writing Interactive Fiction

with Twine (Ford), Anna Anthropy’s Make Your Own Twine

Games! (Anthropy), and Emily Short’s blog (Short). Like

other forms of interactive fiction, Twine can be an effective

gateway experience for those who may not have otherwise

thought of themselves as coders. Of course, not everyone is

obligated or destined to make such a cultural crossing. For

those who carry on happily with older forms, Twine and

interactive fiction extend the ambit of literacy to include

cybertexts. They expand the field of expression and indeed

of reading. In this way, Twine and its cousins serve that

highest function of writing, literary and otherwise: they

advance the language itself.

What’s in Your Heart

Language is always two things at once: a vast,

intergenerational cultural project—what Ferdinand

de Saussure called langue—and individual human

utterance, or parole (de Saussure 91). While it may be

important to speak of cognitive mapping or new horizons for

literacy, the most powerful argument for the importance of

Twine is simply personal. In the introduction, Anastasia told

a version of her Twine story. In telling my own, I will add a

character, a scene, and a crucial piece of dialogue.

In 2008, Klimas, Salter, and I were all associated with the

School of Information Arts and Technologies at UB. If, as one

woebegone troll suggests, this was anything more than

coincidence, credit the invisible hand of history, that

ultimate conspirator. Chris and Anastasia were graduate

students; I was on the faculty. Eight years earlier, I had

cofounded the school (which most places would call a

department) with my partner, Nancy Kaplan, who directed

its graduate programs. As Anastasia has written, Chris had

begun building Twine on the foundations of TiddlyWiki. He

had also taken some classes toward our MS in interaction

design and information architecture. He had spoken to

Nancy, and briefly to me, about using the development of

Twine as his thesis project. We encouraged him, but there

was a hitch.

Constraints of time and budget restricted Chris to one

class per semester. At that pace, it would take several years

to complete the degree and probably even longer to release

Twine. So one evening, with next-semester registration

looming, Chris came to Nancy’s office to ask a difficult

question: Should he carry on with the MS program or stop

and concentrate on bringing Twine into the world? What

Professor Kaplan said to him deserves to be remembered in

the annals of Twine and possibly also in any history of

electronic literature because it was exactly what she said to

me in the summer of 1991 when I was agonizing about

taking time from an academic project to write a long-form

hypertext called Victory Garden. Her words: “You have to do

what’s in your heart.”

Chris and I both decided to step off, or around, the

academic adventure line. I’ve had no regrets and I hope the

same for him. Over the next decade, I have encountered

other people who have drifted crosswise through the

cultures of software and higher learning, people with their

hearts set on new forms of writing—Anastasia and Chris—

and lately a constellation I have yet to know well or in most

cases even meet—Anna Anthropy, Dan Cox, Cara Ellison,

Porpentine, Kitty Horrorshow, merritt k, Christine Love, Kris

Ligman, Michael Lutz, Xalavier Nelson Jr., D. Squinkifer, and

too many more to list.

Twine was in my heart long before there was Twine, when,

circa 1986, someone told me this thing I thought I was

inventing had a name already—it was called hypertext, and

there were people who knew about it: Mark Bernstein, Jay

Bolter, John Cayley, Robert Coover, Yellowlees Douglas,

Carolyn Guyer, Terry Harpold, Michael Joyce, George Landow,

Judy Malloy, Cathy Marshall, John McDaid, and first of all, Ted

Nelson. Hypertext was a thing for a few years, but creative

attention eventually drifted from nodes and links toward

graphics and animation and platforms like Flash (see Salter

and Murray). Electronic literature became its own thing, and

then Rettberg and Robert Coover went and Organized it, but

by that time, I was trying to learn enough about video game

design not to feel completely embarrassed teaching it.

Somewhere my links back to hypertext broke down, or so it

seemed, and by 2010, hypertext fiction felt enough like

ancient history that Grigar and I had to start digging it up

and putting it in archives (Moulthrop and Grigar). Game

culture, meanwhile, was on its way to crisis.

At the same time, Twine was happening, in ways that only

in retrospect seem completely reasonable. Even Chris

professes himself surprised with what Anthropy and merritt

k and D. Squinkifer and Porpentine were doing on the

platform—making games, making noise, making a

difference. Reconnecting with Twine made me feel a lot like

McDaid’s Glass Man, a vagrant scuffling across time tracks.

Didn’t we disappear somewhere in the nineties? Bones of old

men, indeed. Back in the heyday of hypertext, my

generation consisted mainly of academics with an attitude,

skulking in basement Macintosh labs—the labs were always

in the basement—fondly dreaming about the end of print.

That end came, sort of, and in an important way did not.

Meanwhile, there were other changes. The culture war about

which I fabulated in Victory Garden erupted in harsh reality.

The skin my cohort had in the game was nothing compared

to what Quinn and others, including my coauthor, have had

to risk in the endless aftermath of Gamergate. The older

generation was out to change college composition, creative

writing, and perhaps publishing, not the multibillion-dollar

video game industry. What did we know? All commitment to

the struggle, all respect to the youth.

So now here we are, friends and strangers, writers and

aca-fans, all wound up in this project that threads through

our lives in so many weird, queer, and astounding ways. As

the oldest Twine writer in the world—because I was writing

Twine before there was Twine, also because I am old—I will

say this entanglement feels, in a way it has never felt before,

really good. As Rettberg says, the play continues. For all the

anger and suffering and thickening darkness, something

important is happening. We are all part of a significant

unfolding of language, ideas, and human possibility—may it

last. May the future of Twine be glorious and full of righteous

trouble, and may we all live to see it.

Never give up what’s in your heart.

Works Cited

Adjusting. I7 Chomsky. June 17, 2007.

https://groups.google.com/forum/#!topic/rec.arts.int-

fiction/2pHd-vPfAVY.

https://groups.google.com/forum/#!topic/rec.arts.int-fiction/2pHd-vPfAVY

Anthropy, Anna. Make Your Own Twine Games! Penguin-

Random House, 2019.

———. Rise of the Video Game Zinesters. Seven Stories

Press, 2012.

Bell, Alice. The Possible Worlds of Hypertext Fiction. Palgrave

Macmillan, 2010.

Bogost, Ian. Alien Phenomenology, or What It’s Like to Be a

Thing. University of Minnesota Press, 2012.

Burden, Michael, and Sean Gouglas. “The Algorithmic

Experience: ‘Portal’ as Art.” Game Studies 12, no. 2

(2012).

http://gamestudies.org/1202/articles/the_algorithmic_ex

perience.

Cannizarro, Danny, and Samantha Gorman. Pry. Tender

Claws, 2014.

Cayley, John. “Aurature at the End(s) of Electronic

Literature.” Electronic Book Review, February 2017.

https://electronicbookreview.com/essay/aurature-at-the-

ends-of-electronic-literature/.

———. “The Listeners: An Instance of Aurature.” cream city

review 40, no. 2 (2016).

http://io.creamcityreview.org/40-2/cayley/.

Chess, Shira, and Adrienne Shaw. “We Are All Fishes Now.”

DIGRA: Transactions of the Digital Games Research

Association 2, no. 2 (2016).

http://todigra.org/index.php/todigra/article/view/39/91.

Cox, Dan, ed. “Welcome to the Twine Cookbook.” Twinery.org,

2019, https://twinery.org/cookbook/.

de Saussure, Ferdinand. Course in General Linguistics.

Philosophical Library, 1959.

Didion, Joan. Slouching toward Bethlehem. Farrar, Straus and

Giroux, 1968.

http://gamestudies.org/1202/articles/the_algorithmic_experience
https://electronicbookreview.com/essay/aurature-at-the-ends-of-electronic-literature/
http://io.creamcityreview.org/40-2/cayley/
http://todigra.org/index.php/todigra/article/view/39/91
http://www.twinery.org/
https://twinery.org/cookbook/

Ford, Melissa. Writing Interactive Fiction with Twine. Que,

2018.

Galloway, Alexander R. Gaming: Essays on Algorithmic

Culture. University of Minnesota Press, 2006.

Geyh, Paula, Fred G. Leebron, and Andrew Levy. Postmodern

American Fiction. W. W. Norton, 1994.

Han, Bong Hee, and Elizabeth Ito, dir. “Five Short Tables.”

Adventure Time. 2016. WarnerMedia.

Hayles, N. Katherine. Electronic Literature: New Horizons for

the Literary. University of Notre Dame Press, 2008.

Hudson, Laura. “Twine, the Video-Game Technology for All.”

New York Times, November 19, 2014.

https://www.nytimes.com/2014/11/23/magazine/twine-

the-video-game-technology-for-all.html.

Interactive Fiction Technology Foundation. “Our Mission and

Goals.” 2020. https://iftechfoundation.org/mission/.

Jameson, Fredric. Postmodernism, or, the Cultural Logic of

Late Capitalism. Duke University Press, 1991.

Klimas, Chris. Twine Past, Present, Future. Cambridge, MA:

NarraScope, 2019.

LaFrance, Adrienne. “How QAnon Is Warping Reality and

Discrediting Science.” Atlantic, June 2020, 27–38.

Liu, Alan Y. Laws of Cool: Knowledge Work and the Culture of

Information. University of Chicago Press, 2004.

Marx, Julius. Groucho and Me. Da Capo Press, 1959.

merritt k, ed. Videogames for Humans: Twine Authors in

Conversation. Instar Books, 2015.

Montfort, Nick, and Stephanie Strickland. Sea and Spar

Between. Dear Navigator, 2010.

https://nickm.com/montfort_strickland/sea_and_spar_bet

ween/.

Moulthrop, Stuart. “For Thee: A Response to Alice Bell.”

Electronic Book Review, January 2011.

https://www.nytimes.com/2014/11/23/magazine/twine-the-video-game-technology-for-all.html
https://iftechfoundation.org/mission/
https://nickm.com/montfort_strickland/sea_and_spar_between/

https://electronicbookreview.com/essay/for-thee-a-

response-to-alice-bell/.

Moulthrop, Stuart, and Dene Grigar. Traversals: The Use of

Preservation for Early Electronic Writing. MIT Press,

2017.

Nelson, Graham. “Inform 7.” 2006. www.inform7.com.

Nelson, Jason. Sydney’s Siberia. Accessed August 20, 2019.

http://www.secrettechnology.com/sydney/.

Perloff, Marjorie. Unoriginal Genius: Poetry by Other Means

in the New Century. University of Chicago Press, 2012.

Raley, Rita. “Interferences: [Net.Writing] and the Practice of

Codework.” Electronic Book Review, September 2002.

http://electronicbookreview.com/essay/interferences-

net-writing-and-the-practice-of-codework/.

Rettberg, Scott. Electronic Literature. Polity Press, 2019.

Short, Emily. Emily Short’s Interactive Storytelling (blog).

Accessed March 4, 2020. www.emshort.blog.

Stephenson, Neal. Snow Crash. Bantam Spectra, 1992.

Warzel, Charlie. “How an Online Mob Created a Playbook for

a Culture War.” New York Times, August 15, 2019.

https://www.nytimes.com/interactive/2019/08/15/opinio

n/what-is-gamergate.html.

1 Among Twine works that negotiate this problem somewhat differently, we

should mention Dan Weber’s A Kiss, which has one of the more compelling

formal maps included in Twine stories:

http://logolalia.com/hypertexts/hypertextscreencap.gif.

2 Gen Con, the venerable tabletop gaming convention, had attendance of

more than seventy thousand in 2019; San Diego Comic-Con regularly draws

twice that number. Their audiences are both large and diverse by several

measures. The “general audience” seems increasingly mythical.

3 There are always exceptions. In 2018, Christopher Macalester Williams

received his doctorate in English with a concentration in creative writing

from the University of Wisconsin–Milwaukee. His dissertation included an

https://electronicbookreview.com/essay/for-thee-a-response-to-alice-bell/
http://www.inform7.com/
http://www.secrettechnology.com/sydney/
http://electronicbookreview.com/essay/interferences-net-writing-and-the-practice-of-codework/
http://www.emshort.blog/
https://www.nytimes.com/interactive/2019/08/15/opinion/what-is-gamergate.html
http://logolalia.com/hypertexts/hypertextscreencap.gif

epic poem called The Wrong Sky, with both a conventional print and a Twine

component. Dr. Williams is now an assistant professor teaching literature

and creative writing.

Appendix I

Interview with Chris Klimas

This interview took place between the authors of this book

(AS and SM) and Chris Klimas (CK) via Skype on April 6,

2017. Our work was in the early stages, and the exchange

helped us understand much about the origins and

circumstances of Twine. It also confirmed our commitment to

multiple agendas—historical, personal, critical, and creative

—because as Chris makes clear, the Twine phenomenon has

all those dimensions. The conversation was notably free

ranging. We have used a light editorial hand in order to

preserve the flow of ideas.

AS: Circa 2009, people may have tended to think of

hypertext as more of an appliance than an area for active

software development. What made you interested in the

concept?

CK: Of hypertext . . . ? [bemused] wow.

AS: . . . of building something in hypertext . . .

SM: If that’s in fact what you were thinking—I don’t know—

did you think of [Twine] as something else?

CK: I don’t know, actually. I think so. I think that [hypertext]

was a fair characterization. . . . I think at that point, I had

done a lot of experimentation with parser IF, and I had done

a couple of games myself, but I felt sort of frustrated with

the medium . . . how object-y it is . . . very world-model-

based . . . and that felt like an obstacle, I guess. That was

when I started messing around with stuff that was, more . . .

hypertext-y. You just have tons of exposure to the idea of

hypertext. For me, it was more the web. I hadn’t played or

experienced the stuff from the early nineties or whenever

you want to date that particular period.

I ran across this technology called TiddlyWiki, and it was

this really clever thing [that created] a self-modifying web

page. You download it to your computer, you can edit it, it’s

like a wiki, but there’s no server component to it at all, and

so it’s like a very simple . . . DIY hypertext. And so I started

editing and playing out stuff in there and experimenting

with that medium.

It just got very disorienting, actually, to try to edit [a

TiddlyWiki story] from inside . . . where I’d click links, and

follow them, and it’s like—where am I? I’d get lost in my own

stuff, and that was the genesis: I want to build a tool that

will help me do this better.

SM: What was your process [of development and invention]

like? When did you first think you were building Twine?

CK: There were a couple of abortive attempts. Before [there

was Twine] it started as Twee . . . and they all started with

“TW” because they came from TiddlyWiki . . . and this was

just a plain old text format and compiler, the sort of

programming environment you expect out of traditional

programming.

That worked OK, and I wrote some stuff with that . . . and

then I thought . . . I should make something web-based

because I wanted more people to get into it . . . because

there were so few things at that point on the web that

were . . . literary hypertext, I guess.

I was always trying to convert people to the cause [of

branching stories]. I thought, I should try to win over [some

of my] friends who are writers . . . to have them try this out.

And of course, if you give them a compiler, they’re like,

What is this?—so I tried building a web-based thing, but it

was just a web front end to the compiler . . . which I

called . . . TweeBox . . .

I had all these attempts to try to build something [along

these lines], and I always had this idea, actually while I was

in the UB IDIA program [University of Baltimore, Interactive

Design and Information Architecture], where I was on track

to do a master’s, and I was thinking this would be an

interesting thesis project . . . and then I got really impatient

because I was doing it part-time, taking one class at a time,

so I was at least two years away from even starting on [the

thesis]. I remember just deciding, I’m going to do this and

try it out, and that’s where the genesis of [Twine] began.

I had always hesitated to build an actual GUI behind it . . .

and then I was like, there’s never actually going to come a

moment where somebody tells me, You should go ahead and

do that—so I just did it. And that’s how it started.

SM: [Ironically] Why wait for permission?

AS: Since you did mention Twee . . . It’s always been

interesting to me that you’ve included Twee in the releases,

that it’s stayed a part of Twine. Do you see people still using

it? Is there a following for Twee or a motivation for you in

keeping Twee part of the platform?

CK: I wouldn’t say that I actively develop [Twee]. . . . For a

long time, I did, and then I lapsed working on it. I came back

to Twine. . . . Twine 2.0 was very much for me like, let’s think

about what succeeded here, what didn’t, and rethink

assumptions. . . . That was when I actually stopped working

on Twee. It seemed like kind of a done deal. [Twee] does

what it needs to do.

[There’s] sort of this pendulum swing between

programming and writing. . . . I am building larger projects

now and I need to merge stuff together, so I wrote a bunch

of JavaScript, it’s an NPM module called twine-utils that

includes a tiny little compiler. . . . There have been quite a

few Twine competitors that have sprung up in its wake. . . . I

don’t remember all of the names. . . . The guy who does

TextAdventures.co.uk has one—Squiffy, I think it was called?

—it seemed like for a while, every day there was someone

who said, I have a better way to do Twine . . . and they all

had [a] programming language, like, Here’s a text file . . .

[something like] Raconteur, which is based on Undum.

To me, the hard problem has always been the interface. It

has never been, like, I need something really sophisticated

in terms of functionality. It’s actually the ease of use, from

my point of view, so it’s a useful substrate.

Beyond that . . . the people who are into programming,

who come at it from a programming angle, it’s more

comfortable to them, like I definitely hear about people in

the community who are like, Oh man, I just want to be able

to use my text editor, and that’s great, go for it, you know?

. . . [Twee] was a useful stepping-stone. . . . To be honest, I

still use it from time to time, for programming utility kinds of

things, but I don’t see it as a big deal.

SM: This is a shift-focus question . . . Have you always

thought of Twine as a free platform, or have you thought at

any point of monetizing, commercializing?

http://www.textadventures.co.uk/

CK: One of the core tenets of my thoughts on [Twine] is that

it should be free, and I think, to be honest, that is a large

reason why it succeeded in the first place . . . because

obviously Storyspace existed, and as I learned later on,

there’s this product called AXMA Story Maker . . . but it’s not

the price tag so much as the open-source thing.

I do cling to hippyish beliefs about open-source, and I read

Slashdot back in the day, which is I think where I got

indoctrinated. . . . I still sort of pine for that period . . . the

early 2000s, where the web was . . . much less a social-

media, TV-like experience . . . and I think that is important,

one of the foundational things. . . . Obviously it would be

nice to be paid for my work, but it has never made economic

sense to me. The people who are using [Twine] are, by and

large, not the kind of people who are going to pay fifty

dollars or more for what we [for some reason still] call a

boxed product.

AS: Given the commitment to open-source, have you had

any notable successes, challenges with that, taking that

model, maintaining the Twine code base, especially as you

handed it off?

CK: I did a talk at a conference called NoShowConf, which

talks about me burning out on the project and some of the

history too. . . . When I gave the talk, which was maybe

2014 . . . it was definitely a moment to reflect. . . . So yeah, I

totally burned out on [Twine], to be honest. . . . It was

ironically just as [Twine] was taking off that I burned out . . .

and it’s hard because you get a lot of support requests and

bug reports.

The Twine user base often is not particularly technically

savvy, which is cool most of the time, but it also means that

people will write in bug reports like It just doesn’t start.

Which is very frustrating because, you know, you feel bad

because there’s no information to actually fix [whatever the

problem is] . . . and people often have an expectation

that . . . it’s a program like Office and Word, so if it doesn’t

work right, it’s a travesty . . . and some people get angry

about it. I guess that’s just human nature, but to be on the

other side of it gets frustrating, and I’ve had to learn and am

still learning how to manage my time with the project . . .

and also my emotional well-being.

I used to have . . . a [Twitter] TweetDeck column . . . for

people talking about Twine games . . . or I’d have this very

convoluted search term to see what people are saying on

Twitter about Twine . . . and it was . . . kind of a terrible idea,

actually. . . . This was just when Gamergate happened, so I

had to close it down because the flow was just too much.

I still have a Twitter account, which I mainly oversee,

though I just brought on someone else to help with it . . . and

people will just tweet at me, “Your software sucks” [laughs]

and it’s like, thanks! And that’s tough, and I guess that’s

also . . . living a little bit in the public eye, in the internet

sense of the word. People are going to have opinions about

what you do, no matter what. That is the major challenge,

trying to keep Twine afloat while maintaining a full-time job

elsewhere.

The truth is, the number of people who work on [Twine] in

general is very small. There are people who do . . . drive-by

pull requests, which is good. . . . Like yesterday, somebody

came in with a request. . . . He wanted to add a thing for

adding force touch, like when you push very hard on a

trackpad, to do stuff with that. . . . But the problem with any

open-source project is there’s a judgment call. . . . You are

adding a functionality to this thing that I have no way of

testing myself . . . so if it breaks, I am going to be the guy

who fixes it, probably . . . and is that a decision I’m willing to

make? . . . I’ll bet that’s pretty typical for an open-source

project.

SM: Are there particular contributors to the code base who

are memorable or rank as among the most important?

CK: Yeah, definitely. Leon Arnott is a guy who lives in

Australia. . . . I don’t know much about him otherwise, which

is also really interesting. . . . Leon developed a lot of macros,

things you can add to your story to make it do stuff, back in

the Twine 1.X days. He had done a lot with it, and when I was

looking at version 2, I thought, this is going to be too much

for me, to do both the editor and the runtime at once, and

[Arnott] seemed to have thought hard about what people

were doing or wanted to do with Twine stories, so I asked him

to work on Harlowe, which is the default [story] format [in

Twine 2]. . . . Leon’s interesting to chat with. He works at a

different speed and thinks about things very differently than

I do, which makes for interesting conversations.

The other guy is Thomas Michael Edwards. . . . He is the

maintainer for SugarCube, which is the legacy [format], so if

you’re used to using Twine 1 . . . SugarCube takes what I did

in 2010 or so and builds on it quite a lot. It’s a very mature

kind of format.

Those are the two [people] I could go to just off the top of

my head in terms of programming, though obviously the

community goes much wider than that.

AS: Shifting into the community itself, what are some of the

things you see in terms of Twine extensions like community-

generated code that’s not necessarily part of the format

choices that you’ve found most interesting? Anything that’s

surprised you?

CK: A lot of it is . . . one-off things. People do really

surprising things with Twine, in the sense of . . . content,

obviously, but there’ve been instances where I’ve seen like,

wait, oh, kind of taking it and twisting it. . . . It reminds me a

little of [the way] Andrew Plotkin did an implementation of

Tetris in the Z-machine. . . . That level of stuff that serves no

practical purpose, and it’s not necessarily even like a big

artistic statement in terms I understand, but it’s more like

technically playing with what you can do.

There’s this guy . . . the only thing I know him by is his

Twitter handle . . . such is internet life. . . . His Twitter handle

[is] lectronice. . . . He did this really amazing thing where it

looked very much like a Japanese RPG, with little dialogue

boxes and such. . . . People are always trying to build RPG

games out of [Twine] . . . which is always to me . . . a giant

quagmire because there are a million ways you could

potentially do that . . . lots of little modules or extensions or

plug-ins or whatever.

People came up with this idea for cycling text, which may

well have antecedents way before Twine that I’m not aware

of . . . but the idea that I’m clicking and the text changes . . .

you’re not moving, the text just changes to a different

adjective, or something like that. That was always

interesting to me, and something I hadn’t seen before.

AS: I think that’s the extension I use most.

CK: Yeah, it’s fun to do. At least for me, there’s the fear

that . . . you know, with [disjunctive] hypertext, you’re like, if

I click here, will I be able to get back to where I was? Am I

about to jump off a cliff? Whereas if I click on a link and [the

current text] just changes, and that’s it, that’s kind of

pleasant, in fact.

SM: My students have impressed me a lot with timed effects

[using the (live:) macro in Harlowe] . . . that thing where you

say, If I wait another five seconds, maybe it’ll do

something . . . or maybe he set it up to wait FIVE HOURS!—

and then you have to crawl the code [to figure it out]. What

do you think about timed effects?

CK: One of my favorite Twine things is Queers in Love at the

End of the World [by Anna Anthropy], which has the ten-

second thing, but it’s tricky because in the IF community,

people were very against the idea of having text appear

slowly, even, or making [the reader] wait at all. . . . I

remember this big debate back in the nineties on

USENET. . . . David Cornelson was writing this suspense

story, and he wanted it to play out [so that] the text would

appear like you’re reading it on a really old modem, and

everybody in the community was like, That’s a stupid idea!

I’m going to hate it!—or whatever. And we’ve come so far, I

feel that people have let go of that and . . . let text appear

one character at a time but also play with time in an

interesting sort of way. It’s cool. I don’t know. A game that

requires you to wait five hours would be . . . challenging . . .

but interesting at the same time.

SM: I have a question I’ve been dying to ask since you sort

of answered it earlier. I’ll ask it again, nonetheless. You know

Darius Kazemi, right?

CK: I’ve met him a couple of times.

SM: I was talking Twine with him about a year ago, and I

wondered, Should I say, “Twine games,” or should I say,

“Twine fictions?” And [Kazemi] said, “Well, these days the

kids just say ‘Twines.’” [General amusement.] So let me ask

you, where would you go with that?

CK: Well, it’s interesting. To sort of sidebar a little . . . I’m a

member of the board of the Interactive Fiction Technology

Foundation, [a] nonprofit that’s about community

infrastructure . . . and one of the things we’re exploring is

possibly trademarking Twine . . . so then it gets real muddled

if we start saying, like, Oh yeah, it’s a Twine.

To be honest, it’s a struggle every time [I ask myself], Is

this a Twine game? Is this a Twine story? And both times,

people might not like your description, so my internal

stylebook is, I just write Twine works. . . . “This is a work of

Twine.” . . . That was the one middle ground I could find. I

don’t really so much care. At the same time, I like the idea of

people saying, Oh, I made a Twine—even inasmuch as that

is a problem, legally speaking, potentially. [It’s nice that

Twine] is a term, and people know what you’re talking about.

AS: You talked a bit about trying to convert your literary

friends and people writing in a more linear way when you

were talking about the audience for this platform, and Stuart

has just touched on the age-old “games versus stories”

debate. So given all of that happening in the various spaces

of serious writing, which sometimes tends not to engage . . .

when serious writing goes digital, it means they made a

PDF . . . over to games. Where do you see Twine fitting in this

larger culture?

CK: I see it as this thing that confounds people. I really like

that aspect of it. I initially thought of [Twine] as this thing

that was for . . . serious writing, I guess, though serious

writing is obviously a loaded term. It wasn’t that I thought

[Twine work] was somehow better than a game; it was more

that I couldn’t see how you build a game out of it, originally.

And then everybody came along and proved me wrong,

basically. And that was the other piece of it. I had zero

awareness of the indie game scene at the time.

[The importance of indie gaming] was the thing that Anna

Anthropy really recognized, I think. I honestly credit her . . .

fifty-fifty for Twine’s success. Because she saw something

and was in a digital community I had no relationship to.

Personally, I think you can build stories with Twine; you

can build games with Twine. I think that’s fine. I think there

are things that I wouldn’t call games that I’ve experienced

with Twine. . . . The problem is that a lot of people see [the

claim that] this is not a game as an insult [laughs]. And I see

how people do that. . . . At the same time, I wish we could

return to a world where it’s not a value judgment—where

people just say, Eh, this is a game, according to my own

personal rubric, and that’s not, and that’s the end of it.

Unfortunately, now it’s just so fraught. I like the fact that

there are things people build in Twine that are . . . aspects of

both, and people can argue about it.

I suppose that’s my own hell-raiser tendencies: let us

disrupt these somewhat stuffy debates.

SM: I agree with that. I wanted to ask further about the

Interactive Fiction Technology Foundation.

CK: It turns out the acronym [IFTF] is the same as the one

for the Institute for the Future . . . which I’m pretty sure is

unintentional. [Much amusement.]

SM: Show up at their conference!

CK: The president and the ringleader is Jason McIntosh, who

is part of the parser IF community, mostly. He’s run the

IFComp for the last couple of years now. He reached out to

me when he was getting it set up. It’s been in existence

since July of last year [2016]. Its real purpose is . . . there are

all these projects run by people in the community, there’s

the IFDB, there’s the IF Archive, there’s the IFComp. . . . All

these things are done because people are interested in

them, and it’s great to have that level of enthusiasm, but the

danger is if people burn out, like I did, or just want to move

on, then all this stuff could just completely fall apart.

Right now, [IFTF] is trying to help out with projects that

need people to look at them. [For instance] right now, the

parser IF interpreter situation on Mac OS is terrible. All the

ones that used to work don’t work anymore on [Mac OS

10.12] Sierra. And it’s a real problem. . . . I don’t know that I

can play . . . the only thing that works right now is a thing

called Lectrote. . . . One of the things we’re working on right

now is to have people fix up this interpreter called Gargoyle,

which had been working really well for a long time. So [IFTF]

is about adoption of projects, and eventually, hopefully, to

fund-raise to help grow stuff . . .

SM: So this gets to the metaquestion I want to ask: What

kind of community has Twine become, what kind of

community does it belong to, and it sounds like you’re

saying it’s part of the general interactive fiction community?

CK: I believe so. You may get different answers from

different people, but as someone who is more steeped in

that community, I think of it that way.

SM: Could you tell me how you think of the IF community?

How does it fit into the culture generally?

CK: It’s an interesting question because [the IF community]

has changed so much over time. When I first got internet

access . . . when I first went to college, which would be have

been in 1998 or so . . . I trawled around in USENET and

found the news groups . . . and so, through the nineties . . . I

don’t exactly know when they died out. . . . It was this very,

very tiny community, relatively speaking, of people who

were really, really dedicated to it. . . . Looking back on it

now, there was always that thread in Infocom’s advertising

of Text-based games are inherently superior to graphical

games because your mind is the best graphics engine

ever . . . or whatever. Which I kind of believe, though not

necessarily to the exclusion of graphical games.

There’s this online term, Amiga persecution complex . . .

you feel you have this superior thing but the world doesn’t

recognize [it]. [The IF community] had that vibe to it, for a

time, but at the same time, people were doing really

interesting stuff. . . . The other thing I hear people say is that

everything interesting going on in the gaming world at large

happened in the IF community ten years before. Which is a

bit of an overstatement, but I believe a lot of that is actually

true.

I never really intended it to be this way, but Twine became

this existential threat [to parser-based games], at least

among the old guard. . . . People [said], We have this very

strict definition, and we clung to it because it was part of

our community identity: you have to type in words and you

get back text in return, and you can’t even show graphics—

[or], God forbid—sound! I clued into this way late, but there

were people in the wider world [saying], Twine games aren’t

games, and people in the IF community saying, Twine

games aren’t IF.

Carl Muckenhoupt, who was the guy behind Baf’s Guide to

the IF Archive, one major review site, wrote this article that

explained it really well, though I thought his view was

incorrect. . . . [Muckenhoupt said], it’s like, you’re really into

jazz, and you keep going to this one jazz club that is

preserving your particular definition of jazz, and all these

young upstart kids show up and start ruining it with their

new jazz.

I’ll bet this is a pattern that repeats in every subculture . . .

where people come around and challenge things, and the

old guard hate it . . . and it’s funny to me because I came

from that [traditional] part of the community, and I never

intended [Twine] to be this massive, subversive, destructive

tool, but I also like to think that at this point, people have

chilled out a bit and realized we can coexist in peace.

There’s the IFComp and then there’s the Xyzzy Awards,

and people look at how many parser games versus how

many choice-based games are in both, and because the

community’s a little bit nerdy, there’s graphs, and stuff like

that, and trend lines, and people freak out and post detailed

analyses. . . . It’s a little overblown, obviously, but people

have started to relax. . . . An equilibrium is starting to be

achieved. . . . I forget what the numbers were last year, but it

was about equal [between parser and Twine entries].

This is a little bit grandiose to say, [but] I think that

without Twine, the [IF] community would have continued to

be a small thing. There are definitely people who pick up

parser games now, even so. I was at PAX East in 2011 and

they had an IF meet-up, and there was a girl who must have

been about seventeen who showed up at the meet-up, and I

was walking back with her to the main area, and I asked how

she found out about IF. I said, “You are the youngest person

I’ve ever met who’s into it.” And she said, “Oh yeah, I found

[interactive fiction] on the [Apple] iOS Store and just started

playing the games.” So there’s some longevity to [IF].

And it’s not just Twine, actually. Choice of Games had a

similar issue, and their communities were much bigger, and

there was an eruption of controversy over . . . I forget which

Xyzzy Award. . . . One of their games was nominated for it,

and a bunch of their fanbase came over to the forums and

voted for it, and everybody panicked because normally a

thing you’d see 200 votes for was getting 1,500, and so

everybody was [thinking], You must be cheating. But then

people mellowed out about it and realized it was not this big

existential threat.

AS: Since you’ve talked about Twine as an existential threat

in the context of IF . . . you and I talked about this during

Gamergate—what do you think about the ways Twine has

disrupted mainstream gaming culture?—the way the legacy

of Depression Quest hangs over us . . .

CK: That is sort of the go-to example. [That game

approaches its subject] both in terms of form and content.

Overall, I think there’s bias toward procedural-ness—this has

to be hard to program in order for it to be good, artistically.

There’s obviously parallels in other mediums, even from

super-photo-realism to stuff that’s more impressionistic,

where people say [on one end], Oh, I can do this—people

say that about everything.

I think it was either TotalBiscuit or someone even worse

who said . . . Twine games are great because you can make

them without knowing how to make games . . . [to which I

say] YES, I AM ON BOARD WITH THAT! I think he was

actually meaner. I think he said you can [make Twine games]

without any skills—which I am in favor of—or talent, which I

disagree with [laughs] and so there is that aspect, where it

has to have 3-D graphics to be a game, or something like

that.

There are a lot of historical reasons for that, and a lot of

them happened by accident, where you look at how

journalists cover games, to see how that came out. . . . The

way I talk about it, when I give talks, is that the content of

Depression Quest is really interesting, too, because there are

very few games that talk about mental illness in a very

nongimmicky kind of way . . . but that obviously got lost

completely in the whole controversy.

I think long term what Twine might really be remembered

for is for broadening the scope of what a game can be

about . . . and allowing more personal narratives. . . . It’s

hard to build graphical games unless you’re a very skilled

artist. . . . It’s hard to build a one-off; there’s more effort

involved in something that will take twenty minutes to play

or read through. That’s why the confessional Twine genre is

such a thing: there’s a more immediate payoff to it. Say I

want to build a Unity game based on the way I feel

today. . . . You’re going to be done next month, where you’re

going to be done with it in Twine, hopefully, that same day.

SM: I still feel that way about [HTML] and JavaScript things,

where I’ll say, I really want to do this thing . . . and it’s going

to take three weeks, but I won’t feel this way in three weeks.

CK: Yeah.

SM: You’ve just touched on where you think Twine will be in

the near future, or the even further future. Could you

expand on that? If you could think twenty years out, what do

you think happens to Twine?

CK: I’m a pessimist by nature. . . . I think Twine will no

longer . . . I think it will always have a place, but at the same

time, I think it won’t have as prominent a place as it has

right now. I see some game companies are taking Twine

writing samples, which is pretty cool, and that argues for

more longevity among the world at large. But at the same

time, I’m mindful that . . . Twine becoming popular was . . .

sort of an accident.

Nothing I tried [made the difference] . . . other than

building it in the first place, which was [laughs] NO BIG

DEAL REALLY! As far as making it popular, I feel like I was

very not-responsible for that. . . . It was really Anna

[Anthropy], among others, who managed to make that

happen, and it seems equally likely that if [Twine] remains

popular . . . it will be for reasons I have no idea about.

I’m trying to keep myself a little rooted on the ground and

to realize nothing is forever, especially in the software world.

It would be nice [for Twine] to persist as a standard-ish

format. . . . I still want to be working on it. . . . I think it was

Judy Malloy who was writing about . . . her own hypertext

engine that she’d been working on since the eighties . . .

and that’s amazing because that amount of time . . . it would

be really interesting to see what that looks like. . . . There are

very few software projects out there on which people spend

more than a decade, really.

I don’t see myself ever losing interest in [Twine],

exactly. . . . It will always be a thing for me, but I’m not sure

it will always be as big of a deal as it is right now, and that’s

OK . . . and that’s the thing that I’m trying to prepare myself

for, I guess. I keep wondering, What is the next Twine going

to be? and if I knew, I guess I would build it.

The one thing I think it’s not so great at, and people have

tried to improve on is . . . I was talking to people at the

Mozilla Foundation because I was looking for a home for

Twine, and [the man from Mozilla asked], Well, what’s the

mobile story for Twine? And I [thought] I don’t really have

one because I hate typing on a phone, and I feel like that’s

the one aspect that someone could really improve on. The

other thing would be making it better at collaboration. . . . I

know Stuart and I have talked about that in the past. . . .

That’s something I want to try to do.

SM: This is going to stop being [an] interview and start

being an ordinary conversation, but have you ever thought

about people being able to just talk to the phone and

compose orally?

CK: Mmm . . .

SM: As you were talking, I was thinking about [the IF

programming language] Inform 7 and [its] natural-language

interface. I kind of hated the idea until I started working with

it, and now I want everything to be in English, or whatever

[Inform 7’s idiom] is. . . . If you think about being able to

create powerful structure with almost gestural simplicity . . .

that might be really cool.

CK: Yeah, I agree. I think that . . . it needs to embrace text,

but also embrace the fact that it’s on a phone and on a

relatively small screen . . . and swiping or any kind of

gesture is much more natural on a phone or any kind of

touch screen than it is on a track pad or moving stuff around

with the mouse—that kind of thing.

AS: What do you think about the future of interactive

fiction? We pick up the odd seventeen-year-old who finds it

on the iOS store, and that’s good, but what do you think

more broadly about the future of the interactive fiction

community?

CK: [The Inkle game] 80 Days is my really short answer. It’ll

be things that people don’t even think of as IF, or like [the

mobile game] Lifeline [from Big Fish Games]. Stuff like that. I

have a lot of respect for Andrew Plotkin, who’s also on the

board of the IFTF, and he’s trying really hard to make the

parser thing work on a phone and elsewhere, but I ultimately

think it’s going to be something else that keeps the

principles of the medium and not necessarily the trappings.

If you ask people what kind of game 80 Days is, I don’t

think anybody will say it’s interactive fiction. Part of it is that

interactive fiction feels sort of esoteric. . . . The community

held on to the definition of IF with a really tight grip . . . and

this orthodoxy emerged . . . and to me, it’s better to, like, let

it go a little bit.

I was talking to Brian Moriarty [of Infocom], and he

seemed a little bit perplexed by the worship of parser

[games] by people he ran into still . . . because he [was

thinking], How do we adapt this? He told me about . . . a

voice-driven [storytelling technology] . . . which is

interesting because I certainly listen to a lot of podcasts

now, when I drive, and so I could see, like, talking back to it,

potentially . . . [and] in general, speech seems to be the next

big thing as far as technology goes.

You can draw on a ton of IF things. . . . Emily Short and

Aaron Reed are now working at a company called Spirit

AI. . . . I don’t know their elevator pitch, exactly, but it seems

like they are taking a lot of the principles behind IF and

applying them to . . . designing a traditional AAA kind of

game, where it’s like, Our company will help make your AI

better . . . or make your conversation trees better, and stuff

like that. To me, it’s like this hidden substrate to [IF], where

you’re using it, or playing it, but not necessarily thinking of

it as such.

AS: I think Aaron Reed is also working on that.

CK: Yeah. There’s also an NYU professor . . . Mitu Khandaker-

Kokoris. . . . I don’t know much about their technology,

but . . . Emily is a really smart person, so I figure there must

be something there. And Aaron is too, but I’m less

acquainted with him. . . . I really like the Inform 7 book he

wrote.

SM: Yeah, I love it. [I’ve taught with it so much that] my

copy is now completely shot. [General laughter.]

CK: I like Sand Dancer, the game he has in the book. . . . So

anyway, there’s a lot of talent there [at Spirit AI], so I’m

interested to see what happens, and obviously Inkle, they’re

kind of a big deal, too, but their new game that they just

announced, [Heaven’s Vault], is moving more toward a

graphic novel feel than a text-based one. . . . I’m interested

to see what they do with it.

AS: That definitely will be interesting. And you have

companies like Netflix supposedly doing a choose-your-own-

adventure concept.

CK: We’ll see. Sam Barlow is the guy I try to pay attention to

on that stuff because I really liked Her Story, which was

really innovative . . . and I forget the company that he’s

with, but I feel that he will come up with something really

interesting. . . . I’m not so much convinced about Netflix.

AS: If they have any sense, they’ll hire [Barlow].

CK: Hopefully! Brian Moriarty has this amazing talk about

the history of interactive cinema, and having learned from

that, [I realize that] this is a really old concept and nobody

has really changed much about it since the very beginning,

and it’s always been kind of a novelty; it’s never gotten any

traction, it feels like. And so it seems, the Netflix thing

sounds exactly like this . . . but we’ll see.

AS: A lot of folks from interactive fiction are going off and

working for companies and founding start-ups right now. Are

you thinking of doing anything with this background of

everything you’ve done?

CK: I would love to. I’ve talked with folks, but I’ve never

found the right fit. I’ve been really hesitant to get into the

game industry per se. Back when Zynga—East, I think it

was?—had a Baltimore-based branch, I talked to folks from

there, [but I thought], This is Zynga, and I’m not sure my

values are compatible with yours.

SM: And they lasted about eighteen months too.

CK: I guess I dodged a bullet there. I would have switched

careers and immediately gotten laid off. Which I guess

would have been an instructive experience in the game

industry, right there. It’s very tough right now because all

the companies are like five people.

And I have my own two-person company. It’s called

Unmapped Path, and the first client work that we’ve done is

for Andrew Schneider, who’s written this incredibly long (by

my standards, at least) about 150,000 words . . . this

interactive story about Robin Hood. We’re building that for

him. It’s supposed to be coming out June-ish . . . and we’re

working on our own projects as well.

The idea is to leverage Twine to build games for mobile.

And that goes back to the problem of Twine not having a

good story on mobile. If I play Twine games on my iPad, it’s a

little bit janky, to be honest. . . . I keep meaning to come

around and improve on it. If I tap on a link, it’s like for some

reason the whole thing highlights. . . . So we are leveraging

the content creation aspect of Twine to build games that feel

like text adventures but hopefully have a little bit more

mass appeal.

This is the boring part where I say that we don’t have

anything to announce yet, but there’s something we’re

working on that we hope to have an announcement about

soon as far as games go. Because I see the role of Twine as

like a Photoshop or a Unity. The interesting part to me is not

so much the tools but the content. I would like tools as much

as possible to be open-source, but I don’t feel the same way

about games or content per se. I’m more comfortable buying

a book than a software program, but I guess that’s just my

deal.

[Around this point, Chris asks about the book we are writing,

which is our chance to say we don’t have anything to

announce yet . . . and brings up the subject of books about

Twine.]

CK: I was at Games for Change a few years ago, and Merritt

Kopas [now known as merritt k] was speaking with Austin

Walker and Naomi Clark from NYU, and I came up to them

after the talk, and Merritt actually gave me a copy of her

book, Videogames for Humans, and it was like, wow, when

you have a book written about something you made, and it’s

just sort of astonishing. So when there’s a book out of all

this, it will occupy a place of honor on my bookshelf.

SM: Well, we hope so. [General amusement.]

CK: See, I’m not even saying if, I’m saying when.

AS and SM: Thanks.

Appendix II

Interview with Dan Cox

November 3, 2017, at HASTAC in Orlando, Florida

SM: Can you talk about what drew you to Twine, or your

lead-up to Twine? How did you get started?

DC: I first ran into Twine in November 2012, which is when

Porpentine’s Cyberqueen was submitted at Ludum Dare.

Which I was a part of, and when you take part in them, you

participate as a judge, so I saw it right then. I think I started

posting stuff late December 2012 for the first time.

SM: So via Porpentine?

DC: Yes.

SM: What is Ludum Dare?

DC: Ludum Dare is a twice-a-year game jam that has a

random theme, picked sometimes hours before. It’s usually

forty-eight hours, although sometimes they change the rules

—that’s been going for years now.

SM: So via the personal game community to Twine? What

other things were you working with before Twine?

DC: I did Flash games for a little while; I did C++ before

that. Two to three years before that would have been middle

of high school for me. I’m in my early thirties now.

SM: It’s appalling how old people are who seem very young

to me now. This will happen to you eventually. People will

say they are in their early thirties and you’ll realize there’s

this whole swatch of things that happened before you were

born.

SM: I noticed that people like Porpentine or Anna Anthropy

use pen names or screen names that have almost become a

signature of Twine. What’s your screen name?

DC: Videlais.

AS: Do you see Twine as belonging to the game space, the

interactive fiction space, the web space, or belonging to

some other tradition?

DC: I would say it belongs to the interactive fiction space,

since that opens more doors than it closes. It has its roots in

wikis, but I don’t think it [does] anymore: for the longest

time, it was built on TiddlyWiki, from when Chris originally

built it. If there’s any of that left, it’s just the barest of bare

bones. 1.3.4 and 1.4.2 still are on that, but 2.X, as far as I

know, is not based on that.

SM: This is continuity with our interview with Chris, when I

asked him, “So why did you build a hypertext system?” and

Chris replied, “I didn’t think that’s what I was doing, I was

much more thinking about interactive fiction.”

DC: I will just say, especially sort of post Gamergate—well,

Gamergate’s not really over—I’m way more open to applying

things like developer and gamer to things in Twine because

of the hideousness that came out of that, and especially

conversations I was a part of right before that where people

were sort of dismissing it. Even before Depression Quest was

around, there were huge conversations about “Twine stories

aren’t games, they aren’t developers.”

SM: You’ve in fact anticipated another question from our list

—should we say Twine game or Twine story, or Twine fiction?

I put this to Darius Kazemi, and he said, “The kids just say

Twine.”

DC: I’ve seen that in a number of places. I should put it to

the committee and see what they say. I have at various

times said Twine fictions, Twine stories, myself.

SM: When we mentioned “Twines” to Chris, it raised the

question of trademarking Twine, which apparently has been

discussed.

DC: Yes, it still is.

AS: Let’s talk about some of the things you’ve been working

on, like the Twine Cookbook. What motivated that project,

and where do you see it going?

DC: A not-small amount of it is me being sort of selfish in

that I’ve got five years’ worth of Twine tutorials and videos

that are somewhere around ten hours’ worth of content and I

still get comments from people looking at stuff that was

recorded around four years ago and going, “Hey, this doesn’t

work anymore.” And I’m like, “Yes, because it was for three

versions ago, for systems that don’t exist anymore.”

When I joined the Twine Committee, I proposed something

similar, and they said they had had something like it on the

backburner and asked if I’d like to take it over. And I said yes

because I’ve got years and years of examples. We had

discussions about how those examples would go in and

become a part of it. It’s still an ongoing conversation, and I

think I just did something yesterday, planning a meeting on

how to move forward.

AS: Why GitHub?

DC: This was an interesting problem. We wanted to be as

open as possible and traditionally—and I say traditionally in

that it started with Twine 2—most Twine documentation has

been on BitBucket. Chris’s stuff is there, Leon’s stuff is there,

most of the story formats live there.

The problem with BitBucket is that a lot of the people who

contribute to projects are just more familiar with GitHub

from a brand perspective. So with GitHub, it’s easier for

those who don’t have accounts to navigate. Given we were

considering moving to GitHub anyway, this was a good test,

starting on one of IFTF’s private accounts, to let us play with

some things. We’re trying GitHub out to see if it works as

well to support open-source and offer a better way to let

people contribute.

SM: And you’re committed to the open-source aspect—it

has a wiki feel, so users will be updating and making

changes?

DC: Yes. That was a Chris suggestion. He’d been looking at

GitBook, which is the format we use, and I played around

with that—it’s weird because my memory of it extends

before it was public, and we tried other things. But we liked

GitBook for the free export to a range of formats.

SM: Could you give us a little gloss on the IFTF? We heard a

little bit from Chris about it.

DC: My understanding of its rise is it came about from a

number of different problems. The Interactive Fiction

Competition (IF Comp) wanted a place to keep track of code

and funding and other things. Simultaneously, Chris was

feeling the pull of the Twine community exploding and not

being able to keep up with a lot of the development. There’s

also a bit of a history here in that 1.3.5 was Chris, but 1.4.2

sort of wasn’t, in that it was Leon and a couple other people

who had moved into that space. Eventually, those people

took over a story format, and then they all moved into

development for Twine 2.

IFTF came about as a confluence of wanting to keep track

of a bunch of interactive fiction efforts and give them a

place, and a nonprofit, and to pool funding and resources.

I’ve really only been a part of it for a few months now, but

my understanding was we’ve got all of these different

funding sources and this was a way to put it all under a

single nonprofit to protect their future.

SM: Do you have a sense that this is a formalization of the IF

world, that this might be a starting point to look for money?

DC: That’s in fact going on right now. We have an

asynchronous meeting this week, and we’ve started the

conversation on If we find funding, what do we do with that?

And simultaneously, there’s been conversations about

formalizing specifications, like the Twee specification, which

is currently informal. It doesn’t have an ISO or IEEE format or

anything. There’s been ongoing conversations about how we

might standardize to help people—the Twee stuff’s not

documented anywhere, for example.

SM: From my perspective sitting in the dinosaur world of

higher ed, this feels like the arrival of the mammals. As our

institutions die out, here’s maybe a way to keep the things

we care about alive. Good luck to you.

AS: Switching gears, we’ve discussed the open-source

aspect of Twine: How’s that model working for you, and what

do you see as the successes and challenges?

DC: My own experience with the open-source communities,

which has extended to three or four of them now, is that it

tends to be the eighty-twenty problem, where 20 percent of

the contributors are doing 80 percent of the work.

Right now, at least within Twine, there is a great deal of

support coming out of the committee and less work coming

out of the community, which isn’t doing technical work.

They’re producing a lot of interesting things, but they don’t

always contribute back to the technical documentation,

which is a problem right now. Chris told me after I joined

that the push for me to be on the committee was driven in

part by my history documenting Twine stuff and the need for

a champion for that. I’ve made it my mission to do the work

of trying to document story formats. As an example,

Snowman hasn’t had any formal documentation for a year

and a half. I personally wrote a lot of it, and Chris checked it

for me to make sure it was right. That went up on the wiki a

few weeks ago, and before that, we had some Google

documents I had created.

These efforts are me trying to collect community

knowledge, and in doing that, I learned that a number of

people had been doing that already—Keegan Long-Wheeler,

for instance. So community reception has been very

positive, but it’s also turned out that a lot of people have

been doing this work but none of it is standardized or

formalized. We’re just now trying to get it on the site, which

has been an interesting open-source problem.

The successes and problems, at least as I’ve been dealing

with documentation and standardization, have been

interesting in the push and pull about how best to document

code when we have existing documentation on different

websites. How do we make it easier for people to see that?

One of the problems right now is that to see the

documentation of story format, you have to know that you

can change story formats and then click a link to an outside

site, which is three or four more steps than it should be, but

it’s been the traditional way. We’re trying to figure out UI/UX

stuff at the same time as we improve documentation, and

solve parts of the problem with the Cookbook, and figure out

what the future solution might look like. There’s a whole lot

of stuff in the air as we’re trying to figure that out.

SM: Given this range of formats, do you think there’s any

chance of Twine having a schism where a format takes off on

its own?

DC: Away from Twine?

SM: Like, there was Twine, but now there’s Harlowe. We

don’t hold for Snowman.

DC: I don’t think there’s been official talk of that, but yes,

my personal feeling precommittee was that I was seeing

people get annoyed when I made videos supporting one

story format over another. Anyone who has looked at them

over time realizes I do a run of like a dozen on one format,

and then I switch and do a run on another, but I have seen

that in places. I think it’s more because of the weird

functionality overlaps and disconnects. For instance, for a

while, Harlowe didn’t do arrays, but now it does—SugarCube

did them better, so if you wanted to do anything with arrays

you would use it. And then, of course, Snowman hasn’t had

documentation in forever. Generally, they try to be on par

and support similar things, so I don’t think it would be

purposeful.

AS: From an educational perspective, this is why it took me

so long to get on board with Twine 2—the variance in story

formats, particularly in syntax, creates a lot of [confusion]

for students. Do you think the formats will ever reconcile?

DC: I wish they would. I will say that while trying to write

the Cookbook stuff, I’ve gotten complaints that “I’m doing

this wrong” on parts, and it’s in part because [of] the

transition between thinking in different story formats—the

difference in variable scope between formats, for instance.

SM: When people make up a language from the same root

as yours that isn’t yours, you’re in trouble.

DC: We had a whole conversation about whether we should

make things as close as possible to one another—if we’re

using the replace macro here, should we change it, or try

and match the different functionality in the story format?

Link replacement in Harlowe and SugarCube works slightly

differently, and Snowman doesn’t have link replacement at

all. I wish they would come together, but I don’t anticipate

them ever doing that.

SM: How well are Twine folks connecting with the parser-

driven Inform 7 community, for instance? It’s almost like

we’ve got different congregations in our church, but then

there are other churches.

DC: I will say on our IFTF Slack, the general channel is open

to anyone, and I’ve seen conversations between Chris and

Zarf (who does IFComp/Inform stuff), and I’ve seen groups

gather and start general conversations connected to past

projects, such as the Inform Recipe Book.

SM: History is a factor here, as we’re discovering.

AS: We talked a little about Twee and its documentation.

What do you see as the motivation and future of Twee?

DC: I can talk a lot more about the future of Twee than I can

talk about the past, since I don’t know the motivation

behind the decisions Chris made with Twee or the

community’s view previous to me. I was aware it existed,

and my feeling is that they wanted a format that they could

exchange between versions and import and export. With

Twine 2, the ability to import from HTML, and thus to import

anything that was made after Twine 2, in any story format,

was essential.

As for the future of Twee, I haven’t been an active part of

these conversations, but as part of the committee, I’ve been

observing them. The story format editors, along with Chris

and a couple of other people, are trying to figure out a way

to standardize it so that other people can build editors for it

or tools that export it. One of the things we’ve found is that

people want to use parts of Twine in Unity and other

engines, so Twee has been a format bridge to help people

with that. There’s no specification for it, so you usually just

have to go ask people, “Does this work?”

As part of this, we’ve learned there’s no way to do

commenting internal to Twee code either. You can do HTML

comments in Harlowe [and] JavaScript comments in

SugarCube and Snowman. This turned into a Cookbook

problem: How do you put comments in the code to show

people on a website? I don’t know if anything will come of it

this year, but there is an active conversation about it and

where we put comments. For the future, I think the hope is

to build something that can move toward a visual interface.

AS: So moving out of the code and into the community,

what has surprised you the most in how people are using

Twine? What do you most admire?

DC: I would say the anti-Twine response has been the most

interesting, particularly since 2012. One of the things I’ve

gotten the most angry about with individual people is

people saying Twine stuff’s not games, or Twine stuff’s just

projects, or even people going as low as to say women can’t

code, or we don’t want people of color, or we don’t want

queer people—a whole [lot of] homophobic, racist,

misogynist responses—which blew up during Gamergate. It

makes sense in a weird way that it blew up around

Depression Quest because of Quinn’s use of Twine. There’s a

lot of silent hatred that was bubbling and exploded in its

wake. My first response is, “Who cares—like, what are you,

the game police?”

AS: Which was, of course, a Twine game.

DC: My response pre-Gamergate would have been to say

that you’re not Chris, so who are you to say what Twine is?

But in a positive way, I’ve seen Twine embraced in

academia, which I did not think was ever going to happen—

your Chronicle posts and mention of my videos, which is

where we met. Previous to that, I was told by people at my

current institution that Twine was a waste of time. I’d been

doing the videos for a while, but I don’t talk about Twine a

whole lot outside of Twitter. I was told Twine was a waste of

time, it was never going to catch on, and that I should stop

doing the videos, and eventually that I should just take the

videos down. My feeling from that was “Oh right, no one in

academia is ever going to care about Twine.” It has been

adopted by academia in a number of surprising ways in the

last year.

Based on the initial negativity, I’d decided not to talk

about Twine at conferences, as my thought was of course,

Everybody hates Twine, so I’m just not going to talk about it.

Last year, I introduced myself in a workshop as the guy who

does these videos, and everyone went, “Oh, it’s you,”

because they’d only ever heard my voice and didn’t know

what I looked like. “You’re Dan.”

When I started making videos in 2013, Anna Anthropy’s

guide to Twine already existed, so Twine being embraced by

the personal game community was not very surprising. It

had been that way for as long as I’ve known it. But the

hatred? I’ve never understood it.

To turn to your next question, what have I admired? I tried

my hand at personal games, and I found that I have the

teacher bug more than I have the developer bug. I’m really

good at explaining things, not particularly good at creating

things. The people I admire are those who can imbue

wonderful and personal stories into Twine. I’m sometimes

jealous of that, when I’m moved by a game that’s amazing. I

admire people who do weird things with Twine, like when

Porpentine’s done something new, like a jQuery experiment

pre–Twine 2 for a proto-MMO with multiple players in the

story. She always does wonderful, delightfully weird things.

Even Cowgirls Bleed by Christine Love was really cool and

inspired a whole lot of conversations around whether we

should try to enable that in Twine 1. I was excited to see a

lot of that come into Twine 2, like events and mouseovers

suddenly were enabled.

A lot of student work is also great. My teaching experience

with Twine has been very strange—entirely online for five

years. I’ve never taught it in a classroom. My experience

with my students is that someone would email me a

question, I’ll try to answer it, and then they will disappear.

There’s a couple people that have been very nice and a year

later or so will email me a “Thanks, Dan” and put me in the

acknowledgments or something. It’s usually triage. Student

projects have always been my favorite.

AS: From your perspective, what’s Twine’s place in larger

culture? You’ve talked about it finding more of a space in

academia, and of course there’s the more literary world, the

IF world—do you see Twine as belonging, or really being its

own community?

DC: My increasing feeling over the last few years is it

doesn’t really matter as long as people are using it and

doing good work—and good work here defined as not hate

speech. Over the last five years, I’ve felt a very strange

connection to the community, in that at times, I feel like I’m

very, very close to it, and it feels like there are maybe fifty

people who are the main contributors and that I basically

know the names of them. Porpentine, Anna Anthropy, [and

so on]. And then there’s times when I’ll discover there was a

whole other community producing hundreds of works that I

knew nothing about.

The other day, when I put a call out on Twitter for teaching

resources, I found a community that had been using Twine

for years. They had a ton of personal projects, tutorials,

student projects—all archived—that I couldn’t believe I

hadn’t seen. And still they said, “Thanks, Dan.” And I’m just

in a room by myself, talking to myself for hours at a time,

trying really hard to say things like “the value of the

variable” and not screw that up.

AS: Is there anything you would like to see from Twine in the

future?

DC: Someone once asked me, “What can Twine do? Is it

anything a web browser can do?” And I said yes, and I’m

going to forever tell that story because the answer is always

yes. The possibilities are endless. This includes things like

game controllers—I’ve seen some projects use game

controllers. I’ve seen stuff integrate video, audio, like your

thing at SIGDOC last year. What haven’t we tried? Well, what

hasn’t games explored? Every time I think games cannot do

that, someone comes out with a game like Blindsight (all

audio) or Hidden Agenda (using mobile phones to play and

vote on a story).

AS: So where do you think it’s headed in the next decade?

DC: I think it’s easier to say in the next year what I’m hoping

will happen: documentation and standardization, which is

sort of a double-edged sword—formalization also cuts. My

hope is that standardization will help more than it hurts. As

for the second decade, I have no idea. I did not anticipate

Twine 2 existing. I didn’t even know Chris was working on it,

and then, hey—Twine 2. Harlowe has changed a whole lot. if

you’d asked me if Sugarcane would become SugarCube, I’d

have no idea, so in a decade—I have no idea. I’ve seen with

Flash and HTML5 projects, they’re around because there’s a

niche for them, and then when there isn’t a niche, they fall.

Will the web browser be around? Or is the web browser the

computer? I don’t know.

I will say, when I mentioned Inform the other day in a

workshop, someone laughed and said, “People are still using

that?” And I laughed and said, yes—me.

Appendix III

Bonus Practical Chapter: Beyond

Twine

One of the major virtues of Twine, especially with the

Chapbook story format, is the way it connects smoothly to

other kinds of software practice. In this encore practical

chapter, we look beyond Twine into the coding world we’ve

briefly glimpsed in previous chapters. The projects in this

chapter do not use Twine at all but depend instead on HTML

and JavaScript, the associated coding language supported

by all modern web browsers. We make this departure from

Twine not because we’ve exhausted its possibilities but to

serve two complementary purposes. On one hand, we

explore some design techniques Twine does not readily

support. At the same time, this excursion into the wilderness

may put into welcome relief the things Twine makes easier.

You may come away from this chapter with a renewed

appreciation for Twine, especially if your interests lie mainly

with storytelling and turn-based interaction.

This chapter might not be for everyone. As we said all the

way back in chapter P-2, code work can be daunting. Twine

spares its users significant drudgery and detail, including

things like spelling, capitalization, syntax, order of

operations, and some basic math. The projects in this

chapter involve only very modest code structures, but they

do raise the bar of complexity slightly above even our more

code-intensive Twine practicals. If you are willing to trade

design constraints for relative simplicity, skip this wilderness

tour and stay in the civilized precincts of Twine. It’s an

eminently livable environment. If you’re tempted but

uncertain about the exploring that lies ahead, here are some

questions for the boarding ramp:

1. Have you ever built your own web page or site,

without using a code-generating tool like

Dreamweaver?

2. Are you considering working with more

sophisticated game design systems such as Unity?

3. Do you like making things that break conventions?

Answering yes to any of these questions qualifies you for

the trip. Of course, you may also proceed if you don’t have a

choice—maybe this chapter has been assigned for class—or

if you’re just the kind of person who always does things

they’re told to avoid. We warned you.

Tools and Procedures

Even though this chapter does not work with Twine,

supporting materials can be found online at

https://github.com/AMSUCF/Twining. You’re as welcome to

adapt the code examples here as in the other practical

chapters. You won’t be able to import our .html pages into

Twine, obviously, but you can do something just as useful:

use the “View Source” feature of your web browser to see

our code. If for some reason your browser makes this

difficult, we’ve provided the code in text files with notes in

cases where the code is meant to be placed anywhere other

than the HEAD division of a web page (mentioned later).

https://github.com/AMSUCF/Twining

Instead of the Twine application, you will need two other

pieces of freely available software: a web browser and a text

editor. Any reasonably current browser will do except

Microsoft Edge, which for some ill-considered reason makes

opening local web pages very hard. At this writing, Google’s

Chrome browser is generally preferred by web professionals.

When we say text editor, we do not mean a word processing

program like Microsoft Word but a simpler program designed

to produce plain text or ASCII files. If you have a Windows

system, type “Notepad” into your search window. You should

have an application by this name. On a Mac OS computer,

the equivalent program is Text Edit. For Linux users there is

VI. Because we spend significant time writing code, we use a

commercial product called TextPad, available for Windows

and Mac OS. This program adds many useful features but is

by no means required.

Do not attempt to build any of the exercises in this chapter

with Word or another word processor, even if you choose the

text-only save or export option. Word processors often add

unseen formatting information that can cripple a web file. In

fact, because the level of detail in code structures of these

projects is high, you may not want to type what you see at

all. You’re better off downloading the digital version of this

chapter, or even better the complete finished code, from the

Twining website (https://github.com/AMSUCF/Twining). Open

one of these files in a text editor and you can modify and

tinker as you like. Because of this recommendation, we’ll

modify the visual convention of previous chapters. Code

fragments will be boxed, but we’ve omitted the ◊ prompt for

text entry.

The kind of DIY web coding we describe here is a two-

window experience. You need your text editor and your

browser both running. (Two windows does not mean two

monitors; you can toggle back and forth.) You need the same

file open in both applications—doing this will not cause a

https://github.com/AMSUCF/Twining

crash. The taskbar is your friend. The typical development

process starts with entering some code into a web page file,

which is a text-only document with the extension .htm or

.html. The extension is not optional. If you try to open what

you think is a web page in a file having any other extension,

such as .txt or .rtf, all you will see is the page markup, not

what the markup is supposed to produce. Once you’ve saved

your changes in the text editor—make sure to save—switch

over to your browser and open the page file locally.

If you wonder what open the file locally means, we have

some news for you. (Also, consider replacing that Microsoft

browser.) Browsers mainly pull in data from the internet at

large by communicating with computers called servers via

HTTP. However, all web browsers—even Microsoft bleeding

Edge—can obtain data by opening a document on the

computer on which they are running—which is to say,

locally. Civilized browsers allow you to do this by selecting

something like “Open” or “Open Local” from the file menu or

equivalent. The keyboard shortcut in Windows and Linux is

usually CTRL+O (or on Mac OS, Apple key and O). You may

need to traverse your file structure to find your page file,

which brings us to another important point: always know

where your files are!

In these Cloud-y days of remote and virtual storage, this

principle may need reinforcing. Before starting any web

project, we recommend two things. One, put your phone

down, or set it aside because it may come in handy if you

need to look for help at some point—but a smartphone is

not a coding tool. Two, a minimum requirement for coding is

access to a main directory or, ideally, a graphical desktop.

You’ll need the other kind of computer, a desktop or laptop

machine. (Netbooks are acceptable.) This brings us to the

other basic procedure: create a folder (or directory) on your

PC desktop—by which we mean the level of file storage you

see when you log into your computer—and save your work

there. Now we come to the contents of your web page, which

will eventually get us to code—but first, one more

preparatory section.

Basics of Page Coding

The most important elements of a web page are three

containers, one called HTML, the second called head, and

the last called body. In terms of markup, which is another

word for HTML code, a container is a pair of tags. A tag is a

statement within a set of angle brackets, or a less-than and

a greater-than sign:

<HTML>

<HEAD></HEAD>

<BODY></BODY>

</HTML>

The closing tag of a container always begins with a

forward slash. Eventually, we’ll introduce some other

containers, including the all-important container <script>

</script>, within which almost all our JavaScript code will

reside.

With these basics out of the way, let’s look at the structure

of a blank web page. You can type this into your own blank

text-editor document, making sure you’ve saved your file

with the extension .htm or .html. There’s enough complexity

here that you might want to download from our website

rather than transcribe.

Here’s the page code before any JavaScript happens:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<html>

<head>

<meta charset="utf-8"/>

<title>A page needs a title</title>

<style type="text/css">

div{ font: 18pt Cambria; padding: 20px; }

</style>

<script>

//JavaScript goes here

</script>

</head>

<body>

<div id="out"></div>

</body>

</html>

If this were a book on HTML and general web coding, we’d

go into detail about various features of this markup—the

document type definition, the meta declaration, and the CSS

style sheet, for instance. We might also point out that

though web code ignores white space, it’s important for

readability to keep tags on separate lines whenever you can.

We should also note that this page has a preconfigured style

sheet for the projects we intend to build. That style sheet

contains a rule for the page element called DIV, specifying

that any text found within such a container will be in

eighteen-point Cambria with twenty pixels of padding

around it. You can see a blank DIV container within the body

container. This DIV has an ID attribute (informally speaking,

a name), which is the word out.

We direct your attention primarily to this pair of tags:

<script>

</script>

This is a script container. It’s where all our JavaScript code

will be installed. Though you can put a script container at

several points in the markup, we’ll always place it within the

head container. Putting it there ensures that all the page

elements we reference are loaded into memory before we

start doing things with them.

With this quick tour of page infrastructure done, we can

proceed to our first coding project.

Bonus Example 1: JavaScript Text

Selector

If you notice a certain resemblance between our first two

projects here and example P-3.3, you’re paying attention.

We’ll base all our projects in this chapter on the same kind

of substitution grammar we used in chapter P-3, though

we’ll move on to other techniques besides text generation.

In the JavaScript context, we can streamline text generation

in a couple of important ways. The first of these

improvements is the use of specialized functions, or as

programmers call them, custom methods. We’ll come to the

second major refinement, the use of a switch structure, in

bonus example 2. For the moment, consider three small but

momentous bits of code. If you were typing along, we’d have

you enter them into the script container of our blank web

page, yielding this:

<script>

function r(range){

return Math.floor(Math.random()*range)

}

function g(source){

theArray = source.split(",")

return theArray[r(theArray.length)]

}

function outIt(what){

document.getElementById("out").innerHTML = what

}

</script>

As we’ve mentioned earlier, a function is a set of code

statements that can be put flexibly into action or invoked as

needed. Functions can be invoked by handlers when a page

loads or some other event takes place in the browser. They

can also be invoked by other functions, which is what puts

the fun in functions. Our three functions are called r, g, and

outIt. The writer of a function can use any name not

reserved by JavaScript and the browser. The name r refers to

random numbers. The name g suggests “generate” or

possibly “gimme.” The name outIt refers to output or display.

As you can see, in each of our custom methods, the name is

followed by a word in parentheses. This word is called a

parameter. It is a special kind of variable that passes a value

from the invoking code to the function.

In r, the parameter is called range, and as you can see, it

is used to set a maximum value for the generation of a

random number, using the same call to the JavaScript Math

object we used (somewhat liberally) in chapter P-3. The r

function supplies a random number between 0 and (because

it rounds down) a value one less than the range parameter.

This arrangement is perfect for working with arrays, which

are series of items numbered from 0 to a number that is one

less than the number of items—for an array of 6 items, 0 to

5. The return statement converts the chosen number into

output so that if we write r(5), the expression may translate

as 0, 1, 2, 3, or 4.

The parameter for g is called source, and unlike the range

parameter of r, it will be the type of variable called a string—

which is to say, a nonmathematical series of letters and

numbers such as “hooey” or “44 A.D.” or, closer to our

context here, “firefly,omnivore,beauty.” That last example is

a comma-separated string. The g function accepts a string

and does two things with it. First, it uses the built-in split

method to convert the comma-separated list into an array.

So “firefly,omnivore,beauty” yields the following array:

firefly

omnivore

beauty

“Firefly” is item 0, “omnivore” is item 1, “beauty” is item 2,

and the length of the array is 3. Next, the g function calls

the r function to generate a random number between 0 and

the length of the array, which it uses to make a random

selection from the array via square bracket notation. The

result is again turned into output using the return

statement.

The outIt function does not use a return statement but

instead modifies a page element directly. JavaScript can do

that! In fact, this is what JavaScript was invented to do. The

outIt function changes the innerHTML property of the DIV we

created with the ID of “out”—our display DIV, in other words.

To achieve this, outIt traverses the DOM of our web page. All

pages automatically have such a model, which is a listing of

all the various elements they contain along with their names

and, in some cases, numbers. The traversal uses something

called dot notation, which is a familiar convention in web

coding. It uses the getElementById method of the document

object to find a DIV called “out.” When found, said object’s

innerHTML property—what it contains—is changed from

something (or in this case, nothing) to something else.

The custom methods g and r create a basic framework for

randomly selecting from comma-separated strings of text.

We can show how they work by adding a few more pieces to

our page markup. First, let’s build a string with which to test

our random selector. We’ll add this line at the top of the

script container:

testSource =

"firefly,omnivore,beauty,greeble,Provo,whimsical,flatiro

n,Mme. Ortega y Bullfrog"

The final item of this test string shows our system will

work even with multiword phrases and punctuation marks,

so long as they don’t include commas. Notice the final item

is not followed by a comma.

Next, also within the script container, we’ll add a fourth

function immediately after outIt:

function writeUp(){

for(var i=0; i<5; i++){

outIt(g(testSource))+ " "

}

}

This function contains a for loop—we’ve mentioned this

element before. It’s a way of repeating an instruction a

specified number of times and keeping track of the

repetitions. We’ll see something like it in our further

examples. For loops are enormously useful. Notice also

we’ve appended a space to our output, using the +

operator, which is smart enough to know that it’s dealing

with strings (because " " is a string) and not numbers. The

line within the loop is the key to the show: it calls the outIt

function, passing it the result of the g function, which is

passed the test source string to work with. The result on

each iteration of the for loop is a randomly chosen word from

testSource, with a trailing space added.

Finally, we need to invoke this new writeUp function. We

do this by adding an onLoad handler to the initial body tag

of our page, which is outside of both the script container and

the head container. The body tag will now look like this:

<body width: 800px onLoad="writeUp()">

When we load the page in our browser, we may see

something like the following:

firefly omnivore Mme. Ortega y Bullfrog greeble beauty

Though much more likely, we’ll have something like this:

firefly omnivore flatiron greeble flatiron

Repetitions! Yes, well, remember the orange wheelbarrow.

As you’ll recall, getting a random number generator to avoid

repetition takes some work, and for the sake of simplicity,

we won’t bother this time. Instead, we’ll move on to a more

sophisticated application of the substitution grammar

technique.

Bonus Example 2A: JavaScript

Generator (Sequential)

As we said in the previous section, switching to JavaScript

and the DIY web brings two major benefits for our text-

generation project. Custom methods are the first. The

second is a very powerful programming structure called

switch. In this example, we’ll show how to apply this

technique. First, some setup. Assume we’ve opened a new

copy of the template web page introduced in the “Tools and

Procedures” section. The script container is blank.

In this container, we’ll install our three core functions—r,

g, and outIt—exactly as they were in the previous example.

(In the next example, we’ll see a way to avoid this

duplication of text. For clarity, we’ll hold off on that for the

moment.) At the top of our script container, ahead of our

core functions, we’ll add the following lines:

numOptions = 5;

switcher = 0;

function writeUp(){

for(var i=0; i<numOptions; i++){

outIt(generate())

}

}

The first two lines are variable declarations. The

numOptions variable declares the number of grammar

options we will have in our switch statement (we’re coming

to that). The switcher variable is a counter we’ll use to cycle

through our options in sequence. The writeUp function

resembles its counterpart in the previous example, with two

small variations. First, the limit set for the loop is whatever

value we assign to numOptions. We could simply have put a

5 here, but referring to the variable makes adding grammar

options easier. If we add more options, we can just increase

the number assigned to numOptions. Second, the function

called for generating text is not the g function directly but a

new function called generate, which we’ll proceed to define.

We’ll start by roughing in the bare outlines of this function:

function generate(){

t = "";

switch(switcher){

case 0:

//you wake up

break

case 1:

//somewhere nearby is the sound of a chainsaw

break

case 2:

//you can smell woodsmoke

break

case 3:

//you remember there was a bonfire

break

case 4:

//go back to sleep

break

}

}

Before we come to our switch, structure let’s briefly

discuss the first line, which defines a variable called t. T is

for text—this variable will hold the text of the sentence we

are generating. We’ll build it up step by step. When we’re

done, we’ll turn it into output with a return statement. All

that will be explained later.

First, let’s discuss the switch structure. As the name

suggests, it’s a mechanism for directing the operation of the

program to certain lines depending on the value of its

parameter, the variable named in the parentheses that

follow the word switch. For this version of our project, we’ll

use a sequential counting variable, switcher. A switch

structure has branching options called cases. A case is

identified by that keyword followed by a value or an

expression and a colon. Here we’re using integer values, so

you see a series of numbers. Switch cases can also be

written on strings or logical expressions.

Following each case line are two indented lines. The

indentation is required by JavaScript—one of the few cases

where it matters. Right now, there are only two lines

indented for each case. We’ll come to the first one

momentarily. For the moment, let’s consider the second,

which is the single statement break. This very powerful

command tells JavaScript to break out of its current

operation—marching through a series of statements in a

switch structure—and go to the next line outside of that

structure. In other words, break breaks the action. Every

case in a switch structure must have a break statement.

Technically, the final case doesn’t need one, but you should

put one in just in case you decide to add more cases, as you

can do if you like.

The other element in our switch structure is a series of

sentences preceded by double slashes, one for each case.

The // indicates that the following text is a comment,

material that will be skipped by the JavaScript interpreter

when the script is run. A comment introduced by //

continues to the end of its line. (There’s another

construction for multiline comments, but it’s not relevant

here.) Our comment sentences are, strictly speaking,

optional. Each one indicates a template or grammar we’ll

use for variation. We put them in as a mnemonic device to

remind us of the pattern we are matching. For the human

writer, they are not optional. You don’t have to set things up

this way; it’s just one model, though it’s served us well on

many occasions.

We flesh out the switch structure by adding conditions

under each case. We’ll discuss the first in detail, then look at

the completed structure. Case 0 is our first option—

programmers like to count from zero. We’ll flesh it out as

follows:

case 0:

//you wake up

t += "you " + g("think you're awake,cease to

dream,open your good eye")

break

That new line is kind of monstrous, but it’s very useful. It

starts by adding to the t variable: that’s what “+=” means.

Technically, we could have just said “=” at this point

because the t variable is empty when this line executes—it

was declared that way. Since later cases will have multiple

assignments to the t variable, when we’ll need to add rather

than replace, we’ve used “+=” for the sake of uniformity.

The first thing we add to our t variable is the word you

followed by a space. All variations of our sentence will start

this way. This brings us to the variations.

Remember, our g function takes in a comma-separated

string, splits it into an array, and then chooses from the

array at random. We’re passing along just such a list,

consisting of a series of phrases that could follow you. There

are only three options in our string. That’s strictly for

convenient readability. You can add as many variations as

you like without any change to the g function. The function

always knows how many options to choose from, no matter

how many or few you throw it. In setting up the string

passed to g, which contains our variations, some very careful

typing is required. We have to remember to add no spaces

around the commas, to put the quotation marks around the

whole series and not single items (as we’d do for an array),

and to make sure there are “+” signs connecting all pieces

of the template. Let’s just say it’s easy to get all this wrong.

After a whole bunch of careful typing—or after much

sloppy typing and some grumbly debugging—we end up

with this completed version of our switch construction:

switch(switcher){

case 0:

//you wake up

t += "you " + g("think you're awake,cease to

dream,open your good eye")

break;

case 1:

//somewhere nearby is the sound of a chainsaw

t += "somewhere " + g("nearby,far away,not here")

t += " is the " + g("sound of a chainsaw,smell of

mahogany,country of smiles")

break;

case 2:

//you can smell woodsmoke

t += "you can smell " + g("woodsmoke,begonias,an

elephant")

break;

case 3:

//you remember there was a bonfire

t += "you " + g("forget,remember,imagine")

t += " there was a " + g("bonfire,search party,barn

raising")

break;

case 4:

//go back to sleep

t += "the " + g("chaplain,barista,walrus")

t += " says " + g("go back to sleep,dream more

carefully,walk on")

break;

}

Again, there are just three options at each substitution

point, mainly to make the example marginally readable. You

may add more without making any changes to the script.

Just add a comma at the end of any of the sequences and

type in your additional text. Be sure to preserve the closing

quotation marks. You can also add template options by

putting more cases into the switch structure. If you do that,

however, be sure to increase the value of numOptions. If you

forget, though the script will run successfully, you’ll never

see your new sentences.

Speaking of running the script, we need three more lines

to make this possible. They go outside of the curly brace

that closes the switch structure—the last character you see

in the aforementioned block—but before the curly brace that

closes the generate function as a whole. Here are those final

instructions:

switcher ++;

if(switcher == numOptions) switcher = 0;

return t;

The first command increases the value of switcher by one.

The second checks to see if switcher has reached the

number set in numOptions—in other words, have we run

through all five of our grammar templates? Finally, we return

t, the string variable in which we’ve been building our

variant sentence. (If a function contains a return statement,

it must always be the last statement in the function.)

With these details in place, we can run the example and

observe the output, which ought to look something like this:

you cease to dream

somewhere not here is the country of smiles

you can smell woodsmoke

you remember there was a barn raising

the chaplain says go back to sleep

or this:

you think you’re awake

somewhere nearby is the smell of mahogany

you can smell begonias

you imagine there was a barn raising

the chaplain says dream more carefully

There’s enough structure here—the unvarying sequence of

those five sentences, designed to read as a certain kind of

narrative—to balance the variations, which are written

carefully enough, unlike our free-verse excursions in chapter

P-3, for at least an approximation of coherence. For our next

trick, we’ll make some key changes to the example we’ve

just completed to convert it from a sequential generator to a

random-access generator.

Bonus Example 2B: JavaScript

Generator (Randomized)

Only a few changes are required to convert the sequential

generator to random operation. First, delete two of the lines

we added to the bottom of the script at the end of the

previous example:

switcher ++;

if(switcher == numOptions) switcher = 0;

Do not delete the third line, containing the return

statement! We’re just dispensing with that sequential

counter, the variable called switcher. While we’re at it, we

can also delete this line from the top of the script:

switcher = 0

Nothing bad happens if you don’t delete this line, but it’s

good practice to eliminate useless lines, as they can be

confusing when you try to understand your code later on.

Next, change the parameter at the beginning of the switch

structure so that it looks like this:

switch(r(numOptions))

Now, instead of marching through the sequence of

sentence templates, we’re choosing one on each pass, as

randomly as we choose any number in this chapter, using

our faithful r function. After completing these changes, the

output looks like this:

the barista says walk on

somewhere not here is the smell of mahogany

you think you’re awake

the barista says dream more carefully

you can smell an elephant

or this:

somewhere not here is the smell of mahogany

somewhere not here is the country of smiles

the chaplain says walk on

you can smell woodsmoke

you imagine there was a bonfire

Once again, our little machine seems to hold up pretty

well. The repetitions look almost deliberate (which they are,

in an indirect way). The narrative scheme, such as it is, is

impressionistic enough to survive the imposition of

randomness.

Externalizing the Generator

As we move toward our final three examples, we’ll need to

make one more important change to our text generator:

moving it to an external script file. As it happens, JavaScript

need not be written into a script container on a single page.

We can move JavaScript code to a separate text file with the

file extension .js. To set up our last examples, we will do this,

copying the complete contents of our script container into a

new text document, which we name “generator.js.” In that

new document, we delete the lines <script> and </script>.

Externalized JavaScript doesn’t need a script container.

Why do we move our work to an external file? As you may

suspect, it’s so we can use the same instructions flexibly in

multiple projects without having to cut and paste or

(mercy!) type them in. Once a set of functions have been

moved to an external file, we can invoke them from within

JavaScript code on any other page, so long as we include

this special script container in our new page:

<script src="generator.js"></script>

An important detail here: the src (“source”) attribute

added to the initial script tag takes as its argument the

location of the external file. As the tag is written here, that

file must be in the same directory as the page that is loading

it. Put everything into one folder and you’ll be fine. Note,

however, that you can access external JavaScript pages from

anywhere in your local system or indeed from any point

accessible to the web. Our use of an external script

demonstrates two important principles: modularity and

dependence. A program is a composite or assemblage of

distributed parts. The parts depend on one another; they

interoperate. If you plan to use more sophisticated game

development tools like Unity, or if you think you might want

to learn programming on a more serious basis, you’ll need to

understand these concepts.

Now back to our example. In effect, this blank container is

filled, at least virtually, with the contents of the external file.

(We’re not sure that’s technically accurate, but it feels that

way.) Web pages can have more than one script container,

as it happens, and in our next examples, we’ll build

additional containers and scripts that coordinate with our

original text generator.

Bonus Example 3: An Everlasting

Scroll

When we discussed Montfort’s Taroko Gorge in chapter P-2,

we noted the importance of its limitless operation. Like the

gorge, the poem keeps unfolding (or in terms of its code,

folding back on itself). What we see is an infinite scroll.

There may be no way to achieve such an effect in Twine

without slipping into JavaScript. (More on that possibility at

the end of this section.) It’s certainly not possible within the

basic script affordances of Chapbook, which includes no loop

structures. There are timed effects in Chapbook and

Harlowe, but they are meant to run only once and have

generally limited function.1 Generally speaking, the Twine

idiom assumes that changes will follow player action, not

occur automatically.

We can break that taboo easily enough with JavaScript. All

we have to do is look away politely when a function invokes

itself. We’ve been using this technique for many years now

without problems, so until Skynet sends a robot assassin

from the future, we’ll assume it’s safe.

We start again with a blank version of our template web

page. The first thing we do is add, above the existing script

container, the reference container for our externalized text

generator:

<script src="generator.js"></script>

We’ll be using the feed from the text generator as content

for our endless scroll. This is, of course, an arbitrary choice,

but it has the virtue of tying our examples together and

showing a remote script in operation. Note that the

reference container does not do anything in itself because

the script we brought over has no activating instructions. If

you remember, its operation was triggered by an onLoad

handler written into the body tag of the page, which is not

part of the external JavaScript. So our generator code just

sits in memory until we ask some bit of it to do something—

which we will, directly.

Before we discuss the fresh code for this example, let’s

explain what we’re trying to do and how we’ll go about it.

We want text to scroll constantly. We’ll decide that the new

text should appear at the bottom and disappear at the top of

the window, because Star Wars. (It’s easy enough to reverse

the effect if desired.) We’re adding to our scroll in discrete

units, one sentence at a time. This makes the job a bit

easier.

We need a data structure that will let us keep track of

items in a numerical sequence, with the ability to add new

items to the bottom of the sequence and delete from the

top. This is why JavaScript gave us arrays. By now, you’re

very familiar with arrays in both Twine and JavaScript. We’ll

be using two built-in functions of the JavaScript array object,

push and shift, which perform the needed addition and

trimming. Since the code for this project is refreshingly

compact compared to our text generator, we’ll just show it

complete and then discuss its features. Everything you see

here sits inside the main script container.

textArray = new Array();

function writeUp(){

//push on a new line

textArray.push(generate());

//trim top line

if(textArray.length==10) textArray.shift()

//output

document.getElementById("out").innerHTML = ""

for(var i=0; i<textArray.length; i++){

outIt(textArray[i]);

}

//don't stop

theTimeout = setTimeout(writeUp, 1000);

}

First, we declare textArray to hold our generated

sentences. We use the keyword new (technically called a

constructor) to generate an array. The empty parentheses

mean the array has nothing in it and an undefined size or

length.

Next, we define the lone function in this example, called

writeUp. You could call it anything you like. As you can see,

we’ve marked off the four parts of this script with descriptive

comments. To add to the bottom of our array, we use the

push function, and what we push onto the array is the

output from generate, our randomized, template-based

sentence generator that is sitting in the remote file

generate.js. (See how this works!) Next, we set an

instruction to trim off the top line of the array once the array

contains ten elements. That number is an arbitrary design

decision, entirely changeable. It determines how many

sentences will be visible in your scrolling window. You may

want to keep this value low enough to fit the entire stack

onto a typical screen. This could be accomplished

mathematically by bringing in some parameters about the

browser window and the line height, but we’ll rely on

guesswork for simplicity.

Next comes output, where we write the updated contents

of textArray to the screen. Before we can do this, we remove

any version that may have been displayed on a previous

pass through this script—it’s designed for repetition,

remember? So we replace the innerHTML of our “out” DIV (in

effect, the display window) with the null value, signified by

two quotation marks without a space between them: "". At

this point, you might wonder why we don’t use the outIt

function that is handily sitting in our remote script. We will

use it later, but we can’t do so here. That’s because outIt is

designed to add to the contents of the display DIV using the

“+=” operator. Passing it a null value would just add a null

value. We need to replace, not add. If we wanted to be

clever, we could either write a second function (say, blankIt)

or, even better, change outIt to accept a second parameter

determining whether it adds or replaces. These

improvements would have made the example more

complicated, so we leave them to your imagination.

With the board erased, we’re ready to write. You might

think we could just pass textArray to our outIt function. If

you try this, you’ll see your sentences all jammed together,

separated by commas, which is not what we want. We need

to peel each of our sentences off, one at a time. That’s what

a good old for loop is for. It marches through the array from 0

to the last value before its length (which is the last item),

referring to the item in question with the loop’s built-in

counter variable i. Notice we don’t need to add
 at the

end of our sentences because that’s included in outIt.

Now we come to the final piece of the code, thoughtfully

labeled “don’t stop.” This function reactivates itself.

Generally speaking, programmers do not recommend that

practice, but Montfort does much the same thing in Taroko

Gorge, and he has advanced degrees in computer science

and computational linguistics. As we said, this is technically

an infinite loop, but it does not crash the browser, destroy

the internet, or open any wormholes that we know of. The

simplest way for a function to invoke itself is, of course,

simply to write, on the last line of writeUp,

writeUp()

We could do that, but only at the expense of reading.

Without some delay, the function will simply spew sentences

up the screen, iterating several times a second. To avoid

this, we wrap the reinvocation in a setTimeout function,

which formally requires us to create a new variable called

theTimeout and invoke the delay from there. The number

parameter used is a value in milliseconds. One thousand

milliseconds equal one second. You can change this value if

you like. The effect of setTimeout is much like the delay

factors in Chapbook and Harlowe: it holds operation until a

certain amount of time has elapsed. The difference here is

that the function it eventually invokes sets up another timer

at the end of its run and so forth ad infinitum, if you can wait

that long.

The result is an eternal scroll, filled with a constantly

changing (and only occasionally repeating) series of

sentences from our now familiar generator. As in Taroko

Gorge, you won’t see the scroll effect until enough lines

have appeared to start the trimming process. After that, the

business runs as long as you stay on the web page. As we’ve

said, Montfort’s poem may tell us something about the

infinite complexity of the natural world. What this little

example says about anything except coding is probably

beside the point.

Finally, a further note on what can and can’t be done with

Twine. Because Chapbook supports both JavaScript code and

HTML elements like DIVs with IDs, we can in fact port almost

every piece of this project back to Twine and produce a

passage (not page) with an endless scroll. We could mix this

feature with other affordances of Twine for a richly

hybridized experience. The only thing we can’t do in this

context is move our key functions to an external JavaScript

page. Actually, that might be possible, but it would be

necessary to know more about the inner workings of Twine

than you probably want to learn right away. The hybridized

Twine story is included in our online examples as bonus

example 3A. We won’t go through the code because it’s

essentially what you’ve seen already.

Bonus Example 4: Drifting down the

Screen

For our next set of tricks, we’ll explore another feature of the

computing environment that has no obvious place in the

Twine world: animation. From the start, we should point out

that HTML and JavaScript are less-than-ideal platforms for

motion graphics. Yes, you can watch movies through your

browser, but you generally do so in a video window running

a specialized resource called a coder/decoder (codec) or

sometimes a browser enhancement called a plugin. Back in

the day, before someone decided it should no longer be

supported, there was a famous plugin called Shockwave

Flash, designed to run content developed by the two Adobe

products of those names. You may recall our mention of

those programs in chapters T-1 and T-4. Those applications

and their plugin handled animation very, very differently

than we can or will, depending on just the resources of your

web browser, unplugged. Nonetheless, these two simple

exercises will at least give you a taste of poetry in motion.

Let’s begin with a single falling object. We start, as always,

with a fresh copy of our starter web page, to which we add

the reference container to link up generator.js. Next, we go

to the style sheet—the style container found within the head

just before the script containers. The style container is

blank. We add the following:

div{

font: 18pt Cambria; padding: 20px; position:

absolute;

}

The font and padding specifications are familiar from

earlier examples. Note that last item, though: it declares

that the position of any DIV in our document will be

mathematically fixed, not determined in relation to other

page elements. Animation won’t work without this

declaration.

Next, we open the main script container of the page and

add two functions. The first of these is called setUp. It’s

designed to run once when the page loads, so we also go

down to the onLoad handler in the body tag and set it to

activate setUp. Here’s what setUp looks like:

function setUp(){

theDIV = document.getElementsByTagName("DIV")[0]

theDIV.innerHTML = generate()

theLeft = r(600)

theDIV.style.left = theLeft + "px"

theTop = 0--r(100)

theDIV.style.top = theTop + "px"

animate()

}

The first line introduces a variable called theDIV and

assigns it a value. The construction we use here looks a bit

like the one with which you’re probably familiar,

getElementById, though actually, it’s the cousin of that

method, getElementsByTagName. Note it says “Elements,”

plural. This method of the document object can be used to

reach out to a single page element, as we do here, but it first

situates that element within a set of similar elements—the

collection of DIV elements on our page. You’ll see why we do

this when we get to our next example. For the moment, have

a look at the arguments we pass to the

getElementsByTagName method: a tag name in parentheses

(“DIV”) followed by a number in brackets [0]. This is the

same notation used to identify elements of an array—and,

indeed, a document object collection is a bit like an array,

though it does not have all the features of that object. Why

do we say 0 here? Because our page only contains one DIV,

and programmers always start with nothing (or count from

zero). So item 1 (and only) is item 0.

Why do we attach this laborious identification to a

variable? Strictly for convenience, because we are going to

operate on our one and only DIV in ways that require us to

name it. Our variable theDIV acts like a pronoun, saving

much bothersome typing. What we’re doing, specifically, is

placing our DIV at a specific point on the screen. Yes,

JavaScript, the DOM, and HTML can do that. That’s what

makes animation possible.

Any DIV, or block-level page element, has properties

called top and left that indicate where its respective edges

are located within the browser window. To move the element,

we reset those properties. They are actually subproperties of

a more general style property, so we address them in dot

notation as style.top or style.left. There are some further

complexities beyond this. First, we can’t modify the values

with a statement like the following:

theDIV.style.top ++

For arcane reasons, the values of geometric properties

must be expressed with metrics—for instance, 100px, which

means one hundred pixels from the top of the window. We

need to append the text string “px” to the number, which

means we first extract the number, assign it to a variable—

theTop and theLeft—modify the variable as we wish, append

the metric, and then bang the result back in. This is quite

baroque, and we’ve never understood the reasoning behind

it, but so be it. You’ll see that for the left position of the DIV

(x-axis), we’re asking good old r for a value between 0 and

599, which assumes the browser window is at least six

hundred pixels wide. (Here’s hoping.) For the top position,

we do something that may seem strange: we ask for a

random number between 0 and 99, subtracting that number

from 0 to make it negative. That’s because we want our DIV

positioned above the top edge of the browser window. And

yes, we can do that. This way, we start with a blank screen,

and our drifting DIV can make a dramatic appearance.

Let’s get to the drifting part, which is the business of our

second function, animate—which, you’ll note, is invoked at

the end of setUp. Here’s the code:

function animate(){

theDIV = document.getElementsByTagName("DIV")[0]

theTop += 5

theDIV.style.top = theTop + "px"

if(theTop > 500){

setUp()

}

else{

theTimeout = setTimeout(animate, 50);

}

}

We’re repeating that step from setUp where we identify

our DIV and assign it to a pronoun-like variable. There are

ways to avoid this inelegancy, but they would complicate

the conversion of this one-DIV example to a multi-DIV

example in the next section, so we do it again, somewhat

mysteriously. The variable theTop comes into play again in

the next statement. Until we modify it here, it has whatever

value it received in setUp. Our modification increases it by

five, meaning we move our DIV five pixels down the screen.

We assign the modified value in the same way you saw in

setUp. Notice we don’t change the left position of the DIV.

We’re only animating in one axis, though you could use two

(or even three) if you wanted.

Now we come to that if test. Once our drifting DIV passes

line 500 of the browser window, we want it to go through the

setUp routine and reposition at the top of the screen. We use

an inequality (>) because we’re using increments of five,

and it’s possible for our DIV to exceed 500 without ever

having that value—for instance, if its position changes from

499 to 504, which is possible. Remember, the vertical

position of the DIV is assigned randomly in setUp, so we

don’t know the exact value (and don’t really need to). We’re

actually using an if/else construction here because we want

another thing to happen if our DIV has not yet dropped

offscreen. In that case, we start a setTimeout, just as we did

in our eternal scroll, using a delay factor of fifty milliseconds.

Higher values slow the animation, lower ones speed it up.

Experiment as you like. Once again, we have a function that

calls itself. What’s a little recursion among friends?

If all the pieces are properly assembled, this example drifts

a randomly generated sentence down the screen, followed

by another and another, at various horizontal locations. It’s

about as simple as animations get. In our next and final

example, we’ll make it just a bit more interesting.

Bonus Example 5: It’s Raining Story

For our final example, we’ll multiply the floating DIVs to give

greater visual (and maybe narrative or poetic) interest to the

project. To do this, we’ll need a way to animate, track, and

reset several page elements independently. Now you’ll see

why we started referring to our single DIV via its place in the

DIV collection. We’ll need the whole set in play for this one.

Since we modified our basic page template slightly for the

previous example, we’ll start this one by making a copy of

that page file, renaming it, and erasing the contents of the

main script container—the two functions we created in

example 5.4. We’ll end up rebuilding some of that code, but

there are enough differences to reward a fresh start. Before

we start on the JavaScript, we’ll go down into the body

portion of the markup and make two changes. We’ll add an

onLoad handler to the body tag:

<BODY width: 600px onLoad = "startUp">

Next, we’ll replace the single DIV that’s sitting in the body

container with a stack of five:

<BODY>

<DIV></DIV>

<DIV></DIV>

<DIV></DIV>

<DIV></DIV>

<DIV></DIV>

</BODY>

These DIVs need neither IDs nor contents. There do need

to be five of them, however.

Now for the scripting. At the top of our pristine script

container, we’ll declare and initialize three very important

arrays:

leftNum = new Array(0,0,0,0,0);

topNum = new Array(0,0,0,0,0);

DIVSpeed = new Array(0,0,0,0,0);

You’ll remember that arrays can be set up with initial

values, as we do here. Those zeroes will be replaced with

nonzero numbers when the script starts up. We could have

used any number, so long as it’s an integer. We need to start

with integers here, since that’s what we’ll be storing in these

arrays as we go.

You’ll recall that in bonus example 4 we had a function

called setUp. This time we’ll have one called startUp. It’s a

bit different from our previous setUp function:

function startUp(){

for(var i=0; i<5; i++){

reset(i);

}

theInterval = setInterval(animate, 50);

}

Here’s a familiar five-step for loop, but all it does is call a

function called reset, passing it a number from 0 to 4. We’ll

build reset next. Before we do, have a look at the final line of

startUp, which uses the first cousin of setTimeout called

setInterval. The setTimeout method runs once; that’s why

we need to keep reinvoking it in our earlier examples. By

contrast, setInterval repeats automatically as long as the

page is loaded and the interval is not canceled by some

other instruction.

When we only had one falling object, we could have it

restart its animation function every time it passed offscreen.

However, this time we’ll control five DIVs with one function.

Under that scheme, it’s easier to start the animating engine

once and let it run. Before we can get to animation,

however, we need to create our reset function:

function reset(which){

theDIV = document.getElementsByTagName("DIV")[which]

DIVSpeed[which] = 3 + r(5)

theDIV.innerHTML = generate()

leftNum[which] = r(600)

theDIV.style.left = leftNum[which] + "px"

topNum[which] = 0--r(100)

theDIV.style.top = topNum[which] + "px"

}

This is the function called five times by startUp. Much of it

will look very familiar from bonus example 4. There are two

main differences. First, this function takes a parameter

called which (it could be called anything). This parameter is

an integer between 0 and 4, inclusive. Notice that in our

DIV-identifier (theDIV), we use this number to say which DIV

we’re addressing. Remember, all the DIVs are numbered in

the collection. (This scheme assumes our animating DIVs are

the first five to appear in the markup. If you change the

page in a way that breaks this pattern, the animation won’t

work.) The second variation here is the reference to that

third array we created, DIVspeed. This array stores an

integer value for each of our five animating DIVs, setting the

amount of downward displacement that will occur on each

cycle of the animation—in effect, the speed at which they

fall. We require a minimum of three pixels but add to that a

random selection on a range of five, meaning the maximum

amount is seven. You can experiment with different values

here. The important thing about this feature is that it can

give each DIV a different rate of descent. The effect is very

important visually.

The final element of this project is the animate function,

which goes into operation at the end of the startUp function,

activated on page load. Here’s the code:

function animate(){

for(var i=0; i<5; i++){

topNum[i] += divSpeed[i];

theDIV = document.getElementsByTagName("DIV")[i]

theDIV.style.top = topNum[i] + "px";

if(topNum[i] > 500) reset(i);

}

}

The bones of this function should be familiar from the

previous example. Here we have a five-way for loop that

addresses each of our falling objects in sequence (so quickly

it seems instantaneous). We do all the usual business of

updating the top location of the DIV, handing it off to the

reset routine when the DIV passes the five-hundred-pixel

line. But notice that the value passed to reset is just the

number of that particular DIV. This animating routine

manages each element separately.

The result is a shower of sentences or a variable story

crossed with a confetti machine. What that might amount to,

beyond an excuse to practice JavaScript coding, is the

subject of our very last section.

Conclusion

You’ll notice something conspicuously missing from the five

examples presented in this chapter: interactivity. All five are

focused on display. They presume a reader, or perhaps a

viewer, but not really a player. Should we conclude therefore

that moving from Twine to JavaScript/HTML means leaving

behind interactive fiction and games? Is web coding

primarily a replacement for the cinematic aesthetics and

poetics of dear, dead Flash?

Beware of hasty conclusions. It’s easy enough to see how

some or all of these examples could be harnessed for story-

centered games. For all three of our final examples (scroll

and falling texts), imagine a stack of clickable prompts

(words, names, faces, symbols) that call on alternative text

generators, allowing the reader/player to steer the unfolding

story in specific directions. Adding features like these to the

demonstrations would make the code-crawling unbearably

tedious. The drawback of simple examples is simplicity. We

invite you to think beyond them.

Figure 25: Salter and Blodgett’s ALT-RT: Ctrl+A; DEL (2017)

Both authors of this book have built creative works that

use HTML, JavaScript, and other web resources to design

evocative interfaces and tell salient stories. Salter and

Blodgett’s ALT-RT: Ctrl+A; DEL creates a simulated

tweetstream drawn from a database of actual and invented

material to capture the nightmare of social media (Salter

and Blodgett). It combines quasi-randomized text sampling

with selectable options for self-preservation. These

selections have meaningful consequences, making the work

legitimately interactive. Its experience has a distinct ending

and alternative outcomes, making it very gamelike.

Moulthrop’s Emaji Naratgee Marakka, born of similar

inspiration, renders trollish tweets as a visually accreting

mass that the player can suppress or erase completely by

doggedly choosing acts of resistance (Moulthrop).

Successfully wiping out the troll-storm (if only for a moment)

earns the reader an installment of a fable. Once this chunk

of story has been read, the tweets return, growing ever more

deranged. To reach the end of the fable, the reader must

repeatedly fend off the troll, then penetrate a few final

mysteries of cryptographic text. Both of these works are

hypertextual, narrative, and gamelike; both depend on

affordances (database access; animation) not easily

supported in Twine.

Figure 26: Moulthrop’s Emaji Naratgee Marakka (2018)

Twine is not the only way to make interactive fictions.

However, as the extent and density of even the modest code

examples in this chapter will show, there is a significant

trade-off between the broad creative scope of hand-built

web work and the elegance, stability, and community of

Twine. As always, creators and communicators should

understand the range of possibilities implicit in these tools

and feel empowered on any platform.

Works Cited

Moulthrop, Stuart. Emaji Naratgee Marakka. Work in

progress, 2018. www.smoulthrop.com/lit/enm.

Salter, Anastasia, and Bridget Blodgett. “ALT-RT: Ctrl+A;

DEL.” Persona Studies 3, no. 1 (2017).

https://ojs.deakin.edu.au/index.php/ps/article/view/656.

1 We have not experimented with SugarCube, a story format with robust

support for programming.

http://www.smoulthrop.com/lit/enm
https://ojs.deakin.edu.au/index.php/ps/article/view/656

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction. Why Twine?
	Chapter T-1. Twine as Platform
	Chapter P-1. From Links to Stories
	Chapter T-2. Twine (R)evolutions
	Chapter P-2. Variation
	Chapter T-3. Twine and the Question of Literature
	Chapter P-3. Generation
	Chapter T-4. Queer Twine and Camp
	Chapter P-4. Too Much Twine
	Chapter T-5. Twine and the Critical Moment
	Chapter P-5. Conceptual Twining
	Conclusion. Forever Twine
	Appendix I. Interview with Chris Klimas
	Appendix II. Interview with Dan Cox
	Appendix III. Bonus Practical Chapter: Beyond Twine

