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These notes cover topics in an introductory computer graphics course that emphasizes graphics
progranming, and is intended for undergraduate students who have a sound background in
programming. Itsgoal isto introduce fundamental concepts and processes for computer graphics,
as well as giving students experience in computer graphics programming using the OpenGL
application programming interface (API). It also includes discussions of visual communication
and of computer graphicsin the sciences.

The contents below represent arelatively early draft of these notes. Most of the elements of these
contents are in place with the first version of the notes, but not quite al; the contentsin thisform
will give the reader the concept of afuller organization of the material. Additional changesin the
elements and the contents should be expected with later rel eases.
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Because thisis an early draft of the notes for an introductory, API-based computer graphics
course, the author apologizes for any inaccuracies, incompleteness, or clumsiness in the
presentation. Further development of these materials, aswell as source code for many projects and
additional examples, is ongoing continuously. All such materials will be posted as they are ready

on the author’ s Web site:
http://ww. cs. csust an. edu/ ~r sc/ NSF/

Y our comments and suggesions will be very helpful in making these materials as useful as possible
and are solicited; please contact

Steve Cunningham
California State University Stanislaus
rsc@s. csustan. edu

This work was supported by National Science Foundation grant DUE-9950121. All
opinions, findings, conclusions, and recommendations in this work are those of the author
and do not necessarily reflect the views of the National Science Foundation. The author
also gratefully acknowledges sabbatical support from California State University Stanislaus
and thanks the San Diego Supercomputer Center, most particularly Dr. Michael J. Bailey,
for hosting this work and for providing significant assistance with both visualization and
science content. The author aso thanks a number of others for valuable conversations and
suggestions on these notes.
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Getting Started

These notes are intended for an introductory course in computer graphics with afew features that
are not found in most beginning courses:

» Thefocusison computer graphics programming with the OpenGL graphics API, and many
of the algorithms and techniques that are used in computer graphics are covered only at the
level they are needed to understand questions of graphics programming. This differsfrom
most computer graphics textbooks that place agreat deal of emphasis on understanding these
algorithms and techniques. We recognize the importance of these for persons who want to
develop a deep knowledge of the subject and suggest that a second graphics course built on
the ideas of these notes can provide that knowledge. Moreover, we believe that students who
become used to working with these concepts at a programming level will be equipped to
work with these algorithms and techniques more fluently than students who meet them with
no previous background.

» We focus on 3D graphics to the almost complete exclusion of 2D techniques. It has been
traditional to start with 2D graphics and move up to 3D because some of the algorithms and
techniques have been easier to grasp at the 2D level, but without that concern it seems easier
simply to start with 3D and discuss 2D as a specia case.

 Because we focus on graphics programming rather than algorithms and techniques, we have
fewer instances of data structures and other computer science techniques. This means that
these notes can be used for a computer graphics course that can be taken earlier in astudent’s
computer science studies than the traditional graphics course. Our basic premiseisthat this
course should be quite accessible to a student with a sound background in programming a
sequential imperative language, particularly C.

» These notes include an emphasis on the scene graph as afundamental tool in organizing the
modeling needed to create a graphics scene. The concept of scene graph alows the student to
design the transformations, geometry, and appearance of a number of complex components
in away that they can be implemented quite readily in code, even if the graphics API itself
does not support the scene graph directly. Thisis particularly important for hierarchica
modeling, but it provides a unified design approach to modeling and has some very useful
applications for placing the eye point in the scene and for managing motion and animation.

» These notesinclude an emphasis on visual communication and interaction through computer
graphicsthat is usually missing from textbooks, though we expect that most instructors
include this somehow in their courses. We believe that a systematic discussion of this
subject will help prepare students for more effective use of computer graphicsin their future
professional lives, whether thisisin technical areasin computing or isin areas where there
are significant applications of computer graphics.

* Many, if not mogt, of the examples in these notes are taken from sources in the sciences, and
they include two chapters on scientific and mathematical applications of computer graphics.
This makes the notes useable for courses that include science students as well as making
graphics students aware of the breadth of areas in the sciences where graphics can be used.

This set of emphases makes these notes appropriate for courses in computer science programs that
want to develop ties with other programs on campus, particularly programs that want to provide
science students with a background that will support development of computational science or
scientific visualization work.

What isagraphicsAPI?

The short answer isthan an APl is an Application Programming Interface — a set of tools that
allow a programmer to work in an application area. Thusa graphics APl is a set of tools that
allow a programmer to write applications that use computer graphics. These materials are intended
to introduce you to the OpenGL graphics API and to give you a number of examples that will help
you understand the capabilities that OpenGL provides and will allow you to learn how to integrate
graphics programming into your other work.
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Overview of these notes

In these notes we describe some general principlesin computer graphics, emphasizing 3D graphics
and interactive graphical techniques, and show how OpenGL provides the graphics programming
tools that implement these principles. We do not spend time describing in depth the way the
techniques are implemented or the algorithms behind the techniques; these will be provided by the
lecturesif the instructor believes it necessary. Instead, we focus on giving some concepts behind
the graphics and on using agraphics APl (application programming interface) to carry out graphics
operations and create images.

These notes will give beginning computer graphics students a good introduction to the range of
functionality available in a modern computer graphics API. They are based on the OpenGL AP,
but we have organized the general outline so that they could be adapted to fit another API as these
are developed.

The key concept in these notes, and in the computer graphics programming course, is the use of
computer graphics to communicate information to an audience. We usually assume that the
information under discussion comes from the sciences, and include a significant amount of material
on modelsin the sciences and how they can be presented visually through computer graphics. Itis
tempting to use the word “visualization” somewhere in the title of this document, but we would
reserve that word for material that is fully focused on the science with only a sidelight on the
graphics; because we reverse that emphasis, the role of visualization is in the application of the

graphics.

We have tried to match the sequence of these modules to the sequence we would expect to be used
in an introductory course, and in some cases, the presentation of one module will depend on the
student knowing the content of an earlier module. However, in other casesit will not be critical
that earlier modules have been covered. It should be pretty obviousif other modules are assumed,
and we may make that assumption explicit in some modules.

What is Computer Graphics?

We view computer graphics as the art and science of creating synthetic images by programming the
geometry and appearance of the contents of the images, and by displaying the results of that
programming on appropriate display devices that support graphical output. The programming may
be done (and in these notes, is assumed to be done) with the support of a graphics API that does
most of the detailed work of rendering the scene that the programming defines.

The work of the programmer is to develop representations for the geometric entities that are to
make up the images, to assembl e these entities into an appropriate geometric space where they can
have the proper relationships with each other as needed for the image, to define and present the
look of each of the entities as part of that scene, to specify how the scene is to be viewed, and to
specify how the scene as viewed is to be displayed on the graphic device. These processes are
supported by the 3D graphics pipeline, as described below, which will be one of our primary tools
in understanding how graphics processes work.

In addition to the work mentioned so far, there are two other important parts of the task for the
programmer. Because a static image does not present as much information as a moving image, the
programmer may want to design some motion into the scene, that is, may want to define some
animation for theimage. And because a user may want to have the opportunity to control the
nature of the image or the way the image is seen, the programmer may want to design ways for the
user to interact with the scene asit is presented.
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All of these topics will be covered in the notes, using the OpenGL graphics APl as the basis for
implementing the actual graphics programming.

The 3D Graphics Pipeline

The 3D computer graphics pipeline is simply a process for converting coordinates from what is
most convenient for the application programmer into what is most convenient for the display
hardware. We will explore the details of the steps for the pipeline in the chapters below, but here
we outline the pipeline to help you understand how it operates. The pipelineis diagrammed in
Figure 0.9, and we will start to sketch the various stages in the pipeline here, with more detail
given in subsequent chapters.

3D Modé
Coordinates

<«€— Mode Transformation

3D World
Coordinates

<€— Viewing Transformation

3D Eye
Coordinates

<«— 3D Clipping

3D Eye
Coordinates

<€— Projection

2D Eye
Coordinates

«€<— Window-to-Viewport Mapping

2D Screen
Coordinates

Figure 0.9: The graphics pipeline’s stages and mappings

3D moddl coordinate systems

The application programmer starts by defining a particular object about alocal origin, somewhere
in or around the object. Thisiswhat would naturally happen if the object was exported from a
CAD system or was defined by amathematical function. Modeling something about itslocal origin
involves defining it in terms of model coordinates, a coordinate system that is used specifically to
define aparticular graphical object. Note that the modeling coordinate system may be different for
every part of ascene. If the object usesits own coordinates asit is defined, it must be placed in the
3D world space by using appropriate transformations.

Transformations are functions that move objects while preserving their geometric properties. The
transformations that are available to usin a graphics system are rotations, trandations, and scaling.
Rotations hold the origin of a coordinate system fixed and move all the other points by a fixed
angle around the origin, translations add a fixed value to each of the coordinates of each pointin a
scene, and scaling multiplies each coordinate of a point by afixed value. These will be discussed
in much more detail in the chapter on modeling below.
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3D world coordinate system

After agraphics object is defined in its own modeling coordinate system, the object is transformed
to where it belongsin the scene. Thisis called the model transformation, and the single coordinate
system that describes the position of every object in the scene is cdled the world coordinate
system. In practice, graphics programmers use a relatively small set of simple, built-in
transformations and build up the model transformations through a sequence of these simple
transformations. Because each transformation works on the geometry it sees, we see the effect of
the associative law for functions; in a piece of code represented by metacode such as

transformone(...);

t ransf or miwo( . . .);

transfornrhree(...);

georetry(...);
we see that transformThree s applied to the original geometry, transformTwo to the results of that
transformation, and transformOne to the results of the second transformation. Letting t1, t2,
and t 3 be the three transformations, respectively, we see by the application of the associative law
for function application that

. t1(t2(t3(ge(_)metry))c; = (t1*t2*t 3) (geonetry) o

This shows us that in a product of transformations, applied by multiplying on the left, the
transformation nearest the geometry is applied first, and that this principle extends across multiple
transformations. Thiswill be very important in the overall understanding of the overall order in
which we operate on scenes, as we describe at the end of this section.

The model transformation for an object in a scene can change over time to create motion in a scene.
For example, in a rigid-body animation, an object can be moved through the scene just by
changing its model transformation between frames. This change can be made through standard
built-in facilitiesin most graphics APIs, including OpenGL ; we will discuss how thisis done later.

3D eye coordinate system

Once the 3D world has been created, an application programmer would like the freedom to be able
to view it from any location. But graphics viewing models typically require a specific orientation
and/or position for the eye at this stage. For example, the system might require that the eye
position be at the origin, looking in —Z (or sometimes +Z). So the next step in the pipelineisthe
viewing transformation, in which the coordinate system for the scene is changed to satisfy this
requirement. Theresult isthe 3D eye coordinate system. One can think of this process as
grabbing the arbitrary eye location and all the 3D world objects and diding them around together so
that the eye ends up at the proper place and looking in the proper direction. The relative positions
between the eye and the other objects have not been changed; al the parts of the scene are simply
anchored in adifferent spot in 3D space. Thisisjust atransformation, athough it can be asked for
in a variety of ways depending on the graphics API. Because the viewing transformation
transforms the entire world space in order to move the eye to the standard position and orientation,
we can consider the viewing transformation to be the inverse of whatever transformation placed the
eye point in the position and orientation defined for the view. We will take advantage of this
observation in the modeling chapter when we consider how to place the eye in the scene's
geometry.

At this point, we are ready to clip the object against the 3D viewing volume. The viewing volume
isthe 3D volume that is determined by the projection to be used (see below) and that declares what
portion of the 3D universe the viewer wants to be able to see. This happens by defining how for
the scene should be visible to the | eft, right, bottom, top, near, and far. Any portions of the scene
that are outside the defined viewing volume are clipped and discarded. All portionsthat are inside
are retained and passed along to the projection step. In Figure 0.10, note how the front of the
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image of the ground in the figure is clipped — is made invisible — because it is too close to the
viewer's eye.

Figure 0.10: Clipping on the Left, Bottom, and Right

2D screen coordinates

The 3D eye coordinate system still must be converted into a 2D coordinate system before it can be
placed on a graphic device, so the next stage of the pipeline performs this operation, cdled a
projection. Before the actual projection is done, we must think about what we will actually seein
the graphic device. Imagine your eye placed somewhere in the scene, looking in a particular
direction. Y ou do not see the entire scene; you only see what liesin front of your eye and within
your field of view. This space is called the viewing volume for your scene, and it includes a bit
more than the eye point, direction, and field of view; it also includes afront plane, with the concept
that you cannot see anything closer than this plane, and a back plane, with the concept that you
cannot see anything farther than that plane.

There are two kinds of projections commonly used in computer graphics. One maps al the points
in the eye space to the viewing plane by simply ignoring the value of the z-coordinate, and as a
result all points on aline paralel to the direction of the eye are mapped to the same point on the
viewing plane. Such aprojectioniscalled aparalld projection. The other projection acts asif the
eye were a single point and each point in the scene is mapped, along a line from the eye to that
point, to a point on a plane in front of the eye, which is the classical technique of artists when
drawing with perspective. Such a projection is called a perspective projection. And just as there
are paralel and perspective projections, there are parallel (also called orthographic) and perspective
viewing volumes. In aparallé projection, objects stay the same size asthey get farther away. Ina
perspective projection, objects get smaller asthey get farther away. Perspective projectionstend to
look more redlistic, while parald projections tend to make objects easier to line up. Each
projection will display the geometry within the region of 3-space that is bounded by the right, left,
top, bottom, back, and front planes described above. The region that is visible with each
projection is often called its view volume. As seen in Figure 0.11 below, the viewing volume of a
parallel projection is arectangular region (here shown as a solid), while the viewing volume of a
perspective projection has the shape of a pyramid that is truncated at the top. Thiskind of shapeis
sometimes called a frustum (also shown here as a solid).
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Figure 0.11: Paraled and Perspective Viewing Volumes, with Eyeballs

Figure 0.12 presents a scene with both parallel and perspective projections; in this example, you
will have to look carefully to see the differences!

Figure 0.12: the same scene as presented by a parallel projection (left)
and by a perspective projection (right)

2D screen coordinates

The final step in the pipeline is to change units so that the object is in a coordinate system
appropriate for the display device. Because the screen isadigital device, thisrequiresthat the real
numbers in the 2D eye coordinate system be converted to integer numbers that represent screen
coordinate. Thisisdone with a proportional mapping followed by atruncation of the coordinate
values. Itis called the window-to-viewport mapping, and the new coordinate space is referred to
as screen coordinates, or display coordinates. When this step is done, the entire scene is now
represented by integer screen coordinates and can be drawn on the 2D display device.

Note that this entire pipeline process converts vertices, or geometry, from one form to another by

means of severa different transformations. These transformations ensure that the vertex geometry
of the scene is consistent among the different representations as the scene is developed, but
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computer graphics also assumes that the topology of the scene stays the same. For instance, if two
points are connected by aline in 3D model space, then those converted points are assumed to
likewise be connected by alinein 2D screen space. Thus the geometric relationships (points,
lines, polygons, ...) that were specified in the original model space are all maintained until we get
to screen space, and are only actually implemented there.

Overall viewing process

Let’slook at the overall operations on the geometry you define for a scene as the graphics system
works on that scene and eventually displaysit to your user. Referring again to Figure 0.8 and
omitting the clipping and window-to-viewport process, we see that we start with geometry, apply
the modeling transformation(s), apply the viewing transformation, and apply the projection to the
screen. This can be expressed in terms of function composition as the sequence

proj ection(vi ewi ng(transfornmati on(geonetry))))
or, as we noted above with the associative law for functions and writing function composition as
multiplication,

(projection * viewing * transformation) (geonetry).
In the same way we saw that the operations nearest the geometry were performed before operations
further from the geometry, then, we will want to define the projection first, the viewing next, and
the transformations last before we define the geometry they are to operate on. We will see this
sequence as a key factor in the way we structure a scene through the scene graph in the modeling
chapter later in these notes.

Different implementation, same result

Warning! This discussion has shown the concept of how a vertex travels through the graphics
pipeline. There are several ways of implementing thistravel, any of which will produce a correct
display. Do not be disturbed if you find out a graphics system does not manage the overall
graphics pipeline process exactly as shown here. The basic principles and stages of the operation
are still the same.

For example, OpenGL combines the modeling and viewing transformations into a single
transformation known as the modelview matrix. This will force us to take a little different
approach to the modeling and viewing process that integrates these two steps. Also, graphics
hardware systems typicaly perform a window-to-normalized-coordinates operation prior to
clipping so that hardware can be optimized around a particular coordinate system. In this case,
everything else stays the same except that the final step would be normalized-coordinate-to-
viewport mapping.

In many cases, we ssmply will not be concerned about the details of how the stages are carried out.
Our goal will be to represent the geometry correctly at the modeling and world coordinate stages, to
specify the eye position appropriately so the transformation to eye coordinates will be correct, and
to define our window and projections correctly so the transformations down to 2D and to screen
space will be correct. Other details will be left to a more advanced graphics course.

Summary of viewing advantages

One of the classic questions beginners have about viewing a computer graphics image is whether to
use perspective or orthographic projections. Each of these has its strengths and its weaknesses.
Asaquick guide to start with, here are some thoughts on the two approaches:

Orthographic projections are at their best when:

* Itemsin the scene need to be checked to seeif they line up or are the same size
* Linesneed to be checked to seeif they are parallel
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* Wedo not care that distanceis handled unredistically
* Weare not trying to move through the scene

Per spective projections are at their best when:
* Redism counts
* Wewant to move through the scene and have aview like a human viewer would have
» Wedo not carethat it isdifficult to measure or align things

In fact, when you have some experience with each, and when you know the expectations of the
audience for which you' re preparing your images, you will find that the choice is quite natural and
will have no problem knowing which is better for a given image.

A basic OpenGL program

Our example programs that use OpenGL have some strong similarities. Each isbased on the
GLUT utility toolkit that usually accompanies OpenGL systems, so al the sample codes have this
fundamental similarity. (If your version of OpenGL does not include GLUT, its source code is
available online; check the page at
http://wwv. reality.sgi.com opengl/glut3/glut3.h

and you can find out whereto get it. You will need to download the code, compileit, and install it
in your system.) Similarly, when we get to the section on event handling, we will use the MUI
(micro user interface) toolkit, although thisis not yet developed or included in this first draft
release.

Like most worthwhile APIs, OpenGL is complex and offers you many different ways to express a
solution to a graphical problem in code. Our examples use a rather limited approach that works
well for interactive programs, because we believe strongly that graphics and interaction should be
learned together. When you want to focus on making highly realistic graphics, of the sort that
takes a long time to create a single image, then you can readily give up the notion of interactive
work.

So what isthe typical structure of a program that would use OpenGL to make interactive images?
We will display this examplein C, aswe will with all our examples in these notes. OpenGL is not
really compatible with the concept of object-oriented programming because it maintains an
extensive set of state information that cannot be encapsulated in graphics classes. Indeed, asyou
will see when you look at the example programs, many functions such as event callbacks cannot
even deal with parameters and must work with global variables, so the usual practiceisto create a
global application environment through global variables and use these variables instead of
parameters to pass information in and out of functions. (Typically, OpenGL programs use side
effects — passing information through external variablesinstead of through parameters — because
graphics environments are complex and parameter lists can become unmanageable.)) So the
skeleton of atypica GLUT-based OpenGL program would look something like this:

/! include section
#i ncl ude <@/ glut. h> /1 alternately "glut.h" for Mcintosh
/] other includes as needed

/1 typedef section
/1 as needed

/1 gl obal data section
/1l as needed

/1 function tenplate section
voi d doMyl nit(void);
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voi d display(void);
voi d reshape(int,int);
voi d idle(void);

/1 others as defined

/1 initialization function
voi d doMylnit(void) {
set up basic OpenG. paraneters and environment
set up projection transformation (ortho or perspective)

}

/'l reshape function
voi d reshape(int w, int h) {
set up projection transformati on with new w ndow
di mrensi ons w and h
post redisplay

}

/1 display function
voi d display(void){
set up viewing transformation as described in |later chapters
define what ever transformati ons, appearance, and geonetry you need
post redisplay

}

[/ idle function
void idle(void) {
updat e anyt hing that changes fromone step of the programto anot her
post redisplay

}

/1 other graphics and application functions
/1 as needed
/1 main function -- set up the systemand then turn it over to events
void main(int argc, char** argv) {
/1 initialize systemthrough GLUT and your own initialization
glutlnit(&argc,argv);
glutlnitD splayMbde (G.UT_DOUBLE | GLUT_RGB);
gl utl ni t WndowSi ze(wi ndW wi ndH) ;
gl utlnit WndowPosition(topLeftX topLeftY);
gl ut Cr eat eW ndow( " A Sanpl e Prograni);

doMylnit();
/1 define callbacks for events
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl utldl eFunc(idle);

/1 go into nmain event |oop
gl ut Mai nLoop() ;
}

The viewing transformation is specified in OpenGL with thegl uLookAt () cal:
gl uLookAt ( ex, ey, ez, Ix, ly, 1z, ux, uy, uz);
The parameters for this transformation include the coordinates of eye position (ex, ey, ez),the

coordinates of the point at which the eyeislooking (I x, 1y, | z), and the coordinates of a
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vector that defines the “up” direction for theview (ux, uy, uz). Thiswould most often be
called fromthe di spl ay() function above and is discussed in more detail in the chapter below
on viewing.

Projections are specified fairly easily in the OpenGL system. An orthographic (or paralé)
projection is defined with the function call:

glOtho( left, right, bottom top, near, far );
wherel ef t andri ght arethe x-coordinates of the left and right sides of the orthographic view
volume, bot t omand t op are the y-coordinates of the bottom and top of the view volume, and
near and f ar are the z-coordinates of the front and back of the view volume. A perspective
projection is defined with the function call:

gl Frustum( left, right, bottom top, near, far );
or:

gl uPerspective( fovy, aspect, near, far );
Inthegl Frustun(...) cal,thevaluesl eft, ri ght, bottom and t op are the coordinates
of the left, right, bottom, and top clipping planes as they intersect the near plane; the other
coordinate of all these four clipping planesis the eye point. Inthe gl uPer specti ve(...)
call, the first parameter isthe field of view in degrees, the second is the aspect ratio for the
window, and the near and far parameters are as above. In this projection, it is assumed that your
eyeisat the origin so there is no need to specify the other four clipping planes; they are determined
by the field of view and the aspect ratio.

In OpenGL, the modeling transformation and viewing transformation are merged into a single
modelview transformation, which we will discuss in much more detail in the modeling chapter
below. This means that we cannot manage the viewing transformation separately from the rest of
the transformations we must use to do the detailed modeling of our scene.

There are some specific things about this code that we need to mention here and that we will
explain in much more detail later, such as callbacks and events. But for now, we can simply view
the main event loop as passing control at the appropriate time to the following functions specified
in the main function:

voi d doMyl nit (void)
voi d di spl ay(voi d)
voi d reshape(int,int)
void idle(void)

The task of the function doMyI ni t () isto set up the environment for the program so that the
scene’ s fundamental environment is set up. Thisisagood place to compute values for arrays that
define the geometry, to define specific named colors, and the like. At the end of this function you
should set up theinitial projection specifications.

The task of the function di spl ay() isto do everything needed to create the image. This can
involve manipulating a significant amount of data, but the function does not allow any parameters.
Here isthefirst place where the data for graphics problems must be managed through global
variables. Aswe noted above, we treat the global data as a programmer-created environment, with
some functions manipulating the data and the graphical functions using that data (thae graphics
environment) to define and present the display. In most cases, the global datais changed only
through well-documented side effects, so this use of the datais reasonably clean. (Note that this
argues strongly for agreat deal of emphasis on documentation in your projects, which most people
believeisnot abad thing.) Of course, some functions can create or receive control parameters, and
it isup to you to decide whether these parameters should be managed globally or locally, but even
in this case the declarations are likely to be global because of the wide number of functions that
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may use them. You will also find that your graphics APl maintains its own environment, called its
system state, and that some of your functions will also manipulate that environment, so it is
important to consider the overall environment effect of your work.

The task of the function reshape(int, int) is to respond to user manipulation of the
window in which the graphics are displayed. The two parameters are the width and height of the
window in screen space (or in pixels) asit is resized by the user’s manipulation, and should be
used to reset the projection information for the scene. GLUT interacts with the window manager
of the system and allows awindow to be moved or resized very flexibly without the programmer
having to manage any system-dependent operations directly. Surely this kind of system
independence is one of the very good reasons to use the GLUT toolkit!

The task of the function i dl e() isto respond to the “idle” event — the event that nothing has
happened. This function defines what the program is to do without any user activity, and is the
way we can get animation in our programs. Without going into detail that should wait for our
general discussion of events, the processisthat thei dl e() function makes any desired changesin
the global environment, and then requests that the program make a new display (with these
changes) by invoking the function gl ut Post Redi spl ay() that simply requests the display
function when the system can next do it by posting a“redisplay” event to the system.

The execution sequence of a simple program with no other events would then look something like
isshown in Figure 0.13. Note that mai n() does not call the di spl ay() function directly;
instead mai n() callsthe event handling function gl ut Mai nLoop() which in turn makes the
firstcall todi spl ay() andthen waitsfor eventsto be posted to the system event queue. We will
describe event handling in more detail in alater chapter.

main() 7 display() \

redisplay event no events?

Figure 0.13: the event loop for the idle event

So we see that in the absence of any other event activity, the program will continues to apply the
activity of thei dl e() function as time progresses, leading to an image that changes over time —
that is, to an animated image.

Now that we have an idea of the graphics pipeline and know what a program can look like, we can
move on to discuss how we specify the viewing and projection environment, how we define the
fundamental geometry for our image, and how we create theimage in the di spl ay() function with
the environment that we define through the viewing and projection.
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Viewing and Projection
Prerequisites
An understanding of 2D and 3D geometry and familiarity with ssimple linear mappings.
Introduction

We emphasize 3D computer graphics consistently in these notes, because we believe that computer
graphics should be encountered through 3D processes and that 2D graphics can be considered
effectively as a special case of 3D graphics. But almost all of the viewing technologies that are
readily available to us are 2D — certainly monitors, printers, video, and film — and eventually
even the active visual retina of our eyes presents a 2D environment. So in order to present the
images of the scenes we define with our modeling, we must create a 2D representation of the 3D
scenes. Aswe saw in the graphics pipeline in the previous chapter, you begin by developing a set
of models that make up the elements of your scene and set up the way the models are placed in the
scene, resulting in a set of objects in a common world space. Y ou then define the way the scene
will be viewed and the way that view is presented on the screen. In this early chapter, we are
concerned with the way we move from the world space to a 2D image with the tools of viewing
and projection.

We set the scene for this process in the last chapter, when we defined the graphics pipeline. If we
begin at the point where we have the 3D world coordinates—that is, where we have a complete
scene fully defined in a 3D world—then this chapter is about creating a view of that scene in our
display space of a computer monitor, a piece of film or video, or a printed page, whatever we
want. To remind ourselves of the stepsin this process, they are shown in Figure 1.1:

3D World 3DEye _o3p 3DEye o3 2DEye 2D Screen
Coordinates 1 Coordinates 1 Coordinates T Coordinates Coordinates
Viewing Transformation 3D Clipping Projection ~ Window-to-Viewport Mapping

Figure 1.1: the graphics pipeline for creating an image of a scene

Let’s consider an example of aworld space and look at just what it means to have aview and a
presentation of that space. One of the author’ s favorite placesis Y osemite National Park, whichis
awonderful example of a 3D world. If you go to Glacier Point on the south side of Y osemite
Valley you can see up the valley towards the Merced River fals and Half Dome. The photographs
in Figure 1.2 below give you an idea of the views from this point.

Figure 1.2: two photographs of the upper Merced River areafrom Glacier Point
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If you think about this area shown in these photographs, you notice that your view depends first
on where you are standing. |f you were standing on the valley floor, or at the top of Nevada Falls
(the higher fallsin the photos), you could not have this view; the first because you would be below
thisterrain instead of above it, and the second because you would be looking away from the terrain
instead of towardsit. So your view depends on your position, which we call your eye point. The
view also depends on the direction in which you are looking. The two photographsin the figure
above are taken from the same point, but show slightly different views because one is looking at
the overall scene and the other islooking specifically at the falls. So your scene depends on the
direction of your view. The view also depends on whether you are looking at a wide part of the
scene or a harrow part; again, one photograph is a panoramic view and one is afocused view. So
your image depends on the breadth of field of your view. Finally, although this may not be
obvious at first because our minds process images in context, the view depends on whether you
are standing with your head upright or tilted (this might be easier to grasp if you think of the view
as being defined by a camerainstead of by your vision; it’s clear that if you tilt a camera at a 45°
angle you get a very different photo than one that’ s taken by a horizontal or vertical camera.) The
world isthe samein any case, but the four facts of where your eye s, the direction you are facing,
the breadth of your attention, and the way your view istilted, determine the scene that is presented
of the world.

But the view, once determined, must now be trandated into an image that can be presented on your
computer monitor. Y ou may think of thisin terms of recording an image on adigital camera,
because the result isthe same: each point of the view space (each pixel in the image) must be given
aspecific color. Doing that with the digital camerainvolves only capturing the light that comes
through the lens to that point in the camera’s sensing device, but doing it with computer graphics
requires that we calculate exactly what will be seen at that particular point when the view is
presented. We must define the way the scene is transformed into a two-dimensional space, which
involves a number of steps. taking into account all the questions of what parts are in front of what
other parts, what parts are out of view from the camera’ s lens, and how the lens gathers light from
the scene to bring it into the camera. The best way to think about the lensisto compare two very
different kinds of lenses. oneisawide-angle lens that gathers light in avery wide cone, and the
other is a high-dtitude photography lens that gathers light only in a very tight cylinder and
processes light rays that are essentially parallel asthey are transferred to the sensor. Finaly, once
the light from the continuous world comes into the camera, it is recorded on a digital sensor that
only captures a discrete set of points.

Thismodel of viewing is paralleled quite closely by a computer graphics system. Y ou begin your
work by modeling your scenein an overall world space (you may actually start in several modeling
spaces, because you may model the geometry of each part of your scene in its own modeling space
where it can be defined easily, then place each part within a single consistent world space to define
the scene). Thisisvery different from the viewing we discuss here but is covered in detail in the
next chapter. The fundamental operation of viewing isto define an eye within your world space
that represents the view you want to take of your modeling space. Defining the eye implies that
you are defining a coordinate system relative to that eye position, and you must then transform
your modeling space into a standard form relative to this coordinate system by defining, and
applying, aviewing transformation. The fundamental operation of projection, in turn, isto define
a plane within 3-space, define a mapping that projects the model into that plane, and displays that
plane in a given space on the viewing surface (we will usually think of a screen, but it could be a
page, avideo frame, or anumber of other spaces).

We will think of the 3D space we work in as the traditional X-Y-Z Cartesian coordinate space,
usually with the X- and Y -axes in their familiar positions and with the Z-axis coming toward the
viewer from the X-Y plane. Thisorientation is used because most graphics APIs define the plane
onto which the image is projected for viewing as the X-Y plane, and project the model onto this
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plane in some fashion along the Z-axis. The mechanics of the modeling transformations, viewing
transformation, and projection are managed by the graphics API, and the task of the graphics
programmer isto provide the API with the correct information and call the API functionality in the
correct order to make these operations work. We will describe the general concepts of viewing and
projection below and will then tell you how to specify the various parts of this process to OpenGL.

Finaly, it is sometimes useful to “cut away” part of an image so you can see things that would
otherwise be hidden behind some objectsin ascene. We include a brief discussion of clipping
planes, atechnique for accomplishing this action.

Fundamental model of viewing

As aphysical model, we can think of the viewing process in terms of looking through a rectangular
hole cut out of a piece of cardboard and held in front of your eye. Y ou can move yourself around
in the world, setting your eye into whatever position and orientation from you wish to see the
scene. Thisdefines your view. Once you have set your position in the world, you can hold up the
cardboard to your eye and thiswill set your projection; by changing the distance of the cardboard
from the eye you change the viewing angle for the projection. Between these two operations you
define how you see the world in perspective through the hole. And finally, if you put a piece of
paper that isruled in very small squares behind the cardboard (instead of your eye) and you fill in
each square to match the brightness you see in the square, you will create a copy of the image that
you can take away from the Of course, you only have a perspective projection instead of an
orthogonal projection, but this model of viewing is a good place to start in understanding how
viewing and projection work.

As we noted above, the goal of the viewing process is to rearrange the world so it looks as it
would if the viewer’s eye were in a standard position, depending on the API’ s basic model. When
we define the eye location, we give the API the information it needs to do this rearrangement. In
the next chapter on modeling, we will introduce the important concept of the scene graph, which
will integrate viewing and modeling. Here we give an overview of the viewing part of the scene

graph.

The key point isthat your view is defined by the location, direction, orientation, and field of view
of the eye as we noted above. There are many ways to create this definition, but the effect of each
isto give the transformation needed to place the eye at its desired |ocation and orientation, which
we will assume to be at the origin, looking in the negative direction down the Z-axis. To put the
eye into this standard position we compute a new coordinate system for the world by applying
what is called the viewing transformation. The viewing transformation is created by computing the
inverse of the transformation that placed the eye into the world. (If the concept of computing the
inverse seems difficult, simply think of undoing each of the pieces of the transformation; we will
discuss this more in the chapter on modeling). Once the eyeisin standard position, and all your
geometry is adjusted in the same way, the system can easily move on to project the geometry onto
the viewing plane so the view can be presented to the user.

Once you have organized the view in this way, you must organize the information you send to the
graphics system to create your scene. The graphics system provides some assistance with this by
providing tools that determine just what will be visible in your scene and that alow you to develop
ascene but only present it to your viewer when it is completed. These will also be discussed in
this chapter.

Definitions
There are a small number of things that you must consider when thinking of how you will view
your scene. These are independent of the particular API or other graphicstools you are using, but

6/5/01 Page 1.3



later in the chapter we will couple our discussion of these points with a discussion of how they are

handled in OpenGL. Thethingsare:
Y our world must be seen, so you need to say how the view is defined in your model including
the eye position, view direction, field of view, and orientation.

* Ingeneral, your world must be seen on a 2D surface such as a screen or a sheet of paper, so
you must define how the 3D world is projected into a2D space

* When your world is seen on the 2D surface, it must be seen at a particular place, so you must
define the location where it will be seen.

These three things are called setting up your viewing environment, defining your projection, and

defining your window and viewport, respectively.

Setting up the viewing environment: in order to set up aview, you have to put your eyein the
geometric world where you do your modeling. Thisworld is defined by the coordinate space you
assumed when you modeled your scene as discussed earlier. Within that world, you define four
critical components for your eye setup: where your eye islocated, what point your eyeislooking
towards, how wide your field of view is, and what direction is vertical with respect to your eye.
When these are defined to your graphics API, the geometry in your modeling is adjusted to create
the view as it would be seen with the environment that you defined. Thisis discussed in the
section below on the fundamental model of viewing.

Projections When you define a scene, you will want to do your work in the most natural world
that would contain the scene, which we called the model space in the graphics pipeline discussion
of the previous chapter. For most of these notes, that will mean athree-dimensiona world that fits
the objects you are developing. But you will probably want to display that world on a two-
dimensional space such as a computer monitor, a video screen, or a sheet of paper. In order to
move from the three-dimensiona world to a two-dimensional world we use a projection operation.

When you (or acamera) view something in the real world, everything you see is the result of light
that comes to the retina (or the film) through alens that focuses the light rays onto that viewing
surface. This processis a projection of the natural (3D) world onto a two-dimensional space.
These projections in the natural world operate when light passes through the lens of the eye (or
camera), essentially asingle point, and have the property that parallel lines going off to infinity
seem to converge at the horizon so things in the distance are seen as smaller than the same things
when they are close to the viewer. Thiskind of projection, where everything is seen by being
projected onto a viewing plane through or towards a single point, is called a perspective projection.
Standard graphics references show diagrams that illustrate objects projected to the viewing plane
through the center of view; the effect is that an object farther from the eye are seen as smaller in the
projection than the same object closer to the eye.

On the other hand, there are sometimes situations where you want to have everything of the same
size show up as the same size on the image. Thisis most common where you need to take careful
measurements from the image, asin engineering drawings. Paralel projections accomplish this by
projecting all the objects in the scene to the viewing plane by parald lines. For pardléd
projections, objects that are the same size are seen in the projection with the same size, no matter
how far they are from the eye. Standard graphics texts contain diagrams showing how objects are
projected by parallel linesto the viewing plane.

In Figure 1.3 we show two images of a wireframe house from the same viewpoint. The left-hand
image of the figure is presented with a perspective projection, as shown by the difference in the
apparent sizes of the front and back ends of the building, and by the way that the lines outlining the
sides and roof of the building get closer as they recede from the viewer. The right-hand image of
the figure is shown with a parallel or orthogonal projection, as shown by the equal sizes of the
front and back ends of the building and the parallel lines outlining the sides and roof of the
building. The differences between these two images is admittedly small, but you should use both
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projections on some of your scenes and compare the results to see how the differences work in
different views.

Figure 1.3: perspective image (left) and orthographic image (right)

A projection is often thought of in terms of its view volume, the region of space that isvisiblein
the projection. With either perspective or paralel projection, the definition of the projection
implicitly defines a set of boundaries for the left and right sides, top and bottom sides, and front
and back sides of aregion in three-dimensional space that is called the viewing volume for the
projection. The viewing volumes for the perspective and orthogonal projections are shown in
Figure 1.4 below. Only objects that are inside this space will be displayed; anything elsein the
scene will be clipped and beinvisible.

Znear
Z

Figure 1.4: the viewing volumes for the perspective (Ieft) and orthogonal (right) projections

While the parallel view volume is defined only in a specified place in your model space, the
orthogonal view volume may be defined wherever you need it because, being independent of the
calculation that makes the world appear from a particular point of view, an orthogonal view can
take in any part of space. Thisallows you to set up an orthogonal view of any part of your space,
or to move your view volume around to view any part of your model.

Defining thewindow and viewport: We usually think first of awindow when we do graphicson a
screen. A window in the graphics sense is arectangular region in your viewing space in which al
of the drawing from your program will be done, usually defined in terms of the physical units of
the drawing space. The space in which you define and manage your graphics windows will be
called screen space here for convenience, and is identified with integer coordinates. The smallest
displayed unit in this space will be called a pixel, a shorthand for picture element. Note that the
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window for drawing is a distinct concept from the window in a desktop display window system,
although the drawing window may in fact occupy a window on the desktop; we will be
consistently careful to reserve the term window for the graphic display.

The scene as presented by the projection is till in 2D real space (the objects are all defined by real
numbers) but the screen space is discrete, so the next step is a conversion of the geometry in 2D
eye coordinates to screen coordinates. This required identifying discrete screen points to replace
the real-number eye geometry points, and introduces some sampling issues that must be handled
carefully, but graphics APIs do this for you. The actua screen space used depends on the
viewport you have defined for your image.

In order to consider the screen point that replaces the eye geometry point, you will want to
understand the relation between points in two corresponding rectangular spaces. In this case, the
rectangle that describes the scene to the eye is viewed as one space, and the rectangle on the screen
where the scene is to be viewed is presented as another. The same processes apply to other
situations that are particular cases of corresponding points in two rectangular spaces, such as the
relation between the position on the screen where the cursor is when a mouse button is pressed,
and the point that corresponds to thisin the viewing space, or points in the world space and points
in atexture space.

In Figure 1.5 below, we consider two rectangles with boundaries and points named as shown. In
this example, we assume that the lower left corner of each rectangle has the smallest values of the
X andY coordinates in the rectangle. With the names of the figures, we have the proportions
X: XMN :: XMAX : XM N u: L:: R: L
Y: YMN:: YMAX : YMN v:B:: T: B
from which we can derive the equations:
(x - XMN)/(XMAX - XMN) = (u - L)/ (R - L)
(y - YMN)/(YMAX - YM N) (v - B)/(T - B)
and finally these two equations can be solved for the variables of either point in terms of the other:
X = XMN + (u - L)*(XMAX - XM N)/(R - L)
YMN + (v - B)*(YMAX - YMN)/(T - B)
or the dual equations that solve for (u,v) in terms of (x,y).

YMAX T
e (xy) o (V)

XMIN XMAX L R
YMIN B

Figure 1.5: correspondences between points in two rectangles

In cases that involve the screen coordinates of a point in a window, there is an additional issue
because the upper |eft, not the lower |eft, corner of the rectangle contains the smallest values, and
the largest value of Y, YMAX, is at the bottom of the rectangle. In this case, however, we can
make asimple change of variableas Y = YMAX - Y and we see that using the Y' values instead
of Y will put us back into the situation described in the figure. We can aso see that the question of
rectanglesin 2D extends easily into rectangular spacesin 3D, and we |leave that to the student.

Within the window, you can choose the part where your image is presented, and this part is called

aviewport. A viewport isarectangular region within that window to which you can restrict your
image drawing. Inany window or viewport, the ratio of its width to its height is called its aspect
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ratio. A window can have many viewports, even overlapping if needed to manage the effect you
need, and each viewport can have its own image. The default behavior of most graphics systems
isto use the entire window for the viewport. A viewport is usually defined in the same terms as
the window it occupies, so if the window is specified in terms of physical units, the viewport
probably will be also. However, aviewport can also be defined in terms of its size relative to the
window.

If your graphics window is presented in a windowed desktop system, you may want to be able to
manipulate your graphics window in the same way you would any other window on the desktop.
Y ou may want to move it, change its size, and click on it to bring it to the front if another window
has been previously chosen as the top window. This kind of window management is provided by
the graphics API in order to make the graphics window compatible with all the other kinds of
windows available.

When you manipulate the desktop window containing the graphics window, the contents of the
window need to be managed to maintain a consistent view. The graphics API tools will give you
the ability to manage the aspect ratio of your viewports and to place your viewports appropriately
within your window when that window is changed. If you allow the aspect ratio of a new
viewport to be different than it was when defined, you will see that the image in the viewport
seems distorted, because the program is trying to draw to the originally-defined viewport.

A single program can manage severa different windows at once, drawing to each as needed for the
task at hand. Window management can be a significant problem, but most graphics APIs have
tools to manage this with little effort on the programmer’ s part, producing the kind of window you
are accustomed to seeing in a current computing system — a rectangular space that carries atitle
bar and can be moved around on the screen and reshaped. Thisis the space in which all your
graphical imagewill be seen. Of course, other graphical outputs such as video will handle
windows differently, usually treating the entire output frame as a single window without any title
or border.

What this means Any graphics system will have its approach to defining the computations that
transform your geometric model asif it were defined in a standard position and then project it to
compute the points to set on the viewing plane to make your image. Each graphics API hasits
basic concept of this standard position and its tools to create the transformation of your geometry
so it can be viewed correctly. For example, OpenGL defines its viewing to take place in a left-
handed coordinate system (while all its modeling is done in aright-handed system) and transforms
all the geometry in your scene (and we do mean all the geometry, including lights and directions,
aswe will seein later chapters) to place your eye point at the origin, looking in the negative
direction along the Z-axis. The eye-space orientation isillustrated in Figure 1.6. The projection
then determines how the transformed geometry will be mapped to the X-Y plane, and these
processes areillustrated later in this chapter. Finally, the viewing plane is mapped to the viewport
you have defined in your window, and you have the image you defined.
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s I Left-handed coordinate system:
/ | Eyeat origin, looking along
7 | the Z-axisin negative direction

Figure 1.6: the standard OpenGL viewing model

Of course, no graphics API assumes that you can only look at your scenes with this standard view
definition. Instead, you are given away to specify your view very generally, and the API will
convert the geometry of the scene so it is presented with your eyepoint in this standard position.
This conversion is accomplished through a viewing transformation that is defined from your view
definition.

The information needed to define your view includes your eye position (its (X, y, z) coordinates),
the direction your eye isfacing or the coordinates of a point toward which it is facing, and the
direction your eye perceives as “up” in the world space. For example, the default view that we
mention above has the position at the origin, or (0O, O, 0), the view direction or the “look-at” point
coordinates as (0, O, -1), and the up direction as (0, 1, 0). You will probably want to identify a
different eye position for most of your viewing, because thisis very restrictive and you aren’t
likely to want to define your whole viewable world as lying somewhere behind the X-Y plane, and
so your graphics API will give you afunction that allows you to set your eye point as you desire.

The viewing transformation, then, is the transformation that takes the scene as you defineit in
world space and aligns the eye position with the standard model, giving you the eye space we
discussed in the previous chapter. The key actions that the viewing transformation accomplishes
are to rotate the world to align your personal up direction with the direction of the Y -axis, to rotate
it again to put the look-at direction in the direction of the negative Z-axis (or to put the look-at point
in space so it has the same X- and Y -coordinates as the eye point and a Z-coordinate less than the
Z-coordinate of the eye point), to translate the world so that the eye point lies at the origin, and
finally to scale the world so that the look-at point or look-at vector hasthe value (0, 0, -1). Thisis
avery interesting transformation because what it really doesisto invert the set of transformations
that would move the eye point from its standard position to the position you define with your API
function as above. Thisis discussed in some depth later in this chapter in terms of defining the
view environment for the OpenGL API.

Some aspects of managing the view

Once you have defined the basic features for viewing your model, there are a number of other
things you can consider that affect how the image is created and presented. We will talk about
many of these over the next few chapters, but here we talk about hidden surfaces, clipping planes,
and double buffering.

Hidden surfaces. Most of the thingsin our world are opague, so we only see the things that are
nearest to us aswe look in any direction. This obvious observation can prove challenging for
computer-generated images, however, because a graphics system simply draws what we tell it to
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draw in the order we tell it to draw them. In order to create images that have the simple “only
show me what is nearest” property we must use appropriate tools in viewing our scene.

Most graphics systems have a technique that uses the geometry of the scene in order to decide what
objects arein front of other objects, and can use thisto draw only the part of the objects that arein
front as the scene is developed. Thistechniqueis generally called Z-buffering because it uses
information on the z-coordinates in the scene, as shown in Figure 1.4. In some systems it goes by
other names; for example, in OpenGL thisis called the depth buffer. This buffer holds the z-value
of the nearest item in the scene for each pixel in the scene, where the z-values are computed from
the eye point in eye coordinates. This z-value is the depth value after the viewing transformation
has been applied to the original model geometry.

This depth value is not merely computed for each vertex defined in the geometry of ascene. When
apolygon is processed by the graphics pipeline, an interpolation process is applied as described in
the interpolation discussion in the chapter on the pipeline. This process will define a z-value,

which is aso the distance of that point from the eye in the z-direction, for each pixel in the polygon
asitisprocessed. This allowsacomparison of the z-value of the pixel to be plotted with the z-
value that is currently held in the depth buffer. When anew point is to be plotted, the system first
makes this comparison to check whether the new pixel is closer to the viewer than the current pixel

in the image buffer and if it is, replaces the current point by the new point. This is a
straightforward technique that can be managed in hardware by a graphics board or in software by
simple data structures. There is a subtlety in this process that should be understood, however.
Because it is more efficient to compare integers than floating-point numbers, the depth valuesin the
buffer are kept as unsigned integers, scaled to fit the range between the near and far planes of the
viewing volume with 0 as the front plane. If the near and far planes are far apart you may
experience a phenomenon cdled “Z-fighting” in which roundoff errors when floating-point
numbers are converted to integers causes the depth buffer shows inconsistent values for things that
are supposed to be at equal distances from the eye. This problem is best controlled by trying to fit
the near and far planes of the view as closely as possible to the actual items being displayed.

There are other techniques for ensuring that only the genuinely visible parts of a scene are
presented to the viewer, however. If you can determine the depth (the distance from the eye) of
each object in your model, then you may be able to sort alist of the objects so that you can draw
them from back to front — that is, draw the farthest first and the nearest last. In doing this, you
will replace anything that is hidden by other objects that are nearer, resulting in a scene that shows
just the visible content. Thisisaclassical technique called the painter’salgorithm (because it
mimics the way a painter could create an image using opaque paints) that was widely used in more
limited graphics systems, but it sometimes has real advantages over Z-buffering because it is faster
(it doesn’t require the pixel depth comparison for every pixel that is drawn) and because sometimes
Z-buffering will give incorrect images, as we discuss when we discuss modeling transparency
with blending in the color chapter.

Double buffering: As you specify geometry in your program, the geometry is modified by the
modeling and projection transformations and the piece of the image as you specified it iswritten
into the color buffer. It isthe color buffer that actually iswritten to the screen to create the image
seen by the viewer. Most graphics systems offer you the capability of having two color buffers —
onethat is being displayed (called the front buffer) and one into which current graphics content is
being written (called the back buffer). Using these two buffersis called double buffering.

Because it can take some time to do all the work to create an image, if you are using only the front
buffer you may end up actually watching the pixels changing as the image is created. If you were
trying to create an animated image by drawing one image and then another, it would be
disconcerting to use only one buffer because you would constantly see your image being drawn
and then destroyed and re-drawn. Thus double buffering is essential to animated images and, in
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fact, is used quite frequently for other graphics because it is more satisfactory to present a
completed image instead of a developing image to auser. Y ou must remember, however, that
when an image is completed you must specify that the buffers are to be swapped, or the user will
never see the new image!

Clipping planes Clipping is the process of drawing with the portion of an image on one side of a
plane drawn and the portion on the other side omitted. Recall from the discussion of geometric
fundamentals that a planeis defined by alinear equation
AX + By + Cz + D=0

so it can be represented by the 4-tuple of real numbers (A, B, C, D). The plane dividesthe
space into two parts. that for which Ax+By+Cz+Dis positive and that for which it is negative.
When you define the clipping plane for your graphics API with the functions it provides, you will
probably use the four coefficients of the equation above. The operation of the clipping processis
that any points for which this value is negative will not be displayed; any pointsfor whichiitis
positive or zero will be displayed.

Clipping defines parts of the scene that you do not want to display — parts that are to be left out
for any reason. Any projection operation automatically includes clipping, because it must leave out
objects in the space to the left, right, above, below, in front, and behind the viewing volume. In
effect, each of the planes bounding the viewing volume for the projection is also a clipping plane
for theimage. Y ou may also want to define other clipping planes for an image. One important
reason to include clipping might be to see what isinside an object instead of just seeing the object’s
surface; you can define clipping planes that go through the object and display only the part of the
object on one side or another of the plane. Y our graphics API will probably allow you to define
other clipping planes as well.

While the clipping process is handled for you by the graphics API, you should know something of
the processesit uses. Because we generally think of graphics objects as built of polygons, the key
point in clipping isto clip line segments (the boundaries of polygons) against the clipping plane.
Aswe noted above, you can tell what side of aplane containsapoint (x, Yy, z) by testingthe
algebraic sign of the expression Ax+By+Cz+D. |f this expression is negative for both endpoints
of aline segment, the entire line must lie on the “wrong” side of the clipping plane and so is simply
not drawn at all. If the expression is positive for both endpoints, the entire line must lie on the
“right” side and isdrawn. If the expression is positive for one endpoint and negative for the other,
then you must find the point for which the equation Ax+By+Cz+D=0 is satisfied and then draw
the line segment from that point to the point whose value in the expression is positive. If theline
segment is defined by alinear parametric equation, the equation becomes a linear equation in one
variable and so is easy to solve.

In actual practice, there are often techniques for handling clipping that are even simpler than that
described above. For example, you might make only one set of comparisons to establish the
relationship between a vertex of an object and a set of clipping planes such as the boundaries of a
standard viewing volume. Y ou can then use these tests to drive a set of clipping operations. We
leave the details to the standard literature on graphics techniques.

Stereo viewing

Stereo viewing gives us an opportunity to see some of these viewing processes in action. Let us
say quickly that this should not be your first goal in creating images; it requires a bit of experience
with the basics of viewing before it makes sense. Here we describe binocular viewing — viewing
that requires you to converge your eyes beyond the computer screen or printed image, but that
gives you the full effect of 3D when the images are converged. Other techniques are described in
later chapters.
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Stereo viewing is a matter of developing two views of amodel from two viewpoints that represent
the positions of a person’s eyes, and then presenting those views in away that the eyes can see
individually and resolve into asingleimage. This may be done in many ways, including creating
two individua printed or photographed images that are assembled into a single image for aviewing
system such as a stereopticon or a stereo slide viewer. (If you have a stereopticon, it can be very
interesting to use modern technology to create the images for this antique viewing system!) Later
in this chapter we describe how to present these as two viewportsin a single window on the screen
with OpenGL.

When you set up two viewpointsin this fashion, you need to identify two eye points that are offset
by a suitable value in a plane perpendicular to the up direction of your view. It is probably
simplest is you define your up direction to be one axis (perhaps the z-axis) and your overall view
to be aligned with one of the axes perpendicular to that (perhaps the x-axis). Y ou can then define
an offset that is about the distance between the eyes of the observer (or perhaps a bit less, to help
the viewer’s eyes converge), and move each eyepoint from the overall viewpoint by half that
offset. Thismakesit easier for each eye to focus on itsindividual image and let the brain’s
convergence create the merged stereo image. The result can be quite startling if the eye offset is
large so the pair exaggerates the front-to-back differencesin the view, or it can be more subtle if
you use modest offsets to represent realistic views. Figure 1.7 shows the effect of such stereo
viewing with afull-color shaded model. Later we will consider how to set the stereo eyepointsin a
more systematic fashion.

Figure 1.7: A stereo pair, including aclipping plane

Many people have physical limitations to their eyes and cannot perform the kind of eye
convergence that this kind of stereo viewing requires. Some people have general convergence
problems which do not allow the eyes to focus together to create a merged image, and some simply
cannot seem to see beyond the screen to the point where convergence would occur. 1n addition, if
you do not get the spacing of the stereo pair right, or have the sides misaligned, or alow the two
sides to refresh at different times, or ... well, it can be difficult to get this to work well for users.
If some of your users can see the converged image and some cannot, that’ s probably as good as
it’sgoing to be.

There are other techniques for doing 3D viewing. When we discuss texture maps later, we will
describe a technique that colors 3D images more red in the near part and more blue in the distant
part. This makes the images self-converge when you view them through a pair of ChromaDepth™
glasses, aswe will describe there, so more people can see the spatial properties of theimage, and it
can be seen from anywherein aroom. There are aso more specialized techniques such as creating
alternating-eye views of the image on a screen with a overscreen that can be given alternating
polarization and viewing them through polarized glasses that alow each eye to see only one screen
at atime, or using dual-screen technologies such as head-mounted displays. The extension of the
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techniques above to these more specialized technologies is straightforward and is left to your
instructor if such technologies are available.

Implementation of viewing and projection in OpenGL

The OpenGL code below captures much of the code needed in the discussion that follows in this
section. It could be taken froma single function or could be assembled from several functions; in
the sample structure of an OpenGL program in the previous chapter we suggested that the viewing
and projection operations be separated, with the first part being at the top of the di spl ay()
function and the latter part being at the end of thei ni t () andr eshape() functions.

/1 Define the projection for the scene
gl Vi ewport (0, 0, (GLsi zei)w, (GLsi zei ) h);
gl Mat ri xMode( GL_PRQJECTI ON) ;
gl Loadl dentity();
gl uPer spective(60.0, (GLsi zei )w (GLsi zei)h, 1.0, 30.0);

/1 Define the view ng environnent for the scene
gl Mat ri xMode( GL_MODELVI EW ;
gl Loadl dentity();
/1 eye point center of view up
gl uLookAt (10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

Defining a window and viewport: The window was defined in the previous chapter by a set of
functions that initialize the window size and location and create the window. The details of
window management are intentionally hidden from the programmer so that an API can work across
many different platforms. In OpenGL, it is easiest to delegate the window setup to the GLUT
toolkit where much of the system-dependent parts of OpenGL are defined; the functions to do this
are:

glutlnitWndowSi ze(w dt h, hei ght) ;

gl utl ni t WndowPosition(topleftX, topleftY);

gl ut Creat eW ndow( " Your wi hdow nane here");
The viewport is defined by the gl Vi ewpor t function that specifies the lower left coordinates and
the upper right coordinates for the portion of the window that will be used by the display. This
function will normally be used in your initialization function for the program.

gl Vi ewport ( VPLower Left X, VPLower Left Y, VPUpper Ri ght X, VPUpper Ri ghtY) ;
Y ou can see the use of the viewport in the stereo viewing example below to create two separate
images within one window.

Reshaping thewindow: The window is reshaped when it initially created or whenever is moved it
to another place or made larger or smaller in any of its dimenstions. These reshape operations are
handled easily by OpenGL because the computer generates an event whenever any of these
window reshapes happens, and there is an event callback for window rehaping. We will discuss
events and event callbacks in more detail later, but the reshape callback is registered by the function
gl ut ReshapeFunc(reshape) whichidentifiesafunctionr eshape( GLi nt w, GLi nt h)
that is to be executed whenever the window reshape event occurs and that is to do whatever is
necessary to regenerate the image in the window.

The work that is done when awindow is reshaped can involve defining the projection and the
viewing environment, updating the definition of the viewport(s) in the window, or can delegate
some of these to the display function. Any viewport needs either to be defined inside the reshape
callback function so it can be redefined for resized windows or to be defined in the display function
where the changed window dimensions can be taken into account when it isdefined. The viewport
probably should be designed directly in terms relative to the size or dimensions of the window, so
the parameters of the reshape function should be used. For example, if the window is defined to
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have dimensions (Wi dt h, hei ght) as in the definition above, and if the viewport is to
comprise the right-hand side of the window, then the viewport’ s coordinates are
(width/2, 0, width, height)

and the aspect ratio of the window iswi dt h/ ( 2* hei ght) . If the window is resized, you will
probably want to make the width of the viewport no larger than the larger of half the new window
width (to preserve the concept of occupying only half of the window) or the new window height
timesthe original aspect ratio. Thiskind of calculation will preserve the basic look of your images,
even when the window isresized in ways that distort it far from its original shape.

Defining a viewing environment: To define what is usually called the viewing projection, you
must first ensure that you are working with the GL_MODELVI EwWmatriX, then setting that matrix to
be the identity, and finally define the viewing environment by specifying two points and one
vector. The points are the eye point, the center of view (the point you are looking at), and the
vector is the up vector — avector that will be projected to define the vertical direction in your
image. Theonly restrictions are that the eye point and center of view must be different, and the up
vector must not be parallel to the vector from the eye point to the center of view. Aswe saw
earlier, sample code to do thisis:

gl Mat ri xMode( GL_MODELVI EW ;

gl Loadl dentity();

/1 eye point center of view up

gl uLookAt (10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
The gl uLookAt function may be invoked from the r eshape function, or it may be put inside
thedi spl ay function and variables may be used as needed to define the environment. In generd,
we will lean towards including the gl uLook At operation at the start of thedi spl ay function, as
we will discuss below. See the stereo view discussion below for an idea of what that can do.

The effect of the gl uLookAt (. . .) function isto define atransformation that moves the eye point
from its default position and orientation. That default position and orientation has the eye at the
origin and looking in the negative z-direction, and oriented with the y-axis pointing upwards. This
isthe same asif weinvoked the gl uLookAt function with the parameters

gl uLookAt (0., 0., 0., 0., 0., -1., 0., 1., 0.).
When we change from the default value to the genera eye position and orientati on, we define a set
of transformations that give the eye point the position and orientation we define. The overall set of
transformations supported by graphics APIs will be discussed in the modeling chapter, but those
used for defining the eyepoint are:
arotation about the Z-axis that alignsthe Y -axis with the up vector,
ascallng to place the center of view at the correct distance along the negative Z-axis,
atrandation that moves the center of view to the origin,
two rotations, about the X- and Y -axes, that position the eye point at the right point relative to
the center of view, and
5. atrandation that puts the center of view at the right position.

ApwWhPE

In order to get the effect you want on your overall scene, then, the viewing transformation must be
the inverse of the transformation that placed the eye at the position you define, because it must act
on al the geometry in your scene to return the eye to the default position and orientation. Because
function inverses act by

(FFQ " = G*F*!
the viewing transformation is built by inverting each of these five transformations in the revierse
order. And because this must be done on all the geometry in the scene, it must be applied last —
so it must be specified before any of the geometry is defined. We will thus usually see the
gl uLookAt (.. .) function asone of thefirst things to appear in the di spl ay() function, and
its operation is the same as applying the transformations
1. trandate the center of view to the origin,
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rotate about the X- and Y -axes to put the eye point on the positive Z-axis,
trandate to put the eye point at the origin,

scale to put the center of view at the point (0.,0.,-1.), and

rotate around the Z-axisto restore the up vector to the Y -axis.

gk

Y ou may wonder why we are discussing at this point how the gl uLookAt (...) function
defines the viewing transformation that goes into the modelview matrix, but we will need to know
about this when we need to control the eye point as part of our modeling in more advanced kinds
of scenes.

Defining perspective projection: a perspective projection is defined by first specifying that you
want to work on the GL_PROJECTION matrix, and then setting that matrix to be the identity.
Y ou then specify the properties that will define the perspective transformation. In order, these are
the field of view (an angle, in degrees, that defines the width of your viewing area), the aspect ratio
(aratio of width to height in the view; if the window is square this will probably be 1.0 but if itis
not square, the aspect ratio will probably be the same as the ratio of the window width to height),
the zNear value (the distance from the viewer to the plane that will contain the nearest points that
can be displayed), and the zFar value (the distance from the viewer to the plane that will contain the
farthest points that can be displayed). This sounds alittle complicated, but once you've set it up a
couple of timesyou'll find that it's very simple. It can be interesting to vary the field of view,
though, to see the effect on the image.

gl Matri xMode( GL_PRQJECTI ON) ;

gl Loadl dentity();

gl uPerspective(60.0,1.0,1.0,30.0);
It is also possible to define your perspective projection by using the gl Frust um function that
defines the projection in terms of the viewing volume containing the visible items, as was shown in
Figure 1.4 above. However, the gl uPer spect i ve function is so natural that we'll leave the
other approach to the student who wantsiit.

Defining an orthogonal projection: an orthogonal projection is defined much like a perspective
projection except that the parameters of the projection itself are different. Asyou can seeinthe
illustration of a parallel projection in Figure 1.3, the visible objects lie in a box whose sides are
parallel to the X-, Y-, and Z-axes in the viewing space. Thus to define the viewing box for an
orthogonal projection, we ssimply define the boundaries of the box as shown in Figure 1.3 and the
OpenGL system doesthe rest.

gl Ot ho(xLow, xHi gh, yLow, yHi gh, zNear, zFar) ;
The viewing spaceis still the same |eft-handed space as noted earlier, so the zNear and zFar
values are the distance from the X-Y plane in the negative direction, so that negative values of
zNear and zFar refer to positions behind the eye (that is, in positive Z-space). Thereisno
dternate to this function in the way that the gl Frustun(...) is an dtenative to the
gl uLookAt (.. .) functionfor paralel projections.

Managing hidden surfaceviewing: in the Getting Started module when we introduced the structure
of a program that uses OpenGL, we saw the gl ut | ni t Di spl ayMode function, called from
mai n, as away to define properties of the display. Thisfunction also allows the use of hidden
surfacesif you specify GLUT_DEPTH as one of its parameters.

gl utlnitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
Y ou must aso enable the depth test. Enabling is a standard property of OpenGL; many capabilities
8]:-:4 the system are only available after they are enabled through the gl Enabl e function, as shown

ow.
gl Enabl e( GL_DEPTH_TEST) ;
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From that point the depth buffer isin use and you need not be concerned about hidden surfaces. If
you want to turn off the depth test, thereisagl Di sabl e function aswell. Note the use of these
two functionsin enabling and disabling the clipping planein the st er eoVi ew. ¢ example code.

Setting double buffering: double buffering is a standard facility, and you will note that the function
above that initializes the display mode includes a parameter G_.UT_DOUBLE to set up double
buffering. Inyour di spl ay() function, you will call gl ut SwapBuf f er s() when you have
finished creating the image, and that will cause the background buffer to be swapped with the
foreground buffer and your new image will be displayed.

Defining clipping planes In addition to the clipping OpenGL performs on the standard view
volume in the projection operation, OpenGL allows you to define at least six clipping planes of
your own, named GL_CLI P_PLANEO through G._CLI P_PLANE5. The clipping planes are
defined by the functiongl d i pPl ane( pl ane, equati on) where pl ane isone of the pre-
defined clipping planes above and equat i on is avector of four G.f | oat values. Once you
have defined a clipping plane, it is enabled or disabled by a gl Enabl e( G._CLI P_PLANEN)
function or equivalent gl Di sabl e(. ..) function. Clipping is performed when any modeling
primitiveis called when aclip planeisenabled it is not performed when the clip plane is disabled.
They are then enabled or disabled as needed to take effect in the scene. Specifically, some example
code looks like

GLfl oat nyClipPlane[] = { 1.0, 1.0, 0.0, -1.0 };

gl Cli pPl ane( GL_CLI P_PLANEO, nyCli pPl ane);

gl Enabl e( GL_CLI P_PLANEO) ;

gl Di sabl e( GL_CLI P_PLANEO) ;
The stereo viewing example at the end of this chapter includes the definition and use of clipping
planes.

Implementing a stereo view

In this section we describe the implementation of binocular viewing as described earlier in this
chapter. The technique we will use isto generate two veiws of asingle model asif they were seen
from the viewer’ s separate eyes, and present these in two viewports in a single window on the
screen. These two images are then manipulated together by manipulating the model as awhole,
while viewer resolves these into a single image by focusing each eye on a separate image.

This latter processisfairly simple. First, create awindow that istwice aswide asit is high, and
whose overall width is twice the distance between your eyes. Then when you display your model,
do so twice, with two different viewports that occupy the left and right half of the window. Each
display isidentical except that the eye pointsin the left and right halves represent the position of the
left and right eyes, respectively. This can be done by creating a window with space for both
viewports with the window initialization function

#define W600

#define H 300

width = W height = H;

gl utlni tW ndowSi ze(wi dt h, hei ght);
Here the initial values set the width to twice the hei ght allowing each of the two viewports to be
initially square. We set up the view with the overall view at adistance of ep from the origin in the
x-direction and looking at the origin with the z-axis pointing up, and set the eyes to be at agiven
offset distance from the overall viewpoint in the y-direction. We then define the left- and right-
hand viewportsinthedi spl ay() function asfollows
/1 | eft-hand vi ewport

gl Vi ewport (0, 0, wi dt h/ 2, hei ght);
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/1 eye point center of view up
gl uLookAt (ep, -offset, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);
code for the actual imge goes here

/1 }ight—hand vi ewport
gl Vi ewport (wi dth/ 2, 0, wi dt h/ 2, hei ght);

/1 o eye point center of view up
gl uLookAt (ep, offset, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);
.. the sanme code as above for the actual i mage goes here

This particular code example respondsto a r eshape(w dt h, hei ght) operation because it
uses the window dimensions to set the viewport sizes, but it is susceptible to distortion problems if
the user does not maintain the 2:1 aspect ratio as he or she reshapes the window. It isleft to the
student to work out how to create square viewports within the window if the window aspect ratio
is changed.
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Modeling
Prerequisites

This chapter requires an understanding of simple 3-dimensional geometry, knowledge of how to
represent points in 3-space, enough programming experience to be comfortable writing code that
calls API functions to do required tasks, ability to design a program in terms of smple data
structures such as stacks, and an ability to organize thingsin 3D space.

Introduction

Modeling is the process of defining the geometry that makes up a scene and implementing that
definition with the tools of your graphics API. This chapter is critical in developing your ability to
create graphical images and takes us from quite simple modeling to fairly complex modeling based
on hierarchica structures, and discusses how to implement each of these different stages of
modeling in OpenGL. Itisfairly comprehensive for the kinds of modeling one would want to do
with abasic graphics API, but there are other kinds of modeling used in advanced APl work and
some areas of computer graphics that involve more sophisticated kinds of constructions than we
include here, so we cannot call this a genuinely comprehensive discussion. It is, however, agood
enough introduction to give you the tools to start creating interesting images.

The chapter has four distinct parts because there are four distinct levels of modeling that you can
use to create images. We begin with simple geometric modeling: modeling where you define the
coordinates of each vertex of each component you will use at the point where that component will
reside in the final scene. This is straightforward but can be very time-consuming to do for
complex scenes, so we will also discuss importing models from various kinds of modeling tools
that can allow you to create parts of a scene more easily.

The second section describes the next step in modeling. Here we extend the utility of your ssimple
modeling by defining the primitive transformations you can use for computer graphics operations
and by discussing how you can start with ssmple modeling and use transformations to create more
general model components in your scene. Thisisavery important part of the modeling process
because it allows you to build standard templates for many different graphic objects and then place
them in your scene with the appropriate transformations. These transformations are also critical to
the ability to define and implement motion in your scenes because it is typical to move objects,
lights, and the eyepoint with transformations that are controlled by parameters that change with
time. This can allow you to extend your modeling to define animations that can represent such
concepts as changes over time.

In the third section of the chapter we introduce the concept of the scene graph, a modeling tool that
gives you a unified approach to defining all the objects and transformations that are to make up a
scene and to specifying how they are related and presented. We then describe how you work from
the scene graph to write the code that implements your model. This concept is new to the
introductory graphics course but has been used in some more advanced graphics tools, and we
believe you will find it to make the modeling process much more straightforward for anything
beyond avery simple scene. In the second level of modeling discussed in this section, we
introduce hierarchical modeling in which objects are designed by assembling other objects to make
more complex structures. These structures can allow you to simulate actual physical assemblies
and develop models of structures like physical machines. Here we develop the basic ideas of scene
graphs introduced earlier to get a structure that allows individual components to move relative to
each other in ways that would be difficult to define from first principles.

Finally, the fourth section of the chapter covers the implementation of modeling in the OpenGL
API. Thisincludes the set of operations that implement polygons, as well as those that provide the
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geometry compression that we describe in the first section. This section also describes the use of
OpenGL’s pre-defined geometric components that you can use directly in your imagesto let you
use more complex objects without having to determine all the vertices directly, but that are defined
only in standard positions so you must use transformations to place them correctly in your scenes.
It also includes a discussion of transformations and how they are used in OpenGL, and describes
how to implement a scene graph with this API.

Following these discussions, this chapter concludes with an appendix on the mathematica
background that you will find useful in doing your modeling. Thismay be areview for you, or it
may be new; if it is new and unfamiliar, you might want to look at some more detailed reference
material on 3D analytic geometry.
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Simple Geometric Modeling
Introduction

Computer graphics deals with geometry and its representation in ways that alow it to be
manipulated and displayed by a computer. Because these notes are intended for afirst coursein
the subject, you will find that the geometry will be simple and will use familiar representations of
3-dimensional space. When you work with agraphics API, you will need to work with the kinds
of object representations that API understands, so you must design your image or scene in ways
that fit the API’stools. For most APIs, this means using only afew simple graphics primitives,
such as points, line segments, and polygons.

The space we will use for our modeling is simple Euclidean 3-space with standard coordinates,
which we will call the X-, Y-, and Z-coordinates. Figure 2.1 below illustrates a point, aline
segment, a polygon, and a polyhedron—the basic elements of the computer graphics world that
you will use for most of your graphics. In this space apointissimply asingle location in 3-space,
specified by its coordinates and often seen as atriple of real numberssuchas( px, py, pz). A
point is drawn on the screen by lighting asingle pixel at the screen location that best represents the
location of that point in space. To draw the point you will specify that you want to draw points
and specify the point’s coordinates, usually in 3-space, and the graphics API will calculate the
coordinates of the point on the screen that best represents that point and will light that pixel. Note
that apoint is usually presented as a square, not adot, asindicated in thefigure. A line segmentis
determined by its two specified endpoints, so to draw the line you indicate that you want to draw
lines and define the points that are the two endpoints. Again, these endpoints are specified in 3-
space and the graphics API calculates their representations on the screen, and draws the line
segment between them. A polygon is aregion of space that liesin a plane and is bounded in the
plane by a collection of line segments. It is determined by a sequence of points (called the vertices
of the polygon) that specify a set of line segments that form its boundary, so to draw the polygon
you indicate that you want to draw polygons and specify the sequence of vertex points. A
polyhedronis aregion of 3-space bounded by polygons, called the faces of the polyhedron. A
polyhedron is defined by specifying a sequence of faces, each of which is a polygon. Because
figuresin 3-space determined by more than three vertices cannot be guaranteed to linein a plane,
polyhedra are often defined to have triangular faces; atriangle always liesin a plane (because three
points in 3-space determine a plane. Aswe will see when we discuss lighting and shading in
subsequent chapters, the direction in which we go around the vertices of each face of apolygon is
very important, and whenever you design a polyhedron, you should plan your polygons so that
their vertices are ordered in a sequence that is counterclockwise as seen from outside the
polyhedron (or, to put it another way, that the angle to each vertex as seen from a point inside the
faceisincreasing rather than decreasing as you go around each face).

Figure 2.1: apoint, aline segment, a polygon, and a polyhedron

Before you can create an image, you must define the objects that are to appear in that image
through some kind of modeling process. Perhaps the most difficult—or at least the most time-
consuming—ypart of beginning graphics programming is creating the models that are part of the
image you want to create. Part of the difficulty isin designing the objects themselves, which may
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require you to sketch parts of your image by hand so you can determine the correct values for the
points used in defining it, for example, or it may be possible to determine the values for points
from some other technique. Another part of the difficulty is actually entering the data for the points
in an appropriate kind of data structure and writing the code that will interpret this data as points,
line segments, and polygons for the model. But until you get the points and their relationships
right, you will not be able to get the image right.

Definitions

We need to have some common terminology as we talk about modeling. We will think of
modeling as the process of defining the objects that are part of the scene you want to view in an
image. There are many ways to model a scene for an image; in fact, there are a number of
commercia programs you can buy that let you model scenes with very high-level tools. However,
for much graphics programming, and certainly as you are beginning to learn about this field, you
will probably want to do your modeling by defining your geometry in terms of relatively ssmple
primitive terms so you may be fully in control of the modeling process.

Besides defining a single point, line segment, or polygon, graphics APIs provide modeling
support for defining larger objects that are made up of several simple objects. These can involve
disconnected sets of objects such as points, line segments, quads, or triangles, or can involve
connected sets of points, such as line segments, quad strips, triangle strips, or triangle fans. This
allows you to assemble simpler components into more complex groupings and is often the only
way you can define polyhedra for your scene. Some of these modeling techniques involve a
concept called geometry compression, which allow you to define a geometric object using fewer
vertices than would normally be needed. The OpenGL support for geometry compression will be
discussed as part of the general discussion of OpenGL modeling processes. The discussions and
examples below will show you how to build your repertoire of techniques you can use for your
modeling.

Before going forward, however, we need to mention another way to specify points for your
models. In some cases, it can be helpful to think of your 3-dimensional space as embedded as an
affine subspace of 4-dimensional space. If we think of 4-dimensional space as having X, Y, Z,
and W components, this embedding identifies the three-dimensional space with the subspace We1
of the four-dimensional space, so the point ( X, y, z) isidentified with the four-dimensional point
(x,y,z,1). Conversely, the four-dimensional point ( X, y, z, w) isidentified with the three-
dimensional point (x/ w, y/ w, z/ w) whenever wt 0. The four-dimensional representation of
points with a non-zero w component is called homogeneous coordinates, and cal culating the three-
dimensional equivalent for a homogeneous representation by dividing by wis called homogenizing
the point. When we discuss transformations, we will sometimes think of them as 4x4 matrices
because we will need them to operate on points in homogeneous coordinates.

Not al pointsin 4-dimensional space can be identified with pointsin 3-space, however. The point
(x,y, z, 0) isnot identified with a point in 3-space because it cannot be homogenized, but it is
identified with the direction defined by the vector <x, y, z>. This can be thought of asa*“point at
infinity” in acertain direction. This has an application in the chapter below on lighting when we
discuss directional instead of positional lights, but in general we will not encounter homogeneous
coordinates often in these notes.

Some examples
We will begin with very simple objects and proceed to more useful ones. With each kind of

primitive object, we will describe how that object is specified, and in later examples, we will create
a set of points and will then show the function call that draws the object we have defined.
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Point and points

To draw a single point, we will simply define the coordinates of the point and give them to the
graphics API function that draws points. Such afunction can typically handle one point or a
number of points, so if we want to draw only one point, we provide only one vertex; if we want to
draw more points, we provide more vertices. Points are extremely fast to draw, and it is not
unreasonable to draw tens of thousands of points if a problem merits that kind of modeling. On a
very modest-speed machine without any significant graphics acceleration, a 50,000 point model
can bere-drawn in asmall fraction of a second.

Line segments

To draw asingle line segment, we must simply supply two vertices to the graphics API function
that drawslines. Again, this function will probably alow you to specify a number of line
segments and will draw them all; for each segment you simply need to provide the two endpoints
of the segment. Thus you will need to specify twice as many vertices as the number of line
segments you wish to produce.

Connected lines

Connected lines—collections of line segments that are joined “head to tal” to form a longer
connected group—are shown in Figure 2.2. These are often called line strips, and your graphics
API will probably provide afunction for drawing them. The vertex list you use will define theline
segments by using the first two vertices for the first line segment, and then by using each new
vertex and its predecessor to define each additional segment. Thus the number of line segments
drawn by the function will be one fewer than the number of verticesin the vertex list. Thisisa
geometry compression technique because to define aline strip with N segments you only specify
N+1 verticesinstead of 2N vertices; instead of needing to define two points per line segment, each
segment after the first only needs one vertex to be defined.

\//\A

Figure2.2: alinestrip
Triangle

To draw one or more unconnected triangles, your graphics APl will provide a simple triangle-
drawing function. With this function, each set of three verticeswill define an individua triangle so
that the number of triangles defined by a vertex list is one third the number of verticesin thelist.
The humble triangle may seem to be the most simple of the polygons, but as we noted earlier, it is
probably the most important because no matter how you use it, and no matter what points form its
vertices, it dways liesin a plane. Because of this, most polygon-based modeling really comes
down to triangle-based modeling in the end, and almost every kind of graphics tool knows how to
manage objects defined by triangles. So treat this humblest of polygons well and learn how to
think about polygons and polyhedrain terms of the triangles that make them up.

Seguence of triangles

Triangles are the foundation of most truly useful polygon-based graphics, and they have some very
useful capabilities. Graphics APIs often provide two different geometry-compression techniques
to assemble sequences of triangles into your image: triangle strips and triangle fans. These

6/5/01 Page 2.5



techniques can be very helpful if you are defining a large graphic object in terms of the triangles
that make up its boundaries, when you can often find ways to include large parts of the object in
triangle strips and/or fans. The behavior of each is shown in Figure 2.3 below. Note that this
figure and similar figures that show simple geometric primitives are presented as if they were
drawn in 2D space. In fact they are not, but in order to make them look three-dimensional we
would need to use some kind of shading, which is a separate concept discussed in alater chapter
(and which is used to present the triangle fan of Figure 2.18). We thus ask you to think of these as
three-dimensional, even though they look flat.

/NN

Figure 2.3: triangle strip and triangle fan

Most graphics APIs support both techniques by interpreting the vertex list in different ways. To
create atriangle strip, the first three vertices in the vertex list create the first triangle, and each
vertex after that creates a new triangle with the two verticesimmediately beforeit. Wewill seein
later chapters that the order of points around a polygon isimportant, and we must point out that
these two techniques behave quite differently with respect to polygon order; for triangle fans, the
orientation of all thetrianglesisthe same (clockwise or counterclockwise), while for triangle
strips, the orientation of alternate triangles is reversed. This may require some careful coding
when lighting models are used. To create atriangle fan, the first three vertices create the first
triangle and each vertex after that creates a new triangle with the point immediately before it and the
first point in the list. In each case, the number of triangles defined by the vertex list istwo less
than the number of verticesin the list, so these are very efficient ways to specify triangles.

Quadrilatera

A convex quadrilateral, often called a“quad” to distinguish it from a general quadrilateral because
the general quadrilateral need not be convex, is any convex 4-sided figure. The function in your
graphics API that draws quads will probably allow you to draw a number of them. Each
quadrilateral requires four verticesin the vertex list, so the first four vertices define the first
quadrilateral, the next four the second quadrilateral, and so on, so your vertex list will have four
times as many points as there are quads. The sequence of verticesis that of the points as you go
around the perimeter of the quadrilateral. In an example later in this chapter, we will use six
quadrilaterals to define a cube that will be used in later examples.

Sequence of quads

Y ou can frequently find large objects that contain a number of connected quads. Most graphics
APIs have functions that allow you to define a sequence of quads. The verticesin the vertex list
are taken as vertices of a sequence of quads that share common sides. For example, the first four
vertices can define the first quad; the last two of these, together with the next two, define the next
guad; and so on The order in which the vertices are presented is shown in Figure 2.4. Note the
order of the vertices; instead of the expected sequence around the quads, the points in each pair
have the same order. Thus the sequence 3-4 is the opposite order than would be expected, and this
same sequence goes on in each additional pair of extrapoints. This differenceis critical to note
when you are implementing quad strip constructions. It might be helpful to think of thisin terms
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of triangles, because a quad strip acts as though its vertices were specified asif it werereally a
triangle strip — vertices 1/2/3 followed by 2/3/4 followed by 3/4/5 etc.

7

A

Figure 2.4: sequence of pointsin aquad strip

A good example of the use of quad strips and triangle fans would be creating your own model of a
sphere. Aswe will seelater in this chapter, there are pre-built sphere models from both the GLU
and GLUT toolkitsin OpenGL, but the sphereis afamiliar object and it can be helpful to see how
to create familiar things with new tools. There may aso be times when you need to do things with
a sphere that are difficult with the pre-built objects, so it is useful to have this example in your “bag
of tricks.”

Recall the discussion of spherical coordinates in the discussion of mathematical fundamentals. We
can use spherical coordinatesto model our object at first, and then convert to Cartesian coordinates
to present the model to the graphics system for actual drawing. Let’sthink of creating a model of
the sphere with N divisions around the equator and N/2 divisions along the prime meridian. In
each case, then, the angular division will be theta = 360/N degrees. Let’salso think of the sphere
as having a unit radius, so it will be easier to work with later when we have transformations. Then
the basic structure would be:

/! create the two polar caps with triangle fans

doTri angl eFan() /1 north pole
set vertex at (1, 0, 90)
for i =0to N

set vertex at (1, 360/i, 90-180/N)
endTri angl eFan()

doTri angl eFan() /1 south pole
set vertex at (1, 0, -90)
for i = 0to N

set vertex at (1, 360/i, -90+180/N)
endTri angl eFan()
/1 create the body of the sphere with quad strips
for j = -90+180/N to 90 - 180/2N
/1 one quad strip per band around the sphere at a given latitude

doQuadsStri p()

for i =0 to 360
set vertex at (1, i, j)
set vertex at (1, i, j+180/N)

set vertex at (1, i+360/N, j)
set vertex at (1, i+360/N, j+180/N)
endQuadStri p()

Note the order in which we set the points in the triangle fans and in the quad strips, as we noted
when we introduced these concepts; thisis not immediately an obvious order and you may want to
think about it abit. Because we' re working with a sphere, the quad strips as we have defined them
are planar, so there is no need to divide each quad into two triangles to get planar surfaces.
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Genera polygon

Some images need to include more general kinds of polygons. While these can be created by
constructing them manually as collections of triangles and/or quads, it might be easier to define and
display asingle polygon. A graphics API will allow you to define and display a single polygon by
specifying its vertices, and the vertices in the vertex list are taken as the vertices of the polygon in
sequence order. Aswe noted in the earlier chapter on mathematical fundamentals, many APIs can
only handle convex polygons — polygons for which any two points in the polygon also have the
entire line segment between them in the polygon. Werefer you to that earlier discussion for more
details.

Normals

When you define the geometry of an object, you may also want or need to define the direction the
object faces as well as the xxx. Thisis done by defining a normal for the object. Normals are
often fairly easy to obtain. In the appendix to this chapter you will see ways to calculate normals
for plane polygonsfairly easily; for many of the kinds of objects that are available with a graphics
API, normals are built into the object definition; and if an object is defined by mathematical
formulas, you can often get normals by doing some straightforward calculations.

The sphere described above is a good example of getting normals by calculation. For a sphere, the
normal to the sphere at a given point is the radius vector at that point. For aunit sphere with center
at the origin, the radius vector to a point has the same components as the coordinates of the point.
So if you know the coordinates of the point, you know the normal at that point.

To add the normal information to the modeling definition, then, you can simply use functions that
set the normal for a geometric primitive, as you would expect to have from your graphics API, and
you would get code that |ooks something like the following excerpt from the example above:

for j = -90+180/N to 90 - 180/2N
/1 one quad strip per band around the sphere at a given latitude
doQuadsStri p()

for i =0 to 360
set normal to (1, i, j)
set vertex at (1, i, j)
set vertex at (1, i, j+180/N)

set vertex at (1, i+360/N, j)
set vertex at (1, i+360/N, j+180/N)
endQuadStri p()

Data structuresto hold objects

There are many ways to hold the information that describes a graphic object. One of thesmplestis
the trianglelist — an array of triples, and each set of three triples represents a separate triangle.
Drawing the object is then a simple matter of reading three triples from the list and drawing the
triangle. A good example of this kind of list isthe STL graphics file format discussed in the
chapter below on graphics hardcopy.

A more effective, though a bit more complex, approach isto create three lists. Thefirst isa vertex
list, and it issimply an array of triples that contains all the vertices that would appear in the object.
If the object is a polygon or contains polygons, the second list is an edge list that contains an entry
for each edge of the polygon; the entry is an ordered pair of numbers, each of which isan index of
a point in the vertex list. If the object is a polyhedron, the third is a face list, containing
information on each of the faces in the polyhedron. Each face isindicated by listing the indices of
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all the edges that make up the face, in the order needed by the orientation of the face. Y ou can then
draw the face by using the indices as an indirect reference to the actual vertices. So to draw the
object, you loop across the face list to draw each face; for each face you loop across the edge list to
determine each edge, and for each edge you get the vertices that determine the actual geometry.

As an example, let’s consider the classic cube, centered at the origin and with each side of length
two. For the cube let’s define the vertex array, edge array, and face array that define the cube, and
let’ s outline how we could organize the actual drawing of the cube. We will return to this example
later in this chapter and from time to time as we discuss other examples throughout the notes.

We begin by defining the data and data types for the cube. The vertices are points, which are
arrays of three points, while the edges are pairs of indices of pointsin the point list and the faces
are quadruples of indices of facesin thefacelist. In C, these would be given asfollows:

typedef float point3[3];
t ypedef int edge[ 2] ;

typedef int face[4]; /1 assumes a face has four edges for this exanple
point3 vertices[8] = {{-1.0, -1.0, -1.0},
{-1.0, -1.0, 1.0},
{-1.0, 1.0, -1.0},
{-1.0, 1.0, 1.0},
{ 1.0, -1.0, -1.0},
{ 1.0, -1.0, 1.0},
{ 1.0, 1.0, -1.0},
{ 1.0, 1.0, 1.0} }
edge edges|[ 24] ={{ o0 11}, {1, 3}, {3, 2}, {2 01},
{0 4}, {1 5}, {3 7} {2 6},
{4 5}, {5 7}, {7 6} {6 4},
{1, o}, {3, 1%}, {2 3} {0 2},
{4 0}, {5 1}, {7 3} {6 2},
{5 4}, {7 5}, {6 7} {4 61}}
face cubel[ 6] ={{ O 1, 2, 3}, { 5 9, 18, 13},
{ 14, 6, 10, 19}, { 7, 11, 16, 15},
{ 4, 8, 17, 12}, { 22, 21, 20, 23 }};

Notice that in our edge list, each edge is actualy listed twice—once for each direction the in which
the edge can be drawn. We need this distinction to allow us to be sure our faces are oriented
properly, aswe will describe in the discussion on lighting and shading in later chapters. For now,

we simply ensure that each face is drawn with edges in a counterclockwise direction as seen from
outside that face of the cube. Drawing the cube, then, proceeds by working our way through the
face list and determining the actual points that make up the cube so they may be sent to the generic
(andfictitious) set Vert ex(. .. ) function. Inareal application we would have to work with
the details of agraphics API, but here we sketch how this would work in a pseudocode approach.
In this pseudocode, we assume that there is no automatic closure of the edges of a polygon so we
must list both the vertex at both the beginning and the end of the face when we define the face; if
thisis not neede by your API, then you may omit thefirst set Ver t ex call in the pseudocode for
the function cube() below.

voi d cube(void) {
for faces 1 to 6
start face
set Vertex(vertices[ edges[cube[face][0]][O0]);
for each edge in the face
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set Vertex(vertices[ edges|[ cube[face][edge]][1]);
end face

}

In addition to the vertex list, you may want to add a structure for alist of normals. In many kinds
of modeling, each vertex will have a normal representing the perpendicular to the object at that
vertex. Inthis case, you often need to specify the normal each time you specify a vertex, and the
normal list would alow you to do that easily. For the code above, for example, each set Ver t ex
operation could be replaced by the pair of operations

set Nor mal (nor mal s[ edges[ cube[face] [0

: 11101);
set Vertex(vertices[edges[cube[face][0]]][0]

)

Neither the simple triangle list nor the more complex structure of vertex, normal, edge, and face
lists takes into account the very significant savings in memory you can get by using geometry
compression techniques. There are a number of these techniques, but we only talked about line
strips, triangle strips, triangle fans, and quad strips above because these are more often supported
by a graphics API. Geometry compression approaches not only save space, but are also more
effective for the graphics system as well because they allow the system to retain some of the
information it generates in rendering one triangle or quad when it goes to generate the next one.

Additional sources of graphic objects

Interesting and complex graphic objects can be difficult to create, because it can take alot of work
to measure or calculate the detailed coordinates of each vertex needed. There are more automatic
techniques being developed, including 3D scanning techniques and detailed laser rangefinding to
measure careful distances and angles to points on an object that is being measured, but they are out
of the reach of most college classrooms. So what do we do to get interesting objects? There are
four approaches.

The first way to get modelsisto buy them: to go is to the commercial providers of 3D models.
Thereis a serious market for some kinds of models, such as medical models of human structures,
from the medical and legal worlds. This can be expensive, but it avoids having to develop the
expertise to do professional modeling and then putting in the time to create the actual models. If
you are interested, an excellent source is viewpoint.com; they can be found on the Web.

A second way to get modelsisto find them in places where people make them available to the
public. If you have friends in some area of graphics, you can ask them about any models they
know of. If you are interested in molecular models, the protein data bank (with URL
htt p: / / ww. pdb. bnl . gov) has awide range of structure models available at no charge. If
you want models of all kinds of different things, try the site aval on. vi ewpoi nt . com this
contains alarge number of public-domain models contributed to the community by generous
people over the years.

A third way to get modelsisto digitize them yourself with appropriate kinds of digitizing devices.
There are anumber of these available with their accuracy often depending on their cost, so if you
need to digitize some physical objects you can compare the cost and accuracy of a number of
possible kinds of equipment. The digitizing equipment will probably come with tools that capture
the points and store the geometry in a standard format, which may or may not be easy to use for
your particular graphics API. If it happens to be one that your API does not support, you may
need to convert that format to one you use or to find atool that does that conversion.

A fourth way to get modelsisto create them yourself. There are a number of tools that support

high-quality interactive 3D modeling, and it is no shame to create your models with such tools.
This has the same issue as digitizing modelsin terms of the format of the file that the tools
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produce, but a good tool should be able to save the models in several formats, one of which you
could use fairly easily with your graphics API. Itisalso possible to create interesting models
analytically, using mathematical approachesto generate the vertices. Thisis perhaps slower than
getting them from other sources, but you have final control over the form and quality of the model,
so perhaps it might be worth the effort. Thiswill be discussed in the chapter on interpolation and
spline modeling, for example.

If you get models from various sources, you will probably find that they come in a number of
different kinds of dataformat. There are alarge number of widely used formats for storing
graphics information, and it sometimes seems as though every graphics tool uses afile format of
itsown. Some available tools will open models with many formats and allow you to save themin
adifferent format, essentially serving asformat converters as well as modeling tools. In any case,
you are likely to end up needing to understand some model file formats and writing your own tools
to read these formats and produce the kind of internal datathat you need for your models, and it
may take some work to write filters that will read these formats into the kind of data structuresyou
want for your program. Perhaps things that are “free’” might cost more than things you buy if you
can save the work of the conversion — but that’s up to you to decide. An excellent resource on
fileformatsis the Encyclopedia of Graphics File Formats, published by O’ Reilly Associates, and
we refer you to that book for details on particular formats.

A word to thewise...

Aswe said above, modeling can be the most time-consuming part of creating an image, but you
simply aren’'t going to create a useful or interesting image unless the modeling is done carefully and
well. If you are concerned about the programming part of the modeling for your image, it might be
best to create a simple version of your model and get the programming (or other parts that we
haven't taked about yet) done for that simple version. Once you are satisfied that the
programming works and that you have gotten the other parts right, you can replace the simple
model — the one with just afew polygonsin it — with the one that represents what you really
want to present.
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Transformations and Modeling

This section requires some understanding of 3D geometry, particularly a sense of how objects can
be moved around in 3-space. Y ou should also have some sense of how the general concept of
stacks works.

Introduction

Transformations are probably the key point in creating significant images in any graphics system.
It isextremely difficult to model everything in a scenein the place whereitisto be placed, and it is
even worse if you want to move things around in real time through animation and user control.
Transformations let you define each object in a scene in any space that makes sense for that object,
and then place it in the world space of a scene asthe sceneis actually viewed. Transformations can
also alow you to place your eyepoint and move it around in the scene.

There are several kinds of transformations in computer graphics. projection transformations,
viewing transformations, and modeling transformations. Y our graphics API should support all of
these, because all will be needed to create your images. Projection transformations are those that
specify how your scene in 3-space is mapped to the 2D screen space, and are defined by the
system when you choose perspective or orthogonal projections; viewing transformations are those
that allow you to view your scene from any point in space, and are set up when you define your
view environment, and modeling transformations are those you use to create the itemsin your
scene and are set up as you define the position and relationships of those items. Together these
make up the graphics pipeline that we discussed in the first chapter of these notes.

Among the modeling transformations, there are three fundamental kinds: rotations, translations,
and scaling. These all maintain the basic geometry of any object to which they may be applied, and
are fundamental toolsto build more general models than you can create with only simple modeling
techniques. Later in this chapter we will describe the relationship between objectsin a scene and
how you can build and maintain these relationships in your programs.

The real power of modeling transformation, though, does not come from using these simple
transformations on their own. It comes from combining them to achieve complete control over
your modeled objects. The individua simple transformations are combined into a composite
modeling transformation that is applied to your geometry at any point where the geometry is
specified. The modeling transformation can be saved at any state and later restored to that state to
allow you to build up transformations that locate groups of objects consistently. Aswe go through
the chapter we will see several examples of modeling through composite transformations.

Finally, the use of simple modeling and transformations together allows you to generate more
complex graphical objects, but these objects can take significant time to display. Y ou may want to
store these objects in pre-compiled display lists that can execute much more quickly.

Definitions

In this section we outline the concept of a geometric transformation and describe the fundamental
transformations used in computer graphics, and describe how these can be used to build very
general graphical object models for your scenes.

Transformations

A transformation is afunction that takes geometry and produces new geometry. The geometry can
be anything a computer graphics systems works with—a projection, aview, alight, adirection, or
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an object to be displayed. We have already talked about projections and views, so in this section
we will talk about projections as modeling tools. In this case, the transformation needs to preserve
the geometry of the objects we apply them to, so the basic transformations we work with are those
that maintain geometry, which are the three we mentioned earlier: rotations, trandations, and
scaling. Below we look at each of these transformations individually and together to see how we
can use transformations to create the images we need.

Our vehicle for looking at transformations will be the creation and movement of arugby ball. This
ball isbasically an ellipsoid (an object that is formed by rotating an ellipse around its major axis),
so it iseasy to create from a sphere using scaling. Because the ellipsoid is different along one axis
from its shape on the other axes, it will also be easy to see its rotations, and of course it will be
easy to see it move around with translations. So we will first discuss scaling and show how it is
used to create the ball, then discuss rotation and show how the ball can be rotated around one of its
short axes, then discuss trand ations and show how the ball can be moved to any location we wish,
and finally will show how the transformations can work together to create a rotating, moving ball
like we might seeif the ball were kicked. The ball is shown with some simple lighting and shading
as described in the chapters below on these topics.

Scaling changes the entire coordinate system in space by multiplying each of the coordinates of
each point by afixed value. Eachtimeitisapplied, this changes each dimension of everythingin
the space. A scaling transformation requires three values, each of which controls the amount by
which one of the three coordinates is changed, and a graphics API function to apply a scaling
transformation will take three real values asits parameters. Thusif we haveapoint ( x, vy, 2z)
and specify the three scaling values as Sx, Sy, and Sz, then the point is changed to
(x*Sx, y*Sy, z*Sz) when the scaling transformation isapplied. If we take asimple sphere
that is centered at the origin and scale it by 2.0 in one direction (in our case, the y-coordinate or
vertical direction), we get the rugby ball that is shown in Figure 2.4 next to the original sphere. It
is important to note that this scaling operates on everything in the space, so if we happen to also
have a unit sphere at position farther out along the axis, scaling will move the sphere farther away
from the origin and will also multiply each of its coordinates by the scaling amount, possibly
distorting its shape. This showsthat it is most useful to apply scaling to an object defined at the
origin so only the dimensions of the object will be changed.

Figure 2.4: asphere ascaled by 2.0 in the y-direction to make arugby ball (left)
and the same sphere is shown unscaled (right)
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Rotation takes everything in your space and changes each coordinate by rotating it around the
origin of the geometry in which the object is defined. The rotation will always leave aline through
the origin in the space fixed, that is, will not change the coordinates of any point on that line. To
define arotation transformation, you need to specify the amount of the rotation (in degrees or
radians, as needed) and the line about which the rotation is done. A graphics API function to apply
arotation transformation, then, will take the angle and the line as its parameters; remember that a
line through the origin can be specified by three real numbers that are the coordinates of the
direction vector for that line. It is most useful to apply rotations to objects centered at the origin in
order to change only the orientation with the transformation.

Trandation takes everything in your space and changes each point’s coordinates by adding a fixed
value to each coordinate. The effect isto move everything that is defined in the space by the same
amount. To define atrangdlation transformation, you need to specify the three values that are to be
added to the three coordinates of each point. A graphics API function to apply atrandation, then,
will take these three values as its parameters. A translation shows a very consistent treatment of
everything in the space, so atrandation is usually applied after any scaling or rotation in order to
take an object with the right size and right orientation and place it correctly in space.

Figure 2.5: a sequence of images of the rugby ball as transformations move it through space

Finally, we put these three kinds of transformations together to create a sequence of images of the
rugby ball asit moves through space, rotating as it goes, shown in Figure 2.5. This sequence was
created by first defining the rugby ball with a scaling transformation and a trandlation putting it on
the ground appropriately, creating a composite transformation as discussed in the next section.
Then rotation and translation values were computed for several timesin the flight of the ball,
allowing usto rotate the ball by slowly-increasing amounts and placing it asif it were in a standard
gravity field. Each separate image was created with a set of transformations that can be generically
described by

translate( Tx, Ty, Tz )

rotate( angle, x-axis )

scale( 1., 2., 1. )

drawBal | ()

6/5/01 Page 2.14



where the operation dr awBal | () was defined as

translate( Tx, Ty, Tz )

scale( 1., 2., 1. )

dr awSpher e()
Notice that the ball rotates in a slow counterclockwise direction asit travel from left to right, while
the position of the ball describes a parabola as it moves, modeling the effect of gravity on the ball’s
flight. Thiskind of composite transformation constructions is described in the next section, and as
we point out there, the order of these transformation callsis critical in order to achieve the effect we
need.

Composite transformations

In order to achieve the image you want, you may need to apply more than one simple
transformation to achieve what is called a composite transformation. For example, if you want to
create a rectangular box with height A, width B, and depth C, with center at (C1,C2,C3), and
oriented at an angle A relative to the Z-axis, you could start with a cube one unit on aside and with
center at the origin, and get the box you want by applying the following sequence of operations:

first, scale the cube to the right size to create the rectangular box with dimensions A, B, C,

second, rotate the cube by the amount A to the right orientation, and

third, trangdlate the cube to the position C1, C2, C3.
This sequence iscritical because of the way transformations work in the whole space. For
example, if we rotated first and then scaled with different scale factors in each dimension, we
would introduce distortions in the box. If we translated first and then rotated, the rotation would
move the box to an entirely different place. Because the order is very important, we find that there
are certain sequences of operations that give predictable, workable results, and the order aboveis
the one that works best: apply scaling first, apply rotation second, and apply trandation last.

The order of transformations isimportant in ways that go well beyond the translation and rotation
example above. In genera, transformations are an example of noncommutative operations,
operations for whichf*g * g*f (that is, f(g(x)) * g(f(x)) ). Most students have little experience
with noncommutative operations until you get to alinear agebra course, so this may be anew idea.
But let’slook at the operations we described above: if we take the point (1, 1, 0) and apply a
rotation by 90° around the Z-axis, we get the point (-1, 1, 0). If we then apply atranslation by
(2, 0, 0) we get the point (1, 1, 0) again. However, if we start with (1, 1, 0) and first apply the
translation, we get (3, 1, 0) and if then apply the rotation, we get the point (-1, 3, 0) which is
certainly not the same as (1, 1, 0). That is, using some pseudocode for rotations, translations, and
point setting, the two code sequences

rotate(90, 0, 0, 1) translate(2, 0, 0)

translate (2, 0, 0) rotate(90, 0, 0, 1)

set Poi nt (1, 1, O?1 setPoint (1, 1, 0)
produce very different results; that is, the rotate and trandlate operations are not commutative.

This behavior is not limited to different kinds of transformations. Different sequences of rotations
can result in different images aswell. Again, if you consider the sequence of rotations
(sequence here)
and the same rotations in a different sequence
(different sequence here)
then the results are quite different, asis shown in Figure 2.7 below.

6/5/01 Page 2.15




Figure 2.7: theresults from two different orderings of the same rotations

Mathematical notation can be applied in many ways, so your previous mathematical experience
may not help you very much in deciding how you want to approach this problem. However, we
want to define the sequence of transformations as last-specified, first-applied, or in another way of
thinking about it, we want to apply our functions so that the function nearest to the geometry is
applied first. Another way to think about thisisin terms of building composite functions by
multiplying the pieces, and in this case we want to compose each new function by multiplying it on
the right of the previous functions. So the standard operation sequence we see above would be
achieved by the following algebraic sequence of operations:
translate * rotate * scale * geonetry
or, thinking of multiplication as function composition, as

transl ate(rotate(scal e(geonetry)))
This might be implemented by a sequence of function calls like that below that is not intended to

represent any particular API:
translate(Cl, C2, C3); // translate to the desired point
rotate(A 2); /1 rotate by A around the Z-axis
scal e(A, B, O; /1 scale by the desired anounts
cube(); /1 define the geonmetry of the cube

At first glance, this sequence looks to be exactly the opposite of the sequence noted above. In fact,
however, we readily see that the scaling operation is the function closest to the geometry (whichis
expressed in the function cube()) because of the last-specified, first-applied nature of
transformations. In Figure 2.8 we see the sequence of operations as we proceed from the plain
cube (at the |€eft), to the scaled cube next, then to the scaled and rotated cube, and finally to the cube
that uses adl the transformations (at the right). The application isto create along, thin, rectangular
bar that is oriented at a45° angle upwards and lies above the definition plane.

L

Figure 2.8: the sequence of figures as a cube is transformed
In general, the overall sequence of transformations that are applied to amodel by considering the

total sequence of transformations in the order in which they are specified, as well as the geometry
on which they work:
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P VvV TO T1 T2 ... Tn Tn+l ... Tlast ... geonetry

Here, P isthe projection transformation, V is the viewing transformation, and TO, T1, ... Tl ast

are the transformations specified in the program to model the scene, in order (T1 isfirst, Tl ast is
last). The projection transformation is defined in the reshape function; the viewing
transformation isdefined inthei ni t function or at the beginning of the di spl ay function so it
is defined at the beginning of the modeling process. But the sequence is actudly applied in
reverse: Tl ast isactually applied first, and VV and finally P are applied last. The code would then
have the definition of P first, the definition of V second, the definitions of TO, T1, ...Tl ast next
in order, and the definition of the geometry last. Y ou need to understand this sequence very well,
because it’s critica to understand how you build complex heirarchical models.

Transformation stacks and their manipulation

In defining a scene, we often want to define some standard pieces and then assemble them in
standard ways, and then use the combined pieces to create additional parts, and go on to use these
partsin additional ways. To do this, we need to create individual parts through functions that do
not pay any attention to ways the parts will be used later, and then be able to assemble them into a
whole. Eventually, we can see that the entire image will be a single whole that is composed of its
various parts.

The key issue is that there is some kind of transformation in place when you start to define the
object. When we begin to put the simple parts of a composite object in place, we will use some
transformations but we need to undo the effect of those transformations when we put the next part
in place. In effect, we need to save the state of the transformations when we begin to place a new
part, and then to return to that transformation state (discarding any transformations we may have
added past that mark) to begin to place the next part. Note that we are always adding and
discarding at the end of the list; thistells us that this operation has the computational properties of a
stack. We may define a stack of transformations and use it to manage this process as follows:
» astransformations are defined, they are multiplied into the current transformation in the order
noted in the discussion of composite transformations above, and
* when we want to save the state of the transformation, we make a copy of the current version of
the transformation and push that copy onto the stack, and apply al the subsequent
transformations to the copy at the top of the stack. When we want to return to the original
transformation state, we can pop the stack and throw away the copy that was removed, which
gives usthe original transformation so we can begin to work again at that point. Because all
transformations are applied to the one at the top of the stack, when we pop the stack we return
to the origina context.
Designing a scene that has alarge number of pieces of geometry as well as the transformations that
define them can be difficult. 1n the next section we introduce the concept of the scene graph as a
design tool to help you create complex and dynamic models both efficiently and effectively.

Compiling geometry

It can take afair amount of time to cal cul ate the various components of a piece of an image when
that piece involves vertex lists and transformations. If an object is used frequently, and if it must
be re-calculated each time it is drawn, it can make a scene quite slow to display. Asaway to save
time in displaying the image, many graphics APIs alow you to “compile”’ your geometry in away
that will alow it to be displayed much more quickly. Geometry that isto be compiled should be
carefully chosen so that it is not changed between displays. If changes are needed, you will need
to re-compile the object. Once you have seen what parts you can compile, you can compile them
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and use the compiled versions to make the display faster. We will discuss how OpenGL compiles
geometry later in this chapter. If you use another API, ook for details in its documentation.

A word to thewise...

Aswe noted above, you must take a great deal of care with transformation order. It can be very
difficult to look at an image that has been created with mis-ordered transformations and understand
just how that erroneous example happened. In fact, thereisaskill in what we might call “visual
debugging” — looking at an image and seeing that it is not correct, and figuring out what errors
might have caused the image asit is seen. It isimportant that anyone working with images become
skilled in this kind of debugging. However, obviously you cannot tell than an image is wrong
unless you know what a correct image should be, so you must know in general what you should
be seeing. Asan obvious example, if you are doing scientific images, you must know the science
well enough to know when an image makes no sense.
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Scene Graphs and Modeling Graphs
Introduction

In this chapter, we define modeling as the process of defining and organizing a set of geometry that
represents a particular scene. While modern graphics APIs can provide you with agreat deal of
assistance in rendering your images, modeling is usually supported less well and causes
programmers considerable difficulty when they begin to work in computer graphics. Organizing a
scene with transformations, particularly when that scene involves hierarchies of components and
when some of those components are moving, involves relatively complex concepts that need to be
organized very systematically to create a successful scene. Hierarchical modeling has long been
done by using trees or tree-like structures to organize the components of the model.

Recent graphics systems, such as Java3D and VRML 2, have formalized the concept of a scene
graph as a powerful tool for both modeling scenes and organizing the rendering process for those
scenes. By understanding and adapting the structure of the scene graph, we can organize a careful
and formal tree approach to both the design and the implementation of hierarchical models. This
can give ustools to manage not only modeling the geometry of such models, but also animation
and interactive control of these models and their components.

In this section of the chapter we will describe the scene graph structure and will adapt it to a
modeling graph that you can use to design scenes, and we will identify how this modeling graph
gives us the three key transformations that go into creating a scene: the projection transformation,
the viewing transformation, and the modeling transformation(s) for the scene’s content. This
structure is very general and lets us manage all the fundamental principlesin defining a scene and
trandating it into agraphics API. Our terminology is based on with the scene graph of Java3D and
should help anyone who uses that system understand the way scene graphs work there.

A brief summary of scene graphs

The fully-devel oped scene graph of the Java3D API has many different aspects and can be complex
to understand fully, but we can abstract it somewhat to get an excellent model to help us think
about scenes that we can use in developing the code to implement our modeling. A brief outline of
the Java3D scene graph in Figure 2.9 will give us a basisto discuss the general approach to graph-
structured modeling as it can be applied to beginning computer graphics.

A virtual universe holds one or more (usually one) locales, which are essentially positionsin the
universe to put scene graphs. Each scene graph has two kinds of branches: content branches
which are to contain shapes, lights, and other content, and view branches, which are to contain
viewing information. Thisdivision is somewhat flexible, but we will use this standard approach to
build a framework to support our modeling work.

The content branch of the scene graph is organized as a collection of nodes that contains group
nodes, transform groups, and shape nodes. A group node is a grouping structure that can have
any number of children; besides simply organizing its children, a group can include a switch that
selects which children to present in a scene. A transform group is a collection of modeling
transformations that affect all the geometry that lies below it. The transformations will be applied
to any of the transform group’s children with the convention that transforms “closer” to the
geometry (geometry that is defined in shape nodes lower in the graph) are applied first. A shape
node includes both geometry and appearance data for an individual graphic unit. The geometry
dataincludes standard 3D coordinates, normals, and texture coordinates, and can include points,
lines, triangles, and quadrilaterals, as well astriangle strips, triangle fans, and quadrilateral strips.
The appearance data includes color, shading, or texture information. Lights and eye points are
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included in the content branch as a particular kind of geometry, having position, direction, and
other appropriate parameters. Scene graphs also include shared groups, or groups that are
included in more than one branch of the graph, which are groups of shapes that are included
indirectly in the graph, and any change to a shared group affects all references to that group. This
allows scene graphs to include the kind of template-based modeling that is common in graphics

applications.

e 6@

Figure 2.9: the structure of the scene graph as defined in Java3D

The view branch of the scene graph includes the specification of the display device, and thus the
projection appropriate for that device. It also specifies the user’s position and orientation in the
scene and includes a wide range of abstractions of the different kinds of viewing devices that can
be used by the viewer. It isintended to permit viewing the same scene on any kind of display
device, including sophisticated virtual reality devices. Thisisamuch more sophisticated approach
than we need for our relatively ssmple modeling. We will simply consider the eye point as part of
the geometry of the scene, so we set the view by including the eye point in the content branch and
get the transformation information for the eye point in order to create the view transformationsin
the view branch.

In addition to the modeling aspect of the scene graph, Java3D also uses it to organize the
processing as the scene is rendered. Because the scene graph is processed from the bottom up, the
content branch is processed first, followed by the viewing transformation and then the projection
transformation. However, the system does not guarantee any particular sequence in processing the
node’ s branches, so it can optimize processing by selecting a processing order for efficiency, or
can distribute the computations over a networked or multiprocessor system. Thusthe Java3D
programmer must be careful to make no assumptions about the state of the system when any shape
nodeis processed. We will not ask the system to process the scene graph itself, however, because
we will only use the scene graph to devel op our modeling code.

An example of modding with a scene graph

We will develop a scene graph to design the modeling for an example scene to show how this
process can work. To begin, we present an aready-completed scene so we can analyze how it can
be created, and we will take that analysis and show how the scene graph can give us other waysto
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present the scene. Consider the scene as shown in Figure 2.10, where a helicopter is flying above
alandscape and the scene is viewed from a fixed eye point. (The helicopter isthe small green
object toward the top of the scene, about 3/4 of the way across the scene toward the right.)

Figure 2.10: ascene that we will describe with a scene graph

This scene contains two principal objects: ahelicopter and aground plane. The helicopter is made
up of a body and two rotors, and the ground plane is modeled as a single set of geometry with a
texture map. There is some hierarchy to the scene because the helicopter is made up of smaller
components, and the scene graph can help us identify this hierarchy so we can work with it in
rendering the scene. In addition, the scene contains a light and an eye point, both at fixed
locations. Thefirst task in modeling such a scene is now complete: to identify all the parts of the
scene, organize the partsinto a hierarchical set of objects, and put this set of objectsinto aviewing
context. We must next identify the relationship among the parts of the landscape way so we may
create the tree that represents the scene. Here we note the relationship among the ground and the
parts of the helicopter. Finally, we must put thisinformation into a graph form.

Theinitial analysis of the scene in Figure 2.10, organized along the lines of view and content
branches, leads to an initial (and partial) graph structure shown in Figure 2.11. The content branch
of this graph captures the organization of the components for the modeling process. This describes
how content is assembled to form the image, and the hierarchical structure of this branch helps us
organize our modeling components. The view branch of this graph corresponds roughly to
projection and viewing. It specifies the projection to be used and develops the projection
transformation, as well asthe eye position and orientation to devel op the viewing transformation.
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Scene

content branch )
view branch

projection

view

helicopter

groundA

body  top rotor back rotor

rotor
Figure 2.11: ascene graph that organizes the modeling of our simple scene

Thisinitia structure is compatible with the simple OpenGL viewing approach we discussed in the
previous chapter and the modeling approach earlier in this chapter, where the view isimplemented
by using built-in function that sets the viewpoint, and the modeling is built from relatively simple
primitives. This approach only takes us so far, however, because it does not integrate the eye into
the scene graph. It can be difficult to compute the parameters of the viewing function if the eye
point is embedded in the scene and moves with the other content, and later we will address that part
of the question of rendering the scene.

While we may have started to define our scene graph, we are not nearly finished. Theinitial scene
graph of Figure 2.11 isincomplete because it merely includes the parts of the scene and describes
which parts are associated with what other parts. To expand this first approximation to a more
compl ete graph, we must add several thingsto the graph:
the transformation information that describes the relationship among items in a group node, to
be applied separately on each branch asindicated,
» the appearance information for each shape node, indicated by the shaded portion of those
nodes,
» thelight and eye position, either absolute (as used in Figure 2.10 and shown Figure 2.12) or
relative to other components of the model, and
» the specification of the projection and view in the view branch.
These are al included in the expanded version of the scene graph with transformations,
appearance, eyepoint, and light shown in Figure 2.121.

The content branch of this graph handles all the scene modeling and is very much like the content
branch of the scene graph. It includes all the geometry nodes of the graph in Figure 2.11 as well
as appearance information; includes explicit transformation nodes to place the geometry into correct
Sizes, positions, and orientations; includes group nodes to assemble content into logical groupings;
and includes lights and the eye point, shown here in fixed positions without excluding the
possibility that a light or the eye might be attached to a group instead of being positioned
independently. In the example above, it identifies the geometry of the shape nodes such as the
rotors or individual trees as shared. This might be implemented, for example, by defining the
geometry of the shared shape node in afunction and calling that from each of the rotor or tree
nodes that usesit.
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Figure 2.12: the more complete graph including transformations and appearance

The view branch of this graph is similar to the view branch of the scene graph but is treated much
more simply, containing only projection and view components. The projection component
includes the definition of the projection (orthogonal or perspective) for the scene and the definition
of the window and viewport for the viewing. The view component includes the information
needed to create the viewing transformation, and because the eye point is placed in the content
branch, thisis ssimply a copy of the set of transformations that position the eye point in the scene as
represented in the content branch.

The appearance part of the shape node is built from color, lighting, shading, texture mapping, and
several other kinds of operations. Eventually each vertex of the geometry will have not only
geometry, in terms of its coordinates, but also norma components, texture coordinates, and
several other properties. Here, however, we are primarily concerned with the geometry content of
the shape node; much of the rest of these notesis devoted to building the appearance properties of
the shape node, because the appearance content is perhaps the most important part of graphics for
building high-quality images.

The scene graph for a particular image is not unique because there are many ways to organize a
scene. When you have awell-defined set of transformation that place the eye point in a scene, we
saw in the earlier chapter on viewing how you can take advantage of that information to organize
the scene graph in away that can define the viewing transformation explicitly and simply use the
default view for the scene. Aswe noted there, the real effect of the viewing transformation is to be
the inverse of the transformation that placed the eye. So we can explicitly compute the viewing
transformation as the inverse of the placement transformation ourselves and place that at the top of
the scene graph. Thus we can restructure the scene graph of Figure 2.12 as shown below in
Figure 2.13 so it may take any arbitrary eye position. Thiswill be the key point below as we
discuss how to manage the eyepoint when it is adynamic part of a scene.

It is very important to note that the scene graph need not describe a static geometry. Callbacks for
user interaction and other events can affect the graph by controlling parameters of its components,
as noted in the re-write guidelines in the next section. This can permit a single graph to describe an
animated scene or even alternate views of the scene. The graph may thus be seen as having some
components with external controllers, and the controllers are the event callback functions.
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Figure 2.13: the scene graph after integrating the
viewing transformation into the content branch

We need to extract the three key transformations from this graph in order to create the code that
implements our modeling work. The projection transformation is straightforward and is built from
the projection information in the view branch, and this is easily managed from toolsin the graphics
API. Theviewing transformation is readily created from the transformation information in the
view by analyzing the eye placement transformations as we saw above, and the modeling
transformations for the various components are built by working with the various transformations
in the content branch as the components are drawn. These operations are all straightforward; we
begin with the viewing transformation and move on to coding the modeling transformations.

The viewing transformation

In a scene graph with no view specified, we assume that the default view puts the eye at the origin
looking in the negative z-direction with the y-axis upward. If we use a set of transformations to
position the eye differently, then the viewing transformation is built by inverting those
transformations to restore the eye to the default position. Thisinversion takes the sequence of
transformations that positioned the eye and inverts the primitive transformations in reverse order,

s0if T{T,T5...T¢ istheorigina transformation sequence, the inverseis TKU. . .TguTzuTlu where the
superscript u indicates inversion, or “undo” as we might think of it.

Each of the primitive scaling, rotation, and translation transformationsis easily inverted. For the
scaling transformation scal e( Sx, Sy, Sz), we note that the three scale factors are used to
multiply the values of the three coordinates when thisis applied. So to invert this transformation,
we must divide the values of the coordinates by the same scale factors, getting the inverse as
scal e(1/Sx, 1/Sy, 1/Sz). Of course, thistellsus quickly that the scaling function can
only beinverted if none of the scaling factors are zero.
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For the rotation transformation r ot at e( angl e, |i ne) that rotates space by the value angl e
around the fixed line | i ne, we must simply rotate the space by the same angle in the reverse
direction. Thustheinverse of the rotation transformationisr ot at e( - angl e, |ine).

For the trandlation transformation t r ansl at e( Tx, Ty, Tz) that adds the three translation
values to the three coordinates of any point, we must simply subtract those same three translation
values when we invert the transformation. Thus the inverse of the translation transformation is

translate(-Tx, -Ty, -Tz).

Putting this together with the information on the order of operations for the inverse of a composite
transformation above, we can see that, for example, the inverse of the set of operations (written as
if they werein your code)

translate(Tx, Ty, Tz)

rotate(angle, line)

scal e(Sx, Sy, Sz)
isthe set of operations

scal e(1/ Sx, 1/Sy, 1/Sz)

rotate(-angle, line)

translate(-Tx, -Ty, -Tz)

Now let us apply this process to the viewing transformation. Deriving the eye transformations
from the tree is straightforward. Because we suggest that the eye be considered one of the content
components of the scene, we can place the eye at any position relative to other components of the
scene. When we do so, we can follow the path from the root of the content branch to the eye to
obtain the sequence of transformations that lead to the eye point. That sequence of transformations
isthe eye transformation that we may record in the view branch.

Figure 2.14: the same scene asin Figure 2.10 but with the eye point following directly behind the
helicopter

In Figure 2.14 we show the change that results in the view of Figure 2.10 when we define the eye
to be immediately behind the helicopter, and in Figure 2.15 we show the change in the scene graph
of Figure 2.12 that implements the changed eye point. The eye transform consists of the
transforms that places the helicopter in the scene, followed by the transforms that place the eye
relative to the helicopter. Then as we noted earlier, the viewing transformation isthe inverse of the
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eye positioning transformation, which in this case is the inverse of the transformations that placed
the eye relative to the helicopter, followed by the inverse of the transformations that placed the
helicopter in the scene.

This change in the position of the eye means that the set of transformations that lead to the eye
point in the view branch must be changed, but the mechanism of writing the inverse of these
transformations before beginning to write the definition of the scene graph still applies; only the
actual transformations to be inverted will change. Thisis how the scene graph will help you to
organize the viewing process that was described in the earlier chapter on viewing.

body top rotor back rotor

X

rotor geometry

Figure 2.15: the change in the scene graph of Figure 2.10
to implement the view in Figure 2.14

The process of placing the eye point can readily be generalized. For example, if you should want
to design a scene with several possible eye points and allow a user to choose among them, you can
design the view branch by creating one view for each eye point and using the set of
transformations leading to each eye point as the transformation for the corresponding view. You
can then invert each of these sets of transformations to create the viewing transformation for each
of the eye points. The choice of eye point will then create a choice of view, and the viewing
transformation for that view can then be chosen to implement the user choice.

Because the viewing transformation is performed before the modeling transformations, we see
from Figure 2.13 that the inverse transformations for the eye must be applied before the content
branch is analyzed and its operations are placed in the code. This means that the display operation
must begin with the inverse of the eye placement transformations, which has the effect of moving
the eye to the top of the content branch and placing the inverse of the eye path at the front of each
set of transformations for each shape node.

Using the modeling graph for coding

L et us use the name “modeling graph” for the analogue of the scene graph we illustrated in the
previous section. Because the modeling graph is intended as a learning tool, we will resist the
temptation to formalize its definition beyond the terms we used there:
» shape node containing two components
- geometry content
- appearance content
transformation node
group node
projection node
view node
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Because we do not want to look at any kind of automatic parsing of the modeling graph to create
the scene, we will merely use the graph to help organize the structure and the relationshipsin the
model to help you organize your code to implement your simple or hierarchical modeling. Thisis
quite straightforward and is described in detail below.

Once you know how to organize all the components of the model in the modeling graph, you next
need to write the code to implement the model. This turns out to be straightforward, and you can
use asimple set of re-write guidelines that allow you to re-write the graph as code. In this set of
rules, we assume that transformations are applied in the reverse of the order they are declared, as
they are in OpenGL, for example. Thisis consistent with your experience with tree handling in
your programming courses, because you have usually discussed an expression tree which is
parsed in leaf-first order. Itisalso consistent with the Java3D convention that transforms that are
“ closer” to the geometry (nested more deeply in the scene graph) are applied first.

The informal re-write guidelines are as follows, including the re-writes for the view branch as well
as the content branch:

* Nodesin the view branch involve only the window, viewport, projection, and viewing
transformations. The window, viewport, and projection are handled by simple functions
in the API and should be at the top of the display function.

» Theviewing transformation is built from the transformations of the eye point within the
content branch by copying those transformations and undoing them to place the eye
effectively at the top of the content branch. This sequence should be next in the display
function.

» The content branch of the modeling graph is usually maintained fully within the display
function, but parts of it may be handled by other functions called from within the display,
depending on the design of the scene. A function that defines the geometry of an object
may be used by one or more shape nodes. The modeling may be affected by parameters set
by event callbacks, including selections of the eye point, lights, or objects to be displayed
in the view.

» Group nodes are points where several elements are assembled into a single object. Each
separate object is a different branch from the group node. Before writing the code for a
branch that includes a transformation group, the student should push the modelview matrix;
when returning from the branch, the student should pop the modelview matrix.

» Transformation nodes include the familiar trandations, rotations, and scaling that are used
in the norma ways, including any transformations that are part of animation or user
control. Inwriting code from the modeling graph, students can write the transformations
in the same sequence as they appear in the tree, because the bottom-up nature of the design
work corresponds to the last-defined, first-used order of transformations.

» Asyou work your way through the modeling graph, you will need to save the state of the
modeling transformation before you go down any branch of the graph from which you will
need to return as the graph is traversed. Because of the simple nature of each
transformation primitive, it is straightforward to undo each as needed to create the viewing
transformation. This can be handled through a transformation stack that allows you to save
the current transformation by pushing it onto the stack, and then restore that transformation
by popping the stack.

»  Shape nodes involve both geometry and appearance, and the appearance must be done first
because the current appearance is applied when geometry is defined.

- An appearance node can contain texture, color, blending, or material information that
will make control how the geometry is rendered and thus how it will appear in the
scene.

- A geometry node will contain vertex information, normal information, and geometry
structure information such as strip or fan organization.

* Most of the nodes in the content branch can be affected by any interaction or other event-
driven activity. This can be done by defining the content by parameters that are modified
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by the event callbacks. These parameters can control location (by parametrizing rotations
or trandations), size (by parametrizing scaling), appearance (by parametrizing appearance
details), or even content (by parametrizing switches in the group nodes).
We will give some examples of writing graphics code from a modeling graph in the sections
below, so look for these principles as they are applied there.

In the example for Figure 2.14 above, we would use the tree to write code as shown in skeleton
form in Figure 2.16. Most of the details, such as the inversion of the eye placement
transformation, the parameters for the modeling transformations, and the details of the appearance
of individual objects, have been omitted, but we have used indentation to show the pushing and
popping of the modeling transformation stack so we can see the operations between these pairs
easily. Thisisstraightforward to understand and to organize.

di spl ay()
set the viewport and projection as needed
initialize nodelview matrix to identity
define view ng transfornmation
invert the transformations that set the eye location
set eye through gl uLookAt with default val ues

define light position /1l note absolute |ocation
push the transformati on stack /1 ground

transl ate

rotate

scal e

define ground appearance (texture)
draw ground
pop the transformati on stack
push the transformati on stack /1 helicopter
transl ate
rotate
scal e
push the transformation stack /1 top rotor
transl ate
rotate
scal e
define top rotor appearance
draw top rotor
pop the transformati on stack
push the transformati on stack /1 back rotor
transl ate
rotate
scal e
define back rotor appearance
draw back rotor
pop the transformati on stack
/1 assume no transformation for the body
define body appearance
draw body
pop the transformation stack
swap buffers

Figure 2.16: code sketch to implement the modeling in Figure 2.15
Animation isssimple to add to this example. The rotors can be animated by adding an extrarotation

in their definition plane immediately after they are scaled and before the transformations that orient
them to be placed on the helicopter body, and by updating angle of the extra rotation each time the

6/5/01 Page 2.28




idle event callback executes. The helicopter’s behavior itself can be animated by updating the
parameters of transformations that are used to position it, again with the updates coming from the
idle callback. The helicopter's behavior may be controlled by the user if the positioning
transformation parameters are updated by callbacks of user interaction events. So there are ample
opportunities to have this graph represent a dynamic environment and to include the dynamicsin
creating the model from the beginning.

Other variations in this scene could by developed by changing the position of the light from its
current absolute position to a position relative to the ground (by placing the light as a part of the
branch group containing the ground) or to a position relative to the helicopter (by placing the light
as a part of the branch group containing the helicopter). The eye point could similarly be placed
relative to another part of the scene, or either or both could be placed with transformations that are
controlled by user interaction with the interaction event callbacks setting the transformation
parameters.

We emphasi ze that you should include appearance content with each shape node. Many of the
appearance parametersinvolve a saved state in APIs such as OpenGL and so parameters set for one
shape will be retained unless they are re-set for the new shape. It is possible to design your scene
so that shared appearances will be generated consecutively in order to increase the efficiency of
rendering the scene, but thisis a specialized organization that is inconsistent with more advanced
APlIssuch as Java3D. Thusit isvery important to re-set the appearance with each shape to avoid
accidentally retaining an appearance that you do not want for objects presented in in later parts of
your scene.

Example

We want to further emphasize the transformation behavior in writing the code for amodel from the
modeling graph by considering another small example. Let usconsider avery simple rabbit’s head
asshown in Figure 2.17. Thiswould have alarge ellipsoidal head, two small spherical eyes, and
two middle-sized ellipsoidal ears. So we will use the élipsoid (actually a scaled sphere, as we saw
earlier) asour basic part and will put it in various places with various orientations as needed.

The modeling graph for the rabbit’s head is shown in Figure 2.18. This figure includes all the
transformations needed to assembl e the various parts (eyes, ears, main part) into a unit. The
fundamental geometry for all these parts is the sphere, as we suggested above. Note that the
transformations for the left and right ears include rotations; these can easily be designed to use a
parameter for the angle of the rotation so that you could make the rabbit’ s ears wiggle back and
forth.

Figure 2.17: therabbit’s head
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Figure 2.18: the modeling graph for the rabbit’s head

To write the code to implement the modeling graph for the rabbit’ s head, then, we would apply the
following sequence of actions on the modeling transformation stack:
» push the modeling transformation stack
» apply the transformationsto create the head, and define the head:
scale
draw sphere
*  pop the modeling transformation stack
» push the modeling transformation stack
» apply the transformations that position the left eye relative to the head, and define the eye:
trandate
scale
draw sphere
*  pop the modeling transformation stack
» push the modeling transformation stack
» apply the transformations that position the right eye relative to the head, and define the eye:
trandate
scale
draw sphere
*  pop the modeling transformation stack
» push the modeling transformation stack
» apply the transformations that position the left ear relative to the head, and define the ear:
trandate
rotate
scale
draw sphere
* pop the modeling transformation stack
» push the modeling transformation stack
» apply the transformations that position the right ear relative to the head, and define the ear:
trandate
rotate
scale
draw sphere
*  pop the modeling transformation stack
Y ou should trace this sequence of operations carefully and watch how the head is drawn. Note
that if you were to want to put the rabbit’s head on a body, you could treat this whole set of
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operations as asingle function r abbi t Head() that is called between operations push and pop
the transformation stack, with the code to place the head and move it around lying above the
function call. Thisisthe fundamental principle of hierarchica modeling — to create objects that
are built of other objects, finally reducing the model to ssmple geometry at the lowest level. Inthe
case of the modeling graph, that lowest level isthe leaves of the tree, in the shape nodes.

The transformation stack we have used informally above isavery important consideration in using
a scene graph structure. 1t may be provided by your graphics API or it may be something you
need to create yourself; eveniif it provided by the API, there may be limits on the depth of the stack
that will be inadequate for some projects and you may need to create your own. We will discuss
thisin terms of the OpenGL API later in this chapter.

Using standard objects to create more complex scenes

The example of transformation stacksis, in fact, alarger example — an example of using standard
objectsto define alarger object. In a program that defined a scene that needed rabbits, we would
create the rabbit head with afunction r abbi t Head() that has the content of the code we used
(and that is given below) and would apply whatever transformations would be needed to place a
rabbit head properly on each rabbit body. The rabbits themselves could be part of alarger scene,
and you could proceed in thisway to create however complex a scene as you wish.
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Implementing Modeling in OpenGL

This chapter discusses the way OpenGL implements the general modeling discussion of the last
chapter. It includes specifying geometry, specifying points for that geometry in model space,
specifying normals for these vertices, and specifying and managing transformations that move
these objects from model space into the world coordinate system. It also discusses some pre-built
models that are provided in the OpenGL and GLUT environments to help you create your scenes
more easily.

The OpenGL model for specifying geometry

In defining your model for your program, you will use a single function to specify the geometry of
your model to OpenGL. This function specifies that geometry isto follow, and its parameter
defines the way in which that geometry isto be interpreted for display:

gl Begi n( node) ;

/1 vertex list: point data to create a prinitive object in

/1 the drawi ng node you have i ndicated

/1 normals may al so be specified here

gl End() ;
The vertex list is interpreted as needed for each drawing mode, and both the drawing modes and
the interpretation of the vertex list are described in the discussions below. This pattern of
gl Begi n(node) - vertex list - gl End usesdifferent values of the node to establish
the way the vertex list is used in creating the image. Because you may use a number of different
kinds of components in an image, you may use this pattern several times for different kinds of
drawing. We will see anumber of examples of this pattern in this module.

In OpenGL, point (or vertex) information is presented to the computer through a set of functions
that go under the general name of gl Vert ex*(..). These functions enter the numeric value of
the vertex coordinates into the OpenGL pipeline for the processing to convert them into image
information. We say that gl Vert ex*(..) isa set of functions because there are many functions
that differ only in the way they define their vertex coordinate data. Y ou may want or need to
specify your coordinate datain any standard numeric type, and these functions allow the system to
respond to your needs.

» If you want to specify your vertex data as three separate real numbers, or floats (we'll use
the variable names x, y, and z, though they could also be float constants), you can use
gl Vertex3f (x,y, z). Herethe character f in the nameindicates that the arguments are
floating-point; we will see below that other kinds of data formats may also be specified for
vertices.

* If you want to define your coordinate data in an array, you could declare your datain a
formsuch as gl Fl oat x[ 3] and then use gl Vert ex3f v(x) to specify the vertex.
Adding the letter v to the function name specifies that the dataisin vector form (actually a
pointer to the memory that contains the data, but an array’ s name is really such a pointer).
Other dimensions besides 3 are also possible, as noted below.

Additional versions of the functions allow you to specify the coordinates of your point in two
dimensions (gl Ver t ex2*); in three dimensions specified as integers (gl Ver t ex3i ), doubles
(gl Vert ex3d), or shorts (gl Ver t ex3s); or as four-dimensional points (gl Ver t ex4*). The
four-dimensional version uses homogeneous coordinates, as described earlier in this chapter. You
will see some of these used in the code examples later in this chapter.

One of the most important things to realize about modeling in OpenGL is that you can call your
own functions between a gl Begi n( node) and gl End() pair to determine vertices for your
vertex list. Any vertices these functions define by making agl Ver t ex* (..) function call will be
added to the vertex list for this drawing mode. This allows you to do whatever computation you



need to calculate vertex coordinates instead of creating them by hand, saving yourself significant
effort and possibly allowing you to create images that you could not generate by hand. For
example, you may include various kind of loops to calculate a sequence of vertices, or you may
include logic to decide which vertices to generate. An example of thisway to generate verticesis
given among the first of the code examples toward the end of this module.

Another important point about modeling isthat a great deal of other information can go between a
gl Begi n(nmode) and gl End() pair. We will seethe importance of including information about
vertex normals in the chapters on lighting and shading, and of including information on texture
coordinates in the chapter on texture mapping. So this simple construct can be used to do much
more than just specify vertices. Although you may carry out whatever processing you need within
thegl Begi n( node) and gl End() pair, there are alimited number of OpenGL operations that
are permitted here. In genera, the available OpenGL operations here are gl Ver t ex, gl Col or,
gl Nor mal , gl TexCoord, gl Eval Coord, gl Eval Poi nt, gl Materi al, gl Cal | Li st,
and gl Cal | Li st's, although thisis not a complete list. Your OpenGL manual will give you
additional information if needed.

Point and points mode

The mode for drawing points with the gl Begi n functionisnamed GL_PQ NTS, and any vertex
data between gl Begi n and gl End isinterpreted as the coordinates of a point we wish to draw.
If we want to draw only one point, we provide only one vertex between gl Begi n and gl End; if
we want to draw more points, we provide more vertices between them. |f you use points and want
to make each point more visible, the function gl Poi nt Si ze(fl oat si ze) alowsyou to set
the size of each point, where si ze isany nonnegative real value and the default sizeis 1.0.

The code below draws a sequence of pointsin astraight line. This code takes advantage of fact
that we can use ordinary programming processes to define our models, showing we need not
hand-cal cul ate points when we can determine them by an algorithmic approach. We specify the
vertices of a point through afunction poi nt At () that calculates the coordinates and calls the
gl Vert ex* () function itself, and then we call that function within the gl Begi n/ gl End pair.
The function cal culates points on a spiral aong the z-axis with x- and y-coordinates determined by
functions of the parameter t that drives the entire spiral.

void pointAt(int i) {
gl Vertex3f (fx(t)*cos(g(t)),fy(t)*sin(g(t)),0.2*(float)(5-i));
}

void pointSet( void ) {
int i;

gl Begi n(G._PQA NTS) ;
for ( i=0; i<10; i++)
poi nt At (i);
gl End() ;

Some functions that drive the x- and y-coordinates may be familiar to you through studies of
functions of polar coordinates in previous mathematics classes, and you are encouraged to try out
some possibilities on your own.

6/10/01 Page 3.2



Linesegments

To draw line segments, we use the GL_ LI NES mode for gl Begi n/ gl End. For each segment
we wish to draw, we define the vertices for the two endpoints of the segment. Thus between
gl Begi n and gl End each pair of verticesin the vertex list defines a separate line segment.

Line strips

Connected lines are called line stripsin OpenGL, and you can specify them by using the mode
G__LI NE_STRI Pfor gl Begi n/ gl End. The vertex list defines the line segments as noted in
the genera discussion of connected lines above, so if you have N vertices, you will have N-1 line
segments. With either line segments or connected lines, we can set the line width to emphasize (or
de-emphasize) aline. Heavier line widths tend to attract more attention and give more emphasis
than lighter line widths. The line width is set with the gl Li neWdt h(fl oat wi dth)
function. The default value of wi dt h is 1.0 but any nonnegative width can be used.

As an example of aline strip, let’s consider a parametric curve. Such curvesin 3-space are often
interesting objects of study. The code below define a rough spiral in 3-space that is a good
(though simple) example of using a single parameter to define points on a parametric curve so it
can be drawn for study.

gl Begi n(GL_LI NE_STRI P) ;
for ( i=0; i<=10; i++)
gl Vertex3f (2.0*cos(3.14159*(float)i/5.0),
2.0*sin(3.14159*(float)i/5.0),0.5*(float)(i-5));
gl End() ;

This can be made much more sophisticated by increasing the number of line segments, and the
code can be cleaned up a bit as described in the code fragment below. Simple experiments with the
st ep and zst ep variables will let you create other versions of the spiral as experiments.

#define Pl 3.14159
#define N 100
step = 2.0*PI/ (float)N,
zstep = 2.0/ (float)N,
gl Begi n(GL_LI NE_STRI P) ;

for ( i=0; i<=N;, i++)

gl Vertex3f (2.0*sin(step*(float)i), 2. 0*cos(step*(float)i),
-1.0+zstep*(float)i);

gl End() ;

If this spiral is presented in a program that includes some simple rotations, you can see the spiral
from many points in 3-space. Among the things you will be able to see are the simple sine and
cosine curves, as well as one period of the generic shifted sine curve.

Triangle

To draw unconnected triangles, you use gl Begi n/ gl End with the mode G._TRI ANGLES.
Thisistreated exactly as discussed in the previous chapter and produces a collection of triangles,
one for each three vertices specified.

Seguence of triangles

OpenGL provides both of the standard geometry-compression techniques to assembl e sequences of
triangles. triangle strips and triangle fans. Each has its own mode for gl Begi n/ gl End:
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G._TRIANGLE STRIP and G._TRI ANGLE FAN respectively. These behave exactly as
described in the general section above.

Because there are two different modes for drawing sequences of triangles, we'll consider two
examplesin this section. Thefirst isatriangle fan, used to define an object whose vertices can be
seen as radiating from a central point. An example of this might be the top and bottom of a sphere,
where atriangle fan can be created whose first point is the north or south pole of the sphere. The
second is atriangle strip, which is often used to define very general kinds of surfaces, because
most surfaces seem to have the kind of curvature that keeps rectangles of points on the surface
from being planar. In this case, triangle strips are much better than quad strips as a basis for
creating curved surfaces that will show their surface properties when lighted.

The triangle fan (that defines a cone, in this case) is organized with its vertex at point
(0.0,1.0,0.0) andwith acircular base of radius 0.5 in the XZ-plane. Thus the cone is
oriented towards the y-direction and is centered on the y-axis. This provides a surface with unit
diameter and height, as shown in Figure 3.1. When the cone is used in creating a scene, it can
easily be defined to have whatever size, orientation, and location you need by applying appropriate
modeling transformations in an appropriate sequence. Here we have also added normals and flat
shading to emphasize the geometry of the triangle fan, although the code does not reflect this.

gl Begi n( GL_TRI ANGLE_FAN) ;
gl Vertex3f (0., 1.0, 0.); /1 the point of the cone
for (i=0; i < nunBtrips; i++) {
angle = 2. * (float)i * Pl / (float)nunttrips;
gl Vertex3f (0.5*cos(angle), 0.0, 0.5*sin(angle));
/1 code to calculate nornmals would go here

}
gl End() ;

Figure 3.1: the cone produced by the triangle fan

The triangle strip example is based on an example of afunction surface defined on agrid. Herewe
describe a function whose domain isin the X-Z plane and whose values are shown as the Y -value
of each vertex. The grid pointsin the X-Z domain are given by functions XX(i ) and ZZ(j ), and
the values of the function are held in an array, with verti ces[i][]] giving the value of the
function at the grid point ( XX(i), ZZ(j ) ) asdefined in the short example code fragment below.
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for ( i=0; i<XSIZE;, i++ )
for ( j=0; j<ZSIZE;, j++ )
{
X = XX(i);
z = Z2Z(j);
vertices[i][j] = (x*x+2.0%*z*z)/ exp(x*x+2. 0*z*z+t);

}

The surface rendering can then be organized as a nested |oop, where each iteration of the loop
draws atriangle strip that presents one section of the surface. Each section is one unit in the X-
direction that extends across the domain in the Z-direction. The code for such a strip is shown
below, and the resulting surface is shown in Figure 3.2. Again, the code that calculates the
normals is omitted; this example is discussed further and the normals are developed in the later
chapter on shading. This kind of surface is explored in more detail in the chapters on scientific
applications of graphics.

for ( i=0; i<XSIZE-1; i++)
for ( j=0; j<ZSIZE-1; j++ )

gl Begi n(G__TRI ANGLE_STRI P) ;

gl Vertex3f (XX(i),vertices[i][j],ZZ(j));

gl Vertex3f (XX(i+1),vertices[i+1][j],2Z22(j));

gl Vertex3f (XX(i),vertices[i][]+1], ZZ(j+1));

gl Vertex3f (XX(i+1),vertices[i+1][]j+1], ZZ(j +1));
gl End() ;

}

Figure 3.2: thefull surface created by triangle strips, with asingle strip highlighted in cyan

This exampleis awhite surface lighted by three lights of different colors, atechnique we describe
in the chapter on lighting. This surface exampleis also briefly revisited in the quads discussion
below. Note that the sequence of points hereis slightly different here than it isin the example
below because of the way quads are specified. In this example instead of one quad, we will have
two triangles—and if you rework the example below to use quad strips instead of simple quads to
display the mathematical surface, it is smple to make the change noted here and do the surface with
extended triangle strips.
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Quads

To create a set of one or more distinct quads you use gl Begi n/ gl End with the G._ QUADS
mode. Asdescribed earlier, thiswill take four vertices for each quad. An example of an object
based on quadrilaterals would be the function surface discussed in the triangle strip above. For
guads, the code for the surface looks like this:

for ( i=0; i<XSIZE-1; i++)
for ( j=0; j<ZSIZE-1; j++ )

/1 quad sequence: points (i,j),(i+1,j), (i+1,j+1),(i,]+1)

gl Begi n( GL_QUADS) ;
gl Vertex3f (XX(i),vertices[i][j],2Z(j));
gl Vertex3f (XX(i+1),vertices[i+1][j],2ZZ(j));
gl Vertex3f (XX(i +1), vertices[i+1][]+1], ZZ(j +1));
gl Vertex3f (XX(i),vertices[i][]+1], ZZ(j+1));

gl End() ;

}
}

Note that neither this surface nor the one composed from triangles is going to look very good yet
because it does not yet contain any lighting or color information. These will be added in later
chapters as this concept of function surfacesis re-visited when we discuss lighting and color.

Quad strips

To create a sequence of quads, the mode for gl Begi n/ gl End is G._QUAD STRI P. This
operates in the way we described at the beginning of the chapter, and as we noted there, the order
in which the vertices are presented is different from that in the GL_QUADS mode. Be careful of
this when you define your geometry or you may get a very unusual kind of display!

In afairly common application, we can create long, narrow tubes with square cross-section. This
can be used as the basis for drawing 3-D coordinate axes or for any other application where you
might want to have, say, abeam in astructure. The quad strip defined below creates the tube
oriented along the Z-axis with the cross-section centered on that axis. The dimensions given make
aunit tube—atube that is one unit in each dimension, making it actually acube. These dimensions
will make it easy to scale to fit any particular use.

#define RAD 0.5
#define LEN 1.0
gl Begi n(G._QUAD STRI P);

gl Vertex3f( RAD, RAD, LEN); // start of first side
gl Vertex3f( RAD, RAD, 0.0 );
gl Vert ex3f (- RAD, RAD, LEN );
gl Vertex3f (-RAD, RAD, 0.0 );
gl Vertex3f (-RAD,-RAD, LEN ); // start of second side
gl Vertex3f (-RAD, -RAD, 0.0 );
gl Vertex3f( RAD,-RAD, LEN); // start of third side
gl Vertex3f ( RAD,-RAD, 0.0 );
gl Vertex3f( RAD, RAD, LEN ); // start of fourth side
gl Vertex3f( RAD, RAD, 0.0 );

gl End() ;

Y ou can also get the same object by using the GLUT cube that is discussed below and applying
appropriate transformations to center it on the Z-axis.
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Genera polygon

The GL_POLYGON mode for gl Begi n/ gl End is used to allow you to display a single convex
polygon. The verticesin the vertex list are taken as the vertices of the polygon in sequence order,
and we remind you that the polygon needs to be convex. It is not possible to display more than
one polygon with this operation because the function will always assume that whatever points it
receives go in the same polygon.

Probably the simplest kind of multi-sided convex polygon isthe regular N-gon, an N-sided figure
with all edges of equal length and all interior angles between edges of equal size. Thisissimply
created, again using trigonometric functions to determine the vertices.

#define Pl 3.14159
#define N 7
step = 2.0*PI/(float)N,
gl Begi n( GL_POLYGON) ;
for (i=0; i<=N;, i++)
gl Vertex3f (2.0*sin(step*(float)i),2.0*cos(step*(float)i),0.0);;
gl End() ;

Note that this polygon livesin the XY -plane; all the Z-values are zero. Thispolygonisalsointhe
default color (white) for simple models. Thisisan example of a“canonical” object — an object
defined not primarily for its own sake, but as a template that can be used as the basis of building
another object as noted later, when transformations and object color are available. An interesting
application of regular polygonsisto create regular polyhedra— closed solids whose faces are all
regular N-gons. These polyhedra are created by writing a function to draw a simple N-gon and
then using transformations to place these properly in 3-space to be the boundaries of the
polyhedron.

The cube we will use in many examples

Because a cube is made up of six square faces, it is very tempting to try to make the cube from a
single quad strip. Looking at the geometry, though, it isimpossible to make a single quad strip go
around the cube; in fact, the largest quad strip you can create from a cube’ s faces has only four
guads. It ispossible to create two quad strips of three faces each for the cube (think of how a
baseball is stitched together), but here we will only use a set of six quads whose vertices are the
eight vertex points of the cube. Below we repeat the declarations of the vertices, normals, edges,
and faces of the cube from the previous chapter. We will use the gl Vert ex3f v(..) vertex
specification function within the specification of the quads for the faces.

typedef float point3[3];
t ypedef int edge[ 2] ;
t ypedef int face[ 4]; /1 each face of a cube has four edges

point3 vertices[8] = {{-
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point3 nornals[6] = {{ 0.0, 0.0, 1.0},
{-1.0, 0.0, 0.0},
{ 0.0, 0.0,-1.0%,
{ 1.0, 0.0, 0.0},
{ 0.0,-1.0, 0.0},
{ 0.0, 1.0, 0.0} };
edge edges|[ 24] ={{ o0 13}, {1, 3}, {3, 2}, {2 01},
{0 4}, {1 5}, {3 7} {2 6},
{4 5}, {5 7}, {7 6} {6 4},
{1, 0}, {3 1}, {2 3}, {0 2},
{4 03}, {5 1}, {7 3} {6 2},
{5 4}, {7 5}, {6 7} {4 61}};
face cubel[ 6] ={{ o 1, 2, 3}, { 5 9, 18, 13},
{ 14, 6, 10, 19}, { 7, 11, 16, 15},
{ 4, 8, 17, 12}, { 22, 21, 20, 23 }};

As we said before, drawing the cube proceeds by working our way through the face list and
determining the actual points that make up the cube. We will expand the function we gave earlier
to write the actual OpenGL code below. Each faceis presented individually in aloop within the
gl Begi n- gl End pair, and with each face we include the normal for that face. Note that only the
first vertex of the first edge of each face isidentified, because the GL_QUADS drawing mode
takes each set of four vertices as the vertices of aquad; it is not necessary to close the quad by
including the first point twice.

voi d cube(void) {
int face, edge;
gl Begi n( GL_QUADS) ;
for (face = 0; face < 6; face++) {
gl Nor mal 3f v(nor mal s[ face];
for (edge = 0; edge < 4; edge++)
gl Vertex3fv(vertices[edges[cube[face][edge]][0]]);

gl ELd();
}

Figure 3.3: the cube as a sequence of quads
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This cube is shown in Figure 3.3, presented through the six steps of adding individual faces (the
faces are colored in the typical RGBCMY sequence so you may see each added in turn). This
approach to defining the geometry is actually afairly elegant way to define a cube, and takes very
little coding to carry out. However, thisis not the only approach we could take to defining a cube.
Because the cubeis aregular polyhedron with six faces that are squares, it is possible to define the
cube by defining a standard square and then using transformations to create the faces from this
master square. Carrying this out isleft as an exercise for the student.

This approach to modeling an object includes the important feature of specifying the normals (the
vectors perpendicular to each face) for the object. We will see in the chapters on lighting and
shading that in order to get the added realism of lighting on an object, we must provide information
on the object’s normals, and it was straightforward to define an array that contains a normal for
each face. Another approach would be to provide an array that contains a normal for each vertex if
you would want smooth shading for your model; see the chapter on shading for more details. We
will not pursue these ideas here, but you should be thinking about them when you consider
modeling issues with lighting.

Additional objects with the OpenGL toolkits

Modeling with polygons alone would require you to write many standard graphics elements that
are so common, any reasonable graphics system should include them. OpenGL includes the
OpenGL Utility Library, GLU, with many useful functions, and most releases of OpenGL also
include the OpenGL Utility Toolkit, GLUT. We saw in the first chapter that GLUT includes
window management functions, and both GLU and GLUT include a number of built-in graphical
elementsthat you can use. This chapter describes a number of these elements.

The objects that these toolkits provide are defined with several parameters that define the details,
such as the resolution in each dimension of the object with which the object is to be presented.
Many of these details are specific to the particular object and will be described in more detail when
we describe each of these.

GLU guadric objects

The GLU toolkit provides several general quadric objects, which are objects defined by quadric
equations (polynomial equationsin three variables with degree no higher than two in any term),
including Spheres (gl uSpher e), cylinders (gl uCyl i nder), and disks (gl ubi sk). Each
GLU primitive isdeclared as a GLUqadric and is allocated with the function
G.Uquadri c* gl uNewQuadri c( void )

Each quadric object is a surface of revolution around the z-axis. Each is modeled in terms of
subdivisions around the z-axis, called slices, and subdivisions along the z-axis, called stacks.
Figure 3.4 shows an example of atypical pre-built quadric object, a GLUT wireframe sphere,
modeled with a small number of dices and stacks so you can see the basis of this definition.

The GLU quadrics are very useful in many modeling circumstances because you can use scaling
and other transformations to create many common objects from them. The GLU quadrics are also
useful because they have capabilities that support many of the OpenGL rendering capabilities that
support creating interesting images. You can determine the drawing style with the
gl uQuadri cDrawst yl e() function that lets you select whether you want the object filled,
wireframe, silhouette, or drawn as points. Y ou can get normal vectors to the surface for lighting
models and smooth shading with the gl uQuadr i cNor mal s() function that lets you choose
whether you want no normals, or normals for flat or smooth shading. Finaly, with the
gl uQuadri cText ur e() function you can specify whether you want to apply texture maps to
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the GLU quadricsin order to create objects with visual interest. See later chapters on lighting and
on texture mapping for the details.

Figure 3.4: A GLUT wireframe sphere with 10 slices and 10 stacks

Below we describe each of the GLU primitives by listing its function prototype; more details may
be found in the GLU section of your OpenGL manual.

GLU cylinder:
voi d gl uCylinder (A Uquadri c* quad, G.doubl e base, G.doubl e top,

G.doubl e height, G.int slices, G.int stacks)

quad identifiesthe quadrics object you previoudy created with gl uNewQuadr i ¢
base isthe radius of the cylinder at z = O, the base of the cylinder

top istheradius of the cylinder at z = height, and

height isthe height of the cylinder.

GLU disk:

The GLU disk is different from the other GLU primitives because it is only two-dimensional, lying
entirely within the X-Y plane. Thusinstead of being defined in terms of stacks, the second
granularity parameter isloops, the number of concentric rings that define the disk.

voi d gl uD sk(G.Uguadri c* quad, G.doubl e inner, G.doubl e outer,

Gint slices, Gint loops)

guad identifies the quadrics object you previoudy created with gl uNewQuadr i ¢
inner istheinner radius of the disk (may be 0).
outer isthe outer radius of the disk.

GLU gphere:
voi d gl uSphere( G.Uguadri c* quad, G.doubl e radius, G.int slices,

Ai nt stacks)

guad identifies the quadrics object you previoudy created with gl uNewQuadr i ¢
radius isthe radius of the sphere.

The GLUT objects

Models provided by GLUT are more oriented to geometric solids, except for the teapot object.
They do not have as wide a usage in general situations because they are of fixed shape and many
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cannot be modeled with varying degrees of complexity. They also do not include shapes that can
readily be adapted to general modeling situations. Finally, there is no general way to create a
texture map for these objects, so it is more difficult to make scenes using them have stronger visua
interest. The GLUT models include a cone (gl ut Sol i dCone), cube (gl ut Sol i dCube),
dodecahedron (12-sided regular polyhedron, gl ut Sol i dDodecahedr on), icosahedron (20-
sided regular polyhedron, gl ut Sol i dl cosahedr on), octahedron (8-sided regular polyhedron,
gl ut Sol i dCct ahedr on), asphere (gl ut Sol i dSpher e), ateapot (the Utah teapot, an icon
of computer graphics sometimes called the “teapotahedron”, gl ut Sol i dTeapot ), atetrahedron
(4-sided regular polyhedron, gl ut Sol i dTet r ahedr on), and a torus (gl ut Sol i dTor us).
There are aso wireframe versions of each of the GLUT solid objects.

The GLUT primitives include both solid and wireframe versions. Each object has a canonical
position and orientation, typically being centered at the origin and lying within a standard volume
and, if it has an axis of symmetry, that axisis aligned with the z-axis. Aswith the GLU standard
primitives, the GLUT cone, sphere, and torus alow you to specify the granularity of the
primitive’ s modeling, but the others do not.

If you have GLUT with your OpenGL, you should check the GLUT manuals for the details on
these solids and on many other important capabilities that GLUT will add to your OpenGL system.
If you do not already have it, you can download the GLUT code from the OpenGL Web site for
many different systems and install it in your OpenGL area so you may use it readily with your
system.

Selections from the overall collection of GLU and GLUT objects are shown in Figure 3.5 to show
the range of items you can create with these tools. From top left and moving clockwise, we see a
gluCylinder, a gluDisk, a glutSolidCone, a glutSolidicosahedron, a glutSolidTorus, and a
glutSolidTeapot. Y ou should think about how you might use various transformations to create
other figures from these basic parts.

Figure 3.5: several GLU and GLUT objects as described above
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An example

Our example for this module is quite simple. It isthe heart of the di spl ay() function for a
simple application that displays the built-in sphere, cylinder, dodecahedron, torus, and teapot
provided by OpenGL and the GLU and GLUT toolkits. Inthe full example, there are operations
that allow the user to choose the object and to control its display in several ways, but for this
example we will only focus on the models themselves, as provided through a switch() statement
such as might be used to implement a menu selection. This function is not complete, but would
need the addition of viewing and similar functionality that is described in the chapter on viewing
and projection.

voi d display( void )
{

GLUguadri ¢ *nyQuad,;
G.doubl e radius = 1.0;
Gint slices, stacks;
GLi nt nsides, rings;

switch (sel ectedObject) {
case (1): {
nmy Quad=gl uNewQuadri c();
slices = stacks = resol ution;
gl uSphere( myQuad , radius , slices , stacks );
br eak;

}
case (2): {
nmy Quad=gl uNewQuadri c();
slices = stacks = resol ution;
gluCylinder( myQuad, 1.0, 1.0, 1.0, slices, stacks );
br eak;

}
case (3): {
gl ut Sol i dDodecahedron(); break

}
case (4): {
nsides = rings = resolution;
gl ut Sol i dTorus( 1.0, 2.0, nsides, rings);
br eak;

}

case (5): {
gl ut Sol i dTeapot (2. 0); break
}

}

A word to the wise...

One of the differences between student programming and professional programming is that
students are often asked to create applications or tools for the sake of learning creation, not for the
sake of creating working, useful things. The graphics primitives that are the subject of the first
section of this module are the kind of tools that students are often asked to use, because they
require more analysis of fundamental geometry and are good learning tools. However, working
programmers devel oping real applications will often find it useful to use pre-constructed templates
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and tools such asthe GLU or GLUT graphics primitives. Y ou are encouraged to use the GLU and
GLUT primitives whenever they can save you time and effort in your work, and when you cannot
use them, you are encouraged to create your own primitivesin away that will let you re-use them
asyour own library and will let you share them with others.

Transformations in OpenGL

In OpenGL, there are only two kinds of transformations. projection transformations and
modelview transformations. The latter includes both the viewing and modeling transformations.
We have already discussed projections and viewing, so here we will focus on the transformations
used in modeling.

Among the modeling transformations, there are three fundamental kinds: rotations, translations,
and scaling. In OpenGL, these are applied with the built-in functions (actualy function sets)
gl Rotate, gl Transl ate, and gl Scal e, respectively. As we have found with other
OpenGL function sets, there are different versions of each of these, varying only in the kind of
parameters they take.

Thegl Rot at e function is defined as
gl Rotatef (angle, x, y, z)

where angl e specifies the angle of rotation, in degrees, and x, y, and z specify the coordinates
of avector, all asfloats (f). Thereisanother rotation function gl Rot at ed that operates in
exactly the same way but the arguments must all be doubles (d). The vector specified in the
parameters defines the fixed line for the rotation. This function can be applied to any matrix set in
gl Mat r i xMode, allowing you to define a rotated projection if you are in projection mode or to
rotate objects in model space if you are in modelview mode. Y ou can use gl PushMat ri x and
gl PopMat ri x to save and restore the unrotated coordinate system.

Thisrotation follows the right-hand rule, so the rotation will be counterclockwise as viewed from
the direction of the vector ( x, y, z) . The simplest rotations are those around the three coordinate
axes, so that gl Rot ate(angle, 1., 0., 0.) will rotate the model space around the X-
axis.

Thegl Tr ansl at e function is defined as

gl Transl atef (Tx, Ty, Tz)
where Tx, Ty, and Tz specify the coordinates of atrandation vector asfloats (f ). Again, thereis
atrandation function gl Tr ansl at ed that operates exactly the same but has doubles (d) as
arguments. As with gl Rot at e, this function can be applied to any matrix set in
gl Mat ri xMode, so you may define a translated projection if you are in projection mode or
trandated objects in model space if you are in modelview mode. You can agan use
gl PushMat ri x and gl PopMat ri x to save and restore the untranslated coordinate system.

Thegl Scal e function isdefined as

gl Scal ef (Sx, Sy, Sz)
where Sx, Sy, and Sz specify the coordinates of a scaling vector asfloats (f ). Again, thereisa
trandation function gl Scal ed that operates exactly the same but has doubles (d) as arguments.
As above, this function can be applied to any matrix setin gl Mat r i xMode, so you may define a
scaled projection if you are in projection mode or scaled objects in model spaceif you are in
modelview mode. You can again use gl PushMat ri x and gl PopMat ri x to save and restore
theunscaled coordinate system. Because scaling changes geometry in non-uniform ways, a
scaling transformation may change the normals of an object. If scale factors other than 1.0 are
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applied in modelview mode and lighting is enabled, automatic normalization of normals should
probably aso be enabled. See the chapter on lighting for details.

Aswe saw earlier in the chapter, there are many transformations that go into defining exactly how
a piece of geometry is presented in a graphics scene. When we consider the overall order of
transformations for the entire model, we must consider not only the modeling transformations but
also the projection and viewing transformations. If we consider the tota sequence of
transformations in the order in which they are specified, we will have the sequence:

P V TO T1 ... Tn Tn+1 ... Tl ast

with P being the projection transformation, V the viewing transformation, and TO, T1, ... Tl ast

the transformations specified in the program to model the scene, in order (T1 isfirst, Tl ast islast
and is closest to the actual geometry). The projection transformation is defined in the r eshape
function; the viewing transformation isdefined inthei ni t function, in ther eshape function, or
at the beginning of the di spl ay function so it is defined a the beginning of the modeling
process. But the sequence in which the transformations are applied is actually the reverse of the
sequence above: Tl ast isactually applied first, and V and finaly P are applied last. Y ou need to
understand this sequence very well, because it’s critical to understand how you build complex,
heirarchical models.

Code examples for transformations

Simple transformations:
All the code examples use a standard set of axes, which are not included here, and the following
definition of the smple square:

voi d square (void)

typedef G.float point [3];

point v[8] = {{12.0, -1.0, -1.0},
{12.0, -1.0, 1.0},
{12.0, 1.0, 1.0},
{12.0, 1.0, -1.0} };

gl Begin (G._QUADS);
gl Vertex3fv(v[0]);
gl Vertex3fv(v[1]);
gl Vertex3fv(v[2]);
gl Vertex3fv(v[3]);
gl End() ;

To display the simple rotations example, we use the following display function:
voi d display( void )
{ int i;
float theta = 0.0;

gl dear (G _COLOR BUFFER BI T | G._DEPTH BUFFER BIT);
axes(10.0);
for (i=0; i<8; i++) {

gl PushMatri x();

gl Rotatef(theta, 0.0, 0.0, 1.0);

if (i==0) glColor3f(1.0, 0.0, 0.0);

else glColor3f(1.0, 1.0, 1.0);
square();
theta += 45.0;
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gl PopMat ri x();

gl ut SwapBuffers();

To display the simple trand ations example, we use the following display function:
voi d display( void )
{ int i;

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);
axes(10.0);
for (i=0; i<=12; i++) {

gl PushiMatri x();

gl Transl atef(-2.0*(float)i, 0.0, 0.0);

if (i==0) gl Color3f(1.0, 0.0, 0.0);

else glColor3f(1.0, 1.0, 1.0);
square();
gl PopMat ri x();

}
gl ut SwapBuffers();
}

To display the simple scaling example, we use the following display function:
voi d display( void )
{ int i;
float s;

gl O ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);
axes(10.0);
for (i=0; i<6; i++) {

gl PushMatri x();

s = (6.0-(float)i)/6.0;

gl Scalef( s, s, s );

if (i==0) glColor3f(1.0, 0.0, 0.0);

else glColor3f(1.0, 1.0, 1.0);
square();
gl PopMat ri x();

}
gl ut SwapBuf fers();

Transformation stacks. The OpenGL functions that are used to manage the transformation stack
aregl Pushiat ri x() andgl PopMat ri x(). Technicaly, they apply to the stack of whatever
transformation is the current matrix mode, and the gl Mat ri xMbde function with parameters
G._PRQIECTI ONand GL_MODELVI EWsets that mode. We only rarely want to use a stack of
projection transformations (and in fact the stack of projections can only hold two transformations)
so we will almost always work with the stack of modeling/viewing transformation. The rabbit
head example was created with the display function given below. This function makes the stack
operations more visible by using indentations; this isintended for emphasisin the example only
and is not standard programming practice in graphics. Note that we have defined only very simple
display properties (just asimple color) for each of the parts; we could in fact have defined a much
more complex set of properties and have made the parts much more visually interesting. We could
also have used a much more complex object than asimple gl uSpher e to make the parts much
more structurally interesting. The sky’sthe limit...
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voi d display( void )
{

/1 Indentation |l evel shows the |l evel of the transformation stack
/1 The basis for this exanple is the unit gluSphere; everything el se
/1 is done by explicit transformations

gl O ear (G._COLOR BUFFER BI T | G._DEPTH BUFFER BI T);
gl PushMatri x();
/1 nodel the head
gl Color3f (0.4, 0.4, 0.4); [/ dark gray head
gl Scal ef (3.0, 1.0, 1.0);
myQuad = gl uNewQuadric();
gl uSphere(myQuad, 1.0, 10, 10);
gl PopMat ri x();
gl PushMatri x();
/1 nodel the left eye
gl Color3f(0.0, 0.0, 0.0); [/ bl ack eyes
gl Translatef (1.0, -0.7, 0.7);
gl Scal ef (0.2, 0.2, 0.2);
myQuad = gl uNewQuadric();
gl uSphere(myQuad, 1.0, 10, 10);
gl PopMat ri x();
gl PushiMatri x();
/1 nodel the right eye
gl Translatef (1.0, 0.7, 0.7);
gl Scal ef (0.2, 0.2, 0.2);
myQuad = gl uNewQuadric();
gl uSphere(myQuad, 1.0, 10, 10);
gl PopMat ri x();
gl PushiMatri x();
/1 nmodel the left ear
gl Color3f(1.0, 0.6, 0.6); [/ pi nk ears
gl Transl atef (-1.0, -1.0, 1.0);
gl Rotatef(-45.0, 1.0, 0.0, 0.0);
gl Scal ef (0.5, 2.0, 0.5);
myQuad = gl uNewQuadric();
gl uSphere(myQuad, 1.0, 10, 10);
gl PopMat ri x();
gl PushMatri x();
/1 nodel the right ear
gl Color3f(1.0, 0.6, 0.6); [/ pi nk ears
gl Translatef(-1.0, 1.0, 1.0);
gl Rotatef(45.0, 1.0, 0.0, 0.0);
gl Scal ef (0.5, 2.0, 0.5);
myQuad = gl uNewQuadric();
gl uSphere(myQuad, 1.0, 10, 10);
gl PopMat ri x();
gl ut SwapBuffers();
}

In OpenGL, the stack for the modelview matrix isto be at least 32 deep, but this can be inadequate
to handle some complex modelsif the hierarchy is more than 32 layers deep. In this case, aswe
mentioned in the previous chapter, you need to know that a transformation is a 4x4 matrix of
G.f | oat valuesthat isstored in asingle array of 16 elements. Y ou can create your own stack of
these arrays that can have any depth you want, and then push and pop transformations as you wish
on that stack. To deal with the modelview transformation itself, there are functions that allow you
to save and to set the modelview transformation as you wish. Y ou can capture the current value of
the transformation with the function
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gl Get Fl oat v( G._MODELVI EW MATRI X, vi ewProj);
(herewe have declared GLf | oat vi ewPr oj [ 16] ), and you can use the functions

gl Loadl dentity();

gl MultMatrixf( viewProj );
to set the current modelview matrix to the value of the matrix vi ewPr oj , assuming that you were
in modelview mode when you execute these functions.

Creating display lists

In OpenGL, graphics objects can be compiled into what is called a display list, which will contain
the final geometry of the object asit isready for display. OpenGL display lists are named by
nonzero unsigned integer values (technically, GLuint values) and there are several toolsavailablein
OpenGL to manage these name values. We will assume in afirst graphics course that you will not
need many display lists and that you can manage a small number of list names yourself, but if you
begin to use a number of display listsin a project, you should look into the gl GenLi st s,
gl I sLi st, and gl Del et eLi st s functionsto help you manage the lists properly. Sample code
and a more complete explanation is given below.

Display lists are relatively easy to create in OpenGL. First, choose an unsigned integer (often you
will just use small integer constants, such as 1, 2, ...) to serve as the name of your list. Then
before you create the geometry for your list, cal the function gl NewLi st. Code whatever
geometry you want into the list, and at the end, cal the function gl EndLi st. Everything
between the new list and the end list functions will be executed whenever you call gl Cal | Li st
with a valid list name as parameter. All the operations between gl NewLi st and
gl EndLi st will be carried out, and only the actual set of instructions to the drawing portion of the
OpenGL system will be saved. When the display list is executed, then, those instructions are
sim_plélo| sent to the drawing system; any operations needed to generate these instructions are
omitted.

Because display lists are often defined only once, it is common to create theminthe i ni t ()
function or in afunction called from within i ni t (). Some sample code is given below, with
most of the content taken out and only the display list operations left.

void Build_lists(void) {
gl NewLi st (1, G._COWPI LE);
gl Begi n(GL_TRI ANGLE_STRI P) ;
gl Normal 3fv(...); glVertex3fv(...);
gl End() ;
gl EndLi st ();
}
static void Init(void) {
Build_lists();
}
voi d Display(void) {

gl Cal I Li st (1)
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Y ou will note that the display list was created in G._ COVPI LE mode, and it was not executed (the
object was not displayed) until the list was called. It isalso possible to have the list displayed asit
iscreated if you createthelistin G._COVPI LE_ AND EXECUTE mode.
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Mathematics for Modeling

The primary mathematical background needed for computer graphics programming is 3D analytic
geometry. Itisunusual to see acourse with thistitle, however, so most students pick up bits and
pieces of mathematics background that fill thisin. One of the common sources of the background
isintroductory physics; another is multivariate calculus. Neither of these is acommon requirement
for computer graphics, however, so here we will outline the general concepts we will use in these
notes.

Coordinate systems and points

The set of real numbers — often thought of asthe set of al possible distances — is a mathematical
abstraction that is effectively modeled as a Euclidean straight line with two uniquely-identified
points. One point isidentified with the number 0.0 (we write all real numbers with decimals, to
meet the expectations of programming languages), called the origin, and the other is identified with
the number 1.0, which we call the unit point. The direction of the line from 0.0 to 1.0 iscalled the
positive direction; the opposite direction of the line is cadled the negative direction. These
directions identify the parts of the lines associated with positive and negative numbers,
respectively.

In this model, any real number isidentified with the unique point on thelinethat is
* at the distance from the origin which is that number times the distance from 0.0 to 1.0, and
* inthedirection of the number’ssign.
We have heard that alineis determined by two points; let’s see how that can work. Let the first
point bePO=( X0, YO, Z0) and the second point be P1=( X1, Y1, Z1) . Let’scall PO theorigin
and P1 the unit point. Points on the segment are obtained by starting at the “first” point PO offset
by afraction of the difference vector P1- PO. Then any point P=( X, Y, Z) on the line can be
expressed in vector terms by
P=P0 + t*(Pi-P0) = (1-t)*PO0 + t*P1
for asinglevalue of area variablet . Thiscomputation is actually done on a per-coordinate basis,
with one equation each for X, Y, and Z asfollows:
X = X0 + t*(X1-X0) (1-t)*X0 + t*X1
Y = YO + t*(Y1-YO0) (1-t)*Y0 + t*VY1
Z = 720 + t*(Z1-Z0) (1-t)*20 + t*Z1
Thus any line segment can be determined by a single parameter, and so is called a 1-dimensional
object. Thisisillustrated in Figure 4.1 below that represents away to calculate the coordinates of
the points along a line segment by incrementing thevalue of t from 0 to 1.

t=0

Figure 4.1: aparametric line segment with some values of the parameter

This representation for aline segment (or an entire line, if you place no restrictions on the value of
t ) also allows you to compute intersections involving lines. The reverse concept is also useful, so
if you have aknown point on the line, you can calculate the value of the parameter t that would
produce that point. For example, if aline intersects an object at apoint Q avector calculation of



the form PO+t * ( P1- PO) =Q would alow you to fine the parameter t that gives the intersection
point on the line. This caculation is not usually applied for points, however, because the
calculation for any of the single variables X, Y, or Z would yield the samevaueof t . Thisis often
the basis for geometric computations such as the intersection of aline and a plane.

If we have two straight lines that are perpendicular to each other and meet in a point, we can define
that point to be the origin for both lines, and choose two points the same distance from the origin
on each line as the unit points. A distance unit is defined to be used by each of the two lines, and
the points at this distance from the intersection point are marked, one to the right of the intersection
and one above it. Thisgives usthe classical 2D coordinate system, often called the Cartesian
coordinate system. The vectors from the intersection point to the right-hand point (respectively the
point above the intersection) are called the X- and Y -direction vectors and are indicated by i and
] respectively. Pointsin this system are represented by an ordered pair of real numbers, ( X, Y),
and thisis probably the most familiar coordinate system to most people. These points may also be
represented by avector <X, Y> from the origin to the point, and this vector may be expressed in
terms of the direction vectorsas Xi +Y] .

In 2D Cartesian coordinates, any two lines that are not parallel will meet in apoint. The lines make
four angles when they meet, and the acute angle is called the angle between the lines. If two line
segments begin at the same point, they make a single angle that is called the angle between the line
segments. These angles are measured with the usual trigonometric functions, and we assume that
the reader will have a modest familiarity with trigonometry. Some of the reasons for this
assumption can be found in the discussions below on polar and spherical coordinates, and in the
description of the dot product and cross product. We will discuss more about the trigonometric
aspects of graphics when we get to that point in modeling or lighting.

The 3D world in which we will do most of our computer graphics work is based on 3D Cartesian
coordinates that extend the ideas of 2D coordinates above. Thisisusually presented in terms of
three lines that meet at a single point, which isidentified asthe origin for al threelinesand is called
the origin, that have their unit points the same distance from that point, and that are mutually
perpendicular. Each point represented by an ordered triple of real numbers ( x, y, z) . Thethree
lines correspond to three unit direction vectors, each from the origin to the unit point of its
respectiveling, thesearenamed i, j, and k forthe X-, Y-, and Z-axis, respectively, and are
called the canonical basis for the space, and the point can be represented asxi +yj +zk. Any triple
of numbersisidentified with the point in the space that lies an appropriate distance from the two-
axisplanes. Thisisall illustrated in Figure 4.2 below.

Y Y
4
X X
4

Figure 4.2: right-hand coordinate system with origin (Ieft) and with a point identified
by its coordinates; |eft-hand coordinate system (right)

3D coordinate systems can be either right-handed or |eft-handed: the third axis can be the cross
product of the first two axes, or it can be the negative of that cross product, respectively. (Wewill
talk about cross products a little later in this chapter.) The “handed-ness’” comes from a simple
technique: if you hold your hand in space with your fingers along the first axis and curl your
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fingers towards the second axis, your thumb will point in adirection perpendicular to the first two
axis. If you do this with the right hand, the thumb points in the direction of the third axisin a
right-handed system. If you do it with the left hand, the thumb points in the direction of the third
axisin aleft-handed system.

Some computer graphics systems use right-handed coordinates, and this is probably the most
natural coordinate system for most uses. For example, thisis the coordinate system that naturally
fits electromagnetic theory, because the relationship between a moving current in awire and the
magnetic field it generates is aright-hand coordinate relationship. The modeling in Open GL is
based on aright-hand coordinate system.

On the other hand, there are other places where aleft-handed coordinate system is natural. 1f you
consider a space with a standard X-Y plane as the front of the space and define Z as the distance
back from that plane, then the values of Z naturally increase as you move back into the space. This
isaleft-hand relationship.

Linesegments and curves

In standard Euclidean geometry, two points determine a line as we noted above. In fact, in the
same way we talked about any line having unique origin identified with 0.0 and unit point
identified with 1.0, aline segment — the points on the line between these two particular points —
can be identified as the points corresponding to values between 0 and 1. It is done by much the
same process as we used to illustrate the 1-dimensional nature of aline above. That is, just asin
the discussion of lines above, if the two points are PO and P1, we can identify any point between
themas P = (1-t)*P0 + t*P1 for auniquevaueof t between 0 and 1. Thisiscalled the
parametric form for aline segment

The line segment gives us an example of determining a continuous set of points by functions from
the interval [0.1] to 3-space. In general, if we consider any set of functions x(t), y(t), and
z(t) that are defined on [0,1] and are continuous, the set of pointsthey generate is caled a curve
in 3-space. There are some very useful examples of such curves, which can display the locations
of amoving point in space, the positions from which you will view a scene in afly-through, or the
behavior of afunction of two variablesif the values two variables lie on a curve in 2-space.

Dot and cross products

There are two computations that we will need to understand, and sometimes to perform, in
developing the geometry for our graphic images. Thefirst isthe dot product of two vectors. This
produces asingle real value that represents the projection of one vector on the other and itsvaueis
the product of the lengths of the two vectors times the cosine of the angle between them. The dot
product computation is quite simple: it issimply the sum of the componentwise products of the
vectors. If the two vectors A and B are

A = (X1,VY1,Z71)

B = (X2,Y2,22),
the dot product is computed as

A B = X1*X2+Y1*Y2+Z1* Z2.

The second computation is the cross product of two vectors. This produces a vector that is
perpendicular to each of the original vectors and whose length is the product of the two vector
lengths times the sin of the angle between them. Thusif two vectors are parallel, the cross product
iszero; if they are orthogonal, the cross product has length equal to the product of the two lengths;
if they are both unit vectors, the cross product is the sine of the included angle. The computation
of the cross product can be expressed as the determinant of a matrix whose first row is the three
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standard unit vectors, whose second row is the first vector of the product, and whose third row is
the second vector of the product. Denoting the unit direction vectorsin the X, Y, and Z directions
asi,j,and k , we can express the cross product of two vectors <a, b, c>and <u, v, w> in
terms of a determinant:

The cross product has a*“handedness’ property and is said to be aright-handed operation. That is,
if you align the fingers of your right hand with the direction of the first vector and curl your fingers
towards the second vector, your right thumb will point in the direction of the cross product. Thus
the order of the vectorsisimportant; if you reverse the order, you reverse the sign of the product
(recall that interchanging two rows of a determinant will change its sign), so the cross product
operation is not commutative. Asasimple example, with i, j, and k as above, we see that
i X J = kbutthatj x i = -Kk. Ingenera, if you consider the arrangement of Figure 4.3, if
you think of the three direction vectors as being wrapped around as if they were visible from the
first octant of 3-space, the product of any two is the third direction vector if the letters are in
counterclockwise order, and the negative of the third if the order is clockwise. Note also that the
cross product of two collinear vectors (one of the vectorsis a constant multiple of the other) will
always be zero, so the geometric interpretation of the cross product does not apply in this case.

sSoxX

i
<a,b,c>x <u,v,w> =det | a b
u v

Figure 4.3: the direction vectorsin order

The cross product can be very useful when you need to define a vector perpendicular to two given
vectors, the most common application of this is defining a normal vector to a polygon by
computing the cross product of two edge vectors. For atriangle as shown in Figure 4.4 below
with vertices A, B, and Cin order counterclockwise from the “front” side of the triangle, the
normal vector can be computed by creating the two difference vectors P = C - B and
Q = A - C, and computing the cross product as P x Qtoyield avector Nnormal to the plane
of the triangle. In fact, we can say more than this; the cross product of two vectorsis not only
perpendicular to the plane defined by those vectors, but its length is the product of their lengths
times the sine of the angle between them. Aswe shall see in the next section, this normal vector,
and any point on the triangle, allow us to generate the equation of the plane that contains the
triangle. When we need to use this normal for lighting, we will need to normalize it, or makeit a
unit vector, but that can easily be done by calculating its length and dividing each component by
that length.
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B
Figure 4.4: the normal to atriangle as the cross product of two edges

Planes and half-spaces

We saw above that aline could be defined in terms of asingle parameter, so it is often called aone-
dimensional space. A plane, on the other hand, is atwo-dimensiona space, determined by two
parameters. |f we have any two non-parallel lines that meet in a single point, we recall that they
determine a plane that can be thought of as all points that are translations of the given point by
vectors that are linear combinations of the direction vectors of the two lines. Thus any plane in
space is seen as two-dimensional where each of the two lines contributes one of the dimensional
components. In more general terms, let’s consider the vector N=<A, B, C> defined as the cross
product of the two vectors determined by the two lines. Then Nis perpendicular to each of the two
vectors and hence to any line in the plane. In fact, this can be taken as defining the plane: the
plane is defined by all lines through the fixed point perpendicular to N. If we take afixed point in
the plane, (U, V, W, and avariable point in the plane, ( X, y, z) , we can write the perpendicul ar
relationship as

<A B, Ce<x-U y-V, z- W=0.
When we expand this dot product we see

A(x-U) +b(y-V) +C( z- W =Ax+By+Cz +( - AU- BV- CW =0.
This allows usto give an equation for the plane:

Ax+By+Cz+D=0.
Thus the coefficients of the variables in the plane equation exactly match the components of the
vector normal to the plane — avery useful fact from time to time.

Any linedivides aplane into two parts. If we know the equation of the line in the traditional form
ax + by + ¢ =0,
then we can dete¥m| ne whether a point lies on, above, or below the line by evaluating the function
f(x,y) = ax + by + c anddetermining whether the result is zero, positive, or negative. In
asimilar way, the equation for the plane as defined above does more than just identify the plane; it
allows us to determine on which side of the plane any point lies. If we create a function of three
variables from the plane equation
f(X,y, z) =Ax+By+Cz+D,
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then the plane consists of all points where f(x,y, z)=0. All points (x,Yy, z) with
f(x,y, z) >0 lieon oneside of the plane, called the positive half-space for the plane, while all
pointswith f ( x, y, z) <O lie on the other, called the negative half-space for the plane. We will
find that OpenGL uses the four coordinates A,B,C,D to identify a plane and uses the half-space
concept to choose displayable points when the plane is used for clipping.

Polygons and convexity

Most graphics systems, including OpenGL, are based on modeling and rendering based on
polygons and polyhedra. A polygon is a plane region bounded by a sequence of directed line
segments with the property that the end of one segment is the same as the start of the next segment,
and the end of the last line segment is the start of the first segment. A polyhedronis aregion of
3-space that is bounded by a set of polygons. Because polyhedra are composed of polygons, we
will focus on modeling with polygons, and this will be a large part of the basis for the modeling
chapter below.

The reason for modeling based on polygons is that many of the fundamental algorithms of graphics
have been designed for polygon operations. In particular, many of these algorithms operate by
interpolating values across the polygon; you will see this below in depth buffering, shading, and
other areas. In order to interpolate across a polygon, the polygon must be convex. Informally, a
polygon is complex if it has no indentations; formally, a polygon is complex if for any two points
in the polygon (either the interior or the boundary), the line segment between them lies entirely
within the polygon.

Because a polygon or polyhedron bounds a region of space, we can talk about the interior or
exterior of the figure. In aconvex polygon or polyhedron, thisis straightforward because the
figure is defined by its bounding planes or lines, and we can simply determine which side of each
is“inside” the figure. For anon-convex figure thisisless simple, so we look to convex figures
for astarting point and notice that if apoint isinside the figure, any ray from an interior point (line
extending in only one direction from the point) must exit the figure in precisely one point, while if
apoint is outside the figure, if the ray hits the polygon it must both enter and exit, and so crosses
the boundary of the figure in either O or 2 points. We extend this idea to general polygons by
saying that a point isinside the polygon if aray from the point crosses the boundary of the polygon
an odd number of times, and is outside the polygon if aray from the point crosses the boundary of
the polygon an even number of times. Thisisillustrated in Figure 4.5. Inthisfigure, pointsA, D,
E, and G are outside the polygons and points B, D, and F areinside. Note carefully the case of
point G; our definition of inside and outside might not be intuitive in some cases.

=\ >t
\’ ]
)
/\

Figure 4.5: Interior and exterior points of a convex polygon (left) and two genera polygons
(center and right)
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Another way to think about convexity isin terms of linear combinations of points. We can definea
convex sum of pointsPO, P1, ... Pnasasum ac; Pi where each of the coefficients ¢; is non-
negative and the sum of the coefficientsis exactly 1. If werecall the parametric definition of aline
segment, (1-t ) * PO+t * P1, we note that thisis a convex sum. So apolygon is convex if certain
convex sums of pointsin the polygon must also lie in the polygon. However, it is straightforward
to see that this can be generalized to say that all convex sums of pointsin aconvex polygon must
Ibie igérh? polygon, so this gives us an alternate definition of convex polygons that can sometimes
e useful.

As we suggested above, most graphics systems, and certainly OpenGL, require that all polygons
be convex in order to render them correctly. If you have a polygon that is not convex, you may
always subdivide it into triangles or other convex polygons and work with them instead of the
original polygon. Asan alternative, OpenGL provides afacility to tesselate a polygon — divide it
into convex polygons — automatically, but thisis a complex operation that we do not cover in
these notes.

Lineintersections

There are times when we need to know whether two objects meet in order to understand the logic
of aparticular scene. Calculating whether there are intersectionsis relatively straightforward and
we outline it here. The fundamental question is whether aline segment that is part of one object
meets atriangle that is part of the second object.

There are two levels at which we might be able to determine whether an intersection occurs. The
first isto see whether the line containing the segment can even come close enough to meet the
triangle, and the second is whether the segment actually meets the triangle. The reason for this
two-stage question is that most of the time there will be few segments that could even come close
to intersecting, so we will ask the first question because it is fastest and will only ask the second
guestion when the first indicates it can be useful.

To consider the question of whether a line can come close enough to meet the triangle, look at the
situation outlined on the left in Figure 2.29. We first compute the incenter of the triangle and then
define the bounding circleto lie in the plane of the triangle, to have that point as center, and to have
asits radius the distance from that point to each vertex:

center=(PO + P1 + P2)/3

radius=di stance (center, PO)
Then we can compute the point where the line meets the plane of the triangle. Let the line segment
be given by the parametric equation Q@ + t*( QL - Q0); theentirelineisgiven by considering
al valuesof t , and if you consider only values of t between 0 and 1 you get the segment. Next
compute the cross product of two edges of the triangle in order and call the result N. Then the
equation of the plane is given by the processes described earlier in this chapter, and when the
parametric equation for the line meets the plane we can solve for asinglevalueof t . If that value
of t does not lie between 0 and 1 we can immediately conclude that there is no possible
intersection because the line segment does not meet the plane at al. If the value does lie between O
and 1, we calculate the point where the line segment meets the plane and compute the distance from
that point to the center of the triangle. The line cannot meet the triangle unless this distanceis less
than the radius of the circle.
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Figure 4.6: aline and the bounding circle (Ieft) and aline and triangle (right)

Once we know that the line is close enough to have a potential intersection, we move on to look at
the exact computation of whether the point where the line meets the plane is inside the triangle, as
shown in the right-hand part of Figure 4.6. We note that a point on the inside of the triangleis
characterized by being to the left of the oriented edge for each edge of the triangle. Thisisfurther
characterized by the cross product of the edge vector and the vector from the vertex to the point; if
this cross product has the same orientation as the normal vector to the triangle for each vertex, then
the point isinside the triangle. If the intersection of the line segment and the triangle’ s planeis Q
this means that we must have Ne ( ( @ PO) x( P1- P0) ) >0 for thefirst edge, and similar relations
for each subsequent edge.

Polar, cylindrical, and spherical coordinates

Up to this point we have emphasized Cartesian, or rectangular, coordinates for describing 2D and
3D geometry, but there are times when other kinds of coordinate systems are most useful. The
coordinate systems we discuss here are based on angles, not distances, in at least one of their
terms. Because OpenGL does not handle these coordinate systems directly, when you want to use
them you will need to translate points between these forms and rectangular coordinates.

In 2D coordinates, we can identify any point ( X, Y) with the line segment from the origin to that

point. Thisidentification allows usto write the point in terms of the angle Q the line segment
makes with the positive X-axis and the distance R of the point from the origin as:

X = Rcos(Q), Y = Rsin(Q) or,inversely,

R = sqrt(X2 + YZ), Q = arccos( X R whereQ isthe value that matches the signs
of XandY.

Thisrepresentation ( R, Q) is known as the polar formfor the point, and the use of the polar form
for al pointsis called the polar coordinatesfor 2D space.

There are two alternatives to Cartesian coordinates for 3D space. Cylindrical coordinates add a
third linear dimension to 2D polar coordinates, giving the angle between the X-Z plane and the
plane through the Z-axis and the point, along with the distance from the Z-axis and the Z-value of

the point. Pointsin cylindrical coordinates are represented as ( R, Q, Z) with R and Q as above
and with the Z-value asin rectangular coordinates. Figure 4.7 shows the structure of the 2D and
3D spaces with polar and cylindrical coordinates, respectively.
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Figure 4.7: polar coordinates (Ieft) and cylindrical coordinates (right)

Cylindrical coordinates are a useful extension of a 2D polar coordinate model to 3D space. They
not particularly common in graphics modeling, but can be very helpful when appropriate. For
example, if you have a planar object that has to remain upright with respect to a vertical direction,
but the object has to rotate to face the viewer in a scene as the viewer moves around, then it would
be appropriate to model the object’ s rotation using cylindrical coordinates. An example of such an
object isabillboard, as discussed later in the chapter on high-efficiency graphics techniques.

Soherical coordinates represent 3D points in terms much like the latitude and longitude on the
surface of the earth. The latitude of a point is the angle from the equator to the point, and ranges
from 90° south to 90° north. The longitude of a point is the angle from the “prime meridian” to the
point, where the prime meridian is determined by the half-plane that runs from the center of the
earth through the Greenwich Observatory just east of London, England. The latitude and longitude
valued uniquely determine any point on the surface of the earth, and any point in space can be
represented relative to the earth by determining what point on the earth’ s surface meets aline from
the center of the earth to the point, and then identifying the point by the latitude and longitude of the
point on the earth’ s surface and the distance to the point from the center of the earth. Spherical
coordinates are based on the same principle: given apoint and a unit sphere centered at that point,
with the sphere having a polar axis, determine the coordinates of a point P in space by the latitude

F (angle north or south from the equatorial plane) and longitude Q (angle from a particular half-
plane through the diameter of the sphere perpendicular to the equatorial plane) of the point where
the half-line from the center of the sphere, and determine the distance from the center to that point.

Then the spherical coordinatesof Pare( R, Q, F).

Spherical coordinates can be very useful when you want to control motion to achieve smooth
changes in angles or distances around a point. They can also be useful if you have an object in
space that must constantly show the same face to the viewer as the viewer moves around; again,
thisis another kind of billboard application and will be described later in these notes.

It is straightforward to convert spherical coordinatesto 3D Cartesian coordinates. Noting the
relationship between spherical and rectangular coordinates shown in Figure 2.31 below, and
noting that this figure shows the Z-coordinate as the vertical axis, we see the following conversion
equations from polar to rectangular coordinates.

X = R cos(F) sin(Q)
y = R cos(F) cos(Q)
z = Rsin(F)
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Converting from rectangular to spherical coordinates is not much more difficult. Again referring to
Figure 2.31, we see that R is the diagonal of arectangle and that the angles can be described in
terms of the trigonometric functions based on the sides. So we have the equations

R = sqrt()(2 + Y2 + ZZ)
F Arcsin(Z R

Q arctan()(/sqrt(x2 +Y2))

Note that the inverse trigonometric function is the principle value for the longitude (F), and the

anglefor the latitude (Q) is chosen between 0° and 360° so that the sine and cosine of Q match the
algebraic sign (+ or - ) of the X and Y coordinates.

Figure 4.8 shows a sphere showing latitude and longitude lines and containing an inscribed
rectangular coordinate system, as well as the figure needed to make the conversion between
spherical and rectangular coordinates.

A
.(R,Q,F)
R
R sin(F)
F >
R cos(F) R cos(F) cos(Q)

¥ Rcos(F)sn(Q)

Figure 4.8: spherical coordinates (left);
the conversion from spherical to rectangular coordinates (right)

Higher dimensions?

While our perceptions and experience are limited to three dimensions, there is no such limit to the
kind of information we may want to display with our graphics system. Of course, we cannot deal
with these higher dimensions directly, so we will have other techniques to display higher-
dimensional information. There are some techniques for developing three-dimensional information
by projecting or combining higher-dimensional data, and some techniques for adding extra non-
gpatial information to 3D information in order to represent higher dimensions. We will discuss
some ideas for higher-dimensional representations in later chapters in terms of visua
communications and science applications.
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Color and Blending
Prerequisites
No background in color is required; this chapter discusses color issues from first principles.
Introduction

Color isafundamental concept for computer graphics. We need to be able to define colors for our
graphics that represent good approximations of real-world colors, and we need to be able to
manipul ate colors as we develop our applications.

There are many ways to specify colors, but all depend principally on the fact that the human visual
system generally responds to colors through the use of three kinds of cellsin the retina of the eye.
This response is complex and includes both physical and psychological processes, but the
fundamental fact of three kinds of stimulus is maintained by all the color models in computer
graphics. For most work, the usual model is the RGB (Red, Green, Blue) color model that
matches in software the physical design of computer monitors, which are made with a pattern of
three kinds of phosphor which emit red, green, and blue light when they are excited by an electron
beam. This RGB model is used for color specification in almost all computer graphics APIs, and it
isthe basis for the discussion here. There are anumber of other models of color, and we refer you
to textbooks and other sources, especially Foley et a. [FvD], for additional discussions on color
models and for more complete information on converting color representations from one model to
another.

Because the computer monitor uses three kinds of phosphor, and each phosphor emitslight levels
based on the energy of the electron beam that is directed at it, a common approach is to specify a
color by the level of each of the three primaries. These levels are a proportion of the maximum light
energy that is available for that primary, so an RGB color is specified by atriple (r, g, b) where
each of the three components represents the amount of that particular component in the color and
where the ordering is the red-green-blue that isimplicit in the name RGB. This proportion for each
primary is represented by areal number between 0.0 and 1.0, inclusive. There are other ways to
represent colors, of course. In an integer-based system that is also often used, each color
component can be represented by an integer that depends on the color depth available for the
system; if you have eight bits of color for each component, which is a common property, the
integer values are in the range 0 to 255. The real-number approach is used more commonly in
graphics APIs because it is more device-independent. In either case, the number represents the
proportion of the available color of that primary hue that is desired for the pixel. Thus the higher
the number for a component, the brighter is the light in that color, so with the real-number
representation, black is represented by (0.0, 0.0, 0.0) and white by (1.0, 1.0, 1.0). The RGB
primaries are represented respectively by red (1.0, 0.0, 0.0), green (0.0, 1.0, 0.0), and blue
(0.0, 0.0, 1.0); that is, colorsthat are fully bright in a single primary component and totally dark
in the other primaries. Other colors are amix of the three primaries as needed.

While we say that the real-number representation for color is more device-independent, most
graphics hardware deals with colors using integers. Floating-point values are converted to integers
to save space and to speed operations, with the exact representation and storage of the integers
depending on the number of bits per color per pixel and on other hardware design issues. This
distinction sometimes comes up in considering details of color operationsin your API, but is
generally something that you can ignore. The color-generation process itself is surprisingly
complex because the monitor or other viewing device must generate perceptually-linear values, but
most hardware generates color with exponential, not linear, properties. All these color issues are
hidden from the API programmer, however, and are managed after being translated from the API



representations of the colors, allowing API-based programs to work relatively the same across a
wide range of platforms.

In addition to dealing with the color of light, modern graphics systems add a fourth component to
the question of color. This fourth component is called “the alpha channel” because that was its
original notation [POR], and it represents the opacity of the material that is being modeled. Asis
the case with color, thisis represented by a real number between 0.0 (no opacity — completely
transparent) and 1.0 (completely opague — no transparency). Thisis used to allow you to create
objects that you can see through at some level, and can be a very valuable tool when you want to
be able to see more than just the things at the front of a scene. However, transparency is not
determined globally by the graphics API; it is determined by compositing the new object with
whatever is aready present in the Z-buffer. Thusif you want to create an image that contains many
levels of transparency, you will need to pay careful attention to the sequence in which you draw
your objects, drawing the furthest first in order to get correct attenuation of the colors of
background objects.

Definitions
The RGB cube

The RGB color model is associated with a geometric presentation of a color space. That spaceisa
cube consisting of all points (r, g, b) with each of r, g, and b having avalue that is a real number
between 0 and 1. Because of the easy analogy between color triples and space triples, every point
in the unit cube can be easily identified with a RGB triple representation of a color. Thisgivesrise
to the notion of the RGB color cube that is seen in every graphics text (and thus that we won't
repeat here).

To illustrate the numeric properties of the RGB color system, we will create the edges of the color
cube as shown in Figure 5.1 below, which has been rotated to illustrate the colors more fully. To
do this, we create a small cube with a single color, and then draw a number of these cubes around
the edge of the geometric unit cube, with each small cube having a color that matches its location.
We see the origin (0,0,0) corner, farthest from the viewer, mostly by its absence because of the
black background, and the (1,1,1) corner nearest the viewer as white. The three axis directions are
the pure red, green, and blue corners. Creating thisfigure is discussed below in the section on
creating a model with afull spectrum of colors, and it would be useful to add an interior cube
within the figure shown that could be moved around the space interactively and would change
color to illustrate the color at its current position in the cube.

Figure 5.1: tracing the colors of the edges of the RGB cube
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This figure suggests the nature of the RGB cube, but a the entire RGB cube is shown from two
points of view in Figure 5.2, from the white vertex and from the black vertex, so you can see the
full range of colors on the surface of the cube. Note that the three vertices closest to the white
vertex are the cyan, magenta, and yellow vertices, while the three vertices closest to the black
vertex are thered, green, and blue vertices. Thisillustrates the additive nature of the RGB color
model, with the colors getting lighter as the amounts of the primary colorsincrease, as well asthe
subtractive nature of the CMY color model, where the colors get darker as the amounts of color
increase. Thiswill be explored later and will be contrasted to the subtractive nature of other color
models. Not shown is the center diagonal of the RGB cube from (0, 0, 0) to (1, 1, 1) that
corresponds to the colors with equal amounts of each primary; these are the gray colors that
provide the neutral backgroundsthat are very useful in presenting colorful images.

Figure 5.2: two views of the RGB cube — from the white (Ieft) and black (right) corners

Color is ubiquitous in computer graphics, and we can specify color in two ways: by directly
setting the color for the objects we are drawing, or by defining properties of object surfaces and
lights and having the color generated by alighting model. In this module we only think about the
colors of objects, and save the color of lights and the way light interacts with surfaces for a later
module on lighting. In general, the behavior of a scene will reflect both these attributes—if you
have ared object and illuminate it with a blue light, your object will seem to be essentially black,
because ared object reflects no blue light and the light contains no other color than blue.

Luminance

Luminance of acolor isthe color’s brightness, or the intensity of the light it represents, without
regard for its actual color. This concept is particularly meaningful for emissive colors on the
screen, because these actually correspond to the amount of light that is emitted from the screen.
The concept of luminance isimportant for several reasons. Oneisthat a number of members of
any population have deficienciesin the ability to distinguish different colors, the family of so-called
color blindness problems, but are able to distinguish differencesin luminance. Y ou need to take
luminance into account when you design your displays so that these persons can make sense of
them Luminance is also important because part of the interpretation of an image deals with the
brightness of its parts, and you need to understand how to be sure that you use colors with the
right kind of luminance for your communication. Fore example, in the chapter on visual
communication we will see how we can use luminance information to get color scales that are
approximately uniform in terms of having the luminance of the color represent the numerical value
that the color is to represent.

For RGB images, luminanceis quite easy to compute. Of the three primaries, green is the

brightest and so contributes most to the luminance of acolor. Red isthe next brightest, and blue is
the least bright. The actual luminance will vary from system to system and even from display
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deviceto display device because of differences in the way color numbers are trandated into
voltages and because of the way the phosphors respond. In general, though, we are relatively
accurate if we assume that luminance is calculated by the formula

0.59 * green + 0.30*red + 0.11*bl ue
so the overall brigﬂtneﬁ ratios are approximately 6:3:1 for green:red:blue.

Other color models

There are times when the RGB model is not easy to use. Few of usthink of a particular color in
terms of the proportions of red, green, and blue that are needed to create it, so there are other ways
to think about color that make this more intuitive. And there are some processes for which the
RGB approach does not model the reality of color production. So we need to have a wider range
of waysto model color to accomodate these realities.

A more intuitive approach to color isfound with either of the HSV (Hue-Saturation-Value) or HLS
(Hue-Lightness-Saturation) models. These models represent color as a hue (intuitively, a
descriptive variation on a standard color such as red, or magenta, or blue, or cyan, or green, or
yellow) that is modified by setting its value (a property of darkness or lightness) and its saturation
(aproperty of brightness). Thislets us find numerical ways to say “the color should be a dark,
vivid reddish-orange” by using a hue that is to the red side of yellow, has arelatively low value,
and has a high saturation.

Just as there is a geometric model for RGB color space, there is one for HSV color space: a cone
with aflat top, as shown in Figure 5.3 below. The distance around the circle in degrees represents
the hue, starting with red at 0, moving to green at 120, and blue at 240. The distance from the
vertical axis to the outside edge represents the saturation, or the amount of the primary colorsin the
particular color. Thisvariesfrom 0 at the center (no saturation, which makes no real coloring) to 1
at the edge (fully saturated colors). The vertical axis represents the value, from 0 at the bottom (no
color, or black) to 1 at thetop. So aHSV color isatriple representing a point in or on the cone,
and the “dark, vivid reddish-orange” color would be something like (40.0, 1.0, 0.7). Codeto
display this geometry interactively is discussed at the end of this chapter, and writing an interactive
display program gives a much better view of the space.

The shape of the HSV model space can be a bit confusing. The top surface represents all the
lighter colors based on the primaries, because colors getting lighter have the same behavior as
colors getting less saturated. The reason the geometric model tapersto apoint at the bottom is that
there is no real color variation near black. In this model, the gray colors are the colors with a
saturation of 0, which form the vertical center line of the cone. For such colors, the hue is
meaningless, but it still must be included.

Figure 5.3: threeviews of HSV color space: side (left), top (middle), bottom (right)
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In the HL'S color model, shown in Figure 5.4, the geometry is much the same as the HSV model
but the top surface is stretched into a second cone. Hue and saturation have the same meaning as
HSV but lightness replaces value, and lightness corresponds to the brightest colors at a value of
0.5. Therationale for the dual cone that tapers to a point at the top as well as the bottom is that as
colors get lighter, they lose their distinctions of hue and saturation in away that is very analogous
with the way colors behave as they get darker. In some ways, the HLS model seems to come
closer to the way people talk about “tints” and “tones” when they talk about paints, with the
strongest colors at lightness 0.5 and becoming lighter (tints) as the lightness is increased towards
1.0, and becoming darker (tones) as the lightness is decreased towards 0.0. Just asin the HSV
case above, the grays form the center line of the cone with saturation O, and the hue is
meaningless.

Figure 5.4: the HLS double cone from the red (left), green (middle), and blue(right) directions.

The top and bottom views of the HL S double cone look just like those of the HSV single cone, but
the side views of the HL S double cone are quite different. Figure 5.4 shows the HL S double cone
from the three primary-color sides: red, green, and blue respectively. The views from the top or
bottom are exactly those of the HSV cone and so are now shown here. The imagesin the figure do
not show the geometric shape very well; the discussion of this model in the code section below will
show you how this can be presented, and an interactive program to display this space will allow
you to interact with the model and see it more effectively in 3-space.

There are relatively simple functions that convert a color defined in one space into the same color as
defined in another space. We do not include all these functionsin these notes, but they are covered
in [FvD], and the functions to convert HSV to RGB and to convert HLS to RGB are included in
the code discussions below about producing these figures.

All the color models above are based on colors presented on a computer monitor or other device
where light is emitted to the eye. Such colors are called emissive colors, and operate by adding
light at different wavelengths as different screen cells emit light. The fact that most color presented
by programming comes from a screen makes this the primary way we think about color in
computer graphics systems. Thisis not the only way that color is presented to us, however.
When you read these pages in print, and not on a screen, the colors you see are generated by light
that is reflected from the paper through the inks on the page. Such colors can be cdled
transmissive colors and operate by subtracting colors from the light being reflected from the page.
Thisisatotaly different process and needs separate treatment. Figure 5.5 illustrates this principle.
The way the RGB add to produce CMY and eventually white shows why emissive colors are
sometimes called additive colors, while the way CMY produce RGB and eventually black shows
why transmissive colors are sometimes called subtractive colors.
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Figure 3.5: emissive colors (left) and transmissive colors (right)

Transmissive color processes use inks or films that transmit only certain colors while filtering out
all others. Two examples are the primary inks for printing and the films for theater lights; the
primary values for transmissive color are cyan (which transmits both blue and green), magenta
(which transmits both blue and red), and yellow (which transmits both red and green). In
principle, if you use all three inks or filters (cyan, magenta, and yellow), you should have no light
transmitted and so you should see only black. In practice, actual materials are not perfect and
allow alittle off-color light to pass, so this would produce a dark and muddy gray (the thing that
printers call “process black™) so you need to add an extra“real” black to the parts that are intended
to bereally black. This cyan-magenta-yellow-black model iscalled CMYK color and isthe basis
for printing and other transmissive processes. It is used to create color separations that combine to
form full-color images as shown in Figure 5.6, which shows afull-color image (left) and the sets
of yellow, cyan, black, and magenta separations (right-hand side, clockwise from top left) that are
used to create plates to print the color image. We will not consider the CMY K model further in this
discussion because its use is in printing and smilar technologies, but not in graphics
programming. We will meet this approach to color again when we discuss graphics hardcopy,
however.

Figure 5.6 color separations for printing
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Color depth

The numerical color models we have discussed above are device-independent; they assume that
colors are represented by real numbers and thus that there are an infinite number of colors available
to be displayed. Thisis, of course, an incorrect assumption, because computers lack the capability
of any kind of infinite storage. Instead, computers use color capabilities based on the amount of
memory allocated to holding color information.

The basic model we usually adopt for computer graphics is based on screen displays and can be
called direct color. For each pixel on the screen we store the color information directly in the
screen buffer. The number of bits of storage we use for each color primary is called the color
depth for our graphics. At the time of thiswriting, it is probably most common to use eight bits of
color for each of the R, G, and B primaries, so we often talk about 24-bit color. Infact, it is not
uncommon to include the Z-buffer depth in the color discussion, with the model of RGBA color,
and if the system uses an 8-bit Z-buffer we might hear that it has 32-bit color. This is not
universal, however; some systems use fewer bitsto store colors, and not all systems use an equal
number of bits for each color, while some systems use more bits per color. The very highest-end
professional graphics systems, for example, often use 36-bit or 48-bit color.

One important effect of color depth is that the exact color determined by your color computations
will not be displayed on the screen. Instead, the color isaliased by rounding it to a value that can
be represented with the color depth of your system. This can lead to serious effects called Mach
bands in which very small differences between adjacent color representations are perceived
visualy to be significant. Because the human visual system is extremely good at detecting edges,
these differences are interpreted as strong edges and disrupt the perception of a smooth image.
Y ou should be careful to look for Mach banding in your work, and when you see it, you should
try to modify your image to make it lessvisible. Figure 5.7 shows a small image that contains
some Mach bands.

Figure 5.7: an image showing Mach banding

Color gamut

Color isnot only limited by the number of colors that can be displayed, but also by limitationsin
the technology of display devices. No matter what display technology you use—phosphates on a
video-based screen, ink on paper, or LCD cells on aflat panel—there is alimited range of color
that the technology can present. Thisis also true of more traditional color technologies, such as
color film. Therange of adeviceiscalled its color gamut, and we must realize that the gamut of
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our devices limits our ability to represent certain kinds of images. A significant discussion of the
color gamut of different devicesis beyond the scope of the content we want to include for the first
course in computer graphics, but it isimportant to realize that there are serious limitations on the
colors you can produce on most devices.

Color blending with the alpha channel

In most graphics APIs, color can be represented as more than just a RGB triple; it can also include
ablending level (sometimes thought of as a transparency level) so that anything with this color will
have a color blending property. Thus color is represented by a quadruple (r,g,b,a) and the color
model that includes blending is called the RGBA model. The transparency level a for acolor is
caled the alpha value, and its value is a number between 0.0 and 1.0 that is actually a measure of
opacity instead of transparency. That is, if you use standard kinds of blending functions and if the
aphavaueis 1.0, the color is completely opague, but in the same situation if the alphavalueis
0.0, the color is completely transparent. However, we are using the term “transparent” loosely
here, because the real property represented by the alpha channdl is blending, not transparency. The
alpha channel was invented to permit image image compositing [POR] in which an image could be
lad over another image and have part of the underlying image show through. So while we may say
“transparent” we really mean blended.

This difference between blended and transparent colors can be very significant. If we think of
transparent colors, we are modeling the logical equivalent of colored glass. Thiskind of material
embodies transmissive, not emissive, colors — only certain wavelengths are passed through,
while the rest are absorbed. But thisis not the model that is used for the alpha value; blended
colors operate by averaging emissive RGB colors, which is the opposite of the transmissive model
implied by transparency. The difference can be important in creating the effects you need in an
image. Thereisan additional issue to blending because averaging colorsin RGB space may not
result in the intermediate colors you would expect; the RGB color model is one of the worse color
models for perceptual blending but we have no real choice in most graphics APIs.

Chalengesin blending

The concept of blending is based on the premise that the color of apixel in a scene can reasonably
be represented by alinear combination of the colors of partially-transparent objects that lie under
that pixel. For many kinds of objects thisis not unreasonable, but the premise is vulnerable to the
effects of our RGB color model.

If the RGB color model were uniform, then we would perceive uniform changesin color as we
move from one color to another in the visual space. In Figure 5.8 below, we create some color
strips with well-known endpoints and ask ourselves if we believe that the color in the middle of the
stripsreally isthe average of the colors at the end.

Figure 5.8: the color strips between red and cyan (top) and green and magenta (bottom)
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Thereisno real solution for this problem in the RGB color space or in any system based on it, but
the problem can be addressed by doing color interpolation in another color space: converting the
two RGB colorsto their representations in the other space, interpolating in the other space, and
converting the result back to RGB space. Sometimes the HSV or HL S spaces are used for this
kind of interpolation, but what isreally needed is a perceptually-uniform color space, and these are
both difficult to describe smply and usually not available with a simple graphics API.

When we look at each of these color strips, we should consider the luminance of the colors along
the strip. In the top strip, the red end has luminance 0.3 while the cyan end has luminance 0.7. but
the middle gray point has luminance 0.5. In the bottom strip, the green end has luminance 0.59
while the magenta end has luminance 0.41, and again the middle gray point has luminance 0.5.
Thus these strips seems to have afairly uniform change in luminance. A similar analysis could be
made for other kinds of color interpolation.

Another way to consider these color strips, however, isin terms of the amount of color (the
chrominance or chroma) they represent. The chroma can be seen as the saturation in the HLS or
HSV color space, and in these terms both the endpoints of the color strips have chroma 1 while the
middle points have chroma 0.5, so the strips do not interpolate chromawell. Interpolating colors
while preserving chromawould require interpolations in another color space, such as HSV or
HLS.

Moddling transparency with blending

Blending creates some significant challenges if we want to create the impression of transparency.
To begin, we make the simple observation that is something is intended to seem transparent to
some degree, you must be able to see things behind it. This suggests asimplefirst step: if you are
working with objects having their alpha color component less than 1.0, it is useful and probably
important to allow the drawing of things that might be behind these objects. To do that, you
should draw all solid objects (objects with alpha component equal to 1.0) before drawing the
things you want to seem transparent, turn off the depth test while drawing items with blended
colors, and turn the depth test back on again again after drawing them. This at least allows the
possibility that some concept of transparency is allowed.

But it may not be enough to do this, and in fact this attempt at transparency may lead to more
confusing images than leaving the depth test intact. Let us consider the case that that you have
three objects to draw, and that you will be drawing them in a particular order. For the discussion,
let’ s assume that the objects are numbered 1, 2, and 3, that they have colors C1, C2, and C3, that
you draw them in the sequence 1, 2, and 3, that they line up from the eye but have atotally white
background behind them, and that each color has alpha=0.5. Let’s assume further that we are not
using the depth buffer so that the physical ordering of the objects is not important. The layout is
shown in Figure 5.9. And finally, let’s further assume that we' ve specified the blend functions as
suggested above, and consider the color that will be drawn to the screen where these objectslie.

<

eye c1 c2 c3

Figure 5.9: the sequence for drawing the objects

When we draw the first object, the frame buffer will have color C1; no other coloring isinvolved.
When we draw the second object on top of the first, the frame buffer will have color
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0. 5*C1+0. 5* 2, because the foreground (C2) has apha 0.5 and the background (C1) is
included withweight 0.5 = 1 - 0. 5. Finaly, when the third object is drawn on top of the
others, the color will be

0. 5*C3+0. 5* (0. 5*C1+0. 5*C2) , or 0. 5* C3+0. 25* C2+0. 25* C1.
That is, the color of the most recent object drawn is emphasized much more than the color of the
other objects. This shows up clearly in the right-hand part of Figure 5.10 below, where the red
square is drawn after the other two squares. On the other hand, if you had drawn object three
before object 2, and object 2 before object 1, the color would have been

0. 5*C1+0. 25* C2+0. 25* C3,
so the order in which you draw things, not the order in which they are placed in space, determines
the color.

But this again emphasizes a difference between blending and transparency. If we were genuinely
modeling transparency, it would not make any difference which object were placed first and which
last; each would subtract light in away that isindependent of its order. So this represents another
challenge if you would want to create an illusion of transparency with more than one non-solid
object.

The problem with the approaches above, and with the results shown in Figure 5.10 below, is that
the most recently drawn object is not necessarily the object that is nearest the eye. Our model of
blending actually works fairly well if the order of drawing is back-to-front in the scene. If we
consider the effect of actual partial transparency, we see that the colors of objects farther away
from the eye really are of less importance in the final scene than nearer colors. So if we draw the
objects in back-to-front order, our blending will model transparency much better. We will address
thiswith an example later in this chapter.

Some examples

Example: An object with partialy transparent faces

If you were to draw a piece of the standard coordinate planes and to use colors with alphaless than
1.0 for the planes, you would be able to see through each coordinate plane to the other planes as
though the planes were made of some partially-transparent plastic. We have modeled a set of three
squares, each lying in a coordinate plane and centered at the origin, and each defined as having a
rather low alphavalue of 0.5 so that the other squares are supposed to show through. In this
section we consider the effects of afew different drawing options on this view.

The left-hand side of Figure 5.10 below shows the image we get with these colors when we |leave
the depth test active. Here what you can actually “see through” depends on the order in which you
draw the objects. With the depth test enabled, the presence of a transparent object close to your
eye prevents the writing of its blend with an object farther away. Because of this, the first
coordinate plane you draw is completely opaque to the other planes, even though we specified it as
being partly transparent, and a second coordinate plane allows you to see through it to the first
plane but is fully opague to the second plane. We drew the blue plane first, and it is transparent
only to the background (that is, it is darker than it would be because the black background shows
through). The green plane was drawn second, and that only alows the blue plane to show
through. The red plane was drawn third, and it appears to be fully transparent and show through to
both other planes. In the actual working example, you can use keypresses to rotate the planesin
space; note that as you do, the squares you see have the same transparency properties in any
position.

However, in the image in the center of Figure 5.10, we have disabled the depth test, and this
presents amore problematic situation. In this case, the result is something much more like

6/10/01 Page 5.10



transparent planes, but the transparency is very confusing because the last plane drawn, the red
plane, always seems to be on top because its color is the brightest. This figure shows that the
OpenGL attempt at transparency is not necessarily a desirable property; it is quite difficult to get
information about the relationship of the planes from thisimage. Thus one would want to be
careful with the images one would create whenever one chose to work with transparent or blended
images. Thisfigureis actually created by exactly the same code as the one above with blending
disabled instead of enabled.

Figure 5.10: the partially transparent coordinates planes (left); the same coordinate planes fully
transparent but with same alpha (center); the same coordinate planes with adjusted a pha (right)

Finally, we change the alpha values of the three squares to account for the difference between the
weights in the final three-color section. Here we use 1.0 for the first color (blue), 0.5 for the
second color (green) but only 0.33 for red, and we see that this final image, the right-hand image
in Figure 3.8, has the following color weightsin its various regions:

. 0.33 for each of the colors in the shared region,

0.5 for each of blue and green in the region they share,

0.33 each for red and green in the region they share,

0.33for red and 0.67 for blue in the region they share,

the original alphavalues for the regions where there is only one color.

Note that the “original aphavaues’ givesusasolid blue, afairly strong green, and aweak read as
stand-alone colors. This gives us a closer approximation to the appearance actual transparency for
these three colors, with aparticular attention to the clear gray in the areathey al cover, but there are
still some areas that don’t quite work. To get even this close, however, we must analyze the
rendering carefully and we still cannot quite get a perfect appearance.

Let’slook at this example again from the point of view of depth-sorting the things we will draw.
In this case, the three planes intersect each other and must be subdivided into four pieces each so
that there is no overlap. Because thereis no overlap of the parts, we can sort them so that the
pieces farther from the eye will be drawn first. This allows usto draw in back-to-front order,
where the blending provides a better model of how transparency operates. Figure 5.11 shows
how this would work. The technique of adjusting your model is not always as easy as this,
because it can be difficult to subdivide parts of afigure, but this shows its effectiveness.

There is another issue with depth-first drawing, however. If you are creating a scene that permits
the user either to rotate the eye point around your model or to rotate parts of your model, then the
model will not always have the same parts closest to the eye. In this case, you will need to use a
feature of your graphics API to identify the distance of each part from the eyepoint. Thisisusually
done by rendering a point in each part in the background and getting its Z-value with the current
eye point. Thisisamore advanced operation than we are now ready to discuss, so we refer you to
the manuals for your API to seeif it is supported and, if so, how it works.
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Figure 5.11: the partialy transparent planes broken into quadrants and drawn back-to-front

Asyou examine this figure, note that although each of the three planes has the same al pha value of
0.5, the difference in luminance between the green and blue colorsis apparent in the way the plane
with the green in front looks different from the plane with the blue (or the red, for that matter) in
front. This goes back to the difference in luminance between colors that we discussed earlier in the
chapter.

Color in OpenGL

OpenGL uses the RGB and RGBA color models with real-valued components. These colors
follow the RGB discussion above very closely, so thereislittle need for any special comments on
color itself in OpenGL. Instead, we will discuss blending in OpenGL and then will give some
examples of code that uses color for its effects.

Enabling blending

In order to use colors from the RGBA model, you must specify that you want the blending enabled
and you must identify the way the color of the object you are drawing will be blended with the
color that has aready been defined. This is done with two simple function calls:

gl Enabl e( G._BLEND) ;

gl Bl endFunc( GL_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA) ;
Thefirst is a case of the general enabling concept for OpenGL ; the system has many possible
capabilities and you can select those you want by enabling them. This allows your program to be
more efficient by keeping it from having to carry out all the possible operations in the rendering
pipeline. The second allows you to specify how you want the color of the object you are drawing
to be blended with the color that has already been specified for each pixel. If you use this blending
function and your object has an alphavalue of 0.7, for example, then the color of a pixel after it
has been drawn for your object would be 70% the color of the new object and 30% the color of
whatever had been drawn up to that point.

There are many options for the OpenGL blending function. The one above is the most commonly
used and simply computes a weighted average of the foreground and background colors, where the
weight is the alpha value of the foreground color. In general, the format for the blending
specification is

gl Bl endFunc(src, dest
and there are many symbolic options for the source (src) and destination (dest) blending values; the
OpenGL manual coversthem all.
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A word to thewise...

You must always keep in mind that the apha value represents a blending proportion, not
transparency. Thisblending is applied by comparing the color of an object with the current color
of the image at a pixel, and coloring the pixel by blending the current color and the new color
according to one of several rulesthat you can choose with gl Bl endFunc(. . .) asnoted above.
This capability allows you to build up an image by blending the colors of partsin the order in
which they are rendered, and we saw that the results can be quite different if objects arereceived in
adifferent order. Blending does not treat parts as being transparent, and so there are some images
where OpenGL simply does not blend colorsin the way you expect from the concept.

If you really do want to try to achieve theillusion of full transparency, you are going to have to do
some extrawork. Y ou will need to be sure that you draw the items in your image starting with the
item at the very back and proceeding to the frontmost item. This process was described in the
second example above and is sometimes called Z-sorting. It can be very tricky because objects can
overlap or the sequence of objects in space can change as you apply various transformations to the
scene. You may have to re-structure your modeling in order to make Z-sorting work. In the
example above, the squares actually intersect each other and could only be sorted if each were
broken down into four separate sub-squares. And even if you can get the objects sorted once, the
order would change if you rotated the overall image in 3-space, so you would possibly have to re-
sort the objects after each rotation. In other words, this would be difficult.

As aways, when you use color you must consider carefully the information it is to convey. Color
is critical to convey the relation between a synthetic image and the real thing the image is to portray,
of course, but it can be used in many more ways. One of the most important isto convey the value
of some property associated with the image itself. As an example, the image can be of some kind
of space (such as interstellar space) and the color can be the value of something that occupies that
space or happens in that space (such as jets of gas emitted from astronomical objects where the
value is the speed or temperature of that gas). Or the image can be a surface such as an airfoil (an
airplane wing) and the color can be the air pressure at each point on that airfoil. Color can even be
used for displaysin away that carries no meaning in itself but is used to support the presentation,
as in the Chromadepth™ display we will discuss below in the texture mapping module. But never
use color without understanding the way it will further the message you intend in your image.

Code examples

A model with parts having afull spectrum of colors

The code that draws the edges of the RGB cube uses translation techniques to create a number of
small cubes that make up the edges. In this code, we use only a simple cube we defined ourselves
(not that it was too difficult!) to draw each cube, setting its color by itslocation in the space:

t ypedef G.float color [4];

col or cubecol or;

cubecolor[0] = r; cubecolor[1] = g; cubecolor[2] = b;

cubecol or[ 3] = 1.0;

gl Col or 4f v(cubecol or) ;
We only use the cube we defined, which is a cube whose sides all have length two and which is
centered on the origin. However, we don’t change the geometry of the cube before we draw it.
Our technigue is to use transformations to define the size and location of each of the cubes, with
scaling to define the size of the cube and trand ation to define the position of the cube, as follows:

gl PushMat ri x();

gl Scal ef (scal e, scal e, scal e);

gl Transl at ef (- SI ZE+(fl oat)i *2. O*scal e*Sl ZE, Sl ZE, Sl ZE) ;
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cube((float)i/ (float) NUMBTEPS, 1.0, 1.0);

gl PopMat ri x(%;
Note that we include the transformation stack technique of pushing the current modeling
transformation onto the current transformation stack, applying the trandation and scaling
transformations to the transformation in use, drawing the cube, and then popping the current
transformation stack to restore the previous modeling transformation. This was discussed earlier in
the chapter on modeling.

The HSV cone

There are two functions of interest here. Thefirst is the conversion from HSV colors to RGB
colors; thisistaken from [FvD] asindicated, and is based upon a geometric relationship between
the cone and the cube, which is much clearer if you look at the cube along a diagonal between two
opposite vertices. The second function does the actual drawing of the cone with colors generally
defined in HSV and converted to RGB for display, and with color smoothing handling most of the
problem of shading the cone. For each vertex, the color of the vertex is specified before the vertex
coordinates, allowing smooth shading to give the effect in Figure 5.3. For more on smooth
shading, see the later chapter on the topic.

voi d convert HSV2RGB(fl oat h,float s,float v,float *r,float *g,float *b)
{
/1 conversion fromFoley et.al., fig. 13.34, p. 593

float f, p, q, t;

i nt k;

/1 achromatic case

if (s ==0.0) {
=*h = v;

*r:*g

el se { /1 chromatic case
if (h == 360.0) h=0.0;

h = h/60.0;
k = (int)h;
f =h (float)Kk;
p=v?* (1.0- s)
g=v?* (1.0- (s * 1))
t =v* (1.0 - (s (1.0 - f)));
switch (k) {
case 0: *r =v; *g =1t; *b = p; break;
case 1. *r =q; *g =v; *b = p; break;
case 2: *r =p; *g =v; *b =1t; break;
case 3: *r =p; *g =q; *b = v; break;
case 4: *r =t; *g = p; *b = v; break;
case 5: *r =v; *g = p; *b = qg; break;
}
}
}
voi d HSV(voi d)
{
#defi ne NSTEPS 36
#defi ne steps (fl oat)NSTEPS
#define TWOPI 6.28318
int i;
float r, g, b;
gl Begi n( GL_TRI ANGLE_FAN) ; /1 cone of the HSV space
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gl Color3f (0.0, 0.0, 0.0);
gl Vertex3f (0.0, 0.0, -2.0);
for (i=0; i<=NSTEPS; i++) ({
convert (360.0*(float)i/steps, 1.0, 1.0, &, &g, &b);
gl Color3f(r, g, b);
gl Vertex3f (2.0*cos(TWOPI *(fl oat)i/steps),
2.0*sin(TWOPI *(fl oat)i/steps), 2.0);

}
gl End() ;
gl Begi n(GL_TRI ANGLE_FAN) ; /1 top plane of the HSV space
gl Color3f(1.0, 1.0, 1.0);
gl Vertex3f (0.0, 0.0, 2.0);
for (i=0; i<=NSTEPS; i++) {
convert (360.0*(float)i/steps, 1.0, 1.0, &, &g, &b);
gl Color3f(r, g, b);
gl Vertex3f (2.0*cos(TWOPI *(fl oat)i/steps),
2.0*sin(TWOPI *(fl oat)i/steps), 2.0);

}
gl End() ;
}

The HLS double cone

The conversion itself takes two functions, while the function to display the double coneis so close
to that for the HSV model that we do not include it here. The source of the conversion functionsis
again Foley et al. This code was used to produce the imagesin Figure 5.4.

voi d convert HLS2RGB(float h,float |,float s,float *r,float *g,float *b) {
/! conversion fromFoley et.al., Figure 13.37, page 596
float ni, n®;

if (I <= 0.5) m = 1*(1.0+s);

el se n =1 +s - |*s;

m = 2.0*l - ng;

if (s ==0.0) { /1 achromatic cast
*r:*g:*b:I;

el se { /1 chromatic case

*r = value(m, n2, h+120.0);
*g = value(nl, n2, h);
*b = value(nil, n2, h-120.0);

}
}

float value( float nl, float n2, float hue) {
/1 hel per function for the HLS->RGB conversion

if (hue > 360.0) hue -= 360.0;

if (hue < 0.0) hue += 360.0;

if (hue < 60.0) return( nl + (n2 - nl)*hue/60.0 );

if (hue < 180.0) return( n2 );

if (hue < 240.0) return( nl1 + (n2 - n1)*(240.0 - hue)/60.0 );

return( nl);

6/10/01 Page 5.15



An object with partially transparent faces

The code that draws three squares in space, each centered at the origin and lying within one of the
coordinate planes, has a few points that are worth noting. These three squares are colored
according to the declaration:

G.float color0O[]={1.0, 0.0, 0.0, 0.5}, // R
color1[]={0.0, 1.0, 0.0, 0.5}, // G
color2[]1={0.0, 0.0, 1.0, 0.5}; // B

};
These colors are the full red, green, and blue colorswith 0.5 alphavalue, so when each square is
drawn it uses 50% of the background color and 50% of the sgquare color. You will see that
blending in Figure 5.10 for this example.

The geometry for each of the planesis defined as an array of points, each of which is, in turn, an
array of real numbers:
typedef G.float point3[3];
poi nt 3 pl aneO[ 4] ={{- 1 0,
{-1

.0,
.0

0.0, -1.0}, // X2Z plane
0.0, 1.0},
0.0, 1.0}

E 1.0, 0.0, -1.0} };

Aswe saw in the example above, the color of each part is specified just asthe part is drawn:
gl Col or 4fv(col or0); /1 red
gl Begi n( GL_QUADS) ; /'l X-Z pl ane
gl Vert ex3fv(pl ane0[0]);
gl Vertex3fv(planeO[1]);
gl Vertex3fv(plane0O[2]);
gl Vertex3fv(plane0O[3]);
gl End() ;
Thisis not necessary if many of the parts had the same color; once acolor is specified, it is used
for anything that is drawn until the color is changed.
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Visual Communication

Prerequisites

Understanding of basic concepts of communication, of shaping information with the knowledge of
the audience and with certain goals

Introduction

Computer graphics has achieved remarkable things in communicating information to specialists, to
informed communities, and to the public at large. Thisis different from the entertainment areas
where computer graphics gets alot of press because it has the goal of helping the user of the
interactive system or the viewer of awell-developed presentation to have a deeper understanding of
acomplex topic. The range of subjects for this communication include cosmology, in showing
how fundamentatal structuresin the universe work; archaeology and anthropology, in showing the
ways earlier human groups laid out their structures and cultures; biology and chemistry, in seeing
the way electrostatic forces and molecular structures lead to molecular bonding; mathematics, in
considering the behavior of highly unstable differential equations; or meteorology, in examining
the way global forces such as the temperatures of ocean currents or the depth of the ozone layer
affect the weather.

While the importance of visual communication has been known for along time, itsrolein the use
of computing in the sciences was highlighted in the 1987 report on Visualization in Scientific
Computing [ViSC]. That report noted the importance of computer graphics in engaging the human
brain’s extraordinary ability to create insight from images. That report noted that Richard
Hamming’'s 1962 quote, “The purpose if computing is insight, not numbers,” is particularly
apropos when the computing can create images that lead to a deeper and more subtle insight than is
possible without images. Indeed, for these notes we can parahprase Hamming and say that the
purpose of computer graphicsisinformation, not images.

Making images — in particular, making images with computer graphics using powerful machines
and a capable graphics APl — isrelatively easy. The difficult part of effective computer graphics
is the task of understanding your problem and developing ways to present the information that
describes your problem so you can make images that communicate with your audience. This short
section talks about this task and gives some principles and examples that we hope can start you
thinking about this question, but it isa significant task to develop real skill in communicating by
means of images. This chapter isrelatively early in the overall presentation of graphics primarily to
remind you that the main reason we use graphics is to communicate with others, and to help you
keep that communication in mind as you learn about making images with computing. Some of the
techniques we talk about here will not be covered until later in the notes, but they are not terribly
complex, so you should be able to make sense of what the techniques mean even before you have
learned how to make them work.

There are severa key concepts in the area of communicating effectively with your images. Inthis
chapter we will discuss severa techniques and will consider their effect upon communication, but
you must realize that thisis only an introduction to the topic. Highly-skilled communicators are
constantly inventing new ways to present specific information to specific audiences, so we do not
try to give you the last answer in visual communication; instead, we are trying to get you to think
about the information content of your images and about how you can communicate that to your
particular audience. Only agreat deal of experience and observation will make you genuinely
skilled in thisarea

The particular points we will makein this chapter cover several areas. Theseinclude:

» Theimportant thing in an image is the information it conveys, not the beauty or sophistication
of theimage itsalf.
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» Focus your image on the content you want so you can provide the information that is needed
for your audience to understand the ideas you are trying to communicate.

» Use appropriate representation for your information so that your audience will be able to get the
most meaning from your images.

* Useappropriate formsfor your information to reach your audience at the right impact level.

» Bevery careful to be accurate and not to suggest things with your images that are not supported
by the information you are working with.

» If you use pseudocolor to carry information to your audience, use appropriate color ramps for
the image and always include a legend so your audience can understand the values that are
represented by the colors and other textua material to help your audience understand the
content of your display.

» If you use shapes or geometry to carry your information, be sure the geometry supports the
understanding you want to create for your information.

These points will be presented in several sections that will focus on creating images that include

these communi cations concepts.

General issuesin visual communication

Some of the points above are so important that we want to expand them and show some of the
issues that are involved in carrying them out.

Use appropriate representation for your information so that your audience will be able to get the
most meaning from your images. Sometimes this representation can use color, or sometimesit can
use geometry or shapes. Sometimes it will use highly symbolic or synthetic images while
sometimesit will use highly naturdistic images. Sometimes it will present the relationships
between things instead of the things themselves. Sometimes it will use purely two-dimensional
representations, sometimes three-dimensional images but with the third dimension used only for
impact, and sometimes three-dimensional images with the third dimension a critical part of the
presentation. In fact, there are an enormous number of ways to create representations of
information, and the best way to know what works for your audience is probably to to observe the
waly they are used to seeing things and ask them what makes sense for them, probably by showing
them many examples of options and alternatives. Do not assume that you can know what they
should use, however, because you probably think differently from people in their field and are
probably not the one who needs to get the information from the images.

Keep your imagesfocused on just the information that is needed to understand the things you are
trying to communicate. In creating the focus you need, remember that simple images create focus
by eliminating extraneous or distracting content. Don’'t create images that are “eye candy” and
simply look good; don’t create images that suggest relationships or information that are not in the
information. For example, when you represent experimental data with geometric figures, use flat
shading instead of smooth shading and use only the resolution your data supports because creating
higher resolution with smooth interpolation processes, because using smooth shading or smooth
interpolation suggests that you know more than your data supports. The fundamental principleis
to be very careful not to distort the truth of your information in order to create a more attractive
image.

Use appropriate forms for your information. There is a wonderful concept of three levels of
information polishing: for yourself (personal), for your colleagues or collaborators (peer), and for
an audience when you want to make an impression (presentation). Most of the time when you're
trying to understand something yourself, you can use very simple images because you know what
you are trying to show with them. When you are sharing your work with your colleagues who
have an idea of what you' re working on but who don’t have the depth of knowledge in the
particular problem you’ re addressing, you might want a bit higher quality to help them see your
point, but you don't need to spend alot of time polishing your work. But when you are creating a
public presentation such as a scientific paper or a grant proposal (think of how you would get a
point across to a Congressional committee, for example!) you will need to make your work as
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highly-polished as you can. So your work will sometimes be simple and low-resolution, with
very sketchy images; sometimes smoother and with alittle thought to how your look at things,
perhaps with alittle simple animation or with some interaction to let people play with your ideas;
and sometimes fully developed, with very smooth animation and high-resolution images, with
gresat care taken to make the maximum impact in the minimum time.

Be very careful to be accurate with your display. | you have only scattered data, show only the
data you have; do not use smooth geometry or smooth coloring to suggest that information is
known between the data points. If you use simple numerical techniques, such as difference
equations, in determining your geometry, say thisin alegend or title instead of implying that a
more exact solution is presented. In general, try very hard not to lie with your presentation,
whether that lie is an accident or is an attempt to spin your data to support a particular point of
view.

This chapter will describe a small set of techniques for visual communication, including the use of
color in communicating values as well as shapesto the viewer, the use of text in labels and legends
to set the context and convey detailed information on the image, and the uses of slices, contours,
and other techniques in communicating higher-dimensional information. This is only a small
sample of the kinds of techniques that have been used for visual communication, and the reader is
referred to the literature on scientific visualization for a more extensive discussion of the topic.

Some examples

Different ways to encode of information

Among all the ways we can encode information visually, two examples are geometry and color.
We can make the size of something in an image vary with the value associated with that thing or we
may make its shape represent a particular concept. We can also make the color of something vary
with a value we want to present. Colors that are used as encoded information are often called
pseudocolors The example presented below, showing how heat flows through a metallic bar,
compares two very different ways of encoding information in images.

The three-part Figure 4.1 below illustrates some different color encodings for asingle problem. It
has both geometric and pseudocolor encoding (center), only geometric coding (left) and only
pseudocolor encoding (right). Note that each of the encodings has its value, but that they

Figure 4.1: three encodings of the same information: temperature in a bar, encoded only as
geometry (top left), only as color (bottom right), and as both (center)
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emphasize different things. In particular, the height encoding tends to imply that the bar itself
actually has adifferent geometry than a simple rectangular parallelpiped, so it might confuse
someone who is not used to the substitution of geometry for numeric values. The color-only
encoding, however, seems easier for a novice to understand because we are used to pseudocolor
coding for heat (think of hot and cold water faucets) and metal changes colors when it is heated.
Thus the way we encode information may depend on the experience of our users and on the
conventions they are accustomed to in understanding information. The pseudocolor encoding in
this case follows a traditional blue for cold and red for hot that is common in western cultures
(think of the coding on hot and cold water faucets). Other encodings are found in other groups and
could be used here; for example, engineers often use afull rainbow code for colors from magenta
for cold, through blue to green and yellow, finally ending with red for hot.

Different color encodings for information

If you use color to carry information to your audience, use color that is appropriate for the
information in theimage. For pseudo-color images, make the colorsfit the content. Note the use
of the blue-to-red scale to represent temperature in the first example below and the several color
ramps that can represent numeric values in the second example. The effective and informative
choice of color representations for numeric values is a skill that can require a great deal of
experience and a good knowledge of your users. In particular, you should realize that colors are
always seen in a cultural context, so that engineers and life scientists are likely to read a set of
colors differently, and thisis particularly important to understand when looking at an international
audience for your work. In some fields, some information has a standard color encoding (for
example, the colors of atomsin amolecular display) so that you cannot change it without risking
losing information your audience will expect to see.

The key concept for thiskind of color encoding isthat of pseudocolor — color that is determined
by some property of the object instead of from geometric lighting models. Such color can be used
to show a number of different kinds of properties, such as temperatures in the example above. Itis
common to think of pseudocolorsin terms of color ramps, or colors that vary with alinear value.
We will show some examples of different color rampsin this section.

Let’s consider an example that we will use to look at a number of color and pseudocolor options.
We want to create the graph of afunction of two variables over a domain of the real plane by
presenting a surface in three dimensions. First, as shown in Figure 4.2, we could present the
function by presenting its 3D surface graph purely as a surface in afairly traditional way, with an
emphasis of the shape of the surface itself. If the emphasisis on the surface itself, this might be a
good way to present the graph, because as you can see, the lighting shows the shape well.

Figure 4.2: traditional surface model presented with three lights to show its shape
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On the other hand, if the emphasis is on the actua values of the function, we might use a
pseudocolor encoding with the colors chosen based on the value of the function, as shown in
Figure 4.3. The particular pseudocolor used is the “rainbow ramp” that runs from purple (usually
used for the lowest values) to red (usually used for the highest). Thisramp is actually built from
the HL'S color model to ensure fully-saturated colors. The geometry-only encoding presents a
yellow surface with lights of different colors that help illustrate the shape, and the color ramp adds
color information to geometric information, creating a color encoding that reinforces the geometric
encoding. Inthiscaseit might be important to allow the audience to move around the surface so
they can see exactly where the various values are achieved, and it is usually very important to
include alegend that interprets the colors to the audience. We will discuss legends later in this
chapter.

Figure 4.3: surface model presented with “rainbow” pseudocolor ramp to emphasize its values

Of course, the rainbow pseudocolor ramp is not our only choice of a pseudocolor presentation, and
Figure 4.4 shows another presentation based on a ramp from black to white through red and
yellow. The colorsin the ramp could be evenly distributed through the relative heights from zero
(the smallest value, in black) to one (the largest value, in white), by moving along the edges of the
RGB cube with the lowest third of the values lying from black to red, the next third of the values

Figure 4.4: the function surface with a uniform luminance distribution of pseudocolors

lying from red to yellow, and the highest third of the values lying from yellow to white. But if we
introduce a new idea, that of creating a color ramp that varies the luminance of the colors uniformly
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across our range, we have a different approach. Recalling from our earlier discussion of the RGB
color system that the luminance of a color is given by the luminance equation:
| um nance = 0.30*red + 0.59*green + 0.11*bl ue

(where red, green, and blue have the usual convention of lying between zero and one) we can set
up our ramp to give the lowest 30% of the values between black and red, the next 59% of the
colors between red and yellow, and the hightest 11% of the values between yellow and white. The
actual color ramp functions for these latter three are given as code fragments below. This particular
pseudocolor ramp is sometimes called a“heat” ramp because it mimics the way a metal will change
colorsasit is heated and seems to be particularly good in showing the shape in this example.

Each of these images presents the same concepts, but each does so in a way that might be
meaningful to a different group of viewers. The pure shape with lighting emphasi zes the shape
and shows values such as curvature that emphasizes the way the graph changes in different areas.
The rainbow pseudocolor ramp emphasizes the individual values by providing as wide arange of
different colors as possible to show values and would be commonly seen in science and
engineering areas. The heat pseudocolor ramp emphasizes the relative values of the function by
reflecting them in the relative luminance of the colors. The reader might find it interesting to
modify the code of the heat ramp to take other paths from the black vertex of the RGB cube to the
white vertex, while adapting the points where the paths along the cube change to the luminance
values associated with the R/G/B/C/M/Y points on the cube.

It is important to note that color may not be a good choice of representation for some audiences.
There are significant numbers of persons who have color perception problems, so information that
is encoded through color may not be understood by these people. Almost all color deficiencies do
not affect the ability to perceive relative luminance, however, so using a uniform luminance ramp
will at least allow this part of your audience to understand your information.

There are, of course many alternatives to the even pseudocolor ramps above. One might be a
multi-ramp color set, where the color range consists of a set of ramps from black to the rainbow
colors, as shown in the left-hand side of Figure 4.5 below, or you may entirely omit color by
using a grayscal e pseudocolor ramp as in the right-hand side of the figure, although you should
note that reduced bit depth gives us some Mach banding. The reason we pay so much attention to
the way information can be encoded in color isthat thisis acritical issue in allowing your audience
to understand the information you are presenting with this color.

Figure 4.5: the same surface with amulti-ramp color model (left)
and with a pure grayscale color ramp (right)

Code to implement the various color rampsisfairly straightforward but isincluded here so you can
see how these examples were done and adapt these ramps (or similar ones) to your own projects.
We present code for the rainbow and heat color ramps below. Each color ramp takes a value
between 0 and 1 (it is assumed that the numerical values have been scaled to this range) and returns
an array of three numbers that represents the RGB color that corresponds to that value according to
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the particular representation is uses. This code isindependent of the graphics API you are using,
so long as the API uses the RGB color model.

voi d cal cHeat (fl oat yval)
{ if (yval < 0.30)
{nyCol or[ 0] =yval / 0. 3; myCol or[ 1] =0. O; myCol or[ 2] =0. O; return; }
if ((yval >=0.30) && (yval < 0.89))
{nmyCol or[ 0] =1. 0; nyCol or[ 1] =(yval -0. 3)/0.59; nyCol or[ 2] =0. O; return; }
i f (yval >=0.89)
{myCol or [ 0] =1. O; nyCol or [ 1] =1. O; myCol or[ 2] =(yval - 0. 89)/0. 11;}
return,

}

voi d cal cRai nbow(fl oat yval)
{ if (yval < 0.2) /1 purple to blue ranp
{nyCol or[ 0] =0. 5*( 1. 0-yval /0. 2) ; myCol or[ 1] =0. 0;
nmyCol or[ 2] =0. 5+( 0. 5*yval /0. 2) ; return;}
if ((yval >=0.2) & (yval < 0.40)) /1 blue to cyan ranp
{nyCol or[ 0] =0. O; myCol or[ 1] =(yval -0.2)*5. 0; myCol or[ 2] =1. O; ret urn; }
if ((yval >= 0.40) && (yval < 0.6)) /1 cyan to green ranp
{nyCol or[ 0] =0. O; nyCol or[ 1] =1. O; nyCol or[ 2] =(0. 6-yval )*5.0; return;}

if ((yval >= 0.6) & (yval < 0.8) /1l green to yellow ranp
{nyCol or[ 0] =(yval -0. 6) *5. 0; nyCol or[ 1] =1. 0; nyCol or[ 2] =0. O; ret urn; }
if (yval >= 0.8) /1 yellowto red ranmp”
{nyCol or[ 0] =1. O; nyCol or[ 1] =(1. 0-yval ) *5. 0; myCol or[ 2] =0. O; }
return;

}

Geometric encoding of information

If you use shapes or geometry to carry your information, be sure the geometry represents the
information in away that supports the understanding you want to create. Changing sizes of
objects can illustrate different values of a quantity, but sizes may be perceived in one dimension
(such as height), in two dimensions (such as area), or in three dimensions (such as volume). If
you double each of the dimensions of an object, then, your audience may perceive that the change
represents a doubling of avalue, multiplying the value by four, or multiplying the value by eight,
depending on whether they see the difference in one, two, or three dimensions. The shapes can
also be presented through pure color or with lighting, the lighting can include flat shading or
smooth shading, and the shapes can be presented with meaningful colors or with scene
enhancements such as texture mapping; these all affect the way the shapes are perceived, with more
sophisticated presentation techniques moving the audience away from abstract perceptions towards
a perception that somehow the shapes reflect ameaningful reality.

For example, we should not assume that a 3D presentation is necessarily best for a problem such
asthe surface above. Infact, real-valued functions of two variables have been presented in 2D for
years with color representing the value of the function at each point of its domain. Y ou can seethis
later in this chapter where we discuss the representation of complex-valued or vector-valued
functions. In the present example, in Figure 4.6 we show the same surface we have been
considering as a simple surface with the addition of a plane on which we provide a rainbow
pseudocolor representation of the height of the function. We aso include a set of coordinate axes
so that the geometric representation has a value context. Aswe did in Figure 4.1, we should
consider the differences between the color and the height encodings to see which really conveys
information better.
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Figure 4.6: apseudocolor plane with the lighted surface

Other encodings

Surfaces and colorings as described above work well when you are thinking of processes or
functions that operate in 2D space. Here you can associate the information at each point with a
third dimension or with a color at the point. However, when you get into processesin 3D space,
when you think of processes that produce 2D information in 2D space, or when you get into any
other areas where you exceed the ability to illustrate information in 3D space, you must find other
ways to describe your information.

vufrf*ur*“l'

Figure4.7: afairly ssmpleisosurface of afunction of three variables (left);
values of afunction in 3D space viewed along a 2D plane in the space (right)

Perhaps the simplest higher-dimensional situation isto consider a process or function that operates
in 3D space and has a simple real value. This could be a process that produces a value at each
point in space, such as temperature. There are two simple ways to look at such a situation. The
first asks “for what points in space does this function have a constant value?’ This|eads to what
are called isosurfacesin the space, and there are complex algorithms for finding isosurfaces or
volume data or of functions of three variables. The left-hand partof Figure 4.7 shows a simple
approach to the problem, where the space is divided into a number of small cubic cells and the
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function is evaluated at each vertex on each cell. If the cell has some vertices where the value of
the function is larger than the constant value and some vertices where the function is smaller, the
continuity of the function assures that the function assumes the constant value somewhere in that
cell and a sphereisdrawn in each such cell. The second way to ook at the situation asks for the
values of the function in some 2D subset of the 3D space, typically aplane. For this, we can pass
a plane through the 3D space, measure the values of the function in that plane, and plot those
values as colors on the plane displayed in space. The right-hand part of Figure 4.7 below, from
thecodein pl aneVol une. c, shows an example of such a plane-in-space display for afunction

that is hyperbolic in all three of the x, y, and z components in space. The pseudocolor coding is
the uniform ramp illustrated above.

Figure 4.8: two visualizations: afunction of acomplex variable (L) and adifferential equation (R)
The top row isrelatively low resolution (20x20) and the bottom row is high resolution (200x200)

A different approach is to consider functions with a two-dimensional domain and with a two-
dimensional range, and to try to find ways to display this information, which is essentially four-
dimensional, to your audience. Two examples of this higher-dimension situation are vector-valued
functions on arectangular real space, or complex-valued functions of a single complex variable.
Figure 4.8 below presents these two examples. a system of two first-order differential equations of
two variables (left) and a complex-valued function of acomplex variable (right). The domainisthe
standard rectangular region of two-dimensional space, and we have taken the approach of encoding
the range in two parts based on considering each value as a vector with alength and a direction.
We encode the magnitude of the vector or complex number as a pseudocolor with the uniform
color ramp as described above, and the direction of the vector or complex number as a fixed-length
vector in the appropriate direction. In the top row we use arelatively coarse resolution of the
domain space, while in the bottom row we use a much finer resolution. Note that even as we
increase the resolution of the mesh on which we evaluate the functions, we keep the resolution of
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the vector display about the same. This 20x20 vector display mesh is about as fine a resolution as
auser can understand on a standard screeen.

Higher dimensions

The displays in Figure 4.8 are fundamentally 2D images, with the domain of the functions given
by the display window and the range of the functions represented by the color of the domain and
the direction of the vector. There have been similar visualizations where the range had dimension
higher than two, and the technique for these is often to replace the vector by an object having more
information [NCSA work reference]. Such objects, called glyphs, need to be designed carefully,
but they can be effectivein carrying a great deal of information, particularly when the entire
process being visualized is dynamic and is presented as an animation with the glyphs changing
with time.

Of course, there are other techniques for working with higher-dimensional concepts. One of these
isto extend concept of projection. We understand the projection from three-dimensional eye space
to two-dimensional viewing space that we associate with standard 3D graphics, but it is possible to
think about projections from spaces of four or more dimensions into three-dimensional space,
where they can be manipulated in familiar ways. An example of thisisthe image of Figure 4.9, a
image of a hypercube (four-dimensional cube). This particular image comes from an example
where the four-dimensional cube isrotating in four-dimensional space and is then projected into
three-space.

Figure 4.9: ahypercube projected into three-space

Choosing an appropriate view

When you create a representation of information for an audience, you must focus their attention on
the content that you want them to see. If you want them to see some detail in context, you might
want to start with a broad image and then zoom into the image to see the detail. 1f you want them
to see how a particular portion of the image works, you might want to have that part fixed in the
audience’ s view while the rest of your model can move around. If you want them to see the entire
model from all possible viewpoints, you might want to move the eye around the model, either
under user control or through an animated viewpoint. If you want the audience to follow a
particular path or object that moves through the model, then you can create a moving viewpoint in
the model. If you want them to seeinternal structure of your model, you can create clipping planes
that move through the model and allow the audience to see internal details, or you can vary the way
the colors blend to make the areas in front of your structure more and more transparent so the
audience can see through them. But you should be very conscious of how your audience will see
the images so you can be sure that they see what you need them to see.

Moving aviewpoint

We have already discussed the modeling issues involved in defining a viewpoint as part of the
geometry in the scene graph. If we want to move the viewpoint, either under user control or as
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part of the definition of a moving scene, we will need to include that viewpoint motion in the model
design and account for it in the code that renders each version of the scene. If the viewpoint acts as
atop-level item in the scene graph, you can simply use parameters to define the viewpoint with
whatever tools your graphics API gives you, and the changing view will reflect your modeling.
This could be the case if you were defining a path the eye isto follow through the model; you need
only encode the paramters for the eye based on the path.

On the other hand, if your viewpoint is associated with other parts of the model, such as being part
of the model (for example, looking through the windshield of aracing car driving around a track)
or following an object in the model (for example, always looking from the position of one object in
the model towards another object in the model, as one might find in atarget tracking situation) then
you will need to work out the transformations that place the eye as desired and then write code that
inverts the eye-placement code before the rest of the scene graph is handled. Thiswas described in
the modeling chapter and you should consult that in more detail.

Setting a particular viewpoint

A common technigque in an animation involving multiple moving bodiesisto “ground” or freeze
one of the moving bodies and then let the other bodies continue their motions, showing all these
motions with respect to the grounded body. Thiskind of view maintains the relative relationships
among all the moving bodies, but the chosen part is seen as being stationary. Thisis a useful

techniqueif auser wants to zoom in on one of the bodies and examine its relationship to the system
around it in more detail, because it is difficult to zoom in on something that is moving. We will

outline the way this mechanism is organized based on the scene graph, and we could call this
mechanism an “ AimAt” mechanism, because we aim the view at the part being grounded.

In the context of the scene graph, it is straightforward to see that what we really want to do isto set
the viewpoint in the model to be fixed relative to the part we want to freeze. Let us show a
simplified view of the relationship among the parts as the scene graph fragment in Figure 4.10,
which shows a hierarchy of parts with Part 3 attached to Part 2 and Part 2 attached to Part 1, all
located relative to the world space (the Ground) of the scene. We assume that the transformations
areimplicit in the graph and we understand that the transformations will change as the animated
scene is presented.

Figure 4.10: ahierarchy of partsin amechanism

If we choose to ground Part 2 at a given time, the viewpoint is attached to that part, and the tree
would now look like Figure 4.11 with right-hand branch showing the location of the eye point in
the graph. Here the superscript * on a part names in the right-hand branch means that the branch
includes the specific values of the transformations at the moment the part is frozen. The additional
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node for the eyepoint indicates the relation of the eyepoint to the part that is to be frozen (for
example, acertain number of units away in a certain direction from the part).

Scene

R
CGround) CGround*)

Figure 4.11: the scene graph with the transformations for Part 2* captured

Then to create the scene with this part grounded, we carry out the inversion of the eye point branch
of the graph just as described in the modeling chapter. Note that anything else that was part of the
original scene graph would be attached to the original Ground node, because it is not affected by
the grounding of the particular part.

In Figure 4.12 we show this process at work. This figure shows time-exposures of two views of
amechanical four-bar linkage. The left-hand image of the figure shows how the mechanism was
originally intended to function, with the bottom piece being fixed (grounded) and the loop of points
showing the motion of the top vertex of the green piece. The right-hand image in the figure shows
the same mechanism in motion with the top piece grounded and all motions shown relative to that
piece.

Figure 4.12: animated mechanisms with different parts fixed

Seeing motion

When you are conveying information about a moving geometry to your audience, you are likely to
want to use an animation. However, sometimes you need to show more detail than a viewer can
get from moving images, while you still want to show the motion. Or perhaps you want each
frame of your image to show something of the motion itself. We could say that you would want to
show your viewer atrace of the motion.
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There are two standard ways you can show motion traces. Thefirst isto show some sort of trail
of previous positions of your objects. This can be handled rather easily by creating a set of lines or
similar geometric objects that show previous positions for each object that is being traced. This
trace should have limited length (unless you want to show a global history, which is redly a
different visualization) and can use techniques such as reduced alpha values to show the history of
the object’ s position. Figure 4.13 shows two examples of such traces; the left-hand image uses a
sequence of cylinders connecting the previous positions with the cylinders colored by the objecd
color with reducing a pha values, while the right-hand image shows a simple line trace of asingle
particle illustrating a random walk situation.

Figure 4.13: two kinds of traces of moving objects

Another approach to showing motion is to use images that show previous positions of the objects
themselves. Many APIs allow you to accumulate the results of several different renderingsin a
singleimage, so if you compute the image of an object at several times around the current time you
can create a single image that shows all these positions. This can be called motion blur aswell as
image accumulation. The images of Figure 4.12 show good examples of this kind of accumulated
motion, and the technique for creating it in OpenGL is discussed later in this chapter.

L egendsto help communicate your encodings

Always be careful to help your audience understand the information you are presenting with your
images. Always provide appropriate legends and other textual material to help your audience
understand the content of your displays. If you use pseudocolor, present scales that can help a
viewer interpret the color information. This allows people to understand the relationships provided
by your color information and to understand the context of your problem, and is an important part
of the distinction between pretty pictures and genuine information. Cresating images without scales
or legendsis one of the key ways to create misleading visualizations.

The particular example we present hereis discussed at more length in the first science applications
chapter. 1t models the spread of a contagious disease through a diffusion process, and our primary
interest is the color ramp that is used to represent the numbers. This color ramp is, in fact, the
uniform heat ramp introduced earlier in this chapter, with evenly-changing luminance that gets
higher (so the colors get lighter) as the values gets higher.

So far we have primarily presented only images in the examples in this chapter, but the image alone
only makes up part of the idea of using images to present information. Information needs to be put
into context to help create real understanding, so we must give our audience a context to help them
understand the concept being presented in the image and to see how to decode any use of color or
other symbolism we use to represent content.
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Figure 4.14 shows an image with alabel in the main viewport (a note that thisimage is about the
spread of disease) and alegend in a separate viewport to the right of the main display (a note that
says what the color means and how to interpret the color as anumber). Thelabel putstheimagein
ageneral context, and as the results of this simulation (a simulation of the spread of adiseasein a
geographic region with a barrier) are presented in the main viewport, the legend to the right of the
screen helps the viewer understand the meaning of the rising and falling bars in the main figure as
the figure is animated and the disease spreads from asingleinitial infection point.

Figure 4.14: an example of figure with alabel and alegend to alow the figure to be interpreted
| mplementing some of these techniques in OpenGL

Legendsand labels

Each graphics API will likely have its own ways of handling text, and in this short section we will
describe how this can be done in OpenGL. We will also show how to handle the color legend in a
separate viewport, which is probably the simplest way to deal with the legend’ s graphic.

The text in the legend is handled by creating a handy function, doRaster String(...) that
displays bitmapped characters, implemented with the GLUT gl ut Bi t mapChar act er ()
function. Note that we choose a 24-point Times Roman bitmapped font, but there are probably
other sizes and styles of fonts available to you through your own version of GLUT, so you should
check your system for other options.

voi d doRasterString( float x, float y, float z, char *s)

{

char c;

gl Rast er Pos3f (x, vy, z);
for (; (c =*s) I'="\0"; s++)
gl ut Bi t mrapChar act er (GLUT_BI TMAP_TI MES ROVAN 24, c¢);
}

The rest of the code used to produce this legend is straightforward and is given below. Note that
the sprintf function in C needs a character array as its target instead of a character pointer. This
code could be part of the display callback function where it would be re-drawn
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/1 draw the legend in its own viewport
gl Viewport ((int)(5.*(float)w nwide/7.),0,
(int)(2.*(fl oat)w nwi de/7.),w nhei ght);
gl dear( GL_COLOR BUFFER BI T, G._DEPTH BUFFER BIT );
... Il set viewing paraneters for the viewport
gl PushiMatri x();
gl Enabl e (G._SMOOTH) ;
gl Color3f(1.,1.,1.);
doRasterString(0.1, 4.8, 0., "Nunmber Infected");
sprintf(s,"%. 0f", MAXI NFECT/ MULTI PLI ER) ;
doRasterString(0.,4.4,0.,s);
/1 color is with the heat ramp, with cutoffs at 0.3 and 0. 89
gl Begi n( G._QUADS) ;
gl Col or3f(0.,0.,0.);
gl Vertex3f (0.7, 0.1, 0.);
gl Vertex3f (1.7, 0.1, 0.);
col orRanp(0.3, &, &g, &b);
gl Color3f(r, g, b);
gl Vertex3f (1.7, 1.36, 0.);
gl Vertex3f (0.7, 1.36, 0.);

gl Vertex3f (0.7, 1.36, 0.);
gl Vertex3f (1.7, 1.36, 0.);
col orRanp(0.89, &, &g, &b);
gl Col or3f(r, g, b);

gl Vertex3f (1.7, 4.105, 0.);
gl Vertex3f (0.7, 4.105, 0.);

gl Vertex3f (0.7
gl Vertex3f (1.7
gl Col or3f (1., 1.
gl Vertex3f (1.7
gl Vertex3f (0.7

gl End() ;

sprintf(s,"%.0f",0.0);

doRasterString(.1,.1,0.,5s);

gl PopMat ri x();

gl D sabl e(G._SMOOTH) ;

/1 now return to the main wi ndow to display the actual nobde

Using the accumulation buffer

The accumulation buffer is one of the buffers available in OpenGL to use with your rendering.
This buffer holds floating-point values for RGBA colors and corresponds pixel-for-pixel with the
frame buffer. The accumulation buffer holds valuesin the range [-1.0, 1.0], and if any operation
on the buffer resultsin avalue outside this range, its results are undefined (that is, the result may
differ from system to system and is not reliable) so you should be careful when you define your
operations. It isintended to be used to accumulate the weighted results of a number of display
operations and has many applications that are beyond the scope of this chapter; anyone interested in
advanced applications should consult the manuals and the literature on advanced OpenGL
techniques.

Asisthe case with other buffers, the accumulation buffer must be chosen when the OpenGL
systemisinitialized, asin

gl ut I ni t Di spl ayMode( GLUT_RGB| GLUT_DOUBLE| GLUT_ACCUM GLUT_DEPTH) ;
The accumulation buffer is used with the function gl Accun{ node, val ue) that takes one of
several possible symbolic constants for its mode, and with a floating-point number asits value.
The available modes are
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G._ACCUM  Gets RGBA values from the current read buffer (by default the FRONT buffer
if you are using single buffering or the BACK buffer if double buffering, so
you will probably not need to choose which buffer to use), converts them from
integer to floating-point values, multiplies them by the val ue parameter, and
adds the values to the content of the accumulation buffer. If the buffer has bit
depth n, then the integer conversion is accomplished by dividing each value

from the read buffer by 2"-1.

G._LQAD Operates similarly to G._ ACCUM except that after the values are obtained from
the read buffer, converted to floating point, and multiplied by val ue, they are
written to the accumulation buffer, replacing any values aready present.

G._ADD Addsthevaueof val ue to each of the R, G, B, and A components of each
pixel in the accumulation buffer and returns the result to its original location.

G_MULLT Multiplies each of the R, G, B, and A components of each pixel in the buffer
by the value of val ue and returnsthe result to its original location.

G._RETURN Returns the contents of the accumulation buffer to the read buffer after
multiplying each of the RGBA components by val ue and scaling the result
back to the appropriate integer value for the read buffer. If the buffer has bit

depth n, then the scaling is accomplished by multiplying the result by 2"-1 and
clamped to the range [0, 2"-1].
Y ou will probably not need to use some of these operations to show the motion trace. If we want
to accumulate the images of (say) 10 positions, we can draw the scene 10 times and accumulate the

results of these multiple renderings with weights 2" for scene i, where scene 1 corresponds to the
most recent position shown and scene 10 to the oldest position. This takes advantage of the fact
that the sum

i
S-i10102)
isessentialy 1, so we keep the maximum value of the accumulated results below 1.0 and create
almost exactly the single-frame image if we have no motion at all. Some code to accomplish this
is:

/1 we assune that we have a tinme paraneter for the drawObjects(t)
/1 function and that we have defined an array tinmes[10] that holds
/1 the times for which the objects are to be drawmn. This is an exanple
/1 of what the manuals call tine jittering; another exanple mght be to
/1l choose a set of randomtinmes, but this would not give us the tine
/1 trail we want for this exanple.
drawObj ect s(tines[9]);
gl Accum( GL_LQOAD, 0.5)
for (i =9; 1 >0; i--) {
gl Accum( GL_MJLT, 0.5);
drawObj ects(tinmes[i-1]);
gl Accum({ GL_ACCUM 0.5);

gl Accun{GL_RETURN, 1.0);

A few things to note here are that we save a little time by loading the oldest image into the
accumulation buffer instead of clearing the buffer before we draw it, we draw from the oldest to
the newest image, we multiply the value of the accumulation buffer by 0.5 before we draw the next
image, and we multiply the value of the new image by 0.5 as we accumulate it into the buffer.
This accomplishes the successive reduction of the older images automatically.

There are other techniques one could find here, of course. One would be simply to take whatever
image you had computed to date, bring it into the accumulation buffer with value 0.5, draw the
new scene and accumulate it with weight 0.5, and return the scene with weight 1.0. Thiswould be
faster and would likely not show much difference from the approach above, but it does not show
the possibilities of drawing a scene with various kinds of jittering, a useful advanced technique.
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A word to thewise...

It isvery easy to use the background we have developed in modeling to create geometric shapes to
represent many kinds of data. However, in many cases the data will not really have a geometric or
gpatial context and it can be misleading to use all the geometric structures we might find. Instead
of automatically assuming that we should present interesting 3D shapes, we need to ask carefully
just what content we have in the data and how we can make that content visible without adding any
suggestions of other kinds of content. Often we will find that color can carry more accurate
meaning than geometry.

When you use color to carry information in an image, you need to be aware that there are many
different meanings to colorsin different cultural contexts. Some of these contexts are national: in
European cultures, white means purity or brightness; in Japan, white means death. Other contexts
are professional: red means heat to scientists, danger to engineers, losses to bankers, or health to
physicians — at least to a significant extent. Thisis discussed at more length in [BRO] and you
arereferred there for more details. So be careful about the cultural context of your images when
you choose colors.

Other serious issues with color include arange of particular considerations: people’s ability to see
individual colorsin color environments, the way pairs or sets of colorsinteract in your audience’s
visual systems, how to communicate with people who have various color perception impairments,
or how to choose colors so that your images will still communicate well in a black-and-white
reproduction. Y ou need to become aware of such considerations before you begin to do serious
work in visual communication.
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Science Examples |

Prerequisites:
A knowledge of computer graphics through modeling, viewing, and color, together with
enough programming experience to implement the images defined by the science that will be
discussed in this section.

Graphicsto be learned from these projects:
Implementing sound modeling and visual communication for various science topics.

This chapter contains a varied collection of science-based examples that you can understand with a
basic knowledge of computer graphics, including viewing, modeling, and color. These examples
are not very sophisticated, but are a sound start towards understanding the role of computer
graphics in working with scientific concepts. The examples are grouped based on type of problem
so that similar kinds of graphics can be brought to bear on the problems. This shows some basic
similarities between problemsin the different areas of science and perhaps can help the student see
that one can readily adapt solutions to one problem in creating solutions to asimilar problemin a
totally different area.

Each example described below will describe a science problem and the graphic image or images
that address it, and will include the following kinds of information:
* A short description of the science in the problem
* A short description of the modeling of the problem in terms of the sciences
* A short description of the computational modeling of the problem, including any assumptions
that we make that could ssimplify the problem and the tradeoffs implicit in those assumptions
* A description of the computer graphics modeling that implements the computational modeling
* A description of the visual communication in the display, including any dynamic components
that enhance the communication
» Animage from an implementation of the model in OpenGL
* A short set of code fragments that make up that implementation
There topicsin this chapter cover only afew scientific applications, but are chosen to use only the
limited graphics tools we have at this point. Additional science examples arefoundin a later
chapter. They areacritical part of these notes because an understanding of the science and of the
scientific modeling is at the heart of any good computational representation of the problem and thus
at the heart of the computer graphics that will be presented.

Examples:

Modding diffusion of aquantity in aregion

1. Temperaturein ametal bar

A classical physics problem is the heat distribution in a metallic bar with fixed heat sources and
cold sinks. That is, if some parts of the bar are held at constant temperatures, we ask for the way
the rest of the bar responds to these inputs to achieve a steady-state temperature. We model the
heat distribution with a diffusion model, where the heat in any spot at time t+1 is determined by
the heat in that spot and in neighboring spots at time t. We model the bar as a grid of small
rectangular regions and assume that the heat flows from warmer grid regions into cooler grid
regions, so the temperature in one cell at agiven timeis aweighted sum of the temperaturesin
neighboring cells at the previoustime. The weights are given by a pattern such as the following,
where the current cell isat row m and column n:
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row\col | n-1 n n+1
m+1 0.05 0.1 0.05
m 0.1 0.4 0.1

m-1 0.05 0.1 0.05

That is, the temperature at time t+1 is the weighted sum of the temperatures in adjacent cells with
the weights given in the table. Thusthe heat at any grid point at any time step depends on the heat
at previous steps through a function that weights the grid point and all the neighboring grid points.
See the code sample below for the implementation of this kind of weighted sum. In this sample,
we copy the original grid, t enps[ ][], into abackup grid, back[ ][], and then compute the
next set of valuesin t enps[ ][] from the backup grid and the filter. This codeisfound inthe
idle callback and represents the changes from one time step to the next.

float filter[3][3]={{ 0.0625, 0.125, 0.0625 },
{ 0.125, 0.25, 0.125 },
{ 0.0625, 0.125, 0.0625 } }:

/1 first back tenps up so you can recreate tenps
for (i=0; i<ROWE; i++)
for (j=0; j<COLS; j++)
back[i+1] [j +1] = temps[i][j];
for (i=1; i<RONG+2; i ++) {
back[i][0] =back[i][1];
back[i ][ COLS+1] =back[i][ COLS];

}

for (j=0; j<COLS+2; j++) {
back[0][j] = back[1][j];
back[ ROAS+1] [j ] =back[ ROW8] [ ] :

/1 use diffusion based on back values to conpute tenp
for (i=0; i<ROWE; i++)
for (j=0; j<CAS; j++) {
temps[i][j]=0.0;
for (me-1; nx=1;, mt+)
for (n=-1; n<=1l; n++)
tenps[i][j]+=back[i+1+n][j+1+n]*filter[ m:1l][n+1];

/1l reset the tenperatures of the hot and cold spots
for (i=0; i<NHOTS; i++) {

tenmps[ hot spots[i][0]][hotspots[i][1]]=HOT; }
for (i=0; i<NCOLDS; i++) {

tenps[col dspots[i][0]][col dspots[i][1]]=COLD; }

/1 finished updating tenps; now do the display
gl ut Post Redi spl ay(); /* performdisplay again */

The behavior of the model isto reach a steady state in which the hot and cold spots stay fixed and
all the other pointsin the region reach an intermediate temperature with the overall inflow and
outflow of heat are the same. The display at one step in the processis shown in Figure 5.1.

The display was discussed earlier in the module on visual communication, but it bears reviewing
here. Each grid element is displayed as abar (a vertically-scaled cube, trandated to the position of
the element) whose height and color are determined by the temperature. This provides a dual
encoding of the temperature information, and the image is rotated slowly around its center so the
viewer can see the bar from all directions. Variations on the display would include color-only,
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height-only, and varying the amount of the rotations (including the possibility of having no rotation
so the user sees only the same view and can focus only on the color changes).

Figure 5.1: state of the heat in the bar asit moves towards stabilization

This processis readily modeled by modeling the problem in terms of changes between time steps,
and updating the temperatures at step t+1 from those at step t using the process described above.
As afirst graphics project, we need to deal with three things: defining agrid of temperatures and
modeling how the temperatures change from step to step, defining how the temperatures can be
modeled as a height field on the grid, and displaying the height field as a collection of rectangular
boxes that are scaled cubes whose color depends on the temperature. We thus have two ways to
encode temperature information, which allows a discusson of which encoding is more
informative. In addition to a simple display of the image with changing colors and heights, we
suggest adding an automatic rotation of the image in order to allow the student to see how the
height field looks from al directions. The example in the figure shows this dual encoding as well
asthe effect of different hot and cold spotsin the bar.

2. Spread of diseasein aregion

In this example, we have an infectious disease (the origina model was malaria) that arisesin one
location and spreads both within and between regions. The model is based on a few smple
premises: that disease is spread by contact between infected and susceptible persons, that contact is
approximated by the product of the number of infected persons and the number of susceptible
persons, and that a certain proportion of infected persons recover and become immune at any given
time. If we represent the numbers of susceptible, infected, and recovered persons by the functions
S, I, and R of time, respectively, then a single-population infection is modeled by the three
difference equations

S(n+l) = S(n) - a*l(n)*S(n)

I(n+l) = 1(n) + a*l(n)*S(n) - b*S(n)

R( n+1) R(n) + b*S(n)
withinitial conditionsS(0) = P - e; 1(0) = e; R(0) = 0 andwithconstantsa and b
representing the rates of infection and recovery. However, if we include the concept of multiple
regions with separate populations in each region, this model is complicated by the interaction of
infected populations in one region with the susceptible populations in adjacent regions. This
changes the model of new infections from the ssimple a*1 (n) * S(n) to amore complex version
that includes the contact rate between persons from adjacent regions. In the real world, we can
imagine that there are some regions with no contact between populations, so the full model
includes some regions in which the disease cannot spread because of lack of contact. To avoid all
the complexities of how this could happen, we assume in this model that there is no contact across
lakes or rivers.

The computer implementation of this model illustrates the more complex contact situation. Here
we model the regions as an array of populations, with each having an internal population dynamic.
The regions are very homogeneous in our model, but could be made more complex. We also
include the lake and river concept by making some regions have populations of zero, which isan
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effective way to ensure that no contact, and hence no spread of disease, can happen. 1n our model,
these regions are colored blue to distinguish them from the other regions. The primary code for the
model isin the idle callback, and we show this and the initialization code for the regions below.
The code to back up the working array is the same as that in the model for heat transfer and is
omitted here to save space. The code for the legend is not presented here because that is presented
in the visual communication module above.

/1l set up initial states
for (i=0; i<ROWS;, i++) {
for (j=0; j < COLS; J++) {

regions[i][j].s =

regions[i][j].1 = eglons[l][J] r = 0.

regions[i][j].aN = regions[i][]].aE =
regions[i][j].aS = regions[i][j].aWw= 0.01

}

/1 exceptions: |ake and other barriers; initial infection in one region
for (i = 25; 1<36; i++ )
for (j=25; j<36; j++ ) {
regions[i][j].s = 0.;
regions[i][j].aN = reglons[l][J] akE =
regions[i][j].aS = regions[i][j].aWw= 0.0;

}
for (i = 36; i<50; i++)
for (j=25; j<27; j++) {
regions[i][j].s = 0.;
regions[i][j].aN = regions[i][]j].aE =
regions[i][j].aS = regions[i][j].aWw= 0.0

}
regi ons[ 20][20].i
regi ons[ 20][20].s

200. ;
P - 200.;

voi d ani mat e(voi d)

/1 use diffusion based on nodel using back values to conpute tenp
for (ii=0; ii<ROMN5;, ii++)
for (JJ =0; JJ<COLS ji++) A
i =i+l ) =]+
new = al pha*back[i][j].i*back[i][]].s;

if (i!=0)

newi += al pha*(back[i][]j].aN*back[i-1][j].i*back[i][]j]-S);
if (j!=COLS)

newi += al pha*(back[i][]j].aE*back[i][]j+1].i*back[i][]j].Ss);
if (i = RONB)

newi += al pha*(back[i][]j].aS*back[i+1][]j].i*back[i][]j].S);
it (j '=0)

newi += al pha*(back[i][]j]. aVVback[l][J 1] .i *back[i][j]-s);
regions[ii][jj].r += beta * back[i][]].
regions[ii][jj].i (1.-beta)* baCk[I][j] i + new ;
regions[ii][jj].s back[i][j]-s - new;

}
gl ut Post Redi spl ay();
}

Thedisplay in Figure 5.2 is presented as arotation region on the left and a stationary legend on the
right. Asthe region on the left rotates, each rotation step correspondsto a time step for the
infection simulation, showing how the infection spreads and goes around the barrier regions. This
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allows a user the chance to examine the nature of the disease spread and, by watching the behavior
of the infection in adjacent regions, to see what amounts to the history of theinfectionin asingle
population. One could vary the display by adjusting the rate of rotation (down to zero), by
randomizing some of the parameters of the smulation, or by using color alone for the display.

< I

Figure 5.2: the malaria spread model showing the behavior around the barrier regions

An interesting extension of the simulation would be to experiment with the barriers that force the
disease spread to take on interesting directions, and to consider more sophisticated models of
heterogeneous populations or differing population interactions. The most critical thing to noticeis
probably that aslong as there is any population interaction at all, the disease will spread to the new
population; any attempt to control the spread of the infection will fail unless the separation is
complete.

Simple graph of areal function of two variables

Surfaces are plotted aswe illustrate in Figure 5.3. We create a grid on arectangular domain in
two-space and apply a function or functions to each of the pointsin the grid to determine a two-
dimensional array of pointsin three-space. Thisfigure illustrates the fundamental principal for

Figure 5.3: mapping a domain rectangle to a surface rectangle
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surfaces that are given by a simple function of two variables; it shows a coarse grid on the domain
(only a6x6 grid for afunction surface so you may see the underlying grid) and the relationship of
the function’s value to the surface. Those points are used to determine rectangles in three-space
that can be displayed with standard OpenGL functions. Each rectangleis actualy displayed as two
triangles so that we can display objects that are guaranteed to be planar. The display in the figure
uses standard lighting and flat shading with a good deal of specularity to show the shape of the
surface, but we will explore many presentation options for creating the display. The gridded
surfaces we create in this way are only approximations of the real surfaces, of course, and specia
cases of functions such as points of discontinuity must be considered separately.

3. Mathematical functions

If we consider afunction of two variables, z=f ( x, y) , acting on a contiguous region of real two-
space, then the set of points (x, y, f (x, y)) formsasurfacein real three-space. This project
explores such surfaces through processes that are described briefly in the figure above.

The goal of the example isto allow you to see the fundamental principles of surfaces by creating a
rectangular domain in X-Y space, evauating the function at aregular grid of pointsin that domain,
and creating and displaying small rectangles on the surface that correspond to a small rectangle in
the underlying grid. Thisisnot quite so ssmple, however, because the rectangle in the surface may
not be planar. We solve that problem by dividing the surface rectangle into two triangles, each of
which is planar.

Thefirst step in the project isto create asingle view of asurface. The challenges are to create the
view environment and to understand what is meant by the surface triangles and rectangles, and
how they are generated. Because we do not yet have the background to manage lights and lighting
models, we will use color to represent the value of the function when we display the surface, so
we will set the color for each triangle to represent the height of that triangle in the surface.

The code to implement this display uses simple functions to map array indices to domain values
and uses an array to hold the function values at each grid point. It includes declaring the array,
defining the ssimple functions, loading the array, and rendering the surface.

/1 Parameters of the surface grid; NxMgrid needs XSIZE = N+1, YSIZE = M+l
#def i ne XSI ZE 100
#defi ne YSI ZE XSI ZE

#define MNX -6.0
#def i ne MAXX 6.0
#defi ne M NY 6.0
#def i ne MAXY 6.0

static GLfloat vertices[ XSl ZE][ YSI ZE] ;

/1 functions for X and Y values for array indices i and j respectively
Gfloat XX(int i) {

return (M NX+((MAXX-M NX)/ (float) (XSI ZE-1))*(float) (i));
}

Gfloat YY(int j) {
return (M NY+((MAXY-M NY)/ (float)(YSIZE-1))*(float)(j));
}

" for (i=0; i <XSIZE i++)
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for ( j=0; j<YSIZE, j++ ) {
X = XX(i);
y = YY(j);
vertices[i][j] = 0.3*cos(x*x+y*y+t); break;

}

/1 actually draw the surface */
for ( i=0; i<XSIZE-1; i++)
for ( j=0; j<YSIZE-1; j++ ) {
/1 first triangle in the quad, front face
gl Begi n( GL_POLYGON) ;
/1l set color of polygon by the z-val ue

gl End()
/1 second triangle in the quad, front face
gl Begi n( GL_POLYGON) ;

/1l set color of polygon by the z-val ue

o 0] simlar to above
gl End();

Note that the function 0. 3*cos(x*x+y*y+t) above includes a parameter t that can be
incremented to provide the surface animation described in Figure 5.4 below. The display isvery
simple because the goal of the example is simply to understand the nature of the function by the
shape of its function surface.

Figure 5.4: an example of afunction surface display

In order to have a good set of functions to work with, we encourage you to look at your courses,
including courses in physics or chemistry, or in references such as the CRC tables of mathematical
functions for curious and interesting formulas that you do not immediately understand, with agoal
of having your images help with this understanding.

To avoid having to change the code and recompile when you want to look at a different function,

we suggest creating a menu of surfaces and defining the project to include menu selection for the
function. Some interesting functionsto consider for this are:
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C * (X3 - 3*x*y"2)

c * (x4l ar4 - yn4/br4)

(a*x"2 + b*ynr2)/ (x"2+yr2)

c*cos(2*_*a*x*y)

c*cos(2* _Farx)*(2*_*a*y)

z c*log(a*x"2 + b*y”2)

In this prOJect it Is fairly easy to pose some questions about the meaning of what you see,
particularly if the you have chosen a good set of functions that have various kinds of
discontinuities within ausual domain. Note that function 3 includes an essential singularity at the
origin, so you will be faced with having to interpret this surface' sinaccuracies.

N N N NN
I

oA LODdE

4. Electrostatic potential function

The electrogtatic potential P( x, y) at agivenpoint ( x, y) inaplane that contains several point
chargesQ isgiven by Coulomb’slaw:

. o) Qi
P9 = A Tooaoors

where each charge Q ispositioned at point ( xi , yi ). Thisfunction can readily be presented
through a surface plot using standard graphics techniques as described above. Thisisarea-valued
function of two real variables defined on the real plane, so the only issue is defining the domain on
which the function is to be graphed and the grid on the domain. Again, the color of each trianglein
the surface is set by the height, or z-value, of thetriangle. Thereis one problem with the function,
however — it has singularities at the points where the point charges lie. The sample code with this
example avoids the problem by adding a small amount to the distance between a point in the plane
and each point charge. Y ou can see this easily in the code below:

#def i ne MAXCHARGES 3

typedef struct { float charge, xpos, ypos; } charges;
charges (Q MAXCHARGES] ={ { 5.0, 3.0, 1.0},
-5.0, 1.0, 4.0},
{-10.0 ,2.0, 2.0} };

float coul Surf(float x, float y)

{
float retVal, dist;

int i;

retVal = 0.0;

for (i=0; i<MAXCHARGES; i++) {
dist=sqrt((x-qi].xpos)*(x-Qqi].xpos)+(y-qi].ypos)*(y-di].ypos)+0.1);
retVal += i].charge/dist;

retVal = retVal / 6.0; // scale in vertical direction
return (retVval);

}

The example produces the result shown in Figure 5.5 below, with both a lighted surface and
pseudocolor presentation, as shown in the earlier discussion of visual communication. Aswe will
see later in these notes, when you have introduced interactive controls to your programs, you will
be able to select one of the point charges (using either a menu or a mouse selection) and can
experiment with this surface by moving the charged point around the plane or by changing the
amount of charge at the point, or you may add or delete point charges. This can make an
interesting example for interaction.
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Figure 5.5: the coulombic surface from three point charges (one positive, two negative) in aplane,
with both a surface and a pseudocolor presentation

Simulating a scientific process

5. Gaslaws

It isfairly simple to program a simulation of randomly-moving molecules in an enclosed space.
This simulation models the behavior of gasesin a container and can allow a student to consider the
relationship between pressure and volume or pressure and temperature in the standard gas laws.
These laws say that when temperature is held constant, pressure and volume vary inversely. The
simulation can display the principles involved and can allow a user to query the system for the
analogs of temperature and pressure, getting back data that can be used in a statistical test of the
law above.

The simulation is straightforward: the student defines an initial space and creates alarge number of
individual pointsin that space. Theidle callback gives each point a random motion with aknown
average distance (smulating a fixed temperature) in arandom direction. The space can be enlarged
or shrunk. If the volumeis shrunk, any points that might have been outside the new smaller space
are moved back into the space; if the volume is expanded, points are allowed to move freely into
the new space. If the motion would take the point outside the space, that motion is reflected back
into the space and a*“ hit” is recorded to ssmulate pressure in the space. This count serves to model
the pressure. So the student can use interactive controls to change the volume and observe the
number of counts, testing the hypothesis that the number of counts increases inversely with the
surface area. The student could also change the average distance of a random motion, modeling
temperature changes, and test the hypothesis that the number of counts increases directly with the
distance (that is, the temperature). Information on the volume, collision count, or distance traveled
can be retrieved at any point by asimple keystroke. In fact, the small number of moleculesin this
simulation give avery large variability of the product of surface area and collisions, so the student
will need to do some sample statistics to test the hypothesis.

The computational model for this processis straightforward. The points are positioned at random

initial locations, and the idle callback handles motion of each particle in turn by generating a
random offset that changes the particle’ s position. One particle has its motion tracked and arecord
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of its recent positions drawn to illustrate how the particles travel; the resulting track (the yellow
track in the figure below) is a very good example of arandom walk. The code for the trail for one
point, for the idle callback, and for tallying the hitsis:

/1 code for the trail of one point
gl Begi n(GL_PO NTS) ;
for ( i=0; i<=NMOLS; i++ ) {
gl Vertex3fv(nol s[i]);
if (i == 0) {
if (npoints < TRAILSIZE) npoints++
for (j=TRAILSIZE-1; |j>0; j--)
for (k=0; k<3; k++)
trail[j][k]=trail[j-21][k];
for (k=0; k<3; k++){
trail[O0][k] = nmols[i][K];

}
}

/1 the idle() callback
voi d ani mat e(voi d)

L
int i,j,sign;
bounce = 0;
for(i=0; i<NMOLS; i++) {
for (j=0; j<3; j++) {
sign = -1+2*(rand() %) ;
mol s[i][j] +=
(float)sign*distance*((fl oat) (rand() %GRAN)/ (fl oat) (GRAN));
if (nmols[i][j] > bound)
{mol s[i][j] = 2.0*bound - nols[i][j]; bounce++;}
if (nmols[i][j] <-bound)
{mol s[i][j] = 2.0*(-bound) - nols[i][j]; bounce++;}
}
}
gl ut Post Redi spl ay();
}

/1 tally the hits on the surface of the volune
void tally(void)

float pressure, vol une;

pressure = (fl oat)bounce/ (bound*bound); /1 hits per unit area
vol une = bound* bound* bound; /1 di mensi on cubed
printf("pressure %, volune %, product %\n",
pressure, vol une, pressure*vol une) ;
}

A display of the volume and retrieved information is shown in Figure 5.6 below. This example
naturally uses ssmple color and no lights because its goal is simply to show position and motion of
the particles at any time step.
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Figure 5.6: Displaying the gas as particlesin the fixed space, with simulation printouts included

The display operates by providing a very rapid animation of the particles, so the user gets the
strong impression of molecules moving quickly within the space. It is possible to move the view
around with the keyboard, and every time the user pressesthe ‘t’ key the program produces atally
such as that shown at the bottom of the figure. Thisthe visual communication takes the form of an
actual experiment that is probed at any time to read the current state. Of course, there are some
possible problems with the smulation; if the user expands the space quickly, it may take some time
for the particles to move out to the boundaries so the tallies are likely to be low for awhile, and if
the user contracts the space too quickly, the particles are seen outside the box for a short period
until they can be brought back inside.

One may properly ask why this simulation does not demonstrate the relationship between pressure
and temperature in the gas laws. This is primarily because the smulation does not include
collisions between molecules. Adding this capability would require so much collision testing that it
would slow down the simulation and take away the real-time nature of the display.

6. Diffusion through a semipermeable membrane

One of the common processes in biological processes involves molecules transporting across semi-
permeable membranes. These membranes will allow moleculesto pass at varying rates, depending
on many factors. One of these factorsis the molecular weight, where lighter molecules will pass
through a membrane more easily than heavier molecules. (A more realistic factor isthe physical
dimension of the molecule, and this project can be re-phrased in terms of molecule size instead of
weight).
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This project involves processes very much like the gas law simulation above, including random
motion of the molecules (represented as points), tracing the recent motion of molecules viarolling
arrays, and the inclusion of atally function. However, this simulation adds a plane between two
regions and simulates the behavior of a semipermeable membrane for molecules of two different
weights (here called “light” and “heavy” without any attempt to match the behaviors with those of
any real molecules and membranes).

The code we present for this concentrates on simulating the motion of the particles with special
attention to the boundaries of the space and the nature of the membrane, all contained in theidle
cdlback:

voi d ani mat e(voi d)

{
#defi ne HEAVYLEFT 0.8
#defi ne HEAVYRI GHT 0.9
#define LI GHTLEFT 0.3
#define LIGHTRIGHT 0.1

#define LEFT O
#define RIGHT 1
int i,sign,whichside;

for(i=0; i<NHEAVY; i++) {
if (heavy[i][0] < 0.0) whichside = LEFT; el se whichside = RI GHT,;
sign = rand()%; if (sign == 0) sign = -1;
heavy[i][0] += sign*(float)(rand()%RAN)/(fl oat) (16*GRAN);
sign =rand()%; if (sign == 0) sign = -1;
heavy[i][1] += sign*(float)(rand()%RAN)/(fl oat) (16*GRAN);
sign = rand()%; if (sign == 0) sign = -1,
heavy[i][2] += sign*(float)(rand()%RAN)/(fl oat) (16*GRAN);
if (heavy[i][0] > 1.0) heavy[i][O0] = 2.0 - heavy[i][O];
i f ((whichside==RIGHT) &(heavy[i][0] < 0.0)) // cross right to left?
if ( (float)(rand()%RAN)/ (fl oat)( GRAN) >= HEAVYLEFT)
heavy[i][0] = -heavy[i][0];
i f ((whichside==LEFT) &&( heavy[i][0] > 0.0)) [/ cross left to right?
if ( (float)(rand()%RAN)/ (fl oat) (GRAN) >= HEAVYRI GHT)
heavy[l][O]

fl
= -heavy[i][0];
f (heavy[i][0O] > 1.0) heavy[i][0] = 2.0 - heavy[i][O0];
f (heavy[i][O0] <-1.0) heavy[i][0] =-2.0 - heavy[i][O];
if (heavy[i][1l] > 1.0) heavy[i][1] = 2.0 - heavy[i][1];
if (heavy[i][1l] < 0.0) heavy[i][1l] = -heavy[i][1];
if (heavy[i][2] > 1.0) heavy[i][2] = 2.0 - heavy[i][2];
f (heavy[i][2] < 0.0) heavy[i][2] = -heavy[i][2];

}

for(i=0; i<NLIGHT; i++) {
if (light[i][O] < 0.0) whichside = LEFT; el se whichside = Rl GHT;
sign = rand()W®; if (sign == 0) S|gn—-1
light[i][0] += S|gn*(float)(rand()lVG?\’AN)/(float)(lG*GRAN);
sign = rand()%; if (sign == 0) sign = -1;
light[i][1] += sign*(float)(rand()%RAN)/(float) (16*GRAN);
sign =rand()%; if (sign == 0) sign = -1;
light[i][2] += S|gn*(float)(rand()%ERAN)/(float)(16*GRAN);
if (light[i][O0] > 1.0) light[i][0] = 2.0 - light[i][O];
if ((whichside == RIGHT) &&(1ight[i][0] < 0.0))

if ( (float)(rand()¥RAN)/ (float)(GRAN) >= LI GHTLEFT)
light[i][0] = -light[i][O];
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if ((whichside == LEFT)&&(light[i][0] > 0.0))
if ( (float)(rand()%RAN)/ (float) (GRAN) >= LI GHTRI GHT)

light[i][0] = -light[i][O];

if (light[i][0] <-1.0) Tight[i][0] =-2.0 - light[i][O];
if (light[i][1] > 1.0) light[i][1] = 2.0 - light[i][1];
if (light[i][1] < 0.0) light[i][1] = -light[i][1];

if (light[i][2] > 1.0) light[i][2] = 2.0 - light[i][2];
if (light[i][2] < 0.0) light[i][2] = -light[i][2];

}
gl ut Post Redi spl ay() ;
}

This display, shown in Figure 5.7, has with pretty effective animation of the particles and allows
the user to rotate the simulation region to view the behavior from any direction. The program
presents the tally results in a separate text-output region which isincluded with the figure at left
below. Thetallysweretaken at approximately one-minute intervalsto illustrate that the system
settlesinto afairly consistent steady-state behavior over time, certainly something that one would
want in asimulation. The membrane is presented with partial transparency so that the user gets a
sense of seeing into the whole space when viewing the simulation with arbitrary rotations.
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Figure5.7: display of the diffusion simulation, directly across the membrane at left (including data
output from the simulation), and in aview oriented to show the membrane itself at right.
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The OpenGL Pipeline
Prerequisites

An understanding of graphics primitives that will enable the student to see how the primitives are
handled by the pipeline operations discussed in this chapter.

Introduction

In an earlier chapter we saw the outline of the graphics pipeline at arather high level. Inthis
chapter we will look at the pipeline in more detail, focusing on the implementation of the pipelinein
the OpenGL system.

The Pipeline

The OpenGL system is defined in terms of the processing described by the first figure below. In
thisfigure, system input comes from the OpenGL information handled by the processor and the
output is finished pixelsin the frame buffer. The input information consists of geometric vertex
information that goes into the display list, polynomial information from evaluators that goes to the
evauator, and texture information that goes through pixel operationsinto the texture memory. We
will outline the various stages of the system’s operations to understand how your geometry
specification isturned into the image in the frame buffer.

Per Vertex
Operations &
Primitive
Assembly

.| Polynomial
“| Ewvaluator

v

CPU

.| Display
List

Per Fragment
Operations

y

Rasterization

Texture
Memory

Figure: the OpenGL system model

Pixel
Operations

Let us begin with asimple polygon. The 3D vertex geometry that you specify is passed into the
display list and is then forwarded to the per-vertex operations. Here the modelview matrix, which
includes both the model transformation and the viewing transformation in OpenGL, is applied to
the vertices in modeling coordinates to transform them into 3D eye coordinates, and clipping is
done against the edges of the view volume or against other planes if enabled. Next the projection
transformation is applied to transform them into 2D eye coordinates. |If texture and lighting have
been enabled, further operations compute texture coordinates for the vertex and apply the lighting
model to calculate the color for the vertex. When this step is finished, each vertex in 2D eye space
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is completely prepared for rasterization, including having its color, depth, and optionally texture
coordinates cal culated.

In the rasterization step, the polygon itself isfilled in by an interpolation process based on the
vertex coordinates. For each scan line of the frame buffer that meets the polygon, the endpoints of
the scan are interpolated from appropriate vertices and each pixel between them has its color,
depth, and optionally texture coordinates computed to create what is called afragment. These
fragments are then passed to the per-fragment operations.

Much of the power of the OpenGL system liesin its treatment of these fragments. A fragment first
has any texturing done, where the texture coordinates for the fragment are used to read the texture
memory and determine what texture color to apply to the fragment. Fog calculations are done next,
and then a series of tests are applied as described in the following figure:

Stencil
Test

Fragment

Logical
Crperations

Blending Dithering

Framebuffer

Figure: details of fragment processing

This series of tests determines whether afragment will be visible and, if it is, how it will be treated
as it moves to determine a pixel in the frame buffer. Details on most of these various operations
will be covered in the next few chapters.

While we have been discussing the actions on vertex points, there are other operations in the
OpenGL system. We briefly mentioned the use of the polynomial evaluator; this comes into play
when we are dealing with splines and define evaluators based on a set of control points. These
evaluators may be used for geometry or for a number of other graphic components, and hereis
where the polynomial produced by the evaluator is handled and its results are made available to the
system for use. Thisis discussed in the chapter on spline modeling below.

Another area we have glossed over is the per-pixel operations. In this areainformation from a
texture map (an array in memory) is trandated into information that can be used for texture
mapping. The arrow from the frame buffer back to the pixel operations indicates that we can take
information from the frame buffer and write it into another part of the frame buffer or even make it
into atexture map itself.

Implementation in Graphics Cards
The system described above is very general and describes the behavior required to implement the

OpenGL processes. In practice, the system isimplemented in many ways, and the diagram below
shows the implementation in atypical graphicscard ...
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Figure: an implementation of the OpenGL system in atypical graphics card
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Lightsand Lighting
Prerequisites

An understanding of color at the level of the discussion of the chapter on color in these notes, and
some observation of the way lights work in creating the images of the world around you.

Introduction

There are two ways to think of how we see things. Thefirst is that things have an intrinsic color
and we simply see the color that they are. The color is set by defining a color in RGB space and
simply instructing the graphics system to draw everything with that color until anew color is
chosen. This approach is synthetic and somewhat simpleminded, because it’s clear that thingsin
the real world don’t behave like this; they have a color, but the color they have is strongly
influenced by the light that illuminates them, so it’s somehow wrong not to take the light into
account in presenting a scene.

The second way to think of how we see thingsisto realize that seeing involves light that reaches us
because of physical interaction between light and the objects we see. Light sources emit energy
that reaches the objects and is then re-sent to us in ways that involve the color of the light and the
physical properties of the objects. In this chapter we will discuss how this way of thinking about
light allows us to model how we see the world, and how computer graphics distills that into fairly
simple definitions and relatively straightforward computations to produce images that seem to have
areationship to the lights and materials present in the scene.

A first step in devel oping graphics that depends on lights and materialsis to create amodel of the
nature of light. In the simplified but workable model of light that we will use, there are three
fundamental components of light: the ambient, diffuse, and specular components. We can think
of each of these asfollows:
ambient: light that is present in the scene because of the overall illumination in the space. This
can include light that has bounced off objects in the space and that is thus independent of
any particular light.
diffuse: light that comes directly from a particular light source to an object, where it is then
sent directly to the viewer. Normal diffuse light comes from an object that reflects a subset
of the wavelengths it receives and that depends on the material that makes up an object,
with the effect of creating the color of the object.
specular: light that comes directly from a particular light source to an object, whereit is then
reflected directly to the viewer because the object reflects the light without interacting with it
and giving the light the color of the object. Thislight is generally the color of the light
source, not the object that reflects the light.
All three of these components contribute to the light at every wavelength, and the graphics system
models this by applying them to the RGB components separately. The sum of these light
componentsisthe light that is actually seen from an object.

Just asthe light is modeled to create an image, the materials of the objects that make up the scene
are modeled in terms of how they contribute to the light. Each object will have a set of properties
that defines how it responds to each of the three components of light. The ambient property will
define the behavior (essentially, the color) of the object in ambient light, the diffuse property in
diffuse light, and the specular property in specular light. Aswe noted above, redlistic lighting
tends to assume that objects behave the same in ambient and diffuse light, and that objects simply
take on the light color in specular light, but because of the kind of calculations that are done to
display alighted image, it is as easy to treat each of the light and material properties separately.



Thusin order to use lights in a scene, you must define your lights in terms of the three kinds of
color they provide, and you must define objects not in simple terms of their color, but in terms of
their material properties. Thiswill be different from the process we saw in the earlier module on
color but the changes will be something you can handle without difficulty. The OpenGL API has
its own way to specify the three components of light and the three components of materials, and
we will also discuss this below when we talk about implementing lighting for your work.

Definitions

Ambient, diffuse, and specular light

Ambient light is light that comes from no apparent source but is simply present in ascene. Thisis
the light you would find in portions of a scene that are not in direct light from any of the lightsin
the scene, such as the light on the underside of an object, for example. Ambient light can come
from each individual light source, as well as from an overall ambient light value, and you should
plan for each individual light to contribute to the overall brightness of a scene by contributing
something to the ambient portion of the light. The amount of diffuse light reflected by an object is
given simply by A=Lax Cp for a constant Ca that depends on the material of the object and the

ambient light L o present in the scene, where the light L a and constant Cp, are to be thought of as

RGB triples, not simple constants, and the calculation isto yield another RGB value. Ambient
light isusually fairly low-level if you want to emphasize the effect of the lights (you might think of
thisas anight effect) or fairly high-level if you want to see everything in the scene with afairly
uniform light (this would be a brightly-lit effect). If you want to emphasize shapes, use afairly
low ambient light.

Diffuse light comes from specific light sources and is reflected by the surface of the object at a
particular wavelength depending on properties of the object’s material. The OpenGL model for
diffuse light is based on the concept that the intensity of light seen on a surface is proportional to
the amount of light falling on a unit of the surface area. Thisis proportional to the cosine of the
angle between the surface normal and the light direction aslong as that cosine is positive, and zero
otherwise, asillustrated in the diagram in Figure 9.1. Asthe angle of incidence of the light on the
surface decreases, the amount of light reflected from the surface becomes dimmer, going to zero
when the light is parallel to the surface. Because it isimpossible to talk about “negative light,” we
replace any negative value of the cosine with zero, which eliminates diffuse light on surfaces facing
away fromthelight. The diffuse lighting cal culation computes the amount of diffuse light as

D = Lp*Opfeos(Q) = LGyt (LeN)
for the value of the diffuse light L p from each light source and the ambient property of the material
Cp, which shows why we must have surface normals in order to calculate diffuse light. This

computation is done separately for each light source and each object, because it depends on the
angle from the object to the light. It isimportant to note that diffuse light is independent of the
point from which we view the material, and thus the location of the eye point does not participate in

) L <—1/cog( Q) cross section on surface
one unit cross sectioninlight 7

Figure 9.1: diffuse lighting
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the diffuse light computation. Thisis obvious from looking at the world around us, because things
do not change color as the angle between their normals and our eye direction does not change as
we move around. The lighting model supports this behavior, asis seen by noting that for the unit
areain Figure 9.1, the geometric size of that area as seen from any point decreases in exactly the

same way the diffuse light diminishes as the angle Q grows from 0 to p/2, so the brightness of the
surface (the light per unit area) remains the same.

Soecular light is a surface phenomenon that provides shiny highlights. These depend on the
smoothness and el ectromagnetic properties of the surface, so smooth metallic objects (for example)
reflect light well. The energy in specular light is not absorbed by the object and re-radiated, but is
reflected with the angle of incidence equal to the angle of reflection, asillustrated in the left-hand
diagram of Figure 9.2. Such light may have a small amount of “spread” asit |eaves the object,
depending on the shininess of the object, so the standard model for specular light allows you to
define the shininess of an object to control that spread. Shininessis controlled by a parameter

light L reflection R
normal N

Figure 9.2: specular lighting

which gives smaller, brighter highlights asit increases, as shown in the three successive figures of
Figure 9.3.

Figure 9.3: specular highlights with shininess coefficients 20, 50, and 80
(left, center, and right), respectively

The specular light seen on an object in the image is given by

S = Lg"Cs*c0s (Q) = Lg*Co*(EsR) "
for alight’s specularity Lg and the object’s specular coefficient Cg. Note that this depends on the
angle between the eye and the light reflection, because specular light islight that is reflected directly
by reflection from the surface of an object. In addition, the computation involves the value of the
shininess coefficient N that depends on the light and on the material. Note the visual effect of
increasing the shininess coefficient: the highlight gets smaller and more focused—that is, the
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sphere looks shinier and more polished. This produces afairly good model of shininess, because

thefunction cos N( Q) hasvalue very near oneif theangle Q is small, and drops off quickly asthe
angle increases, with the speed of the dropoff increasing as the power isincreased. The specular
light computation is done separately for each light and each object, because it depends on the angle
from the object to the light (as well as the angle to the eye point). This calculation depends
fundamentally on both the direction from the object to the light and the direction of the object to the
eye, so you should expect to see specular light move as objects, lights, or your eye point moves.

Because both diffuse and specular lighting need to have normals to the surface at each vertex, we
need to remind ourselves how we get normalsto a surface. One way to do thisisanalyticaly; we
know that the normal to a sphere at any given point isin the direction from the center of the sphere
to the point, so we need only know the center and the point to calculate the normal. In other cases,
such as surfaces that are the graph of afunction, it is possible to calculate the directional derivatives
for the function at a point and take the cross product of these derivatives, because the derivatives
define the tangent plant to the surface at the point. But sometimes we must calcul ate the normal
from the coordinates of the polygon, and this caculation was described in the discussion of
mathematical fundamentals by taking the cross product of two adjacent edges of the polygon in the
direction the edges are oriented.

So with the mechanics of computing these three light valuesin hand, we consider the constants that
appeared in the calculations above. The ambient constant is the product of the ambient light
component and the ambient material component, each calculated for the red, green, and blue parts
respectively. Similarly the diffuse and specular constants are the products of their respective light
and material components. Thus awhite light and any color of material will produce the color of the
material; ared light and ared material will produce ared color; but ared light and a blue material
will produce a black color, because there is no blue light to go with the blue material and thereisno
red material to go with thered light. Thefinal light at any point is the sum of these three parts: the
ambient, diffuse, and specular values, each computed for all three RGB components. If any
component has afinal value larger then one, it is clamped to have value 1.

When you have multiple lights, they are treated additively — the ambient light in the scene is the
sum of any overall ambient light for the entire scene plus the ambient lights of the individual lights,
the diffuse light in the scene is the sum of the diffuse lights of the individua lights, and the
specular light in the scene is the sum of the diffuse lights of the individual lights. Asabove, if
these sums exceed one in any one component, the value is clamped to unity.

As we saw above, you need to calculate normals to the surface in order to compute diffuse and
specular light. Thisis often done by defining normal vectors to the surface in the specifications of
the geometry of a scene to allow the lighting computation to be carried out. Processes for
computing normals were described in the early chapter on mathematical fundamentals. These can
involve analysis of the nature of the object, so you can sometimes compute exact normals (for
example, if you are displaying a sphere, the normal at any point has the same direction as the
radius vector). If an analytic calculation is not available, normals to a polygonal face of an object
can be computed by calculating cross products of the edges of the polygon. However, it is not
enough merely to specify anormal; you need to have unit normals, normal vectors that are exactly
one unit long (usually called normalized vectors). It can be awkward to scale the normals yourself,
and doing this when you define your geometry may not even be enough because scaling or other
computations can change the length of the normals. In many cases, your graphics APl may
provide away to define that al normals are to be normalized before they are used.

In the next chapter we will discuss shading models, but here we need to note that all our lighting

computations assume that we are calculating the light at a single vertex on amodel. If we choose
to do this calculation at only one point on each polygon, we can only get a single color for the
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polygon, which leads to the kind of lighting called flat shading. If we wanted to do smooth
shading, which can give a much more realistic kind of image, we would need to determine a
separate normal for each vertex so that the lighting computation could give us a color for each
vertex. If the vertex is part of several polygons and we want to calculate a normal for the vertex
that we can use for all the polygons, we can calculate a separate normal based on each of the
polygons and then average them to get the normal for the vertex. The individual colors for the
vertices are then used to calculate colors for all the pointsin the polygon, asis discussed in more
detail in the next chapter.

Note that none of our light computation handles shadows, however, because shadows depend on
the light that reaches the surface, which is avery different question from the way light is reflected
from the surface. Shadows are difficult and are handled in OpenGL with very specidized
programming which we will not cover in these notes.

Use of materids

Aswe said earlier, lighting involves two parts: both the specification of the lighting properties of
the objects in the scene, and the specification of the lightsin ascene. If you want to use lighting in
creating a scene, you must specify both of these. Here we discuss material specifications, and we
follow this by discussing light properties, but implementing lighting involves putting these all
together asis discussed in the example at the end of this chapter.

Aswe saw above, each object participates in determining the reflected light that makes up its color
when it isdisplayed. In the discussion of the three components of light, we saw four constants
Ca Cp, Cg, and Nthat are part of the computations of the light. The first three of these constants
have separate RGB components and together the four constants identify the way amaterial interacts
with light, so they are often called the set of definitions of the material. They need to be defined
for each object in your scene in order to allow the lighting calculations to be carried out. Y our
graphics APl will allow you to see these as part of your modeling work; they should be considered
as part of the appearance information you would include in a shape node in your scene graph.

All the discussion of lighting above assumed that an object is reflective, but an object can also be
emissive — that is, send out light of itsown. Such alight smply adds to the light of the object but
does not add extra light to the scene, alowing you to define a bright spot to present something like
an actual light in the scene. This is managed by defining a material to have an emissive light
property, and the final lighting calculations for this material adds the components of the light
emission to the other lighting components when the object’ s color is computed.

Light properties

Lights are critical components of your modeling work in defining an image, as we saw in the
discussion of lights in the scene graph in the modeling chapter. Along with the location of each
light, which is directly supported by the scene graph, you will want to define other aspects of the
light, and these are discussed in this section.

Y our graphics API allows you to define a number of properties for alight. Typically, these can
include its position or its direction, its color, how it is attenuated (diminished) over distance, and
whether it isan omnidirectional light or a spotlight. We will cover these properties lightly here but
will not go into depth on them all, but the properties of position and color are critical. The other
properties are primarily useful isyou are trying to achieve a particular kind of effect in your scene.
The position and color properties areillustrated in the example at the end of this chapter.
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Positional lights

When we want a light that works as if it were located within your scene, you will want your light
to have an actual position in the scene. To define alight that has position, you will set the position
as afour-tuple of values whose fourth component is non-zero (typically, you will set thisto be
1.0). Thefirst three values are then the position of the light and al lighting cal culations are done
with the light direction from an object set to the vector from the light position to the object.

Spotlights

Unless you specify otherwise, a positional light will shinein al directions. If you want alight that
shines only in a specific direction, you can define the light to be a spotlight that has not only a
position, but also other properties such as a direction, a cutoff, and a dropoff exponent, as you will
see from the basic model for a spotlight shown in Figure 9.4. The direction is simply a 3D vector
that istaken to be parallel to the light direction, the cutoff is assumed to be a value between 0.0 and
90.0 that represents half the spread of the spotlight and determines whether the light is focused
tightly or spread broadly (a smaller cutoff represents a more focused light), and the dropoff
exponent controls how much the intensity drops off between the centerline of the spotlight and the
intensity at the edge.

<« cutoff direction

Figure 9.4: spotlight direction and cutoff
Attenuation

The physics of light tells us that the energy from alight source on a unit surface diminishes as the
square of the distance from the light source from the surface. This diminishing is caled
attenuation, and computer graphics can model that behavior in a number of ways. An accurate
model would deal with the way energy diffuses as light spreads out from a source which would
lead to alight that diminishes as the square of the distance from the light, and the graphics system
would diminish the intensity of the light accordingly. However, the human perceptual systemis
more nearly logarithmic than linear in the way we see light, so we do not recognize this kind of
diminishing light as realistic, and we probably would need to use an attenuation that drops off
more slowly. Your graphics APl will probably give you some options in modeling attenuation.

Directiond lights

Up to now, we have talked about lights as being in the scene at a specific position. When such
lights are used, the lighting model takes the light direction at any point as the direction from the
light position to that point. However, if we were looking for an effect like sunlight, we want light
that comes from the same direction at all pointsin the scene. In effect, we want to have alight at
infinity. If your graphics API supports directional lights, there will be a way to specify that the
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light is directional instead of positional and that defines the direction from which the light will be
received.

Positioning and moving lights

Positional lights can be critical components of a scene, because they determine how shapes and
contours can be seen. As we noted in the chapter on modeling, lights are simply another part of
the model of your scene and affected by all the transformations present in the modelview matrix
when the light position is defined. A summary of the concepts from the scene graph will help
remind us of the issues here.

» Ifthelightisto beat afixed placein the scene, then it is at the top level of the scene graph and
you can define its position immediately after you set the eye point. Thiswill create a position
for the light that isindependent of the eye position or of any other modeling in the scene.

» Ifthelight isto be at a fixed place relative to the eye point, then you need to define the light
position and other properties before you define the eye position. The light position and
properties are then modified by the transformations that set the eye point, but not by any
subsequent modeling transformations in the scene.

» Ifthelight isto be at afixed place relative to an object in the scene, then you define the light
position as a branch of the group node in the scene graph that defines the object. Anything that
affects the object will then be done above that group node, and will affect the light in the same
way asit doestherest of the object.

» If thelight isto move around in the scene on its own, then the light is a content node of the
scene graph and the various properties of the light are defined as that node is set.

The summary of this modeling is that a positional light is treated simply as another part of the

modeling process and is managed in the same way as any other object would be.

Lights and materialsin OpenGL

Several times above we suggested that a graphics APl would have facilities to support several of
the lighting issues we discussed. Here we will outline the OpenGL support for lighting and
materials so you can use these capabilities in your work. In some of these we will use the form of
the function that takes separate R, G, and B parameters (or separate X, Y, and Z coordinates),
suchas gl Lightf(light, nane, set_ of val ues), whilein others we will use the
vector form that takes 3-dimensional vectors for colors and points, but in come cases we will use
the vector formsuch as gl Li ghtfv(Ilight, nane, vector _val ues), and you may use
whichever form fits your particular design and code best.

Specifying and defining lights

When you begin to plan your scene and are designing your lighting, you may need to define your
light model with the gl Li ght Mbdel (...) function. This will alow you to define some
fundamental propertiesof your lighting. Perhaps the most important use of this function is
defining is whether your scene will use one-sided or two-sided lighting, which is chosen with the
function

gl Li ght Model [f]i] (GL_LI GHT_MODEL_TWO_SI DE, val ue).
where[ f | i ] meansthat you use either theletter f or theletter i to indicate whether the parameter
valueisreal or integer. If the (real or integer) value of the numeric parameter is 0, one-sided
lighting is used and only the front side of your material is lighted; if the value is non-zero, both
front and back sides of your material are lighted. Other uses of the function include setting a global
ambient light, discussed below, and choosing whether specular calculations are done by assuming
the view direction is parallel to the Z-axis or the view direction is towards the eye point Thisis
determined by the function

gl Li'ght Model [f]i](GL_LI GHT_MODEL_LOCAL_VI EVER, val ue),
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with avalue of 0 meaning that the view direction is parallel to the Z-axis and non-zero that it is
toward the origin. The default valueisO.

OpenGL allows you to define up to eight lights for any scene. These lights have the symbolic
names G._LI GHTO ... G__LI GHT7, and you create them by defining their properties with the
gl Li ght *(...) functionsbeforethey are available for use. Y ou define the position and color of
your lights (including their ambient, specular, and diffuse contributions) asillustrated for the light
G._LI GHTO by the following position definition and definition of thefirst of the threelightsin the
three-light example

gl Lightfv(G_LIGHTO, G_PCSITION, light_posO ); // light O

gl Lightfv(G_LI GHTO, G._AMBI ENT, anb _color0 );

gl Lightfv(G_LIGHTO, G._D FFUSE, diff_col0 );

gl Lightfv(G_LI GHTO, G._SPECULAR, spec_col 0 );
Here we use alight position and specific Tight colors for the specular, diffuse, and ambient colors
that we must define in separate statements such as those below.

G float light posO ={ ..., ..., ... };

GQfloat diff colO={ ..., ..., ... };
In principle, both of these vectors are four-dimensional, with the fourth value in the position vector
being a homogeneous coordinate value and with the fourth value of the color vector being the alpha
value for the light. We have not used homogeneous coordinates to describe our modeling, but they
are not critical for us. We have used alpha values for colors, of course, but the default value for
alphain acolor is 1.0 and unless you want your light to interact with your blending design
somehow, we suggest that you use that value for the alpha component of light colors, which you
can do by simply using RGB-only light definitions as we do in the example at the end of this
chapter.

Aswe noted earlier in this chapter, you must define normals to your objects' surfaces for lighting
to work successfully. Because the lighting cal culations involve cosines that are calculated with dot
products with the normal vector, however, you must make sure that your normal vectors are all of
unit length. Y ou can ensure that thisis the case by enabling automatic normalization with the
function call gl Enabl e( GL._NORMALI ZE) before any geometry is specified in your display
function.

Before any light is available to your scene, the overall lighting operation must be enabled and then
each of theindividual lights to be used must also be enabled. Thisis an easy processin OpenGL.
First, you must specify that you will be using lighting models by invoking the standard enable
function

gl Enabl e(GL_LI GHTI NG ; /1 so lighting nodels are used
Then you must identify the lights you will be using by invoking an enable function for each light,
asillustrated by the following setup of all three lights for the three-light case of the example below:

gl Enabl e( G__LI GHTO) ; /] use LIGHTO
gl Enabl e( GL_LI GHT1) ; /1 and LI GHT1
gl Enabl e( GL_LI GHT2) ; /1 and LI GHT2

Lights may also be disabled with the gl Di sabl e( . ..) function, so you may choose when to
have a particular light active and when to have it inactive in an animation or when carrying out a
particular display that may be chosen, say, by auser interaction.

In addition to the ambient light that is contributed to your scene from each of the individual lights
ambient components, you may define an overall ambient light for the scene that is independent of
any particular light. Thisis done with the function:

gl Li ght Model f (G _LI GHT_MODEL _AMBIENT, r, g, b, a)
and the value of thislight is added into the overall ambient lighting computation.
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The remaining properties of lights that we discussed earlier in this chapter are also straightforward
to set in OpenGL. If you want a particular light to be a spotlight, you will need to set the direction,
cutoff, and dropoff properties that we described earlier in this chapter, as well as the standard
position property. These additional properties are set with the gl Li ghtf*(...) functions as
follows:

gl Lightf(light, G._SPOT_D RECTION, -1.0, -1.0, -1.0);

gl Lightf(light, G._SPOTr_CUTOFF, 30.0);

c?l Li ghth(I i ght, G._SPOT_EXPONENT, 2. 0)
If you do not specify the spotllght t cutoff and exponent these are 180 degrees (which means that
the light really isn’t aspotlight at all) and the exponent is 0. If you do set the spotlight cutoff, the
valueislimited to lie between 0 and 90, as we described earlier.

Attenuation is not modeled realistically by OpenGL, but is set up in away that can make it useful.
There are three components to attenuation: constant, linear, and quadratic. The value of each is set
separately as noted above with the symbolic constants G CONSTANT _ATTENUATI ON,
G._LI NEAR_ATTENUATI ON, and G._ QUADRATI C ATTENUATI ON. If these three attenuation
coefficientsare A, A , and Ag respectively, and the distance of the light from the surface is D,
then the light value is multiplied by the attenuation factor

A=1/( Ac + A * D+ AGD)
where D isthe distance between the light position and the vertex where the light is calculated. The
default valuesfor Ac, A, and Agare 1.0, 0.0, and 0.0 respectively. The actual values of the

attenuation constants can be set by the gl Li ght f (G._* ATTENUATI ON, val ue) functions,
where the wildcard is to be replaced by one of the three symbolic constants mentioned above.

A directional light is specified by setting the fourth component in its position to be zero. The
direction of the light is set by the first three components, and these are transformed by the
modelview matrix. Such lights cannot have any attenuation properties but otherwise work just like
any other light: itsdirection is used in any diffuse and specular light computations but no distance
isever calculated. An example of the way adirectiona light is defined would be

gl Lightf(light, G__POSITIQN, 10.0, 10.0, 10.0, 0.);

Defining materials

In order for OpenGL to model the way alight interacts with an object, the object must be defined in
terms of the way it handles ambient, diffuse, and specular light. This means that you must define
the color of the object in ambient light and the color in diffuse light. (No, we can’t think of any
cases Where these would be different, but we can’t rule out the possibility that this might be used
somehow.) You do not define the color of the object in specular light, because specular light isthe
color of the light instead of the color of the object, but you must define the way the materid
handles the specular light, which really means how shiny the object is and what color the shininess
will be. All these definitions are handled by the GL_ MATERI AL* function.

Recall that any polygon has two sides, which we will call the front side and back side. The
difference between these is the direction of the normal to the polygon, with the front side being the
side toward which the normal points. Because the normal can represent the direction of the cross
product of two polygon edges in the order in which edges go around the polygon, and because of
the right-hand rule for determining the direction of the cross product, we can avoid the reference to
the polygon normal and simply note that the front side is the side from which the edges of the
polyon are in counterclockwise order (or the side for which the angles from an interior point of the
polygon to the vertices are in increasing order).
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If you use two-sided lighting, when you specify the properties for your material, you must specify
them for both the front side and the back side of the material. Y ou can choose to make these
properties the same by defining your material with the parameter G._FRONT_AND BACK instead
of defining G._FRONT and GL_ BACK separately. Thiswill allow you to use separate colors for
the front side and back side of an object, for example, and make it clear which sideisbeing seenin
case the object is not closed.

To allow usto define an object’ s material propertieswe havethegl Material *(...) function
family. These functions have the general form

gl Material[i|f][Vv](face, paraneternane, val ue)
and can take either integer or real parameter values([ i | f] ) in either individual or vector ([ v])
form. The parameter f ace isa symbolic name that must be one of G._FRONT, G__BACK, or
G._FRONT_AND BACK. Thevalue of par anmet er nane is asymbolic hame whose values can
include GL_AMBI ENT, GL_DI FFUSE, G__SPECULAR, G._EM SSI ON, GL_SHI NI NESS, or
G._AMBI ENT_AND DI FFUSE. Findly, the val ue parameter is either a single number, a set of
numbers, or a vector that sets the value the symbolic parameter is to have in the OpenGL system.
Below isashort example of setting these values, taken from the example at the end of the chapter.

G.fl oat shininess[]={ 50.0 };

G.float white[] ={ 1.0, 1.0, 1.0, 1.0};

gl Materi al f v(G@_FRONT, G._AMBI ENT, white );

gl Material fv(G_FRONT, G._D FFUSE, white );

gl Material fv(@_FRONT, GL_SPECULAR, white );

gl Material fv(@_FRONT, G._SH NI NESS, shininess );
This gives the material avery neutral property that can pick up whatever colors the light should
provide for its display.

Most of the parameters and values are familiar from the earlier discussion of the different aspects of
the lighting model, but the GL_ANMBI ENT_AND DI FFUSE parameter is worth pointing out
because it is very common to assume that a material has the same properties in both ambient and
diffuselight. (Recall that in both cases, the light energy is absorbed by the material and is then re-
radiated with the color of the material itself.) This parameter alows you to define both properties
to be the same, which supports this assumption.

Setting up asceneto use lighting

To define atriangle with vertex points P[ 0] , P[ 1], and P[ 2], compute its normal, and use the
calculated normal, we would see code something like this:
gl Begi n(G._POLYGON) ;
/'l calculate the normal Normto the triangle
cal cTri angl eNorn(p[ O], P[ 1], P[ 2], Norn);
gl Nor mal 3f v( Nor nm) ;
gl Vertex3fv(P[O] ),
gl Vertex3fv(P[1]);
gl Vertex3fv(P[2]);
gl End() ;

Using GLU gquadric objects

As we discussed when we introduced the GLU quadric objects in the modeling chapter, the
OpenGL system can generate automatic normal vectors for these objects. Thisis done with the
functiongl uQuadri cNor mal s( G_.Uguadri c* quad, G.enum nor nal ) that allowsyou
to setnor mal to either G_U_FLAT or GLU_SMOOTH, depending on the shading model you want
to use for the object.
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An example: lights of all three primary colors applied to awhite surface

Some lighting situations are easy to see — when you put awhite light on a colored surface, you
see the color of the surface, because the white light contains all the light components and the
surface has the color it reflects among them. Similarly, if you shine a colored light on awhite
surface, you see the color of the light because only that color is available. When you use a colored
light on a colored surface, however, it gets much more complex because a surface can only reflect
colors that cometoit. So if you shine a (pure) red light on a (pure) green surface you get no
reflection at all, and the surface seems black. Y ou don't see thisin the real world because you
don't see lights of pure colors, but it can readily happen in a synthetic scene.

Considering the effect of shining colored lights on awhite surface, let’s look at an example. A
white surface will reflect all the light that it gets, so if it getsonly ared light, it should be able to
reflect only red. So if we take a simple shape (say, a cube) in a space with three colored lights
(that are red, green, and blue, naturally), we should see it reflect these different colors. Inthe
threelightcube example we discuss below, we define three lights that shine from three different
directions on awhite cube. If you add code that |ets you rotate the cube around to expose each face
to one or more of the three lights, you will be able to see all the lights on various faces and to
experiment with the reflection properties they have. This may let you see the effect of having two
or three lights on one of the faces, aswell as seeing asinglelight. Y ou may aso want to move the
lights around and re-compile the code to achieve other lighting effects.

Thereisasignificant difference between the cube used in this example and the cube used in the
simple lighting example in a previous module. This cube includes not only the vertices of its faces
but also information on the normals to each face. (A normal isavector perpendicular to asurface;
we are careful to make al surface normals point away from the object the surface belongsto.) This
normal is used for many parts of the lighting computations — to determine whether you' re looking
at afront or back face, for example, and to compute both the diffuse light and the specular light for
apolygon. Werefer you to any standard graphics text for more details.

Code for the example

Defining the light colors and positionsin the initialization function:
G.float light posO[]={ 0.0, 10.0, 2.0, 1.0 }; // light 1. up y-axis

G.float light colO[]={ 1.0, 0.0, 0.0, 1.0}; // light is red

G.float anb_color0O[]={ 0.3, 0.0, 0.0, 1.01}; // even anbiently
G.float light_posl[]={ 5.0, -5.0, 2.0, 1.0 1}; // light 2: lower right
G.float light coll[]={ 0.0, 1.0, 0.0, 1.01}; // light is green
G.float anb colorl[]={ 0.0, 0.3 0.0, 1.0 }; // even anbiently
G.float light_pos2[]={ -5.0, 5.0, 2.0, 1.0 }; // light 3: lower Ileft
G.float light_col2[]={ 0.0, 0.0, 1.0, 1.01}; // light is blue
G.float anb_color2[]={ 0.0, 0.0, 0.3, 1.0}; // even anbiently

Defining the light properties and the lighting model in the initiaization function:
gl Lightfv(G_LIGHTO, GL_PCSITION, light posO ); // light O
gl Lightfv(G. _LIGATO, G._AMBI ENT, anb_color0 );
gl Li ght fv(G._LI GHTO, GL_SPECULAR, light_col0 );
gl Li ghtfv(GL_LI GHTO, GL_DI FFUSE, |ight_col 0 );

gl Lightfv(G_LIGAT1, G_POSITION, light_posl ); // light 1

gl Lightfv(G_LIGHT1, G._AMBIENT, anb colorl );
gl Lightfv(G _LIGHT1, G._SPECULAR, light coll );
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glLightfv(G_LIGAT1, G._DIFFUSE, |ight coll );

gl Lightfv(G_LIGHT2, GL_PCSITION, light_pos2 ); // light 2
gl Lightfv(G _LIGHT2, G._AMBI ENT, amb_color2 );

gl Li ght fv(G_LI GHT2, GL_SPECULAR, light_col2 );

gl Lightfv(G__LIGHT2, G._DI FFUSE, |ight_col2 );

gl Li ght Model i v(G._LI GHT_MODEL_TWD SIDE, & ); // two-sided lighting

Enabling the lightsin the initiaization function:
gl Enabl e( GL_LI GHTI NG ; /1 so lighting nodels are used

gl Enabl e(GL:LI GHTO) ; /1 we'll use LIGHTO
gl Enabl e( G _LI GHT1); ... and LI GHT1
gl Enabl e( G _LI GHT2) ; 1., and LI GHT2

Defining the material color in the function that draws the surface: we must define the ambient and
diffuse parts of the object’s material specification, as shown below; note that the shininess value
must be an array. Recall that higher values of shininess will create more focused and smaller
specular highlights on the object. That this example doesn’t specify the properties of the material’s
back side because the object is closed and all the back side of the material isinvisible.

G.fl oat shininess[]={ 50.0 };

gl Materi al f v( GL_FRONT, G._AMBI ENT, white );

gl Materi al f v( GL_FRONT, G._DI FFUSE, white );

gl Material fv(G._FRONT, G._SHI NI NESS, shi niness );

Figure 9.5 below shows the cube when it is rotated so one corner points toward the viewer. Here
the ambient light contributed by all three of the lights keeps the col ors somewhat muted, but clearly
thered light is above, the green light is below and to the right, and the blue light is below and to
the left of the viewer’s eyepoint. The lights seem to be pastels because each face still gets some of
the other two colors; to change this you would need to change the positions of the lights.

Figure 9.5: the white cube viewed with three colored lights
A word to the wise...

The OpenGL lighting model is essentially the same as the basic lighting model of all standard
graphics APIs, but it lacks some very important things that might let you achieve some particular
effects you would want if you were to try to get genuine realism in your scenes. One of the most
important things lacking in the simple lighting model here is shadows; while OpenGL has
techniques that can allow you to create shadows, they are tricky and require some special effort.
Another important missing part is the kind of “hot” colors that seem to radiate more of a particular
color than they could possibly get in the light they receive, and thereis no way to fix this because
of the limited gamut of the phosphors in any computer screen, as described in many textbooks.
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Finally, as we discuss in the next chapter, OpenGL does not alow the kind of directiona
(anisotropic) reflection that you would need to model materials such as brushed aluminum, which
can be created on the computer with special programming. So do not take the OpenGL lighting
model as the correct way to do color; take it as a way that works pretty well and that would take
much more effort to do better.

Lighting is a seductive effect because it engages our perceptual system to identify shapes of things.
This can be very effective, but beware of applying lighting where your shapes or colors are purely
arbitrary and represent abstract concepts. It can be dangerous to infer shapes by lighting where
thereisno physical redlity to the things being displayed.
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Shading Models
Prerequisites
An understanding of the concept of color, of polygons, and of intepolation across a polygon.
Introduction

Shading is the process of computing the color for the components of ascene. It isusualy done by
calculating the effect of light on each object in a scene to create an effective lighted presentation.
The shading process is thus based on the physics of light, and the most detailed kinds of shading
computation can involve deep subtleties of the behavior of light, including the way light scatters
from various kinds of materials with various details of surface treatments. Considerable research
has been done in those areas and any genuinely realistic rendering must take a number of surface
detailsinto account.

Most graphics APIs do not have the capability to do these detailed kinds of computation. The
usual beginning API such as OpenGL supports two shading models for polygons. flat shading
and smooth shading. Y ou may choose either, but smooth shading is usually more pleasing and
can be somewhat more realistic. Unlessthereis a sound reason to use flat shading in order to
represent data or other communication concepts more accurately, you will probably want to use
smooth shading for your images. We will briefly discuss just a bit more sophisticated kinds of
shading, even though the beginning API cannot directly support them.

Definitions

Flat shading of a polygon presents each polygon with asingle color. This effect is computed by
assuming that each polygon is strictly planar and all the points on the polygon have exactly the
same kind of lighting treatment. The term flat can be taken to mean that the color isflat (does not
vary) across the polygon, or that the polygon is colored as though it isflat (planar) and thus does
not change color asit islighted. Thisisthe effect you will get if you simply set a color for the
polygon and do not use a lighting model (the color isflat), or if you use lighting and materials
models and then display the polygon with a single normal vector (the polygonisflat). Thissingle
normal allows you only asingle lighting computation for the entire polygon, so the polygon is
presented with only one color.

Smooth shading of a polygon displays the pixels in the polygon with smoothly-changing colors
across the surface of the polygon. This requires that you provide information that defines a
separate color for each vertex of your polygon, because the smooth color change is computed by
interpolating the vertex colors across the interior of the triangle with the standard kind of
interpolation we saw in the graphics pipeline discussion. The interpolation is done in screen space
after the vertices' position has been set by the projection, so the purely linear calculations can easily
be donein graphics cards. This per-vertex color can be provided by your model directly, but it is
often produced by per-vertex lighting computations. In order to compute the color for each vertex
separately you must define a separate normal vector for each vertex of the polygon so that the
lighting model will produce different colors at each vertex.

Each graphic API will treat shading somewhat differently, so it isimportant for you to understand
how your particular API handles this. The default shading behavior of OpenGL is smooth, for
example, but you will not get the visual effect of smooth shading unless you specify the
appropriate normals for your model, as described below. OpenGL alows you to select the
shading modd with the gl ShadeMbdel function, and the only values of its single parameter are



the symbolic parameters G._ SMOOTH and GL_FLAT. You may use the gl ShadeModel
function to switch back and forth between smooth and flat shading any time you wish.

Some examples

We have seen many examples of polygons earlier in these notes, but we have not been careful to
distinguish between whether they were presented with flat and smooth shading. Figure 10.1
shows see two different images of the same function surface, one with flat shading (Ieft) and one
with smooth shading (right), to illustrate the difference. Clearly the smooth-shaded image is much
cleaner, but there are still some areas where the triangles change direction very quickly and the
boundaries between the triangles still show in the smoothly-shaded image. Smooth shading is
very nice—probably nicer than flat shading in many applications—but it isn't perfect.

Figure 10.1: asurface with flat shading (left) and the same surface with smooth shading (right)

The computation for smooth shading uses simple polygon interpolation in screen space. Because
each vertex hasits own normal, the lighting model computes a different color for each vertex. The
interpolation then calculates colors for each pixel in the polygon that vary smoothly across the
polygon interior, providing a smooth color graduation across the polygon. This interpolation is
called Gouraud shading and is one of the standard techniques for creating images. It isquick to
compute but because it only depends on colors at the polygon vertices, it can miss lighting effects
within polygons. Visually, it is susceptible to showing the color of a vertex more strongly along
an edge of a polygon than a genuinely smooth shading would suggest, as you can see in the right-
hand image in Figure 10.1. Other kinds of interpolation are possible that do not show some of
these problems, though they are not often provided by a graphics API, and one of these is
discussed below.

An interesting experiment to help you understand the properties of shaded surfacesisto consider
the relationship between smooth shading and the resolution of the display grid. In principle, you
should be able to use fairly fine grid with flat shading or a much coarser grid with smooth shading
to achieve similar results. Y ou should define aparticular grid size and flat shading, and try to find
the smaller grid that would give a similar image with smooth shading. Figure 10.2 is an example
of this experiment; this surface still shows a small amount of the faceting of flat shading but avoids
much of the problem with quickly-varying surface directions of a coarse smooth shading. Itis
probably superior in many ways to the smooth-shaded polygon of Figure 10.1. It may be either
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faster or slower than the original smooth shading, depending on the efficiency of the polygon
interpolation in the graphics pipeline. Thisisan example of avery useful experimental approach to
computer graphics: if you have several different ways to approximate an effect, it can be very
useful to try all of them that make sense and see which works better, both for effect and for speed,
in aparticular application!

Figure 10.2: aflat-shaded image with resolution three times as great as the previous figure
Calculating per-vertex normals

The difference between the programming for these two parts of Figure 10.1 is that the flat-shaded
model uses only one normal per polygon (calculated by computing the cross product of two edges
of each triangle), while the smooth-shaded model uses a separate normal per vertex (calculated by
doing some analytic work to determine the exact value of the normal). It can take a bit more work
to compute the normal at each vertex instead of only once per polygon, but that is the price for
smoothing.

There are anumber of ways you may calculate the normal for a particular vertex of amodel. You
may use an interpolation technique, in which you compute a weighted average of the normals of
each of the polygons that includes the vertex, or you may use an analytic computation. The choice
of technique will depend on the information you have for your model.

In the interpolation technique, you can calcul ate the normal at a vertex by computing the average
N=(SaN)/(Sa)

with the sum taken over all polygons P; that include this vertex, where each polygon P; has a

normal N, and hasangle a; at the vertex in question. Each angle a; can be calculated easily as

the inverse cosine of the dot product of the two edges of the polygon P; that meet at the vertex.

In the example of Figure 10.1, an analytic approach was possible because the surface was defined
by aclean, closed-form equation: 0. 3* cos( x*x+y*y+t ) . Inthe smooth-shaded example, we
were able to calculate the vertex normals by using the analytic directional derivatives at each vertex:
-0. 6*x*si n(x*x+y*y+t) and -0. 6*y*si n(x*x+y*y+t) for x and y, respectively.
These were used to calculate the tangent vectors in these directions, and those cross products were
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computed to get the vertex normal. Thisis shown in the code sample at the end of this chapter. It
can aso be possible to get exact normals from other kinds of models; we saw in an early chapter in
these notes that the normals to a sphere are simply the radius vectors for the sphere, so a purely
geometric model may also have exactly-defined normals. In general, when models permit you to
carry out analytic or geometric calculations for normals, these will be more exact and will give you
better results than using an interpolation technique.

Other shading models

Y ou cannot and must not assume that the smooth shading model of asimply API such as OpenGL
is an accurate representation of smooth surfaces. It assumes that the surface of the polygon varies
uniformly, it only includes per-vertex information in calculating colors across the polygon, and it
relieson alinear behavior of the RGB color space that is not accurate, as you saw when we talked
about colors. Like many of the features of any computer graphics system, it approximates a
reality, but there are better ways to achieve the effect of smooth surfaces. For example, thereisa
shading model called Phong shading that requires the computation of one normal per vertex and
uses the interpolated values of the normals themselves to compute the color at each pixel in the
polygon, instead of simply interpolating the vertex colors. Interpolating the normalsis much more
complicated than interpolating colors, because the uniformly-spaced pixels in screen space do not
come from uniformly-spaced pointsin 3D eye space or 3D model space; the perspective projection
involves adivision by the Z-coordinate of the point in eye space. This makes normal interpolation
more complex—and much slower—than color interpolation and takes it out of the range of simple
graphics APIs. However, the Phong shading model behaves like a genuinely smooth surface
across the polygon, including picking up specular highlights within the polygon and behaving
smoothly along the edges of the polygon. The details of how Gouraud and Phong shading operate
are discussed in any graphicstextbook. We encourage you to read them as an excellent example of
the use of interpolation as a basis for many computer graphics processes.

The Phong shading model assumes that normals change smoothly across the polygon, but another
shading model is based on controlling the normals across the polygon. Like the texture map that
we describe later and that creates effects that change across a surface and are independent of the
colors at each vertex, we may create a mapping that alters the normals in the polygon so the
shading model can create the effect of a bumpy surface. Thisis called a bump map, and like
Phong shading the normal for each individual pixel is computed as the normal from Phong shading
plus the normal from the bump map. The color of each individual pixel isthen computed from the
lighting model. Figure 10.3 shows an example of the effect of a particular bump map. Note that
the bump map itself is defined simply a 2D image where the height of each point is defined by the
color; thisis called aheight field. Heights are sometimes presented in this way, for examplein
terrain modeling.

Figure 10.3: abump map defined as a height field, left, and the bump map applied to a specular
surface
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The shading models that have been described so far are all based on the simple lighting model of
the previous chapter, which assumes that light behavior is uniform in al directions from the
surface normal (that is, the lighting is isotropic). However, there are some materials where the
lighting parameters differ depending on the angle around the normal. Such materias include
brushed metals and the surface of a CD, for example, and the shading for these materialsis called
anisotropic. Here the simple role of the angle from the normal of the diffuse reflection, and the
angle from the reflected light in the specular reflection, are replaced by a more complex function
called the bidirectiona reflection distribution function (or BRDF) that depends typically on both the

latitude Q and longitude F angle of the eye and of the light from the point being lighted:
r(QeFe Q. F|). The BRDF may also take into account behaviors that differ for different

wavelengths of light. The lighting calculations for such materials, then, may involve much more
complex kinds of computation than the standard isotropic model and are beyond the scope of
simple graphics APIs, but you will find this kind of shading in some professional graphics tools.
Figure 10.4 shows the effect on ared sphere of applying flat, smooth, and Phong shading, and an
anisotropic shading.

Figure 10.4: a sphere presented with flat shading (left), smooth shading (second),
Phong shading (third) and an anisotropic shading (right).

Note that the smooth-shaded sphere shows some facet edges and the specular reflection is not quite
smoothly distributed over the surface, while the facet edges and the specular reflection in the
Phong shaded sphere are quite a bit smoother and less broken up.

Code examples

The two issues in using OpenGL shading are the selection of the shading model and the
specification of acolor at each vertex, either explicitly with the gl Col or * (. . . ) function or by
setting anormal per vertex with the gl Nor mal * (. . . ) function. Sample code to set up smooth
shading by the latter approach, fromthe codeinf | at Snoot h. ¢ that generated the figuresin this
example, isshown below. To begin, note that we will have to generate one normal per vertex with
smooth shading, so we define the two partial derivatives for the function in order to get tangent
vectors at each vertex:

#define f(x,y) 0.3*cos(x*x+y*y+t) /1 original function

#define fx(x,y) -0.6*xX*sin(x*x+y*y+t) /1 partial derivative in x

#define fy(x,y) -0.6%y*sin(x*x+y*y+t) /'l partial derivative iny
We then use the following function call inthe i ni t () fuction to ensure that we automatically
normalize all our normalsin order to avoid having to do this computation ourselves:

gl Enabl e( GL_NORMALI ZE); //nmake nornmals one unit long after transform
In the display function, we first compute the values of x and y with the functions XX(i ) and
YY(j) that compute the grid points in our domain, and then we do the following (fairly long)
computation for each triangle in the surface, using an inline cross product operation. We are
careful to compute the triangle surface normal as (X—partial cross Y—partial), in that order, so we
get the correct direction for it.

6/19/01 Page 10.5



gl Begi n( GL_POLYGON) ;
X = XX(i);
y = YY(j);
vecl[0] =
vecl[ 1]
vecl[ 2]
vec?2[ 0]
vec?2[ 1] .
vec?2[ 2] y(x,y); // partial in Y-Z plane
Normal [0] = vecl[1] * vec?2[2] - vecl[2] * vec2[l1];
Normal [1] = vecl[2] * vec2[0] - vecl[O] * vec2[2];
Normal [2] = vecl[O] * vec2[1] - vecl[1l] * vec2[O0];
gl Nor mal 3f v( Nor mal ) ;
gl Vertex3f (XX(i ), YY(] ),vertices[i 1[] 1);
. I/ do simlar code two nore tines for each vertex of the
. Il triangle

1
0
fx(x,y); /! partial in X-Z plane
0
1
f

gl End();
Of course, there are many other ways to deal with normals, but you cannot simply compute a

normal as a cross product of two edges because this cross product will be the same for each vertex
of atriangle—any triangleis planar, after al.
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Events and Event Handling for Computer Graphics
Introduction

Graphics programming can focus entirely on creating one single image based on a set of data, but
more and more we are seeing the value of writing programs that allow the user to interact with the
world through graphical presentations, or that allow the user to control the way an image is
created. These are called interactive computer graphics programs, and the ability to interact with
information through an image s critically important to the success of thisfield.

Our emphasisin this chapter is on graphical interaction, not on user interfaces. Certainly many
user interfaces use graphical presentations that give information to the user, take graphical actions,
and interpret the results for program control, but we simply view these as applications of our
graphics. Latein the chapter we introduce the MUI (Micro User Interface) system that allows you
to add a primitive interface to your OpenGL programs, and we believe that you should try to
understand the nature of the communication about images that can be supported by an external user
interface, but a genuine discussion of user interfaces is much too deep for us to undertake here.

Interactive programming in computer graphics generally takes advantage of the event-handling
capabilities of modern systems, so we must understand something of what events are and how to
use them in order to write interactive graphics programs. Events are fairly abstract and come in
several varieties, so we will need to go into some details as we develop thisidea below. But
modern graphics APIs handle events pretty cleanly, and you will find that once you are used to the
idea, it is not particularly difficult to write event-driven programs. Y ou should realize that some
basic APIs do not include event handling, so it is sometimes necessary to use an extension to the
API for this.

Definitions

An event is atransition in the control state of a computer system. Events can come from many
sources and can cause any of a number of actions to take place as the system responds to the
transition. In general, we will treat an event as an abstraction, a concept that we use to design
interactive applications, that provides a concrete piece of data to the computer system. An event
record is aformal record of some system activity, often an activity from a device such as a
keyboard or mouse. An event record contains information that identifies the event and any data
corresponding to the event. A keyboard event record contains the identity of the key that was
pressed and the location of the cursor when it was pressed, for example; a mouse event record
contains the mouse key that was pressed, if any, and the cursor’s location on the screen when the
event took place. Event records are stored in the event queue, which is managed by the operating
system; this keeps track of the sequence in which events happen and serves as a resource to
processes that deal with events. When an event occurs, its event record is inserted in the event
gqueue and we say that the event is posted to the queue. The operating system manages the event
gueue and as each event gets to the front of the queue and a process requests an event record, the
operating system passes the record to the process that should handleit. In general, events that
involve a screen location get passed to whatever program owns that location, so if the event
happens outside a program’ s window, that program will not get the event.

Let’s consider a straightforward example of a user action that causes an event, and think about
what is actually done to get and manage that event. .....

Programs that use events for control—and most interactive programs do this—manage that control
through functionsthat are called event handlers. While these can gain access to the event queuein
a number of ways, most APIs use functions called callbacksto handle events. Associating a
callback function with an event is called registering the callback for the event. When the system



passes an event record to the program, the program determines what kind of event it isand if any
callback function has been registered for the event, passes control to that function. In fact, most
interactive programs contain initialization and action functions, calback functions, and a main
event loop. The main event loop invokes an event handler whose function is to get an event,
determine the callback needed to handle the event, and pass control to that function. When that
function finishesits operation, control is returned to the event handler.

What happens in the main event loop is straightforward—the program gives up direct control of the
flow of execution and placesit in the hands of the user. From here on, the user will cause events
that the program will respond to through the callbacks that have been created. We will see many
examples of this approach in this, and later, sections of these notes.

A callback isafunction that is executed when a particular event is recognized by the program. This
recognition happens when the event handler takes an event off the event queue and the program has
expressed aninterest in the event. The key to being able to use a certain event in a program, then,
isto express an interest in the event and to indicate what function is to be executed when the event
happens—the function that has been registered for the event.

Some examples of events

keypress events, such as keyDown, keyUp, keyStillIDown, ... Note that there may be two
different kinds of keypress events: those that use the regular keyboard and those that use
the so-called “ special keys’ such as the function keys or the cursor control keys. There
may be different event handlers for these different kinds of keypresses. Y ou should be
careful when you use specia keys, because different computers may have different special
keys, and those that are the same may be laid out in different ways.

mouse events, such as leftButtonDown, leftButtonUp, leftButtonStillDown, ... Note that
different “species’ of mice have different numbers of buttons, so for some kinds of mice
some of these events are collapsed.

system events such asidle and timer, that are generated by the system based on the state of the
event queue or the system clock, respectively.

software events which are posted by programs themselves in order to get a specific kind of
processing to occur next.

These events are very detailed, and many of them are not used in the APIs or APl extensions
commonly found with graphics. However, all could be used by going deeply enough into the
system on which programs are being devel oped.

Note that event-driven actions are fundamentaly different from actions that are driven by
polling—that is, by querying a device or some other part of the system on some schedule and
basing system activity on theresults. There are certainly systems that operate by polling various
kinds of input and interaction devices, but these are outside our current approach.

The vocabulary of interaction

When users are working with your application, they are focusing on the content of their work, not
on how you designed the application. They want to be able to communicate with the program and
their datain ways that feel natural to them, and it is the task of the interface designer to create an
interface that feels very natural and that doesn’t interfere with their work. Interface designisthe
subject of adifferent course from computer graphics, but it is useful to have alittle understanding
of the vocabulary of interaction.
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We have been focusing on how to program interaction with the kind of devices that are commonly
found in current computers. keyboards or mice. These devices have distinctly different kinds of
behaviorsin users minds. When you get away from text operations, keyboards give discrete
input that can be interpreted in different ways depending on the keys that are pressed. They are
basically devices that make abstract selections, with the ability select actions as well as objects.
The keyboard input that navigates through simple text games is an example of action selection.
The mouse buttons are al so selection devices, although they are primarily used to select graphical
objects on the screen, including control buttons as well as displayed objects. The keyboard and
mouse buttons both are discrete devices, providing only afinite number of well-defined actions.

The mouse itself has adifferent kind of meaning. It provides a more continuous input, and can be
used to control continuous motion on the screen. This can be the motion of a selected object asit is
moved into a desired position, or it can be an input that will cause motion in an object. The motion
that the mouse controls can be of various kinds as well — it can be alinear motion, such as
moving the eye point across a scene, or it can be arotational motion, such as moving an object by
changing the angles defining the object in spherical coordinates.

When you plan the interaction for your application, then, you should decide whether a user will see
the interaction as a discrete selection or as a continuous control, and then you should implement the
interaction with the keyboard or mouse, as determined by the user’ s expected vocabulary.

A word to thewise...

This section discusses the mechanics of interaction through event handling, but it does not cover
the critical questions of how a user would naturally control an interactive application. There are
many deep and subtle issues involved in designing the user interface for such an application, and
this modul e does not begin to cover them. The extensive literature in user interfaces will help you
get a start in this area, but a professional application needs a professional interface — one
designed, tested, and evolved by persons who focus in this area.  When thinking of a rea
application, heed the old cliché Kids, don't try this at home!

The examples below do their best to present user controls that are not impossibly clumsy, but they
are designed much more to focus on the event and callback than on a clever or smooth way for a
user to work. When you write your own interactive projects, think carefully about how a user
might perceive the task, not just about an approach that might be easiest for you to program.

Eventsin OpenGL

The OpenGL API generally uses the Graphics Library Utility Toolkit GLUT (or a similar
extension) for event and window handling. GLUT defines a number of kinds of events and gives
the programmer a means of associating a callback function with each event that the program will
use. In OpenGL with the GLUT extension, this main event loop is quite explicit asacall to the
functiongl ut Mai nLoop() asthelast action in the main program.

Callback registering

Below we will list some kinds of events and will then indicate the function that is used to register
the callback for each event. Following that, we will give some code examples that register and use
these events for some programming effects. This now includes only examples from OpenGL, but
it should be extensible to other APIsfairly easily.

Event Callback Registration Function
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idle

display

reshape

keyboard

specia

menu
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gl ut I dl eFunc(functi onnane)

requires afunction with template voi d functi onnane(void) as a
parameter. Thisfunction isthe event handler that determines what is to be
done at each idle cycle. Often this function will end with a cal to
gl ut Post Redi spl ay() asdescribed below. Thisfunction is used to
define what action the program is to take when there has been no other event
to be handled, and is often the function that drives real-time animations.

gl ut O spl ayFunc(functi onnane)

requires afunction with template voi d functi onnane(voi d) as a
parameter. Thisfunction isthe event handler that generates a new display
whenever the display event isreceived. Note that the display function is
invoked by the event handler whenever a display event is reached; this event
is posted by the gl ut Post Redi spl ay() function and whenever a
window is moved or reshaped.

gl ut ReshapeFunc( f uncti onnane)

requires afunction with templatevoi d functi onnane(int, int) as
aparameter. This function manages any changes needed in the view setup
to accomodate the reshaped window, which may include afresh definition
of the projection. The parameters of the r eshape function are the width
and height of the window after it has been changed.

gl ut Keyboar dFunc( keybd)
requires a function with template
voi d functionname(unsi gned char, int, int)

as aparameter. This parameter function is the event handler that receives
the character and the location of thecursor (i nt x, int y) whenakey
ispressed. Asisthecasefor al callbacks that involve a screen location, the
location on the screen will be converted to coordinates relative to the
window.  Again, this function will often end with a cal to
gl ut Post Redi spl ay() to re-display the scene with the changes caused
by the particular keyboard event.

gl ut Speci al Func(speci al)
requires a function with template

void functionnane(int key, int x, int
as aparameter. Thisevent is generated when one of the “special keys’ is
pressed; these keys are the function keys, directional keys, and a few
others. Thefirst parameter isthe key that was pressed; the second and third
are the integer window coordinates of the cursor when the keypress
occurred as described above. The usua approach is to use a specid
symbolic name for the key, and these are described in the discussion below.
The only difference between the special and keyboard callbacks is that the
events come from different kinds of keys.

gl ut Cr eat eMenu( f uncti onnane)
requires a function with template voi d functionnanme(int) as a
parameter. This creates amenu that is brought up by a mouse button down
event, specified by

gl ut At tachMenu(event),
and the function

gl ut AddMenuEntry(string, int)
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mouse

mouse active motion

identifies each of the choices in the menu and defines the value to be
returned by each one. That is, when the user selects the menu item labeled
with the string, the value is passed as the parameter to the menu callback
function. The menu choices are identified before the menu itself is attached,
asillustrated in the lines below:

gl ut AddMenuEnt ry("text", VALUE);

gl ut At t achMenu( GLUT_RI GHT_BUTTQN)

Note that the Macintosh uses a dlightly different menu attachment with the
same parameters,

gl ut At t achMenuNane(event, string),
that attaches the menu to a name on the system menu bar. The Macintosh
menu is activated by selecting the menu name from the menu bar, while the
windows for Unix and Windows are popup windows that appear where the
mouse is clicked and that do not have names attached.

Along with menus one can have sub-menus — items in amenu that cause a
cascaded sub-menu to be displayed when they are selected. Sub-menus are
created by the use of the function

%I ut AddSubMenu(string, int) o
where the string is the text displayed in the original menu and the int is the
identifier of the menu to cascade from that menu item. For more details, see
the GLUT manuals.

gl ut MouseFunc( f uncti onnane)
requires afunction with atemplate such as

voi d functionnane(int button, int state,

i nt nmouseX, int nouseY)
as a parameter, where but t on indicates which button was pressed (an
integer typically made up of one bit per button, so that a three-button mouse
can indicate any value from one to seven), the state of the mouse
(symbolic values such as GLUT_DOWN to indicate what is happening with
the mouse) — and both raising and releasing buttons causes events — and
integer values xPos and yPos for the window-relative location of the
cursor in the window when the event occurred.

The mouse event does not use this function if it includes a key that has been
defined to trigger a menu.

gl ut Mot i onFunc(functi onnane)

requires afunction with templatevoi d functi onnane(int, int) as
a parameter. The two integer parameters are the window-relative
coordinates of the cursor in the window when the event occurred. This
event occurs when the mouse is moved with one or more buttons pressed.

mouse passive motion gl ut Passi veMot i onFunc( functi onnane)

timer

6/10/01

requires afunction with templatevoi d functi onnanme(int, int) as
a parameter. The two integer parameters are the window-relative
coordinates of the cursor in the window when the event occurred. This
event occurs when the mouse if moved with no buttons pressed.

gl ut Ti mer Func(nsec, tinmer, value)
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reguires an integer parameter, here called nsec, that is to be the number of
milliseconds that pass before the callback is triggered; afunction, here called
timer,withatemplatesuchasvoi d ti ner (i nt) that takesan integer
parameter; and an integer parameter, here called val ue, that is to be passed
tothet i mer function whenitiscalled.

Note that in any of these cases, the function NULL is an acceptable option. Thus you can create a
template for your code that includes registrations for all the events your system can support, and
simply register the NULL function for any event that you want to ignore.

Besides the kind of device events we generally think of, there are also software events such as the
display event, created by acall to gl ut Post Redi spl ay() . There are also device events for
devices that are probably not found around most undergraduate laboratories. the spaceball, a six-
degree-of-freedom deviceused in high-end applications, and the graphics tablet, adevice familiar to
the computer-aided design world and still valuable in many applications. If you want to know
more about handling these devices, you should check the GLUT manual.

Some details

For most of these callbacks, the meaning of the parameters of the event callback is pretty clear.
Most are either standard characters or integers such as window dimensions or cursor locations.
However, for the specia event, the callback must handle the special characters by symbolic names.
Many of the names are straightforward, but some are not; the full tableis:

Function keys F1 through F12: GLUT_KEY_F1 through GLUT_KEY_F12
Directiona keys: GLUT_KEY_LEFT, GLUT_KEY_UP,

GLUT _KEY RIGHT GLUT_KEY_DOWN
Other specia keys: GLUT KEY_PAGE UP(P e up)

GLUT_KEY_PAGE_DOWN (Page down)
GLUT_KEY_HOME (Home)
GLUT_KEY_END (End)
GLUT_KEY_INSERT (Insert)

S0 to use the special keys, use these symbolic names to process the keypress that was returned to
the callback function.

Code examples

This section presents four examples. Thisfirstisa smple animation that uses an idle event
callback and moves a cube around a circle, in and out of the circle's radius, and up and down. The
user has no control over thismotion. When you compile and run this piece of code, seeif you can
imagine the volume in 3-space inside which the cube moves.

The second example uses keyboard callbacks to move a cube up/down, left/right, and front/back
by using a simple keypad on the keyboard. This uses keys within the standard keyboard instead of
using special keys such as a numeric keypad or the cursor control keys. A numeric keypad is not
used because some keyboards do not have them; the cursor control keys are not used because we
need six directions, not just four.

The third example uses a mouse callback to pop up a menu and make a menu selection, in order to

set the color of acube. Thisisasomewhat trivial action, but it introduces the use of pop-up
menus, which are avery standard and useful tool.
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Finally, the fourth example uses a mouse callback with object selection to identify one of two
cubes that are being displayed and to change the color of that cube. Again, thisisnot adifficult
action, but it calls upon the entire selection buffer process that is the subject of another later module
in this set. For now, we suggest that you focus on the event and callback concepts and postpone a
full understanding of this example until you have read the materia on selection.

Idle event callback

In this example, we assume we have afunction named cube( ) that will draw a simple cube at the
origin (0, 0, 0) . We want to move the cube around by changing its position with time, so we
will let the idle event handler set the position of the cube and the display function draw the cube
using the positions determined by the idle event handler. Much of the code for a complete program
has been left out, but thisillustrates the relation between the display function, the event handler,
and the callback registration.

G fl oat cubex
GLfl oat cubey
G.fl oat cubez
G float tine

eeee

o
o000

voi d display( void )

{
gl PushiMatri x();
gl Transl at ef ( cubex, cubey, cubez );
cube();
gl PopMat ri x();
}

voi d ani nat e(voi d)
#define deltaTime 0.05
/1 Position for the cube is set by nodeling tinme-based behavi or
/1 Try multiplying the time by different constants to see how t hat
/'l behavi or changes.

tinme += deltaTime; if (tinme > 2.0*MPlI) tine -= 2*0*M_PI;
cubex = sin(tinme);

cubey cos(tinme);

cubez = cos(tine);

gl ut Post Redi spl ay() ;
}
void main(int argc, char** argv)
{

/* Standard GLUT initialization precedes the functions bel ow/

Qiﬂt[ﬁsplayFunc(display);
gl utl dl eFunc(ani mat e) ;

nyinit();
gl ut Mai nLoop() ;
}

Keyboard callback
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Again we start with the familiar cube() funcntion. Thistime we want to let the user move the
cube up/down, left/right, or backward/forward by means of simple keypresses. We will use two
virtual keypads:

Q W o)
A S J K
Z X N M

with the top row controlling up/down, the middle row controlling left/right, and the bottom row
controlling backward/forward. So, for example, if the user presses either Qor |, the cube will
move up; pressing Wor Owill move it down. The other rows will work similarly.

Again, much of the code has been omitted, but the display function works just asit did in the
example above: the event handler sets global positioning variables and the display function
performs atransation as chosen by the user. Note that in this example, these translations operate
in the direction of faces of the cube, not in the directions relative to the window.

G.fl oat cubex
GLfl oat cubey
GL.fl oat cubez
G float tine

eeee

TNTERTINT
o000

voi d display( void )
{

gl PushiMatri x();

gl Transl at ef ( cubex, cubey, cubez );
cube();

gl PopMat ri x();

}
voi d keyboard(unsi gned char key, int x, int y)
{
ch ="' ";
switch (key)
{
case 'q' : case 'Q
case 'i' case '|' :
ch = key; cubey -= 0.1; break
case 'w . case 'W :
case '0' case 'O
ch = key; cubey += 0.1; break
case 'a' case 'A
case 'j' case 'J'
ch = key; cubex -= 0.1; break
case 's' case 'S
case 'k' : case 'K
ch = key; cubex += 0.1; break
case 'z’ case 'Z
case 'n' case 'N
ch = key; cubez -= 0.1; break
case 'Xx' case 'X
case 'm : case 'M
ch = key; cubez += 0.1; break
}
gl ut Post Redi spl ay() ;
}
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void main(int argc, char** argv)

{

/* Standard GLUT initialization */
gl ut Di spl ayFunc(di spl ay) ;
gl ut Keyboar dFunc( keyboar d) ;

nyinit();
gl ut Mai nLoop() ;
}

The similar function, gl ut Speci al Func(. .. ), canbeusedinavery similar way to read input
from the specia keys (function keys, cursor control keys, ...) on the keyboard.

Menu callback

Again we start with the familiar cube()) function, but this time we have no motion of the cube.
Instead we define a menu that allows us to choose the color of the cube, and after we make our
choice the new color is applied.

#defi ne RED 1
#def i ne GREEN 2
#defi ne BLUE 3
#defi ne WH TE 4
#defi ne YELLOW 5

voi d cube(voi d)
{
G.float color[4];
/1 set the color based on the nenu choice

switch (col orNanme) {

case RED
color[0] = 1.0; color[1] = 0.0;
color[2] = 0.0; color[3] = 1.0; break
case GREEN:
color[0] = 0.0; color[1] = 1.0;
color[2] = 0.0; color[3] = 1.0; break;
case BLUE:
color[0] = 0.0; color[1] = 0.0;
color[2] = 1.0; color[3] = 1.0; break
case WH TE:
color[0] = 1.0; color[1] = 1.0;
color[2] =1.0; color[3] = 1.0; break;
case YELLOW
color[0] = 1.0; color[1] = 1.0;
color[2] = 0.0; color[3] = 1.0; break

}

// draw the cube

}

voi d display( void )
{
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cube();

voi d options_nenu(int input)

col or Nane = i nput;
gl ut Post Redi spl ay();
}
void main(int argc, char** argv)
{
gl ut Cr eat eMenu(opti ons_nenu) ; /1 create options nenu
gl ut AddMenuEntry(" Red", RED); /1 1 add nenu entries
gl ut AddMenuEntry(" G een", GREEN); /1 2
gl ut AddMenuEntry(" Bl ue", BLUE); /1 3
gl ut AddMenuEntry("Wiite", VWH TE); /1 4
gl ut AddMenuEntry("VYel l ow', YELLOW; [/ 5
gl ut AttachMenu( GLUT_RI GHT_BUTTON, "Col ors");
nyinit();
gl ut Mai nLoop() ;
}

Mouse callback for object selection

This example is more complex because it illustrates the use of a mouse event in object selection.
This subject is covered in more detail in the later chapter on object selection, and the full code
example for this example will also be included there. We will create two cubes with the familiar
cube() function, and we will select one with the mouse. When we select one of the cubes, the
cubes will exchange colors.

In this example, we start with afull Mouse( . . . ) calback function, ther ender (.. .) function
that registers the two cubes in the object name list, and the DoSel ect (. ..) function that
manages drawing the scene in G__SELECT mode and identifying the object(s) selected by the
position of the mouse when the event happened. Finally, we include the statement in the mai n()
function that registers the mouse callback function.

gl ut MouseFunc( Mbuse) ;

void Mouse(int button, int state, int nouseX, int nouseY)

if (state == GLUT_DOWN) { /* find which object was selected */
hit = DoSel ect ((GLi nt) nouseX, (GLint) nouseY)

}
gl ut Post Redi spl ay();
}

voi d render( GL.enum node )

/1 Always draw the two cubes, even if we are in G._SELECT node
/'l because an object is selectable iff it is identified in the nane
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list and is drawn in G._SELECT node
if (mode == GL_SELECT)
gl LoadNane(0) ;
gl PushiMatri x();
gl Translatef( 1.0, 1.0, -2.0);
cube(cubeCol or 2);
gl PopMat ri x();
if (mode == GL_SELECT)
gl LoadNane(1);
gl PushiMatri x();
gl Translatef( -1.0, -2.0, 1.0 );
cube(cubeCol or1);
gl PopMat ri x();
gl Fl ush();
gl ut SwapBuffers();

int DoSelect(Gint x, Gint y)

Glint hits, tenp;

gl Sel ect Buf fer (MAXH TS, sel ect Buf);
gl Render Mode( GL_SELECT) ;

gl I ni t Names();

gl PushNare(0) ;

set up the view ng nodel

gl PushiMatri x();

gl Mat ri xMode( GL_PRQIECTI ON) ;
gl Loadl dentity();

set up the matrix that identifies the picked object(s), based on

the x and y values of the selection and the information on the

Vi ewport
gl uPi ckMatrix(x, windH - vy, 4, 4, vp);
glClearColor(0.0, 0.0, 1.0, 0.0);
gl O ear (GL_COLOR BUFFER BI T);
gl uPer spective(60.0,1.0,1.0,30.0);
gl Mat ri xMode( GL_MODELVI EW ;
gl Loadl dentity();
eye poi nt center of view up
gl uLookAt (10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

render (GL_SELECT); // draw the scene for selection

gl PopMat ri x();
find the nunmber of hits recorded and reset node of render
hits = gl Render Mbde( G._RENDER) ;
reset view ng nodel into G._MODELVI EW node
gl Mat ri xMode( GL_PRQJECTI ON) ;
gl Loadl dentity();
gl uPer spective(60.0,1.0,1.0,30.0);
gl Matri xMode( GL_MODELVI EW ;
gl Loadl dentity();
eye poi nt center of view up
gl uLookAt (10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
return the | abel of the object selected, if any
if (hits <= 0) {
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return -1;
}
/1 carry out the color changes that will be the effect of a selection
tenmp = cubeCol or1; cubeCol orl = cubeCol or2; cubeColor2 = tenp;
return sel ect Buf [ 3];

}
void mai n(int argc, char** argv)
{
gI ht MouseFunc( Mouse) ;
nyinit();
gl ut Mai nLoop() ;
}

Mouse callback for mouse motion

This example shows the callback for the motion event. This event can be used for anything that
uses the position of a moving mouse with button pressed as control. It isfairly common to see a
graphics program that lets the user hold down the mouse and drag the cursor around in the
window, and the program responds by moving or rotating the scene around the window. The
program this code fragment is from uses the integer coordinates to control spin, but they could be
used for many purposes and the application code itself is omitted.

void notion(int xPos, int yPos)
{
spi nX
spi nY

(CGLfl oat) xPos;
(CGLfl oat) yPos;

}

int main(int argc, char** argv)

gl ut Mot i onFunc(notion);
nyinit();

gl ut Mai nLoop() ;
}
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TheMUI (Micro User Interface) facility
Prerequisites

An understanding of event-driven programming and some experience using the simple events and
callbacks from the GLUT toolkit in OpenGL, and some review of interface capabilitiesin standard
applications.

Introduction

There are many kinds of interface tools that we are used to seeing in applications but that we cannot
readily code in OpenGL, even with the GLUT toolkit. Some of these are provided by the MUI
facility that is auniversal extension of GLUT for OpenGL. With MUI you can use dliders,
buttons, text boxes, and other tools that may be more natural for many applications than the
standard GLUT capabilities. Of course, you may choose to write your own tools as well, but you
may choose to use your time on the problem at hand instead of writing an interface, so the MUI
tools may be just what you want.

MUI has agood bit of the look and feel of the X-Moatif interface, so do not expect applications you
write with thisto look like they are from either the Windows or Macintosh world. Instead, focus
on the functionality you need your application to have, and find away to get this functionality from
the MUI tools. The visible representation of these tools are called widgets, just as they arein the X
Window System, so you will see this term throughout thest notes.

This chapter isbuilt on Steve Baker's“A Brief MUI User Guide,” and it shares similar properties:
it is based on asmall number of examples and some modest experimental work. Itisintended asa
guide, not as amanual, though it is hoped that it will contribute to the literature on this useful tool.

Definitions

The capabilities of MUI include pulldown menus, buttons, radio buttons, text labels, text boxes,
and vertical and horizontal diders. We will outline how each of these work below and will include
some genera code to show how each isinvoked.

The main thing you must realize in working with MUI isthat MUI takes over the event handling
from GLUT, so you cannot mix MUI and GLUT event-handling capabilities in the same window.
This means that you will have to create separate windows for your MUI controls and for your
display, which can feel somewhat clumsy. Thisis atradeoff you must make when you design
your application — are you willing to create a different kind of interface than you might expect in a
traditional application in order to use the extraMUI functionality? Only you can say. But before
you can make that choice, you need to know what each of the MUI facilities can do.

Menubars. A MUI menu bar isessentially aGLUT menu that is bound to a MUI object and then
that object is added to a Ullist. Assuming you have defined an array of GLUT menus named
nyMenus| . .. ], you can use the function to create a new pulldown menu and then use the
function to add new menusto the pulldown menu list:

mui Cbj ect *nui NewPul | down() ;

mui AddPul | downEnt ry(mui Gbj ect *obj, char *title,int glut_nenu,

int is_help);

An example of the latter function would be

myMenubar = mui NewPul | down() ;

nmui AddPul | downEnt ryg rryl\/bnubar "File", nyMenu, 0);
wheretheis_help value would be 1 tor the last menu in the menu bar, becausetradltlonally the help

menu is the rightmost menu in amenu bar.
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According to Baker [Bak], there is apparently a problem with the pulldown menus when the
GLUT window is moved or resized. The reader is cautioned to be careful in handling windows
when the MUI facility is being used.

Buttons. abutton is presented as a rectangular region which, when pressed, sets avalue or carries
out a particular operation. Whenever the cursor isin the region, the button is highlighted to show
that it isthen selectable. A buttonis created by the function

mui NewButton(int xmn, int xmax, int ymn, int ymax)
that hasamui Cbj ect * return value. The parameters define the rectangle for the button and are
defined in window (pixel) coordinates, with (0, 0) at the lower left corner of the window. In
genera, any layout in the MUI window will be based on such coordinates.

Radio buttons. radio buttons are similar to standard buttons, but they come in only two fixed sizes
(either a standard size or amini size). The buttons can be designed so that more than one can be
pressed (to allow a user to select any subset of a set of options) or they can be linked so that when
oneis pressed, all the others are un-pressed (to alow a user to select only one of a set of options).
Like regular buttons, they are highlighted when the cursor is scrolled over them.

Y ou create radio buttons with the functions

nmui Qbj ect *nui NewRadi oButton(int xmn, int ymn)

mui Gbj ect *mui NewTi nyRadi oButton(int xmn, int ymn)
wherethexm n andym n are the window coordinates of the lower |eft corner of the button. The
buttons are linked with the function

voi d mui Li nkButt ons(buttonl, button2)
wherebut t onl and but t on2 are the names of the button objects; to link more buttons, call the
function with overlapping pairs of button names as shown in the example below. In order to clear
all the buttonsin agroup, call the function below with any of the buttons as a parameter:

voi d mui d ear Radi o( nui Cbj ect *button)

Textboxes: atext box isafacility to allow auser to enter text to the program. The text can then be
used in any way the application wishes. The text box has some limitations; for example, you
cannot enter a string longer than the text box’ s length. However, it aso gives your user the ability
to enter text and use backspace or delete to correct errors. A text box is created with the function
mui Gbj ect *ui NewText box(xm n, xmax, ym n)
whose parameters are window coordinates, and there are functions to set the string:
mui Set TBSt ri ng(obj, string)
to clear the string:
nmui G ear TBSt ri ng(obj )
and to get the value of the string:
char *mui Get TBString (rmui Coject *obj).

Horizontal diders in general, sliders are widgets that return a single value when they are used.
The value is between zero and one, and you must manipulate that value into whatever range your
application needs. A dider is created by the function
mui NewHSl i der (int xmn,int ymn,int xmax,int scenter,int shalf)
wherexm n andym n are the screen coordinates of the lower |eft corner of the dider, xmax isthe
screen coordinate of the right-hand side of the slider, scent er is the screen coordinate of the
center of the dider’smiddle bar, and shal f isthe half-size of the middle bar itself. In the event
callback for the dlider, the function nmui Get HSVal (nui Cbj ect *obj ) isused to return the
value (as afloat) from the slider to be used in the application. In order to reverse the process — to
make the dider represent a particular value, use the function
mui Set HSVal ue( nui Coj ect *obj, float val ue)
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Vetica diders vertical sliders have the same functionality as horizontal diders, but they are
aligned vertically in the control window instead of horizontally. They are managed by functions
that are amost identical to those of horizontal diders:

mui NewsSlider(int xmn,int ymn,int ymax,int scenter,int shalf)

mui Get VSval ue( nmui Goj ect *obj, float val ue)

nmui Set VSval ue( nui Goj ect *obj, float val ue)

Textlabels atext label isapiece of text on the MUI control window. This allows the program to
communicate with the user, and can be either afixed or variable string. To set afixed string, use
nmui NewLabel (int xmn, int ymn, string)
with xmin and ymin setting the lower left corner of the space where the string will be displayed.
To define avariable string, you give the string anui Obj ect nameviathevariation
nmui Gbj ect *mui NewLabel (int xmn, int ymn, string)
to attach aname to the label, and use the nui ChangelLabel (mui Coj ect *, string)
function to change the value of the string in the label.

Using the MUI functionality

Before you can use any of MUI’s capabilities, you must initidize the MUI system with the
functionmui I ni t (), probably called from the mai n() function as described in the sample code
below.

MUI widgets are managed in Ul lists. You create a Ul list with the mui NewUl Li st (i nt)
function, giving it an integer name with the parameter, and add widgets to it as you wish with the
function mui AddToUI Li st (listid, object). You may create multiple lists and can
choose which list will be active, allowing you to make your interface context sensitive. However,
Ul lists are essentially static, not dynamic, because you cannot remove items from alist or delete a
list.

All MUI capabilities can be made visible or invisible, active or inactive, or enabled or disabled.
This adds some flexibility to your program by letting you customize the interface based on a
particular context in the program. The functionsfor this are:

voi d mui Set Vi si bl e(nui Cbj ect *obj, int state);

voi d mui Set Acti ve(mnui Cbject *obj, int state);

voi d mui Set Enabl e(mui Cbj ect *obj, int state);

i nt mui Get Vi si bl e(rmui by ect *obj);

i nt mui Get Acti ve(mui Cbj ect *obj);

i nt mui Get Enabl e(mui Cbj ect *obj);

Figure 11.1 shows most of the MUI capabilities: labels, horizontal and vertical sliders, regular and
radio buttons (one radio button is selected and the button is highlighted by the cursor as shown),
and atext box. Some text has been written into the text box. This gives you an idea of what the
standard MUl widgets look like, but because the MUI source is available, you have the
opportunity to customize the widgets if you want, though this is beyond the scope of this
discussion. Layout isfacilitated by the ability to get the size of aMUI object with the function

voi d mui Get bj ect Si ze(nmui Gbj ect *obj, int *xmn, int *ymn,

int *xmax, int *ymax);
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Figure 11.1: the set of MUI facilities on a single window

MUI object callbacks are optional (you would probably not want to register a callback for afixed
text string, for example, but you would with an active item such as a button). In order to register a
callback, you must name the object when it is created and must link that object to its callback
function with

voi d mui Set Cal | back( nui Gbj ect *obj, call backFn)
where a callback function has the structure

voi d cal | backFn(mui Cbj ect *obj, enum mui Ret ur nVal ue
Note that this callback function need not be unique to the object; in the example below we define a
single callback function that is registered for three different sliders and another to handle three
different radio buttons, because the action we need from each is the same; when we need to know
which object handled the event, thisinformation is available to us as the first parameter of the
callback.

If you want to work with the callback return value, the declaration of the mui Ret ur nVval ue is:
enum nui Ret ur nVal ue {
MJ _NO_ACTI ON,
MJ _SLI DER_MOVE,
MJ _SLI DER_RETURN,
MJ _SLI DER_SCROLLDOWW,
MJ _SLI DER_SCROLLUP,
MJ _SLI DER_THUWVB,
MJ _BUTTON_PRESS,
MUl _TEXTBOX_RETURN,
MJ _TEXTLI ST_RETURN,
MJl _TEXTLI ST_RETURN_CONFI RM

1
so you can look at these values explicitly. For the example below, the button press is assumed
because it is the only return value associated with a button, and the slider is queried for its value
instead of handling the actual MUI action.
Some examples
Let’s consider a simple application and see how we can create the controls for it using the MUI

facility. The application is color choice, commonly handled with three sliders (for R/G/B) or four
diders (for R/G/B/A) depending on the need of the user. This application typically provides away
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to display the color that is chosen in aregion large enough to reduce the interference of nearby
colorsin perceiving the chosen color. The application we have in mind is avariant on this that not
only shows the color but also shows the three fixed-component planes in the RGB cube and draws
a sphere of the selected color (with lighting) in the cube.

The design of this application is built on an example in the Science Examples chapter that shows
three cross-sections of areal function of three variables. In order to determine the position of the
cross sections, we use a control built on MUI sliders. We also add radio buttonsto allow the user
to define the size of the sphere at the intersection of the cross-section dlices.

Selected code for this application includes declarations of muiObjects, callback functions for diders
and buttons, and the code in the main program that defines the MUI objects for the program, links
them to their callback functions, and adds them to the single MUI list we identify. The main issue
isthat MUI callbacks, like the GLUT callbacks we met earlier, have few parameters and do most
of their work by modifying global variables that are used in the other modeling and rendering
operations.

/'l sel ected declarations of mui Objects and wi ndow identifiers
nmui bj ect *Rslider, *Gslider, *Bslider

nmui bj ect *Rl abel, *d abel, *Bl abel

nmui Obj ect *noSphereB, *smal | SphereB, *|argeSphereB

int mui Wn, glWn;

/1 callbacks for buttons and sliders
voi d readButton(nui Gbj ect *obj, enum nui ReturnVal ue rv) {
if ( obj == noSphereB )
sphereControl = 0;
if ( obj == small SphereB )
sphereControl = 1;
if (obj == largeSphereB )
sphereControl = 2;
gl ut Set Wndow glWn );
gl ut Post Redi spl ay();

}

voi d readSliders(nmui Qbj ect *obj, enum mui ReturnVal ue rv) {
char rs[32], gs[32], bs[32];
gl ut Post Redi spl ay();

rr

g9
bb

mui Get HSVal (Rsl i der);
nui Get HSVal (Gsl i der);
nmui Get HSVal (Bsl i der);

sprintf(rs,"9%.2f",rr);
mui ChangelLabel (R abel , rs);
sprintf(gs,"%.2f", gg);
nui ChangelLabel (d abel , gs);
sprintf(bs,"%.2f", bb);
nmui ChangelLabel (Bl abel , bs);

DX = -4.0 + rr*8.0;
DY = -4.0 + gg*8.0;
DZ = -4.0 + bb*8.0;

gl ut Set W ndow( gl Wn) ;
gl ut Post Redi spl ay();
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void mai n(int argc, char** argv){

11

/1

11

/1

11

6/10/01

char rs[32], gs[32], bs[32];

Create MJ control w ndow and its call backs
glutlinitD spl ayMbde (GLUT_DOUBLE | GLUT_RGBA);
gl utlni t WndowSi ze(270, 350);

gl utl ni t WndowPosi ti on(600, 70);

mui Wn = gl ut Creat eW ndow " Control Panel");

gl ut Set W ndow( nui W n) ;

mui lnit();

mui NewUl Li st (1);

mui Set Acti veUl Li st(1);

Define color control sliders
nmui NewLabel (90, 330, "Color controls");

mui NewLabel (5, 310, "Red");
sprintf(rs,"9%.2f",rr);

Rl abel = mui NewLabel (35, 310, rs);

Rsli der = nui NewHSl i der (5, 280, 265, 130, 10);
nmui Set Cal | back(Rsl i der, readSliders);

mui NewLabel (5, 255, "G een");
sprintf(gs,"%.2f", gg);

d abel = nui NewLabel (35, 255, gs);

Gslider = mui NewHSlider (5, 225, 265, 130, 10);
nmui Set Cal | back(Gslider, readSliders);

mui NewLabel (5, 205, "Blue");
sprintf(bs,"%.2f", bb);

Bl abel = mui NewLabel (35, 205, bs);

Bsli der = nui NewHSl i der (5, 175, 265, 130, 10);
nmui Set Cal | back(Bslider, readSliders);

define radi o buttons

mui NewLabel (100, 150, "Sphere size");
noSpher eB = nui NewRadi oButton(10, 110);
snal | Spher eB = nui NewRadi oButt on( 100, 110);
| ar geSpher eB = nui NewRadi oButt on(190, 110);
mui Li nkBut t ons(noSpher eB, snal | Spher eB)

mui Li nkBut t ons(smal | SphereB, | argeSphereB)
nmui LoadBut t on( noSpher eB, "None");

nui LoadBut t on(snal | SphereB, "Small");

nmui LoadBut t on( | ar geSphereB, "Large");

nmui Set Cal | back( noSpher eB, readBut t on) ;
nmui Set Cal | back(smal | SphereB, readButton);
nmui Set Cal | back(| ar geSpher eB, readButton);
mui Cl ear Radi o( noSpher eB)

add sliders and radio buttons to U list 1
nmui AddToUl Li st (1, Rslider);

nmui AddToUl Li st (1, Gslider);

mui AddToUl Li st (1, Bslider);

mui AddToUl Li st (1, noSpher eB)

nmui AddToUl Li st (1, snml | SphereB)

nmui AddToUl Li st (1, | argeSphereB)

Create display window and its call backs
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The presentation and communication for this application are shown in Figure 11.2 below. Asthe
sliders set the R, G, and B values for the color, the numerical values are shown above the sliders
and the three planes of constant R, G, and B are shown in the RGB cube. At the intersection of
the three planesis drawn a sphere of the selected color in the size indicated by the radio buttons.
The RGB cube itself can be rotated by the usual keyboard controls so the user can compare the
selected color with nearby colors in those planes, but you have the usual issues of active windows:
you must make the display window active to rotate the cube, but you must make the control
window active to use the controls.

AE Combrsd Panel

IntEracive celor peckerin BGD rebe

Color cankmls
Fad 01
] Wi =
Greean 0D
| e 3]
Edua 07T
ETE S ]
Sphere Mze

L Hme G sm B Lame

Figure 11.2: the color selector in context, with both the display and control windows shown
A word to thewise...

The MUI control window has behaviors that are outside the programmer’ s control, so you must be
aware of some of these in order to avoid some surprises. The primary behavior to watch for is that
many of the MUI elements include a stream of events (and their associated redisplays) whenever
the cursor is within the element’ s region of the window. If your application was not careful to
insulate itself against changes caused by redisplays, you may suddenly find the application
window showing changes when you are not aware of requesting them or of creating any events at
al. Soif you use MUI, you should be particularly conscious of the structure of your application
on redisplay and ensure that (for example) you clear any global variable that causes changesin
your display before you leave the display function.
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Science Examples ||

Prerequisites:
A knowledge of computer graphics through color, lighting, shading, and event handling,
together with some knowledge of the science areas that will be discussed in this section.

This chapter contains a varied collection of science-based examples that students can understand
with the more advanced knowledge of graphics that they have at this point, including lighting,
shading, and event handling. These examples are not as sophisticated as one would see in
professional scientific visualization, but are a sound beginning towards that level of sophistication.
They cover additional topicsin the sciences beyond those in the previous chapter on science
examples, and again are grouped so that similar kinds of graphics can be brought to bear on the
problems.

As before, each example will describe a science problem and the graphic image or images that
addressiit, and will include the following kinds of information:
* A short description of the science in the problem
* A short description of the modeling of the problem in terms of the sciences
* A short description of the computational modeling of the problem, including any assumptions
that we make that could ssmplify the problem and the tradeoffs implicit in those assumptions
* A description of the computer graphics modeling that implements the computational modeling
* A description of the visual communication in the display, including any dynamic components
that enhance the communication
» Animage from an implementation of the model in OpenGL
* A short set of code fragments that make up that implementation
There are enough topics that thisis afairly long chapter, but it is very important for the student to
look at thisin depth, because an understanding of the science and of the scientific modeling is at
the heart of any good computational representation of the problem and thus at the heart of the
computer graphics that will be presented.

Examples:

Displaying scientific objects

1. Simple molecule display

These projects ask a student to read the description of a molecule in a standard format (see the
Appendices for two standard molecule file formats) and display the resulting molecule in away that
supports simple manipulations such as rotation, zooming, transparency, and clipping. These are
straightforward projects that require the student to extract information from afile and use that
information to determine the geometry of the moleculeto display it. They cover most of the topics
one would want to include in an introductory computer graphics course, and the sequence of the
topicsisfairly standard. Theinstructor should be aware, however, that the project sequence for
students from different disciplines may not draw on graphics topics in exactly the same way, so
there may need to be some adjustment of the project sequencing that makes allowance for these
differences.

The information with this project set includes source code for an extensive project implementation.
This source includes essentially the full set of project functionality, including reading the file and
handling the keyboard and menu implementation. The author has tried to create good practice in
design and code, but others might find better ways to carry out these operations. Other instructors
are encouraged to look at this code critically in order to determine whether it meets their standards
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for examples and to share any improvements with the author so they can be incorporated in the
example for others.

An important part of making a project such as this accessble to the student is to provide
information that describes how the atoms in the molecules should be displayed. Thisinformation
isinthefile nol nodel . h that is provided with this project. The file includes atom names,
colors, and sizes so that a student can pick up information directly from the input file and match
each atom name with the appropriate sizes and colors for the display.

The display of aprogram that satisfies this project will be something like the imagesin the figure
below from two different molecule description files. These figures use atom names and positions
from the atom-position information in the molecul e description files and bond linkages and types
from those files, along with colors and sizes from the nol nodel . h file, to achieve a standard
look for the molecule. In order to get students to look at the chemistry, however, and not just the
images, it probably is necessary to have them work with several different molecule filesand try to
relate the images with specific chemical questions such as the kind of reactions in which the
molecules participate. We hope that the set of sample molecule files included with this module will
provide instructors enough examples that students can make these connections, but the author is
not achemist and it iswill certainly be useful to talk with chemists at your institution to find out
how to make your projects relate directly to their individual course content.

The molecular model file will give you the positions and identities of each atom and the linkages
between individual atomsin the molecule. These are read into arrays by two functions that are
available at the online site, and the contents of the arrays are parsed to determine the color, size,
and position of each atom and the linkages between them. Declarations for the arrays and code to
produce theimagesis:

/1 data for storing nol ecul ar description
i nt nat ons, nbonds;
typedef struct atondata {
float x, vy, z;
char nane[5];
i nt col i ndex;
} atondat a;
at ondat a at ons[ AVAX] ;
t ypedef struct bonddat af
int first, second, bondtype;
} bonddat a;
bonddat a bonds[ BMAX] ;

voi d nol ecul e(void) {
#defi ne ANGTQAU(ang) ((ang)*0.529177)
#defi ne DBGAP 0. 05

int i, j, startindex, endindex, bondtype;
GLUguadri c *at onSpher e;

G.float colorl[]={1.0, 0.0, 0.0, 0.7};
G.float color3[]={0.0, 1.0, 1.0, 1.0};
G.fl oat mat_shininess[]={ 50.0 };
gl Materi al fv(G._FRONT_AND BACK, G._SHI NI NESS, mat_shi ni ness );
/1 use the location and Iink naterial that was read fromthe file

/1 to display the nolecule
gl Materi al fv(GL._FRONT_AND BACK, G._AMBI ENT, bondBl ack );
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}

gl Materi al fv(G._FRONT_AND BACK, G._DI FFUSE, bondBl ack );
(i =0; i<nbonds; i++)

for

for

{

(i

/1 draw the bonds - note that the file is 1-origin indexed
/1 while our tables are 0-origin indexed (language is Q)
startindex bonds[i].first-1; //so we decrease index by 1
endi ndex bonds[i].second- 1;
bondt ype bonds[i] . bondt ype;
i f (bondtype == 1)
gl Li neW dt h(5.0);
gl Begi n(GL_LI NE_STRI P) ;
gl Vertex3f (atons[startindex].x, atons[startindex].y,
atons[startindex].z);
gl Vert ex3f (at ons[ endi ndex] . x, at ons[ endi ndex] . vy,
at ons[ endi ndex] . z) ;
gl End() ;

i f (bondtype == 2)
gl Li neWdt h(3.0);
gl Begi n(G._LI NE_STRI P) ;
gl Vertex3f (atons[ starti ndex] . x- DBGAP,
atons[startindex].y- DBGAP, atons[startindex].z-DBGAP);
gl Vert ex3f (at onms[ endi ndex] . x- DBGAP, at ons[ endi ndex] . y- DBGAP,
at ons[ endi ndex] . z- DBGAP) ;
gl End() ;
gl Begi n(G._LI NE_STRI P) ;
gl Vertex3f (at ons[ starti ndex] . x+DBGAP,
atons[startindex].y+DBGAP, atons[startindex].z+DBGAP);
gl Vert ex3f (at ons[ endi ndex] . x+DBGAP, at ons[ endi ndex] . y+DBGAP,
at ons[ endi ndex] . z+DBGAP) ;
gl End() ;

=0; i<natoms; i++)

/1 draw the atomns

gl PushiMatri x();

at omSpher e=gl uNewQuadri c();

j = atons[i].colindex; [/ index of color for atomi

gl Materi al f v( GL_FRONT_AND_BACK, GL_AMBI ENT, atonColors[j] );
gl Materi al fv(G._FRONT_AND BACK, G._DI FFUSE, atonColors[j] );
gl Transl atef (atons[i].x, atonms[i].y, atons[i].z);

gl uSpher e(at onSphere, ANGTOQAU(at onfSi zes[j]), GRAIN, GRAIN);
gl PopMat ri x();

}
gl ut SwapBuffers();

The presentation of the moleculesis simply a display of the geometry that you interpret from the
arrays. The examples shown in Figure 10.1 below use some blending to show the bond structure
from the center of each atom and use a single white light to display the shape of the spheres. It
uses the standard sizes of the atoms, although one could also use the Bohr radius of atomsto create
aview without exposed bonds.
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@ (b)

Figure 10.1: () Example image from the file psilocybin.moal,
(b) Example image from the file adrenaine.pdb

This example can include agreat deal of user interaction, using the keyboard and menu callbacks
and event handlers to view the molecule in several different ways. The keyboard callback could
control rotation of the molecule (in the three standard axes) and zooming the view in or out. A
menu callback could control other parts of the display such as the size and transparency of atoms,
and could provide an alternate to keyboard zoom in/out control so students can compare keyboard
and menu functionality for detailed control.

This example could easily be extended would be to present two molecules in side-by-side
viewports and alow the user to select one and move it around to compare it to the other. This has
application in understanding similarity of structures. Another extension could present two
molecules in asingle window and allow one to be manipulated in trying to dock it with the other.
Thisisamore complex issue because it could involve computing collisions and might need things
like cutaway or partially transparent molecules, but it has very important applications and might be
workable for smple molecules.

2. Displaying the conic sections

One of the common things students hear in algebra and calculusis that the graphs of quadratic
expressions are all curves produced by conic sections, by intersections of a plane with a cone.
This project allows students to generate the various conic sections by drawing a cone and clipping
that cone with a plane, and to observe the shapes of the resulting curves.

The computer modeling isfairly straightforward. It involves creating adual cone through simple
triangle strips, defining the axes, and adding a clipping plane. The event handling and callbacks
for the menu and keyboard control are straightforward and are omitted, allowing us to focus on
creating the conic section and the axes, and about seeing the clipping plane work.

voi d cone(voi d)

{

. I/ declarations and material definitions here

aStep = 3.14159/ (fl oat) GRAIN
gl Begi n(GL_TRI ANGLE_FAN) ; /1 top half of double cone
gl Vertex3f (0.0, 0.0, 0.0);
for (1=0; i<=GRAIN, i++) {
nmyAngle = (float)i*aStep*2.0;
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gl Vert ex3f (RADI US*cos(nyAngl e), RADI US*si n(nyAngl e), HElI GHT);

}
gl End() ;
gl Begi n(GL_TRI ANGLE_FAN) ; /1 bottom half of double cone
gl Vertex3f (0.0, 0.0, 0.0);
for (1=0; i<=GRAIN, i++) {
nmyAngle = -(float)i*aStep*2.0;
gl Vert ex3f (RADI US*cos(nyAngl e), RADI US*si n(nyAngl e), -HEI GHT);

}
gl End() ;

voi d display( void )

... [/l viewing and other operations here

/1 note that the axes are drawn with the clip plane *OFF*
gl Di sabl e(G__CLI P_PLANE1) ;

dr awAxes( 3. 0);

gl Enabl e(G._CLI P_PLANE1) ;

gl dipPlane(G_CLI P_PLANE1, nyd i pPl ane);

cone();

gl ut SwapBuffers();

}

Figure 10.2 below shows two screen captures from the sample that illustrate the example's
operation, and it is straightforward experiment and to try out the interaction. Because the object of
the work isto see the conic sections in the context of the cone itself, the visual communication in
the example is ssimply presenting the geometry in the interactive setting where the user can see the
section in context. A menu callback controls the orientation of the clipping planeitself. Thisisa
particularly good project for getting students to think about how interface options work for this
kind of geometric process.

Figure 10.2: examples of two conic section displays (left: hyperbola; right: ellipse)

Representing areal function of two variables

The graphing of surfaces was discussed in the previous chapter on science examples, and the basic
modeling layout for this graphing is given again in Figure 10.3 below. We will consider these
kinds of surfaces from a more sophisticated point of view here, because we have the tools of
lighting and shading to show the shape of the surfacesin more realistic ways. This“realism” is, of
course, only apparent, and we will consider whether or not it actually adds to the science content of
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these graphs. We would remind you that the surfaces we create in this way are only
approximations of the real surfaces, and special cases of functions such as points of discontinuity
must be considered separately.

Figure 10.3: mapping adomain rectangle to a surface rectangle
3. Mathematical functions

If we consider afunction of two variables, z=f ( x, y) , acting on a contiguous region of real two-
space, then the set of points (x, y, f (x, y)) formsasurfacein real three-space. This project
explores such surfaces through processes that are described briefly in the figure above.

The goal of the example is the same as it was when this example was first seen in the earlier
chapter on science examples. to see the fundamental principles of surfaces by creating a
rectangular domain in X-Y space, evaluating the function at aregular grid of pointsin that domain,
and creating and displaying small rectangles on the surface that correspond to a small rectangle in
the underlying grid. Thistime, however, we shall view the graph using lighting and shading
modelsto treat it asif it were an actual surface. More precisely, we will use two-sided surfaces
with different colors above and below, so you can clearly see how the view goes from one side to
the other when the surface isrotated. Thiswill also also allow you to distinguish the two sides
when some other behaviors occur, such as surfaces that show their underside at the edge of the
domain. Figure 10.4 below shows such a surface with a yellow top-surface color and with three
lights, red, green, and blue, evenly spaced around the surface. This example can use keyboard or
mouse rotation controls and is a good introduction to event-driven programming with callbacks.

The code to implement this display is much the same asit was for the earlier version of the
example, of course, but it adds the work to define the lighting and shading information for
rendering the surface. Thisrendering involves a straightforward computation of the normal to a
triangle as the cross product of two edge vectors, each of which is computed as the difference
between two triangle vertices. Only the code for these computations is included here; the code to
set up the example is the same asin the earlier chapter, and the code to handle interactions,
materias, lights, and the like is omitted.

for ( i=0; i<XSlIZE;, i++ )
for ( j=0; j<YSIZE, j++ ) {
x = XX(i);
y = YY(j);
vertices[i][j] = 0.3*cos(x*x+y*y+t); break;

}
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/1 actually draw the surface */
for ( i=0; i<XSIZE-1; i++)
for ( j=0; j<YSIZE-1; j++ ) {
/1 first triangle in the quad, front face
gl Begi n( GL_POLYGON) ;

vecl[ 0] = XX(i+1)-XX(i);

vecl[1] = YY(j)-YY(j);

vecl[2] = vertices[i+1][j]-vertices[i][]j];
vec2[ 0] = XX(i+1)-XX(i+1);

vec2[1] = YY(j+1)-YY(j);

vec2[2] = vertices[i+1][j+1]-vertices[i+1][]j];

triNormal [0] = vecl[1l] * vec2[2] - vecl[2] * vec2[1];
triNormal [1] = vecl[2] * vec2[0] - vecl[0] * vec2[2];
triNormal[2] = vecl[O] * vec2[1] - vecl[1] * vec2[O0];

gl Normal 3f v(tri Normal); // hack together the normal vector...
gl Vertex3f (XX(i), YY(j), wvertices[i 1[j 1);

gl Vertex3f (XX(i+1), YY(j), vertices[i+1][] 1);

gl Vertex3f (XX(i +1), YY(j+1),vertices[i+1][] +1]);

gl End() ;

/1 second triangle in the quad, front face
gl Begi n( GL_POLYGON) ;
Y simlar to above
gl Nor mal 3f v(tri Normal);
gl Vertex3f (XX(i), YY(j), wvertices[i 1[j 1);
gl Vertex3f (XX(i+1), YY(j +1),vertices[i+1][]+1]);
gl Vertex3f (XX(i), VYY(j+1),vertices[i 1[j+1]);
gl End() ;

The display is very simple because the goa of the project isto understand the shape of the function
surface, but it is worth comparing this plastic-like surface with the display from the earlier version
of this example to see how much smoother and more “redistic” thisgraph is.

Figure 10.4: an example of afunction surface display

We suggest that you not only think about the example here, but also work with a small number of
functions whose shape iswell understood. There are a number of sources of such functions. We
encourage you to look at coursesin physics or chemistry, or in references such as the CRC tables
of mathematical functions for curious and interesting formulas whose surfaces are not immediatly
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obvious, with agoal of having the surface graphs help you with this understanding. Aswe noted
for thefirst version of this example, some interesting functions to consider for this are:

z C * (X3 - 3*x*y"2)

c * (x4l ar4 - yn4/br4)

(a*x"2 + b*ynr2)/ (x"2+yr2)

c*cos(2*_*a*x*y)

c*cos(2*_*a*x)*(2*_*a*y)

c*l og(a*x"2 + b*y"2)

ook wnE
N NNNN

Later development of this example can also include animation by including a single parameter in the
function definition and changing the value of the single parameter in the surface function. In
effect, this examines the relationships in a one-parameter family of surfaces as that parameter is
changed smoothly. The parameter’s values can be stepped along by the idle callback function to
allow the student to work with a more complex set of surfaces and in particular to see how the
value of the function parameter affects the shape of the surface. This animation can be combined
with rotation and even clipping controls so that the student can move the surface around asiit is
animating, though desktop systems do not seem to have enough speed to do this easily.
Animations such as this are very interesting, so you are encouraged to explore them whenever
possible.

This example not only allows you to use menu and keyboard controls for function selection and
world rotation; it also allows you to see the difference between the speeds of different kinds of
systems and graphics cards. If thisisof interest and enough resources are available, then some
speed comparisons can be a good thing, and this can be expanded to compare how quickly
different kinds of programs execute.

4. Surfaces for specia functions

Functions that are given by formulas in closed form are amost always analytic at almost all points
in the domain. Special cases such as zero denominators or undefined transcendental functions
usually disturb that analytic nature only at discrete points. However, there are other kinds of
functions that exhibit more unusual behavior. One such kind of function is everywhere continuous
but nowhere differentiable. Computer graphics can alow students to experiment with such
functions and get a better understanding of their behavior.

As an example of afunction of a single variable that is everywhere continuous but nowhere
differentiable, consider the Weierstrass function defined by the convergent infinite series

[ [
f(x) =S sin(x*2)/2

over all positive integersi. This can easily be extended to a function of two variables with the
same property by defining F(x,y) = f(x)*f(y), and the surface would be useful for the
student to see. For computational purposes, however, it is probably better (for speed purposes) to
use an algebraic function instead of the transcendental sine function, so we have developed an
example that usesthe function x* ( 1- x) instead of sin(x). Thiskind of example has been called a
blancmange function (after a traditiona British holiday pudding whose surface is extremely
wrinkled) and the surface for this example is shown in the figure below, both at modest and high
resolutions.

The computer modeling for thisis straightforward, with the array verti ces[][] now created
through the use of the blancmange() function instead of the function in the last example.

/1 Calculate the points of the surface on the grid

for ( i=0; i<XSIZE;, i++ )
for ( j=0; j<YSIZE, j++ ) {

8/23/00 Page 10.8



x = XX(i); y = YY(j)
] = bl ancmange(x,y, | TER)

vertices[i][]

}
float blancmange(float x, float y, int n)
{
float retVal, nultiplier;

int i;

retval = 0.0;
mul tiplier = 0.5;
for (i=0; i<n; i++) {
multiplier = nultiplier * 2.0;

retVal = retVal + zigzag(x*multiplier,y*nmultiplier)/nultiplier
}
return (retVval);
}
float zigzag(float x, float y)
{

float smallx, smally;
int intx, inty;

snmal I x = fabs(x); intx = (int)smallXx;

snmally = fabs(y); inty = (int)smally;

smal I x = smal I x - intx; /1 nove x and y between 0 and 1
smally = smally - inty;

smallx = spallx * (1.0 - smallXx); /1 maximumif value was 1/2
smally = snally * (1.0 - snmally); [/ mnimmif value was 0 or 1
return (4.0*smal | x*snmal | y); /1 scale to height 1

}

The surface is presented in Figure 10.5 just as in the previous example, but in addition to the
rotation control there is aso an iterate control that allows the user to take finer and finer
approximations to the surface up to the limit of the raster display.

(b)
Figure 10.5: (a) the blancmange surface, (b) zoomed in with more iterations
5. Electrostatic potential function

The electrogtatic potential function P( x, y) was discussed in the earlier chapter on science
examples. Aswe did with the general mathematical function above, it isworth revisiting in order
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to see whether the more sophisticated graphics we now have available will help us understand the
nature of this function better than the ssmple height-as-color approach. The example produces the
result shown in Figure 10.6 below, with a standard lighting model and standard materia
definitions, including a set of coordinate axes to show the position of the domain in the plane.
This presentation of the example should be compared with the earlier one to see which better helps
you understand the nature of the “ curved space’ created by the electrostatic charge.

Figure 10.6: the coulombic surface from three point charges (one positive, two negative) in aplane

With the use of callbacks to build interactive controlsin your programs, you can select a charge
(using either a menu or a mouse selection) and can experiment with this surface by moving the
charged point around the plane, by changing the amount of charge at the point, or by adding or
deleting point charges. This can make an interesting example for interaction.

6. Interacting waves

There are many places in physics where important topics are modeled in terms of wave
phenomena. It isuseful to visualize behavior of waves, but single wave functions are very ssmple
to model and display. It is more interesting to consider the behavior of multiple wave functions
acting simultaneoudly, giving rise to different kinds of interaction phenomena. We might consider
wavefronts that travel in parallel, or wavefronts that travel circularly from a given points. The
basic modeling for these wave simulations treats the combined wave as afunction that is the sum
of the two basic wave functions.

Modeling the interactive waves, then, operates in exactly the same way as the function surfaces
above. You pick an appropriate domain, divide the domain into a grid, compute the value of the
function at each point on the grid, and display each of the grid rectangles as two triangles. The
code for the train and circular wave functions shown in Figure 10.7 below is:

/1 sone sanple circular and train wave functions

#i f def Cl RCULAR

#define f1(x,y) 0.2*cos(sqrt((3.0*(x-3.14))*(3.0*(x-3.14))+(3.0*y)*(3.0*y)+t))
#define f2(x,y) 0.5*cos(sqrt((4.0*(x+1.57))*(4.0*(x+1.57))+(4.0*y)*(4.0*y)+t))
#endi f

—~

#i f def TRAIN

#define f1(x,y) 0.1*sin(3.0*x+2.0%y+t)
#define f2(x,y) 0.2*sin(2.0*x+3.0%*y+t)
#endi f
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@ (b
Figure 10.7: (a) two wave trains intersecting at a shallow angle,
(b) two circular waves whose origins are offset by 3p/2

These figures are presented as animations with thei dl e() function updating the parameter t in
the definition of the wave functions. This provides the student with a picture of the changesin the
waveforms as they move along, something that no static wave simulation can hope to provide.
The faster the computer, of course, the faster the wave will move, and if the wave motion is too
fast one can alwaysreducethe stepin t intheidle event handler shown below.

voi d ani mate(void) {

t += 0.7;

gl ut Post Redi spl ay();
}

The images in the figure provide examples of these interactions where the amplitudes and
frequencies of the waves vary and the wave propagation parameters are different. Students may
want to examine questions about the behavior of waves; two frequencies that are very nearly the
same lead to beat phenomena, for example. Thiswould lead to interactive projects extensions of
this approach, allowing students to vary the different parameters of the waves through menus,
keystrokes, or other techniques. In addition to this simple two-wave problems, it is possible to
model waves in the open ocean by adding up a number of simple waveforms of different
directions, different frequencies, and different amplitudes. So this area is a rich source of
guestions that students can examine visualy.

Representing more complicated functions

7. Implicit surfaces

There are many places where one finds areal-valued function of three variables. Asone example,
consider the Coulomb’slaw case in the previous project. Thislaw operates in three space as well
as two space — the potential at any point is the sum over all the charged particles of the charge
divided by the distance from the point to the particle. Other examplesinclude gravitational forces
and the density of material in the universe. Note that the function may be known from theoretical
sources, may be inferred from experimental data, or may even be only known numerically through
interpolation of sample valuesin a spatial volume. We focus on the function with a known
mathematical expression because that is easiest to program, but the surface-finding process we
describe here is very important in many scientific areas.

The difference between the 3-space situation and the 2-space situation is significant, though. We
cannot display the graph of afunction of three variables, because that graph only lives in 4-space.
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Thus we must ook for other ways to examine the behavior of these functions. A standard
technique for this problem is to identify where the function has a constant value, often called an
implicit surface. Creating implicit surfaces, or giving a user away to identify the shape of these
surfaces, is an important tool in understanding these functions. The critica question in this
examination is to find those points in 3-space for which the function has a particular value.

One technique is to create an approximation to the actual implicit surface by creating a grid of
points in the space and asking ourselves whether the function takes on the value we seek within
each of the regions defined by the grid. If the function is (or may be assumed to be) continuous it
is easy enough to answer that question; simply calculate the function’s value at each of the eight
vertices of the region and see whether the function’ s value is larger than the critical value at some
vertices and smaller at others. If thisisthe case, the intermediate value theorem from calculustells
us that the function must pass through the critical value somewhere in the region.

Oncewe know that the function takes on the desired value in the region, we can take two
approaches to the problem. Thefirst, and easiest, is simply to identify the region by drawing
something there. In the figure below, we draw a simple sphere in the region and use standard light
and material propertiesto give shape to the spheres. (Thefunctionisf (x, y, z) =x*y*z, and for
any givenvalue c the shape of the surface x*y*z=c isbasicaly hyperbolic.) The basic code
for thisincludes functions to identify the point in the domain that corresponds to the indicesin the
grid, and the code to scan the 3D grid and draw a sphere in each grid space the surface goes
through.

Gfloat XX(int i) {
return (M NX+((MAXX-M NX)/ (float) (XSI ZE-1))*(float) (i));
}

Gfloat YY(int i) {
return (M NY+((MAXY-M NY)/ (float)(YSIZE-1))*(float)(i));
}

G.float zZZ(int i) {
return (M NZ+((MAXZ-M N2)/ (fl oat) (ZSI ZE-1) ) *(float) (i));
}

/1 ldentify grid points where the value of the function equals the constant
rad = 0. 7*( MAXX- M NX) / (f | oat ) XSI ZE;
for ( i=0; i<XSlIZE;, i++ )
for (j=0; j<YSIZE, ] ++)

for ( k=0; k<ZSlIZE;, k++ ) {

X = XX(i); x1 = XX(i+1);

y = YY(j); yl = YY(]+1);

z = 72Z(k); z1 = ZZ(k+1);

pl1 =f( x, vy, 2);

p2 = f( x, y,zl1);

p3 = f(x1, vy, zl);

pd = f(x1, vy, z);

p5 = f( x,yl, z);

p6 = f( x,yl,2z1);

p7 = f(x1,y1,z1);

p8 = f(x1,yl, z);

if ( ((pl-C*(p2-C)<0.0) || ((p2-O*(p3-C)<0.0) ||
((p3-O*(p4-0<0.0) || ((p1l-C*(p4-C)<0.0) ||
((pl-O*(p5-0)<0.0) || ((p2-C)*(p6-C)<0.0) ||
((p3-O*(p7-0<0.0) [| ((p4-O*(p8-C)<0.0) ||
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((p5-C)*(p6-C)<0.0) || ((p6-C*(p7-C)<0.0) ||

((p7-C)*(p8-C)<0.0) || ((p5-CO)*(p8-C)<0.0) ) {
nmySphere(x,y, z, rad);

}

}

Thisworks fairly well, because the smoothness of the spheres allows us to see the shape of the
surface as shown in Figure 10.8 below. A second and more difficult processisto find all the
points on the edges of the region where the function takes the critical value and use them as the
vertices of a polygon, and then draw the resulting polygon. Thiswould give better results, but the
techniques used to identify the geometry of the polygon make this beyond the scope of an
introductory course.

Figure 10.8: animplicit surface approximation that uses spheres to indicate surface location
8. Cross-sections of volumes

Another technique for seeing the behavior of afunction of three variablesisto give the user away
to see the function values by displaying the values in a planar cross-section of the region. We
could take the cross-section as a 2-dimensional space and present the graph of the function asa 3D
surface, but this would be confusing; each cross-section would have its own 3-D graph whose
behavior iswould be confusing in the 3D region. Instead, we use the 2D technique of associating
colors with numerical values and drawing the cross-section in colors that reflect the values of the
function. The figure below shows an example of three cross-sections, one paradld to each
coordinate plane through the origin, for the functionsi n( x*y* z) .

The code for this process is shown below, where we only show the function being presented, the
function that defines the cutting plane with constant X (the function functionX) and the surface
rendering for that plane. The operations for the other two cutting planes are essentialy identical to
this.

/1 the function of three variables
float f(float x, float y, float z) {
return sin(x*y*z);

}

/1 function for value of x with global constants AX, BX, CX, DX
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/1

that determine the plane

float functionX( float y, float z) {

}

return (-DX-BX*y-CX*z)/AX;

voi d surfaceX(void)

{
/1

/1

11

}

8/23/00

define a point data type and general variables
poi nt 3 nyCol or;

int i, j;

float x, vy, z, c;

Cal cul ate the points of the surface on the grid
for ( i=0; i<XSlIZE;, i++ )
for ( j=0; j<YSIZE, j++ ) {
vertices[i][j][21]=y=M NY+( MAXY-M NY)*((float)j/(float)(YSIZE-1));
vertices[i][j][2]=z=M NZ+( MAXZ-M NZ) *((float)i/(float)(ZSIZE-1));
vertices[i][j][0]=x=functionX(y, z);

}

draw the surface with quads because surface is planar
for ( i=0; i<XSlIZE-1; i++ )
for ( j=0; j<YSIZE-1; j++ ) /1 for each quad in the domain
/1 conpute "average" point in the quad

x = (vertices[i][j]l[0O] + vertices[i+1][j][0] +
vertices[i][j+1][0] + vertices[i+1][j+1][0])/4.0;
y = (vertices[i][j][21] + vertices[i+1][j][1] +

vertices[i][j+1][1] + vertices[i+1][j+1][1])/4.0;
(vertices[i][j][2] + vertices[i+1][j][2] +
vertices[i][j+1][2] + vertices[i+1][]j+1][2])/4.0;
c =f(x,y,2); I/ conpute function at the "average" point
getCol or(c, &r, &g, &b);
gl Color3f(r, g, b); /1 color determ ned by val ue of function
if ((i==0)&&(j==0)) gl Color3f(1.0,0.0,0.0);
gl Begi n( GL_POLYGON) ;
gl Vertex3fv(vertices[i ][] 1)
gl Vertex3fv(vertices[i+1][] 1)
gl Vertex3fv(vertices[i+1][]+1])
gl Vertex3fv(vertices[i ][j+1])
gl End() ;

z

The display itself is shown in Figure 10.9 below; note how the cross-sections match at the lines
where they meet, and how the function changes depending on how large the value of the fixed x,
y, or zisfor the plane. The display includes user-controlled rotations so the user can see the figure
from any angle, and a so includes keyboard control to move each of the cutting planes forward and
backward to examine the behavior of the function throughout the space.

Usually we use a standard smooth color ramp so the smoothness of the function can be seen, but
we can use an exceptional color for asingle value (or very narrow range of values) so that unique
value can be seen in a sort of contour band. The color ramp function is not included here because
it isone of the standard ramps discussed in the visual communication section.
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Figure 10.9: cross-sections of afunction’s values
9. Vector displays

A different problem considers displaying functions of two variables with two-variable range,
where you must display this essentially four-dimensional information to your audience. Two
examples of this are vector-valued functions in 2-space, or complex-valued functions of asingle
complex variable. In particular, Figure 10.10 below presents two examples: a system of two first-
order differential equations of two variables (left) and a complex-valued function of a complex
variable (right). The domain is the standard rectangular region of two-dimensiona space, and we
have taken the approach of encoding the range in two parts based on considering each value as a
vector with alength and adirection. We encode the length as pseudocolor with the uniform color
ramp as described above, and the direction as a fixed-length vector in the appropriate direction.

Figure 10.10: two visuaizations: afunction of a complex variable (left)
and adifferentia equation (right)

The leftmost figure is based on the complex-valued function f (z) =z~3+12z+12 for complex
numbers z. Thisfunction isevaluated at each point of agrid, and the result is a complex number.
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This number, like every complex number, can be viewed as a vector and as such has a magnitude
and adirection. We set the color at the vertex by the magnitude of the vector and draw a vector at
the grid point with the direction of the vector, allowing the user to see both these properties of the
function ssmultaneously.

Code for this processis listed below, with the color ramp treated a little differently than in other
examples: thecal cEven(...) functionisassumed to take avalue between 0 and 1 and return a
valuein aglobal variable my Col or [ 3] instead of as three real numbers. The colors are also
calculated based on triangles instead of quads because this was created by adapting a surface
plotting function; quads would have worked equally well.

/1 Calculate the points of the surface on the grid and log mn and max
for ( i=0; i<XSlIZE;, i++ )
for ( j=0; j<YSIZE, j++ ) {
X = 0.5%(XX(i)+XX(i+1));
y = 0.5%(YY(j)+YY(j+1));;
get Vector(x, y, &u, &v);
vectors[i][j][0] = u; vectors[i][j]l[1] = v;
length[i][j] = getLength(u,v);
if (length[i][j] > YMAX) YMAX = length[i
if (length[i][j] < YMN YMN = length[i

101
1001

float getlLength(float a, float b)
{ return (sqgrt(a*a+b*b)); }

void getVector(float x, float y, float *u, float *v) {
/'l w = z"3+12z+12; value is conplex nunber w
*u = x*x*x - 3.0*x*y*y +12.0*x + 12.0;
*v = 3.0*xX*x*y - y*y*y +12. 0*y;

}

voi d surface(void) {
int i, j;
float yavg, len, X, y;

YRANGE = YMAX - YM N;
/] draw the vector and the surface
for ( i=0; i<XSlIZE-1; i++)
for ( j=0; j<YSIZE-1; j++ ) {
// draw the direction vector
if ((i9d0 ==5) && (j90 == 5)) {
gl Col or4f (0.0, 1.0, 1.0, 1.0);
X = 0.5%(XX(i)+XX(i+1));
y = 0.5%(YY(j)+YY(j+1));
gl Begi n(GL_LI NE_STRI P) ;
gl Vertex3f (x,y,0.0);
gl Vertex3f (x,y, EPSI LON)

len = 5.0 * sqrt(vectors[i][j][O0]*vectors[i][j][O]+
vectors[i][j][1] *vectors[i][j][1]);

gl Vert ex3f (x+vectors[i][j][0]/Ien,
y+vectors[i][j][1]/1en, EPSILON);

gl End() ;
}

/1 first triangle in the quad
gl Begi n( GL_POLYGON) ;
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yavg = (length[i][j]+length[i+1][j]+l ength[i+1][]+1])/3.0;
cal cEven((yavg- YM N)/ YRANGE) ;
gl Col or 3f (nyCol or[ 0], myCol or[ 1], myCol or[ 2] );
gl Vertex3f (XX(i), YY(j), 0.0); /1 colors in the plane only
gl Vert ex3f ( XX(i +1), YY(j), 0.0);
gl Vert ex3f ( XX(i +1), YY(j+1), 0.0);

gl End() ;

/1 second triangle in the quad

gl Begi n( GL_POLYGON) ;
yavg = (length[i][j]+l ength[i][]j+1]+l ength[i+1][]+1])/3.0;
cal cEven((yavg- YM N)/ YRANGE) ;
gl Col or 3f (myCol or[ 0], myCol or[ 1], myCol or[2]);
gl Vertex3f (XX(i), YY(j), 0.0);
gl Vert ex3f (XX(i +1), YY(j+1), 0.0);
gl Vertex3f (XX(i), YY(j+1), 0.0);

gl End() ;

}

Another use of this approach is to present the system of two differential equations

x' = ynh2-1

y' = x"2-1
Herethe vector <x' , y' > isthe result of the differential equation process, and we can present the
vector directly using the magnitude and direction components as described above. Thiswas the
source of the right-hand display in the figure above.

10. Parametric curves

A curve may be defined mathematically by any function (usually a continuous function) from real
one-space into real three-space. The function may be expressed through a function or through
parametric equations. Function curves look like standard graphs, while parametric curves can have
loops or other complex behavior. It isalso possible to have curves defined by other processes,
such as differential equations. A simple example of curves defined by functionsis given by a
standard helix:

x=arsin(t)

y=a* cos(t)

z=t
Other curves can be more interesting and complex. Some can be derived by taking the parametric
surfaces described above and making one of the u or v variables a constant; we will not write any
of these explicitly. Others may come from different sources. A couple of interesting examples are
the rotating sine wave:

x=sin(a*t)* cos(b*t)

y=sin(a*t)*sin(b*t)

z=c*t/(2*p)
or thetoroidal spiral:

x=(a*sin(c*t)+b)* cos(t)

y=(a*sin(c*t)+b)*sin(t)

z=a* cos(c*t).

The modeling for thisis done by dividing areal interval into a number of subintervals and

calculating the point on the curve corresponding to each division point. These are connected in
sequence by line segments. Thisis shown in the code fragment below:

voi d spiral (voi d)
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int i;
float a=2.0, b=3.0, c=18.0, t;

gl Begi n(G._LI NE_STRI P) ;

for ( i=0, t=0.0; i<=1000; i++ ) {
gl Vertex3f ((a*sin(c*t)+b)*cos(t), (a*sin(c*t)+b)*sin(t), a*cos(c*t));
t =t + .00628318; /1 2*Pl1 /1000

}
gl End() ;
}

This example aboveis also shown in Figure 10.11 below. Here the visual communication is quite
simple, with the main question being to show the shape of the curve. However, to let the user get
the best fed for the shape, it is useful to use keyboard-controlled rotations to alow the user to see
it from any viewpoint. Curves such as these are sufficiently complex that students should feel
some satisfaction in seeing the results of their programs.

Figure 10.11: The toroidal spira curve

11. Parametric surfaces

In the function surface projects above, the student was asked to start with agrid in the X-Y domain
and compute avalue of Z for each point in the grid. The resulting points (X,y,z) were then used to
determine rectangles in real three-space that are each graphed as a pair of triangles. The grid need
not be so directly involved in the surface, however. In aparametric surface project, we start with a
grid in parameter space (which we will call U-V space). For each point (u,v) in the grid, three
functions will give three real values for each of these points; these values are the x-, y-, and z-
coordinates of the points that are to be graphed. So the difference between function surfaces and
parametric surfacesisrelatively small from the programming point of view.

The sample we present for parametric surfacesisthe (3,4)-torus. Thisisaclosed, genus-1 surface
with triangular cross section that twists 4/3 times as it goes around the torus. Thisis an interesting
shape, because it has a Mobius-like property that if you put your finger on one side of the triangle
cross-section and hold it there, you will eventually return to the same place on the surface. The
domain for the parameter spaceis[-2p,2p] in both the u and v directions. Modeling the surface
depends first on considering the domain as having three parts in one direction and many partsin
the other direction. The three parts are mapped to the sides of atriangle, and the triangle is slowly
rotated as you proceed along the many-sided direction, making atotal twist of 480 degrees by the
timeit getsto the end. In practice, the space bounded by two of these triangles cannot readily be
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managed with three quadrilaterals, but needs to be subdivided a number of times to handle the twist
in the space appropriately. Code for the modeling includes several parts: the definition of the
parametric functions that define the torus, and the functions to manage the various stages of the
actual surface definition as described above.

//torus; note that this includes a paraneter t for animating the surface
#define RNGRAD 4.0 // radius of torus ring

#define TUBRAD 2.0 // radius of torus tube

#defi ne X(u,v) (RNGRAD+TUBRAD*cos(1.3333333*u+v+t))*cos(u)

#define Y(u,v) (RNGRAD+TUBRAD*cos(1l.3333333*u+v+t))*sin(u)

#define Z(u,v) TUBRAD*sin(1l.3333333*u+v+t)

fl oat um n=-3. 14159, unax=3. 14159, vni n=-3.14159, vnmax=3. 14159;

/1 functions to return u and v values for indices i and j respectively
Gfloat UY(int i) {

return (um n+((umax-unmin)/(float)(usteps-1))*(float)(i)); }
Gfloat wW(int j) {

return (vmn+((vmax-vnin)/(float)(vsteps-1))*(float)(j)); }

voi d doSurface(voi d)
t
int i, j;
float u, v;
G.float yellow]= {1.0, 1.0, 0.0, 1.0};
G.float mat_shininess[]={ 30.0 }

/1 Calculate the points of the surface boundaries on the grid
for ( i=0; i<usteps; i++)
for ( j=0; j<vsteps; j++)

u = UJi); v = W(j);
surface[i][j]-Xx = X(u,Vv);
surface[i][j].-y = Y(u,v);
surface[i][j].z = Z(u,V);
}
/] actually draw the surface
for ( i=0; i<usteps-1; i++ ) [/ along torus -- larger
for ( j=0; j<vsteps-1; j++ ) { /1 around torus -- smaller
gl Material fv(G._FRONT, G._AMBI ENT, yellow );
gl Material fv(G._FRONT, G._DI FFUSE, yellow );
gl Material f v(GL._BACK, GL_AMBI ENT, yellow);
gl Material f v(G._BACK, G._DI FFUSE, yellow );
gl Materi al fv(G._FRONT_AND BACK, G._SHI NI NESS, nat_shi ni ness );
doQuad(20, 1, surface[i][]j],surface[i+1][]],
surface[i][]+1], surface[i+1][]+1]);
}
}
/1 Divide quad into mstrips vertically and i mnages each separately.

void doQuad(int n,int msurfpoint pO,surfpoint pl,surfpoint p2,surfpoint p3)
int i;
surfpoint A, B, C D /1 A and B are the top points of each separate
/1 strip; Cand D are the bottom points.

for (i=0; i<m i++) {
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+ 4+ + + 4+ +

+ 4+ + + 4+ +

"em tted"

be two triangles.

pO, sur f poi nt

A x = (pO.x*(float)(mi)
Ay = (pOo.y*(float)(mi)
Az = (p0.z*(float)(mi)
B.x = (p0.x*(float)(mi-1)
B.y = (p0.y*(float)(mi-1)
B.z = (p0.z*(float)(mi-1)
Cx = (p2.x*(float)(mi)
Cy = (p2.y*(float)(mi)
Cz = (p2.z*(float)(mi)
D.x = (p2.x*(float)(mi-1)
Dy = (p2.y*(float)(mi-1)
Dz = (p2.z*(float)(mi-1)
doStrip(n, A B, C D);
}
}
/* Now we have one vertica
each of which will
of surfpoints,
triangles, each of which is
*/
void doStrip(int n,surfpoint
{
int i, j;
surfpoint A B, buffer[3];
for (i=0; i<=n; i++) {
A x = (p0.x*(float)(n-i) +
Ay = (pO0.y*(float)(n-i) +
Az = (p0.z*(float)(n-i) +
B.x = (pl.x*(float)(n-i) +
B.y = (pl y*(float)(n i) +
B.z = (pl.z*(float)(n-i) +
theStrip[i][0] = A
theStrip[i][1l] = B;
}
I
/1 to the actual output function,
buffer[0] = theStrip[0][0];
buffer[1] = theStrip[0][1];
for (i=1; i<=n; i++)
for (j=0; j<2; j++) {
buffer[2] =theStrip[i][j];
emt(buffer);
buffer[0] = buffer[1];
buffer[1] = buffer[2];
}
}

loat)i)
loat)i)
loat)i)
| oat) (i
| oat) (i +
| oat) (i +

oat) m
oat) m
oat) m
(float)m
(float)m
(float)m

/
/
/
+

/
/
/

x* (f (fl
y* (f (fl
L z*(f (fl
x*(f 1))
y*(f 1))
z*(f 1))

loat)i)/ (float)m
loat)i)/ (float)m
loat)i)/ (float)m
loat) (i+1))/(float)m
loat) (i+1))/(float)m
loat) (i+1))/(float)m

pl, surf poi nt

x*(float)i)/(float)n;
y*(float)i)/(float)n;
.z*(float)i)/ (float)n;
X*(float)i)/(float)n;
y*(float)i)/(fl oat)n;
z*(float)i)/(float)n;

now mani pul ate the strip to send out the triangles one at
using a rolling buffer for

/1 Handl e one triangle as an array of three surfpoints.

void emt( surfpoint *buffer ) {
surfpoint Normal, diffl, diff2;
diffl.x = buffer[1].x -
diffl.y = buffer[1].y -
diffl.z = buffer[1].z -
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buffer[0].x;
buffer[0].vy;
buffer[0]. z;

p2, surf poi nt

strip that we nust subdivide into n pieces,
We actually create a nx2 array
and then divide each quad going down the array into two
with its own function call.

p3)
atime
poi nt s.

Page 10.20



di ff2.x buffer[2].x - buffer[1].x;

diff2.y = buffer[2].y - buffer[1].vy;
diff2.z = buffer[2].z - buffer[1].z;
Normal .x = diffl.y*diff2.z - diff2.y*diffl.z;
Normal .y = diffl.z*diff2.x - diffl.x*diff2.z;
Normal .z = diffl.x*diff2.y - diffl.y*diff2.x;

gl Begi n( GL_POLYGON) ;
gl Nor mal 3f (Nor nal . x, Nor nal .y, Nor mal . z) ;
gl Vertex3f (buffer[0].x, buffer[0].y, buffer[0].2);
gl Vertex3f (buffer[1].x,buffer[1].y, buffer[1].2);
gl Vertex3f (buffer[2].x,buffer[2].y, buffer[2].2z);
gl End() ;

Figure 10.12: a parametric surface

The display of this surface in Figure 10.12 focuses on the surface shapes, which can be quite
complex from certain viewpoints. Thusit isimportant to allow the student to have full rotation
control in all three axes viathe keyboard or the mouse. In addition, the surface rotates slowly in
the plane of the figure, emphasizing that the display is dynamic. Code for the animation is quite
routine and is omitted.

The differences between function surfaces and parametric surfaces can be immense. Function
surfaces are always single-sheet: they alwayslook like a horizontal sheet that has been distorted
upwards and downwards, but never wraps around on itself. Parametric surfaces can be much
more complex. For example, a sphere can be seen as a parametric surface whose coordinates are
computed from latitude and longitude, a two-dimensional region; a torus can be seen as a
parametric surface whose coordinates are computed from the angular displacement around the torus
and the angular displacement in the torus ring, another pair of dimensions. The figure above
shows an example of a parametric surface that encloses a volume, surely something a function
surface could never do.

Many simpler surfaces can be created using parametric definitions, and these make good student
projects. Itiseasy to define asimpletorusin thisway, for example; the functions are
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X(u,v)=(A+B*cos(v))* cos(u);
y(u,v)=(A+B*cos(v))*sin(u); and
Z(u,v)=B*sin(v) for rea constants A and B
for values of u and v between 0 and 2*p, where A is the radius of the torus body and B is the
radius of the torus ring. Compare these equations with the ones used to define the figure above
and note the similarity. Note also how defining a grid on the (u,v) domain corresponds to the
definition of the torusin the GLUT torus model. Other examples may be considered as well; a
couple of these that you may wish to experiment with are:
Helicoid:
X(u,v)=a*u*cos(v),
y(u,v)=b*u*sin(v);
z(u,v)=c*v for real constantsa, b, c
Conical spiral:
X(u,v)=a*[1-(v/2* p)]* cos(n* v)* [ 1+cos(u)] +c* cos(n* v);
y(u,v)=a*[1-(v/2* p)]*sin(n*v)* [ 1+cos(u)]+c* sin(n*v);

z(u,v)=(b*v/2* p)+a*[1-v/(2*p)]*sin*u) for real constants a, b, c and integer n

This area of surface exploration offers some very interesting opportunities for advanced studiesin
functions. For example, the parametric surface may not exist in 3-space but in higher-dimensiona
space, and then may be projected down into 3-space to be seen. For example, there may be four or
more functions of u and v representing four or more dimensions. Familiar surfaces such asKlein
bottles may be viewed thisway, and it can be interesting to ook at options in projectionsto 3-
space as another way for the user to control the view.

[llustrating dynamic systems

12. The Lorenz attractor

Not al curves are given by simple algebraic equations. An excellent example of acurve given by a
differential equation is given below; this describes a complex phenomenon having no closed-form
solution is given by the system of differential equations:

dx/dt =s * (y - X)

dy/ dt r *~x-y-x=z

dz/ dt X*y-b*z
for constants s, r, and b. These are the Lorenz equations and the curve they define, called the
Lorenz attractor, is often described in discussions of strange attractors. Under certain
circumstances (in particular, s=10, r=28, and b=8/3, used in the example in Figure 6.17 below)
chaotic behavior occurs, and the set of curves given by the differential equations (with parameter t)
are very interesting, but to present these curves well you need high-quality numerical integration.
This may require tools you do not have in your programming environment, and the examplethat is
included here only uses difference equation approximations.

This process is modeled by replacing the differential equations above by difference equations.
This can be a questionable decision if we want to provide a fully accurate result, but we do not
assume that the computer graphics student will necessarily have yet learned how to code numerical
integration techniques. For now, we can only suggest that the user might want to reduce the size
of the step in the animate() function below and iterate that several timesin the course of making one
step. Code for the ssimple difference equation approach is given below, followed by anillustration
how the curve looksin Figure 10.13.

float sigma = 10.0, r = 28.0, b = 2.66667;
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voi d ani mate(void) {
poi nt 3 delta;
int i;
float x, vy, z;

X | ocati on[ Nunber SoFar][0];

y | ocati on[ Nunber SoFar][1];
z | ocat i on[ Nunber SoFar] [ 2];
delta[0] = sigma*(y-Xx);
delta[l] =r*x - y - X*X;
delta[2] = x*y - b*z
for (i=0; i<3; i++)
| ocati on[ Nunber SoFar +1][i] = | ocati on[ Nunber SoFar][i]+0.01*delta[i];

Nurmber SoFar ++;
gl ut Post Redi spl ay() ;

}

The display presents the growing set of points so the user can watch the shape of the curve evolve.
Because this curve lives in an interesting region of space, it isimportant that the user be able to
move the curve around and look at its regions, so the program should allow the user to do thiswith
either keyboard or mouse control.

Figure 10.13: the Lorenz curve

13. The Sierpinski attractor

Sometimes an attractor is a more complex object than the curve of the Lorenz attractor. Let us
consider aprocessin which some bouned space contains four designated points that are the
vertices of atetrahedron (regular or not), and let us put alarge number of other pointsinto that
space. Now define a process in which for each non-designated point, a random designated point is
chosen and the non-designated point is moved to the point precisely halfway between its original
position and the position of the designated point. Apply that process repeatedly. It may not seem
that any order would arise from the original chaos, but it does — and in fact there is a specific
region of space into which each of the points tends, and from which it can never escape. Thisis
called the Sierpinski attractor, and it is shown in Figure 10.14.

The Sierpinski attractor is also interesting because it can be defined in atotally different way. 1f we
recursively define atetrahedron to be displayed as a collection of four tetrahedra, each of half the
height of the original tetrahedron, each touching all the others at precisely one point, and each
having one of the vertices of the origina tetrahedron, then the limit of this definition is the attractor
as defined and presented above.
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Figure 10.14: the Sierpinski attractor

Some enhancements to the display

Stereo pairs

If you create awindow that istwice aswide asit is high, and if you divide it into left and right
viewports, you can display two images in the window simultaneously. If these two images are
created with the same model and same center of view, but with two eye points that simulate the
location of two eyes, then the images simul ate those seen by a person’stwo eyes. Finaly, if the
window isrelatively small and the distance between the centers of the two viewportsis reasonably
close to the distance between a person’s eyes, then the viewer can probably resolve the two images
into a single image and see a genuine 3D view. Such aview is shown in Figure 10.15 below: a
pair of views of psi | ocybi n. nol , one of the molecules included in thise materials that has
some 3D interest. None of these processes are difficult, so it would add some extra interest to
include 3D viewing in the molecule display project or ailmost any other of these projects.

Figure 10.15: A stereo pair that the viewer may be able to resolve.
The code below manages the two viewports and performs the display in each; the display portionis

not presented in order to keep the code short and to focus on the dual-viewport approach. This
creates two viewports, defines them to have different viewing projections, performs the same
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actual display operations (indicated by the €llipsis) on each, and then presents the completed
display of both viewports at once to avoid the flicker of updating each separately.

voi d display( void )
{

/1 eye offset fromcenter
float offset = 1.0;

/1 left-hand vi ewport
gl Vi ewport (0, 0, 300, 300);
gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);
gl Mat ri xMode( GL_MCODELVI EW ;
gl Loadl dentity();
gl uLookAt (- of fset, 0.0, ep, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

/1 right-hand vi ewport
gl Vi ewport (300, 0, 300, 300);
gl dear(G._COLOR BUFFER BI T | G._DEPTH BUFFER BIT);
gl Matri xMode( GL_MODELVI EW ;
gl Loadl dentity();
gl uLookAt (of fset, 0.0, ep, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

QiﬁtSmapBuffers();
}

A more complex kind of display — Chromadepth™ display — depends on texture mapping and
will be described later.

Credits:

A number of colleagues have helped with graphical concepts, with scientific principles, or with
models of the scientific issues. We apologize in advance for those we may miss, but we want to
thank Michagl J. Balley of the San Diego Supercomputer Center (SDSC) for many fruitful
discussions across all of these topics, and with Kris Stewart of San Diego State University
(SDSU), Angela Shiflet of Wofford College, Rozeanne Steckler and Kim Baldridge of SDSU, and
lan Littlewood of California State University Stanislaus for their contributions in one or more of
these areas.
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Texture Mapping
Prerequisites

An understanding of the geometry of polygonsin 3-space, a concept of interpolation across a
polygon, and the concept of how valuesin an array can map linearly to valuesin another space.

Introduction

Texturing — applying textures to a graphical object to achieve a more interesting image or add
information to the image without computing additional geometry — is a significant addition to the
capabilities of computer graphics. Texturing isarich topic and we will not try to cover it in depth,
but we will discuss something of what is possible as we develop the subject in away that is
compatible with current graphics APIs and that you can implement in your work.

The key ideaisto apply additional information to your images as your geometry is computed and
displayed. Inour APl environment that primarily works with polygons, as the pixels of the
polygon are computed, the color of each pixel isnot calculated from a simple lighting model but
from a texture map, and this chapter will focus on how that texture mapping works. Most of the
time we think of the texture as an image, so that when you render your objects they will be colored
with the color values in the texture map. This approach is called texture mapping and allows you
to use many tools to create visually-interesting things to be displayed on your objects. There are
also ways to use texture maps to determine the luminance, intensity, or alpha values of your
objects, adding significantly to the breadth of effects you can achieve.

Texture mapping is not, however, the only approach that can be used in texturing. It is aso
possible to compute the texture data for each pixel of an object by procedural processes. This
approach is more complex than we want to include in afirst graphics programming course, but we
will illustrate some procedural methods as we create texture maps for some of our examples. This
will allow us to approximate procedural texturing and to give you an idea of the value of this kind
of approach, and you can go on to look at these techniques yourself in more detail.

Texture maps are arrays of colors that represent information (for example, an image) that you want
to display on an object in your scene. These maps can be 1D, 2D, or 3D arrays, though we will
focuson 1D and 2D arrays here. Texture mapping is the process of identifying points on objects
you define with points in atexture map to achieve images that can include strong visual interest
while using simpler geometry.

The key point to be mastered is that you are dealing with two different spaces in texture mapping.
Thefirst is your modeling space, the space in which you define your objects to be displayed. The
second is a space in which you create information that will be mapped to your objects. This
information isin discrete pieces that correspond to cellsin the texture array, often called texels. In
order to use texture maps effectively, you must carefully consider how these two spaces will be
linked when your image is created — you must include this relationship as part of your design for
the final image.

There are many ways to create your texture maps. For 1D textures you may define alinear color
function through various associations of color along aline segment. For 2D textures you may use
scanned images, digital photos, digital paintings, or screen captures to create the images, and you
may use image tools such as Photoshop to manipulate the images to achieve precisely the effects
you want. Y our graphics APl may have tools that allow you to capture the contents of your frame
buffer in an array where it can be read to afile or used as atexture map. This 2D texture world is
the richest texture environment we will meet in these notes, and is the most common texture
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context for most graphics work. For 3D textures you may again define your texture by associating
colors with points in space, but thisis more difficult because there are few tools for scanning or
painting 3D objects. However, you may compute the values of a 3D texture from a 3D model, and
various kinds of medical scanning will produce 3D data, so 3D textures have many appropriate
applications.

Most graphics APIs are quite flexible in accepting texture maps in many different formats. You
can use one to four components for the texture map colors, and you can select RGB, RGBA, or
any single one of these four components of color for the texture map. Many of these look like they
have very specialized uses for unique effects, but an excdlent general approach is to use
straightforward 24-bit RGB color (8 bits per color per pixel) without any compression or special
file formats — what Photoshop calls “raw RGB.”

Finally, texture mapping is much richer than simply applying colors to an object. Depending on
the capabilities of your graphics API, you may be able to apply texture to a number of different
kinds of properties, such as transparency or luminance. In the most sophisticated kinds of
graphics, texturing is applied to such issues as the directions of normals to achieve special lighting
effects such as bump mapping and anisotropic reflection.

Definitions

In defining texture maps below, we describe them as one-, two-, or three-dimensional arrays of
colors. These are the correct definitions technically, but we usually conceptualize them alittle more
intuitively as one-, two-, or three-dimensional spaces that contain colors. When texture maps are
applied, the vertices in the texture map may not correspond to the pixels you arefilling in for the
polygon, so the system must find away to choose colors from the texture arrays. There are ways
to filter the colors from the texture array to compute the value for the pixel, ranging from choosing
the nearest point in the texture array to averaging values of the colors for the pixel. However, this
isusually not a problem when one first starts using textures, so we note this for future reference
and will discuss how to do it for the OpenGL API later in this chapter.

1D texture maps. A 1D texture map is a one-dimensional array of colors that can be applied along
any direction of an object — essentially as though it were extended to a 2D texture map by being
replicated into a2D array. It thus allows you to apply textures that emphasize the direction you
choose, and in our example below it allows usto apply atexture that varies only according to the
distance of an object from the plane containing the eye point.

2D texture maps. A 2D texture map is atwo-dimensional array of colors that can be applied to any
2D surfacein ascene. Thisis probably the most natural and easy-to-understand kind of texture
mapping, because it models the concept of “pasting” an image onto a surface. By associating
points on a polygon with points in the texture space, which are actually coordinates in the texture
array, we alow the system to compute the association of any point on the polygon with a point in
the texture space so the polygon point may be colored appropriately. When the polygon is drawn,
then, the color from the texture space is used as directed in the texture map definition, as noted
below.

3D texture maps. A 3D texture map is athree-dimensional array of colors. 3D textures are not
supported in OpenGL 1.0 or 1.1, but were added in version 1.2. Because we assume that you will
not yet have this advanced version of OpenGL, thisis not covered here, but it is described in the
OpenGL Reference Manual and the OpenGL Programmers Guide for version 1.2. A useful visua
examination of 3D texturesisfound in Rosalee Wolfe's book noted in the references. The 3D
texture capability could be very useful in scientific work when the 3D texture is defined by an array
of colors from data or theoretical work and the user can examine surfaces in 3-space, colored by
the texture, to understand the information in the space.
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The relation between the color of the object and the color of the texture map

In atexture-mapping situation, we have an object and atexture. The object may be assumed to
have color properties, and the texture also has color properties. Defining the color or colors of the
texture-mapped object involves considering the colors both the object and the texture map.

Perhaps the most common concept of texture mapping involves replacing any color on the original
object by the color of the texture map. Thisis certainly one of the options that a graphics APl will
give you. But there are other options aswell for many APIs. If the texture map has an alpha
channel, you can blend the texture map onto the object, using the kind of color blending we
discussin the color chapter. Y ou may also be able to apply other operations to the combination of
object and texture color to achieve other effects. So don’t assume simply that the only way to use
texture maps is to replace the color of the object by the color of the texture; the options are much
more interesting than merely that.

Texture mapping and billboards

In the chapter on high-performance graphics techniques we introduce the concept of a billboard —
atwo-dimensional polygon in three-space that has an image texture-mapped onto it so that the
image on the polygon seems to be a three-dimensional object in the scene. This is a
straightforward application of texture mapping but requires that the color of the polygon come
entirely from the texture map and that some portions of the texture map have a zero aphavalue so
they will seem transparent when the polygon is displayed.

Creating texture maps

Any texture you use must be created somehow before it isloaded into the texture array. This may
be done by using an image as your texture or by creating your texture through a computational
process. In this section we will consider these two options and will outline how you can create a
texture map through each.

Getting an image as a texture map

Using images as texture maps is very popular, especially when you want to give a naturalistic feel
to agraphical object. Thustexturesof sand, concrete, brick, grass, and ivy — to name only afew
possible naturdistic textures — are often based on scanned or digital photographs of these
materials. Other kinds of textures, such as flames or smoke, can be created with a digital paint
system and used in your work. All the image-based textures are handled in the same way: the
image is created and saved in afile with an appropriate format, and the file is read by the graphics
program into atexture array to be used by the API’ s texture process. And we must note that such
textures are 2D textures.

The main problem with using imagesis that there is an enormous number of graphics file formats.
Entire books are devoted to cataloging these formats, and some formats include compression
techniques that require agreat deal of computation when you re-create the image from thefile. We
suggest that you avoid file formats such as JPEG, GIF, PICT, or even BMP, and use only formats
that store a simple sequence of RGB values. Using compressed images directly requires you to
use atool called an RIP — araster image processor — to get the pixels from your image, and this
would be a complex tool to write yourself. If you want to use an image that you have in a
compressed file forma, probably the simplest approach is to open your image in a highly-capable
image manipulation tool such as Photoshop, which can perform the image re-creation from most
formats, and then re-save it in a simplified form such asraw RGB. Graphics APIs are likely to
have restrictions on the dimensions of texture maps (OpenGL requires al dimensions to be a
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power of 2, for example) so even if the format is so low-level that it does not include the
dimensions, they can berecalled easily. We suggest that you include the dimension as part of the
file name, such as i vy. 128x64. r gb so that the size will not be something that must be
recorded. The process of using an image file as a texture map is described in the second code
example in this chapter.

Generating a synthetic texture map

Because a texture map is simply an array of color, luminance, intensity, or alphavalues, it is
possible to generate the values of the array by applying a computational process instead of reading
afile. Generating atexture computationally isavery powerful technique that can be very simple,
or it may be relatively complex. Here we'll describe afew techniques that you might find helpful
asastarting point in creating your own computed textures.

One of the ssimplest textures is the checkerboard tablecloth. Here, we will assume a 64x64 texture
array and can definethe color of anelementt ex[i ][] ] asredif ((i %) +(] %) ) %2 has value
zero and white if the valueisone. Thiswill put a4x4 red square at the top left of the texture and
will aternate white and red 4x4 sguares from there, thus creating a traditional checkerboard
pattern.

A particularly useful instance of a computed texture involves the use of a noise function. A noise
function isasingle-valued function of one, two, or three variables that has no statistical correlation
to any rotation (that is, does not seem to vary systematically in any direction) or translation (does
not seem to vary systematically across the domain) and that has a relatively limited amount of
change in the value across a limited change in the domain. When one does procedural texturing,
one can calculate the value of a noise function for each pixel in atextured object and use that value
to determine the pixel color in several different ways There are a number of ways to create such
functions, and we will not begin to explore them all, but we will take one approach to defining a
noise function and use it to generate a couple of texture maps.

The usual technique to define a noise function is to use (pseudo)random numbers to determine
values at amesh of pointsin the domain of the function, and then use interpolation techniques to
define the values of the function between these. The interpolation techniques give you a smoother
function than you would have if you simply used random values, producing a more effective
texture. We will focus on 2D texture maps here by defining functions that calculate values for a 2D
domain array, but thisis al readily extended to 1D or 3D noise. Y ou may compute a single noise
function and use it to generate a noise texture map so you can work with the same texture map to
have a consistent environment as you develop your image, or you may caculate a new noise
function and new texture map each time you execute your program and achieve a constantly-new
effect. We suggest that you use the consistent texture map for devel opment, however, so you may
distinguish effects caused by the texture map from effects caused by other graphicsissues.

The approach we will take to develop a noise function is the gradient interpolation discussed by
Peachy in [Ebert et al] and is chosen to give us asmple interpolation process. Thisisalso the kind
of noise function used in the Renderman™ shader system, which you may want to investigate but
which we do not cover in these notes. For each point of the 3D mesh, whose indices we will treat
as x-, y-, and z-components of the noise function domain, we will compute a unit vector of three
components that represents the gradient at that point. We will then assume a height of O at each
grid point and use the gradients to define a smooth function to be our basic noise function. Other
functions will be derived from that. A 3D noiseis areal-valued function of three variables, and we
can obtain 2D or even 1D noise functions by taking 2D or 1D subspaces of the 3D noise space.
But we will retain the basic 3D approach because 3D textures are difficult to get through non-
computational means. We will also re-phrase the code in terms of multi-dimensional arrays to
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make it easier to read, but you should note that writing in terms of arrays will create slower
execution, which isacritical problem for real procedural textures. Y ou are encouraged to read the
discussions of efficiency in [Ebert] to understand these issues.

Generating the gradients for each grid point depends on generating random numbers between zero
and one. We assume that you have available, or can easily create, such afunction, which we will
cal randomn() , and that your local |aboratory support will help you work with any issues such as
initializing the random number environment. Note that the computation z = 1. -2. *randon{)

will produce arandom number between -1 and 1. Then the function below, to be executed in the
initialization section of your program, sets values in the table that will be interpolated to produce
the noise function:

float gradTab[ TABSI ZE] [ TABSI ZE] [ TABSI ZE] [ 3] ;

voi d gradTablnit(void) {
float z, r, theta;
int i;
for (i = 0; i < TABSIZE;, i++) {
z = 1. - 2. *randon();
r =sqrt((1. - z*z));
theta = 2. 0*Pl *random() ;
gradTab[i][0] r*cos(theta);
gradTab[i][1] r*sin(theta);
gradTab[i]][ 2] z;

}

In addition to the table, we build an array of permutations of [0..255] so that we can interpolate the
gradient data from distributed points, giving us the uncorrelated information we need for the noise
function.

/1 the table is a pernutation of 0..255; it could as easily be generated
/1 with a pernutation function if one w shed
static unsigned char perniTABSI ZE] = {
225,155, 210, 108, 175, 199, 221, 144, 203, 116, 70,213, 69, 158, 33, 252,
5, 82,173,133, 222,139, 174, 27, 9, 71, 90,246, 75,130, 91,191
169, 138, 2,151, 194,235, 81, 7, 25,113,228, 159, 205, 253, 134, 142,
248, 65,224,217, 22,121,229, 63, 89,103, 96,104, 156, 17,201, 129,
36, 8,165,110, 237,117,231, 56,132,211, 152, 20, 181, 111, 239, 218,

170, 163, 51,172,157,
162, 115, 44, 43,124,
53,131, 84, 57,220,
18, 215, 153, 24, 76,
106, 34, 187, 140, 164,

47, 80,212,176, 250, 87,
94,150, 16, 141, 247, 32,
197, 58, 50,208, 11, 241,
41, 15,179, 39, 46, 55,
73,112,182, 244, 195, 227,

49, 99, 242, 136, 189,
10, 198, 223, 255, 72,
28, 3,192, 62, 202,

6, 128, 167, 23, 188,
13, 35, 77,196, 185,

26, 200, 226, 119, 31, 123, 168, 125, 249, 68, 183, 230, 177, 135, 160, 180,
12, 1,243, 148,102,166, 38,238,251, 37,240,126, 64, 74,161, 40,
184, 149, 171, 178, 101, 66, 29, 59,146, 61,254,107, 42, 86, 154, 4,
236, 232, 120, 21,233,209, 45, 98,193,114, 78, 19,206, 14,118,127,
48, 79,147, 85, 30,207,219, 54, 88,234,190, 122, 95, 67, 143, 109,
137,214,145, 93, 92,100, 245, 0,216,186, 60, 83,105, 97,204, 52
}s

Once the gradient and permutation tables have been computed, a smoothed linear interpolation of
the nearest mesh pointsis computed and is returned as the value of the function. Theindicesin the
gradient table are taken as values in the 2D domain, and this interpolation uses the gradient values
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to determine the function’ s values between the integer pointsin the grid. Note that in this code we
introduce an adternative to the standard C f | oor () function, an interpolation function that
calculates avaluethat liesaproportion p between x0 and x1 with 0 <= p < =1, asmoothstep
function of avalue between 0 and 1 that provides a smooth transition between those values rather
than asimple linear transition, and a function that calculates an address in the gradient table based
on values from the permutation table.

#define FLOOR(x) ((int)(x) - ((x) <0 && (x) !'=(int)(x)))
#define | NTERP(p, x0, x1) ((x0)+(p)*((x1)-(x0)))

#defi ne SMOOTHSTEP(x) ((X)*(x)*(3. - 2.*(x)))

#defi ne PERM x) perni (x) & TABSI ZE-1)]

#define ADDR(i, j, k) (PERM (i) + PERM (j) + PERM (Kk))));

float noise(float x, float y, float z) {
int ix, iy, iz;
float fxO0, fx1, fyo, fyi, fz0, fzi,
wx, wy, wz, vx0, vx1, vyO, vyl, vzO, vzl;

i x = FLOOR(X);

fx0 = x - ix;

fx1 =fx0 - 1.;

wx = SMOOTHSTEP( f x0) ;

iy = FLOOR(Y);

fy0 =y - iy;

fyl = fy0o - 1.;

wy = SMOOTHSTEP( fyO0);

iz = FLOOR(z);
fz0 =z - iz
fz1 =fz0 - 1.;

wz = SMOOTHSTEP( f 20) ;

vx0=gr adTab[ ADDR(i x,iy,iz)][0]*fx0+
gradTab[ ADDR(i x,iy,iz)][1] *fyO+
gradTab[ ADDR(i x,iy,iz)][2]*fzO0;

vx1l=gradTab[ ADDR(i x+1,iy,iz)][0] *fx1+
gradTab[ ADDR(i x+1,iy,iz)][1] *fyO+
gradTab[ ADDR(i x+1,iy,iz)][2]*fzO0;

vy0=I NTERP(wx, vx0, vx1l);

vx0=gradTab[ ADDR(i x,iy+1,iz)][0] *fx0+
gradTab[ ADDR(i x,iy+1,iz)][1] *fyl+
gradTab[ ADDR(i x, iy+1,iz)][2] *fzO0;

vx1l=gradTab[ ADDR(i x+1,iy+1,iz)][0] *fx1+
gradTab[ ADDR(i x+1,iy+1,iz)][1]*fyl+
gradTab[ ADDR(i x+1,iy+1,iz)][2] *fzO0;

vyl=lI NTERP(wx, vx0, vxl);

vz0=I NTERP(wy, vyO0, vyl);

vx0=gr adTab[ ADDR(i x,iy,iz+1)][0] *fx0+
gradTab[ ADDR(i x,iy,iz+1)][1] *fyO+
gradTab[ ADDR(i x,iy,iz+1)][2] *fz1;

vx1l=gradTab[ ADDR(i x+1,iy,iz+1)][0]*fx1+
gradTab[ ADDR(i x+1,iy,iz+1)][1] *fyO+
gradTab[ ADDR(i x+1,iy,iz+1)][2] *fz1;

vyO=I NTERP( wx, vxO0, vx1);

vx0=gr adTab[ ADDR(i x, i y+1,iz+1)][ 0] *f x0+
gradTab[ ADDR(i x, iy+1,iz+1)][1] *fyl+
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gradTab[ ADDR(i x, iy+1,iz+1)][2] *fz1;
vx1l=gradTab[ ADDR(i x+1,iy+1,iz+1)][0]*fx1+
gradTab[ ADDR(i x+1,iy+1,iz+1)][1]*fyl+
gradTab[ ADDR(i x+1,iy+1,iz+1)][2] *fz1;
vyl=l NTERP(wx, vxO0, vx1);
vz1=| NTERP(wy, vyO0, vyl);

return | NTERP(wz, vzO, vzl);
}

The noise function will probably be defined initially on arelatively small domain with afairly
coarse set of integer vertices, and then the values in the full domain will be computed with the
smoothing operations on the coarser definition. For example, if we define the origina noise
function N, on an 8x8x8 grid we could extend it to afunction N; for a larger grid (say, 64x64x64)

by defining Ni(x,Yy,z) = Ny(x/8,y/8,2z/8). We can thus caculate the values of the

function for whatever size texture map we want, and either save those values in an array to be used
immediately as atexture, or write those valuesto afile for future use. Note that this new function
has a frequency 8 timesthat of the original, so given an origina function we can easily create new
functions with alarger or smaller frequency at will. And if we know that we will only want a1D
or 2D function, we can use alimited grid in the unneeded dimensions.

The noise function we have discussed so far is based on interpolating values that are set at fixed
intervals, so it has little variation between these fixed points. A texture that has variations of
severa different sizes has more irregularity and thus more visual interest, and we can create such a
texture from the original noise function in several ways. Probably the ssmplest isto combine noise
functions with several different frequencies as noted above. However, in order to keep the high-
frequency noise from overwhelming the original noise, the amplitude of the noise is decreased as
the frequency isincreased. If we consider the function N, = A*Ny( Fx, Fy, Fz), we see a

function whose amplitude is increased by afactor of A and whose frequency isincreased by a
factor of F in each direction. If we create a sequence of such functions with halved amplitude and
doubled frequency and add them,

N(X,Y,z) = S Ny( 2kx, 2ky, 2kz) /2
we get a function that has what is called 1/f noise that produces textures that behave like many
natural phenomena. In fact, it is not necessary to compute many terms of the sum in order to get
good textures; you can get good results of you calculate only as many terms as you need to get to
the final resolution of your texture. Another approach, whichisvery similar but which produces a
fairly different result, is the turbulence function obtained when the absolute value of the noise
function is used, introducing some discontinuities to the function and table.

T(x,y,2) = S, abs(Ny( 2, 2"y, 22)) /1 2
And again, note that we are computing 3D versions of the 1/f noise and turbulence functions, and
that you can take 2D or 1D subspaces of the 3D space to create lower-dimension versions. The
images in Figure 11.1 show the nature of the noise functions discussed here.

So far, we have created noise and turbulence functions that produce only one value. Thisisfine
for creating a grayscale texture and it can be used to produce colors by applying the single value in
any kind of color ramp, but it is not enough to provide afull-color texture. For thiswe can simply
treat three noise functions as the components of a 3D noise function that returns three values, and
use these the RGB components of the texture. Depending on your application, either a 1D noise
function with acolor ramp or a 3D noise function might work best.
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Figure 11.1a: a 2D graph of the original noise function (left) and of the 1/f noise derived from it
(right)

Figure 11.1b: the surface representation of the origina noise function
Antialiasing in texturing

When you apply atexture map to a polygon, you identify the verticesin the polygon with valuesin
texture space. These values may or may not be integers (that is, actual indicesin the texture map)
but the interpolation process we discussed will assign a value in texture space to each pixel in the
polygon. The pixel may represent only part of atexel (texture cell) if the difference between the
texture-space values for adjacent pixelsisless than one, or it may represent many texelsif the
difference between the texture space values for adjacent pixelsis greater than one. This offerstwo
kinds of aliasing — the magnification of texelsif the texture is coarse relative to the object being
texture mapped, or the selection of color from widely separated texels if the texture is very fine
relative to the object.

Because textures may involve aliasing, it can be useful to have antidiasing techniques with
texturing. Inthe OpenGL API, the only antialiasing tool available isthe linear filtering that we
discuss below, but other APIs may have other tools, and certainly sophisticated, custom-built or
research graphics systems can use afull set of antialiasing techniques. This needs to be considered
when considering the nature of your application and choosing your API. See [Ebert] for more
details.

12/24/00 Page 11.8



Texture mapping in OpenGL

There are many details to master before you can count yourself fully skilled at using texturesin
your images. Thefull details must be left to the manuals for OpenGL or another API, but here we
will discuss many of them, certainly enough to give you a good range of skillsin the subject. The
details we will discuss are the texture environment, texture parameters, building a texture array,
defining atexture map, and generating textures. We will have examples of many of these detailsto
help you see how they work.

Capturing atexture from the screen

A useful approach to texturesisto create an image and save the color buffer (the frame buffer) as
an array that can be used as a texture map. This can allow you to create a number of different
kinds of images for texture maps. This operation is supported by many graphics APIs. For
example, in OpenGL, the gl ReadBuf f er (node) and gl ReadPi xel s(...) functionswill
define the buffer to be read from and then will read the values of the elementsin that buffer into a
target array. That array may then be written to afile for later use, or may be used immediately in
the program as the texture array. We will not go into more detail here but refer the student to the
manuals for the use of these functions.

Texture environment

The agraphics API, you must define your texture environment to specify how texture values are to
be used when the texture is applied to a polygon. In OpenGL, the appropriate function call is

gl TexEnvi ( GL_TEXTURE_ENV, ~GL_TEXTURE_ENV_MODE, *)
The meaning of the texture is determined by the value of the last parameter. The options are
GL_BLEND, GL_DECAL, GL_MODULATE, or GL_REPLACE.

If the texture represents RGB color, the behavior of the texture when it is applied is defined as
follows. In this and the other behavior descriptions, we use C, A, I, and L for color, alpha,
intensity, and luminance respectively, and subscripts f and t for the fragment and texture values.

GL_BLEND: the color of the pixel is C¢(1-Cy).

GL_DECAL: the color of the pixel is C;, smply replacing the color by the texture color.

GL_MODULATE: the color of the pixel is C¢* Cy,replacing the color by the subtractive computation
for color.

GL_REPLACE: sameasGL_DECAL for color.

If the texture represents RGBA color, then the behavior of the texture is defined as.

GL_BLEND: the color of the pixel is C¢(1-Cy), and the alpha channel in the pixel is A¢* A;.

GL_DECAL: the color of the pixel is (1-A)Cs+A(Cy, and the alpha channel in the pixel is As.

GL_MODULATE: the color of the pixel is Cs* Cy, as above, and the alpha channel in the pixel is
Af* Ay

GL_REPLACE: thecolor of the pixel is C; and the alpha channel in the pixel is Ay.

If the texture represents the alpha channd, the behavior of the texture is defined as:
GL_BLEND: the color of the pixel is Cy, and the alpha channel in the pixel is As.

GL_DECAL.: the operation is undefined
GL_MODULATE: the color of the pixel is Cy, and the alpha channel in the pixel is A¢* A;.

GL_REPLACE: thecolor of the pixel is C; and the alpha channel in the pixel is Ay.
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If the texture represents luminance, the behavior of the texture is defined as:
GL_BLEND: the color of the pixel is C¢(1-L), and the alpha channel in the pixel is As.

GL_DECAL: the operation is undefined.
GL_MODULATE: thecolor of the pixel is C¢* L+, and the dphachannel in the pixel is As.

GL_REPLACE: thecolor of the pixel is L and the alpha channel in the pixel is As.

If the texture represents intensity, the behavior of the texture is defined as:
GL_BLEND: the color of the pixel is C¢(1-1;), and the alpha channel in the pixel is A¢(1-13).

GL_DECAL: the operation is undefined.
GL_MODULATE: the color of the pixel is C¢* I, and the al pha channel in the pixel is A¢* 1.

GL_REPLACE: thecolor of the pixel is | and the alphachannel in the pixel isl;.

Texture parameters

The texture parameters define how the texture will be presented on a polygon in your scene. In
OpenGL, the parameters you will want to understand include texture wrap and texture filtering.
Texture wrap behavior, defined by the GL_TEXTURE_WRAP_* parameter, specifies the system
behavior when you define texture coordinates outside the [0,1] range in any of the texture
dimensions. The two options you have available are repeating or clamping the texture. Repeating
the texture is accomplished by taking only the decimal part of any texture coordinate, so after you
go beyond 1 you start over at 0. This repeats the texture across the polygon to fill out the texture
space you have defined. Clamping the texture involves taking any texture coordinate outside [0,1]
and trandating it to the nearer of 0 or 1. This continues the color of the texture border outside the
region where the texture coordinates are within [0,1]. Thisusesthe gl TexPar aneter*(...)
function to repeat, or clamp, the texture respectively asfollows:

gl TexParanmet eri (GL_TEXTURE 2D, GL_ TEXTURE_WRAP_S, GL_REPEAT) ;

gl TexPar amet eri (GL_TEXTURE_2D, GL_ TEXTURE_WRAP T, GL CLAIVP)
Mixing the parameters with horizontal repetition and vertical clamping produces an image like that
of Figure 11.2.

Figure 11.2: apolygon face with atexture that is wrapped in one direction and clamped in the
other

Another important texture parameter controls the filtering for pixelsto deal with aliasing issues. In
OpenGL, thisis called the minification (if there are many texture points that correspond to one
pixel in the image) or magnification (if there are many pixels that correspond to one point in the
texture) filter, and it controls the way an individual pixel is colored based on the texture map. For
any pixel in your scene, the texture coordinate for the pixel is computed through an interpolation
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across a polygon, and rarely corresponds exactly to an index in the texture array, so the system
must create the color for the pixel by a computation in the texture space. You control this in
OpenGL with the texture parameter GL_TEXTURE * FILTER that you set in the
gl TexParaneter*(...) function. The filter you use depends on whether a pixel in your
image mapsto a space larger or smaller than one texture element. If apixel issmaller than atexture
element, then G._TEXTURE_M N _FI LTER s used; if apixel islarger than atexture element,
then GL_TEXTURE_MAG FI LTERisused. Anexample of the usageis:

gl TexPar aneteri ( GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER, GL_NEAREST) ;
gl TexPar anet eri ( GL_TEXTURE_2D, GL_TEXTURE_MAG _FI LTER, GL_NEAREST) ;

The symbolic values for these filtersare G._NEAREST or G__LI NEAR. If you choose the value
G__NEAREST for the filter, then the system chooses the single point in the texture space nearest
the computed texture coordinate; if you choose GL_ LI NEAR then the system averages the four
nearest points to the computed texture coordinate with weights depending on the distance to each
point. The former is afaster approach, but has problems with aliasing; the latter is slower but
produces a much smoother image. Thisdifferenceisillustrated in Figure 11.3 in an extreme close-
up, and it is easy to see that the G._NEAREST filter gives a much coarser image than the

G__ LI NEARfilter. Your choicewill depend on the relative importance of speed and image quality
in your work.

Figure 11.3: atexture zoomed in with G__ NEAREST (left) and GL_LI NEAR (right) filter
Getting and defining atexture map

This set of definitionsis managed by thegl Tex| mage* (. . . ) functions. These are acomplex
set of functions with a number of different parameters. The functions cover 1D, 2D, and 3D
textures (the dimension is the asterix in the function name) and have the same structure for the
parameters.

Before you can apply thegl TexI mage* (. . .) function, however, you must define and fill an
array that holds your texture data. This array of unsigned integers (G_ui nt ) will have the same
dimension as your texture. The datain the array can be organized in many ways, as we will see
when we talk about the internal format of the texture data. Y ou may read the values of the array
from afile or you may generate the values through your own programming. The examplesin this
chapter illustrate both options.

The parameters of thegl Tex! mage* X . . . ) function are, in order,

* thetarget, usually G._ TEXTURE * D, where* Is1, 2, or 3. Proxy textures are also possible,
but are beyond the range of topics we will cover here. This target will be used in a number of
places in defining texture maps.

» thelevel, an integer representing level-of-detail number. This supports multiple-level MI1P-
mapping.
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» theinternal format of the texture map, one of the places where an API such as OpenGL must
support alarge number of options to meet the needs of a wide community. For OpenGL, this
internal format is a symbolic constant and can vary quite widely, but we will list only a set we
believe will be most useful to the student. Most of the other options deal with other
organizations that involve a different number of bits per pixel of the component. Here we deal
only with formats that have eight bits per component, and we leave the others (and information
on them in manuals) to applications that need specialized formats.

GL_ALPHAS8
- GL_LUM NANCES
- GL_I NTENSI TYS8
- GL_RGB8
-  GL_RGBAS

» thedimensions of the texture map, of type G_si zei , so the number of parameters hereis the
dimension of the texture map. If you have a 1D texture map, this parameter is the width; if you
have a 2D texture map, the two parameters are the width and height; if you have a 3D texture
map, the three parameters are width, height, and depth. Each of these must have a value of
2N+2( bor der) wherethe value of border iseither O or 1 as specified in the next parameter.

» theborder, aninteger that iseither O (if no border is present) or 1 (if thereisaborder).

» theformat, a symbolic constant that defines what the data type of the pixel datain the texture
array is. Thisincludes the following, aswell as some other types that are more exotic:

- GL_ALPHA

- GL_RGB

- GL_RGBA

- GL_LUM NANCE

The format indicates how the texture isto be used in creating the image. We discussed the
effects of the texture modes and the texture format in the discussion of image modes above.

» thetype of the pixel data, a symbolic constant that indicates the data type stored in the texture
array per pixel. Thisisusually pretty ssmple, as shown in the examples below which use only
G._FLQOAT and GL_UNSI GNED_BYTE types.

» the pixels, an address of the pixel data (texture array) in memory.

Y ou will be creating your textures from some set of sources and probably using the same kind of

tools. When you find a particular approach that works for you, you’'ll most likely settle on that

particular approach to textures. The number of optionsin structuring your texture is phenomenal,
as you can tell from the number of options in some of the parameters above, but you should not be
daunted by this broad set of possibilities and should focus on finding an approach you can use.

Texture coordinate control

Asyour texture is applied to a polygon, you may specify how the texture coordinates correspond
to the verticeswith the gl Text ure* (.. .) function, as we have generally assumed above, or
you may direct the OpenGL system to assign the texture coordinates for you. Thisis done with the
gl TexGen*(...) function, which allows you to specify the details of the texture generation
operation.

Thegl TexGen* (. ..) function takesthree parameters. Thefirst isthe texture coordinate being
defined, whichisoneof G._S, GL_T, G._R or GL_Qwith S, T, R, and Q being the first,
second, third, and homogeneous coordinates of the texture. The second parameter is one of three
symbolic constants: G._ TEXTURE_GEN_MODE, GL._ OBJECT_PLANE, or G._EYE PLANE. If
the second parameter is G._ TEXTURE _GEN_MODE, the third parameter is a single symbolic
constant with value GL_OBJECT_LI NEAR, GL_EYE_LI NEAR, or G__SPHERE _MAP. If the
second parameter is QL CBJECT PLANE, the third parameter is a vector of four values that
defines the plane from which an object-llnear texture is defined; if the second parameter is
G__EYE_PLANE, the third parameter is avector of four values that defines the plane that contains
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the eye point. In both these cases, the object-linear or eye-linear value is computed based on the
coefficients. If the second parameter is G._ TEXTURE_GEN_MODE and the third parameter is
G._SPHERE MAP, the texture is generated based on an approximation of the reflection vector
from the surface to the texture map.

Applications of thistexture generation include the Chromadepth™ texture, whichisa 1D eye-linear
texture generated with parameters that define the starting and ending points of the texture. Another
example is automatic contour generation, where you use a G._ OBJECT LI NEAR mode and the
G._OBJECT_PLANE operation that defines the base plane from which contours are to be
generated. Because contours are typically generated from a sea-level plane (one of the coordinates
is0), it is easy to define the coefficients for the object plane base.

Texture mapping and GLU quadrics

Aswe noted in the chapter on modeling, the GLU quadric objects have built-in texture mapping
capabilities, and thisis one of the features that makes them very attractive to use for modeling. To
use these, we must carry out three tasks: load the texture to the system and bind it to a name,
define the quadric to have normals and atexture, and then bind the texture to the object geometry as
the object isdrawn. The short code fragments for these three tasks are given below, with ageneric
functionr eadText ureFi | e(. .. ) specified that you will probably need to write for yourself,
and with a generic GLU function to identify the quadric to be drawn.

readTextureFile(...);

gl Bi ndText ure( GL_TEXTURE_2D, texture[i]);

gl Texl mage2D( GL_TEXTURE_2D, . ..);

gl TexParaneteri (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER, GL_LI NEAR);
gl TexParameteri (GL_TEXTURE_2D, G._TEXTURE_NMAG FI LTER, GL_LI NEAR);

myQuadric = gl uNewQuadric();

gl uQuadri cNor mal s( myQuadric, G._SMOOTH);
gl uQuadri cTexture(myQuadric, G._TRUE);

gl uQuadri cDrawst yl e( nyQuadric, G.U FILL);

gl PushiMatri x();
/1 nodeling transformati ons as needed
gl Bi ndText ure( GL_TEXTURE_2D, texture[i]);
gl uXXX(nyQuadric, ...);

gl PopMat ri x();

Some examples

Textures can be applied in severa different ways with the function
gl TexEnvf ( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, node )

One way uses a decal technique, with mode GL_DECAL, in which the content of the textureis
applied as an opaque image on the surface of the polygon, showing nothing but the texture map.
Another way uses a modul ation technique, with mode G._ MODULATE, in which the content of the
texture is displayed on the surface as though it were colored plastic. This mode allows you to
show the shading of alighted surface by defining a white surface and letting the shading show
through the modulated texture. Thereisalso amode G._BLEND that blends the color of the object
with the color of the texture map based on the alpha values, just as other color blending isdone. In
the examples below, the Chromadepth image is created with a 1D modulated texture so that the
underlying surface shading is displayed, while the mapped-cube image is created with a 2D decal
texture so that the face of the cube is precisely the texture map. Y ou may use several different
textures with one image, so that (for example) you could take a purely geometric white terrain
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model, apply a 2D texture map of an aerial photograph of the terrain with G._ MODULATE mode to
get arealistic image of the terrain, and then apply a 1D texture map in G._BLEND mode that is
mostly transparent but has colors at specific levels and that is oriented to the vertical in the 3D
image in order to get elevation lineson theterrain. Your only limitation is your imagination — and
the time to develop all the techniques.

The Chromadepth™ process. using 1D texture maps to create theillusion of depth. If you apply a
lighting model with white light to a white object, you get a pure expression of shading on the
object. If you then apply a 1D texture by attaching a point near the eye to the red end of the ramp
(see the code below) and a point far from the eye to the blue end of the ramp, you get aresult like
that shown in Figure 11.4 below.

Figure 11.4: a Chromadepth-colored image of amathematical surface

This creates a very convincing 3D image when it is viewed through Chromadepth™ glasses,
because these glasses have a diffraction grating in one lens and clear plastic in the other. The
diffraction grating bends red light more than blue light, so the angle between red objects as seen by
both eyesislarger than the angle between blue objects. Our visua system interprets objects having
larger angles between them as closer than objects having smaller angles, so with these glasses, red
objects are interpreted as being closer than blue objects.

Using 2D texture maps to add interest to a surface often we want to create relaively simple
objects but have them look complex, particularly when we are trying to create models that mimic
thingsin the real world. We can accomplish this by mapping images (for example, images of the
real world) onto our simpler objects. In the very simple example shown in Figure 11.5, a screen
capture and some simple Photoshop work created the left-hand image, and this image was used as

Figure 11.5: atexture map (left) and a 3D cube with the texture map placed on one face (right)
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the texture map on one face of the cube in the right-hand image. (The boundary around the
function surface is part of the texture.) This texture could also have been created by saving the
frame buffer into afile in the program that created the mathematical surface. This created a cube
that has more visual content than its geometry would suggest, and it was extremely simple to
connect the square image with the square face of the cube.

Environment maps

Environment maps allow us to create the illusion that an object reflects images from a texture that
we define. This can provide some very interesting effects, because realistic reflections of real-
world objectsis one of the visual realism clues we would expect. With environment maps, we can
use photographs or synthetic images as the things we want to reflect, and we can adapt the
parameters of the texture map to give us realistic effects. One of the easy effectsto get isthe
reflection of things in achrome-like surface. In Figure 11.6, we see an example of thisas a
photograph of Hong Kong that has been modified with avery wide-angle lensfilter isused as a
texture map on a surface. The lens effect makes the environment map much more convincing
because the environment map uses the surface normals at a point to identify the texture points for
the final image.

Figure 11.6: the origina texture for an environment map (left) and the map on a surface (right)
A word to the wise...

Texture mapping is a much richer subject than these fairly simple examples have been able to
show. You can use 1D textures to provide contour lines on a surface or to give you the kind of
color encoding for a height value we discussed in the module on visual communication. Y ou can
use 2D texturesin several sophisticated ways to give you theillusion of bumpy surfaces (use a
texture on the luminance), to give the effect of looking through a varigated cloud (use a fractal
texture on apha) or of such a cloud on shadows (use the same kind of texture on luminance on a
landscape image). This subject isafruitful areafor creative work.

There are several points that you must consider in order to avoid problems when you use texture
mapping in your work. If you select your texture coordinates carelessly, you can create effects
you might not expect because the geometry of your objects does not match the geometry of your
texture map. One particular case of thisisif you use atexture map that has a different aspect ratio
than the space you are mapping it onto, which can change proportions in the texture that you might
not have expected. More serious, perhaps, istrying to map an entire rectangular area into a
quadrilateral that isn’t rectangular, so that the texture is distorted nonlinearly. Imagine the effect if
you were to try to map a brick texture into a non-convex polygon, for example. Another problem
can arise if you texture-map two adjacent polygons with maps that do not align at the seam between
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the polygons. Much like wallpaper that doesn't match at a corner, the effect can be disturbing and
can ruin any attempt at creating realism in your image. Finally, if you use texture maps whose
resolution is significantly different from the resolution of the polygon using the texture, you can
run into problems of aliasing textures caused by selecting only portions of the texture map. We
noted the use of magnification and minification filters earlier, and these allow you to address this
issue,

In adifferent direction, the Chromadepth™ 1D texture-mapping process gives excellent 3D effects
but does not allow the use of color as away of encoding and communicating information. It
should only be used when the shape alone carries the information that isimportant in an image, but
it has proved to be particularly useful for geographic and engineering images, as well as molecular
models.

Code examples

First example: Sample code to use texture mapping in the first example is shown below. The
declaration set up the color ramp, define the integer texture name, and create the array of texture
parameters.

float D1, D2;

float texParns[4];
static GLui nt texName;
float ranp[256]][3];

Inthei ni t () function we find the following function calls that define the texture map, the texture
environment and parameters, and then enables the texture generation and application.

makeRanp() ;

gl Pi xel Storei ( G._UNPACK_ALI GNVENT, 1 );

gl TexEnvf ( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MCODE, GL_MODULATE );

gl TexParaneterf( G._TEXTURE_1D, G._TEXTURE_WRAP_S, GL_CLAMP );

gl TexParaneterf( G._TEXTURE 1D, G._TEXTURE MAG FI LTER, GL_LINEAR );
gl TexParaneterf( GL_TEXTURE 1D, GL_TEXTURE_M N _FILTER, G._LI NEAR );
gl TexI magelD( GL_TEXTURE 1D, 0, 3, 256, 0, GL_RGB, G._FLOAT, ranp );
gl Enabl e( GL_TEXTURE_CGEN S );

gl Enabl e( G_L_TEXTURE_1D );

ThemakeRanp() functionisdefined to create the global array r anp[ ] that holds the data of the
texture map. This process works with the HSV color model in which hues are defined through
angles (in degrees) around the circle which has saturation and value each equal to 1.0. The use of
the number 240 in the function comes from the fact that in the HSV model, the color redisat O
degrees and blue is at 240 degrees, with green between at 120 degrees. Thus an interpolation of
fully-saturated colors between red and blue will use the angles between 0 and 240 degrees. The
RGB vaues are calculated by afunction hsv2r gb(. . . ) that isastraightforward implementation
of standard textbook color-model conversion processes. The Foley et al. textbook in the
referencesis an excellent resource on color models (see Chapter 13).

voi d makeRanp(voi d)
{
int i;
float h, s, v, r, g, b;

/1 Make color ranp for 1D texture: starts at 0, ends at 240, 256 steps
for (i=0; i<256; i++) {
h = (float)i*240. 0/ 255. 0;
S 1.0; v = 1.0;
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hsv2rgb( h, s, v, &, &g, & );
ranp[i][O] = r; ranp[i][1] = g; ramp[i][2] = b;

}

Finally, inthedi spl ay() function we find the code below, where ep is the eye point parameter
used in thegl uLookAt (. . .) function. This controlsthe generation of texture coordinates, and
binds the texture to the integer name t exNane. Note that the valuesin the t exPar ns[ ] array,
which define where the 1D texture is applied, are defined based on the eye point, so that the image
will b?j sggded red (in front) to blue (in back) in the space whose distance from the eye is between
Dlan .

gl TexGeni ( GL_S, GL_TEXTURE_GEN _MODE, GL_EYE LI NEAR ):

Dl = ep + 1.0; D2 = ep + 10.0;
texParns[ 0] = texParms[1] = 0.0;
texParns[2] = -1.0/(D2-D1);
texParns[ 3] = -D1/(D2-D1);

gl TexGenfv( G._S, G._EYE PLANE, texParns);
gl Bi ndText ure( GL_TEXTURE_1D, texNane);

Second example: Sample code to use texture mapping in the second example is shown in several
pieces below. To begin, in the data declarations we find the declarations that establish the internal
texture map (t ex| mage) and the set of texture names that can be used for textures (t exNane).

#define TEX W DTH 512

#define TEX _HElI GHT 512

static GLubyte texlnage[ TEX W DTH] [ TEX_HEI GHT] [ 3] ;

static Guint texNane[1l]; // parameter is the nunber of textures used

In theinit function we find the gl Enabl e function that allows the use of 2D textures.

gl Enabl e(GL_TEXTURE 2D); // allow 2D texture naps

Y ou will need to create the texture map, either through programming or by reading the texture from
afile. Inthisexample, the textureisread from afile named nmy Text ur e. r gb that was simply
captured and trandlated into araw RGB file, and the function that reads the texture file and creates
the internal texture map, called from the init function, is

voi d set Texture(void)

{
FILE * fd;
GLubyte ch;
int i,j,k;
fd = fopen("myTexture.rgb", "r");
for (i=0; i<TEX WDTH;, i++) /1 for each row
{

for (j=0; j<TEX_HEIGHT; j++) // for each colum
for (k=0; k<3; k++) // read RGEB conponents of the pixel

fread(&ch, 1, 1, fd);
texlmage[i][j]l[k] = (GLubyte) ch;

}
}
fclose(fd);
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}

Finally, in the function that actually draws the cube, called from the di spl ay() function, we
first find code that links the texture map we read in with the texture number and defines the various
parameters of the texture that will be needed to create a correct display. We then find code that

draws the face of the cube, and see the use of

texture coordinates along with vertex coordinates.

The vertex coordinates are defined inan array ver t i ces[ ] that need not concern us here.

gl GenTextures(1, texNane);

gl TexPar anet eri (GL_TEXTURE_2D,

gl TexPar anet eri (GL_TEXTURE_2D,

gl TexPar anet eri ( GL_TEXTURE_2D,

gl TexPar anet eri ( G._TEXTURE_2D,

gl Texl mage2D( GL_TEXTURE_2D, 0,
0, GL_RGB, GL_UNSI

GL_TEXTURE_WRAP_S, GL_CLAWP);
GL_TEXTURE_WRAP_T, GL_CLAWP);
GL_TEXTURE_M N_FI LTER, G._LI NEAR);
GL_TEXTURE_MAG FI LTER, G._LI NEAR);
GL_RGB8, TEX W DTH, TEX_HEl GHT,
GNED_BYTE, texl|mge);

gl Bi ndText ure( G._TEXTURE 2D, texNane[O0]);

gl Begi n( GL_QUADS) ;
gl Nor mal 3f v(normal s[1]);

gl TexCoord2f (0.0, 0.0); gl Vertex3fv(vertices[O0]);

gl TexCoord2f (0.0, 1.0); gl Vertex3fv(vertices[1]);
3])
2])

gl TexCoord2f (1.0, 1.0); gl Ve
gl TexCoord2f (1.0, 0.0); gl Ve
gl End() ;
gl Del et eText ures(1,texNane);

rtex3fv(vertices]
rtex3fv(vertices]

Third example: The third example also uses a 2D texture map, modified in Photoshop to have a
fish-eye distortion to mimic the behavior of avery wide-angle lens. The primary key to setting up
an environment map is in the texture parameter function, where we also include two uses of the

gl H nt(...) function to show that you can

define really nice perspective calculations and point

smoothing — with a computation cost, of course. But the images in Figure 11.5 suggest that it

might be worth the cost sometimes.

gl Hi nt (GL_PERSPECTI VE_CORRECTI ON_HI NT, G__NI CEST) ;
gl Hi nt (GL_POl NT_SMOOTH_HI NT, GL_NI CEST) ;

/1 the two |ines bel ow generate an
/1 texture coordinates

environnent map in both the S and T

gl TexGeni (GL_S, GL_TEXTURE_GEN _MODE, GL_SPHERE MAP):
gl TexGeni (GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP):
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Dynamics and Animation
Prerequisites

A knowledge of modeling, viewing, lighting, and on the roles of parametersin setting up modeling
and viewing.

Introduction

Thisisan unusual chapter, because it includes few figures because the topic is motion, and we
cannot readily capture motion in awritten document. It would be possible to include moviefilesin
apurely electronic document, of course, but these notes are intended for print. Perhaps future
versions of thiswill include inline movies, or at least pre-compiled executables with animation, but
for now you must work with the code segments that we provid and see the execution on your own
systems.

Computer animation is avery large topic, and there are many books and courses on the subject.
We cannot hope to cover the topic in any depth in afirst course in computer graphics, and indeed
the toolkits needed for a great deal of computer animation are major objects of study and skill
development in themselves. Instead we will focus on relatively simple animations that illustrate
something about the kind of models and images we have been creating in this course, with an
emphasis on scientific areas.

Animation is thought of as presenting a sequence of frames, or individual images, rapidly enough
to achieve the sense that the objects in the frames are moving smoothly. There are two kinds of
animation — real-time animation, or animation in which each frame is presented by the program
whileit isrunning, and frame-at-a-time animation, or animation that is assembled by rendering the
individual frames and assembling them into a viewable format (possibly through film or video in a
separate production process). This chapter focuses more on frame-at-a-time animation with a goa
of achieving real-time animation. The two share the problems of defining how models, lighting,
and viewing change over time, but frame-at-a-time animation tends to focus on much more detailed
modeling and much more sophisticated rendering while rea-time animation tends to focus on
simpler time-varying information in order to get refresh rates that are high enough to convey the
variation that is desired. While real-time animation may not be as redistic as frame-at-a-time
animation because simpler modeling and rendering are used or images may be provided at a slower
rate, it can be very effective in conveying an idea and can be especially effective if the user can
interact with the animation program asit is running.

As with everything else in this course, the real question isvisual communication, and there are
some specia vocabularies and techniques in using animation for communication. This module
does not try to cover thisin any depth, but we suggest that you spend some time looking at
successful animations and trying to discover for yourself what makes them succeed. To start, we
suggest that you focus on clarity and simplicity, and work hard to create a focus on the particular
ideas you want to communicate.

Definitions

Animation is the process of creating a sequence of images so that the viewer’s eye will see them as
occurring in a smooth motion sequence. The motion sequence can illustrate the relationship
between things, can show processes for assembling objects, can alow you to design a sequence of
ways to present information, or can allow a user to see a scene from a variety of viewpoints that
you can design.
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There are many ways to design an animation sequence, but a good place to start isto model your
scene using parameters to control features of the model. When you use parameters — variables
that you can manipulate in your program — to control positions of objects, positions or properties
of lights, shapes or relationships or objects, colors, texture coordinates, or other key pointsin your
model, you can change the values of the parameters with time to change the view you present your
audience as the program runs. This allows you to emphasize special features of any of these facets
of your model and to communicate those features to your audience.

In defining your modeling in terms of parameters, we need to recall that there are really only three
parts to a scene as described by a scene graph. One is the geometry of the scene, where we could
use parameters to define the geometry of the scene itself; one example of this could be a function

o . L 2.2
surface, where the function includes a parameter that varies with time, such as z = cos(x” +y " +t).
Another isthe transformations in the scene, where we could use parameters to define the rotation,
translation, or scaling of objects in the scene; one example of this could be moving an object in

space by atranslation with horizontal component t and vertical component (2—t)2, which would
give the object a parabolic path. A third is the appearance of an object in a scene, where a surface
might have an apha color component of (1-t) to change it from opaque at time O to transparent at
time 1, alowing the user to see through the surface to whatever lies below it. These are
straightforward kinds of applications of parametric modeling and should pose no problem in
setting up amodel.

One way to design an animation sequence is by explicitly controlling the change in the parameters
above through your code. Thisiscalled procedural animation, and it works well for simple
animations where you may have only afew parameters that define the sequence (although what
defines “afew” may depend on your system and your goals in the sequence). Another way to
design an animation sequence is through key frames, or particular images that you want to appear
at particular timesin the animation display, and thisis called keyframe animation. Again, each key
frame can be defined in terms of a set of parameters that control the display, but instead of
controlling the parameters programmatically, the parameters are interpolated between the values at
the key frames.

Probably the simplest approach to animation is to define your entire scene in terms of a single
parameter, and to update that parameter each time you generate a new frame. Y ou could think of
the parameter astime and think of your animation in terms of amodel changing with time. Thisis
probably a natural approach when you are working with scientific problems, where time plays an
active role in much of the modeling — think of how much of science deals with change per unit
time. If you know how long it will take to generate your scene, you can even change a time
parameter by that amount for each frame so that the viewer will see the frames at a rate that
approximates the real-time behavior of the system you are modeling.

Another meaning for the parameter could be frame number, the sequence number of the particular
image you are computing in the set of frames that will make up the animation sequence. If you are
dealing with animation that you will record and playback at a known rate (usually 24 or 30 frames
per second) then you can translate the frame number into a time parameter, but the differencein
names for the parameter reflects a difference in thinking, because you will not be concerned about
how long it takes to generate aframe, simply where the frame is in the sequence you are building.

A key concept in generating animationsin real time is the frame rate — the rate at which you are
able to generate new images in the animation sequence. Aswe noted above, the frame rate will
probably be lower for highly-detailed generated frames than it would be for similar frames that
were pre-computed and saved in digital or analog video, but there' s one other difference: frame
rates may not be constant for real-time generated images. This points out the challenge of doing
your own animations and the need to be sure your animations carry the communication you need.
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However, the frame rate can be controlled exactly, no matter how complex the images in the
individual frames, if you create your own video “hardcopy” of your animation. See the hardcopy
chapter for more details on this.

Keyframe animation

When you do a keyframe animation, you specify certain frames as key frames that the animation
must produce and you calculate the rest of the frames so that they move smoothly from one key
frame to another. The key frames are specified by frame numbers, so these are the parameter you
use, as described above.

In cartoon-type animation, it is common for the key frames to be fully-devel oped drawings, and
for the rest of the frames to be generated by a process called “tweening” — generating the frames
between the keys. In that case, there are artists who generate the in-between frames by re-drawing
the elements of the key frames as they would appear in the motion between key frames. However,
we are creating images by programming, so we must start with models instead of drawings. Our
key frameswill have whatever parameters are needed to defing the images, then, and we will create
our in-between frames by interpolating those parameters.

Our animation may be thought of as a collection of animation sequences (in the movies, these are
thought of as shots), each of which uses the same basic parts, or components, of objects,
transformations, lights, etc. For any sequence, then, we will have the same components and the
same set of parameters for these components, and the parameters will vary as we go through the
sequence. For the purposes of the animation, the components themselves are not important; we
need to focus on the set of parameters and on the ways these parameters are changed. With a
keyframe animation, the parameters are set when the key frames are defined, and are interpolated in
some fashion in moving between the frames.

As an example of this, consider a model that is defined in away that allows us to identify the
parameters that control its behavior. Let us define ...

In order to discuss the ways we can change the parameters to achieve a smooth motion from one
key frame to another, we need to introduce some notation. |f we consider the set of parameters as

asinglevectorP = <a, b, c, ..., n>, thenwe can consider the set of parameters at any
givenframeMas P\, = <ap, by Cm --., nw. In doing a segment of a keyframe
animation sequence starting with frame K and going to frame L, then, we must interpolate

Pk = <ayx, bx, Cx ..., ngandP_ = <a, b, c, ..., n>,

the values of the parameter vectors at these two frames.

A first approach to this interpolation would be to use alinear interpolation of the parameter values.
So if we the number of frames between these key frames, including these frames, is C=L- K, we
would have p; =(i *(px) +(Ci)*p )/ C for each parameter p and each integer i between L
and K. If welett = i/C, wecouldre-phrasethisas p;=(t*(px) +(1-t)*p,), a more
familiar way to express pure linear interpolation. Thisis a straightforward cal culation and would

produce smoothly-changing parameter values which should transglate into smooth motion between
the key frames.

Key frame motion is probably more complex than this simple first approach would recognize,
however. In fact, we not only want smooth motion between two key frames, but we want the
motion from before a key frame to blend smoothly with the motion after that key frame. The linear
interpolation discussed above will not accomplish that, however; instead, we need to use a more
general interpolation approach. One approach is to start the motion from the starting point more
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slowly, move more quickly in the middle, and slow down the ending part of the interpolation so
that we stop changing the parameter (and hence stop any motion in the image) just as we reach the
final frame of the sequence. In Figure 12.X, we see a comparison of simple linear interpolation on
the left with agradual startup/slowdown mterpol ation on theright. The right-hand figure shows a
sinusoidal curve that we could readily describeby t = 0. 5(1-cos(f/ p)), wherein both
casesweuset = i/ Casinthe paragraph above, so that we are at frame Kwhen t = 0 and frame
Lwhent=1.

Figure 12.X: two interpolation curves; linear (left) and sinusoida (right)

In spite of our adjustment to move through the key frames slowly, we still have the problem that a
parameter can provide motion (or another effect) in one direction up to akey frame, and then that
motion or effect can go off in an entirely different direction when it leaves the key frame and goes
to another one. That is, our motion is not yet smooth as it goes through akey frame. To achieve
this, we will need to provide a more sophisticated kind of interpolation.

If we consider the quadratic and cubic interpolations from the mathematical fundamentalsin an
early chapter, we see that there are interpol ations among a number of points that meet some of the
points. We need to find such an interpolation that allows our interpolation to meet each keyframe
exactly and that moves smoothly among a set of keyframes, and in order to do this we need to be
able to interpolate the parameters for the frames in a way that meets exactly the parameters for the
keyframes and that moves smoothly between values of the parameters. From the various kinds of
interpolations available, we would chose the Catmull-Rom interpolation described in the chapter on
spline modeling, which gives us the kind of interpolation shown in the second row of Figure 12.Y
and that contrasts with the point-to-point interpolation shown in the first row of that figure.

Figure 12.Y: moving in and out of akeyframe (I€eft to right follows time).
Top row: using atwo-point interpolation; bottom row: using amulti-point interpolation
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Building an animation

The communication you are developing with your animation is very similar to the communication
that a director might want to use in afilm. Film has developed arich vocabulary of techniques that
will give particular kinds of information, and animations for scientific communication can benefit
from thinking about issues in cinematic terms. If you plan to do this kind of work extensively,
you should study the techniques of professional animators. Books on animations will show you
many, many more things you can do to improve your planning and execution. Initially, you may
want to keep your animations simple and hold afixed eyepoint and fixed lights, allowing only the
parts of the model that move with time to move in your frames. However, just as the cinema
discovered the value of a moving camerain amoving scene when they invented the traveling shot,
the camera boom, and the hand-held walking camera, you may find that you get the best effects by
combining a moving viewpoint with moving objects. Experiment with your model and try out
different combinations to see what tells your story best.

A word to the wise...

Designing the communication in an animation is quite different from the same task for asingle
scene, and it takes some extra experience to get it really right. Among the techniques used in
professional animation is the storyboard — a layout of the overall animation that says what will
happen when as the program executes, and what each of your shotsis intended to communicate to
the viewer.

Some examples

Moving objectsin your model

Since animation involves motion, one approach to animation is to move individual thingsin your
model. The exampleinthe sourcefilenovi ngcube. ¢ takesamathematical approach to defining
the position of a cube, moving it around in space. As we suggested above, the key to thisisthe
ani mat e() function that we illustrate below:

voi d ani mat e(voi d)

{
#defi ne deltaTime 0.05

/1 define position for the cube by nopdeling tinme-based behavi or
aTime += deltaTinme; if (aTine > 2.0*Pl) aTine -= 2. 0*PI
cubex = sin(2.0*aTine);
cubey = cos(3.0*aTi ne);
cubez = cos(aTine);
gl ut Post Redi spl ay();

}

This function sets the values of three variables that are later used witha gl Transl ate*(...)
function to position the cube in space. Y ou could set variable orientation, size, or other properties
of your objects as well with similar processes.

Moving parts of objectsin your model

Just as we moved whole objects above, you could move individual parts of a heirarchial model.
Y ou could change the relative positions, relative angles, or relative sizes by using variables when
you define your model, and then changing the values of those variablesin theidle callback. You
can even get more sophisticated and change colors or transparency when those help you tell the
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story you are trying to get across with your images. The code below increments the parameter t
and then uses that parameter to define avariable that is, in turn, used to set arotation angle to
wiggle the ears of therabbit head inthefiler abbi t ear s. c.

voi d ani mat e(voi d)
{
#defi ne twopi 6.28318

t += 0. 1;
if (t >twopi) t -= twopi;
wi ggle = cos(t);
gl ut Post Redi spl ay();
}

Moving the eye point or theview framein your model

Another kind of animation is provided by providing a controlled motion around a scene to get a
sense of the full model and examine particular parts from particular locations. This motion can be
fully scripted or it can be under user control, though of course the latter is more difficult. Inthis
example, the eye moves from in front of a cube to behind a cube, always looking at the center of
the cube, but a more complex (and interesting) effect would have been achieved if the eye path
were defined through an evaluator with specified control points. This question may be revisited
when we look at evaluators and splines.

voi d display( void )

/1 Use a variable for the viewpoint, and nove it around ..
gl Mat ri xMode( GL_MODELVI EW ;
gl Loadl dentity();
gl uLookAt ( ep.x, ep.y, ep.z, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

j.
voi d ani mat e(voi d)
G.float numsteps = 100.0, direction[3] = {0.0, 0.0, -20.0};
if (ep.z < -10.0) whichway = -1.0;
if (ep.z > 10.0) whichway = 1.0;

ep.z += whi chway*di recti on[ 2]/ nunst eps;
gl ut Post Redi spl ay();

}

Asyou travel, you need to control not only the position of the eye point, but aso the entire viewing
environment — in simple terms, the entire gl ut LookAt (. .. ) parameter list. So not only the
eye point, but also the view reference point and the up vector must be considered in creating an
effective moving viewpoint. Further, asyou move around you will sometimes find yourself
moving nearer to objects or farther from them. This means you will have the opportunity to use
level-of-detail techniques to control how those objects are presented to the viewer while you keep
the frame rate as high as possible. There'salot of work here to do everything right, but you can
make a good start much more easily.

Changing featuresof your model

There are many other special features of your models and displays that you can change with time to
create the particular communication you want. Among them, you can change colors, properties of
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your lights, transparency, clipping planes, fog, texture maps, granularity of your model, and so
on. Almost anything that can be defined with a variable instead of a constant can be changed by
changing the model.

In the particular example for this technique, we will change the size and transparency of the display
of one kind of atom in amolecule, as we show in Figure 12.1. The change in theimage is driven
by aparameter t that ischangedinthei dl e callback, and the parameter in turn gives a sinusoidal
change in the size and transparency parameters for the image. Thiswill allow usto put a visual
emphasis on this kind of atom so that a user could see where that kind of atom fits into the
molecule. Thisisjust asmall start on the overall kinds of things you could choose to animate to
put an emphasis on a part of your model.

voi d nol ecul e(voi d)

{
o j = atons[i].colindex; [/ index of color for atomi
for (k=0; k<4; k++)
{ [/ copy atonColors[j], adjust al pha by al phaMult
nmyCol or[ k] = atontCol ors[j][k];
}
if (j==CARBON) nyCol or[3] += al phaAdd;
gl Materialfv(..., nyColor );
gl Translatef(...);
i f (j ==CARBON)
gl uSpher e( at onSpher e, si zeMul t * ANGTOAU( at onSSi zes[j]), GRAI N, GRAI N) ;
el se
gl uSpher e(at onSpher e, ANGTOAU( at onsi zes[j]), GRAIN, GRAIN) ;
gl PopMat ri x();
}
Qbid ani mat e(voi d)
{
t +=0.1; if (t > 2.0*MPl) t -= 2.0*M_PI;
sizeMult = (1.0+0.5*sin(t));
al phaAdd = 0. 2*cos(t);
gl ut Post Redi spl ay() ;
}
A\
LY
LY
LS
L

B

Figure 12.1: molecule with carbon expanded (left) or contracted (right)
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Some points to consider when doing animations with OpenGL

There are some things about OpenGL that you need to understand more fully when you move your
eyepoint than you when you simply create asingle image. The viewing transformation is part of
the overall modeling transformation, and it needs to be done at the right place if you are going to
use parameters to define your view. Inthe di spl ay() functioninthe vi ewcube. ¢ example,
you will note that the modeling transformation is set to the identity, the gl ut LookAt (.. .)
functionis called, the resulting transformation is saved for future use, and then the rotation
processes are called. This keeps the viewing transformation from changing the position of objects
in the model and thus keeps the animation looking right.

Finally, be careful when you use texture maps in animations. There is always the possibility of
aliasing with texture maps, and when they are animated the aliasing can cause strange-looking
behavior in the texture rendering. Some effort in antialiasing textures is particularly important in
animating them.

Code examples

Aswe noted above, and as the code examples show, animation control is primarily managed by
changing parameters of your scene in the callback for the i dl e event. We have seen several of
these examples to control several aspects of the model, the scene, and the display. Y ou should
experiment as widely as you can to see what kind of things you can control and how you can
control them in order to become fluent in using animation as a communication tool.

References

Y ou should look at videos of graphics work to get afuller understanding of what you can do with
thistool. In general, though, you want to avoid high-end entertainment-focused animations and
look at informational animations — presentations of scientific or technical work areidea. But
when you look at video, you are probably looking at presentation-level animations, work that is
doneto impress others. Most of the work you can do in afirst courseis more likely personal-level
or peer-level animation: work that is done to explore an idea yourself or to share with afriend or
colleague. So don't think you can match the quality of the videos you watch; try to find the key
communication ideas and learn from them.
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High-Performance Graphics Techniques and Games Graphics
Prerequisites

A solid understanding of the concepts of computer graphics, and a knowledge of the details of the
OpenGL graphics API in sufficient depth that you can consider alternatives to standard approaches
to creating animated, interactive images.

Definitions

The speed with which we can generate an image is aways of interest because we want to be able to
get our results quickly, whether we' re doing a single scene or an animation. Waiting for an image
to be produced can be frustrating and can even get in the way of theimage's effectiveness. Thisis
evident in many kinds of graphics applications, but it is probably most evident in computer games,
so thisis the context that frames the discussion in this chapter.

Making effective computer games involves many things, including storytelling, creating characters,
maintaining databases of game features, and many genera programming techniques to deliver
maximum speed of operation to the player. One of the critical performance areas — becauseit’s
one of the most compute-intensive bottlenecks in presenting the game to the player — is the
graphics that present the game to the user. Thisisadifferent question than we've been dealing
with in computer graphics to this point. Up to this point in these notes, we have focused on the
quality of the images while maintaining as much performance as we can, but in this chapter we
reverse this emphasis. we focus on the performance of the programs while maintaining as much
quality aswe can. This change makes amajor difference in the kind of processes and techniques
we use.

In asense, thisis not anew issue in computer graphics. For over 20 years, the computer field has
included the area of “red-time graphics.” This originally focused on areas such as flight
simulators, real-time monitoring of safety-critical system processes, and red-time simulations,
often using the highest-power computers available at the time. Some of the real-time graphics
processes also were used in educational applications that are essentially simulations. But the
demands that games place on graphics are both as extreme as these and are focused on personal
computers with widely varying configurations, making it important to bring these red-time
technigues into a graphics text.

Techniques

Fundamentally, high-performance computer graphics, especially as applied to games, takes
advantage of afew smple principles:
» Usehardware acceleration when you can, but don’t assume that everyone hasit and be ready to
work around it when you need to
* Do somework to determine what you don’t need to display
» Look for techniques that will support easy ways to cull objects or pieces of objects from the
set of things to be displayed
» Take advantage of capabilities of texture mapping
» Create objects as texture maps instead of as fully-rendered objects
»  Use multitextures and textures with both low and high resolution
» Useany techniques available to support the fastest display techniques you can
* Digplay lists
* Levd of detall
* Avoid unnecessary lighting calculations
*  When you draw any object, only enable lights near the object
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* Usefog
» Collision detection
We will discuss these and show you as many techniques as we can to support them in helping you
create high-performance graphics.

There are al'so some unique problems in some gaming situations that are not found in most other
areas of graphics. The main one we will discussis collision detection, because thisis an area that
requires some simple computation that we can streamline in ways that are similar to the techniques
discussed above.

Hardware avoidance

The computer graphics pipeline includes a number of places where there are opportunities to put
hardware into the process to get more performance, and graphics cards have usually been quick to
take advantage of these. When you use OpenGL on a system with such a card, the graphics
system will probably use the hardware features automatically. Paradoxical as it may seem,
however, relying on this approach to speed may not be the best idea for high performance. Parts
of your audience might not have the kind of acceleration you are programming for, for example,
and even hardware hasits cost. But more fundamentally, sometimes using standard techniques
and relying on the hardware to get you speed will be slower than looking for alternative techniques
that can avoid the processing the card accel erates.

As an example, consider the Z-buffer that is supported on almost every graphics card. When you
use the Z-buffer to handle depth testing, you must carry out reading, comparing, and writing
operations for each pixel you draw. If you have afast graphics card, thisis higher-speed reading,
comparing, and writing, of course, but it is faster to avoid these operati ons than to optomize them.
There are some techniques we will talk about below that allow you to do some modest computation
to avoid entire polygons or, even better, to avoid making depth tests altogether.

Designing out visiblepolygons

Asyou lay out the overall design of your image, you can ensure that there is only limited visibility
of the overall scene from any viewpoint. Thisis part of the reason why one sees many wallsin
games — we see large polygons with texture mapping for detail, and only avery few polygons are
visible from any point. The sense of visual richness is maintained by moving quickly between
places with different and clearly understood environments, so that when the player makes the
transition from one place to another, they see avery different world, and even though the world is
simple, the constant changing makes the game seem constantly fresh.

Other techniques involve pre-computing what objects will be visible to the player from what
positions. Asavery simple example, when a player moves out of one space into another, nothing
in the space being vacated can be seen, so al the polygons in that space can beignored. thiskind
of pre-computed design can involve maintaining lists of visible polygons from each point with each
direction the player isfacing, aclassical tradeoff of space for speed.

Culling polygons

One of the traditional techniques for avoiding drawing isto design only objects that are made up of
polyhedra (or can be made from collections of polyhedra) and then to identify those polygonsin
the polyhedrathat are back faces from the eye point. In any polyhedron whose faces are opague,
any polygon that faces away from the eye point isinvisible to the viewer, so if we draw these and
use the depth buffer to manage hidden surfaces, we are doing work that cannot result in any visible
effects. Thusit is more effective to decide when to avoid drawing these at all.
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The decision as to whether a polygon faces toward or away from the eye point is straightforward.
Remember that the normal vector for the polygon pointsin the direction of the front (or outside)
face, so that the polygon will be afront face if the normal vector points toward the eye, and will be
aback face if the normal vector points away from the eye. Front faces are potentially visible; back
faces are never visible. Interms of the diagram in Figure 13.1, with the orientation of the vectors
N and E as shown, afront face will have an acute angle between the normal and eye vectors, so
Ne<E will be positive, and a back face will have an obtuse angle, so N<E will be negative. Thusa
visibility test is simply the algebraic sign of the term NeE. Choosing not to display any face that
does not passthe visibility test is called backface culling.

N

Figure 13.1: the front face test

Thiskind of culling can readily be done in your graphics program before any calls to the graphics
API functions, but many graphics APIs support backface culling directly. In OpenGL, cullingis
supported by enabling an operational procedure, G._CULL_FACE. Deciding what makes up a
front face is done with the function

voi d gl Front Face(d enum node)
where node takes on the values GL_CCWor G__ CW(counterclockwise or clockwise), depending
on the orientation of the vertices of afront face as seen from the eye point. Y ou can then choose
which kind of faceto cull with the function

voi d gl Cul | Face(d enum node)
in this case, node takes on the values G._ FRONT, GL_BACK, or G._FRONT_AND BACK. If
culling is enabled, polygons are not drawn if they are the kind of face selected in gl Cul | Face,
where the concept of afront faceisdefined in gl Fr ont Face.

Another kind of culling can take place on the viewing volume. Here you can compare each vertex
of your polyhedron or polygon with the bounding planes on your view volume; if al of the
vertices lie outside of the viewing volume based on comparisons with the same bounding plane,
then the polyhedron or polygon cannot be seen in the defined view and need not be drawn. This
calculation should be done after the viewing transformation so the boundaries of the view volume
are easy to use, but before the polygons are actually rendered. Recalling that the viewing volume
isarectangular pyramid with apex at the origin and expanding in the negative Z-direction, the
actual comparison calculations are given by the following:

y > T*Z/ ZNEAROry < B*Z/ ZNEAR

X > R¥*Z/ ZNEARoOr x < L*Z/ ZNEAR

z > ZNEAROrz < ZFAR
whereT, B, R, and L arethetop, bottom, right, and left coordinates of the near planeZz = ZNEAR
asindicated by the layout in the diagram in Figure 13.2 below.
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Y = Z*T/ZNEAR

ZFAR

YA
X = Z*RIZNEAR

ZNEAR

%

z
Figure 13.2: the comparisons for the bounding volume computation

Avoiding depth comparisons

One of the classic computer graphics techniquesisto order your objects by depth and draw them
from back to front, mimicing the way light would progress from objects to your eye. Thisiscalled
the painter’ salgorithm, and it was most popular when the Z-buffer was beyond the scope of most
graphics programming. This technique can be relatively simple if your model is static, had no
interlocking polygons, and was intended to be seen from a single viewpoint, because these make it
easy to figure out what “back” and “front” mean and which of any two polygonsisin front of the
other. Thisisnot the usual design philosophy for interactive graphics, however, and particularly
for games, because moving geometry and moving eye points are constantly changing which things
arein front of what others. So if we were to use this approach, we would find ourselves having to
calculate distances from a moving eye point in varying directions, which would be very costly to
do.

It may be possible to define your scene in ways that can ensure that you will only view it from
points where the depth is known, or you may need to define more complex kinds of computation
to give you that capability. A relatively common approach to this problem is given by binary space
partitioning, as described below.

Front-to-back drawing

Sometimes agood ideaisalso agood ideawhen it isthought of backwards. Asan alternative to
the painter’ s algorithm approach, sometimes you can arrange to draw objects only from the front to
the back. Thisstill requires atest, but you need test only whether a pixel has been written before
you write it for a new polygon. When you are working with polygons that have expensive
calculations per pixel, such as complex texture maps, you want to avoid calculating a pixel only to
find it overwritten later, so by drawing from the front to back you can calculate only those pixels
you will actually draw. Y ou can use BSP tree techniques as discussed below to select the nearest
objects, rather than the farthest, to draw first, or you can use pre-designed scenes or other
approaches to know what objects are nearest.

Binary space partitioning

There are other approach to avoiding depth comparisons. It is possible to use techniques such as
binary space partitioning to determine what is visible, or to determine the order of the objects as
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seen from the eyepoint. Here we design the scene in away that can be subdivided into convex
sub-regions by planes through the scene space and we can easily compute which of the sub-
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Original scene First subdivision

® O
O 5 O
O O

O |p0O ol |plo

O

O

Second subdivision Third subdivision
Figure 13.3: acollection of objectsin a subdivided space

regionsis nearer and which is farther. This subdivision can be recursive: find a plane that does
not intersect any of the objects in the scene and for which half the objects are in one half-space
relative to the plane and the other half are in the other half-space, and regard each of these half-
Spaces as a separate scene to subdivide each recursively. The planes are usually kept as ssmple as
possible by techniques such as choosing the planesto be parallel to the coordinate planesin your
space, but if your modeling will not permit this, you can use any plane at al. Thistechnique will
fail, however, if you cannot place a plane between two objects, and in this case more complex
modeling may be needed. Thiskind of subdivisionisillustrated in Figure 13.3 for the smpler 2D
casethat iseasier to see.

This partitioning allows us to view the space of the image in terms of a binary space partitioning
tree (or BSP tree) that has the division planes as the interior nodes and the actual drawn objects as
its leaves. With each interior note you can store the equation of the plane that divides the space,
and with each branch of the tree you can store a sign that says whether that side is positive or
negative when its coordinates are put into the plane equation. These support the computation of
which side is nearer the eye, as noted below. Thistreeis shown in Figure 13.4, with each interior
node indicated by the letters of the objects at that point in the space. With any eye point, you can
determine which parts of the space are in front of which other parts by making one test for each
interior node, and re-adjusting the tree so that (for example) the farther part is on the left-hand
branch and the nearer part is on the right-hand branch. This convention is used for the treein the
figure with the eye point being to the lower right and outside the space. The actual drawing then
can be done by traversing the tree | eft-to-right and drawing the objects as you come to them.
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Figure 13.4: abinary space partitioning tree

The actual test for which part is nearer can be done by considering the relation of the eye point to
the plane that divides the space. If you put the eye coordinates into the plane equation, you will get
either apositive or negative value, and objects on the side of the plane nearer the eye will have the
same relation to the plane asthe eye. Further, as your eye moves, you will only need to recompute
the orientation of the BSP tree when your eye point crosses one of the partitioning planes, and you
may be able to conclude that some of the orientations do not need to be recomputed at all.

If you have any moving objects in your scene, you must determine their relation to the other
objects and account for them in relation to the BSP tree. It is common to have moving objects only
show up in front of other things, and if thisis the case then you can draw the scene with the BSP
tree and simply draw the moving object last. However, if the moving object is placed among the
other drawn objects, you can add it into the BSP tree in particular spaces as it moves, with much
the same computation of its location as you did to determine the eye location, and with the object
moved from one region to another when it crosses one of the dividing planes. Details of this
operation are left to the reader at thistime.

Clever use of textures

We have aready seen that textures can make simple scenes seem complex and can give an audience
asense of seeing realistic objects. When we take advantage of some of the capabilities of texture
mapping we can also deal with graphic operations in precisely the sense that we started this chapter
with: reducing the accuracy in hard-to-see ways while increasing the efficiency of the graphics.

Onetechniqueiscalled hillboarding, and involves creating texture-mapped versions of complex
objects that will only be seen at a distance. By taking a snapshot — either a photograph or a once-
computed image — and using the apha channel in the texture map to make all the region outside
the object we want to present blend to invisible, we can put the texture onto a single rectangle that
is oriented towards the eye point and get the effect of atree, or abuilding, or avehicle, on each
rectangle. If we repeat this process many times we can build forests, cities, or parking lots without
doing any of the complex computation needed to actually compute the complex object. Orienting
each billboard to eye point involves computing the positions of the billboard and the eye (which
can be readily done from the scene graph by looking for trandations that affect both) and
computing the cylindrical or spherical coordinates of the eye point if the billboard is regarded as the
origin. Thelatitude and longitude of the eye point from the billboard will tell you how to rotate the
billboard so it faces toward the eye. Note that there are two ways to view a hillboard; if it
represents an object with afixed base (tree, building, ...) then you only want to rotate it around its
fixed axis; if it represents an object with no fixed point (snowflake) then you probably want to
rotate it around two axes so it faces the eye directly.
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Another technique isto use techniques at several levels of resolution. OpenGL provides a capacity
to do mipmaps, texture maps at many resolutions. If you start with the highest-resolution (and
hence largest) texture map, you can automatically create texture maps with lower resolution. Recall
that each dimension of any texture map must be a power of two, so you can create maps with
dimensions half the original, one fourth the original, and so on, yielding a sequence of texture
maps that you can use to achieve your textures without the aliasing you would get if you used the
larger texture.

Y et another approach isto layer textures to achieve your desired effects. This capability, called
multitexturing, is only available for OpenGL at level 1.2 and beyond. It allows you to apply
multiple textures to a polygon in any order you want, so you can create a brick wall as a color
texture map, for example, and then apply aluminance texture map to make certain parts brighter,
simulating the effect of light through a window or the brightness of atorch without doing any
lighting computations whatsoever.

These last two techniques are fairly advanced and the interested student is referred to the manuals
for more details.

System speedups

One kind of speedup available from the OpenGL system isthe display list. Aswe noted in Chapter
3, you can assemble arich collection of graphics operationsinto adisplay list that executes much
more quickly than the original operations. Thisis because the computations are done at the time
the display list is created, and only the final results are sent to the final output stage of the display.
If you pre-organize chunks of your image into display lists, you can execute the lists and gain time.
Because you cannot change the geometry once you have entered it into the display list, however,
you cannot include things like polygon culling or changed display order in such alist.

Another speedup is provided by the “geometry compression” of triangle strips, triangle fans, and
quad strips.  If you can ensure that you can draw your geometry using these compression
techniques, even after you have done the culling and thresholding and have worked out the
seguence you want to use for your polygons, these provide significant performance increases.

LOD

Level of Detail (usually just LOD) involves creating multiple versions of a graphical element and
displaying a particular one of them based on the distance the element is from the viewer. This
allowsyou to create very detailed models that will be seen when the element is near the viewer, but
more simple models that will be seen when the dement is far from the viewer. This saves
rendering time and allows you to control the way things will be seen — or even whether the
element will be seen at al.

Level of detail isnot supported directly by OpenGL, so there are few definitions to be given for it.
However, it is becoming an important issue in graphics systems because more and more complex
models and environments are being created and it is more and more important to display themin
real time. Even with faster and faster computer systems, these two goals are at odds and
techniques must be found to display scenes as efficiently as possible.

The key concept here seems to be that the image of the object you' re dealing with should have the
same appearance at any distance. Thiswould mean that the farther something is, the fewer details
you need to provide or the coarser the approximation you can use. Certainly one key consideration
is that one would not want to display any graphical element that is smaller than one pixel, or
perhaps smaller than afew pixels. Making the decision on what to suppress at large distance, or
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what to enhance at close distance, is probably still a heuristic process, but there is research work
on coarsening meshes automatically that could eventually make this better.

LOD isahit more difficult to illustrate than fog, because it requires us to provide multiple models
of the elements we are displaying. The standard technique for thisisto identify the point in your
graphical element (Obj X, Obj Y, ObjZ) that you want to use to determine the element’s
distance from the eye. OpenGL will let you determine the distance of any object from the eye, and
you can determin the distance through code similar to that below in the function that displayed the
element:

gl RasterPos3f( Ghj X, ObjY, hjZ);
gl Get Fl oat v( GL_CURRENT_RASTER DI STANCE, &di st );
if (farDist(dist)) { ... // farther elenent definition

else { ... /1 nearer elenent definition

}

This alows you to display one version of the element if it is far from your viewpoint (determined
by theafunctionf | oat farDi st (fl oat) that you can define), and other versions as desired
as the element moves nearer to your viewpoint. You may have more than two versions of your
element, and you may use the distance that

gl Get Fl oat v( G._CURRENT RASTER_DI STANCE, &di st)
returns in any way you wish to modify your modeling statements for the element.

Toillustrate the general LOD concept, let’s display a GLU sphere with different resolutions at
different distances. Recall from the early modeling discussion that the GLU sphere is defined by
the function
voi d gl uSphere (G.UquadricCbj *qobj, G.doubl e radi us,
Glint slices, Gint stacks);

as a sphere centered at the origin with the radius specified. The two integers slicesand stacks
determine the granularity of the object; small values of slicesand stackswill create a coarse sphere
and large values will create a smoother sphere, but small values creaste a sphere with fewer
polygons that’s faster to render. The LOD approach to a problem such as thisis to define the
distances at which you want to resolution to change, and to determine the number of slices and
stacks that you want to display at each of these distances. Ideally you will analyze the number of
pixels you want to see in each polygon in the sphere and will choose the number of slices and
stacks that provides that number.

Our modeling approach is to create afunction my Spher e whose parameters are the center and
radius of the desired sphere. In the function the depth of the sphere is determined by identifying
the position of the center of the sphere and asking how far this position is from the eye, and using
simplelogic to define the values of slicesand stacksthat are passed to the gl uSpher e function in
order to select arelatively constant granularity for these values. The essentia codeis

my Quad=gl uNewQuadri c();
gl Raster Pos3fv( origin );
/1 howFar = distance fromeye to center of sphere
gl Get Fl oat v( GL_CURRENT_RASTER_DI STANCE, &howFar );
resol ution = (GLint) (200.0/howFar);
slices = stacks = resol ution;
gl uSphere( myQuad , radius , slices , stacks );

This exampleisfully worked out in the source code nul t i Spher e. ¢ included with this module.
Some levels of the sphere are shown in Figure 13.5 below.
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Figure 13.5: levels of detail in the sphere, from high detail level at left to lower at right

Reducing lighting computation

While we may include eight (or more) lightsin a scene, each light we add takes atoll on the time it
takes to render the scene. Recalling the lighting computations, you will recall that we calculate the
ambient, diffuse, and specular lighting for each light and add them together to compute the light for
any polygon or vertex. However, if you are using positional lights with attenuation, the amount of
light a particular light adds to a vertex is pretty small when that vertex is not near the light. You
may choose to simplify the light computation by disabling lights when they are not near the
polygon you are working on. Again, the principleisto spend alittle time on computation when it
can offer the possibility of saving more time on the graphics calculation.

Fog

Fog is a technique which offers some possibility of using simpler models in a scene while hiding
some of the details by reducing the visibility of the models. The tradeoff may or may not be worth
doing, because the simpler models may not save as much time as it takes to calculate the effect of
the fog. We include it here more because of its conceptual similarity to level-of-detail questions
than for pure efficiency reasons.

When you use fog, the color of the display is modified by blending it with the fog color as the
display isfinally rendered from the OpenGL color buffer. Details of the blending are controlled by
the contents of the depth buffer. Y ou may specify the distance at which this blending starts, the
distance at which no more blending occurs and the color is always the fog color, and the way the
fog color isincreased through the region between these two distances. Thus elements closer than
the near distance are seen with no change, elements between the two distances are seen with acolor
that fades towards the fog color as the distance increases, and elements farther than the far distance
are only seen with the full effect of the fog as determined by the fog density. This provides a
method of depth cueing that can be very useful in some circumstances.

There are asmall number of fundamental concepts needed to manage fogin OpenGL. They areall
supplied through the gl Fog* ( param, val ue) functions asfollows, similarly to other system
parameter settings, with all the capitalized terms being the specific values used for param. In this
discussion we assume that color is specified in terms of RGB or RGBA; indexed color is noted
briefly below.

start and end:
fog is applied between the starting value G._FOG START and the ending value
G._FOG_END, with no fog applied before the starting value and no changes made in the
fog after the end value. Note that these values are applied with the usual convention that
the center of view is at the origin and the viewpoint is at a negative distance from the origin.
The usua convention isto have fog start at 0 and end at 1.

6/1/01 Page 13.9



mode:
OpenGL provides three built-in fog modes: linear, exponential, or exponential-squared.
These affect the blending of element and fog color by computing the fog factor ff as
follows:
e GL_LINEAR: ff = density*z' for z' = (end-z)/(end-start) andany
z betweenst art andend.
* GL_EXP: ff = exp(-density*z') for z' asabove

o GL_EXP2:ff = exp(-density*z') 2 for z' asabove
The fog factor is then clamped to the range [0,1] after it is computed. For all three modes,
once the fog factor f f is computed, the final displayed color Cd isinterpolated by the
factor of ff between the element color Ce and the fog color Cf by
Cd=f f*Ce+(1-ff)*Cf.
density:
density may be thought of as determining the maximum attenuation of the color of a
graphical element by the fog, though the way that maximum is reached will depend on
which fog modeisin place. The larger the density, the more quickly thingswill fade out in
the fog and thus the more opague the fog will seem. Density must be between 0 and 1.
color:
while we may think of fog as gray, thisis not necessary — fog may take on any color at
al. Thiscolor may be defined as a four-element vector or as four individual parameters,
and the elements or parameters may be integers or floats, and there are variations on the
gl Fog* () function for each. The details of the individual versions of gl Fog*() are
very similar togl Col or *() andgl Mat eri al *() and we refer you to the manuals for
the details. Because fog is applied to graphics el ements but not the background, it is avery
good idea to make the fog and background colors be the same.
There are two additiona options that we will skim over lightly, but that should at least be
mentioned in passing. Firgt, it ispossible to use fog when you are using indexed color in place of
RGB or RGBA color; in that case the color indices are interpolated instead of the color
specification. (Wedid not cover indexed color when we talked about color models, but some older
graphics systems only used this color technology and you might want to review that in your text or
reference sources.) Second, fog is hintable — you may use gl Hi nt (..) with parameter
G._FOG_HI NT and any of the hint levels to speed up rendering of the image with fog.

Fog isan easy processto illustrate. All of fog's effects can be defined in the initialization function,
where the fog mode, color, density, and starting and ending points are defined. The actua
imaging effect happens when the image is rendered, when the color of graphica elements are
determined by blending the color of the element with the color of fog as determined by the fog
mode. The various fog-related functions are shown in the code fragment below.

void nyinit(void)
{
static G.float fogColor[4]={0.5,0.5,0.51.0}; // 50% gray

/1 defiﬁé the fog paraneters

gl Fogi (G._FOG _MODE, G__EXP); /1 exponential fog increase
gl Fogf v(G._FOG COLOR, fogCol or); /1 set the fog color

gl Fogf (G._FOG START, 0.0 ); /1 standard start

gl Fogf (G._FOG END, 1.0 ); /1 standard end

gl Fogf (G._FOG _DENSI TY, 0.50); /1 how dense is the fog?

gl Enabl e( GL_FOG) ; /1 enable the fog
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An example illustrates our perennial cubein afoggy space, shown in Figure 13.6. This builds on
the earlier textured cube to include fog in addition to the texture map on one face of the cube. (The
texture map itself isincluded with this module; it is a screen capture of a graphic display, saved in
Photoshop™ as araw RGB file with no structure.) The student is encouraged to experiment with
the fog mode, color, density, and starting and ending values to examine the effect of these
parameters’ changes on your images. This example has three different kinds of sides (red, yellow,
and texture-mapped) and afog density of only 0.15, and has a distinctly non-foggy background
for effect.

Figure 13.6. afoggy cube (including atexture map on one surface)

Collision detection

When you do polygon-based graphics, the question of collisions between objects reduces to the

question of collisions between polygons. By reducing the general polygon to a triangle, that

further reduces to the question of collisons between an edge and a triangle. We actudly

introduced this issue earlier in the mathematical background, but it boils down to extending the

edge to acomplete ling, intersecting the line with the plane of the polygon, and then noting that the

edge meets the polygon if it meets a sequence of successively more focused criteria:

» the parameter of the line where it intersects the plane must lie between 0 and 1

» the point where the line intersects the plane must lie within the smallest circle containing the
triangle

» the point where the line intersects the plane must lie within the body of the triangle.

This comparison processisillustrated in Figure 13.7 below.

If you detect a collison when you are working with moving polyhedra, the presence of an
intersection might require more processing because you want to find the exact moment when the
moving polyhedramet. In order to find this intersection time, you must do some computationsin
the time interval between the previous step (before the intersection) and the current step (when the
intersection exists). Y ou might want to apply a bisection process on the time, for example, to
determine whether the intersection existed or not halfway between the previous and current step,
continuing that process until you get a sufficiently good estimate of the actual time the objects met.
Taking a different approach, you might want to do some analytical computation to calculate the
intersection time given the positions and vel ocities of the objects at the previous and current times
SO you can re-compute the positions of the objects to reflect a bounce or other kind of interaction
between them.
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Figure 13.7: the collision detection computation

A word to the wise...

As LOD techniques are used in animated scenes, you must avoid sudden appearance or
disappearance of objects as well as sudden jumpsin appearance. These artifacts cause a break in
the action that destroys the believability of the animation. It can be useful to create afog zone deep
in a scene and have things appear through the fog instead of ssmple jumping into place.

Fog is a tempting technique because it looks cool to have objects that aren't as sharp and “finished”
looking as most objects seem to be in computer graphics. Thisis similar to the urge to use texture
mapping to get objects that don’t seem to be made of smooth plastic, and the urge to use smooth-
shaded objects so they don’'t seem to be crudely faceted. In al these cases, though, using the extra
technigues has a cost in extra rendering time and programming effort, and unless the technique is
merited by the communication needed in the scene, it can detract from the real meaning of the

graphics.
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Object Selection
Prerequisites

An understanding of the rendering process, an understanding of event handling, and a knowledge
of list management to handle hit lists for events

Introduction

Object selection isatool that permits the user to interact with a scene in amore direct way than is
possible with the kind of external events, such as menu selections, mouse clicks, or key presses,
that we saw in the earlier chapter on event handling. With object selection we can get the kind of
direct manipulation that we are familiar with from graphical user interfaces, where the user selectsa
graphical object and then applies operationsto it.

Conceptually, object selection allows a user to identify a particular object with the cursor and to
choose it by clicking the mouse button when the cursor is on the object. The program must be able
to identify what was selected, and then must have the ability to apply whatever action the user
chooses to that particular selected object.

OpenGL has many facilities for identifying objects that corespond to mouse events — clicks on the
screen — but many of them are quite complex and require the programmer to do significant work
to identify the objects that lie between the front and back clipping planes along the line between the
points in those planes that correspond to the click. However, OpenGL makesit possible for you to
get the same information with much less pain with a built-in selection operation that simply keeps
track of which parts of your sceneinvolve the pixel that was selected with the mouse.

The built-in selection approach calls for the mouse event to request that you render your scene
twice. Inthefirst rendering, you work in the same mode you are used to: you simply draw the
scene in GL__RENDER mode. In the mouse event callback, you change to G._ SELECT mode and
re-draw the scene with each item of interest given aunique name. When the sceneisrendered in
G._ SELECT mode, nothing is actually changed in the frame buffer but the pixels that would be
rendered are identified. When any named object is found that would include the pixel selected by
the mouse, that object’ s name is added to a stack that is maintained for that name. This name stack
holds the names of al the itemsin a hierarchy of named items that were hit. When the rendering of
the scenein G._ SELECT modeis finished, alist of hit recordsis produced, with one entry for each
name of an object whose rendering included the mouse click point, and the number of such records
isreturned when the system is returned to G._ RENDER mode. The structure of these hit recordsis
described below. Y ou can then process thislist to identify the item nearest the eye that was hit,
and you can proceed to do whatever work you need to do with this information.

The concept of “item of interest” is more complex than isimmediately apparent. It caninclude a
single object, a set of objects, or even a hierarchy of objects. Think creatively about your problem
and you may be surprised just how powerful this kind of selection can be.

Definitions

The first concept we must deal with for object selection isthe notion of a selection buffer. Thisis
an array of unsigned integers (GLui nt ) that will hold the array of hit records for a mouse click.
In turn, a hit record contains severa items asillustrated in Figure 14.1. These include the number
of itemsthat were on the name stack, the nearest (zm n) and farthest (zmax) distances to objects
on the stack, and the list of names on the name stack for the selection. The distances are integers
because they are taken from the Z-buffer, where you may recall that distances are stored as integers
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in order to make comparisons more effective. The name stack contains the names of all the objects
in ahierarchy of named objects that were selected with the mouse click.

The distance to objects is given in terms of the viewing projection environment, in which the
nearest points have the smallest non-negative values because this environment has the eye at the
origin and distances increase as points move away from the eye. Typical processing will examine
each selection record to find the record with the smallest value of zmi n and will work with the
namesin that hit record to carry out the work needed by that hit. Thiswork isfairly typical of the
handling of any list of variable-length records, proceeding by accumulating the starting points of
the individual records (starting with 0 and proceeding by adding the values of ( ni t ens+3) from
theindividual records), with the zmin values being offset by 1 from this base and the list of names
being offset by 3. Thisisnot daunting, but it does require some care.

In OpenGL, choosing an object by a direct intersection of the object with the pixel identified by the
mouse is called selection, while choosing an object by clicking near the object iscaled picking. In
order to do picking, then, you must identify points near, but not necessarily exactly on, the point
where the mouse clicks. Thisis discussed toward the end of this note.

How many names .
were on the stack when ——> nitems
this hit occurred?

zZmin

One of these
Zmax record?] per pick
it

ni t ens names ——>» List of names on the
listed here name stack when the

pick happened

nitems

zZmin

Zmax

List of names on the
name stack when the
pick happened

Figure 14.1: the structure of the selection buffer
Making selection work

The selection or picking processisfairly straightforward. The function gl Render Mbde( node)

allows you to draw in either of two modes: render mode (GL_RENDER) invokes the graphics
pipeline and produces pixels in the frame buffer, and select mode (G._ SELECT) calculates the
pixels that would be drawn if the graphics pipeline were to be invoked, and tests the pixels against
the pixelsthat were identified by the mouse click. Asillustrated in the example below, the mouse
function can be defined to change the drawing modeto G._SELECT and to post a redisplay
operation. The display function can then draw the scene in select mode with selection object names
defined with gl ut LoadNane( i nt) to determine what name will be put into the selection buffer
if the object includes the selected pixel, noting that the mode can be checked to decide what isto be
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drawn and/or how it is to be drawn, and then the selection buffer can be examined to identify what
was hit so the appropriate processing can be done. After the selection buffer is processed, the
scene can be displayed again in render mode to present the effect of the selection.

In the outline above, it sounds as though the drawing in select mode will be the same asin render
mode. But thisisusually not the case; anything that you don’t want the user to be able to select
should not be drawn at al in select mode. Further, if you have a complex object that you want to
make selectable, you may not want to do all the work of afull rendering in select mode; you need
only design an approximation of the object and draw that. Y ou can even select things that aren't
drawn in render mode by drawing them in select mode. Think creatively and you can find that you
can do interesting things with selection.

It’s worth aword on the notion of selection names. You cannot load a new name inside a
gl Begi n( node) - gl End() pair, so if you use any geometry compression in your object, it
must all be within a single named object. Y ou can, however, nest names with the name stack,
using thegl PushNane(i nt) function so that while the origina name is active, the new nameis
also active. For example, suppose we were dealing with automobiles, and suppose that we wanted
someone to select parts for an automobile. We could permit the user to select parts at a number of
levels; for example, to select an entire automobile, the body of the automobile, or ssimply one of the
tires. In the code below, we create a heirarchy of selections for an automobile (“Jaguar”) and for
various parts of the auto (“body”, “tire”, etc.) In this case, the names JAGUAR, BCDY,
FRONT_LEFT_TI RE, and FRONT_RI GHT_TI RE are symbolic names for integers that are
defined elsewhere in the code.
gl LoadNarme( JAGUAR );
gl PushName( BODY );
gl Cal | Li st ( JagBodylList );
gl PopNare() ;
gl PushNanme( FRONT_LEFT TIRE );
gl PushMatri x();
gl Transl atef ( ??, ??, ?? )
gl CallList( TireList );
gl PopMat ri x();
gl PopName() ;
gl PushNanme( FRONT_RIGHT _TIRE );
gl PushMatri x();
gl Transl atef ( ??, ??, ??);
gl CallList( TireList );
gl PopMat ri x();
gl PopNane() ;
When a selection occurs, then, the selection buffer will include everything whose display involved
the pixel that was chosen, including the automobile as well as the lower-level part, and your
program can choose (or alow the user to choose) which of the selections you want to use.

Picking

Picking is almost the same operation, logically, as selection, but we present it separately because it
uses a different process and allows us to define a concept of “near’ and to talk about a way to
identify the objects near the selection point. In the picking process, you can define avery small
window in the immediate neighborhood of the point where the mouse was clicked, and then you
can identify everything that is drawn in that neighborhood. The result is returned in the same
selection buffer and can be processed in the same way.

Thisisdone by creating a transformation with the function gl uPi ckMatri x(...) that is
applied after the projection transformation (that is, defined before the projection; recall the relation
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between the sequence in which transformations are identified and the sequence in which they are
applied). Thefull function call is
gl uPi ckMatri x(G.doubl e x, G.double y, G.doubl e w dth, G.doubl e hei ght,
GLint viewport[4])

where x and y are the coordinates of the point picked by the mouse, which is the center of the
picking region; the width and height are the size of the picking region in pixels, sometimes called
the pick tolerance; and the viewport is the vector of four integers returned by the function call
gl Get I ntegerv( G _VI EWPORT, G.int *viewport).

The function of this pick matrix isto identify asmall region centered at the point where the mouse
was clicked and to select anything that is drawn in that region. This returns a standard selection
buffer that can then be processed to identify the objects that were picked, as described above.

A code fragment to implement this picking is given below. This corresponds to the point in the
codefor doSel ect (. ..) abovelabeled “set up the standard viewing modd” and *“standard
perspective viewing”:

int viewport[4]; /* place to retrieve the viewport nunbers */

gl ut Get ( GLUT_W NDOW W DTH )
gl ut Get ( GLUT_W NDOW HEI GHT ) ;

dx
dy

gl Matri xMode( GL_PROJECTI ON ) ;
gl Loadl dentity();
i f( RenderMbde == G._SELECT ) {

gl Getl ntegerv( G._VI EWPORT, viewport );

gl uPi ckivatri x( (doubl e) Xmouse, (double)(dy - Ynobuse),

PICK TOL, PICK TOL, viewport );
}

. the call to glOrtho(), gl Frustun(), or gluPerspective() goes here

A selection example

The selection processis pretty well illustrated by some code by a student, Ben Eadington. This
code sets up and renders a Bézier spline surface with a set of selectable control points. When an
individual control point is selected, that point can be moved and the surface responds to the
adjusted set of points. Animage from thiswork is given in Figure 14.2, with one control point
selected (shown as being ared cube instead of the default green color).

Figure 14.2: asurface with selectable control points and with one selected
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Selected code fragments from this project are given below. Here all the data declarations and
evaluator work are omitted, as are some standard parts of the functions that are presented, and just
the important functions are given with the key points described in these notes. Y ou will be directed
to several specific pointsin the code to illustrate how selection works, described with interspersed
text as the functions or code are presented.

In the first few lines you will see the declaration of the global selection buffer that will hold up to
200 values. Thisisquitelarge for the problem here, since there are no hierarchical models and no
more than avery few control points could ever line up. The actual size would need to be no more
than four GLui nt s per control point selected, and probably no more than 10 maximum points
would ever line up in this problem. Each individual problem will need asimilar analysis.

/1 globals initialization section

#define MAXHI TS 200 // nunber of Guints in hit records
/1 data structures for selection process

GLui nt sel ect Buf [ MAXHI TS] ;

The next point is the mouse callback. This simply catches a mouse-button-down event and calls
the DoSelect function, listed and discussed below, to handle the mouse selection. When the hit is
handled (including the possibility that there was no hit with the cursor position) the control is
passed back to the regular processes with aredisplay.

/'l mouse cal |l back for selection
void Mouse(int button, int state, int nouseX, int nouseY)

if (state == GLUT_DOWN) { // find which object, if any was sel ected
hit = DoSel ect ((GLi nt) nouseX, (GLint) nouseY);

}
gl ut Post Redi spl ay(); /* redraw di splay */
}

The control points may be drawn in either GL_RENDER or GL_ SELECT mode, so this function
must handle both cases. The only difference is that names must be loaded for each control point,
and if any of the points had been hit previously, it must be identified so it can be drawn in red
instead of in green. But there is nothing in this function that says what is or is not hit in another
mouse click; thisis handled in the DoSelect function below.

voi d drawpoi nt s( GLenum node)
{
int i, j;
i nt name=0;
gl Materi al f v( GL_FRONT_AND_ BACK, G._AMBI ENT_AND DI FFUSE, green);
/1 iterate through control point array
for(i=0; i<GRIDSIZE; i++)
for(j=0; j<GRIDSIZE, j++) {
if (nbde == G._SELECT) {
gl LoadNane(nane); // assign a name to each point
nane++; /! increnment nane nunber

}
gl PushiMatri x();
.. place point in right place with right scaling
if(hit==i*16+j9%6) { // selected point, need to draw it red
gl Materi al fv(G._FRONT_AND BACK, GL_AMBI ENT_AND DI FFUSE, red);
gl ut Sol i dCube( 0. 25);
gl Materi al fv(GL_FRONT_AND BACK, G._AMBI ENT_AND_DI FFUSE, green);

}
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}

el se gl ut Sol i dCube( 0. 25);
gl PopMat ri x();
}

The only real issue here is to decide what you do and do not need to draw in each of the two
rendering modes. Note that the surface is only drawn if the program isin GL_RENDER mode;
because nothing in the surface is itself selectable, the only thing that needs to be drawn in
GL_SELECT mode is the control points.

voi d render (GLenum node) {

}

... do appropriate transformations
if (mde == GL_RENDER) { // don't render surface if nbde is G._SELECT
surface(ctrlpts);
some ot her operations that don't matter here

i f(points) drawpoi nts(node); // always render the control points
pop the transform stack as needed and exit gracefully

Thisfinal function isthe real meat of the problem. The display environment is set up (projection
and viewing transformations), the gl Render Mode function sets the rendering mode to
G._ SELECT and the image is drawn in that mode, the number of hitsis returned from the call to
the gl Render Mode function when it returnsto G._ RENDER mode, the display environment is
rebuilt for the next drawing, and the selection buffer is scanned to find the object with the smallest
zm n vaue as the selected item. That value is then returned so that the dr awpoi nt s function
will know which control point to display in red and so other functions will know which control
point to adjust.

GLint DoSelect(Gint x, Gint y)

{

int i;
Gint hits, tenphit;
GLui nt zval;

gl Sel ect Buf fer (MAXHI TS, sel ect Buf);
gl Render Mode( GL_SELECT) ;

gl I ni t Nanmes() ;

gl PushNane(0) ;

/1 set up the view ng nodel
standard perspective viewi ng and view ng transformation setup

render (GL_SELECT); // draw the scene for selection

/1 find the nunmber of hits recorded and reset node of render
hits = gl Render Mode( G._RENDER) ;
/1 reset view ng nodel
standard perspective viewing and view ng transformation setup
/1l return the | abel of the object selected, if any
if (hits <= 0) return -1;

el se {
zval = selectBuf[1];
temphit = sel ect Buf[3];
for (i =1, i < hits; i++) { // for each hit
if (selectBuf[4*i+1] < zval) {

zval = sel ectBuf[4*i+1];
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tenphit = sel ect Buf[4*i +3];
}

}

}
return tenphit;

}

A word to thewise...

This might be a good place to summarize the things we've seen in the discussions and code
examples above:
» Define an array of unsigned integers to act as the selection buffer
» Design amouse event callback that calls afunction that does the following:
- Sets GQ._ SELECT mode and draws selected parts of the image, having loaded names so
these parts can be identified when the selection is made
- when thisrendering is completed, returns a selection buffer that can be processed
- returnsto G._ RENDER mode.
This design structure is straightforward to understand and can be easily implemented with alittle
care and planning.

Another point to recognize is that you cannot pick raster characters. For whatever reason, if you
draw any raster characters in select mode, OpenGL will always think that the characters were
picked no matter where you clicked. If you want to be able to pick aword that is drawn as raster
characters, create arectangle that occupies the space where the raster characters would be, and
draw that rectangle in select mode.
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Interpolation and Spline Modeling
Prerequisites

A modest understanding of parametric functions of two variables together with an understanding of
simple modeling with techniques such astriangle strips.

Introduction

In the discussions of mathematical fundamentals at the beginning of these notes, we talked about
line segments as linear interpolations of points. Here we introduce other kinds of interpolations of
points involving techniques called spline curves and surfaces. The specific spline techniques we
will discuss are straightforward but we will limit them to one-dimensional spline curves.
Extending these to two dimensions to model surfacesis abit more complex and we will only cover
thisin terms of the evaluators that are built into the OpenGL graphics API. In general, spline
techniques provide a very broad approach to creating smooth curves that approximate a number of
pointsin aone-dimensional domain (1D interpolation) or smooth surfaces that approximate a
number of pointsin atwo-dimensional domain (2D interpolation). Thisinterpolation is usually
thought of as away to develop geometric models, but there are a number of other uses of splines
that we will mention later. Graphics APIs such as OpenGL usually provide tools that allow a
graphics programmer to create spline interpolations given only the original set of points, called
control points, that are to be interpolated.

In general, we think of an entire spline curve or spline surface as a single piece of geometry in the
scene graph. These curves and surfaces are defined in a single modeling space and usually have a
single set of appearance parameters, so in spite of their complexity they are naturally represented
by asingle shape node that is aleaf in the scene graph.

Interpolations

When we talked about the parametric form for aline segment in the early chapter on mathematical
foundations for graphics, we created a correspondence between the unit line segment and an
arbitrary line segment and were really interpolating between the two points by creating a line
segment between them. If the points are named PO and P31, this interpolating line segment can be
expressed in terms of the parametric form of the segment:

(1-t)*PO + t*P1,fortin[ 0., 1.]
Thisform isamost trivial to use, and yet it is quite suggestive, because it hints that the set of
points that interpolate the two given points can be computed by an expression such as

fo(t)*PO + fq(t)*P1
for two fixed functionsf o and f 1 . This suggests a relationship between points and functions that
interpolate them that would allow us to consider the nature of the functions and the kind of
interpolations they provide. In thisexample, wehave f o(t)=(1-t) and f 1(t) =t, and there

are interesting properties of these functions. We seethat f o( 0) =1 and f 1( 0) =0, so at t =0, the
interpolant valueis PO, while f 5(1) =0 and f 1(1) =1, so at t =1, the interpolant valueis P1.

Thistells us that the interpolation starts at PO and ends at P1, which we had already found to be a
useful property for the interpolating line segment. Note that because each of the interpolating
functionsislinear in the parameter t , the set of interpolating points forms aline.

As we move beyond line segments that interpolate two points, we want to use the term
interpolation to mean determining a set of points that approximate the space between a set of given
pointsin the order the points are given. This set of points can include three points, four points, or
even more. We assume throughout this discussion that the points are in 3-space, so we will be
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creating interpolating curves (and later on, interpolating surfaces) in three dimensions. If you want
to do two-dimensiona interpolations, smply ignore one of the three coordinates.

Finding away to interpolate three points PO, P1, and P2 is more interesting than interpolating only
two points, because one can imagine many ways to do this. However, extending the concept of
the parametric line we could consider a quadratic interpolationint as:

(1-t) %¥P0 + 2t*(1-t)*P1 + t *P2,fortin[0.,1.]
Here we have three functions fy, f,, and f, that participate in the interpolation, with

fo(t)=(1-t)% fqo(t)=2t*(1-t), and fo(t)=t°. These functions have by now
achieved enough importance in our thinking that we will give them aname, and call them the basis
functions for the interpolation. Further, we will call the points PO, P1, and P2 the control points
for the interpolation (although the formal literature on spline curves calls them knots and calls the
endpoints of an interpolation joints). This particular set of functions have asimilar property to the
linear basis functions above, with f o( 0) =1, f 1(0) =0, and f 5(0) =0, as well as f 3(1) =0,
f1(1) =0, and f »( 1) =1, giving us a smooth quadratic interpolating function in t that has value
PO ift =0 and value P1 if t =1, and that is alinear combination of the three pointsif t =. 5. The
shape of thisinterpolating curveis shown in Figure 15.1.

Figure 15.1: aquadratic interpolating curve for three points

The particular set of interpolating polynomialsf g, f 1, and f 5 in the interpolation of three pointsis

suggestive of a general approach in which we would use components which are products of these
polynomials and take their coefficients from the geometry we want to interpolate. If we follow this
pattern, interpolating four points PO, P1, P2, and P3 would look like:

(1-1) 2P0 + 3t*(1-t) %P1 + 3t2*(1-1)*P2 + t *P3,fortin[0., 1.]
and the shape of the curve this determinesisillustrated in Figure 15.2. (We have chosen the first
three of these points to be the same as the three points in the quadratic spline above to make it
easier to compare the shapes of the curves). In fact, this curveis an expression of the standard
Bézier spline function to interpolate four control points, and the four polynomials

fo(t)=(1-1)°,
f1(t)=3t(1-1)°,
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f,(t)=3t*(1-t), and

fa(t)=t®
are caled the cubic Bernstein basis for the spline curve.

Figure 15.2: interpolating four points with the Bézier spline based on the Bernstein basis functions

When you consider this interpolation, you will note that the interpolating curve goes through the
first and last control points (PO and P3) but does not go through the other two control points. This
is because the set of basis functions for this curve behaves the same at the points where t =0 and
t =1 aswe saw in the quadratic spline: f o( 0) =1, f 1(0) =0, f »(0) =0, and f 3( 0) =0, as well
asfo(1)=0, f1(1)=0, f5(1)=0,andf3(1)=1. You will also note that as the curve goes
through the first and last control points, it is moving in the direction from the first to the second
control point, and from the third to the fourth control points. Thus the two control points that are
not met control the shape of the curve by determining the initial and the ending directions of the
curve, and the rest of the shape is determined in order to get the necessary smoothness.

In general, curves that interpolate a given set of points need not go through those points, but the
points influence and determine the nature of the curve in other ways. If you need to have the curve
actually go through the control points, however, there are spline formulations for which this does
happen. The Catmull-Rom cubic spline has the form

fo(t)*PO + fq(t)*PL + fo(t)*P2 + fg(t)*P3,fortin[0.,1.]
for basis functions

Fo(t)=(-t +2t°-t)/2

f,(t)=(3t >-5t°+2)/ 2

fo(t)=(-3t +4t°+t) /2

Fa(t)=(t>-t9 /2
Thisinterpolating curve has avery different behavior from that of the Bézier curve above, because
asshown in Figure 15.3. Thisisadifferent kind of interpolating behavior that is the result of a set
of basis functions that have f 3(0)=0, f4(0)=1, f,(0)=0, and f3(0)=0, as well as

fo(1)=0, f1(1)=0, f»(1)=1, and f3(1)=0. This means that the curve interpolates the
points P1 and P2 instead of PO and P3 and actually goes through those two points. Thus the

12/21/00 Page 15.3



Catmull-Rom spline curve is useful when you want your interpolated curve to include all the
control points, not just some of them.

Figure 15.3: interpolating four points with the Catmull-Rom cubic spline

We will not carry the idea of spline curves beyond cubic interpolations, but we want to provide this
much detailed background because it can sometimes be handy to manage cubic spline curves
ourselves, even though OpenGL provides evaluators that can make spline computations easier and
more efficient. Note that if the points we are interpolating liein 3D space, each of these techniques
provides a 3D curve, that is, afunction from aline segment to 3D space.

While we have only shown the effect of these interpolationsin the smallest possible set of points, it
is straightforward to extend the interpolations to larger sets of points. The way we do this will
depend on the kind of interpolation that is provided by the particular curve we are working with,
however.

In the Bézier curve, we see that the curve meets the first and last control points but not the two
intermediate control points. If we simply use the first four control points, then the next three (the
last point of the original set plus the next three control points), and so on, then we will have a
curve that is continuous, goes through every third control point (first, fourth, seventh, and so on),
but that changes direction abruptly at each of the control pointsit meets. In order to extend these
curves so that they progress smoothly along their entire length, we will need to add new control
points that maintain the property that the direction into the last control point of a set isthe same as
the direction out of the first control point of the next set. In order to do this, we need to define new
control points between each pair of points whose index is 2N and 2N+1 for N3 1 up to, but not
including, the last pair of control points. We can define these new control points as the midpoint
between these points, or ( PontPopg1) / 2. When we do, we get the following relation between

the new and the original control point set:

original: PO P1 P2 P3 P4 P5 P6 P7

new: PO P1L P2 Q@ P3 P4 QL P5 P6 P7
where each point Q represents a new point calculated as an average of the two on each side of it, as
above. Then the computations would use the following sequences of points. PO—P1-P2—-QD;
Q—-P3-P4-QL; and QL-P5-P6—P7. Note that we must have an even number of control points
for a Bézier curve, that we only need to extend the original control points if we have at least six
control points, and that we always have three of the original points participating in each of the first
and last segments of the curve.
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Figure 15.4: extending the Bézier curve by adding intermediate control points, shown in green

For the Catmull-Rom cubic spline, the fact that the interpolating curve only connects the control
points P1 and P2 gives us a different kind of approach to extending the curve. However, it also
gives us a challenge in starting the curve, because neither the starting control point PO nor the
ending control point P3 is not included in the curve that interpolates PO-P3. Hence we will need to
think of the overall interpolation problem in three parts. the first segment, the intermediate
segments, and the last segment.

For the first segment, the answer issimple: repeat the starting point twice. Thisgivesusafirst set
of control points consisting of PO, PO, P1, and P2, and the first piece of the curve will then
interpolate PO and P1 as the middle points of these four. In the same way, to end the curve we
would repeat the ending point, giving us the four control points P1, P2, P3, and P3, so the curve
would interpolate the middle points, P2 and P3. If we only consider the first four control points
and add this technique, we see the three-segment interpolation of the points shown in the left-hand
image of Figure 15.5.

If we have alarger set of control points, and if we wish to extend the curve to cover the total set of
points, we can consider a“dliding set” of control pointsthat starts with PO, P1, P2, and P3 and, as
we move aong, includes the last three control points from the previous segment as the first three of
the next set and adds the next control point as the last point of the set of four points. That is, the
second set of points would be P1, P2, P3, and P4, and the one after that P2, P3, P4, and P5, and
so on. Thiskind of diding set issimple to implement (just take an array of four points, move each
one down by one index so P[1] becomes P[0], P[2] becomes P[1], P[3] becomes P[2], and the
new point becomes P[3]. The sequence of points used for the individual segments of the curve are
then PO-PO-P1-P2; PO-P1-P2-P3; Pl1-P2-P3-P4; P2-P3-P4-P5; P3—-P4—-P5-P6;
P4—P5-P6—-P7; P5—P6—P7—P8; and P6—P7—P8—P8. The curve that results when we extend
the computation across a larger set of control pointsis shown as the right-hand image of Figure
15.5, where we have taken the same setof control points that we used for the extended Bézier
spline example.
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Figure 15.5: extending the Catmull-Rom curve by including the endpoints of the set (left)
and by stepping along the extended set of control points (right)

I nter polations in OpenGL

In OpenGL, the spline capability is provided by techniques called evaluators, functions that take a
set of control points and produce another set of points that interpolate the original control points.
This allows you to model curves and surfaces by doing only the work to set the control points and
set up the evaluator, and then to get much more detailed curves and surfaces as aresult. Thereis
an excellent example of spline surfaces in the Eadington example for selecting and manipulating
control pointsin the chapter of these notes on object selection.

There are two kinds of evaluators available to you. If you want to interpolate points to produce
one-parameter information (that is, curves or any other data with only one degree of freedom; think
1D textures as well as geometric curves), you can use 1D evaluators. If you want to interpolate
pointsin a 2D array to produce two-parameter information ( that is, surfaces or any other data with
two degrees of freedom; think 2D textures as well as geometric curves) you can use 2D evaluators.
Both are straightforward and alow you to choose how much detail you want in the actual display
of the information.

In Figures 15.6 and 15.7 below we see several images that illustrate the use of evaluatorsto define
geometry in OpenGL. Figure 15.6 shows two views of a 1D evaluator that is used to define a
curve in space showing the set of 30 control points as well as additional computed control points
for smoothness; Figure 15.7 shows two uses of a 2D evaluator to define surfaces, with the top
row showing a surface defined by a 4x4 set of control points and the bottom image showing a
surface defined by a 16x16 set of control points with additional smoothness points not shown.
These images and the techniques for creating smooth curves will be discussed further below, and
some of the code that creates these is given in the Examples section.
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Figure 15.6: aspline curve defined viaa 1D evauator, shown from apoint of view withx =y =z
(left) and rotated to show the relationship between control points and the curve shape (right) The
cyan control points are the originals; the green control points are added as discussed above.

Figure 15.7: spline surfaces defined viaa 2D evaluator. At top, in two views, asingle patch
defined by four control points; at bottom, alarger surface defined by extending the 16x16 set of
control points with interpolated points as defined below

The spline surface in the top row of Figure 15.7 has only a 0.7 alpha value so the control points
and other parts of the surface can be seen behind the primary surface of the patch. In this example,
note the relation between the control points and the actual surface; only the four corner points
actually meet the surface, while all the others lie off the surface and act only to influence the shape
of the patch. Note also that the entire patch lies within the convex hull of the control points. The
specular highlight on the surface should also help you see the shape of the patch from the lighting.
In the larger surface at the bottom of Figure 15.7, note how the surface extends smoothly between
the different sets of control points.
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Definitions

Asyou seein Figures 15.6 and 15.7, an OpenGL evaluator working on an array of four control
points (1D) or 4x4 control points (2D) actually fits the extreme points of the control point set but
does not go through any of the other points. Asthe evaluator comes up to these extreme control
points, the tangent to the curve becomes parallel to the line segment from the extreme point to the
adjacent control point, as shown in Figure 15.8 below, and the speed with which this happensis
determined by the distance between the extreme and adjacent control points.

-<:>-3 4

1

Figure 15.8: two spline curvesthat illustrate the shape of the curve
asit goes through an extreme control point

To control the shape of an extended spline curve, you need to arrange the control points so that the
direction and distance from a control point to the adjacent control points are the same. This can be
accomplished by adding new control points between appropriate pairs of the original control points
asindicated in the spline curve figure above. Thiswill move the curve from the first extreme point
to the first added point, from the first added point smoothly to the second added point, from the
second added point smoothly to the third added point, and so on to moving smoothly through the
last added point to the last extreme point.

This construction and relationship is indicated by the green (added) control pointsin thefirst figure
in this section. Review that figure and note again how there is one added point after each two
original points, excepting the first and last points; that the added points bisect the line segment
between the two points they interpolate; and that the curve actually only meets the added points, not
the original points, again excepting the two end points. If we were to define an interactive program
to allow a user to manipulate control points, we would only give the user access to the original
control points; the added points are not part of the definition but only of the implementation of a
smooth surface.

Similarly, one can define added control pointsin the control mesh for a 2D evaluator, creating a
richer set of patches with the transition from one patch to another following the same principle of
equal length and same direction in the line segments coming to the edge of one patch and going
from the edge of the other. This allows you to achieve a surface that moves smoothly from one
patch to the next. Key points of this code are included in the example section below, but it does
take some effort to manage all the cases that depend on the location of a particular patch in the
surface. The example codeinthefilef ul | Sur f ace. ¢ included with this material will show you
these details.

So how does this all work? A cubic spline curve is determined by a cubic polynomia in a
parametric variable u as indicated by the left-hand equation in (1) below, with the single
parameter u taking values between O and 1. Thefour coefficients a; can be determined by
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knowing four constraints on the curve. These are provided by the four control points needed to
determine a single segment of a cubic spline curve. We saw ways that these four values could be
represented in terms of the values of four basis polynomials, and an OpenGL 1D evaluator
computes those four coefficients based on the Bézier curve definition and, as needed, evaluates the
resulting polynomial to generate a point on the curve or the curve itself. A bicubic spline surfaceis
determined by a bicubic polynomial in parametric variables u and v asindicated by the right-
hand equation in (1) below, with both parameters taking values between 0 and 1. Thisrequires
computing the 16 coefficients a;; which can be done by using the 16 control points that define a

single bicubic spline patch. Again, an OpenGL 2D evaluator takes the control points, determines
those 16 coefficients based on the basis functions from the Bézier process, and evauates the
function as you specify to create your surface model.

3 C
1) Z E'iul E Z aiju't-"
=1

1=0 =0

Some examples

Spline curves: the setup to generate curvesis given in some detail below. Thisinvolves defining a
set of control points for the evaluator to use, enabling the evaluator for your target data type,
defining overall control points for the curve, stepping through the overall control points to build
four-tuples of segment control points, and then invoking the evaluator to draw the actual curve.
This code produced the figures shown in the figure above on spline curves. A few details have
been omitted in the code below, but they are all in the sample code spl i neCur ve. c that is
included with this module. Note that this code returns the points on the curve using the
gl Eval Coordi1f (...) function instead of the gl Vertex*(...) function within a
gl Begin(...) ... gl End() pair; thisisdifferent from the more automatic approach of the 2D
patch example that followsiit.

Probably the key point in this sample code is the way the four-tuples of segment control points
have been managed. The original points would not have given smooth curves, so as discussed
above, new points were defined that interpolated some of the original points to make the transition
from one segment to the other continuous and smooth.

gl Enabl e( GL_MAP1_VERTEX 3)
voi d makeCurve( void )
{
" for (i=0; i<CURVE SIZE; i++) {
ctripts[i]] RAD*cos( | Nl TANGLE + i * STEPANGLE) ;

0] =
ctripts[i][1] = RAD*si n(I Nl TANGLE + i * STEPANGLE) ;
ctripts[i][2]=-4.0 +i * 0.25;

}

voi d curve(void) {
#define LAST_STEP (CURVE_SI ZE/ 2)-1
#define NPTS 30

int step, i, j;

makeCurve(); // calculate the control points for the entire curve
/1 copy/conpute points from ctripts to segpts to define each segment
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/1 of the curve. First/last cases are different fromm ddl e cases..
for ( step = 0; step < LAST_STEP; step++ ) {
if (step==0) { // first case
for (j=0; j<3; j++) {
segpts[O][j]=ctrlpts[O
segpts[1][j]=ctrlpts[1
segpts[2][j]=ctrlpts[2
segpts[3][j]=(ctrlpts]

N i —

]+ctr|pts[3][1])/2 0;

}
el se if (step==LAST_STEP-1) { // last case

for (j=0; j<3; j++) {

segpts[O0][j]=(ctrlpts[ CURVE SI ZE-4][]j]
+ctrl pts[CURVE SI ZE-3][j])/2.0;

segpts[1][j]=ctrlpts[CURVE SI ZE-3][]j];
segpts[2][j]=ctrlpts[CURVE SI ZE-2][]j];
segpts[3][j]=ctrlpts[CURVE SI ZE-1][]j];

}

else for (j=0; j<3; j++) { /I general case
segpt s[ jl1=(ctrlpts[2*step][j]+ctrlpts[2*step+1][j])/2.0;

segpt s[

jl=ctrlpts[2*step+2][j];

0] [j

segpts[1][j]=ctrlpts[2*step+l][j];

2] []
segpts[3][j]=(ctrlpts[2*step+2][j]+ctrlpts[2*step+3][j])/2.0;
}

/1 define the eval uator
gl Maplf (G._MAP1 VERTEX 3, 0.0, 1.0, 3, 4, &segpts[0][0]);
gl Begi n(G._LI NE_STRI P) ;
for (i=0; i<=NPTS; i++)
gl Eval Coordif ( (G.float)i/(G.float)NPTS );
gl End() ;

}
}

Spline surfaces. we have two examples, the first showing drawing a simple patch (surface based
on a 4x4 grid of control points) and the second showing drawing of alarger surface with more
control points. Below is some simple code to generate a surface given a4x4 array of points for a
single patch, as shown in the top row of the second figure above. This codeinitializes a4x4 array
of points, enables auto normals (avallable through the gl Eval Mesh(...) function) and
identifies the target of the evaluator, and carries out the evaluator operations. The datafor the patch
control pointsis deliberately over-simplified so you can see this easily, but in general the patch
points act in a parametric way that is quite distinct from the indices, as is shown in the general
surface code.

point3 patch[4][4] = {{{-2.,-2.,0.},{-2.,-1.,1.},{-2.,1.,1.},{-2.,2.,0.}},
{({-1.,-2.,1.},{-1.,-1.,2.},{-1.,1.,2.},{-1., 2., 1. }},
{{1.,-2.,2.},{1.,-1.,2.},{1.,1.,2.},{1., 2., 1.}},
{{2.,-2.,0.},{2.,-1.,1.},{2.,1.,1.},{2.,2.,0.}}}

voi d nyinit(void)

gl Enabl e( GL_AUTO_NORVAL) ;
gl Enabl e( GL_MAP2_VERTEX_3) ;
}

12/21/00 Page 15.10



voi d doPat ch(voi d)

/! draws a patch defined by a 4 x 4 array of points
#define NUM 20 //

gl Materialfv(...); [/ whatever material definitions are needed

gl Map2f (GL_MAP2_VERTEX_3,0.0,1.0,3,4,0.0,1.0, 12, 4, &at ch[0] [0] [ 0] );
gl MapGri d2f (NUM 0.0, 1.0, NUM 0.0, 1.0);
gl Eval Mesh2(GL_FILL, 0, NUM 0, NUM;

}

The considerations for creating a complete surface with a2D evaluator is similar to that for creating
acurve with a 1D evaluator. You need to create a set of control points, to define and enable an
appropriate 2D evaluator, to generate patches from the control points, and to draw the individual
patches. These are covered in the sample code below.

The sample code below has two parts. The first is afunction that generates a 2D set of control
points procedurally; this differs from the manual definition of the pointsin the patch example above
or in the pool example of the selection section. Thiskind of procedural control point generation is
auseful tool for procedural surface generation. The second is afragment from the section of code
that generates a patch from the control points, illustrating how the new intermediate points between
control points are built. Note that these intermediate points all have indices O or 3 for their
locations in the patch array because they are the boundary points in the patch; the interior points are
alwaysthe original control points. Drawing the actual patch ishandled in just the sasme way asit is
handled for the patch example, so it is omitted here.

/1 control point array for pool surface
poi nt3 ctrl pts[ GRI DSI ZE] [ GRI DSI ZE] ;

voi d genPoi nt s(voi d)

{
#define Pl 3.14159
#define RL 6.0
#define R2 3.0
int i, j;
G.fl oat al pha, beta, step;

al pha = -PI;
step = PI/(G.float)(GRIDSI ZE-1);
for (i=0; i<CGRIDSIZE;, i++) {
beta = -PI;
for (j=0; j<GRIDSIZE;, j++) {
ctripts[i][j][0] (Rl + R2*cos(beta))*cos(al pha);
ctripts[i][j][1] (R1L + R2*cos(beta))*sin(al pha);
ctripts[i][j]l]2] R2*si n( bet a) ;
beta -= step;

al pha += step;

}
}
voi d surface(point3 ctrl pts[CRIDSI ZE] [ GRI DSI ZE] )

{

...{ /1 general case (internal patch)
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for(i=1; i<3; i++)
for(j=1; j<3; j++)
for(k=0; k<3; k++)
patch[i][j][K]=ctrlpts[2*xstep+i][2*ystep+j][k];
for(i=1; i<3; i++)
for(k=0; k<3; k++) {
patch[i][O0][K]=(ctrlpts[2*xstep+i][2*ystep][K]
+ctrl pts[2*xstep+i][2*ystep+1l][k])/2.0;
patch[i][3][K]=(ctrlpts[2*xstep+i][2*ystep+2][K]
+ctrl pts[2*xstep+i][2*ystep+3][k])/2.0;
patch[O][i][Kk]=(ctrl pts[2*xstep][2*ystep+i][K]
+ctrl pts[2*xstep+1][2*ystep+i][k])/2.0;
patch[3][i][K]=(ctrl pts[2*xstep+2][2*yst ep+i][K]
+ctrl pts[2*xstep+3][2*ystep+i][k])/2.0;

}
for(k=0; k<3; k++) {

patch[O0][ O] [K] =(ctrl pts[2*xstep][2*ystep][K]

+ctrl pts[2*xstep+1] [ 2*ystep] [ k]

+ctrl pts[2*xstep] [ 2*yst ep+1] [ k]

+ctrl pts[2*xstep+l][2*ystep+l][k])/4.0;
patch[3][0] [ k] =(ctrl pts[2*xstep+2][2*yst ep] [ K]

+ctrl pts[2*xstep+3] [ 2*ystep] [ k]

+ctrl pt s[ 2*xstep+2] [ 2*yst ep+1] [ K]

+ctrl pts[2*xstep+3][2*ystep+1l][k])/4.0;
patch[O0][3][K]=(ctrl pts[2*xstep][2*ystep+2][K]

+ctrl pts[2*xstep+1] [ 2*yst ep+2] [ K]

+ctrl pts[2*xstep] [ 2*yst ep+3] [ k]

+ctrl pts[2*xstep+l][2*ystep+3][k])/4.0;
patch[3][3][K] =(ctrl pts[2*xstep+2] [ 2*yst ep+2] [ K]

+ctrl pts[2*xstep+3] [ 2*yst ep+2] [ K]

+ctrl pts[2*xstep+2] [ 2*yst ep+3] [ K]

+ctrl pts[2*xstep+3][2*ystep+3][k])/4.0;

o

A word to thewise...

Spline techniques may also be used for much more than simply modeling. Using them, you can
generate smoothly changing sets of colors, or of normals, or of texture coordinates — or probably
just about any other kind of data that one could interpolate. There aren’t built-in functions that
allow you to apply these points automatically as there are for creating curves and surfaces,
however. For these you will need to manage the parametric functions yourself. To do this, you
need to define each point inthe (u, v) parameter space for which you need a value and get the
actud interpolated points from the evauator using the functions gl Eval Coor d1f (u) or
gl Eval Coor d2f (u, v), and then use these points in the same way you would use any points
you had defined in another way. These points, then, may represent colors, or normals, or texture
coordinates, depending on what you need to create your image.

Another example of spline useisin animation, where you can get a smooth curve for your eyepoint
to follow by using splines. Asyour eyepoint moves, however, you also need to deal with the
other issuesin defining aview. The up vector isfairly straightforward; for smple animations, it is
probably enough to keep the up vector constant. The center of view is more of a challenge,
however, because it has to move to keep the motion realistic. The suggested approach is to keep
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three points from the spline curve: the previous point, the current point, and the next point, and to
use the previous and next points to set the direction of view; the viewpoint isthen a point at afixed
distance from the current point in the direction set by the previous and next points. This should
provide areasonably good motion and viewing setup.

This discussion has only covered cubic and bicubic splines, because these are readily provided by
OpenGL evaluators. OpenGL also has the capability of providing NURBS (non-uniform rational
B-splines) but these are beyond the scope of this discussion. Other applications may find it more
appropriate to use other kinds of splines, and there are many kinds of spline curves and surfaces
available; the interested reader is encouraged to look into this subject further.
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Hardcopy
Prerequisites

An understanding of the nature of color and visual communication, and an appreciation of what
makes an effective image.

Introduction

Y ou have worked hard to analyze a problem and have developed really good models and great
images or animations that communicate your solution to that problem, but those images and
animations only run on your computer and are presented on your screen. Now you need to take
that work and present it to alarger audience, and you don’t want to lose the control over the quality
of your work when you take it to a medium beyond the screen. In this chapter we talk about the
issues you will face when you do this.

Definitions

Hardcopy images are images that can be taken away from the computer and communicated to your
audience without any computer mediation. There are several ways this can be done, but the basic
ideaisthat any kind of medium that can carry an image is a candidate for hardcopy. Each of these
media has its own issues in terms of its capability and how you must prepare your images for the
medium. In this chapter we will discuss some of the more common hardcopy media and give you
an idea of what you must do to use each effectively.

In general, we think of hardcopy as something we output from the computer to some sort of output
device. That device may be actually attached to the computer, such as a printer or a film recorder,
or it may be a devide to which we communicate data by network, disk, or CD-ROM. So part of
the discussion of graphics hardcopy will include a description of the way data must be organized in
order to communicate with external production processes.

Print: One version of printed hardcopy is created by a standard color printer that you can use with

your computer system. Because these printers put color on paper, they are usualy CMYK

devices, as we talked about in the color chapter, but the printer driver will usually handle the

conversion from RGB to CMYK for you. In order of increasing print quality, the technologies for

color output are

* inkjet, where small dots of colored ink are shot onto paper and you have to deal with dot
spread and over-wetting paper asthe ink is absorbed into the paper,

» wax transfer, where wax sticks of the appropriate colors are melted and athin film of wax is
put onto the paper, and

* dyesublimation, where sheets of dye-saturated material are used to transfer dyes to the paper.

These devices have various levels of resolution, but in general each has resolution somewhat |ess

than a computer screen. All these technologies can also be used to produce overhead foils for

those times when you have only an overhead projector to present your work to your audience.

Print can also mean producing documents by standard printing presses. This kind of print has
some remarkably complex issues in reproducing color images. Because print is atransmissive or
subtractive medium, you must convert your original RGB work to CMY K color before beginning
to develop printed materials. You will also need to work with printing processes, so someone
must make plates of your work for the press, and this involves creating separations as shown in
Figure 16.1 (which was also shown in the chapter on color). Plate separations are created by
masking the individual C, M, Y, and K color rasters with a screen that islaid acrosstheimage at a
different angle for each color; the resulting print allows each of the color inks to lay on the paper
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with minimal interference with the other colors. A screen is shown in Figure 16.2, which is
enlarged so much that you can see the angles of the screens for the C, M, Y, and K components.
(You should look at a color image in print to see the tell-tale rosettes of standard separations.)
There are other separation technologies, called stochastic separations, that dither individual dots of
ink to provide more colored ink on the page and sharper images without interference, but these
have not caught on with much of the printing world. Creating separations for color-critical images
is something of an art form, and it is strongly suggested that you insist on high-quality color
proofs of your work. You must also plan for alower resolution in print than in your original
image because the technol ogies of platemaking and presses do not allow presses to provide avery
high resolution on paper.

LR RN R RRURCRUN R

CURU IR RN RCRUN
i T T T )

Figure 16.2: C, M, Y, and K screensin acolor image, greatly enlarged
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Film: sometimes you want to present the highest-quality images you can to an audience: the most
saturated colors and the highest resolution. Sometimes you want to be sure you can present your
work without relying on computer projection technology. In both cases, you want to consider
standard photographic images from digital film recorders. These are devices that generate images
using a very high-quality grayscale monitor, a color wheel, and a camera body and that work with
whatever kind of film you want (usually dide film: Kodachrome, Ektachrome, or the like).

A film recorder is organized as shown in Figure 16.3. The grayscale monitor generates the images
for each color separately, and that image is photographed through a color wheel that provides the
color for theimage. Because agrayscale monitor does not need to have a shadow mask to separate
the phosphors for different colors, and because the monitor can be designed to have along neck
and small screen to allow for extremely tight control of the electron beam, it can have extraordinary
resolution; 8K line resolution is pretty standard and you can get film recorders with up to 32K
lines. This allows you to generate your image at resolutions that would be impossible on the
screen.

Film is much less of a problem than print, because you can work directly with the image and do
not need to deal with separations, and you work with the usual RGB color model. Recall that
slides produce their image by having light projected through them, so they behave as if they were
an emissive medium like the screen. Y our only issue isto deal with the resolution of the camera or
to accept the interpolations the film recorder will use if you don’t provide enough resol ution.
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Figure 16.3: schematic of digital film recorder

Video: videoisavery important medium for your work, because it is the only medium available to
show the motion that is so important to communicate many of your ideas. At the sametime, it can
be one of the most limited media available to you — at least until video leaves thefirst half of the
20th century and really comes into the 21st century. We will focus on NTSC video here, but there
are similar issues for PAL or SECAM video, and if you are reading this in one of the areas where
PAL or SECAM are the standards, you should check to see how much the comments here apply to
you.

There are some important issues in dealing with video. Thefirst isresolution: the resolution of
NTSC video is much lower than even a minimal computer resolution. NTSC standards call for
525 interlaced horizontal scan lines, of which 480 are visible, so your planned resolution should be
about 640 by 480. However, many television sets have adjustment issues so you should not ever
work right against the edge of this space. The interlaced scan meansthat only half of the horizontal
lineswill be displayed every 1/30 second, so you should avoid using single-pixel horizontal
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elements to avoid flicker; many television sets have poorly-converged color, so you should aso
avoid using single-pixel vertical elements to they will not bleed into each other. In fact, you will
have the best results for video if you design your work assuming that you have only half the
resol ution noted above.

A second issue in video is the color gamut. Instead of being composed of RGB components, the
NTSC television standard is made up of significant compromises to acount for limited broadcasting
bandwidth and the need to be compatible with black-and-white television (the NTSC standard dates
from the late 1930s, before the wide-spread advent of color television or the advent of modern
electronics and other technology). The NTSC color standard is a three-component model called the
Y 1Q standard, but the three components are entirely focused on video issues. The'Y component is
the luminance (or brightness), and it gets most of the bandwidth of the signal. The | component is
an orange-to-blue component, and it gets a little more than 1/3 of bandwidth of the Y component.
The Q component is a purple-to-green component, and it gets a little more than 1/3 of the |
component. The best color you can get in video always seems to be under-saturated, because that
is part of the compromise of dealing with the technology available. To be more precise, the
following table shows the bandwidth and the horizontal resolution for each of the components of
the video image:

Component | Bandwidth | Resolution/scanline
Y 4.0 Mhz 267
| 1.5Mhz 96
Q 0.6 Mhz 35

In order to get the best possible horizontal resolution from your image, then, you need to be sure
that the elements that vary across the line have differing luminance, and you should focus more on
the orange-to-blue component than on the purple-to-green component. If you want to understand
how your colorsvary in YI1Q, the following conversion matrix should help you evaluate your
image for video:

Y| | 0.299 0.587 0.114 | |R|
[I|] =] 0.596 -0.275 -0.321 | |G
Q] | 0.212 -0.528 0.311 | |B]

The question of video is complicated by the various digital video formats, such as QuickTime and
MPEG, that require computer mediation to be played back. Digital video is RGB, so it does not
have many of the problems of NTSC until it is actually played on atelevision screen, and there are
television sets that will handle increasingly-high quality video. In fact, MPEG Il isthe video
standard for DV D, and there are self-contained DV D players, so this provides one alternative to
doing your own conversion to NTSC.

In the longer term, television will be moving to native digital formats and the HDTV standards will
support direct RGB color and higher-resolution, non-interlaced images, so we look forward to this
discussion becoming antiquated. For the time being, however, you may need to put up with
creating images that will make your colleagues ask, “ That looksterrible! Why are you doing that?’
Figure 16.4 is a photograph of a video image that shows the problems with color and resolution.
If they understand that you' re going to video, however, they’ll understand.
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Figure 16.4: screen capture of an NTSC video image.
Note the relatively low resolution and limited colors.

Creating adigital video from an animation is straightforward with the right tools. If you are
creating an animation, for example, you may generate a single frame of the animation in a window
on the screen and then use a function such as the OpenGL gl ReadPi xel s(...) functionto
save the contents of the window to an array, which can then be written to an image file, possibly
with a name that represents the frame number of that image in the overall animation. After you
have completed running your set of animation segments, and have created the set of individual
frames, you may import them into any of a number of tools that will allow you to save them asa
digital movie in QuickTime or MPEG format. Many of these tools will also allow you to add a
sound track, do transitions from one animation sequence to another, or add subtitles or other text
information to the movie.

3D object prototyping: there are times when having an image of an object simply isn’t enough,
when you need to be able to run your fingers over the object to understand its shape, when you
need to hold two objects together to see how they fit, or when you need to see how something is
shaped so you can see how it could be manufactured. This kind of 3D object prototyping is
sometimes called “ 3D printing” and is done by special tools. Y ou can view the resulting object asa
prototype of alater manufactured object, or you can view it asa solid representation of your
graphic image. Figure 16.5 shows photographs of the (3,4)-torus as created by several of these
3D printing techniques, as noted in the figure caption. The contact information for each of the
companies whose products were used for these hardcopiesis given at the end of the chapter.
There are, of course, other older technologies for 3D hardcopy that involve creating atool path for
acutting tool in a numerical milling machine and similar techniques, but these go beyond the
prototyping level.

There are several kinds of technologies for creating these prototype objects, but most work by
building up a solid model in layers, with each layer controlled by a computation of the boundary of
the solid at each horizontal cutting plane. These boundaries are computed from information on the
faces that bound the object as represented in information presented to the production device. The
current technologies for doing such production include the following:

* The Helisys LOM (Laminated Object Manufacturing) system lays down single sheets of
adhesive-backed paper and cuts the outline of each layer with alaser. The portion of the
sheets that is outside the object is scored so that the scrap to be removed (carefully!) with
simple tools, and the final object islacquered to make it stronger. It is not possible to build
objects that have thin openings to the outside because the scrap cannot be removed from the
internal volumes. LOM objects are vulnerable to damage on edges that are at the very top or
bottom of the layers, but in general they are quite sturdy. Figure 16.5a shows the torus
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created with the LOM system; note the rectangular grid on the surface made by the edges of
the scrap scoring, the moiré pattern formed by the burned edges of the individual layers of
paper in the object, and the shiny surface made when the object is lacquered.

Figure 16.5a: the torus created by the LOM system

* The Z-Corp Z-402 system lays down athin layer of starch powder and puts a liquid binder
(in the most recent release, the binder can have several different colors) on the part of the
powder that isto be retained by the layer. The resulting object is quite fragile but is treated
with a penetrating liquid such as liquid wax or a SuperGlue to stabilizeit. Objects built with
awax treatment are somewhat fragile, but objects built with SuperGlue are very strong.
Because the parts of the original object that are not treated with binder are a ssmple powder, it
is possible to create objects with small openings and internal voids with this technology.
Figure 16.5b shows the torus created with the LOM system; note the very matte surface that
is created by the basic powder composition of the object.
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Figure 16.5b: the torus created by the Z-Corp system

» The 3D Systems Thermalet system builds a part by injecting alayer of liquid wax for each
layer of the object. Such parts must include a support structure for any regions that overhang
the object’ s base or another part of the object, and this support can either be designed when
the object is designed or provided automatically by the Thermalet. Because the object is
made of wax it is not stable in heat and is not very strong. The need for a support structure
makes it difficult to include voids with small openings to the outside. Also because of the
support structure, the bottom part of an object needs to be finished by removing the structure
and smoothing the surface from which this was removed. Figure 16.5¢c shows the torus as
created by the Thermalet system; note the dightly shiny surface of the wax in the object.

Figure 16.5c: the torus created by the 3D Systems Thermalet system

» The 3D Systems stereolithography system creates an object by building up thin layers of a
polymer liquid and hardening the part of that layer that isto be retained by scanning it with a
laser beam. Aswas the case with the Thermalet system, this requires a very solid support
structure for parts of the object, particularly because there is a small contraction of the
polymer material when it is treated with the laser. The support structure must be removed
from the object after it is completed, so there is some finishing work needed to get fully-
developed surfaces. The polymer liquid can readily be drained from any interior spaces if
there is an opening to the outside, so this technology handles this kind of object quite well.
The polymer isvery strong after it is hardened in a treatment after the shaping is complete, so
objects created with this technology are very sturdy. Figure 16.5d shows the torus as created
by the stereolithography system.
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Figure 16.5d: the torus created by the 3D Systems stereolithography system

Onething all these 3d prototyping technologies have in common isthat they all take datafilesin the
STL fileformat in order to control their operations. Thisisavery simplefile format that is easy to
generate from your graphics program. The STL file for the (3.4)-torusis 2,459,957 bytes long
and the first and last portions of the file are shown below. Thefileis organized by facets, and with
each facet you have an optional normal and alist of the vertices of the facet; if you create your
model in away that will let you generate the explicit coordinates of your vertices, you can ssimply
write the contents of the STL fileinstead of calling the graphics output functions.

solid
facet normal -0.055466 0.024069 0.000000
outer | oop
vertex -5.000010 -0.000013 -1.732045
vertex -5.069491 -0.160129 -1.688424
vertex -5.000009 -0.000013 -1.385635
endl oop
endf acet
facet nornal -0.055277 0.019635 0.002301
outer | oop
vertex -5.069491 -0.160129 -1.688424
vertex -5.000009 -0.000013 -1.385635
vertex -5.054917 -0.159669 -1.342321
endl oop
endf acet

facet normal -0.055466 -0.024069 0.000000
outer | oop
vertex -5.000009 0.000014 1.385635
vertex -5.069491 0.160130 1.688424
vertex -5.000010 0.000014 1.732045
endl oop
endf acet
endsolid
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A word to thewise...

The quick summary of this chapter isto know what your eventual medium will be, and to design
for that medium when you plan your image or visualization. And be prepared to experiment as you
work on your design, because some of these hardcopy media simply take experience that no notes
or text can ever give you.

Contacts:
Below are contacts for the three 3D hardcopy sources shown above:

3D Systems

26081 Avenue Hall

Vaencia, CA 91355 USA
+1.888.337.9786 (USA toll-free)
moreinfo@3dsystems.com
http://www.3dsystems.com

Helisys, Inc.

1000 E. Dominguez Street
Carson, CA 90746-3608 USA
+1.310.630.8840
http://helisys.com/

Z corporation

20 North Avenue

Burlington, MA 01803 USA
+1.781-852-5005
http://www.zcorp.com/
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http://www.chromatek.com/
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3D Systems

26081 Avenue Hall
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morei nfo@3dsystems.com
http://www.3dsystems.com

Helisys, Inc.

1000 E. Dominguez Street
Carson, CA 90746-3608 USA
+1.310.630.8840
http://helisys.com/
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Stratasys, Inc.

14950 Martin Drive
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+1-888-480-3548, +1.952.937.3000
FAX: +1.952.937.0070

e-mail: info@stratasys.com
http://www.stratasys.com/

Z corporation

20 North Avenue

Burlington, MA 01803 USA
+1.781-852-5005
http://www.zcorp.com/
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Appendices

This section contains the details of some file formats that have been used in examples in these
notes. They are included for the student who wants to work on projects that use such file formats.

Appendix |: PDB file format

The national Protein Data Bank (PDB) file format is extremely complex and contains much more
information than we can ever hope to use for student projects. We will extract the information we
need for ssimple molecular display from the reference document on this file format to present here.
From the chemistry point of view, the student might be encouraged to look at the longer file
description to see how much information is recorded in creating afull record of a molecule.

There are two kinds of recordsin a PDB file that are critical to us: atom location records
and bond description records. These specify the atoms in the molecule and the bonds between
these atoms. By reading these records we can fill in the information in the internal data structures
that hold the information needed to generate the display. The information given here on the atom
location (ATOM) and bond description (CONECT) records is from the reference. There is another
kind of record that describes atoms, with the keyword HETATM, but we leave this description to
the full PDB format manual in the references.

ATOM records. The ATOM records present the atomic coordinates for standard residues, in
angstroms. They also present the occupancy and temperature factor for each atom. The element
symbol is always present on each ATOM record.

Record Format:

OCCLUWNS DATA TYPE FI ELD DEFIN TI CN
1- 6 Record nane "ATCM "
7- 11 I nt eger seri al At om serial nunber.

13 - 16 At om name At om nane.

17 Char act er al t Loc Alternate location indicator.

18 - 20 Resi due narre resNamre Resi due nane.

22 Char act er chainl D Chain identifier.

23 - 26 I nt eger resSeq Resi due sequence nunber.

27 AChar i Code Code for insertion of residues.

31 - 38 Real (8. 3) X Ot hogonal coordinates for X in
Angst rons.

39 - 46 Real (8. 3) y QO thogonal coordinates for Yin
Angst r ons.

47 - 54 Real (8. 3) z QO thogonal coordinates for Zin
Angst r ons.

55 - 60 Real (6. 2) occupancy Qccupancy.

61 - 66 Real (6. 2) t enpFact or Tenperature factor.

73 - 76 LString(4) segl D Segnent identifier, left-justified.

77 - 78 LString(2) el enent El erent synbol, right-justified.

79 - 80 LString(2) charge Charge on the atom

The "Atom name" field can be complex, because there are other ways to give names than the
standard atomic names. In the PDB file examples provided with this set of projects, we have been
careful to avoid names that differ from the standard names in the periodic table, but that means that
we have not been able to use all the PDB files from, say, the chemica data bank. If your
chemistry program wants you to use a particular molecule as an example, but that example’ s data
file uses other formats for atom names in itsfile, you will need to modify the r eadPDBf i | e()
function of these examples.
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Example:

1 2 3 4 5 6 7 8
12345678901234567890123456 /890123456 7890123456 /890123456 /890123456 7890123456 7890
ATOM 1 C 1 -2.053 2,955 3.329 1.00 0.00
ATOM 2 C 1 -1.206 3.293 2.266 1.00 0.00
ATCM 3 C 1 -0.945 2.371 1.249 1.00 0.00
ATOM 4 C 1 -1.540 1.127 1.395 1.00 0.00
ATOM 5 C 1 -2.680 1.705 3.426 1.00 0.00
ATCM 6 C 1 -2.381 0.773 2.433 1.00 0.00
ATOM 7 O 1 -3.560 1.422 4.419 1.00 0.00
ATOM 8 O 1 -2.963 -0.435 2.208 1.00 0.00
ATCM 9 C 1 -1.455 -0.012 0.432 1.00 0.00
ATOM 10 C 1 -1.293 0.575 -0.967 1.00 0.00
ATOM 11 C 1 -0.022 1.456 -0.953 1.00 0.00
ATCM 12 C 1 -0.156 2.668 0.002 1.00 O0.00
ATOM 13 C 1 -2.790 -0.688 0.814 1.00 0.00
ATOM 14 C 1 -4.014 -0.102 0.081 1.00 0.00
ATCM 15 C 1 -2.532 1.317 -1.376 1.00 0.00
ATOM 16 C 1 -3.744 1.008 -0.897 1.00 0.00
ATOM 17 O 1 -4.929 0.387 1.031 1.00 0.00
ATCM 18 C 1 -0.232 -0.877 0.763 1.00 0.00
ATOM 19 C 1 1.068 -0.077 0.599 1.00 0.00
ATOM 20 N 1 1.127 0.599 -0.684 1.00 0.00
ATCM 21 C 1 2.414 1.228 -0.914 1.00 0.00
ATOM 22 H 1 2.664 1.980 -0.132 1.00 0.00
ATOM 23 H 1 3.214 0.453 -0.915 1.00 0.00
ATCM 24 H 1 2.440 1.715 -1.915 1.00 0.00
ATOM 25 H 1 -0.719 3.474 -0.525 1.00 0.00
ATOM 26 H 1 0.827 3.106 0.281 1.00 0.00
ATCM 27 H 1 -2.264 3.702 4.086 1.00 0.00
ATOM 28 H 1 -0.781 4.288 2.207 1.00 0.00
ATOM 29 H 1 -0.301 -1.274 1.804 1.00 0.00
ATCM 30 H 1 -0.218 -1.75 0.076 1.00 0.00
ATOM 31 H 1 -4.617 1.581 -1.255 1.00 0.00
ATOM 32 H 1 -2.429 2,128 -2.117 1.00 0.00
ATCM 33 H 1 -4.464 1.058 1.509 1.00 0.00
ATOM 34 H 1 -2.749 -1.794 0.681 1.00 0.00
ATOM 35 H 1 1.170 0.665 1.425 1.00 0.00
ATCM 36 H 1 1.928 -0.783 0.687 1.00 0.00
ATOM 37 H 1 -3.640 2.223 4.961 1.00 0.00
ATOM 38 H 1 0.111 1.848 -1.991 1.00 0.00
ATCM 39 H 1 -1.166 -0.251 -1.707 1.00 0.00
ATOM 40 H 1 -4.560 -0.908 -0.462 1.00 0.00

CONECT records. The CONECT records specify connectivity between atoms for which
coordinates are supplied. The connectivity is described using the atom serial number as found in
the entry.

Record Format:

COLUWNS DATA TYPE FI ELD DEFI N TI ON

1- 6 Record nane " CONECT"

7- 11 I nt eger seri al Atom serial nunber

12 - 16 | nt eger seri al Serial nunber of bonded atom

17 - 21 | nt eger seri al Serial nunber of bonded atom

22 - 26 I nt eger seri al Serial nunber of bonded at om

27 - 31 | nt eger seri al Serial nunber of bonded atom

32 - 36 | nt eger seri al Serial nunber of hydrogen bonded
at om

37 - 41 | nt eger seri al Serial nunber of hydrogen bonded
at om

42 - 46 I nt eger seri al Serial nunber of salt bridged
at om
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47 - 51 | nt eger seri al Serial nunber of hydrogen bonded

at om
52 - 56 | nt eger seri al Serial nunber of hydrogen bonded
at om
57 - 61 | nt eger seri al Serial nunber of salt bridged
at om
Example:
1 2 3 4 5 6 7

12345678901234567890123456 7890123456 7890123456 7890123456 /8901234567890
GONECT 1179 746 1184 1195 1203

GONECT 1179 1211 1222

CGONECT 1021 544 1017 1020 1022 1211 1222 1311

Aswe noted at the beginning of this Appendix, PDB files can be extremely complex, and most of
the examples we have found have been fairly large. Thefile shown in Figure 17.2 below is among
the simplest PDB files we've seen, and describes the adrenalin molecule. This is among the

materials provided asadr enal i ne. pdb.

2/12/01 Page 18.3



HEADER NCONAME 08- Apr - 99

TI TLE
AUTHCR
REVDAT
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

2/12/01

Frank Cellien
1 08-Apr-99

©CoO~NOOORAWNPE

IITIIITIIIIIIIIIIOZOO0OOO0O0OOOOOO0

[EnY

I
ORO0OO0OOOUINORNOOOOOO0OO0OO000000O0000O0O0OO0O0OO0O0OOO

[
o
[

12 21
13 283
24 25

NP OORFRPRWRAAORAWNEDN
=Y
~

e

Figure 17.1: Example of asimple molecule filein PDB format
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Appendix Il: CTL file format

The structure of the CT fileis straightforward. Thefileis segmented into severa parts, including a
header block, the counts line, the atom block, the bond block, and other information. The header
block isthe first three lines of the file and include the name of the molecule (line 1); the user’s
name, program, date, and other information (line 2); and comments (line 3). The next line of the
fileisthe counts line and contains the number of molecules and the number of bonds as the first
two entries. The next set of linesisthe atom block that describes the properties of individual atoms
in the molecule; each containsthe X-, Y-, and Z-coordinate and the chemica symbol for an
individual atom. The next set of linesis the bonds block that describes the properties of individual
bonds in the molecule; each line contains the number (starting with 1) of the two atoms making up
the bond and an indication of whether the bond is single, double, triple, etc. After theselines are
more lines with additional descriptions of the molecule that we will not use for this project. An
example of asimple CTfile-format file for a molecule (from the reference) is given in Figure 17.2
below.

Obviously there are many pieces of information in the file that are of interest to the chemist,
and in fact thisis an extremely simple example of afile. But for our project we are only interested
in the geometry of the molecule, so the additional information in the file must be skipped when the
fileisread.

L- Al ani ne (130
GSMACCS-1110169115362D 1 0. 00366 0. 00000 O

650010 3 V2000

-0.6622 0.5342 0.0000 C 002000
0. 6220 -0. 3000 0.0000 C 0000O0O

-0.7207 2.0817 0.0000 C 100000

-1.8622 -0.3695 0. 0000 N 030000
0. 6220 -1.8037 0.0000 O 0000O0O
1.9464 0.4244 0.0000 O 050000
121000

131100

141000

252000

261000

MCHG 2 416 -1

MISO1 3 13

M END

Figure 17.2: Example of asimple moleculefilein CTfile format

2/12/01 Page 18.5



Appendix I11: the STL file format

The STL (sometimes called StL) file format is used to describe afile that contains information for
3D hardcopy systems. The name “STL” comes from stereo lithography, one of the technologies
for 3D hardcopy, but the format is used in several other hardcopy technologies as described in the
hardcopy chapter.

The .stl or stereolithography format describes an ASCII or binary file used in manufacturing. Itis
alist of the triangular surfaces that describe a computer generated solid model. Thisisthe standard
input for most rapid prototyping machines as described in the chapter of these notes on hardcopy.
The binary format for the file is the most compact, but here we describe only the ASCII format
because it iseasier to understand and easier to generate as the output of student projects.

The ASCII .stl file must start with the lower case keyword sol i d and end with endsol i d.
Within these keywords are listings of individual triangles that define the faces of the solid model.
Each individual triangle description defines a single normal vector directed away from the solid's
surface followed by the xyz components for all three of the vertices. These values are al in
Cartesian coordinates and are floating point values. The triangle values should all be positive and
contained within the building volume. For this project the valuesare 0 to 14 inchesinx, 0to 10 in
they and 0 to 12 inthe z. Thisisthe maximum volume that can be built but the models should be
scaled or rotated to optimize construction time, strength and scrap removal. The normal vector isa
unit vector of length one based at the origin. If the normals are not included then most software
will generate them using the right hand rule. If the normal information is not included then the
three values should be set to 0.0. Below isasample ASCII description of asingle triangle within
an STL file.

solid

facet normal 0.00 0.00 1.00
outer | oop
vertex 2.00 2.00 0.00
vertex -1.00 1.00 0.00
vertex 0.00 -1.00 0.00
endl oop
endf acet

endsol i d
When the triangle coordinates are generated by a computer program,it is not unknown for roundoff
errors to accumulate to the point where points that should be the same have dightly different
coordinates. For example, if you were to calculate the points on a circle by incrementing the angle
as you move around the circle, you might well end up with afinal point that is slightly different
fromtheinitial point. File-checking software will note any difference between points and may well

tell you that your object is not closed, but that same softward will often “heal” small gapsin objects
automatically.

Vertex to vertex rule

The most common error in an STL file is non-compliance with the vertex-to-vertex rule. The STL
specifications require that all adjacent triangles share two common vertices. Thisisillustrated in
Figure 17.3. The figure on the left shows atop triangle containing atotal of four vertex points.
The outer vertices of the top triangle are not shared with one and only one other single triangle.
The lower two triangles each contain one of the points as well as the fourth invalid vertex point.
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To make this valid under the vertex to vertex rule the top triangle must be subdivided as in the
example on the right.

Figure 17.3

References:

CTFile Formats, MDL Information Systems, Inc., San Leandro, CA 94577, 1999. Available by
download fromht t p: / / waww. ndl i . cont

Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description, version 2.1,
availableonlinefromht t p: / / www. pdb. bnl . gov
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Evaluation

These notes are under development, and we are very interested in hearing from anyone who uses
them. Following this cover page we have added pages with questions for both instructors and
students. Aswe work to develop the notes, your answers and comments will help us identify
areas where we can improve the notes and will let us consider your ideas on how to make those
improvements.

Y ou can send us your comments by mail, by email, or by fax, and you may tell us who you are or
remain anonymous (within the limits of the way you contact us, of course). If you respond by
email, please send your comments to rsc@cs.csustan.edu. If you respond by post, please send
your comments to

Steve Cunningham

Computer Science Department

Cdifornia State University Stanidaus

801 W. Monte Vista Avenue

Turlock, CA 95382 USA
All comments will be acknowledged and will be fully considered.



Instructor’s evaluation

1. How did you use these notes? Did you review them for a course or simply to evaluate their
possible use? Did you decide to use them for a course or did you decide not to use them?

2. |If you chose to use them for a course, what was it about the notes that led you to that choice?
If you chose not to use them, what was it about the notes that led you to that choice?

3. If you chose to use them, were they used as a course text, a course supplement, a student
resource, or your personal resource? Were they used in aregular course, a special topics
course, or areadings course?

4. If you choseto use them, how did your students respond to the notes?

While the notes are clearly incomplete and under development, we want your comments on the
content. We would remind you of the goals of the notes as presented in the Getting Started chapter
as you discuss the content.

5. Do you find the goals of the notes to represent a worthwhile approach to the introductory
computer graphics course? Whether yes or no — but especially if no— we would value your
feedback on these goals.

6. Were there any topics in the notes that seemed superfluous and could be omitted without any
effect on your course?

7. Do you agree with the choice of OpenGL asthe API for these notes, or do you suggest another
API? Should the notes emphasi ze general concepts first in each section and then discuss the
OpenGL implementation of the concepts, or should they use OpenGL as a motivator of the
general discussion throughout?

8. Was the sequence of topics in the notes appropriate, or did you find that you would need to
teach them in adifferent order to cover the materia effectively?

9. Were there any topicsin the notes that seemed particularly valuable to your course? Should
these be emphasized, either through expanding their presence or through highlighting themin
other parts of the notes?

10.Are the notes accurate? Isthere any place where the notes are incorrect or misleading (not all
areas have been fully tested, so thisis possible)?

11.Are there areas where the discussions are difficult for students to follow?

12 Would you want to have supplementary material to accompany the notes? What kind of things
would you want in such material? Should that material be on an accompanying CD-ROM or on
an archival Web site?

13.1s there anything else — positive or negative — you would want to tell the author and the
development group for this project?

14.Please tell us abit about yourself: your department, your teaching and research interests, your
resons for being interested in directions in computer graphics instruction, and anything else that
will help us understand your comments above.

Thank you very much for your assistance.



Student’s evaluation

1. How did you find out about these notes? Was it from your instructor, from afriend, or from a
genera search of online computer graphics resources?

2. How did you use these notes? Wasit in aclass or as a personal resource?

3. If you used the notes in a class, what kind of classwas it? Was it a beginning computer
graphics course or did you have another computer graphics course first? Wasit a regular
undergraduate course, a special topics course, a readings course, or another kind of course?
What department was the course offered in?

4. Do you agree with the use of OpenGL as the graphics API for the course that used these notes?
Would you rather have had a different API? If so, what one and why?

5. Whak kind of system support did you use for the course (Windows, Linux, Unix, Macintosh,
etc.)? Did you haveto install any extrafeatures (GLUT, MUI, etc.) yourself to use the notes?
Did you need any extrainstruction in the use of your local systemsin order to usetheideasin
the notes?

6. Without considering other important aspects of your course (laboratory, instructor, etc.), did
you find the notes a helpful resource in learning computer graphics? Were you able to follow
the discussions and make sense of the code fragments?

7. Were there any topics in the notes that seemed particularly valuable to your reading or your
course? Should these be emphasized, either through expanding their presence or through
highlighting them in other parts of the notes?

8. Were there any topics in the notes that seemed superfluous and could be removed without
hurting your learning?

9. Were there any topics in computer graphics that you wanted to see in your reading or course
that the notes did not cover? Why were these important to you?

10.Would you have liked to have additional materials to go along with the notes? What would you
have wanted? How would you like to get these materials. on CD-ROM, on a Web site, or
some other way?

11.1s there anything else — positive or negative — you would want to tell the author and the
development group for this project?

12.Please tell us abit about yourself: your major and year, your particular interests in computing
and in computer graphics, your career goals, and anything else that will help us understand
your comments above.

Thank you very much for your assistance.





