
Academic series

www.dbooks.org

https://www.dbooks.org/

Ing. Rudolf Pecinovský, CSc. is a graduate of Faculty of Nuclear Science and Physical Engeneering at
Czech Technical University in Prague. He obtained his Ph.D. (CSc.) degree at Institute of Information
Theory and Automation, Czechoslovak Academy of Sciences. He is a lector at Faculty of Informatics and
Statistics, University of Economic, Prague, Faculty of Information Technology, Czech Technical University in
Prague and at College of information Management, Business Administration and Law. He published more
than 40 textbooks.

www.dbooks.org

https://www.dbooks.org/

2013

OOP – Learn
Object Oriented

Thinking and
Programming

by Rudolf Pecinovský, CSc.

This book is published both in printed as well as PDF form. You can find the
detailed information about it at http://pub.bruckner.cz/titles/oop, where you
can also download the PDF version.

OOP – Learn Object Oriented Thinking and Programming

Copyright © Rudolf Pecinovský, 2013

Translation Irena Mihovičová

Published in the Czech Republic by Tomáš Bruckner, Řepín – Živonín, 2013
Academic Series

This book was reviewed by

Doc. MUDr. Jiří Kofránek, CSc., Charles University in Prague,
Doc. Ing. Vojtěch Merunka, Czech University of Life Sciences Prague,
Doc. Ing. Miroslav Virius, CSc., Czech Technical University in Prague

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Paperback printed on demand and worldwide distributed by Lightning Source UK Ltd. Pitfield UK and Lightning Source Inc.
La Vergne TN US. New prints are available for ordering in every bookstore.

Visit us at http://pub.bruckner.cz

ISBN 978-80-904661-8-0 (paperback)
ISBN 978-80-904661-9-7 (PDF)

www.dbooks.org

https://www.dbooks.org/

Reaction of Readers
I consider this book to be unique, above all due to the fact that the author has realized the importance
of knowing the object programming than throwing out hundreds of statements and functions. The
book is written in an autobiographical way which I noticed first time in textbooks and especially in
programming textbooks. Thanks to it I had really good feeling from reading the book. Another aspect
that I appreciated is a lot of available animations. Due to them I always knew what and where I
should do. The book thus becomes pleasantly simplified, which has a great affect for beginning young
programmers as for example me. I have no reservations to this book and I can only warmly recom-
mend it to all who are powerlessly swamped in the object oriented programming world.

Ladislav Janeček
a beginning programmer

What I appreciated in the book, it was among other things the fact, that the author explained the terms
in an interesting style and that, at the very beginning; he explained items which are usually explained
in more advanced courses, but which have important consequences. I always appreciate progressive
explaining, so that you cannot meet a situation when you are reading a code and you do not under-
stand it because you are missing certain advanced knowledge. When reading the book, the author
does not press on the reader to quickly write the code and so the reader starts to write down the
source code after learning the OOP basics. I would recommend this book to anybody who wants to
learn OOP. Anyway, I felt sorry for one thing, and it is that I did not know the book when I started
to learn the OOP.

Martin Škurla
a programmer

Programming is my hobby. I recommend the books of Rudolf Pecinovský to all who really want to get
into the secret of OOP and do not want to finish at programs of “Hello World” type. The book is really
suitable even for real beginners, especially for the so called “perpetual” beginners, who would like to
learn programming, but the topic seems to them too complicated and discouraging. Majority of cur-
rent books can teach you to develop simple programs from the beginning, but they mention OOP only
marginally, as if it would be something extra. Terms like design patterns are unknown for them. Luck-
ily the exceptions do exist. This is one of them. If not Mr. Pecinovský, I could be a perpetual beginner,
maybe only pseudo OOP programmer.

Martin Staněk
an intermediate advanced student

All the literature which I have read until now on OOP was only a dry theory that I was not able to apply
in practice. I am glad that I discovered this book. It helped me to transfer the theory to practice. With
impatience I am expecting another volume of the book, with which I can get to the core of the OOP.

Stanislav Hruška
a self-learner programmer

You cannot find a lot of Czech textbooks of programming, where you “yourself” could make a pro-
gram for car races at the end of the book. And what is the dream of each young beginning program-
mer? To program a game and show it off to friends. In case you are really interested in programming,
this book can really help you in your long way. Programming is not a matter of several weeks or
months, but you can become a good programmer within several years.

Sophisticated examples and accompanying animations are an important part of the technical text.
Examples and animations are made out in a top professional quality and are added to each chapter of
the book. Examples, animations, development environment BlueJ as well as Java, this is all FREE,
without any charges! All is functioning in Windows as well an in Linux.

The book is written according to the methodology Design Pattern First; the object oriented pro-
gramming (OOP) and draft patterns are contemporary phenomenon. The presentation is ambitious,
but can be mastered. I would recommend this book to all who really have a serious interest in OOP.

This book is according to my opinion very suitable as a textbook of programming for high schools
as well as for universities for branches aimed to information technologies.

Jiří Kubala,
 an IT teacher, High School of Informatics, Ostrava-Poruba

This book presents the OOP in a little bit different way compared to other textbooks. Not only because
it is written as a dialogue of an “I-Know-Nothing” and “A Wise-Old-Man”, but the way how it
presents the Object Programming differs from current programming textbooks.

It’s difficult to say whether it’s a better way, but it’s fully suitable for me and I think it may be fully
suitable also for those readers who started programming hundred times and hundred times they
failed. I can describe it as if you would unsuccessfully cut a piece of wood, and suddenly, when you
put your saw to the other hand, you could cut it somewhat more easily. And that’s the case of this
book.

Despite I already knew many paragraphs from other books, this one enabled me to see certain mat-
ters from a different view. I appreciate a lot that the book shows an already developed program, i.e.
not only independent examples, but you can see relations among separate parts of the program.

I also welcome the possibility to see the videos/animations at the author’s websites which are of
great help in case the text is not fully understandable or the description by words would be too long.

I am looking forward for the second volume of this book.

Tibor Bako
an OOP beginner

This is an ideal book for beginners as well as for experienced programmers. It is written in a style
which is attractive and keeps attentiveness for the firstly named. The needed knowledge and skills are
gradually presented in a pleasant, gentle and natural style and immediately demonstrated and rein-
forced by examples and exercises. To more experienced programmers it provides a different view
(and according to me the proper one) on object oriented programming.

Vít Grafnetter
a programmer

Contrary to a number of other programming textbooks which I have read, this one does not overload
the reader with only a lot of new statements, but teaches him real programming. And it makes it in a
very original and comprehensible form. Despite the fact it is determined to younger beginning
readers, it was a great contribution for me.

Michal Palas
a high school student

www.dbooks.org

https://www.dbooks.org/

Dedicated to my wife Jaruška
and to my children Stephanie, Pavlínka, Ivanka and Michal

viii OOP – Learn Object Oriented Thinking and Programming

Brief Content
Acknowledgement .. xx
Preface .. xxi
Author’s Foreword ... xxiii

Part 1: Interactive mode .. 1

1 The Prologue ... 2
2 The OOP – Get Acquainted ... 10
3 We Are Sending First Messages .. 18
4 The Test Class .. 25
5 The Messages Requiring a Value ... 33
6 The Messages Requiring an Object ... 43
7 The Messages with Parameters .. 50
8 The Object Type Parameters .. 59
9 The Expedition into the Interior of Instances ... 68
10 The Interface ... 77
11 The Interface Continued .. 89
12 The Introduction into Design Patterns .. 100
13 The Inheritance of Interface Types .. 108
14 Mediator and Listener ... 121

Part 2: Basics of Creating OO Programs 133

15 The First Code ... 134
16 The First Constructor ... 144
17 Parameters .. 150
18 The Fields and the Methods .. 157

19 Implementation of an interface .. 169
20 Comments ... 181
21 Using of this ... 194
22 Overloading .. 202
23 The Local Variables ... 212
24 Methods Returning a Value .. 221
25 The Crate ... 231
26 Strings and How to Work with Them .. 240

www.dbooks.org

https://www.dbooks.org/

Brief Content ix

27 A Bit of Logic ... 251
28 Class Methods and Fields ... 263
29 Refactoring of the Code ... 276
30 Static Constructor – Class Constructor ... 289
31 Debugger .. 308
32 Creating of an Standalone Application ... 319

Part 3: Advanced Creating of OO Programs 329

33 Packages ... 330
34 Linking of Instances ... 346
35 Decorator ... 366
36 Teaching Cars to Turn .. 380
37 Controlling from Keyboard .. 390
38 Containers and Maps .. 407
39 Further Programming Constructions ... 420
40 The Factory Method Second Time ... 434
41 The Loops ... 444
42 Lists and Their Ordering .. 469
43 The Array ... 483
44 The Finale .. 494
Index .. 495

x OOP – Learn Object Oriented Thinking and Programming

Detailed Content
Acknowledgement ... xx

Preface .. xxi

Author’s Foreword .. xxiii

Part 1: Interactive mode .. 1

1 The Prologue ... 2
Methodology Used ... 3
The Presentation Concept ... 3
The Accompanying Animations ... 4
What You Will Need ... 5

File Manager .. 5
JDK and JRE.. 6
BlueJ Environment ... 6
Professional IDE .. 7

Working with BlueJ ... 8
Review ... 8

2 The OOP – Get Acquainted ... 10
The Object Oriented World ... 10

The Objects .. 10
The Classes .. 11
The Messages .. 12
The Structured vs. Object Oriented Program .. 13

The First Project .. 13
The Graphic Language UML .. 14
Classes in the Project .. 15

The Compilation ... 16
Review ... 17

3 We Are Sending First Messages .. 18
The Instances and References to Them .. 19
Creating a New Instance .. 20

The Object Bench .. 22
The Messages Sent to Instances ... 22

The Virtual Machine ... 23
Review ... 23

4 The Test Class .. 25
The Test Fixture .. 25
Creating the New Class .. 26
Creating the Test Fixture ... 27
Creating the Test ... 28

www.dbooks.org

https://www.dbooks.org/

Detailed Content xi

Methods and Constructors .. 30
Review ... 31

5 The Messages Requiring a Value .. 33
Return Type .. 34
Obtaining the Return Value .. 35
Primitive and Object Types .. 35
References to Objects ... 38
Record of Method Calling ... 39
The getXxx and setXxx Messages/Methods .. 40
Review ... 41

6 The Messages Requiring an Object ... 43
The Rules for Creating the Identifiers ... 43
Getting the Reference to the Returned Object .. 45
The Instance of String Type .. 46
How to Write the Strings ... 46
Memory Management – Garbage Collector ... 47
Using Methods Returning the Value in Tests ... 47
Review ... 48

7 The Messages with Parameters ... 50
The Meaning of Parameters ... 50
The Object Construction Using Parameters .. 50

The Dialog Structure for Sending Messages with Parameters .. 51
The Example Continued ... 53

Once More the Object vs. the Reference .. 53
The Parameters of String Type .. 54
The Animation .. 56
Exercise... 56
Review ... 58

8 The Object Type Parameters .. 59
The Significance of Quotation Marks when Entering the Strings ... 59
The Class Object .. 60
The Object Type Parameters... 62
Direct Passing of the Message Return Value.. 63
Briefer Record of Messages .. 65
Exercise... 65
Review ... 66

9 The Expedition into the Interior of Instances 68
Fields of Instances and of Classes ... 68
Working with the Fields .. 69
The Messages Requesting a Field Value .. 70
Field Accessibility ... 71
Test Fixture Extending .. 72
Monitoring of Field Values ... 72
Static Fields – Class Fields .. 73
Exercise... 74
Review ... 75

xii OOP – Learn Object Oriented Thinking and Programming

10 The Interface .. 77
Motivation .. 77
Interface vs. Implementation .. 78
Interface as a Data Type... 80

Interface versus interface... 80
Practical Usage ... 81

Preparation of a New Project .. 81
Importing the Class from Another Project ... 84

Implementation of an interface by the Class .. 85
Exercise... 86
Review ... 87

11 The Interface Continued .. 89
Readiness for the Future Extension .. 89

The Example: Multishape .. 89
Test Class of the Class .. 91
Variable Number of Parameters ... 93
The Design Pattern Prototype .. 96
Verifying of the Multishape Functioning .. 97
Exercise... 98
Review ... 98

12 The Introduction into Design Patterns 100
Design Patterns ... 100
Examples of Design Patterns .. 101

Library/Utility Class .. 101
Simple (Static) Factory Method ... 101
Singleton ... 101
Enumeration Type – Multiton .. 102
Servant .. 102

The Implementation of More Interface Types ... 103
Exercise... 106
Review ... 107

13 The Inheritance of Interface Types .. 108
Hierarchy of the Types ... 108
Three Types of Inheriting .. 110
One interface Missing ... 111
Signature versus Contract ... 112
Definition of a New Interface ... 113
New Hierarchy of the Interface ... 113
Inheriting of the Interface types ... 115
Full Documentation of the Project .. 116
Exercise... 118
Review ... 118

14 Mediator and Listener .. 121
Observer – Listener – Subscriber .. 121
The Mediator .. 122

Dependency Injection ... 124
How to Prevent Mutual Cancelling of Shapes .. 124
The Canvas Manager and Its Project .. 125

www.dbooks.org

https://www.dbooks.org/

Detailed Content xiii

Recursion .. 130
Other New Features ... 130
Exercise... 131
Review ... 131

Part 2: Basics of Creating OO Programs 133

15 The First Code .. 134
The New Empty Class .. 134
Files in BlueJ Projects ... 134
The Source Code of the Empty Class .. 137
Constructor ... 140
Adjustment of Presets... 141
Exercise... 142
Review ... 142

16 The First Constructor .. 144
Definition of the Constructor .. 144
Name of the Constructor... 145
The Working Constructor .. 146
Source Code Formatting ... 147
More Complex Example ... 148
Exercise... 149
Review ... 149

17 Parameters .. 150
Parameters and Arguments .. 150
Renaming the Class .. 152
The Test Class of the Light Class ... 154
Exercise... 154
Review ... 155

18 The Fields and the Methods .. 157
The Light Has to Learn .. 157
Introducing Fields ... 158
Encapsulation and Implementation Hiding .. 158
The Assignment of the Value to the Field .. 160
Method Definitions ... 161
The Qualification .. 161
The Conflict of Names of a Field and of a Parameter .. 162
Exercise... 164
Review ... 167

19 Implementation of an interface .. 169
Interconnecting the Source Code with the Class Diagram .. 169
The Abstract Methods and Classes .. 170
Implementation of a Method Declared by an Implemented Interface .. 171

The @Override Annotation ... 173
The Interface and the Class File .. 174
Test Class .. 174

xiv OOP – Learn Object Oriented Thinking and Programming

Exercise... 177
Review ... 179

20 Comments ... 181
Commenting Parts of a Code ... 181
Comments in Java .. 182
Documentation Comments ... 183
Documentation of the Classes and the Whole Project .. 184
The Standard Class Template ... 184
Formatting of the Documentation Comments ... 186

Javadoc Tags .. 187
Comments Marking Sections of the Source Code .. 188

Empty Method’s Pattern ... 191
Exercise... 192
Review ... 192

21 Using of this .. 194
The Hidden Parameter this .. 194
Unsuitable Copying of the Code .. 196
The Details of the Constructor’s Work .. 197
Adjustment of the Constructors Using this .. 199
Exercise... 200
Review ... 200

22 Overloading .. 202
Further Constructors ... 202
Overloading of the Methods .. 205
The Identifiers of Parameters ... 206
The Identification of the Called Method ... 207
The Basic Arithmetic Operators .. 207
Exercise... 209
Review ... 210

23 The Local Variables ... 212
The Auxiliary Methods ... 212
The Local Variables .. 213
Fields × Parameters × Local Variables .. 214

The Applicability (The Range of Validity) .. 214
The Initialization (Assigning the Initial Value) .. 215
The Lifetime ... 216

Position and Module Setting... 216
The Constants and the Magic Values ... 218
Exercise... 219
Review ... 220

24 Methods Returning a Value ... 221
Fields versus Properties .. 221
The Accessory methods .. 222
The Properties Saved in the Fields ... 222
Returning of the Values Obtained by Calculation ... 224
Object Equality Testing ... 224
Test of Returning the Proper Value .. 225

www.dbooks.org

https://www.dbooks.org/

Detailed Content xv

Exercise... 228
Review ... 229

25 The Crate ... 231
The Fields Representing a Set of Values .. 231
Passing Parameters by Value and by Reference ... 231
Crate / Transport Object ... 233
The Constants ... 234
Methods Working with the Crate .. 235
Exercise... 237

1. Put the project 125b_Crate_Start into operation ... 237
2. Import the classes Light, Arrow, TrafficLight and Car and put them into operation 238
3. Supplement and Test these Classes .. 238

Review ... 239

26 Strings and How to Work with Them 240
Problems with Comparing the Objects ... 240
Concatenation of the Text Strings ... 241
Text Representation (Text Signature) ... 241
Line Ending ... 243
The Escape Sequence .. 244
The Standard Output .. 246

Terminal Window ... 247
The Standard Error Output .. 248
Exercise... 249
Review ... 249

27 A Bit of Logic ... 251
Problems with Objects Comparing ... 251
The Cast Operator (Type) ... 252
Numerical Comparison Operators < <= == >= > != .. 253
Operators and their Arity ... 253
Comparison of Objects ... 254
Logical Complement Operator ! .. 254
Conjunction (Conditional-And) Operators && and & ... 255
Disjunction (Conditional-Or) Operators || and | .. 256
Type Comparison Operator instanceof .. 256
Contract of the equals(Object) Method .. 258
Value Types and Reference Types ... 259

Reference Types ... 259
Value Types ... 259

Exercise... 260
Review ... 260

28 Class Methods and Fields ... 263
Counted Objects ... 263
Static Fields ... 263
Order of Modifiers .. 264
Program Modifications ... 264
Innovation of the toString() Method ... 266
Town ... 266

Entering .. 267

xvi OOP – Learn Object Oriented Thinking and Programming

An Analysis .. 268
Exercise... 273
Review ... 274

29 Refactoring of the Code ... 276
What is Refactoring .. 276
How to Solve Our Problem ... 277
The IModular Interface .. 277
A Servant Class .. 279
The Method auxSwapPositionsWithCheck ... 279

Generalization of a Method .. 281
Adjustment for Arrows ... 281
Adaptation of Test Classes ... 283

The testPositionSize Test Method ... 283
Generalization of a Copied Method .. 284
Adapting the Method to Different Requirements .. 284

Exercise... 287
Review ... 288

30 Static Constructor – Class Constructor 289
Class Constructor – Static Constructor .. 289
The Call class ... 297
Loading and Initializing of a Class .. 299

Details of Class Initializing .. 300
What Should Be Remembered .. 302
Procedure of Instance Creating ... 303

Details on Constructing an Object Once Again ... 303
Instance Instruction ... 305
Exercise... 305
Review ... 305

31 Debugger ... 308
The Importance of Debugger .. 308
Activating of the Debugger .. 308
Debugger’s Window ... 310
Stepping through / Tracing the Program .. 311
The Call Sequence Panel .. 313
Return Stack .. 314
Local Variables ... 316
Stepping through Test Methods .. 316
Exercise... 317
Review ... 317

32 Creating of an Standalone Application 319
Assignment... 320
The Dispatcher Class .. 321
The IUFOFactory Interface ... 321
Design Pattern Factory Method .. 322
The IUFO Interface ... 322

The move(int) Method ... 323
A Constructor ... 324
Controlling by Direct Message Sending ... 325

www.dbooks.org

https://www.dbooks.org/

Detailed Content xvii

Controlling from a Keyboard ... 325
Creating a Standalone Application .. 326
The Main Class of an Application .. 326
Creating Executable Archives ... 327
Exercise... 328
Review ... 328

Part 3: Advanced Creating of OO Programs 329

33 Packages ... 330
Packages and Folders ... 330
Big Programs and Their Problems .. 331
Conventions for Project Names .. 331
Creating Packages in BlueJ ... 332
The package statement .. 335
Tree of Packages .. 335
Simple and Full Names .. 336
Package java.lang .. 337
The import Statement .. 337
Package Name Convention .. 339
Change in Package Dividing .. 340
Why the Star Notation is Unsuitable .. 343
Exercise... 343
Review ... 344

34 Linking of Instances ... 346
Conditions, the Future Objects Have to Meet ... 346
The RoadField Class .. 347
The Ring Class .. 352
The Design Pattern Builder .. 352
The RingBuilder Class .. 352
Creating of Rings .. 357
Static Import .. 360
The RingTest Class ... 361
Exercise... 361
Review ... 364

35 Decorator ... 366
Recursion .. 366
Analysis of Error Message ... 367
Multimover Class and IMultimovable Interface .. 370
Ambitions of Objects .. 371
Design Pattern Decorator .. 372
The Circular Class ... 373
Test Completing .. 377
Exercise... 379
Review ... 379

36 Teaching Cars to Turn.. 380
Reference Area and Relative Coordinates ... 380

xviii OOP – Learn Object Oriented Thinking and Programming

Creating of Objects Turned to Entered Direction .. 382
Effective Re-drawing of Modified Objects ... 384
Block ... 385
The IDirectable Interface... 386
Decorator DirectableCircular .. 387
Exercise... 389
Review ... 389

37 Controlling from Keyboard ... 390
The Controller ... 390
Preparation of the Race .. 394
Conditional Statement – the if Statement .. 395
Using a Block .. 396
The IRacer Interface .. 396
Premature return .. 398
Embedded Conditional Statement .. 399
Time Measurement ... 400
Automatic and Explicit Casting .. 401
Finishing the Race Class ... 402
Exercise... 405
Review ... 406

38 Containers and Maps .. 407
Containers and a Library of Collections ... 407
Dictionaries and Maps .. 408
Member Classes ... 409
The Map<K,V> Interface and the HashMap<K,V> Class .. 412

Generic Types and Type Parameters ... 412
Interface vs. Implementation ... 413
Initialization ... 413

The Registration .. 414
The Check of Transits ... 416
The End of the Race .. 417
The IRace Interface ... 417
Exercise... 418
Review ... 418

39 Further Programming Constructions .. 420
Collections that Can Be Received from a Map ... 420
Collection Library ... 421
The for(:) Loop .. 423
Race for Several Rings ... 424
Increment and Decrement Operators .. 425
Exceptions and Their Throwing .. 428
Further Corrections in Older Classes .. 430
Exercise... 431
Review ... 431

40 The Factory Method Second Time .. 434
Problems with Variant Rings.. 434
The IRingFactory Interface ... 435
More Complex Factory ... 436

www.dbooks.org

https://www.dbooks.org/

Detailed Content xix

Complete Conditional Statement .. 437
Methods with a Variable Number of Parameters ... 438
The Classic for Loop ... 439
Exercise... 442
Review ... 442

41 The Loops .. 444
Size of a Road-field .. 444
The Lazy Initialization .. 445
Determining of Lower and Upper Limits .. 447
Leaving the Loop from Inside of Its Body ... 448
The Sequence of if … else if .. 449
Side Effects of Methods .. 451
Loops Taxonomy .. 452

The while Loop – the Loop with a Condition at the Beginning ... 453
The do … while Loop – the Loop with a Condition at the End .. 454

The switch Statement .. 456
Change of the Module for Ring... 457
The ParallelRace Class ... 461
Exercise... 468
Review ... 468

42 Lists and Their Ordering .. 469
Enum Types .. 469

Enum Type Using ... 470
The State Diagram .. 470
The Lists .. 472
Modifications of the ParallelRace Class .. 473
Sorting the List Content ... 476
Native (Natural) Sorting ... 476
Alternative Sorting and the Design Pattern Command .. 478
Exercise... 480
Review ... 481

43 The Array .. 483
Declaration of an Array Variable ... 483
Creating and Initializing an Array ... 484
Methods with a Variable Number of Parameters ... 485
How to Use the Array ... 486
Sorting of the Array Content ... 488
How to Express Numbers with Words .. 488
Exercise... 492
Review ... 492

44 The Finale .. 494

Index .. 495

xx OOP – Learn Object Oriented Thinking and Programming

Acknowledgement
I would like to express my thanks to all who helped me in my way to successful completing of this
book, both by direct contributing to its content and form, as well as by providing space and means for
its creation.

Above all I would like to thank to my wife Jaruška who was my greatest support and whose end-
less patience and accommodativeness above all in the final hectic period of completing the handwrit-
ing enabled me to finish the book in a reasonable date. Great thanks belong also to my children who
helped me in finding mistakes in the text as well as in accompanying programs and took over also
some of my other duties.

My great thanks go also to a group of volunteers who at electronic conferences accepted my chal-
lenge for reading the created manuscript, drawing my attention to possible discrepancies or badly un-
derstandable parts of the lecture. The final form of the text arose thanks to particularly Tibor Bako, Vít
Grafnetter, Stanislav Hruška, Ladislav Janeček, Jiří Kubala, Michal Palas, Pavel Říha, Martin Staněk,
Josef Svoboda and Martin Škurla. Their comments helped remarkably to improve the text quality and
remove certain discrepancies.

Also Jarmila Pavlíčková and Luboš Pavlíček who are my colleagues in teaching programming at
the University of Economics contributed to the resultant shape of the text. The book reflects many of
the results from our (sometimes quite excited) debates on modern programming principles and on
ways, how to present these principles to our students.

I would like to say thanks also to the associated professor Mr. Vojtěch Merunka with whom I dis-
cussed some principles included into the general conception of the book. His requirement to include
into the book several of my ideas for users, who do not intend to create new programs, inspired me to
comprise the explanation on an interface into the interactive part. He also supported me in my inten-
tion not to include an explanation concerning the inheritance of implementation into the first volume.

I have to express my great thanks also to all colleagues in ICZ Company whose knowledge and
rich practical experience enabled me to watch the real needs of practice and accommodate my choice
of explained topics as well as the way of lecturing from far near distance. Moreover, they drew my at-
tention to interesting papers and reported on attended conferences dealing with topics of the modern
programming itself.

My thanks belong also to authors of BlueJ program, due to which the explanation can be organized
in such a way so that the students become acquainted with all important principles without being di-
verted by writing programs. This means they can start programming in the moment these key princi-
ples have already “got under their skin”.

www.dbooks.org

https://www.dbooks.org/

Preface xxi

Preface
This book is a textbook of programming in Java language for beginners. The Java programming lan-
guage is nowadays the most spread programming language. Programming textbooks for beginners
are known and used already a half of century.

That’s why you could consider it useless to make out another textbook on programming and above
all in the most usual Java. The author (Rudolf Pecinovský) was surrounded by a wide competition.
Despite it he succeeded to write a book, which is significantly better and completely different than
others. Everybody can recognize it already at the beginning, namely due to three reasons.

Firstly, this textbook did not emerge accidentally. Such a book cannot be written without a long-
term professional experience. Writing the text has been preceded by years of preparation, practical
programming and teaching experience as well as years of active presentations at professional confer-
ences, in scientific magazines etc. People of my generation used to meet a number of programming
languages and styles during their professional life. I myself remember hot debates between adherents
of a “common” and structured programming. Then we experienced a period of fighting between ad-
herents of C language and of Pascal language, which resulted in more generalized controversy be-
tween the defenders of using the industrial programming language for teaching and supporters of the
language less used in industry, yet allegedly more suitable for teaching. The pioneer period of object
programming run within such a debate. The professional community in the Czech Republic and in
Slovakia remembers well that in all those phases Rudolf Pecinovský did participate and his views and
ideas, coming from any period, did not lose its validity and correctness. We can find them in this
book. Rudolf Pecinovský does not pretend that he understands everything, he is not afraid to present
a speculation or a question. It is the proof of the highest professionalism and familiarity with object
programming.

Secondly, this book is written in an unusual form of a dialogue between two persons: the author of
the book and his friend, who represents the reader. Author’s friend puts questions and the author an-
swers. A number of topics refer one to the other; new questions result from the previous answers. Af-
ter several minutes of reading you get a feeling, as if you would lay the questions yourself. The author
succeeded to evoke a feeling of identification of the reader with the book protagonist. The same form
of a dialogue we can find in works of Sokrates, Plato, Cicero, St. Augustin, Komensky, Galileo and
others. According to classical authors the dialogue is one of the pillars of the European thinking. His
pragmatic contribution comes from the understanding and perception that a man can make a mistake
or maintains a position of single-track viewpoint and that he can help to meet someone else’s view.
Meeting and clashing of opinions leads to a better view of participants, they had before the meeting.
This can be documented also by a translation of the Greek expression “dia-logos” that can be ex-
pressed as “through the word” or more freely “through the language”. This book has features of such
a dialogue: The author is able to clearly and understandably explain his opinion. He listens to the
views and arguments of others, understands them, thinks about them and reacts to them.

Thirdly, the professional publications in our country are written usually in a different way. They
use a sterile passive voice and third person of singular (e.g. “it is done”, “it means that”) or first per-
son of plural (e.g. “we have”, “we propose”). Using of “me” and “you” is not considered as suitable
for professional literature in the Czech Republic. Rudolf Pecinovský showed that it is possible; how-

xxii OOP – Learn Object Oriented Thinking and Programming

ever, you should know how to do it. And he rounds off his effort with an accurate Czech language
and brilliant Czech terminology without using anglicisms.

This book should be read by not only beginners in Java – to whom the book is primarily deter-
mined – but also by all those, who would like to learn programming or teach programming in any
modern object programming language. The book content, quality of processed examples, theories, dia-
logues and gradation of the explanation give more than sufficient proof that Rudolf Pecinovský
knows what he speaks about. This book is a pride of an original Czech professional literature. Regard-
less the fact that you already know Java or you are practically using it, you should read this book, use
it as your handbook, and study it very carefully.

 Doc. Ing. Vojtěch Merunka, Ph.D.
 Faculty of Economics and Management,
 Czech University of Life Science, Prague;
 Faculty of Nuclear Sciences and Physical Engineering
 Czech Technical University in Prague

www.dbooks.org

https://www.dbooks.org/

Author’s Foreword xxiii

Author’s Foreword
Author’s Foreword – 000000

This book is a result of a long-period experimenting with the way how to teach contemporary pro-
gramming. I tried to teach programming maybe in all types of schools. I gave lessons at basic schools,
secondary schools, for groups of people interested in programming. At present I teach programming
at the Faculty of Informatics and Statistics of the University of Economics and at the same time I give
courses for professional programmers in ICZ Company. I recognize in my courses, that the secondary
and university type schools produce a number of programmers who are programming in certain
“modern” language, but in fact they do not know the programming in a modern way. Their schools
thought them programming in the same way as I learned more than 30 years ago. Programming has
changed significantly since that time; however, these changes did not penetrate into lessons at a num-
ber of schools.

The book you hold in your hands significantly differs from a majority of programming textbooks
that you can meet at present. It does not try to teach you any language, but it strives to teach you
thinking in such a way so that you would be able to use all advantages of modern programming. At
the same time it tries to show you that the modern object oriented programming is far close to current
man’s way of thinking than you could notice at the first sight (and then majority of textbook is willing
to admit).

I aimed to write this book in such a way so that a clever secondary school student could use it. It is
outlined as a conversation between me and my good friend – let’s say my child. I verified in several
previous textbooks, that the form of a dialogue brings a number of advantages:

F You can follow the explanation thread much easily.

F On places where the students are discomfited or are not clear you can insert an additional ques-
tion which may digress from the main topic for a while, but which contributes to better under-
standing of current explanation and possible connections of the reader and that’s why he un-
derstands the subsequent explanation better.

F Lessons can be served in small portions which – as certain reviewer said “you succeed to read
during pissing pause in a rattlesnake area”.

The book is divided into three parts.

F In the first one you work with the developing tool in an interactive mode, when the user ap-
pears to be one of the program’s objects and sends messages to other objects. This means he is in
the center of all events and communicates with surrounding program parts without knowing
programming. In this part I will explain all basic principles of object oriented programs which
we shall use in future parts.

F In the second part the explanation will be quicker. You will learn how to create simple pro-
grams in which you shall gradually apply all principles, you have learned in the first part. We
shall also prepare basic stones for a program which we will build up in the next program part.

F In the third part the explanation will become again a bit quicker. I shall start explaining princi-
ples, that belong to basic principles of object oriented programming, but a lot of which are far
behind the horizon of subject matter presented in current courses. Gradually we shall create a

xxiv OOP – Learn Object Oriented Thinking and Programming

program for simple car races with several participants. You will use components of this pro-
gram in the last lesson for demonstrating the simple program simulating the operation in
a simplified city with streets and crosses controlled by traffic lights.

At the beginning I said that I do not intend to teach any language, but programming. However, if we
would like to create the above mentioned programs, we need certain language. I have chosen Java,
which has a lot of advantages:

F It is the most popular programming language for a lot of years, used by more than 6 million
programmers. It’s indicated that Java will keep its leading position even for future times.

F It is one of the simplest languages used in professional practice, which means it is easy to learn
it. Anyway, it is easier, than learning other languages optimized for professional programmers
who offer mass of various peculiarities that are never used by a significant part of program-
mers.

F All tools you need for the development of not only simple but also very extensive programs
used in great companies or in the state administration you can get free of charge.

F Developing tools as well as created programs run in all current operational systems, which
means, it is not important if you develop the program under Windows, Linux or MacOS. The de-
veloped program will be operating in any of them and you can transfer it from one PC to the
other without any problem.

F It is the most frequent language in university courses of programming.

F For me it is also important due to the fact that there is no development tool determined espe-
cially for teaching in initial courses of programming. This tool offers a lot of important func-
tions, which are not offered by any other tools, despite they are more elaborated.

However, the used language is not important because I don’t want to teach you Java, but I want to
teach you programming in a modern way, i.e. object oriented programming. That’s why I shall pre-
sent only Java’s most essential items and we will concentrate above all on how you should think when
developing the programs, to which items you should aim, what to suppress to backside and how to
arrange it so that it would not come back as an unexpected boomerang. I would like to engage in more
detailed and systematic explanation of all broached topics in the following volume.

I admit that this publication as a book for beginners is a bit thick. It’s caused by the fact that every-
thing is explained in details and at examples which we pass through step by step, and you can see
which suitable solutions are proposed and why. The explanation is supplemented by a number of
queries, by which my “partner” assures that she understood the explanation well, or on the contrary,
she is asking questions concerning unclear items.

The book was arising two and half years. It began as a serial on the Sun company pages under the
title Object Oriented Thinking in Java. When I came to an agreement with the ComputerPress publishing
house on the Czech edition, I stopped working at this serial and devoted my time only to the book.
Several volunteers who were willing to read the whole book text and pointed out the discovered mis-
takes and insufficiencies in explanation enrolled to me. They were beginning as well as advanced pro-
grammers, even teachers. Despite the endeavor of all these people there may be some mistakes or
inaccuracies.

www.dbooks.org

https://www.dbooks.org/

Part 1: Interactive mode

Part 1:

Interactive mode

In this part you will hear the explanation what does it mean the object ori-
ented programming, then we shall exploit the fact that the used develop-
ment environment enables working in an interactive mode in which the
user becomes one of the program objects and can communicate with other
objects. In this mode I will show you the most important rules of coopera-
tion with individual objects that create the program. Rules will be subse-
quently used for managing the development of programs in other parts of
the book.

2 Part 1: Interactive mode

1 The Prologue
1. The Prologue – 000000

1 The Prologue
What you will learn in this lesson
In this opening lesson you will meet the style of explanation and the basic tools used during this
explanation.

Project:
In this lesson we start working with the 101a_Shapes project.

1. I would like to learn programming. My friends told me that the best programming language for beginners is
Java. That’s why I’d like to ask you for your help.

I agree with your friends that Java is one of the best languages for entering into the world of pro-
gramming. Moreover, according to a number of statistics it is the most widely used language. I will
not enumerate all its advantages, but believe, that your friends advised you really well. With pleasure
I will help you with your entering the programmer’s universe.

2. They also advised me not to pick up the textbook which is concentrated on the language rules and libraries
overview, but supposes at the same time that I will learn programming by myself.

This is a frequent problem of a number of textbooks and courses. They focus on “here’s what the lan-
guage can do”. In opposition, my courses (and thus also this book) focus on “here’s how to use it well
and stay out of troubles”. Don’t be afraid, we shall concentrate above all to programming, and I prom-
ise not to speak about language rules and libraries offer sooner than we will really need to know them.

However, I have to warn you in advance that I teach programming in a little bit different way than
majority of textbooks. That is to say I teach it according to the methodology Architecture First, which is
rather young (it occurred on 2004). Its advantage – compared to other methodologies – is that you will
not find out in later courses of advanced programs that knowledge and skills gained at the beginning
were not the best form of programming and that you should start programming in rather different
way.

3. Why it’s presented in such a way when it’s known that it’s not quite well?

A lot of teachers assume that they cannot teach how to design an architecture of a program when the
students don’t know to write down a program, how to code it and test it. Therefore, the courses for
beginners mostly concentrate on how to write down a simple program, whilst designing a program
and its architecture is presented only in very advanced courses. Disadvantage of this approach is that
introductory course students often learn bad habits and only hardly they get rid of them in advanced
courses.

For a long time there was no methodology which would be able to change this unpleasant state.
Fortunately, at the turn of the century new teaching tools appeared enabling a development of new
methodologies which eliminate these problems. However, it is not the proper time for explaining all

www.dbooks.org

https://www.dbooks.org/

1. The Prologue 3

details just now. After we shall meet the passages that made troubles to beginners in current way of
teaching, I will let you know.

Methodology Used
4. It’s not necessary to explain all details, but at least you could imply a bit how it differs from the previous ones.

The main difference between the Architecture First methodology and other methodologies is that it
changes the order of explanation. The Architecture First methodology is based on two main principles:

F The tools facilitating the program development are more and more sophisticated. In many cases
it is sufficient to suggest only, what should be programmed, and the tools send this requirement
to the embedded code generator which creates the needed program. The last area, which yet re-
sists to this automation for a long time, is the design of the program architecture, which means
the arrangement of the main components and design of the rules for their cooperation.¨

F One of the important pedagogical patterns called early bird pattern says: “Organize the course so
that the most important topics are taught first. Teach the most important material, the “big ideas”, first
(and often). When this seems impossible, teach the most important material as early as possible.”

The above mentioned propositions imply that if we are confident that the last activity which will be
soon left to programmers will be primarily (and almost entirely) the design of the program architec-
ture , we should teach it from the very beginning or very soon despite some subjects, that were for-
merly explained at the beginning, would be postponed or left out. Therefore, the Architecture First
methodology suggests teaching students firstly the basic architectonical principles to be able to design
the program (teaching them how to think in the object oriented way).

A lot of courses start with explaining the basic principles, but they only explain them and don’t in-
corporate them immediately in developing a program, because students still do not know, how to do
it. Architecture First methodology lets the creation of the designed program to a code generator. Only
when the students come beyond the code generator capabilities they start to learn how to code the
constructions themselves.

The Presentation Concept
5. It looks interesting. I hope you will not rush me to absorb these principles quickly. As you know I need to as-

similate new knowledge. I don’t want to compete in passing the course as quickly as possible. Some of my
friends wanted to learn programming quickly and after that they were discovering for several months what
their textbooks and courses skipped to be quicker. They have to learn all these things, but it took much more
time to them.

Here you can apply the well-known saying Haste makes waste. We shall not hurry up and whenever
anything will be unclear to you, please, do ask me. I will not try to teach you quickly, but I will try to
teach you correctly.

As I have already told you, for some time you will not feel that you are learning programming.
You will have a feeling that we are only playing with the computer. However, in this initial phase you
have to learn a lot of terms, connections and regularities so that later on you could understand further
topics much better and quicker. Nearly in each of my courses there are students who underestimate

4 Part 1: Interactive mode

this initial phase and subsequently they reproach themselves for useless problems because they were
not careful enough.

6. On the other side I am afraid, that when we start going through all items carefully, we will pass through only
few of them.

I agree with you. But it can be solved. Let’s divide the whole course into several volumes. In this vol-
ume (i.e. in this book) we will make only some first excursion into the world of object oriented pro-
gramming. An excursion where our goal will not be a presentation of topics to all details, but where I
will rather try to give you a basic idea what the object oriented programming means and how to pro-
ceed in creating the object oriented programs. Simply you should receive a general overview of this
area. At the same time you will learn a lot of skills that standard courses don’t present not even in ad-
vanced courses of programming. (At this occasion I have to remember a reader who read another of
my books and then he wrote me: “I thought I am not any programmer’s rookie. But after I have read
your textbook I opened up my eyes and mouth.”)

In the next volume we will firstly go back to all what we skipped during this general overview and
then we will start studying certain areas deeply. We will also mention other areas, which are not men-
tioned in current programming textbooks.

The Accompanying Animations
7. It all looks attractive. Do you think you will be able to explain everything sufficiently illustratively to me? I

mean I need firstly to try it several times, before I remember it.

I will do my best. Furthermore, in first lessons the text explanation will be accompanied by animated
demonstrations in flash format at your disposal at the address

http://edu.pecinovsky.cz/animations

In case your browser knows to open flash animations (nowadays practically all browsers know it),
you can open them and practice everything what the animation shows at the screen.

First of all let me give you few advices how you can control them. All accompanying animations
have two sets of controlling elements.

F Green buttons with arrows located in bottom corners of the animated picture.

F Silver control bar under the animated picture.

The animation stops after presenting an action so that you could see the result. Often a callout textbox
appears (possibly with an arrow) bringing an information about the current animation or some other
additional information.

The green button with an arrow to the right activates further animation running. You will use them
in case you would like to continue. The green button with an arrow to the left returns the animation to
previous stop and you will use them in case you would like to run the last sequence once more.

The silver control bar enables stopping the animation at any moment and repeated activating. For
stopping and activating the animation you will find a button at its left edge. The control bar will also
enable you to move immediately to any place of the animation. This you will achieve by clicking on
the control bar on which the slider runs. The slider then moves to the place on which you clicked and

www.dbooks.org

https://www.dbooks.org/

1. The Prologue 5

sets the animation in a corresponding way. You will activate the animation by pressing the button on
the left edge of this control bar.

Animation 1.1: Animation describing its own handling – LOOTP_101a_Handling
So that you could test the described animation handling, I prepared for the beginning an animation with
the well-known card game FreeCell.

At the beginning analogous animations will be included in each lesson; some of them (e.g. the current
one) will include more animations. They are mostly recorded in resolution 1000×600 pixels so that you
could put the browser with activated animation aside the screen (or on a second screen) and you
would have some place for experiments. When preparing these animations I supposed that you will
open them and after each stop you will try repeating aside at the display what the animation has just
shown you.

What You Will Need
8. I am looking forward for presentation with animations. What I will need for it?

Besides taste for studying you will need the development tools, with which you will analyze the ac-
companying programs and create your own programs. Good news is that you can download all
necessary tools from internet free of charge.

9. You said “all necessary tools”. Does it mean that we shall need more than one tool?

Good estimation. At the beginning we will need JDK and BlueJ. Further you can add more comfortable
professional environment. I will give you a notice in a proper time and will let you decide yourself.

File Manager

10. Don’t throw unknown names on me and better explain what it means.

Don’t be afraid, I will explain everything to you. Before I start to speak about tools, which are neces-
sary for programming, I would like to mention an important tool that you will use in every work with
your computer. It is a file manager.

I was thinking for a long time how to show you what happens on a disk during the work. I wanted
to use a manager that is free of charge but I didn’t want to use the file manager that is a part of an op-
erational system because thus I would discriminate those who are working with different operating
system.

At the end I discovered a file manager muCommander. It is free of charge and it is written in Java
which means it will operate in all systems where JRE (see further) is installed. That’s why I will use it
in my excursions to a disk and for the research which files occur/don’t occurs there.

You can find it at the address http://www.mucommander.com. I don’t press on you to download it; you
can use your favorite file manager. I only wanted to tell you which file manager I’m using for pictures
and animations.

6 Part 1: Interactive mode

JDK and JRE

11. Well, I notice. And now you could tell me something about the tools for which you started to use the strange
abbreviations.

JDK (Java Development Kit) is a denomination for a package of programs containing all necessary el-
ements for the development of programs in Java language. Its installation file has about 100 MB (I am
speaking about version 7, later versions can be larger) and you can download it at the address
http://java.sun.com/javase/downloads. You will find there offers for downloading JDK with various
additions. Skip it over and download only JDK itself. We will not need any additions at this moment
and before we shall need them, the new ones will occur.

When installing the JDK you will install in fact two environments: JDK itself, (we have already said
that it is an environment with tools acting for development of your applications), and JRE (Java
Runtime Environment), which is an environment that has to be installed at the computer, where we
want to use these applications.

JRE is significantly simpler and is necessary for all those who want to activate programs in Java.
However, at present it is usually installed at majority of computers. It is installed as a part of JDK so
that you could not only develop the application, but also test it, how it will run at computers of your
brilliant program users who may have installed only JRE at their computers.

You have to start with installing the JDK because the development environment that we will use
requires JDK’s previous installation.

12. When JDK contains all we need why to download any other environments?

Due to the fact that handling the programs that are part of JDK are not known as being very user-
friendly – majority of them can be controlled only from the command line. It’s convenient to some
programmers1, but majority of them use certain development environment, which mediates the com-
munication between the programmer and the relevant JDK programs, and is much user friendly. The-
se environments mostly offer a whole set of tools that make the work easier.

Comfortable environments that offer a majority of tools needed for program developing are usual-
ly marked with an abbreviation IDE (Integrated Development Environment) which should evoke that
these programs have integrated more functions in the only program.

BlueJ Environment

13. Does it mean that we shall download also some IDE?

Yes, we will download the BlueJ environment, which is an integrated development environment that
was designed especially for introductory courses and which we will use in first lessons of our course.
You can download it at the address http://www.bluej.org.

1 Number of textbooks use working with a command line as the only possibility. Their authors claim that a stu-

dent can best recognize basic principles of a platform. However, it seems to me that I could ask the bus driver
to get from Paris to Rome by walking, because only thus he can understand how far apart both cities are.

www.dbooks.org

https://www.dbooks.org/

1. The Prologue 7

Unfortunately, the default configuration which you will download does not use all possibilities of-
fered by the BlueJ environment. Therefore I use a little bit different configuration in my courses. So I
would advise you to have a look at my pages http://edu.pecinovsky.cz/bluej_config, where the precon-
figured version is prepared for downloading. It has a configuration that we will use in our course.
These pages are continuously updated and you can get there the last information on recommended
versions and how to set its configuration to be convenient with materials of this course.

14. You told me that there are further development environments. Why have you chosen just BlueJ?

The main advantage of this environment is that handling with it is so simple that you can learn it
within few minutes. Contrary to it learning of some professional IDE takes so much time and effort as
learning Java. And moreover, the BlueJ environment offers some special “teaching functions” which
you surely will appreciate but which are not offered by professional development environments. This
environment is also fully localized in many languages; it will be highly appreciated by those who are
not so familiar with English language. (However, only versions for English, Czech and Slovak lan-
guages are offered at my pages.)

Professional IDE

15. Well, so we have JDK and IDE. Why did you tell that at the last third I will be able to transfer to another envi-
ronment?

Some programmers reproached me in internet discussions that I do not use professional environment.
My answer is simple: any professional environment of Java does not offer such functions which I con-
sider to be important for the initial lessons. And moreover, the BlueJ environment was designed in the
way so that the beginner should not be amused by fighting with the environment and could concen-
trate on the lectured topics.

But simplicity of BlueJ environment is redeemed by the fact that it offers really only basic functions.
Therefore, a lot of students give up their time and effort for learning at least basic functions of some
professional development environment, because they know that their endeavor will return many
times in future designing of programs.

In case you would like to sacrifice your comfort and learn handling with IDE, whose knowledge
will save you a lot of time in developing more complex programs, I recommend the NetBeans envi-
ronment which belongs to the best available development environments. You can theoretically use
this environment since the moment when we will leave the interactive mode and will start to write the
source code. Until the end of this course I will use BlueJ, but in case you would like to continue in the
advanced course, NetBeans will be used there.

You can download the NetBeans environment at the address http://www.netbeans.org. However, at
the same address from which you downloaded JDK you can download even the whole set
JDK+NetBeans. I would recommend downloading and installing them separately, because then you
will be able to update NetBeans and JDK independently.

The second, not less good choice is the Eclipse environment which you can download at the address
http://www.eclipse.org/downloads. The third famous IDE is IntelliJ IDEA, which you can download at the
address http://www.jetbrains.com/idea/download.In case you would meet programmers who work with
this environment and they would be willing to advise you, you can follow them without any prob-
lems.

8 Part 1: Interactive mode

Working with BlueJ
16. I have downloaded and installed JDK as well as BlueJ, so we can start.

Before we begin the programming itself let’s have a look how to work with the BlueJ environment.
Firstly, download the file with accompanied programs which you will find at the address
http://books.pecinovsky.cz/lootp. It is a self-extracting file containing all projects which we will use
during the course. Then activate the accompanying animation at http://edu.pecinovsky.cz/
animations/LOOTP_101b_IDE_BlueJ, open the project 101a_Shapes according to instructions and have a try
so that you could be concentrated at the explanation itself and working with the environment would
not amuse you.

Animation 1.2: BlueJ environment and how to work with it – LOOTP_101b_IDE_BlueJ
Basics of the work with the environment should not be explained by words only; the best is to show it. All
necessary explanation is therefore placed at this animation. Majority of presented topics in this ani-
mation is not discussed in the textbook; however, in further text I suppose you know it.

Review
Let’s review what you learned in this lesson (some of the following items are not in the text but in ac-
companying animations):

F This book is the first volume of a series. It should offer the basic overview of object oriented
programs and their development.

F The explanation follows the Architecture First methodology that teaches first the key properties
of programs together with some basic architectonic principles and only after it the coding rules.

F This textbook presents topics which are not presented in current programming courses, despite
the fact they are generally considered as very important.

F This textbook will be followed by another volume that will return to areas which we could not
explained now and will present further important topics neglected in current courses.

F The development environments serve for developing the programs. The basic development tool
for developing programs in Java is JDK – Java Development Kit.

F The user, who wants only to run programs written in Java, will manage with the JRE (Java
Runtime Environment).

F Tools from JDK package do not have too much comfortable development environment and
therefore majority of programmers use an IDE – integrated development environment.

F At the course beginning we shall use IDE BlueJ, which is specially designed for introductory
courses of programming. In the next volume we will transfer to professional IDE NetBeans.

F The BlueJ application window is divided into three panels: the button panel, the object bench
and the class diagram.

F In IDE BlueJ we work with projects.

www.dbooks.org

https://www.dbooks.org/

1. The Prologue 9

F A standard project has its own folder where all its files are placed. We recognize the folder with
BlueJ project according to its icon in a dialog box for projects opening.

F BlueJ is able to open also projects placed in the JAR and ZIP archives. These projects can be
opened as NON-BLUEJ projects. During opening them, BlueJ automatically creates a folder
named according to the opened archives, unrolls the archives content into it and works further
with it as with BlueJ project.

F You open the existing project by the command File ® Open. BlueJ opens a dialog box, in which it
shows only folders. The folders containing a BlueJ project are marked by a special icon.

F In case the opened project is among the twelve lastly opened projects we can open it quickly
from the sub-offer evoked by a command File ® Reopen.

F When opening the project, its name is written in the title bar of the application window. At the
same time its class diagram is read and depicted.

F Rectangles in class diagram represent classes featuring in the project.

F The class rectangle can be caught by a mouse and drawn to another place.

F The size of the class rectangle can be changed by catching and drawing its right bottom corner.

F By clicking with the mouse in a free space followed by drawing you define a selected block. All
classes in this block, as well as all classes that are somehow touched by this block, will be
marked as selected.

F Selected class is marked by bolding its edge.

F Selected rectangles can be shifted at the same time or you can change their measure.

Project:
No significant changes were made in the 101a_Shapes project.

10 Part 1: Interactive mode

2 The OOP – Get Acquainted
2. The OOP – Get Acquainted – 000000

2 The OOP – Get Acquainted
What you will learn in this lesson
In this lesson you will become acquainted with objects and classes, you will learn what it means when ob-
jects mutually send messages. You will learn what the basic difference between the old structured pro-
gram and the newer object oriented one is. At the conclusion you will make acquaintance with the graphic
language UML and you will meet our first project drawn in this language.

Project:
In this lesson we continue in using the 101a_Shapes project.

The Object Oriented World
17. I have already learned opening and closing the project as well as manipulation with classes (better say with

corresponding rectangles in class diagram) according to the animation, and you could start explaining what the
classes are like.

Let me start a bit broader. The Object Oriented Programming comes out of the understanding that
each program is a simulation of a real or virtual world.

F The program for accounting administration simulates the acting of the company and their cus-
tomers concerning the orders, supplies, invoices and payments. The simulation is synchronized
with the real life by making a real invoice, registering real received payments etc.

F The program for playing chess simulates acting in certain virtual chess world, in which two
armies attack one other, and one army is handled by the player and the second one by the
computer.

F Drawing program simulates an action in a virtual world of geometric shapes which mutually
react in multiple way (i.e. mutually communicate and impact one another).

And thus we could pass program by program.

Note on terminology:
An expression Object Oriented Programming is long, that’s why we often use an abbreviation
OOP. If we do not speak just about programming, we often use instead of the long object
oriented only simple OO – e.g. OO analysis or OO program.

The Objects
The world is created by objects. Therefore, if the program should successfully simulate events in this
world, it has to know how to work with objects.

www.dbooks.org

https://www.dbooks.org/

2. The OOP – Get Acquainted 11

We are willing to consider persons, animals and things as objects in current life. Object oriented
programming generalizes such understanding of objects. In OO programs we take as objects also the
characteristics (color, taste, smell …), events (connecting, interruption …), states (calmness, move-
ment, anger …) and generally everything, what we can call with a noun including such abstract
“objects” as beauty, welfare or life.

18. How can be a beauty taken as an object?

By many ways. You can e.g. characterize the level of beauty of some object by a number from -5 to +5
and put this characteristic as object representing the given beauty.

The Classes

19. It's a little bit strange, but it’s understandable. Please, go on.

In bigger programs there are thousands and tens of thousands of objects. So that we could reasonably
work with them, we need certain classification. When you will have all your papers on the table, you
surely will not be able to work with them well and you will sort them into groups according their
topics.

Similar situation is with the objects. We can divide them into groups with very similar characteris-
tics. These groups are named classes. Objects belonging to certain class are named as instances of this
class. E.g. your as well as my computers are instances of a general class of personal computers.

20. Then what’s the difference between an object and an instance?

Strictly speaking minimal. They are both almost mutually substitutable synonyms. The expression
object is preferred in situations when we speak about general objects, whilst the expression instance is
preferred in situations when you want to stress that the given object belongs to some class (the object
is an instance of XYZ class). They are not substitutable only in the very rare cases, when the object un-
der discussion is not an instance of any class.

21. You told me that all what we can name by a noun is an object. This means that also the class has to be an
object.

You are true. A class is also an object. It is an object which keeps information characterizing its in-
stances and as the only one it is able to create instances. But don’t task your mind with it. After you
will be a little bit more experienced, you will take it as quite usual. And when I return to your previ-
ous question, in some languages (e.g. in Java) the class is an object which is not an instance of any
class.

22. An object keeping the information on instances – that’s too abstract for me and I don’t want to wait for being
more experienced. Could you explain it at some example just now?

I will try it. Imagine that you are one of the objects of a program simulating the world you are living
in. A while ago I told you that both your and my computers are instances of a class of all computers.
Similarly the table on which the computer is standing is an instance of a class of all tables, and a chair
on which you are sitting is an instance of a class of all chairs.

12 Part 1: Interactive mode

The class knows how to create its instances – thus you could consider it as a factory for your in-
stances. In case you will need a new computer, you will ask the computer class for a new instance and
in case it will be possible, the class will create it. In case you will need a new car, you will ask the car
class and it will create the required car for you.

The Messages

23. It's a pity that the real word doesn't operate in such way. How the addressed class recognizes which kind of
computer or car I want?

You are sending your requirement as a message. A detailed specification of your requirement could be
a part of this message – we say that you are sending a message with parameters.

24. Well, I asked the car class for a car and I obtained a car. But how I would arrive to my aim with this car in the
program?

You are identically proceeding all the time: your object, i.e. the object representing you, will send a
message to the object of car to reach the required place. Well, it would be suitable to get in before that.
If I would use a hypothetical language in which I write firstly the addressed object and then the name
of the message which I am sending, followed by possible parameters of this message, the resultant
program might look out as follows:

a_car open

a_car get_in me
a_car close
a-car go_to destination

25. As I see the car opens and closes itself. In case of a usual car, I should open and close it myself. But with getting
in – I don’t understand. Why I should say to the car that I am getting in?

The car does not close itself; it closes in reaction to your message. And in a real world you give over
the message by taking the handle or pushing the door. In the virtual world of the computer program
the message looks out a little bit different, but the result is the same: the door will open, respectively
close.

26. Well, maybe. And why I have to say to the car that I am getting in and I cannot get in without telling it to the
car?

Because the omnipresent physics, which would tell it to the car instead of you, is missing in the
program. When you get in the car in real life you place your xyz kilos (pounds) into it and your car
immediately knows that you are in. In the computer program this physics has to be replaced by the
programmer and it is he/she who has to give over the relevant information explicitly (= publicly).

27. Does it mean that when I want for example to sit down at the chair I have to send a message as well?

Of course, in the real world I will sit down at a chair and, depending on my weight and the chair qual-
ity, the chair will bear me or not. At the same time, depending on the underlayment, the chair, I am
going to sit on, can sink.

In an OO program the object getting to sit down (in this case the object representing me) sends
a message how many kilos (pounds) is just going to sit down on the chair to the object representing

www.dbooks.org

https://www.dbooks.org/

2. The OOP – Get Acquainted 13

the chair. The object of chair will evaluate if it will bear the object getting to sit down (me in this case)
and if yes, it will send a message about the change of loading its feet to its underlayment. The under-
layment answers, if the chair will sink and how much. The chair will evaluate the situation and will
send info to the object getting to sit down concerning how the action turned out.

In case we would like to improve the program, when evaluating the reaction of an object getting to
sit down, the object of chair could send a message to an object representing the surrounding air that
it’s creaking. It would send this message to all objects that can react to a sound – e.g. also to my ears
(better said to an object representing my ears). And, my ears can evaluate this creaking (let’s skip over
my brains for simplifying the program) and recommend me not to tease the chair.

The Structured vs. Object Oriented Program

28. It looks like the program is nothing else than permanent sending messages from one object to the other one.

That’s exact. A current, structured program is usually defined as a sequence of statements which de-
fines how the given problem should be solved. (Well, it is not accurate, but for a majority of structured
programs this definition is suitable.) Opposite to it the object oriented program could be defined as
a set of objects and messages that are sent among these objects.

Different characterization of both types of programs leads also to a different analysis of problems
and subsequent solutions. I tell it so that you would not be surprised that some of your friends under-
stand the programming in different ways. For a long time there was only structured programming
and even now a number of contemporary textbooks do not teach different types of program pro-
posals. They teach you programming in object oriented languages and use objects and classes in their
programs, but they are not teaching you object thinking. But that’s what I would like to teach you in
my course.

The First Project
29. What about to finish the theory and try a practical example.

I agree. Opposite to current usage we will not create any program like Hello, World – let’s leave it for
textbooks of syntax. We want to concentrate to program architecture and that’s why we shall work
with nontrivial (= not very simple) projects immediately at the beginning.

30. Do you think that it is reasonable to start with – how you say – nontrivial projects, despite I don’t know any-
thing about programming?

Don’t be afraid, their complexity will be sufficiently small so that you would be able to understand
their architecture, but on the other hand, sufficiently big so that you could recognize as much as pos-
sible when studying the work with objects.

We shall start with a 101a_Shapes project in which you became acquainted with BlueJ environment
in the accompanying animation and practice your manipulation with classes in class diagram. Please,
open it so that we could speak firstly about further details concerning the class diagram.

14 Part 1: Interactive mode

The Graphic Language UML

31. I’ve opened it. What will you tell me about it?

Figure 2.1

The BlueJ application window with an open 101a_Shapes project

In the accompanying animation at the end of the last lesson you learned that the biggest area of the
application window of BlueJ environment is taken by the so called class diagram. The class diagram is
one of the diagram set by which the proposals of object oriented programs are depicted in the graphic
language UML (Unified Modeling Language).

The UML language is used by top programmers for program design even before they sit down to
the text editor and start writing program in some programming language. The UML language makes
the proposal of program architecture easier. The programmers clear up mutual relations of its particu-
lar future parts and the resultant program is proposed more quickly and reliably. Therefore I will try
to teach you first object thinking on class diagrams and only after it we shall start to think over how to
write down various functions in a code. Knowing the UML and the ability to speak in it belongs to the
obligatory skills of a modern programmer.

32. You told me that the class diagram is one of the UML diagrams. Could another one be better?

There are altogether 13 diagrams and each of them serves to a different purpose. The class diagram
describes the general program architecture at the level of classes and for our purposes it is the most

www.dbooks.org

https://www.dbooks.org/

2. The OOP – Get Acquainted 15

useful for the time being. After you will be more advanced and we shall solve some more complex
tasks, I will show you further ones.

Classes in the Project

33. We wanted to start working on a project and again we came to a theory.

Don’t be afraid, we will already start working on our project. As I told you, each rectangle in the class
diagram represents a class. There are seven classes defined in the current project:

F Instances of Ellipse, Rectangle and Triangle classes represent the corresponding geometrical fig-
ures. If during creating the instance there is yet no canvas (see further), the class will require
creating it.

F The instance of the Canvas class represents a canvas on which the geometrical figures are drawn.
This class ensures having only one instance so that all geometrical shapes would be drawn on
the same canvas.

F Instances of the NamedColor class represent colors of the canvas and of painted shapes. The class
in its birth defines several basic colors, but others can be created as well.

F Instances of the Direction8 class represent 8 cardinal and secondary points; those are directions
to which the triangle can be turned.

F The IO class does not have any instance and even does not enable to create any. It does not need
any instances – all messages are sent directly to the class which provides all arrangements. The
IO class gained its name from the expression Input/Output. It covers the communication with the
user in a project (i.e. input and output of information) through dialog boxes in which we can ei-
ther provide or receive information. Besides that it can stop running the program for certain
time, if necessary.

34. Why the Direction8 class is colored in a different way than other classes?

I will start a little bit broadly. Some classes have special characteristics, to which we would like to
draw your attention. UML enables to draw an attention to these specialties through the so called ste-
reotypes, which means short, mostly one-word names of the given feature closed in «guillemets»
(«French quotation marks», «angle quotes») and in case of the class located above a class title. Moreo-
ver, BlueJ enables to color the classes marked by stereotypes with the color assigned to this stereotype
in a configuration file.

The Direction8 class is defined as the so called enum type or enumerated type, which means that
all its instances were defined beforehand and therefore no others can be created. These instances are
created in advance and you can ask the class for them any time.

35. Why there are arrows pulled among classes?

Arrows mark dependence among classes. E.g. the arrow going from Canvas class to Color class an-
nounces that the Canvas class is dependent on the Color class. You cannot create a canvas that would
have no color.

16 Part 1: Interactive mode

Similarly all geometrical shapes are dependent on the Color class because they also need to have a
color. Moreover, these shapes are dependent on Canvas class, because it is the only one place where
they can be drawn and prove their existence.

36. What does it mean the sheet of paper in the left upper corner?

It stands for the text file called README.TXT, which is usually a part of the project. Author of the project
can write basic information for users into this file. By clicking at the icon you will open the file and
you can write down your own notes.

37. Well, everything is clear and we can start the programming.

For the time being we will not be programming. Don’t mix programming and coding. First I have to
remind, that we will not write a code at the beginning. As I’ve said earlier, we will start first with
learning the architectural principles and we will delegate the code writing to a code generator. We
will play with classes and instances for a while so that you would understand how the object oriented
program is working. And only after that we shall start coding.

38. I am not much excited of it. Why do you think playing with classes and objects could help me in my subsequent
programming?

Programming is not only coding but also designing the architecture of the program. Many program-
mers, who start with learning how to code a program at first, have later problems with designing a
good architecture. The inversed way, where we first learn architectural principles and only then the
code writing, doesn’t bring such problems. Don’t worry; you will learn how to code the program in
the next part.

We start working in the interactive mode. Let’s try to play that we are part of the program – an ob-
ject which is sending messages to other objects. At the same time I will explain you why other objects
react to our messages in the way they react. I will show you how our messages have to look out so
that we would evoke a required reaction of objects receiving our messages.

The Compilation
39. Well, how should I send a message?

So that you could send messages to individual program parts, the program has to run. Firstly it needs
to be compiled. When being compiled the program is converted from a form understandable for a
man (we create it in such a form) into a form, which the computer is able to process much quicker. As
soon as some class is compiled, BlueJ enables to communicate with it.

40. How can I recognize if the class is compiled?

Simply. In BlueJ the classes which are not yet compiled have the lower part of its rectangle in class di-
agram hatched. After compilation the hatching disappears.

www.dbooks.org

https://www.dbooks.org/

2. The OOP – Get Acquainted 17

41. I suppose that the compilation starts with pressing the button Compile at the button panel.

Yes, it is one of the possibilities. The fact that a class compilation started is indicated by a change of its
rectangle color. After the compilation the rectangle returns to its original color and at the same time
the hatching disappears. And again you can see everything in the accompanying animation.

Animation 2.1: Compilation of classes in the BlueJ environment – LOOTP_102a_Compilation
Animation shows the dependence of compilation succession on the mutual dependence of individual clas-
ses in a project.

Review
Let’s review what you have learned in this lesson:

F The term object oriented can be sometimes replaced by an abbreviation OO.

F Object oriented programming is marked with an abbreviation OOP.

F OOP comes out of the knowledge that all programs are a simulation of the real or of the virtual
world.

F The world is created by objects which reciprocally interact. Programming languages have to
describe properly both objects as well as their interactions.

F Interactions of objects from the simulated world are described in the program as messages that
objects send one to the other.

F A more detailed specification of our requirements is passed through the data called message
parameters.

F The object oriented program is a description of a set of objects and their interactions written in
some programming language.

F In OOP we include into objects everything what we can call with a noun.

F In modern programming the graphic language UML is used for program designing.

F UML defines 13 diagrams for different phases of the program development. For our purposes
the most useful is the class diagram.

F Rectangles in class diagram represent classes performing in the project.

F Arrows between classes symbolize dependences. The class, from which the arrow leads, is
dependent on the class, to which the arrow points.

F Some classes have special features on which an attention should be drawn. In UML we can do it
through stereotypes, which mean short, mostly one-word names of the given feature closed in
«Guillemets» («French quotation marks»).

F By hatching the lower rectangle’s part BlueJ announces that the class is not yet compiled.

F We ask for compiling of all project classes by pressing the Compile button at the button panel.

Project:
No significant changes were made in the 101a_Shapes project.

18 Part 1: Interactive mode

3 We Are Sending First Messages
3. We Are Sending First Messages – 000000

3 We Are Sending First Messages
What you will learn in this lesson
In this lesson you will send your first message and will create the first instance. You will become ac-
quainted with the object bench and meet the explanation what is the virtual machine and how it resets.

Project:
In this lesson we continue in using the 101a_Shapes project.

42. The project is compiled. And I repeat my question: “How should I send a message?”

As I told you already last time, you can send a message only to the class that has been compiled. Im-
mediately as the class is compiled you can start sending the messages. A list of all messages, to which
the given object (in this case the class) understands and which therefore can be sent, is enumerated by
BlueJ in the context menu of each object. (To be precise, it is a list of commands, and when they are en-
tered, BlueJ sends the corresponding message to the object.) The only objects which we see for the time
being are classes. Therefore we will send our messages to classes. Click with the right button on any
class and look through its context menu. Figure 3.1 shows what you can see after opening the context
menu of the Rectangle class.

Red commands in the lower part of the menu represent messages which can be sent to the devel-
opment environment. However, for now we will not pay attention to them and we shall concentrate
on black commands in the upper part of the menu which represent messages that can be sent to the
class. By entering these commands you ask BlueJ to send the corresponding message to a given class
and announce the result.

43. Why the “black list” is divided into two parts?

The horizontal line separates commands (messages) requiring the class to create a new instance from
commands for sending other messages. Notice that the commands requiring creation of a new
instance are quoted as the first (they are considered as more important) and start with the word new.

44. Why there are so many commands requiring a new instance?

Because in various situations you have various requirements for creating the instance. Let’s have a
look at the rectangle, the context menu of which is shown in figure 3.1; sometimes you can have pre-
cise requirements for where the rectangle should be created, how large it should be and what should
be its color, the other time you will not care about it and you will be satisfied with a default setting.

 Therefore the class is able to receive the message in which all adjustable characteristics of the creat-
ed object are set. Besides that it also offers “zero variant” of the message in case you have no special
requirements for the created object, respectively when you are satisfied with default setting.

www.dbooks.org

https://www.dbooks.org/

3. We Are Sending First Messages 19

Figure 3.1

The context menu of the Rectangle class
(there may be a different order of commands it the context menu in your computer)

The Instances and References to Them
45. By sending the new Xxx message I am asking for an instance. How the class will give me over the created

instance?

At this moment I would like to point out that in a majority of modern programming languages the ob-
ject never receives the required instance, but only a reference to it. And we turn to instances by way of
these references. We work with references similarly as e.g. with telephone numbers. In case we need
to call somebody, we have to know firstly his telephone number. Usually we have numbers of people
to whom we call under their names. If you want to call e.g. Fred, you find the record marked as Fred
in your telephone list and the telephone dials the recorded number. (In contemporary telephones you
do not know the number itself – you only find the name “Fred” and the telephone picks up the proper
number itself.)

Similarly it is in programs. In case you want to send a message to an object (you want to “phone” it
up) you have to know the reference to this object (to know its telephone number). Similarly as in the
telephone, you save all references and other values of the program to memory places marked by
names according to which you recognize what is saved there. You only must not forget to save the in-
formation which you intend to use later.

20 Part 1: Interactive mode

Entitled places in memory where various figures are saved (e.g. the above mentioned references)
are called by the programmers as variables, because the program can change their content (e.g. the
content of the variable of my account state will increase with each salary – at least I hope). Names of
these variables and generally of all named entities in the program (classes, messages etc.) we call iden-
tifiers because they help us to identify individual entities (variables, classes, methods …).

Terminological Note:
In case I will have a reference to an object saved in the xyz variable, I will speak about this refer-
ence briefly as about xyz reference or xyz object. It seems to me that thus the sentences can be
formulated more clearly. In case I will be afraid of misunderstanding I will express precisely
and speak about the xyz variable with a reference to an object, if need be, about the reference
saved in xyz variable.

As I’ve said, the only objects to which we could turn until now were the classes. They are unambigu-
ously identified by their names. But, in case we would like to save a reference to an object into a varia-
ble, we have to think out a name, according to which we recognize what is saved in it. Let’s try it.

Creating a New Instance
46. Let’s do it! I will try to send the most simple, i.e. the “zero variant” of a message asking for creation a new rec-

tangle – exactly according the figure 3.1.

This will be the best first step. We will ask to create a default version of a new instance of Rectangle
class. BlueJ fortunately knows that in case you would like to work with the received reference some-
times in future, you have to name it. Therefore it will ask you to give a name (an identifier) to the cre-
ated instance (to be precise the name of the variable into which the reference to the created instance
will be saved) before it sends a message to the class. It will offer you a name derived from the name of
the class the instance of which is being created. I recommend accepting the offered name now. Later
we shall speak about the rules that have to be kept in case you would like to give your own names to
instances.

Figure 3.2: The dialog box for parameterless creation of an instance

www.dbooks.org

https://www.dbooks.org/

3. We Are Sending First Messages 21

47. I’ve confirmed the name, and two red rectangles appeared: one of them opened a new window to be visible, the
second one, rounded and described, has appeared below under the class diagram.

Figure 3.3

Creating of the first instance

Let’s review what has happened:
1. The Rectangle class received your requirement for a new instance. It created the instance and

wanted to draw it on a canvas. Therefore it asked the Canvas class for its instance.
2. The Canvas class realized that there is no such an instance existing and it created this instance. At

this occasion it asked the operational system for a new application window, whose working ar-
ea would represent this drawing canvas.

3. The Canvas class passes the reference of the freshly created canvas to the Rectangle class, and then
the Rectangle class required painting of the freshly created rectangle.

4. The canvas instance paints the required rectangle and announced to Rectangle class completing
its activities.

5. By this the Rectangle class declared the creation of a rectangle as completed and gave over the
reference to it to the claimant, i.e. the BlueJ environment.

6. BlueJ has prepared a new variable, named in the way we have ordered, and put the received
reference to the freshly created rectangle into it. Then, it placed the rounded rectangle, repre-

22 Part 1: Interactive mode

senting this variable (and so a reference to the created instance), under the class diagram into an
area marked object bench. This rounded rectangle has always two-line description:

F The first line serves as the name (identifier) of the variable, in which the reference is
placed.

F Under it there is the name of the class the instance of which is the referred object.

In the next requirement for creating a new graphic object (it does not have to be a rectangle) the above
mentioned process will be repeated. The result will differ from the last one, because the Canvas class
already has its instance. Therefore, it will not create a new instance, but it will only return a reference
to the existing one. The new picture will be drawn to the same canvas as the previous one. Each next
creation of graphic shape will undergo by the same procedure.

The Object Bench

48. Why the area under the class diagram is called an object bench, when the variables are saved in it? Should it
better be named variables bench?

After we start programming you will learn that besides the variables into which the references are
saved, we also use the variables into which the values of primitive type are saved (what does it mean
will be explained in the section Primitive and Object Types on page 35). However, these variables are
not shown in the object bench. You can find there only variables where the references to objects are
saved, and therefore it has the name object bench.

49. A while ago you told me that the canvas instance is created. Why the variable with a reference to canvas is not
in the object bench?

In the object bench only those references can be seen for which you explicitly ask. References to objects
that are handed over among objects during processing the message cannot be seen. (It would not be
wise, because there are thousands of those references.) But in case you would like to have the refer-
ence to canvas instance, you can require the Canvas class for it. For the time being we will not use it, so
we will be glad if it would not hamper in the stack.

The Messages Sent to Instances

50. Can I send messages also to objects to which the variables in the object bench refer?

Yes, of course. When you have at your disposal a reference to an object, you can send a message to it.
The procedure is similar as for sending messages to any class in the class diagram – you will send the
message (to be precise you ask BlueJ to send it) by entering the corresponding command from the con-
text menu of the addressee class.

Try how it is possible to send messages to created objects and how the addressed objects will react
on them. For the time being, limit yourself to parameterless messages starting with the word void.
(I will explain its meaning in future, when we will speak about other types of messages.) You can see
an illustration of such usage in the accompanying animation

www.dbooks.org

https://www.dbooks.org/

3. We Are Sending First Messages 23

Animation 3.1: Creating of new objects ad sending first messages – LOOTP_103a_First_messages
Animation will repeat what we have already told in the text, i.e. it will show creating new instances of
various classes and sending simple messages to these instances.

Notice one aspect during your experimentation: all instances of the same class define identical set of
messages to which they understand. This set of messages is adjusted by the class during creating the
given instance and it is adjusted in the same way for all its instances.

As you can see at instances of Ellipse and Rectangle classes, the instances of various classes can un-
derstand to the same set of messages. However, this is only a consequence of the fact that both classes
create instances with nearly identical features, so that their classes have defined an identical set of
messages for them to which they can understand.

The triangle characteristics are also almost identical. However, triangles compared to rectangles
and ellipses have also a definition of the direction to which they are turned. The set of messages to
which the triangles understand is therefore richer by messages working with the direction.

After we will work with instances of Color and Direction8 classes, you will see that their set of mes-
sages to which they can react is quite different. However, always it will be valid that all instances of
one class understand the common set of messages defined by their mother class.

The Virtual Machine
51. At the end of the animation you were speaking about a resetting of a virtual machine. What does it mean and

why we have to reset it?

Virtual machine is a name for a program which carries out your compiled program. By the fact that
the program is not passed directly to the processor but it is submitted to the virtual machine, you
reach the advantage that the use of your programs will not be restricted to only one specific processor
and operating system, but you will be able to open your program anywhere where the relevant virtual
machine operates. At present there is hardly any computer, which would not have the Java installa-
tion.

By resetting the virtual machine you arrange that the computer will forget everything what you
have done until that time, and will start since the beginning. Thus you cannot be afraid that there will
be some garbage left after you.

52. And what about when I wouldn’t want to forget?

Things that should not be forgotten will be saved into a file. And you can pick them up anytime
during the next session. I will show it to you next time.

Review
Let’s review what you have learned in this lesson:

F In the interactive mode you are sending the messages to object by entering the corresponding
command in their context menu.

F Black items in the upper part of context menus represent messages to a given object; red items
in the lower part represent messages that can be sent to the development environment.

24 Part 1: Interactive mode

F Messages sent to a class are also divided into two parts: in the upper part there are messages
which require creating a new instance, the lower part contains remaining messages.

F The classes frequently offer whole groups of messages with same names. Particular messages
within such a group differ by required parameters.

F The named places in the memory in which various values are located (e.g. the above mentioned
references) are called variables.

F To have a good overview of separate entities of the program (classes, variables, messages …)
and to be able to distinguish them, we assign names to them. Names of the variables, classes
and other entities of the program are called identifiers.

F Modern programming languages mostly do not allow working directly with objects, but only
with references to objects. Whenever we send a message to an object, we send it via a reference to
this object.

F The variables containing references to objects for which we have asked in an interactive mode,
are depicted by BlueJ in the object bench placed under the class diagram. They are represented by
rounded rectangles with two-line description:

F the first line contains the name of a given variable,

F the second line contains the name of a class whose instance is the referred object.

F When we ask a class for a new instance, BlueJ firstly asks us which name (identifier) should be
assigned to the variable into which the reference will be saved, and through which we shall
send messages to the given instance.

F After creating the instance BlueJ creates a rounded rectangle representing the given object in the
object bench, precisely the variable containing a reference to this object.

F In the object’s context menu there is a list of commands corresponding to the messages that can
be sent to the given object.

F All instances of the same class understand to a set of the same messages.

F The virtual machine is a program which carries out our programs.

F By resetting the virtual machine the information which is not saved becomes forgotten.

Project:
No significant changes were made in the 101a_Shapes project.

www.dbooks.org

https://www.dbooks.org/

4. The Test Class 25

4 The Test Class
4. The Test Class – 000000

4 The Test Class
What you will learn in this lesson
In this lesson you will create your first class – the test class. You will see what it is the test fixture and
how it is defined. After that you will define your first tests. At the conclusion you will become acquainted
with what is the difference between the message and the method.

Project:
In this lesson we continue in using the 101a_Shapes project.

53. Last time you told me that all what I would like to remember I can save into a file before the resetting of virtual
machine. Can I save also my experiments?

Yes, you can – e.g. by defining a special class which you will teach to react to certain message by re-
playing your actions. BlueJ knows to follow your operation and to create a program that can repeat it,
if required. It works similarly as macro recorders in some programs.

54. That’s what I would like to try.

Why not? I would like to tell you only that this mechanism is provided by BlueJ only for test classes.
You have to program other kinds of classes in a classic way, i.e. to write down their program as a
properly formulated text. But before you start writing the programs yourself, let’s use this BlueJ ability
and let it write the programs instead of you.

55. Why the test class has such an extraordinary position?

I think it is due to the fact that the concept of tests exploited in the JUnit library, which BlueJ uses, has
several features that make programming of test preparation easy. Moreover, very often the tests con-
sist from only simple sequence of messages sent after the test will run using the previously prepared
data. Authors of BlueJ utilized these advantages, and students now can create simple programs even
when they do not know programming at all.

The Test Fixture
56. Well, so show me how I can create such a class.

First of all I have to tell you something about test classes generally, so that you would know why you
should do certain things just in the way I will show you.

As you surely assessed from the chapter’s title, test classes serve for testing of programs. But a sin-
gle test is mostly not sufficient for testing some part of the program. However, it’s often appropriate
that the whole group of tests start at the same initial state. You can consider the test class as an object
which is able to define a group of tests with a common initial state. The initial state, common for tests

26 Part 1: Interactive mode

in the particular test class, is marked as the test fixture. In case we ask the test class to start any pre-
pared test, it creates firstly a test fixture and subsequently verifies it.

Therefore, we have to show to the test class how it should prepare the test fixture and only then we
can do various experiments with it, i.e. various tests.

Creating the New Class
57. If I understand it properly, we will start with creating the test fixture.

Not so fully. Before starting to create a fixture, we have to create a test class. Let’s start with creating
this class.

58. Don’t take me at my word – it’s clear. So show off!

You ask for creating a new class e.g. by pressing the button New Class on the button panel. BlueJ opens
the dialog box, in which you have to enter the name of the new class and which class type BlueJ has to
create.

Let me postpone for a while the explanation of the rules according to which the names are created
and I will advise you simply to call the new class Tests. Adjust the Class Type switch to Unit Test be-
cause I told you a while ago that BlueJ is willing to program only the test class. Confirm your assign-
ment. BlueJ creates a new class, gives the name Tests to it and places it in a free room of class diagram.

Figure 4.1

Creating a new test class named Tests

www.dbooks.org

https://www.dbooks.org/

4. The Test Class 27

As we have already said the test class has a special position. BlueJ points it out by a stereotype «unit
test» and it assigns a special color to it similarly as to other classes marked with a stereotype.

59. By a stereotype? What does it mean?

Don’t try to suggest that you are bigger forgetter than me. We were speaking about stereotypes in the
section Classes in the Project, on page 15. Stereotype means a short text closed in «Guillemets» («French
quotation» marks), which is written above the class title in the class diagram and indicates its rarity –
e.g. that it is a test class.

60. Why you name the class Tests, when all other class names are in singular?

Because the identifier Test is used by the JUnit library, which is responsible for managing our tests
(you will meet this identifier in the section Test Class on page 174), therefore we have to think out a
different name for this purpose.

Creating the Test Fixture
61. Well, I have a class. So let’s dive to the fixture! What should I do?

Anything new what you would not know. You will start with resetting the virtual machine and then
you will send messages that will bring the system into a state in which the tests should start. BlueJ will
watch your activities and on your request it will convert them into a program that creates a fixture
and brings the program to the required state.

62. Wait a minute! I have to say somehow that since now I start showing how to create the test fixture.

BlueJ remembers all actions since the last virtual machine reset. In case you will do something, what
BlueJ would not remember, before showing the actions, which BlueJ has to remember, you have to re-
set the virtual machine. However, the reset is also performed as a side effect of the compilation. Then,
if you will show something immediately after compilation, you do not have to reset the virtual ma-
chine explicitly.

63. Yes, I understand. But what should I say when I want to stop?

You will send a message Executed Actions ►Test Fixture, that can be found in the test class context menu
(see figure 4.2). BlueJ then creates the corresponding program. You can try its functioning by sending a
message Test Fixture ►Object Bench, after which BlueJ runs the created program and fulfill the object
bench with the relevant references – the test fixture.

64. I have created a rectangle, an ellipse and a triangle we played with last time. When I asked to create a tool,
new arrows appeared in the class diagram.

That’s good. BlueJ stretched the dependence arrows from the test class to classes of graphic shapes.
Please, shift the test class a bit to the right and you will see that there are arrows from it going to
Rectangle, Ellipse and Triangle classes (see figure 4.3). That happened because the test class became
dependent on these classes. Each sending a message to some object creates a dependency of the sender
on the addressee. That is because each change of the addressee’s behavior causes a potential change in

28 Part 1: Interactive mode

the behavior of the sender. The Tests class asks all shape classes for their instances and therefore it is
dependent on them and BlueJ show these dependences in the class diagram.

Figure 4.2

The request for converting the remembered executed actions to a program for creating a test fixture

Creating the Test
65. You are true. Well, I have the fixture. How I should prepare a test now?

I recommend you to reset the virtual machine to agree with BlueJ on the initial state of the program
before the test beginning. Then open again the context menu of the test class (see figure 4.2) and enter
the command Create Test Method. By this you are sending a message to BlueJ that you would like to
show a test of the fixture created by this class and let BlueJ to create it.

BlueJ opens a dialog asking for the name of the created test (see figure 4.4). Let’s say that you will
call it testMovements as in the figure 4.4.After entering the name the test class creates a test fixture. At
the same time BlueJ “lights up” the indicator Recording and “revives” the buttons End and Cancel for
ending and canceling the performed test respectively.

After entering the name the test class creates a test fixture and BlueJ starts recording what you are
doing. At the same time it will switch on the Recording indicator which will draw an attention by a red
“light” to recording the test commands, and “revive” the buttons End and Cancel for ending and can-
celing the performed test respectively.

www.dbooks.org

https://www.dbooks.org/

4. The Test Class 29

Figure 4.3

Dependences of the test class after the definition of the test fixture

If you would realize during the showing that you made a wrong step, you press the Cancel button and
you can start once again.

In case everything goes properly, you press the button End after finishing the test. BlueJ then
“switches off” the Recording red light, deactivates the buttons End and Cancel, converts the remem-
bered actions to a program, and inserts this program to the source code of the test class. Then it
includes a command to the test class context menu by which you can evoke this program.

I tried to demonstrate all what we were speaking about in an accompanying animation. Start it and
try it once more.

Animation 4.1: Creating of test class and its fixture – LOOTP_104a_Tests_class
The animation shows how the new test class is created, how creating of test fixture is interactively
defined, and how it is possible to enter interactively the tests cooperating with this tool.

66. All was operating. I was only wander why there was a blank area left on the original position of the moved
shape despite there was another object under it.

Objects are shifted identically as if drawn on a paper. Firstly they have to be rubbed out at the original
position and then drawn again at a new position. However, because the objects do not know mutually
about themselves, they cannot send a message to objects lying under them so that they should redraw.
This is your turn; you have to ask the objects to redraw.

30 Part 1: Interactive mode

Figure 4.4

Question on the test name

I intentionally made it so simple and we could say also clumsily, so that you would have a motivation
when you will work with more sophisticated canvas, because at first you will have to learn several
other constructions and regularities for it.

67. I know a number of simply managed programs that don’t operate so silly and I don’t need anything else for
their controlling.

Of course, I could tailor the program so that it would not operate so foolishly. But our aim is not to
shift the objects. You are learning programming. When I would arrange the program to operate smart-
ly, I would have to hide certain constructions because you would not understand them yet. After you
would meet them later on you would be surprised why you should use them if you did not need them
before.

Please, be patient a while, we will soon come up to an explanation.

Methods and Constructors
68. Well, I will try it. But I’ve one more question. You always say that I am sending messages to objects but in con-

text menu there is mentioned that we are asking BlueJ to create a test method. What does it mean the method?

The method is a part of a program that takes care about an object’s reaction to a given message. Each
message that the object understands, has assigned to the corresponding method that will take care

www.dbooks.org

https://www.dbooks.org/

4. The Test Class 31

about the relevant reaction. Thus each message sending is converted to the corresponding method
calling. Until an appropriate method for a certain object (a class, an instance) is defined, the object
cannot receive corresponding messages.

When you will write programs you will define classes and their methods. Up until now BlueJ
environment defined methods instead of us. We presented something to BlueJ and it defined a method
which was able to repeat the presented action.

The programmers do not mostly speak about sending messages, but about method callings. Both ex-
pressions are synonyms, similarly as an object and an instance. When we are speaking at a more ab-
stract level of problem description, we use rather message sending; when we are speaking about a code,
we prefer an expression method calling.

Even the program that creates a test fixture is a method. When we are sending a message so that
the class would start the test, BlueJ in cooperation with the test class provides to call firstly the method
which creates the test fixture, and only after that the method which performs the test with the just
created fixture.

When I mentioned methods I should tell you that methods that take care about constructing a new
object are called constructors. Constructing an object is made in two phases:

1. First of all the virtual machine receives a message in the form new Xxx, where Xxx is a name of a
class whose instance we want to create. The virtual machine designates a place in a memory
and prepares some system components which are necessary for proper operating of each
object.

2. Then the special method is called, that creates (constructs) an object of a given class in the allo-
cated memory and returns a reference to the created object to the calling program. Because this
method constructs the object, we call it a constructor.

69. It’s strange. I would say that the main merit in constructing the object belongs to the virtual machine, which
finds out and prepares the memory, where the created object will dwell.

Constructing an object can be mostly compared to producing a cup or a jar. A memory provided by a
virtual machine is something like clay. Until we have no clay we cannot produce any cup. However,
creating the cup is a care of a potter who creates it according to his ideas. The potter is represented by
a constructor in the program. It accommodates the designated memory to such a form so that it could
serve as a required object.

Review
Let’s review what you have learned in this lesson:

F The BlueJ environment is able to follow our acting, to convert it to a program and save it in the
test class.

F Because the test class has non-standard features from the BlueJ environment view (BlueJ is able
to program it itself), its name is supplemented by a stereotype «unit test» in class diagram and
its rectangle is colored by a different color than ordinary classes have.

F A stereotype is a short text closed in «Guillemets» («French quotation marks»), which is written
in the class diagram above the class name and reminds its specialty – e.g. that it is a test class.

32 Part 1: Interactive mode

F Test classes mostly contain a set of several tests working with the same initial set of objects. This
initial set of objects is named test fixture. Each test class has its own fixture.

F We can create a test fixture in such a way that after compilation of classes or resetting the virtu-
al machine we show how it would be created. After a command Executed Actions ►Test Fixture in
the context menu of the test class for whose tests we create this fixture, BlueJ defines a method
based on presented activities and this method will be started up before each test of this class.

F We can start up a program creating the test fixture also independently by entering the com-
mand Test Fixture ►Object Bench. BlueJ then fulfills the object bench with references to objects
from the fixture.

F We ask creating the test by the Create Test Method command in the context menu of the test class.
First of all BlueJ asks for the name of the created test (method) and then revives buttons for end-
ing and cancelling the test together with the record indicator of carried out actions at the button
panel.

F Showing is completed by an End button at the button panel. BlueJ then defines a test method
which is able to repeat the presented activities. Then it adds a command into the context menu
of the relevant test class which evokes this test.

F The method is a part of a code defining a reaction of an object to a given message. Expressions
message sending and method calling are mutually equivalent.

F Creating of an object is carried out in two phases:

F first of all the virtual machine allocates a needed place in a memory,

F then a required object is created at this place and a reference is sent to the claimant.

F A method which takes care about constructing an object in the allocated memory and giving
over a reference to a constructed object is called a constructor.

Project:
The resulting project shape to which we proceeded at the end of the lesson is in the 104z_Tests class
project.

www.dbooks.org

https://www.dbooks.org/

5. The Messages Requiring a Value 33

5 The Messages Requiring a Value
5. The Messages Requiring a Value – 000000

5 The Messages Requiring a Value
What you will learn in this lesson
In this lesson you will learn messages that return a value. You will read the explanation what does it
mean data type, how primitive and object data types differ and you will become acquainted with all primi-
tive types. You will learn working with references to objects, how sending messages can be recorded, re-
spectively method calling, as well as why names of some messages/methods have a prefix get, respectively
set.

Project:
In this lesson we continue in using the 104z_Tests class project.

70. I’ve already enjoyed sending messages. Last time you promised to tell me something about messages that start
neither with new, nor void. I would say that it’s just the proper time.

You are true, let’s go on. Messages which we used to send to created instances until now required a
certain (visible) action (e.g. shifting or redrawing) from instances. However, in programs we often
don't need so that the instance would do something, but it should reveal something (mostly about
itself). In other words, we want so that it gave us information.

To be able to work effectively with the received information we need to know what it is like. You
are working quite differently with numbers, rectangles or with a text. Therefore, in instance and class
context menus the commands – by entering of which we send messages – start with a name of data
type which has the return value. The only one exception is commands requiring creation of an
instance that have the new keyword in front of the name of the return value type.

71. Which return value? We did not lend anything to an object; we only send a message to it.

Take it as an expression used by the programmers. You send a message to an object and the object ex-
ecutes your command. When you ask it for an action, it only announces fulfilling the task. In case you
ask it for information it provides you with this information (value) after finishing the action. Pro-
grammers say about this operation that the object returns the required value and the transmitted in-
formation itself is called the return value. Take it as you send a message and the required information
is returned to you.

72. Well, I’ll cope somehow with it. Go on with the explanation.

Until now we worked with two kinds of messages:

F Messages whose activation commands in the context menu started with the word new. These
messages could be sent only to a class. The class reacting to this message creates a new instance
and returns a reference to it. (As we have already said you never get an object but through a
reference you can send messages to it.)

34 Part 1: Interactive mode

F Messages whose activation commands in the context menu started with a word void. After
sending such messages the addressed object did what you have asked but did not return you
anything.

Now we add a third type of messages, i.e. messages in which we ask a value. Commands leading to
sending these messages begin in context menus by a name of return value type (return type).

Return Type
73. Please show it to me at an example.

Well, the virtual machine is reset so we can start since the beginning. In case you will have a look into
the context menu of the Triangle class (see figure 5.1), in the second part you will find the message as
follows:

int getStep()

Figure 5.1

We are sending the getStep() message

The word int at the beginning of the command is an abbreviation of a word integer and says that the
addressed object (in our case the Triangle class) returns an integer in reaction to this message. I can re-
veal you that it will be a number of picture elements (shortly pixels) by which the random instance of
the Triangle class shifts when we send a message to this instance requiring to shift without mentioning

www.dbooks.org

https://www.dbooks.org/

5. The Messages Requiring a Value 35

how much it should shift. (Until now we did not send any shifting messages but soon we shall see that
we can send also a message to an instance specifying how much it should shift.)

Obtaining the Return Value
74. And how I will learn what the object answered to me?

When you will send such a message, BlueJ takes over the return value from an object, opens a dialog
box and shows you what the addressed object answered to you (see figure 5.2).

Figure 5.2

The dialog box with a return value message

75. And now I should verify if it’s not talking rubbish, I mean if it returned me the proper value.

I have prepared a little animation which shows you all. Firstly it asks the Rectangle class about the
step’s default size, then requires an instance; and then it asks the instance for its coordinate, requests it
to shift, and again asks for its coordinate. Activate your animation and try to do all operations. Of
course, you can try also other moves.

Animation 5.1: Sending messages requiring to return the value – LOOTP_105a_Return_primitive_value
The animation will show how to send messages which require returning of some value from an addressed
object.

Primitive and Object Types
76. This was really simple. But I noticed the NamedColor getColor() command in the context menu of the rectangle

instance. I tried it but it did not return me any color – only an arrow appeared instead of a return value.

It’s little bit more complicated with colors because colors (contrary to numbers) are instances of object
data type NamedColor.

36 Part 1: Interactive mode

77. How “contrary to numbers”? When you were explaining the OOP principles, you told that everything what can
be named by a noun is an object in OOP. So why a number is not an object?

In pure OOP it is really as I told you. But the Java authors wanted so that the resulting program might
work as quickly as possible even on the very slow processors and therefore they divided all data types
into three groups:

F A degenerated type void represents a special one-element group; it serves only to programmer’s
proclamation that there is a method which does not return anything. It cannot be used in other
cases and therefore you cannot define a variable of this type.

F Next eight data types that have a direct support in instruction sets of contemporary micropro-
cessors were named primitive data types. (Values of these types will be sometimes labeled as
primitive values.) The virtual machine converts work with them directly to relevant instructions
of a given processor. Values of primitive types are often generally marked as primitives.

F All other data types (there is more than 20,000 types in a standard library) are included into
object data types. Working with them is quite different.

78. What does it mean a standard library?

A library means a set of classes which create certain complete set and which you can use in your pro-
gram. A standard library is a part of Java installation. The others have to be gained and included into
the program. But we will speak about it in details at the final part of the course.

79. You always operate with some data types. What does it mean the data type?

Data type (shortly only a type) is a name for three features specifying properties of values, which we
will name as data of a given type. The data type specifies:

F a set of permissible values,

F a way of saving these values in a memory (for now we will not be interested in it and
processing of this information will be left to a virtual machine),

F operations which can be carried out with values of a given type (including the message specifi-
cation that can be sent to a given object).

In other words: the data type tells you what you can expect from values of a given type and what you
can do with them. Thus the program’s working effectiveness increases and the number of faults which
you can do during the program decreases. However, I will speak about it several times in future.

Note:
If you read the previous items, you would see immediately, that void is not a real data type, but
only a marking which should be written down to a place where the identifier of a data type
belongs.

80. Which data types are primitive?

I would divide them into two groups. The following ones belong to those more used:
boolean Logic values true (yes), and false (no).

www.dbooks.org

https://www.dbooks.org/

5. The Messages Requiring a Value 37

char Characters. Besides numbers and letters of all alphabets, including the Chinese, Japanese
and Korean also other characters belong here, such as notes, cartographic characters etc.

int Integers ranging approximately ± 2 billion (±2.109).
long Long integers ranging approximately ±9.1018.
double Real numbers ranging approximately 10±308 stored with the precision approximately 15

valid ciphers and used mostly in scientific technological calculations (they are not used in
operations working with money due to rounding faults).

The remaining types are not used too often (we will not use them in our course at all) and are listed
only to make the picture complete:
byte Integers from -128 to 127.
short Integers ranging approximately ±32 000.
float Real numbers ranging approx. 10±38 stored with precision approximately 6 valid figures.

Note:
The British mathematician George Boole (1779–1848) showed that we can work with logic val-
ues similarly as with the arithmetic ones and founded bases of a discipline called Boolean algebra
or Boolean logic. In programming languages that introduce a type for logic values this type is of-
ten called at his honor boolean.

81. Well, I have further questions, but maybe they will be answered when I will start working with primitive date
types. Now I’d like to know how it is with those object types?

The type of object is defined by the class whose instance the object is. (You will learn further possibili-
ties with time, but until now let’s deal with a class only.) Therefore the type is marked by the name of
a given class. Thus we can say that the instances of Rectangle class are objects of Rectangle type.

As I have already said, we work with objects in a different way than with values of primitive types.
They all emerge in a designated area of memory called a heap and you can address them only through
references to them. I mentioned references in the section The Instances and References to Them on page
19. Once more I remind that whenever you want something from the object, i.e. whenever you want to
send a message to an object, you will send it through the object reference. On the contrary, whenever
you require an object, you will receive only a reference to it instead of the object itself.

82. You really told it. I only don’t know why it’s so complicated?

It may be strange to you but the main reason is the programmer’s work productivity and robustness
(“foolproofness”) as well as reliability of resulting programs. When the program is running there are
various objects appearing and disappearing and somebody has to allocate a memory to them and
clean up the “deceased” objects. This activity is provided by a special part of a virtual machine
marked as memory manager or (according to its main function) a garbage collector.

An experience proved that if the memory manager, whose functioning is of key significance, has to
work reliably, we have to keep it without any intervention. Therefore the programmers can turn to
objects only through a mediator which is its reference.

 Before I started working in Java, I was programming more than 15 years in C++. First few weeks of
programming in Java I permanently complained that this or that might be programmed better and
more effectively in C++. However, after few weeks I discovered that despite the fact I am always

38 Part 1: Interactive mode

complaining, I work twice quicker than when I would use C++. The main merit was due to the
memory manager – it overtook activities in which the programmers currently make faults. Thus Java
did not allow me to make a lot of mistakes which would be usual when working with C++ and which
would hamper the whole development. Since that time Java is my favorite.

References to Objects
83. I don’t know how I can increase the productivity by making something complicated.

But in fact it’s really not complicated. It is similar as with the television. Formerly you have to go to
the TV and press or turn the relevant button. Now the TV producers complicated the situation by add-
ing a remote control. But majority of people whom I know like this little complication and find it
useful.

Please, consider the reference to an object as the remote control of an object which is otherwise
non-attainable. This idea is useful for explanation of further features of references.

F As soon as you lose or damage the remote control (= the reference), you lose simultaneously any
possibility to affect further operation of managed object.

F You can manage one TV with several remote controls simultaneously. The TV will react inde-
pendently to all commands sent from any remote control. Similarly it is with objects. You can
have several references to one object and the object will react independently to any reference
which handed over your message.

84. Certain remote controllers can control several devices together. Can I send messages to several objects through
one reference?

Yes and no. However, you don’t have enough knowledge yet for fully understanding the answer. Ask
this question later when we will go over the type casting.

85. How I can lose or damage a reference?

You will lose it in case you ask for it and forget to save it. You destroy it in case you save something
else to the variables where it is saved (it cannot be done in an interactive mode but when you start
writing the code, you will do it many times). In both cases such abandoned object which is not used
any more will become a catch of the garbage collector which will most probably definitely destroy it
so that its place in memory could be allocated to a newly created object.

86. Why only most probably? Does the garbage collector have to release the space?

When it decides that releasing of that memory is complicated and that the obtained result doesn’t cor-
respond to the needed effort, it may abandon this attempt. It leaves the memory blocked by the object
despite nobody needs that object and it only fills its place.

87. I would say that we were speaking a lot about it and that now you should show me how I can work with objects.

It is simple. Ask the Tests class for a test fixture and then ask some of the created objects for its color.
BlueJ opens a dialog in which it announces that the addressed object returns a reference to the re-
quired object. The fact that the addressed object does not return you a value but only a reference is

www.dbooks.org

https://www.dbooks.org/

5. The Messages Requiring a Value 39

represented by an arrow at the text field position. BlueJ enables to add this reference to the object
bench. Then you can work with it as with any other object, i.e. to send messages to it and thus impact
its functioning or obtain information.

Figure 5.3

The dialog with the returned reference to an object

You can ask for including a reference into the object bench by pressing the button Get. BlueJ then asks
you how the included reference should be named (precisely how the variable to which the reference is
saved should be named) and puts it into the object bench. You can use this reference in the same way
as reference received during creating new instances.

88. Before I will name it, please, tell me what was the other button entitled Inspect for?

This you will use in case you would like to have a look into the object. But now I want to stay outside
for a moment.

Record of Method Calling
89. I’ll try to stand it. I see that always I am asked to think out a name. Should you explain me already, how such

name should be created?

Today I would not like to overload you with further information and that’s why I will postpone ex-
planation on rules for creating names (as I have already told you we call them identifiers) for next time.

Today I will tell you good-bye saying other items. Due to reasons which overlap the explanation
framework, the object cannot distinguish messages that differ only by a type of return value. There-
fore each object can offer the only one message with a given name and given set of parameters
offering additional information.

When entering the command for sending a message (the relevant method calling) the information
on expected type of return value is not mentioned – even without this info the message is unambigu-
ously determined. (BlueJ writes the message type in the name of the context menu command only due
to the fact that the beginners can easily orientate). Programmers are accustomed to it. Mostly they do
not quote this type of return value in the text, when they mention which method they called (which
message they sent) or which method is necessary to be called for.

40 Part 1: Interactive mode

Therefore, in the first example, the programmer would tell or write that he/she “called the
getStep() method of the Triangle class”, or he/she would connect both pieces of information (i.e. the
addressed object and the method’s name) and would tell that he called a method

Triangle.getStep()

In programs, the object’s name to which we are sending a message (i.e. the name of the class or of the
variable in which the reference to this object is located) is written in front of the identifier of the for-
warded message and separated by a dot. As far as the second example is mentioned I would say:
“I called the getColor() method of a rectangle1” or I would briefly put down:

rectangle1.getColor()

The empty brackets behind the name of the called method indicate that it is a method without param-
eters. If it would have any parameters, they would be quoted in these brackets. (We will speak about
methods with parameters in some of future lessons.)

As you can see at figures 5.2 on page 35 and 5.3 on page 39, this kind of recording is used also in
BlueJ in dialog boxes with return value. We will use it in further text as well.

The getXxx and setXxx Messages/Methods
90. Why the messages are named so strangely: getStep and getColor?

This is a general convention how to call messages that ask for values of some object properties. Names
of these messages always start with the word get, followed (without any space) by the name of the
detected property as in case of the message getColor(), about which we have spoken a while ago.

In case the detected value is of boolean type, the word get can be replaced (and mostly is replaced)
by the word is. The isVisible() message is an example and you can send it to your canvas.

On the contrary, messages that adjust the values of object properties start with a word set. The
message called setBackgroundColor which you can send to the canvas is an example.

The words get, set and is are used as prefixes independently which language you are using for
naming the given properties.

91. Such convention is strange. Could we use the native prefixes from our language instead of it?

This is not a good idea. This convention is worldwide spread and used by a lot of various tools that
offer a number of very useful functions. These tools rely just on the fact that the processed program
keeps the above mentioned convention.

Further on, the programmers have got it under their skin so deeply that they do not think over it.
They even use slang names getters and setters for methods defining answers to these messages. If you
would name your messages/methods for detecting and adjusting the values of properties in a different
way, you would catch them unawares (and most likely also make them angry).

92. You told me that they have slang names. Do they have any “non-slang” names?

Collectively they are named accessory methods, because you approach to the values of object proper-
ties with their help. The getXxx and isXxx methods are named accessor methods or accessors and the
setXxx methods as mutator methods or mutators.

www.dbooks.org

https://www.dbooks.org/

5. The Messages Requiring a Value 41

Review
Let’s review what you have learned in this lesson:

F Three kinds of messages can be distinguished in context menus of objects (including classes):

F Commands starting with a keyword new are sending messages requiring creating a new
instance. After processing such message the addressed class passes (returns) a reference
of a created instance to the claimant. These commands are only in context menus of
classes.

F Commands starting with a keyword void are sending messages requiring an action, and
when this action is carried out the addressed object does not return anything.

F Other commands start with a name of the return value type, i.e. the value (value means al-
so a reference to an object), due to which the message is sent (mostly) and which, after
processing, the addressed object gives back to the claimant – professionally: which it
returns.

F A library means a set of classes that create a compact set and that you can use in your program.

F The standard library is a part of Java installation.

F The term data type determines trio of features specified as follows:

F a set of permissible values,

F the way of saving these values in the memory,

F operations that can be carried out with values of this type.

F Java divides the types into three groups:

F Degenerated date type void.

F Eight basic date types that have a direct support in instruction set of majority of proces-
sors are indicated as primitive date types and operations with them are converted directly
to instructions of the relevant microprocessor.

F The remaining date types are named object types. We communicate with their values, i.e.
with separate objects only through references to them.

F Values of primitive types are often named by collective name primitives.

F Boolean, char, int, long, double and void belong among the frequently used primitive types.

F The object type is defined by a class whose object is an instance. The type is therefore named by
a name of a given class.

F BlueJ writes the return values of primitive types directly in a dialog box after completing the
required action.

F In case you send a message asking for an object, you always will receive only a reference to this
object. BlueJ enables you to name it and save it in the object bench.

F The described way of working with objects does not allow making the most usual mistakes and
contrary to older languages (e.g. C++) it increases the productivity of work roughly twice.

42 Part 1: Interactive mode

F We can compare the work with references of an object to managing the TV through the remote
control.

F In case we lose a reference we lose any possibility to impact further operating of the referred
object at the same time.

F When mentioning the message sending, respectively the method calling, we need not indicate
the return value type. We quote the addressed object (the class name or the variable name with
a reference to an instance), followed by a dot, name of the method and parentheses with poten-
tial parameters.

F For names of messages (and corresponding methods) by which we detect or adjust the values of
objects properties Java has the following convention:

F Names of messages asking for the property value begin with a prefix get, followed by a
name of a given property. In case the detected property is of boolean type, we may use
a prefix is.

F Names of messages adjusting the property value start with a prefix set, followed again by
the property name.

F These messages and methods for detecting or adjusting the values of object properties are called
accessors and mutators.

F The accessor and mutator methods are called getters and setters in slang.

Project:
No significant changes were made in the 104z_Tests class project.

www.dbooks.org

https://www.dbooks.org/

6. The Messages Requiring an Object 43

6 The Messages Requiring an Object
6. The Messages Requiring an Object – 000000

6 The Messages Requiring an Object
What you will learn in this lesson
In this lesson you the rules for creating the identifiers will be explained and you will learn working with
messages returning value of object types. You will see how the values of String type are assigned and at
the conclusion you will become acquainted with how the methods returning a value should be used in
tests.

Project:
In this lesson we continue in using the project 104z_Tests class.

The Rules for Creating the Identifiers
93. Last time you promised to tell me how the names are created.

You are true – and the promises should be fulfilled, shouldn’t they? First of all I would like to remind
that we use the term identifiers for names, because they identify particular entities in the program.
Rules for creating the identifiers in Java language are only four. The identifiers have to suit the rules as
follows:

F They may contain only letters (all letters including diacritical or Japanese marks), digits and $ (a
dollar) and _ (an underlining) characters, however it is recommended not to use the $ character.

F They cannot start with a digit.

F They are case sensitive, the uppercase and lowercase letters are different – hello, Hello and HELLO
are three different identifiers.

F They mustn’t be any of the language keywords, i.e. any of the following 50 words:
abstract continue for new switch
assert default if package synchronized
boolean do goto private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

44 Part 1: Interactive mode

94. What does it mean the keywords?

The keywords are words, which have defined its meaning in the given programming language. We
have already met some of them (keywords int, new, void …), and we will reveal the meaning of others
step by step in further lessons.

95. You told that identifiers may contain any letter. So can I have for example an identifier J?

Smilie is not a letter but a common symbol. You can use only the characters, which the Unicode char-
acter set classifies as a letter.

96. Can I try drafting of identifiers?

Of course, create instances of particular classes and try to assign various identifiers to the created vari-
ables into which the references to these instances will be saved. When you would try to assign an
identifier of already existing variable, BlueJ will warn you and will ask different assignment. However,
you can examine that identifiers varying only by size of letters (capital vs. small) are considered as
different ones.

The created variables can be immediately cancelled – it is sufficient to enter the command Remove
in their context menu. Of course, you can immediately assign the identifier of the removed variable to
the newly created one. After you finish playing with it, reset the virtual machine and let BlueJ create
the test fixture once again.

Figure 6.1

The object bench with an added reference of the rectangle color

www.dbooks.org

https://www.dbooks.org/

6. The Messages Requiring an Object 45

Getting the Reference to the Returned Object
97. Will I need my knowledge of creating the names or (when I would like to speak in a sophisticated way) identifi-

ers also in another cases besides for creating new instances?

Of course, for example when you will call a method which returns a reference to an object, you would
probably like to save this reference and you will have to think out an identifier of the variable into
which you will save it. Ask e.g. for the rectangle color and press the button Get in the subsequently
opened dialog. BlueJ will ask you for the name of the variable into which it should save the obtained
reference. Because you know that its color is red, put it into the reference name, and i.e. enter the
name red. BlueJ will create a variable with such name and will add it into the object bench (see figure
6.1).

98. The dialog box did not close after adding the reference into the bench. Why?

BlueJ expects that you might want to use the second service of this window, which is the possibility to
look into the given instance. But we will postpone it for later time. At present we could use the win-
dow for showing how to manage the object with the help of several references. Ask the window for
the reference once more and name it e.g. RectColor to remember, whose color it is.

Figure 6.2

The enlarged object bench

46 Part 1: Interactive mode

99. Nothing has happened.

Nothing? At the right edge of the object bench a scroll bar appeared announcing that the bench con-
tains another line of references. Because we will not need to see the whole class diagram for a while,
you can take the separating bar between the class diagram and the object bench and shift it up (see
figure 6.2). Then you will see that BlueJ added another reference in the next line.

The Instance of String Type
100. Yeah, it’s there! What shall we do with it?

Maybe you can send the message

String getName()

to the instance and ask for the name of its color. Now I only wanted you to realize that you can have
several references which may refer to the same instance. In case you would decide to send a message
to an instance, it doesn’t matter which reference you will use for it. The result will be always the same.

101. I asked the reference RectColor for the name of the referred color and BlueJ really opened a window in which I
learned that the color is named "red". I was only wondering why there is a button Get in the window, when the
window shows a value (see figure 6.3).

The message you have sent required an object of String type,
which is an object type, but has a special position among object
types. Its instances are text strings, i.e. sequence of characters,
which we consider to be one object. Because we work with text
strings very often, this type has certain privileges that make the
programmer’s work easy. Their exceptionality in BlueJ environ-
ment proves the fact that among other things you can see their
value (i.e. the text they represent) in dialog Method Result.

How to Write the Strings
102. Why is the word red in quotation marks when all texts were without

quotation marks until now?

This is connected to those privileges. The String type is the only one object type whose value (i.e. the
relevant text) can be written directly into the program. Then you need to differ whether you are
speaking about a text that is a value of certain text string, or when the entered text indicates the key-
word or certain identifier in a program. Quotation marks serve to determining the texts which are
values of String class. Therefore, whenever you will write the text string which is a value of the String
class, you have to put it in quotation marks. However, when printing the strings, the quotation marks
are not used. BlueJ requests them in input text fields only to emphasize that this is really the text
string, and to remind you how the text strings are entered in a program.

Figure 6.3

A dialog box with the name
of the rectangle color

www.dbooks.org

https://www.dbooks.org/

6. The Messages Requiring an Object 47

103. Can you show me using of text strings at an example?

We will use the text strings after you will learn sending messages with parameters, it means in the
next lesson. I will show it to you and you will try it.

Memory Management – Garbage Collector
104. I wanted to ask just one question. In the previous lesson you told me that in case I lose the reference, I cannot

get it back.

Exactly, the only exception is that you would save the reference beforehand. In case there is no
reference to the given object (neither yours nor of anybody else), you really cannot get it back.

105. But a while ago you showed me how I can get a reference to a given color. This should mean there is a way.

This is a different situation. In the presented example we used the fact that each instance of a rectangle
(and of course of any other geometric shape) remembers its color. You can ask for it anytime and it
will return you the remembered reference. But I was speaking about a situation when nothing is
referred to a given object, all references are cancelled and there is no possibility to ask for.

As soon as nothing is referred to this object, you cannot get a reference to it, but it is more than
likely that the object will be cancelled as well, i.e. removed from the memory.

You should know, that garbage collector is regularly looking through the heap, i.e. through the
memory where the objects are saved, and in case it discovers an object with no reference, the garbage
collector can cancel it and release the relevant memory for future usage.

106. You told me, that the garbage collector can remove it, but not that it will remove it.

I’ve answered the similar question in the previous lesson (question 86), but I can answer again in other
words.

The garbage collector needs a part of the processor’s capacity. Not to spend more processor’s time
than is necessary for the work, it doesn’t devote too much time to cancelling these objects in case it
would take more work than how much memory place would be obtained by removing them. In case
the garbage collector will not consider removing of such useless object from a heap effective, it will
leave it there.

However, if the garbage collector would remove such relict or not, has no impact on the fact that
you have zero chance to get a reference to it.

Using Methods Returning the Value in Tests
107. I wanted to define the re-coloring of a rectangle as a test and BlueJ protested.

You are true. It is little bit more complicated in tests, because BlueJ does not know if you would like to
verify that the called method returned the proper value. The window opened during defining the tests
has therefore a checkbox Assert that (see the mouse cursor at figure 6.4) accompanied by other fields.

48 Part 1: Interactive mode

Figure 6.4

The window for sending a message with return value while creating the test

For the time being we will not use this possibility, and so please clear the checkbox. In case you would
not cancel the check, BlueJ would warn you by a dialog box 6.5. Don’t press the button Continue in any
case, because you would agree with recording the fault and the program could not be compiled. Ask
BlueJ to get back by pressing the button Go back and then clear the checkbox instead of entering the
expected return value. Entering of return value tests will be discussed later on.

Figure 6.5

A verifying dialog, if we really want to create a program with a fault

Review
Now I would like to review what you have learned in this lesson. Start up the accompanying anima-
tion and then get through items of the following review.

Animation 6.1: Sending of messages requiring the return of a reference to an object –
LOOTP_106a_Return_object
The animation repeats what was explained during the lesson, i.e. it obtains a reference to an object in sev-
eral ways and draws an attention to a special window form in test definition.

Let’s review what you have learned in this lesson:

F We use the term identifiers for the names of entities featuring in programs (classes, objects,
messages …).

www.dbooks.org

https://www.dbooks.org/

6. The Messages Requiring an Object 49

F The identifiers have to fulfill three rules:

F They may contain only letters, digits and symbols $ and _.

F They cannot start with a digit.

F They cannot concur with any of keywords.

F Java identifiers are case sensitive, the uppercase and lowercase letters are interpreted as
different.

F BlueJ enables to change the relative size of class diagram and of object bench by shifting the
separating edge.

F The program has no chance to get back the reference to an object to which anything is referred.

F An object, to which nothing is referred, becomes a candidate for removing.

F A memory in which the objects live (a heap) is regularly controlled by the garbage collector. If it
discovers an object to which nothing is referred, it can remove such object and release the
memory for future usage.

F String type is an object type whose instances represent text strings and which has certain
privileges among other object types.

F Texts that are values of String class instance should be entered in quotation marks.

F In dialogs with return values BlueJ does not depict only an arrow for text strings as for objects of
other types, but writes there directly the relevant text string closed in quotation marks.

F In case you will send a message requiring a return value in the test definition, BlueJ opens a dia-
log box which enables to enter the return value test. Provisionally, please, clear the checkbox
Assert that.

F In case you forget clearing the checkbox, BlueJ will verify in the following dialog if you really
want to enter the program with an error. If not, you can return to a previous dialog box by
pressing the button Go back and clear the checking.

Project:
No significant changes were made in the 104z_Tests class project.

50 Part 1: Interactive mode

7 The Messages with Parameters
7. The Messages with Parameters – 000000

7 The Messages with Parameters
What you will learn in this lesson
In this lesson firstly the meaning of parameters will be explained and you will learn how to construct ob-
jects applying the parameters. Once again using the reference will be presented and finally how to use the
test classes for creating a picture and its animations.

Project:
In this lesson we continue in using the 104z_Test_class project.

The Meaning of Parameters
108. You have spoken about parameters when we started sending messages which require creating an instance.

What is so strange with them that you decided to devote the whole lesson to them?

Only by establishing the parameters of sent messages the programming starts to be really interesting.
Parameters enable to specify in details what you exactly expect from an object to which you are send-
ing the given message. At non-parametric messages we often depended on default setting and, of
course, they did not have to meet our requirements.

Working with parameters is not difficult. When sending messages requiring parameters, BlueJ
opens a dialog box in which it prepares an input field labeled with its name and type for each parame-
ter (very often you can estimate its purpose from its name).

Moreover, it copies the documentation comments into the dialog, which means that when the au-
thor of the given class is a decent programmer, you would have complete information at your disposal
and you can assign the data properly.

The Object Construction Using Parameters
109. I’d welcome an example which would clarify this item once again.

Well, we will start again by resetting the virtual machine. Then we will try to create our “popular” tri-
ple-object composed of a rectangle, an ellipse and a triangle, but this time we will locate them to a dif-
ferent place and we will change their size. Let’s start again with a rectangle – you should send the
following message for creating a rectangle with an entered position:

 new Rectangle(int x, int y, int width, int height)

As you see, the message has four parameters. Presentation of parameters in parentheses behind the
message is called the declaration. In each declaration firstly the type of the declared parameter is
written followed by a name of a given parameter. Individual declarations are separated by commas.

www.dbooks.org

https://www.dbooks.org/

7. The Messages with Parameters 51

According to the declared type you can recognize which kind of data you should enter, and on the
other hand, according to it the computer recognizes what can be expected from you and how to pre-
pare for it. Thus, the effectiveness of the program is increased, but mainly, the number of faults, you
can make when creating the program, is decreased. We will discuss this question several times in
future.

110. How should I enter the values of parameters?

I have already told you. After entering the command for sending the message with parameters BlueJ
opens a dialog box in which it asks for parameter values. In addition when the message returns a ref-
erence to an object, it asks you also for the name of the variable into which the returned reference
should be saved.

Figure 7.1

The dialog box for entering the parameter values

The Dialog Structure for Sending Messages with Parameters

111. At the beginning you started enumerating of what I can find in the dialog box. Before going on, please, explain,
what this window offers.

That’s a good idea. Please notice at figure 7.1 that this window is divided by a horizontal line into two
parts. The upper one contains a copied documentation of the called method. For the time being, please
don’t pay attention to neither slashes nor “@” characters prefixing the words param; when you will
learn writing comments, I will explain you their meaning. For now, please remember that a good pro-
grammer puts the so called documentation comment before the method definition, in which he
explains what the given method is doing, how it is used, what the meaning of particular parameters is

52 Part 1: Interactive mode

and what it returns2. BlueJ copies this comment and locates it into the upper half of a dialog box which
is opened when calling the method with parameters.

Under the comment you can find a method header, from which you can recognize its return type,
its name (constructors have no name applicable in the source code, therefore the method is presented
as nameless) and a list of its parameter declarations in parentheses; at each of them you can find its
type followed by its name. Individual parameters are separated by commas.

The method header will be always presented, so that you can have at least basic information even
when you will work with a program written by a dauber who thinks that writing comments is
beneath his dignity – the intellectual surely handles even a chaos!

We will meet method headers elsewhere – BlueJ uses them in context menus as “names” of com-
mands for sending a corresponding message. BlueJ adds a keyword new before the method header only
at commands requiring the class for creating its instance.

Let’s have a look below the dividing line.
In case it would be a method returning the object type value, there will be an input field under the

separating line, in which BlueJ will offer you the name of a variable, into which the reference to a
returned object is saved. You can accept it or enter your own. In case of a method that doesn’t return
anything, this field is missing.

Then there is a section containing fields representing the statement calling the method:

F If it is a requirement for creating an instance, as in our diagram, you can find the new keyword
followed by the name of a class whose instance we are creating.

F If it is an ordinary method, you will find a name of an addressed class (see figure 7.3 on page
55) or the name of a variable with a reference to an addressed object (see figure 6.3 on page 46)
followed by a dot and the name of the called method.

The method name is followed by parentheses with input fields for individual parameters, each field at
separate line. To outline the transcript as close as possible to the code realizing the corresponding
statement in a program, BlueJ writes commas behind individual fields (future parameters). However,
contrary to the correct program statement, BlueJ repeats the type and the name of the given parameter
behind each input field in the dialog. This will not be in the program, but it serves to better orientation
in parameters and to knowing which field belongs to which parameter.

112. Oh, it was dozens of things! I’m afraid I will not remember it. Never mind, when I would like to brush it up, I
will get back and read it once more. You told that the method header announces the return type and the meth-
od’s name. Those are two things, but in the dialog box at figure 7.1 there is only Rectangle. So how is it?

The dialog box at figure 7.1 is a reaction to the constructor calling (we were speaking about constructors
in the section Methods and Constructors on page 30). The constructor can be considered as a nameless
method, which means there is only a return value type in the header, i.e. the type of a created object.

2 I remind that the term a method means a code which defines how the object will react to the corresponding

obtained message.

www.dbooks.org

https://www.dbooks.org/

7. The Messages with Parameters 53

The Example Continued

113. Well, I will presume that I already know the dialog and therefore I would switch on the example. So I require
creating a rectangle – will it be a special one?

We will make twice bigger rectangle than the last one and a little bit shifted to the middle of the can-
vas. For now, we will keep the offered reference name and enter the coordinates [50; 50], the width
being 200 and the height being 100.

114. Good. I entered the values you have ordered and I added also two remaining objects (an ellipse and a triangle)
for which I entered the same parameter values.

Well, you could make use of the fact that each input field has its scroll list with lastly entered values,
but it doesn’t matter, you can try it next time.

And now we will replace the original test fixture by the freshly created trio. Ask again the Tests
class to create a test fixture; and after it will warn you that the tool has been already created and will
ask you if it should be replaced (see figure 7.2), let it replace.

Figure 7.2

The dialog asking confirmation of requirement for replacing the fixture

And now try to start both prepared tests. In case you proceeded exactly as I told you, they both should
operate.

Once More the Object vs. the Reference
115. You are true, it really works! How it is possible that it operates despite we have quite different objects in the

fixture?

As I have already told you, programs in Java do not work with objects but with references to objects.
In case the variable with the reference will have the same name and will refer to an object of the same
type (i.e. to an instance of the same class), the program will not notice any change and will turn to the
reference regardless to which object it refers.

References now refer to new objects, but variable names are the same. Therefore the test methods
have no chance to notice any change and they will work with new fixture without any opposing. Only
we know that by way of the same variables they now turn to different objects, because their references
refer to other objects.

I will try to outline it at an example from life. Imagine that you are a head of a department whose
staff-members are working all over the world and you communicate with them only by e-mails. The

54 Part 1: Interactive mode

staff-members are objects to which you are sending messages and their e-mail addresses are names of
references by way of which you send them your messages.

When a staff-member asks his colleague to deputize for him for a certain time and the colleague
starts to repeat instead of him, i.e. when your reference starts to refer to someone else, who will react
to your messages instead of the original object, you cannot recognize it, until you will be told. The
same situation is in the program.

The Parameters of String Type
116. I see. When we came to these objects – you have said that we work with objects in a different way than with

primitive type values. Is this valid also for parameters?

Of course, as we have already mentioned, you do not work with the objects themselves, but only with
their references, by way of which you communicate with these objects. Everything is then a little bit
more complicated. Therefore I would like to postpone the work with object parameters for the next
lesson.

Now I would limit myself only to text strings, to be precise to instances of String class. As we said
in the previous lesson, instances of the String class have certain privileges in Java, which enable to
work with them in certain situations similarly as with primitive type values. We showed that BlueJ
doesn’t substitute their values by an arrow symbolizing the reference in dialog boxes, but similarly as
at primitives it writes directly their value – the relevant text.

Speedily we remarked that the second privilege of String class instances is that you can assign the
values of text strings directly – you can only put the assigned text into quotation marks. Strings are the
only objects, for which Java defines the possibility of direct assigning. We can use it just now.

We are starting with improving our fixture. I don’t like the way of testing when I see directly the
results and I cannot compare them with the initial state. We will change it now and we will learn how
to work with text strings.

We will use the IO class service (I remind that the IO name arose from an abbreviation of In-
put/Output), which is able to open the dialog with a message for the user on request and to stop the
program running until the user confirms reading the message.

Please, reset the virtual machine, request the Tests class for our favorite texture and then send the
message

void inform(Object text)

to the IO class. BlueJ opens the dialog with the request for an object (more precisely for a reference to
an object), which is a parameter of this message (see figure 7.3). The parameter is the String class in-
stance, which fortunately enables to assign values of its instances directly. However, as we said in the
section How to Write the Strings on page 46, we write down the text representing the value of the String
class instance in quotation marks. Enter e. g. the following text (don’t forget the quotation marks):

"Fixture prepared"

www.dbooks.org

https://www.dbooks.org/

7. The Messages with Parameters 55

Figure 7.3

Sending the IO.inform("Fixture prepared") message to the IO class

The class reacts by opening the dialog at figure 7.4 in which the entered text is written down. Press the
OK button and the demonstration how to create the test fixture is finished.

Figure 7.4

The announcement about creating the fixture

Now request BlueJ to convert the executed actions into method preparing the test fixture for the Tests
class (the fixture itself did not change, we only replenish the accompanying action) and confirm that
the original test fixture should be replaced (more precisely the program that creates the texture should
be replaced).

Then try loading of the test fixture and verify that opening of the required dialog box as well as
announcement on fixture readiness is really a part of it. Finally try some of our tests to see how open-
ing of the dialog and connected state freezing makes the action, carried out with objects in the fixture,
more visible.

56 Part 1: Interactive mode

To make the possible future repeating easy, I prepared another little accompanying animation that
demonstrates the above described actions. In case of problems, please start it and do everything
precisely according to the animation.

Animation 7.1: Sending messages with parameters – LOOTP_107a_Messages_with_parameters
Animation repeats what was explained during the lesson, i.e. it shows sending messages with parameters
and the possibility of fixture modification.

The Animation
117. I would return to our test. When I tried it all three operations executed at once. Could it be arranged so that

they appear gradually?

Of course, the actions were carried out step by step, only the computer is so quick that it seemed as if
they would be done at once. In case you would like to see the course of the test, we should do it simi-
larly as in projecting the movies: to stop the accomplishing for a while after each change. And it’s no
problem. You can send the following message to the IO class:

void pause(int milliseconds)

The class stops the program for the entered number of milliseconds. Define a new test, name it e.g.
testAnimatedMovements and define it so that it would wait a quarter of a second (i.e. 250 milliseconds)
after each shift.

Exercise
118. We are always doing exercise with your triplet. Couldn’t we start drawing anything more interesting?

Until we did not finish sending messages with parameters, it was not possible. But now you know
enough to create more interesting picture as a test fixture and examine all what we have explained
until now.

I will offer you three themes for test class which you could create. You can see their realization at
figure 7.5. Create the test fixture which will draw the initial picture (the upper one) and open the win-
dow with the message on readiness of the object. Then define the test which animates this picture in
the way you can see at the lower figure. The precise assignments are as follows:

F Define the House test class. Its test fixture creates a little house with a chimney and opens a dia-
log with the House prepared message. Name the variables into which you will give individual
parts of the little house as building, chimney and roof.

Then define the test method testSmoke in this class which will supplement the smoke. Call
the individual smoke objects (ellipses) as s1, s2 and s3.

F Define the Face class. Its test fixture draws a rectangle face and opens a dialog with the Face
prepared message. Name the variables, into which you will put individual parts as head, leftEye,
rightEye, nose and mouth.

Define the testSmile test method in this class, which evokes a smile by enlarging the height
of the mouth ellipse and covering its upper half by a rectangle. Name the variable into which
you will give the reference covering the rectangle lip.

www.dbooks.org

https://www.dbooks.org/

7. The Messages with Parameters 57

F Define the Robot test class. Its test fixture will draw a silhouette of a simple robot and will open a
dialog with the Robot prepared message. Name the variables into which you will call its separate
parts as head, body, legs, leftHand and rightHand.

Define the testSweep test method in this class which will sweep with the robot’s hand. You
will not need any other object for it.

I will not dictate you the size of separate objects. Try to deduce it from information that the canvas
measures 300×300 pixels. In case you will not strike, nothing will happen.

Figure 7.5

The possible form of created objects

In case you would need a more expressive hint, you can have a look at the animated solutions. The
sample solution can be found at the final project of this lesson. Try to propose your own pictures and
their animations.

Animation 7.2: Exercise A Little House – LOOTP_107_e1_House
The animation presents creating the House class, a test fixture which draws a little house at the canvas
and the testing method which paints smoke above the chimney.

Animation 7.3: Exercise A Face – LOOTP_107_e2_Face
The animation presents creating the Face class, a test fixture which draws a square shape face at the can-
vas and the testing method which depicts a smile.

Animation 7.4: Exercise A Robot – LOOTP_107_e3_Robot
The animation presents creating the Robot class, a test fixture which draws a robot at the canvas and the
testing method which raises his right (from the observer’s view) hand.

58 Part 1: Interactive mode

Review
Let’s review what you have learned in this lesson:

F Parameters enable to specify more precisely what we request from the object by sending the rel-
evant message – e.g. when creating pictures we can enter a required position as well as a size of
the created object.

F In the interactive mode values of parameters are assigned in a dialog, which BlueJ opens after
entering a command for sending a message with parameters.

F BlueJ divides the dialog for entering the parameters with a horizontal line into two parts:

F In the upper part there is the method’s documentation comment copied together with its
header.

F In the lower part there is the calling of the given method accompanied by repeated in-
formation on types and names of individual parameters.

F In the header there is the type of a return value, the method’s name and in parentheses there is
a list of parameters’ declarations separated by commas, where each declaration contains the
parameter’s type and name.

F The constructor can be evaluated as a nameless method and therefore we can find only a type of
a return value (a class, whose instance is being constructed) in its header and the name is
missing.

F In case we request the test class to save another test fixture (this test class has already defined its
test fixture), BlueJ will ask us if we really want to replace it, and in case of confirmation it
replaces the original program by a new one.

F We reminded again that we never work directly with objects in Java, but always only with
references to objects.

F If we change the reference contents, the programs working with these references will send their
messages to the newly referred objects.

F Objects of String type present text strings. If we want to assign a value of a parameter which is a
text string we assign the relevant text closed in quotation marks.

Project:
The resulting project form to which we came at the end of the lesson after making all exercises is in the
107z_Parameters project.

www.dbooks.org

https://www.dbooks.org/

8. The Object Type Parameters 59

8 The Object Type Parameters
8. The Object Type Parameters – 000000

8 The Object Type Parameters
What you will learn in this lesson
In this lesson you should remind firstly the significance of quotation marks for assigning text strings,
then you will become acquainted with an Object class and you will see how it is possible to work with ob-
ject type parameters. Further you will learn how you can pass the received return value of the sent mes-
sage as a value of a newly sent message parameter.

Project:
In this lesson we continue in using the 107z_Parameters project.

The Significance of Quotation Marks when Entering the Strings
119. Last time we entered a text that should be written in a dialog box. What would happen if I would forget to enter

the quotation marks?

BlueJ would try to interpret the assigned text as a program. You can try it immediately. Ask again the
IO class for opening an information box and enter the name of the variable with a reference to an
ellipse, i.e. the name:

ellipse1

into the input field. Confirm your input and the IO class will open a dialog with a text characterizing
the given ellipse, i.e. with the following text:

Ellipse_1[x=50, y=50, width=200, height=100, color=blue)

Now enter again the command for sending this message, but this time close the entered text on both
ends with quotation marks. Then the entered text will be

"ellipse1"

As you surely will estimate, the subsequently opened window will show only the following text:

ellipse1

And now let’s try a trick: enter gradually the names of the variable with an ellipse and a triangle
separated by a space into the input field, i.e. write

ellipse1 triangle1

BlueJ will read the input and will try to interpret it. It will not succeed (the couple of identifiers written
in the program as above mean nothing), and therefore it will announce an error – you will find the
following record under the input field:

Error: ';' expected

60 Part 1: Interactive mode

Because the assignment is incorrect, BlueJ will not accept it, but will leave it in the input field for a
revision. Please, put the whole text into quotation marks. After that the input field will be as follows:

"ellipse1 triangle1"

In case you will confirm this innovated assignment, the IO class will open the dialog box and will write
down the expected text:

ellipse1 triangle1

And finally an advice: even the fields expecting the object type values do remember the last accepted
inputs. If you would like to enter some of the latest values once more, you can find it in the list – see
figure 8.1.

Figure 8.1

The list of lastly entered (correct) values

The Class Object
120. All the time you are presenting, how various text strings are given over to the inform(Object) method, but as

the command shows in the context menu as well as the dialog box at figure 8.1, this method has a parameter of
the Object type, not of the String type. However, you told me that in the parameter, there has to be the value
of such type, which the given method takes into account, otherwise it cannot be processed. But in this case we
transgressed against this principle and despite of it everything operated. Why?

As I told you at the beginning, the OOP supposes that everything is an object. At the same time I told
you that the objects with common features are put into classes. All objects have a common property
that they are objects. So Java defines an Object class for them. All objects which you can meet in the
program will be instances of the same Object class. Therefore, if the method declares that it expects an
Object type parameter, it means that you can pass a reference to any object in this parameter.

So that the Object class would include really all objects, its definition has to be very general. There-
fore special classes are defined for objects with special features – e.g. classes in our project. These spe-
cialized classes are marked as child classes of the Object class (you can meet also the terms subclasses
or derived classes).

The fact that an object is an instance of some child class does not change the fact that it’s at the
same time an object. The child class only describes special features of its instances; features that a
general object does not need – e.g. we can define their location or dimension. In case the parameter is

www.dbooks.org

https://www.dbooks.org/

8. The Object Type Parameters 61

of the Object type, you can pass any instance of object type as its parameter, even any value of a primi-
tive type, because the compiler will wrap it into an object if need be.

The Object class defines nine methods and thus it arranges that all objects understand to corre-
sponding nine messages. These methods can be used by instances of the child classes; we say that the
child classes inherit them from the Object class. Therefore, besides methods defined by its mother
class, each instance has also methods inherited from the Object class. BlueJ presents these methods in
the submenu Inherited from Object. Majority of these methods are determined for advanced program-
ming techniques. We shall use only two of them in this book: the toString() method and the
equals(Object) method.

Inheriting of classes will be discussed in details in the next course (= in the following volume of this
book). Now I can only tell you that in case the child class does not like an inherited definition of cer-
tain method, it can define its own one. We say that the newly defined method overrides the inherited
one. BlueJ then indicates at commands corresponding to this “better defined” method [overridden in
Xxx] in the menu of methods inherited from the Object class, where Xxx marks the name of a child class
which defined its own version of a given method (see figure 8.2). As soon as some class overrides the
parent (i.e. inherited) version of a method, its instances will use this “improved” method whenever,
when a relevant message will be sent to them.

As I have already told you we will deal with class inheritance in the next volume. I am speaking
about it just to explain you what BlueJ shows in its context menus.

Figure 8.2

The list of inherited methods and their possible overrides

62 Part 1: Interactive mode

The Object Type Parameters
121. We came from texts to general objects. Last time you told me that we will leave it for the next lesson. So what

you can tell me about them?

In case you need to assign a value of primitive type to a message parameter, you simply take it and
assign it. In case you use the interactive BlueJ mode, in which we are working, you simply write down
the given value into the input text field. You can do it also with a text string – BlueJ itself will convert it
to a relevant object and will pass the reference to this object in the message parameter.

It is more complicated with values of other object types. At first you have to gain the reference to
be passed – mostly by sending a message to an object and the requested reference comes as a return
value of this message. Let’s have a look how to do it.

Reset the virtual machine and ask the Tests class for our favorite fixture. Then ask the rectangle for
its color, save the received reference into an object bench in the variable RectColor. We have already
done it, so you can go on easily.

Now, in the triangle1 context menu enter the command

 void setColor(NamedColor color)

Then BlueJ opens a dialog of this message and asks you to enter a reference to a color that you want to
pass to the triangle.

You can enter the reference in various ways. The most simple is to enter the name of the variable in
which the reference is saved. If you have it in the object bench, you can only click on it and BlueJ will
write down its name instead of you.

Try it. Activate the input field (click into it) and then click on the variable RectColor in the object
bench. BlueJ will write its name into the input field. Now confirm the input and the triangle1 will gain
the entered color, i.e. it obtains the rectangle’s red color.

122. It really changed its color! But what should I do when I would like to use a color that no created object has?

You can require it directly in the NamedColor class. Look at its context menu. In the message list that can
be sent to the class you can find also the following message

NamedColor getNamedColor(String colorName)

You enter a name of the color you want to use (it’s a string, so don’t forget the quotation marks), and
the class will return you a reference to the required color. Save it in a variable. Then send the message
adjusting the new shape color to the shape, you want to recolor, enter the name of the just obtained
variable into the input field (now it is a name, so without the quotation marks), and confirm the dialog
and the shape will recolor.

123. But how I recognize which colors the class knows?

You will ask – send the following message

void showDefinedNames()

to the class NamedColor. The class then opens a dialog where you can find names of the colors defined
until now.

www.dbooks.org

https://www.dbooks.org/

8. The Object Type Parameters 63

Figure 8.3

Known names of colors

Start up the accompanying animation and look at it step by step. Then try something similar.

Animation 8.1: Messages with object type parameters – LOOTP_108a_Object_parameters
This animation presents the operations demonstrated until now, i.e. it shows how to send messages with
parameters of object types.

Direct Passing of the Message Return Value
124. All’s operating as you’ve described, but I’ve an impression that it’s possible to do it more simply. Can I request

the instance directly?

Yes, there is one possibility. Until now we proceeded in the way that firstly we sent a message to an
object, the addressed object returned us a reference to a requested object which we saved into the var-
iable in the object bench. Then we sent a message to which we passed the name of this variable in the
parameter.

We can join these two steps into one. In case we know that the returned reference is needed only
for passing it as a parameter and we will not need it any more, we can skip over saving it into the ob-
ject bench. BlueJ enables to write down the calling of a relevant method (I remind: the method is a
code defining the reaction to a message) directly to the text field. Then the returned reference is not
saved and is passed as a parameter’s value.

125. I see! So in case I would like to set to our triangle the same color as of the lower rectangle…

Then you would enter sending the message setColor(NamedColor) in the local triangle offer and in the
subsequently opened dialog you would enter the following text in the input field for the colors

rectangl1.getColor ()

Then BlueJ sends a message getColor() to the object referred by the variable rectangl1 and passes over
the received reference as a parameter of the setColor(NamedColor) message. Next it sends this message
to the triangle. As you can see from figure 8.4, the result really corresponds with sending the message

triangle1.setColor(rectangl1.getColor ())

However, you can ask for the color not only the created instances, but you can request directly the
NamedColor class, which offers you several messages, called getNamedColor for this purpose.

64 Part 1: Interactive mode

Figure 8.4

Entering of parameter’s value as a return value of a called method

126. Well, if I would like to set e.g. yellow color, I should write into the input field NamedColor.getNamedColor
(NamedColor)?

In the section How to Write the Strings on page 46 you can find an explanation that it is necessary to dif-
fer when you are speaking about a text which is a value of some text string and when the entered text
represents a keyword or an identifier of a program. Texts which are values of String class instances
have to be closed between quotation marks. When you enter yellow without quotation marks, BlueJ
starts to look for the variable called yellow. But you wanted to enter the name of a color directly, which
means you have to enter into an input field the following text

NamedColor.getNamedColor("yellow")

127. When I can write message sending (or method invocation) into the input field, maybe I could enter anything
what should be done firstly.

You are true. You can enter an expression into the input field. The result of this expression is a value
and its type corresponds to the relevant parameter’s type. BlueJ evaluates the expression and in case it
will correspond to the language rules, it will be executed and the result will be passed as a parameter’s
value.

www.dbooks.org

https://www.dbooks.org/

8. The Object Type Parameters 65

Briefer Record of Messages
128. Now I will digress a bit. You’ve told that for setting the color I should send a message setColor(NamedColor)

to a triangle. This was a typo, wasn’t it? In context menus this message is written as void
setColor(NamedColor color) and you mentioned it few paragraphs ago.

No, it was not a typo. Remind how I explained in section Record of Method Calling on page 39 that pro-
grammers do not quote the return value type in references on used methods. The same laziness causes
that they do not quote names of parameters. The compiler recognizes which message do you send
(and which method it should call) according to its name and number and types of passed parameters.
Neither the parameter’s names nor the method’s return value play a role in it.

Therefore, the programmers in their references on methods quote only data important for the com-
piler, i.e. the method’s name and its types of parameters. They skip both the return type as well as the
names of particular parameters. As I have already told, BlueJ quotes this additional information so that
the beginners, for whom it is determined, could easily orientate. And I mean, when BlueJ spoils you, I
could start with briefer way of identifying the methods so that you would become familiar with them.

This “briefer” record may have two possible forms:

F If I would only refer to a message (method) without having on mind a real value of the passed
parameter, I will quote only parameters’ type at their places, e.g. setColor(NamedColor).

F If I would know parameters’ values of a given message, I will write down the message in the
same form as BlueJ writes in the dialog box (and how you will write in the program) – e.g. that
you have to send a message setPosition(50,100) to the ellipse or directly that you should send
the message ellipse1.setPosition(50,100).

Exercise
129. Well, if you are so intensively thinking of my good, please, give me some examples where I could verify how I

understand to all what we debated today.

I would suggest improving the classes you created last time. Please, supplement the test classes from
exercise in the previous lesson by tests which use parameters of object types.

F Fulfill the House class by the test testColor, which will color the roof to red and the building to
ochre. You will get the necessary colors by sending the following message Yellow
getNamedColor(String colorName).

F Fulfill the Face class by the test testBlink, which blinks with the left eye (from the user’s view),
i.e. firstly change the eye’s color to the color of the face (the eye disappears) and then returns to
the original color. You will receive the necessary colors by sending a message NamedColor
getColor() to required objects, i.e. to the face and to the blinking eye.

F Fulfill the Robot class by the test testColor, which will color the robot’s body to cyan and his
hands to steely.

66 Part 1: Interactive mode

Figure 8.5

The possible result of added tests

In case you would need a more significant prompter, you can see the animated solutions. Sample solu-
tions can be found again in the lesson’s final project.

Animation 8.2: The exercise A House – LOOTP_108_e1_House
This animation will show you a modification of Home class from the previous exercise. It adds the
testColor test which changes the roof to red and the little house to ochre.

Animation 8.3: The exercise A Face – LOOTP_108_e2_Face
This animation will show you a modification of Face class from the previous exercise. It supplements the
testBlink test which blinks with the left eye (from the user’s view), i.e. changes the eye’s color firstly to
the face color (the eye disappears) and then back to the original color.

Animation 8.4: The exercise A Robot – LOOTP_108_e3_Robot
This animation will show you a modification of Robot class from the previous exercise. It adds the
testColor test which colors the robot’s body to azure and his arms to steely.

Review
Let’s review what you have learned in this lesson:

F When declaring the message we firstly write down the return value type followed by a message
name. When sending the message we do not write the return value type, but again we have to
put down to whom the message is sent.

F In message parameters declaration you should quote firstly the parameter’s type, then its name.
When sending the message you do not write the parameters types, but only their values.

www.dbooks.org

https://www.dbooks.org/

8. The Object Type Parameters 67

F The values of object parameters can be entered by writing the variable with a reference to a rel-
evant object into the input field.

F If we click on the reference in the object bench, BlueJ copies its name into the active text field.

F BlueJ remembers several previously entered values of a given type. Therefore if you want to use
once again some of these values, you can open the associated list with the remembered values
and select the value in the list.

F In BlueJ you can enter a method calling or generally any expression returning the needed value
into the input field. BlueJ verifies it and in case of valid Java expression, it will be evaluated and
the result will be passed as a value of the parameter in whose field the given expression is rec-
orded.

F The compiler distinguishes forwarded messages (called methods) according to their names and
number and type of their parameters. It ignores the return value types as well as name of
parameters

F When mentioning methods, the programmers often mention only those characteristics of meth-
ods, which are controlled by a compiler. Therefore they do not mind neither the return value
type of the given method, nor names of its parameters. BlueJ quotes them in context menus only
for better orientation of beginners.

Project:
The final form of the project to which we came at the end of the lesson after completing all exercises is in a
project 108z_Object_parameters.

68 Part 1: Interactive mode

9 The Expedition into the Interior of Instances
9. The Expedition into the Interior of Instances – 000000

9 The Expedition into the Interior of Instances
What you will learn in this lesson
In this lesson we will carry out an expedition into the interior of instances. You will learn what does it
mean fields and what is the difference between instance fields and class fields. You will see how to send
messages requiring a field value and how it is possible to extend the previously created test fixture.
Finally you will recognize how it is possible to monitor the field value during program’s functioning.

Project:
In this lesson we continue in using the project 108z_Object_parameters.

Fields of Instances and of Classes
130. How the instance recognizes where it should paint them, where it should shift or which color should have its

shape?

So that the object could correctly react to our messages, it has to keep information describing the state
of an object. The variables, where this information is saved, are called fields.

Note:
Some authors use the term variable instead of field. The classic OOP uses the term attribute for
object data. Certain textbooks prefer it (me too), but I wanted to accommodate the Java habits
and terminology of Java Language Specification and therefore I use the term field.

Each class defines which fields its instances will have (all instances of the same class have always the
same set of fields) and which fields will belong to the class itself. Each instance has its own set of in-
stance fields and controls it. Despite the fact that a set of instance fields is the same for all instances of
the same class, values saved in these fields can differ in individual instances, because state of these
instances may differ.

Opposite to it the class fields are common to a given class and to all their instances. In other
words, all instances of a given class share fields of its class. As soon as any of them (class or any of its
instances) will change the value in any class field, since this moment all instances will work with this
new value.

You can imagine it as if all members of your family would share one bank account (class field), but
each of them would have its own billfold (instance field) with current cash. As soon as someone
changes the account state, it will touch immediately each of them. However, the state of their cash in a
wallet is a private matter of each of them and its change will not influence directly wallets of other
family members (unless the wallets would be refilled from the common account.

www.dbooks.org

https://www.dbooks.org/

9. The Expedition into the Interior of Instances 69

Terminological note:
Class fields are often called static fields. It is justified by language syntax and is a historical in-
heritance from the language C++. When we will come up to their declarations in a program, it
will be more clear.

Working with the Fields
131. Maybe I understand the notion of fields. But now, please, explain me what I can do with them.

BlueJ offers you a possibility to look into the interior of each object and to watch the values of its fields.
Furthermore, you can also get a reference of the public fields of object type, which is saved in the
object bench.

132. But how then I recognize that the given field is a public one?

Don’t be afraid, it will be written (together with its name and type) in a dialog which will open after
your request for inspecting the instance interior.

133. I see! It starts to be interesting. Please show me, how to do it.

It’s simple. A while ago you wanted to get an instance of NamedColor class. So let’s have a look what this
class offers. Open its context menu and enter the command Inspect. BlueJ then opens an object
inspector window which you can see at figure 9.1.

Figure 9.1
The outlook into the interior of NamedColor class

The window shows a list of fields; it’s too many of them and you have to use scrollbar to see them all.
The first fields are not interesting for us because they are private, but below them you can find a
group of public fields representing separate colors.

When you click on some of them (let’s take the field BLACK), buttons Inspect and Get will get “live”.
After pressing the button Inspect another object inspector dialog opens, which enables to investigate
the interior of a selected instance. Delay it to a time when you will know more, and now press the but-
ton Get. Another window will open, in which BlueJ asks you for a name of a reference that BlueJ after-
wards saves into the object bench.

70 Part 1: Interactive mode

The Messages Requesting a Field Value
134. Last time you showed me how I can enter the method invocation into the input field which would return the re-

quired reference. Can I request for a reference to a field value?

You can send a message to an object in which you directly ask for value of its public field – in this case
we would ask the NamedColor class for a reference to its color. If you will write down the code for send-
ing this message into the input field for a given parameter, BlueJ sends the corresponding message to
the addressed object and passes the received value as the value of the given parameter.

Such message is entered as the usual message: you address the object to which you are sending the
message, and then you write a dot, followed by the message name, which is a field’s name whose
value you are requesting for. The only one difference is that you cannot add any parameters to the
requirement for the field value, and thus there are no parentheses after the field’s name. In case you
will ask the NamedColor class for a value of a field BLACK, you will simply write the following (be careful
in differing the small and capital letters):

 NamedColor.BLACK

Figure 9.2

The message requiring for a reference to a black color

Once more I would like to emphasize that you can request only values of public fields. Others might
be only inspected.

135. I did not understand why I have to write NamedColor.BLACK, if recently it was sufficient to write only red for a
red color.

Maybe you are touching the section Getting the Reference to the Returned Object on page 45. But at that
place the red identifier was the name of the variable with a reference to an existing auxiliary object.
But now you asked how it can be arranged so that you might not need any auxiliary object. That was
why I showed you that you can ask the class for the requested object directly in the place where you
pass the obtained reference as a parameter. In other words, this time we have no BLACK variable and
that’s why BlueJ does not accept this name. Firstly you have to send a message requesting the color.
Therefore you have to enter both the addressee (NamedColor class), as well as the message name = the
name of the requested field.

www.dbooks.org

https://www.dbooks.org/

9. The Expedition into the Interior of Instances 71

Field Accessibility
136. You said, that I can request only values of public fields. I would like to know, what is the publicity of fields

like?

The modifier public does not deal with any publicity, but specifies only access rights to the given ob-
ject, i.e. who may ask for a value of the given field and adjust it, if need be. That’s why it is called an
access modifier.

In the inspector window of the NamedColor class which you can see at figure 9.1, first few fields are
marked by private access modifier and the following ones are marked as public. The fields with public
modifier can be used by everybody, who can use the relevant object (in our case the NamedColor class).
Opposite to it, the fields marked with private modifier serve only for the internal needs of the given
class and its instances, and no one has an access to them.

137. Should I understand it that I can choose who will be allowed to work with particular field in the program?

It’s a long story. For now I will only tell you that the ability to encapsulate the processed data together
with operations which work with these data (i.e. to locate them in the same shell – an instance or a
class) as well as to hide totally the implementation details (as programmed here), are considered as
the most important features of object oriented programs. You can imagine that each object says:

Everybody may know, what I am able to do,
but nobody can snoop

how I am doing it and why I know what I know.

As I have said, the object keeps information in fields which enables to fulfill successfully its function.
When proposing an object the programmer has to carefully think over which kind of information will
be open to other objects and which will be only for a private need of the given object.

Prevailing majority of fields is usually marked as private. However, in some cases the programmer
comes to a conclusion that it would be useful to open them also for other objects and then they are
marked as public.

As I have already indicated, this topic is far more extensive and complicated which means we will
come back to it many times in future.

138. Well, then I’ll remember that I can freely work only with fields marked as public. But how it is possible that the
values of other fields can be seen in the browser window, if you told me a while ago that they are private and
thus secret for others?

Because you work in the development mode and the system is always willing to reveal items which
nobody can discover in the standard mode.

The object inspector enables e.g. current monitoring of changes of field values (including the pri-
vate ones) of an object. You can utilize it especially in a situation when the program starts to make
suspicious things and you need to find out why.

72 Part 1: Interactive mode

Test Fixture Extending
139. Aha, I see, this starts to be interesting. Give me an example.

Well, but our existing fixture is a little bit featureless for such tests because all its objects have the same
position and size. To make it more varied, let’s start with extending the test fixture by a set of objects
created by sending parameterless messages.

140. Would it be strange if the readiness of a fixture will be announced and after confirmation of a dialog box fur-
ther objects will be added in it?

Don’t be afraid, we will use the reverse procedure. Let’s use the fact that BlueJ remembers all actions
since the last reset of the virtual machine and we will prepare default versions of our favorite objects.
Only after it we will ask for a fixture containing objects created with the assistance of parametric con-
structors whose installation is completed by opening of a dialog which announces the readiness of the
fixture.

Not to confuse our program we have to call the newly added objects with names that differ from
objects in the fixture. The names of references to objects in the fixture finish with the digit one. Because
the new objects will arise by using parameterless messages, we will replace the offered one by zero at
the end of their names.

As I have told you after creating a new triplet of objects we request reading up the fixture. Its ob-
jects are then added to those who already have been created and their successful completing will be
announced by the final dialog. You confirm it and ask BlueJ for saving the new program version which
creates the test fixture of the Tests class. Then you will continue working with this version of the fix-
ture.

Animation 9.1: Completing the fixture by another set of shapes – OOPNZ_109_A1_DoplneniPripravku
The animation repeats the explained items. It shows how it is possible to adjust creating the fixture so
that the fixture would include further objects.

Monitoring of Field Values
141. I have a newly created test fixture and I can start working with it.

Let BlueJ save the fixture into the object bench, select the triangle1 object and enter the command In-
spect in its context menu. BlueJ opens the inspection window (see figure 9.3).

And now try to change the position and/or the size of a given diagram and look at the dialog box,
how the values of its fields are changing.

 You can even have a look into several objects at the same time and observe that after each action
the proper field of a proper object is changed.

www.dbooks.org

https://www.dbooks.org/

9. The Expedition into the Interior of Instances 73

Figure 9.3

Fields of a triangle1 instance

Static Fields – Class Fields
142. What is the button Show static fields for?

As I told you in the previous lesson, the class also has its fields, which are common to all its instances.
By pressing this button you open an inspection window which shows fields of the given class..

In the previous lesson you opened this window by entering the command Inspect in the class con-
text menu. The command Show static fields is only another way how to open this window and how to
have a look at values of class fields.

143. Why they are called static?

This is more due to historical reasons. You can explain it for example that these fields are all at the
same place (therefore static), and all instances of the given class can see them if they need to learn their
immediate value.

144. Please, give me an example, in which I can see that all instances share the class field.

Why not? When we were playing with triangles we can continue playing with them. Ask for an in-
spection of fields of Triangle class. One of them is step. Its value determines how far the object will
shift after sending a parameterless message for shifting.

As you can see at figure 9.4, the field is private, so that you can neither recognize its value nor adjust it
directly. But you can adjust it by sending a public message

void setStep(int distance)

Set the value of this field e.g. to 25 and then send parameterless messages to both triangles requiring
their shifting. The distance by which they will shift is equal to a new value of the field step.

74 Part 1: Interactive mode

Figure 9.4

The fields of Triangle class

145. There is a zero in the last field named count at the class inspector dialog at figure 9.4. However I have there
number two. Why?

In the field count the class counts how many instances it has created. The diagram shows zero, because
I took the window after resetting the virtual machine when no instance have been yet created. You
opened the window after creating the test fixture, when there were two triangles created. Try to make
out another triangle and you will see how the field value will increase again.

So that you could repeat everything and examine it, I prepared again a little accompanying anima-
tion, which would show you all what was debated here. Start it up and try to repeat all. Then try
yourself something similar.

Animation 9.2: Fields and how to work with them – OOPNZ_109_A2_UtrobyObjektu
The animation shows how you can look into objects interior and recognize values of their fields.

Exercise
146. Which exercise did you prepare for me today?

Supplement the creating of fixtures in test classes from exercises of the previous lesson.

F The test fixture of House class immediately draws properly colored little house which will have
cyan window and brown door. Ask for the color by a requirement for a field value (e.g.
NamedColor.AMBER) and pass the obtained object to the constructors directly. Don’t forget that the
identifiers of color fields contain only capital letters.

F The fixture of Face class adds a green elliptic body to the rectangle face, which will be seen only
partly (the ellipse will reach out of the canvas edging below).

F The fixture of Robot class immediately draws properly colored robot and it also draws two black
circles instead of feet.

If you would need a more significant clue, you can have a look at the animated solutions. Sample
solutions can be found again in the final project of the lesson.

www.dbooks.org

https://www.dbooks.org/

9. The Expedition into the Interior of Instances 75

Figure 9.5

The possible shape of created objects

Animation 9.3: The exercise A Little House – LOOTP_109_e1_House
The animation will present a modification of House class from the previous exercise according to an input
of this lesson.

Animation 9.4: The exercise A Face – LOOTP_109_e2_Face
The animation will present a modification of Face class from the previous exercise according to an input
of this lesson.

Animation 9.5: The exercise A Face – LOOTP_107_e3_Robot
An animation will present a modification of Robot class from the previous exercise according to an input
of this lesson.

Review
Let’s repeat what you have learned in this lesson:

F The object keeps information concerning its state in fields.

F Certain authors use the term variable instead of field, certain others use the term attribute.

F All instances of a given class have the same set of fields.

F Both instances, as well as the class itself, may have their own fields.

F Fields of a class are common to both the class as well as to all its instances.

F BlueJ enables to examine fields of each object through the object browser which we call by a
command Inspect from the object context menu.

F The window of object browser enables to gain the value (the reference to an object) of the public
fields of object type.

F When sending the message with parameters you can write a code into the input field. This code
sends a message and returns the value instead of a requested parameter value. The returned
value will be then used as a value of a given parameter.

F Accessibility of field values for other objects can be specified through access modifiers. They are
also shown in the browser window.

76 Part 1: Interactive mode

F Fields can be either public or private. The values of public fields are accessible for all objects for
which the “owner” of these fields is available.

F Private fields serve only for an internal need of a given object and no one else has an access to
them.

F The object inspector window updates the shown values of object’s fields after processing each
message.

Project:
The resulting shape of a project to which we came at the end of the lesson after passing through all exer-
cises is in the 109Z_Inside_instances project.

www.dbooks.org

https://www.dbooks.org/

10. The Interface 77

10 The Interface
10. The Interface – 000000

10 The Interface
What you will learn in this lesson
In this lesson you will learn what does it mean an interface and what is the difference between an inter-
face and an implementation. You will become acquainted with a kind of data type called interface and its
advantages when it is appropriately used in a program. After that you will see how it is possible to import
a class from another project and finally how to define that a class implements the given interface.

Project:
In this lesson we are opening a new project entitled 110a_Interface_added.

Motivation
147. It seems that you have told me everything about objects and that we could start programming.

I would like to present you one more construction. It often makes troubles to programmers. Therefore
I want to introduce it as soon as possible. According to my experience, this construction is problematic
mainly to programmers who are used to think in a way typical for structured programming, whilst it
doesn’t matter which programming language they are using. Quite often I meet this situation with
students who passed through a course of object programming, but some key constructions were pre-
sented to them at the end of the course, so that they did not have enough of time to adopt and master
them. To avoid such problems, I would like to present this construction even before your first attempt
to create your own code. This important construction is the interface.

But firstly I will start with a little repeating. In the section The Messages Sent to Instances on page 22 I
presented that all instances of the given class are equipped with the same set of methods and therefore
they know how to react at the same set of messages. In the section Briefer Record of Messages on page 65
we mentioned that the message is unambiguously determined by its name, by the number of parame-
ters and by the types of individual parameters. In other words: the message sender has to pass the
value of a type declared in the message declaration in each parameter.

The message requirement for getting only the value of the declared type in the parameter is a little
bit limiting, because we have to define a special method for each type, whose value we would like to
use in the given parameter. However, if we would add a new class into our project, whose instances
would work with our graphic objects, we would have to define a special method for each of our
shapes.

148. Could you explain it at an example?

I will try it. All three kinds of graphic objects in our project are able to shift to an entered position. But
they shift in jumps. In case you install a class, whose instances will be able to shift the graphic objects
smoothly (let’s call it e.g. Mover), each type of shifted objects will need to have a definition of a separate

78 Part 1: Interactive mode

method – one would have to know shifting the rectangles, another one ellipses and the third one tri-
angles. In case you would add into your program another graphic shape, e.g. stars, you would have to
define another method for them in Mover class. You surely feel yourself that all these methods will be
very similar one to another and they will differ only by the type of parameter, in which they would
receive the graphic object, which should be smoothly moved at a canvas.

But let’s remind what we have said about data types. In the section Primitive and Object Types on
page 35 I mentioned that the data type says which values the data of a given type can acquire and
what you can do with them. It provides information to a program about what this object knows,
which messages it can receive and what you can require in them. But all graphic objects know nearly
the same: to inform about their position, size and color, to paint and rub out themselves, to shift, and
to change their color and their size. (The triangle is also able to tell the direction to which its peak is
turned and can adjust a new direction, but this little difference can be skipped over.) From a certain
viewpoint we could consider individual types of graphic shapes as special cases of some more general
type, whose objects are able to react to the above mentioned messages.

Interface vs. Implementation
149. What you say is an interesting remind of what I should know, but I don’t know where the novelty is that may

cause me troubles.

I am coming to it. When I happen to meet this topic during my lectures, I like to ask my students if
they know who Janus was– the Roman Empire’s god of entrances and exits, beginnings and endings
(January is named after him). Janus had two faces: one was looking into the future, the other one into
the past. Similarly it is with the program: its two faces are the interface and the implementation:

F The interface of a given entity (= of a program’s part – a module, a class, a method…) specifies
what the given entity knows and how to communicate with it. In case of an object it says which
messages can be sent to it (to which messages the object understands) and how the object reacts
to them. It is important to remember that an interface doesn’t solve anything, it only promises,
what the given entity can provide. We could say that the interface summarizes what the sur-
rounding program should know about the given entity.

F Opposite to it, the implementation provides that the given entity would do exactly what its in-
terface promises. Good programmers usually strive to make most difficult any attempts to re-
veal the implementation. The less the surrounding program knows about the implementation of
a given entity, the easier is to change this implementation in future. As soon as any information
escapes, it cannot be guaranteed that anybody will not use it. Then, when I would change any
generally known feature, I would have discover all who use it (or who even might use it) and
have a look how much I have to change also these parts of the program. And that would be a lot
of work.

150. But if I would be programming and I would add my own class to a project, then I would know how the other
programs are composed, wouldn’t I?

This is just the joke: you will know it, but you will look like you don’t know it. Moreover, the compiler
will try to take care so that you would not utilize fully this knowledge.

www.dbooks.org

https://www.dbooks.org/

10. The Interface 79

151. Are you playing with me? How the compiler can recognize if I utilize knowing how certain class is programmed?

After you will start programming I will show you how you can explain to the compiler, what you con-
sider as implementation details which shouldn’t be disclosed. The compiler then keeps an eye so that
nobody would use these parts of a program.

To be more precise what I have on my mind: I will show you how you can present only a class in-
terface, so that you would not be distracted by implementation details. Open the context menu of any
class and enter a command Open Editor. BlueJ opens an editor window, similar to a window at figure
10.1. There is a part of Mover class documentation which we have already discussed and with which we
will work. (I have chosen its documentation because it has only few constructors and methods, and
after a slight shift I succeeded to put all into a screenshot.)

Figure 10.1

The class documentation

Please notice the pull down list at the right edge of editor’s button panel. As the mouse pointer shows,
you can choose in this list if the window will show an implementation, i.e. the source code, or a class
interface derived from documentation comments (I mentioned this in the section The Dialog Structure
for Sending Messages with Parameters on page 51).

The documentation, which is a description of the interface, is presented in Java as a web page. At
the figure 10.1 I picked up a part of it with tables briefly characterizing both constructors and all three
methods which this class offers. There is a characteristic of the whole class above them; below them
you will find a detailed description of individual constructors and methods. In case you work with a
class and its instances you should be satisfied with information you find in this window.

80 Part 1: Interactive mode

In case you switch to implementation in the pull down list, the source code of the given class will
be shown in the window, i.e. the way how I have programmed it (a class implementation). You will
work with the source code after you will learn the introductory presentation with OOP and start creat-
ing the code itself. So hold on a while, it will not last a long time.

Interface as a Data Type
152. I already know how I will learn which interface belongs to a certain class, i.e. which methods I can call (which

messages I can send to it). But it seems to me that it is too little to an announced novelty.

You are true. That’s why I will return to theory for a while. As I like to say:

The only one constant of contemporary programming is the certainty
that the assignment will soon change.

Therefore the programmer has to prepare his programs in such way so that the possible changes could
be included as easy as possible. After what was said a while ago, it is obvious that the programmers
will adjust the program’s implementation in the easiest way at such moment when they will be sure
that any change will not influence any of the fellow workers of their program (any of the objects, their
program depends on). Not to impact any colleagues by a change of implementation the programmers
have to be sure that they are not dependent on it. This can be reached e.g. by the fact that the program
will look like there is no implementation. I cannot be dependent on anything what does not exist.

153. Such a tale! If I understood properly, when the program has no implementation, it cannot do anything.

I didn’t tell it has no implementation. I told that it looks like not having any one. This is what also the
Java authors realized and why they installed into their language a special kind of data type – an
interface. The interface does not have (contrary to classes) any implementation3. Theoretically it also
cannot have any instances, because it is necessary to do something for their creation, but the imple-
mentation responsible for every “work” is missing here.

This seemingly blind lane is solved by the fact that Java allows declaring implementation of certain
interface by classes. But they have to guarantee that their instances would be able to properly react to
all messages which the implemented interface declares. As a “reward” instances of these classes can
pass off themselves as instances of the implemented interface.

Interface versus interface

154. You are confusing me a bit. How should I understand this title?

The term interface is used in two meanings:

3 In Java 8 an interface can suggest a default implementation, but we will discuss this possibility only in the

second volume.

www.dbooks.org

https://www.dbooks.org/

10. The Interface 81

F Firstly, it is a sum of generally known characteristics of any program’s entity, about which we
were speaking at the beginning. Each class, each method, each field and the whole program
have its interface. It is what others know about the given entity.

F Secondly, this term is used for the program’s construction, which we might consider as syntax
representation of interface and which behaves as a class without any implementation.

Mostly you recognize from the context which from these two meanings the speaker has on his mind.
In the following text when I will want to emphasize that I speak about the program’s construction I
will write it with the monospaced font used for programs – interface – or use the term interface type. In
case I will speak about a general interface of the given entity, I will write it with italic – interface. If you
would not be sure, which meaning I have on my mind, don’t hesitate to ask me.

155. You told that interface can define the data type. Then, such methods could exist which would have parameters
of this type. If I understood properly I can pass any of instances which pose as instances of the given interface
in these parameters.

Exactly, and that is the greatest advantage of this construction. You can define a method that expects a
parameter of a given interface type and when calling the method you can pass an instance of any
class, which implements this interface, as this parameter. Opposite to methods with which we were
working until now, and in parameters of which you can pass an instance of the only one type (if not
considering an Object type), this method can work with more general parameters and their mother
class can be any class implementing the declared interface.

Practical Usage
156. Let’s return to the main presentation. You explain everything too generally. Please get off your abstract exege-

sis and try to show me what you strived to explain the whole time at a practical example.

Well, I will try to show it step by step at an example. In the part on motivation I was speaking about
the Mover class, which should know to shift fluently your graphic shapes. If you would define this class
without using an interface, you would have to define a separate method for each kind of graphic ob-
jects – one for triangles, another one for rectangles and the third one for ellipses. And now, please, im-
agine that you would like to define one method for shifting to an entered position and the second
method for shifting by an entered distance. Each of these methods should be defined three times, so
altogether we would have six methods. With each additional function you should have to add another
three methods.

Preparation of a New Project

157. I understood until now. But I don’t have any shifting class, nor any interface, so for now I have nothing to
solve.

Well, let’s right the wrongs. Leave your current project and open the project 110a_Interface_added,
where a Mover class is added (I showed you its documentation a while ago) and IShape interface – see
diagram 10.2.

82 Part 1: Interactive mode

Figure 10.2

The initial look of a project 110a_Interface_added

As you see, not only a class and an interface were added in the project, but also lines telling who is
dependent on whom. We would like to add further lines that would show which class implements the
IShape interface. Then the class diagram would be so overloaded, that you couldn’t orientate in it.
Therefore we would ask BlueJ to stop drawing the dependency lines and then we will reorganize the
whole class diagram so that we could work better with it.

Figure 10.3

Cancelling the dependency lines

www.dbooks.org

https://www.dbooks.org/

10. The Interface 83

158. How should I ask BlueJ not to draw the dependency lines?

It is simple. You open a View menu and clear the option Show Uses – see figure 10.3. BlueJ then stops to
show dependencies.

As I have already told you we will not stop at this point. We will make all classes in the diagram
smaller and reorganize them according to figure 10.4. (If you forgot how to do it, open the animation
LOOTP_101b_IDE_BlueJ – BlueJ environment and how to work with it once more, and go through it.

Figure 10.4

The project’s look after diminishing and reorganizing of classes – project 110b_Interface_rearranged

159. Why should I make the classes smaller?

Because immediately we will import our test class from the previous project. Occasionally BlueJ inserts
the rectangle at a place where already a rectangle of another class is placed and moreover, BlueJ puts it
to the bottom. In case we want to find it, we have to move a bit with each of rectangles to discover the
relevant one. The same can happen when you insert a new class into a project. When you diminish all
class rectangles a little bit, the new or imported classes will be always sticked out so that you can take
them and shift them into a position which would suit to you.

160. This is a good idea. I see that IShape has its stereotype as well as a different color.

 Surely, we depict an interface in a class diagram similarly as an ordinary class, and yet it is not an or-
dinary class, we point out its exceptionality by a stereotype <<interface>> and we stress it also by a dif-
ferent color.

 Moreover, I adopted a convention that is used by a number of programmers, although it is not
quite current in Java: I put a letter I in front of names of all interface types (therefore the interface does
not have the name Shape, but IShape). Majority of all my students say that it helps them to be well ori-
ented in the program.

84 Part 1: Interactive mode

Importing the Class from Another Project

161. And now let me know, what it means importing.

From time to time it happens that you deposited a class which you could use in another of your pro-
jects. Importing a class is a smart possibility how to include this class into your project. We will use it
in our course several times.

A while ago I told you e.g. that we will import a test class from the previous project, i.e. from pro-
ject 109z_Inside_instances. Not to speculate over how much you diverged from a sample solution,
which I will ponder in further explanation, I prepared a subfolder Extension_10 in the project folder.
This subfolder is not a project because it does not contain any package.bluej file, but you can find a
source code of all classes in it that we will gradually import.

I will prepare also other imported files for you in this way. In the project folder you sometimes will
find a subfolder Extension_xx, where xx will be a number of the lesson in which we will import the giv-
en files. There will be e.g. source codes which would be uncompilable with the initial version of the
project, and which might be imported only after we will adjust the project a bit. I think it’s useless to
explain it more, you will see it.

162. How a class from somewhere else can be imported into a project?

Look into a menu Edit for the command Add Class from File. BlueJ then opens a standard open dialog.
Find a folder in it with the file you want to add. It is meaningful to add only source files, i.e. files with
the extension java. Look in the folder of this project and find a subfolder Extension_10. Pick up the file
Tests.java, confirm your input and BlueJ adds a rectangle of Tests class into the class diagram. Dimin-
ish it to a size of other rectangles, put it to a place convenient for you, compile it and try if all tests in
the new project are running.

163. If I understood it properly, I could import the class from anywhere, not only from this project or another one.

You are true. You can import a class from any place from which your file manager is able to read –
even from a flash memory, if need be, to which a file was saved by any of your friends. But as I have
already told you, you can import only source files with the extension java. In case of importing any-
thing else BlueJ would revolt.

164. Well, the class is imported and compiled. What should I do further?

Now we start experimenting with interface. Reset the virtual machine and request the test class for a
fixture. Then ask the Mover class for a new instance. As the context menu (or the figure 10.1 on page 79)
will show you, the Mover class offers two constructors, i.e. two possible messages requiring an instance.
The one-parametric constructor requires the speed by which the created mover should shift the com-
mitted objects; by sending the parameterless message you require creating a mover with the speed 1.

www.dbooks.org

https://www.dbooks.org/

10. The Interface 85

Implementation of an interface by the Class
165. I’ve created a mover and I added it to the object bench. What else?

If you open a context menu of the created mover (or if you would have a look into its documentation
on page 10.1), you see that you can send two messages to it requiring a fluent shift of an object. After
sending the message

moveTo(int, int, IShape)

the mover takes the object passed in the third parameter and shifts it fluently to the position, the coor-
dinates of which are defined in the first and the second parameter. The message

moveBy(int, int, IShape)

will request to shift the object passed in the third parameter by a distance entered in the first and the
second parameter.

Both messages require the third parameter of IShape type. Open now the IShape interface in the edi-
tor, and some of the graphic shape classes in another window besides it. Put both windows alongside
and compare the method tables in their documentations. You will see that our class implements all
messages required by this interface and so nothing should prevent the class to pass off its instances as
instances of the given interface.

166. You are true, it’s all there. So I can start fluent shifting.

Sorry, this is what you cannot do. In case you will try to pass a reference to an instance of this class to
some of the above mentioned Mover’s methods as a reference to an object, which should be shifted,
BlueJ would oppose and it will show you an error message

Error: incompatible types – found Ellipse but expected IShape

in the dialog under the input fields. This means that an instance of IShape type was expected at a given
place, but instead of it an instance of Ellipse type was found. The problem is that an ellipse theoreti-
cally could be considered as an instance of IShape type, because it implements all the declared meth-
ods, but the Ellipse class did not announce that it would apply for this possibility. Only instances of
those classes that explicitly declare implementation of the given interface may pose as instances of
certain interface.

167. My goodness, why it needs enrollment? Why it’s not sufficient that the instance knows everything what is need-
ed?

In some languages it is sufficient, in some of them not. Java belongs to those more rigorous. The fact
that a class will explicitly declare the implementation of an interface is a promise and the compiler can
check if the class really fulfilled its promises and that all its instances may be used in situations in
which the program requires instances of that interface.

168. You told me that only some languages are so strict. What’s the problem when in other languages the programs
also operate?

Always you can choose only one possibility. The more tolerant languages check the object’s ability to
receive a message only at a moment when the message is being sent. But this is time consuming. The

86 Part 1: Interactive mode

more rigorous languages can move this control to a compiling phase and thus they significantly
strengthen the program’s efficiency.

169. Well, then how the class should enroll to the interface implementation?

You will enroll it. Generally, there are two ways: either you would adjust the source code (I will ex-
plain it in some of the future lessons), or you will show your intention and BlueJ will do it. Then you
ask only for compilation and you make the verification if the compiler has no objections. The proce-
dure is simple as follows:

1. Press the button on the left side with the triangle head arrow (in further text it is called an
implementation arrow).

2. Move the mouse pointer to a class which will implement the interface.
3. Press the mouse button – thus you will anchor the arrow’s root, and then draw the arrow’s head

to the interface which the given class wants to implement.
4. Release the mouse button. BlueJ then draws a dashed triangle head arrow to the implemented

interface. At the same time it adjusts the source code in such way so that it would announce to
the compiler that the class decided to implement the relevant interface. Because the source code
of implemented class will change, BlueJ announces that this class was not compiled. At the same
time even the Tests class will become not compiled, due to (as you surely remember from pre-
vious lessons) it is dependent on these classes.

Please, draw now stepwise the implementation arrows from all graphic shape classes to the IShape in-
terface and let the whole project being compiled (as we know, the virtual machine resets at the same
time). Then create the mover instance again and try to shift certain object by this mover.

170. Oh, it operates!

And now try creating the test method which would shift the zero set objects similarly as the Movements
test shifts objects of the first set, but this time use the mover. To examine both mover methods we will
shift the triangle by 50 points down and then we shift the ellipse to the position [100, 0].

Again I have prepared a little additional animation so that you may repeat and examine every-
thing. It will present you all what we have debated. Start it and try to repeat all. Then try something
similar.

Animation 10.1: The interface and its usage – OOPNZ_110_A1_Interface
The animation will show you a class import into a project and subsequently the defending of interface
implementation by a class. It will show you how it is possible to use Mover class for realizing the fluent
shifting.

Exercise
171. I’ve repeated all with the assistance of the animation and now I expect input in which I can exercise that I per-

ceived the topic properly.

A big portion of today’s information was theoretical and I don’t have any bigger practical applications
on my mind. Please, try the following simple tasks:

www.dbooks.org

https://www.dbooks.org/

10. The Interface 87

F In the subfolder Extension_10 you will find the source codes of sample solutions for classes
House, Face, and Robot from the previous lesson. Please, import them.

F Define the test testSmoothSweep at the picture with a robot, in which one arm fluently raises
upwards and subsequently lowers down.

F Define the test testSun at the picture with a little house, in which a yellow sun slowly goes
above the little house. In case you want the sun would properly appear from behind the left
window side (the sun is always going from left to the right at our hemisphere) you have to cre-
ate first a sun with the horizontal coordinate higher than 0 and immediately slide it behind the
left edge, and subsequently the mover gets it out from this place.

F Define the test testCap at the picture with an angular face, to which a triangle cap goes from
above to the face. You will have to solve a similar problem as in the previous case with the sun.

Review
Let’s review what you have learned in this lesson:

F Review from the previous lessons:

F All instances of the given class are equipped with the same set of methods.

F The message is unambiguously determined by its name and types of individual para-
meters.

F Only an instance of a given type can be passed over in the parameter.

F The entity interface specifies what the given entity knows and how to communicate with it.

F The interface does not solve anything, only promises what the given entity can provide.

F The interface resumes what the program should know about the given entity.

F An implementation provides so that the given entity would do exactly what its interface
promises.

F The only one constant of contemporary programming is the certainty that the assignment will
soon change.

F In case you will open a class in an editor, you can choose if you would like to see an interface
(documentation) or a source code (implementation).

F To be easily changed, it is profitable if the surrounding program does not know anything about
the entity implementation details, because it should not be dependent at it.

F The interface construction installs the data type that has only an interface and no implementa-
tion.

F Interface types are marked with a stereotype «interface» in the class diagram. BlueJ color them
green in our configuration.

F For better orientation in a program we will put a letter I at the beginning of interface names.

F Java enables to implement an interface to classes.

88 Part 1: Interactive mode

F The class implementing certain interface can pose its instances as instances of an implemented
interface.

F For implementing the interface it is not sufficient so that the class would implement all its
declared methods; the class has to enroll explicitly to this implementation.

F In BlueJ a class can enroll to an interface implementation by drawing the implementation arrow
(a triangle head arrow) from the implementing class to the implemented interface.

F The term interface is used in two meanings:

F The summary of characteristics of the given entity visible to the surrounding program. If
I want to emphasize this meaning, I write the term in italics – interface.

F The program construction defining the data type without implementation. In case it will
be needed to stress this meaning in a text, I will type it in the monospaced font – interface.

F In case an interface is declared as a type of message parameter, then an instance of any class
which implements this interface can be passed as this parameter.

F You can import to your project any class from another project by the command Edit ® Add Class
from File.

Project:
The resulting form of a project to which we came at the end of the lesson after completing all exercises is
in the 110z_Interface project.

www.dbooks.org

https://www.dbooks.org/

11. The Interface Continued 89

11 The Interface Continued
11. The Interface Continued – 000000

11 The Interface Continued
What you will learn in this lesson
In this lesson you will import the Multishape class and you will see how it becomes a worthy part of our
project thanks to the interface implementation. You will learn how it is possible to define the test class of
a particular class and what some of its characteristics are. Further you will come to know that a method
can have a beforehand unknown number of parameters. A design pattern Prototype will be shown to you
and you will read what are the advantages of using the factory method that produces copies contrary to
using a constructor.

Project:
In this lesson we continue in using the 110z_Interface project.

Readiness for the Future Extension
172. I realized in the last lesson that interface serves to defining the data type for a parameter in which we want to

pass the values of different types. Then I can pass an instance of any class implementing this interface. Did I
understand it properly?

It is one of many possible usage of this construction. Gradually I will show and explain you plentiful
further possibilities. Now, I would like to show you one profitable feature of our existing solution: in
case we would add a quite new class into the project and it would implement the IShape interface, we
will be able to use also the mover for it and fluently move its instances.

What is the conclusion of it? In case the interface is the parameter’s type, I can pass as a parameter
not only instances of contemporary classes, which implement this interface, but I gain a method
which is prepared for instances of all such classes declared in future. So I am prepared for easy
implementation of a number of improvements that may lead to a definition of such classes.

The Example: Multishape

173. You are true. Thus I can save a lot of programming in future. Show me please an interesting example in which I
can see that it was worthy to do it.

I have one interesting example. If you look into the project folder you will find there a subfolder
Extension_11. There is a source code of Multishape class in it. Please, import it into our project. After a
possible adjustment its class diagram should look out as at the figure 11.1.

90 Part 1: Interactive mode

Figure 11.1

The project with Multishape class

174. What is the Multishape class like? How its instances do look out?

The instances of this class are shapes acquired by completing several simpler shapes. Whole this com-
position behaves as one shape with which you can work similarly as with the original simpler shapes:
you can shift it, change its size or ask for its properties.

175. Do you mean by completing several simpler shapes that you take several shapes, you put them into a picture
and then you announce: “This is a new multishape”?

Maybe it sounds strange to you, but you are nearly true. You really can assemble a more complex
shape from simple shapes and then you ask the Multishape class to create a new shape which is a copy
of your original complex. This shape will become a simple shape that can be included into assembling
even more complicated shapes.

176. Well, I like it. So what we will put together?

I would not think out too much complicated things, what about to take our basic triple-shape which
we have in two issues in our test fixture. Then we could create another one in which this newly creat-
ed multishape could participate.

www.dbooks.org

https://www.dbooks.org/

11. The Interface Continued 91

Test Class of the Class
177. I agree, tell me, what I should do.

Today’s project will be a bit more extensive and that’s why we will do it in several phases. I will try to
tell and teach you something new in each of them. Let’s start with information that for each class BlueJ
enables to create a test class of its own.

178. The test class belonging to each class? How do you mean it?

For each class BlueJ can define a test class which will be associated with it. If you want to use this
possibility, the support for testing should be activated. BlueJ with our configuration has this support
set. When you use a configuration without it, enter the command Tools ® Preferences, open the
Miscellaneous card in the opened dialog and set the option Show unit testing tools (see figure 11.2).

Figure 11.2

Activation of depicting the tools for testing

Setting this option evokes emerging of the button Run Tests together with the indicator Recording and
buttons End and Cancel at the button panel. Since this time these control elements will be a permanent
part of the panel.

At the same time the new command Create Test Class is added at the end of the context menu of all
classes (see figure 11.3). By entering this command you ask BlueJ to create a test class associated with the
given class. BlueJ then creates a new test class named XxxTest, where Xxx represents the class name for
which you are creating the given test class, and which will be associated with the created test class.

92 Part 1: Interactive mode

Figure 11.3

Asking for the test class associated with the given class

179. You always speak about associating. What is so special on it?

The associated test class is inserted behind its tested class in the class diagram and shifted northeast-
ern (i.e. to the right top) so that its name could be read. You cannot move with the associated test class.
Its position is unambiguously determined by a position of the relevant tested class. Check that after
each shifting of tested class its associated test class immediately leaps to its constant relative position,
whilst the test class itself cannot be shifted at all. However the size of the test class can be changed.

Figure 11.4

The test class associated with the given class

www.dbooks.org

https://www.dbooks.org/

11. The Interface Continued 93

Variable Number of Parameters
180. Well, I’ve created the test class MultishapeTest. What now?

Prepare the test fixture for the created test class.
1. Reset the virtual machine.
2. Send a requirement for creating a new instance to Multishape class, precisely a message

new Multishape(String name, IShape part1, IShape... parts)

The BlueJ opens the dialog in the figure 11.5.

Figure 11.5

Entering the variable number of parameters

181. What strange buttons are on the right next to the third input field?

To explain them I return back to figure 11.3. Please, notice that the command for sending the message
and requiring creating a new instance has three dots between the type and the name of the second pa-
rameter. (Of course, you can find them also in the method header in the upper part of a dialog and once
more as a determination of a type at entered parameters.) They symbolize the fact that the number of pa-
rameters of the given type at this place is not known in advance and can differ between individual send-
ing the given message. The language definition also does not exclude the possibility to quote no parame-
ter at this place. Then, it is impossible to determine the number of needed input fields in the dialog box
for parameters in advance. This problem is solved in BlueJ by buttons marked with [+] and [–]:

F Pressing the button [+] adds a new empty field behind the given input field,

F on the contrary, pressing the button [–] removes the input field on the left side of the button (as
I have said already, all fields of the second parameter can be removed).

94 Part 1: Interactive mode

Thus, you can prepare as many input fields as many parameters you need to pass. All prepared input
fields have to be fulfilled. In case any field is left empty, BlueJ writes an error message at the bottom
margin of a dialog box and refuses the take over the parameters.

Moreover, the order of entered parameters is very important. Shapes entered sooner are placed be-
low the shapes entered later. In case you would like to create your testing composition, you have to
enter firstly a rectangle, then an ellipse and finally a triangle to the last parameter.

182. It means me to make out a zero rectangle, an ellipse and a triangle?

Theoretically it would be possible. We could even ask the Tests class for creating the test fixture and
use its instances. But it has a disadvantage: these instances would hamper in the instance stack even in
time when you would not need them. Let’s use the fact that in the section Direct Passing of the Message
Return Value on page 63 we learned that instead of entering the variable with a reference to an object
you can send a message in the text field for parameter which returns this value. The returned value
can be used as a value of the passed parameter.

183. Don’t take it amiss, but please, lead me step by step.

Surely, first two steps, i.e. resetting of a virtual machine and requesting for a new instance of the
Multishape class, we have already passed through, so let’s continue with the third step:

3. Enter a name (e.g. m1) for the created instance and enter it also as a string (don’t forget the quo-
tation marks) into the input field for the first parameter, i.e. for the name of the created instance

184. Why I have to enter the variable’s name of the multishape twice and on the second time in quotation marks?

The entered string is not a name of the variable, but a name of the instance itself. Each instance of
Multishape class has its name through which you can indicate what the given multishape represents.
(In case we would define e.g. shapes from the previous lesson exercises as multishapes, we could
name them e.g. house, face and robot). But let’s again return to creating the fixture.

4. Enter the command (or better said statement) for the first parameter – in our case the
statement: new Rectangle().

185. Why there are no buttons “+” and “–” at this field?

I again return to the figure 11.3. You can see there are four messages for creating a new multishape
there. When you send a message without any shape parameter, the class Mutlishape works in a little
different mode – I’ll show it soon. The parameter part1 forces that you have to enter at least one shape
in this mode. But I would like to continue in creating the fixture.

5. Increase the number of parameters for entered parts to two by pressing the button “+”.
6. Enter: new Ellipse() into the input field of the first of them.
7. Enter: new Triangle() into the input field of the second of them.
8. Confirm your inputs by pressing OK and the variable m1 will appear in the object bench with a

reference to the created multishape.

www.dbooks.org

https://www.dbooks.org/

11. The Interface Continued 95

186. Until now it goes according to our expectations. Now, will we create a test fixture based on existing activities or
will we create another multishape?

I would create another multishape. And I would show you another way of creating these shapes,
when the new multishape will not be created in one step, but it will be gradually completed from in-
dividual parts. At the same time I would like to show you that another multishape can be a part of
such shape because each multishape is an instance of IShape interface.

This procedure has a disadvantage: the created multishape cannot be seen and you have to surmise
its current state or draw it at a paper.

187. Well, I’d rather see it all, but I hope it will be sufficiently simple so that I’ll be able to observe it. Please, go on
and I’ll stop you in case of necessity.

9. Ask once again to create a new multishape, but this time by sending a message new
Multishape(String). This message does not ask creating a complete new multishape, but only
starts its creating. The Multishape class only prepares an empty instance, into which you will add
shapes, from which the multishape will be composed.

10. In case you want to have the same fixture as I have, enter an instance also for the variable to
which the reference of a created instance will be saved, the name m2 (don’t forget to close the pa-
rameter into quotation marks) and confirm your input.

The variable m2 appears in the object bench referring to the just created instance. But as I said
a while ago, the instance is not yet finished. It’s only an intermediate product that does not
contain any parts.

11. Send a message addShapes(IShape...) to m2 instance, and pass a reference to m1 instance as a pa-
rameter to this message, i.e. send the message m2.addShapes(m1). Thus you will enter the whole
multishape m1 (more precisely a copy of its current form) as the first part of the created instance
m2. However, you cannot see anything at the canvas – you have only to believe it.

12. Decrease the width of the multishape m1 to one third and its height to one half by sending the
message m1.setSize(33,25).

13. By sending the message m1.setPosition(33,25) shift your multishape m1 to a position which is in-
side the triangle in the newly created multishape m2. Again it is not seen but you can verify it in
a while.

14. Send the message m2.addShapes(m1) to the newly created instance m2. By this you add a copy of
the new form of the multishape m1 as its further part.

15. Send the message m2.creationDone() to m2 instance by which you finish its completing; since this
time it is fully usable.

16. Send the message m1.setPosition(150,0) to m1 instance, by which you shift it so that it might be
seen after drawing m2 instance.

17. Send the message m2.paint() by which you depict the newly created instance. Now you can veri-
fy if the multishape m2 is really composed of a copy of the initial form of m1 multishape and an
added copy of diminished and shifted m1 – the objects should be arranged as on figure 11.6.

18. Send the message IO.inform("Multishapes prepared") to the IO class and subsequently confirm the
opened dialog.

96 Part 1: Interactive mode

19. Ask the MultishapeTest class to save the previous activity as an activity creating the test fixture.
20. Try the created definition of a new fixture. Reset the virtual machine and request the

MultishapeTest class to create the fixture and save the variables with its objects into the object
bench.

Figure 11.6

The test fixture with two multishapes

The Design Pattern Prototype
188. All passed but I have to admit that I feel confused a bit. How it is possible to insert the m1 multishape into the

created m2 multishape twice?

The point is that the Multishape class never uses an object passed in a parameter for constructing an in-
stance. Instead of it, the class requests this object for its copy. Then when you change the object, its
copy does not change and the multishape keeps its form.

189. The class requests this object for its copy? Is it possible?

When you look into the documentation of IShape interface, you will find also a method copy() among
declared methods, which returns an instance of IShape type. The contract of this method says that by
its calling you receive an object’s copy, whose method you called. Thus the constructor of Multishape
class can simply let its arguments make their copies.

Using this method is particularly advantageous in a situation when the original (i.e. copied) object
is rather complex or when you cannot discover all parameters required by the constructor. And this is
our case. The constructor of Multishape class receives an object in a parameter about which it is known
only that it is an instance of IShape interface. Even its class is unknown and so its new instance, which
would be a copy of this object, could not be requested.

The design pattern Prototype which recommends teaching the objects to make out their own copies
(i.e. to equip them with a method capable to do it) solves similar situations. Then it is a matter of the
given object if it uses a constructor or another mechanism for making a copy. The addressed object

www.dbooks.org

https://www.dbooks.org/

11. The Interface Continued 97

knows which class is its parent class and which constructor should be called. It knows all its visible as
well as hidden properties and thus it can make out its really perfect copy. This could be hardly done
in case the information would be taken only from the object’s (general!) interface.

190. Then the copying method can serve as a substitute constructor.

Yes, to some extent. You cannot create any instance of a given class with its help, but if you are satis-
fied with a copy of an existing instance for the given purpose, it is often significantly simpler (some-
times even the only possible) way to create the required instance.

191. If I remember it well, you told me sometimes at the beginning that the only possibility how to create a new
instance is to use new with constructor’s calling.

This holds true in case when you need to create quite a new object. But when you need to create only a
copy of a previously created object, there are substituting means existing. Messages requiring a copy
of an addressee are one of them. Now, I would not like to dwell on it and let’s return to an explanation
how to define a method realizing an answer to this message.

Verifying of the Multishape Functioning
192. You are true. Let’s return to our multishapes. I would like to try if they really would behave as the other shapes

do including fluent shifting and changes of their size.

It’s a good idea. Let’s define a test method which would verify all these assumptions. We have already
verified the leap shifting as well as size changes during the fixture’s definition, so now we can exam-
ine the smooth ones. To be sure I will lead you again step by step, despite I think you would be able to
do it alone. And of course, you can try it on projects of closing exercises once again.

1. Reset the virtual machine.
2. Tell the MultishapeTest class that you want to create a new test method. To continue in being

traditional, call it testSmoothResizing.
3. Create a mover’s instance. Not to be detained by smooth shifting, set a bigger speed – e.g. 10.
4. Ask the mover to shift the m1 object by 100 points to the right. You will see how fluently it will

move the object without influencing its copies in m2 multishape.
5. Ask the mover to shift m2 object to a position [100, 100]. Again you can see that the picture is

moving as a whole and that m1 object does not influence shifting of its copies.
6. Close the test record.

Now, when everything is remembered and saved, ask the MultishapeTest class to run the whole test
once again so that you could enjoy it.

193. The test we prepared in this lesson shifted only with the whole shape. However, the method in Tests class,
named by the same name, shifted only with parts of the whole shape. How can I arrange so that e.g. only trian-
gle would move in our triple shape?

This couldn’t be done. A multishape always poses as a whole. In case you would like to move only
with its one part, it would be similar if you would like to move with only one peak of the triangle.

98 Part 1: Interactive mode

This property of the multishape is a consequence of the fact that it is composed from copies of its
parameters. Thus, it becomes independent on whether somebody enlarges or shifts any part of the
completed multishape. Only a pattern, according to which the given part of the multishape was creat-
ed, can be enlarged or shifted. But the general behavior or appearance of the multishape cannot be
influenced.

Exercise
194. Well, but in exercises at the end of the previous lessons you wanted me to prepare some simple animations. I

thought I could create all my pictures with the assistance of a multishape. But how I should animate a picture,
when the multishape cannot be changed?

The only one thing I can advise you is not to include those parts into the multishape which you would
like to discolor or move. Try to supplement pictures with the aid of a multishape without animations,
and instead of animating you can shift the pictures or change their size and produce their copies. Cre-
ating composed shapes whose individual parts can be influenced independently towards the whole –
this will be a topic of our future lessons after we will start writing the code. Don’t be afraid, we are
close to it.

Review
I tried to show all what we debated once again in the accompanying animation. Turn it on and try
everything in it once more.

Animation 11.1: The multishape and the test class of the class – OOPNZ_111_A1_Multishape
The animation will show the import of Multishape class creating its test class, definition of its fixture and
creating a test.

Let’s review what you learned in this lesson:

F One of the possible usages of the interface construction is the parameter’s definition in which
you can pass instances of all classes that implement the given interface.

F Such solution has an advantage that you can use it without any adjustments also in case you
add quite a new class into the project. It is sufficient if this class will implement the relevant
interface.

F The Multishape class enables to compile several simpler shapes into a bigger whole which then
poses as a new shape.

F Multishapes can be also composed of previously created multishapes.

F An associated test class can be created to each class of the project in BlueJ.

F You can ask creating a test class in the class context menu. However, the command for creating
the test class will appear only after switching on the test support.

F In case you want to have a possibility to create associated test classes you need to check the
option Show unit testing tools in Preferences window in the Miscellaneous card.

www.dbooks.org

https://www.dbooks.org/

11. The Interface Continued 99

F For creating the associated test class you can ask by assigning a command Create Test Class in the
class context menu.

F This test class will be inserted in class diagram under its test class and shifted right up, so that it
would be possible to read its name.

F It is not possible to move independently with the associated test class in the class diagram. This
class automatically keeps its relative position towards its associated tested class.

F Another consequence of association is an automatic running of a compilation of the test class
after the compilation of the tested class. Therefore it is not needed to ask for it solo.

F If triple dots appear in the head between the type and the parameter’s name, it means that you
can enter any number of parameters at this place, including zero (i.e. no) parameters.

F BlueJ solves the variable number of parameters by adding the buttons [+] and [–], with the aid of
which you can adjust the needed number of input fields.

F Keep the order of entered parameters.

F In case the created object should not be dependent on changes of objects that the constructor re-
ceives as parameters and which should become parts of the created object, it is suitable to use
copies instead of these objects.

F The design pattern Prototype recommends teaching objects how to create their own copies. They
can often solve situations when it is necessary to create objects without having information for
their direct creating.

Project:
The resulting project form to which we came at the end of the lesson after passing all exercises is in the
111z_Multishape project.

100 Part 1: Interactive mode

12 The Introduction into Design Patterns
12. The Introduction into Design Patterns – 000000

12 The Introduction into Design Patterns
What you will learn in this lesson
In this lesson you will see the design patterns as well as patterns used in our project in details. After that
you will learn how the class can concurrently implement several interface types and what are the
advantages for the programmer emerging from it.

Project:
In this lesson we continue in using the 111z_Multishape project.

195. You told me in the previous lesson that before transition to a new project I have to learn something. What is it?

I wanted to present you the design patterns and to show you how it is possible to improve our exam-
ple with the mover.

Design Patterns
196. Design patterns? What is it?

The design patterns are programming analogy of mathematical formulas. They advise you how to
solve certain type of tasks. They do not say that the designed solution is the only one possible, but
everybody knows, that it is adequately universal and, above all, verified in time.

Look for example at the well-known formula for solving the quadratic equation. You have learnt in
the school that the solution of the equation

you can receive by substituting the appropriate values in the following formula

Nobody forces you to use this formula (except being examined in the school). There is a number of
quadratic equations that can be solved quicker without the formula. Nevertheless, in majority of cases
using the above formula is the best and most suitable way of solution.

If you learn to use this formula you gain several advantages:

F You get the solution quicker because you will not be pressed to think how to solve the task.

F You significantly decrease the probability of a fault you could do if you would only invent the
solution.

F By using the formula you receive also a related terminology, which makes the communication
easier. When you say to your colleague that the discriminant is negative, he immediately

www.dbooks.org

https://www.dbooks.org/

12. The Introduction into Design Patterns 101

knows, what does it mean for solving the problem and you do not need to explain extensively
how it is with the ability to solve the quadratic equation.

By using the design patterns you gain the same advantages.

197. I know the advantages of mathematical formulas, but despite it I don’t understand how the programmer’s
analogy could look out.

The mathematical formulas are directives to which you install numbers. The design patterns are direc-
tives, to which classes and objects are installed.

Examples of Design Patterns
198. Well, I start to feel what they are about. Could you give me an example?

Yes, of course. There are several of them in the project which we used until now. We used another of
them in the last two lessons and further they will be used in the project with which we are starting to
work since this lesson.

Library/Utility Class
The simplest design pattern used in our project is the Library Class for which also the name Utility
Class is used. It is a class which serves as a box for statistical methods and fields (in our project there is
a class IO serving like that). It does not need to create any instances. And when it does not need them,
it is suitable to exclude creating them. This can be reached by closing its constructor to surrounding
objects. Without available constructor nobody can create any new object.

Simple (Static) Factory Method
 The Simple Factory Method for which also the name Static Factory Method is used is a statistical method
which returns a reference to an instance of its class. Thus it can be used similarly as an operator new
with a contractor. Contrary to the operator new it can decide itself, if it calls new and allows to create a
new instance or if it returns a reference of an existing instance to the applicant. Its further advanta-
geous properties will be discussed later.

A simple factory method in our project is e.g. the method getCanvas(), by which we request the
class Canvas for its instance, or the set of methods getNamedColor(???), by which we ask the class
NamedColor for its instance.

Singleton
Sometimes we need a class which has only one instance. This problem is solved by the design pattern
Singleton. It recommends:

F to exclude the constructor (otherwise as much instances can be made out as you would like),

F to offer a simple factory method for getting a reference of an instance which returns the
reference to the same instance – the singleton.

102 Part 1: Interactive mode

According to this pattern there is a class Canvas defined in our project which guarantees that several
not-communicating canvases will not be wandering through our display and that all pictures we
would draw will be drawn at the same canvas.

Enumeration Type – Multiton
We could consider the class which defines the enum type as a generalization of a singleton. The sin-
gleton has an only one instance; the enumeration type called also shortly enum type (Multiton is also
used) has more instances. These instances are named beforehand, so that they are known and we can-
not add any other during the program’s running. The enum type has got its name according to listing
of its instances – we call it enum because its instances are defined by an enumeration.

The enum type (similarly as the singleton) has an inaccessible constructor, so that it would be not
possible to create further instances. Contrary to the singleton, all its instances are defined as its public
fields. That’s why you do not receive references to them exclusively by a factory method, but in most
cases you request directly for a given field.

The only one enum type in our project is the type Direction8.

Servant
The design pattern Servant solves the problem how to add a supplementary functionality to a group of
classes without inserting nearly the same method into each of them and violating by this the principle
not to repeat the same or the very similar code. It recommends to define (or gain by another way) a
new class whose instances would be able to mediate the realization of supplementary functioning.

We can assume that the instances of this new class act as servants of the operating instance which
we can equip with the supplementary functioning. So that the servant could properly serve, it must be
in accord with the served object. Therefore, the servant class comes in pair with the interface which
declares what the served objects have to know so that the servants could assist them. The servant
methods mediating this supplementary functionality have an instance of this interface in the range of
their parameters. The required supplementary functionality can be obtained by sending a relevant
message with the served object passed as a parameter.

We have already met the design pattern Servant when we solved the problem of smooth shifting of
our objects in previous parts. Instances of Mover class operated as servants, our graphic objects were
the served objects and the IShape interface was a required interface that had to be implemented by all
served objects.

199. According to your explanation it seems to be simple, so why they are so brilliant?

Majority of design patterns is really simple and comprehensible. It is rather a matter of realizing how
the given problem can be solved. Many of those patterns belong to the group of: “It’s so simple – why
I didn’t have such an idea myself?” However, their detailed explanation is a bit more extensive, com-
pared to the brief view I have provided to you just now.

The biggest contribution of design patterns is the idea of a set of formulas for programming simi-
larly as for the mathematics and physics. But I have to admit that the programmers were not the first
who came with such idea. They were inspired by an architect Christopher Alexander, who came with
a thought to apply basic design patterns in architecture in the 70ties of the last century. His views

www.dbooks.org

https://www.dbooks.org/

12. The Introduction into Design Patterns 103

were interesting for several programming gurus who started to apply them in programming at the
end of the 80ties. And when in 1995 the famous book Design Patterns was published, the idea of design
patterns started to spread with a snow-ball effect in the programming world. At present, the pro-
grammers who do not know any design patterns are not considered as worthy by big software
companies.

This is also one of the reasons why I tried to present you the design patterns since the beginning of
the course. Now we have learnt basic characteristics of the first few of them and I will present several
others to you in course of the following lessons.

The Implementation of More Interface Types
200. You told me at the lesson’s beginning that you want to show me how it is possible to improve our example with

the mover.

That’s right. I have said that we used the design pattern Servant to learn our shapes moving fluently. I
have also said that the servant class occurs in pair with the IShape interface which declares what the
assisted objects have to know, so that they may be assisted in all respects. However, our IShape inter-
face declared also a number of methods that were not needed by movers for their work. To give you
an example it concerns to methods getWidth() and copy().

201. You are true. And which methods would then be sufficient to the movers?

The movers would be satisfied if the assisted objects would be able to say their current position and
adjust the new one.

202. I think that they didn’t have to be able to say their current position because (as you told) the whole shifting is
only repeated adjusting of new, a little bit shifted positions.

You are true, but to calculate to which positions the mover shall gradually locate the object, it has to
know the object’s current as well as the target position. The target position can be recognized in pa-
rameters, the information on current position can be obtained from the shifted object.

To sum up: the mover would be satisfied with objects which are able only to say and adjust their
position, but, because its methods require a parameter of IShape type, the fluently shifted objects have
to know (unnecessarily) a number of other skills.

203. I see, it didn’t cross my mind. Does it mean that we should define the IShape interface more modest?

Neither this would be good. The IShape interface shows what our shapes know to do and in case we
would “restrain” them we could meet a task in near future which would require so that the objects
would understand to a message and would know how to react, but which is not mentioned by the
interface.

204. Which for example?

For example, when we would like to teach the objects to change fluently not only their position but
also their size. The servants that would provide such functioning would be satisfied with objects that
are able to say their current size and adjust the new one.

104 Part 1: Interactive mode

205. You are true. So what’s your advice?

We will proceed in two phases. In the first phase, please remove the current class Mover (by entering
the command Remove in its context menu). In the second phase find a subfolder Extension_12 in the
project folder and import a modified version of the Mover class from it. It differs from the original one
only by the fact that its methods shift objects of IMovable type, which is an interface which, of course,
you have to import together with the Mover class.

Note:
When you will import this class as well as the interface, don’t forget that BlueJ supports the
simultaneous import of multiple source files. It is sufficient to add further files into the selection
range in the dialog for entering the imported files while pressing the button CTRL. I remind this
convention just to be sure, because you certainly know it from Windows.

206. The newly added class and interface types are marked as not compiled. Should I compile them?

If you will be more attentive, you will see that the classes Tests and MultishapeTest are marked as not
compiled because both of them cooperated with the Mover class which we have removed. We replaced
it by the new class, but we cannot deceive BlueJ – it will not believe until it compiles the classes. And it
is good because in the new adjustment these classes cannot be compiled. As we have said the new
mover does not use parameters of IShape type, but uses the parameters of IMovable type.

If you open the documentation of an IMovable interface, you will discover that its declared methods
are only a sub-set of methods declared by IShape interface. As I have already shown in the section
Implementation of an interface by the Class on page 85, it is not sufficient to define all required methods to
pass the class instance off as an instance of certain interface. You have to explicitly inscribe to its
implementation. And you did not do it yet.

So draw the implementation arrows from all four graphic classes also to an IMovable interface (see
figure 12.1). Then the compiler will be satisfied and everything will be O.K.

207. Does it matter when the class implements several interface types?

No, it doesn’t matter. By implementing the interface the class only pledges that its instances will im-
plement all methods that are declared by the given interface. When the class decides to implement
several interface types it has only to provide implementing of all methods declared by all implement-
ed interface types.

I like to compare it with a common life. The objects also alternate their interfaces in it. Imagine that
you are in a restaurant and you are served by a man who “implements” an interface the waiter. In this
moment you do not bother if he knows e.g. to drive a car, you need so that he would be able to serve
you. When he finishes his working hours, he sits e.g. in a car and goes to see his friends. During his
way he implements an interface the driver and in case a policeman would stop him, he should be
checked only if he implemented properly this interface. When he arrives to his friends, they can play
e.g. football. In this moment he starts implementing an interface the football player and again, it is not
relevant what else he knows.

www.dbooks.org

https://www.dbooks.org/

12. The Introduction into Design Patterns 105

 Similarly it is in the program. In the given moment the object acts as an instance of some interface
and other objects that communicate with this object can send only such messages to it, which are per-
missible for the instance of the given interface. After some time the object can act as an instance of a
different interface and thus it again limits the set of acceptable messages. And due to the fact that the
compiler knows what the object acts as in the particular moment, the compiler can check if the object
does not receive anything else than what instances of the given interface can know. Thus, in the com-
pile-time it can catch a lot of errors which would otherwise appear in the runtime and might have
very unpleasant consequences.

208. And what about when two interface types declare the same method? How can be determined, which one should
be called?

If two different interface types declare a method with the same head, we have to take into account that
both declarations will be implemented by one method. In other words: the implementing class will as-
sume that there are two declarations of the same method. (You will meet such example in the next
lesson.)

In case each method should do something different, you would have to solve this possible clash
and one of those methods should be renamed or you would have to find another solution. (Don’t ask
me which one; I will explain it after it will be needed.)

Figure 12.1

The class diagram after importing Mover and IMovable types and supplementing of new implementations

106 Part 1: Interactive mode

Exercise
209. So what will I train today?

Last time you trained fluent shifting, so today try a smooth enlargement and reduction. Proceed as fol-
lows:

1. Import another three types from the folder Extension_12: the Resizer class and interface types
IResizable and IChangeable.

2. Draw the implementation arrows to both added interface types from all classes implementing
the IShape interface. It means four arrows will go to each interface.

3. The class diagram will become chaotic, so you have to reorganize it – e.g. according to figure
12.2. But still there will be more arrows than would be pleasant, next time I will show you how
to get rid some of them without losing the functionality.

4. Look on which services the instances of Resizer class offer to you and define the test methods by
which you examine fluent enlarging and decreasing of your shapes.

This time I will not tell you how precisely you have to examine the smooth change of size. Involve
your own fantasy. In case you would need an inspiration, you can have a look at the test
testSmoothResizing in the class MultishapeTest in the final version of today’s project.

Figure 12.2

The class diagram before test for smooth size change

www.dbooks.org

https://www.dbooks.org/

12. The Introduction into Design Patterns 107

Review
I tried to show all what we debated until now in the additional animation. Turn it on and try every-
thing once more in it.

Animation 12.1: More interface types – OOPNZ_112_A1_MoreInterfaceTypes
The animation will show the explained items, i.e. importing of further interface types and the definition of
implementing several interface types by one class.

Let’s repeat what you have learned in this lesson:

F The design patterns are programming parallels to mathematical formulas to which, instead of
numbers, the classes and objects and sometimes also methods are installed.

F Knowing the design patterns helps to create a quick, effective and easy adjustable program.

F The design pattern Utility Class called also Library Class serves only as a box for static methods.
It does not need any instances and therefore it should have inaccessible constructor.

F The design pattern Simple Factory Method (called also Static Factory Method) is a static method
which is defined by classes instead of the inaccessible constructor.

F The design pattern Singleton pattern proposes how to define a class which will have only one
instance.

F The design pattern Enumeration Type called also shortly Enum type or Multiton defines a fixed set
of instances known in advance and does not allow to create further instances.

F The design pattern Servant shows how to add functionality to a group of classes without adding
nearly the same method to each of them.

F The class, whose instances act as servants, has an associated interface which specifies what the
instance that should be served by the servant, has to know.

F The class can implement several interface types simultaneously.

F Objects of the program are similar to objects in real life – they also act in various situations simi-
larly as instances of various interface types.

F Identical declarations of a method in various interface types are considered as declarations of
the same method. In case the class implements several interface types and several of them de-
clare the same method, all these methods are implemented at the same time by only one
method.

Project:
The resulting form of the project which we reached at the end of the lesson after passing through all
exercises is in the 112z_Servant project.

108 Part 1: Interactive mode

13 The Inheritance of Interface Types
13. The Inheritance of Interface Types – 000000

13 The Inheritance of Interface Types
What you will learn in this lesson
In this lesson you will continue in working with interface types. You will learn how the data types create
inheritance hierarchies and you will see three types of inheritance. Then I will explain what the difference
between a signature and a contract is and you will meet the first definition of an interface. Then we shall
adjust the hierarchy of interface inheritance in this project and finally how it is possible to create project
documentation.

Project:
In this lesson you continue in using the 112z_Servant project.

210. Recently I’ve got rid of some arrows but my class diagram was again full of them at the last lesson’s end. Shall
I switch off showing of arrows again?

No, the implementation arrows are immensely important for understanding the project architecture.
But today I will show you only how the number of arrows can be decreased without losing any inter-
esting information.

Hierarchy of the Types
211. I am eager – go on and explain!

The idea is simple and uses a mechanism which is called inheritance. Principally, you can often find a
group of instances with common special properties among instances of certain type. They can be
defined as a subtype, which characterizes this specialized group of objects. This subtype is often
called a child of an original type. Logically the original type is called a parent type of given subtypes.
And when I speak about the terminology, I would like to mention that the parent is sometimes called
a basic type and the descendant are called derived types. The following table shows all terms in use:

 Parent type – Child type
 Ancestor – Descendant
 Basic type – Derived type
 Supertype – Subtype

A basic feature of inheritance is that the instance of the child type inherits all properties and abilities of
its parent. Due to the fact that we know a bit more about the child type (we know its specialization),
we can equip its instances by other properties and abilities which ensue from its specialization.

212. Well, you shoot the terminology as from a machine gun, but I didn’t hear any example.

The inheritance of types is usually illustrated at an example of animal as well as vegetable species.
Completing of such example is your turn but when we are sitting at the PC, we can try one example of

www.dbooks.org

https://www.dbooks.org/

13. The Inheritance of Interface Types 109

this kind. In case we have an object of PC type, we know that it is suitable for a number of various
tasks but we cannot say more about its possible usage.

To estimate better what you can require from the given computer, you should define the subtypes
of the general PC – let’s say hall computers (supercomputers, mainframes, minicomputers), desktop
computers, portable computers (notebooks, tablets, smartphones) and embedded computers (e.g. in a
car, microwaves etc.). Besides it, there is surely a number of computers that cannot be included in any
of the above mentioned kinds.

As mentioned in parentheses, each type has its subtypes. If we have a look at the other side of the
inheritance tree, we could say, that computers are a special kind of electronic devices, the electronic
devices are a special kind of general devices and so we could continue in generalizing so long so that
we would get to some fully general object.

213. Well, I understand what it means to include objects into certain hierarchy and surely I could give you an exam-
ple just from the animal world which you have avoided – e.g. that dogs are a special type of mammals and
mammals are a special kind of animals. But be so kind and let me know, why such classifying?

You ask properly. It is important to know what the object is, but let’s admit that in programming we
are more interested in what the object knows or what I can require from it. When we return to com-
puters it’s useful to know that the given PC is a notebook because you can derive a lot of its proper-
ties, but no less important is knowing under which operating system it works and which programs are
installed in it etc.

In case I speak about animals, it’s useful to know if the given animal is a dog, a gnat, an elephant or
a guinea pig. But in case you already know that the given animal is a dog, a lot of people are not inter-
ested in its variety but more to which commands the animal understands, how often it is necessary to
walk out with it etc. However, this is a different category of properties. To give you an example from
life: besides a dog we used to have a tom cat and it learned to obey the dog’s orders better than a lot of
dogs we used to meet. In many ways we could treat it as a dog. So it is similar in programming, i.e.
that you can treat an object of a certain type as if it would be something else.

The fact that the given animal is e.g. a dog does not necessarily mean that it knows how to retrieve.
On the other hand you can define a type CanRetrieve, into which you will include all objects properly
reacting to the relevant message. On one side, instances of this type might be dogs, but on the other
hand, we could include maybe falcons and other domesticated bird raptors, dolphins or trained robots.

214. Examples you mentioned were surely interesting but I’d like to ask you to put an example that is a bit closer to
programming. The example which would give me an idea what it would mean for me in programming.

I am going to do it. From my previous longer outlining you should come up to a conclusion that the
most important thing in programming is not the class of a given object, but its interface (I don’t have on
my mind an interface construction, but really a general interface), i.e. what you can require from the
object and what the object can offer you.

Let’s take our project. There are classes of graphic shapes (Ellipse, Rectangle, Triangle, Multishape)
and besides them also the classes which could be marked as auxiliary ones. We could monitor e.g. the
focuses and half-axis of an ellipse, what is the length of separate triangle sides and a lot of further in-
formation which we have learned in mathematics and which characterize a particular graphic shape.
For our purposes is, however, more useful when we know that it is able to draw the given shape,
when we know to adjust its position and size as well as some other properties.

110 Part 1: Interactive mode

When we look to our servant classes, their requirements are even more modest. The mover is satis-
fied when the served object is movable (i.e. it knows to tell and adjust its position), the resizer is satis-
fied if the object is resizable (i.e. the object knows to tell and adjust its size) and one of its demanding
methods insists on the fact that the served object has to be changeable (we could say it is movable and
resizable at the same time).

As I have shown you last time, requirements for what the object should know can be declared
through the interface construction. When we would like to deal with inheritance, it would be more
advantageous to deal with above all the inheritance of interface. The interface does not divide the ob-
jects according to what they are, but according to what they are able to do. Thus the hierarchy of
interface specifies the inheritance based on the abilities of objects.

Three Types of Inheriting
215. Should I understand it that besides the interface inheritance (i.e. inheritance of interface types) there is also

something like class inheritance?

Yes, it is. And when the inheritance is explained in current programming courses, usually the class in-
heritance is explained as the first one. Students are explained how it is recorded in a program and
what it can be used for. Unfortunately, they only rarely learn all its snags and dangers and there are
really a lot of them. Due to it their programs are not overflowing with stability.

If I want to be precise, the OOP distinguishes even three types of inheriting:

F Inheriting of type corresponds with interface inheriting in programs. This inheritance is a key
one in programming. If I would inherit the interface of my parent, I will offer the same as my
parent (and maybe even something more, but let’s disregard it now), and therefore I will be able
to impersonate as a parent instance. This inheritance applies not only in inheriting of interfaces
(a general object property), which we shall debate in this lesson, but also in implementing the
interface (a special kind of data type) by the class (another kind of data type). From the view
point of types inheriting it is possible to consider the implemented interface as one of the
parents of classes which implement them.

F Inheriting of implementation which asserts itself in inheriting of classes. During it I take over
not only its interface but also all its implementation. Therefore, I don’t have to define my own
method, but I can use the parent one. But just in implementation inheritance there is a lot of
treacherousness about which I have spoken and therefore we will avoid it in the first part of our
course.

F Natural inheriting speaks about how you perceive the specialization of objects regardless how
we program it. We have been explained in the school that e.g. the square is a special kind of rec-
tangle which has all its sides of the same length. The square thus can be theoretically defined in
the program as a descendent of a rectangle. But this would be valid only until the time when
our application would require so that the rectangles would be able to change their sizes inde-
pendently. The square is not able to do it, because it has to have all its sides of the same length.

A properly proposed program has all these three aspects of inheritance in accord. However, it is not
simple to reach it and in a number of programs the individual aspects are mutually in contradiction.
This is also one of the reasons why the textbooks’ authors often avoid explaining these problems.

www.dbooks.org

https://www.dbooks.org/

13. The Inheritance of Interface Types 111

Consequences of such missing explanations are a false usage of inheritance which we often meet in
programs.

As you might understand, it is really not simple to explain the inheritance well, and it is very de-
sirable so that the students should already have certain knowledge and skills and would be able to put
things into coherence. To avoid it I will ignore the fact that there are three types of inheritance and
when I will speak about inheritance I will concentrate only to the type inheritance, to be precise to the
interface types inheritance. The remaining aspects of inheritance, together with an explanation how to
harmonize them, will be debated in the next course (= in the next part of the book).

As far as the class inheritance is mentioned, we will limit roughly on what we have already debat-
ed in the section The Class Object on page 60. To be sure I repeat once more:

F All classes are descendants of the Object class. Thus they inherit its whole interface as well as its
implementation.

F If the inherited implementation of some method does not suit to certain class, it can define its
own implementation. Then, the implementation defined in their mother class will be used for
instances of a given class regardless to which instance they pose as.

One interface Missing
216. I reconcile with the fact that for now I will not receive any information about implementation inheritance. What

will you tell me about the interface inheritance or (more generally said) type inheritance?

Don’t be afraid, it will not be so extensive. I told you that instances of child type are in fact instances of
parent type which have some special properties. Knowing of these special properties is for me, a pro-
grammer, additional information which enables me to define further methods for these instances (i.e.
to teach them understanding to further messages), methods for the realization of which the special
properties of this subtype are necessary.

Let’s have a look at our project. If I will have objects, which will know only what the IMovable inter-
face requires from them, I can only locate them to various positions and possibly move them smoothly
with the mover. To profit from it, they should be painted at the canvas. We neglected this until now
because we didn’t meet any object which would be movable and wouldn’t be able to paint themself at
the canvas. But it means that all movable objects should know how to be painted at the canvas.

We can look at it on the other way around. The movable objects are interesting for us only in case
they can be painted. We could say that the movable objects are a special subset of all objects that can
be painted. Their specialty lies in the fact that besides they can be painted, they also can tell and adjust
their position at the canvas.

A while ago we stated that if we have a set of objects with special properties it is suitable to define
a special type for them which is a descendant of their original type. However, now we are at a reverse
position. We have a descendant but we do not have parents. We need a parent which would charac-
terize all objects that know how to be painted at the canvas.

What such an object should know? To be precise, to which messages it should understand? What
do you think?

112 Part 1: Interactive mode

217. It’s simple – it should be able to be painted. It should understand the paint() message – it’s understandable
for all our graphic objects.

I knew you would fall into the trap. We send the paint() message to an object in case when someone
erased a bit of it and we want to paint it as a whole again. But when you send a message to move to a
position, at which it is just now, i.e. a message

object.setPosition(object.getX(),object.getY())

it will probably repaint. After all, it will paint itself after each position adjustment as well as after each
adjustment of the size or of a color.

218. Well, you have caught me now. To which messages it should understand?

Attention, a surprise: to no one. We don’t have to require so that it would understand to any messag-
es, i.e. so that its class would not define any methods, but we are satisfied with a promise to know to
be depicted at the canvas.

219. Probably you are true, but how it can promise it?

A trick: we will leave him to implement an interface (let’s call it IPaintable), which will not require
implementing of any method, but it will only request to promise that it will know something.

Signature versus Contract
220. Something is wrong here. In the section Implementation of an interface by the Class on page 85 you told that

the class has to enroll to interface implementation so that the compiler could check if it fulfills what it prom-
ised. But how can be anything checked if the class doesn’t have to implement any method?

In chapter The Interface on page 77 I told you that each program’s entity has two faces: an interface and
an implementation. Now I add another piece of information: the interface has also two faces: a signa-
ture and a contract.

A signature (sometimes you can meet the term a header) comprehends everything what the compil-
er can check (everything, what we find in the declaration). The data type declares its name in and a set
of declared fields and methods (messages), the methods declare their name in, type of return value
and types of separate parameters. (To be precise this is in Java and similar languages. Some languages
are more modest in this respect.) We could say that the signature specifies how the given entity should
look out in the program.

The contract specifies what the given entity should know and for what it can serve. This cannot be
verified by the compiler (possibly sometimes in the future), this has to be checked by the programmer
himself (or he can find a tester for it).

Because I know how you are keen into examples, I will try to repeat it at an example of a method
setPosition(int,int).

F Signature of this method comprises that it is public, it does not return anything (it has declared
the void return type), its name is setPosition and it has two parameters, both of them are of int
type.

When quoting the signature also the declared names of parameters are sometimes stated.
But it is only for the better orientation of the reader in the meaning of individual parameters. If I

www.dbooks.org

https://www.dbooks.org/

13. The Inheritance of Interface Types 113

would state the full signature of the quoted method, I would probably copy its heading and
wrote as follows (the same is quoted for the class documentation):

public void setPosition(int x, int y)

F We would include into the contract that after calling this method the object really will move to a
position with the given horizontal and vertical coordinates, so that when we would ask for its
position it should quote just the coordinates we have adjusted. Thus the contract of the method
setPosition(int,int) is connected with methods of position getting at the same time.

If I would get back to our IPaintable interface, its signature would limit only to its name and all its
meaning for the rest of the program would lie in its contract, i.e. in the fact that class instances, which
implement them, can be painted at the canvas.

221. You have just thought out this interface without methods or it is currently used?

The interface types without methods are not so extraordinary and they have their own name – they
are called tag interfaces (i.e. interface types) or marker interfaces.

Definition of a New Interface Type
222. Will we import this interface from somewhere?

Yes, you can do it, I have prepared it but due to the fact that it does not declare any methods, you can
define it yourself.

223. So shall we start writing a code?

Not immediately, but in this case it is sufficient to add a new interface into the class diagram. Try it.
Press the button New Class in the left panel. The dialog box Create New Class in which the BlueJ asks
you for the name of the created class and its type. Assign the name IPaintable and set the switch Class
Type to the state Interface (see picture 13.1).

New Hierarchy of the Interface Types
224. The interface was created. If I understood it properly, I should

put on implementation arrows to it from all graphic classes. But
the number of arrows will again increase and you’ve said we shall
decrease it.

You are right; we will decrease it, so don’t draw anything. On
the contrary, you will start with cancelling the majority of exist-
ing arrows. Click gradually on each arrow that does not lead to
an IShape interface (these are the only ones to be kept), and thus
you will pick it out. (In case you would have troubles to hit the
arrow, click on its head – it is bigger).

You can recognize that you succeeded to select the arrow ac-
cording to the fact that BlueJ will draw it bold. Click on the

Figure 13.1

Creating a new interface

114 Part 1: Interactive mode

selected arrow once more, this time with the right button. Thus you will open its context menu with
the only command Remove. Enter this command and the arrow disappears.

225. I have cancelled all shapeless arrows. And what now?

Rearrange the interface types and stretch the arrows among them according to the figure 13.2.

Figure 13.2

The new hierarchy of interface types

226. There are implementation arrows among interface types at the figure. But the interface, cannot implement
anything.

This time those are not implementation arrows but arrows of inheritance which are always oriented
from the descendant to its parents. According the UML rules, the inheritance arrows should not be
dashed, but BlueJ paints all arrows pointing to interface types as dashed. You can recognize the
difference according to the arrow’s root: if it is an interface, it is inheritance, if it is a class, it is an
implementation.

After you will stretch all arrows, start the tests to examine that you did not influence the function-
ality by changing the architecture.

227. You are true; it operated even in the new arrangement. But you should explain where you pushed me.

Let’s start with the IPaintable interface. I said that all objects which you want to move and inflate,
should know how to be drawn, and that the movable and inflatable objects are only a special case of
more general drawable objects. Therefore you stretched the inheritance arrows from both of them to

www.dbooks.org

https://www.dbooks.org/

13. The Inheritance of Interface Types 115

the IPaintable interface, so that you would indicate that the interface types IMovable and IResizable are
its descendants.

Similarly it is in the next layer. When you will have a look to the documentation of the IChangeable
interface, you will see that it declares all methods of IMovable and IResizable interface types. We could
say that the changeable object is a special kind of movable object, which can change also its size, re-
spectively a special kind of a resizable object that can change also its location. Thus the interface ful-
filled the condition for becoming the descendant of both mentioned interface types. By stretching the
inheritance arrows we have created an interface with two parents. (Contrary to people, the interface
types can have any number of parents.)

Similarly it is with the IShape interface. The objects posing as instances of this interface are special
cases of changeable objects which can react to a group of commands requiring creating of their copy,
painting them on the canvas and rubbing them out from the canvas.

Inheriting of the Interface Types
228. Well, you’ve explained me why I should put up the arrows in the way I did. But I cannot understand what its

advantage in the program is.

You have already seen the first advantage – the program is more transparent and its architecture, i.e.
the way of arranging separate data types and their mutual links, is more comprehensible. As I have
already told, all inheritance definitions come out of the fact that the descendant characterizes a certain
subset of ancestor’s instances. The following basic rule of the OOP ensues from it: the descendant’s
instance can pose as a parent’s instance at any time.

When you know, that e.g. an Ellipse implements the IShape interface, then you know at the same
moment that it implements all parent interface types and can pose as an instance of any of them. The
mover requires the parameter of IMovable type. When you know that ellipses can pose as an instance of
the IShape interface it is logic that they can pose also as an instance of IMovable interface and be assisted
by movers. That’s why all our tests were operating.

229. You told that the descendant’s instance can pose as an ancestor’s instance at any time. The ellipse (and general-
ly any of our shapes) can pose as an instance of IShape interface. May I consider them as descendants of this
interface?

Of course, you should take it as that all arrows with triangle head indicate the inheritance. Our classes
of graphic shapes are descendants of interface types implemented by them according to the class dia-
gram and all descendant’s rights and duties pass to them.

230. Descendant’s rights and duties? What is it?

Everything ensues from the basic rule which was postulated by Barbara Liskov in 1988 (sometimes it
is marked with an abbreviation LSP – Liskov Substitution Principle) which I emphasized with a bold a
while ago. This principle is in reality even more rigorous:

116 Part 1: Interactive mode

The instance of subtype has to be able
to pose as a fully-fledged ancestor’s instance at any time4.

It is its duty and its right ensues from it: when it is able to pose as a fully-fledged ancestor’s instance,
nothing can hamper it posing as such instance. After you will know the OOP a little bit more, you will
recognize that a significant part of inheritance characteristics are connected with this rule.

231. You outlined that there are further advantages.

Another advantage is appreciated particularly by programmers because they don’t have to copy the
repeated declarations. At the beginning I told you that the descendant’s instance would inherit all
properties and abilities of the ancestor. It inherits its properties by inheriting all its methods – in case
of an interface it inherits all ancestors’ declarations of methods and so they do not have to be quoted
once more.

However, one consequence ensues from this: if the class decides to implement certain interface, it
has to implement not only all its methods, but also all methods declared by any of its possible ances-
tors independently to the fact if they are or are not stated in the definition of the implemented
interface.

Documentation of the Project
232. I suppose that if I’d like to program such class, I’d have a look into the documentation of an implemented

interface and I’ll find there all methods which I should define.

Yes and no. You will find only those methods in the interface documentation, which the given
interface declares. In case it does not declare certain methods, but only inherits them, you can find on-
ly their list in the documentation, and the detailed description of the contract can be found in parent’s
documentation.

However, for now I showed you only the documentation which the BlueJ depicts in editor’s win-
dow. But it is not completed because it doesn’t contain hypertext references among individual pro-
ject’s classes (e.g. you cannot directly move from the descendant’s documentation to ancestor’s
documentation). First of all you have to create the complete project documentation.

233. Slip it here. How can I do it?

So that I could explain it clearly, I have to modify our project a bit. For now all interface types declare
both the inherited as well as the added methods, and that’s why I cannot show you how to proceed
when you need to learn something about a method that is inherited but the interface does not declare
it itself.

4 Exactly: If S is a subtype of T, then objects of type T may be replaced with objects of type S (i.e., objects of type S

may be substituted for objects of type T) without altering any of the desirable properties of that program
(correctness, task performed, etc.).

 More formally: Let q(x) be a property provable about objects x of type T. Then q(y) should be provable for
objects y of type S where S is subtype of T.

www.dbooks.org

https://www.dbooks.org/

13. The Inheritance of Interface Types 117

Remove the interface types IShape, IChangeable and IPaintable from the project and import their
source codes instead of them from the subfolder Extension_13 of the folder of this project. If certain
arrow will not depict after the import, stretch it once more.

234. I am ready. What now?

Open the menu Tools and enter a command Project Documentation. BlueJ will ask the javadoc program
which is a part of JDK to generate a complete documentation and will open it in your preferred
browser.

Figure 13.3

The documentation of projects and its cross references among separate types

118 Part 1: Interactive mode

The browser will open the created documentation in a window with two panels: all types (i.e. clas-
ses and interface types) are motioned in the left one, and in the right one, there will be the documenta-
tion of the type you click on in the left panel. At the beginning there will be a documentation of Canvas
class, because it is the first in the alphabet, and the left list starts with it.

235. For now it all corresponds. What shall I do with the documentation?

Click on the left on the IChangeable interface, and the page (see figure 13.3) will occur on the right. It
will offer you a number of useful hypertext references compared with the editor’s page:

F The initial name of the interface is followed by a list of hypertext references to all ancestors un-
der the title All Superinterfaces. If you click on any of them, you will get to its documentation.

F Further you will find a list of hypertext references to all found descendants under it, entitled All
Known Subinterfaces.

F It is followed by a list of hypertext references to all found classes that implement the given
interface under the title All Known Implementing Classes.

The table entitled Method Summary which has to comprehend a list of all declared methods is empty
in case of IChangeable interface, because it does not declare any methods, but only inherits them. (If it
would decide to declare the inherited method, it would be present for the case that precising the
contract would be a part of this declaration.)

The table with an overview of declared methods is followed by a sequence of tables; each of them
is devoted to one ancestor and contains hypertext references to all methods inherited from this ances-
tor. So, if you need to learn anything about each of these methods, you only click on it and you will
get the required information.

236. I am interested in how the documentation generator recognized that “the instance of IChangeable interface rep-
resents geometric shapes…” as well as further affirmations described in the documentation.

The so called documentation comments are an integral part of the code to which the decent pro-
grammers write information for those who would like to use the code sometimes in future. These
comments contain the proper description of the contract about which we have spoken a while ago.
After we will write the code I will ask you to include them into your programs automatically.

Exercise
237. Phew, I’d say that there were too many new things in this lesson. Have you prepared an exercise for me?

Not today, because this lesson was rather informative. Maybe it would be better if you could go
through the whole project’s documentation within the exercise framework and have a look which new
pieces of information it provided to you. Later on, when you will be searching something particular,
you may use it.

Review
I tried to show all what we were discussing here in the accompanying animation. Turn it on once
more and have a try.

www.dbooks.org

https://www.dbooks.org/

13. The Inheritance of Interface Types 119

Animation 13.1: The inheritance of interface types – OOPNZ_113_A1_DedicnostRozhrani
The animation repeats what was explained during the lesson, i.e. the definition of inheritance among in-
terface types and ensuing consequences.

Let’s repeat what you have learned in this lesson:

F The architecture of the program – this is a way of arranging the individual types and their mu-
tual relations.

F In case you find a set of instances with common special properties among instances of certain
type, it is useful to define a special subtype for them.

F The couple (supertype ® subtype) is also called (basic type ® derived type), respectively (par-
ent type ® child type), respectively (ancestor ® descendant).

F The relation between the supertype and subtype is called inheritance.

F In programming we are usually more interested not in “what the object is”, but “what the object
knows”, i.e. what we can require from it.

F Requirements for object’s abilities are usually declared through a construction of an interface.

F The interface inheritance concerns of objects’ abilities, i.e. the instances of child interface have
to know all what the instances of parent interface know, i.e. they have to understand to mes-
sages that are declared in the parent interface.

F All graphic objects in our project are special cases of objects which know to draw themselves.
We can specify that they are instances of the IPaintable interface, which requires this ability.

F The interface types of each entity have two components:

F The signature which represents the part of the interface that can be checked by a compil-
er. It specifies how the given entity should look out in the program.

F The contract which comprehends properties that cannot be checked by the compiler. It
specifies what the given entity should know and which it can serve for.

F The interface, which does not declare any methods and specifies only a contract, is called tag
interface (also called a marker interface).

F The new interface is defined by pressing the button New Class at the left panel. Subsequently its
name should be entered in the opened dialog box and we set the state Interface in the switch
Class Type.

F The child interface inherits all methods of its parent. Therefore, the class that implements cer-
tain interface has to implement also all methods declared by its possible ancestors.

F The child interface may declare – but does not need to declare – once more the inherited
methods.

F The program’s architecture can be more transparent by suitable definition of the inheritance.

F The class implementing certain interface can be considered as subtype of this interface and the
implemented interface as the supertype of the given class.

120 Part 1: Interactive mode

F Besides the interface inheritance also the implementation inheritance is used. However, this
brings a lot of trickiness and therefore I will not explain it in this introductory course.

F When installing the interface we always have to respect the Liskov substitution principle (LSP)
which says that instance of a subtype has to be able to fully-fledged pose as an instance of its
supertype any time.

F The documentation depicted in the editor’s window is not completed because the hyper-text
references aimed to another classes do not occur in it.

F You ask creating a full documentation of the whole project by entering the command Tools
® Project Documentation.

F The full project’s documentation can be opened in a default browser in the window with two
panels:

F The left panel contains a list of all classes of the project.

F The right panel contains the documentation of the class or interface selected in the left
panel.

F Only methods which the given interface declares are quoted in the interface documentation in
the table of methods.

F Methods that are only inherited are quoted in special tables devoted to all individual parent
types.

Project:
The resulting form of the project to which we came at the end of the lesson after passing all exercises is in
the 113z_Interface_inheritance project.

www.dbooks.org

https://www.dbooks.org/

14. Mediator and Listener 121

14 Mediator and Listener
14. Mediator and Listener – 000000

14 Mediator and Listener
What you will learn in this lesson
In this lesson I will present you the design patterns Observer and Mediator and we will speak about the
principle of the dependency injection. Then you will become acquainted with a new project’s concept
which – thanks to using the described patterns and principles – will provide that the shapes will not
mutually rub out one another.

Project:
In this lesson we open the new project entitled 114a_CanvasManagerStart.

238. Rubbing out of shapes in their original position before changing their position or size looks quite silly. Could
you do something with it?

You cannot do much against mutual rubbing out of shapes in the current project. The problem is that
shapes painted in canvas do not know one about the other and so they cannot ask the shape whose
part was rubbed out to redraw itself as was done at the beginning with the partly rubbed out rectan-
gle. If you would like to prevent the mutual rubbing out, each shape should have to know about all
other shapes so that it could point them out that they should repaint themselves. Can you imagine
how complicated it would be?

Therefore we exchange the project once again for such project that would enable us to solve these
problems. But before that, I will present you two design patterns used in this project.

Observer – Listener – Subscriber

239. Well, go on.

One of the typical tasks that the programmer has to solve is when the object waits that certain event
occurs (e.g. pressing a button). You can program the waiting so that the given object (the observer)
will permanently monitor the object of its interest (maybe the keyboard) and check if the expected
event has arisen. But it will spend a part of the processor’s time for it, whilst the processor could do
more useful things (if you have seen the second Shrek movie, you surely remember the Donkey who
was asking the whole way: “Are we there yet?”).

The design pattern Observer recommends to choose quite different strategy – that is used in car ra-
dio receivers when the CD listening is interrupted at a moment of broadcasting the traffic news. The
observer (the driver) is registered at the monitored object (he tunes in to the relevant station in our
case) and then he stops to follow it and pursues his work (he drives the car and listens the CD). When
the observed object meets the expected event, it gives an announcement to all registered observers
who can subsequently react to this event.

122 Part 1: Interactive mode

Note:
This strategy is often called The Hollywood Principle and is characterized by a slogan: “Don’t
call us, we shall call you”. This sentence is often used e.g. when you are interested in being en-
gaged in movie’s crew as extras and characterizes the principle of this design pattern.

If the monitored object has to inform all observers on the emerged event, it has to know how to say it.
It defines an interface for this purpose, which has to be implemented by all registered observers, i.e.
by all objects that want to be informed about changes of the observed object. This interface declares
which message the monitored object should send to all registered if the expected situation would
come.

240. Why the pattern is called the observer? When I observe something then I see that the given event came and no
one has to announce it to me.

The term Observer is a semi-official name of the given pattern. However, I admit that I don’t like it as
well because if you observe something you cannot do too many other things (e.g. you hardly can drive
and watch the screen if there are any important news). Therefore some authors (including me) prefer
pair of terms broadcaster –listener instead of observed – observer, because if you only listen you can do a
number of other things. However, probably the most fitting name pair is publisher –subscriber, because
the subscriber has to be really registered even in our world.

Fortunately, it is not so much important which term we will use. It is important to understand the
principle of pattern’s functioning and how to use it. Let’s revise:

F The observed object (broadcaster, publisher) is associated with an interface that defines the
message sent by the observed object (broadcaster, publisher) to the observers (listeners, sub-
scribers). This interface must be implemented by all observers (listeners, subscribers), because
only the instance of this interface can be registered.

F Each observer (listener, subscriber) has to be registered at the observed object (broadcaster, pub-
lisher) firstly.

F When the awaited event arises, the observed object (broadcaster, publisher) sends the message
declared in the associated interface to all registered objects. Reactions of the notified objects are
individual (they know, why they are waiting for the announced event).

The Mediator

241. This was the first pattern; and the second one?

Similarly as in our project with the canvas, also in other programs there are often situations when a
number of objects need to mutually communicate. But it is not suitable so that every instance could
directly communicate with each other instance because, thus a number of mutual relations might arise
as a potential source of mistakes and they could make troubles to subsequent program adjustments.
Therefore the design pattern Mediator suggests creating one object which will be a mediator in all mu-
tual communications – such a telephone exchange. A number of mutual relations will cease because
all objects will turn to only the mediator, who will send a message to the required addressee if need be
(see figure 14.1).

www.dbooks.org

https://www.dbooks.org/

14. Mediator and Listener 123

Figure 14.1
Mutual dependencies before and after introducing the Mediator

If an object would want to draw the others’ attention to some event, it informs the mediator and the
mediator passes the needed information to other engaged addressees. It’s the same as with the tele-
phone exchange. By dialing a number you announce to the telephone exchange with whom you want
to speak and the exchange provides to inform the addressee.

The mediator has to define certain mechanism which enables to pass over the forwarded message
to addressees as effectively as possible. Usually the design pattern Observer is used for it. All objects
that want to communicate register at the mediator-transmitter as its listeners. The object that wants to
tell anything to others, passes the message to a mediator and tells if the message should be passed to
certain particular object (a set of objects) or to all. The mediator then contacts all addressees and sends
them the message.

242. You said that by communicating of each with everybody a number of dependencies arise. Why the communi-
cating objects should be dependent one on another? If I only tell something to an object I am not dependent on
it.

Oh, no, even if you simply tell something to certain person (i.e. you send a message), you care about
him so that he would understand your message. (In case you don’t care about him, you do not have to
bother with saying it.) Therefore you need so that he would understand the language of the given
message. Thus you are dependent on a language to which the message receiver understands. When
the message receiver gets e.g. deaf, you have to change fundamentally the message language. In other
words, the message sender is always dependent on the receiver. As soon as the receiver’s abilities
change, you have to check if you have to adjust also the sender, so that he would send the message in
such form in which the receiver is able to process it.

Theoretically the receiver is not dependent on the sender. We could say that he doesn’t take care
about from whom he received the message. He has received a message so he reacts to it. If two objects
mutually communicate, they are simultaneously senders as well as receivers and thus they are
dependent one on another.

124 Part 1: Interactive mode

Dependency Injection
243. But it will not be much easier. When certain receiver would change, then I should check the mediator. When I

will have to modify it, I will have to touch all receivers, because each of them is a sender at the same time, and
so round and around.

Oh no, as I have mentioned, the mediator uses mostly the design pattern Observer (see the figure 14.2).
It is therefore associated with an interface that defines the format of messages which the mediator
sends to the registered objects. Thus every object, which would like to receive messages from its col-
leagues through the mediator, should be registered at the mediator. And as we said, it has to be regis-
tered as an instance of the associated interface. Thus the mediator communicates only with instances
of the associated interface and it is dependent only on this interface, which is usually defined to suit
to the mediator. This means the instances communicating with the mediator have to accommodate.
Until you change the mediator’s definition or its interface (this may sometimes occur), no require-
ments on changes for the communicating instances will come from this side.

Figure 14.2

Mediator using the Observer (Listener, Publisher) design pattern

This technique is one of the Dependency Injection techniques – instead of being dependent on others, I
will arrange so that they would be dependent on me. This realizes the more general Dependency
Inversion Principle (DIP) which says that we should do the programming in such way so that the high-
er level objects would not be dependent on lower level objects – e.g. so that the managing objects
would not be dependent on administered objects. (In our case the mediator poses as a managing
object because it coordinates the communication of communicating objects.)

How to Prevent Mutual Cancelling of Shapes
244. Well, do you think I have sufficient skills so that you could present me the new project?

I would say that you as well as the time are matured. As I have already told at the beginning of this
lesson, the basic problem of the current solution is that the changed object does not know the others
and therefore it cannot advise them that they should repaint themselves, because they may have a part

www.dbooks.org

https://www.dbooks.org/

14. Mediator and Listener 125

rubbed out. If we would like to set it right, the newly painted object should register at all objects
painted until now, so that they could inform about their changes. But this would lead to vast inform-
ing each object about the others and to sending messages to all, which would considerably complicate
the whole project.

As I have already told, the design pattern Mediator advises to create a new object in such case, a
mediator which would mediate all communication among objects. The new graphic shape would not
be necessarily registered at all others, but it would be sufficient to register at the mediator. Similarly it
would be sufficient to inform the mediator that certain object changes its position or shape and the
mediator would send a message to all other shapes to redraw.

This mediator could operate as a manager of the canvas which supervises if all other objects are re-
drawn in proper time. The object that would like to be depicted at the canvas has to be registered at its
manager. It has to announce any change of its outlook so that the manager could start redrawing. The
manager gradually informs all registered objects from below up and asks them to redraw themselves.
Thus it is provided that all objects will be properly depicted, even in case that the changing object is
between two others, as meat in a hamburger.

So that this concept would really operate, it is necessary to provide that the canvas would be inac-
cessible for all who might do mischief. In other words, the possibility to draw at the canvas should be
open only for those who would register at the canvas manager. This can be achieved by such ar-
rangement that e.g. to draw at the canvas would be possible for the only one object – a painter. It will
be the only one that would be able to draw the required picture. All which would like to be portrayed
would have to draw through this painter. The canvas manager will pass this painter at a moment
when it asks the objects to redraw.

The Canvas Manager and Its Project
245. You are always speaking about how the project should look like. What about to show the project?

You are true. As it is stated at the lesson’s beginning, the new project can be found in the folder
114a_CanvasManagerStart. You can see its class diagram at figure 14.3.

Before we start to analyze is, please, compile it and then import the classes Tests and MultishapeTest
from the previous project which you have created in preceding lessons, or from the subfolder
Extension_14 of this project folder.

246. They are imported. But the class MultishapeTest did not associate with the class Multishape and remained up
quite alone.

The test classes do not associate with their tested “companions” during importing, even when they are
imported together in the source project. But BlueJ enables another trick. Enter a command for creating
a test class in the context menu of Multishape class. BlueJ starts to execute it and discovers that in the
project there is already a class with the name planned for the test class. So it does not strive to think
out a different name but announces this fact to you in a dialog and will not create any class. However,
the side effect of this experiment is an association of the existing test class with its tested class.

But if you don’t want to associate them, you don’t have to do it. Simply put them into the class di-
agram as it suits you. The only one what you will lose, is the automatic attempt for compilation of the
associated (i.e. test) class after the compilation of the class to which it is associated.

126 Part 1: Interactive mode

Figure 14.3

The project 114a_CanvasManagerStart

247. When you say it so generally, it looks like I can associate whatever with anything.

Yes, you can, you need only to add an appropriate line into the file package.bluej, in which you an-
nounce which class is associated to your class. Similarly, when the association of the class with its test
class hampers to you, it is sufficient to take away the relevant line from the package.bluej file and the
association will be cancelled. If you are interested in it, you surely will derive the necessary operations
from the package.bluej file yourself. However, I wouldn’t like to discuss it as this is a specialty
connected with BlueJ.

248. Well, but now I have another problem: I tried the tests and they behave strangely.

That is the consequence of the fact that the depicting of shapes is done a little bit different in this pro-
ject, and therefore we will have to adjust the test fixtures. Then everything will operate as it should do.
(So I asked you firstly to compile the project and only then to import the two test files.)

As I’ve told the object that wants to be depicted at the canvas should have been firstly registered at
the canvas manager, i.e. at the instance of CanvasManager class by sending a message add(IPaintable) and
by passing itself in its parameter. However, our objects don’t do it, which means they will be depicted
at the canvas only when the method, creating a fixture, or the test method will send them the paint()
message. Its contract in this project says that it registers its object at the canvas administrator.

As you surely remember, previously we called this method only in case we wanted so that the
damaged object would be repainted. In other words, in the current project the shape will appear at the
moment when we have asked it in the last project to redraw itself.

www.dbooks.org

https://www.dbooks.org/

14. Mediator and Listener 127

249. Well, so what should I do?

Reset the virtual machine and start to create a test fixture of some of the tested classes. Don’t forget to
register the created objects before you close creating the fixture at the CanvasManager. You have two
possibilities: either you will send a message paint() to an instance and the instance will register itself
at the canvas manager, or you ask the CanvasManager class for a reference to its instance by sending a
message CanvasManager.getInstance() and you save this reference into the variable for which I use a
mnemonic name CM (of course, you can call it by a different name). After it you will register each creat-
ed object at the manager by sending a message add(IPaintable). The registered object immediately
appears at the canvas.

250. Due to the fact that the CanvasManager class does not offer any possibility to send a message starting with new,
I estimate that the canvas manager will be a singleton, similarly as the Canvas was.

You are true. The canvas manager is a singleton and the canvas, on which the objects are depicted, is
its private property, and you can get close to it only when you are allowed. To be more precise, when
the manager gives you the painter which – when required – outlines the relevant object.

251. And how can I get the painter?

I will start with a detour. The IPaintable interface is not a tag interface in this project, but it requires an
implementation of the method paint(Painter). The canvas manager will call this method at the mo-
ment when it will ask the given object to repaint. At this occasion it passes also the needed painter in
its parameter.

252. But when once the object gains the painter, it can leave it and continue painting whenever it wants.

Yes and no. This mechanism has to prevent the objects to cancel and redraw themselves without any
control, i.e. so that the programmers would not have to think out how to paint the object properly at
the proper time and not to confuse it by mistake. This mechanism practically eliminates any mistakes.
Especially when you take into account that it is useless to hold the painter, because it may not operate
in a while, as something may change and you will need a different painter for a new canvas.

253. Why a new canvas?

Because the picture should be repainted many times per second and each repaint is prepared at a new
canvas whilst the old one is shown to the user. By this way the shown picture doesn’t blink due the
permanent repainting.

254. Well, to sum up: all classes are adjusted in the new project so that they would cooperate with the canvas man-
ager, and when I adjust the fixture, the tests will run.

Exactly, to be sure I will repeat how you should create the fixtures, because you will create them once
again. (I recommend you to reset the virtual machine before each creating.):

F The class Tests
1. The objects rectangl0, ellipse0 and triangle0 (BlueJ) are created through parameterless

constructors, i.e. on coordinates [0, 0] with the size [100, 50].

128 Part 1: Interactive mode

2. The objects rectangl1, ellipse1 and triangle1 are all created on coordinates [50, 50] and
have the size [200, 100].

3. Gradually enroll all created objects at the canvas manager – e.g. by sending a message
paint() to each of them. They will appear gradually after you will send this message.
Therefore I recommend sending the message to objects in the order in which you have
created them.

255. Stop! You told me that the objects have to be firstly enrolled and only after it they will be able to depict them-
selves. But now you say that they will be enrolled when being depicted.

Watch out! This is a different message. The canvas manager asks the enrolled objects to be able to react
to message paint(Painter). But this is a message paint(), and after its receiving the object enrolls itself
at the canvas manager. As you can see, the message has a bad name. Two messages with the same
name, each of them doing something different, should not occur in projects. I have prepared this as a
trap for students to show them which problems such inappropriate name can cause.

256. Well, I swallowed the ball. Go on.

4. Despite you requested instances to register themselves at the canvas manager, I would
add a field with the reference to the manager’s instance into the fixture because it may
suit in future. Name the field CM.

5. At the conclusion send a message inform(Object), to which you pass the text "Fixture
prepared", to the IO class, i.e. send the message IO.inform("Fixture prepared").

6. Ask the Tests class to save the hitherto activity as a test fixture.
7. Run the testSmoothMovements() method to ensure that the new project works as expected.

F The class MultishapeTest
8. Reset the Virtual machine.
9. Send a message getInstance() to CanvasManager class. Request for a reference in the subse-

quently opened dialog and save it into the variable CM. You established the variable CM
with a reference to the canvas manager last time, but you didn’t use it and enrolled the
instances by sending a message paint(). Now we will start using the manager for real.

10. Create a multishape m1 by calling its constructor with a variable number of parameters,
enter the name "m1" and gradually enter the calling of parameterless constructors of
classes Rectangle, Ellipse and Triangle to input fields for separate shapes (see figure 14.4).

11. Send a message add(m1) to the canvas manager. Thus you will depict a multishape m1.
Don’t pay any attention to a dialog showing that only one shape was added and close it.

12. Create a multishape m2 called "m2" with the aid of the constructor Multishape(String).
13. Send a message add(m2) to the canvas manager. Nothing will be seen at the canvas be-

cause the multishape does not yet contain anything.
14. Send a message addShapes(m1) to multishape m2. Be careful to send the message really to

the multishape and not to the canvas manager.
Don’t be afraid that the canvas will not visually change, because there will be now

two same multishapes: once m1 and once its copy which became a part of m2.

www.dbooks.org

https://www.dbooks.org/

14. Mediator and Listener 129

Figure 14.4

Calling of constructor with variable number of parameters

15. Move the multishape m1 by sending the message
m1.setPosition(33, 25)

Then the multishape m1 peeps out behind the multishape m2.
16. Diminish the multishape m2 by sending the message:

m1.setSize(33, 25)
The multishape m1 again hides behind the multishape m2.

17. Send the message m2.add(m1) to the multishape m2. After sending it you will see a copy of a
current form of a multishape m1 in the depicted multishape m2.

18. To enjoy the new properties of the current project let’s change a little bit the original con-
ception of the test fixture. Ask the Mover class for creating a mover with a speed 5. Save
the received reference into the variable mover.

19. Ask the mover to shift the multishape m1 to a position [150; 0]. You will see how the
multishape will appear from under its bigger sibling and moves to the entered position.

20. Announce the multishape m2 that its composing is finished, i.e. send a message
m2.creationDone().

21. Send a message
IO.inform("Multishapes prepared")

to IO class.
22. Ask the class MultishapeTest to save the hitherto activity as a test fixture and confirm, that

the previous fixture will be replaced.

130 Part 1: Interactive mode

And now try to run the tests. You will see that the shapes which were covered during various changes
will appear in their full beauty without any requirements for redrawing. This was already provided
by the canvas manager.

257. When I pressed the button Run Tests, a window jumped out entitled Tests results.

Sorry, I was not precious. The button Run Tests will gradually run all defined tests. The window Run
Tests appears when more than one test runs. In this window you can see the results of particular test
together with detailed information about failed tests. We will return to this subject later.

Running multiple tests together has one disadvantage in the interactive mode: if more tests run one
after another, it is suitable so that each of them would clean up its environment. However, this is not
possible in the interactive mode in the current BlueJ version. I will return to it, when we will discuss
the interior of the test class.

Recursion

258. How it is possible, that I can see parts of multishapes, despite I did not enroll them at the canvas? The
multishape enrolls them instead of me?

No, it is sufficient when the multishape enrolls. When the canvas manager will ask to redraw itself, i.e.
when the canvas sends the message paint(Painter), the multishape will ask gradually each of its parts
to redraw by the painter, i.e. the multishape send the message paint(Painter) and pass the painter in a
parameter, and thus the operation recursively repeats.

259. What does it mean that the operation recursively repeats?

We speak about recursive calling when certain method calls itself directly or indirectly. The
multishape should redraw in our example, i.e. the canvas manager called its paint(Painter) method. A
part of the multishape is another multishape. Therefore the “parent” multishape asks for redrawing,
i.e. it calls its paint(Painter) method. This means that the multishape method was called from the same
multishape method. And this is a recursive calling.

There are thick books about recursive calling and its possibilities. We will speak about it when we
will discuss some more demanding expressions of object oriented programming in this course.

Other New Features
260. How the square grid arose? I didn’t paint any.

This project brings two new classes: the Text class, the instances of which represent text strings painta-
ble on the canvas, and the Line class, the instances of which represent lines with specified end points
and color. The canvas manager uses the lines for painting a grid that should help you to estimate the
coordinates of the analyzed object. You can learn the size of the grid square by calling the getStep()
method and set it by the setStep(int) method.

In addition the canvas manager offers the setStepSize(int,int,int) method that (beside the step
specified in the first argument) allows also setting the number of grid rows and columns.

www.dbooks.org

https://www.dbooks.org/

14. Mediator and Listener 131

Exercise
261. What you will recommend me for training today?

We left your animated pictures for few lessons. Please, brush them up and let them run in a new pro-
ject. You have to up-date not only creating of test fixtures, which you will supplement by enrolling of
individual shapes to the canvas manager, but also of certain tests – above all those, where new objects
arise. They also have to enroll at the canvas manager, so that they could be seen.

However, numerous tests may stay without any change. The robot will properly wave and the fig-
ure will wink with eyes even without any modifying. A pleasant surprise can be expected at the little
house and its testChangeColor test, even after you will adjust it. The original version repainted the
building and in the latest fixture its color did not change, only the window and the door disappeared.
And now the building will only change its color without any side effects. To see it, you have to enter
the test once more and change the building’s color – e.g. to the yellow one.

Review
I tried to present all what we have debated now in the accompanied animation. Run it and try every-
thing once more.

Animation 14.1: The interface inheritance – OOPNZ_114_A1_SpravcePlatna
The animation will repeat what was explained in course of this lesson, i.e. importing the classes into a
new project and running the tests.

Let’s review what you have learnt in this lesson:

F The design pattern Observer solves the problem when one object or more objects expect reveal-
ing certain event of the observed object. The pattern recommends the following procedure:

F Define the interface in which we declare the message that the observed object intends
to send to all enrolled observers after the event begins. – In our case it is the IPaintable
interface with the paint(Painter) method.

F Implement this interface by all observers. – In our case by all classes of graphic objects
which we would like to depict at the canvas.

F Define a method of the observed object through which the objects can register. The pa-
rameter of this method will be the interface instance implemented by the observers. – In
our case it was a method add(IPaintable).

F Enroll (register) all observers at the observed object. – In our case register all graphic ob-
jects which we want to depict (they are observers) at the canvas manager (it poses as an
observed object).

F Whenever an expected event occurs, the observed object “rings round” all registered ob-
servers, i.e. calls their method declared in an interface which all observers have to im-
plement. – In our case whenever the canvas should be redrawn, the canvas manager asks
the depicted object one after another to depict by a delivered drawer.

132 Part 1: Interactive mode

F We often use pairs of terms Broadcaster – Listener or Publisher – Subscriber instead of Observer –
Observed.

F The design pattern Observer realizes the so called Hollywood Principle, characterized by a slogan:
“Do not call us, we will call you.”

F The design pattern Mediator solves a situation when a number of objects need mutual commu-
nication. During direct communication a number of mutual dependencies significantly growths.
Therefore the pattern recommends creating a mediator, which mediates the separate objects
communication. The communicating objects are then dependent only on the mediator.

F Passing the messages by the mediator is usually realized by implementing the design pattern
Observer.

F Implementing the pattern Observer is one of the techniques of dependency injection. Thus the ob-
ject provides not to be dependent on any object with which it communicates, but on the oppo-
site so that these objects would be dependent on it.

F The dependency injection implements the Principle of Dependency Inversion, which requires so
that the managing object would not be dependent on the managed objects.

F The managing object as well as the mediator is represented in our project by the instance of
CanvasManager class.

F All objects that want to be depicted at the canvas have to implement the IPaintable interface and
as instances of this interface they have to be registered at the canvas manager.

F Each time, when the outlined object changes its look, it has to ask the canvas manager for
redrawing the canvas.

F When redrawing the canvas, the manager calls gradually the method paint(Painter) for all regis-
tered objects, and passes the drawer in its parameter, which is the only one object, that can draw
at the canvas.

F When converting the test classes from the old project with a canvas to the new one with a
canvas manager it is sufficient to adjust the fixture definition.

Project:
The resulting form of a project to which we came at the end of the lesson and after completing all exercises
is in the 114z_CanvasManager project.

www.dbooks.org

https://www.dbooks.org/

Part 2: Basics of Creating OO Programs

Part 2:

Basics of Creating
OO Programs

In this part you will learn to write simple programs and apply the rules
you have met during the work in an interactive mode. You will start with
the simplest programs which will be gradually made perfect in each
lesson.

134 Part 2: Basics of Creating OO Programs

15 The First Code
15. The First Code – 000000

15 The First Code
What you will learn in this lesson
In this lesson the interactive mode will be abandoned. Firstly the concept of files from which the BlueJ
project consists will be presented to you together with the significance and meaning of separate groups of
files. Then you will create an empty class and you will hear its definition.

Project:
In this lesson you return back to the project 113z_Interface_inheritance.

262. I’d say it’s enough of playing with objects and we should start programming something real.

I would like to explain you few basic phrases, but I understand your impatience, so I will postpone the
explanation for a while. We have discussed the key principles and we can go on coding, i.e. to the def-
inition of our programs in the text form. That’s why we will try a real definition of a new class today.

263. Hurray! I have been already afraid I will not live to see it.

Don’t be sarcastic and close the opened project. For a while we will go back to the original project with
an ordinary canvas. I will return to the new project after you will learn defining methods with param-
eters. Don’t be afraid, it will be quick.

The New Empty Class
264. Don’t tense me up. What should I start with?

Let’s start the same way as with creating the test class, i.e. pressing the button New Class. But in subse-
quently opened window we adjust the switch Class Type to the state Empty Class. To be stylish we will
call this class Empty (see figure 15.1).

BlueJ creates a new class and depicts it in the class diagram (I recommend to relocate it into a free
space and decrease it to a size corresponding with the size of its neighbors). In case you will have a
look at the disc folder where the project is saved, you will see a new file Empty.java, in which the
source code of the created class is located.

Files in BlueJ Projects
265. I have found the file Empty.java, but there was a mass of other files. Could you briefly explain me, what are

these files like?

I agree with you that it’s the highest time to explain which files you can find in the project folder.
There are the following types of files:

www.dbooks.org

https://www.dbooks.org/

15. The First Code 135

Figure 15.1

Creating the empty class

F *.java – files with the extension java are source files of programs which are created by a pro-
grammer. Those are the text files containing the source code or programs. We will create these
files during the whole course.

F *.class – files with the extension class are created by a compiler. They are the compiled versions
of source files of the same name which are often marked as class files.

F *.ctxt – files with the extension ctxt are auxiliary files created by BlueJ program. BlueJ saves cer-
tain information in them discovered during the source code analysis. This information helps to
increase the comfort of the user’s interface.

F package.bluej – a file created by BlueJ where the complete information on an application win-
dow is saved, as well as the class diagram and editing windows of particular classes. The posi-
tion and the size of the application window is adjusted here as well as of particular classes to-
gether with their mutual dependencies depicted by arrows, the position and size of editing
windows of separate classes, the mode in which the windows open (documentation × imple-
mentation), associating of test classes with their tested classes and some other items.

266. There are more files with class extension than with extensions java or ctxt.

It can easily happen. You can find internal classes which are defined inside certain classes as well as
an interface determined for their internal need. Each class and each interface (also those, which are
defined inside other classes or interface types) has its class file. Therefore, when compiling certain
source files, more files with the class extension are arising (more class files).

136 Part 2: Basics of Creating OO Programs

267. If I understood it well, during transferring the project to another PC I don’t have to transfer all files.

Files with extensions class and ctxt are created in each compilation. During transferring the project to
another PC it is sufficient to transfer only the source files (i.e. files with the extension java) and if you
want to keep information saved in the file package.bluej, then including this file.

268. Nothing will happen when I cancel them?

Come to see it. Close the project (you do not have to close the whole application, it’s sufficient to close
only the project), delete all files with extensions class and ctxt, and open the project again. The project
will look out the same, only hatching will appear symbolizing that the classes are not compiled, i.e.
that the class files which were younger than the corresponding java files do not exist.

269. Can the files be deleted without closing the project?

Some of them yes, some of them no. Anyway, the externally executed changes in the file of open pro-
ject (i.e. when you jump aside from BlueJ with an open project to some file manager and you start
rummaging in the project folder), may lead BlueJ to incorrect state because there is something different
at the disc than the application supposes. Therefore it is better to close the project before any external
operation with files in the project folder, then to carry out the given operation and open the project
again.

As I have already told you, it is not necessary to close the whole application. It is sufficient to close
the project and after amendments you can open it again. Opening the project is far quicker than
opening the whole application.

270. So the only one really dangerous action is deleting the source code?

I would precise: unwanted deleting of the source code. You often create a file only for tests and you
want to delete it at the end of your experimenting. You do not have to close the project and start up
the file manager. In case you need to remove certain class, you can adjust the command Remove in its
local offer. BlueJ then deletes the class from the diagram and at the same time it deletes also all corre-
sponding files from the disc. (You can try it – delete the classes HouseFace and Robot, we will not use
them anymore.)

However, besides source files I recommend not to delete files package.bluej.

271. What would happen so horrible? You told that BlueJ remembers only auxiliary information and it can be found
any time once again, can’t be?

Again I can tell you, try it. Close again the project and re-name the files package.bluej (you can delete
them, but renaming is sufficient). In case you try to open now the project again, BlueJ will oppose. Ac-
cording to the presence of package.bluej BlueJ recognizes that it deals with its project.

However, when you delete this file by mistake, you can outwit BlueJ simply by creating an empty
file package.bluej in the project folder. BlueJ opens the folder as its project, but because it will not find
any information in the file package.bluej on classes whose source files it discovered in this folder, BlueJ
puts them at any place in the class diagram. But when you close the project and change the file
package.bluej for the original one, you again receive your well-known project after opening.

Another possibility how to open the project, in which the file package.bluej is not present, is to use a
command Open Non BlueJ in the menu Project. But when processing this command BlueJ strives to

www.dbooks.org

https://www.dbooks.org/

15. The First Code 137

include into the project also the subfolders which, sometimes, is reverse of what you really want.
Luckily, BlueJ warns you in any sign of danger and you can withdraw your command. (You can test it
with projects in which the folders with class source codes are located, which we have imported during
the lessons – e.g. project 110 – 112).

I will not ruminate on this topic further. I tried to show you everything in the accompanying ani-
mation. You can find there also the explanation and demonstration of certain operations and proper-
ties of BlueJ environment about which we were not speaking here, but whose knowledge I consider
useful for further work.

Animation 15.1: Files in BlueJ projects – OOPNZ_115_A1_SouboryVProjektechBlueJ
The animation will show the explained parts concerning the project files, both the source files as well as
files created during compilation. Moreover, it shows also some other properties which were not
explained but which we will use later on.

The Source Code of the Empty Class
272. Speaking about files in BlueJ project was interesting, but a little bit off the point. I would like to discover al-

ready how the source code looks like and how I should program the class itself.

We do go on it. Open the class Empty in an editor. You can open the editor with the class source code
by several ways. You can double-click on the given class in the class diagram or you can open its con-
text menu and enter the command Open Editor (see figure 15.2). In case the editor depicts the class

Figure 15.2

The command for opening the editor with source code

138 Part 2: Basics of Creating OO Programs

documentation instead of the source code, it is sufficient to enter that you want to depict the source
code in the unrolled list at the tool panel as is showed in figure 10.1 in the section Interface vs.
Implementation on page 78.

Then BlueJ opens the editor with the source code of the given class (see figure 15.3).

As you see the source code is very simple. The significance of separate part is as follows:

F public
The keyword announcing that the class is public and therefore anybody can send messages to it.
It is possible to define the class without using the keyword public, but such class has certain lim-
itation. Therefore we will not use this possibility and situations when it might be suitable will
be presented after some time.

F class
The keyword class announces that we intend to define a class.

F Empty
After the keyword class the name or the class identifier follows, which has to fulfill the rules I
have explained in the section The Rules for Creating the Identifiers on page 43. The convention
requires starting the class name with a capital letter.

Besides that the name of the public class has to be identical with the name of the file in
which its source code is saved including the size of individual characters. (Logically it results
in the fact that the source code of only one public class can be in one file.) The file with the
source code has to have the extension java. But you don’t have to take care about it because
BlueJ immediately creates the relevant file and names it correctly.

F {}
All up-to-now explained parts create the class header, according to which the compiler recog-
nizes its basic characteristics. The class body closed in braces follows after the head. Due to the
fact that our definition is still empty, also the braces are empty. With the exception of two
precisely specified statements (we shall speak about them later) everything has to be defined
within the class body in Java language.

Figure 15.3

The editor with the source code of the class Empty

www.dbooks.org

https://www.dbooks.org/

15. The First Code 139

273. Why the beginning of the definition is in red and the rest in black?

This is a syntax highlighting, which started to be used in the middle of the 80ies of the last century
and which is practically a compulsory function of all programming editors today. According to it, var-
ious formats are used for various parts of the program. BlueJ is quite modest in this respect and uses
only a color for highlighting (it does not use the bold, underlined or italic fonts). It stresses only key-
words, comments and text strings (both will be explained to you further).

274. And what does it mean the syntax?

The syntax is a set of rules describing how we can write the program. And those are just the rules
which I described a while ago, i.e. that the class contains a header and a body, and the header is
composed from the public modifier and the keyword class followed by a name of a class etc. etc.

The syntactic rules deal neither with what the program will do, nor with if it would really operate.
Those are the rules which you have to fulfill so that the compiler would compile your program.

275. The braces limiting the class body have to be at the separate line?

Not necessarily. Java belongs to languages in which the adjustment of the code to lines is not decisive.
With the exception of identifier interior you can include any whitespaces or the whole sequence of
whitespaces to any place. From the point of compiler’s view the code on figure 15.3 is equivalent to a
code written at one line

public class Empty{}

or to the code in which each identifier lies at an individual line separated from others by several emp-
ty lines.

276. What are the whitespaces?

Wikipedia says: “In computer science, white space or whitespace is any character or series of characters that
represents horizontal or vertical space in typography. When rendered, a whitespace character does not
correspond to a visual mark, but typically does occupy an area on a page.”

Wikipedia defines 26 whitespaces, however in Java is the whitespace defined as the ASCII space
character, horizontal tab character, form feed character, and line terminator characters (line feed and
carriage return).

However, I return back to the subject. The fact that adjustment of the code is not compulsory does
not mean that you can include the code as you wish. One of the very important properties of the good
code is its clear code formatting. That’s why you should have to keep certain conventions which make
the orientation in code easy to others and consequently also to you.

277. Well, well. I will strive to format my code correctly and keep the conventions. But I would be pleased if you stop
digressing and would tell me something about how to write the code itself.

Sorry, I was carried away by a problem with which my students are often fighting. Let’s return to the
code of Empty class. Let it be compiled firstly – e.g. by pressing the button Compile at the editor’s tool
panel. BlueJ firstly saves the file, then “thinks over” it and in case of not detecting any fault in it, BlueJ
writes below in the information panel under the edited text the following message (see figure 15.4):

Class compiled – no syntax errors

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Space_(punctuation)
http://en.wikipedia.org/wiki/Typography

140 Part 2: Basics of Creating OO Programs

Figure 15.4

The message about the successful compilation

Besides that you should notice that the column with line numbers changed its color and in case you
would look into the class diagram, you discover that the empty class is not hatched any more. And
now try changing the source code – e.g. cancel the first empty line. The column with line numbers
immediately gets grey and BlueJ again completes hatching in the class diagram.

In case you would look into the project’s folder you would see that after the compilation there are
both expected files: Empty.class as well as Empty.ctxt there.

And now, open again the context menu of the Empty class. The new statement appears in it:

new Empty();

You can enter it immediately and start the standard procedure of creating the instance. BlueJ asks you
for the name of the reference and after entering it, the reference to an instance of Empty class will
appear below in the reference stack.

Constructor
278. This is somehow strange. In the section Methods and Constructors on page 30 you told: “The method is a part of

a program that takes care about an object’s reaction to a given message. Each message that the object
understands, has assigned to the corresponding method that will take care about the relevant reaction.” But
there is nothing programmed in this class. Does it mean that the methods are programmed elsewhere?

No, as I have told a while ago, it is necessary (contrary to some other languages – e.g. C++) to define
everything inside the body of the relevant class. The purpose of this method’s existence is somewhere
else – the definition of the method reacting to parameterless message requesting to create a new in-
stance is a result of compiler’s initiative. The compiler knows that a method responsible for proper
creating of its instance has to be defined in each class. As I have told, this method is named the con-
structor.

If the programmer does not define any constructor, the compiler decides to create its simplest pos-
sible version and creates an empty parameterless public constructor that is named the default con-
structor. However, its definition is not mentioned in the source code, you can find it only in the class
file of the given class.

www.dbooks.org

https://www.dbooks.org/

15. The First Code 141

And that’s all for today. Next time we will speak about constructors. And next time we will also go
through the animation demonstrating how to create and look into an empty class – it will be a kind of
reviewing for you.

Adjustment of Presets
279. You were speaking about a change of color of a column with line numbers, but I don’t have any line numbers

there. Why?

You have a different displaying – probably you played with the setting and line numbers were can-
celed. Enter the command Tools ® Preferences, which opens the dialog Preferences and there check the
option Display line numbers at the Editor card. You can check also other options as you can see at figure
15.5.

Figure 15.5

Adjusting the editor’s options

280. Why you didn’t check the option Make backup copies source files?

Creating the backup copies is off from two reasons:

F If I need to return to any previous file version, usually it’s the 10th to 20th version back and
BlueJ is not supporting such long number of backup copies.

F Once, when I put on creating back-up copies, BlueJ announced that the source code was dis-
turbed every minute. So I switched it off. Since that time the systems of versions administration
significantly improved, and they are far better solution of this problem (BlueJ 2.5 supports two
of them).

142 Part 2: Basics of Creating OO Programs

281. Which one?

It would be a long explanation. When you will be advanced I will tell you something more about it
and how to use it. But now you have to wait.

Exercise
282. Which task will you give me today as training?

Today I would recommend you repeating how it is with files in BlueJ projects and how you can make
a project from a group of files.

And at this occasion you can try also how BlueJ will behave when you will delete its source file, but
leave the compiled class file and ctxt file. Verify that you can work further with such class and that you
cannot see only its source code.

In case you cancel also the ctxt file, the dialog will not contain the documentation comments and the
local offers will show you only types of parameters, but not their names.

Review
Let’s review what you have learned in this lesson:

F You can create the empty class similarly as the test class; you will only turn the switch Class
Type in the window Create New Class to the state Empty Class.

F When creating the new class, the new text file of identical name with the created class (includ-
ing the letter size) is created as well as java extension in the project folder. This file contains the
source code of the created class.

F The syntax is a set of rules describing how you can write the program. These rules deal neither
with what such program will do, nor if it would operate. Those are rules which have to be
fulfilled so that the compiler could compile the program.

F The class definition is composed from the header and the class body.

F The public class head contains the keyword public followed by the keyword class and the class
name.

F The class body is closed by braces.

F The source code of a class has to be located in the file with the same name as the class including
the capitalization (source file names are case sensitive even in Windows).

F During compilation of the source code another two files of the same name will appear, but with
different extensions, namely class and ctxt.

F The compiler will create a file with an extension class and saves the compiled form of the given
class in it. This file is marked as class file of the given class.

F BlueJ creates a file with an extension ctxt and saves auxiliary information for increasing the
operating comfort in it.

F In certain situations several class files can arise during compiling the source file.

www.dbooks.org

https://www.dbooks.org/

15. The First Code 143

F You can open the editor with the source code of a class by clicking on the class in the class
diagram or by entering the command Open Editor in its local offer.

F The space, horizontal tabulator as well as line terminator characters (line feed and carriage re-
turn) are called whitespaces (you can write also white spaces) and they are ignored in programs.

F You can insert a sequence of whitespaces at any place in a program with the exception of the
interior of identifiers.

F One of the most important properties of a good program is its clear arrangement.

F The programmer has to write the programs so that they might be modified anytime in future.

F The method taking care about creating new instances is called the constructor.

F If there is no constructor defined in a class, the compiler defines a default constructor, which is
defined as a public, parameterless constructor with an empty body.

Project:
The resulting form of the project to which we came at the end of the lesson after all exercises, is in the
115z_First_code project.

144 Part 2: Basics of Creating OO Programs

16 The First Constructor
16. The First Constructor – 000000

16 The First Constructor
What you will learn in this lesson
In this lesson you will define your first constructor. You will read the explanation how it is with the con-
structor’s name and how the constructor works. You will learn also about the graphic arrangement of the
source code and you will create the first more complex objects.

Project:
In this lesson we continue in using the 115z_First_code project.

Definition of the Constructor
283. You told me last time that when the programmer doesn’t define any constructor, the compiler creates a default

constructor, because the class cannot be without it. When I will create a constructor, the compiler does not add
any other, does it?

Exactly, the compiler adds its constructor only in case, when the programmer does not define any one.

284. Well. How can I define my own constructor?

Similarly as the class definition, the constructor’s definition consists of the header and the body closed
in braces. But its header as well as its body looks out a little bit different.

The header of the public constructor, i.e. of the constructor which would be accessible to all, begins
(equally as the header of the public class) with the keyword public. It’s followed by the name of the
class whose instances are created by the constructor (i.e. the class in which you define the constructor)
ensued by the list of parameters closed in parentheses. These parentheses have to be quoted even
when the constructor does not have any parameters – in such case the parentheses will be left blank.

You can see the possible definition of the Empty class with explicit definition of the implicit
constructor in the listing 16.1.

Listing 16.1: The class Empty with an explicit definition of the implicit constructor

public class Empty
{
 public Empty()
 {
 }
}

285. What kind of a phrase is “an explicit definition of the implicit constructor”?

The public parameterless constructor is called a default constructor (certain authors use also the term
implicit constructor) even when it is not defined by the compiler, but you define it, i.e. when it is
defined explicitly.

www.dbooks.org

https://www.dbooks.org/

16. The First Constructor 145

Name of the Constructor
286. The constructor does not have its name in the header?

No, the constructor’s internal name is <init>, but this name opposes to rules for creating identifiers,
and so it can have such name really only internally. This internal name is assigned to it automatically
by the compiler. But the constructors are declared as methods without a name in the source code.

287. I’ve heard or read somewhere that constructors have the same name as the class whose instances they are con-
structing.

You are true, it’s often written in textbooks. If you look at other commands in context menus of classes
and their instances (see figure 16.1), you will see that firstly the return value type is quoted, followed
by the name of the message (and thus of the relevant method) and by parentheses with a possible list
of parameters.

Figure 16.1

The commands initializing a message sending

These commands represent headers of methods, which are called out after calling the relevant mes-
sage (you saw the method’s header in the dialog of methods with parameters). In case you look at the
constructor’s header, you discover that you can choose if you say that it concerns the method without

146 Part 2: Basics of Creating OO Programs

any name, or on the contrary, it concerns the method in the definition of which the type of return
value is not quoted.

It’s true that majority of authors prefer the second description. But, as I already told, when you
have a look into the compiled code (or when you read The Java™ Virtual Machine Specification) you dis-
cover that the method representing the constructor has in fact a name <init> (soon you will see it for
yourself). Because this name violates the rules for creating the identifiers, it has no applicable name in
the program.

Nevertheless, it is not so important how we will speak about the constructor. Simply it’s a special
method with special properties. Let’s have a look how to define it and how to use it.

The Working Constructor
288. You are true. Let’s return to our program, which is not yet operating. I think it’s the best time to teach it some-

thing.

Yes, of course. Let’s add a certain statement to the constructor. We will create e.g. a new ellipse. The
statement sending the request for creating a new instance to Ellipse class is very similar to the com-
mand which we know from the class context menu. It starts with the keyword new followed by the
class name with values of parameters in round brackets. To have the statement as simple as possible,
we will send the message without parameters. We complete the whole statement with a semicolon.
The class definition is in the listing 16.2.

Listing 16.2: The Empty class with its own version of a parameterless constructor

public class Empty
{
 public Empty()
 {
 new Ellipse();
 }
}

Compile the class once more and enter the command for creating its instance. BlueJ locates the refer-
ence for created instance into the reference stack, but at the same time it opens the canvas window and
draws an ellipse in it. (I remind that we left the canvas manager in the previous project and for few
lessons we returned to an ordinary canvas, at which the objects don’t have to be registered.)

At the conclusion I would like to remind once more that the programmers mostly do not speak
about sending the message, but they prefer the expression calling the method (or sometimes invoking the
method). Thus we could say about our default constructor that it calls the default constructor of Ellipse
class.

All, what we have spoken about in connection with the source code and the constructors in this as
well as the previous lessons, I tried to show you in an accompanying animation.

Animation 16.1: An empty class – OOPNZ_116_A1_PrazdnaTrida
The animation shows creating of a new class, opening its source code and creating a parameterless
constructor.

www.dbooks.org

https://www.dbooks.org/

16. The First Constructor 147

Source Code Formatting
289. I noticed that any time you start to write braces, you indent the text a little bit to the right. However, at the

beginning you told that Java doesn’t take care about how the code is formatted. I don’t know how I should
understand it.

This is a general convention: As soon as you write down a code between braces, you should indent
the text. It is one of the generally respected rules which increase the good formatting of the code.

290. Isn’t the permanent indentation of the line beginnings two laborious?

Don’t be afraid, the editors of source codes support this convention and enable you to keep it easily.
And you will see how in the animation at the end of the lesson.

291. How big the indentation should be?

An indentation by four characters is used most often. However, the book authors sometimes use
smaller indentation due to a lack of place.

292. Isn’t it wasting of place, when the whole line is taken by a brace only?

Truly, the advanced programmers mostly save the place and include the opening brace at the end of
the previous line. However, for beginners, it is more suitable to put the opening brace at an independ-
ent line, because they can find much easily a mistake caused by a bad coupling of braces which is the
very frequent beginner’s fault.

Authors of editors know the “popularity” of this fault and therefore they add a function into their
editors which stresses the geminate brace to the brace after which the cursor is located. Try to go
gradually through the source code with the cursor and notice that any time when you shift the cursor
behind any braces, the editor stresses its counterpart by framing.

293. Why the code should be transparent? The computer has no problem with sloppily formatted code and I think the
most important is to be functional and effective.

We have already discussed about it in the subchapter Interface as a Data Type on page 80 and again in
the last lesson. As I have said, the only one what you can rely on during programming is the fact that
soon everything will be different. A client orders a program and during its development he changes
his assignment several times. When you complete and deliver the program he comes with further re-
quirements for amendments and improvements in a while. Only such programs are left without any
amendments which are sewage, and the client wants to get rid of them so quickly that he better pays
long money for a new program than asking for any amendments.

It doesn’t matter, if the client is anybody else or you yourself, i.e. if you prepare the program for
you. Each program which is a little bit worthy will undergo amendments in future. That’s why you
have to write it in the way so that these modifications would be as easy as possible. In case you will be
able to adapt your programs quickly and cheaply, you obtain a competitive advantage.

Don’t fall prey to an illusion that you are acquainted with your programs. After a year’s working
on other programs, your own older program will be as strange as someone else’s. Implementing
certain conventions and their consistent keeping will oil the wheels of your orientation.

148 Part 2: Basics of Creating OO Programs

This principle was splendidly formulated by Martin Fowler who wrote: “Any fool can write code that
a computer can understand. Good programmers write code that humans can understand.”5.

More Complex Example
294. The example with an empty class was tremendously simple. Could we try something more complicated?

Well. But for now all examples will be simple. I will show you, how you could define the class Arrow,
whose instance you can see at figure 16.2. The arrow is defined so that it would be located in the left
upper corner and could be put into a square area with a side of 50 points. We will have to call con-
structors with parameters in its definition, but I suppose that after previous experience you will have
no problems. You can compare your program with the listing 16.3.

Listing 16.3: The Arrow class with the parameterless constructor

public class Arrow
{
 public Arrow()
 {
 new Rectangle(0, 15, 25, 20, NamedColor.BLACK);
 new Triangle (25, 0, 25, 50, NamedColor.BLACK, Direction8.EAST);
 }
}

Figure 16.2

Pictures of objects entered for programming

5 FOWLER, Martin. Refactoring. Improving the Design of Existing Code. Addison-Wesley, © 2000. 430 pp.

www.dbooks.org

https://www.dbooks.org/

16. The First Constructor 149

Exercise
295. If I understood it properly, I should define the remaining two pictures myself.

Correct, create the empty classes Car and TrafficLight from figure 16.2 and define their parameterless
constructors. Locate the instances created by these constructors to the left upper corner of the canvas
and define them so that the car’s length would be the double of its width and the height of the traffic
light would be the triplication of its width.

And one advice at the conclusion. Do not use a multishape for constructing neither the car nor the
traffic light. As you know, the multishape is composed from copies of entered objects, so that you
have no chance to influence them, it means you could not enter which lights of the traffic light should
shine.

In case you don’t dare to define the more complex classes yourself, you can firstly have a look at
the sample solution, which can be found in the project 116z_First_Constructor. I recommend you to
think out your own graphic shape and define its class. You can send your proposals into a conference
about which I was speaking in the preface.

Review
Let’s repeat what you have learned in this lesson:

F In case the programmer defines any constructor, the compiler would not supplement any other
one.

F The constructor’s definition contains the header and the body of the constructor.

F The constructor’s header contains the optional keyword public followed by the class name and
parentheses for values of possible parameters.

F The statement requesting to create a new instance is composed from the keyword new followed
by the class name whose instance we are requesting and round brackets with values of possible
parameters. The statement is completed with the semicolon.

F The text inside the braces has to be indented contrary to its environment.

F The programs should be written in such way so that they would be as transparent as possible.

Project:
The resulting form of the project to which we came at the end of the lesson after completing all exercises,
is in the 116z_First_Constructor project.

150 Part 2: Basics of Creating OO Programs

17 Parameters
17. Parameters – 000000

17 Parameters
What you will learn in this lesson
In this lesson I will firstly explain you what is the difference between formal and actual parameters and
you will define your own constructors with parameters. Then I will show you how it is possible to rename
the class and what you have to watch out. And finally the test class of your new class will be defined.

Project:
In this lesson we continue in using the 116z_First_Constructor project.

Parameters and Arguments
296. I’ve already coped with the constructor without parameters. In what the constructor with parameters is more

complicated?

When using the parameters you have to realize their dual character. You have to differ:

F when you define what the method will do with the parameter, after this parameter will be de-
livered to it (e.g. that the delivered whole number parameter will be used for adjusting the hor-
izontal coordinate), and

F when on the contrary you are calling the already defined method and you need to adjust the in-
itial values of its parameters (e.g. you need to tell the method that the horizontal coordinate is
7).

The beginning programmers have problems with it from time to time. Therefore when explaining the
work with parameters you should differ:

F the parameters (sometimes called formal parameters), which are names (identifiers) declared in
the method header and used in its definition, and

F the arguments (sometimes called actual parameters), which are values passed to the method dur-
ing calling it.

You have to install (to declare) the formal parameters in the method header. In the parameter’s decla-
ration you quote its type followed by its name (identifier). Individual declarations should be separated
by commas. In the method body you will mark the places, where the given parameter (better said its
value) will be used, with the parameter’s identifier.

Arguments (the actual parameters) are values, which you enter to the called method and which de-
fine the initial values of the corresponding parameters. Java requires entering the initial values of all
parameters of the called method. These values are quoted in parentheses behind the name of the
called method. The required order of presenting these values is unambiguously determined by the or-
der of declarations of corresponding parameters.

www.dbooks.org

https://www.dbooks.org/

17. Parameters 151

297. Well, I admit, it’s not much clear to me. Maybe it would be best to show it at an example.

Well, let’s adapt our constructor from the previous lesson. We will add a possibility to adjust the
coordinates of the depicted ellipse and at the same time we will adjust the calling of its constructor so
that not an oval would be drawn at the canvas, but a circle of the entered diameter. The adapted
definition might look as the definition in the listing 17.1.

Listing 17.1: The double-parametric constructor of Empty class entering the position of the depicted ellipse

public Empty(int x, int y)
{
 new Ellipse(x, y, 50, 50);
}

The constructor declares two parameters. Both are of int type, i.e. both are the whole numbers. The
first of them is named x, the second one y. The user can derive from their names that the first one will
represent an x- (horizontal) and the second one a y- (vertical) coordinate of the instance.

The body of the method continues to contain the only one statement – the calling of the ellipse con-
structor. But this time you do not call the parameterless constructor, but the constructor with four pa-
rameters. We assign the values received in the x and y parameters of the defined constructor to the
first two parameters of the called constructor, the number 50 will be assigned to the remaining two
parameters. Thus we request to create (and depict) the ellipse, which will be located on coordinates
[x, y] and will be wide and high 50 points – it means it will be a circle with a diameter of 50 points.

298. Well, and now explain me once more at this program, how it is with those formal and actual parameters.

So once more. The formal parameters are names which you write down into the program – in this case
“x” and “y”. The actual parameters (arguments) are values, which the called program “delivers” to these
parameters in the moment when this constructor is called.

The parameters in the method header (in this example the x and y parameters) are always the
formal parameters. You declare here the names and other properties of individual parameters, with the
assistance of which you will mark the places in the method body, where the relevant values (the actual
parameters, arguments) will be assigned (substituted) after your constructor will be called.

Contrary to it, the parameters in calling the constructor of Ellipse class are actual parameters
(arguments), because we say which values we pass to the called constructor.

299. This is somehow strange. The x and y parameters are once formal and next time they are actual. How is it?

The x and y identifiers are the formal parameters. After somebody will call the constructor, it gives
two values – the actual parameters (arguments). In the constructor definition of the Ellipse class the
identifiers x and y (= formal parameters) mark the places, where the virtual machine has to pass the
relevant values of these parameters (the actual parameters, arguments) to the called constructor, when
it will be called from this place.

I will try to outline it once more at a life example. Imagine car races. Every car has a crew consist-
ing from a driver and a navigator. In case you define a constructor of RacingCar class, you define formal
parameters carNubmer, carBrand, driver and navigator in it.

You start the program and the racers start to enroll. Each crew announces the number of their car,
the car brand, the driver’s and the navigator’s names. These will be the actual parameters, i.e. values,

152 Part 2: Basics of Creating OO Programs

which you will substitute to formal parameters of your constructor and it creates the relevant car
based on these values.

In other words: the calling method passes the actual parameters (values) to the called method, and
it will use them in the programs at places where the corresponding formal parameters (names) are
quoted in the code. To train it once more, let’s add a constructor, which will assign the color of the
depicted ellipse besides its position as in the listing 17.2.

Listing 17.2: The constructor of the Empty class adjusting a position and a color of the created instance

public Empty(int x, int y, NamedColor color)
{
 new Ellipse(x, y, 50, 50, color);
}

300. And now I have another question. Why did you adapt the parameterless constructor at the beginning and did
not define a new one? The classes can have more constructors, haven’t they?

I wanted to show you that after a constructor’s definition with parameters the statement for calling the
parameterless constructor will disappear from the class local offer. In other words I would like to
show that the compiler will add an implicit constructor really only in case that the class has no defined
constructor.

Add the parameterless constructor to the code once more and try if all three will operate.

Renaming the Class
301. It looks that we will add further and further code into the class. Should we rename it when we know that it will

not be empty anymore?

It is a good idea. Let’s agree that its instance will represent the lights, which will switch on and off and
which will be later apart of some more complex objects. Let’s rename the class to the Light.

302. How will we do it?

Simply – we rename the class in the source code. In the more complex code we would have to adjust
also all references which refer to this class and its instances. Luckily we don’t have such references, so
it will be easy.

303. You told that the class source code has to be situated in a file of the same name. So we will have to re-name its
source file.

BlueJ will take care about it during saving the file. And because the file is saved before each compila-
tion, we can rely on the fact that all will be O.K. during the compilation. But you can check it yourself:

1. Open the project folder in your favorite file manager and find there the three files connected
with the Empty class, which means the files Empty.java, Empty.class and Empty.ctxt.

2. In the source code change the class name in the class header to Light.
3. In the editor window enter the command Class ® Save or press CTRL+S.
4. Check that the class in the class diagram was renamed.

www.dbooks.org

https://www.dbooks.org/

17. Parameters 153

5. Now have a look in the project folder and check that all “Empty” files disappeared and
opposite to it the file Light.java appeared.

6. Compile the file and the remaining two “Light” files (i.e. the Light.class and Light.ctxt) will
appear.

304. I tried to compile the class, but the program stressed the header of the first constructor and wrote me that it’s
an invalid declaration of the method in an information panel (see figure 17.1).

Figure 17.1

The incorrect head of a constructor

That’s because you renamed the class, but you did not adapt the type of constructors’ return values.
The constructors, i.e. nameless methods, may return only instances of the class, in which they are de-
fined. Therefore, the compiler considers our definition as a definition of current methods. But the
methods have to quote their name between the return value type and the list of parameters. Correct
the return types in constructors’ headers (i.e. change Empty for Light) and everything will fit.

154 Part 2: Basics of Creating OO Programs

The Test Class of the Light Class
305. You are true, now the compilation went without any comments. And at present I can test it.

You will test it many times and therefore I would recommend you to create a test class for the Light
class. We will work with it during the course and the tests will make the checking of our program cor-
rectness easier. In case you forgot how they are created, you can remind it at the section Test Class of
the Class on page 91.

306. I’ve created a test class. What now?

Define a fixture for it in which you create three instances:

F Create the first one with the parameterless constructor and name it light0.

F Create the second one with the constructor Light(int x,int y), place it on the position [50,
50].and name it according to the constructor parameters’ names lightXY.

F Create the third one with the constructor Light(int x, int y, NamedColor color), place it on coor-
dinates [100, 100] and adjust the yellow color to it. Name its variable lightXYC (it’s again accord-
ing the parameters’ names).

Create the test fixture interactively as we were doing until now. (Don’t be afraid, soon you will learn
to program it as well).

I tried to present all what we have debated here again in the accompanying animation. Go through
it and train everything once more.

Animation 17.1: The formal and the actual parametres – OOPNZ_117_A1_FormalniASkutecneParametry
The animation repeats, what was explained in course of the lesson, i.e. it shows, how the constructors are
defined and how it is possible to use parameters in these definitions.

Exercise
307. I suppose that today we will fill in the constructors to classes which we started to define previously. Can you

show it firstly at the arrow?

You are supposing correctly. In case we fill in a constructor into the Arrow class and it will place it to an
entered position, its definition will be as the definition in the listing 17.3.

Listing 17.3: The Arrow class with a definition of the parameterless constructor and with the double-
parametric one

public class Arrow
{
 public Arrow()
 {
 new Rectangle(0, 15, 25, 20, NamedColor.BLACK);
 new Triangle (25, 0, 25, 50, NamedColor.BLACK, Direction8.EAST);
 }

www.dbooks.org

https://www.dbooks.org/

17. Parameters 155

 public Arrow(int x, int y)
 {
 new Rectangle(x, y+15, 25, 20, NamedColor.BLACK);
 new Triangle (x+25, y, 25, 50, NamedColor.BLACK, Direction8.EAST);
 }

 public Arrow(int x, int y, NamedColor color)
 {
 new Rectangle(x, y+15, 25, 20, color);
 new Triangle (x+25, y, 25, 50, color, Direction8.EAST);
 }
}

Notice that I shifted all coordinates used for the arrow located in the left upper corner. Nothing else
has changed in the definition. In the third constructor I substituted the default color by a color
assigned in the parameter.

This class also is worthy of having its own test class. When naming the instance, use the conven-
tion from light testing and call the individual instances as arrow0, arrowXY and arrowXYC. Don’t forget to
announce that the arrows are prepared in the window at the end.

And now supplement similarly the definitions of TrafficLight and Car classes by the constructor
with two parameters, in which the coordinates of the created object will be entered, and by the con-
structor with three parameters, in which you will enter also a color besides coordinates. However, this
parameter will enter only a chassis color of the car (the cabin and the lights will remain the same), and
only the color of the traffic light’s box where the lights are placed. Create a test class to each class so
that you could check quickly and simply each of its future improvements.

To try that you can use also the class which you defined in your classes, don’t use an ellipse for the
traffic light’s lights, but use an instance of the Light class for them. I don’t force on you in case of the
car, because the constructor adjusting the lights’ diameter was not defined yet. But if you want, you
can supplement it and test it. (However, the car still uses ellipses for lights in the sample solution.)

After adding the test classes it starts to be a little bit overcrowded, so that you can re-arrange the
class diagram, e.g. according to figure 17.2. Thus the final project with sample solutions is arranged.

Review
Let’s review what you have learned in this lesson:

F When working with parameters you have to remember their dual character. We differ as
follows:

F the parameters (sometimes called formal parameters), which are names (identifiers)
declared in the head of the method used for its definition, and

F the arguments (sometimes called actual parameters), which are values given over to the
method during its calling. These values are used for initializing the relevant parameters.

F In case we will not need to differ between the formal and the actual substance of the given
parameter in further text, we will use only the term the parameter.

F All parameters have to be declared in the method header within the parentheses.

156 Part 2: Basics of Creating OO Programs

Figure 17.2

The new arrangement of the class diagram

F The declaration of a parameter consists of the name of its type followed by an identifier of the
given parameter.

F Individual declarations are separated by commas.

F During calling the method the actual parameters have to be quoted in the same order, in which
the corresponding formal parameters were declared.

F When renaming the class we have to rename also all its constructors.

F When renaming the class we do not have to take care about renaming the relevant source code
in BlueJ environment, because it will be done by the development environment itself.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 117z_Parameters project.

www.dbooks.org

https://www.dbooks.org/

18. The Fields and the Methods 157

18 The Fields and the Methods
18. The Fields and the Methods – 000000

18 The Fields and the Methods
What you will learn in this lesson
In this lesson you start teaching your light. And I will show you that you need to install the fields for it.
Therefore we will speak about encapsulation and implementation hiding. You will also learn how to as-
sign a value to attributes. Then you will define the first methods. We will speak about qualification of
fields and of methods and at the conclusion I will indicate one of the possible ways, how to solve the
conflict of names of fields and of local variables.

Project:
In this lesson we continue in using the 117z_Parameters project.

The Light Has to Learn
308. I have already defined several classes. I would say it’s high time to show me how they can be used as well as

their instances.

For the beginning I would stay at our simple class Light and what you learn with it you will examine
once again with more complex classes. For the time being the lights know nothing. However, each
proper object should know something. Therefore, before we start using the lights, we should teach
them something first of all.

309. What you would like to teach the light? The current light doesn’t know anything.

How, it doesn’t know anything! It knows to shine and to be off! Therefore, we will learn it to switch on
at the request and switch off at the request.

310. Aha – and how we will teach it?

We will define a method for them which would change its color to a color of the switched off light.
Which color would you like for the switched off light?

311. Of course black. So we will define a method which would simulate switching off the light by recoloring it to
black?

Yes. But there is a little hitch – we cannot ask the ellipse representing the light to recolor.

312. Why not? The ellipse knows to change its color, you showed it to me!

The ellipse knows to change its color, but we cannot ask it. To request it we should have to get a refer-
ence through which we would send our request. When we were creating an ellipse, we called the new
operator. It allocated the memory and passed a reference to the constructor to initialize the freshly
created instance. The ellipse constructor made the requested, and passed the reference to the applicant

158 Part 2: Basics of Creating OO Programs

who requested for creating the instance, i.e. the light constructor, as its return value. But we were con-
tented with creating an ellipse in its definition and we ignored the returned reference. We have to
retrieve it first of all.

Introducing Fields
313. This means that we have to retrieve the light constructor, so that it would remember a reference which the el-

lipse constructor would return to it.

Exactly, but first of all we have to declare a field for this reference to which the light constructor will
save the reference obtained from the ellipse constructor. Then the method, which is to realize switch-
ing off the light, takes out the reference from this field and requests the referred ellipse for the change
of the color.

314. Well – how should I declare this field?

The fields are declared similarly as parameters of methods: firstly there is a value type quoted
followed by a name of the given field. The whole declaration is completed by a semicolon.

Contrary to parameters also the access modifier is quoted at fields, which specifies who can work
with the given field. We have already discussed it in the section Field Accessibility on page 71.

315. Yes, I remember – we were speaking about two of them: public and private. Is the word public, which we
wrote at the beginning of the class head and its constructors, also the access modifier?

Yes. The access modifiers are used for data types (classes, interface types and enumerative types),
methods as well as fields. As you surely remember, the public access modifier which we used up until
now announces that the designated object can be used by anybody. When we name the class with it,
we declare that anybody can send a message to the given class. When we name a constructor with it,
we declare that anybody can ask the given class for creating its instance through this constructor.

But the purpose of installing the fields is different. We do not install them to offer something but in
order to be able properly react to certain messages. Fields serve mostly for saving information about
its object state, but objects mostly don’t wish so that anybody else would see their state or even change
it. This information should serve for the object’s private need, so that it would be able to do what the
surrounding program requires. Therefore we mark the fields with the private access modifier. Then
we can access to such field only from the code defined within the given class.

Encapsulation and Implementation Hiding
316. What should I do if I’d need to change the attribute’s value? For example when I’d like to switch off the light, I

should tell to the ellipse in a field to change its color, shouldn’t I?

No. I have already told that other program parts don’t care about the fact that you depict the light as
an ellipse. When somebody intends to handle the light, he has to ask directly the light, not to com-
mand the ellipse “through the backdoor”. Concerning this, remember two important principles of
object oriented programming:

www.dbooks.org

https://www.dbooks.org/

18. The Fields and the Methods 159

F First of all it is encapsulation; this means the fact that we strive to put both data as well as the
code that works with these data into one box. This box is a class. In case all fields will be private
and anybody will be able to work with them only when he asks the owner for the relevant ac-
tion (he calls the relevant method of the given object), the class author would be able to provide
far better that only correct operations will be done with these dates.

F The second important principle is the implementation hiding, which says that nobody would
take care about how I (the object) organized that I know what I know. When the environment
knows nothing about the way of my work, I can change it anytime (e.g. I discover a more effec-
tive method of solving problems) without influencing the activities of objects with which I
communicate. But, when I would tell them about the way of my work, they could make use of
this information and I could not change the disclosed way of work, because I would impact the
work of all those who took into account that I am working in an introduced way.

Both principles are very close so that certain authors unify them and as encapsulation they understand
both encapsulation itself, as well as implementation hiding.

317. How these principles will appear in our program?

As I have told, we cannot ask the ellipse for anything because we did not remember the reference to it.
Therefore we will install a field to which the reference for the created ellipse will be saved. Let’s call it
bulb and mark it as private so that we can have an access to it only within the Light class body. Its
declaration looks as follows:

private Ellipse bulb;

318. Are there any rules for where the attribute’s declaration should be placed?

The only one rule is that the field cannot be declared within the method. You can declare it wherever
between methods. But it’s a good habit to place the declarations of fields either at the beginning of the
class body or on the contrary at its end.

319. And what’s better?

There is no accord among the programmers. Each group has its reasons why they prefer their own so-
lution. I prefer to place the declaration of fields at the beginning of the class body, as is stated in the
recommendation of Code Conventions for the Java Programming Language which you can download at
the address http://java.sun.com/docs/codeconv/index.html. This will be also the way of declaring the
fields in all programs of this course.

The proponents of fields at the end of the program are in minority, but they also have their reasons
why they prefer this arrangement. I am speaking about this possibility primarily so that you would
not be surprised during reading programs of somebody else that the fields are defined at the end.

160 Part 2: Basics of Creating OO Programs

The Assignment of the Value to the Field
320. Well, so how the program will look out now?

Look at the following source code. At the beginning of the class definition there is the bulb field de-
clared and the reference returned by the ellipse constructor is saved in this field in the constructor’s
definition – see the listing 18.1.

Listing 18.1: The Light class with the bulb field and three constructors

public class Light
{
 private Ellipse bulb;

 public Light()
 {
 bulb = new Ellipse();
 }

 public Light(int x, int y)
 {
 bulb = new Ellipse(x, y);
 }

 public Light(int x, int y, NamedColor color)
 {
 bulb = new Ellipse(x, y, 50, 50, color);
 }
}

321. I’m not very clear about why you write that a bulb is equal to the new ellipse.

It is an assignment statement. This is what we write down in the program when we want to save cer-
tain value. Notice, how we write down that something is assigned to somewhere.

F The = sign (equal sign) represents the operator of assignment. It announces to the compiler that
we will save something at certain place.

F To the right of the equal sign we will write an expression by evaluating of which we receive the
value that is subsequently saved. In this case the expression is a request for creating an instance
of an ellipse (new Ellipse) followed by the constructor’s calling which prepares the given in-
stance for using and returns a reference to it. The value that is saved is the received reference to
the created instance.

F To the left of the equal sign we will write the name of the memory place where we will put the
result– in our case the name of the bulb field.

F The whole statement is then completed with a semicolon.

www.dbooks.org

https://www.dbooks.org/

18. The Fields and the Methods 161

Whenever, when the computer meets the assignment statement, it evaluates the value of the expres-
sion on the right of the equal sign and saves the result into the memory place assigned on the left of
the equal sign.

322. Can you explain me what does it mean the word operator?

It is derived from the word operation. In case you want to enter carrying out of an operation, you have
to enter an operator, which is a denomination of what will be done, and operands, which are data
with which the operator will work.

For the assignment operation the operator is = (the sign of equation) and the left operand is the
memory into which it will be assigned (mostly a variable) and the right operand is the expression
defining the value which will be assigned.

Method Definitions
323. We have already remembered the reference to the bulb, so we can switch off.

You are true. We define the switchOff() method which asks the bulb to color in black. Look at the list-
ing 18.2 how such method can be defined.

Listing 18.2: The definition of the switchOff() method in the Light class

public void switchOff()
{
 bulb.setColor(NamedColor.BLACK);
}

Notice that the method is defined similarly as the constructor. The only one difference is that the
method has to have a name.

In this lesson we will define only methods that return nothing. I remind that these methods declare
the return type void.

324. Where should I locate the method’s definition? Is there any recommendation for location of methods?

For now we will agree that the instance definitions of methods will be located behind the definitions
of constructors. In some of the future lessons we will speak about the locating of individual parts of
the code in details.

The Qualification
325. I would like to ask for the interior of the method in which you call another method. Should I always call the

method by writing the field, dot, name of the called method and possible parameters?

Not always. But it’s everything more complicated so let me start with the theory again. When we
worked in an interactive mode, I did not emphasize that each message has its addressee. When we
wanted to send a message to anybody, we opened his local offer, found a command corresponding to
this message and entered it. The addressee of the message was then an object in whose local offer we
selected the entered command.

162 Part 2: Basics of Creating OO Programs

But when writing the program in text, it’s not so clear, and therefore, we have to quote explicitly
the message addressee. Quoting those to whom we are sending the message, i.e. those, whose method
we are calling, is named a qualification and it is separated by a dot from the name of the called meth-
od or used field. In case we address the instance, the result of qualification has to be a reference to an
announced object, in case we address the class the qualification is the class name.

Theoretically we could address the class by a reference to its instance, but using such qualification
is considered as unmoral – it is one of the programmer’s sins. When reading the code it can evoke a
false imagine that it is a method or a field of the given instance.

Each method which you want to call and each field whose value you want to discover or adjust
you have to qualify. The only exception is methods and attributes of the owner of the given code. You
can leave out the qualification and the compiler will supplement it instead of you. There are three
ways of qualification used in our method:

F The bulb field is “the property of the code’s owner”, i.e. the field of the same instance whose
method I have just defined and therefore I skipped its qualification.

F The calling of the setColor method is qualified by a reference received from the bulb field. In
other words the method of the object to which the bulb field is referred is called.

F The BLACK field is qualified by the name of the NamedColor class.

326. You told that you skipped over the qualification of the bulb field. How it would look out if you would not
skip it?

In case the owner of the given code is an instance (e.g. in the instance method) you qualify it with the
keyword this. In case the code owner is a class, you qualify it with the name of this class. The
statement in the previous method could be also written in the form as follows:

this.bulb.setColor(NamedColor.BLACK);

327. But now there are two dots.

Yes, because to get the reference qualifying the setColor method I needed the bulb field, which was al-
so needed to be firstly qualified (it doesn’t matter if it was done by me or by the compiler). You will
meet statements during the course in which the way to qualification will be more complicated and the
number of dots will be increased.

Let’s leave the rules of language syntax and let’s return to improving our light. Don’t be afraid we
are not leaving them fully. After you will supplement several definitions of classes with methods, we
will discuss them again.

The Conflict of Names of a Field and of a Parameter
328. When we switched off the bulb we could switched it on, couldn’t we?

We could, but we have to solve firstly the same problem as a while ago. This time we did not remem-
ber the color of the bulb on and so we cannot say to which color it should change. We have to install
again a field (let’s call it perhaps color), in which we remember this color.

www.dbooks.org

https://www.dbooks.org/

18. The Fields and the Methods 163

329. I wanted to adjust the program myself but I did not know which color I should remember at the first two con-
structors and, at the third one, I was surprised that the field is named equally as the parameter. I am afraid
that the statement color = color; is not the proper one.

You are true, it is not. There are several possible solutions. For now I advise you to rename the param-
eter of the constructor to a mere b. Soon I will teach you more elegant (and more used) solution, but
firstly I have to explain several other items, and that’s why we will postpone it for now.

As far as remembering the ellipse color is mentioned, which you did not adjust yourself, the solu-
tion is simple: as soon as you create the ellipse, you ask it immediately and you will remember the re-
turned color. You will reach it by inserting the following statement behind the initializing the bulb
field into the constructor:

color = bulb.getColor();

330. I’d say it’s clear now. Will you define another method?

The third time we could define the blink() method, which switches on the given light, lets it shine for
half a second and then switches it off. It will be a little demonstration of the method, which calls other
methods of the same instance.

You will be able to try that in case the instance method calls another method of the same instance,
it does not need to address anybody and it is sufficient only to quote the method calling. The compiler
provides the needed addressing instead of you.

If you possibly could not remember how to arrange so that the program would wait for half a se-
cond I would like to remind you the section The Animation on page 56. Due to the fact that this time it
concerns of the message sent to a class, you have to address the IO class. You will achieve it with the
following statement

IO.pause(500);

I recommend you to wait also after you switch the light off, because then it would be easier to make
several subsequent blinks. And yet another recommendation: the blink method may be more
understandable, when you write the action and the following asking for pause at the same line.

331. I’ll try to write the resulting form of the program myself. Is the program in the listing 18.3 correct?

Listing 18.3: The Light class with switchOn(), switchOff() and blink() methods

public class Light
{
 private Ellipse bulb;
 private NamedColor color;

 public Light()
 {
 bulb = new Ellipse();
 color = bulb.getColor();
 }

 public Light(int x, int y)
 {

164 Part 2: Basics of Creating OO Programs

 bulb = new Ellipse(x, y);
 color = bulb.getColor();
 }

 public void switchOff()
 {
 bulb.setColor(NamedColor.BLACK);
 }

 public void switchOn()
 {
 bulb.setColor(color);
 }

 public void blink()
 {
 switchOn (); IO.pause(500);
 switchOff(); IO.pause(500);
 }
}

Great, it’s good! I see you have even lined up the statements located one below the other for better ar-
rangement. (I know that BlueJ helps you, but a significant number of students do not bring such
simple operation off.)

And now only the relevant test method should be completed into the test class. You can try it in a
single method, which we can call e.g. blink. The fixture you created in the previous lesson leaves all
lights on. Therefore, you should request one light after another to switch off and then request one light
after another to blink. If you would like to have everything perfect, you can wait a half second before
blinking so that you could see that all lights really switch off. Let the program wait again half a second
after blinking and switch on all lights at the end.

Exercise
332. So what you will show me today with the arrow? I suppose we will not switch it on and off.

Let’s try something different: we will teach the arrow to become translucent (partially transparent), i.e.
so that we could at least partially look through (suspect) the objects which are under it. In case you
look to methods offered by the NamedColor class, you find the translucent() method among them,
which will return a translucent version of the given color (in case the color already is translucent, it
returns itself). The objects colored with a translucent color do not cover its ground but will filter the
colors below. The new version of Arrow class then might look out as in the listing 18.4.

It will be a bit more complicated with the test method, because when you only recolor the arrows
you cannot recognize if they really get translucent or not. I advise you to draw firstly a rectangle at the
canvas (at the best a white one), which will interfere into all arrows. In case you will draw translucent
arrows, you will see through them the edges of the rectangle. (It will not be evident if the rectangle

www.dbooks.org

https://www.dbooks.org/

18. The Fields and the Methods 165

Listing 18.4: The Arrow class with three fields and three methods

NamedColor NamedColor NamedColor public class Arrow
{
 private Rectangle body;
 private Triangle head;
 private NamedColor color;

 public Arrow()
 {
 color = NamedColor.BLACK;
 body = new Rectangle(0, 15, 25, 20, color);
 head = new Triangle (25, 0, 25, 50, color);
 }

 public Arrow(int x, int y)
 {
 color = NamedColor.BLACK;
 body = new Rectangle(x, y+15, 25, 20, color);
 head = new Triangle (x+25, y, 25, 50, color);
 }

 public Arrow(int x, int y, NamedColor c)
 {
 color = c;
 body = new Rectangle(x, y+15, 25, 20, c);
 head = new Triangle (x+25, y, 25, 50, c);
 }

 public void setColor(NamedColor color)
 {
 body.setColor(color);
 head.setColor(color);
 }

 public void translucent()
 {
 body.setColor(color.translucent());
 head.setColor(color.translucent());
 }

 public void restoreColor()
 {
 setColor(color);
 }
}

166 Part 2: Basics of Creating OO Programs

filters through the arrows, or the arrows through the rectangle, but you will have to believe to your
program – in future we will improve the test.) Then open the dialog (i.e. call the IO.inform(Object)
method), in which you will ask the user to verify that the arrows really shine through and return the
original color to arrows at the end.

333. Well, probably I understood the arrows. But what should I do with the car and the traffic light?

You will not teach the car any methods today (but you can define its fields and adjust the construc-
tors), but you will teach the traffic light new methods. You will teach using colored combinations you
know from traffic lights at crossroads. Define the following methods:

F stop() – the red light is on,

F getReady() – the red and orange lights are on,

F go() – the green light is on,

F attention() – the orange light is on,

F allLightsOff() – all lights are off,

F allLightsOn() – all lights are on (it is not a real state, but it is useful for testing),

F cycle(int stop, int getReady, int go, int attention, int lightsOff) – gradually to switch on
separate combinations and let them shine as much milliseconds as the value of the relevant
parameter is,

F cycle() – is a test equivalent to the previous method in which the traffic light remains in each
state just half a second, i.e. 500 milliseconds.

The test method will be simple – you will call the test cycle for each created traffic light.

334. I understand the first methods, simply some lights switch on and the others off. But how did you mean it with
the cycle? How can I leave the light shine for a while?

Did you forget that the IO class knows to pause the program for a while? Let’s ask it to wait for a cer-
tain time and then switch on another combination. The resulting version of both cycles can be as in the
listing 18.5.

Listing 18.5: Two version of the cycle method for instances of the TrafficLight class

public void cycle(int stop, int getReady, int go, int attention, int lightsOff)
{
 stop(); IO.pause(stop);
 getReady(); IO.pause(getReady);
 go(); IO.pause(go);
 attention(); IO.pause(attention);
 allLightsOff(); IO.pause(lightsOff);
}

public void cycle()
{
 cycle(500, 500, 500, 500, 0);
}

www.dbooks.org

https://www.dbooks.org/

18. The Fields and the Methods 167

In the first version of the method I wrote two statements at each line. Writing more statements at one
line is generally not recommended, except the program would become more transparent, as in
this case.

335. Why the last parameter does not have the same name as the corresponding method, i.e. switchOff?

Perhaps I should tell: “Because I did not think it up better.” Take it as the previous method names are
not names of commands for the traffic light, but more names of commands for cars, controlled by the
traffic light. But for the last method I did not think up any corresponding name. The traffic light oc-
curs in this state not only when it’s switched off, but also half of the time when the amber light is
blinking. So at the end I solved it as you can see here.

Review
Let’s review what you have learned in this lesson:

F Each proper object should have certain abilities. We can teach the object new skills by defining a
method which realizes the object’s reaction to a relevant message.

F In case the object should cooperate with some other objects, it has to have a reference to them at
its disposal.

F Objects remember the necessary information in their fields.

F The fields are declared similarly as parameters of methods. Contrary to parameters we do not
declare them as outside methods and mark them as access modifiers.

F The access modifiers specify who can work with the marked class, method or field.

F As far as fields are concerned, mostly we don’t want to announce that we are using them, and
therefore we mark them with the private access modifier.

F We can approach to entities marked with the access modifier private only from the code inside
the class body.

F Encapsulation means saving the data and the code which works with these dates to a common
box – a class or an instance.

F Hiding the implementation means a highest concealing of how the given function of an object is
programmed.

F Encapsulation of data and of a code belongs together with implementation hiding to the most
important principles of object oriented programming.

F Certain authors unify the terms encapsulation and implementation hiding and they understand
this term as both the encapsulation itself, as well as the implementation hiding.

F The fields are defined according to a convention at the beginning of the class body before
definitions of constructors.

F Marking of to whom I am sending the given message, i.e. whose method I am calling, is named
a qualification.

168 Part 2: Basics of Creating OO Programs

F The qualification is separated from the name of the qualified method or the field by a dot.

F In case we address an instance, the result of the qualification has to be a reference to an ad-
dressed object, in case we address a class, we qualify with the class name.

F Theoretically, we could address the class by a reference to its instance, but using such qualifica-
tion is considered as inappropriate, because the program is non-transparent.

F We have to qualify each method which we want to call as well as each field whose value we
would like to recognize or adjust. The only one exception are methods and fields of the owner
of the given code, whose qualification is completed by the compiler.

F In case we want to qualify the owner, we should use the keyword this for an instance, for the
class we use its name.

F There is an operator and operands in each operation.

F The operator is an identifier or a character sequence saying what will be done.

F The operands are data with which the operation is carried out.

F The assignment statement is used for remembering the value.

F The sign of equation = is used as an assignment operator.

F We write the expression whose value we want to save to the right of the equal sign.

F We specify a place in the memory where the value would be saved to the left of the equal
sign.

F We complete the whole statement with a semicolon.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises, is in the 118z_FieldsAndMethods project.

www.dbooks.org

https://www.dbooks.org/

19. Implementation of an interface 169

19 Implementation of an interface
19. Implementation of an interface – 000000

19 Implementation of an interface
What you will learn in this lesson
In this lesson you will see at an implementation example how the interconnection of class diagram and
the source code operates in BlueJ. Then you will be explained how to define the methods required by the
implemented interface and you will become acquainted with the @Override annotation. Finally you will
see how the interior of the test class look out.

Project:
In this lesson we come back to the 114z_CanvasManager project.

336. So which improvement you prepared for me today?

Today I would exploit that you have already learnt defining methods with parameters, and I would
return to the project in which the shapes at the canvas do not mutually wipe off, i.e. to the project with
a canvas manager. At this occasion we have to change a little bit the classes and for the first time you
will see the interior of the test class.

Interconnecting the Source Code with the Class Diagram
337. Wonderful, go on. I’ve already downloaded the project and imported the Light and LightTest classes in it.

You made it very well. In addition remove the classes House, Face and Robot; we will not use them
anymore.

If you remember, in this project only instances of classes implementing the IPaintable interface can
appear at the canvas. In case we wish the instances of these classes would be drawn, these classes have
to implement this interface.

When I presented interface types I showed you how the interface implementation can be declared in
BlueJ by only drawing the implementation arrow. These actions immediately appear also in the source
code. You can test it right now. Open the source code of Light class in the editor so that the editor’s win-
dow did not hide the project’s window and you could see the class header in the editor’s window. Then
draw the implementation arrow in the class diagram from the Light class to IPaintable interface.

338. I see. After drawing the arrow the text implements IPaintable appeared in the header behind the class name.
This is what you want to show me?

Yes, BlueJ keeps the link between the class diagram and the source code permanently up-dated. Let’s
try a reverse procedure. However, copy the implements IPaintable declaration into the clipboard before
that, so that you should not have later to write it in hand (copy it together with the space behind
the class name). Then wipe off the implementation arrow in the class diagram. The declaration
immediately disappears from the class head.

170 Part 2: Basics of Creating OO Programs

339. It really operates! But why I copied the text to a box?

Because I wanted to show you that it operates also in reverse. Move to the editor and put the declara-
tion from the box to the class header. This change will not appear yet in class diagram, because BlueJ
knows that until you edit the file, you will be concentrated to a text. But save the edited file (i.e. enter
the command Class ® Save or press CTRL+S) and then click at the project window (the second possibil-
ity is to compile the class and you don’t need to click anywhere). Promptly an arrow appears in the
class diagram.

Return once more to the editor and wipe off the declaration. Now it is sufficient only to save the
file (i.e. you don’t need to click anywhere nor compile the file) and the arrow in the class diagram
disappears.

340. It operates, as you are saying. And I have one more question: why I saved the declaration to a box if it was suf-
ficient to enter a command Back and the editor would supplement it instead of me?

Because I thought you might be overpowered by an impression that the command Undo refers to class
diagram and therefore I wanted so that you would really insert the requested letters into the code. Of
course, the commands Undo and Redo in the Edit menu can be used as well.

And I will tell you a specialty. Until now we only saved the modified source code. However, before
compilation of the class, the class automatically will firstly be saved and immediately also the class
diagram is up-dated.

The Abstract Methods and Classes
341. I wanted to compile the class and the compiler announced an abstract mistake. What is it?

I see. It wrote as follows:

Light is not abstract and does not override abstract method paint(Painter) in IPaintable

I will explain it a little bit broader. As I told you in the chapter The Interface on page 77, the interface
has no implementation. Methods which it declares are therefore not the concrete methods, but only
declarations about how the method should look out if anybody would implement it. Thus we say that
the methods which the interface declares are only abstract (what would be if…).

We told that by declaring the implementation of some interface the class pledges to implement all
methods declared in it. We could say that all methods declared by the implemented interface become
the part of the interface of the implementing class. The class which implements certain interface has
either to implement all declared methods, or it has to designate itself as abstract, not fully valuable
class which is not able to fulfill all what it promises in its interface.

However, you did not do any of these possibilities, i.e. you neither implemented the method de-
clared by IPaintable interface; nor you designated the class as abstract. Therefore the compiler had
objections towards your code.

342. How did you mean it that the abstract class is not fully valuable?

The abstract class has not implemented all methods, which are quoted in its interface (this time I mean
really the general interface of the given class). Therefore you cannot create its instances because they
would not be able to react to certain messages which are part of their interface and which could be

www.dbooks.org

https://www.dbooks.org/

19. Implementation of an interface 171

sent to them by surrounding objects. We could say that the abstract class is a hybrid between a classic
class and the “interface”. The abstract class can have certain methods implemented as a classic class
and at the same time some methods can be only declared (and therefore abstract) as in interface. A
number of consequences ensue from it and that’s the reason why I postpone the explanation of
abstract classes to the next book.

For the time being you should remember that the above quoted statement means that your class
does not implement all methods declared by interface which is implemented by a given class. The
compiler strives to help you in finding the mistake by saying which method is not implemented by the
class and which interface declares the given method.

Implementation of a Method Declared by an Implemented
Interface
343. By other words I should implement the paint(Painter) method. But how?

I personally do it by dividing the implementation into two periods: in the first period I copy the head
declaration from the source code of an implemented interface into my code and in the second period I
supplement the body of a given method. Open the IPaintable interface in an editor and switch the edi-
tor to depicting the implementation, i.e. to depicting the source code. You should receive a window as
in the figure 19.1.

344. Phew – it’s complicated. What’s in?

Don’t be afraid, majority of texts are comments – we will speak about them next time. When you skip
all blue and green you will receive the definition in the listing 19.1.

Listing 19.1: The definition of IPaintable interface after removing comments

public interface IPaintable
{
 public void paint(Painter painter);
}

And it does not look so complicated, does it?

345. Well, this is far simpler. Please, explain me what is what.

As you see the interface header (the line 22 in the figure 19.1) looks similarly as the class header, only
instead of the class keyword there is the interface keyword.

Only single method is declared in the interface body. Notice that its header looks identically as the
method header which we defined in the previous lesson. The only one difference is that the method
does not have a body and instead of it there is only a semicolon in the code.

Theoretically there might be another two changes in the head:

F The public keyword could be missing because all methods declared in an interface are automat-
ically public and will be public even when we would not quote the public access modifier. I
quote it in my source codes of the interface so that copying of headers to the source code of
implementing classes – where this keyword must be – would be simpler.

172 Part 2: Basics of Creating OO Programs

Figure 19.1

The source code of IPaintable interface

F I told you that methods declared in interface types are only abstract (they don’t have any body –
there is only a semicolon in the source code instead of it). We could stress this fact by adding
the abstract modifier at the beginning of the head. Its quoting is optional because the declared
methods must be abstract, so authors of the language forgive quoting this modifier.

I don’t quote this modifier in declarations, because I would have wipe it off after copying the
header to the source code of an implementing class. If I don’t quote it, I simplify the copying.

www.dbooks.org

https://www.dbooks.org/

19. Implementation of an interface 173

346. Well, you say that I should copy the method header into the source code of the Light class.

Yes, copy it together with the documentation comment – those are the five lines with the blue text
above the method definition. I usually transport or copy the methods (or their headers) together with
the previous line as well as the next one so that I would have two empty lines among them. Thus for
me the code is significantly better arranged.

347. I’ve copied it and I return to the original question: “How should I implement the method?”

Simply: Wipe off the final semicolon, fill in the braces surrounding the method’s body and insert a
statement in which you request the bulb to paint itself by the given painter. By painting the bulb logi-
cally the whole light is painted. Therefore the definition of the method will be quite simple (I quote it
with the documentation comment) – see the listing 19.2.

Listing 19.2: The definition of the paint(Painter) method in the Light class

/***
 * Paints the instance by force of the specified painter.
 *
 * @param painter Painter drawing the instance
 */
//@Override
public void paint(Painter painter);

The @Override Annotation

348. Under the blue text there was a green line with a text @Override. Why did you wipe off those two leading
slashes?

The @Override is one of the so called annotations and it announces to a compiler that the following
method is declared also in a supertype – in this case in the IPaintable interface. The compiler can thus
check if I made a typing error by defining another method instead of the one which I wanted to
define.

Theoretically this annotation is not compulsory, but I welcome each cue provided to the compiler
so that it could check already during compilation if I made a mistake. The error which occurs during
the run-time is far more difficult to be found and if it becomes evident to a client my reputation is
needlessly spoiled. Thus, the moment I spent by adding the @Override annotation is fully returned.

349. What are those annotations like?

Annotations are special interface types, which mostly do not relate directly with the program’s activi-
ty but can serve as e.g. auxiliary information for the compiler. You will use them in the source code by
writing the @ character in front of their identifier. I will not tell you more because working with them
belongs to more advanced programming skills. This is the only one annotation which we will use in
our programs. In this introductory course we will use yet several annotations in the test classes,
nothing more.

174 Part 2: Basics of Creating OO Programs

350. I will ask you once more: “Why did you wipe off those two slashes?”

As long as those two strokes were there, the compiler understood the given line as a comment, i.e. as a
text which should be ignored (as I have already told, comments will be explained in the next lesson). It
should be in an interface because it does not inherit this method, but declares it. The annotation can be
only before the header of an inherited method.

The slashes are in the interface, because the annotation is there prepared just for copying to classes
which will decide to implement the given interface and the presence of this annotation is useful for
them. Then it is sufficient to wipe off those two slashes and the comment changes to a program – a
reference to an annotation in this case.

The Interface and the Class File
351. How the interface is compiled? When it has no implementation, it has probably no class file. Do I understand

it well, that the interface definition is only information for the compiler?

No, it’s not true. The interface types are compiled to class files equally as classes. The information
saved in them tells to the virtual machine to what the class implementing the given interface is
pledging.

Test Class
352. I will return to this project. The compilation succeeded, and I see it was really simple. If I remember it well we

have to adjust the fixture so that the created lights could be enrolled at the canvas manager.

You remember it well. However, this time we will not modify the test fixture in the interactive mode,
but I will show you its source code and you will adjust it directly. Open the source code of the
LightTest class in an editor – it should correspond to the listing 19.3. Don’t pay attention to introductory
lines with stars at the left side; it is a comment which will be explained in the next lesson.

Listing 19.3: The definition of the LightTest class

/***
 * Testing class {@code LightTest} serves as a complex way to test
 * the class {@link Light}.
 *
 * @author Rudolf PECINOVSKÝ
 * @version 2.00.4006 — 2013-06-13
 */
public class LightTest
{
 private CanvasManager CM;
 private Light light0;
 private Light lightXY;
 private Light lightXYC;

 //== PREPARATION AND CLEANING THE FIXTURE ==================================

 /***

www.dbooks.org

https://www.dbooks.org/

19. Implementation of an interface 175

 * Prepares the tested instances and performs the actions,
 * which should be performed before each test.
 */
 @Before
 public void setUp()
 {
 light0 = new Light();
 lightXY = new Light(50, 50);
 lightXYC = new Light(100, 100, NamedColor.RED);

 CM = CanvasManager.getInstance();
 CM.add(light0, lightXY, lightXYC);

 IO.inform("Lights prepared");
 }

 /***
 * Cleans up after the ran test and performs the actions,
 * which should be performed after each test.
 */
 @After
 public void tearDown()
 {
 }

 //== THE TESTS ===
 //
 // /***
 // *
 // */
 // @Test
 // public void testXXX()
 // {
 // }
 //

 @Test
 public void testBlink()
 {
 light0 .switchOff();
 lightXY .switchOff();
 lightXYC .switchOff();
 IO.pause(500);
 light0 .blink();
 lightXY .blink();
 lightXYC .blink();
 IO.pause(500);
 light0 .switchOn();
 lightXY .switchOn();
 lightXYC .switchOn();
 }
}

176 Part 2: Basics of Creating OO Programs

353. What do mean those lines of equal signs?

All lines starting with double slash // are comments too (we talked about them in connection with an-
notation @Override). Those with equal signs are navigation comments which indicate where you should
insert the separate parts of the program. Its location is not obligatory, it is only a recommendation but
when you get used to placing individual parts of the program in a certain way, you will be better ori-
ented in your programs. We will debate it in details in the next lesson. This time you should only
remember that all lines starting with two slashes should be ignored.

354. Well, I will pay no attention to them. But tell me, what I should pay attention to.

I am sorry that this class contains so many unknown things. But when I was considering if I should
include the explanation today or after all necessary will be completed, I decided as more useful to
show you how the test class looks like inside, because then you will have better idea how to utilize it.

The test classes use certain expressions in their work which are considered as a kind of program-
ming witchcraft by a lot of programmers. So reconcile that certain features will be not explained in de-
tails, but I will only tell you what you need to know for successful creating of tests. The source code of
test classes created by the BlueJ environment consists of the following parts:

F At the beginning of the class body there are private fields declared – the variables, to which the
references to instances creating the fixture are saved. Those are the light0, lightXY and lightXYC
fields in this example.

F The setUp() method takes care about creating the fixture. Whenever you ask BlueJ to create a fix-
ture based on the existing activity, BlueJ wipes off the body of this method and substitutes it by
a program that realize what you did since the last restart of the virtual machine. As I have said
already, this method starts to run before starting the test method.

The method name is not important – it is given by convention. Important is the annotation
@Before that tells to the test library, that this is the method creating the fixture.

F The method tearDown() takes care about cleaning after the test. We did not use it up to now, so
that its body is empty. Soon we will add the body also to this method.

Also this method name is given by convention. Important is the annotation @After that tells
to the test library, that this is the method responsible for cleaning up after the test.

F The tearDown() method is followed by particular test methods. In case you yourself would
decide to define any of them you, you have to keep the following rules:

F The method should be annotated by the @Test annotation.

F The method has to be public.

F The method must return nothing, i.e. the return type void must be defined.

F The method must have no parameters.

F The method name is not important, but according to conventions it should start with the
word test. When you request BlueJ to create a test method it will ask you for the test
name. After the user demonstrates the test BlueJ creates a test method which fulfills all
the above stated requirements.

www.dbooks.org

https://www.dbooks.org/

19. Implementation of an interface 177

355. I understand the structure of the test class. Show me, how I should adjust it.

As you properly recall, we have to enroll the created instances at the canvas manager. We solved it in
the interactive mode by sending the message paint() to each created instance and this message en-
rolled the given instance. The Light class does not have such method. We could define it, but it will be
easier when we enroll the instance directly at the canvas manager.

As you surely remember the instances are enrolled at the canvas manager by sending the
add(IPaintable...) message. But to be able to send it a message, we need to have a reference to it. For
the time being we do not have it. Therefore we add the following declaration at the beginning of the
body of the LightTest class:

private CanvasManager CM;

Then we adjust the setUp() method into the form in the listing 19.4 (I skip over the introductory anno-
tation as well as documentation comments).

Listing 19.4: The modified version of the setUp() method in the LightTest class

@Before
 protected void setUp()
 {
 light0 = new Light();
 lightXY = new Light(50, 50);
 lightXYC = new Light(100, 100, NamedColor.RED);
 CM = CanvasManager.getInstance();
 CM.add(light0, lightXY, lightXYC);
 IO.inform("Lights prepared");
 }

Exercise
356. I would say that it was enough today and it would be good to repeat it at more complicated classes. I suppose

that my task today would be to convert also the Arrow, Car and TrafficLight classes together with their test
classes into the new project.

You suppose it well. I would say that I don’t have to give you a clue today. I would like to recommend
you addressing gradually all parts of the given instance in the paint(painter) message, and those that
should be drawn beneath have to be addressed before those that should be drawn atop. This method
for an arrow would look as in the listing 19.5.

Listing 19.5: The definition of the paint(Painter) method for an arrow

public void paint(Painter painter)
{
 body.paint(painter);
 head.paint(painter);
}

Besides that I would recommend you – do not ask for association of the imported test classes with
their corresponding tested classes because they take too much place in the diagram and it has to be in-
creased. I prefer to see also other things at the screen besides the class diagram – e.g. I consider as
useful to see the source code together with the class diagram and not to cover one by the other.

178 Part 2: Basics of Creating OO Programs

Despite you will not associate the tested classes with the test classes, the diagram will be full and
you have to re-arrange it – e.g. according to the figure 19.2.

Figure 19.2

The project with newly arranged class diagram

357. I rearranged the diagram and I started to work with the source codes. Hopefully I grasped the definition of
paint(Painter) method. I think that I properly adjusted the setUp() method in the test class. But when I start
the test, no rectangle appears and the arrows only get matt for a while.

Because you did not enroll the auxiliary rectangle at the canvas manager. But I have to help you with
it, because you cannot enroll it as you did it until now. The canvas manager leaves to redraw the ob-
ject in the order in which they enrolled, and thus the lastly enrolled objects are on the top. Fortunately,
it defines also such methods with the assistance of which you can include the newly added object
among objects that enrolled before it. Use the method as follows:

boolean addBehind(IPaintable presentShape, IPaintable addedShape)

you will pass the object to it which is already enrolled in the first parameter and the newly included
object in the second parameter. The method then locates the newly added object closely under the
object quoted in the first parameter.

As long as you named the variable that keeps the reference to a canvas manager also as CM and if
you enrolled the arrow0 object at the manager as the first one, then the test method should start with
the statement:

Rectangle ground = new Rectangle(25, 25, 100, 100, NamedColor.WHITE);
CM.addBehind(arrow0, ground);

The rest of the test can be left as it is.

www.dbooks.org

https://www.dbooks.org/

19. Implementation of an interface 179

Review
Let’s review, what you have learned in this lesson:

F BlueJ synchronizes the source code with the class diagram.

F When drawing or wiping off the arrow in the class diagram the change is immediately
projected into the source code.

F By including the change into the source code this change will appear in the class diagram
after saving the given source file and subsequent click into the class diagram, resp. after
an attempt to compile the given class.

F In case the class does not implement all methods declared by an implemented interface, the
compiler considers it as an abstract one.

F The abstract class is not fully valuable. All its methods need not to be implemented, and there-
fore it cannot have any instance. Therefore we will not use the abstract classes in this course.

F One of the simple ways how to define a method implementing the “parent version” declared in
the implemented interface is to copy the declaration from this interface, and replace the closing
semicolon with the method’s body.

F The annotation is a special kind of an interface which mostly does not relate to the program’s
operating itself. One of its possible functions is to provide additional information to the compil-
er or to some library in use.

F We refer to annotations in the source code by writing the @ character in front of the name of the
given interface.

F The test class consists of several parts:

F the head,

F the declaration of private fields creating a fixture,

F the method annotated by the @Before annotation, which creates the test fixture before each
test and which name is setUp() according to conventions,

F the method annotated by the @After annotation, which cleans up in a necessary way after
each test and which name is tearDown() according to conventions,

F the test methods which have to be public, parameterless, returning void and annotated by
the annotation @Test. According to convention their names should start with the word
test,

F possible further fields and methods which you need for the test definition.

F In case of more complicated shapes composed of several parts we define their re-drawing by
graduate re-drawing of separate parts one by another.

F In case we need to insert a new part to another place then atop the heap of depicted shapes, we
can use the addUnder(IPaintable, IPaintable) method sent to the canvas manager.

180 Part 2: Basics of Creating OO Programs

F The @Override annotation announces to the compiler that you define your own version of certain
inherited method, so that the compiler could check if you are not defining quite new method
only due to a typing error.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 119z_CanvasManager_returned project.

www.dbooks.org

https://www.dbooks.org/

20. Comments 181

20 Comments
20. Comments – 000000

20 Comments
What you will learn in this lesson
This lesson is devoted to comments, their definition and usage. Firstly you will see how to comment a
part of the code, then you will be presented individual kinds of comments and then you will see how the
templates of a standard class look like. And finally you will see how the javadoc tags are used including
their usage at the example of our class.

Project:
In this lesson we continue in using the 119z_CanvasManager_returned project.

Commenting Parts of a Code
358. You mentioned comments in the last lesson and you told that we would speak about them the next time. And

the next time is just now.

You are true, let’s go on. As I already indicated, the comments are those parts of the source code
which serve only for the programmer’s information and the compiler ignores them. Originally they
were used only for making notes that would enable better orientation in a program or remembering
the reason, why the particular code is defined in such way.

Later on, the programmers realized that with the help of the comments they can cover that part of
the program which is not needed at the moment, but on the other hand, they don’t want to get rid of it
definitely, as it might be useful in future. Commenting of the program’s part is an elegant way how to
arrange that the recorded statements would be remained in a program, but the compiler would ignore
them and you could “revive” them only at the time when you would need them.

359. For this, as you say, “commenting the program’s part” the ordinary comments are used or the special ones?

.There are no special comments for commenting the part of the code. You can use for it any kind
which Java defines, despite the line comment that is used for commenting the @Override annotation in
interface types is the most available for it and therefore the development tools offer such usage

360. How do they offer it?

Majority of development environments have a command for commenting a group of neighboring
lines. This is offered also by BlueJ.

361. Aha! It looks interesting – show it!

Select a block which would reach to all the lines you would like to comment (the border lines need not
to be chosen at the whole, it is sufficient when the selected block reach into them only). Then press the
key F8 or enter the command Edit ® Comment. BlueJ spreads the block to whole lines and comments all

182 Part 2: Basics of Creating OO Programs

lines in this extended block, i.e. it inserts two slashes (and a space, despite it’s not necessary) at their
beginning.

In case you would activate this code later on, you select the block again, so that it would reach all
activated lines and then you press the key F7 or you enter the command Edit ® Uncomment. BlueJ again
spreads the block so that it would contain whole lines, and uncomments the lines in a block, i.e. it
deletes the initiating two slashes (and the possible space).

Comments in Java
362. It operates perfectly. You indicated that Java has more kinds of comments.

Java installs three kinds of comments:

F The line comment begins with the character twins // and finishes at the end of the line. The line
comments are used mostly when we would like to supplement some statement with a note (or
we want to make commenting of a part of the code similarly as we did a while ago).

F The Block comment starts with the character pair /* and finishes by the inverse pair */ – these
pairs serve as the comment brackets. Everything what the compiler finds between them is ig-
nored and thus it is not included into the realizing program for the virtual machine. Thus the
block comment can be spread through several lines.

F The special case of block comments are documentation comments, which start with the triplet
of characters /**. These comments are used for automatically created documentation. A pro-
gram javadoc.exe, which knows to go through marked files and which creates a proper docu-
mentation from documentation comments found in these files, can be found among programs
contained in a JDK set. Therefore the documentation comments are also known informally as
“doc comments” or “javadoc comments”.

363. Where in the program I can write a comment?

Anywhere, where you can write a space, you can write any succession of whitespaces and/or com-
ments. We could have a look at it also in reverse: the only one place where you cannot insert any
comment (or whitespace) is in the middle of an identifier.

364. When you showed me the source code of the IPaintable interface I noticed that some comments are green and
the others are blue. Does it have any meaning?

The colored differentiation of comments is a part of syntax highlighting about which we spoke in the
section The Source Code of the Empty Class on page 137. BlueJ differentiates documentation comments
from others. In our configuration the documentation comments are blue, other comments are green.

365. Why so much kinds of comments are installed? One would be sufficient according to my opinion.

In the original C language, which is a “grandfather” of Java, there was really only one comment at the
beginning – the block comment. However, the programmers were bothered to write a closing com-
ment bracket even behind short comments which were at only one line. The C++ language author,
who came out of C language, added a line comment which does not need any closing bracket, because
its closing bracket is the end of the line.

www.dbooks.org

https://www.dbooks.org/

20. Comments 183

Authors of Java then came with a brilliant idea how to increase the probability that the program is
properly documented and introduced into their language the special documentation comments.

Documentation Comments
366. Why they are so brilliant?

There are two brilliant ideas at documentation comments: the first one that they are in a close neigh-
boring of the documented code so that the programmer or the documentarist can clarify how the
described program is made out and what is necessary to know about it.

The second brilliant idea was to supplement the development environment with a tool which
would create a professional documentation from program’s comments. Moreover, this program can
overtake a lot of published data directly from the code and provide correctness of the relevant part of
documentation. Then there is no danger that incorrectly written class names, their methods nor types
of their parameters could appear in the documentation.

367. I think the importance of the documentation is not so high. Majority of programmers which I know insist on that
the most important thing is to write a good code and that writing of documentation only detains.

A number of programmers really have this idea. However they don’t realize that during writing the
programming documentation they can e.g. realize what the developed code should precisely do and
possibly how it should do it. It is a commonplace that the programmer proposes certain method and
then he works on another part of the code; subsequently when he should use this method, he doesn’t
realize what precisely is the contract (we spoke about the contract in the section Signature versus
Contract on page 112), for which the method was proposed and he starts to use the method in a little
bit different way. Immediately he spends far more time by discovering and rectifying the mistake than
writing the relevant documentation comment.

And there is one more reason. As I have indicated several times the programmer’s experience
shows that any program which is a bit worthy will not be kept forever in the form in which it was de-
veloped. Our classes are relatively small but they increase and soon we might lose orientation, espe-
cially when we would return to them after a longer time. And how we might grope in case these
classes would become really large.

A good programmer believes that his programs are as good as they are worthy for further develop-
ing. At the same time he feels that many of those future modifications will be done by somebody else
because he will be engaged in more ambitious tasks. And even when he himself would do amend-
ments in the program, after half a year of working on another program, his own program becomes
strange for him. Therefore he writes his programs so that his colleagues could modify them because
otherwise his programs would be included into programs that are not modifiable. Thus he writes
readable and well commented programs (we spoke about that already and I will remind it to you
repeatedly).

Everything is developing and the assignment could be changed, new technologies may come or
new reasons for program innovation can appear. Then it will be necessary to decide which program
should be taken as the base of the new product. In prevailing majority of cases such programs are pre-
ferred which are possibly not so perfect in their first version, but are easily understandable and thus
they are modifiable to new conditions.

184 Part 2: Basics of Creating OO Programs

I have already mentioned the motto of Martin Fowler who used to tell: Any fool can write code that a
computer can understand. Good programmers write code that humans can understand. Documentation
comments are one of the ways how to provide so that other people would understand to your
program.

Documentation of the Classes and the Whole Project
368. I am afraid that I can expect producing and using of such documentation after I will work at some larger pro-

jects and that I cannot do without them now during my first steps.

The reverse is true. We use the programmer’s documentation since the very beginning. I told you that
the comments in BlueJ dialogs are the documentation comments. Moreover, I showed you in the sec-
tion Interface vs. Implementation on page 78 how you can depict the class documentation in an editor.
And further, I showed you in the section Documentation of the Project on page 116 how you can request
generating of the full project’s documentation and how you can look at it in your favorite browser.
This created documentation looks identically as the documentation which you can download from
JDK. The only one difference insists in the fact that there are far more classes and interface types
described in JDK (the JDK version 7 describes 4024 of them).

With the other words: we utilize the advantages of the documentation already now and I will force
you to make the detailed documentation of your programs since the very beginning. In case you will
not get used to it you will hardly learn it later.

369. Well, show me how I can prepare a professional documentation with my contemporary knowledge. Because
there was a number of various tables, tinged titles and other things that I don’t know to create in the documen-
tation you showed me.

Practically all formatting which you have seen was provided by the javadoc program which created
the given documentation. I really only delivered just the documentation comments of separate classes,
interface types, fields and methods, in which I briefly descried the contract of each documented entity.
All my formatting consisted in using few tags of HTML language and of the javadoc program. You will
see there is nothing difficult.

370. You twist my arm. So show me how simply such documentation can be made out.

I will show it to you at an example of the Light class. First of all you have to rename it, e.g. to LightX so
that we could define it once more, this time completed by a documentation comment. Don’t rename
constructors, rename really only the class and ask the editor to save it. We will not bother about mis-
takes because we will not compile it – it will be only a source of texts for our new class. Therefore
leave the editor’s window open.

The Standard Class Template
371. I renamed it, what else?

Press the button New Class and enter in subsequently opened dialog that it will have the name Light
(we can afford it because we renamed the original light; in case we did not do it, BlueJ would now
revolt). Leave the switch in the state Standard Class and confirm your entering.

www.dbooks.org

https://www.dbooks.org/

20. Comments 185

BlueJ will create a new class according to the pattern of the standard class and locates it somewhere
to the class diagram. Leave it where it is (we will move it after we will remove its predecessor, i.e. the
current LightX class), only draw the implementation arrow to IPaintable interface. First of all we have
to move the code into the new class from the original one. Open the new class in the editor (its source
code should correspond with the listing 20.1) and arrange both editors’ windows at the area so that
you could easily move the text among them.

Listing 20.1: The Light class created with the standard class template

/***
 * Instances of class {@code Light} represent ...
 *
 * @author author name
 * @version 0.00.0000 — 20yy-mm-dd
 */
public class Light
{
 //== CONSTANT CLASS ATTRIBUTES ===
 //== VARIABLE CLASS ATTRIBUTES ===
 //== STATIC INITIALIZER (CLASS CONSTRUCTOR) ================================
 //== CONSTANT INSTANCE ATTRIBUTES ==
 //== VARIABLE INSTANCE ATTRIBUTES ==
 //== CLASS GETTERS AND SETTERS ===
 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 */
 public Light()
 {
 }

 //== ABSTRACT METHODS ==
 //== INSTANCE GETTERS AND SETTERS ==
 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================
 //== PRIVATE AND AUXILIARY CLASS METHODS ===================================
 //== PRIVATE AND AUXILIARY INSTANCE METHODS ================================
 //== EMBEDDED TYPES AND INNER CLASSES ======================================
 //== TESTING CLASSES AND METHODS ===
 //
 // /**
 // */
 // public static void test()
 // {
 // Light instance = new Light();
 // }
 // /** @param args Command line arguments - not used. */
 // public static void main(String[] args) { test(); }
}

186 Part 2: Basics of Creating OO Programs

372. Before I start moving anything you should explain me first of all why the standard class looks as it looks.

You are true, I should do it. The source code of the class you create as a standard one begins with the
documentation comment of a class. There is a pre-defined empty parameterless constructor in the
class body, and a number of line comments which separate individual sections of the source code be-
fore and behind it. Through these comments I try to navigate you to arrange all source codes in the
same way. When you get accustomed to such arrangement, you will be better oriented in them.

For the time being don’t ask me what the comments – which you do not understand – mean. I will
explain them step by step. And I also admit in advance that you may feel this template as too compli-
cated. Most of students tell it. However, after some time they admit, that they accustomed to this
arrangement and that it helps them. Afterwards they ask for similar templates also for professional
development environments, with which we work in subsequent courses.

373. There is a whole part of commented program at the end.

I use it only when I need to test something simpler to which it is not worthy to define a whole test
class. Don’t be afraid we will comment these methods during the course as well. And now let’s have a
look how to make a resulting documented class from this empty standard class.

Formatting of the Documentation Comments
374. I vote for it. I have the windows with both source codes at the area, one along the other, and we can start.

.Before we begin showing and commenting I would like to tell you something about documentation
comments generally, so that we would not lose our time

First of all I will say that each documentation comment has to be located closely before the docu-
mented entity in the program. The class documentation comment has to be located before the class
header; the method’s comment before the method’s header and the field’s comment has to be located
before the declaration of this field. From this implies that each entity has its own documentation
comment (more precisely it can have it – depending on if you create it).

The resulting documentation is a group of HTML files mutually connected with references. The
javadoc program creates only the total outlook of the documentation and its dividing into sections. It
does not take care about formatting individual sections of the documentation. But if you know that
you will look through the documentation via the browser, you quickly realize that you can use any
HTML tags in your documentation comments. Therefore in case you would like to insert a new line
into the explanation, put the tag
 at the given place in the comment, in case you would like to cre-
ate a new paragraph, insert <p>. Similarly you can use a pair of tags for marking the text that
should be printed bold etc. You are limited only by your knowledge of HTML language.

Each documentation comment contains two sections and any of them may be empty:

F There is a basic explanation describing the contract of a given entity at the beginning, i.e. what
is its purpose in the program or how it is suitable to use it.

F At the end there is a section of block tags (see further) containing texts that will be located in
individual sections in the resulting documentation.

www.dbooks.org

https://www.dbooks.org/

20. Comments 187

Javadoc Tags
The documentation comments can contain javadoc tags. They can be divided into two groups:

F The block tags are inserted in documentation comments after the basic explaining text. All are
in the form @tag and introduce the text which will be placed in certain independent section
entitled identically as the given tag (you will see it soon) in the resulting documentation.

F On the contrary the inline tags are inserted into the basic explaining test and determine such
part of the text which should be formatted or interpreted differently. Their form is as follows
{@tag text}.

375. It looks simple until now. It depends on how many doc tags there will be.

Only a few and furthermore, majority of them will be prepared in patterns. Let’s come from theory to
practice.

We will start with a class documentation comment with which the source code of a standard class
begins. The class function should be described in it as well as its instances in the program. We can find
three tags in this comment.

You will find the name of the created class inside braces starting with the tag @code immediately in
the first line. Thus you can mark the text which you want to write with a monospaced font, i.e. with
letters which are used for example for program texts. It is used when you quote the names of classes,
methods, variables or other parts of the program inside the ordinary text.

In case you would like to examine the effect of this tag, try to write again the class name before the
brace or behind it, switch on to a documentation mode and have a look what is the difference between
both styles.

376. I tried and grasp it. I would say that the meaning of those two remaining ones is obvious.

Surely, the @author tag introduces the name of author (or authors) of the code. You can sign the class
you are creating. In case your class arose by modifying someone else’s class, it is suitable to quote also
the author of the class which you used as a base to your class. All what the javadoc finds behind this
tag is copied in the documentation’s introduction behind the title Author. (Write what you want and
switch the editor to a documentation mode to see, where javadoc places your text.)

The @version tag works similarly and you can write behind it the number of the version, its name
and date and anything else. All what javodoc finds behind this mark is copied in the documentation’s
introduction behind the title Version. (Again you can try it immediately.)

377. The class documentation comment is clear. Will you tell me anything more before going on?

Nothing concerning the class comments, but I will describe block tags which are used in documenta-
tion comments of methods. We will use again only two of them in this course, as follows:

F The @param tag is determined for the description of one particular parameter – the name of the
corresponding parameter should follow. Explaining text follows this name. Each parameter
should have its own @param tag in the documentation comment.

F The @return tag introduces the text explaining what the given method returns. But this tag is not
used for constructors, because everybody knows that the constructor returns a reference to the

188 Part 2: Basics of Creating OO Programs

created instance and there is nothing to describe. Therefore if you would use this tag in the
constructor’s comment, javadoc would ignore it.

Comments Marking Sections of the Source Code

378. Now you outrun a little bit, but I understand that you want to have all tags explained at the same time. Hope-
fully I will not forget them until I will really need them. And now, please explain me the meaning of those line
comments behind the class head.

As I have told, these comments introduce the code sections to which you should insert the relevant
parts. As far as I insert nothing, I leave the line comment “glued” to its descendant. If I insert some-
thing I should separate it from the introductory line comment with an empty line, and with three
empty lines from the following comment.

Nothing that could belong to the first three sections is used in the Light class for the time being and
we can leave it empty. We will be interested in the section CONSTANT FIELDS OF INSTANCES. We know that
the lights have two fields: bulb and color. We fill in both of them during creating an instance and then
we will never change its content. Thus we could consider them as constant. Therefore we insert both
declarations behind this comment.

Thus we have declared the first two fields. But we should comment them. Because both fields are
private and the documentation comments of private entities are mostly not inserted into the documen-
tation (we would have to request javadoc explicitly for it), we can choose from two possibilities:

F We will describe the field with a classic documentation comment.

F We will describe the field with only a line comment.

I mostly prefer the classic documentation comment because when I return to an older program which
should be adjusted, I ask javadoc to include also comments of private entities into the result and made
out a complete documentation. I can orientate in this documentation quicker than in the source code
where the code itself diverts me, and at that moment I am really not interested in how I programmed
it a year ago, but what the method or the field serves for.

On the other hand I have to admit that I am not consistent and sometimes I describe certain fields
with only a line supplement due to my laziness.

379. Well, we finished the fields. And now the constructors are on.

We have prepared a parameterless constructor, but at this moment it will be surely easier to copy all
three constructors from the old class into the clipboard and then replace the body of the parameterless
constructor in the new class with this triplet.

I would recommend you again to establish a convention for the order of constructors’ definition
and to keep it. In case you will get back to the class which has more constructors, you will have better
orientation in it. I try to start with a parameterless constructor and continue with more general con-
structors, which enable to enter some parameters. The more general is always put behind the less
general.

www.dbooks.org

https://www.dbooks.org/

20. Comments 189

380. I think I will follow you with this convention. So only the methods remain. Where should I insert them?

The methods of the light defined until now are not the accessory methods (getters and setters) – we
will debate them in some of the future lessons. Therefore they belong to a section OTHER NON-PRIVATE
METHODS OF INSTANCES.

I try to increase the transparency of the program by ordination of individual methods according to
alphabet even at this place. Supposing we have three methods it looks as a useless detail but after our
classes will contain hundreds of lines, you will appreciate such delicacy when searching a certain
method.

You can see the resulting form of our class in the listing 20.2. Compile all and examine it by starting
the test of the test class (it should not notice the change). After all will operate, remove the renamed
original class which is not yet needed and move the newly created class to a place suitable for you.

Listing 20.2: The resulting form of the Light class

/***
 * Instance of the class {@code Light} represents simulated lights
 * which can be turned on and off.
 */
public class Light implements IPaintable
{
 //== CONSTANT CLASS FIELDS ===
 //== VARIABLE CLASS FIELDS ===
 //== STATIC INITIALIZER (CLASS CONSTRUCTOR) ================================
 //== CONSTANT INSTANCE FIELDS ==

 /** Color of the light when turned on. */
 private NamedColor color;

 /** Shape representing the light on the canvas. */
 private Ellipse bulb;

 //== VARIABLE INSTANCE FIELDS ==
 //== CLASS GETTERS AND SETTERS ===
 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Creates a new light with the default size and color,
 * which will be placed into the upper left corner.
 */
 public Light()
 {
 bulb = new Ellipse();
 color = bulb.getColor();
 }

190 Part 2: Basics of Creating OO Programs

 /***
 * Creates a new light with the default size and color,
 * which will be placed at the given coordinates.
 *
 * @param x Horizontal coordinate
 * @param y Vertical coordinate
 */
 public Light(int x, int y)
 {
 bulb = new Ellipse(x, y, 50, 50);
 color = bulb.getColor();
 }

 /***
 * Creates a new light with the default size, the entered color,
 * which will be placed at the given coordinates.
 *
 * @param x Horizontal coordinate
 * @param y Vertical coordinate
 * @param b Color of the turned on light
 */
 public Light(int x, int y, NamedColor b)
 {
 color = b;
 bulb = new Ellipse(x, y, 50, 50, color);
 }

 //== ABSTRACT METHODS ==
 //== INSTANCE GETTERS AND SETTERS ==
 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Turns the light on for 500 milliseconds and then turns it off.
 */
 public void blink()
 {
 switchOn (); IO.pause(500);
 switchOff(); IO.pause(500);
 }

 /***
 * Paints the instance by force of the specified painter.
 *
 * @param painter Painter drawing the instance
 */
 @Override
 public void paint(Painter painter)
 {
 bulb.paint(painter);
 }

www.dbooks.org

https://www.dbooks.org/

20. Comments 191

 /***
 * Turns the light on, that means it will set its color
 * to the light-on-color.
 */
 public void switchOn()
 {
 bulb.setColor(color);
 }

 /***
 * Turns the light off, that means it will set its color
 * to the light-off-color.
 */
 public void switchOff()
 {
 bulb.setColor(NamedColor.BLACK);
 }

 //== PRIVATE AND AUXILIARY CLASS METHODS ===================================
 //== PRIVATE AND AUXILIARY INSTANCE METHODS ================================
 //== MEMBER DATA TYPES ===
 //== TESTING CLASSES AND METHODS ===
 //
 // /***
 // * Test method.
 // */
 // public static void test()
 // {
 // Light inst = new Light();
 // }
 // /** @param args Parameters of command line - unused. */
 // public static void main(String[] args) { test(); }
}

381. I would like to ask you why you start the documentation comments of classes and methods with a line of stars
when you told at the beginning, that two are sufficient.

Because I want to have a visible break – again only due to the better orientation in the program. And
when I started to write the line of stars for methods, I write them also for the classes. I have chosen a
briefer version only for fields.

Empty Method’s Pattern
382. This lesson is as long as two others. I would say we should have finish.

When it’s so long, one prolongation should not bother you. I would like to tell you that not only clas-
ses and interface types have their patterns, but also the methods have their patterns. In case you will

192 Part 2: Basics of Creating OO Programs

have the task to define a new method in future, get to a place where you want to put the method in
the source code, press CTRL+M. BlueJ will insert an empty method with prepared documentation
comment with the mostly used tags which you can see at the listing 20.3.

Listing 20.3: The method’s pattern

/***
 * Empty method
 *
 * @param x Parameters description
 * @return Return value description
 */
public void method()
{
}

Take into account that the pattern keeps the indentation of the cursor at the moment you inserted it. If
you forget it and you will want to change this indentation, remember that the procedure of increasing
or decreasing of the indentation is similar as for commenting and uncommenting of a block. It differs
only by using the key shortcut: increasing of indentation by pressing F6, decreasing by pressing F5.

This is really the end for today.

Exercise
383. I guess that my today’s exercise will be converting all my previous classes to the versions with documentation

comments.

You could earn your money as an illusionist – your estimation is exact.

Review
Let’s review, what you have learned in this lesson:

F In case we want the compiler would ignore certain lines during compiling, we can comment
them.

F Lines are commented by putting the pair of strokes // at its beginning.

F When working in BlueJ you can make the work easier by selecting a block which would inter-
fere into all commented lines, then press the key F8 or enter the command Edit ® Comment.

F When you would uncomment the commented lines later, it is sufficient to remove only the ini-
tial pair of slashes.

F For uncommenting several subsequent lines you can select a block in BlueJ so that it would
reach all the selected lines and then you can press the key F7 or to enter the command Edit
® Uncomment.

F Java recognizes three kinds of comments as follows:

F The line comments starting with the pair of slashes // and finishing with the line end.

F The block comments starting with the character pair /* and ending with the pair */.

www.dbooks.org

https://www.dbooks.org/

20. Comments 193

F The documentation comments are block comments beginning with the character triplet
/**.

F The documentation comments are inserted before the definitions of documented entities – of
classes, fields and methods.

F The documentation comments are converted to HTML text. Therefore, you can format their text
through HTML tags.

F Special tags may occur in the documentation comments. These tags are divided into two groups
as follows:

F The block tags introduce a text for which an independent section will be created in the re-
sulting documentation.

F The inline tags adjust only formatting and possibly the interpretation of the marked text.

F The documentation comments contain an explanation section followed by a section of (block)
tags.

F For now we explained the following block tags:

F @author, which is valid only in the class documentation and introduces the list of authors
of a given class,

F @version, which is also valid only in the class documentation and introduces the text spec-
ifying the product’s version,

F @param, which is valid only in methods’ documentation (including constructors) and
serves to describing the significance of particular parameters,

F @return, which is valid only in the documentation of current methods and serves for
describing its output value.

F From the inline tags I have explained only the tag {@code text} which causes that the text will be
typed with the monospaced font.

F In case we will create a new class as the standard one, we receive a source text generated ac-
cording to the pattern that contains a number of auxiliary comments.

F The line comments in the pattern of the standard class introduce sections where the code char-
acterized by the text of a given comment should be incorporated.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 120z_Comments project.

194 Part 2: Basics of Creating OO Programs

21 Using of this
21. Using of this – 000000

21 Using of this
What you will learn in this lesson
This lesson is devoted to the hidden parameter this. I will explain you its presence as well as its usage.
Then I will tell you why it is not suitable to copy the code and you will have a detailed look at the work of
the constructor and you will see how its work can be defined using the statement this.

Project:
In this lesson we continue in using the 120z_Comments project.

The Hidden Parameter this
384. Today I would like to ask you two questions which you skipped over in previous explanation. We touched the

first one in the section The Conflict of Names of a Field and of a Parameter on page 162. You advised me to re-
name the parameter and you told me you will explain me the more elegant and used solving of this conflict in
future.

The solving is relatively simple and I mentioned it indirectly in the section The Qualification on page
161. It uses the fact that instead of the shortened name of the field you can use its full name, i.e. includ-
ing its qualification. Then both names will differ.

385. So I already knew everything! Why you did not tell it directly?

It was not necessary. Renaming of the local variable is also a good solution. Particularly I was afraid of
sinking into theory and not having enough of time for programming anything useful. The keyword
this needs a lot of explanation around.

386. What’s so interesting in it?

The keyword this marks an implicit hidden parameter which all constructors have as well as the in-
stance methods, and which contains the reference to an instance, in whose method or constructor the
program is situated just now (which is just running).

387. You say “in whose method”, which I understand as “in the method belonging to a given instance”. But all
methods are defined together in the class body and there is no information concerning to whom the given meth-
od belongs.

We told that the method is the part of a code defining how the object will react to certain message. In
Java (equally as in majority of contemporary languages) all instances of the given class react to a given
message in the same way. Therefore only one code can be defined in the class body for each message
which is shared by all instances.

When accomplishing this code the computer has to know which instance reacts to a given message,
because within the framework of accomplishing the code there may be a need to use or set the value

www.dbooks.org

https://www.dbooks.org/

21. Using of this 195

of this instance fields or to send some other message to this instance. The reference to the instance for
which the given method is just working, is received by the method in the mentioned hidden parame-
ter this. Then whenever it needs to turn to an instance, for which it is just working, it turns to it
through this reference.

388. Why is this parameter hidden?

The authors of the language knew that the programmers don’t want to write any useless code (they
were also programmers), and they didn’t want to force anybody to copy something which is always
included and everybody knows it.

Moreover, they defined the language syntax so that in case you don’t address an object in the in-
stance method to which you are sending a message (you ask this object’s field or you call its method),
i.e. you don’t qualify the asked field or called method, the compiler completes the qualification with
the parameter this.

When we would rewrite e.g. the blink() method without skipping over the qualification, it would
look out as in the listing 21.1.

Listing 21.1: The blink() method in the Light class using the parameter this

public void blink(/*Light this*/)
{
 this.switchOn (); IO.pause(500);
 this.switchOff(); IO.pause(500);
}

For greater clearness I completed the declaration of the hidden parameter to a comment in the previ-
ous example. As you see, in the first and the third statement the instance addresses itself just through
this parameter; in the second and the fourth statement it addresses the IO class.

389. This results that the parameterless methods of instances are not parameterless because they have the hidden
parameter this.

Exactly, and because they have them every time, it is not quoted in the head and everybody have to
deduce it. The programmers welcome it because they don’t have to write it in each method.

390. We somehow digressed from the more elegant solving of conflict between the parameter and the field names.

Never at all. This solution uses just the parameter this. Using it we could rewrite the constructor
adjusting the light color to the form (I quoted again the declaration of the hidden parameter in the
comment) as in the listing 21.2.

Listing 21.2: Solving of name crash using this

public Light(/*Light this,*/int x, int y, NamedColor color)
{
 this.color = color;
 this.bulb = new Ellipse(x, y, 50, 50, color);
}

As you surely remember, I told you that in case of name crash the compiler always prefers the name
which is logically closer in the program – in our case to the parameter’s name. So the right operand of
the equation expression in the first statement refers to the parameter.

196 Part 2: Basics of Creating OO Programs

But in the left operand I addressed the instance through the (hidden) parameter this and thus I
asked it for the reference for the color field. The result of the whole first statement is that the value of
color parameter was saved to the color field.

Quoting this in the second statement was not necessary because the compiler could not mix up the
bulb field with anything else. I used this only due to the code looked better. In other words: By explicit
quoting of the parameter this we can solve the impending crash of names of a parameter and a field.
As far as the crash of names does not impend, the decision on an explicit qualification through this
depends quite on you.

391. You told me that you will show me a more elegant solution. But I don’t see anything elegant on it.

The elegance consists in the fact that you can use the identical name for the two different variables
which contain the value of the identical meaning. The program becomes more transparent by this, be-
cause you can see at the first sight, which two variables belong together. That’s why this solution is so
frequently used by programmers.

392. How often the programmers use this facultative this?

It depends on whom. I know companies which require quoting this facultative this from their pro-
grammers because it is quite clear what is a field and what is something else. But majority of pro-
grammers skip them over (in addition certain IDEs allow distinguishing the parameters from the
fields through colors in syntax highlighting). You can often meet what I showed you in the program
21.2: in case this is quoted at certain fields, because with its help a crash of names is solved, it is quot-
ed at all others as well.

393. You told me that the methods of instances have the hidden parameter this. But this was a constructor and BlueJ
includes it among the class methods.

The constructors are somewhere between methods of instances and methods of a class. They have the
common aspect with class methods, namely that they define answers to messages sent to a class and
that you can call them even when no instance exists; the hidden parameter this is a common aspect
with methods of instances. This hidden parameter fulfills the virtual machine with a reference to a
constructed instance when the constructor is called. Thus the constructor can turn to its fields and
methods via this parameter.

Unsuitable Copying of the Code
394. Leaving the parameter this I will remind you another problem which you avoid to explain. When you assigned

me topics for an independent work at the end of the 17th chapter on page 154 in the section Exercise, you want-
ed me to define the traffic light’s lights as the instances of the Light class. Immediately you also told me that I
don’t have to do it for the car because the lights don’t have the constructor defined for adjusting the size. Why
we did not fulfilled it?

Because I wanted to postpone the question of increasing the number of constructors to a time when
we will be able to look how it is possible to supplement further constructors more effectively.

www.dbooks.org

https://www.dbooks.org/

21. Using of this 197

395. How more effectively? I simply copy the old constructor and I add or adjust what’s necessary. It can be done
somehow more effectively?

Copying of the code and subsequent minimal (or even no) adjustments is just what you should avoid.
Using the same or nearly the same code at more places of the program is considered as one of the big-
gest programmer’s sins. A number of design patterns deals with how to avoid copying the code. The
typical example is e.g. the pattern Servant which I presented you in the section Servant on page 102.

396. Why using the same or the similar code is so reprobated? When I examine that certain code is well operating, I
consider as advantageous to use it somewhere else.

You can use it but not copy it. In case it is necessary to execute the same action on several places we
should define it and then call this definition from each relevant place.

I mentioned the main reason of reprobating this practice several times – it is my favorite statement
(I mentioned it already on page 80): “The only one constant of contemporary programming is the certainty
that the assignment will soon change.” And I add another one from the programmers’ Murphy’s laws:
“The probability of the necessity to change a part of the code is directly proportional to the number of client’s
assuring that the given function will be never touched.”

When you change certain part of the code, you have to change simultaneously (or at least to check)
all what is dependent to this part, together with parts arisen as copies of the changed program’s part.
In case you discover that the copied part of the code has to be changed, you have to change probably
also those copies. The problem is that often you don’t remember to which parts you copied the code
that is being changed and so you are in a danger that you will forget some of them during corrections
or you will change them in a different way than is needed.

Good programmers therefore keep the principle marked with the abbreviation DRY – Don’t Re-
peat Yourself. I like to call this the DRY Rule, because as soon as you break it, you are potentially
soaked in a future pickle.

The Details of the Constructor’s Work
397. Well, what should I do not to repeat the code when all constructors provide nearly the same?

You will call one constructor from the other one, similarly as I showed it in the program 18.5 on page
166, where one method was calling the other one and adjusted the values of parameters to it.

398. How one constructor can call another one? I am afraid that using the new statement will maybe not the proper
way.

No, it is really not the proper way, because each new statement creates a new instance. The virtual ma-
chine creates a new instance before entering into the constructor’s body. If you would call another
constructor being in certain constructor with the assistance of new, e.g. as follows:

public Light()

{
 new Light(0, 0);
}

198 Part 2: Basics of Creating OO Programs

the virtual machine would create a new instance before entering into its body and the calling new
would create another instance inside the body. There is really no way this direction.

399. You confuse me. In the section Constructor on page 140 you told me that the constructor is the method responsi-
ble for the proper creating of an instance of the given class. How it can be responsible for creating an instance
when someone creates it even before the constructor starts to carry out?

I have already explained it to you in the section Methods and Constructors on page 30. Creating of the
new instance could be divided into two phases. In the first phase the memory manager allocates for
the instance under creation the needed space at the heap. In the second phase the object is initialized –
the allocated space is filled with relevant data and if need be another needed operations are done (e.g.
the light depicted itself at the canvas). The constructor is responsible for the second phase of creating.
To be able to correctly initialize the creating instance, the constructor should know where the initial-
ized memory is allocated. It becomes the reference to it in its hidden parameter this.

The whole action creating the new instance would be probably more understandable when I would
rewrite the program into the following form

public Light()

{
 new Light
 (/*Light this,*/ 0, 0);
}

At the first line of the body the new keyword instructs the virtual machine to create the instance of the
Light class, and at the second line the nameless method (= the constructor) “gets it into operation”.

400. So what creates the instance, the virtual machine or the constructor?

I have explained it as well. If you would remember I compared the object’s construction to creating a
jug: the virtual machine designates and initiates the memory – prepares the clay. Until we don’t have
the clay (the memory), we cannot create any mug (the object). However, creating the jug is of the pot-
ter’s (the constructor’s) competency. The constructor tailors the designated memory to such form so
that it could serve as the required object.

401. I understand, but why a special (and a nameless) method have to be installed due to this initialization? Could
be an ordinary method used for it?

Some languages do it, but it brings a lot of problems. The constructor has to provide certain special
tasks during initializing an instance. Therefore it has certain special privileges and on the other hand
certain limitations. You will be presented some of them during further explanation, and some of them
will be expecting you in the next book.

For now we will remain at the fact that the constructor’s calling has to follow obligatorily after the
new operator; no other method can be used there. On the other hand the constructor cannot be called at
a different place, only as the part of the initialization following the application of the new operator.

402. You say as the part of the initialization, but I could call it from another constructor, because when the construc-
tor is being carried out, initializing is on. If I would throw away the first line creating another instance from the
last program, would it be good? In other words, would the following program be o.k.?

www.dbooks.org

https://www.dbooks.org/

21. Using of this 199

public Light()

{
 (0, 0);
}

Nearly, the only one problem is that an isolated bracket presents certain expression in the program,
not calling the method. We will substitute it similarly as in name crashing, i.e. we add the addressing
this.

If I would write it down as the calling of a current method, the constructor’s calling would look out
as follows:

this.(0, 0);

But in this case, the authors of the language deleted using the dot due to syntactic rules, so that the
properly written calling of the constructor is as follows:

this(0, 0);

Adjustment of the Constructors Using this
403. I understand from the previous explanation that the parameterless constructor slips out of the initializing by

entrusting its colleague – the double-parametric constructor, to which it says to create an instance of coordi-
nates [0, 0]. But the light double-parametric constructor produces rounded lights, and the parameterless one
creates elliptic lights.

It’s the highest time to change it. You don’t meet elliptic lights many times. Let’s agree that since this
time all lights will be rounded. We can also make an agreement that the implicit color of the light will
be yellow, not blue. Our three constructors could be therefore rewritten into the form from the listing
21.3.

Listing 21.3: The constructor in the Light class using delegating of the responsibility through this

public Light()
{
 this(0, 0);
}

public Light(int x, int y)
{
 this(x, y, NamedColor.YELLOW);
}

public Light(int x, int y, NamedColor color)
{
 this.color = color;
 this.bulb = new Ellipse(x, y, 50, 50, color);
}

And now ask the LightTest class to create a fixture or to run some of the test methods. Thus you can
verify that all your adjustments were correct.

200 Part 2: Basics of Creating OO Programs

404. I’ve adjusted and examined the program. But I admit that I don’t understand it much.

Well, let’s show how it will react to the calling of a parameterless constructor.
1. In the previous definition the parameterless constructor delegates the responsibility for in-

stance initializing to the constructor with two integer parameters and pass two zeroes as
arguments to it.

2. The addressed constructor also doesn’t want to start the initializing and delegates the responsi-
bility to the third constructor to which it passes its first two arguments (coordinates) as its first
two arguments and as the third argument (color) it passes the default, i.e. yellow color.

3. The statement this only delegates the responsibility for carrying out the task to something else.
But the given work has to be done at the end. The last constructor has no colleague to which the
responsibility could be delegated and so this last one has to take care about the initializing.

405. I would like to know if further statements could be in the constructor’s body besides the statement this.

Could be, although it is not used much often. Mostly it is really sufficient to prepare parameters for a
“colleague” and then to delegate the responsibility for initializing of the created instance to it. The rule
is that the constructor with fewer parameters calls the more general constructor and the values of pa-
rameters, which are common to both of them, are only passed and implicit values are assigned to the
remaining parameters of the called constructor. Sometimes adding of further statements is useful. But
as I already told, it is not too often.

In case you will decide to add further statements to the constructor’s body, you have to add them
behind transferring the responsibility for the initializing to a colleague (to another constructor). As
ensues from the expression initializing, it is something what should be done at the beginning. As far as
one constructor repudiates its responsibility and delegates it to its colleague, it can start further activi-
ties only after the addressed colleague would finish the initializing and would give back the control to
the calling constructor.

However, these problems will be surely debated in further explanation and therefore I will say you
only good bye today.

Exercise
406. I will switch on my prophetic skills and I will estimate that today my task is to adjust the classes Arrow,

TrafficLight and Car in the way so that their constructors would give over responsibility for initiating through
this.

Exactly, notice that the definition of constructors will simplify. The light constructor is very simple
and it cannot be simplified further. But the traffic light’s and car’s constructors have changed far more
significantly

Next time you will see how adding of new constructors and their possible adjustments will be
simplified after the above mentioned adjustments.

Review
Let’s review what you learned in this lesson:

www.dbooks.org

https://www.dbooks.org/

21. Using of this 201

F The instance methods have the hidden parameter this referring to the instance to which a
message was sent and the instance reacts at this message by calling the given method.

F Also the constructors have the hidden parameter this; in their case it refers to the just construct-
ed instance.

F Any identical or a very similar code should not occur in programs at several places.

F In case it is possible to make the same action at several places, you should define it and subse-
quently call this definition from each place separately.

F The principle of not repeating the code is usually marked with an abbreviation DRY, i.e. Don’t
Repeat Yourself.

F The object construction is made in two steps: in the first step the new operator allocates the
memory for instances of the class, which it obtains as an argument, in the second step the
constructor initializes this memory.

F Constructor can delegate the responsibility for initializing the instance to its “colleague”
through the statement this(???), in which it sets the arguments for the called “colleague”.

F Besides delegating the responsibility for initializing to another constructor there might be also
other statements in the constructor’s body. However, they always have to follow after this
initialization carried out by another constructor.

F Completing further statements is not much used. Mostly the more concrete constructor, i.e. the
constructor with fewer parameters calls only the more general constructor, whilst the values of
parameters which both constructors have are only passed and the default values are assigned to
the remaining parameters of the called constructor.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 121z_Using_this project.

202 Part 2: Basics of Creating OO Programs

22 Overloading
22. Overloading – 000000

22 Overloading
What you will learn in this lesson
In this lesson you will add further constructors to your class and you will learn what it means the over-
loading of methods. The significance of identifiers of parameters will be explained as well as how the
internal identification of the given method might look out. Finally the basic arithmetic operators will be
introduced.

Project:
In this lesson we continue in using the 121z_Using_this project.

407. Why this chapter has the name The Overloading?

The overloading is a term for defining several methods with the same name but with various sets of
parameters. For now we used them mostly for constructors, but in case you will have a look into the
documentation, you will see that majority of classes from our project have also other overloaded
methods.

Further Constructors
408. When we know how to pretty economically create the overloaded constructors (see how quickly I am learning

J), we could create also the lights with the entered size.

Yes, of course, and when it is so simple, we can add immediately two: the first one will enable to in-
stall the light’s position and its diameter, the second one its position, diameter and color. To have it
more interesting, we will add the constructor enabling to set not only the color of the switched on
light, but also the color of the switched off light. If we would install these extensions in definitions
which would not use this we would be obliged to adjust all of them. By using this we can adjust only
the definitions of the most general constructor.

You can see the new set of constructors (with skipped comments) in the listing 22.1. Notice, how
our original, the most general constructor used the possibility to give over the responsibility for initial-
izing with the assistance of this in the new configuration and passed it to a four-parameter one which
passed the responsibility to the five parameter constructor. It is just the most general where all ways
are ending.

Listing 22.1: The innovated set of constructors of the Light class

public Light()
{
 this(0, 0);
}

www.dbooks.org

https://www.dbooks.org/

22. Overloading 203

public Light(int x, int y)
{
 this(x, y, NamedColor.YELLOW);
}

public Light(int x, int y, NamedColor color)
{
 this(x, y, 50, color);
}

public Light(int x, int y, int diameter)
{
 this(x, y, diameter, NamedColor.YELLOW);
}

public Light(int x, int y, int diameter, NamedColor color)
{
 this(x, y, diameter, color, NamedColor.BLACK);
}

public Light(int x, int y, int diameter, NamedColor color, NamedColor switchedOff)
{
 this.color = color;
 this.switchedOff = switchedOff;
 this.bulb = new Ellipse(x, y, diameter, diameter, color);
}

409. Adding of color of the switched off light requires adding of the switchedOffColor field and modify the
definition of the switchOff() method.

Of course, but I think those are so simple modifications that you will be able to do them without any
assistance.

410. I looked at the context menu of the Ellipse class to discover which parameters can be used. The class offers the
constructor with parameters height and width. However, you recommended the diameter parameter for setting
the size. How can I detect which parameters can be used for certain constructor?

You mixed now two faces of parameters. Remind the section Parameters and Arguments on page 150,
where we spoke about the fact that each parameter has two faces which are marked as formal and ac-
tual parameters (parameters and arguments). The formal parameter is a name by which you mark
places in the program’s definition, where the argument value (the value of the actual parameter) will
be used during the program’s operating. This actual value is passed to the called program by the
calling program.

The names width and height are names of (formal) parameters used in the definition of an ellipse
constructor. Opposite to it diameter is the name of the parameter (i.e. a formal parameter) of the light
constructor. But when I mention this name in calling of the ellipse’s constructor, I say that I pass the
value (the actual parameter), which I receive in the parameter diameter during the program’s

204 Part 2: Basics of Creating OO Programs

operation, to an ellipse constructor as the value of parameter at the corresponding place in the
parameter list. In our case this value is passed twice – as the value of parameters with the names width
and height.

Quite different item are the types of parameters, they have to be observed. If the constructor re-
quires e.g. a whole number in the third parameter, you have to enter a whole number or something,
about which you are sure that the compiler will automatically turn to a whole number.

411. Is the number of constructors somehow limited?

No – it’s not limited if you do not consider the number 65535 as limiting. The only one real limit in
creating the constructors is the fact that no two constructors can have the same set of parameters. In
other words, the constructors have to differ in the number and/or the types of their parameters. Oth-
erwise the compiler could not recognize which constructor should be called to react to your message.

412. And now we should examine if it’s all operating.

Good, we will replenish the new fields into the test class and the relevant statements to the setUp()
method. To examine functionality of the new lights, we will extend also the testBlink() method. In
case we leave out comments as well as the unused tearDown() method, the test class should correspond
to the listing 22.2.

Listing 22.2: The class LightTest after including the test of added constructors

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

public class LightTest
{
 private CanvasManager CM;
 private Light light0;
 private Light lightXY;
 private Light lightXYC;
 private Light lightXYD;
 private Light lightXYDC;
 private Light lightXYDCF;

 @Before
 public void setUp()
 {
 light0 = new Light();
 lightXY = new Light(50, 50);
 lightXYC = new Light(100, 100, NamedColor.RED);
 lightXYD = new Light(0, 100, 100);
 lightXYDC = new Light(100, 0, 100, NamedColor.BLUE);
 lightXYDCF= new Light(150, 150, 150, NamedColor.MAGENTA, NamedColor.NO);

 CM = CanvasManager.getInstance();
 CM.add(light0);
 CM.add(lightXY);
 CM.add(lightXYC);
 CM.add(lightXYC);

www.dbooks.org

https://www.dbooks.org/

22. Overloading 205

 CM.add(lightXYDC);
 CM.add(lightXYDCF);

 IO.inform("Lights prepared");
 }

 @Test
 public void testBlink()
 {
 light0 .switchOff();
 lightXY .switchOff();
 lightXYC .switchOff();
 lightXYD .switchOff();
 lightXYDC .switchOff();
 lightXYDCF.switchOff();
 IO.pause(500);
 light0 .blink();
 lightXY .blink();
 lightXYC .blink();
 lightXYD .blink();
 lightXYDC .blink();
 lightXYDCF.blink();
 IO.pause(500);
 light0 .switchOn();
 lightXY .switchOn();
 lightXYC .switchOn();
 lightXYD .switchOn();
 lightXYDC .switchOn();
 lightXYDCF.switchOn();
 }

}

413. You adjusted the NO color for the switched off light of the lightXYPBZ object – what is this color like?

We could call it the color of invisibility. When you will adjust it to certain object, it stops to be seen.
Run the blinking text and you will see – the big violet light will disappear during switching off.

Overloading of the Methods
414. How the compiler recognizes which constructor should be called?

This is decided according to the number and type of parameters. Precisely: it is decided in the way so
that the types of parameters on corresponding positions would concur.

We defined two constructors in the Light class with the same number, but with different types of
parameters – the Light(int x, int y, NamedColor color) constructor and the Light(int x, int y, int
diameter) constructor. The compiler will decide between them according to if the last actual parameter
is the whole number or it is the instance to a color.

206 Part 2: Basics of Creating OO Programs

415. What will the compiler call when in the third parameter will be something different?

In case it will be possible to convert the given value according to the known language rules to a whole
number or to a color, the compiler will do it and will call the relevant constructor. In the opposite case
it announces a compile-time error – the so called syntax error. Due to these rules try to envisage all
possible situations, they are relatively complicated and therefore I will not explain them. However,
you will meet majority of them during further lessons.

The Identifiers of Parameters
416. There is one thing I don’t understand. You say that the compiler decides about which message I have sent and

which method should be called only based on the number and types of parameters of the given message. This
would mean that names of parameters are not crucial. How the compiler can recognize if I wanted to call the
method Light(int x, int y) or Light(int y, int x)?

This is just what the compiler cannot identify and therefore you cannot define a couple of methods
with the identical number of parameters and the identical types of corresponding parameters. In case
you will do it, the compiler announces a compile-time error (syntax error). Methods differing only by
the order of parameters can be defined entirely in the case their types of separate parameters vary.
Thus we could define a couple of constructors Light(int diameter, NamedColor color) and
Light(NamedColor color, int diameter).

It is also logical. In case you would define the constructors Light(int x, int y) and Light(int y, int
x), then in reaction to the statement

new Light(20, 30);

it could not be decided which of them should be used. Therefore, in the common text (e.g. in the doc-
umentation) the authors often do not quote identifiers of their parameters in references to methods.
Our two-parametric constructor could be therefore characterized as the Light(int,int) constructor. But
we spoke about it in the section Briefer Record of Messages on page 65.

417. So what are the identifiers for?

I have already told that the identifiers of parameters, i.e. the formal parameters serve entirely to mark-
ing places in the source code where the relevant value (actual parameter, argument) will be used in
carrying out the given code. We could say that they serve for the better orientation of a programmer.
Neither the compiler, nor the virtual machine needs them because they mark individual parameters
by the order of quoting them in the declaration.

When we have defined the Light(int x, int y) constructor, we will use the x identifier everywhere
in the source text of the method’s body, and after calling a method the first of the passed values (the
actual parameters) will be used. At those places where the y identifier will be used in the source code,
the second of the passed values will be used.

www.dbooks.org

https://www.dbooks.org/

22. Overloading 207

The Identification of the Called Method
418. I already understand why the order of parameters is so important during passing them. The virtual machine

doesn’t know anything else about them only their order and type. But I would be interested in how the machine
can orientate in those methods.

You can imagine that the method names used internally by the compiler and the virtual machine insist
of the method’s name itself completed with names of types of individual parameters. In case you
know that the internal name of the constructor is <init> you can simply imagine that the internal
names of our constructors are as follows:

<init>(),
<init>(int,int),
<init>(int,int,int),
<init>(int,int,NamedColor)
<init>(int,int,int,NamedColor)

The Basic Arithmetic Operators
419. I expect that today my task will be to fulfill constructors into the exercise classes which know to set the object’s

size as well as the position.

Your expecting are proper, but it will be more complex. And it’s not so simple; that’s why I have to
explain you something. When you would like to enter also the object’s size, the mutual distances of its
individual part will change depending on the adjusted size of an object. Therefore you have to count
firstly their coordinates as well as the size.

Adding and subtracting is simple – it is marked equally as in mathematics. Therefore I used it sev-
eral times not to bother you with explaining. But it’s little bit more complicated with multiplying and
dividing.

In all programming languages which I know the symbol * (a star) is used as an operator of multi-
plying. At the same time, similarly as in mathematics, multiplying has a preference over adding and
subtracting which means the expression (1+2*3) has the value 7 even in the program.

In Java the symbol / (a slash) is used as an operator of division. In case both operands, i.e. the divi-
dend as well as the divisor are whole numbers, also the result is the whole number, which will be a
whole part of a quotient. Thus it is valid that (3/2) is 1 and (2/3) is 0.

When entering the arithmetic expressions you have to be careful that the arithmetic expressions in
Java are treated always from the left to the right. Therefore the result may depend on how you order
the individual operations. The expression (2* 3/4) has the value 1, because (2*3) is 6 and (6/4) is 1.
Opposite to it the expression (3/4*2) has the value 0, because (3/4) is 0 and (0*2) is always 0.

In case you have an expression where multiplying and dividing of whole numbers is alongside,
usually it is more advantageous firstly to multiply all and only then divide the resulting product. So
that you could use this rule, the intermediate result (the product) may not be bigger than the biggest
permissible whole number. (I remind that in the section Primitive and Object Types on page 35 we told
that whole numbers can acquire values ranging roughly between ±2.109, i.e. ±2 billions.)

208 Part 2: Basics of Creating OO Programs

420. You say that the result of dividing is the whole part of the quotient. It means that having a quotient and a divi-
sor I cannot detect the dividend.

The whole part of the quotient is the result only in case you divide two whole numbers. If one of those
two numbers is the real number, i.e. if it is of double or float type, the result will be also a real number.

And as far as receiving the dividend by return is concerned, even this is possible. But you need
an operator of a remainder after division for which the % (percentage) sing is used and which is
sometimes called modulo operator. So always it is valid as follows

a == (a / b) * b + a % b

421. One equal sign fell down there.

It did not fall down. Java uses one equal sign as an operator of assignment and double equal sign as
an operator of comparison. I know that the beginners are sometimes confused but we can hardly do
anything with it – nothing is perfect.

422. I am afraid not to be drowned. Could you show me using of these terms at an example?

Yes, of course, I will show you how it is possible to define four-parametric constructor of a car (it is
maybe the most complicated). Look at its definition in the listing 22.3. Notice that I leaved ellipses and
the car’s lights are instances of the Light class. I enter only the length of the car to the constructor, its
width will be one half of the length.

Listing 22.3: The definition of the most general constructor in the Car class

/***
 * Creates a car with the given size,
 * and with the given color of the chassis,
 * which will be placed at the given coordinates.
 *
 * @param x Horizontal coordinate
 * @param y Vertical coordinate
 * @param length Length of the car
 * @param chassisColor Color of chassis
 */
public Car(int x, int y, int length, NamedColor chassisColor)
{
 chassis = new Rectangle(x, y, length, length/2, chassisColor);
 cab = new Rectangle(x+length/8, y+length/8, length/2, length/4,
 NamedColor.GRAY);
 lightL = new Light(x+7*length/8, y, length/8);
 lightR = new Light(x+7*length/8, y+3*length/8, length/8);
}

423. Well, this was a little bit complicated for me. Could you explain me the formulas in details?

It’s not so complicated. Look at the figure 22.1, where I let draw the car in a net so that the relative
sizes of car’s individual measures could be simply deduced. Then you can simply derive from the
figure as follows:

F The car’s width is one half of its length.

www.dbooks.org

https://www.dbooks.org/

22. Overloading 209

F Horizontal as well as vertical distance of the cab’s roof towards the chassis is equal to one
eighth of the car’s length.

F The cab’s length is equal to one half of the car’s length and its width is equal to a quarter of the
car’s length.

F The horizontal distance of both lights is 7/8 of the car’s length.

F The left light has identical coordinate y as the chassis, the right light has coordinate y pushed
towards the chassis by 3/8 of its length.

And it’s all. This I recorded to parameters and the program in listing 22.3 came out from it.

Figure 22.1

The car depicted in a net for deriving the measures

424. It’s easy to be understood, but I wouldn’t think it out myself.

Maybe not now, but don’t be afraid, soon you will consider it easy.

Exercise
425. So what have you prepared for me?

You have already estimated that you will fulfill the constructors. I will add a couple of supplementing
information:

F Enter only one size parameter for an arrow – you can call it maybe a module. It will signify the
length of the square’s side, in which the arrow is located. By other words the total length as well
as the width of the arrow will be the same.

F Enter only one size parameter for the traffic light (you can call it module as well): the traffic
light’s width which is also an average of its lights. Use the light definition to which you will set
the NO switched off color. By this you will unify the outlook of the switched off lights
independently to the color of the box – the switched off lights simply will be not seen.

F When we decided to switch from ellipses to lights in the Car class, don’t forget that you have to
change also the types of relevant fields. Fulfill the methods as follows:

210 Part 2: Basics of Creating OO Programs

F switchOff() – switches off both lights

F switchOn() – switches on both lights

F blinkLeft() – blinks with the left light

F blinkRight() – blinks with the right light

Review
Let’s review what you have learned in this lesson:

F The definition of several methods with the same name but of various sets of parameters is
called the overloading.

F During calling the methods the actual parameters have to be quoted in the same order in which
the corresponding formal parameters were declared.

F When defining several versions of methods with the same name (i.e. overloaded methods) the
individual versions have to differ by the number of parameters and/or by the parameter’s type
at certain position.

F When calling an overloaded constructor or a method the compiler picks up the proper version
so that the types of parameters at corresponding positions would match.

F In case the types of parameters do not correspond with any existing versions, the compiler tries
to convert the parameters to another type according to language rules. If no version of the
called method complies then a compile-time error (syntax error) is announced.

F Names of parameters have the meaning only for a programmer. The virtual machine does not
use them and internally signifies the parameters by their order.

F The number of defined constructors is practically not limited.

F For multiplying the operator * (a star) is used in programs.

F For dividing operations Java uses the operator / (a slash).

F Similarly as in mathematics multiplication and division is preferred to addition and subtraction.

F The result of dividing two whole numbers is the whole part of their quotient (e.g. (5/3) is 1); the
result of a quotient of a real number with any other number is a classic quotient, i.e. again the
real number.

F By applying the operator % (percent) we receive a remainder after division – e.g. (5%3) is 2.

F It is possible to receive back the dividend from the whole number quotient and the remainder
after division, i.e. it is always valid as follows:

a == (a / b) * b + a % b

F An operator == is used in Java as an operator of comparison.

F Java interprets the arithmetic expressions entirely from the left to the right.

www.dbooks.org

https://www.dbooks.org/

22. Overloading 211

F During a series of multiplying and division it is advantageous to arrange the whole expression
in such way that firstly the multiplying comes, followed by dividing. However, this procedure
can be used only if the midst result is not too big number.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 122z_Overloading project.

212 Part 2: Basics of Creating OO Programs

23 The Local Variables
23. The Local Variables – 000000

23 The Local Variables
What you will learn in this lesson
In this lesson you will see how tests that were assigned as exercises in the last lesson can be written down
more effectively. Then you will learn how to use local variables and you will read what the difference
among fields, parameters and local variables is. And finally you will be informed about inappropriate
using of magic values and appropriate substituting them by constants.

Project:
In this lesson we will continue in using the 122z_Overloading project.

The Auxiliary Methods
426. I’ve already made all methods of the car which you assigned me as an exercise in the previous lesson. But I

didn’t want to write a test method which would examine the lights functioning for each of the five instances in
the fixture. Would you mind to test only one car?

Theoretically it would be sufficient but let’s admit that a test of only one car is nearly as complicated
as the test of all five.

427. No, it’s not. When I need to test five cars, I have to write the car test five times.

No, you don’t have to do it. I hope you remember that in the section Unsuitable Copying of the Code on
page 196 I said that repeating of the same or nearly the same code belongs to great programmer’s sins.
And you say now that you have to write something five times.

428. You are true but how should I do it, when I would explain to five objects that they are obliged to do the same?

Use the fact that the test class is a class as any other and that you can define also other methods in it,
not only those test methods. Define the auxiliary method which would verify blinking of one car – you
will enter it as a parameter. Then call this method for each car. You can see the possible definition of
this auxiliary method as well as of the following test in the listing 23.1.

Listing 23.1: The definition of the blinking test in the Car class

private void auxBlink(Car car)
{
 car.lightOff(); IO.pause(500);
 car.blinkLeft(); IO.pause(500);
 car.blinkRight(); IO.pause(500);
 car.lightOn(); IO.pause(500);
}

www.dbooks.org

https://www.dbooks.org/

23. The Local Variables 213

public void testBlink()
{
 auxBlink(car0);
 auxBlink(carXY);
 auxBlink(carXYC);
 auxBlink(carXYM);
 auxBlink(carXYMC;
}

429. When I see it’s completed I admit that it looks simple. And I will only ask why did you define this auxiliary
method as private? Until now we used the private modifier only for fields.

Because this method is only an auxiliary one. When we were speaking about this topic in the section
Interface vs. Implementation on page 78, I told you that we should do programming in such way so that
the colleagues of our objects would know what these objects know, but they would not know how it is
programmed.

The code of the listing 23.1 makes the test public so that everybody can ask the class to start the
test. At the same time it hides (with the aid of private modifier) that an auxiliary method was defined
for processing the test.

Try to keep the general principle: if something should not be private, there must be a rational
reason for it.

The Local Variables
430. Well, we have simplified the test definition. Would it be possible to simplify somehow also the constructor’s def-

inition? The repeated entering of formulas to parameters really bothered me. And moreover, the same code is
repeated at several positions.

You are true and it could be simplified, it means to simplify it in the sense of cancelling the code du-
plicities. For this purpose you can use the local variables, which means the named positions in the
memory that can be used within the method and after closing the method they are at anybody else’s
disposal.

431. Can you explain why they are called just local variables?

They are called local because nobody knows about them except the interior of a given method and
therefore you can use them really only locally within the given method. They are called variables be-
cause their content can change. Thus you can gradually put various values into them as the program
course will require.

432. How such local variable is declared?

Contrary to fields which are declared outside methods, as well as to parameters which are declared
within parentheses in the method’s head, the local variables are declared inside a method, i.e. inside
the braces bounding this body. The following rules are valid for declaration of local variables:

F Each variable has to be declared before it is used.

F The declaration should contain the name of a given variable (i.e. the name of the value’s type
which you can put into it) followed by its name (identifier).

214 Part 2: Basics of Creating OO Programs

F In case you decide to initialize the local variable immediately (and this is warmly recommend-
ed), you add the equal sign followed by the expression whose value is put into the variable.
However, the initialization is not compulsory.

F The whole declaration should be completed by a semicolon.

In case we would use a local variable in the car constructor that I showed you previously, it could look
as in the listing 23.2. I introduced four local variables in the program: d1, d2, d4 and d8, which repre-
sented frequently occurring fractions of the basic length. (It’s true that the variable d1 was not neces-
sary to be introduced and I could use the length parameter, but I did not resist the temptation to install
identifiers of all fractions in the same form.)

Listing 23.2: The four-parametric constructor of the Car class using the local variables

public Car(int x, int y, int length, NamedColor chassisColor)
{
 int d1 = length;
 int d2 = length/2;
 int d4 = length/4;
 int d8 = length/8;

 chassis = new Rectangle(x, y, d1, d2, chassisColor);
 cab = new Rectangle(x+d8, y+d8, d2, d4, NamedColor.GRAY);

 lightL = new Light(x+7*d8, y, d8);
 lightP = new Light(x+7*d8, y+3*d8, d8);
}

The new code has more lines (the declaration of local variables was added) but the callings of
constructors are a little bit more readable.

Fields × Parameters × Local Variables
433. I see that local variables have a lot common with fields and parameters. Could you somehow summarize, what

are the differences among the fields, the parameters and the local variables?

Let’s divide my answer into several topics.

The Applicability (The Range of Validity)
A field (attribute) belongs to its object (a class or a class instance) and can be used in all its methods. If
it is not private, also other object can join it. But usually we don’t want it because the objects should be
responsible for their data and cannot be dependent on what anybody can do with them behind their
back. Therefore we should declare the fields always as private.

Opposite to it the parameters and the local variables are the property of their method and nobody
else can use them. Therefore the access modifiers (public, private) are not quoted at parameters and
local variables, because we cannot choose – they are always the private property of their method.

www.dbooks.org

https://www.dbooks.org/

23. The Local Variables 215

434. Wait a minute, you told that nobody should adjust the class fields and its instances. But we did it. For example
the setStep(int) method adjusted the value of the step field at all shapes.

This is something different. I said that nobody can adjust these values behind the back of the class or
the instance, so that they would not know about it, i.e. to change directly e.g. the value of the relevant
field. In case someone would ask the class or the instances for the new adjustment by calling their
methods, the addressed object knows about it and can check if the required change of the field can be
permitted – e.g. that you do not try to adjust a reverse step.

435. You also told that the parameters and the local variables are the private property of their method and nobody
can use them. But when I call a method, then I use them, don’t I?

No, when you call a method, you write down expressions into parentheses, which the virtual machine
counts and assigns the results to parameters as their initial values. But the calling method never comes
to a direct contact with the parameter.

The Initialization (Assigning the Initial Value)

436. Well, what are further differences?

The parameters are initialized during calling the method – its initial value will be provided by the
calling method. As soon as you enter the method, you can immediately use it.

 You have to assign the initial value to the local variables in the method’s body. You can choose if
you assign it immediately in a declaration, as I have showed you in the last example, or if you only
declare it and you assign the initial value sometimes later in an independent statement. The compiler
will take care not to use it in a program before you assign them the initial value. Using a variable to
which the initial value was not yet assigned is considered as a syntax error (compile-time error).

The possibilities of initializing the fields are the most manifold. You can choose if you will initial-
ize them already in a declaration (their syntax is the same one as of the local variables) or in an
independent assigning statement in the constructor, or you will not initialize them at all.

F The initialization in a declaration will be chosen if the initial value of the field doesn’t depend
on values of constructor’s parameters. (The values of our fields were dependent on parameters
and therefore we did not use the initialization in the declaration for now. However, soon we
will meet such situation.)

F In case the initial value of the field depends on constructor’s parameters, you can initialize only
the field with an assigning statement in the constructor’s body.

F The virtual machine resets the memory of the instance during its allocation and therefore the
fields, which are initialized neither in the declaration, nor in the constructor, will have a zero
value.

The fields, the zero initial value of which suits to us, theoretically do not need to be initial-
ized at all, but it’s not recommended. Generally, it is considered as far advantageous to initialize
these fields explicitly directly in the declaration so that it would be evident that the fields are
zero because their zero initial value is the required value, not because the programmer forgot to
set the appropriate value.

216 Part 2: Basics of Creating OO Programs

437. You say that the virtual machine resets the memory of a created instance. So if we would not initialize the bulb
field in the Light class, it would have a zero value. How then such zero bulb would look out?

I would like to run through all possible eventualities:

F The zero value of numerical values of primitive types is really zero.

F The zero of boolean fields is interpreted as the value false.

F At characters, it is the character with the code 0.

F The zero content of object type fields is interpreted as an empty reference, i.e. as a reference to
nowhere. Java installs for it the identifier null. You can assign this value into the variable also in
the program and you say by it that you don’t need the reference which was hold there. If no-
body else needs the referred object (i.e. no other variable points to it), the object becomes a
candidate for removing and for recycling its memory by the garbage collector.

The Lifetime
The fields are born (i.e. a position in the memory is assigned to them) together with their object and
live for the whole period of the object’s life.

Opposite to it the parameters and the local variables receive a memory only at a moment of their
initialization – parameters during calling a method, the local variables during the first assignment
of the value. They finish their life in a moment when the program leaves a block in which the local
variable has been declared.

438. Which block?

Oh, I am little bit ahead. In the section Block on page 385 I will show you that inside the method’s body
you can use another pair of braces to which you put certain statements – we call such part of code a
block. A declaration of local variables may be a part of any block. These variables “die” in the
moment when the program leaves the block where they were declared.

Generally it is recommended to minimize the life period of the variables, i.e. to declare them as late
as possible and finish their life as soon as possible. The code is then more transparent.

439. From what you have told me I understand that parameters differ from local variables only by the fact that they
are initialized by a calling method, whilst the local variables have to be initialized inside its body.

You understand it quite properly. Remember: Parameters are local variables initialized by the
calling method.

Position and Module Setting
440. Before you show me certain exercise, I would like to see some usage.

You are true. Let’s stay at the car because it is our most complicated object. You will learn to adjust its
position as well as size. If you remember the convention about which we were speaking in the section
The getXxx and setXxx Messages/Methods on page 40, then these methods should be named according to
it setPosition and setModule. And because those are methods for setting the values of instance proper-
ties, you will locate it in the source code into the area introduced by a relevant comment. You can find
their possible form for the car in the listing 23.3.

www.dbooks.org

https://www.dbooks.org/

23. The Local Variables 217

Listing 23.3: The definition of the methods setPosition(int,int) and setModule(int) in the Car class

//== INSTANCE GETTERS AND SETTERS ==

/***
 * Sets the given coordinates.
 *
 * @param x Horizontal coordinate
 * @param y Vertical coordinate
 */
public void setPosition(int x, int y)
{
 int d8 = chassis.getWidth() / 8; // One eight of car’s length

 chassis.setPosition(x, y);
 cab .setPosition(x+d8, y+d8);
 lightL .setPosition(x+7*d8, y);
 lightR .setPosition(x+7*d8, y+3*d8);
}

/***
 * Sets the basic size from which we will derive all the gauges
 * of the object – in the case of the car it is
 * the car's length.
 *
 * @param module The set module (the car's length)
 */
public void setModule(int module)
{
 int x = chassis.getX();
 int y = chassis.getY();
 int m1 = module;
 int m2 = m1/2;
 int m4 = m1/4;
 int m8 = m1/8;

 chassis.setSize(m1, m2);

 //Other parts of the car change their sizes as well as position.
 cab.setPosition(x+m8, y+m8);
 cab.setSize(m2, m4);

 lightL.setPosition(x+7*m8, y);
 lightR.setPosition(x+7*m8, y+3*m8);
 lightL.setModule(m8);
 lightR.setModule(m8);
}

441. I am taken by surprise due to the program’s complexity. And moreover, there is an error in it, because the com-
piler refused to compile it.

It’s true; the definition is a little bit more complicated, but understandable. Adjustment of the position
is simple, because all objects will really only shift. The chassis will move to a target position and other

218 Part 2: Basics of Creating OO Programs

objects will keep their relative position towards the chassis. Therefore it is possible to take over the co-
ordinates setting from the constructor, or derive it from the figure 22.1 on page 209.

Adjustment of the new size is worse because during the size change also the position of all parts is
changing except the chassis. Therefore the chassis really changes only its size, but other parts, i.e. the
cabin and the lights, have to shift so that they would move to a proper position on the new size chassis.

If it is still strange to you, try to draw a small car at a squared paper and a big one according to the
figure 22.1 on page 209 and then go through the program and check that it counts the size properly.

442. You try to gloss over the error somehow.

But there is no error in the program. The program only supposes that the Light class has already de-
fined the methods setPosition(int,int) and setModule(int). I intended to leave their definition for the
exercise. To make sure that the newly defined methods work properly, I fulfill the missing methods
myself. But they are so simple that I will not quote them. First of all, try to derive them yourself, how
they should look out and then look into the source code and check your estimations.

Instead of quoting the mentioned methods I will show you how you could define an auxiliary
method for the test of changes in positions and car size. The method in the listing 23.4 receives the
tested car in a parameter, moves it to the position which I selected so that it would not clash with oth-
er cars. It waits a moment after moving, then increases the car, then waits a moment again, subse-
quently it decreases the car, waits and finally it asks the canvas manager to cancel the car from the
canvas. At the end it waits again so that you have time to realize that the car really disappeared before
another one will move to this position.

Listing 23.4: The auxPositionSize(Car) method in the Car class

private void auxPositionSize(Car car)
{
 final int ms = 500;
 car.setPosition(50, 200); IO.pause(ms);
 car.setModule(200); IO.pause(ms);
 car.setModule(25); IO.pause(ms);
 CM.remove(car); IO.pause(ms);
}

The Constants and the Magic Values
443. Why the declaration of the ms variable begins with the word final?

By this I announce to the compiler that I will not change the value of this variable, i.e. that I will take it
as a constant. The compiler then takes care about keeping this promise.

444. And why did you define the constant local variable? You will neither save anything nor make it significantly
better arranged.

Because I am keeping the DRY rule. (Do you remember it? If not, read once more the section Unsuitable
Copying of the Code on page 196.)

www.dbooks.org

https://www.dbooks.org/

23. The Local Variables 219

445. Perhaps it doesn’t matter if you copy 500 or ms.

But it does matter. Imagine that I would like to change the period of waiting. In this way I only change
the adjustment of the variable value and all values are immediately changed. But if I would not use
the variable, I would have to go through the whole method and find all five hundreds which mark the
period of waiting and change them properly. These simple methods are not so big problem but if this
value would be spread along the whole (and possibly large) class, it would be far worse.

One of the very important programmer’s rules says: The magic values inside the code are
forbidden!

446. But the five hundred is no magic value.

How no magic value. Perhaps you know what is the optimal time of waiting, not too long and not too
short? And could you guarantee that tomorrow or after a year you will still consider the same value as
optimal? The five hundred is just anticipated optimal value. Moreover, in a bigger program you only
hardly estimate which five hundred represents the period of waiting and which one means e.g. a
minimal amount you would like to have in your wallet.

By other words: all numbers except zero and one (and in some situations even these numbers) are
considered as “magic” as well as nearly all values of object types except the empty reference null.
Whenever you will need to use certain fixed value in a program, you should firstly define a constant
and then use this constant instead of the value.

I know that this rule is often not observed – mainly when this value is used in a program only
once or when the author is convinced that it will never change (very often it’s not true, only he is
persuaded). You can meet not keeping this rule often particularly in tests.

I recommend you to keep it in your mind and to observe it. Define the constants for immutable
values which are used several times. Often it is advantageous to define the constants even for values
which you will use only once because this will enable you to concentrate all declarations at one place. I
will come back to this question during the explanation of the final class fields.

447. You told me that “nearly all values of object types” are considered as “magic” – what does it mean nearly?

Until now we did not meet any “non-magic” object value. But I can tell you that e.g. empty string, i.e.
a string which does not contain any mark – "" belongs among these values. Generally, we could say
that objects which in their class have the same or analogous meaning as zero among numbers are
“non-magic”. (For example if we would define the Fraction class, then we could consider the zero frac-
tion is a non-magic object value.) However, I am afraid that further in the course we will not meet
such values.

Exercise
448. I am afraid that today’s exercise will be very demanding. I am expecting that I will add the

setPosition(int,int) and setModule(int) methods even into the classes Arrow and TrafficLight.

Your expectations are proper, but it will not be so complicated. Both classes are simpler and there are
only few recounts. If you understand how the car is defined, extending the arrow and the traffic light
will be just playing for you.

Then think out a test method for all classes, similar to those one which I showed you for cars.

220 Part 2: Basics of Creating OO Programs

Review
Let’s review what you have learned in this lesson:

F In case you should execute the very similar code many times, it is advantageous to define an
independent method for such code and divergences of separate “accomplishments” should be
provided through parameters.

F Auxiliary methods defined only for better definition of the code of the given class should be de-
clared as private, i.e. with the private modifier.

F In case you need to save temporarily certain value in a method, you can declare a local variable
for it.

F In local variable’s declaration firstly its type, followed by a name and if need be an initialization
should be stated. The whole declaration is completed by a semi-colon.

F You can use local variables only inside methods or blocks.

F You cannot use a local variable until you assign an initial value to it. Using of local variable
without any initialization is a syntax (compile-time) error.

F The parameters are local variables whose initial value is provided by a calling method.

F After the method closes its work, its local variables finish to exist.

F In case you would forget to initialize a field, the zero value is left in it.

F The zero value is interpreted differently according to each data type.

F Numerical data types interpret the zero value as the number zero.

F The logic type boolean interprets it as the value false.

F The type char interprets this value as so called empty character, i.e. the character with the
0 code.

F Object data types interpret it as a not existing reference (a reference to nowhere) marked
with the keyword null.

F It is recommended not to use “magic values” in programs. All numerical values except zero and
one are considered to be the “magic values”. Similarly all object values with the exception of the
empty reference null and the empty string ("") are considered to be “magic values”.

F By quoting the final modifier I announce to the compiler that the variable is in fact a constant
and that I will not change its value any more.

F You should use a constant whenever when you would like to use one value in the program at
many places.

Project:
The resulting form of the project to which we come at the end of the lesson and after completing of all ex-
ercises is in the 123z_LocalVariables project.

www.dbooks.org

https://www.dbooks.org/

24. Methods Returning a Value 221

24 Methods Returning a Value
24. Methods Returning a Value – 000000

24 Methods Returning a Value
What you will learn in this lesson
At first you will learn what is the difference between fields and object properties. You will come to know
about the accessory methods and about the properties whose values are saved in fields, respectively ob-
tained by a calculation. Finally you will see problems caused by wrongly defined equality of objects.

Project:
In this lesson we continue in using the 123z_LocalVariables project.

Fields versus Properties
449. At the end of the last lesson you asked me to put the created methods among the accessory methods of instance

properties. How do you recognize that something is a property? I read that the object’s properties are defined
as fields and its abilities as methods, but somehow it does not fit to me.

A lot of programmers really confuse fields with properties, but mostly it is not convenient. The rela-
tion between a field and a property could be compared with a relation between an implementation
and an interface:

F The property is something for what we can ask the object or what we can adjust at the object.
Some properties can be detected as well as adjusted (e.g. a position of our graphic shapes), the
others can be only detected (e.g. the name of a direction) and exceptionally there are also prop-
erties which can be only adjusted (there is no such property in our project). Object’s properties
are included into its interface.

F Opposite to it the fields are a matter of implementation (therefore they are declared as private).
They serve for an internal need of the class and its instances for saving values which we need to
be remembered. They are defined so that programming would be possible or so that the pro-
gramming would be easier.

At the same time I told you that no one should be informed about how the task will be
solved and therefore the fields are defined as private. Firstly this conceals how the task is solved
and secondly it ensures that anybody could manipulate with the saved values behind your
back.

450. Should I understand it that besides fields and methods there is yet another kind of entity – properties?

Some languages define properties as a special entity. However, Java authors came to the conclusion
that asking for current value of properties identically as requirements for its setting are ordinary mes-
sages and therefore they are defined as ordinary methods in the program; they only defined certain
conventions for making out their names – this was explained in the section The getXxx and setXxx
Messages/Methods on page 40.

222 Part 2: Basics of Creating OO Programs

The Accessory methods
451. When they are only ordinary methods, why we are speaking about them so long?

Well, they are not so ordinary. They are ordinary only from the compiler’s view, because they look out
equally as other methods. But from the programmer’s view they have rather exceptional position
because they know to reveal and set information about the internal state of objects.

Due to the fact they enable us to access to (in other respect secret) interiors of objects, we call them
the accessory methods – we talked about them in the section The getXxx and setXxx Messages/Methods
on page 40. Those methods which reveal the current state of objects are called accessors, and those
which adjust the new state of objects are called mutators. You may remember that programmers
prefer to call them getters and setters.

The relation between a field and a property can be of three types:

F There may be fields “covered” by a property – e.g. it is a color field of our graphic objects,
whose value we detect by the getColor() method and adjust by the setColor(NamedColor) method.

F Then there may be fields with which no property corresponds and therefore their value can be
neither read nor set from outside. These fields are the matter of implementation only. E.g. it is
the bulb field of our light or fields that are parts of arrows, cars and traffic lights.

F On the other hand we can have properties, that are not “covered” by any fields, because it is not
worthy to remember them and it is better to detect their value only by a query (by evaluation of
an expression). Such property is e.g. an information concerning if the given light is just on or
off.

The accessory methods (getters and setters) are often considered as a special group of methods. They
have their own conventions for creating their names and usually they are placed together in the
source code. Therefore there are the line comments in the standard class pattern, quoting the sections
of the accessory methods of class properties and of the accessory methods of instance properties.

452. You told that values of properties can be detected or adjusted. Last time we have only adjusted them. Why we
did not join both activities?

When detecting values of properties we have to solve the problems in some cases, which we will not
meet during adjusting the values. Therefore I postpone detecting the values into a separate lesson to
have time and debate them in a little bit more detailed way.

The Properties Saved in the Fields
453. Would it be possible to include something problem-less at the beginning of the lesson?

Yes, of course. Let’s start with the simple properties which essentially do not bring any problems – e.g.
by determining the color of our light. We remember the color in the color field, so that it is sufficient to
write the method which will take the content of this field and pass it to the calling method.

www.dbooks.org

https://www.dbooks.org/

24. Methods Returning a Value 223

454. When it passes the value, I cannot use it anymore. How I will switch on the light next time?

Don’t be afraid, by passing the value you are not losing it. You only announce to the calling method
what the value is. It is similar as when somebody would ask you how much money you have in your
pocket. By saying this amount you are not losing the money.

455. Well, so how I tell to the calling method what is the value for which it is asking?

As the last statement of the method you will write the return keyword followed by an expression
whose value is given over to the calling method, and you will complete the whole statement with a
semi-colon. (This statement is called the return statement according to the introductory keyword.)

Thus, if you would like to define the method returning the color of the switched on light, you
should write return followed by the name of the field in which the reference to the relevant color is
saved. When carrying out the return statement, the program looks into this field and returns the found
value (in this case the reference to a color), i.e. it returns this reference to the calling method.

I remind that when defining the method which returns certain value you have to quote the type of
the returned value in its header instead of the existing void, so that the compiler could disclose some of
your possible faults. Then the definition of the method returning the color of the given light might
look out as in the listing 24.1.

Listing 24.1: The definition of the getColor() method in the Light class

/***
 * Returns the color of the light when turned on.
 *
 * @return Color of the light when turned on
 */
public NamedColor getColor()
{
 return color;
}

I would like to remind that in case the program would be more understandable, you can write the
above mentioned return statement in the following form:

return this.color;

456. Why there is the second line in the documentation comment? It says the same as the first one.

The documentation comment begins with the description of what the method makes. Then the infor-
mation follows quoted by a relevant javadoc tags about which we were speaking in the section Javadoc
Tags on page 187. It’s true that in a number of cases these descriptions are very near. However the
javadoc program processes each of them by a little bit different way. NetBeans which I use for pro-
grams development always warns me if I miss using some of these tags and thus I have learned to use
them. But I will not press on you to do it as well, especially if you would only repeat what you wrote a
while ago.

224 Part 2: Basics of Creating OO Programs

Returning of the Values Obtained by Calculation
457. I would be interested in another point. You told that there may be an expression behind the return keyword.

Please, show it at an example.

The name of the field which we used in the last method is also an expression; despite it is a very sim-
ple one. But I understand that you would like to see something more complex. Let’s look how we
would define the getDiameter() and isOff() methods.

Let’s start with the getDiameter() method. The diameter is a whole number, which means the meth-
od’s return value is of the int type. The light’s diameter is not saved which means that first of all you
have to ask the bulb ellipse for it. It will not tell us its diameter, but due to the fact we know that it is a
circle, we can ask its height or its width instead of it. Then the definition of the method might look out
as in the listing 24.2.

Listing 24.2: The definition of the getDiameter and isOff methods in the Light class

/***
 * Returns the diameter of the light.
 *
 * @return Diameter of the light
 */
public int getDiameter()
{
 return bulb.getHeight();
}

/***
 * Returns information if the light is currently on or off.
 *
 * @return If the light is turned off, it returns {@code true},
 * otherwise it returns {@code false}
 */
public boolean isOff()
{
 return bulb.getColor().equals(switchedOffColor);
}

Object Equality Testing
When detecting if the light is on or off the situation is even more complicated. First of all you will ask
the bulb for its current color and then we will ask this color if it is a color which the given light has
saved in the switchedOff field. Please, notice at this example that even the ordinary test of objects
equality leads to sending the equals (Object) message (to calling the method).

In this example we met for the first time using of the equals(Object) method which was mentioned
in the section The Class Object on page 60 as one of methods inheriting all objects from the Object class.
The reference to the object is given over in the method’s parameter where it is necessary to discover if
the object is equal to the addressed object, i.e. to the object to which the given message was sent
(whose method was called).

www.dbooks.org

https://www.dbooks.org/

24. Methods Returning a Value 225

A number of beginners would solve the mentioned example by dividing it into two to three
statements similar to the following sequence:

NamedColor color = bulb.getColor();

boolean swOff = color.equals(switchedOff);
return swOff;

But I wanted to show you that in case you receive certain reference from the constructor or the meth-
od, it is not necessary to firstly save it and only consequently use it, but that you can use it directly.
You can, but you do not have to. Choose yourself which way is more acceptable (or better said more
understandable) for you.

458. You told in the section The Basic Arithmetic Operators on page 207 that the value equality is tested by the ==
operator. Why do not use it now and why you use the equals(Object) method?

The operator == tests if it is the same instance. Contrary to it the equals(Object) method tests if both ob-
jects represent the same value. It is the same at instances of certain objects. Our NamedColor class watch-
es over so that two different instances representing the same color would not be created, but such
classes are rather exceptional. Therefore, when comparing the values of objects we prefer using of the
equals(Object) method and the operator == is used only in cases if you really ask whether it is the same
object.

You know that I am always repeating that the only one thing what you can rely on in the program,
is the fact that the assignment will soon change. During including of such change it can happen that
the class, where the equality of values may be tested as the equality of instances, will lose this proper-
ty (the instance is equivalent only to itself). However, the code using the equals(Object) method will
probably be operating even after this change properly. We will get back to this topic in details in the
section Problems with Objects Comparing on page 251.

Test of Returning the Proper Value
459. We have defined two methods and we could try how they operate.

You are true. Let’s define another test. I will show you how you can verify if the test method returns
the proper value.

460. Wonderful – I am going to open the test class.

Not yet, we are returning to the interactive mode and we will leave the test definition to BlueJ to
which we will only show what should be programmed. Then you will have the look at the result and
you can write the next test yourself.

461. Well, so what should I show?

Let’s go step by step to review the interactive test creating:
1. Compile the class with the newly defined methods. Thus you simultaneously restart the

virtual machine which means no garbage can creep in the test definition.
2. Enter the command Create the Test Method in the context menu of the LightTest class. BlueJ opens

a dialog, where you should enter testGetColor as the test method name.

226 Part 2: Basics of Creating OO Programs

3. The test class creates a test fixture and opens a dialog reporting, that the test fixture is ready.
Confirm the window and ask the lightXYDC instance (this is the big blue one in the middle up)
about its color, i.e. send the getColor() message to it.

4. BlueJ opens the dialog, in which the reference to the returned color can be obtained, and
through the checkbox Assert that it asks if the returned value should be checked. Leave it
checked and into the input field enter that the returned color should match with the
NamedColor.BLUE color (see figure 24.1). Then press the Close button.

Figure 24.1

Entering of the return value test

5. Make the same procedure with the light created by the default constructor, i.e. with the light
light0. Tell it that the light should be blue; despite we know it is wrong.

6. Complete defining the test method.

Figure 24.2

The report on the cause of the test failure

www.dbooks.org

https://www.dbooks.org/

24. Methods Returning a Value 227

When you run the right now defined test method, BlueJ opens the window Test Results, in which the
red color of the central zone means that the test did not pass. In case you click on the test up, you will
see the following message below:

expected <blue> but was <yellow>

The message says that the test method expected the blue color (according to your entering), but that
the called method returned the yellow color (see figure 24.2).

In case you press the button Show Source beneath, the editor’s window will open with the source
code of the LightTest class with the emphasized line where the test stopped. The test looks as follows:

Figure 24.3

The source code of the test with highlighted fault

Please notice that BlueJ tests the return value so that it calls the method assertEqulas(?,?), to which it
passes the expected value in the first parameter and in the second parameter the value which it re-
ceives by calling the relevant method.

462. What the two question marks mean in the method assertEqulas(?,?)?

I just indicated that it is a method with two parameters whose type we do not know yet. I can tell you
that the method has a lot of overloaded versions and surely the one which you need for your test is
among them.

463. This means that when I revise the test definition, the test will prove to be correct.

Yes, it is sufficient to replace the wrongly expected blue color in the second statement with the yellow
one and the test will pass through. If you revise the second statement to the following form:

assertEquals(NamedColor.YELLOW, light0.getColor());

everything will be o. k.

464. Shouldn’t we test also what the method returns with the switched off light?

Good, we should do it. Try to fulfill statements for switching off both instances into the method and
then test once more what the method returns to you.

228 Part 2: Basics of Creating OO Programs

465. It’s not operating. When switched off, the big light was black, but it insisted that it is blue.

But it is good. The method getColor() always returns the color of the switched on light, even in the
case when the light is switched off. Look at its definition. The testing statements before and after
switching off have to look out quite identically.

Exercise
466. Oh, I see, I am slow on the uptake today. Better give me examples for exercising and let’s finish for today.

Last time you defined methods to all our classes for setting a position and a module. Now add to all
four classes (i.e. including the Light class) the methods returning the current position and module of
their instances, i.e. define the following methods:

F getX(), which will return the horizontal coordinate of the given instance,

F getY(), which will return the vertical coordinate of the given instance and

F getModule(), which will return that the module which was adjusted to the method setModule(int),
i.e. the width or the height of the arrow (it is the same in this case), the length of the car and the
diameter of the traffic light lights.

Implement the IMovable interface by all classes. Then define the test method testSmoothMovement testing
the correctness of your implementation through a smooth movement mediated by a mover in each test
class. I recommend you to make them translucent at first, because then you will be able to see how one
is floating under the other one.

Don’t forget to add the annotation @Override in front of the relevant methods during the interface im-
plementation – we were speaking about it in the section The @Override Annotation on page 173. At the
same time I would recommend you to cancel (now useless) implementation of the IPaintable interface,
because it is a logic consequence of implementing its subtype – the IMovable interface. Even without it the
project will look out a little bit stuffed and that’s why I recommend you to re-arrange the class diagram
according to the figure 24.4 and thus prepare it for the classes which we will add in the next lessons.

Figure 24.4

The project window with the newly arranged class diagram

www.dbooks.org

https://www.dbooks.org/

24. Methods Returning a Value 229

467. But the class Light already has the method for detecting its dimension – we have defined the method
getDiameter().

So we shall have two of them. Sometimes it is advantageous, if the object has two various methods
that make the same (we could mark them as synonyms). I don’t say that in this case it is especially ad-
vantageous, but I wanted to show you that you can meet also such things.

468. But you told me that the code should not be repeated.

So don’t repeat it – call one method from the other one.

Review
Let’s review what you have learned in this lesson:

F We do not realize a lot of properties and abilities of objects we are meeting in current life, be-
cause they are absolutely self-evident. However, we have to equip our objects in the program
with all properties that we will need in the program and teach them all necessary abilities.

F The field serves for the internal need of the class and its instances, and in most cases we conceal
them from surrounding objects.

F This, what the objects are willing to tell about themselves to their vicinity, is described as a
property. Something what another object can ask for or even what another object can adjust.

F Objects ask for properties and set them by calling the accessory methods.

F The methods which return the current state of their objects are called accessors, and those
which adjust the new state of their objects are called mutators.

F Java established a convention according to which the identifiers of accessors start with the word
get followed by the name of the detected property. In case the detected property is a logic value,
the word get can be replaced by the word is. The identifiers of mutators should start with the
word set.

F Programmers prefer to call the accessory methods getters and setters.

F Properties usually correspond to fields, but it is not a strict rule. Some properties may not have
the corresponding field, and opposite, some fields may not have the corresponding properties.

F The mutators (setters) are mostly defined as methods with parameters, in which the calling ob-
ject enters the required value of the given property.

F It is necessary to decide if reading and/or adjusting of each property can be allowed.

F The tests should be programmed in such way so that their evaluation would not bring over-
abundance of various kinds of information.

F If a method should return certain value, it has to finish with a statement consisting from the
keyword return followed by an expression whose result will be returned, and closed with a
semi-colon.

F We have to quote the type of the returned value (the return type) in the method’s header.

230 Part 2: Basics of Creating OO Programs

F The test method can verify if the called method returns the proper value.

F When defining the test method in the interactive mode we ask for checking the obtained
value by setting the option Assert that and writing down the expected value into the
joined text field. When we don’t want to check it, we should clear the option.

F In the direct definition of the test method we verify the returned value by calling the
method assertEquals(?,?), to which we pass the expected value in the first parameter, and
the value returned by the tested method in the second parameter.

F When the test does not pass, BlueJ opens the window Test Results with a red central zone. You
can click in it at the crashed test at the upper panel and BlueJ will show you in the lower panel
what the mistake in the test was and where it is located.

F By pressing the button Show Source in the Test Results window the editor’s window with the
source code of the test class opens with an emphasized line where the test stopped.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 124z_ReturningValues project.

www.dbooks.org

https://www.dbooks.org/

25. The Crate 231

25 The Crate
25. The Crate – 000000

25 The Crate
What you will learn in this lesson
In this lesson you will learn about passing the parameters by value and by reference. Then you will be
presented with the design pattern Crate and you will learn its basic requirements. At the conclusion the
methods will be defined which return the crate as their return value.

Project:
In this lesson we continue in using the 124z_ReturningValues project.

The Fields Representing a Set of Values
469. When I ask an object about its position I have to ask twice. Would it be possible to arrange that I could ask

about its position only once?

Yes, it would be possible. Similarly as the position we could detect also the size. Both characteristics
are represented by the couple of values. The methods which are to give us this information should re-
turn these two values at the same time. The problem is that Java does not know it (as well as most oth-
er languages) and we have to use a trick advised by the design pattern Crate. I will show you how it is
possible to define the method getPosition(), which will return current position of an object, i.e. its hor-
izontal as well as vertical coordinate, and the method getSize(), which will return its current size, i.e.
its height and width.

Passing Parameters by Value and by Reference
470. I’ve heard that it’s possible to return the values also in parameters.

There are various ways of transmitting parameters to the called methods. The most used are the fol-
lowing two:

F The term call by value (or pass by value) means that the method gets just the value that the caller
provides. More precisely the copy of the passed value is created and it is set as the initial value
of the parameter of the called method. Because during this way of value passing the called
method works with only the copy of the passed value, no changes of the passed values can
influence the original value in the calling method.

F Contrary to it, the term call by reference (or pass by reference) means that the method gets the lo-
cation of the variable that the caller provides. Thus, the method can modify the value stored in
the variable that is passed by reference. We could say that the calling method loans the place
to the called method. The called method then uses this (lent) memory place as its local varia-
ble. Because this memory place is the property of the calling method, the called method will

232 Part 2: Basics of Creating OO Programs

not cancel it during its return, as is usually done with current local variables. Therefore, after
finishing the called method the calling method can look into this variable and learn which
value the called method left there.

471. I think I understand but I would appreciate an example.

Imagine that you will find Sudoku in newspapers, which you cannot solve. Therefore you will ask an
experienced friend to tell you if the given riddle is solvable. So that he could answer your question
you have to give him Sudoku as a parameter.

F In case you will give the riddle over through a value, you will write it down on a paper and you
will pass him this paper. Your friend will solve the riddle and will tell you that it is solvable. Af-
ter that you can start solving it as well. His solution did not influence your Sudoku in any way.

F In case you will give the riddle over through a reference, you will tell to your friend: “In this
newspaper there is Sudoku which may be not solvable. What do you think about it?” You did
not give him a copy but you directly showed him (i.e. you gave him a reference) the object of
your interest. Your friend will take the newspapers, will solve Sudoku and will tell you that it is
solvable. But now you have nothing to solve, because your Sudoku is already solved. You can
only look at the changes made by your friend.

472. But this means that if we would pass several parameters through a reference we could obtain several values in
these parameters – one value in each of them.

No, we couldn’t, because Java passes all parameters by value. Certain languages enable calling by ref-
erence but a number of programmers refuse them because the program is less transparent. Therefore
the Java authors rejected this possibility and chose a different solution.

473. You told me that at instances of object types the program knows only a reference to this instance. The instances
of object types are therefore given over through a reference.

Yes and no, if the parameter is of object type, the caller really passes the reference to the relevant ob-
ject. But this reference represents the given object for us – this is the passed value. Whenever we are
working with an object in the program, in fact we are working with a reference to this object and thus
the object is passed to the called method by value, i.e. only a copy of reference to it is passed. In case
we would like to pass it through a reference, we would have to pass a reference to the memory place,
where the reference to the object is saved (a reference to this reference).

In other words: when passing an object (better say a reference to an object) by value it can happen
that the called method changes certain properties of the given object (e.g. it changes the shape size),
but it cannot happen that – after returning from the called method – the field or the local variable will
refer to a different object than particularly to that we have passed as a parameter.

But if I would pass an object through a reference, the called method might change the content of
the allocated memory place and the passed field or local variable may then refer to a different object.
As I’ve said, Java does not support calling by reference and thus nothing like that can happen to us.

www.dbooks.org

https://www.dbooks.org/

25. The Crate 233

474. Well, I did not absorb it fully, but I will try to continue and concentrate on what is valid for Java. So how Java
solves the need to send several values at once?

Java solves these situations with the assistance of crates; they are instances of the special class that de-
fines an individual field for each of transferred values. Whenever you need to pass or return a group
of relevant values, you create the instance of the given class (the crate) and you fill in its attributes
with transferred values and you pass this object to the calling method or return it to the caller. From
the compiler’s view you pass or return the only one value – the reference to the crate but in fact you
pass or return all values which you wanted to pass.

475. What is the advantage of this way compared to passing the values in parameters?

As I have already told you: it is far transparent. Parameters serve to one thing: so that we could pass
the data for work to the called method. The return value serves for returning the result of the called
method work. As soon as the methods start returning some results in the return value and the others
in parameters, we are on the best way to install a lot of faults into our program.

Besides that the crate can serve not only for returning the requested values but also to keeping data
for their further passing to the called methods or transporting these values. Therefore this design
pattern is often called Transport Object.

Crate / Transport Object
476. Well, show me how such crate is used.

Before we start using the crate, we have to make it:
1. First of all you have to clarify which values you would like to collect into the crate.
2. You define a class in which you declare a corresponding field for each of the passed values. It’s

a habit to define these fields as public constants.
3. Then you define a constructor which initializes all crate’s fields.

477. You told that “it’s a habit to define fields as public constants”. But in the section Introducing Fields on page
158 you said that nobody should know which fields the class uses and therefore the fields should be declared as
private.

Each rule has its exceptions and the crate is such exception. The only purpose of the crate is to enable
saving and/or transporting of certain set of values. It is generally known which attributes the crate has
– and there’s no reason to hide it.

If I should compare it to a life example, I would tell that if you need to bring few trifles from a
room to a garage you will use a suitable crate. But if you decide to send these things to your friend by
mail, you will carefully pack them so that nobody could see what is inside the package and would not
be lured to “borrow” them.

On the other side it is good if you can rely on values put into the crate, i.e. that the values cannot
change. Therefore the fields of the crate are defined as constants.

234 Part 2: Basics of Creating OO Programs

478. How the attributes in the crate could change?

Easily, as I said many times, methods in Java never return an object, but always only a reference to an
object. Therefore you cannot guarantee that your reference is at the disposal of anybody else (and it
does not matter if he obtained them on purpose or by a mistake). Then there is a danger that this per-
son can change the value of certain field, and your crate stops to correspond with the reality without
you would know it.

479. Don’t spook me. You always make a detective story and a spy novel from the programming.

But it’s the life. As I have told you several times the greatest enemy of your programs is you yourself
and your human substance making faults. And moreover, when you learn creating programs ensured
against faults of those who do not want to harm them, it will be easier for you to secure your
programs against those who want to break them.

The Constants
480. Well, you told me that the fields should be defined as public constants. How to do it?

The constants in Java are defined by adding the keyword final among their modifiers – you met this
already in the listing 23.4 on page 218. You can define a field, or a parameter or a local variable as a
constant. Their value can be assigned to them only once. Mostly it is assigned to them in the declara-
tion, but often you do not know the value of fields in the time of declaring, thus you can do it in the
constructor and initialize the value there. As soon as the constant receives the assigned initial value,
the compiler considers any further attempts to assign other value as the compile-time (syntax) error.

In case you would define a class whose instances – the crates – would serve for saving coordinates
of current position, you would define their fields in the part CONSTANT FIELDS OF INSTANCES. Then the
whole definition might correspond with the listing 25.1 (the line comments quoting unused sections
are left out):

Listing 25.1: The Position class

/***
 * Instances of class {@code Position} are transport objects (crates)
 * containing coordinates.
 * Their attributes are therefore defined as public constants.
 */
public class Position
{
 //== CONSTANT INSTANCE FIELDS ==

 /** Horizontal coordinate. */
 public final int x;

 /** Vertical coordinate. */
 public final int y;

 //== CONSTUCTORS AND FACTORY METHODS==

www.dbooks.org

https://www.dbooks.org/

25. The Crate 235

 /***
 * Creates a crate containing given coordinates.
 *
 * @param x Horizontal coordinate
 * @param y Vertical coordinate
 */
 public Position(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

In case you want to check the properties of constants, you can initialize certain field in the declaration
(e.g. to zero it) or to add the statement

this.x = 0;

at the constructor’s end. You will see that the compiler marks it as a syntactic fault and announces that
the given variable was not initialized:

Variable x might already have been assigned

When you delete the statement, it will be o.k. again.

481. You said that I can define also a local variable as a constant. Isn’t it a little bit contradiction in terms?

Don’t deal with it. Take it as a variable to which you can write its value only once – it is similar to CD-
ROM. After this initialization you can only read it.

482. So the crate’s fields are not treated through the accessory methods?

Mostly not, but the frequently used crates are equipped with getters, so that you can choose. And we
shall equip with them also the instances of the Position class as well. Sometimes I will show you to
which they may suit to us.

Methods Working with the Crate
483. Well I’ve created a crate. What to do with it?

Let’s supplement two methods to the lights which will work with the crate. The first one will return
the crate with a current position and the second one will adjust the position passed in the crate. Look
at the definition in the listing 25.2.

Listing 25.2: The methods getPosition() and setPosition(int,int) in the Light class

public Position getPosition()
{
 return new Position(getX(), getY());
}
public void setPosition(Position p)
{
 this.setPosition(p.x, p.y);
}

236 Part 2: Basics of Creating OO Programs

484. Oh, you took me by surprise a bit. Why the new position is made out in the first definition? After all the light
already has its position.

The light has its position, but it is not saved. Therefore, when somebody asks this position, it is neces-
sary to make out a crate into which the necessary information would be put. In other words, a new in-
stance of the Postion class has to be created where its horizontal as well as vertical coordinates are
saved. Then this crate can be returned to the calling method as the asked position.

485. I don’t understand the second definition as well. There is this as if the method would call itself?

The method does not call itself, but it calls the overloaded version of the newly defined method, i.e. it
calls the method setPosition(int,int), which we have already defined (you can find it in the source
code). I put the optional this into the definition to make it obvious that the instance calls its own
method.

You can often meet whole sets of overloaded methods in programs which make the same and dif-
fer only in the composition of their parameters. These sets of methods are mostly defined in such way
that one of them is defined in a classic style and the rest only prepares a set of parameters and call any
of their colleagues. It is a usual construction, similar to those we used in the definition of overloaded
versions of constructors. The only difference is that the dot behind this is missing in case of construc-
tors whilst it is used in case of methods.

486. And the next step is testing, isn’t it?

Good, let’s prepare a little test in which the couple of lights will change their positions. Again we will
compose it from an auxiliary method in which we explain to two lights –to their parameters – how
they should change their positions. The test method will call this auxiliary method and pass the select-
ed candidates exchanging their positions to it. Simply a little puss-in-the-corner. You can find the
definition of both methods in the listing 25.3.

Listing 25.3: The methods auxSwapPositions(Light,Light) and testSwapPositions() in the LightTest class

public void auxSwapPositions(Light s1, Light s2)
{
 int ms = 1000;

 s1.switchOff();
 s2.switchOff();
 IO.pause(ms);

 Position p1 = s1.getPosition();
 s1.setPosition(s2.getPosition());
 s2.setPosition(p1);

 IO.pause(ms);
 s1.switchOn();
 s2.switchOn();

 IO.pause(ms);
}

www.dbooks.org

https://www.dbooks.org/

25. The Crate 237

public void testSwapPositions()
{
 auxSwapPositions(light0, lightXYPB);
 auxSwapPositions(lightXYB, lightXYP);
 auxSwapPositions(lightXYP, light0);
}

487. I wanna ask about the auxiliary method. Why did you define a variable for the position of the first parameter
and none for the position of the second one?

Because in the following statement I am moving the first light to the position of the second one. Dur-
ing this moving I can obtain the required position by asking the second light for its position. However,
when the first light will be already moved, I would have no chance to ask for its original position.
Therefore I had to remember this position in a local variable before moving, so that I would be able to
pass it to the second light as its required target position.

Exercise
488. Oh, which exercise will you give me today? I guess I will be asked to fulfill the methods getPosition() and

setPosition(Position) into the remained classes and exchange their instances.

You estimated treating with the accessory methods right, but only partly. Your today’s task has three
phases:

1. Put the project 125b_Crate_Start into operation

Open the new project called 125b_Crate_Start and put it into operation. At the first view this project
looks out as the previous one but it cannot be compiled, because there are new versions of graphic
classes in it which take into account the crates Position, Size and Area. But the classes Size and Area are
not yet the part of the project which means you have to define them firstly. There is a place prepared
for them close to the class Position. Your task will be as follows:

F To define the class Size with the fields width and height, which will be an equivalent of our class
Position, only the size of instances will be saved in it instead of the position.

F To define the class Area with the fields x, y, width and height, whose instances will represent the
crates saving simultaneously both the position as well as the size. This class will have two
constructors:

F Area(int x, int y, int width, int height)

F Area(Position pozition, Size size)

As I have indicated, until you would define these two classes, it will be not possible to compile the
project because a number of classes rely on their existence.

238 Part 2: Basics of Creating OO Programs

2. Import the classes Light, Arrow, TrafficLight and Car and put them into
operation

You start the second phase with importing our four classes from the previous project. You will dis-
cover that they cannot be compiled. The reason is the different definition of the IMovable interface.
Look at its documentation – I can help you saying that there are two differences:

F It doesn’t require implementation of methods getX() and getY() from implementing classes.

F Besides the previously required method setPosition(int,int) it requires implementation of the
methods getPosition() and setPosition(Position).

Several tasks ensue from these requirements. Try to solve them yourself and in case you would not
succeed, have a look at further items as a help. You have to do the following:

F Cancel the annotation @Override of all classes of the methods getX() and getY(), because they do
not override any supertype’s method.

F Define the method setPosition(Position) in them and I recommend you to add immediately the
annotation @Override.

F Supplement the definition of the method getPosition() at those classes which still do not have
this method defined, and again I recommend you to supplement it with the annotation
@Override.

3. Supplement and Test these Classes
Moreover, in all four classes I will ask you to implement the method getSize(), which returns the cur-
rent size of the given instance, i.e. the instance of the Size class with the fields containing the current
width and height of the given instance (i.e. the car’s width will be twice bigger than its height and on
the contrary, the traffic light’s height will be three times bigger than its width).

The new form of the IMovable interface leads to the new Mover class. Thus, in the second phase, you
can verify the correctness of the implementation through exchanging the positions of both objects by
moving them smoothly from one position to the other with the new mover.

Note:
The IResizable interface passed a similar change as the IMovable interface – it started to use the
method getSize() instead of methods getWidth() and getHeight() and added the method
setSize(Size). The new Resizer adapted to this change. We are not using it in our examples, but
nothing prevents you to make out your own examples in which you will use it.

489. Oh, I think I will have work for the whole week-end.

It’s not as difficult as it looks at the first sight. If you will start you will finish with it in a while.

www.dbooks.org

https://www.dbooks.org/

25. The Crate 239

Review
Let’s review what you have learned in this lesson:

F The programming languages mostly use passing parameters by value and/or by reference.

F When passing parameters through a value, the copy of the value of the actual parameter
(argument) is passed to the called method. The calling method does not learn anything
about possible changes of the value.

F When passing parameters by reference, the reference to the place in a memory is passed,
which the called method uses as a parameter. After finishing the called method, the call-
ing method will find the resulting value at this place.

F Returning output values in parameters makes the program less transparent. Therefore Java did
not install this possibility and uses only passing parameters by value. In case of object parame-
ters the reference to an object is passed by value.

F Certain properties of objects are represented by a group of values. Therefore the method, which
should return a value of such property, should return several values at the same time.

F Detecting of the value of such property can be programmed in two ways:

F Ask for each coordinate separately.

F Think out a way how to pass all parts of information at the same time.

F In Java, such situations are solved with the help of crates which are instances of a special class
that defines its own field for each of the stored value.

F The fields of a crate are usually defined as public constants.

F The crate enables not only to obtain a set of values in one step, but also to transport this set in
one step and pass it to the called method as a parameter.

F The constant fields and the local variables are defined by adding the keyword final among their
modifiers.

F For keeping the position we have defined the class Position with int fields named x and y hold-
ing the horizontal and vertical coordinates respectively.

F For keeping information about the size we have a similar class Size with fields width and height.

F For keeping information about the position and the size together we have the Area class with
fields x, y, width and height.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 125z_Crate project.

240 Part 2: Basics of Creating OO Programs

26 Strings and How to Work with Them
26. Strings and How to Work with Them – 000000

26 Strings and How to Work with Them
What you will learn in this lesson
In this lesson we will go back to problems with comparing the objects. You will see how the strings are as-
sembled and how the object can define its text signature. Then I will explain you expressing of non-
standard characters and you will become acquainted with a standard output and a standard error output.

Project:
In this lesson we continue in using the 125z_Crate project.

Problems with Comparing the Objects
490. I have to tell you that you took me by surprise with the change of the project in which I should participate. I

hope we will hold this new project for a long time.

Yes and no. It should last until the end of the book to certain extent, but we will do some tiny changes
in it and I suppose that you will help me with them again.

Now I would like to go back to the class Position and to the way how our objects adjust it. Previ-
ously we defined the test for lights in which the instances mutually moved to their positions so that
you could see that they really reach the proper position. Today I will show you that if we consider two
positions as equal it does not mean that also the computer consider them as equal.

I prepared an innovated version of our last test in which I let the computer check after each moving
if the reached position is the same as the required one (I showed you how it is done in the section Test
of Returning the Proper Value on page 225). You can see its source code in the listing 26.1.

Listing 26.1: The test of moving the lights with checking the position correctness in the LightTest class

public void auxSwapPositionsWithCheck (Light l1, Light l2)
{
 Position p1 = l1.getPosition();
 Position p2 = l2.getPosition();

 auxSwapPositions(l1, l2);

 assertEquals(p1, l2.getPosition());
 assertEquals(p2, l1.getPosition());
}

As you can see I didn’t write the auxiliary method once again, but I used the previous one. I remem-
bered the positions of both lights and called the method which exchanged the lights and after return-
ing from it I let the program check if the new light’s position is really equal to the original (remem-
bered) one of its counterpart. The test itself is practically the same one as the previous, it only calls a
different auxiliary method and I didn’t copy it.

www.dbooks.org

https://www.dbooks.org/

26. Strings and How to Work with Them 241

491. And it finished as you predicted. The lights relocated as previously, but the test was not o.k. Similarly as before,
the window Tests Results opened with a red central bar and after a click at the test line BlueJ announced:
expected <Position@c59ad5> but was <Position@13829d5>
What a strange number is it?

This number indicates that we did not teach the positions to “sign” so that a text signature inherited
from the Object class is used in which the class of the given instance is quoted followed by the mark @
and a number which can vary in each running of the program. Let’s forget for a while that the pro-
gram considers the same positions as different, and first of all I will show you how you can teach the
objects to “sign”. But before it we will speak about the text strings (i.e. about instances of the String
class) and how to work with them.

Concatenation of the Text Strings
492. From what you have explained until now I understand that the text string is certain sequence of characters.

What can I do with them?

The most frequent operation with the text strings is their concatenation. The operation is based on two
rules:

F The text strings can be “summed” with the aid of an operator +. By adding two strings a new
string ensues, e.g. from adding "abc"+"123" the new string "abc123" arises.

F In case you add anything else to a text string (more precisely any expression, the result of which
is not a string), a text representation (I call it a text signature) of what you add is added. In case
there will be a value 50 in the integer variable average, the result of the addition

"Diameter = " + diameter

will be the string

Diameter = 50

Notice that when I wanted to have a space after the equals sign, I really had to write it down in the
given string. Neither the compiler nor the virtual machine will add supplementary spaces and on the
opposite it will not delete any surplus spaces. Everything will be recorded exactly as you ordered.

493. May I sum more than two summands?

Of course, in the total you can have as many summands as you need.

Text Representation (Text Signature)
494. You told me that when I add to the string something what is not a string, a signature of what I added is concat-

enated with the string. What is added to it when I add a color? In other words: what is the text signature of the
color?

If I will answer you now your color question, you will ask for something else in a while. Therefore I
will explain you fully what is the text representation of primitive values as well as object types (if you
would forget you can remind them in the section Primitive and Object Types on page 35) in Java:

242 Part 2: Basics of Creating OO Programs

F The whole numbers, i.e. the values of int, long, byte and short types are the simplest – their text
representation is the written form of the number which you know from mathematics. The value
one hundred and twenty three is therefore “signed” as 123, the value minus three hundred and twenty
one is signed -321.

F The real numbers, i.e. the values of double and float types are a little bit more complicated. The
numbers around one are written in the similar way, which you know from the school – e.g. 12.3
or 0.45. For the very large or very small numbers the so called scientific notation is used, which
you know from calculators. In this notation the number 1.23.104 is displayed as 1.23E4.

F The logic values, i.e. the values of boolean type are again simple because the values true and
false are signed as true and false. How simple.

F The characters, i.e. the values of char type are mostly also simple, because their text representa-
tion is the character itself. Only in some special cases (e.g. when the character has no representa-
tion in the font in use) it can be a little bit different – I’ll explain it soon.

F Well and only the objects remain. It is again relatively simple: the signature (i.e. text representa-
tion) of all objects is the text returned by their method toString(). What it will be depends on the
object’s own decision. The instance of NamedColor class, you were asking for, is signed with the
name of the given color.

495. But our instances do not have any toString() method.

They do have – they inherited it from the Object class (we were speaking about it in the section The
Class Object on page 60). It expresses each instance as a name of its class followed @ and by the hash-
code of this instance in the hexadecimal numeral system by the character. (The hash-code is an integer
number that – to a certain extent – represents the instance.) That is just the number on which you were
asking at the lesson’s beginning.

As you see the inherited version of the signature does not bring too extensive information. There-
fore the programmers mostly equip their classes with their own version of the method toString(),
which generates a signature reasonably characterizing the relevant instance.

496. So in case I’d define the method toString() in the Position class, it will write me something more reasonable?

It will write you exactly what the method toString() returns. Let’s define it e.g. as shown at the listing
26.2.

Listing 26.2: The definition of the toString() method in the Position class

/***
 * Returns a string representation of the instance.
 * It is used mostly for debugging purposes.
 *
 * @return String representation of the instance
 */
@Override
public String toString()
{
 return "Position[x=" + x + ", y=" + y + "]";
}

www.dbooks.org

https://www.dbooks.org/

26. Strings and How to Work with Them 243

497. Well, I cannot say that the expression describing the return value would be one of the most transparent, but
with a bit of endeavor it may be readable.

I admit that the last statement is not so well arranged because you cannot recognize which part of the
text is inside quotation marks and therefore it will be copied, and which part is an expression written
outside of quotation marks and therefore it will be replaced by the text representation of its value.

I know that if the statement would be written at more lines it would be more transparent but the
programmers mostly write it as quoted above. That’s why I will not spoil you; on the contrary I will
ask you to learn reading it.

Examine the statement in detail and notice where the commas are written. If we know that there is
no space before comma and that it should be placed immediately behind the number, we have to
write it behind the quotation marks in the next string. The comma will be followed by a space and the
name of another parameter in the value of which we are interested.

And now run again the test testSwapPositionsWithCheck and you will see that the error will stay but
you will receive more extensive information about the position with which the test method has prob-
lems.

498. You are true. When I opened the test now, the following record appeared in the window Tests Result
expected:<Position[x=0, y=0]> but was:<Position[x=0, y=0]>
This is far more readable but I can see that BlueJ makes things up because the positions are the same.

Unfortunately they are not the same – you can see it from the previous message (different hash-codes
indicates different instances). But I will explain it in the next lesson in which you will also hear how to
repair it. Now I would like to continue in speaking about the text strings. You will need it for further
work.

499. I would like to continue in solving the fault but I try to skip it. So what you would like to tell me?

Create the instance of the Position class representing e.g. the coordinates [10, 20] and send the mes-
sage inform(Object) to the IO class to which you will pass this position as a parameter. You should ob-
tain a window as in the figure 26.1.

Figure 26.1

The signature of the position on coordinates [10, 20]

Line Ending
500. Well, what should I do if I would like to write several of these positions at once?

No problem, but you have to use a character for ending the line. It cannot be put into the text as an or-
dinary character you met until now. You have to insert this character into a text as \n. In case you cre-
ate the variables p1, p2 and p3 in the interactive mode which will gradually refer to positions [1, 2],

244 Part 2: Basics of Creating OO Programs

[10, 20] and [100, 200] and if you enter the parameter to the inform(Object) message in the following
form

p1 + "\n" + p2 + "\n" + p3

the IO class depicts a dialog as in the figure 26.2.

Figure 26.2

Signatures of three positions, each of them at the separate line

501. When I would like to leave a line should I write the line end character twice, one after another "\n\n"?

Yes, and I remind you can write it to an arbitrary place in the string. Whenever the program meets it,
it lines in the output text.

The Escape Sequence
502. Why the new line character is written as the pair of different characters?

All is coming from the fact that according to syntax rules each text string has to finish at the same line
on which it started. Because there are further special characters, the unified notation – so called escape
sequence – has been defined for them.

Each such sequence begins with a backslash followed by an identification character. Java defines
the following escape sequences:
\b Backspace (deletes the previous character – it operates on few devices only).
\t Horizontal tabulator (moves the text cursor to the next tabulation position at the line).
\n Line feed (enters an end of line and continues writing on the new line)
\f Form feed (enters an end of page and continues writing on the next page).
\r Carriage return (returns the text cursor to the beginning of the line). However, certain systems

(e.g. old Mac) use this character as a new line; certain others (e.g. Windows) use it as a part of
two character sequence \r\n representing end-of-line.

\" Quotation marks (so that it would be possible to write quotation marks inside quotation
marks).

\' Apostrophe (so that it would be possible to enter apostrophe inside apostrophes – '\'').
\\ Backslash (when alone it marks a beginning of an escape sequence).
\uHHHH Whichever character including those that are not possible to write from the keyboard (HHHH

marks four numbers of the character’s code in the hexadecimal radix [hexadecimal – that’s
why H is used] – e.g. the ± character can be written as \u00B1).

www.dbooks.org

https://www.dbooks.org/

26. Strings and How to Work with Them 245

503. I did not understand why the apostrophe is among escape sequences.

As I’ve already said the char type, whose values are characters, is included into primitive data types.
And now I will tell you that its values are entered closed in apostrophes – e.g. 'a'. But this brings a
problem how to write down an apostrophe. In case you would not like to record it directly in the code
(i.e. '\u0027'), you have to use an escape sequence and write it down as: '\''. And this is the reason
why the apostrophe received its own escape sequence.

504. Should I enter the apostrophe in such way also in text strings? It is closed there in quotation marks, which
means there is no problem.

Inside the text strings you really can write it without using the escape sequence – it means e.g. as
follows

"'apostrophes' in a text string"

505. Why the character code in the last escape sequence is written in the hexadecimal system?

The hexadecimal numeral system has a number of advantageous properties, which significantly facili-
tate expressing of various values. I will not ruminate on it because we will not need it now. I just want
to supplement the list of possibilities. I know a number of programmers who never used the hexadec-
imal numeral system, but on the other hand, I know also a number of situations, in which it is good to
know it. Sometimes we may get back to it.

506. Tell me please, why I should write u after the backslash.

Because Java uses the Unicode character set. It strives to comprise all characters which people were us-
ing and are using now. You can find there all alphabets including Chinese, Japanese and Korean char-
acters, Braille script, Egyptian hieroglyphs, musical notation, cartographic signs etc. etc. Totally there
are comprised more than 100 000 characters. Probably you cannot find a currently used character
which would not be there.

507. Please, leave the theory and show me, how I could use the escape sequence in the program.

Firstly examine it in the interactive mode: send the message inform(String) to the IO class with the
following parameter:

"We are using for quotation marks \\\",\nfor new line \\n,\nfor aspostrophe \\\'"

After sending this message the dialog will open as in the figure 26.3.

Figure 26.3

Information text divided into more lines

246 Part 2: Basics of Creating OO Programs

508. The result really corresponds with the picture, but I don’t know why the backslashes are multiplying there?

From time to time it happens in the text strings. In case you want to enter a backslash to a string you
have to write it as a couple of backslashes, because if you would put down only one, it would be an
introductory character of some escape sequence. But if you have a look at the previous list of escape
sequences you will see that the character pair \" have to be written into the string as a quartet \\\" –
the first two characters represent the backslash and the other two represent the quotation mark. I
suppose you will derive further characters yourself.

The Standard Output
509. When I know to write down nearly everything, I would be interested in whether my programs could write their

messages so that they would not disappear after I will read them. The dialogs are spectacular, but sometimes I
would welcome if I could get back to my texts after finishing the program and read them once again.

You are true, often it may suit. The simplest solution of such requirement is to print texts to the stand-
ard output. This is an object which is a public field of the System class and which is named out.

510. This is interesting but we do not have the class System in our project.

The System class is a part of the standard library identically as the classes Object and String. Therefore
you can use it as if it would be a part of your project.

But I will go back to the standard output. It has two sets of useful overloaded methods (I quote the
question marks in the list of parameters because you can add whatever as its parameter – mostly the
text strings are passed to them):

F the methods print(???), which print a text signature of their parameter and

F the methods println(???), which make the same but moreover, they terminate the line at the end.

And we can try it immediately. After long ignoring we can remind again our Tests class and enhance
it by the method testStandardOutput which we could define e.g. as shown at the listing 26.3.

Listing 26.3: The test of printing to the standard output in the Tests class

@Test
public void testStandardOutput()
{
 System.out.print ("Without line termination - ");
 System.out.println("with line termination");

 System.out.print ("Rectangl0: ");
 System.out.println(rectangl0);

 System.out.print ("Ellipse0: " + ellipse0);
 System.out.println();
 System.out.println("Triangle0: " + triangle0);

 System.out.println("\nRectangl1: " + rectangl1 +
 "\nEllipse1: " + ellipse1 +
 "\nTriangle1: " + triangle1);
}

www.dbooks.org

https://www.dbooks.org/

26. Strings and How to Work with Them 247

F The first two statements show how the behavior of the methods print and println differ.

F The third and the fourth statements show the same but I wanted to present you that string
doesn’t have to be necessarily the parameter in the fourth statement. The fourth statement
prints the signature of the smaller rectangle.

F Another triplet of statements inform about the remaining two objects of the smaller picture. No-
tice the middle statement – it shows that the println method calling without parameters can be
used for entering empty lines.

F The last statement shows very frequent usage of a method in which the longer text is gradually
put together from smaller parts and the string that arises as a “sum” is passed to print.

Figure 26.4

The terminal’s window with the test result

Terminal Window
After starting the test and confirming the dialog announcing the creation of a test fixture the termi-
nal’s window is opened (see figure 26.4), into which the text is printed. This window does not lose its
content after finishing the method or the test; it only closes after closing the project. Moreover, you can
pick up its content (or part of it) and insert to any place through the box.

When you open another test or method, the new text will be written behind the first one. If you
mind it and you would like to write to an empty window, you can enter the command Clear in the
menu Options of the terminal window (see figure 26.5) (if need be you can use also the shortcut
CTRL+K).

Figure 26.5

Local offer of the terminal’s window

248 Part 2: Basics of Creating OO Programs

As you surely noticed you can enter that the window will be automatically cancelled before the
method’s calling in the local offer. Unfortunately this choice is not related to tests.

At the same time you noticed that I ticked the choice Unlimited buffering. In the opposite case the
terminal’s window remembers only last 47 lines (I really don’t know why just 47). Mostly you do not
need more and you do not need to overfill the memory with your historical listings. In case the listing
of your program is longer and you need to see them whole, you surely appreciate this choice.

I will not present further possibilities, only I will tell you that in case you would close the window
by mistake, you can open it again by ticking the relevant choice in the offer View (see figure 10.3 on
page 82).

The Standard Error Output
511. When there is a standard output, probably there is also a standard input, isn’t it?

Yes, the standard input also exists, but we will not use it because working with it is difficult. When we
would need any input, I will teach you something better.

When we already started speaking about the standard output, I should point out that there is also a
standard error output. For example all error messages are sent into it. We did not meet it until now, be-
cause our methods were tested through the test methods in the test classes and they have their own
mechanism of catching the error reports. However, in case an error would occur in the program,
which you would start directly from the local offer of certain object, the message about this error
would be written just into this standard error output.

In case we will send anything to the standard error output in BlueJ the second panel will open in
the terminal’s window, into which BlueJ will write everything in red for emphasizing. In the moment
when you ask for cancelling the terminal’s window, BlueJ cleans up the standard error output and
closes it.

 But not only system can write into the standard error output, you can write there as well. It is suf-
ficient when you use the field err instead of the field out in the System class. Try to add the following
statements at the end of the previous test

System.err.println("This is written into the error output");
System.out.println("\nHowever this goes to the standard one");

Listing 26.4: The definition of the test for making lines in the standard output and in the standard error
output in the Tests class

public void testNewLine()
{
 System.out.print("Before new line");
 System.err.print("After new line");
 IO.inform("Before new line");

 System.out.println(" - second part");
 System.err.println(" - second part");
 IO.inform("After new line");
}

www.dbooks.org

https://www.dbooks.org/

26. Strings and How to Work with Them 249

In case you would really intend to use the standard error output, you have to count that BlueJ writes
into it only after ending the line. This can be proved with testNewLine which you will find in the listing
26.4.

Exercise
512. Well don’t beat me with various kinds of information and let me know what I will train today?

I thought you discovered it already with your visionary abilities. I will ask you to define the method
toString() in the remaining crates and in all our classes. Use the way which is shown in the listing 26.2
– the method returned the class name followed by enumerated values in brackets, which the construc-
tor received in parameters. Choose the most general way for classes with more constructors, i.e. the
constructor adjusting the position, the module and the color of our classes. If the instance does not
remember the value of the given property in the field, it can call its own accessory method.

It will be a little bit more complicated for the light because there are two colors adjusted. The light
has also the property isOff, which informs if it shines or not. It should be shown in its signature.

513. We have set also the translucency of the arrow.

Yes, but it was not installed as a property. In case we would add the method isTranslucent () to the
arrow, we would speculate about including translucency into the signature.

But I would go back to our task. Go into the definition of the test fixture before the last statement
announcing that the test fixture is prepared. Add a statement at this place writing signatures of all in-
stances in the fixture to the standard output; each signature at a separate line introduced with the
name of the given instance.

Try to think out e.g. how the statement for printing in the CarTest class should look out, so that the
following text would be written into the standard output during opening of the lastly defined test:

====== Instances in the test fixture

| CM: CanvasManager(step=50, width=6, height=6, background=creamy)
| car0: Car[x=0, y=0, module=128, color=blue]
| carXY: Car[x=50, y=100, module=128, color=blue]
| carXYB: Car[x=150, y=25, module=128, color=black]
| carXYM : Car[x=200, y=100, module=64, color=blue]
| carXYMB: Car[x=0, y=172, module=256, color=black]
======

Review
Let’s review what you have learned in this lesson:

F The text strings can be “summed” with the + operator. A sum of two strings is a string originat-
ed by concatenating them together, e.g. by adding "abc"+"123" the string "abc123" arises.

F The sum can have any number of members.

F In case we add an identifier to a text string, not this identifier is added, but the text signature of
the object represented by this identifier. Then if the value of diameter parameter is 50, the sum’s
result ("Diameter = " + diameter) is the string "Diameter = 50".

250 Part 2: Basics of Creating OO Programs

F Each class has its own idea about how its instances should be converted to a string which would
inform the user about the given instance as best as possible.

F The text, which is the value of the string, is entered in quotation marks.

F Transfer to a new line is inserted into the string as a pair of \n characters.

F Characters that cannot be simply inserted into the string are entered with their escape sequence.

F Each escape sequence begins with a backslash followed by an identification character.

F The mostly used escape sequences are: '\n', '\t', '\"', '\'', '\\'.

F All characters can be entered by the escape sequence in which we write down a backslash, a let-
ter u and four hexadecimal digits representing its code.

F The field out of the System class represents a standard output.

F Everything what is printed to the standard output is depicted by BlueJ in terminal’s window.

F We can write into the standard output through the following statements
System.out.print(xxx);
and
System.out.println(xxx);
where xxx is the value of any primitive or object type. The second of the mentioned method
terminates the line after printing the passed text.

F Making the new line can be reached by the following statement
System.out.println();

F The field err of the System class represents a standard error output.

F The standard error output is depicted by BlueJ also in terminal’s window only in the second
bottom panel to which it is written in red.

F The panel of the standard error output is opened by BlueJ only when somebody is writing in it.

F BlueJ writes into the standard error output only after making a new line.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all
exercises is in the 126z_Strings project.

www.dbooks.org

https://www.dbooks.org/

27. A Bit of Logic 251

27 A Bit of Logic
27. A Bit of Logic – 000000

27 A Bit of Logic
What you will learn in this lesson
In this lesson you will solve the problems with comparing the objects. Then you will meet a number of
mostly logic operators and you will learn what the operator’s arity is. Then a contract of the method
equals(Object) will be presented and you will program the method according to this contract. Finally you
will learn what the difference between the value object types and the reference object types is, as well as
why you should not use the variable value types.

Project:
In this lesson we continue in using the 126z_Strings project.

Problems with Objects Comparing
514. Well, will you already tell me how I should explain to the computer that two equal positions are really equal?

Let’s go on. The problem consists in the way of comparing the instances. We consider two positions as
equivalent (equal) in case if they have identical coordinates. However in Java, the instance is implicitly
(i.e. in case you would not tell that it is different) equivalent only to itself.

515. How is it possible that the colors were operating and the positions are not operating?

Due to the fact, that the NamedColor class takes care about not to create two instances representing the
same color. Whenever somebody asks for a special color, the called factory method firstly checks, if such
color exists. If it exists, the existing color is returned. The new instance is created only in the case that
there is no object representing the required color. Therefore the standard equals operation is sufficient.

The String class uses a different way. It knows, or better said its instances know, how to compare
themselves mutually – they have defined its own version of the equals(Object) method.

But we did not explain it yet to the Position class (i.e. we did not define this method in it) and thus
it uses the method equals(Object) inherited from the class Object (this was explained in the section The
Class Object on page 60). As I told you a while ago, this method considers an instance equivalent only
with the instance itself.

516. How can I change this implicit setting?

As I have already told – you have to define the method equals(Object) for instances of the given class.
This method will compare its instance with the instance obtained as a parameter. As far as the method
considers them as mutually equivalent, it returns the logic value true; in an opposite case it returns the
value false. Before I will show you a possible definition of this method, I will explain you several
operations which I need to use in it and which were not yet debated. And when I start explaining this,
I will mention also their relatives which we will not use this time, but which will suit to you soon.

252 Part 2: Basics of Creating OO Programs

The Cast Operator (Type)
517. Well, go on.

First of all I will tell you something about an operator of casting. You will use it when you have an in-
stance of one type which does not suit to you because its instances are not able to do something, but
you know, that the given object is at the same time an instance of another type which is able to do
what you need.

This is directly our situation. We know about the parameter of the equals(Object) method that it’s
of Object type. But this knowledge does not help us with the comparison. But if this parameter of in-
stances would be of the Position class we could ask it for its coordinates and decide according to them
if it is equivalent with our position or not.

Therefore we will ask the virtual machine to cast the reference of the Object type instance into the
reference of the Position type instance and we will save this cast reference to the auxiliary variable. We
ask for casting by writing the name of the target type, closed (separately!) in rounded brackets, before
the reference to the cast object, which is in our case as follows:

Position p = (Position) object;

Then we can ask the object in the variable p for its coordinates.

518. What? Such simply I can change the type of the object? It means I could make possibly the whole car with lights
from only my light.

In no case, you cannot change the type of object. You can change only a type of the reference to it. By
casting you announce to the compiler that you know that the given reference refers to the object of the
destination type. The compiler inserts a requirement to virtual machine at the place of casting to check
if you are true and subsequently treats this reference as if it would really refer to the given object. The
compiler knows that in case you would not be true then the virtual machine would announce an error
in the previous checking.

Try to program the semi-finished method from the listing 27.1.

Listing 27.1: The initial (not yet operating) version of the equals(Object) method for the Position class

public boolean equals(Object o)
{
 Position p = (Position)o;
 return true;
}

And now call it in interactive mode and pass parameters of various types to it. If the Position class
would not be its parameter, the method finishes with announcing an error – e.g. as follows:

java.lang.ClassCastException: Ellipse cannot be cast to Position

www.dbooks.org

https://www.dbooks.org/

27. A Bit of Logic 253

Numerical Comparison Operators < <= == >= > !=
519. Well, maybe I understand casting. What you have further?

Then we need to discover if the coordinates of our instance agree with the coordinates of the instance
obtained as the parameter. For the identity test of two values Java uses an operator == so that if I
would like to detect whether the content of the variable a agrees with the content of the variable b, I
will write a==b.

When I started to speak about the operator of comparison, I will present also the others.

F a < b – the value a is smaller than the value b

F a <= b – the value a is smaller or equal to the value b

F a == b – the value a is equal to the value b

F a >= b – the value a is bigger or equal to the value b

F a > b – the value a is bigger than the value b

F a != b – the value a is not equal to the value b

You can use values of all primitive types as operands, but you cannot compare logic values with “il-
logical” ones. The characters are converted to integers with the value equal to the code of the given
character. When comparing logic values, it is valid (false < true).

Operators and their Arity
520. What is the operand?

I see that you are more forgetful than me. We were speaking about it in the section The Assignment of
the Value to the Field on page 160, when we were speaking about the assignment operation. I remind
that each operation consists of the following:

F an operator, which is a character or a group of characters, saying which kind of operation it is,

F operands, which are data with whom the given operation is carried out.

If we take an example of counting up operation, the operator is the + sign and operands are both
summands.

I would like supplement my information about the term operator’s arity, which says with how
many operands the operator works. According to arity we distinguish four kinds of operators in Java:

F Nullary operators do not need any operand. The example of nullary operators could be
constants.

F Unary operators have only one operand. E.g. the cast operator which we were debating a while
ago is usually included among unary operators. Also the + and – characters placed before
numbers (e.g. +2, –4 etc.) are unary operators.

F Binary operators have two operands. The arithmetic operators + - * / belong to this group, the
operators of comparison about which we were speaking as well as the assignment operator.

254 Part 2: Basics of Creating OO Programs

F Java has also one ternary operator, which uses three operands, but this will be discussed in the
next volume.

521. And what about when I want to sum up more summands?

Then the sum will be evaluated gradually from left to the right and the result of the left sum will be-
come a left operand (summand) of the right sum. So if you write in the program as follows

a + b + c + d

the compiler compiles it into a sequence of binary operations, i.e. the result ends the same as if you
would write

(((a+b) + c) + d)

Comparison of Objects
522. I see you drew me into theory. Let’s return to our project, I want to ask you: may I compare also objects?

Objects can be directly compared only with the help of the operators == and !=. They compare refer-
ences to objects so that the result is information if the compared references show the same object.
When working with an object the comparing operators cannot be used to anything else.

From what I told you until now you could estimate that the inherited version of the equals(Object)
method behaves as if its body would contain the statement as follows (supposing that the parameter
will have the name o):

return (this == o);

In other words: it returns information if the parameter shows an instance whose method equals is just
called and to which the hidden parameter this refers.

Logical Complement Operator !
523. Why a symbol “!=” is used for the operator “not equal”? I think I saw a symbol “<>”, and it seemed to me far

more logical.

The symbol <> is used for non-equality in e.g. Basic and Pascal. But Java took over a significant part of
its syntax from the language C++, which took it from its predecessor C language. Thus the languages
C and C++ were used by a majority of programmers and it was reasonable to adapt to their syntax.

524. And why the authors of C language have chosen such strange operator?

I did not tell you that the! sign (the exclamation mark) serves as an operator of negation that negates
its operand, i.e. it says true opposite – (!true == false) and (!false == true). It means the following
equality is valid:

 (a != b) == !(a == b)

To express it by words: a is not equal to b means the same as it is not true that a is equal to b.

www.dbooks.org

https://www.dbooks.org/

27. A Bit of Logic 255

525. And may I write down also for example (x !< y)?

No, you cannot. The exclamation mark as “negation” is a part of the operator only at !=. You can use
the expression !(x < y), but then it is better to use (x >= y).

Conjunction (Conditional-And) Operators && and &
526. Sure, the exclamation mark was only moved. What you have further?

We still do not know how to explain to the computer that if two positions should be considered as
equivalent, both their coordinates, i.e. the horizontal as well as the vertical have to agree. The opera-
tion of conjunction is used for it (sometimes it’s called logical multiplication or logical and) whose result
is true if and only if both its operands are true. For entering this operation I use the operator && (usual-
ly it is marked the operator AND).

In case I want to save the test result whether the coordinates of my instance (this) are identical
with the coordinates of the instance p, into the logic (boolean) variable result, then I insert the
following statement into the program:

boolean result = (this.x == p.x) && (this.y == p.y);

Knowing this we can now improve the definition of our method and set it to the form as in the listing
27.2 (of course you can leave out the qualification this).

Listing 27.2: Version of the equals(Object) method which is able to compare two positions (for the Position
class)

public boolean equals(Object o)
{
 Position p = (Position)o;
 boolean result = (this.x == p.x) && (this.y == p.y);
 return result;
}

527. You indicated in the title that I can choose between one and two & characters. Is there any difference between
them?

Yes and a big one! I recommend not to use the operator & and I quote it here only for you would know
about it in case you would use it by mistake and you would be surprised that the program operates in
a different way that it has.

The result between them insists in the fact that the operator & evaluates both operands whilst the
operator && often suffices to evaluate only the left of them. It knows that to reach the true result both
operands have to be true as well. In case it discovers that the left operand is not true, it doesn’t bother
to evaluate the right one and directly announces the result as false.

However the advantage of && operator is not only that it is quicker (the speedup is often nearly
immeasurable) but in the fact that in the right operand you can use the fact that the left operand is
true. Imagine that e.g. you have to discover if the quotient of two entered non-negative numbers
smaller than 10. You can find out the result e.g. as follows:

boolean smallerThan10 = (denominator != 0) &&
 (numerator / denominator < 10);

256 Part 2: Basics of Creating OO Programs

I already know that denominator is not zero in the right operand and that I can divide. If the denomi-
nator is zero, it’s no sense to find out the value of fraction and I can announce with clear conscious
that it’s not smaller than 10.

528. When the operator & is used?

It is used in situations when you need to evaluate also the right operand because certain side effect
arises in its evaluating with which the following code counts. But using side effects of operations is
considered as a great programmer’s sin and is tolerated only in extraordinary reasoned cases. I ex-
plained you this operator mainly so that you would not be surprised by remodeled running of the
program in case you will not write or cancel the second & by mistake.

Disjunction (Conditional-Or) Operators || and |
529. In school we discussed over and over three logic operations: negation, conjunction and disjunction. I suppose

that Java has certain operator also for the third one.

Of course, even here you have two versions at your disposal, namely “intelligent” || and “hardwork-
ing” |. I only remind that the result of a logic disjunction operation (sometimes we speak about
logical addition or about the logical or) is true (i.e. the result is the value true) in case if at least one oper-
and is true. Its operator is usually called by the programmers as the operator OR.

 The “intelligent” version knows that it’s sufficient if at least one operand is true, and so if it finds
out that the left operand is true, it doesn’t evaluate the right one and directly returns true. Using “in-
telligence” of the operator is similar as at its above mentioned colleague.

530. I suppose that the difference between its one-character and the two-character variant is the same as of the pre-
vious operator.

You suppose well. The operator of shortened evaluation evaluates the left operand and if it is true, it
does not check the right one and returns the result true.

Type Comparison Operator instanceof
531. It means we have the equals(Object) method completed, haven’t we?

Not so completely. The method’s contract requires so that the method would always return some
result independently which parameter it obtains. And this is not valid for our method yet.

532. How not valid yet?

Because the definition in the listing 27.2 crashes at the moment when its parameter could not be cast to
the Position type. Therefore we have to adapt our code in such way so that it would be able to solve
the situation. In other words only those objects would be cast which are positions.

For this it is necessary to find out at first if the obtained object is a position. The operator instanceof
can be used for it. It expects a tested object in the left operand and a type to which the competency
should be discovered in the right operand. The result is a logic value announcing if the left operand

www.dbooks.org

https://www.dbooks.org/

27. A Bit of Logic 257

can be considered as the instance of the right operand. If the object o is an instance of the Position class
can be detected e.g. in the following way:

boolean isPosition = o instanceof Position;

533. And what about when I will ask for not existing object, i.e. when the left operand will contain an empty refer-
ence?

An empty reference is nobody’s instance which means that (null instanceof Anything) is always false.

534. So we know everything and we can start programming.

Yes, we know everything but we have to arrange that in case the parameter will not be the instance of
the Position class the method would return false. When you will learn algorithmic constructions I will
show you another possibility how to reach it. But for now let’s use “intelligence” of the && operator
and define the method equals(Object) according to the listing 27.3.

Listing 27.3: The operating version of the method equals(Object) for the Position class

public boolean equals(Object o)
{
 return (o instanceof Position) &&
 (((Position)o).x == this.x) &&
 (((Position)o).y == this.y);
}

535. Oh, you have to explain me this code.

Well, if you think about it, you surely would be able to explain it as well, but I will do it.
The method contains the only one statement – return. When this statement starts to evaluate the

expression whose value it has to return, it starts with detecting if the parameter is the instance of the
Position class. In negative case nothing is necessary to evaluate because the whole expression is false.
Thus the && operator returns the value false which the return statement passes to the calling method as
the result.

 If the parameter is the instance of the Position class the result is not yet obvious and the expression
will be further evaluated. It will continue with the second line expression. First of all, the parameter
will cast to the Position type (this time we already know that casting is correct), the value of its field x
will be detected and will be compared with the value of the corresponding field of the given instance
(the optional this only stresses whose field it is).

In case the compared values will not be equal, the result of comparing is false and nothing should
be further checked – the return statement can give back false.

In case the previous comparison will be true, also the y field should be evaluated in the same
procedure as the x field.

536. Don’t you have rather too many brackets in the casting?

There are really many brackets in the expression, but those who are probably mostly bothering cannot
be cancelled. I have to respect operator’s priorities, i.e. which operator is preferred to the other one.
The basic school knowledge is that multiplying is preferred to adding, and rising to a higher power is
preferred to multiplying. There is no operator of rising to a higher power in Java but there is a wide

258 Part 2: Basics of Creating OO Programs

range of others and totally there are 14 levels of priority. Therefore I recommend to students not to
think over operator’s priority and rely on brackets because then each expression is clear even for these
people who do not remember the proper ordering of those 14 priorities.

Contract of the equals(Object) Method
537. Well, we are ready and we can examine it.

Oh, there are few things left. Above all, it would be suitable to supplement the annotation @Override
before the method’s definition because it is a method overriding the method inherited from a parent.
As I have already said this annotation is optional but it enables to the compiler to check that what you
have defined is really the covering of the inherited method.

538. Well, and what else?

Further we should check if the method fulfills the contract.

539. We have already fulfilled it. You told me that it has to react correctly to any parameter and we arranged it with
the help of instanceof.

You know, the contract is a little bit more complicated. Besides the fact that the method may never end
with an error the following five conditions have to be fulfilled:

F It has to be reflexive, i.e. the object has to be equivalent with itself. In other words: the expres-
sion object.equals(object) has to return true for each object.

F It has to be symmetric, i.e. the object has to be equivalent with another one at the moment when
the second one is equivalent with the first one. In other words: the following expression has to
be always true (supposing of course that both objects do exist):

object1.equals(object2) == object2.equals(object1)

F It has to be transitive, i.e. if one object is equivalent to the second one and the second one with
the third one, then the first one has to be equivalent also with the third one. In other words the
following expression has to be true for all existing objects o1, o2, o3:

 (o1.equals(o2) && o2.equals(o3)) <= o1.equals(o3)

F It has to be consistent, i.e. when you ask twice if one object is equivalent with the second one,
you have to receive the same answer every time. When e.g. two positions are equal today, they
should be equal also tomorrow.

F For each object the following expression (objekt.equals(null) == false) has to be valid, i.e. no
object can be equivalent with an empty reference.

Having a look at our definition in the listing 27.3, you may estimate that it fulfills all of the above men-
tioned rules. I specified them so that you would have them in your memory when you will define the
equals(Object) method for some of your own classes.

www.dbooks.org

https://www.dbooks.org/

27. A Bit of Logic 259

540. I didn’t catch the expression for transitivity. Should the arrow be on reverse? The mathematics teaches us that
when something emerges from the other thing, then the arrow faces to the emerging one.

When you have a look at the table of implication values (you can find it e.g. at
http://en.wikipedia.org/wiki/Material_conditional#Truth_table), you discover that if the implication is true, the as-
sumption (hypothesis) does not have bigger logic value than the statement. So if the mathematician
says “T comes from P” (the statement comes from the assumption) and writes it as (P => T) you will
write to the program (P <= T), i.e. P is smaller or equal to T.

In our case there was a premise that the first object is equivalent to the second one and at the same
time the second one is equivalent to the third one. A statement originated from this premise that the
first object has to be equivalent to the third one. That’s why the record looked out as it did. Don’t
bother about it – it is sufficient to know what it is about, you do not have to remember how to write it
down.

Value Types and Reference Types
541. Fulfilling of the first three items is obvious, because it comes from the characteristic of equality, which we learnt

in school. The last item is also clear because you told that the operator instanceof always returns false for
null. But how I recognize if our definition is consistent?

You will recognize it from the fact that both fields, whose values are compared, are defined as con-
stants and thus they cannot change. When they would be equal or not today, the same will be valid for
them any time.

Observing the consistency of the equals(Object) method is related to immutability of value objects.
Don’t ask about it, I will explain it immediately.

Until now we were dividing the data types to primitive and object ones. But the object data types
can be further divided, to value types and reference types.

Reference Types
The instances of reference data types are interesting for us only from the view which instance it is. To
determine the given instance we need to have only a reference to this instance. We could say that the
instance itself is their value and therefore it is sufficient to have the inherited version of equals(Object)
method. From classes with which we have been working up until now we could include into this
group all graphic objects. E.g. the fact that two rectangles have the same color, the same size and lies
in the same coordinates does not seem as a reason for considering them as equal. The rectangles are
always two different rectangles which only overlap in the given moment.

Value Types
As the title says the value types serve for representing some value. If we have two instances of value
type we can determine if they represent the same value similarly as we can detect at the two variables
of primitive data types. We recognize the value types according to the fact that they define their own
version of the equals(Object) method which knows how to recognize an equality of represented values.

260 Part 2: Basics of Creating OO Programs

From classes which we met until now, only String, NamedColor, Direction8, Position, Size and Area
are value types. We can look for equality of values of their instances, i.e. if two instances of the String
class contain the same string or if two instances of the Position class denote the same place.

The value classes can be divided into two groups:

F Immutable types don’t offer any possibility how to change values of key fields, i.e. fields which
e.g. act in the method equals(Object). As soon as we create their instances, we can rely on the
fact that they will always have their initial value. From all classes used until now the classes
String, NamedColor, Direction8 as well as all crates belong to them.

F Mutable types will not guarantee invariability of values of its key fields. On the contrary the
value, kept in their instance, can change any time. They have defined the equals(Object) method
but they are not able to guarantee its consistency. Therefore we should avoid using of such
classes.

Exercise
542. I suppose that today’s exercise will deal with the method equals(Object).

Surely, fulfill the definition of this method to the rest of classes of the crates.
As you surely estimate our classes of graphic objects are of reference type so that they do not need

to cover this method. Fill in the method testSwapPositionsWithCheck to their test class, so that we could
check any time in future that detecting and adjusting of positions continues properly in instances of
test classes.

Due to the fact that acting of this method cannot be differentiated from the test without any check-
ing, you can fulfill the auxiliary method by a print of initiating and target positions of shifted objects
to standard output.

Review
Let’s review what you have learned in this lesson:

F When comparing objects you have to differ when you detect if it is the same instance and when
it is only an instance representing the same value.

F You can use a cast operation in the situation when you have an instance of certain type, but
you know that the referred object is simultaneously an instance of another type which is more
suitable for your purpose.

F You ask for casting by writing the name of the target type closed (separately!) in parentheses
before the reference for cast object.

F By casting you do not change the object’s characteristics, but only our point of view at the given
object.

F During casting the virtual machine checks if it is possible to cast the given reference, i.e. if the
referred object is really the instance of the target data type. If not, a program error is announced.

F For comparing in Java the following operators are used: < <= == >= > !=

www.dbooks.org

https://www.dbooks.org/

27. A Bit of Logic 261

F Operators are differentiated according to their arity which says with how many operands they
work. Nullary operators have no operand, unary operators have one operand, binary have two
and ternary have three operands.

F In case you need to express that two affirmations are valid at the same time, you can use a logic
conjunction operation. You will write it down using the operator && or &.

F The operator && evaluates its left operand and if it is not true it stops evaluating (because the re-
sult is obvious) and returns false.

F The operator & evaluates always both operands. It is used in the situation when the right oper-
and has to be evaluated due to a possible side effect.

F Using of side effects is considered as a great programmer’s transgression.

F For expressing that at least one of the two affirmations is valid, you use a logic disjunction
operation which is written by means of operators || or |.

F Even in case of disjunction the double-character version uses the shortened evaluation; the one-
character version always evaluates both operands.

F The operator instanceof expects a tested object in the left operand and a type to which you de-
tect the competency in the right operand. The result is a logic value announcing whether the left
operand can be considered as the instance of the right operand.

F Operations in Java recognize 14 priority levels. In case you want the evaluation procedure
would be evident on the first sight, use parentheses.

F The equals(Object) method is used in situations when equality of two objects is detected.

F If two instances of the given class are equivalent only in case that they are of the same instance,
it is possible to use the version of the equals(Object) method inherited from the Object class.

F In case you define your own version of the eguals(Object) method, you have to provide that it
will be reflexive, symmetric, transitive, and consistent and will differentiate the object from the
empty reference.

F Object data types are divided to value types and reference types.

F The instances of reference types represent only themselves. Therefore the inherited ver-
sion of the equals(Object) method is sufficient for their comparison.

F The instances of value types represent certain value. Therefore it can happen that two dif-
ferent instances represent the same value. Thus for their comparison you have to define
their own version of the equals(Object) method.

F Value data types can be divided also in two groups:

F The immutable types do not offer any possibility how to change values of fields acting in
the equals(Object) method.

F The mutable data types enable changing of the value of key fields (i.e. fields affecting the
returned value of the equals(Object) method) and therefore their equals(Object) method is
not consistent. That’s why you should avoid using them.

262 Part 2: Basics of Creating OO Programs

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 127z_Booleans project.

www.dbooks.org

https://www.dbooks.org/

28. Class Methods and Fields 263

28 Class Methods and Fields
28. Class Methods and Fields – 000000

28 Class Methods and Fields
What you will learn in this lesson
In this lesson you will firstly see how the class can count created instances and allocate identification
numbers to them. You will also see improving the toString() method, so that its ID number would be-
come the part of its signature. At the end you will see how to define a class according to the design
pattern Singleton at the Town example.

Project:
In this lesson we can continue in using the project 127z_Booleans.

Counted Objects
543. The toString() method, which I defined in the last lesson, returns a string beginning with the name of the giv-

en class for each instance. Would it be better if the name of the given instance would be quoted instead of the
class name?

Instances have generally no names. Only fields and variables have names, into which, in case of neces-
sity, you save a reference to an instance. But the same reference can be at several places simultaneous-
ly and the addressed object is not able to discover through which reference you are addressing it.

In case you unambiguously want to identify an object according to the string returned by the
toString() method, it is more advantageous to equip the object at its origination by some unambigu-
ous identifying sign according to which you can recognize it and which the toString() method puts
into the resulting string.

One of the most popular procedures is to assign an identifying number (an “ID number”) to each
instance, according to which you can recognize it. Similarly also the geometric shapes in our project
are marked in this way.

Static Fields
544. It looks interesting. How could I arrange it?

Do you remember the fields of a class about which we were speaking in the section Static Fields – Class
Fields on page 73? Then I told you that the class remembers information in these fields that is common
to all its instances. The number of instances created until now can be such field.

Each time when the new instance of the given class is created this number increases by one and the
result is then assigned to some field of just created instance. This value serves as the identifying num-
ber of the given instance. Due to the fact that this number should never change the relevant field
should be declared as a constant, i.e. with the final modifier.

264 Part 2: Basics of Creating OO Programs

545. This seems simple. But how should I define a field of the whole class?

By adding the keyword static among their modifiers. The class fields are often called static due to this
keyword.

Order of Modifiers
546. You have already told me four modifiers: public, private, final and static. Should I quote them in certain

order or the order is not important?

The order you quote them is not important. Nevertheless, it’s a habit to quote them as follows:
public/private static final. And moreover, I would like to remind that the public and private
modifiers cannot be quoted at the same time.

Program Modifications
547. I would say I already know everything needed and – as you say – we can start creating.

I agree. Let’s start with the simplest, namely with the Light class. Add the count field to its class varia-
ble fields. We will count the created instances in this field and therefore we initialize it to zero. Then
add a field called ID to instance’s constants. The instance will save its identification number into this
field.

At this occasion I recommend you to define also the fields color, switchedOffColor and bulb as con-
stants (i.e. to add the modifier final to them). The resulting proposal of the declaration (without line
comments of not used sections) you can see in the listing 28.1.

Listing 28.1: The declaration of fields of the Light class

//== VARIABLE CLASS FIELDS ===

 /** Number of so far created instances. */
 private static int countCreated = 0;

//== CONSTANT INSTANCE FIELDS ==

/** Identification number of given instance. */
private final int ID;

/** Color of the light when turned on. */
private final NamedColor color;

/** Color of the light when turned off. */
private final NamedColor switchedOffColor;

/** Shape representing the light on the canvas. */
private final Ellipse bulb;

www.dbooks.org

https://www.dbooks.org/

28. Class Methods and Fields 265

548. Why should I declare a bulb as a constant? After all, the ellipse representing a bulb can move and change its
measure.

Yes, it can, but it is always the same ellipse. In other words: the reference saved in the field is not
changing and we can consider it as constant. As I already told, by adding the modifier final we ask
the compiler to check if we don’t try to change its value by mistake.

549. I see, so what should I do further?

Put a statement adding one to the countCreated field into the most general constructor. The constructor
knows that it is initializing the newly created instance and so it has to put information into this field
that there is one more instance. You write down the following statement:

count = count + 1;

Thus you express that the computer has to take the value saved in the countCreated field, add one to it
and save the resulting value as the new value of this field.

550. It looks a little bit strange because the left side is not equal with the right one but in case I would think that
instead of equals sign there is for example an assigning arrow, it’s understandable. I have to accustom to it.
What else?

You add another statement immediately behind this one which saves the new value of the countCreated
field into the ID constant.

551. How can I assign a value into a constant? You told that no value can be saved into constants.

But I also told that if you cannot initialize a constant in declaration, you can do it in a constructor. But
you can initialize it, i.e. to assign a value to it, only once – and this is what I want you to make. The
modified version of the construction might look as in the listing 28.2.

Listing 28.2: The new version of the most general light constructor

public Light(int x, int y, int diameter, NamedColor color,
 NamedColor switchedOffColor)
{
 countCreated = countCreated + 1;
 this.ID = countCreated;
 this.bulb = new Ellipse(x, y, diameter, diameter, color);
 this.color = color;
 this.switchedOffColor = switchedOffColor;
}

552. It’s strange how you can number instances. You put zero into the count field, then you extend it to one and you
assign it into the ID field. This means that there will be always one in this field.

The point is in the fact that the count field is the field of a class (static field), which means it initializes
in the moment when program reads its class. Then it is never more zeroed and only one is added by
each instance.

The first created instance finds zero in the field count, adds one and saves the resulting one into its
ID field. The second instance finds one in the count field. It adds again one and the resulting two saves
into its ID field. And it goes further like that.

266 Part 2: Basics of Creating OO Programs

Innovation of the toString() Method
553. Oh yes, I’m sorry, I forgot. So what expects us now?

Now we can start adjusting the toString method so that also ID of the given instance would be added
to a class name. To offer you further matter for speculations let’s make a small change in the defini-
tion: I will not write the x and y coordinates separately, but I will write directly the whole position.
You can see the result in the listing 28.3.

Listing 28.3: The innovated version of the toString() method in the Light class

@Override
public String toString()
{
 return "Light_" + ID + "(" + getPosition() +
 ", module=" + getModule() + ", color=" + color +
 ", switchedOffColor=" + switchedOffColor +
 ", isOff=" + isOff() + ")";
}

When you require creating a fixture, the setUp() method writes the following text to the standard out-
put (I made the font smaller to allow the lines not to be wrapped):

====== Instances in the test fixture for LightTest@45431f89
| CM: CanvasManager(step=50, width=6, height=6, background=creamy)
| light0: Light_1(Position[x=0, y=0], module=50, color=yellow, switchedOffColor=black, isOff=false)
| lightXY: Light_2(Position[x=50, y=50], module=50, color=yellow, switchedOffColor=black, isOff=false)
| lightXYC: Light_3(Position[x=100, y=100], module=50, color=red, switchedOffColor=black, isOff=false)
| lightXYM : Light_4(Position[x=0, y=100], module=100, color=yellow, switchedOffColor=black, isOff=false)
| lightXYMB: Light_5(Position[x=100, y=0], module=100, color=blue, switchedOffColor=black, isOff=false)
| lightXYMB: Light_6(Position[x=150, y=150], module=150, color=magenta, switchedOffColor=no, isOff=false)
======

Town
554. For now it was more a lesson on how to work with strings. Would you have a practical usage for static fields

and methods?

You say practical usage. I would like to use our car as well as a traffic light in the further project in
which we could simulate traffic in a town. For this we need a town which might be even greater than
the canvas we are now using. We could practically show the implementation of design patterns
Singleton and Simple Factory Method which we discussed in the section Examples of Design Patterns on
page 101. What do you say?

555. I’m afraid it will be too complicated for me.

Don’t be afraid, start with reminding of what was said about both design patterns and then we will go
on with the entering.

www.dbooks.org

https://www.dbooks.org/

28. Class Methods and Fields 267

Entering

556. Well, I reminded it. You can start.

As I told, we will define the foundations of the future class Town. The versions you will create today
have to fulfill the following requirements:

F The town should be able to be painted at the canvas, i.e. it will implement the IPaintable
interface.

F The town will be defined as a translucent smoky rectangle. Translucent (NamedColor.SMOKY)
because the lines of the canvas grid should penetrate through it.

F The coordinates in town will not be defined as point coordinates, but as field coordinates. Simi-
larly the town’s size will not be quoted in points, but in fields corresponding to canvas’ fields.
This means the town will have the given number of lines and columns.

F In the first approximation the size of the town, i.e. the number of its lines and columns, will be
constant during the whole town’s life.

F The size of the town’s field will be derived from the current size of the canvas field. With
change of the canvas field size by calling one of the methods setStep(int) and
setStepSize(int,int,int) automatically the size of the field in the town will change and thus also
the point size of the rectangle representing the town.

F One field of the town will be always highlighted as an active one and the town will be always
depicted in such way so that the active field would be in the middle of the canvas.

F The active field position within the canvas will always be possible to adjust by calling the meth-
od activeOn(int,int) to which the column and line of the active field will be passed in parame-
ters.

F The active field will be painted as milky (translucent color allowing to see what is under it –
NamedColor.MILKY) square which will overlap the marked field at each side by half of its width.

F Only one town can meet the requirement to centralize the active field at canvas, except the
towns would overlap and this is outside our requirements. Therefore, the instance of Town class
has to be a singleton, i.e. it will be possible to create the only one town.

F You will ask the town class for the town’s instance by calling its static method getInstance().

So what you say? Is it enough difficult and practical?

557. Don’t laugh at me. I can never program something like this. I could do it only having more experience.

Don’t underrate yourself. I will persuade you that for programming such class you do not need
anything what you would not already know.

268 Part 2: Basics of Creating OO Programs

An Analysis

558. I’m just curious. Start persuading me.

Any time when you receive a programming task you should start with an analysis how you would
solve individual requirements of the assignment. Each minute spent with analyzing will save you a lot
of time uselessly wasted after rash start of programming.

Let’s begin with an analysis. I will guide you to see that you could do this analysis yourself with
only a little endeavor. That’s why we will turn our discussion a bit. I will ask you questions and you
will give me answers.

559. You are asking too much. It’s your turn to start.

Well, you should begin with the town’s interface, i.e. what – according to the assignment – the sur-
rounding objects have to know about the town. In other words: what you have to define as public?
Enumerate only what really must be public, because otherwise the task would not be fulfilled. Don’t
quote anything you speculate it should be public, but the assignment does not say it particularly.

560. Public? At the beginning you told that the town has to implement the IPaintable interface, so that it has to
have defined the public method paint(Painter). Then it has to have the method activeOn(int,int) as well as
the static method getInstance(). And finally it has to have a constructor which will create it.

A public constructor?

561. I see. In your explanation of a singleton you told that the singleton’s constructor has to be private and that I
should ask for the singleton’s instance by using a simple factory method – this is the method getInstance().
This means only those three above mentioned methods and besides them the private constructor.

Well, so the full declarations of methods you enumerated could be as follows (you did not tell the con-
structor’s parameters, so I will put question marks instead of them):

public static Town getInstance();
private Town(???);
public void activeOn(int column, int row);
public void paint(Painter painter);

For now it looks simply, what do you think? And now go through the whole assignment once more
and try to think out which fields the town should remember so that the previous methods would
work as required.

562. I am going through from above to down, so I have to know:
– the rectangle representing the town,
– the field size of the town, i.e. the number of its columns and lines,
– the coordinates of the active field and
– the square representing the active field.
That’s all I think.

I would see one item more as useful in this list. Imagine how the method getInstance() will work and
how the repainted town will detect where it should be placed at the canvas.

www.dbooks.org

https://www.dbooks.org/

28. Class Methods and Fields 269

563. Aha, I see. I have to remember the created singleton which the method getInstance() will return each time. I
hesitate with the second part but I estimate that I should remember a reference to canvas manager to avoid
permanent requiring for it.

Correct, and you should add that these two fields will be defined as static constants, because they will
not change within the class life. When I repeat and precise it, you say that we should declare the
following fields:

//== CONSTANT CLASS FIELDS ===

 /** Canvas manager painting the town. */
 private static final CanvasManager CM;

 /** The only instance of the town. */
 private static final Town singleton;

//== VARIABLE INSTANCE FIELDS ==

 /** Rectangle representing the town area. */
 private Rectangle ground;

 /** Rectangle highlighting the current field. */
 private Rectangle current;

 /** Current number of the columns in the town. */
 private int columnSize;

 /** Current number of the rows in the town. */
 private int rowSize;

 /** Column of the current field. */
 private int currentColumn;

 /** Row of the current field. */
 private int currentRow;

This means the basic framework is finished and we can begin with supplement the construction. The
first item you should think is initialization of those static constants. So how would you go on?

564. The canvas manager is clear; we used it in test classes several times. It means I will put an initialization only to
a declaration. But how should I handle with the singleton?

My advice is: initialize it by inserting a reference returned by new Town() into the SINGLETON field.
Well, let’s go on. How you will program the constructor?

565. I will determine the town’s size and save it to fields. Suppose I will locate an active field to the canvas center so
that a half of the town’s size can be saved as its coordinate. Then I will detect the size of those rectangles and I
will count their positions. Well, I don’t know how to do it.

I advise you a bit. You do not have to enter any sizes nor any positions for the rectangles in the con-
structor (precisely you can enter any of them), because in case the town should immediately react to
changes of the size of canvas field, it would be best if the paint(Painter) method could detect this size
itself and adjust the size of both rectangles in the last moment. As far as the constructor is mentioned I

270 Part 2: Basics of Creating OO Programs

would think over if the object should be registered at the canvas immediately after it will be created,
i.e. if the registering statement should be saved at the end of the constructor.

And how do you consider the activeOn(int,int) method?

566. It’s clear – I will adjust new coordinates of an active field.

It’s not sufficient. You have to say to the canvas manager that something has changed and therefore it
should repaint itself. And at this occasion you adjust also the position of the town at the canvas.

567. Oh, yes, you’re true. I didn’t realize it. So there is only the paint(Painter) method, and I hesitate what to do
with it.

Because you pay bigger respect to it than it’s worthy. Let’s take it in proper ordering. Which values,
that you need to enter to depicted rectangles, are ensuing from the assignment? (Don’t say that it’s
color.) Look once more into the assignment.

568. It says that the current field should be in the center of the canvas and that it should overlap the size of canvas
field at each side by one half. When it should overlap its size by one half at each side it should be twice bigger.
And I will get its field’s coordinates by dividing the number of the canvas’ columns and rows by two. Then I get
its point coordinates by multiplying its field’s coordinates by the step length.

Clever student! Now you should only count the position and the size of the rectangle representing the
town. I suppose you know how to count its size, and the position will be not so difficult:

1. When you know the field’s coordinates of the current field in the town, you surely know how
far the current field is from the left upper edge of the town.

2. You already know the position of the current field at the canvas – it is in the center, thus (as you
told) you obtain its field position by dividing the number of columns and rows by two.

3. When you subtract the relative coordinate of the field in the town from the absolute coordinate
of the field at the canvas you have the town’s position at canvas.

4. Now you only multiply the field coordinates by the field’s size and you receive the point
coordinates.

569. But it can happen that the position of the town rectangle will be minus.

Yes, it can happen, but it does not matter. The rectangle opposes to minus position only in the con-
structor, not in setting the position.

This means we can close the analysis as completed and you can start programming. The sample so-
lution you will find in the listing 28.4. There are some extra constants, but more or less it’s as you have
just produced it. I would only remind you not to forget to define the toString() method which returns
the text marked as instance signature.

Listing 28.4 The class Town

/***
 * Instance of {@code Town}class is a singleton and represents a town
 * in which we will subsequently add objects.
 * The town can be bigger than the canvas and will place itself so that
 * the current field will be in the center of the canvas
 * where the relative position of the current field in the town can be set.
 */

www.dbooks.org

https://www.dbooks.org/

28. Class Methods and Fields 271

public class Town implements IPaintable
{
 //== CONSTANT CLASS FIELDS ===

 /** Initial number of columns. */
 private static final int COLUMN_COUNT_0 = 10;

 /** Initial number of rows. */
 private static final int ROW_COUNT_0 = 10;

 /** Canvas manager painting the town. */
 private static final CanvasManager CM = CanvasManager.getInstance();

 /** The only instance of the town. */
 private static final Town SINGLETON = new Town(COLUMN_COUNT_0, ROW_COUNT_0);

 //== VARIABLE INSTANCE FIELDS ==

 /** Current size of the canvas manager step. */
 private int module = CM.getStep();

 /** Rectangle representing the town area. */
 private Rectangle ground;

 /** Rectangle highlighting the current field. */
 private Rectangle current;

 /** Current number of the columns in the town. */
 private int columnSize;

 /** Current number of the rows in the town. */
 private int rowSize;

 /** Column of the current field. */
 private int currentColumn;

 /** Row of the current field. */
 private int currentRow;

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Returns the (only) instance of the town.
 *
 * @return Instance of the town
 */
 public static Town getInstance()
 {
 return SINGLETON;
 }

272 Part 2: Basics of Creating OO Programs

 /***
 * Creates a new town with the given number of columns and rows.
 * It is not possible to change the size of the town.
 *
 * @param columnSize Number of columns
 * @param rowSize Number of rows
 */
 private Town(int columnSize, int rowSize)
 {
 this.columnSize = columnSize;
 this.rowSize = rowSize;

 currentColumn = this.columnSize / 2;
 currentRow = this.rowSize / 2;

 ground = new Rectangle(0, 0, 1, 1, NamedColor.SMOKY);
 current = new Rectangle(0, 0, 1, 1, NamedColor.MILKY);

 CM.add(this);
 }

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Moves the active field into another position in the town
 * and automatically moves also the town on the canvas.
 * The current field should be always in the center of the canvas.
 * As of this moment program does not control,
 * if the field will be in the city.
 *
 * @param column The set current field column
 * @param row The set current field row
 */
 public void setCurrentAt(int column, int row)
 {
 currentColumn = column;
 currentRow = row;
 CM.repaint();
 }

 /***
 * Paints the instance by force of the specified painter.
 *
 * @param painter Painter drawing the instance
 */
 @Override
 public void paint(Painter painter)
 {
 module = CM.getStep();
 int canvasColumns = CM.getColumns();
 int canvasRows = CM.getRows();

www.dbooks.org

https://www.dbooks.org/

28. Class Methods and Fields 273

 //The current town field should be in the canvas centre
 int curColumn = canvasColumns / 2;
 int curRow = canvasRows / 2;

 //The town base position has to be set up in that way, so that
 //the current field would be on the canvas in the calculated position
 int townX = (curColumn - currentColumn) * module;
 int townY = (curRow - currentRow) * module;
 ground.setPosition(townX, townY);
 ground.setSize(columnSize*module, rowSize*module);

 ground.paint(painter);

 current.setPosition((2*curColumn - 1) * module / 2,
 (2*curRow - 1) * module / 2);
 current.setSize (2*module);
 current.paint(painter);
 }
}

Exercise
570. Marvelous. I really succeeded to make it out! (To be true, with your little help.)

So until you are in full flow, define the test class for the town (but define it as an independent class, so
that BlueJ would not associate them because then they would take too much place in the class dia-
gram). Think out tests in which you will change positions of current field as well as the canvas size,
and you will check if everything operates according to the assignment.

And I will also ask you to modify all our classes to be able to count their instances. Then adjust
their methods toString() in such way so that they would show also instances’ IDs behind the class
name.

And I will add another little task. Until now all our constructors used the statement this(???) by
which they delegated the responsibility for initializing the instances to their colleague in the way that
the values of parameters which their colleague had extra, were entered directly – e.g. the dou-
ble-parametric light constructor entered directly the yellow color to the tri-parametric constructor in
the third parameter.

And now the task: adjust the class definitions in the way so that you define the corresponding con-
stants for all these “magic” implicit values. Define these constants in the section CONSTANT CLASS FIELDS
and use it instead of direct entering of values. I only remind that according to the convention
only block letters are used in identifiers of static constants and individual words are separated with
underscores – e.g. CHASSIS_DEFAULT_COLOR.

571. How to change the canvas size?

Learn to look into the documentation. You will find it there. This time I will help you: you will use the
method setStepAndSize(int,int,int) which knows to change the step size (and by this also the field’s
size), as well as the number of lines and columns.

274 Part 2: Basics of Creating OO Programs

572. You know, when solving the examples from exercises I noticed that on one hand you explain me not to copy the
code, but on the other hand you give me examples which are mainly about copying the code. Would it be possi-
ble to make it somehow more skillfully and to decrease the code copying?

I cannot agree with you so fully. We have defined a number of similar methods with the same signa-
ture in our four classes (what does it mean a signature was explained in the section Signature versus
Contract on page 112), particularly methods for painting their instance to canvas by the painter and
methods for getting and setting the position and the size, but each of those method had to react to
special terms of the instance of the given class. Even definitions of the toString() method are very
similar but only hardly could be unified (at least with your contemporary knowledge).

It is a little bit different in test classes – we defined several auxiliary methods which were nearly or
fully identical. We will change it in the next lesson. We will try to unify all these methods into one. But
we have already discussed such problem, do you remember? Take it as the second part of the exercise.
But look far back – you have to return to time when we were working in the interactive mode. And
my next hint: revise the design patterns discussed until now.

Review
Let’s review what you have learned in this lesson:

F An instance cannot discover the name of the variable which refers to it.

F Some classes equip their instances by a field which helps to their identification.

F Due to the fact that the value of this field would not change in course of the instance’s life, it is
defined as a constant.

F For initializing the identification field the class remembers the number of created instances and
the value of this field is derived from the order of creating its instance.

F The class remembers the number of created instances in the class field.

F The class fields are declared with the modifier static. Therefore they are called static.

F The order of enumerating individual modifiers is not important, but mostly they are quoted in
the order as follows: public/private static final.

F The class fields are initialized only during installing the class.

F In case of declaring the variable of an object type as constant it means that the reference saved
in it will not change. But the properties of the referred object can change.

F The value of the variable is increased with the statement of the following type:

variable = variable + increase;

F Prior to programming you should always make an analysis of the problem in which you should
decide how the task might be solved.

F In case the class should have the only instance, it is good to use the recommendation from the
design pattern Singleton.

F The constructor is private, so that nobody from outside could create his own instance.

www.dbooks.org

https://www.dbooks.org/

28. Class Methods and Fields 275

F The class defines private static final field containing the reference to the only instance of
the given class – its singleton. This field is optimal to be initialized immediately in its dec-
laration.

F The class offers a public static factory method which returns a reference to its only in-
stance, i.e. it returns a reference saved in the above mentioned field each time.

F This method is usually called getInstance or getXyz, where Xyz is the name of the class
whose instance it returns.

Project:
The resulting form of the project to which we came at the end of this lesson and after completing all exer-
cises is in the 128z_Class_Members project.

276 Part 2: Basics of Creating OO Programs

29 Refactoring of the Code
29. Refactoring of the Code – 000000

29 Refactoring of the Code
What you will learn in this lesson
In this lesson you will learn at first what is refactoring and then you will start adapting test methods
entered in the last lesson as an exercise. You will adapt them so that not the same code would be repeated
in them.

Project:
In this lesson we continue in using the 128z_Class_Members project.

What is Refactoring
573. You have a strange word in the lesson’s title – what does it mean refactoring?

I will not invent anything and I will only cite Martin Fowler, who wrote in his famous book Refactoring
the following: Refactoring is the process of changing a software system in such a way that it does not alter the
external behavior of the code yet improves its internal structure. It is a disciplined way to clean up code that
minimizes the chances of introducing bugs. In essence when you refactor you are improving the design of the
code after it has been written.6

Maybe it is said a little bit sophisticated but you surely understand. Last time you were complain-
ing that our test classes are badly proposed because nearly the same code is repeated in them. I prom-
ised you to arrange the code so that it would be better designed. The function of classes and their
public methods (i.e. tests) will not be touched. In other words: you will do refactoring.

574. It’s interesting that I never heard this word neither from friends who are programming a long time. And I’ve
heard a lot about programming from them.

Maybe it is caused by the fact that refactoring is nearly not presented. Maybe the teachers assume that
they can teach their students programming so well that the students cannot need any refactoring. But
as I have already told: The only one thing what you can rely on in programming is certitude that the
assignment will be soon changed. The old conception does not have to suit to the new assignment and
then you can only refactor the program even when it was designed for the original assignment well.

575. Well, well. So let’s start refactoring our test classes.

Yes, if you remember, I asked you to seek in your memory at the end of the last lesson (answer to the
question 572) and try to suggest how to unify the auxiliary methods in our test classes.

6 FOWLER, Martin. Refactoring. Improving the Design of Existing Code. Addison-Wesley, © 2000. 430 pp.

www.dbooks.org

https://www.dbooks.org/

29. Refactoring of the Code 277

How to Solve Our Problem
576. You are true, I found it. And for change I’ll cite you (I found it on page 102): The design pattern Servant solves

the problem how to add a supplementary functionality to a group of classes without inserting nearly the same
method into each of them and violating by this the principle not to repeat the same or the very similar code.

Bingo! You surely read how to proceed.

577. The pattern Servant advises to define a class whose instances will operate as servants, and an interface, in
which these servants specify their requirements for objects they are willing to control. With which will you start,
with a class or an interface?

Let’s have a look into test classes for their auxiliary methods to clarify which of them are repeated and
therefore it would be good to delegate their function to a servant. Then we will view these methods in
detail to derive how to define the necessary interface.

 The IModular Interface
578. There are three repeating auxiliary methods: auxSmoothlySwapPositions, auxPositionSize and

auxSwapPositionsWithCheck. I cannot do anything else with tested instances only to adjust their size, and
detect and adjust their position. The arrows become translucent and back not translucent.

Well, we will not notice the translucency of arrows at present, only in the second round. Methods for
detecting and adjusting the position are declared by the IMovable interface which means you could de-
fine our interface as its child.

Then you told that you adjust the size of instances. A small correction: due to the fact that all our
instances are determined for location into the canvas square fields, you adjust only a module. Howev-
er, to put only adjustment of module into the interface is not the best variant, because then you
would define them in too one-purpose way. To keep the possibility to use this new interface to other
purposes as well, you should declare also its getting besides setting.

Now you could think out which name you will give them. Due to the fact that you will declare on-
ly the methods for working with the module in it, it should be named IModular. And that’s all. You can
see the resulting definition in the listing 29.1.

Listing 29.1: The IModular interface

/***
 * Instances of interface {@code IChangeable} represents geometrical shapes
 * that can reveal and set their positions and module.
 * The object's module is the basic size from which we derive
 * all the gauges of the object. The module of a shape is mostly defined
 * as the size of its circumscribed square.
 */
public interface IModular extends IMovable
{
 //== CONSTANTS ===
 //== DECLARED METHODS ==

 /***
 * Returns the module – the basic size from which we derive

278 Part 2: Basics of Creating OO Programs

 * all the gauges of the object.
 *
 * @return The object's module
 */
// @Override
 public int getModule();

 /***
 * Returns the module – the basic size from which we derive
 * all the gauges of the object.
 *
 * @param module The set module
 */
// @Override
 public void setModule(int module);

 //== INHERITED METHODS ===
 //== EMBEDDED DATA TYPES ===
}

579. Well, we have completed the interface, so we can get back to the class of servants.

Not fully, to complete this step you have to implement this interface by all classes whose instances
will be controlled. It means you have to draw the implementation arrows from all four classes. At the

Figure 29.1

The project window after including the IModular interface

www.dbooks.org

https://www.dbooks.org/

29. Refactoring of the Code 279

same time you can remove the implementation arrows to the IMovable interface because it is a parent of
IModular and therefore the classes implement them from the grounds of interface inheritance (the pro-
ject may look as in the figure 29.1). And when you will draw and remove the implementation arrows
it would be suitable to open each class and add the annotation @Override before the heads of methods
getModule() and setModule(int).

A Servant Class
580. I have already made the arrangements. Tell me now what’s your advice for the servant class.

I advise you to make a little step aside. Don’t define the class whose instances would act as servants
but define it in such way so that the class itself would be directly the servant. That’s opportunity to
practice definitions of static methods and how to work with them as well as the definition of the utility
class (if you remember it – you can remind it on page 101).

581. What should be the name of the class?

It is a test class according to the Utility class, so I recommend the name TestUtility. Create it, open it
and make the arrangements I told you a while ago (the private constructor, deleting of methods for
working with a fixture). Then open one of our test classes, e.g. the ArrowTest class, copy the auxiliary
methods which are repeated in all classes i.e. methods auxSmoothlySwapPositions(Arrow, Arrow),
auxPositionSize(Arrow) and auxSwapPositionsWithCheck(Arrow, Arrow) into the section OTHER NON-PRIVATE
CLASS METHODS.

582. You have indicated that the class will have no instances and that I'll train the static method definitions. Does it
mean that it will be the library class (utility) and that (according to the section Library/Utility Class on page
101) I should define its constructor as private?

Excellent, I gape. I explained that the library class may not have a public constructor and when you
don’t define any, the compiler creates the default one (and it is public). Thus the only way, how to
make the creation of an object impossible from outside, is to define the constructor as private.

 When you are so excellent, I jump ahead in my explanation for a while and I suggest inserting of
the following statement at the beginning (more precisely between the starting comment and the class
javadoc comment):

import static org.junit.Assert.*;

This statement allows you to use the assertEquals(???) methods that were mentioned in the section
Test of Returning the Proper Value on page 225. (In the chapter Static Import starting on page 360, I will
explain why this statement helps.)

The Method auxSwapPositionsWithCheck
583. It’s inserted, and what now?

Have a look at the three enumerated methods carefully. You discover that the method
auxSwapPositionsWithCheck is only an improved version of the method auxSmoothlySwapPositions, which
means that you could keep the more perfect method and not install the simpler one.

280 Part 2: Basics of Creating OO Programs

584. Should I cancel it?

NO! Don’t be rash. I told you to watch it carefully. You can see that the auxSwapPositionsWithCheck
method calls the first one. In case you would delete the first one, nothing would operate. You have to
take the content of the first method and put it into the second one on the place from which it is called,
more precisely instead of this calling. The new form of the method should correspond with the listing
29.2. I commented the old calling and surrounded the inserted body by comments to make it clearer.

Listing 29.2: The method auxSwapPositionsWithCheck after inserting the body of the called method (the
TestUtility class)

private void auxSwapPositionsWithCheck(Arrow a1, Arrow a2)
{
 Position p1 = a1.getPosition();
 Position p2 = a2.getPosition();

 System.out.println("Start: " + p1 + " <--> " + p2);

 //auxSmoothlySwapPositions(a1, a2); <- We replaced this call
 //The method body, which substitutes the calling, starts here
 Mover mover = new Mover(10);
 Position p1 = a1.getPosition();
 a1.translucent();
 a2.translucent();
 Mover.moveTo(a2.getPosition(), a1);
 Mover.moveTo(p1, a2);
 a1.restoreColor();
 a2.restoreColor();
 //End of the inserted body

 System.out.println("Target: " + a1.getPosition() +
 " <--> " + a2.getPosition() + "\n");

 assertEquals(p1, a2.getPosition());
 assertEquals(p2, a1.getPosition());
}

585. It became a little bit more complicated.

It is only temporary. Look at the code now, how it should be modified. You will surely notice that the
variable p1 is declared and initialized twice. Moreover, in the second declaration it is initialized by the
value, which it already has. The best solution is then to delete the second declaration. When you try to
compile the class now, you should succeed. Only then you can delete the first method.

586. Oh, now you swallowed the hook. It couldn’t be compiled because in the method auxPositionSize(Arrow),
which I copied, the canvas manager is used, and it was not yet declared. When I added its declaration, the
compilation really passed.

As you can see, nobody is perfect. Try now to estimate what should be adjusted.

www.dbooks.org

https://www.dbooks.org/

29. Refactoring of the Code 281

Generalization of a Method

587. Well, it would be a method not only for arrows, but it should enable to enter instances of all our classes.

Correct, and it concerns not only of our module classes. These tests are concentrated only to moving
which means you could use this method for verification of position functions of any movable object.
Replace the type Arrow by the type IMovable in both parameters.

There are two modifications left: you have to replace the modifier private by public one and you
have to add the modifier static so that it became a class method. Otherwise the others will not be able
to use it (you know that the utility class has no instances).

588. I arranged everything but the compilation did not pass. It says:
cannot find symbol – method translucent()

I see, you are not concentrated. You could discover it yourself. The method translucent() is called only
in the arrow test. Other classes do not know this method. I recommend you to comment these state-
ments (reminder: key F8); and comment also the statements calling the method restoreColor() because
this method can be used also only with arrows. Later on I will show you how to modify the ArrowTest
class to utilize the transparency of arrows in its test.

Besides that I would recommend to shift the mover’s declaration up to position declarations and
you can even delete comments with which I marked the borders of inserted code to you. I would say
that then the code might be a bit better arranged.

And now you can replace the calling of auxiliary methods in definitions of our classes by the call-
ing of an auxiliary method of the TestUtility class. Due to the fact that you did not qualify the meth-
od’s calling with the help of this, it is sufficient to only add the TestUtility qualification before the
method’s calling. Compile the arranged classes and examine them.

589. Wow, it’s already running! So now can I delete the auxiliary methods in all classes and call methods of the
same name in the class TestUtility?

I would re-name the method. I would delete the prefix aux from the beginning, because it was put at
this place to differentiate the test methods from the auxiliary ones. Now you can differentiate it easily:
you can call the method from utility class TestUtility. To keep Java conventions, you should change
also the first letter of the remaining identifier to a small one. Then the method could have the name
swapPositionWithCheck.

At the same time you can guide the calling of the original method auxSmoothlySwapPositions to it –
any extra checking might do well.

Adjustment for Arrows

590. Let’s go to delete the auxiliary methods of test classes and adjust their tests in such way, so that they would call
the methods of the TestUtility class instead of those deleted auxiliary methods.

Where do you hurry up? Don’t rush. It’s not so simple. At first you surely remember that you did not
succeed to compile the original version of the method testing the fluent exchange of arrows. Let’s go
and have a look at it (fortunately the critical statements are only commented, which means you know
where they have been).

282 Part 2: Basics of Creating OO Programs

591. Sorry, I forgot. I promise to be concentrated. How should I solve it?

You have to try to do such arrangement that the changes of getting translucent and getting back not
translucent would be executed by the calling method itself. If you would succeed to adjust the code so
that the commented statements would be moved to its beginning and to its end, it’s our triumph be-
cause it means that we can get them out of the method. Those, that need to carry out the commented
statements (arrows in our case) can execute them before and after calling the method and the others
are convenient without their presence in the method.

We have luck by chance. Nothing will happen when you firstly make the arrows translucent, then
you will carry out the whole method body and finally you return the original color to arrows. This
means that making the arrows translucent and not translucent can be extracted from the method and
transferred to the method that will call it.

592. This means we should adjust the test method.

Neither this is an optimal solution because in the test method we call the auxiliary method several
times one after another and we would have to make the pair of exchanged arrows firstly translucent,
then call the method in the utility class and at the end return again to the original color of both arrows.
It means repeating of the code would be back which we don’t like much. We have already solved such
repeating of a code – do you remember how?

593. By chance yes: we defined an auxiliary method which executed the repeating code and we told it in parameters
with whom it should do it.

Correct, marvelous! The test method testSwapPositionsWithCheck in the ArrowTest class calls the auxiliary
method auxSwapPositionsWithCheck for each couple of moved arrows. Let’s use it, we leave the test
method as it is and define all necessary operations in the body of an auxiliary method. We delete its
original body and replace it by a code according to the listing 29.3, i.e. making the arrow translucent,
calling the method in the utility class, which exchanges the positions of arrows and tests, if it returns
the original color to arrows after returning from this method.

We did not avoid the auxiliary method but its part which is identical with other classes, is now
common. In case you would like to change it sometimes in future, you will change it at the only one
place and not in each class separately.

Listing 29.3: The adapted method auxSwapPositionsWithCheck in the ArrowTest class

private void auxSwapPositionsWithCheck (Arrow a1, Arrow a2)
{
 a1.translucent();
 a2.translucent();
 TestUtility.swapPositionsWithCheck (a1, a2);
 a1.restoreColor();
 a2.restoreColor();
}

www.dbooks.org

https://www.dbooks.org/

29. Refactoring of the Code 283

Adaptation of Test Classes

594. So the test method of arrows will not change because it will continue in calling its auxiliary method. And as far
as the others are mentioned, will the calling of their auxiliary method be replaced by calling a method from the
TestUtility class?

Exactly, you should go through the substituted auxiliary method in all adjusted classes once again,
but you will discover that the remained auxiliary methods are already equal and its functionality cor-
responds with the method defined in the TestUtility class. Then, in other class it will be sufficient to
change the method testSmoothlySwapPositions (). E.g. in the CarTest class the adjusted test method will
look out as in the following listing 29.4.

Listing 29.4: The method testSwapPositionsWithCheck() in the CarTest class

public void testSwapPositionsWithCheck()
{
 TestUtility.swapPositionsWithCheck(car0, carXYB);
 TestUtility.swapPositionsWithCheck(carXYB, carXYM);
 TestUtility.swapPositionsWithCheck(carXYM, carXYMB);
}

After you will run these tests and verify they operate you can delete the auxiliary methods (of course
with the exception of the one we have adjusted in the Arrow test class). And you can delete also the
test methods testSmoothlySwapPositions and connected auxiliary methods because we came to an
agreement that they do the same except checking the positions after the shift.

595. At the beginning of adjustments you told me that I should enter the IMovable type to method’s parameters be-
cause the method doesn’t work with a module. We could use it for any movable object. I should remind our his-
torical test classes.

Correctly! The Tests class is not much suitable for this purpose because the smaller shapes would be
hidden under the big ones after the shift, but the fixture in the MultishapeTest class enables an elegant
exchange of positions of both multi-shapes. Therefore you should supplement the test even for
multishapes and you can examine operating of our class even with them.

The testPositionSize Test Method
596. It means we have two thirds behind us. It was a bit more complicated than I expected. But on the other side I

converted one of the tests by its deleting which means the total result is quite good. I hope the conversion of the
third test method will be simpler.

Well, I wouldn’t be so sure. My experience is that the computer and its programs are always ready to
present a surprise. Look through the individual steps of your last adjustments once again and try to
proceed according to them.

284 Part 2: Basics of Creating OO Programs

Generalization of a Copied Method

597. I looked at it. First of all we adjusted the copied method to be public and static and we changed its parameters
so that it would accept any element that would implement the IMovable interface. Finally we renamed
the method. Now I made the same with the testPositionSize method; only instead of IMovable I entered
IModular. And what now?

The beginning is good. And now go through the auxiliary methods in all classes and check if they are
identical or if there is a similar surprise hidden as the arrow transparency was in the previous method.

598. The methods are quite identical.

Identical? Look at them once again and more sharply.

599. They are really identical. They differ only in values of parameters.

Just only in values of parameters. We had to choose a little bit different position in each class accord-
ing to its fixture; the objects of its fixture will move to this position and will there increase and de-
crease. The position is chosen in such way so that the objects would not hinder one to another and
would not shade mutually. Also the modules, to which the objects increase, are different. Only the
module of the decreased object is common.

There are no values that would suit to all. Therefore, each test class should have the possibility to
send its objects to the position that suits to it and to let the objects increase to the size suitable for it.

Adapting the Method to Different Requirements

600. I admit I did not think of it. How to solve it?

Basically there are two possibilities. The first one is to add parameters to the method in which you
pass over the required position as well as the module. I dislike this way because the test class would
have to pass over the same values to the called method during each calling (as you might notice I have
certain aversion against repeating). We could define these values as constants so that it would be pos-
sible to change them in bulk at one place if need be, but I would like to show you also another possible
procedure.

In case we know we will call the method several times for the identical values of the target position
of the big module as well as the small one it can be better to define another method in the utility class,
to which we pass over the required values before the series of calling, and this method will save them
into fields established for this purpose. Then the called method will hand over the needed values from
them. This solution seems to me more suitable and therefore I recommend you to go this way.

601. Should we define another method in the TestUtility class?

Yes, and I would call it maybe testPositionModules and it would have three parameters: the required
target position, the module for increasing and the module for decreasing. I know that the decreasing
module is the same for all tests but I take into account that it might change in time. I suppose that I do
not have to quote the source code of this method.

www.dbooks.org

https://www.dbooks.org/

29. Refactoring of the Code 285

602. I know you will not like it but the method with several parameters seems to me good.

Why not – we can define both of them. The parameterless method can call the parametric one and it
can find the values of parameters in fields. You use the parametric method in case you would like to
call the test method only once and you use the parameterless method in case you would like to call it
more times one after the other with the same parameters. Then you have to remember calling the
method testPositionModules(Position,int,int) before the given series and adjust the necessary parame-
ters in it.

After you will adjust the test methods within the exercising, try both variants.

603. I tried to program both versions of the methods but I didn’t succeed to compile them. The compiler says that
non-static variable Position cannot be referenced from a static context

Because you forgot to declare the position field as static. Go through the whole source code once
more and check that all fields and methods are declared as static (nothing else has a meaning in the
utility class). Then the compilation should be completed. Have a look at the listing 29.5, in which the
pattern solution is quoted.

Listing 29.5: The TestUtility class

import static org.junit.Assert.*;

/***
 * Library class {@code TestUtility} contains a set of auxiliary methods
 * used by test classes of objects implementing the {@link IModular} interface.
 */
public class TestUtility
{
 //== CONSTANT CLASS FIELDS ===

 private static final CanvasManager CM = CanvasManager.getInstance();

 //== VARIABLE CLASS FIELDS ===

 /** Position, where the tested object will move
 * in the {@link #positionSize(IModular)} method. */
 private static Position position;

 /** Size of the smaller of the two modules,
 * which are going to be set up to object
 * that is tested in method {@link #positionSize(IModular)}. */
 private static int smallModule;

 /** Size of the bigger of the two modules,
 * which are going to be set up to object
 * that is tested in method {@link #positionSize(IModular)}. */
 private static int bigModule;

 //== CLASS GETTERS AND SETTERS ===

286 Part 2: Basics of Creating OO Programs

 /***
 * Tests the changes of position and sizes of entered object;
 * parameters of test has to be set by method in advance
 *
 * @param position Position where the tested object will move
 * @param small Small sized module
 * @param big Big sized module
 */
 public static void setPositionsModules(Position position,
 int small, int big)
 {
 TestUtility.position = position;
 TestUtility.smallModule = small;
 TestUtility.bigModule = big;
 }

 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 /***
 * Tests the changes of position and sizes of entered object;
 * parameters of the test has to be set by the method in advance.
 *
 * @param object Tested object
 */
 public static void positionSize(IModular object)
 {
 positionSize(object, position, smallModule, bigModule);
 }

 /***
 * Tries the changes of position and size of entered object with entered
 * parameters.
 *
 * @param object Tested object
 * @param position Position where the tested object will move
 * @param small Small sized module
 * @param big Big sized module
 */
 public static void positionSize(IModular object,
 Position position, int small, int big)
 {
 final int ms = 500;
 object.setPosition(position.x, position.y); IO.pause(ms);
 object.setModule(big); IO.pause(ms);
 object.setModule(small); IO.pause(ms);
 CM.remove(object); IO.pause(ms);
 }

 /***
 * Will exchange positions of the entered objects and will check
 * if the objects really exchanged their positions.

www.dbooks.org

https://www.dbooks.org/

29. Refactoring of the Code 287

 *
 * @param o1 1st object
 * @param o2 2nd object
 */
 public static void swapPositionsWithCheck(IMovable o1, IMovable o2)
 {
 Mover mover = new Mover(10);
 Position p1 = o1.getPosition();
 Position p2 = o2.getPosition();

 System.out.println("Initial: " + p1 + " <--> " + p2);

 mover.moveTo(p2, o1);
 mover.moveTo(p1, o2);

 System.out.println("Target: " + o1.getPosition() +
 " <--> " + o2.getPosition() + "\n");

 assertEquals(p1, o2.getPosition());
 assertEquals(p2, o1.getPosition());
 }

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /** Private constructor blocks the creation of instances. */
 private TestUtility(String name) {}
}

Exercise
604. This means that we are going to cancel the auxiliary methods from test classes and adjust their tests. And thus

we could finish today.

I agree and I would say that all tasks for exercise were quoted during the explanation. I only remind
that your assignment is to adjust the tests in all four test classes in such way so that they would use
the TestUtility class methods. Don’t forget to call the method testPositionModules(Position,int,int) at
the beginning.

Add the new test into the MultishapeTest class in the first part and try to think out an analogous test
for objects in fixture of the Tests class.

288 Part 2: Basics of Creating OO Programs

Review
Let’s review what you have learned in this lesson:

F Refactoring is accomplishing of such changes which improve the program design but do not in-
fluence its operating.

F When unifying several similar methods, it is good to find out if it is possible to “push” those
parts of the code, in which the individual versions differentiate, at the edge of the code. Then
there is no problem to entrust the calling method to carry them out.

F In case several very similar methods differ in only values used in the code they can be unified
by adding these values as parameters.

F The second way of solving the previous problem insists in the definition of fields into which
the calling method firstly saves the required values by calling a special adjusting method.
Subsequently the called method can hand over the necessary values of these fields.

F When defining the class fields and methods the keyword static cannot be forgotten.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 129z_Refactoring project.

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 289

30 Static Constructor – Class Constructor
30. Static Constructor – Class Constructor – 000000

30 Static Constructor – Class Constructor
What you will learn in this lesson
This lesson will be probably the most difficult from the whole book for somebody. You will learn in details
how the class can get into the memory and how it is initialized there. After that you will see in details the
activities of constructors. During it you will become acquainted with static as well as instance initializa-
tion blocks and you will see where and how you can use them.

Project:
In this lesson we continue in using the 129z_Refactoring project.

Note:
This lesson as well as the next one may seem to some people too detailed. The truth is that even
a number of more advanced textbooks do not explain the topic of constructing the objects and
classes to such depth. However, my students persuaded me about their endless invention in us-
ing not yet explained constructions which logically lead to arising apparently not comprehensi-
ble mistakes. The deeper knowledge of processing the construction of objects and classes ena-
bles to explain many of them naturally.

The second reason for such detailed explanation is that one of the best ways of learning is a
study of foreign programs. A number of these programs (even the simpler ones) use the
knowledge of principles explained in this lesson and students who work with them have some-
times problems with understanding their function or with the author’s aim.

In case any reader will find out the lesson too detailed he/she can skip it over and get back to
it after he/she will think he/she may find an explanation of strange acting of certain program.
Anyway, I would recommend to everybody not to skip over the whole lesson but read the sec-
tions started with What Should Be Remembered at page 302. These sections summarize how to act.
The preceding explanation shows what could happen if you would not act like that.

Class Constructor – Static Constructor
605. In last two lessons we were playing with static fields and methods. I tried to add a modifier static to a con-

structor, but it was not accepted. I think the class should also have its constructor, because you told that the
class is also an object.

Let’s admit that the class is a little bit (well, better say a lot) non-standard and in a number of ways.
There are different rules valid for it than for the rest of the world. Primarily (at least in Java and simi-
lar languages) the classes do not act as instances of some common parent class that would define
which fields and methods they have. Each class plays for itself and has its own set of fields and
methods.

However, in a number of other aspects it does not differ from current objects. Even the class has its
constructor. I’ve told that the constructor of instances has (in Java) the internal name <init>. The con-

290 Part 2: Basics of Creating OO Programs

structor of the class has (in Java) the internal name <clinit> (surely you will deduce that it’s a shortcut
from class init) and that it is created by a compiler by putting together all initializations of static fields
and static initializers.

606. Static initializers? What is it?

The static initializer (often called only static block or static initializer) arises when you write the key-
word static followed by braces – a block – at the place where you can declare a field or a method. You
can write a code into this block which should be executed after the class will be loaded into the
memory and its class-object will be constructed.

607. You are good! You explain one term using two others, not yet explained. What is the class-object and what does
it mean that the class is loaded into the memory? I thought it’s there all the time.

No, it’s not. Java counts with creating the class-object, i.e. an object representing the given class in the
program (as any object), only in a moment when somebody will need it. In other words, until anybody
does not need the given class, the class does not hinder in the memory.

In the moment when somebody needs a class, a special object – the class loader (an instance of the
ClassLoader class) – is called which returns the class-object of the given class. In case the class loader
discovers that the class-object of the given class does not yet exist, it loads the class into the memory,
i.e. it finds its class file, loads it and creates the needed class-object on the basis of information saved in
it. At this occasion the class loader calls the static constructor of the given class and it initializes the
class.

During this initialization the individual declarations of static fields as well as static initializers are
executed in the order in which they are placed in the source code. Then the created class-object is
given over to the applicant.

608. You forgot to tell that the not initialized are zeroed.

They are not zeroed in the static constructor (if you don’t write such initialization). They are already
zeroed a long time ago by the virtual machine. You know that the virtual machine allocates the
memory for an object and it zeroes it before giving it over. Therefore, when starting the initializing of
a class the entire needed memory is already zeroed.

609. Is it possible to verify that the class loading operates exactly as you told?

Of course, and we will do it in two parts: in this lesson we will consider the class loading and con-
struction of its instances from outside, in the next lesson we will have a look from inside. I prepared
an experimental class CCI for this research work (its name is a shortage of Construction of Classes and
Instances) – you can see its source code in the listing 30.1 and you can find it in the subfolder
Extension_30. The class contains a code for experiments on loading and constructing of a class as well
as for experiments on constructing its instances. For now we will deal with only a construction of a
class, i.e. we will take into account only fields, methods and initializers marked with the modifier
static.

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 291

Listing 30.1: The CCI class

/***
 * Class {@code CCI} and its instances serve for demonstrations and experiments
 * when explaining the
 * implementing and initialization of classes and construction of its instances.
 */
public class CCI
{
 static // Opening static initializer
 {/*##_1_##*/
 String me = "\nSTART of the class constructor (= static initializer)" +
 " of the CCI class";
 IO.inform(me);
 printStaticFields(me);
 }

 //Opening instance initializer
 {/*##_2_##*/
 String me = "\nSTART of the initialization of the creating " +
 "CCI instance\n" + this;
 IO.inform(me + " of a new CCI instance\n\nSTART");
 System.out.println("\n-------------------------------------" +
 "\n" + me + " - START for " + this);
 }

 //== CONSTANT CLASS FIELDS ===

 static //Before declaration of constants
 {/*##_3_##*/
 //Use of undeclared constant is a syntax error,
 //even if the constant value was assigned in the compile-time
 //System.out.println("COMPILED: " + COMPILED);

 //Nevertheless, the hidden use works as can be seen in the block ##_1_##
 }

 /** Constant initialized in the compile-time -
 * if the value of a constant is known in the compile-time.
 * compiler initializes it during compilation. */
 private static final String COMPILED = "COMPILED";

 /** Constant initialized during the class loading. */
 public static final Class<?> CLASS_OBJECT = CCI.class;

 /** Constant initialized in a static initializer. */
 public static final String INITIALIZED;

 static //After declaration of constants
 {/*##_4_##*/
 //The not initialized constant can't still be used as well
 //System.out.println("INITIALIZED: " + INITIALIZED);

292 Part 2: Basics of Creating OO Programs

 INITIALIZED = CLASS_OBJECT.getName();

 //After the initialization constants can be used
 System.out.println("\nxxx Print after the initialization" +
 " of class constants:" +
 "\n - COMPILED: " + COMPILED +
 "\n - CLASS_OBJECT: " + CLASS_OBJECT +
 "\n - INITIALIZED: " + INITIALIZED);
 }

 //Static (= class) field can also refer to an instance of the class
 //But it's needed to initialize such field after all static fields,
 //which are used during its initialization.
 //The following declaration has problems with constant field LOADED
 //as well as with variable field countCreated.
 //Problems are solved by shift of this field initialization
 //behind all fields used in its initialization.
 //public static final CCI ME = new CCI();

 //== VARIABLE CLASS FIELDS ===

 static //Before declaration of instance variables
 {/*##_5_##*/
 //Undeclared variable may not be used
 //System.out.println("variable: " + variable);
 }

 private static String variable;
 private static int countCreated = 0;

 static //After declaration of variables
 {/*##_6_##*/
 //Variable can be also used if uninitialized,
 //because the compiler is not able to recognize it
 System.out.println("\nxxx Print after declaration of class variables:" +
 "\n - variable: " + variable);
 variable = "VARIABLE"; //As of this moment variable is reinitialized
 }

 //== STATIC INITIALIZER (CLASS CONSTRUCTOR) ================================
 //== CONSTANT INSTANCE FIELDS ==

 private final int ID;
 //Instance ID has to be counted at first
 {/*##_7_##*/
 countCreated = countCreated + 1; //Increase of static field
 ID = countCreated; //and save its current value
 //The hidden parameter this can be used in the initializers ...
 System.out.println("ID field initialized: " + this);
 }

 private final CCI THIS = this; //... as well as in field initialization

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 293

 //In the following initialization I ask the instance for its class-object
 String name = "[" + this.getClass() + "]"; //Temporary name

 //== VARIABLE INSTANCE FIELDS ==

 //In the initialization of the instance fields we can use only
 //already declared instance fields and already initialized constants.
 //On the other side all class fields can be used,
 //because they were already defined during the class loading.
 private String time = LOADED;

 String source;

 //== CLASS GETTERS AND SETTERS ===
 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 /***
 * Prints all static attributes of class to standard output.
 * The compiler does not recognize, if this method is used
 * before the used fields are declared and/or initialized.
 *
 * @param title Header of the particular prints
 */
 public static void printStaticFields(String title)
 {
 System.out.println("\n" + title +
 "\n - COMPILED = " + COMPILED +
 "\n - CLASS_OBJECT = " + CLASS_OBJECT +
 "\n - variable = " + variable +
 "\n - countCreated = " + countCreated +
 "\n - LOADED = " + LOADED
);
 }

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Parameterless constructor for test of initialization.
 */
 public CCI()
 {
 String text = " of the body of the parameterless constructor of ";
 System.out.println("Beginning" + text + this);
 source = "Parametereless";
 System.out.println("End" + text + this);
 }

294 Part 2: Basics of Creating OO Programs

 /***
 * One-parametric constructor for test of responsibility delegation.
 *
 * @param name Name of the generated instance
 */
 public CCI(String name)
 {
// //Before the delegation of the responsibility there can be nothing
// System.out.println("One parametric for " + this);
 this(name, prepare("One-parametric"));
 System.out.println("END parameter one");
 }

 /***
 * Constructor with 2 parameters for test of responsibility delegation.
 *
 * @param name Name of the generated instance
 * @param source Characteristics of applicant
 */
 public CCI(String name, String source)
 {
 this(name, prepare("2-parametric"), source);
 String local = "2-parameters";
 System.out.println("END " + local);
 }

 /***
 * Constructor with 3 parameters for testing of responsibility delegation.
 *
 * @param name Name of the generated instance
 * @param source Characteristics of applicant
 * @param presource Second part of attribute value {@code source}
 */
 public CCI(String name, String source, String presource)
 {
 String text = " of the body of the 3-parametric constructor";
 System.out.println("Beginning" + text + this +
 "\n Title=" + name + ", Source=" + source +
 ", Presource=" + presource);
 String unused;
 String underlinning;
 this.name = name;
 String sum = "«" + presource + " -> " + source + "»";
 this.source = sum;
 String local = "END" + text + "\n this=";
 underlinning = "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~";
 System.out.println(local + this + underlinning);
 }

 //== ABSTRACT METHODS ==
 //== INSTANCE GETTERS AND SETTERS ==

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 295

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Return the object's text signature.
 *
 * @return The object's text signature
 */
 @Override
 public String toString()
 {
 return "CCI_" + ID + "(name=" + name + ", source=" + source +
 ", ##time=" + time + ")";
 }

 //== PRIVATE AND AUXILIARY CLASS METHODS ===================================

 /***
 * Auxiliary static method serving for registration of the moment,
 * in which the parameters are evaluated.
 *
 * @param text Header before particular prints
 */
 private static String prepare(String text)
 {
 System.out.println(" === Preparing: " + text);
 return text;
 }

 //== PRIVATE AND AUXILIARY INSTANCE METHODS ================================
 //== MEMBER DATA TYPES ===
 //== TESTING CLASSES AND METHODS ===

 {/*##_8_##*/
 String text = "END of the initialization part of\n " + this;
 System.out.println(text + "\n----------------------------");
 IO.inform(text);
 }

 //Static attribute declared as far as at the end of the body
 private static final String LOADED = "" + new java.util.Date();
 static
 {/*##_9_##*/
 String me = "\nEND of the class constructor (= static initializer)" +
 " of the CCI class";
 printStaticFields(me);
 System.out.println("=============================\n");
 IO.inform(me);
 }
}

296 Part 2: Basics of Creating OO Programs

610. Wow, it’s a nice podge!

It only seems to you here in the book. In fact you have programmed a far longer one – e.g. the class
TrafficLight. Moreover, the CCI class does not have so complicated code as you would guess at the first
sight, because a significant part of it consists of comments which are part of the explanation.

611. Well, so tell me what I will find out of it.

We will go through step by step. But now I would like to draw your attention to static initialization
blocks at the beginning and at the end of the CCI class. The introductory block opens the dialog an-
nouncing that the constructor of the given class is opening, and after confirmation of this window it
writes a message on starting the work of class constructor to the standard output. On the contrary, the
closing static block writes there firstly a message on closing the work of class constructor and then
opens the dialog, in which it announces the end of the class constructor work.

Inside the class body there are further static initializers serving for demonstration of some other
properties and possibilities. They don’t open any dialogs, but they write down a message to the
standard output, but only in certain cases. As I have told you, we will go through all of them and ex-
plain them.

Besides static initializers you can find also instance initializers in the class – those are blocks with-
out the modifier static before the braces. We will speak about them in the second part of the lesson.

To be precise which part of the program we are just now debating, I inserted a comment into all in-
itializers behind their opening braces. This comment is in the form /*## ? ##*/, where the middle
question mark represents the ordinal of the block. The comment form utilizes the advantage that the
authors of BlueJ program use comments starting with /*# for stressing certain information and use a
different color for it. For better orientation I shaded these comments in the listing 30.1. Therefore you
can find them much better in the source code.

612. What is the strange declaration after the third initializer? Why is the text <?> in the following statement?
public static final Class<?> CLASS_OBJECT = CCI.class;

The Class class is declared as a generic type (we will discuss them in the section Generic Types and Type
Parameters on page 412). The text <?> is not necessary, however if it would not be there, the compiler
will send the following warning:

found raw type java.lang.Class
 missing type arguments for generic class java.lang.Class<T>

Program with the <?> is more pure and does not force any warnings.

613. For what are the static initializers used in practice?

Mostly they are used in situations when some class fields cannot be initialized directly in a declaration
because it is necessary to carry out some more complex code within their initialization. The existence
of static initializers is important above all for class constants which due to certain reason cannot be ini-
tialized immediately in the declaration. For class constants as well as for constants of instances there is
the same valid rule: you can initialize them only in the declaration or in the appropriate constructor –
the class constants in the class constructor, i.e. in its static initializer.

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 297

The second reason for using the static initializers is the need to analyze in detailed way the running
of the class during its loading into memory. Further static initializers were inserted into the CCI class
just from this reason. Therefore they are more frequent, because they enable us to follow the course of
initialization. Using more than one static initialization blocks in other than test cases is considered as
inappropriate. That’s the reason why these blocks should be deleted or at least commented after
revealing and removing the error (which is the reason why they were defined).

The Call class
614. You say that thanks to static initializers I can follow how the class is loaded into memory. It’s interesting. Start

showing.

Besides the CCI class you can find also the Call class (see listing 30.2) in the subfolder of the project
folder. There are also four static methods in it (they are static so that we should not produce instances
due to calling these methods):

F The method nothingNeeded() only opens the dialog in which it announces its invocation. I in-
cluded it only so that you could see that as far as we will work with those parts of the
program which do not use the CCI class; it will not be installed and initialized.

F The method classNeeded() also opens the dialog announcing its invocation, but then it requires
the CCI class for its field CLASS_OBJECT whose signature is depicted in the opened dialog. It is a
method which arranges that if the class is not yet installed into memory, it will be installed
after calling this method.

F The introductory dialog can be open also by the instanceNeeded() method. It requires the CCI
class for a new instance whose signature is shown in an opened dialog. The instance is here to
examine the class behavior during creating the instance. If the class is not yet loaded into the
memory, it is loaded during requiring an instance, and only then it starts to create instances.
In case it is already loaded, only instances are created.

F The last method testInvocation() will be used in the next lesson. It calls the one-parametric con-
structor of the CCI class and we know that it delegates the responsibility for initializing to its col-
league. We will see how the succession of mutual calling of methods in the program can be
observed in it.

Besides that the class contains also the private method which accompanies each opening of a dialog
with the framed text printed to the standard output so that once more we could remind particular
steps after running the whole action.

Listing 30.2: The Call class with deleted line comments quoting not used sections

/***
 * Library class {@code Call} serves for demonstration of behavior
 * of class KTI when used for the first time and afterwards and for
 * demonstration of behavior of its constructors.
 */
public class Call
{

298 Part 2: Basics of Creating OO Programs

 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 /***
 * Method does not use class CCI
 */
 public static void nothingNeeded()
 {
 window("nothingNeeded", "I was executed\nand I need nothing.");
 }

 /***
 * Method uses only class CCI, not its instances.
 */
 public static void classNeeded()
 {
 window("classNeeded", "I require a class-object.");
 Object clso = CCI.CLASS_OBJECT;
 window("classNeeded", "I recieved an object\n\n" + clso);
 }

 /***
 * Method needs instance of class CCI.
 */
 public static void instanceNeeded()
 {
 window("instanceNeeded", "I require an instance.");
 Object inst = new CCI();
 window("instanceNeeded", "I recieved an instance\n\n" + inst);
 }

 /***
 * Method calls one-parametric constructor of CCI and knows,
 * that it will call the 2-parametric one,
 * that will call the 3-parametric one.
 * Method serves for explanation and demonstration of work with a debugger.
 */
 public static void testInvocation()
 {
 CCI inst = new CCI("Experiment");
 System.out.println("\n=================================" +
 "\nCreated instance: " + inst +
 "\n=================================");
 }

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /** Library class without accessible constructor. */
 private Call() {}

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 299

 //== PRIVATE AND AUXILIARY CLASS METHODS ===================================

 /***
 * Prints the given text to standard output and afterwards also in a dialog.
 *
 * @param method Calling method name
 * @param text The additional text
 */
 private static void window(String method, String text)
 {
 System.out.println("\nvvvvvvvvvvvvvvvvvvvvv" +
 "\nMethod: " + method + " - " + text +
 "\n^^^^^^^^^^^^^^^^^^^^^");
 IO.inform(text);
 }
}

Loading and Initializing of a Class
615. I’m afraid a bit if I will not be lost in those printed texts but I’m going to try it. What should I do?

Let both classes compile. You can verify that it’s sufficient to ask for compilation of the Call class, be-
cause it uses the CCI class and therefore it is dependent on it and thus the compilation of the Call class
force the compilation of the CCI class before it. With regards that it is dependent on the CCI class (it
calls its method), BlueJ can arrange firstly to compile CCI which means that both of them will be
compiled.

Now you can start experimenting. Today’s experiments will all run in an interactive mode. We will
send messages to the Call class and watch the program’s answers in dialogs and in the terminal win-
dow. Therefore I recommend you to open the terminal window (you should remember the command
View ® Terminal or CTRL+T hotkey) and set the Clear screen at method call and Unlimited buffering in its
Option menu.

616. I am ready, let’s start.

Reset the virtual machine before the beginning of the experiment. Then send the nothingNeeded() mes-
sage to the Call class. A message on standard output is written and the dialog created by the invoked
method is opened. And it’s all. The situation will be the same not depending on how many time you
will send this message, i.e. how many times you invoke the corresponding method.

617. You are true, it’s boring. Give me something more interesting.

Send the classNeeded() message to the Call class. Even now the called method announces its invocation
at the standard output and in the dialog, but after your confirmation the dialog appears announcing
the entry into the constructor of the CCI class, and the second one appears announcing its completing.
Only then the classNeeded() method receives what it asked for, and opens the dialog with the
description of the received class-object.

The course of further callings of this method is then briefer and will open only dialogs opened by
the given method and the relevant listing on standard output. The CCI class is already installed and
initialized so that its constructor is not started.

300 Part 2: Basics of Creating OO Programs

As you have surely noticed, until the CCI class was not needed, its initializing was not started.
Maybe you will believe me that it was not in the memory at that time. It was loaded and initialized
(i.e. its static constructor was activated) only after it was needed – in our case when the classNeeded()
method hungered for its public field or when the instanceNeeded() method needed to call its construc-
tor. It would be similar when you would like to call its public static method. The class is loaded and
initialized during the first addressing and then it only provides for what it was asked.

Try to reset the virtual machine. By this you clear the memory again and you can try once more
that classes will be installed after the first addressing.

Details of Class Initializing

618. It’s as you say. After each resetting the class is initialized only in its first using.

And now I would like to draw your attention to the code of class constructor itself. Let’s go through
its source code and explain what you should remember during defining your own classes. For now we
have seen the first and the last static initializer which pointed us at its activation by opening a dialog.
Come to have a further look– at a block /*##_3_##*/. I want to draw your attention on the fact that us-
ing the not yet declared field is a syntactic error. It’s valid for constants as well as for variable fields.

The warning comment is followed by a commented statement which strives to print a value of
COMPILED constant. Despite the fact that the compiler assigned this value already during compilation,
which means it exists and has its value but you cannot use it before its declaration. When you delete
the comment and you will try to compile the class, the compiler gives the following announcement

illegal forward reference

The compiler says by this message that you use not allowed forward reference.

619. Which forward reference?

As I have already told, during class initialization its code is passed through from the beginning up to
the end, and in initializers as well as in field initializations you can use only the fields which were al-
ready declared and in case of constants also initialized. As soon as you would like to use a field which
only will be declared, you refer ahead to something what will be declared and that’s why this
reference is named as forward.

620. How is it possible that in case of methods it does not matter when I use a method which only will be defined,
whilst for fields it does matter?

Because during field initialization each action has to be carried out immediately (you need to prepare
the data that should be stored in the initialized field) whilst the methods can be prepared prior and
aside. In the moment when the method is called the compiler has already everything prepared and
knows where the method can be found independently if it was defined prior or after the method
which calls this method.

621. I return to our program. How do you know that the given constant already exists and has an assigned value,
when the compiler says that it’s not true?

Because I played a trick on it. When you look into the block /*##_1_##*/, you discover that besides call-
ing the method IO.inform(Object) it calls also the method printStaticFields(String). It prints values of

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 301

all fields regardless if they were declared and initialized. Look at the standard output at the first print
after entering into the static constructor – and you will find the following:

START of the class constructor (= static initializer) of the CCI class
 - COMPILED = COMPILED
 - CLASS_OBJECT = null
 - variable = null
 - countCreated = 0
 - LOADED = null

As you can see, the constant COMPILED already has its value whilst other fields are kept in the initial zero
state.

622. How is it possible that the field COMPILED already has initial value assigned and the others not?

Because it is a constant evaluated in the compile-time. In its declaration after the block /*##_3_##*/ the
expression specifying the initial value is so clear that the compiler was able to evaluate it and compile
this field a little bit different – not as a standard field, but as a different name for the value "COMPILED".

We say that the assigned value is specified as a constant compile-time expression, i.e. an expression,
which can be evaluated in compile-time. As the compiler discovers such expression, it doesn’t compile
it, but evaluate it and puts the result into the compiled program instead of the compiled original
expression.

Constants initialized by a constant compile-time expression (we will name them compile-time
constats) have a special position. Due to the fact that those are only different names for fixed values
(we could say only declaration, no implementation), they may be declared also in an interface. We shall
speak about them in course of further explanation. Now I would like to skip it. Take this constant
similarly as all others and you surely will not make any mistake.

623. Well. How is it possible that the method did not print the values of fields, which – as the compiler said – do not
yet exist?

Due to the fact that the place for these fields already exists – it was prepared by the virtual machine
when reserving the place for future object. The compiler took into account these fields during compil-
ing the method, which means the method works with the place in memory, where the given fields will
be located after they will officially exist.

If I would like to be ironic I would say that the forward reference is used so clumsily in a com-
mented statement that the compiler did notice it and therefore it announced an error during uncom-
menting. The fact I used the same fields in the method which I called from the static initializer was
outside its view. The compiler doesn’t reveal the inappropriate using of fields there, because other-
wise it should analyze each method called during initialization including methods called from these
methods. This would uselessly complicate the compiler.

624. So should I move using the fields to methods?

No, NO, NO! The fact, that I showed you that such premature usage of fields is not revealed by a
compiler, does not mean that it is correct. Our method only printed signatures of fields, and the fact,
that some of them were not initialized, only led to a null in the printed listing. But, if the method
should have certain critical action as task, the whole program might finish with a crash. Take it like I

302 Part 2: Basics of Creating OO Programs

wanted to draw your attention to some of the popular mistakes which the beginners make from time
to time and then they explain that there is an error in the compiler.

Look at the standard output to where the method printStaticFields(String) prints the texts during
its operation. You will see how the values of some fields declared as constants are currently changing.
This can have really fatal consequences for the program.

When you will read the source text further you can find another notice to various principles which
you should keep during declaring and initializing of static fields. As I showed you at the example a
while ago, you can avoid majority of them with a bit of effort but you are asking for troubles which
are not worthy when you try to achieve “victory over the compiler”.

What Should Be Remembered
625. Well, I shall try to keep them. But could you summarize them not to have them spread in a source code?

Well, let’s do a small summarization. However, I will not differ between what you have to do because
the compiler forces on you, and what you should do because different way goes to hell.

F Begin the field declarations with declaring the static constants. Declare the variable fields only
after it. I recommend using sections in the standard class pattern.

F Initialize individual constants in declarations only with direct assigning of the value of reasona-
bly simple expressions (it’s up to you what you understand as “reasonably”).

F You can use only previously declared and initialized fields in initializing expressions. And be
careful to use the variable fields after their initialization. The compiler does not analyze when
you initialize the variable field and when you only assign another value to it. Therefore, it
allows you to use the variable field also before its factual initialization (see block /*##_6_##*/).

F In case you need to gain the assigned value by some more complicated way, transfer its calcula-
tion to a static initializer.

F If you declare and initialize a static field which is an instance of a given class (e.g. see the source
code of the Town class and the definition of singletons generally), please, realize that you activate
a constructor in such moment when the class is not yet fully initialized. Therefore you have to
keep an eye open so that everything what you need for constructing the instance would be
already prepared.

In case you would like to examine how such creating fields is operating, uncomment the
declaration of ME field behind the block /*##_4_##*/. Then, when the class will be initialized, you
will see how the constructor of their instances is called, and the initialization of the class is
completed only after it.

F Insert the static initializer after all declarations of static fields and before declaration of instance
fields. A section introduced by a line comment is reserved for the static initializer in the stand-
ard class pattern. I recommend you to put the possible static initializer just here in case your
class will need it.

F You should use at most one static initializer for initializing the class (the best variant is when
you do not need any block, but sometimes you cannot avoid to it).

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 303

F Take care about the fact that the methods you are calling from the static initializer should use
only those static fields that are already initialized.

The rule of the only one permissible static initializer has one exception, which is the situation when
you insert the static initializer into the program only so that it would help you in analyzing when ex-
actly the class is initialized and how it behaves. (In the CCI class the introductory as well as the closing
block might serve for this purpose). Faults caused by unexpected (i.e. premature) or bad initialization
are usually very treacherous and can be hardly detected. The static initializer is an invaluable tool in
searching for them.

In case you use such auxiliary initializers in your program, don’t forget to delete them after the
completed analyze or (if you expect you might use them soon again) at least comment them. Don’t ad-
just anything in these auxiliary blocks, only inform – e.g. by using prints to standard output.

Procedure of Instance Creating
626. Hopefully I mastered using the static initializers. And now show me please what you have prepared for

instances.

Before I start showing you how the construction of instances can be analyzed, I would like to review
what you know about constructing the instances.

Details on Constructing an Object Once Again

627. You said that constructing of an object proceeds in two phases: in the first phase the operator new allocates the
memory, i.e. reserves it, cancels it out and assigns it to the given object; in the second phase the constructor of
the given object initializes this memory.

Good. I would only remind that this initialization, i.e. the constructor’s work runs also in several
phases (I admit I have only outlined them for now):

1. The constructor parameters are evaluated (by the calling the program).
2. If the constructor’s body starts with the calling this(???) delegating the responsibility for initial-

ization to a colleague, the constructor prepares all parameters for the colleague and gives over
the control to this colleague. It starts again with the item 2, i.e. by determining if it starts or not
by calling this(???). After the colleague completes its activity, controlling returns into this
constructor and item 3 follows.

When the constructor’s body does not starts with calling this(???), the constructor goes
through all fields and instance initializers (i.e. those without the modifier static) in the order in
which they are declared in the source code. The constructor calculates the initializing expression
of fields which are initialized already in the declaration and assigns the resulting value to them.

3. It carries out the remaining statements of the body.
4. After completing the body, the constructor passes the parameter this to an applicant for

creating the instance as its return value.

304 Part 2: Basics of Creating OO Programs

628. I thought that the constructor makes only what is in its body. From what you have said it looks now like it takes
care also about all declarations in the rest of the file.

The constructor, as each method, makes really only the statements in its body. But its real body is in
fact very often bigger than that quoted in the code. When you have a look into the class file what the
compiler has created from your program, you discover that at the constructors which do not begin
with this(???) it inserted all initializations and bodies of instance initializers, found in the rest of the
class body, in front of what you wrote in the constructor body.

And that is another reason why to use the statement this(???). The compiler copies the initializing
part into all constructors which do not delegate their responsibility to anybody. As many of such
constructors are in the class, as many times the initializing code is copied.

629. Aha, it didn’t cross my mind. Probably that’s why the constructor’s parameters are evaluated firstly and only
then the fields are initialized which are already initialized in declaration. When you say that initializations in
declarations are in fact parts of the constructor’s body, then I could use their parameters in them, couldn’t I?

It’s not possible. The compiler had to check if the used parameters have the same name in all construc-
tors, into which the initializing code will be copied. And this might be too much.

The quoted condition (i.e. having the same name in all constructors) is fulfilled by only one param-
eter, and it is the hidden parameter this. You can use it in initialization of fields and instance blocks.

This is important e.g. for using the value of certain field in another one. For example if you say the
following in your program:

int a = 5;
int b = a;

then you know, that the compiler converts your program into the following form

int a = 5;
int b = this.a;

Nothing will happen when you minimize its work and when you use the parameter this explicitly.
During initialization of instance fields the same is valid also for the static ones: you can use only

fields which are already declared and initialized. And again you have to be careful for calling of
methods which could work with not yet initialized fields. As an example of bad using of methods I
can quote various callings of the toString() method in the constructor and initializers in the CCI class.
You can see again how the value of constants is changing in course of initialization.

630. But there are no callings of the toString() method.

On the contrary, but they are hidden – the method toString() is called during the preparation of a pa-
rameter for the method println(String). This is often printed together with certain text in initializers as
well as in the constructor. As you surely remember in counting up of the object with a string there is a
signature inserted instead of an object which is received by calling the method toString().

631. In the section VARIABLE FIELDS OF INSTANCES you assigned the value of LOADED field which was declared as the
second one to the time field.

But it was a static field and they are processed during class installing. Therefore the static fields are
contemplated separately and the instance ones also separately. Nevertheless, each decent programmer

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 305

declares firstly all static fields and only after them the instance ones. Then the chronological succes-
sion corresponds to the succession of placing in the source code.

The only one exception is when there is such static field which contains a reference to an instance
of its own class (we were speaking about it a while ago). Such fields should be declared really as the
last ones in the section of static fields.

632. At the beginning as well as at the end of the CCI class definition you placed instance initializers. Are they also
used to analyzing the code’s behavior?

Yes, and it is their exclusive meaningful usage. Other instance initializers in the listing 30.1 only
showed what you can and what you are forbidden to do.

Instance Instruction
633. Which principles are valid for initialization of instances and instance initializers?

Due to the fact that these principles have a lot of common with principles valid for static initialization,
I will shorten it to two items as follows:

F There is the same rule for initialization of instance fields in declarations as for the static fields:
they should be initialized by only simple expression using only initialized fields. All more
complex initializations should be moved to the constructor’s body.

F Instance initializers should not be used. They may be used only in case when you need to ana-
lyze the course of class initialization; then they should be canceled or at least commented. The
whole initializing code which is too much complex for placing directly in declarations should be
moved to the constructor’s body. It will be placed there anyway – and in this case you will have
everything ready together and you will be able to use all parameters.

Exercise
634. I wonder which exercise you prepared for me today.

The today’s exercise is throughout practical one. Pass through the source codes of both classes and ex-
periment with them to realize how the initializations are running from the outer point of view. Next
time I will show you how you could see the initializations as well as other program’s operating from
inside.

Review
Let’s review what you have learned in this lesson:

F The classes behave as non-standard objects. They do not have e.g. a common parent that would
determine their fields and methods.

F The class constructor is internally named <clinit> and it is created by a compiler composing all
initializations of static fields and static initializers.

F An object representing a class in the program is marked as a class-object.

306 Part 2: Basics of Creating OO Programs

F The class-loader is an instance of the ClassLoader class which is responsible for installation here-
tofore not used classes into a program, their initialization and creating of their class-objects.

F During initialization the separate static fields as well as static initializers are passed through in
the order in which they are registered in the source code. At that time the fields with an as-
signed initialization are initialized and the static initializers are carried out.

F Java does not install the class into memory until it is not needed.

F As soon as the class is in memory, it is not installed again when required once more, but the
previous loading is used.

F The static initializer consists of the keyword static followed by braces with the body of the giv-
en block.

F In initializations as well as in initializers the fields cannot be used sooner than they are declared
and the constant fields are initialized.

F If the not yet declared field is used in the called method, the compiler does not consider it as an
error (but we do!). The fields not yet initialized have zero initial value.

F The initialization of a static field realized by calling a method should be placed into the static in-
itializer.

F Static initializers are used for initialization of static fields that cannot be simply initialized in
declaration. There should be at most one static initializer in the class and it should be inserted
after declarations of all static fields.

F The second reason for (temporary) use of initializers is the need to analyze the course of class
initialization. You can define more of those blocks, especially when you need to monitor the
course of initialization. But these blocks should be canceled after detecting and removing the er-
ror, or at least commented.

F The instance is created in two phases: the virtual machine allocates and cancels out the memory
in the first phase, in the second one it calls a constructor to which it passes over a reference to
the allocated memory.

F The constructor initializes an instance in several phases:

F The constructor’s parameters are evaluated.

F In case the body begins with the calling this(???), it gives over the management to its col-
league and after the called colleague finishes, it continues in the work by another item.

In case the body does not start with this statement, it carries out all initializations and in-
stance initializers in the order in which they are quoted in the source code.

F It accomplishes the rest of its body.

F It returns this as its return value.

F The body of the constructor consists of all initializing statements and instance initializers in the
class body followed by statements of the constructor’s body in the source code.

F You can use the hidden parameter this in initializations of fields and in instance initializers.

www.dbooks.org

https://www.dbooks.org/

30. Static Constructor – Class Constructor 307

F The instance initializers should be used only for testing and harmonizing purposes.

F All initializations except the simplest ones should be place into the constructor’s body.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 130z_Class_Constructor project.

308 Part 2: Basics of Creating OO Programs

31 Debugger
31. Debugger – 000000

31 Debugger
What you will learn in this lesson
In this lesson you will continue in analyses of class loading and creating its instances. Then a debugging
tool will be introduced which enables to observe the whole process from “inside”. At this occasion you
will learn what the return stack is and why the local variables finish their existence after finishing the
method.

Project:
In this lesson we continue in using the 130z_Class_Constructor project.

The Importance of Debugger
635. At the end of the last lesson you told that next time you will show me how the initialization and other behavior

of the program can be seen from inside. How did you mean it?

Let’s start from scratch. Each of us can make a mistake in our programs. Searching these mistakes and
their subsequent removing – the so called debugging is probably the most unpleasant activity for pro-
grammers. Therefore they create various tools that can help them with in this searching. These tools
are often named debuggers. One of their most important properties is the ability to step through the
running code according to your instructions and to show what the program really makes. And that is
what I wanted to show you today.

A simple debugger is a part of the development environment BlueJ. Today I will show you how it
is used. At this occasion you can verify that our programs really operate as we said and, above all, that
your future programs will act as you plan.

Activating of the Debugger
636. Marvelous, so show me the miracle. How to start it?

You are not asking for starting it directly. You are using the breakpoints which you place into the
program. When BlueJ meets the breakpoint while running the program, it stops the program and
opens the debugger’s window. You can get information you are interested in with its help (due to
which you inserted the breakpoint into the program).

637. How to put the breakpoint into the program?

Simply – you click to the left into the column with line numbers in the editor at the line with a state-
ment before which you want to stop the program. Then the editor draws a picture of the traffic sign
STOP at the given place – see figure 31.1.

www.dbooks.org

https://www.dbooks.org/

31. Debugger 309

But it really has to be a line with the statement which will be executed. It means it cannot be an
empty line, neither the line where only a comment lies nor the declaration without initialization.

Figure 31.1

Inserting the breakpoints into a program

638. Shall we stop the program in CCI class?

I would say it can show us at the best how the mechanisms, explained in the previous lesson, work.

639. I clicked into the column with line numbers according to your advice. I am clicking and clicking but no stop ap-
pears.

Because your class is not compiled. Look down at the information panel – BlueJ warns you:

Class should be compiled to set breakpoints

You recognize if the class is compiled according to the color of the stripe with line numbers. When the
class is compiled, it has the same background color as the code. As soon as you start adjusting the
code, the color of this column is changing.

640. I’ve compiled the class but it doesn’t operate.

Because you are clicking one line up – there is only the opening brace introducing the block. It would
be the same when you would click at the line with not yet initialized declaration, with procedure head
or the comment itself. When you would have a look down again into the information window, you
would see that

Cannot set breakpoint: no code in this line

You have to remember that the breakpoint can be set only at the line in which certain executable
statement is contained.

641. You are true – the stop already appeared. What now?

Now activate the program – for example send the classNeeded() message to the Call class. When the
statement at the line where the breakpoint is located (see figure 31.1) should be executed, i.e. when
the CCI class is loaded and starts its initialization, BlueJ stops executing the program and activates
debugger, better said it opens its window (see figure 31.2).

310 Part 2: Basics of Creating OO Programs

Debugger’s Window
642. A window with many panels really appeared here.

Figure 31.2

The debugger’s window

This is just the window of the debugger. It has a number of panels in which various kinds of infor-
mation appear. However, I will postpone describing them for a moment and I will explain firstly the
buttons at the bottom.

www.dbooks.org

https://www.dbooks.org/

31. Debugger 311

The button Halt is not active in this moment because the program is just standing.
The button revives when the program is running. (In our case it “revives” e.g.
when the program will expect your confirmation that you have read the dialog).
The running program can be temporarily stopped with its help so that it could
run again by pressing the button Continue.

The button Step allows the program to execute the following statement and to
stop again. As you can notice at the figure 31.2, the line with a statement in the ed-
itor’s window waiting for being executed is highlighted.

The button Step into enables you to move into the just called method (I will show it
in a moment). If the “waiting” statement is not the calling of the method in a class,
that is a part of the project and whose source code is available for BlueJ, the opera-
tion will be the same as after pressing the button Step.

Pressing the button Continue runs the program and let it continue in its operating
until the next breakpoint. In case of zero breakpoint it operates until the end.

Pressing the button Terminate finishes the activity of the tested program and closes
up the whole tested application

Stepping through / Tracing the Program
643. I already know functions of the buttons which means I could examine them, couldn’t I?

Let’s go on. As you see at the figure 31.2, we are going to open the dialog, more precisely to call the
inform(Object) method of the IO class. Press the button Step to see what will happen.

644. A window opened with a report that the constructor of CCI class is starting. When I pressed O.K., the program
stopped again and the highlighting in editor moved to the next line.

Shift the content of the editor’s window and place the breakpoint to the line with the declaration of the
CLASS_OBJECT field. Then press the Continue button.

645. The program runs a bit and the highlighting moved to the line with a breakpoint.

And now look into the panel entitled Static Variables in the right part of the debugger’s window. You
will see types and names of the first three fields. Go with your mouse to the upper edge of this panel
so that the mouse indicator would get a form of double vertical arrow (see the figure 31.2) and then
take this edge and pull it up. Then take its lower edge similarly and pull it so that you can see all class
fields in the panel.

Notice that null is quoted as the value of the CLASS_OBJECT field. Now press the Step button. High-
lighting will move to another statement and the field will be initialized – the <object reference> will
appear. In other words: the reference to an object has been saved to the field.

312 Part 2: Basics of Creating OO Programs

Try to double click at the field. A dialog will open looking into the interior of the relevant class-
object. I will not explain you what is there because the class-object analysis belongs to really advanced
course. I only wanted to show you how you can look into the object’s interior in the debugger.

646. You told that the highlighting will move to the next statement, but it skipped it over and stopped inside the ini-
tializer.

Good, the declaration itself is not a statement. The declaration does not do anything, the pure declara-
tion only announces. The previous declaration was connected with the initialization and the debugger
stopped at this initialization. And now it again stopped in the place where the program is expecting
for further work.

Press again the Step button. The highlighting will move again and the class name as a value is as-
signed to the field INITIALIZED (an answer of the class-object after sending the message getName()).

You can continue step by step like that, if need be you can place a breakpoint again and run over
the whole segment up to it. Or you can decide that you learned everything what you wanted to learn,
then press the Continue button and let the program run to the end.

647. It all operates excellently. I have already examined also the operating of the Terminate button. However, the
function of the Halt and Step into buttons is not clear to me.

I am already going to explain it. I want to show you their functioning in the delegated calling of con-
structors. Open the source code of the Call class and insert the breakpoint at the beginning of the
testInvocation() method’s body, i.e. at the line with the statement

CCI inst = new CCI("Experiment");

And now call this method. The program’s running should stop just at the breakpoint you inserted in.
We intend to create an instance of the CCI class with the help of the one-parametric constructor.

Now it is the moment for the Step into button. Press it.

648. The program stopped at the beginning of the class definition at the place as previously.

Because you reset the virtual machine and the class had to be firstly loaded. I supposed that you will
call the method after correct ending of the previous program, i.e. after a regular loading of the class
which then will wait for another command.

649. I did not reset anything.

You pressed the Terminate button which causes a non-standard finishing followed by resetting of the
virtual machine. In case you wish that the class would be kept loaded in memory, you have to let the
program run until its end. The class is not loaded again when another method is called and directly
this method is run.

650. I let the class to be loaded and I asked for its instance after it. This time the program stopped inside
one-parametric constructor at the statement this.

A lot of things happen:

F All instance fields have been written in the right middle panel entitled Instance variables – not yet
initialized, i.e. zeroed.

www.dbooks.org

https://www.dbooks.org/

31. Debugger 313

F In the right bottom panel entitled Local variables (it shows the parameters and local variables
of the method in which we are just now occurring) a new item representing the method’s
parameter appeared.

F Another item – CCI.<init> appeared in the left panel entitled Call sequence which announces in
which method we occur just now. When we stepped through the class constructor of the CCI
class, its name CCI.<clinit> was shown (see the figure 31.2 on page 310). Now we are in the
constructor of instances of the CCI class, therefore the name CCI.<init> is depicted. The
item Call.testInvocation is under it (being there also sooner) and reporting from where this
constructor was called, i.e. from the method testInvocation in the Call class.

651. I understand to the content of the panel Instance variables – I see there the prepared instance fields and I am
waiting that they will be initialized, similarly as previously. But why the lower panel has the name Local varia-
bles and not Parameters?

We have already spoken about it in the part Fields × Parameters × Local Variables on page 214, where
you yourself discovered at the end that the parameters are local variables initialized by the calling
method.

The Call Sequence Panel
652. You told that in the panel Call Sequence I can find out where I am and what called this method. But I already

know it, don’t I?

Where you are – you surely know, but who called this method, is not always so sure. Now you know
it, because you came to it “step by step” but it’s not the usual way. This panel has also another
function. To show it, let’s dive a little bit deeper. Press the Step into button once again.

653. It did not dive me into the double-parametric constructor, but into the method prepare(String).

Good. Now you may be interested how you’ve got there. Simple to answer you. As you see, another
item marking our current position in the program appeared at the panel Call Sequence; the item
marking the position you have been a while ago moved under it. Click at the item CCI.<init>.

654. Oh! We moved back to the previous position.

Yes, you can see here in which state the program occurred before calling the method to which you
jumped in debugger. When you look at the statement, you will find the calling of the prepare(String)
method in the second parameter. This calling serves for verifying that firstly the parameters are
prepared and only then the calling of the method comes. And because within the preparation of
parameters the method is called, the debugger firstly dove you into it.

655. Does it mean that when I press now Step, the statement will be carried out without inserting?

No, we did not return in time, this debugger is not so clever. We only looked from where we came to
our current position. When you click at the item Call.testInvocation you move to a place where we
started with our tracing. On the contrary, when you click at the item CCI.prepare you move to the place
where we are just now.

314 Part 2: Basics of Creating OO Programs

After pressing the stepping buttons you always continue from the current position, i.e. from the
position to which the upper item in Call Sequence panel is showing. As I have already told other items
enable you only to discover how you have got into place. The method in which you are just now oc-
curred atop, the method which called is below it, and the method which called the first method is
again below it and so on.

Return Stack
656. Does it mean that whenever I call certain method, a new item appears and when I leave the method, the item is

again deleted?

Exactly. This list is one of the key internal data structures of the virtual machine. The programmers
call it return stack or shortly stack, because the addresses of program’s places to which the program
will return after completing the executed method are located here.

657. You have just explained why “return”, but why a stack?

The stack is a name of a data structure which operates similarly as a stock or pile of papers to which
you put your further notes. The newly added items are then “put on the top” and the oldest are “at
the bottom” of the stack. In the moment when you take away the last item, i.e. the item from the bot-
tom of the stack, the program is ending.

You can simulate it. Imagine that you are a virtual machine and you execute the program. Sudden-
ly you discover you have to invoke certain method (let’s call it A), which means to get into another part
of the program – to the place where the code of this method is. You make a note at a piece of paper,
where you are just now and where you will return after you will execute the method. And you place
the paper with the note at the top of the pile-stack.

However, you discover during executing the A method, that this method calls another method –
let’s call it B method. Then you make another note again at a piece of paper concerning your position
and where to return to continue in your work. You put the piece of paper again at the top of the stack.

You start to carry out the B method and you meet another method’s calling – let’s say C. You again
make a note about the return address and put it in the stack. Supposing the C method does not call any
further method. When you complete it, you take the piece of paper of stack’s top to see where you
should return. The paper says you that you have to return to B method behind calling the just
completed C method.

You move to B method and continue your work at the place from which you went out a while ago.
If calling of further methods is a part of B method, you will act similarly as in calling C: you put the re-
turn address to a stack, to know from where you should continue after executing it, and you are going
to execute the relevant method.

After you complete your work on B method, you again have a look at the stack’s top where a paper
is laying with the return address aiming to the A method. You take the paper and continue in carrying
out the A method. After completing it you again look into the stack and you find the last paper with a
reference to the place where the whole anabasis started.

Take a piece of the code, prepare the papers and you can examine it. You will discover that it is
simple and nicely operating.

www.dbooks.org

https://www.dbooks.org/

31. Debugger 315

658. Perhaps I understand how the virtual machine works with the stack. But what’s good on the stack for us?

I have already shown it to you. The places where you are supposed to return are at the same time
places from where the method was called (well, just closely to). Looking into the code parts, to which
the items from the stack are referring, enable us to see the history of program’s coming to a place
where we are just now located. And this is what is interesting for us very often.

When I already touched this topic, I can tell you also confidentiality from the kitchen of the virtual
machine. Not only return addresses, but also parameters as well as local variables are saved on the re-
turn stack. Debugger does not depict them at the stack (there is a panel allocated for it), but they are
saved there. As we have explained, after completing the method its item is deleted from the stack to
have enough of place for another one.

It implies that after completing the method not only its return address ends its existence, but also
its local variables. Their place is immediately taken by something else. When the method is called next
time, a new place at the stack is allocated for the method and all variables have to be initialized once
again. If the method wants to remember something between its callings, it has to be saved in a field.

Examine, that whenever you click at any of the items on the stack, at the same time the content of
the panel of Local variables start to show values of local variables of that method into which you moved
by clicking. If the owner of the method changed, i.e. you moved into the method of another instance of
another class, surely the content of panels with the relevant fields will change. Thus you can learn, in
which situation the calling method was as well as its data in the moment of calling.

659. I wanted to step into the println method, but I did not succeed. BlueJ made it as if I would enter only Step.

The debugger can pace out only those methods the source code of which you provided. And method
from the standard library does not belong to them, which means you cannot look into them.

660. What a pity that the parameter types are not shown in the Call Sequence panel. I have three CCI.<init> items
shown and I cannot easily discover which version calls which version.

You are true. You have to detect such information in the source code. It is important especially in the
case of recursive calling (we spoke about it in the section Recursion on page 130 and we will return to
this subject in the section Recursion on page 366).

661. I dived into the four-parametric constructor and I was surprised that, contrary to previous stops, the program
stopped at the opening brace, not at the first statement. The opening brace does not represent any code.

Braces sometimes stand in for invisible code which has to be carried out in the given place. You surely
remember from the last chapter that the constructor’s body consists of two parts: from initializations
and the body itself. By stopping at the opening brace the debugger announces you that you are going
to execute the given constructor which means you move to the first statement of initialization in the
next stop.

662. You are true. I pressed Step and the mark moved to the block /*##_2_##*/, which is the first instance initiali-
zation block. And now I will continue in stepping through initialization.

Well, and at this occasion you can examine how the buttons operates. The initializer prepares the me
variable and calls the IO.inform(Object) method, which opens a dialog. In the moment when the com-
puter waits for your pressing the button, only the Halt button is explicitly deactivated. Other buttons

316 Part 2: Basics of Creating OO Programs

are seemingly living, but when you press any of the “green buttons” (i.e. Step, Step Into and Continue),
nothing happens. Only the Terminate button works and really terminates the application.

In addition the highlighting of the current statement disappears and all panels are cleared to em-
phasize that the program is now blocked by the operation from a standard library and that you should
firstly satisfy the library’s request and the control will be returned to your traced program.

Local Variables
663. I am back in the constructor’s body and I am going to print.

I wanted to show you how the program behaves towards the local variables. There are four local vari-
ables used in the constructor: unused, underlining, sum and local. Step through its body and notice how
each local variable appears after its initialization in the Local variables panel.

The variables sum and local are initialized directly in the declaration, maybe nothing surprises you
there. But the variable underlining is declared behind the print statement and initialized already in the
last but one statement. As you can see, the debugger ignores the declaration itself – it is information
for the programmer. The compiler takes it in its mind, but until you initialize the variable, the compil-
er acts as it is unknown. There is no information about it in the compiled program and that’s why the
virtual machine doesn’t know about it as well. Therefore, you cannot be surprised that also the
debugger registers the local variable underlining only in the moment when it is initialized, i.e. closely
before the final print. Until this time the variable is unknown and it cannot be seen in the panel.
Therefore, the debugger cannot learn about the variable unused, due to the fact it is not initialized.

664. That’s it. Local variables really appear in the panel only after their initialization.

Which means only the final rising up expects you. Step further and observe how you will rise up to
methods from where the current method has been called. And notice at this occasion how the content
of panels with fields and local variables change. At the same time you can also notice that the debug-
ger always stops at the closing brace before return from the method, so that you could see, in which
state the program is closely before the return from the given method.

Stepping through Test Methods
665. I have to say that it was informative and I learned a lot about how it’s acting inside. Do you think that I should

know more about stepping through the program which was not yet debated?

I would like to draw your attention to one item. Until now we were stepping through the current call-
ing of methods. If you would like to step tests, be prepared that at the bottom of the stack, i.e. at the
lower end of the list of the Call Sequence panel there will be a number of items showing into the JUnit
library which is responsible for carrying out tests. Take care about only your items atop of the stack
and don’t mind those below. In case you would accidentally touch and click on any of them, BlueJ
opens a dialog warning you that there is no source code of these programs and therefore you cannot
see anything concerning them. Don’t mind of it, there are only references to classes which you would
not understand for now.

www.dbooks.org

https://www.dbooks.org/

31. Debugger 317

Figure 31.3

There is no source code to the given class

Exercise
666. What you have prepared for my today’s exercise?

We spent today’s lesson in an interactive mode and I prepared an accompanying animation in which I
tried to repeat and show today’s pile. Start it and examine everything once more. Then I recommend
you to use the debugger at your own examples.

Animation 31.1: Debugger and how to work with it – OOPNZ_131_A1_Debugger
The animation will repeat what was explained during the lesson, i.e. it will show how to work with de-
bugger which is a part of BlueJ.

Review
Let’s review what you have learned in this lesson:

F Searching mistakes is one of the most unpleasant activities in program development. We call it
debugging the program.

F Special tools called debuggers help us during the code analysis and its debugging.

F A simple debugger is a part of the development environment of BlueJ.

F For marking places in the code where we want to analyze the course of the program in details
we use breakpoints.

F The breakpoint is placed in an editor by clicking to the left into the column with line numbers at
the line number with the statement before which we want to stop the program. Then the editor
depicts the traffic sign STOP.

F BlueJ does not allow us to put the breakpoint into a code of not yet compiled class nor to the line
which has no beginning of feasible statement.

F When BlueJ meets a breakpoint during executing the program, it stops the program and opens
the debugger’s window.

F At the lower edge of the debugger’s window there are five buttons, with the help of which we
can control starting and stopping the program.

F Above the line of buttons there is a set of panels providing information on the program’s state
and depicting data with which the program works.

318 Part 2: Basics of Creating OO Programs

F The panel Local variables show values of local variables and of parameters.

F The panel Call sequence contains a list of references to places from where the currently executed
method was called, from where the method which called the method was called etc.

F This list is usually named the return stack, because it contains (among other things) also the ad-
dresses to which the course of the program will return after completing the currently executed
method.

F Together with the return addresses also the local variables as well as parameters are saved on
the stack.

F After clicking at the stack’s item you can see the part of the code to which the given item refers
including its local variables as well as current fields of an instance and of a class.

F Local variables will be depicted in their panel only after they are initialized. The fields are in
their panels for the whole time.

F During stepping through tests you will see items referring to methods from the standard as well
as from the test library. These items cannot be open.

Project:
We did not change the project and therefore we end with the project 130z_Class_Constructor in the state,
in which we began to work with it.

www.dbooks.org

https://www.dbooks.org/

32. Creating of an Standalone Application 319

32 Creating of an Standalone Application
32. Creating of an Standalone Application – 000000

32 Creating of an Standalone Application
What you will learn in this lesson
This lesson is a closing lesson of the second part. You will create your first standalone application – a
game which will be running at all computers in which the Java environment is installed. At this occasion
you will get to know how the files JAR are created and what they are for, and you will learn to create these
file from the BlueJ environment.

Project:
In this lesson you open a new project entitled 132a_UFO_Start.

667. Until now you were showing me only which properties has this or that, how to program it or where certain
treacherousness is awaiting us. Only learning, now playing. Would you be able to show me, how to program
something useful?

You are true. I closed the part in which I showed you how to code simple object constructions. Before I
will pass to the more complicated, you could program a simple game.

668. Well! Gladly accepted. At last something interesting. And what it will be?

With regards to what you know until now it cannot be any-
thing too much complicated. You can see the game window at
figure 32.1. The game runs in the universe. Each player has a
task to put several UFOs to aprons (“UFO-ports”) at the lower
edge of the game’s window. All UFOs will be available at the
starting apron in the left upper window’s corner. The game
(including the UFO’s engine) will be controlled from the key-
board. However, you have to take into account that until
UFO’s engine is running; it is always accelerating (speeding
up) or decelerating (slowing down). Therefore it is not so sim-
ple to get UFOs quickly to aprons. You need certain training
because in case you are not lending sufficiently slowly, you
hang over the apron and you disappear from the observable
part of the cosmos. And it is very hard to get back.

But you will not program the game fully, only two classes.
It is the same as in practice: usually the programmer’s task is
to create only a part of a larger project – so you can try it just now. Beforehand I assure you that the
classes will be sufficiently simple so that you could do it.

Figure 32.1

The application’s window of the game

320 Part 2: Basics of Creating OO Programs

Assignment
669. I am very curious. Describe what is expecting me.

The project contains classes as follows:

F NamedColor – a class which you know from our application working with graphic objects.

F Space – its instance is a singleton and it is responsible for creating and depicting of application
window representing the universe, where the whole game is running. This class is as service
class and your class will not communicate with it.

F Dispatcher – a key class of the whole application. Its instance is responsible for opening of the
relevant universe and controlling of the traffic in it. You start the game by creating an instance
of the Dispatcher class – a dispatcher. Then you ask this instance to prepare a new UFO at the
starting apron from where you will try to get it into some of the target aprons.

F Apron – its instances represent starting and landing (target) aprons which are able to catch and
park the landing UFOs at the dispatcher’s command. Neither with it will your instances com-
municate at the time being.

F Number – an instance of this class is able to paint a number which you enter to its constructor.
This number serves for identification of UFO (each UFO should bear its number) as well as
landing aprons. Probably from all methods, which are offered by instances of the Number class,
you will use only a method for adjusting the position and painting of the given number.

F ISaucer – the saucer represents one from the UFO’s parts (UFO is composed of the saucer on
which the number is depicted). It offers only methods for detecting and adjusting its position,
and a method paint() which knows how to paint the saucer in the space.

F IUFO – an interface specifying what such a UFO has to know. If you have a look into its docu-
mentation, you discover it quite a lot. On the other hand, all its abilities can be rather easily
programmed. Your task is to define a class, which implements this interface.

F IUFOFactory – an interface specifying what an object which you will use as a factory for UFO has
to know. The requirements on such object are rather simple: it has to define a method, which is
able to create operating UFOs. Creating such a factory is your second task.

F UFOTest – a test class which will verify your solution. This class is not yet operating, because its
fixture is not yet defined. This fixture will contain the only object: a factory for UFOs. As soon
as you will create it you can start testing.

670. It is not as simple as you indicated. Surely I cannot produce immediately those two classes. I am afraid that you
did not teach me so much. Try to navigate me for a while.

Don’t be afraid. Before I will let you go to the world, I will help you to analyze the whole project, so
that you could know what you can expect from your neighborhood and what the other will expect
from you.

www.dbooks.org

https://www.dbooks.org/

32. Creating of an Standalone Application 321

The Dispatcher Class
671. Well, I know the color, the space is supposedly outside me, so what about to start with the dispatcher.

As I have already told you, the Dispatcher class is a key class of the whole application. Let’s have a
look at methods, which it offers to you.

F public static Dispatcher getDispatcher(IUFOFactory factory)
Due to the fact that the Dispatcher class wants so that it’s instance would be a singleton, it will
not offer you a constructor, but only this simple factory method, to which you will over an in-
stance of the UFO factory. This simple factory method will arrange creating of the whole space
with the dispatcher and will return a reference to the created dispatcher. You can call this meth-
od only once because there may be only one universe with only one type of UFO (and so only
one UFO factory). Not a lot of them – at least at this game’s version.

F public IUFO prepareUFO()
prepares UFO made out by the previously assigned factory for UFO at the starting apron. Call-
ing of this method is the only one way how to create a UFO which will join the game. In case
you would try to create it directly with the assistance of a constructor, the dispatcher will not
know about it and so you will not be able to control it from the keyboard, nor to ask the apron
for parking.

F public void stop()
It stops all animations. This method exists only for the case that in case someone would inter-
rupt you in playing or the control of flying UFOs would get out of your hands.

F public void start()
It starts again all animations.

The IUFOFactory Interface
672. Why is there the factory for UFO?

Because producing of UFO has to be assigned by a dispatcher so that it could include an instance into
all auxiliary structures which provide the proper animation in time. If you would create UFO, you
would have to enroll them at the dispatcher similarly as you do it at the canvas manager. Moreover
you would have to look after when the user – handling by keyboard – pressed a key requiring creation
of a new UFO. Thus it is simpler. The keyboard is observed by a dispatcher and when the user asks for
a UFO, the dispatcher requires creating a new UFO from the factory and prepares it at the starting
apron.

673. But why a special factory? It is sufficient to call the constructor for creating a new UFO.

So that the dispatcher could call a constructor your class should have already exist. And it would be
limited to only one particular class. But I would like if this example might be solved by a number of
students.

In case the assignment uses an interface, then the dispatcher via this interface only announces its
requirements. And anybody who defines a class corresponding to these requirements (i.e. class

322 Part 2: Basics of Creating OO Programs

implementing this interface) can include them into his project and examine them. It means you can
define several different pairs of factory-UFO and examine which of these pairs is better operating. It is
sufficient when you pass the factory from a pair which you want to examine to the getDispatcher
method.

Design Pattern Factory Method
674. The way, you tell it, impresses that the factory is only a cover around a constructor so that the dispatcher could

order which parameters should be passed to a constructor.

Exactly, in our case the factory method really only calls the constructor and passes the parameters. I
can tell you that this using of factories is one of the possible implementations of the design pattern
Factory method. Until now you met its simpler variant – Simple factory method. It recommends defining a
static method which returns the reference to an instance of its own class.

The not simplified Factory method, applied just now, is more general. It solves a problem how to get
an instance of a class from which you know only an interface. The pattern recommends defining an
interface (we will call it factory interface) for creating an object, but let the implementing classes decide
which class should be instantiate. We will call the class implementing the factory interface as factory
class. Instances of such factory class will offer a method that would create the required instance. It
means that when you declare using of factory (i.e. an instance of a factory interface) as a moment ago,
you do not know what the given factory will return you. You only know that the received instance
will implement the given interface. But what type the returned instance will be of, it will be decided
by an addressed factory.

And our project is operating exactly thus. You can produce a set of pair’s factory-UFO and accord-
ing to which factory you deliver to the dispatcher, those UFOs the dispatcher will prepare.

The IUFO Interface
675. I start to understand it. Please, describe me in details, what the class implementing the IUFO interface should

know.

Most of those things you have in the documentation, but I can tell it by different words. Before I start
to list particular methods and their purpose, I want to draw your attention to one thing: please, notice
that all parameters as well as the return values are of the double type. Logically it ensues from it that in
case you would like to save anything into fields, you probably will have to declare also these fields as
double numbers.

676. Why everything has to be double? Until now we also animated and whole numbers were sufficient.

No, it was not sufficient, it was only hidden. The instances assigned its initial and target position with
the whole numbers. However, the Mover worked already with numbers double. That’s to say when it
should change the coordinate by 0.75 point; it could change it neither by 0 point, nor by 1 point. It has
to count up the three quarters and three times move an object by one point and the fourth time by ze-
ro. In the longer movement the result look out equally as if the object would be shifted constantly by
¾ point.

www.dbooks.org

https://www.dbooks.org/

32. Creating of an Standalone Application 323

677. Well, I am defining double fields. Which one would you recommend me?

You can look at the required methods. Methods getX(), getY(), getXSpeed(), getYSpeed(),
getXThrust(), getYThrust() are nearly asking for defining of homonymous attributes and save into
them the horizontal as well as vertical coordinate, a speed and tensile load.

When you discover that you have to define also a method setSpeed(double, double), I suppose you
know that this method will adjust the horizontal as well as vertical speed.

And the definitions of methods right(), left(), up(), down(), which have to increase or decrease
the thrust (and thus also the acceleration) in the given direction, will be identically clear. To proper ad-
justment of a new thrust you have to know only that the required increasing or decreasing is adjusted
in an interface as the DIF_THRUST (difference of the thrust) constant.

678. Wait a minute! A constant in an interface? But you told that there might be only declaration in an interface
and constants are data. How it is possible that a constant can be in an interface?

Remember a section Details of Class Initializing on page 300. I told you that there is a special kind of
constants – the compile-time constants – the value of which can be evaluated in the compile-time, and
which can occur even in interface types because they are not data saved in the memory, but only dif-
ferent names of their values.

679. Oh yes, I recall. This means that at each calling of some of the quoted methods the value of the relevant thrust
fields will change by DIF_THRUST.

Directly, these four methods are completed by the stopEngine() method, which zeroes both thrust
fields.

The move(int) Method

680. I understand the adjustment ad returning of attribute values. But your explanation what the attributes are for
and how it operates would be welcome. I put them in only because the interface declared methods which ad-
just and return their values.

The whole UFO’s function is hidden in the method move(int). To understand its function you have to
repeat a bit of physics. I experienced that majority of students, beginners in programming, would like
to program computer games full of animated subjects. In case you belong to them, the following small
theoretical explanation might be useful.

You were explained in the school that the speed is defined as a track traveled within a time unit.
The speed of animated objects is composed of two parts: the horizontal and vertical one. The horizon-
tal part says how quickly the object is moved in the horizontal direction, and the vertical part de-
scribes the speed in vertical direction.

In case any animated object has a defined speed as a number of points by which it has to move in a
second, its position changes by the required number of points in each second. However, in case you
want to move the object relatively fluently, you cannot change its position within one second, you
have to change it more often.

That’s why you can often find the frequency of re-drawing the animated pictures. It says how many
times the picture is re-drawn in a second. (Because it significantly influences the calculation of next
position, the method move(int) is given the same frequency of re-drawing as a parameter). It means if

324 Part 2: Basics of Creating OO Programs

he object has to move fluently in the horizontal direction with an xSpeed points in a second, its position
has to be changed within two re-drawings of xSPeed/frequency points.

Your UFOs (equally as current rockets and satellites) are controlled by rocket motors which control
not their speed, but manage their acceleration. If the motors are off, the rocket moves in the space with
the same speed (contrary to rockets we know from movies in which their authors do not know physics
and think that to move with the same speed through the space, the rocket has to have motors always
operating). As soon as you switch on the motors, the rocket will permanently speed up or slow down.
In case the braking motor will be on even after you will stop the rocket, it becomes a speed up motor
and the rocket starts to speed up the opposite direction.

The acceleration of the rocket depends only on its weigh and on the motor’s thrust. Let’s agree that
your UFO will have just such a weight so that its acceleration would be the same number as the mo-
tors’ thrust.

The acceleration is similar as the speed from the animation point of view. The acceleration is de-
fined as a change of a speed in a time unit. The speed will increase in a second by as much as the ac-
celeration is big. If your UFOs movement should look out as a real one, their speed cannot change by a
jump. If the object has to uniformly accelerate in a horizontal direction with acceleration xThrust and if
you know the frequency of redrawing, the horizontal speed of the moving object has to change be-
tween the two re-drawings of the screen by xThrust/frequency.

And now the whole calculation starts to emerge. When somebody asks you for re-drawing, you
will look at the parameter to know with which frequency he is asking you. Then you calculate a new
speed and when you will know it, you can calculate the new position. You will move the UFO to this
position.

681. Well, it was demanding to go after you, but I will try to orient in it. From what you told I understand that the
program for adjustment of a new position should look out roughly as follows:

speed = speed + (thrust / frequency);
position = position + (speed / frequency);

The speed and the position have to be counted for each direction separately. And after I count a new position, I
can move UFO to it.

Exactly.

A Constructor

682. Now I’m thinking about: what I will move? When I don’t know how the UFO will look out. How I will make out
the UFO?

Come out of the documentation an interface of a factory class. You know that your constructor will
receive a saucer and an order of a given instance from its factory method, and it is required so that the
UFO had this order written on itself. The procedure is analogous as when you created the arrow or the
car: simply you compose the object from several others – in this case from a plate and an order. You
only have to remember that in case you would like to draw the order at the plate, you have to make
out an instance of the Number class, which is the only one that knows to paint the assigned number. You
have to remember references to objects, from which your object is composed, so that you could refer to
them when you will move the object or draw at it.

www.dbooks.org

https://www.dbooks.org/

32. Creating of an Standalone Application 325

This gives you also how the method paint() will look out – you will draw a saucer and paint a
number on it. Shortly, all well-known things. So can you start?

Controlling by Direct Message Sending

683. I am going to try it. Please, explain me the game.

You can run the game in two modes. In the simpler one you control all with addressing instances in
the reference stack of BlueJ. Thus you can make acquaintance (e.g. with the help of debugger), how the
UFO and the dispatcher communicate one with the other. And, you can send the UFO, which goes
adrift, return to the visible part of the universe by sending a suitable message.

First of all you ask the dispatcher for preparing the further UFO to the starting apron by sending
the prepareUFO() message. Then you adjust the speed in the horizontal as well as vertical direction with
suitable sending the setSpeed(double,double) messages, and you try to lend with your UFO on some
apron. If you fly sufficiently slowly to an apron, the lending mechanisms should provide automatic
parking.

To be successful with parking, the UFO cannot have bigger sum of speed in the horizontal and ver-
tical direction in driving on the apron, than is the size of its saucer which is adjusted to 20 points. (If
you will change it in the Dispatcher class, you change also the measures of the whole universe.)

Controlling from a Keyboard

684. I suppose that the other mode controls everything from the keyboard.

Exactly. In this variant you ask for preparing of another UFO by pressing the key ENTER. In the pre-
pared UFO you operate the motor’s thrust with cursor’s keys. If you press e.g. key with the arrow to
the right, the UFO starts to speed up to the right. With each pressing the arrow key you increase the
thrust in the given direction and thus also the acceleration.

685. And how I will stop it?

It cannot be stopped. You can only switch off the motors. Then it will not speed up, but it will move
with the same speed. Then you can switch on the motors to the other direction and the UFO starts to
decelerate and so slow down. But you have to stop pressing the arrow in time, so that the slowing
down would not change into speeding up in the opposite direction.

The lastly prepared UFO reacts to the cursor’s keys. But nothing prevents you to ask for prepara-
tion of another UFO before you succeed to part the previous one. The prepared UFO immediately
seizes the keyboard and starts reacting to pressed keys. In case you will manage several UFOs simul-
taneously, you switch on managing of the relevant UFO by pressing the key with its number (the pro-
gram reacts to numbers adjusted from the main as well as the numeric field). Theoretically you can
control simultaneously up to 9 UFOs. But it is really only theoretically.

326 Part 2: Basics of Creating OO Programs

Creating a Standalone Application
686. Somehow I succeeded to run it, but my parking is not the best so far. I would welcome if the program could be

opened as an ordinary application and I could avoid BlueJ for its operating. Is it possible to make an exe-file in
Java?

Exe-files can be run only under Windows operating system and/or under their emulations. But Java has
something better: it can save its programs into a compressed archives file with an extension jar (an ab-
breviation from Java ARchive). You can open it as other executable files – e.g. by clicking on its icon.
The only one condition for its running is to have an installed JRE (Java Runtime Environment – we
were speaking about it in the section JDK and JRE on page 6). Its main advantage is that it is signifi-
cantly smaller than JDK, which is used for creating programs.

687. And how such a jar-file can be made out?

It’s quite simple, but for the time being it will be useless for you, because you do not have an executa-
ble application produced. First of all you have to arrange it so that the application could be opened
and only then you can look after how to deploy it into jar.

The Main Class of an Application
688. Well, so how can I make out an executable application from my project?

An application that can be run from the system has to contain a class with the method of the following
signature (you know that the parameter’s name can be changed):

public static void main(String[] args)

This method serves as an entry point into the application. The virtual machine starts this method and
it has to arrange all others. (Don’t bother with the strange parameter type; you will not use this pa-
rameter for this time, and thus you don’t mind that its origin is not clear. Don’t be afraid, after you
will know more, I will explain you how to use it.)

And now let’s have a look at how as easy as is possible to make out the Main class of application,
as the class with a method main(String[]) is sometimes called. The procedure is simple and well-
known to you: you ask for creating a new class. BlueJ opens the Create New Class window. The only dif-
ference towards the current habit is that you put the switcher Class type into the state Application main
class. Enter certain name (e.g. Main) and confirm the adjustment.

689. I see it is quite ordinary class. Only it has prepared an empty definition of a method main(String[]). If I would
give the method into another class, would it also operate?

Of course, you can put the method main into any class. And you can have it in each class as well. When
you look at the end of the class created according to a standard pattern, you will find it in a section for
lightning tests preparations. The standard pattern puts the main method into each class commented.

I recommend defining the separated main class of an application because each proper class should
be responsible only for one aspect. In case you add it to any other place, you add besides its standard
responsibility also a responsibility for starting the application. And when you would return to your

www.dbooks.org

https://www.dbooks.org/

32. Creating of an Standalone Application 327

program after some time and would like to modify it, you would ruminate which class you marked as
the main one.

690. So why the method main is at the end of each class?

It serves for writing a quick and simple test and testing the given class. When you are not working in
BlueJ, you cannot call methods as you wish, and you have to add the method main into the class and
call the requested method from this one.

691. Well, I created a new class and named it Main. How should I define the main(String[]) method’s body?

Simply: you create an instance of your factory and then you call a method Dispatcher.getDispatcher(
IUFOFactory), to which you pass the freshly created instance as a parameter. That’s all.

Creating Executable Archives
692. It’s really simple. So when I have the main class, the executable archives can be created.

Yes, it can be created. Enter the command Create Jar File in the Project menu. A dialog from figure 32.2
will open. You pull down the list Main class in it and enter the application main class – in our case the
class Main.

Then you have to think over if you would like to add source files and project files into the archives.
In case you want to create only an executable program, you will add nothing. In case you would like
to save the whole project into a form in which you can transfer it to another computer, add the source
files.

When everything is adjusted, press the key Continue. A standard window will open for saving the
files. You enter a name and location of the created JAR-file; confirm your entering and it’s ready. The
created JAR-file can be started wherever where Java is installed.

693. Even including the telephone?

In case the class Space would be adjusted a little bit, you could compile the application also for tele-
phones. But I will not show it to you, because I would have to explain you certain specialties of the
program’s development for telephones.

Figure 32.2

The dialog for creating a JAR archives

328 Part 2: Basics of Creating OO Programs

694. Could it be seen what have I saved into the archives?

Yes, it can. The JAR archives are files compressed in a ZIP format, which means you can watch them
through any program which is able to look through the content of ZIP-files. The only one problem re-
mains in titles of files using some “exotic” (i.e. non ASCII) letters. Java saves them in a form so that it
could open up the archives properly and independently to a platform to which you saved the file and
from which you open the file. You could experience it in the self-opening archives in which the ac-
companying programs are prepared. However, not all browsers of ZIP-files are prepared to cope with
it.

Exercise
695. Do you have an exercise for me today?

I have such a little exercise for you. Copy your class e.g. under a name UFO_P and extend the method
setSpeed(double,double), so that it would write the current values of attributes to standard output. De-
fine its factory and examine how the dispatcher works with the new factory.

Review
Let’s review what you learned in this lesson:

F The design pattern Factory method is a more general version of the simple factory method. It
solves the problem how to get an instance of a class from which only an interface is known.

F In case a change is realized in an animation, then the change among separate animation snaps
can be received by dividing of the change planned for one second by the animation frequency
in the time unit.

F The applications programmed in Java are saved into archives which are files with the extension
jar compressed in ZIP format.

F When saving the executable application you have to mark the main class of an application, i.e. a
class which contains the static public method main(String[]), which serves as the introductory
point into the application.

F The virtual machine starts the application by starting the method main(String[]) in the defined
class. This class is called the application main class.

F The prepared application in BlueJ environment is saved into the executable JAR-file by assign-
ing a command Create a JAR file in the Project menu.

Project:
The resulting form of a project to which we came at the end and after completing all exercises in is the
132z_UFO_App project.

¤

www.dbooks.org

https://www.dbooks.org/

Part 3: Advanced Creating of OO Programs

Part 3:

Advanced Creating
of OO Programs

The program which you created up until now is so big that it starts to be
difficult to keep its classes together all the time. Let’s divide them there-
fore into several cooperating class groups called packages. The group, in
which only classes and interface types developed through the existing
teaching will be contained, will be further improved and thus you can
learn further principles of object oriented programming together with
techniques that enable creating programs with possible future perfecting.

330 Part 3: Advanced Creating of OO Programs

33 Packages
33. Packages – 000000

33 Packages
What you will learn in this lesson
This lesson opens the last part of the textbook. You can recognize the problems to which big applications
are facing and how it is possible to solve these problems. You will meet the conception of packages and
you will learn how to create and use the packages.

Project:
In this lesson you will return back to the 130z_Class_Constructor project, which will serve only as a
source of source files for the newly created project.

696. I’m very curious what you prepared for me today. The project is now quite big. With the number of classes, con-
tained in it, even the implementation arrows can be hardly displayed. Therefore I am afraid that to make place
for another class will not be able without extending the project’s window.

It will be able and this is just what I prepared for you today.

697. It means I should diminish the classes or to put them in a line.

Nothing like that. I will show you how it is possible to divide a big project into several smaller, mutu-
ally cooperating parts. I will explain you what the packages are like and show you how you could
arrange your previous project into packages.

Packages and Folders
698. You say divide into packages? This reminds me the X-mas shopping – I usually have my presents divided into

so many packages, that I cannot look over them.

But it is a different dividing here. In many aspects it reminds dividing of PC files into folders. Files
which are somehow connected are placed into the same folder. Files which concern with different top-
ics are placed into different folders. In case you would have all files of your PC in one pile, you never
can orient in them.

699. But the files at the disc are well divided due to the folders can have subfolders. Can the packages have also
sub-packages?

The packages create a hierarchic tree structure similarly as folders at a disc. Even the connection of
packages with folders at a disc is very tight. The language definition says that in case you have com-
piled files saved at a disc, the division of classes into packages has to correspond with the division of
their class files into folders. The folder name has to correspond precisely including the capitalization
to the package name (as you know, all names in Java are case sensitive) into which the data types be-
long, whose class files are located in the given folder (it’s valid also in Windows!). And because the
package is a program’s object, it has a logical implication that names of these folders have to corre-
spond with rules for creating of identifiers.

www.dbooks.org

https://www.dbooks.org/

33. Packages 331

700. You told: “if you have compiled files saved at a disc”. Where I might have the files saved somewhere?

Maybe in a database or at a net. The programs in Java can run also in the way that they are located at
several computers and objects in individual computers communicate among themselves. But this is
not our case – let’s stay therefore at files located at a disc.

Big Programs and Their Problems
701. When the language definition takes it into account, then it‘s surely important. And what is its advantage, be-

sides the fact that all data types could be put into one window?

Problems with complexity of professional programs are far bigger than yours. You have to realize that
such programs have hundreds and thousands of data types7. The experience proved that the time
needed for creating the program increases exponentially with its size. If, in a stroke of genius, you will
be able to create a program of one thousand lines within one day, it does not mean that you would be
able to create the 5-thousand lines program in a week and 20-thousand lines in a month. Rather can be
expected that you will need a month to create the 5-thousand lines program and you will succeed to
create the 20-thousand lines program within half of a year or even in one year.

Therefore one of the targets of a good proposal is to divide the program into several smaller parts
which will be connected only minimally. Then each part can be developed relatively independently
and you can test the proper cooperation of individual parts in suitable intervals.

One of such parts is the class. However, it is too tiny part (despite it can have several thousands of
lines) and when creating really extensive programs such division is not sufficient (as you will soon
see, it is not sufficient even in smaller programs). Therefore it is needed to create parts of the higher
order. And the package is such part.

With proper division of the program into packages the advantage can be used that the classes with-
in one package can share a part of their implementation’s secret, so that they could use this knowledge
for increasing their effectiveness. This supposes that the author of all classes within the given part is
one or few programmers who know their code and therefore the risk of incorrect modification of the
code is significantly smaller.

Conventions for Project Names
702. Well, well, you’ve already persuaded me. Show me how I should divide the project into these packages.

You will divide the project twice in this lesson. First of all you will divide it as simple as possible, just
to realize which key problems you can expect during this dividing. Then you will divide it into the
form in which the project will be handled for several future lessons.

7 We mentioned that the Java standard library has just more than 20,000 classes. A lot of them are auxiliary, but

even when we would count only those that are public, documented and you can use them any time, Java 7,
which I used in the time of writing this book, had 4024.

332 Part 3: Advanced Creating of OO Programs

Let’s start with opening quite new project in BlueJ environment. Enter the command Project ® New
Project, find the folder in the opened window where you saved your projects and let it create a project
entitled 133b_Packages_Start.

703. Why just this title?

You can name it as you wish but with the name defined like that it will fit inside the others. Names of
projects for this textbook respect the following convention:

F The first digit means the volume of the textbook – this is the first volume – the first part.

F The next two digits represent the chapter – now it is chapter 33.

F The next figure has the following meaning:

F The letter a marks the introductory project of the lesson, i.e. the new project determined
for the lesson.

F The letters b, c, d… mark projects which arose during the lesson‘s course. We started with
the b letter and each subsequent project created in the given lesson is marked with the
next letter.

F The letter z marks the final project with sample solutions of tasks which were adjusted as
exercises.

F These four characters comprise the project identifier (ID). They are followed by the underscore
separating the ID from the descriptive part indicating the subject demonstrated by this project.

F The possible last word “Start” indicates that this is the first project of the sequence containing
projects touched with the indicated subject. The sequence ends with a project that has no suffix
after the indicated subject.

Creating Packages in BlueJ
704. I see it’s sophisticated. I will accommodate to your convention and I

will create the project 133b_Packages_Start. What else?

Click with the right button at the class diagram area. The local
menu opens (see figure 33.1) in which you can choose if you
would like to create a new class or a new package. Select the
command New Package and name the created package manager.
Enter it with only small letters because this is the convention for
packages names. Then an icon in class diagram occurs which
remembers an increased icon of folders known from the file
manager. This icon represents the package in the class diagram.

Then create another package and call it town. When you di-
minish the project window so that it would not take too much
place and you adjust positions and size of icons (I remind that
you diminish the icons so that BlueJ could not hide the possible
imported type or package under them), you can have the class
diagram as in the figure 33.1.

Figure 33.1

The window of the
133b_Packages_Start project

www.dbooks.org

https://www.dbooks.org/

33. Packages 333

705. I have a project with two packages. What now?

And now I will show you two ways how to fulfill the package with source files. Let’s start with the
way in which you use only BlueJ. Double click on the package manager icon or enter the statement Open
in its local menu. A new window opens (BlueJ takes each package as a separate project).

Now enter the statement Edit ® Add Class from File. Then find the 130z_Class_Constructor project and
import all classes from it. (The simplest way how to select all is to click at any of them and then press
CTRL+A.) BlueJ imports the entered files into the current package in a casual order. As is demonstrated
at the figure 33.2, this arrangement is not applicable. As you see, this is not the proper way.

Figure 33.2

The arrangement of the class diagram of the 133b_Packages_Start project after the import of files from the
130z_Class_Constructor project

706. Where the package <go up> left up occurred? I did not install it into the project.

It represents the parent package. Its icon cannot be shifted nor deleted. But as you see at the figure
33.2, BlueJ avoids it when placing the types. But you can move your types to it.

707. Well. You told that this is not the proper way. So what should I do?

If you remember the animation OOPNZ_115_A1_SouboryVProjektechBlueJ, in which I showed you the file
structure of the project, you might have the idea that you can create packages without BlueJ, only with
the help of some file manager or use it to fine-tuning. And this is today’s way. Proceed as follows:

334 Part 3: Advanced Creating of OO Programs

1. Enter the command Project ® Save as and save the copy of the current project as a new project
named 133c_Packages_Arranged. Leave the original project for the future comparison.

2. Close the newly created project and start your favorite file manager. Open the manager subfolder
of the project folder of the just created project.

3. Copy the package.bluej file from the project folder of the project 130z_Class_ Constructor into this
folder (the manager subfolder).

4. Open again the project 133c_Packages_Arranged and open its manager package. Its class diagram
will be now almost the same as the class diagram of the 130z_Class_Constructor project (see fig-
ure 29.1 on page 278). The only difference will be that the parent package icon will appear
behind the classes in the upper left corner (see the figure 33.3).

Figure 33.3

Parent package shown behind the classes in the upper left corner

708. You are true; however the project complexity is still the same. I don’t see any simplification, but rather addi-
tional complexity coming with the packages.

We are just going to make it simpler. Let's continue with our modifications. Few steps remain only.
5. Leave the current project as a backup and create its copy named 133d_Packages_Separated by en-

tering the command Project ® Save as.
6. Close the newly created project and open its folders manager and town in your favorite file man-

ager.
7. Select the source files of the classes Arrow, ArrowTest, Car, CarTest, Light, LightTest, Town, TownTest,

TrafficLight, TrafficLightTest, and TestUtility in the manager folder and move the selected files
into the town folder.

8. Copy the package.bluej file from the manager folder into the town folder and replace the original
version of this file by it.

9. Close the file manager and open again BlueJ with the last project.

Is it O. K.?

709. I succeeded to move everything as you advised. Both packages now look out like my original project in which
certain classes are missing.

Good, and now let’s go to make the new project operating. Open the manager package and ask BlueJ for
its compilation.

www.dbooks.org

https://www.dbooks.org/

33. Packages 335

710. The PC did not compile the class MultishapeTest. It says: cannot find symbol – variable TestUtility.

This is because the TestUtility class is in a different package. For the time being, don’t pay attention to
it; I will soon show how to correct it. Comment provisionally the problematic statement (and thus hide
it for the compiler) and compile the project again. Now the compilation should succeed.

711. You are right. It really succeeded.

Let's move into the package town. Here your requirement for compilation will finish much worse be-
cause here you are not able to compile any class, because each class contains an error.

Before starting to remove the errors we will make (for the last time) a copy of the current project.
Name it 133e_Packages_Compiled. We leave the previous project as the backup for the case that we would
make an error, the removing of which would be more laborious than the new start of the modifications.

The package statement
712. Well, let’s have a look what is the problem.

To proceed in the same way activate the window with a source file of the TestUtility class, because
other test class use it and therefore we should start with its repairing. Notice the change in the first
line. There is the following statement

package town;

As you see, this statement consists of the keyword package, followed by a package name (to be precise I
should say full package name, but I will explain it later on) and a closing semicolon. This statement
has to be the first statement of the source code. Before it you can put only whitespaces or a comment.

You would find the same statement in all other source files. All files that are in a different package,
than in the root one, have to begin with the package statement. BlueJ knows it and accommodates you,
and supplements the relevant package statement at the beginning of the imported file. Thus you have
fewer sorrows.

Tree of Packages
713. You somehow forgot to tell me what the root package is.

As I already told, packages have the same tree structure as folders. Components in the tree structure
always have one parent and can have several children. The parent of the hard disc folder (if need be
of another medium with the similar address structure – e.g. the flash memory) is the folder in which
the given folder is located; folders and files which it contains, are its children. When you will look for
the parent of the tree element, and for the parent of this parent etc., you will arrive to an element that
has no parent – and this is the tree root. It is a root folder at the disc.

Similarly it is with packages. The package that has no parents, i.e. it is not a sub-package of another
package, is called the root package. All other packages have to be located in certain package which we
call their parent package. All packages besides the root one must have a name. The only one root
package does not have any name (or better said it has an empty name). But it doesn’t need it, because
the root package can be the only one package.

336 Part 3: Advanced Creating of OO Programs

Look at the figure 33.4, on which I showed you the arrangement of source
files of the Java standard library which, as you know, corresponds to the
arrangement of its packages. The root package is located in the SRC folder.
It has six children – the packages com, java, javax, launcher, org and sunw. I
opened the java package which has 13 children. The most important of
them being lang package, where all key data types are located. They are
not seen at the figure but you can see that besides these invisible children
(data types) this package has another five sub-packages. And you could
continue like this throughout the whole tree.

714. But how I can recognize in which folder the root package is placed? The SRC
folder is not the root folder at your disc.

Java establishes certain rules for determining of folders in which the root
package occurs. However, each development environment defines certain
way, how to make easy the determination of the root package for the user
as much as possible. As you could see a while ago, when you create a new
project in BlueJ, firstly its root package is opened in which you can define
its separate sub-packages and in each of them sub-package of this
sub-package etc.

When you build up a package tree through the file manager, please
remember, that each folder, representing a package, contains its own
package.bluej file that has the key information about this package. In case
you will find the package.bluej file in its parent folder, it means that also
the parent folder represents some package, and then its child folder repre-
sents its sub-packages. The folder, whose parent folder doesn’t contain the
package.bluej file, represents the root package.

715. If I understood properly, you told that Java establishes rules for determination of FOLDERS in which the source
package is located. Does it mean that it can be spread in several folders?

Yes, the standard library is located at a certain place and it has also its root folder there. But our pro-
ject has its root at a different place. Beside that we can use some other auxiliary programs, each of
them can be divided into a set of packages and each of them will have its root somewhere. The virtual
machine unifies all these trees and makes out one big tree of them with which it works.

Simple and Full Names
716. And what happens when the same package will be in the second tree as in the first one? Will the packages also

be unified after unifying the trees?

It depends on whether their full names will be equal. If yes, they will be unified and the virtual ma-
chine will perceive them as one big package.

Figure 33.4

The structure of packages
of the standard library

www.dbooks.org

https://www.dbooks.org/

33. Packages 337

717. Second time you are speaking about some full name, but you did not tell me, what it is. What is the difference
between a simple name and a full one?

The simple name of a package, a class, an interface or an enumeration type (in further text I will call
them overall as entities) is the name which we always used when we asked BlueJ for creating a class,
an interface or a package. The simple name is an identifier. It means it has to correspond with rules for
creating the identifiers.

The full name of an entity consists of the full name of a parent package (the package in which the
given entity is located) followed by a dot and a simple name of the given entity. It means that when
there will be the Cls class located in the bbb package, which is a sub-package of aaa, that is in the root
package, then the full name of this class will be aaa.bbb.Cls, the full name of the package bbb will be
aaa.bbb and the full name of the aaa package will be also aaa, because packages in the root package have
the same full names as the simple ones. Other entities from the root package do not have any full name.

718. Other entities of the root package do not have any full name? Why?

Take it as that the root package is degenerated and can be used only in two situations. First of all it is
in introductory courses of programming when students do not know packages, and second, in the
moment when you need to instantly examine some idea and you know that you will again immediate-
ly delete the created classes as well as the interface. Not to divert you to use it for something more se-
rious, the authors declared it as a degenerated package in the 1.3 version (Thanks God!). Thus, you
can use the data types defined in the root package again only in the root package.

Package java.lang
719. A while ago you told that the compiler did not like when I worked with a class from a different package. Now

you tell me that the root package is nearly not used. How is it possible that the compiler did not protest when I
used the classes String and System? Are these classes in the root package?

No, they are not there. Another exception applies to their package. When I showed you the tree of the
standard library packages a while ago, I told you that the most important package is java.lang because
there are all key data types in it. Without this package you cannot program anything. That’s why it
has an exception and data types of the java.lang package can be “addressed” only with their simple
names.

You can, but you do not have to. Try that when you use the full name, i.e. java.lang.String, resp.
java.lang.System, everything will operate. Also the class java.lang.Object, which you met several times,
comes out of this package, and you even met its full name in the part Return Stack on page 314.

The import Statement
720. Allow me to get back to the incorrect programs. Please, explain me how can I correct the errors.

As I have already told you, the errors announced by the compiler are caused by using data types
which are in another package. Until you are operating within one package, you suffice with simple
names of data types. However, as soon as you get to another package (of course, with the exception of
java.lang package), you have to use for its “children” quite different names.

338 Part 3: Advanced Creating of OO Programs

Ask for compilation of the opened class (TestUtility class). The compiler stops at the declaration of
the CM field announcing:

cannot find symbol – class CanvasManager

It's clear – the CanvasManager class is not in this package. Modify the declaration of the CM field into the
following form:

private static final manager.CanvasManager CM = manager.CanvasManager.getInstance();

Then ask once more for compilation of this class.

721. Oh yes, this error disappeared. But several lines later the same error appeared in declaration of the position
field. Looking into the rest of this file as well as into other files I discovered that there are dozens of such cor-
rections needed. If I will rename each appearance of each class, I have to stay here up to morning.

Don’t be afraid, Java offers you another possibility, which is the import of the entered types. If you
know that you will use a data type from another package in the source code, you can insert the import
statement behind the package statement (if it’s not there, then at the beginning of the file), which con-
sists of the keyword import followed by the full name of the imported type and completed by a semi-
colon. Then you will be allowed to use a simple name in the source code and the compiler itself will
convert it to a full name based on information from the import statement. For example open the Light
class and insert the following line behind the introductory package statement

import manager.CanvasManager;

Be sure, the compiler will be satisfied.

722. It’s satisfied with the canvas manager, but it doesn’t like Position. Should I write it behind the CanvasManager?

No, you can import only one data type in each import statement. But you can add the Position import
behind the color import and imports of further classes as well as interface types behind it about which
the compiler will tell that their names are unknown.

723. It helped. The class light is already compiled. Its beginning now looks out as follows:

package town;

import manager.CanvasManager;
import manager.IModular;
import manager.IMovable;
import manager.IO;
import manager.Mover;
import manager.Position;

724. Should I modify also further classes like that?

I advise you something quicker. As I told you that now the project is divided into packages only in
rough outlines, so that you would learn how to do it, I allow you using a speeded up version of the
import statement. If you write a star instead of the data type name in the import statement behind the
full package name and the following dot, you will import all names of data types from the given
package. For that reason place the following statement into other classes

www.dbooks.org

https://www.dbooks.org/

33. Packages 339

import Manager.*;

Then let compile all of them and examine if the tests are operating.

725. Wonderful! Everything is compiled and everything is operating. Perfect! So now I should get into the manager
package and correct similarly the class MultishapeTest.

You can do it as an exercise, but as I told you, this correction was only in rough outlines. So after you
will do the corrections, we will try the real one. So that you could control that you understood and ex-
ecuted everything properly you can compare your converted files with files of the project
133c_Packages_Arranged.

Package Name Convention
726. It’s revised – the following statement helped

import town.TestUtility;

727. Well, and now let me know, in what our compilation is imperfect and why you call it a compilation in rough out-
lines?

It is one-purpose and does not correspond to conventions. If our project would increase (and it will
increase), it would complicate further development.

728. Don’t be vague and tell me what’s wrong with it.

I will start with those conventions. When Java starts, it was abundantly used at an internet. You could
create a program and include it into a web page as an applet. Anybody who looked at this web page
with a reasonably intelligent browser (i.e. with such that was able to open applets) could open your
code in that page.

However, to do it, it’s good to provide so that two programs downloaded from various sources
would not quarrel in the computer only due to the fact that their authors decided to give the same
name to their classes. Therefore the Java authors decided to establish conventions for such package
names, to prevent the situation that there will be two data types with the same names.

729. I’ve heard that applets are not much used now.

Applets are really used more at intranet, but the convention remained. It is just the same when the
programs are quarreling for a name at internet or at the client who had the bad luck that he bought
two programs with identical identifiers. Therefore, if you name packages according to internet do-
mains and sub-domains in your web address (in case you do not have a web address, you can use
your e-mail address), then the full name of the resulting package will not collide with the package
name of anybody in the world. And you yourself are responsible for uniqueness of names in your
domain.

Packages, in which the programs are located, have the names according to web address of the
product or its author. In case the product is developed in a company or at a school, then the given
company or the school are considered to be the author. So when my web address is pecinovsky.cz, I
know that the cz.pecinovsky package will be unique and no one who respects the quoted conventions
can have it.

340 Part 3: Advanced Creating of OO Programs

730. And does everybody respect these conventions?

You know – everywhere there are wrongdoers. Companies, at least those, whose products I met, ob-
serve this convention. The authors of open-source projects are not so careful. E.g. the source code of
BlueJ should be in the org.bluej package, but authors skipped the initial org and put it into the bluej
package. And you can find more of such examples. However, this is not the reason to do it. I would
recommend abiding these rules.

731. Does it mean that all programs for this course are at your PC in the package cz.pecinovsky?

It is a little bit more complicated. As you know I deal above all with teaching and I often develop the
same program in several languages for various language versions of the given course or textbook.
Therefore it can happen that names of data types in several languages will be equal (the IO class is a
hot aspirant). Therefore I add sub-packages according to the used language.

In addition each of my books on programming has its own sub-package inside each language
package. When starting to write this textbook I called it Learn Object Oriented Thinking and
Programming, which means the “root” package of accompanying program for the English version has
the name

cz.pecinovsky.english.lootp

In this package and its sub-packages you will find all files, which you receive from me including sam-
ple solutions of all exercises. It’s up to you if you will define for your programs your own “package
way” or if you will locate them somewhere along those mine ones.

Let’s show how you could prepare a project, using BlueJ and the file manager, according to conven-
tions which I indicated a while ago.

732.

Change in Package Dividing
733. When I asked you what is so imperfect in my transfer into packages, you told me that it is single-purpose and

does not correspond with conventions. You explained the conventions. But did you mean by this single-purpose
something else?

Yes, I did. In this project there were data types gathered from several groups, as follows:

F The class CanvasManager, graphic classes, which directly cooperated with it (Ellipse, Rectangle...),
certain servant classes (Mover, Resizer) and interface types which supported their mutual cooper-
ation.

F Classes which you proposed within the lessons – those were transferred into the town package.

F Classes which were universal and could be useful also to classes that don’t cooperate with the
class CanvasManager. All three crates (i.e. Position, Size and Area), NamedColor and Direction8 belong
here. All of them cooperate for example with objects in projects that don’t use CanvasManager, but
Canvas.

F The auxiliary and single-purpose classes Tests, MultishapeTest, CCI and Call.

Each of those groups is worthy to have an independent package.

www.dbooks.org

https://www.dbooks.org/

33. Packages 341

734. I don’t understand fully why, but let’s believe you. So what shall I do?

Create a new project and call it 133z_Packages. Make a sub-package cz, another sub-package pecinovsky
in it, in this package another sub-package english with a sub-package lootp. Create four sub-packages:
town, manager, tests and util in the package cz.pecinovsky.english.lootp. And import the source files of
separate classes into them from the project 130z_Class_Constructor according to the listing 33.1. Then
try to run everything.

Listing 33.1: Location of the source files as well as the auxiliary files in separate folders of the 133z_Packages
project

133z_Packages
133z_Packages\package.bluej

133z_Packages\cz
133z_Packages\cz\package.bluej

133z_Packages\cz\pecinovsky
133z_Packages\cz\pecinovsky\package.bluej

133z_Packages\cz\pecinovsky\english
133z_Packages\cz\pecinovsky\english\package.bluej

133z_Packages\cz\pecinovsky\english\lootp
133z_Packages\cz\pecinovsky\english\lootp\package.bluej

133z_Packages\cz\pecinovsky\english\lootp\town
133z_Packages\cz\pecinovsky\english\lootp\town\Car.java
133z_Packages\cz\pecinovsky\english\lootp\town\CarTest.java
133z_Packages\cz\pecinovsky\english\lootp\town\package.bluej
133z_Packages\cz\pecinovsky\english\lootp\town\IModular.java
133z_Packages\cz\pecinovsky\english\lootp\town\Town.java
133z_Packages\cz\pecinovsky\english\lootp\town\TownTest.java
133z_Packages\cz\pecinovsky\english\lootp\town\TrafficLight.java
133z_Packages\cz\pecinovsky\english\lootp\town\TrafficLightTest.java
133z_Packages\cz\pecinovsky\english\lootp\town\Light.java
133z_Packages\cz\pecinovsky\english\lootp\town\LightTest.java
133z_Packages\cz\pecinovsky\english\lootp\town\Arrow.java
133z_Packages\cz\pecinovsky\english\lootp\town\ArrowTest.java
133z_Packages\cz\pecinovsky\english\lootp\town\TestUtility.java

133z_Packages\cz\pecinovsky\english\lootp\canvasmanager
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\package.bluej
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Line.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Ellipse.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\IChangeable.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\ICopyable.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\IPaintable.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\IResizable.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\IMovable.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\IShape.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Resizer.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Painter.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Multishape.java

342 Part 3: Advanced Creating of OO Programs

133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Rectangle.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Mover.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\README.TXT
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\CanvasManager.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Text.java
133z_Packages\cz\pecinovsky\english\lootp\canvasmanager\Triangle.java

133z_Packages\cz\pecinovsky\english\lootp\tests
133z_Packages\cz\pecinovsky\english\lootp\tests\package.bluej
133z_Packages\cz\pecinovsky\english\lootp\tests\CCI.java
133z_Packages\cz\pecinovsky\english\lootp\tests\MultishapeTest.java
133z_Packages\cz\pecinovsky\english\lootp\tests\Tests.java
133z_Packages\cz\pecinovsky\english\lootp\tests\Call.java

133z_Packages\cz\pecinovsky\english\lootp\util
133z_Packages\cz\pecinovsky\english\lootp\util\yellow.java
133z_Packages\cz\pecinovsky\english\lootp\util\package.bluej
133z_Packages\cz\pecinovsky\english\lootp\util\IO.java
133z_Packages\cz\pecinovsky\english\lootp\util\Area.java
133z_Packages\cz\pecinovsky\english\lootp\util\Position.java
133z_Packages\cz\pecinovsky\english\lootp\util\README.TXT
133z_Packages\cz\pecinovsky\english\lootp\util\Size.java
133z_Packages\cz\pecinovsky\english\lootp\util\Direction8.java

When you will build up those packages and sub-packages, please notice that in the title bar of the pro-
ject window the package is quoted in square brackets after the project’s name, whose class diagram is
displayed in the window. And as you can see at the figure 33.5, you will find statements for moving to
any parent and grandparent packages in local menu of the parent package.

Figure 33.5

Local menu of the parent package

www.dbooks.org

https://www.dbooks.org/

33. Packages 343

Why the Star Notation is Unsuitable
735. Did I understand it properly, that now I should run the whole new project, i.e. go through all data types and

complete properly the imports to all, so that they may be compiled?

Yes, but don’t use the star notation in the import statements – it is not considered as appropriate and it
is tolerated only in experimental codes. In case you use a star in an import, you don’t know what ex-
actly you are importing. It can happen that there is a type added to the imported package, which has
the same name as certain type in your package, and, because the imported ones are preferred, this
type will be used instead of your one. And you will be surprised, why your program suddenly does
not operate.

736. Well, I am surprised. So you say the imported type is preferred to the type of its own package?

Exactly, and that’s one of reasons why using the star notation in import statements is not
recommended. I understand that it is far more writing, but using the advanced development envi-
ronments (e.g. NetBeans, which will be used in the next volume) you will avoid this writing because
these environments are able to produce the needed imports independently.

And not to press much on you, if you will not like it, you can close the project and copy the not-
yet-ready-part from the 133z_Packages project in which the sample solution is completed. But it would
be good to run at least the data types in the town package.

737. Isn’t the division into sub-packages uselessly complicated? Like this, I will have to go through three layers of
packages in each opening of the project where there is nothing.

No, you will not have to go through it. BlueJ takes it into account and when it finds during opening of
the project, that the given package contains only one sub-package and nothing else, it automatically
moves to this sub-package and repeats the possible test (and if need be also the corresponding move)
up to that package, where are no sub-packages, or where more sub-packages are contained, or where
also classes are contained besides the sub-packages. Try it.

738. You are true. When I closed the project and opened it again, it opened only in the package with four sub-
packages. But what should I do when I would like to open the project in certain particular sub-package?

It is possible in several at once. When you open several packages and you enter the statement Project
® Quit, BlueJ will remember this configuration and next time it will open in the same configuration
(i.e. the same packages in identically located windows), in which you closed the project.

Exercise
739. I would say that the last task, i.e. running the new project, was acting as an exercise.

Yes, but I would have one suggestion for you. Try to create your own hierarchy of packages acceding
to conventions (if you do not have your own web page, you can use your e-mail address as a basis)
and insert into it your solutions from previous lessons.

344 Part 3: Advanced Creating of OO Programs

Review
Let’s review what you have learned in this lesson:

F The time need for creating a program grows exponentially with its size. Therefore, one of the
targets of the good proposal is to divide the program into several smaller parts, which will be
minimally dependent one on another (they should be minimally coupled).

F Packages create hierarchical tree structure, similarly as the folders at a disc.

F All but one elements of the tree structure have only one parent. The element that has no parent
is called a root.

F If the files are saved at a disc, the placing of classes into packages has to correspond precisely
with the placing of their class files to folders.

F Folders, in which the root package is located, have to be specified in Java. Majority of develop-
ment environments make this instead of the user.

F There may be more folders keeping the root package. The virtual machine unifies contents of all
such incurred trees into one common tree.

F BlueJ considers as the root folder such folder, which contains the package.bluej file, but its parent
folder doesn’t contain it.

F The package, in which certain entity (a class, an interface, an enumeration type or another
package) is located, is called a parent package of the given entity.

F A simple name of an entity is an identifier by which we name the given entity.

F The full name of entities is composed of the full name of their parent package, followed by a dot
and a simple name of the given entity.

F The root package is degenerated. The full names of packages in the root packages are identical
with the names of the simple packages. Data types in the root package do not have full names.

F According to the convention the parent package of all parts of certain product is the package the
name of which is derived from the web address of the product or of the author. A company (a
school) is considered as an author of the company’s (school’s) program.

F Packages can be created directly in BlueJ, as well as externally with the assistance of certain file
manager.

F Source files of all data types which are in the different than in the root package, have to start
with the package statement, in which the full name of the parent package of the given data type
is quoted after the package keyword and the statement is finalized by a semicolon.

F In the source file you can refer with a reduced name only to those data types which are in the
same package or are quoted in the import statement. To other data types you have to refer with
their full name.

F The only exception from the previous rule is the data types from the java.lang package, which
are all implicitly imported.

www.dbooks.org

https://www.dbooks.org/

33. Packages 345

F The import statement consists of the keyword import followed by the full name of the imported
data type and the finalizing semicolon.

F One import statement can import only one data type. Therefore it is necessary to insert one
import statement for each imported type.

F In the import statement you can use the star notation, in which instead of the finalizing simple
name of the data type you quote a star. Then all data types of the given package are imported.

F Using of star notation decreases the lucidity of the program. Therefore you should use it only in
training projects. In real projects you should avoid using it.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 133z_Packages project.

346 Part 3: Advanced Creating of OO Programs

34 Linking of Instances
34. Linking of Instances – 000000

34 Linking of Instances
What you will learn in this lesson
In this lesson you will see how it is possible to define a road along which cars will drive. You will see how
you can use the advantage of linking of instances, when each instance in the closed chain knows its de-
scendant and how it is possible to create a closed chain. At the same time you will be presented a design
pattern Builder and you will learn how it is possible to define creating rings for our cars. At the
conclusion you will learn how to use a static import.

Project:
In this lesson you continue in using the 133z_Packages project.

Note:
Since this lesson you will deal only with constructions to which the BlueJ environment does not
offer any “added value”. Those who would like to use some more professional development
environment; it is now the proper time to transfer to it. However, I don’t like to lose a number
of pages with explanations of the new development environment and therefore I will continue
in using the BlueJ environment until the end of this textbook. I introduce the NetBeans IDE in the
next volume.

Conditions, the Future Objects Have to Meet
740. In the previous lesson you really succeeded to simplify our project (or better said to simplify the part containing

objects created during the course) and thus I expect that today something will be added to them.

You are expecting properly. We will further improve the town package. There are cars and traffic lights
in it and it’s the proper time that some routs should appear in it as well. That’s why today the class
Road will be proposed which will enable us to define the road at the canvas along which your cars as
well as other objects will drive. During next lessons we will improve our project, so that it would be
possible to make races at these roads.

741. It looks nice. However, for races it would better, if it would not be a route, but a ring. Formula F1 is also run-
ning along a ring.

Surely, it will be a ring. Let’s think how to make out such ring. To slow down a little bit your flower-
ing ideas to areas which might be over your programming abilities, let’s set basic, initial limits (which
will be elaborated in near future) as follows:

F Entire visible processes will take place at the canvas managed by the canvas manager.

F Let’s use the square grid displayed at the canvas by the manager and let’s insert all objects into
this squared grid.

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 347

F So that we could make the grid finer in case of necessity (to place more fields at the canvas)
without crashing the general outlook of the canvas, all objects have to be able to accommodate
to this change. Therefore all depicted objects will be created with implementing the IModular in-
terface.

742. I am afraid that two meaning of the term field would confuse me. You use it once time for the object’s data and
the other time for the area at the canvas.

You are true it can confuse a bit, especially when we soon add the third field – the road-field. Maybe
you remember that I explained that classic OOP uses the term attribute for the object’s data. Certain
textbooks prefer it (me too), but I wanted to accommodate the Java habits and therefore I use the term
field. Not to confuse you, when a misunderstanding may occur, I specify if I talk about an attribute or
about a field on the canvas or about a field of the road.

Nevertheless, let's return to our program – what do you think about the above mentioned limits?

743. It looks reasonably, despite the fact that in case of a road it is limiting. On the other side, I precisely know how
to program it – I will set it up from grey rectangles (or maybe squares).

When you are producing an object you shouldn’t be limited only to how it will look out. You have to
think over how it will operate and how it will communicate with other objects. It’s not much wise to
make out clever objects at every price, but sometimes a bit of intelligence is suitable for each object.

Think over the fact that it might be profitable if your road would communicate with cars (if need
be also with other objects) which will go along it. For example it may tell them when and where the
objects should turn to. Then the cars may go alone and the next version could be arranged so that the
player could compete with the computer.

The RoadField Class
744. I admit that I have no idea. I should know precisely in each moment where the car is on the road and where this

part of the road is going to. I think I should program also some maps as well as GPS.

GPS? No, you need nothing like that. It’s sufficient to define the road as a chain of small parts – seg-
ments, where each of them knows to which direction it goes and what is its descendant. The object
that follows the road receives the reference to the first segment and it can start going. The object asks
the received segment to which direction it should go and what its descendant is. Arriving to the
descendant, the object asks once again and this is repeated until the object arrives to the aim.

745. Oh yes! It might be operating! And when you told that everything should be in the squared grid of the canvas,
one part (the road-field) could be a square occupying one canvas field bounded by the grid. And now I have to
think out only how to compose the route from those road-fields.

Thinking over how to compose the road from road-fields has certain sense only when you have a basic
idea what one road-field is. Let’s define the RoadField class and let’s think over what it should know.

348 Part 3: Advanced Creating of OO Programs

746. It will have to know to draw itself which means it will have to implement the IModular interface according to
your limits. Then you told that it should know its direction and its descendant. But the descendant will be again
the RoadField instance. Does it matter if one instance will have another instance of the same class as a field (an
attribute)?

No, it doesn’t matter and it’s used relatively often. Sometimes these objects are called linked lists. Our
road-fields will make just such list.

Well, do you think that’s all?

747. I think that for the beginning it’s quite a lot.

You properly say for the beginning. You never know what can appear in course of further parts and
what will push you to change or extend the originally proposed definition. To summarize what you
thought out for the RoadField class and its instances, I say the following:

F The road-field has to know how to draw itself. Remembering the light, we surely will have the
idea to define a field (an attribute) – a rectangle this time. (In fact it will be a square, but as there
is no class of squares, the rectangle class is quite suitable.) And you know that this square will
not change (i.e. it will be not replaced by another square), which means it can be defined as a
constant.

F The class has to implement the IModular interface which means the road-field has to know its
coordinates and its module. However, other attributes (fields) don’t have to be defined, because
(similarly as at the light) you can ask the just defined rectangle.

F The road-field should know the direction of riding. And that’s why it is necessary to define the
attribute containing this direction.

F The road-field also should know its successor, i.e. which road-field is the next one. So it is
necessary to define an attribute for this as well.

F It should be possible to ask for the direction as well as for the successor. Therefore we should
define also the accessory methods that will provide this information as well.

You already know which methods and attributes the RoadField class will need and you can start think-
ing over the definition of a constructor. First of all which parameters it should have. Do you have
some idea?

748. I would say that parameters are clear: we need the position, the size, the color, the direction and the successor.

Unfortunately the parameters are not clear. The first what comes on my mind are problems with the
successor. To get a reference to a successor, it is necessary so that it would exist. So first of all you have
to create the successor, but it needs again to know its successor. And it would stretch to infinity. You
have to bypass it somehow.

I advise you to define three constructors as follows:

F The first constructor (let’s call it an opening one) will be used in the definition of the first
road-field of the future ring. That’s why you will set its position, module, direction and its
color. But you will not adjust its successor because no one still exists.

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 349

F The second constructor (let’s call it a continuing one) will be used for defining the following ar-
rays of the ring. You will set a predecessor of the created array as well as the direction in which
the given array should be crossed over. The constructor will ask the color as well as the module
of the predecessor, because it should be the same.

The constructor will use the help of its predecessor also as far as the position of the created
array is mentioned, because knowing where the predecessor is located and in which direction
you can drive through it, the constructor can derive where the created road-field should be
placed so that the joint object would arrive to it. (In a moment I will tell you how to derive it.)

The parameter referring to the predecessor will serve also for another important thing. The
constructor knows that the created road-field is a successor of the set predecessor so that it can
initialize the predecessor’s attribute (field) referring to its successor which is the just created
object.

The constructor does not know the successor of the just created object, and that’s why it
leaves the relevant field (attribute) not initialized and expects that the future successor will ini-
tialize it retrospectively in the moment of its birth – similarly as it initialized the “successional”
attribute (field) of its predecessor.

F The third constructor (let’s call it a closing one) will be used for the definition of an array which
closes the whole ring. Besides the direction and the predecessor you have to give also its succes-
sor to this constructor. After this road-field you will not create other road-fields and thus you
need an alternative way how to set a successor for this array.

Fortunately we know the successor of the last road-field – it is the first road-field of the ring.
Therefore you pass this road-field to the closing constructor and it will set the successor of the
created array alone.

749. It is clever! And maybe I would be able to program it myself. Can anything surprise me?

No surprise, but two advices for you:

F For calculation of the created road-field’s position based on the position as well as the direction
of its predecessor you should call the method nextPosition(Position,int) of the direction of the
given road-field. When you pass the predecessor in the first parameter and the module (the
road-field size) in the second one, the method will return you the position of the neighboring
road-field in the given direction.

F Don’t try to define everything in one constructor, to which the remaining two will refer through
this. It was possible in all classes which you defined until now. In this case it would be possible
as well, but it would be quite clumsy. The closing constructor can refer to the continuing one
because then it will need to supplement only the successor of the created road-field. But the
opening and continuing constructors will differ and you should program them both once again.

F To unify the names, call the method, which will return the successor of the given road-field,
getNextPosition.

And you can start creating. You can compare your result with the sample solution in the listing 34.1. I
stated in this listing only the declarations of fields (attributes) and the definitions of constructors. You
will not find definitions of instance methods in it, because I thought they are quite clear. But, in case
you would see them, you can look at the final project of today’s lesson.

350 Part 3: Advanced Creating of OO Programs

Listing 34.1: The fields (attributes) and constructors of the RoadField class

/***
 * Instances of class {@code RoadField} represent parts,
 * from which the roads are built.
 * Each instance knows the direction in which it is driven through,
 * and its descendant that is a sibling, where the driven through cars arrive.
 */
public class RoadField implements IModular
{
 //== CONSTANT CLASS FIELDS ===

 /** Canvas on which the instance will be painted. */
 private static final CanvasManager CM = CanvasManager.getInstance();

 //== CONSTANT INSTANCE FIELDS ==

 /** Rectangle representing the field's area at the canvas. */
 private final Rectangle area;

 /** Direction in which the field can be driven through. */
 private final Direction8 direction;

 //== VARIABLE INSTANCE FIELDS ==

 /** Descendant is a {@code RoadField,
 * where the driven through cars arrive. */
 private RoadField next;

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Creates a starting field with the given position, direction and color.
 * <p>
 * Because a ring building starts with this constructor,
 * we call it the "<i>starting constructor</i>".
 *
 * @param position Field position
 * @param direction Direction in which the field will be driven through
 * @param color Field color
 */
 public RoadField(Position position, Direction8 direction, NamedColor color)
 {
 int module = CM.getStep();
 this.area = new Rectangle(position.x, position.y,
 module, module, color);
 this.direction = direction;
 }

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 351

 /***
 * Creates a field following the field given as an argument
 * ({@code predecessor}), and being driven through in the given direction.
 * The created field borrows its size and color from the {@code predecessor}
 * and it also derives its position from the predecessor's
 * position, size and direction.
 * <p>
 * Because a ring building continues with these constructors,
 * we call it the "<i>continuing constructor</i>".
 *
 * @param predecessor Field, which will be followed by this field
 * @param direction Direction in which the field will be driven through
 */
 public RoadField(RoadField predecessor, Direction8 direction)
 {
 int module = predecessor.getModule();
 Position position = predecessor.direction.
 nextPosition(predecessor.getPosition(), module);
 NamedColor color = predecessor.area.getColor();

 this.area = new Rectangle(position.x, position.y,
 module, module, color);
 this.direction = direction;
 /** Set itself as a successor of its predecessor */
 predecessor.next = this;
 }

 /***
 * Creates a field following the field given as an argument,
 * being driven through in the given direction,
 * and being followed by the given successor.
 * The created field borrows its size and color from this predecessor
 * and it also derives its position from the predecessor's
 * position, size and direction.
 * <p>
 * Because a ring building ends with these constructors
 * (it closes the created ring),
 * we call it the "<i>closing constructor</i>".
 *
 * @param predecessor Field, which will be followed by this field
 * @param direction Direction in which the field will be driven through
 * @param successor Field, which will follow this field
 */
 public RoadField(RoadField predecessor, Direction8 direction,
 RoadField successor)
 {
 this(predecessor, direction);
 this.next = successor;
 }

//Instance method are omitted
}

352 Part 3: Advanced Creating of OO Programs

The Ring Class
750. Well, I had to look at it a bit, but I think I succeeded to do it. Can I test it somehow that it’s operating?

I would say that the best testing will be if you would compose a ring of those arrays. Let’s think over
which properties and abilities the rings should have. When building the ring you will also test if you
programmed properly the RoadField class.

751. Well. Let’s define the Ring class. What such ring has to know? I think it should know which road-fields belong
to it.

Good, but it doesn’t have to remember them all. It’s sufficient to know only the initial one, because the
“traveler” can ask for the next array and so on.

You told what it should to know, however you forgot to tell also, what it should be able to do. Let
me to tell it instead of you. It will be not much demanding. To start up along the ring, it’s sufficient so
that the ring would return its starting road-field at a request and that it will be able to paint itself.

From the previous we can derive that also the ring’s constructor might be simple: it may have only
one parameter, in which it receives a reference to the initial road-field and remembers it so that it
could be passed at a request.

Due to I would like to add something into this class definition, I will not show it to you at once. But
if you are burning from eagerness you can find it in the listing 34.3 on page 357.

The Design Pattern Builder
752. You told that the constructor gets only a reference to the initial road-field in the parameter and remembers it. I

thought that the constructor will have the task to build up this ring.

Oh, it’s a bit more complicated with this building. If the ring should know to build up itself, we
should have to equip it with several methods, and with calling them step by step we might build it up.
But these methods would be useless during operating and on the contrary, by casual calling the whole
ring might be disrupted.

Such situations can appear in practice. Therefore the design pattern Builder recommends separating
building of complex constructed objects from their running. When building the ring you should define
a special class, the instances of which would take care about this building. The result of the whole pro-
cess then will be a new ring which cannot be further changed nor disturbed.

The RingBuilder Class
753. Oh, it really wouldn’t cross my mind. So your advice is to define an independent class for building the rings –

e.g. RingBuilder? I’m afraid I have no idea how to propose this class. You should give me some clue.

Considering this class you can proceed e.g. as follows:

F When you create a new builder, you should equip it immediately with basic information about
the ring which the builder should create. For example a position as well as a color of the created
ring belongs to this information. It could be passed to the constructor in parameters, so that the
constructor could save them in fields (attributes).

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 353

F Then you have to define methods with which you will create the ring. Because you remember
that the RoadField class, which will provide its instances for composing the ring, has a special
constructor for opening, continuing and closing road-fields, you can estimate that three meth-
ods will be needed. These methods could be satisfied with an only parameter – a direction in
which you can go through the inserted array. Then you could define the methods
startTo(Direction8), continueTo(Direction8) and closeTo(Direction8).

F When all arrays will be composed the builder will have to deliver also the created ring. There-
fore define the getRing() method returning the freshly created ring.

754. It crossed my mind that I don’t know, ho to paint such ring. I should probably paint it field by field, but I don’t
know how to program it.

In my university courses the advanced students would now shout, that it can be solved by a loop. Yes,
it can, but we try to do without it, because (as you will see) such solution is simpler in the final result.
When you start to think about the possibilities, how to ensure depicting of the created road-fields at
the canvas, you probably come upon to three possible solutions:

F Include the registration at the canvas manager into the RoadField constructor.

F Register the road-field at the canvas manager in the above mentioned creating methods of the
builder.

F Don’t take care about any registration and set up a multishape from the created road-fields.
This multishape can be passed to the created ring as the second argument. The ring will imple-
ment the IPaintable interface and define its painting by delegating it to the obtained multishape.

I prefer to leave the registration in the calling hierarchy as high as possible and therefore I recommend
the third mentioned possibility with the multishape.

755. You advise well, however I remember, that we can add into the multishape only the instances implementing
IShape. Should we therefore add this implementation to the RoadField definition?

It would be uselessly too much work. Let’s use another way. The builder creates an empty multishape
and will pass it to the RoadField constructors (we should add there a parameter – add it at the end of
the parameter list in all three constructors). These constructors add the square representing the
road-field’s area to this multishape. Thus, this multishape will be a visual representation of the ring
and its road-fields. We only should ensure that the positions and sizes of the multishape and particu-
lar road-fields will be modified synchronously in the future.

I would say that after all these clues you could define the builder alone. Test it. You can compare
your definition with the sample solution in the listing 34.2 (you can check the correctness of the
RoadField constructors’ modification in the accompanying project).

756. One more question: “What did you mean by saying that you would leave it in the calling hierarchy as high as
possible?”

In the calling hierarchy the calling method is always higher and the called method is lower. When you
define certain method, you operate in a higher level of abstraction than when you think how to define
methods which you will call from this method. Let’s show it in an example.

354 Part 3: Advanced Creating of OO Programs

F You were operating in the highest level of abstraction when you started to speculate over the
possibility to program organizing a race.

F Then you came lower ruminating what is necessary for such race. It is necessary to have racers
(they already exist more or less) and the racing ring.

F Then you came lower again and you begin speculating how to define the racing ring. You came
to the idea that it would be good to define the route’s array of and the builder, who will build a
ring from these arrays.

F Then you came again lower starting to mediate over what the route’s array should know. And
now, you are going to solve the question, how the builder should be defined.

Generally, there are things that are suitable to be inserted in the calling hierarchy higher, and besides
them, there are things which should be inserted lower. However, I wouldn’t like to ruminate
about this question because you could sink in theories as to understand it you don’t have enough of
experience.

Listing 34.2: The RingBuilder class

/***
 * Instances of class {@code RingBuilder} represent builders
 * that are able to build ring compound from the {@link RoadField} instances.
 */
public class RingBuilder
{
 //== CONSTANT CLASS FIELDS ===

 /** Canvas on which the instance will be painted. */
 CanvasManager CM = CanvasManager.getInstance();

 /** The default road color. */
 private static final NamedColor DEFAULT_COLOR = NamedColor.GRAY;

 //== CONSTANT INSTANCE FIELDS ==

 /** Position, where the first road-field will be placed. */
 private final Position startPosition;

 /** Color of the created ring. */
 private final NamedColor color;

 //== VARIABLE INSTANCE FIELDS ==

 /** Multishape containing all the ring fields. */
 private Multishape multishape;

 /** The ring starting field.
 * When the ring is closed, it is also the last field. */
 private RoadField startField;

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 355

 /** The ring end field.
 * When the ring is closed, it is also the starting field. */
 private RoadField lastField;

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Creates a builder that will build the ring
 * with the default color starting at the given position.
 *
 * @param startPosition Starting field position
 */
 public RingBuilder(Position startPosition)
 {
 this(startPosition, DEFAULT_COLOR);
 }

 /***
 * Creates a builder that will build the ring
 * with the given color starting at the given position.
 *
 * @param startPosition Starting field position
 * @param color Road color
 */
 public RingBuilder(Position startPosition, NamedColor color)
 {
 this.startPosition = startPosition;
 this.color = color;
 }

 //== INSTANCE GETTERS AND SETTERS ==

 /***
 * Returns the just created ring.
 *
 * @return Created ring
 */
 public Ring getRing()
 {
 return new Ring(startField, multishape);
 }

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Adds the first road-field of the created ring.
 *
 * @param direction Direction in which the field will be driven through
 * @return This instance for chaining the calls

356 Part 3: Advanced Creating of OO Programs

 */
 public RingBuilder startTo(Direction8 direction)
 {
 multishape = new Multishape();
 lastField = new RoadField(startPosition, direction, color, multishape);
 startField = lastField;

 return this;
 }

 /***
 * Adds a next road-field to the created ring.
 *
 * @param direction Direction in which the field will be driven through
 * @return This instance for chaining the calls
 */
 public RingBuilder continueTo(Direction8 direction)
 {
 lastField = new RoadField(lastField, direction, multishape);

 return this;
 }

 /***
 * Adds the last, closing road-field to the created ring.
 *
 * @param direction Direction in which the field will be driven through
 * @return This instance for chaining the calls
 */
 public RingBuilder closeTo(Direction8 direction)
 {
 lastField = new RoadField(lastField, direction, startField, multishape);
 multishape.creationDone();

 return this;
 }

 /***
 * Returns a string representation of the object – its text signature.
 *
 * @return A string representation of the object
 */
 @Override
 public String toString()
 {
 return "StringBuilder_(start=" + startPosition + ", color=" + color +
 ", first=" + startField + ", last=" + lastField + ")";
 }
}

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 357

Creating of Rings
757. I really don’t like to open any theory, because I think now I am able to make out some ring. Besides that, until

the ring class will not be defined, we cannot compile the RingBuilder class.

You are true. And when the class Ring is so simple (see the part The Ring Class on page 352), you can
entrust it with creating the rings. For each produced ring you will define a special static method that
will be able to create the ring at adjusted coordinates. When you will call this method several times
with various coordinates, you will receive several rings looking similarly. You can even add a parame-
ter that enables defining the ring’s color, so that individual instances of the given ring could be easily
identified.

Then you can organize races in which each racer will have his/her individual ring. All rings will be
equal and the racers will compete who will go through his/her ring quicker. How to program the
application that would enable such races will be the topic of some future lessons.

758. But, a moment ago you told me that it’s not good if the class alone would build complicated instances.

A moment ago I told that if the Ring class would know to build its instances it would have to offer
such methods enabling to create the required ring’s instance to all who would like to create certain
ring. These methods were moved to the RingBuilder class. Now I want to insert two sample methods
into the Ring class that will show how it is possible to create a ring with the help of a builder. You can
see them in the listing 34.3.

I admit that it would be more pure from the programming aspect if I would install quite new li-
brary class, but I didn’t want to overload the class diagram. If you would like to define more of those
rings, it would be better to establish such class. But as I’ve told, I only wanted to offer you two sample
methods demonstrating how the rings should be created.

In the newSquareRing method I show that in special simple cases it is possible to create the builder, let
it create the ring and return the created ring in one statement. The newLShapeRing method creates a more
complex ring and therefore its creation is divided into three statements: the first statement creates the
builder, the second one explains to the builder, how to create the ring, and the third one returns the
created ring.

In both methods you can learn, how it is possible to chain the methods returning a reference to its
instance.

Listing 34.3: The Ring class

/***
 * Instances of class {@code Ring} represent road rings,
 * where the players can travel or race.
 */
public class Ring implements IPaintable
{
 //== CONSTANT INSTANCE FIELDS ==

 /** The road starting road-field. In case of closed road (ring)
 * the starting field is the same as the final one. */
 private final RoadField startField;

358 Part 3: Advanced Creating of OO Programs

 /** The shape representing the ring at a canvas. */
 private final Multishape shape;

 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 /***
 * Creates the smallest possible ring at the given position.
 * The ring has the square shape, it will have the default, gray color
 * and it will start from its left upper corner to the east (right).
 *
 * @param startPosition Position of the ring start field
 * @return The created ring
 */
 public static Ring newSquareRing(Position startPosition)
 {
 return new RingBuilder(startPosition)
 .startTo (EAST)
 .continueTo(SOUTH)
 .continueTo(WEST)
 .closeTo (NORTH)
 .getRing();
 }

 /***
 * Creates an L-shape ring at the given position.
 * The ring will have the given color
 * and it will start from its left upper corner to the south (down).
 *
 * @param startPosition Position of the ring start field
 * @param color Color of the created ring
 * @return The created ring
 */
 public static Ring newLShapeRing(Position startPosition, NamedColor color)
 {
 RingBuilder builder = new RingBuilder(startPosition, color);
 builder.startTo (SOUTH).continueTo(SOUTH).continueTo(SOUTH)
 .continueTo(EAST).continueTo(EAST).continueTo(EAST)
 .continueTo(NORTH).continueTo(NORTH)
 .continueTo(WEST)
 .continueTo(NORTH)
 .continueTo(WEST).closeTo (WEST);
 return builder.getRing();
 }

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Creates a new ring-road beginning at the given road-field.
 *
 * @param startField The start field of the future road

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 359

 * @param shape The shape representing the ring at a canvas
 */
 public Ring(RoadField startField, Multishape shape)
 {
 this.startField = startField;
 this.shape = shape;
 }

 //== INSTANCE GETTERS AND SETTERS ==

 /***
 * Returns the starting road-field of the ring.
 *
 * @return Ring starting field
 */
 public RoadField getStartField()
 {
 return startField;
 }

 /***
 * Paints the instance by force of the specified painter.
 *
 * @param painter Painter drawing the instance
 */
 @Override
 public void paint(Painter painter)
 {
 shape.paint(painter);
 }

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Returns a string representation of the object – its text signature.
 *
 * @return A string representation of the object
 */
 @Override
 public String toString()
 {
 return "Ring_(start=" + startField + ")";
 }
}

360 Part 3: Advanced Creating of OO Programs

Static Import
759. I tried to define the class, but the compiler told me that it doesn’t know these directions and importing the

Direction8 class didn’t help me as well.

 The import will help you only when you intend to use data types. I did not use data type in this pro-
gram, but the open static fields (attributes) of certain type – in this case of Direction8 type. There are
two possibilities in this case: either you will refer to these fields through the given type (e.g.
Direction8.EAST), or you will use the static import.

760. The static import? What does it mean?

We met it in the section A Servant Class on page 279 when we included the statement

import static org.junit.Assert.*;

to make the assert???(???) methods family available. Generally the static import enables you to import
names of static elements (fields, methods) of a given class. In case you would use the static import,
you can use simple versions of these names, i.e. to act as if these names would be defined within your
class.

761. How such static import is defined?

You could see it in the mentioned statement – it is defined similarly as the current import, you only
have to add the keyword static. Also at the static import you can use either a directly imported name
– for example:

import static cz.pecinovsky.english.oopnz.utility.Direction8.EAST;

or you can use the star convention and import all static members of the given class:

import static cz.pecinovsky.english.oopnz.utility.Direction8.*;

762. I looked into the closing project of the lesson and I saw that you used the star convention which you traduced in
the last lesson. Is it different for the static import?

Let’s precise that generally using of static import should be limited at a maximum, because it can in-
voke a false impression of the reader, that certain element of the given class has been used. Using of
the static import is tolerated in cases when the imported identifiers are used within the class body
quite often; and when it is suitable so that these identifiers themselves would indicate that they sym-
bolize something which does not belong into members of the given class. In such case even using the
star convention is considered as acceptable.

But I would remind once again: the static import should be used as little as possible and only when
you are sure that the reader of the code will easily identify the imported identifiers as names of objects
which are elements of other classes.

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 361

The RingTest Class
763. And now it remains only to show how the cars will drive along the rings.

I would not send the cars at rings for now, because they do not know to turn. You can examine it at for
example lights. They are round so it doesn’t matter that they cannot turn. Create the class RingTest and
let’s define a little test in it.

764. I’ve got a test class. Shall I do a fixture?

Yes, but it will be not created in an interactive mode, but it will be programmed directly. It’s due to
the fact that only hardly the position would be assigned in an interactive mode – you would have to
assign its full name, and as you know, it’s quite long. You could supplement the overloaded versions
of static methods in the Ring class, which would expect two integer coordinates instead of one Position,
but I am not much keen into it (but of course, you can try it).

As I already told, enter the preliminary fixture by hand, at least you will verify that it’s really pos-
sible. Open the RingTest class and define the fields (attributes) in it:

private CanvasManager CM;
private Ring ringSquare;
private Ring ringLShape;

Then move into the body of the setUp() method and insert the statements:

CM = CanvasManager.getInstance();
ringSquare = Ring.square (new Position(0,0));
ringLShape = Ring. ringLShape(new Position(100, 100), NamedColor.BROWN);
CM.add(ringSquare, ringLShape);

Now you can compile the class and examine the fixture.

Exercise
765. Oh, yes! Really two rings were created, one grey and the second one brown.

Driving the lights along the ring is your today’s exercise. I advise you the following procedure:
1. Create an instance of the mover with a reasonable speed.
2. Request the ring for its initial array.
3. Ask the received array for its position.
4. Create an instance of the light at the received position.
5. Ask the initial array for its successor.
6. Ask the successor for its position.
7. Request the mover to move the light at this position.
8. Make an initial array from the successor, i.e. save it to the variable in which you saved the initial

array.
9. Repeat the actions from point 5.

362 Part 3: Advanced Creating of OO Programs

766. I suppose that the repeating part should be defined as an independent auxiliary method.

Your suppositions are good – call it for example auxMove. I would recommend you to define it with the
following signature (in case you forgot what it is a signature, look at the part Signature versus Contract
on page 112):

private RoadField auxMove(RoadField field, Mover mover, IMovable ip)

767. Why should I return the road-field?

Because you will add the returned array as the first parameter during the next calling, which means it
will move to another one. By repeating calling you can drive along the whole ring.

Define also the whole procedure as an auxiliary method which I described you a while ago –
possibly as a method with the following signature

private void auxDriveRound(Ring ring)

As you surely estimate, the parameter is a ring in which you will drive your light. Then you can de-
fine two test methods. You will call this method with the parameter ringSquare in one of them, and
with the parameter ringLShape in the second one.

768. But even with this there will be a lot of repeating. Before I succeed to run around L, I will have to call the meth-
od twelve times.

I have another trick for it, but I will explain it only in the next lesson. Try to program the test with
what you know and you can compare it with the sample solution in the listing 34.4.

Listing 34.4: The RingTest class

/***
 * The class {@code RingTest} serves
 * for a complex test of the class {@link Ring}.
 */
public class RingTest
{
 private CanvasManager CM;
 private Ring ringSquare;
 private Ring ringLShape;

 //== PREPARATION AND CLEANING THE FIXTURE ==================================

 /***
 * Creates a test fixture, i.e. a set of objects that will be prepared
 * before each run test.
 */
 @Before
 public void setUp()
 {
 CM = CanvasManager.getInstance();
 ringSquare = Ring.newSquareRing(new Position(0,0));
 ringLShape = Ring.newLShapeRing(new Position(100, 100),
 NamedColor.BROWN);
 CM.add(ringSquare, ringLShape);

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 363

 IO.inform("Rings prepared");
 }

 /***
 * Clean-up after - this method is called after each test.
 */
 @After
 public void tearDown()
 {
 }

 //== PRIVATE AND AUXILIARY INSTANCE METHODS ================================

 /***
 * Runs around the given ring with a light;
 * version with repeated call.
 *
 * @param ring Ring where the light should run
 */
 private void auxRunRound(Ring ring)
 {
 RoadField startField = ring.getStartField();
 Position position = startField.getPosition();
 Light light = new Light(position.x, position.y);
 Mover mover = new Mover(10);

 CM.add(light);
 startField = auxMove(startField, mover, light);

 //... The previous statement can be repeated as needed

 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 startField = auxMove(startField, mover, light);
 }

 /***
 * Moves the given movable object with the given mover
 * from the given field to its successor
 * and returns a reference to this successor.
 *
 * @param field Starting field
 * @param mover Mover drawing the moved object

364 Part 3: Advanced Creating of OO Programs

 * @param movable Moved object
 * @return Successor of the current field = object's destination
 */
 private RoadField auxMove(RoadField field, Mover mover, IMovable movable)
 {
 RoadField nextField = field.getNext();
 Position position = nextField.getPosition();
 mover.moveTo(position, movable);
 return nextField;
 }

 //== THE TESTS ===

 /***
 * Tests how the light runs around the L-shape ring.
 */
 @Test
 public void testLShapeRing()
 {
 auxRunRound(ringLShape);
 }

 /***
 * Tests how the light runs around the square-shape ring.
 */
 @Test
 public void testSquareRing()
 {
 auxRunRound(ringSquare);
 }
}

Review
Let’s review what you have learned in this lesson:

F Meditating on the planned graphical object you cannot limit only to the fact how the object will
look out, but you have to ponder, how it will act and communicate with other objects.

F Objects which, at the first sight, seem too much complicated often can be divided into a number
of very simple objects that can be easily put together.

F An object can contain another object of the same instance as a field (an attribute). Groups of ob-
jects connected in this way are usually named linked lists.

F Sometimes it is advantageous not to pass the responsibility in a constructor by the statement
this, but to define the whole constructor.

F The design pattern Builder recommends not mixing the construction of complex objects with
their current usage because for construction you use methods that cannot be used later on.

www.dbooks.org

https://www.dbooks.org/

34. Linking of Instances 365

F The Builder recommends a definition of a special class, the objects of which will be responsible
for constructing. The constructed objects can thus concentrate only to their acting.

F Using of objects from different packages brings problems in the BlueJ’s interactive mode, be-
cause full names of their classes have to be used.

F In case you often use static elements of some other class, you can avoid repeating of their quali-
fication by using the static import.

F In the static import you have to add the keyword static behind the keyword import.

F You can use either the particular imported name in the static import, or the star convention.

F The static imported identifiers should significantly mark that they are not proper members of
the class in which you use them.

F The static import should be used as little as possible. Before using it you always should rumi-
nate if you will not invoke a false idea that imported identifiers are not identifiers of the mem-
bers of the given class.

Project:
The resulting form of the project to which we came at the end and after completing all exercises is in the
134z_Instance_chaining project.

366 Part 3: Advanced Creating of OO Programs

35 Decorator
35. Decorator – 000000

35 Decorator
What you will learn in this lesson
In this lesson you will learn analyzing of error messages of the virtual machine. Then you will see how
you could effectively define cars which will drive along the rings created in the previous lesson. You will
become acquainted with the design pattern Decorator and you will read how in some cases this pattern
can substitute advantageously the inheritance.

Project:
In this lesson you will open a new project named 135a_Decorator_Start. It differs from the previous
project only by the enriched packages manager and util.

Recursion
769. Last time you were speaking about a trick due to which I will not have to repeat the same calling of a method. I

was told that a loop is used for it.

A loop is immensely useful construction and it might become useful in the test mentioned at the last
lesson. But I would like to make do without it for some time. Don’t be afraid we will get to it within
few lessons. Today I prepared for you several improvements, for which the loop would not simply
suffice: moving of several objects simultaneously. I will adapt the tests so that several moving objects
could run about mutually at the ring.

770. Oh, it seems interesting. And what will be today’s topic?

We will improve the class RingTest. Before I start the explanation of the improvement, I would like to
present you another construction: the recursion, because you will use its certain form. I remind that
the recursive calling of method means that the method calls directly or indirectly (vicariously) itself.
You met this method in the section Recursion on page 130 when you learn how the multi-shapes
operate.

771. I remember. You mentioned the recursion when you explained that a multi-shape can be a part of another mul-
ti-shape. So you say that by a recursion I can substitute the loop.

It’s possible, but mostly it’s not the best solution. Each of the constructions has its own area where it
can be used as the best solution. Nevertheless, at the beginning I would like to show you how you can
replace the loop by the recursion, i.e. how you can use the recursion so that a code’s part would be ex-
ecuted repeatedly. It will be not an optimal solution, but it should show you, how such recursion is
operating.

www.dbooks.org

https://www.dbooks.org/

35. Decorator 367

772. Well, show it.

First of all I will show you how you can adapt the auxMove method from the previous lesson so that you
should not repeat its calling because the method will call it itself. To compare both solutions, copy the
method and re-name the copy to auxMoveRecursive. You can do the same with the auxDriveRound method,
re-name its copy to auxDriveRoundRecursive, and possibly also with the tests. Don’t forget to change the
name of the called method to the recursive one in these copies (i.e. to the re-named one).

773. I’ve copied and re-named all, go on.

The auxMove method returns a reference to the target road-field so that the calling method could call it
once again and declare this being target road-field as the current initial one. But when the method al-
ready knows the target road-field (and thus also the new initial one) , you could save its transferring
by one floor up and back, and leave it inside the method. Replace the closing return statement in the
auxMoveRecursive method body with a statement in which the method calls itself and passes the new in-
itial array as a parameter. You can see the source code of the new method in the listing 35.1.

Listing 35.1: The endless version of auxMoveRecursive method in the RingTest class

private void auxMoveRecursive(RoadField field, Mover mover,
 IMovable movedObject)
{
 RoadField nextField = field.getNext();
 Position position = nextField.getPosition();
 mover.moveTo(position, movedObject);
 auxMoveRecursive(nextField, mover, movedObject);
}

774. When the method calls itself at the end, does it start once again with new values of parameters?

Yes, try it in the debugger. Step the method and whenever the method would like to call itself, you
have to step inside. Another possibility is to insert a breakpoint into the method and the program
stops at this in each method’s calling.

775. Another item appears left in the sequence of callings with each method’s calling (i.e. in the stack – I still re-
member that). Does it matter?

Of course, it does matter. It is immensely important to observe when the recursion should finish be-
cause otherwise the memory will be overloaded and the program will collapse. Finish the application,
comment the third statement requiring the mover for a fluent moving of the light into a new position
(that’s why the program accomplishes slowly) and run the test once again.

Analysis of Error Message
776. The program stopped immediately and a window of test results appeared announcing an interesting error no

exception message. And there is written java.lang.StackOverflowError under it. When I wanted to display
the source code it took me somewhere to the Position class.

Let’s explain what BlueJ announces you. The message no exception message announces that the pro-
gram itself did not declare any error. But this is nothing strange because you make only undemanding
operations.

368 Part 3: Advanced Creating of OO Programs

The message java.lang.StackOverflowError says that the virtual machine announced an overflow of
the stack. As you have heard already in the part Return Stack on page 314, the virtual machine saves
the address in each calling of method, to which it will return after its accomplishing, and at the same
time it reserves also a place for its local variables. Then, if one method is calling the other one and
never returns, no wonder that the memory reserved for the stack is filled up in a while.

Don’t bother if the program shows an error in the Position class. In case of the stack overflow, the
virtual machine shows the error position at the just executed place in the code.

777. And can it be recognized, where the error is?

You have to read the error message further. Each message line speaks about one method’s calling. The
Java error messages have standard forms. The error messages announced during accomplishing the
tests are displayed by BlueJ in the window Test results, the error messages received during current
sending of messages are displayed in the standard error output. This time there is a message starting
with:

java.lang.StackOverflowError

 at cz.pecinovsky.english.oopnz.utility.Position.<init>(Position.java:41)
 at cz.pecinovsky.english.oopnz.manager.Rectangle.getPosition(Rectangle.java:195)
 at cz.pecinovsky.english.oopnz.town.RoadField.getPosition(RoadField.java:144)
 at cz.pecinovsky.english.oopnz.town.RingTest.auxMoveRecursive(RingTest.java:144)
 at cz.pecinovsky.english.oopnz.town.RingTest.auxMoveRecursive(RingTest.java:144)
 at cz.pecinovsky.english.oopnz.town.RingTest.auxMoveRecursive(RingTest.java:144)
...

You can start decoding. The first line indicates what kind of error it is. You have already detected it – a
stack overflow. All other lines have the following structure:

at ClassName . MetodName (FileName : LineNumber)

The second line announces that the error appeared in the class fully entitled
cz.pecinovsky.english.oopnz.utility.Position, in its constructor (the method <init>) at the place which
can be found in the source code of the file Position.java, line 41.

The third line announces that the above mentioned constructor was called from the method
getPosition of the Rectangle class (you will supplement the package) and you can find the source code
of this calling in the file Rectangle.java, line 195.

778. It shows me a different number.

Probably you are using a little different source code. The number you find in the error message is val-
id. The line marked by the message witnesses about something what evoked the exception. Of course,
it does not mean that the error is just here. The real originator of this state might be an action that
happened a long time ago. Therefore, sometimes you have to read also other lines to find the real
originator.

Each further line announces from where the method mentioned at the previous line has been
called. Thus you can arrive up to the place where the real cause of the error announced in the first line
has been born. You can see in the listing that messages are repeating since the fifth line which means
that at that place the method called itself. The error of your last program consisted in fact that you did
not finish this recursive calling in time.

www.dbooks.org

https://www.dbooks.org/

35. Decorator 369

779. So how we will solve it?

Let’s utilize the fact that the IO class offers a method with a signature (I remind that the signature
explanation is presented in the section Signature versus Contract on page 112):

public static void endIf(boolean end, String message)

This method tests the first parameter and if it’s true, it opens an information dialog with a message
passed in the second parameter. After pressing the OK button the application is finished. Therefore in
front of the recursive calling you insert the calling of this method, to which you announce that the
program should be finished when you return to the initial array.

780. Well, but where should I take the initial road-field?

You will add it as another parameter of the method. The modified method then shall have the form
displayed in the listing 35.2.

Listing 35.2: The final version of auxMoveRecursive method in the RingTest class

private void auxMoveRecursive(RoadField field, Mover mover,
 IMovable movedObject, RoadField endField)
{
 RoadField nextField = field.getNext();
 Position position = nextField.getPosition();
 mover.moveTo(position, movedObject);
 IO.endIf(nextField.equals(endField), "Ring ran around");
 auxMoveRecursive(nextField, mover, movedObject, endField);
}

You can see that the method received a road-field in the fourth parameter, where its journey along
the ring started. Then it detected the next road-field and moved the light to it. Then it passes the
expression

nextField.equals(startField)

to the closing method in the fourth line of the body. It is true only when the road-field nextField is
equal with the road-field startField; it means only when we run around the whole ring and arrived
again to the start. Until these arrays are different, the method makes nothing and only goes over to the
fifth line with the recursion calling. The method passes over to itself the array where the light is now
located as well as the mover and the moved light. Then, in the fourth parameter, it passes the initial
array of the ring, so that the called method would close the whole anabases after reaching it.

781. I tried it and it really operates. I have to admit that the program looks simple, but I don’t understand it fully.

Try to examine it in debugger and have a look through the inspector into the interior of those
road-fields with which the method cooperates. Maybe you will more understand to its functions.

782. I will leave it for the next time. At the beginning you enticed me to a parallel movement of several objects and
then you digressed and dealt with a simple recursion which is, however, solving the problem of moving of an
only one light. And you also told me that it’s not an optimal solution. So why you presented it to me?

I wanted just to show it to you at this simple example and above all to point out its danger. My
students – usually by mistake – use the recursive calling (most often they incorrectly copy certain

370 Part 3: Advanced Creating of OO Programs

methods and do not register it) and then they are surprised why the stack is overloaded. However, in
the solution I prepared for you today you will use the recursion, but the indirect one, which means
that the method will not call itself but it will call somebody who will call the method.

Multimover Class and IMultimovable Interface
783. Oh, it again reeks of a programming black magic! I suppose that you will again pick up some new servant from

your hat.

I see, you know me well. As I have mentioned at the lesson’s beginning, a new project will be opened
today. At the first sight it looks as a continuation of the previous one, but it differs with one detail:
classes in the packages canvasmanager and utility are cleverer and there are several new data types
added in them.

In today’s lesson we shall deal above all with two new data types: the Multimover class and the
IMultimovable interface. The Multimover class offers (among others) two pairs of methods. These
methods

public void moveInTime(double seconds, IMovable object, Position position)
public void moveInTime(double seconds, IMovable object, int xn, int yn)

will move the object to the given position in the given number of seconds. Opposite to it, the methods

public void moveWithSpeed(int speed, IMovable object, Position position)
public void moveWithSpeed(int speed, IMovable object, int xn, int yn)

will move the ip object to an entered position with an entered speed which is quoted in a number or
traveled points in a second. At the same time the real distance is considered, which means that the
movement along the diagonal of the square of 100 represents a distance of 141 points.

Both methods do not wait until they succeed to shift the object, but they return immediately, whilst
the addressed multi-mover moves your object somewhere at the background and your program can
do something quite different. In case you will call some of the quoted methods once again and you
will pass another object to it, both objects will move simultaneously. You can repeat it several times
one after another, and at the end the wide range of objects can move at the canvas.

784. Well, thus I can arrange so that several objects will move simultaneously, but I will be able to send them only
to the neighboring array. How you want to arrange so that they would go around the whole ring?

The IMultimovable interface which is a successor of a IMovable interface comes together with the
Multimover class and adds its own method moved()to the inherited methods, which serves just to multi-
mover. The multi-mover offers one additional function: if the shifted object is not only an instance of
IMovable interface, but if it is an instance IMultimovable, then the multi-mover calls its method moved()
after completing the movement. The object then can decide in the method what it will make further –
e.g. it can be moved once again.

www.dbooks.org

https://www.dbooks.org/

35. Decorator 371

785. I see. It means that the method calls the mover, and the mover – after shifting the object – calls back the meth-
od. Is this the recursion you were speaking about?

Yes, but there is a tiny difference: the multi-mover knows to plant the recursive calling so that the re-
turn address stack would not be filled up. And this is just the bit of magic you were speaking about a
moment ago.

But it is important that the method of each of the moved objects will be called in a moment when
this object arrives to the aim independently to the state of movement of other objects. Therefore each
object moves independently to others.

Ambitions of Objects
786. It means that we will improve the light so that it would implement the IMultimovable method and we could

launch several of them at the ring.

Oh, no, one of the important programming principles is to define the objects purposefully, i.e. so that
they would focus to one key task and would not unnecessarily be distracted. The light’s purpose is to
be fixed in certain object and to be either on or off. The fact that you use its properties to testing the
rings does not mean that its range of methods will be extended by methods that would enable to
travel along the rings. This traveling in rings does not belong to its main tasks.

787. My programming friends told me that when I have an object and would like to equip it with certain functionali-
ty, the best way how to do it is to define a successor which would be able to function equally as the parent, but
will have this added functionality as a bonus.

Although it is very popular procedure, in this case it is not the suitable one. In case you would now
make out a successor of a light, next time you should have to make out also a successor of the arrow
and of the car which will also drive along the rings. With each object that would be sometimes added,
it would be necessary to make out also a successor that is able to drive along the ring. The classes
would be dangerously multiplied. And moreover, very similar methods would be defined in all
successors, and it would evoke a dispute with the DRY rule, i.e. with the principle not to repeat items.

788. Oh yes, I was told something like that. Supposedly if I would not be programming in Java, but in some decent
language, I could inherit the needed functionality from another parent.

Oh, your friends are evidently programming in C++ or Python. Anyway, not the multiplied inher-
itance will prevent the classes of multiplication. It will prevent you repeating the same code, and even
only partially. But as I told you already in the part devoted to inheritance of interface types, the inher-
itance of classes is very delicate matter and the inheritance of classes with several parents is even more
delicate.

Believe me, I was programming in C++ for about 15 years. It is an excellent language with the only
disadvantage: the programmer has to be permanently very careful. And due to the fact that majority
of programmers cannot be so attentive their productivity compared to Java is only half effective. This
was also the reason why I converted to Java 10 years ago. I prefer the language which looks after me
and thus I can concentrate to developing the code. But this is a digression, let’s return to our topic.

372 Part 3: Advanced Creating of OO Programs

Design Pattern Decorator
789. You stopped that by using the inheritance, the classes would multiply.

You are true. It is far worse with this multiplying the classes, then you can see at the first sight. Each
class would have its double. But what would happen when functionality is added – maybe the ability
to automatically accommodate to the canvas step (and this is expecting us as well). To have free
hands, you would need three successors for each class:

F The class whose instances are able only to ride along the ring.

F The class, whose instances are able only to accommodate to the size of the canvas step.

F The class, the instances of which are adaptable and know to ride along the ring.

With each added functionality the number of needed successors would multiply. Can you imagine
how it would increase?

790. So what’s your advice?

Let’s choose another procedure, similar to the one which you used with the light. The light is an object
envelope of an ellipse, which takes over certain methods (e.g. setting of the position and the size) and
adds some others (e.g. switching on and off). You will now do it similarly, but the constructor of this
new object will be not creating the light, the constructor will receive it in a parameter, as e.g. the UFO
saucer.

This procedure is proposed by the design pattern Decorator, which derived its name from the fact
that the wrapping object decorates the wrapped object with a new functionality. (Sometimes this de-
sign pattern is called Wrapper, because it wraps the decorated object.) In our case the decorator
decorates its wrapped object with an ability to be shifted by a multi-mover along the rings.

The advantage of this solution is that the decorator is not limited only to decorating the lights, but
it can decorate any object that implements the set interface with a new functionality. In our case the
interface would be IMovable.

But I don’t like to solve it alone. Try to propose, how such a decorating class (let’s call it for
example Circular, because it will be responsible for driving along the ring) should be defined.

791. Well, but what would happen when you add another functionality?

Then only a new decorator will be added. You will use either the original object or an object decorated
by the first or the second decorator, according to which combination of functionality you will use. In
case you will need an object with both added functionalities, you will create an object decorated with
the first and the resultant object with the second decorator. The solution is to wrap up one object into
the other one and this one to the third one – something like the Russian folklore doll Matrioshka.

You can see the general class diagram at figure 35.1. The arrows leading from decorators to inter-
face types mean that the decorators are willing to accept any instance of the given interface as the
wrapped object (the constructor’s parameter).

www.dbooks.org

https://www.dbooks.org/

35. Decorator 373

Figure 35.1

The principle of the design pattern Decorator

792. The picture is too general. Could you precise it to our terms?

There are three basic classes implementing the IMovable interface and their functionality should be ex-
tended so that they would implement the IMultimovable interface. Let’s use the decorator, called
Circular for it.

Figure 35.2

The application of the design pattern Decorator in the project

793. From what you told I understand that the resulting decorator object has to implement the IMultimovable inter-
face so that the multi-mover would inform it after arriving to the planned target. Its constructor will have the
parameter of IMovable type, in which it receives the decorated object which it wraps and decorates with its ad-
ditional functionality. It defines the methods of IMovable interface type in such way that it calls the correspond-
ing method of the decorated object in their body, identically as we did with the lights. And the moved() method
will be then defined similarly as the auxiliary methods were defined in the test class.

I’m amazed! You estimated it quite precisely. So you can see that it really is not so complicated. Well,
the grounds of the circular object are proposed. You know how to create it and how to implement it.
And now you could ruminate if some further properties and abilities should be added.

The Circular Class
794. How should be added? It already knows everything what’s needed, doesn’t it?

For example we were not thinking about how to put the circular object at the ring where it should go
around. Therefore you should add the methods which will execute it.

Besides that the multi-mover always requires to be informed by which speed the shifted object will
move or which time it would take before the object will arrive to its aim. This means that the circular
object should be able to set up the speed.

I will not examine you further. Look at the sample solution at the listing 35.3, go through all its
methods and check if their definitions are really clear.

374 Part 3: Advanced Creating of OO Programs

Listing 35.3: The Circular class

/***
 * Instances of the {@code Circular} class represent movable object decorators
 * that decorate the wrapped objects with the ability to circulate at rounds.
 * By this circulation the circulated objects don't change their shape
 * together with the direction of their movement.
 */
public class Circular implements IMultimovable
{
 //== CONSTANT CLASS FIELDS ===

 /** Default speed of objects moving. */
 private static final int DEFAULT_SPEED = 100;

 /** Manager of the canvas on which the instance will be painted. */
 private static final CanvasManager CM = CanvasManager.getInstance();

 //== CONSTANT INSTANCE FIELDS ==

 /** Decorated object that will circulate at a round. */
 private final IMovable decorated;

 //== VARIABLE INSTANCE FIELDS ==

 /** The object’s current moving speed. */
 private int speed = DEFAULT_SPEED;

 /** The field the object leaved last time. */
 private RoadField field;

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Creates a new instance decorating the given object.
 *
 * @param decorated Wrapped and decorated object
 */
 public Circular(IMovable decorated)
 {
 this.decorated = decorated;
 }

 //== INSTANCE GETTERS AND SETTERS ==

 /***
 * Returns instance of the class {@code Position} with current position.
 *
 * @return Current position

www.dbooks.org

https://www.dbooks.org/

35. Decorator 375

 */
 @Override
 public Position getPosition()
 {
 return decorated.getPosition();
 }

 /***
 * Sets a new position of the instance.
 *
 * @param position The set position
 */
 @Override
 public void setPosition(Position position)
 {
 decorated.setPosition(position);
 }

 /***
 * Sets a new coordinates of the instance.
 *
 * @param x The newly set horizontal coordinate,
 * left canvas border has x=0, coordinate increases to the right
 * @param y The newly set vertical coordinate,
 * upper canvas border has y=0, coordinate increases to the down
 */
 @Override
 public void setPosition(int x, int y)
 {
 decorated.setPosition(x, y);
 }

 /***
 * Sets the speed for the next moving.
 *
 * @param speed The set speed
 */
 public void setSpeed(int speed)
 {
 this.speed = speed;
 }

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Paints the instance by force of the specified painter.
 *
 * @param painter Painter drawing the instance
 */
 @Override

376 Part 3: Advanced Creating of OO Programs

 public void paint(Painter painter)
 {
 decorated.paint(painter);
 }

 /***
 * Sets the decorated object at the given ring
 * and starts to circulate with it.
 *
 * @param ring The ring for circulating
 */
 public void goRound(Ring ring)
 {
 RoadField start = ring.getStartField();
 continueFrom(start);
 }

 /***
 * Puts the decorated object at the given field
 * and moves to its successor.
 *
 * @param field The starting field
 */
 public void continueFrom(RoadField field)
 {
 this.field = field;
 Position position = field.getPosition();
 decorated.setPosition(position);
 CM.add(this);
 moved();
 }

 /***
 * Method called by multimover in the moment,
 * when it brings the object to the requested target.
 * It starts the moving of the decorated object to the next field.
 */
 @Override
 public void moved()
 {
 field = field.getNext();
 Position position = field.getPosition();
 Multimover m = Multimover.getInstance();
 m.moveWithSpeed(speed, this, position);
 }

 /***
 * Returns a string representation of the object – its text signature.
 *
 * @return A string representation of the object

www.dbooks.org

https://www.dbooks.org/

35. Decorator 377

 */
 @Override
 public String toString()
 {
 return "Circular_(" + decorated.toString() + ")";
 }
}

Test Completing
795. Now it would be good to make a handy little test which would verify all.

Good, to make it simpler for you, I suggested the test myself – both methods which are creating the
test can be seen in the listing 35.4. The screenshot of the window with the running test you can see at
the picture 35.3.

Listing 35.4: The methods for testing the ring objects in the RingTest class

/***
 * Wraps the given movable object into a circular one,
 * places the resulting circular object at the given field,
 * runs its move and returns a reference to the field after the next.
 *
 * @param field Road-field, where the wrapped object should be placed
 * @param movable Wrapped movable object
 * @return The descendant of the descendant of the field
 */
private RoadField auxPutOnRing(RoadField field, IMovable movable)
{
 Circular circular = new Circular(movable);
 circular.continueFrom(field);
 return field.getNext().getNext();
}

/***
 * Puts instances of several movable types on both rings.
 * The put instances will be wrapped into circular objects and will be put
 * in the way that among the running objects will be one empty field.
 * Besides the equidistant instances running with the same speed
 * also one instance with the half speed and one with the double speed
 * will be put.
 */
@Test
public void testMovingGroup()
{
 RoadField field = ringSquare.getStartField();
 int module = field.getModule();

 field = auxIntroduce(field, new Light());
 field = auxIntroduce(field, new Triangle(0,0,50,50));

 field = ringLShape.getStartField();
 module = field.getModule();

378 Part 3: Advanced Creating of OO Programs

 field = auxIntroduce(field, new Car(0, 0, 50));
 field = auxIntroduce(field, new Ellipse(0, 0, 50, 50));
 field = auxIntroduce(field, new TrafficLight(0, 0, 50/3));
 field = auxIntroduce(field, new Rectangle(0, 0, 50, 50, NamedColor.GOLD));
 field = auxIntroduce(field, new Arrow(0, 0, 50));
 field = auxIntroduce(field, new Line(0, 0, module, module, NamedColor.WHITE));

 //One slow multishape
 Multishape m = new Multishape("Triple-shape", new Rectangle(),
 new Ellipse(), new Triangle());
 m.setSize(50);
 Circular o = new Circular(m);
 o.setSpeed(50);
 o.goRound(ringLShape);

 ///One quick text
 o = new Circular(new Text(0, 0, NamedColor.YELLOW, " FLYER"));
 o.setSpeed(200);
 o.goRound(ringLShape);

 IO.inform("When you check it, press OK");
 Multimover.getInstance().stopAll();
}

Figure 35.3

The course of the group test

796. Why didn’t you define its own test class for the circular class, but you put its tests into the class RingTest?

I do not place the tests according to whom I’m testing but according to in which class the most advan-
tageous test fixture is located. The fixture defined in the RingTest class is optimally suitable for this test
and that’s why I put the test there.

www.dbooks.org

https://www.dbooks.org/

35. Decorator 379

Exercise
797. What shall I train today?

Your task today will be to examine once more the source codes and try to program your own equiva-
lent data types – for example that you will add the prefix My to their names.

Review
Let’s review what you have learned in this lesson:

F When the method calls either directly or vicariously itself, then we speak about the recursive
calling of methods.

F Each method’s calling consumes part of the stack’s memory.

F It is necessary to provide so that the recursive calling would finish at certain time.

F The error messages in Java have a standard form as follows:
at ClassName . MethodName (FileName : LineNumber)

F The error messages announced during accomplishing the test are displayed by BlueJ in the win-
dow of test results, the error messages received during current message sending are displayed
in the standard error output.

F The first line beginning with at announces where the error occurred. Each further line announc-
es from where the method mentioned at the previous line has been called.

F One of the most important programming rules is to define the purposive objects, i.e. so that
they would focus to only one key task and would not be diverted uselessly.

F The design patter Decorator advises to add a new functionality to a group of classes so that a
new class (decorator) is defined, the instances of which will be responsible for adding this func-
tionality to class instances of the original group. (Decorating of the instance of the original class
with a new functionality.)

F Constructors of these decorators then receive an object as a parameter, which they wrap and
decorate it with a new functionality.

F Adding of new functionality brings only a necessity to define a new decorator.

F The decorated objects can be folded up one into the other, similarly as the Russian Matrioshka.

F Bodies of methods not influenced by the decorator can be defined by only calling the corre-
sponding method of the folded object.

Project:
The resulting form of the project to which you came at the end of the lesson and after completing all exer-
cises is in the 135z_Decorator project.

380 Part 3: Advanced Creating of OO Programs

36 Teaching Cars to Turn
36. Teaching Cars to Turn – 000000

36 Teaching Cars to Turn
What you will learn in this lesson
Your objects are able to drive along the rings but yet they cannot turn. In this lesson you will read how to
teach the cars properly move in all directions using a method in Direction8 class. At the same time you
will become acquainted with blocks and you will learn how to deal with re-drawing a canvas effectively.

Project:
In this lesson you continue in using the 135z_Decorator project.

798. The previous test in which a number of various objects rides along the ring was perfect. Only the cars as well as
the arrows should know to turn.

Last time I really strived to show you that thanks to the decorator all can be programmed so, that any
movable object can circulate along the rings.

Besides that I wanted to show you why I’m dealing only with the interface inheritance and I’m not
going to deal with the class inheritance. If you will learn it too early, you would apply it in cases
where it should not occur. That’s why I want to present you several solutions, that are possible with-
out any class inheritance, and after we shall speak about it in the next course, you will be far better
able to estimate where its usage is really useful.

Reference Area and Relative Coordinates
799. Well, well. Will you show me today how should I arrange so that my cars and arrows would turn along the

ring?

I will try it. Again I will dig deep into the hat and I will pull out a surprise from there. If you will look
into the documentation of Direction8 class, you will find there an interesting method with a signature,
as follows:

public Area turnInArea(Area inner, Area ref)

By calling this method you are asking the direction to return you the area in which an object should be
drawn after some bigger object, whose part the given object is, would turn into the direction which
you asked (to which you sent the given method). The turned object is supposed to be originally turned
to the east.

800. Oh, if you think that I understood anything from your explanation, then be sure that I didn’t understand a
word.

I understand that when I told it so generally, it looks rather not understandable. I try to show it at an
object – at an arrow at the best, because it is quite simple.

www.dbooks.org

https://www.dbooks.org/

36. Teaching Cars to Turn 381

The entire arrow is located in the square area with identical coordinates and identical module as
the arrow has. This area is called a reference area. And towards it, precisely said towards its upper left
corner you will enter the so called relative coordinates of individual parts of the arrow (of a body and
a head), which could be understand as their offset towards the beginning of the reference area. The re-
al coordinate is then calculated as a sum of the corresponding coordinate of the reference area and the
relative coordinate (the offset) of the given part.

Look at the listing 36.1. You will find there the current form of the most general constructor in the
design definition of the Arrow class. Please, notice the parameters of the rectangle constructors creating
the body as well as the triangle creating the arrow head. You can derive from them relative coordi-
nates of each part towards the entire arrow.

The rectangle relative coordinate representing the arrow body is [0;m3], because it has the same
horizontal coordinate as the whole arrow; its vertical coordinate is by m3 larger that the coordinate of
the whole arrow. Its horizontal size (width) is a half of the module and its vertical size (height) is one
third of the module. The relative area, in which it is located towards the entire arrow, could be
received by the following statement:

Area relRecBody = new Area(0, m3, m2, m3);

In case you would apply similar speculation on the triangle representing the arrow’s head, you could
realize that the relative area in which the triangle is located could be received by the following
statement:

Area relRecHead = new Area(m2, 0, m2, module);

Is it clear up to here?

Listing 36.1: The current form of the most general constructor of the Arrow class

public Arrow(int x, int y, int module, NamedColor color)
 {
 countCreated = countCreated + 1;
 this.ID = countCreated;

 int m2 = module / 2;
 int m3 = module / 3;

 this.body = new Rectangle(x, y+m3, m2, m3, color);
 this.head = new Triangle (x+m2, y, m2, module,color, Direction8.EAST);
 this.color = color;
 }

801. I understood that I can get the relative coordinates of the head or of the body, when I subtract the coordinate of
the whole arrow from the coordinate of the given part. The sizes of the relative area are the same as the sizes of
the corresponding object.

Exactly, the arrow shows to the east and that suits to us because the method I was speaking about,
does not need such an initial direction. And now imagine that the whole arrow will be turned for ex-
ample to the left, i.e. to the north. At that time the area, where the whole arrow is located (the refer-
ence area) cannot be changed, but its parts have to be drawn somewhere else and in a different direc-
tion – their relative area will change. Its width changes to the height and on the contrary, its height
changes to its width. Previously the head had the same vertical coordinate as the entire arrow, now it

382 Part 3: Advanced Creating of OO Programs

will have the same horizontal coordinate. Simply a lot of speculations how to modify separate coordi-
nates as well as measures, so that the turned arrow would be drawn properly. And the method I was
speaking about can get rid of speculating.

Creating of Objects Turned to Entered Direction
802. I believe you that you can get me rid of this speculating but still I have no idea how to do it.

I will show you a new form of the arrow’s constructor and I will explain you how to arrange so that
the constructor would be able to create an arrow turned to the entered direction. Look at the listing
36.2 and let’s analyze how it differs compared to the previous listing.

Listing 36.2: The new form of the most general constructor in the Arrow class

public Arrow(int x, int y, int module, NamedColor color,
 Direction8 direction)
{
 Arrow.countCreated = Arrow.countCreated + 1;
 this.ID = countCreated;

 this.xPos = x;
 this.yPos = y;
 this.module = module;
 this.color = color;
 this.direction = direction;

 int m2 = module / 2;
 int m3 = module / 3;

 Area ref = new Area(x, y, module, module);
 Area part;

 //Body = Rectangle
 part = new Area(0, m3, m2, m3);
 part = direction.turnInArea(ref, part);
 this.body = new Rectangle(part, color);

 //Head = Triangle
 part = new Area(m2, 0, m2, module);
 part = direction.turnInArea(ref, part);
 this.head = new Triangle(part, color, direction);
}

803. Why did you suddenly start to name the field (the attribute) countCreated as Arrow.countCreated?

Because I wanted to stress that it is a class field. But when you leave the statement in the original form,
nothing would happen. There is no substantial change. However, the change comes immediately in
the following statements. There are several fields (attributes) added which should be initialized. Be-
fore that, the values of coordinates as well as of the module could be detected by an inquiry concern-
ing the arrow’s head or body, but now, when the arrow can be turned to any direction, you should

www.dbooks.org

https://www.dbooks.org/

36. Teaching Cars to Turn 383

laboriously think whom to ask. Which means it’s far simpler to remember the coordinates as well as
the arrow’s module.

You could continue in detecting the direction from the triangle which creates the arrow’s head, but
according to me, if the fields for other data could be created, then it is possible to create a field also for
the direction.

And now I’m coming to the code’s core. I created a reference area, i.e. an area, towards which you
can quote relative coordinates of particular arrow’s part. This area has the coordinates as well as the
size of the whole arrow. The reference of the created area has been saved into the variable named ref.

Then I declared the variable part, into which I intend to save the relative areas of particular arrow’s
parts. I declared it without initialization so that the program of individual parts would be as similar as
is possible.

I started with the arrow’s body. I created its relative area, about which we were speaking a mo-
ment ago. Then I called a method of the direction to which the arrow should be turned and I passed to
it the relative area of the body together with the reference area towards which the relative area has
been detected. Then the method returned me the absolute area in which the body rectangle should be
displayed in the arrow turned to the entered direction. Then I saved this area to the rectangle
constructor and I declared the created rectangle to be the arrow’s body.

I made the same with the head in the next step. The only difference was in the fact that during cre-
ating the triangle I had to enter also the direction to its constructor, to which the created triangle will
be turned.

804. The resulting program looks simply but it’s not so simple for understanding. Well, there’s an arrow turned to
the required direction. But when the arrow will drive along the ring, it needs to turn during driving. How to do
it?

Let’s define the method setDirection(Direction8), in the body of which the areas will be re-calculated
where the particular parts will be drawn after turning into the required direction. The definition of
this method will be immensely simple – you can find it in the listing 36.3. As you see, the method only
entered the new direction of turning and all responsibility was “thrown” to the method setModul(int).
It utilized the fact that identical re-calculations have to be done in each module’s change.

Listing 36.3: The method setDirection(Direction8) in the Arrow class

public void setDirection(Direction8 direction)
{
 this.direction = direction;
 this.head.setDirection(direction);
 this.setModule(module);
}

I suppose that you are able to make out the definition of the setModul(int) method, which places the
particular arrow’s parts to their new positions. Don’t forget to enter also a new value into the modul
field. You can inspire by the constructor’s definition. First of all try yourself to suggest it and then
compare it with the sample solution in the listing 36.4. I prepared a surprise for you.

384 Part 3: Advanced Creating of OO Programs

Listing 36.4: The method setModul(int) in the Arrow class

public void setModule(int module)
{
 int x = getX();
 int y = getY();
 int m = module;
 int m2 = m / 2;
 int m3 = m / 3;

 Area ref = new Area(x, y, m, m);
 Area part;

 CM.stopPainting(); {
 //Body - Rectangle
 part = new Area(0, m3, m2, m3);
 part = direction.turnInArea(ref, part);
 this.body.setArea(part);

 //Head - Triangle
 part = new Area(m2, 0, m2, module);
 part = direction.turnInArea(ref, part);
 this.head.setArea(part);
 } CM.returnPainting();
 this.module = module;
}

Effective Re-drawing of Modified Objects
805. Well, I understood that the definition of module’s setting differs from the constructor’s definition only in the fact

that instead of creating new instances only new positions and sizes of their parts are set. I only set the position
and the size separately, because I didn’t notice that it could be done together. But what you did with this paint-
ing?

When the object composed of several parts changes its outlook, for example when the arrow turns, it
gradually moves particular parts. If we would let the canvas manager repaint the canvas after moving
of each individual part, the changes might look jerky, especially at slower computers.

Therefore the class CanvasManager installs the possibility to stop repainting for a while. You can
reach it by calling the method stopPainting(). However, the problem is how to arrange the repeated
beginning of the painting in the proper time. You cannot simply ask the canvas to continue painting
because you don’t know if your complex object is not a part of some more complex object which also
asked for stopping the repainting of the canvas. If you, as a part of this more complex object, would
say to the canvas, that it can start painting again, because you are completed with your modifications,
the canvas might start repainting prior the modifications of other parts of that more complex object,
and we could start once more from the beginning.

Therefore the method returning the original state does not have the name paint, but
returnPainting(). By calling this method you require the canvas to get back to the state in which it was
when you asked for its temporarily stopping. In case you stopped the painting, it starts to repaint. In
case you were a part of some more complex form, it starts to repaint only after the repainting is per-
mitted by who stopped it originally.

www.dbooks.org

https://www.dbooks.org/

36. Teaching Cars to Turn 385

Block
806. Well, but I didn’t catch why there are the braces and why the statements are indented.

I told you that you are sufficiently advanced so that another programming construction could be in-
troduced. A pair of braces in the code does not bound only the bodies of classes, interface types,
methods and of initializing blocks, but you can insert it anywhere into the code. A group of statements
closed in braces is then marked as a block.

The whole block, i.e. braces including their content is understood by the compiler as an exclusive
statement. In certain time we shall speak about programming constructions which require only one
statement despite you would prefer having more statements. The braces enable you to put inside a
whole number of statements and to pass off such group as an exclusive statement.

807. It’s nice, but I’m afraid that such situation did not happen. You can insert as much statements between two
method’s callings, as you wish.

I try to solve another problem with the help of a block. Each statement stopPainting() needs to have its
playfellow which returns drawing to its original state. The canvas manager can only look after the fact
that you stopped drawing fewer times than you asked returning to its original state. But it cannot look
after that somebody stopped drawing and forgot returning to switch on.

Therefore I took the compiler for help and I insert braces behind each requirement for stopping the
redrawing – I open the block. When I withdraw again the restriction, I close the block before the with-
drawing statement. And I write the brace bounding the block at the same line as the restriction or its
withdrawal.

As I told you I took the compiler for a help. It takes care so that the number of opening braces will
be the same as the closing ones and moreover, they will be formally properly coupled. Then if I would
forget to withdraw the restriction of drawing, the compiler would miss one brace and my default
would occur as a syntactic fault.

If you want so that your moving pictures would be displayed at the canvas as good as possible and
if you would use the possibility to stop redrawing of canvas for the time of modifying the outlook of
objects, I would recommend you to use this little tool. And when you keep the convention, that the
code will be indented behind each opening brace, your programs will be more reliable and transparent.

To train it, try to define a new form of the setPosition() method for the arrow. Its individual parts
have to move gradually there. But fortunately the moving is not as complicated as setting of a new
size. It is sufficient to discover at the beginning, by how much the entire object has to move in the hor-
izontal as well as vertical direction and then to move each part of the shape by the given bit. At the
conclusion you cannot forget saving of new coordinates into relevant fields. Try it alone and then
compare your solution with the designed one, which you can find in the listing 36.5.

Listing 36.5: The method setPosition(int,int) in the Arrow class

 public void setPosition(int x, int y)
 {
 int dx = x - getX();
 int dy = y - getY();
 CM.stopPainting(); {
 body .moveRight(dx);

386 Part 3: Advanced Creating of OO Programs

 body .moveDown (dy);
 head.moveRight(dx);
 head.moveDown (dy);
 } CM.returnPainting();
 xPos = x;
 yPos = y;
 }

Generally I would recommend you to take always into consideration this construction whenever you
will need to insert some statements which compulsorily occur in the couple – to open–to close,
to switch on–to switch off etc. Then the compiler can help you not to forget completing its closing
playfellow to the initial “opening” statement.

808. Could I shift also the declaration of variables into the block?

Yes, you could. But you have to take into account that these variables will cease existing in the mo-
ment when you leave the given block – but I indicated this in the part The Lifetime on page 216. I don’t
use local variables outside the block, which means they might be shifted also inside. But I really get
used to leave there really only the subsequence of drawing statements. But if you give them there, it
will be quite good.

The IDirectable Interface
809. Now the arrow knows to turn and move and I believe that when I’ll concentrate a little bit, I should be able to

teach it also the car. And now we should teach them to drive along the ring. I suppose that certain decorator
will be defined.

Yes, but leave the decorator Circular for its great success in the state in which it is, and let’s define a
new decorator for objects that know how to turn. However, the precise specification of what are the
objects that know to turn is missing. Let’s define an interface which announces it and let’s name it
IDirectable. How would you propose it?

810. I’d say that each object that’s shifting and that can set its direction at the same time.

It would be sufficient for smart driving along the ring with those objects. So that it would be really
smart, such object should for example fit at the road. It means it should be able to set its size. And
when you are able to set certain characteristic you should think over the possibility to determine it as
well. In case of the direction, surely yes. Therefore let’s define the IDirectable interface as shown in the
listing 36.6.

Listing 36.6: The IDirectable interface

/***
 * The {@code IDirectable} instances represent modular instances
 * which are able to turn in the defined direction.
 * These instances are mostly intended for going through the winding roads,
 * however, they may be also stationary instances,
 * which should be turned to a specified direction.
 */
public interface IDirectable extends IModular
{

www.dbooks.org

https://www.dbooks.org/

36. Teaching Cars to Turn 387

 //== DECLARED METHODS ==

 /***
 * Returns the direction to which the instance is turned.
 *
 * @return Direction to which the instance is turned
 */
// @Override
 public Direction8 getDirection();

 /***
 * Turns the instance to the given direction.
 *
 * @param direction The direction, instance should be turned to
 */
// @Override
 public void setDirection(Direction8 direction);
}

811. Why did you write that it may be also stationary instances? For what it would be when an instance, that doesn’t
move, can turn?

It is not important if it is able to turn during its life, but so that it could be placed to a canvas (and to a
town in future) directed to certain direction. Look at the traffic lights for example. They are defined
directed to the north. If they should be located along the ways so that they could simulate controlling
the traffic, they should be also defined as directable ones.

Decorator DirectableCircular
812. Oh yes, you are thinking about the next version of the program. I’m glad that I’m handling the current one.

Well, we have the interface, at least the arrow is able to implement. Now only the decorator should be pre-
pared which makes all directable instances moving along the ring.

Let’s call the class of this decorator maybe DirectableCircular. It will be immensely similar to the deco-
rator Circular of the previous lesson. So similar that you may take over the bigger part and copy it. It
will be a transgression against the DRY principle, but I would like to postpone the constructions
which would enable us to get rid of this copying to the next volume.

813. Well, I created a new class DirectableCircular and I copied the body of the class Circular into it. What
should be changed?

I will start with pettiness.

F Add an IDirectable interface into implemented interface types.

F Change the type of the field decorated to IDirectable.

F Change also the type of the constructor’s parameter to IDirectable.

F Add the definitions of methods getModule() and setModule(int).

F Add the definitions of methods getDirection() and setDirection(Direction8).

388 Part 3: Advanced Creating of OO Programs

Those were more formal modifications. The only one modification that would require at least a bit of
thinking is the definition of a new form of the method moved(), which has to turn the shifted object into
the direction in which you can get out of just reached canvas field. But I think it is so simple that you
could try defining it alone. The sample solution you can find again in the listing 36.7.

Listing 36.7: The modified moved() method in the DirectableCircular class

@Override
public void moved()
{
 Direction8 direction = field.getDirection();
 decorated.setDirection(direction);
 field = field.getNext();
 Position position = field.getPosition();
 Multimover m = Multimover.getInstance();
 m.moveWithSpeed(speed, this, position);
}

Then I would add one tiny modification: so that you would not take care how big object you will re-
lease at the ring, insert the following statement prior adding the instance into the administration of
canvas manager in the method continueFrom(RoadField field)

decorated.setModule(field.getModule());

Thus the decorator will arrange that the objects running along the ring will be automatically as big as
they would fit to its canvas fields.

814. I pondered the direction of the object and I saved the correction. So only a test remains which will show if every-
thing is well programmed.

I prepared an auxiliary method to the TestUtility class (you can find it in the listing 36.8). I named it
runRing and it should make it easy to test each of the modified classes. Firstly the method removes all
objects of the fixture from the canvas and then, it puts a little quarter ring at a clear canvas and sends a
turnable object along it which you will pass to it as a parameter. Then, it is possible to define a simple
test method into each of the test classes of our new turnable objects, and this method creates an in-
stance of its test class with the help of the implicit constructor and passes this instance to this auxiliary
method.

Listing 36.8: The auxiliary test method runRing(IDirectable) in the TestUtility class

public static void runRing(IDirectable object)
{
 CM.removeAll();
 int k = CM.getStep();
 Ring ring = Ring.newSquareRing(new Position(k,k));
 //Ring ring = Ring.newLShapeRing(new Position(k,k));
 DirectableCircular rotable = new DirectableCircular(object);
 rotable.goRound(ring);

 IO.inform("When you check it, press OK");
 Multimover.getInstance().stopAll();
}

www.dbooks.org

https://www.dbooks.org/

36. Teaching Cars to Turn 389

Exercise
815. I estimate that today’s exercise will be to make also the cars as well as traffic lights turnable.

Of course – you could not expect anything else.

Review
Let’s review what you have learned in this lesson:

F Speaking about relative coordinates of an object, it means the size of offset towards some refer-
ence point.

F Block closes a group of statements to braces and then it acts as one statement towards the sur-
rounding program.

F To any place in the code, where the statement could be inserted, also a block could be inserted.

F The statements within the block are indented towards surrounding statements.

F If you need to provide inserting both statements of a certain pair into the code, you can use
connecting the initial statement with the opening block’s brace and the closing one with the
closing brace. The compiler will look after coupling of braces and thus it guards also coupling of
our statements.

F Similar constructions are used in our projects to temporary suppression of redrawing of the
canvas and its repeated switching on.

Project:
The resulting form of the project to which you came at the end of the lesson and after completing all exer-
cises is in the 136z_Turning_Cars project.

390 Part 3: Advanced Creating of OO Programs

37 Controlling from Keyboard
37. Controlling from Keyboard – 000000

37 Controlling from Keyboard
What you will learn in this lesson
As the name of the lesson indicates, cars will be created which will obey the commands from the keyboard.
And moreover, you will learn how to use a conditional statement and at the same time how to premature-
ly leave the method with the aid of the return statement. You will also learn how to measure the time and,
at the end, you will read the explanation concerning the explicit as well as implicit conversions of primi-
tive type values.

Project:
In this lesson you will continue in using the 136z_Turning_Cars project.

The Controller
816. Last time we taught the cars turning and this time we should taught them listening to commands from a

keyboard. Do you have some servants prepared for it?

This is a frequent task and thus there is a servant prepared for it. You will find it in the package
manager and its name is Controller. And as a proper servant it declares also an interface which has to be
implemented by all who want to be served – the IControllable interface. This interface requires so that
the object would implement seven methods which will define reaction to seven keys. (We should not
learn general rules for controlling a program from the keyboard and therefore I've prepared a servant
allowing to control the served object with a subset of all possible keys.)

817. Seven? Why just this number?

Implicitly there should be the following adjustment:

F The first four are cursor keys and they will control the movement.

F The fifth and the sixth is a space and ENTER and they control some functions defined by the us-
er, e.g. shooting.

F The seventh key is implicitly the ESCAPE key and by pressing it the whole game stops.

However, the Controller class offers also the possibility to define your own set of keys. Various con-
trollers can control committed objects by way of various keys, and you can use it for programming
games controlled by several players. A student has programmed a game for four players with one
keyboard. There was a little bit lack of place, but it was possible to play the game.

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 391

818. Shall we program controlling our cars? I estimate after previous experience that you will again recommend me
to use the decorator.

And I recommend you to make several of them, each of them with a little bit different control. One can
e.g. move your turnable objects directly, with a jump from one canvas field to another one (I would start
with this as it is the simplest), another can move them more smoothly or even can enable to change the
speed. Not to be pushed to think out a sophisticated name for each of them, you can choose a unified
base and differentiate individual versions with the suffix – e.g. Vehicle_A, Vehicle_B etc.

819. This is a good idea. I also have problems with producing names. So I will try to suggest the simple one which
jumps with our car to the neighboring canvas field.

Not to have it so simple, I advise you to add an adjustable class property speed, which will specify by
how much the car will move after pressing the key forward. Besides that I would recommend riding a
bit forward with it after pressing the key with an arrow up, and turn it by 90° after pressing keys with
arrows left and right. You can leave the bodies of remaining methods empty.

As usually, I will ask you firstly to try definitions by yourself. But before you start creating your so-
lutions, look into the documentation of the Direction8 class and above all at its method
nextPosition(Position position, int distance). It will suit you for detecting the position to which you
should move your car (we used it already when defining the RoadField class).

Similarly the class Direction8 will help you in adjusting a new direction of the turned car. When
you send the message leftTurn() to the direction to which the car is turned, you will receive the
direction, to which it will be turned after this turn.

You can compare your solution with the sample solution in the listing 37.1. I was of the opinion
that testing of this class is so easy that I did not define any special test class, and I did not add any oth-
er test to any of the existing classes, but I used the commented method which is prepared at the end of
the standard class pattern.

When you would like to test your class, don’t forget that the application window has to be active to
react to commands from the keyboard. In case your car will not react to the keyboard, check if the
window of the canvas manager is really active. (Clicking on it makes it active).

Listing 37.1: The Vehicle_A class

/***
 * Instances of the {@code Vehicle_A} class represent movable objects
 * that can be controlled from a keyboard.
 */
public class Vehicle_A implements IControllable
{
 //== CONSTANT CLASS FIELDS ===

 /** Manager of the canvas on which the instance will be painted. */
 private static final CanvasManager CM = CanvasManager.getInstance();

 //== VARIABLE CLASS FIELDS ===

 /** The movement speed, i.e. how much the object moves after one command. */
 private static int speed = CM.getStep();

392 Part 3: Advanced Creating of OO Programs

 //== CONSTANT INSTANCE FIELDS ==

 /** The decorated object that will be controlled from a keyboard. */
 private final IDirectable decorated;

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Wraps the given directable object and adds an ability
 * to be controlled from a keyboard to it.
 *
 * @param wrapped Decorated object
 */
 public Vehicle_A(IDirectable wrapped)
 {
 this.decorated = wrapped;
 }

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Reacts to the right arrow key or its equivalent.
 */
 @Override
 public void right()
 {
 Direction8 direction = decorated.getDirection();
 decorated.setDirection(direction.rightTurn());
 }

 /***
 * Reacts to the left arrow key or its equivalent.
 */
 @Override
 public void left()
 {
 Direction8 direction = decorated.getDirection();
 decorated.setDirection(direction.leftTurn());
 }

 /***
 * Reacts to the up arrow key or its equivalent.
 */
 @Override
 public void up()
 {
 Position position = decorated.getPosition();
 Direction8 direction = decorated.getDirection();

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 393

 position = direction.nextPosition(position, speed);
 decorated.setPosition(position);
 }

 @Override public void down() {}
 @Override public void enter() {}
 @Override public void space() {}
 @Override public void escape() {}

 /***
 * Paints the instance by force of the specified painter.
 *
 * @param painter Painter drawing the instance
 */
 @Override
 public void paint(Painter painter)
 {
 decorated.paint(painter);
 }

 /***
 * Returns a string representation of the object – its text signature.
 *
 * @return A string representation of the object
 */
 @Override
 public String toString()
 {
 return "Vehicle_A_(" + decorated.toString() + ")";
 }

 //== TESTING CLASSES AND METHODS ===

 /***
 * Tests, that the instance can react to commands entered from a keyboard.
 */
 public static void test()
 {
 Arrow arrow = new Arrow();
 Vehicle_A va = new Vehicle_A(arrow);
 Controller controller = new Controller(va);
 IO.inform("After you take a ride, press OK");
 System.exit(0);
 }
}

394 Part 3: Advanced Creating of OO Programs

820. After your delicate clues I really succeeded to make it. But you told that the controller enables playing of the
game to several players. How is this arranged?

You will not create the controller with the help of a constructor, but you will ask the simple factory
method – createFor(IControllable) for it. First of all it will ask the user how the keys for individual
functions will be used and then it passes the object of its racer to the controller. The controller then
will call its methods after pressing keys, entered by the user before.

Preparation of the Race
821. In case I will drive the arrow or the car only along the canvas, it will be operating. But how I should arrange to

drive them along the ring without being able to short the way? Otherwise I cannot run the race.

In case you would like to prevent the racing cars to shorten the way, you have to add a referee to the
race who will (equally as in the life) check if all runs according the regulations. This referee should be
able to detect the needed circumstances from the racers.

Therefore you will create a new class named for example Race. The instance of this class will act as
an organizer as well as a referee in one object. You will pass the ring to this instance, where the race
will take place as well as the racer who will try to drive as quickly as possible along the given ring.

To be able to check if the racer really went through the given ring, the referee will prepare several
transit controls. Not to think too much about their arrangement, you can take each road-field as a con-
trol and you can require so that the racer would announce reaching each road-field to you. Thus the
duty to prove going through each road-field will fell to the racer and the referee can only check if the
racer stands in the proper road-field.

822. Does it mean that the racer will have to announce to the referee that he reached the following road-field?

Exactly. Let’s equip the referee with a method, called for example checkpoint and the racer will call it
each time when he would like to announce reaching another road-field.

823. I understand how you mean it but I’m not sure how the racer will announce that he reached the required posi-
tion when we didn’t tell him which position he should reach. This is known only to the person who manages the
racer, because only this person can see the racing circuit drawn at the canvas.

Not to force the user or the racing object to think whether he reached the road-field or not, you can
simply program a moving method so that it would call the checkpoint method each time when the rac-
er moves a bit with its car – for object of Vehicle_A type it would be after each pressing the key with ar-
rows up. The transit control would verify if the racer’s position corresponds with the road-field’s one
which should be reached. In case it would correspond, the race would remember that next time the
racer has to reach the following road-field and that the race would check reaching the next road-field.

824. And if the racer’s position would not comply?

You mean when the racer would rush over and drove out of the circuit, or on the contrary, would like
to shorten the circuit. Then the race would wait until the racer would arrive to the proper road-field.
Only after that it would be willing to present internally the following consecutive aim and expect it at
the next road-field.

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 395

Conditional Statement – the if Statement
825. Everything is understandable, but I don’t know how to program this “if”.

Majority of languages have defined a special programming construction called a conditional state-
ment. Often it is named according to the characteristic keyword the if statement. This statement
serves for programming the decision making.

The conditional statement in Java has two forms. The simple conditional statement8 solves a situa-
tion when certain action should be carried out only when a certain condition is fulfilled. In case you
would like to use it, you will write the keyword if in the program followed by a condition in round
brackets, which should be fulfilled, so that the statement quoted after the brackets with the condition
is written. This statement is called the body of the conditional statement. The syntax of a simple
conditional expression can be written as follows:

if (<condition>) <statement>

As you see, there is the keyword if, followed by a condition in parentheses and the statement itself
after the brackets that should be executed if the condition is fulfilled.

826. And what about when I need to do something only when the condition is not fulfilled?

Then you will use a negation of the given condition. We were speaking about it, as well as about fur-
ther operations which you can use for defining of more complex conditions, in the section A Bit of
Logic on page 251. The condition can be arbitrarily complex as you wish.

827. And what about when I need to do more things than only one statement?

Then you will use what we were speaking about last time. You will put all these statements to braces
and then this block acts in the program as one statement. However, the contemporary trends in pro-
gramming prefer using a block any time, i.e. also in cases when a simple statement appears in a block.

828. Could you give me an example?

Of course, I told you that the racer has to announce to the race going through particular control points.
This means you could define the method checkpoint(IRacer) in the Race class and by calling it, the racer
(the object, not the user) would ask the race for checking if the racer is at a proper place. The race will
receive a racer in a parameter and asks it for its current position. The racer will return it and the race
will compare it with the required position. If both positions match, the race will prepare the next posi-
tion for the racer. The simple version of this method is shown in the listing 37.2.

As you can estimate from its source code, the race remembers the road-field which the racer should
achieve in the field finish. When it discovers the racer reached this road-field, it replaces the road-field
with the following road-field and next time it will check if the racer will reach this successor.

8 Java Language Specification calls it if-then statement.

396 Part 3: Advanced Creating of OO Programs

Listing 37.2: The first version of the checkpoint(IRacer) method in the Race class

public void checkpoint(IRacer racer)
{
 Position racerPosition = racer .getPosition();
 Position targetPosition = target.getPosition();
 if (racerPosition.equals(targetPosition)) {
 target = target.getNext();
 }
}

Using a Block
829. I understand and I noticed that you followed your own advice to use a block despite there is only one statement

in it. Why?

Because quite often you need to change the program and add another statement to this present sole
statement. Mostly you don’t realize that the body contains a sole statement and therefore it is not
closed in a block braces and you simply write the added statement after it. Mostly you indent it to
keep the graphic layout but after that you forget to close both statements to braces. Then the computer
accomplishes the first statement only if the entered condition will be fulfilled, and the second
statement will be carried out in each case.

It is evident, that the program operates in a different way than is supposed. Usually the program-
mer starts to check the source code. He finds the indented statement and assumes that it is in a com-
mon block of statements with the previous one. The programmer does not realize that the compiler
cannot react to indentation, because it needs to have both statements closed in a joint block – and in
this case they are not closed together.

The situation I have described is so typical that modern development environment enables you to
enter checking if all bodies will always be composed of a block, even when only one statement will be
present in this block.

830. Can you have a block with no statement in it?

Yes, you can, but it is used only in case when due to certain reason you decide to comment the
statements contained in it for a while. Using it is not recommended.

The IRacer Interface
831. In the listing 37.2 you defined a method with the parameter of IRacer type and you did not mention what will

this interface (at least I assume according to the initial I that it is the interface) require from implementing
classes.

It is simple – I still don’t know what it will require. Surely you will think out why the future racers
should be equipped with certain method. And furthermore, there should be the possibility that the ob-
ject could proclaim itself a racer. Therefore I would define them as the interface that is a successor of
the interface types IDirectable and IControllable, because in advance it is obvious that each racer has to
have such qualities.

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 397

For the time being it occurred to me only that each racer should be able to register at the race. Do
you have any other idea?

832. Maybe that in case there will be several racers, each of them should have its own name, so that we could be
able to differentiate them.

It’s a good idea. Let’s add the methods getName() and setName(String) to requirements. If you would
remember another method in course of time which you would require from all racers, you should
supplement its declaration into the interface. The current definition of this interface you can find in
the listing 37.3.

Listing 37.3: The IRacer interface

/***
 * Instances of the {@code IRacer} interface represents racers,
 * which register themselves at races and compete in them.
 */
public interface IRacer extends IDirectable, IControllable
{
 //== DECLARED METHODS ==

 /***
 * Returns the instance name.
 *
 * @return Instance name
 */
// @Override
 public String getName();

 /***
 * Sets new instance name.
 *
 * @param name New instance name
 */
// @Override
 public void setName(String name);

 /***
 * Registers the racer at the given race.
 * The racer then should report the reached positions to this race.
 *
 * @param race Race, where the racer registers
 */
// @Override
 public void registerFor(Race race);
}

398 Part 3: Advanced Creating of OO Programs

Premature return
833. How the method can recognize that a registered racer is reporting his positions and not a cheater passing off as

a racer?

The race remembers who is registered. The method compares the reference to the racer received in the
parameter with the reference remembered from the registration. If the instances are different, the race
will not take into account this calling.

It can be programmed by two ways. The first possibility is to make out one big conditional state-
ment into the body of which the whole original body of the method would belong. This body will be
executed only in case when the racer will be equal to the registered one.

The second possibility is to turn the condition from the beginning and ask on the contrary, i.e. to
ask if the racer received in the parameter is different than those who have been registered. If this
turned condition is fulfilled, I will not try to verify anything and I will directly leave the method’s
body.

To leave prematurely the method’s body you should use the return statement, which you met only
at methods returning the value. You used it only at the end of methods. However, you can use it
whenever in the body of the method, but then you have to provide that no statement will follow – it
would not be carried out.

834. If there will be nothing after it, so it will be at the end.

Not exactly – the return statement can be also the last statement in the block which creates the body of
the conditional command. And when this body is executed, the command return is carried out at the
conclusion and completes accomplishing of the method. Unless the program would step into the body
of the if statement and skips it over, then the statements that follow after this block can be carried out.

835. You told that I met the return statement only with methods that return the value. Does it mean that I can use it
also with methods that return nothing?

Yes, it is just used for the premature leaving of their body. And with these methods you write only the
keyword return into the program, followed by a semicolon completing the statement. In the new ver-
sion of the transit control I chose this second version, because I consider it as more transparent – you
can see it in the listing 37.4, just at the beginning.

836. What is the strange arrow there?

The calling of return statement in the middle of the body is a nonstandard continuation. Therefore I
add a comment in my programs with ten equation marks followed by a "greater than" mark to see at
the first sight where it is possible to leave the method prematurely.

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 399

Embedded Conditional Statement
837. The way, as it was programmed until now, means the racers can drive round and round and would never recog-

nize that they reached the finish. How it should be arranged that reaching the finish, the racer (the user) would
for example stop and could see how much time the way took to him/her?

Let’s start with the first half, i.e. how to arrange that reaching the finish the racer would stop and
could not continue further. You need to detect if – after the racer reaches the advancing checkpoint –
this checkpoint is at the same time the finish of the whole race. Therefore you insert another test into
your current test. If the reached field is at the same time the finish of the whole race, you can make the
necessary arrangements. The modified source code is in the listing 37.4.

Listing 37.4: The second version of checkpoint(IRacer) method in the Race class

public void checkpoint(IRacer racer)
{
 //Check, if it is the same racer - therefore the operator !=
 if (this.racer != racer) {
 return; //==========>
 }
 Position racerPosition = racer .getPosition();
 Position targetPosition = target.getPosition();
 if (racerPosition.equals(targetPosition)) {
 if (target.equals(start)) {
 finishRace(racer);
 return; //==========>
 }
 target = target.getNext();
 }
}

838. You told that I should compare the objects through the method equals(Object) and suddenly you compare it
with an operator !=. Why?

I don’t compare the values of objects, but the fact if it is an instance which was registered. Therefore I
ask if it is the same instance regardless to which value it might have. In this case you would receive
the same result, but in other cases you could receive a different one. Therefore you have to differenti-
ate when an identity of instances is detected and when it is an equality of their values.

839. Is it a problem when another conditional statement is in the body of the conditional statement?

The conditional statement is a statement as any other one. Therefore you can insert it into the body of
another conditional statement. And I can tell you that you can meet it quite often.

840. When reaching the starting road-field you call the method finishRace, which was not yet defined.

I try to keep the principle, about which I was already speaking, that each entity has to be focused on a
single matter. (I like the expression that each entity has to be goal-directed, as I already mentioned.)
To provide the termination of the race does not belong to the responsibility of the transit control – it
has only to recognize, when the end comes. How to handle with the end is left for a specialized method.

400 Part 3: Advanced Creating of OO Programs

A lesson for you: don’t be afraid to define a new method, although you know that you will use it
only once in the surrounding code. Take it as that the most important criterion of well-designed pro-
gram is its transparency. In case you feel that installation of certain construction might make the
program more transparent, do it.

Time Measurement
841. Oh, again you are giving general instructions and you forgot to answer the second part of the question. You

didn’t tell me how to arrange so that the racer would recognize the time spent for driving along the ring.

Well, I forgot. The time can be measured in a lot of ways. I will show you the simplest one. By calling
the method

System.currentTimeMillis()

you get a number of a long type, which contains the system time and which means a number of milli-
seconds passed from the midnight starting on January 1st, 1970. When you remember the time of the
race start and you measure it again at the finish of the race and you subtract both values, you receive
the number of milliseconds spent by the racer during driving the ring.

When you would like to use more precise measurements, I would like to warn you that the milli-
second accuracy of time is only fictitious. Contemporary processors are able to carry out a million
of operations during one millisecond, however, a number of operating systems does not keep such
precision and provides data concerning the time with roughly 10 ms plus/minus.

842. It will be sufficient to measure the time of our race in tenths of a second. Which means will I get the time of the
race by inquiring the system time before the race and after the race and subtracting both numbers?

Well, but once more I remind that for the system time you have to prepare a variable of long type. As
soon as you subtract both times you can return to the variable of int type – more than two billion mil-
liseconds can get in it, which is slightly more than three weeks. And you surely will not hold the race
so long. But you have to keep on your mind that the compiler automatically converts only smaller
types to bigger ones. Transfer from long to int is from the bigger to the smaller and therefore you have
to do it explicitly using the casting operator. The part of the code dealing with the time then might
look as follows:

long now = System.currentTimeMillis();

this.controller.stop();
this.racer = null;
int time = (int)(now - time0 + 50) / 100;
System.out.println("\n\nThe racer " + racer.getName() +
 " ran the race in time " + time/10 + "," + time%10 + " second");

843. Could you explain me the last line?

In the last but one statement I divided the number of milliseconds by one hundred to get the number
of second’s tenth. Due to the fact that the integer’s division does not round, but only cuts the decimal
fraction, I add fifty to the measured time. Thus I received the rounded number of second’s tenths.
Remember this way of rounding (i.e. to add a divisor’s half to a dividend), it’s useful.

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 401

In the last statement I firstly divide the received time by ten and thus I get the number of seconds.
Then I put the decimal point followed by the remainder of dividing by ten, i.e. the number of second’s
tenths.

Automatic and Explicit Casting
844. I would like to get back to the conversion from long numbers to the ordinary ones. When you were speaking

about casting in the section The Cast Operator (Type) on page 252, you did not mention any automatic casting
from smaller to bigger.

You are true. The best time to do it now. Java distinguishes two types of casting:

F An implicit casting, which can be realized by the compiler without your requirement, but
which can be used only in several particular situations:

F At object types the compiler is willing to cast a child to its parent. And the implemented
interface is considered as a parent of those classes which implement this interface (as
presented in the section Three Types of Inheriting on page 110). Therefore it is used e.g. for
the following statement:

IMovable im = new Ellipse();
F At primitive types the compiler implicitly casts in the direction of arrows at the figure

37.1. In case of primitive types we are not speaking about casting, but about a conversion,
because the change of type is connected with the change of an internal representation of
the given value.

F An explicit casting (or conversion), which you enter through the cast operator. You have to
choose it in situations, when the automatic casting cannot be used.

Figure 37.1

An implicit conversion of primitive type values

845. Why some arrows are dashed at the figure?

Because these conversions can be connected with losing of precision. When you have a look at the
overview of primitive types in the section Primitive and Object Types on page 35, you can see, that the
numbers of int type can acquire the value about ± 2 billion (±2.109), and the biggest of them can have
up to 10 valid figures. But despite the float type keeps far bigger numbers, it keeps them with the pre-
cision only to 6 figures. Therefore during the conversion from int type to float type you can lose sev-
eral significant figures. It is analogous with the other “dashed conversions”.

402 Part 3: Advanced Creating of OO Programs

Finishing the Race Class
846. Let’s return to the race. I can control the racer during the race and I can finish the race. Can I start racing?

The constructor is not yet defined, nor the racer’s registration. The constructor is quite simple – there
will be an only parameter: the ring where the race is running. You only have to remember to initialize
the fields used in the above defined methods. The resulting form of the Race class you will find in the
listing 37.5.

Again I completed the class with a simple test which verifies if the race is able to cooperate with
the racer that is an instance of the Vehicle_B class, and your task is to define this class.

Listing 37.5: The class Race

/***
 * Instances of the {@code Race} class represent races that can be attended.
 * The race is characterized by the ring where the vehicles run.
 * The racers can subsequently register at the race.
 * The next racer can register only after the previous one finished the race.
 */
public class Race
 {
 //== CONSTANT CLASS FIELDS ===

 /** Manager of the canvas on which the instance will be painted. */
 private static final CanvasManager CM = CanvasManager.getInstance();

 //== CONSTANT INSTANCE FIELDS ==

 /** Ring, where the race takes place. */
 private final Ring ring;

 /** Road-field, which the racer starts from. */
 private final RoadField start;

 //== VARIABLE INSTANCE FIELDS ==

 /** The checked racer that tries to run through the ring
 * as quickly as possible. */
 private IRacer racer;

 /** Controller, mediating control from a keyboard. */
 private Controller controller;

 /** Next field, which the racer should reach
 * and reaching of which will be checked. */
 private RoadField target;

 /** System time of the start. */
 private long time0;

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 403

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Creates an instance that will be able to organize race at the given ring.
 *
 * @param ring Ring, where the race should be organized
 */
 public Race(Ring ring)
 {
 this.ring = ring;
 this.start = ring.getStartField();
 }

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Registers the given racer, places it at the race start
 * and registers it as a keyboard listener.
 *
 * @param racer Registering racer
 */
 public void register(IRacer racer)
 {
 if (this.racer != null) {
 IO.inform("At this race the racer\n" + this.racer +
 "is already registered.\n" +
 "You have to wait with your registration" +
 "until this racer run to the finish.");
 return; //==========>
 }
 Position position = start.getPosition();
 int module = start.getModule();
 Direction8 direction = start.getDirection();

 racer.setPosition(position);
 racer.setModule(module);
 racer.setDirection(direction);

 this.controller = new Controller(racer);
 this.target = start.getNext();
 this.racer = racer;
 this.time0 = System.currentTimeMillis();

 //Ensure, that both, racer as well as its ring, will be visible
 CM.add(ring);
 CM.addAbove(ring, racer);
 }

 /***
 * Checks that the racer reaches the correct running position (checkpoint).
 * If yes, prepare the next running position, if no, do nothing.

404 Part 3: Advanced Creating of OO Programs

 *
 * @param racer Racer announcing reaching the next position
 */
 public void checkpoint(IRacer racer)
 {
 //Check, if it is the same racer - therefore the operator !=
 if (this.racer != racer) {
 return; //==========>
 }
 Position racerPosition = racer .getPosition();
 Position targetPosition = target.getPosition();
 if (racerPosition.equals(targetPosition)) {
 if (target.equals(start)) {
 finishRace(racer);
 return; //==========>
 }
 target = target.getNext();
 }
 }

 /***
 * Returns a string representation of the object – its text signature.
 *
 * @return A string representation of the object
 */
 @Override
 public String toString()
 {
 return "Race_(ring=" + ring + ", racer=" + racer + ")";
 }

 //== PRIVATE AND AUXILIARY INSTANCE METHODS ================================

 /***
 * Finishes the race for the given racer.
 *
 * @param racer Racer finishing the race
 */
 private void finishRace(IRacer racer)
 {
 //Check, if it is the same racer - therefore the operator !=
 if (this.racer != racer) {
 return; //==========>
 }
 long now = System.currentTimeMillis();
 this.controller.stop();
 this.racer = null;
 int time = (int)(now - time0 + 50) / 100;
 System.out.println("\n\nThe racer " + racer.getName() +
 " ran the race in time " + time/10 + "," + time%10 + " second");
 }

www.dbooks.org

https://www.dbooks.org/

37. Controlling from Keyboard 405

 //== TESTING CLASSES AND METHODS ===

 /***
 * The test method.
 */
 public static void test()
 {
 Arrow arrow = new Arrow(0, 0, NamedColor.WHITE);
 Vehicle_B vb = new Vehicle_B(arrow);

 //The racing ring can be selected by uncommenting appropriate line(s)
 Race race = new Race(
 // Ring.newLShapeRing(new Position(0,0),
 // NamedColor.BROWN));
 Ring.newSquareRing(new Position(50,50)));
 vb.setName("Racer");
 vb.registerFor(race);
 }
}

847. I did not understand why you tested the field for null in the register(IRacer) method.

I wanted to ensure that no other racer (the object) can be registered until the previous one would fin-
ish its race. Until now we define our race so that only one racer can compete in the given moment. As
soon as the racer is registered, it can immediately go at the ring and its time is measured. When it fin-
ishes, the field is adjusted back again to null, and another racer can register.

I used the fact that the newly created object has an empty reference – the value null in all not ini-
tialized fields of object type. Until this value is in the field racer, no one is registered. As soon as
someone is registered, the reference just to the registered racer is entered into the field. When the racer
finishes the race, again null is entered into the field and thus the previous state is returned when any-
body else can register (or just the same).

Exercise
848. It means my task is to create a car which would be able to run the race, i.e. to implement the IRacer interface.

You are true, but a bit of complications: The instance of Vehicle_A class defined last time could run out
of the canvas borders. This will be not allowed to instances of Vehicle_B classes, which you will define.
Because you already know the conditional statement, you should be able to set its acting so that in
case of statements from the keyboard it should leave the canvas area; it will stop and will not move.
And supplement the ability of moving backwards as a reaction to pressing the arrow down, so that
the hot-headed racers could get back to the track.

406 Part 3: Advanced Creating of OO Programs

Review
Let’s review what you have learned in this lesson:

F For programming an action which has to be carried out only under certain condition you
should use a conditional statement, which is often called the if statement.

F The syntax of a simple conditional statement is as follows

if (<condition>) <statement>

F The condition can be created by any complex logic expression.

F In case it is necessary to make more statements under the condition, all of them are closed into a
block which then acts as a sole statement and which will be executed only after fulfilling the en-
tered condition.

F The block does not have to contain any statement, but this possibility is mostly not used.

F The best practice suggests closing even a single statement into the block. Thus we lower the
probability of errors by future modifications.

F The conditional statement is a statement as any other one. Therefore you can put it into the
body of another conditional statement.

F For premature finishing of the method’s running you can use the return statement.

F In methods that return nothing you will write no expressions after the keyword return; only the
closing semicolon.

F Immediately after the return statement no other statement can follow because it would never be
executed.

F The premature leaving of the method is a nonstandard continuation which should be highlight-
ed in the code – for example by a characteristic comment.

F Each method should concentrate at one point. If further duties are part of its activity, it is
suitable to define separate methods for them, which the given method would only call.

F The current system time can be determined by calling the method System.currentTimeMillis(),
which will return the value of long type. This value represents the number of milliseconds
passed from the midnight of January 1st, 1970.

F The time is quoted in milliseconds, but mostly its precision is of lower-order.

F The empty reference null, which is an initial value of non-initialized fields, can be used for a test
if the field was already initialized.

Project:
The resulting form of the project to which you came at the end of the lesson and after completing all exer-
cises is in the 137z_KBD_Control project.

www.dbooks.org

https://www.dbooks.org/

38. Containers and Maps 407

38 Containers and Maps
38. Containers and Maps – 000000

38 Containers and Maps
What you will learn in this lesson
In this lesson you will become acquainted with containers – objects for saving other objects. First of all
you will see maps and you will read how they can be used for arranging the race in which several racers
simultaneously compete.

Project:
In this lesson you continue in using the 137z_KBD_Control project.

Containers and a Library of Collections
849. When you explained me how to arrange so that the objects would be controlled from the keyboard, you told me

that several racers could participate. Last time the program has been created in which individual racers were
competing step by step. How should I modify the program so that several racers could compete simultaneously?

There are several possibilities. One of them is that you would use special objects, named containers.
The containers are objects that are determined for saving other objects. You have already met one of
them, do you remember?

850. An object for saving other objects? I have no idea.

I will give you a clue: until now you saved mostly only values of primitive types in it. What? No idea?
It’s a crate! This was an object which did not serve for nothing else than to put values which you
wanted to save or transport into it.

Generally there are containers of two types: static and dynamic ones. They are differentiated ac-
cording to how they are able to change their size during their life course, i.e. the space to which they
save the objects.

F The static containers are born with a definitive size and will not change it through their life.
This limitation is balanced with high effectiveness. The crate belongs to the static containers, be-
cause already in the definition of its class it was clear for how many elements the space will be
prepared. Further you will meet also an array.

F Opposite to it the dynamic containers can change their size within their life (can does not mean
they have to). Mostly they are born empty and only within their life they increase their “vol-
ume”. Objects can be inserted into them and removed again during their life. Nevertheless,
sometimes it is useful to “freeze” the dynamic container and thus forbid to add or extract
anything from it. You will see it further.

In times of my programming beginning mostly the static containers were used and the dynamic ones
appeared in programs rather exceptionally. At present the situation is vice versa and the dynamic

408 Part 3: Advanced Creating of OO Programs

containers prevail. The standard Java library offers a wide range of dynamic containers which vary
with their properties and suitability of using in particular situations. Due to the fact that all of them
implement the java.util.Collection interface or cooperate with it intensively, the library is usually
named a collection library or collection class library (despite it includes also interfaces).

Classes and interfaces of this library are located in the package java.util. All collections of this li-
brary have one common: they are willing to save only values of object type. Fortunately it does not
matter, because each primitive type has its own wrapping type, which wraps its value into an object.
In a number of cases it will be done by the compiler, but it’s good to know it. I would skip over the
details, as they are not necessary at present.

Dictionaries and Maps
851. I see that you are again digressing to the theory. Which of the collections I could use for my program?

For your purpose the map would be suitable. It does not belong to pure collections, but it is a part of
the collection library. The map is not limited to only saving objects, but it offers also an effective way,
how to find quickly the saved object.

The elements are saved to a map in pairs. The first item is called a key and according to it you can
find the saved value, which is the second element of the pair. The map then could be proclaimed as a
collection of key/value pairs, in which the key serves for quick identification of the given pair and the
value contains the saved data.

852. Why is it called a map?

Because it maps the key for the value, i.e. it connects the key with the value. Any of the saved values
can be received simply by saying the key to the map under which the required value is saved and the
map returns the saved value.

853. I admit I hear the word “mapping” for the first time. What should I imagine by it?

The term mapping is taken over from mathematics and it is understood by the programmers as assign-
ing. You can meet also the term “mapping of discs” which means assigning of individual items of
network discs to items in your computer. And a value is assigned to the key in the container named a
map.

In some other libraries this data structure is also marked as a dictionary – there are also data in the
key/value pairs saved in it. The key represents a known word in the initial language, and its transla-
tion is a value. You enter the key here (the original) and the dictionary will find you its value – the
translation.

854. And now please explain me why just the map would suit to me.

You surely remember from the previous lesson that there were several data concerning the racer and
the course of this race. (I remind that in our current discussion the racer is an object.) Go through them
once again and remind what you should have on your mind to be able to program a reasonable
simulation of a race.

www.dbooks.org

https://www.dbooks.org/

38. Containers and Maps 409

855. We had to know the ring along which the racer was going; to check if it was really our object and nothing else;
to which road-field it should have arrived. We also remembered its controller unit to be able to disconnect it
from the keyboard at the end.

You have to keep such information about each racer. When the racer is coming to the checkpoint, you
have to pull out its data and verify if it is going properly and when you can expect it at next time.

And there is just the map for it. The racer is the key and the whole saved information is the saved
value. Whenever the racer reports at the control we pull out all necessary values from the map and we
check it.

Member Classes
856. I am somehow confused by your jumping between the singular and the plural. Just now you’ve told that the

map is in fact a collection of pairs (a key; a value). Then you started to speak about values which I have to
remember concerning the racer. Does it mean that several values can be saved to one key?

Not in the ordinary map and there is no other than just the ordinary map in the standard library. But
it does not matter, because you can use the same procedure as you used when you needed so that the
method would return several values – let’s define a crate for these values.

But there is a little problem: in case you would like to keep the principle of concealing the imple-
mentation, you should define the crate so that nobody else would know about it. The crate is really
needed only for the race to save the necessary information into the map.

Let’s use one special possibility. In Java the data types can have three sorts of members:

F Data members – the fields (attributes).

F Functional members – the methods.

F Type members – the member data types.

For type elements the same characteristic is valid as for the remaining two. Among other things they
can be declared as private, which means nobody outside will know about them.

Member data types are a special case of the nested types that include also the types, which are not
members, because they are defined inside blocks.

And when I am speaking about the terminology, I add also that the data type, in the body of which
the given nested type is defined, is called the outer type of the given nested data type.

857. So you want to define the crate for needed values as a member class?

Exactly, to be precise, I would like to define it as a static class. Also the internal data types can be de-
fined as static or instance. The static ones will be called embedded, the instance are called inner.

Whenever you don’t need so that the instances of member data type would know to which in-
stance of its outer type they belong, you should define the member data type as a static one (embed-
ded). The non-static nested (inner) data types may be only classes (the instances of the non-static
member classes need to remember a reference to their outer class instance and certain implementation
is needed for it). The work with inner classes is a little bit more complicated, and that’s why I will not
speak about it in this volume.

410 Part 3: Advanced Creating of OO Programs

858. When you say embedded, so I accept it. But tell me, how such an embedded member class is defined.

In the same way as the normal one. The only difference is that you define it inside another class,
similarly as if you would define fields or methods in it.

But it’s good to define all member types regularly at certain place, known beforehand. Equally, as
we used to define fields at the beginning of the code (and the static before the instance ones and con-
stants before the variables), the member data types will be defined at the end. When you have a look
at the definition created according to the standard class pattern, you can find as the last but one the
section, introduced by the comment MEMBER DATA TYPES. Put your private crate just at this place.

Let’s agree that for the race enabling parallel running of several racers a new class will be defined
to compare the today’s solution with the previous one. Let’s call the class RaceLShape. The name ex-
presses that the class will provide the race only at the L-shape ring in this lesson. You can try to
program wider range of rings in some next lesson.

But let’s get back to the embedded class. If a private embedded (i.e. static member) crate called Info
would be defined in the newly created standard class, the class definition would be as in the following
listing 38.1.

Listing 38.1: The semi-finished class RaceLShape with the defined internal crate Info

/***
 * Instances of the {@code RaceLShape} class represents races that can be run.
 * All such races are taken at an L-shape ring, which means a ring created
 * by the {@link Ring#newLShapeRing(Position, NamedColor)} method.
 * Several racers can be registered at one race and all will be run
 * simultaneously, each at its own instance of the ring.
 */
public class RaceLShape implements IRace
{
 //== CONSTANT CLASS FIELDS ===

 // ...Not used sections omited

 //== MEMBER DATA TYPES ===

 /***
 * Internal crate containing the basic needed information
 * about racer and its current state.
 */
 private static class Info
 {
 /** Ring, where the race takes place. */
 private final Ring ring;

 /** The starting field and thus also the finish field. */
 private final RoadField startField;

 /** The next running target. */
 private RoadField targetField;

 /** Controller, mediating control from a keyboard. */
 private final Controller controller;

www.dbooks.org

https://www.dbooks.org/

38. Containers and Maps 411

 /***
 * Define a new crate and initialize its fields.
 *
 * @param ring Ring, where the race takes place
 * @param startField The starting field and thus also the finish field
 * @param targetField The first checkpoint
 * @param controller Controller, mediating control from a keyboard
 * @param roundsNumber Number of rounds
 */
 Info(Ring ring, RoadField startField, RoadField targetField,
 Controller controller)
 {
 this.ring = ring;
 this.startField = startField;
 this.targetField = targetField;
 this.controller = controller;
 }
 }

//== TESTING CLASSES AND METHODS ===

// ... Remaining, not shown, code
}

859. You forgot to state that the field targetField is a constant.

No, I didn’t. The target is moving by one road-field after each arrival. I broke the principles of creating
the crate by this, but due to the fact that this crate will be a private one, it is not a big fault. Generally,
rather milder demands are placed on private internal classes. They can be watched more easily and
their internal classes as well as their instances are handled more correctly.

860. Then you told that the crate’s fields are defined as public so that they could be used without accessory methods.
In this case, they are private; but the class doesn’t have any accessory methods. How to approach to them?

The field private only excludes the access to certain elements for all who are out of the outer class
body. However, inside it there is no difference between the “private and more private”. There is only
one level of privacy within the whole class. It means that if you define another class within the class
and you install private elements in it, these elements are visible also from the outer class.

861. I see that the internal class can be decorated with modifiers which I met until now at only fields and methods.
Does it have other special properties?

I present you two of them but they result from what you already know. I’ve already spoken about the
first one, so only reminder. You can make the internal class invisible with a field private and only oth-
er elements of its outer class will know about it and its elements. Thus, you can hide that the class
needs certain auxiliary class for fulfilling its tasks.

The second specialty is also connected with visibility. Due to the fact that the internal class is inside
the body of its outer class, it has an access to private fields and methods of its outer class similarly as
all that are defined within its body. This is usually a frequent reason why the internal classes are
defined. But I would like to finish it and get back to the race.

412 Part 3: Advanced Creating of OO Programs

The Map<K,V> Interface and the HashMap<K,V> Class
862. Well, so the crate is ready and now the map could be declared and you could show me how to put everything

into it and how to pull it out again.

There are several little surprises waiting for you. First of all I will present the declaration and then I
will explain individual divergences from what you already know. If the map will be called racer2info,
its declaration connected with the immediate initialization would look out as follows:

 Map<IRacer, Info> racer2info = new HashMap<>();

863. I see that you use a SMS-shortcut in identifier.

Yes, I accustomed to name all maps according its keys and values. Because this map maps racers to
appropriate info, I named it racer2info.

Generic Types and Type Parameters

864. What are the increasing and decreasing characters doing there?

This is the first divergence. As I said already, containers serve for saving the objects. But the objects
can be of various types. It would be suitable, if you could somehow specify which objects belong to
the container and which not.

Until Java 5.0 it was not possible to specify what belongs into the container so that the compiler
could check it. Java 5.0 brings an innovation – the generic types which means the data types certain
properties of which can be specified at the last moment, when the variable of the given type is
declared.

The type parameters are quoted after the generic type name in angle brackets. In case of contain-
ers they specify, what is the type of objects saved in the container.

865. Why these types are called generic?

The word generic means general, generally used. It means that generic types are the types that are not
specialized for work with certain particular data types. They are defined generally, and the data type
with which you will work should be entered in type parameters in the declaration of an object of the
given generic type.

Having a look into the documentation, you will see that the Map interface is quoted as Map<K,V>, K
means the type parameter for the key and V means a parameter for the value. In the declaration which
I stated a moment ago, I mentioned particular values: the data of IRacer type will be the key and the
data of Info type will be the values. If I would use data of another type, the compiler announces a
syntactic error.

866. In the section Class Constructor – Static Constructor on page 289 you have used a question mark instead of type
argument and you promised to explain it in this section.

You are true. The compiler checks, if the generic types are always used with the type arguments.
However, sometimes you don’t know which type to insert there. In such case you can use the ?
(question mark) sign as a wildcard representing all object types.

More detailed explanation overlaps borders of this volume; I will explain it in the next volume.

www.dbooks.org

https://www.dbooks.org/

38. Containers and Maps 413

Interface vs. Implementation

867. But why do you declare the variable as an instance of the Map<IRacer,Info> class and save a reference to an
object of HashMap<> type into it?

If you declare any variable in the program or the type of the return value, you would use for it
the most general type that suits in the situation. Then you have far more space in case of possible
consequent changes of a program.

To keep this generality, the variable should be declared as an instance of certain interface. And the
object which should be saved in it should be an instance of particular class. Therefore afterwards,
when some other class implementing the given interface is more suitable for your program, you only
change the initialization. You do not have to change the rest of the program, because it handled the
given object as an instance of the declared interface the whole time, and it did not change with
the new initialization.

That’s what I did in this declaration. I declared the field as an instance of the Map interface and I
saved into it the reference to an object that was an instance of the HashMap class. If I would discover lat-
er on that some other implementation of the Map interface is more suitable for this purpose, e.g.
LinkedHashMap, is it sufficient to change only the initialization in the declaration. The rest of the class
will work with the given object as with the instance of the Map interface. Until the change will touch
this part of the declaration, you don’t have to take care about the rest of the program.

868. Why you didn’t quote the type parameters at type names in this explanation?

Because what I told is not dependent on particular values of type parameters. Before you learn more,
please, remember that the type parameters quoted in the type of the declared variable as well as the
type parameters quoted in the class constructor used in initialization should be the same.

869. You still didn’t explain why the interface has the type parameters and the class doesn't have it. I mean the dec-
laration:
Map<IRacer, Info> racer2info = new HashMap<>();

When you declare the type arguments at the left side of the assignment operator, it is clear that at the
right side there will be the same arguments. Therefore, Java 7 allows delegating their specification to
the compiler. Therefore the best practice suggests leaving the angle brackets empty in such case and
let the specification on the compiler that doesn’t make typos.

Initialization

870. Does the map constructor create an empty map?

Yes, you can rely on it; when the non-parametric constructor of some collection or of a map is used, an
empty collection or map will be created. The constructors that fill in the container immediately at the
beginning, always have some parameters which say what should be filled in the container during the
initialization.

414 Part 3: Advanced Creating of OO Programs

871. Tell me please, what the map knows.

The instance of Map<K,V> interface declares (among other things) the methods with the following
signatures (I remind that K is the key type and V is the saved values type):

F void clear()
removes all of the mappings from this map.

F boolean containsKey(Object key)
 returns true if this map contains a mapping for the specified key.

F boolean containsValue(Object value)
 returns true if this map maps one or more keys to the specified value.

F V get(Object key)
returns the value to which the specified key is mapped, or null if this map contains no mapping
for the key.

F boolean isEmpty()
returns true if this map contains no key-value mappings.

F V put(K key, V value)
associates the specified value with the specified key in this map. If the map previously
contained a mapping for the key, the old value is replaced by the specified value.

F V remove(Object key)
removes the mapping for a key from this map if it is present. Returns the value to which this
map previously associated the key, or null if the map contained no mapping for the key.

F int size()
returns the size of the map, i.e. the number of key-value mappings in this map.

The Registration
872. The empty map is prepared and thus the racers could start registering.

Yes, they can. Have a look at the listing 38.2 with the source code, with the register(IRacer) methods
and let’s speak about it.

Listing 38.2: The register(IRacer) method in the Race class

public void register(IRacer racer)
{
 if (registered >= maxRacers) {
 IO.inform("It is possible to register only : " + maxRacers +
 " racers");
 return;
 }
 if (racer2info.containsKey(racer)) {
 IO.inform("The racer cannot be registered twice: " + racer);
 return;
 }
 Ring ring = prepareNextRing();
 RoadField start = ring.getStartField();

www.dbooks.org

https://www.dbooks.org/

38. Containers and Maps 415

 Position position = start.getPosition();
 Controller controller = Controller.createFor(racer);
 RoadField target = start.getNext();

 Info info = new Info(ring, start, target, controller);
 racer2info.put(racer, info);

 racer.setPosition(position);
 racer.setModule(module);
 racer.setDirection(start.getDirection());

 //Ensure, that both, racer as well as its ring, will be visible
 CM.add(ring);
 CM.addAbove(ring, racer);

 controller.start();
}

As you see, the test of the second racer registration was replaced by a test, if the registered racer still
fits to the maximum permissible number of racers registered simultaneously. There is also a test if the
racer doesn’t try to register the second time. Its condition is as follows:

racer2info.containsKey(racer)

Thus I am asking the map if there is an item the access to which is through the entered key. If the map
answers that there is such an item, I know, that the racer tries to be registered the second time. Equally
as the previous test I announce him his violation in a dialog and finish the registration.

Then I prepare values which I will save to the map, I will create a new instance of the crate and I
will put it into the map. At the conclusion I place the racer at the starting position at its ring and start
its controller, i.e. I begin controlling it from the keyboard.

873. There are two methods, which I don’t know. I will start from the last one – how do you create the controller?

The class Controller offers the createFor(IControllable) factory method which asks the user, which keys
he/she would like to use, and then it creates a controller which will manage the object in reaction to
the entered keys. Thus several players will be able to play at one keyboard, if need be at several
keyboards connected to the same computer.

874. I see. The second method unknown to me is prepareNextRing(). I suppose that similarly as previously you
don’t want to “distract” the methods and therefore you defined part of their duties into an auxiliary method.
What does it do?

Your supposition is correct. The auxiliary method prepares its own ring for each racer. Then it puts indi-
vidual rings one along the other one, and knows that the constructor arranged sufficient place for all of
them. (That’s why the number of racers is limited.) You can find its source code in the listing 38.3.

As you see, the method is simple. It multiplies the order of the registered racer by the width of the
ring and deduces the ring’s position at the screen. For better orientation of the racers each ring will
have another color. The color will be given by the NamedColor class as a method with an index smaller
by one than is the order of the registered racer. Then it increases by 1 the number of heretofore regis-
tered racers before returning the created ring so that the ring for the next racer will be drawn the
needed bit aside.

416 Part 3: Advanced Creating of OO Programs

Listing 38.3: The prepareNextRing() method in the RaceLShape class

private Ring prepareNextRing()
{
 int x = registered * RING_WIDTH * module;
 Position position = new Position(x, 0);
 Ring ring = Ring.newLShapeRing(position,
 NamedColor.getNamedColor(registered));
 registered = registered + 1;
 return ring;
}

The Check of Transits
875. The racers are registered and they can start and report at checks. How did you solve it?

Have a look at the listing 38.4. I would like to draw your attention to the beginning where I ask the
map for an object saved under the racer key by the following statement

racer2info.get(racer)

Afterward I test if the map did not return me an empty reference. This would mean that I am asking
an information from a racer who did not register and therefore he is not saved in the map.

Listing 38.4: The checkpoint(IRacer) method in the RaceLShape class

public void checkpoint(IRacer racer)
{
 Info info = racer2info.get(racer);
 if (info == null) {
 return; //==========>
 }
 Position racerPosition = racer.getPosition();
 Position targetPosition = info.targetField.getPosition();
 if (racerPosition.equals(targetPosition)) {
 if (info.targetField == info.startField) {
 finishRace(racer, info);
 return; //==========>
 }
 info.targetField = info.targetField.getNext();
 }
}

876. Why don’t you announce the error in the dialog as during the registration?

Because this error occurred in the middle of the race and I don’t want to spoil the race to other racers.
It means I will simply ignore the not registered racer.

www.dbooks.org

https://www.dbooks.org/

38. Containers and Maps 417

The End of the Race
877. I see that you also give information about the racer to the finishRace(IRacer) method. Why?

This method uses only the reference to the controller to which the method announces that the action
finished and monitoring of keyboard can be closed.

However, this method has more interesting aspect: Notice, that there is the following statement
after announcing the time of the given racer printed at the standard output

racer2info.remove(racer);

By this statement I ask the map to remove the couple (a racer; information on him). After this state-
ment I am asking the map, if it is empty. In case it returns true, it means that it removed the last
racer, i.e. that all racers finished. Therefore an announcement about finishing the race is written in the
standard output.

878. This closing announcement could be written into the dialog, couldn’t be?

Yes, it could be, but I take into account that another group of racers might come and consequently
compare their times and pick up according to time, which of them will proceed to the finals. This
announcement clearly differs among separate groups.

879. Compared to the previous lesson the method getName() occurred. Last time it was not there.

Last time there was only one racer and thus it was not necessary to differentiate him. Now there are
further methods for detecting and adjusting the racer’s name in the IRacer interface, so that it would
be possible to distinguish separate racers in such mass racers.

The IRace Interface
880. Do you have further methods on stock?

I think I don’t have to analyze each detail. I would say you will understand the rest from the source
code in the final project of this lesson. The only one what I would like to mention, is the fact that I
added an implementation of the IRace interface, which implemented also the race of the last lesson. It
was due to the reason that the racer could register at any of them.

For this reason also the IRacer interface changed, and now the method registerFor expects the
parameter of IRace type.

418 Part 3: Advanced Creating of OO Programs

Exercise
881. What you have prepared for my today’s exercise?

Read once again the source code of the RaceLShape class and above all using of maps and of embedded
classes. Try to think out some simple dictionary with methods as follows:

F void addWord(String source, String translation)

F String findTRanslation(String source)

F void remove(String source)

Examine the class functioning in an interactive mode. And if you will be diligent, you can define also a
test class. Check, if, after adding a new value with a key which already is in the map, the map would
change the old value assigned to this key by the new one.

Review
Let’s review what you have learned in this lesson:

F Containers are objects determined for saving other objects.

F Containers are divided into static and dynamic ones.

F The static containers have the same size for their whole life, which means the same num-
ber of objects fits into them.

F The dynamic containers are mostly born as empty and they fill up and clear out dynami-
cally during their life.

F The crates belong among static containers.

F The library of collection is defined in the package java.util in a standard library.

F Containers of the library are willing to work only with values of object types.

F Each primitive type has its wrapping type, which “wraps” its value into the object.

F A map is the container that serves to saving objects and their quick searching.

F A map stores key/value pairs. The key serves for identifying the given couple; the value
contains the saved data. You can find a value if you provide the key.

F This data structure is called in certain libraries as a dictionary.

F In case it is necessary to save more values to one key of the map, they should be put into a crate.

F Data types can have three kinds of members:

F Data members – fields.

F Function members – methods.

F Type members – member types.

F Member types are a special group of more general nested types. Nested types include also the
types declared inside blocks.

www.dbooks.org

https://www.dbooks.org/

38. Containers and Maps 419

F Member types are divided to embedded (static) and inner (instance) ones.

F The data type in the body of which a nested type is defined, is called an outer type of this nest-
ed type.

F Member data types can have the same modifiers as fields and methods.

F According to our conventions the member data types are located at the end of the source code
in the relevant section.

F The member class, the instances of which do not need to know to which instance of their outer
class they belong, should be defined as static (embedded) ones.

F The classes of containers use to be defined as generic data types which have angle brackets after
their name with a list of names of type parameters.

F The type parameters of containers enable to enter such types of values which are allowed to
save into the given container.

F When declaring the variable, the type parameters of its type have to be the same as the type pa-
rameters of the constructor which create the value saved in the variable. To avoid typos we can
let this list empty and let its specifying to the compiler.

F The type of the declared variable should be chosen as general as possible to have a minimum of
problems with consequent modifications.

F The object saved in this variable can have more precious type.

F In case it is necessary to receive instances of various types in the parameter of certain method,
an interface can be declared, which would be implemented by all these types and then this
interface will be proclaimed as the type of the relevant parameter.

F When working with maps it is possible to use (among other things) the methods with the
following signature (K and V represent the type parameters for the key and the value):

F void clear()
F boolean containsKey(Object key)
F boolean containsValue(Object value)
F V get(Object key)
F boolean isEmpty()
F V put(K key, V value)
F V remove(Object key)
F int size()

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 138z_Containers project.

420 Part 3: Advanced Creating of OO Programs

39 Further Programming Constructions
39. Further Programming Constructions – 000000

39 Further Programming Constructions
What you will learn in this lesson
The organization of the race programmed in the previous lesson was not perfect. In this lesson you will
see how it can be improved. You will become acquainted with collections with the colon for loop, then
increment as well as decrement operators will be presented, and finally you will learn how to throw
exceptions.

Project:
In this lesson you continue in using the 138z_Containers project.

882. When I tried the race programmed in the last lesson with my buddies, sometimes only the last prepared racer
was competing. We figured out that it happens when I assigned the same key to the unused methods. I thought
it cannot be a problem.

You made one fault, because you used the same key for finishing the reaction to pressing the keys for
the next racer. Therefore, when you entered the hot key for the subsequent racer, you pressed at the
same time the key to which the preceding racer (properly) reacted in the way that he switched off.

This behavior is a result of one imperfection of the previous program. If you look at the listing 38.2
on page 414, you will see that the last statement is switching on the controller. Since this moment the
given racer reacts to the keyboard. If you would like to program it better, you should activate all
controllers after all racers would be registered. But you didn’t have sufficient skills for that.

Collections that Can Be Received from a Map
883. And what was missing?

I didn’t explain you how to repeat certain action or how to use a cycle. I think that it’s the proper time
to make it now. But before that I will tell you about certain methods of maps. As I said, the map is a
collection of key/value pairs. (We call these pairs entries, because they are instances of the Map.Entry
interface.)

But the map does not operate as this collection. It is specialized above all to saving and subsequent
withdrawing of values according to the entered key. Nevertheless, it offers methods which will return
a collection of keys, of values or of whole entries. The methods are as follows:

F Set<Map.Entry<K,V>> entrySet()
returns a set of entries – instances of the Map.Entry<K,V> interface.

F Set<K> keySet()
returns a set of the keys contained in the given map.

www.dbooks.org

https://www.dbooks.org/

39. Further Programming Constructions 421

F Collection<V> values()
returns a collection of the values saved in the given map. If some value is saved more times (it is
in several pairs with various keys), it will be contained more times in this collection.

The above mentioned returned collections (as you know, sets belong to collections) are backed by the
map, so changes to the map are reflected in the set, and vice-versa.

884. What is the type Map.Entry<K,V> about?

In the previous lesson I presented member data types. The internal crate which we have created was
declared as a private one and therefore nobody outside the class knew about it. However, sometimes
it is useful so that the member types would be declared as public, and this is just the case of Map.Entry.
This is an interface which is defined within the Map interface. As you see, I refer to it similarly as to
other members of classes and of interface types – they are qualified by their owner, i.e. we write the
name of the outer type, dot and the name of the member. The Entry interface is defined within the Map
interface and that’s why its name is Map.Entry for all around.

Collection Library
885. Why the first two methods return sets and the last method a collection? And what does it mean a set?

A set is a collection which guarantees that no element will be contained twice in it. It means it is a spe-
cial type of a collection and therefore the Set interface is a descendant of the Collection interface. And
because you will soon meet further collections, you should have a basic idea about the structure of the
standard collection library. You can see the class diagram of the most important interface types at the
figure 39.1.

Figure 39.1

The class diagram with the most important interface types of the collection library

886. Ah, I see that you should at least introduce individual interface types to me.

You’re true. Let’s go on.

F Collection – The most general collection. The container to which you can save objects and with-
draw them again. You know nothing about it. In a while I will show you the list of the most
important methods.

422 Part 3: Advanced Creating of OO Programs

F Set –As I have already told you, it is a collection which guarantees to you that each element is
contained only once in it. When you would try to save the element second time, it will not
accept it. It will not add any other method to those which are inherited from the general
collection. The difference is only in the above mentioned contract.

F List – A collection, in which the elements are lined up which means you can ask for example for
its first or its last element. The list is the mostly used dynamic container.

F Queue –A collection used for simulating of the classic queue. The element which you save as the
first in it, you will also receive as the first one, when you ask for any saved element.

F Deque – A queue, where you can add new elements to (and remove them from) both ends (deque
is short for “double ended queue”).

F Map – You already became acquainted with it.

As you see, the map is standing a bit aside. It has a common aspect with collections that it knows to
return collections of elements which you saved into it. Therefore, for certain operations with elements
saved into the map, we have to get firstly the collection of them and only after that we can work with
it.

887. Once more: why the first two methods return sets and the last one returns a collection?

Each key may be only once in the map. Therefore you know in advance that the collection of keys is in
fact a set. It’s the same with the collection of entries, because two entries with the same key cannot be
contained in any map.

It’s not strictly valid for values, because you can have a map in which the same value will be as-
signed to several keys, so that you would have several entries with various keys, but with the same
value. But as I have described in functioning: if any value is contained in the map more times, i.e. if it
is contained in more entries, it will be more times also in the resulting collection of values. It has a log-
ical implication that returning of the set cannot be promised and therefore the method promises only
returning of a general, unspecialized collection.

888. What can I do with such a collection?

Above all you can save objects into it and withdraw them again. All collections offer (among
other things) a kit of important methods with following signatures (E means a type parameter of the
collection and represents the type of saved elements):

F boolean add(E e)
ensures that this collection contains the specified element; returns true if this collection changed
as a result of the call.

F void clear()
removes all of the elements from this collection.

F boolean contains(Object o)
returns true if this collection contains the specified element.

F boolean isEmpty()
returns true if this collection contains no elements.

www.dbooks.org

https://www.dbooks.org/

39. Further Programming Constructions 423

F boolean remove(Object o)
removes a single instance of the specified element from this collection, if it is present; returns
true if this collection changed as a result of the call.

F int size()
returns the number of elements in this collection.

The for(:) Loop
889. I already know what the collection is and how I can get it from the map. And now please show me how to use it

for solving my problem.

I will show it to you directly at the method start(). I have told you at the beginning that the problems
you complained on were caused by a premature activation of the controller. Remove the closing
statement from the end of the register(IRacer) method, which deals with its activation, find the
method start() and compare it with the definition in the listing 39.1.

Listing 39.1: The new form of the method start() in the RaceLShape class

public void start()
{
 IO.inform("Press OK to start measure the time");
 Collection<Info> infos = racer2info.values();
 for (Info info : infos) {
 info.controller.start();
 }
 time0 = System.currentTimeMillis();
}

890. Several statements were added between displaying the message and measuring the time.

Two of them were added. The first statement asks the map for a set of all saved values and saves it
into the variable infos, which is the collection containing crates with information on each racer.

The second statement is the loop statement. It enables you to execute operations repeatedly, in a
loop. It is introduced by a keyword for, and therefore sometimes it’s named colon for or the for each
statement, because the analogous loop statements are named in this way in other languages. This
statement enables to execute the required action with each element of the entered collection. Its syntax
is as follows:

for (<ElementType> <element> : <container>) <statement>

As you see it is composed of the keyword for followed by parentheses and a statement. The collection
from which you will take one saved element after another (you will not remove but only borrow
them) is quoted on the right of the colon (still in parentheses), and on the left hand from the colon
there is a declaration of the variable into which the reference to the withdrawn element is saved.

The keyword for together with the following parentheses is sometimes named the loop header, the
executed statement as the loop body. The head specifies how many times you will carry out the loop
body and with what, i.e. with which object. The variable on the left hand from the colon is named a
loop control variable. (Therefore it is sometimes called the loop with a parameter.) Before each entry
into the loop body a reference to another element from the container to the right of the colon is put in-
to the parameter. Working with the loop control variable proceeds inside the body.

424 Part 3: Advanced Creating of OO Programs

The content of the opened collection cannot be changed inside the loop body, i.e. the elements
could be neither taken away nor added. After finishing the loop the elements should be the same as in
the moment when you entered in it; only their properties may change.

891. Why the content of the opened collection could not be changed?

Because transferring of individual instances from the container is provided by a special object called
an iterator that keeps a view of elements – which of them were already distributed and which only will
be distributed. When you add or remove anything from the collection, the iterator might be confused
and could install an exception (exceptions will be discussed further on). Therefore the content of the
opened collection can be changed only in a permitted way; however, this will be presented in the next
volume.

Let’s return to the example in the listing 39.1 and let’s look at its loop. From the head you can see
that objects saved in the collection infos will be gradually withdrawn. These objects are crates with in-
formation on separate racers. The name of the loop control variable is info. A reference to the next el-
ement of the collection (to the next crate) is saved into it before each entry into the loop body. Then the
controller, to which a reference is saved in the received crate, is started in the loop body. Thus the
controllers of all racers are started and the race can begin.

Race for Several Rings
892. I tried this repair and it’s marvelous. I assigned the same keyboard shortcuts to all racers and then, when I

tapped at the keys, they all went altogether. So now I could try to extend the race so that the racers could go
several rounds. It will also be a cycle, won’t it be?

You will be surprised, but no. Not each repeated operation means a loop. The bigger number of
rounds which you require does not lead to any loop in the program. At least, not to a loop that would
be programmed with the help of the loop statement.

893. So how should I program it?

You should amend the transit control so that it would decrease by one the remaining rounds to the
racer when it goes through the start. When it would have no remaining round, the racer would reach
the finish and you would “flag it down”, i.e. you would call the method finishRace(IRacer) for it.

894. But when we would decrease by one the remaining round to the racer, we should put down somewhere how
many rounds remain. When we keep complete information about the racer in that crate, we should put this info
there as well, shouldn´t we?

Yes, you should add another field into the crate as well as add a corresponding parameter to its con-
structor. Besides it you should also enter information how many rounds the race would have. This
should be best included into the constructor. It receives a parameter determining the number of
rounds and we also add the field into which you save the entered number of rounds.

If you would have written more programs working with the class RaceLShape, such change would
be very unpleasant, because you should have to modify all of them. That’s why the requirement for
increasing the number of parameters of certain method is solved in practice by adding a new method
with an increased number of parameters and the definition of the original method is amended so that
it would call the new method and would enter some implicit value as the added parameter.

www.dbooks.org

https://www.dbooks.org/

39. Further Programming Constructions 425

You will modify the program by adding a new constructor which will enable to set the number of
race rounds. The body of the old constructor will be modified so that it would call the new constructor
and will enter one as a number of rounds.

895. I‘d say I can handle the constructor alone, maybe with some tiny corrections. But show me please, how I should
modify the method checkpoint.

When you will amend the constructor, don’t forget to modify also the crate which should have to re-
member the remaining rounds (add the field roundsLeft into it and add the relevant parameter into its
constructor), as well as the method register(IRacer), which fulfills this crate.

Neither the method checkpoint will be too much complicated. There will be only another embedded
conditional statement added. You can see its new form at the listing 39.2.

Listing 39.2: The innovated version of the checkpoint(IRacer) method in the RaceLShape class

public void checkpoint(IRacer racer)
{
 Info info = racer2info.get(racer);
 if (info == null) {
 return; //==========>
 }
 Position racerPosition = racer.getPosition();
 Position targetPosition = info.targetField.getPosition();
 if (racerPosition.equals(targetPosition)) {
 if (info.targetField == info.startField) {
 info.remainingRounds--;
 if (info.remainingRounds > 0) {
 endOfRace(racer, info);
 return; //==========>
 }
 }
 info.targetField = info.targetField.getNext();
 }
}

Increment and Decrement Operators
896. What does it mean the statement info.roundsLeft--??

This is the statement for decreasing the variable’s value by one. This statement would correspond in
this case with the following statement

info.roundsLeft = info.roundsLeft – 1;

897. I see, it is briefer. Why you didn’t use it a long time before?

It’ not so simple. It’s one of the four operators which have several special characteristics. All four are
rated among unary operators because they have only one operand equally as for instance the negation
operator. Contrary to other unary operators you can choose if you would like to locate it before or
after the operand.

426 Part 3: Advanced Creating of OO Programs

I told that there are four operators, but I should better tell that there are two pairs of operators. The
++ operator is called an increment operator, because it adds one to its operand, and the -- operator is
called a decrement operator, because it subtracts one from its operand.

If you put the operator before an operand, they are named preincrement / predecrement opera-
tors. In case you put them after an operand, they are named postincrement / postdecrement
operators.

If the operation is the only one in the statement, the difference of operator’s location will not be-
come evident. But if this operation is a part of more complex expression, then preincrement operator
firstly adds one to the variable and this increased variable is used in the expression, whilst the
postincrement operator firstly uses the increased variable in the expression and only after that it is in-
creased by one. The same is valid for decrementation.

To make it more illustrative, I prepared a simple little program demonstrating the above men-
tioned and you can see it in the listing 39.3 (the source code can be found in the package tests). After
starting it the dialog will open as at the figure 39.2. Having a look at it you will surely understand the
operators best. Since this time I will use it.

Listing 39.3: The Xkrements class

/***
 * The class {@code Xkrements} should demonstrate the behavior
 * of the increment and decrement operators.
 */
public class Xkrements
{
 //== VARIABLE CLASS FIELDS ===

 /** i, j, k are defined as static fields,
 * to allow their sharing with the method show(String). */
 private static int i, j, k;

 /** Serves as an accumulator of the created string. */
 private static String all = "";

 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 /***
 * Demonstrates that the operators behave as was explained.
 */
 public static void test()
 {
 //Static fields are zeroed at start => it suffices to set the "i"
 i = 1; show("Initial values:");
 j = i++; show("After (j = i++)");
 k = ++i; show("After (k = ++i)");
 k = i-- + j--; show("After (k = i-- + j--)");
 k = --i + --j; show("After (k = --i + --j)");
 IO.inform(all);
 System.out.println(all);
 }

www.dbooks.org

https://www.dbooks.org/

39. Further Programming Constructions 427

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================
 /* Blocks a constructor usage. */ private Xkrements() {}

 //== PRIVATE AND AUXILIARY CLASS METHODS ===================================

 /***
 * Auxiliary method showing the last action and printing
 * through the method {@link IO.inform()} values of all numeric fields.
 * In addition the printed text is added to accumulator
 * that will be printed at the end.
 */
 private static void show(String text)
 {
 text = text + ": i=" + i + ", j=" + j + ", k=" + k;
// IO.inform(text);
 all = all + "\n" + text;
 }
}

Figure 39.2

The dialog depicted with the test() method in the Xkrements class

898. Ah, again we get off our race a bit. Show me please, how I should modify the program to make the race at dif-
ferent rings and not only at the L-track.

It’s rather longer explanation which I would better postpone to the next lesson. Today I want to repeat
what you learned until now. I would say that it was quite a lot of things in last three lessons, starting
with the simple conditional statement through working with collections and maps up to the colon for
loop. Let’s go through individual classes in the package town and let’s look in which of them you could
apply what you learned until now with advantage. Try to open one class after another in the class
diagram (you can skip interface types) and look where you could apply the simple conditional
statement.

428 Part 3: Advanced Creating of OO Programs

Exceptions and Their Throwing
899. It’s quite a good idea. For example immediately up in the class Town I could check if the current road-field which

I want to display is actually in the town.

Good, and if you would announce that there is an error, you should learn how it is usual in Java, i.e.
through throwing an expression.

900. Throwing an expression? What does it mean?

The expression is an object which bears the necessary information concerning the situation when an
error or another exceptional situation occurred. When you discover an error, you should create an
exception (even the exception is an object) and throw it.

Throwing the exception is a special operation when a method passes an exception’s object to the
virtual machine and asks to find somebody who knows what to do with it. If the virtual machine
would not find anybody like that, a message is issued at a standard error output which is analyzed in
the part Analysis of Error Message on page 367.

901. How this exception is thrown?

There is a special throw statement for it. You write the exception you will throw behind this keyword.
You will throw out an instance of one of the following classes in our program (all are of the package
java.lang, that’s why I quote only their simple names):

F IllegalArgumentException
Throwing of this exception signalizes the forbidden value of a parameter (e.g. a negative
width).

F IllegalStateException
This exception is thrown by the method only if the instance is in such state when it is not able to
react to the sent message.

F IndexOutOfBoundException
An index with senseless value has been entered – maybe minus the first column of the town.

F NullPointerException
The attempt for addressing an instance through en empty reference – for example:

Direction8 direction = null;
direction.leftTurn();

F UnsupportedOperationException
An attempt for accomplishing the operation which the addressed object declares, but not sup-
ports. Throwing this exception is inserted into bodies of new methods, the bodies of which will
be defined sometimes in future.

Second typical usage is bodies of methods whose object has to be defined because the im-
plemented interface requires it, but their calling is not supposed. Bodies of these methods create
only throwing the exception UnsupportedOperationException, so that the offender would be
warned that he is calling an unsupported method.

www.dbooks.org

https://www.dbooks.org/

39. Further Programming Constructions 429

I mentioned e.g. collections to which nothing can be added nor taken out. But the Collection
interface required an implementation of adding and taking away methods from all collections.
Therefore these invariable collections throw out an exception UnsupportedOperationException in
the attempt for a change of their content.

F RuntimeException
Common parent of all exceptions reacting to current errors in the program. I recommend throw-
ing this exception when an error occurs in the program to which any of the previous exceptions
should not be applied (its name doesn’t reflect the nature of the occurred state). Nevertheless, in
the error situation you should always decide if any of the above mentioned exceptions can be
applied.

All quoted exceptions have a parameterless constructor and one-parametric constructor, to which you
pass the string that becomes a part of the output report. You should suitably describe the error in this
string, which occurred, to give a clue to the user for its correction.

902. Oh, now you took me by surprise. How the user can correct an error in my program?

Saying a user I don’t mean the end user who is using the program, but the user of your part of the
program, i.e. the programmer who uses your classes and calls their methods.

In case the error got up to the screen of the end user, it is dishonor, but it can happen to anybody.
When the end user announces such an error, you can only politely ask him to copy the error message
and send it to you, so that you could make the corrections.

903. I still don’t know how such exception is thrown.

I will show it at an example of the method activeOn(int,int) in the class Town, which you can see in the
listing 39.4. I test at the beginning of the method, if the entered coordinates belong outside the town’s
borders, and if yes, then I throw an exception.

Listing 39.4: The modified version of the activeOn(int,int) method in the Town class

public void activeOn(int column, int row)
{
 if ((column < 0) || (this.columnSize <= column) ||
 (row < 0) || (this.rowSize <= row))
 {
 throw new IllegalArgumentException("\n" +
 "Position outside the town border.\n" +
 "Coordinates have to be >=0, column < " + columnSize +
 ", row < " + rowSize + '\n' +
 "However the column=" + column + "and row=" + row +
 "were entered.");
 }
 currentColumn = column;
 currentRow = row;
 CM.repaint();
}

As you see, creating an exception, i.e. calling of the new operator followed by the constructor’s calling
is executed as a part of the throw statement. Of course, you can firstly create the exception, then save

430 Part 3: Advanced Creating of OO Programs

the reference into the variable and then you can throw the created exception. However, creating the ex-
ception as a part of the throw statement requires less writing and therefore the programmers prefer it.

I tried to show you at the same time how such report about the error could look out. I’m used to
begin the reports at the new line, because the announcement to a system, that precedes it, is usually
quite long and the report is then written somewhere far to the right.

Further Corrections in Older Classes
904. I perceived the exceptions and I would return to those corrections. When I went through further classes, I real-

ized, that closing the ring, their builder could verify if the two fields are really connected one with the other. But
I’ve no idea how to arrange it.

This control cannot be provided by the builder or at least not in such simple way. It would be far more
suitable if the constructor of RoadField class would be appointed to do this checking, which creates the
closing field. Look at it – you surely would discover the solution. Then you can compare it with the
sample solution in the listing 39.5.

Listing 39.5: The modified RoadField(RoadField, Direction8, RoadField, Multishape) constructor

public RoadField(RoadField predecessor, Direction8 direction,
 RoadField successor, Multishape multishape)
{
 this(predecessor, direction, multishape);
 Position next = direction.nextPosition(getPosition(), getModule());
 if (next.equals(successor.getPosition())) {
 this.next = successor;
 } else {
 IO.inform(
 "The first and the last ring fields are not correct neighbors");
 }
}

905. Nothing important crosses my mind. Do you see any further corrections there?

I see two of them. But the first is in the package util. The previous versions of the methods
equal(Object) uselessly retyped the received parameter. When you already know a simple statement,
you can change the whole definition so that the retyping would be only once. You can find the new
definition for the Area class in the listing 39.6. Similarly also methods of other crates are modified.

You are meeting these new versions since the time you started to use the library’s version under
the code 13. I only did not tell you.

Listing 39.6: The new version of the method equals(Object) in the Area class

public boolean equals(Object object)
{
 if (! (object instanceof Area)) {
 return false; //==========>
 }
 Area compared = (Area)object;
 return (compared.x == x) && (compared.y == y) &&
 (compared.width == width) && (compared.height == height);
}

www.dbooks.org

https://www.dbooks.org/

39. Further Programming Constructions 431

Exercise
906. You were speaking about two corrections.

The second correction is your today’s exercise. Add controls into the methods setSize(int,int) for in-
flatable objects if the values of parameters are meaningful, for example if somebody tries to enter a ze-
ro or even negative size. The negative position is chosen, when the object should travel outside the
canvas borders.

At the same time add a control into the method setDirection(Direction8) for turnable objects, if
somebody enters a direction into which the given instance does not know to turn, i.e. if it turns the in-
stance into one of the four cardinal points. The method isMain() of the Direction8 class can help you
with the control. Find in documentation what it precisely can do.

907. Would it be better to solve the measure control in classes Size and Area?

The instances of classes Size and Area are pure crates which don’t have any idea for what the given
application needs the saved data. I can imagine for example an application which will understand set-
ting of negative measure as a statement for a mirror overturn of the given application’s picture. There-
fore let’s leave the decision what is good and what’s wrong on the class because it knows what the
controlled data are for.

Similarly I would not insert the controls into classes of decorators. You can suppose that the deco-
rated instance will take care about everything. Then the turnable decorator will be able to decorate in
future also those turnable instances which are able to turn into all eight points.

And so that you would really train, add a control into the method activeOn(int,int) in the Town class
that the active field is within the town. But it would be suitable to supplement the method
getFieldSize(), which returns the field measurement of towns (i.e. the number of its columns and
lines), so that the program that intends to set this active position could firstly determine the limits in
which the setting can be done.

As the last exercise go through all source codes in the town package and find, where you can use
increment and decrement operators (e.g. by counting the created instances).

Review
Let’s review what you have learned in this lesson:

F The map offers three methods which return collections of saved objects as follows:

F Set<Map.Entry<K,V>> entrySet()
F Set<K> keySet()
F Collection<V> values()

F The Map.Entry<K,V> interface is a nested interface of the Map interface. Its instances are key/values
pairs saved in maps.

F The standard library defines an interface specifying collections of several types as follows:

F Collection – The most general collection. The container to which objects can be saved and
withdraw again. It does not guarantee anything else.

432 Part 3: Advanced Creating of OO Programs

F Set – The collection that guarantees that each element is contained only once in it.

F List – The most used dynamic container. Elements in it are arranged in an order.

F Queue – The container which is used for simulating of a classic queue.

F Deque – The container representing double ended queue.

F The most important methods offered by the general collection are the following:

F boolean add(E e)
F void clear()
F boolean contains(Object o)
F boolean isEmpty()
F boolean remove(Object o)
F int size()

F For looking through elements saved in collection you use the loop named colon for or foreach
loop. Its syntax is as follows:
for (<ElementType> <element> : <container>) <statement>

F The keyword for with following parentheses is named a loop header; the following statement is a
loop body.

F Inside the parentheses of the header, on the right side of the colon you can find a container
from which you select the elements. On the left from the colon there is the so called loop control
variable. It’s a variable to which you save the reference to the next element selected from the
container on the right. You are working with the cycle’s parameter inside the body.

F Within the loop body you cannot change the content of the opened collection, i.e. you cannot
withdraw any elements, nor to add.

F The operators ++ are named increment, because they add one to their operand, the operators ––
are named decrement, because they subtract one from their operand.

F In case the operator is located before the operand, it is called preincrement or predecrement
operator, if it is located after the operand, it is called postincrement or postdecrement operator.

F The preincrement and predecrement operators change the value of its operand and then the
changed value is used in the expression.

F The postincrement and postdecrement operators also change the value of their operand, but the
original value before the change is used in the expression.

F The exception is an object which bears information about the situation in which the error or
some other exceptional situation occurred.

F Throwing the exception is a special operation during which the method passes the object of the
exception to the virtual machine and asks to find somebody who is able to handle the exception.

F If the virtual machine will find nobody, it issues a standard error report at the standard error
output.

www.dbooks.org

https://www.dbooks.org/

39. Further Programming Constructions 433

F When creating an exception you should use its one-parametric constructor, in the string
parameter of which you suitably describe the error, to give a clue to the user for its correction.

F The most important exceptions are as follows:

F IllegalArgumentException

F IndexOutOfBoundException

F IllegalStateException

F NullPointerException

F UnsupportedOperationException

F RuntimeException

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all
exercises is in the 139z_Algorithmic project.

434 Part 3: Advanced Creating of OO Programs

40 The Factory Method Second Time
40. The Factory Method Second Time – 000000

40 The Factory Method Second Time
What you will learn in this lesson
In this lesson you will improve the organization of your race. You will see how you can define the class
organizing the race by using the factory method, so that the class would not be fixed to one ring, but you
would be able to enter any ring along which the race will be run. At this occasion you will learn how to
use a complete conditional statement, methods with variable number of parameters and the classic for
loop.

Project:
In this lesson you will continue in using the 139z_Algorithmic project.

Problems with Variant Rings
908. You promised in the previous lesson, that today you will explain how the race should be arranged, so that I

could input not only the participants, but also the ring along which the race will drive.

The problem in inputting the ring is that your temporary knowledge (and above all the time possibili-
ties) does not allow you to define the race so that all participants would drive along the same ring and
could mutually pass. To provide a relative impartiality of such race is quite complicated problem.

We have chosen a strategy in which each racer has its own instance of the racing ring which he/she
tries to drive through as quickly as possible. No one blocks his/her way which means no crashes have
to be solved and we can only watch if the racer is out of the track.

By this access we save a lot of work with solving the passing and possible collisions, but you have
to know how to create a set of equal rings. The class RaceLShape solved it simply: driving will be possi-
ble only along an L-shape ring which can be created by a static factory method of the Ring class. If we
would like to enable entering the type of the ring to a constructor as a parameter, we can meet a
problem that nothing else than an object can be entered as a parameter.

Similar problem we solved in the lesson Creating of an Standalone Application on page 319, when it
was needed to explain to the dispatcher, which UFOs should be created in this game – mine or yours.
The solution was that a special factory class was created the instance of which was able to create the
required object and this instance has been given over to the constructor as a parameter. Now you
could use a similar procedure.

Recall now how we proceeded in defining the game UFO and tell me how you should proceed in
defining the race on various rings.

www.dbooks.org

https://www.dbooks.org/

40. The Factory Method Second Time 435

The IRingFactory Interface
909. I was looking at it. At that time we made out UFO by means of UFO factories. The dispatcher’s parameter re-

quired an instance which implements an interface for these factories. The factories implemented this
interface and each of them created UFO of its author.

Good, and now you will do it the same way. Define the IRingFactory interface, in which you will de-
fine your requirements for an instance that would be able to produce rings. The factory interface with
the only required method has been already examined with UFO, and thus you can increase your
requirements and ask more methods. Let’s propose the interface as is shown in the listing 40.1.

Listing 40.1: The IRingFactory interface

/***
 * Instances of the {@code IRingFactory} interface represent factories
 * intended for creating rings, where various vehicles can run.
 */
public interface IRingFactory
{
 //== DECLARED METHODS ==

 /***
 * Creates a ring with the default color and with the starting field
 * at the given starting position.
 *
 * @param startPosition Starting field position
 * @return The created ring
 */
// @Override
 public Ring createRing(Position startPosition);

 /***
 * Creates a ring with the given color and with the starting field
 * at the given starting position.
 *
 * @param startPosition Starting field position
 * @param color Color of the created ring
 * @return The created ring
 */
// @Override
 public Ring createRing(Position startPosition, NamedColor color);

 /***
 * Set the default color for the future rings-
 *
 * @param color The set default color
 * @return The default color before the new was set
 */
// @Override
 public NamedColor setDefaultColor(NamedColor color);
}

436 Part 3: Advanced Creating of OO Programs

910. I see that the method setDefaultColor(NamedColor) returns the previously adjusted implicit color. This is the
first time when some adjusting methods return something.

It’s not the first time, you met it when I was speaking about maps and their methods put(K,V) and
remove(K). I wanted to show you one of the possibilities how the only one accessory method to certain
property can be sufficient. Sometimes you can meet such setting method designed like that (see the
mentioned methods of maps). It is worthwhile in a situation when you exceptionally ask for the value
of the given property and you only adjust the property without detecting what is its current value.

The adjusting method which will return you the previous value is one of the possible ways how
you can do without the detecting method. In case you need only to find out a color, you can set any
color and then set again the previously set color.

More Complex Factory
911. It’s an interesting idea, but I would like to get back to the race. If I understand it properly, first of all various

ring factories should be created, and then the class of races can be created the instances of which will organize
the race with rings produced by the factory delivered to them as a parameter.

You understand it properly. I would say that you could create factories for producing L-shape rings
alone, because as I’ve already told you, its methods only call the prepared static methods in the Ring
class. Therefore it will be your exercise. Do it just now to obtain some experience in this way before we
will continue. I think that it is so simple task that I don’t need to show the possible solution – you can
compare your solution with the LShapeFactory class in the final project of this lesson.

912. I defined the MyLShapeFactory class and I have to admit that the task was really simple.

Well, let’s have a look, how you could create certain more complex factory.

913. More complex factory? I would understand more complex ring, but why more complex factory? According to me,
the individual factories will vary only in the length and the extent of twisting the ring.

On the contrary, I would choose the simplest possible ring – something as in Indianapolis – a simple,
rectangle track with four curves. We name the class OShapeRingFactory.

At the first sight such task looks very simple, but just this simplicity enables to set parameters for
it. The constructor will find out of how many lines and columns the track will consist and if the driv-
ing along it will be clockwise or counterclockwise. The created instance will produce and locate at the
entered positions the track specified like that.

914. I admit that you surprised me. I see that you are able not only make the complex things simple, but also the
simple things complex. Nevertheless, I think that I would be able to define the constructor, because it will re-
member only those three items you were speaking about.

I have chosen this extension, because it is relatively simple, but you have to learn a new construction
for the solution. So, let’s go and agree that three fields will be defined:

F The fields of columns and rows will define the width and the height of the ring quoted in a num-
ber of occupied road-fields.

F The field direction will remember the direction from the starting road-field, which will be al-
ways located in the left upper corner of the ring. It will have only two permissible values: EAST

www.dbooks.org

https://www.dbooks.org/

40. The Factory Method Second Time 437

and SOUTH. The first one will represent driving clockwise, i.e. with curves turned to the right, the
second one driving counterclockwise, i.e. with curves turned to the left.

When you will be defining the constructor, don’t forget to check, if the required number of lines and
columns is not less than 2. Check also, that the parameter for setting the direction has the value EAST or
SOUTH. In case of anything else, throw the IllegalArgumentException.

Complete Conditional Statement
915. I created the class and I prepared the fields as well as the constructor including the requested verifications. I

also defined the setDefaultColor(NamedColor) method, because I think it was not complicated. And please,
show me the rest now.

I prepared the definition of the creatingRing(Position, NamedColor) method, which you can see in the
listing 40.2. (I suppose that you can define the one-parametric version of this method alone.) I used
one new construction which was not yet presented and that’s why I explain it in this example.

916. Do you mean the else statement?

This else, you are speaking about, does not create an independent statement, but only introduces the
second part of the complete conditional statement. Until now we were using only a simple conditional
statement, in which we could impact if it makes something or not. The complete conditional state-
ment9 has two branches and therefore it enables to specify even what should be done, if the condition
is not valid. The syntax of the complete conditional statement could be written as follows:

if (<condition>) <statement_1> else <statement_2>

When the computer will meet this statement, it evaluates the condition. If it is valid, the computer ex-
ecutes <statement_1>; if it is not valid, the computer executes <statement_2>.

I created a builder in the method and I started building the road with this builder. However, the
procedure of building depends on the direction where the ring will turn (clockwise or counterclock-
wise). This depends on the starting direction which you will choose. If you start to the south, you call
the method for creating the ring with different parameters compared to starting to the east. As you
see, I gradually enter the number of road-fields which are necessary to be built at separate sites.

Listing 40.2: The createRing(Position, NamedColor) method in the OShapeRingFactory class

public Ring createRing(Position startPosition, NamedColor color)
{
 RingBuilder builder = new RingBuilder(startPosition, color);
 builder.startTo(direction);
 if (direction == Direction8.SOUTH) {
 completeRing(builder, rowSize-1, columnSize, rowSize, columnSize-1);
 }
 else {
 completeRing(builder, columnSize-1, rowSize, columnSize, rowSize-1);

9 Some authors call it general conditional statement; Java Language Specification calls it if-then-else statement.

438 Part 3: Advanced Creating of OO Programs

 }
 return builder.getRing();
}

917. Ah, I don’t see anything. Why do you subtract one from the number of lines and columns?

It is decreased to simplify the method for creating the side of the ring. Look at it, how the builder
makes the ring. Firstly it creates the first field, and then a series of continuing fields and at last the
closing connecting field. That’s why I suppose that the method createRing creates initially the first
road-field, which means, for the first line (or column) one field less remains.

Well, we turned. In the second and the third side all fields are the continuing ones and so the full
number of fields should be created. As the last side is mentioned, I know that I have to leave the last
field empty, because it is added in the different way – it is the closing field of the circle. Thus I again
ask for a side shorter by one field.

918. When you explain it in this way, I can understand it. So it means that the createRing method creates the re-
quired ring with the builder, and at the end it asks the builder for the created ring and returns it as its own
product.

Exactly.

Methods with a Variable Number of Parameters
919. When I skip over the speculations about the proper number of road-fields which have to be created at individual

sides, it seemed to me quite simple. I create a builder, I ask somebody to help him building instead of me, and
then I brag about the result. I start to be interested in the last method.

The last method is really interesting, because there are two not yet explained constructions in it. The
first one is the definition of the method with the variable number of parameters. Look at the method’s
head in the listing 40.3.

920. I see there three dots. You spoke about them in the section Variable Number of Parameters on page 93, when
you showed me how to create a multishape. I only do not know why you installed the variable number of pa-
rameters when you knew that the parameters are always four.

I used the fact that the parameter sizes is only a container to which all passed parameters are saved
whose number is not known in advance. If I would take over the parameters individually, I would
have to turn each of them separately and thus I would have to program the same several times. As
you see, I avoid this situation if it is possible a little bit.

Due to the fact that all values of parameters are in one container, I can use the colon for loop, with-
draw one parameter after another from the container and let the builder create as much road-fields, as
the given parameter requires.

Listing 40.3: The method completeRing(RingBuilder, int...) in the OShapeRingFactory class

private void completeRing(RingBuilder builder, int... sizes)
{
 if (sizes.length != 4) {
 throw new IllegalArgumentException(
 "\nFour sizes should be entered");
 }

www.dbooks.org

https://www.dbooks.org/

40. The Factory Method Second Time 439

 Direction8 currentDirection = direction;
 for (int size : sizes) {
 for (int i=1; i < size; i++) {
 builder.continueTo(currentDirection);
 }
 if (direction == Direction8.SOUTH) {
 currentDirection = currentDirection.leftTurn();
 } else {
 currentDirection = currentDirection.rightTurn();
 }
 }
 //The last direction should be turned back because I am
 //at the last but one field and so I should not turn yet
 if (direction == Direction8.SOUTH) {
 currentDirection = currentDirection.rightTurn();
 } else {
 currentDirection = currentDirection.leftTurn();
 }
 builder.closeTo(currentDirection);
}

921. Well, so if I define a method with a variable number of parameters, the parameter after the triple-dot is always
a container in which all those values are saved?

Yes, this container is established as an array. I can speak about it more detailed in some of the follow-
ing lessons. For now it’s sufficient to know, that it is a container through which you can pass with a
help of the colon for loop, and that you receive individual parameters exactly in the order in which
they were quoted during the method’s calling.

In case you would sometimes decide to define your own method with a variable number of pa-
rameters, then remember, that the container for the variable number of parameters always has to be
quoted as the last one. Logically it results that you cannot have two of them.

922. But if there maybe any count of those parameters, the method can receive less than four or on the contrary
more. Could it be a problem?

Be sure, that if I would not take care about it, it really would be a problem. Therefore, before entering
the loop I ask the array, how many elements it has. This information is saved in the array’s public
constant length. If there are not four elements, I throw an exception.

It’s true that the method is private and that I could look after such things within the class source
code, but it does no harm if the programmer inserts also guarding of his own possible errors into the
program.

The Classic for Loop
923. Well, I comprehend the container and the colon for loop. But what about the next for – you didn’t tell anything

about it.

This is also a loop – I call it a classic for loop, because Java took it over from its grandfather, the C lan-
guage. You can see that the C language was developed by programmers for programmers (better said

440 Part 3: Advanced Creating of OO Programs

for themselves). The beginners sometimes complain that they have troubles with remembering the
meaning of its separate parts. Its syntax is the following one:

for (<initialization> ; <condition> ; <modification>) <statement>

The keyword for with the following braces constitutes the loop header; the <statement> constitutes the
loop body. A declaration of a loop control variable or some expression can occur in the part named
<inicialization>. This part will be executed only once before the first entry into the loop body. Mostly
the loop control variable is declared and initialized there; which is the variable used within the loop
body and its value is modified before each next execution of the loop body (better said before testing
the condition).

It’s good to remember that the variable declared in the header is visible only in the header and in
the loop body, not further. In case you intend to use the variable in a loop which would be accessible
even after finishing the loop, you have to define it before the loop header. This is a popular error of
the beginners.

In the middle part you write a condition which is evaluated before each execution of the loop body.
You enter into the loop body only in case if the condition is true. If it’s not true, executing of the loop
ends and you continue with the first statement after the loop body. If the condition is not true for the
first time, the loop body is not executed at all.

If the condition is not quoted, it is evaluated as always-true and the loop is executed until the time
when some statement would jump out. (How it is possible to jump out from the middle of the loop
you will see in the next lesson.)

The part named <modification> is the place where the express specifying what should be executed
after going through the loop body. Mostly you can find here a statement defining how the value of the
loop control variable should change. If there is nothing, nothing is done after completing the loop
body and the execution continues with the next evaluation of the condition.

924. You told that there may be nothing in each part. Does it mean that despite I will write nothing into the head, it
will be good?

You mean when you will write neither the initialization, nor the condition, nor the modification, be-
cause you have to write the semicolons into it. Yes, it will be proper. This will be a head of an endless
loop – for(;;). It is so characteristic, that I recommend its using to everybody, and wherever the end-
less loop is needed. It is more conspicuous in the code than other variants of the endless loop. You will
train how to use it in the next lesson.

925. May I skip also the statement?

You cannot skip the statement because then the next statement would be used as a body. But you can
quote an empty statement after the head, which is created by the only semicolon or the empty block.
Sometimes it’s suitable, because there are loops, which execute all necessary already in the head, and
then their body is created by only empty statement.

As you see, the empty header has a sense and an empty body as well. Both are sometimes used.
But it’s no sense to use an empty head together with an empty body, i.e. a statement for(;;);. Such
program has an only function: to block. It does nothing, but it does this nothing all the time.

www.dbooks.org

https://www.dbooks.org/

40. The Factory Method Second Time 441

926. Well, and now apply this general talking to this program.

It is simple. You will find a declaration int i = 1 in the initializing part, which defines the variable i as
a loop control variable and initializes it to 1.

The condition tests, if i < size. Because the parameter i is increased by one in the following modi-
fication part, this condition tests, when the constantly increasing i will reach the value size.

To summarize: this header says that the loop body will be executed just (size-1) times. The builder
adds another road-field to the ring in the entered direction, so that as many road-fields is added to the
built side of the ring as is stated in the variable size.

927. I think if the control variable acquires subsequently the values from 1 up to size, the body will be executed
size times.

However, the control variable acquires the accepted values from one up to size-1. When it gets the
value size, the condition i < size will be evaluated as false and the loop ends. It should be done in
this way, because the last road-field of the side is shared with the next side and because this field is
turned to the next side’s direction, we create it as the first road-field of the next side. Therefore this
loop is defined to create only the (size-1) road-fields.

928. Well, I will have to digest it. But I understand that the for loop is a statement as any other and therefore I can
insert it into another loop; I believe that also into another conditional statement.

You can insert it anywhere, where you can insert a statement.

929. At the end of the colon for loop you are changing the current direction and when you leave the loop, you change
it back. Why?

At the end of the colon loop I arrived just in front of the ring’s corner and I need building of another
side the direction of which is turned by 90° to the right or to the left according to the circulation. In the
next passing I take the next side size and I start building the next side of the ring.

After I go around the whole future circuit, I have to place only the last road-field which has to be
connected with the initial one, so that I could go around the whole circuit. This last road-field has the
same direction as its predecessors. The initial road-field, which is the corner field, will have a new di-
rection. However, the if statement mentioned a while ago at the end of the colon loop has already
turned the direction. Therefore firstly I have to return this turned direction back, so that the builder
would know, that also this road-field would continue in the given direction.

930. Well, when I go through your method, I take gradually one entered size of the side after another and I make
one less road-fields in the row as is the value of the given size. Then I look in which direction I started and ac-
cording to it I turn to the right or to the left. And thus I make nearly the whole circuit. Before creating the last
closing road-field I give back the turn which was eagerly made by the last loop´s statement, and I close the
whole circuit.

You say it better than me. It means we have finished another factory of optional circuits. But it’s not
the end. The race now has conditions for creating any number of circuits, but information for placing
these circuits one along the other is missing. However, explanation will continue the next time, as
there is a lot of things remained.

442 Part 3: Advanced Creating of OO Programs

Exercise
931. Aha, it’s time for exercising. So with what I will be entrusted today, when the race with optional rings is not

finished yet?

Complete the classes that are in the work and define the RaceRing class, the instances of which will be
able to organize the race in ring created by instances of the RingFactory class. Proceed from the defini-
tion of the RaceLShape class and take into account that instances of the wheel factory know the
measures of circuits they create, which means it is sufficient to equip them only with methods that
announce this measurement when asked.

Review
Let’s review, what you have learned in this lesson:

F If the method should create instances of a class unknown to the author in time of its construct-
ing, it is suitable to pass the factory instance, which is able to create these instances, to the
method as a parameter.

F Sometimes it is suitable to unite the getter and setter in the way that the setter returns the pre-
vious value of the adjusted property.

F The complete conditional statement is used in the moment when based on the condition you
have to decide which of the two actions will be executed.

F The syntax of the complete conditional statement is the following one
if (<condition>) <statement_1> else <statement_2>
where the <statement_1> is executed when the condition is fulfilled and the <statement_2> when it
is not fulfilled.

F In case you don’t need to detect the distance between two points, but the length of their con-
necting line, one has to be added to the difference of their coordinates.

F In the method with variable number of parameters, the values of parameters whose number is
not known in advance are saved into a container, the name of which is stated in the head of a
method behind triple-dot.

F Values saved in a container can be withdrawn and processed one after another.

F The container for a variable number of parameters has to be quoted always as the last.

F A classic for loop inherited its syntax from the C language. This syntax is as follows:
for (<initialization> ; <condition> ; <modification>) <statement>

F The keyword for with the following braces constitutes the loop header; the <statement> consti-
tutes the loop body.

F The part called <initialization> will be executed only once before the first entry into the loop
body. There may be a declaration of a control variable or certain expression located there.

F The <condition> has to be evaluated prior each entry into the loop body. If it is not true, the loop
is finished and you continue with the first statement after the loop.

www.dbooks.org

https://www.dbooks.org/

40. The Factory Method Second Time 443

F The <modification> will be executed after each passing through the loop body. Here you will
write an expression modifying the value of loop control variable for the next execution of the
loop body.

F All parts of the loop header can be skipped so that only two semicolons will be left. The for(;;)
header will be used as a header of an endless loop.

F In case all necessary actions are defined already in the head, probably you will need no body
with statements. Then you can use an empty statement as a body, i.e. the only semicolon.

F Using the statement for with an empty head and an empty body has no sense – it evokes only
freezing of the program.

F The for loop is a statement as any other one, and you can use it in all cases where you can use a
statement.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 140z_Factory2 project.

444 Part 3: Advanced Creating of OO Programs

41 The Loops
41. The Loops – 000000

41 The Loops
What you will learn in this lesson
In this lesson an improvement of the race, which will be not bound to a particular circuit, will be complet-
ed. You will read what it means a lazy initialization, you will learn how to use the break statement for
premature leaving the loop and how to define a decision sequence if … else if. I will also explain you the
side effects of methods and I will present how to use the loop with the final condition.

Project:
In this lesson you continue in using the 140z_Factory2 project.

Size of a Road-field
932. Last time you started an improvement of the race, so that it would not be limited to one ring. You told that the

necessary modifications are too large to get into one lesson. What is missing?

We prepared conditions so that the race can create any number of rings (however, they will be equal
for the given race), but you miss information to place these rings reasonably one along the other.

933. But we know the number of lines as well as columns of each of them.

Maybe we know it, but the race is not able to discover it. When you have a look at the class RaceLShape,
you see, that it has to know how many lines and columns takes the given ring so that its instances
could display individual rings one along the other and to prepare a sufficiently spacious canvas for
them. In this class we could save these sizes into constants, but the instances which should be able to
arrange races at various rings need to have a chance to get such information directly from the ring or
to discover it in some other way.

Therefore it is necessary to supplement the ring with the method getFieldSize(), which returns
the size of the area taken by the ring measured in fields (i.e. the number of lines and columns of the
smaller rectangle into which the ring fits – we will call it a circumscribed rectangle).

Then the method getStartRelFieldPosition() is added which returns a relative field position of the
ring’s starting road-field measured as an offset to the position of the circumscribed rectangle, i.e. by
how many lines and columns you have to move to get from the upper left corner field of this rectangle
to the ring's starting road-field.

To show it at the existing rings, the square ring has the field size [2×2], and ringShapeL [4×4]. Both of
them have the ring’s start at the left upper corner of the circumscribed rectangle, which means that the
relative position of the beginning is [0, 0] for both of them.

www.dbooks.org

https://www.dbooks.org/

41. The Loops 445

934. I start to understand. It means now the class Ring will be improved, won’t it be?

Exactly, you have to teach the ring to run through all its road-fields when required and derive the
occupied area (circumscribed rectangle) from the location of these road-fields.

935. Would it be sufficient to remember the number of columns and lines that were entered during its construction?

You entered these numbers only to O-shape ring factories. When you intend to create other factories,
you have to equip them with an ability to find the size of the created ring. It will be simple because all
discovering will be concentrated at one place – the ring is able to discover its size itself.

936. I know – it asks the remembered multishape. So where is the problem?

Unfortunately, asking the multishape is not the right way. I suggested using the multishape to allow
you obtaining important information that otherwise you were not able to discover at that time. How-
ever, we plan to place several rings on the display and therefore we can expect that we will need to
change the size of the grid-field, i.e. the canvas step size.

As a consequence of this change the sizes and positions of particular rings would be changed. To
change the position and size of the multishape representing the ring at the canvas is not a problem.
However, you should change also the positions and sizes of all the road-fields in the ring and you
have to program it. I advise you that you would certainly discover that you should better avoid the
multishape services. Otherwise you need to modify the multishape as well as the represented
road-rings and in addition you should keep these modifications synchronized. That’s why we now
remove the multishapes and replace their using with our own code.

So, to return to our program, we try to explain to the ring, how to detect (and later also how to set)
its size.

The Lazy Initialization
937. I am afraid that it (I mean the ring) will have to ask all of its road-fields and count the result according to the

obtained information. It will take some time.

You are true. Let’s teach the ring to make this going around only at the first requirement and then, to
return simply the value discovered in the first round. This is used in practice quite often – for example
instances of some classes are saving their text signature in this way. For instances, the signatures of
which are laboriously created and are not changed in course of their life, is worthwhile to reserve a
special field (attribute) for their signature.

After the first requirement the instances create their signatures and save them into this field. In
case of any other requirements they only withdraw the signatures and return them. Similarly you can
program also determining of the area and offset of rings.

938. How the instance recognizes that someone asks for the first time?

The instance looks into the designated area and if there is only null, it is clear that nothing has been
prepared. Then it prepares necessary information. Next time there will be already a reference to a pre-
pared object instead of null, which the relevant method will only return. This procedure is called a
lazy initialization, because the relevant field is not initialized by a constructor, but it is postponed to
the time when it is really needed.

446 Part 3: Advanced Creating of OO Programs

939. Show me, please, how I could program determining of the needed area.

You can see the method’s definition in the listing 41.1. It shows also the definitions of the ringPosition,
ringFieldSize and startFieldOffset fields (attributes), where the instance remembers the counted re-
sults not to be urged to count them again in the next calling. As I said above, it’s reasonable to explicit-
ly “zero” these fields at the beginning. I know that they obtain the null value during the memory
allocation, however, I wanted to emphasize this initial value and so I used the formally needless
assignments in its declaration.

As you can see, the method is created by two statements. Firstly the big conditional statement dis-
covers if the field ringFieldSize (the area dimension) contains only an empty reference and if yes, it
counts it and saves the created Size object into the field. Then the field’s content returns the second
statement as a functional value independently to the fact if it was just saved or prepared in the
moment of the method’s calling.

Listing 41.1: The getFieldSize()method in the Ring class

//== VARIABLE INSTANCE FIELDS ==

 /** Ring position, which is the position of the circumscribed rectangle. */
 private Position ringPosition = null;

/** Relative field position (field offset) of the starting road-field.
 * This means the position measured relatively to the left top corner
 * of the circumscribed rectangle. */
private Position startFieldOffset = null;

/** Ring field size (size measured in fields),
 * which is the field size of the circumscribed rectangle.. */
private Size ringFieldSize = null;

//== INSTANCE GETTERS AND SETTERS ==

 /***
 * Count the field size of the ring if it is not yet counted,
 * otherwise it returns the previously counted value.
 *
 * @return Field size of the ring
 */
public Size getFieldSize()
{
 if (fieldSize == null) {
 RoadField field = startField;
 Position position = startField.getPosition();
 int minx = position.x;
 int miny = position.y;
 int maxx = minx;
 int maxy = miny;
 for (;;) {
 field = field.getNext();
 position = field.getPosition();
 if (field == startField) { //All fields were used
 break; //---------->

www.dbooks.org

https://www.dbooks.org/

41. The Loops 447

 }
 //Tests horizontal coordinate
 if (position.x < minx) {
 minx = position.x;
 } else if (position.x > maxx) {
 maxx = position.x;
 }
 //Tests vertical coordinate
 if (position.y < miny) {
 miny = position.y;
 } else if (position.y > maxy) {
 maxy = position.y;
 }
 }
 //Pixel coordinates are counted, we may count the field coordinates
 int module = field.getModule();
 ringPosition = new Position(minx, minx);
 ringFieldSize = new Size((maxx - minx) / module + 1,
 (maxy - miny) / module + 1);
 startFieldOffset = new Position((position.x - minx) / module,
 (position.y - miny) / module);
 }
 return fieldSize;
}

Determining of Lower and Upper Limits
940. You say two statements, but the first one is quite big.

Yes, it’s a little bit extensive, because it makes several things simultaneously. It needs to detect the
smallest and the biggest horizontal as well as vertical coordinate for deducing the occupied area. But
let’s go on step by step.

First of all it discovers the position of the starting road-field, and inserts the corresponding coordi-
nates of this beginning into the variables, in which it will remember the found minima and maxima.
Then it enters into the loop in which particular road-fields are analyzed and according to them the
discovered limits of coordinates’ values are adjusted.

The variable field, initialized before the entry into the loop, is in fact a loop control variable and
therefore it theoretically could be declared and initialized in the initializing part of the header. How-
ever, we need to initialize some other auxiliary variables and therefore we have to define it before the
loop. Nevertheless, I recommend in all cases in which you would skip the condition in the loop head
and define an endless loop, to skip over even this initialization (you should “factor it out” before the
loop) as well as the modification (you should move it into the loop body). Then it will be far obvious
that it is an endless loop.

448 Part 3: Advanced Creating of OO Programs

Leaving the Loop from Inside of Its Body
941. But this loop should not be endless. After passing through all road-fields, it should finish.

Of course, the loop, which would be really endless, is used rather exceptionally in programs. Mostly
the endless loop is used in the way that, when somewhere in the middle of the loop you discover that
everything what was needed is arranged, you recall its premature finish.

And it is also in this case. Your loop starts with a modification in which you move to another
road-field and determine its position. If this further road-field will be at the same time the starting
road-field, i.e. the road-field where you started measuring, you know that you passed through all
road-fields and therefore you can finish. You insert the break statement into the program, which helps
you jumping out of the loop and then you continue with the first statement after the loop.

942. If I understand it properly, you have chosen the endless loop instead of the classic one due to the fact that
modification is done at the beginning, whilst in the classic loop it is done at the end. If you would add the modi-
fication statement
field = field.getNext();
also before the loop, you could use the classic one about which you spoke last time.

Yes, I could, but then the modification would be twice in the program – before the loop there would
be a code which would be executed before starting the loop, and then the modification which would
be executed after each finishing the loop body would be in the header. Furthermore, we would add
also the statement

position = field.getPosition();

(This statement should be added behind the loop.) Some programmers propose the loops like that but
I prefer not to have the same code at two places despite the fact that I have to jump out from inside of
the loop body.

943. Is the statement break responsible for jumping out of the endless loop?

No, the statement break is responsible for jumping out of any loop. In each loop you can discover that
it is going to finish and you need to jump out, despite it is premature from the head point of view.
Then you use the statement break. Remember, that for break the same is valid as for return: it has to be
the last statement of the given block.

944. And why the same statement is not used in both cases?

Because each of them is doing something else. The return statement finishes the method, whilst the
break statement finishes only the loop and remains in the method. When you use the break statement,
further statements can follow after the loop. On the contrary, when you leave the loop by the return,
you jump out not only from the loop, but directly from the whole method.

www.dbooks.org

https://www.dbooks.org/

41. The Loops 449

The Sequence of if … else if
945. Well, I came to another road-field and I know that I didn’t finish yet. What now?

Now you verify if coordinates of the given field are not smaller than the minima, or bigger than the
maxima found until now. Notice that the test is created with two complete conditional statements and
both of them have again a conditional statement in their else part, but this conditional statement is not
as embedded as usually. You can meet this construction quite often and I would like to digress for a
while from your program to an explanation of the used construction.

Listing 41.2: The sequence of comparison with standard alignment

if (small) {
 //What to do if it is small
}
else {
 if (big) {
 //What to do if it is not small, but it is big
 }
 else {
 if (fat) {
 //What to do if it is not small, nor big, but it is fat
 }
 else {
 if (thin) {
 //What to do if it is not small, nor big, nor fat, but it is thin
 }
 else {
 //What to do if it is not small, nor big, nor fat, nor thin
 }
 }
 }
}

Listing 41.3: The sequence of comparison with better formatting

if (small) {
 //What to do if it is small
}
else if (big) {
 //What to do if it is not small, but it is big
}
else if (fat) {
 //What to do if it is not small, nor big, but it is fat
}
else if (thin) {
 //What to do if it is not small, nor big, nor fat, but it is thin
}
else {
 //What to do if it is not small, nor big, nor fat, nor thin
}

450 Part 3: Advanced Creating of OO Programs

You surely know the classic one-liner that somebody is not small, nor big, nor fat, nor thin. When you
would like to write a program which would select a proper action for anybody, it would look out in
standard alignment as the program in the listing 41.2. But a program with such alignment is not well
formatted and moreover, bodies of the embedded statements are gradually shifted to the right. There-
fore, the alignment showed in the listing 41.3 is preferred in such comparing string. Both programs are
entirely equal from the compiler’s point of view. They only differentiate which one of them is better
formatted.

The described more effective formatting is used also in the code in the listing 41.1. First of all I al-
ways ask, if the given coordinate is smaller than the smallest found until now, and if not, I ask on the
contrary, if it is bigger that the biggest found. Due to the fact that it cannot be smaller and bigger at the
same time, it’s obvious, that only one correction will be done. Then the same is done with the other
coordinate.

946. What about when I would write the “ifs” one below the other, without any else? Would then it be simpler,
wouldn’t it?

The record will be simpler, but the program will mostly do something quite different. I tried to show
you both versions procedures of evaluation at the figure 41.1. The left figure shows an evaluation pro-
cedure of the listing 41.2, respectively 41.3; the right figure shows the procedure in case when else
before if is missing. As you see at the left figure, the program moves to the end after completing the
relevant action, whilst at the right figure another condition can be evaluated. Even when any other
condition would not be true, the program at least is delayed with their evaluating.

I met several programs in which the programmers made this particular mistake. And consequent-
ly, when removing the error, they laboriously modified conditions, so that all other conditions would
not be true, instead of simple inserting else.

Start

Small?

Big?

Fat?

Thin?

notSmallNorBigNorFatNorThin

notSmallNorBigNorFatButThin

notSmallNorBigButFat

notSmallButBig

isSmall

Start

Small?

Big?

Fat?

Thin?

notSmallNorBigNorFatNorThin

notSmallNorBigNorFatButThin

notSmallNorBigButFat

notSmallButBig

isSmall

END END
Figure 41.1

Different meaning of the construction if … if compared to the construction if … else if

www.dbooks.org

https://www.dbooks.org/

41. The Loops 451

Side Effects of Methods
947. Please explain me the statements behind the loop.

I calculate the distance between positions that I subtract the smaller one from the bigger one. Due to
the fact that I want the field distance, i.e. the number of fields, I divide the determined point distance
by the size of a road-field and I get the number of fields between these two coordinates. But I’m not
interested in the number of fields between them, but the total number of road-fields, and it is always
bigger by one. Train it at some simple example.

948. And why do you count the relative position when nobody asks you for it?

Because I have all necessary intermediate results at my disposal, otherwise I would have to count
them again. If we don’t use the multishape, the method for discovering the relative field position of
the starting field would test if this position (the startFieldOffset attribute) is calculated and if not, it
should call the method for determining the field size of the ring, because it knows that the calculation
for required relative position will be the side effect of this method – see the listing 41.4. (The
getPosition() method should be modified in the similar way.)

Let’s admit that creating of methods with side effect is considered as a programming transgression
because they make the program less transparent. Nevertheless, they are profitable in certain special
situations. And I thought this time it was just such special situation, because the calculations are
almost the same and when I have prepared the needed intermediate results for the first one, I can
easily count also the second one without any possible danger for the rest of the program.

Listing 41.4: The getStartRelFieldPosition() method in the Ring class

public Position getStartRelFieldPosition ()
{
 if (startFieldOffset == null) {
 getFieldSize(); //Method counting both the field size and the offset
 }
 return startFieldOffset;
}

949. The side effect is something what the method should not do?

The method with a side effect is such a method which is responsible for one aspect and it makes also
something else. And such program proposal is considered as immodest, in which – due to receiving
this side effect – you have to call a method, whose official determination is quite different. It reminds a
little bit the old jokes, in which an old lady asks the houseman to bring her a piano, because she forgot
the car key laid at it.

Calculation of relative field position of the starting field is a side effect of the method for calculat-
ing the ring field size in this case, but from outside, i.e. outside the class, nobody knows it. Infor-
mation that for discovering the relative position of the beginning you have to calculate firstly the size
is internal information of the Ring class and the surrounding programs cannot use it, nor misuse it.
When somebody asks the ring for the relative position of its beginning, he will not be informed
that the called method entrusted somebody else to discover this information as a side effect of his
activities.

452 Part 3: Advanced Creating of OO Programs

Loops Taxonomy
950. Does it mean that now the race could be arranged so that the racers may drive along any ring?

We are close to it, but I would like to add some further improvements. We add the method
getLength(), which counts and returns the total length of the ring, i.e. the total number of its
road-fields.

951. What will be this method for?

The main purpose of introducing this method is to have an example for demonstrating the remaining
kinds of loops. Now you know certain loops, and I want to complete this explanation.

Java offers several kinds of loop. The for loop we used in the last lesson is the most complex one.
Besides it there are another two simpler loops:

F The while loop – the loop with a condition at the beginning, i.e. with the condition tested before
each entering into the loop body.

F The do-while loop – the loop with a condition at the end, i.e. with the condition tested after each
executing of the loop body.

952. Why there are so many types of loops? Why one type doesn’t suffice?

Theoretically one would suffice, however then we should make some compromises. Each loop type
has its situations, in which it is the best one.

I will gradually present several versions of the same method; each of them defined with different
type of loop to demonstrate the difference between them. At first I will show the version with the for
loop I’ve already explained. You can see it at the listing 41.5.

Listing 41.5: The countFieldsUsingFor() method in the Ring class

public int countFieldsUsingFor ()
{
 int length = 1;
 for (RoadField field = startField;
 field.getNext() != startField;
 field = field.getNext())
 {
 length++;
 }
 return length;
}

This method firstly declares and initializes the counter i, where we will count the number of fields.
Then the loop starts.

F In its initialization part the field control variable is declared and initialized.

F In its condition we test, if the field variable refers to the last not counted road-field. If its next
field is the starting field with which we begun the counting, we know, that the last counted field
was the last one and we can end the counting and thus also the loop.

F In its modification part we move the control variable to refer to the next road-field in the ring.

www.dbooks.org

https://www.dbooks.org/

41. The Loops 453

At this example we can show, how the method will behave in some boundary situations.
If the ring would have no road-field (I know, that it is impossible, however, please accept this pos-

sibility for a while), it means if the value of the startField would be null, the method will end with the
NullPointerException whilst trying to execute the expression field.getNext().

If the ring would have only the starting road-field, this road-field should refer to itself as its next
field. Thus the condition will be false even before the first attempt to execute the loop body and there-
fore the loop body will not be executed at all and the method returns the initial value of the length
variable, which is 1.

As an exercise try to derive similarly, what happens, when the loop will have two or three
road-fields.

The while Loop – the Loop with a Condition at the Beginning

953. I tried it and think that I understand despite the mentioned border conditions could never happen.

I know, but as I said, I wanted to explain, that when the condition is false immediately from the be-
ginning, the loop body would execute zero times.

Let’s go on to the second example, where I show the method using the while loop. Its syntax is
simple as follows:

while (<condition>) <statement>

The keyword while with the following condition is called loop header and the statement is the loop
body.

The semantics of the while loop is simple: first of all the condition is evaluated, and if it is true, the
statement creating the loop body is executed. Then again the condition is evaluated and it continues
round and round, until the condition is false. It finishes the execution of the loop body and the next
first statement after the loop continues. If either the first evaluation of the condition is false, the loop
body is not executed at all.

The while loop has a lot of common with the for loop. You can write one with the help of the other
and on the contrary. The while loop works equally as the for loop with the head

for (; <condition> ;) <statement>

As I’ve already told, it is true also vice versa – you could write down operating of the classic for loop
with the help of the while loop as follows:

<initialization>;
while(<condition>) {
 <statement>
 <modification>;
}

I think that with this information you are able to write the countFieldsUsingWhile() without any help.
You can compare your solution with the solution at the listing 41.6. I think that the behavior of this
method needs no further explanation.

454 Part 3: Advanced Creating of OO Programs

Listing 41.6: The countFieldsUsingWhile() method in the Ring class

public int countFieldsUsingWhile ()
{
 int length = 1;
 RoadField field = startField;
 while(field.getNext() != startField) {
 length++;
 field = field.getNext();
 }
 return length;
}

The do … while Loop – the Loop with a Condition at the End

954. I understand that while loop and for loop are interchangeable and that it is on my decision, what I prefer in
particular situations.

It is true for languages from the C-family, because the C-language authors defined this statement in a
more general way compared to other languages.

Let’s go on to the third example. As the last one I explain the do … while loop. Its syntax is as
follows:

do <statement> while (<condition>) ;

In this case the loop body is the statement between the keywords do and while. The keyword while
with the following condition is called a loop footer.

This loop firstly executes its body and then evaluates the condition. If it is true, it starts once again
from the beginning (i.e. once more it evaluates its body), if it is not true, it finishes the loop’s running,
and executing of the code continues with the following statement. Thus you can derive, that this loop
body will be always executed at least one times. You can see the solution in the listing 41.7.

Listing 41.7: The countFieldsUsingDoWhile() method in the Ring class

public int countFieldsUsingDoWhile ()
{
 int length = 0;
 RoadField field = startField;
 do {
 length++;
 field = field.getNext();
 } while(field != startField);
 return length;
}

Before entering into the loop body the method will initialize a loop control variable, it means the field
local variable, with a reference to the ring’s starting road-field. In the loop body the number of the
found round-fields is increased for the current field and the control variable is then “redirected” to the
successor of this field. So the loop body ends and we test, if this successor differs from the starting
field. If it differs, we again enter the loop body, add the length for this successor by one and redirect
the field variable to the successor of this successor. So we continue until we reach the starting point.

www.dbooks.org

https://www.dbooks.org/

41. The Loops 455

You can see, that this third loop is a little simpler than the previous two, because we evaluate the
condition in the right time (or, if you want, at the right place) and thus we need not to compare the
starting field with the successor of the current field, but just with the current field.

955. I believe I understand everything. So, on what will we embark now?

I think that you can train your new skills by defining the paint(Painter) method. Define the first three
version of this method named paintUsingWhile, paintUsingFor and paintUsingDoWhile. Define all these
methods as private and modify the paint(Painter) method to call one of these three methods. Be
watchful, the solution is not so simple, as you can think. You can compare your solution with the
definitions in the listing 41.8.

Listing 41.8: Three versions of the painting methods in the Ring class

private void paintUsingDoWhile(Painter painter)
{
 RoadField field = startField;
 do {
 field.paint(painter);
 field = field.getNext();
 } while(field != startField);
}

private void paintUsingFor(Painter painter)
{
 RoadField field = startField;
 for (;
 field.getNext() != startField;
 field = field.getNext())
 {
 field.paint(painter);
 }
 field.paint(painter);
}

private void paintUsingWhile(Painter painter)
{
 RoadField field = startField;
 field.paint(painter);
 field = field.getNext();
 while(field != startField) {
 field.paint(painter);
 field = field.getNext();
 }
}

956. You were true. When I’ve defined the second and the third methods mechanically, one of the road-field was not
painted.

In this case there is a problem in loops with conditions tested before entering the loop body. I wanted
to show you that there are situations, when one kind of loop is significantly better than the others.

456 Part 3: Advanced Creating of OO Programs

The switch Statement
957. When two of these methods use not an optimal kind of loop, should I remove them?

No, I want to present the last algorithmic construction that we didn’t use yet. This is the switch state-
ment. You would use it whenever you need to decide which one of several possible continuations to
choose. Its syntax is far most complicated from all constructions you met until now. I was hesitating if
I should postpone its explanation into the next volume, but then I realized, that you would reproach
me if you would meet it somewhere in a program and you would not know what it is about. The
syntax of the switch statement is as follows:

switch(<integer_expression>)

{
 case <value_1>:
 //Code executed when the value of the <integer_expression> is the <value_1>
 break;

 case <value_2>:
 //Code executed when the value of the <integer_expression> is the <value_2>
 break;

 //... Next possible branches

 default: //This part is optional
 //This code is executed when the value of the <integer_expression>
 //is not equal to any of the declared <value_i>.
}

In the previous definition you should distinguish a header created by the keyword switch and by an
integer expression in parentheses, and labels, which are parts quoted by the keyword case and ending
with a colon. The default: is also considered as a label. There are several rules for the switch statement:

F The term <integer_expression> quoted in parentheses after the keyword switch indicates that re-
ally an integer (value of the int type) has to be the result of this expression. If the result type can
be automatically converted to an integer (for example if the result is of char type), the compiler
converts it instead of you. In opposite case (if for example it is the long or double type), you have
to explicitly convert it yourself (probably by the cast operator). Otherwise the compiler an-
nounces a compile-time error.

F The values quoted after the keyword case have to be integer constants, the value of which is
known in the compile time. Therefore they cannot be current constants to which the initial value
is assigned by a constructor. This quite strict requirement is placed on the program so that the
compiler could decide if the given statement will be converted to a classic sequence of condi-
tional statements, or if certain optimized strategy how to quickly jump to the beginning of the
code which should be executed would be used.

F Labels can be quoted in any order and it’s not necessary to keep the increasing order or their
values. Similarly it is not necessary to quote the optional label default: as the last one, despite it
is usual practice.

www.dbooks.org

https://www.dbooks.org/

41. The Loops 457

F The same value of two various labels cannot be quoted in one switch statement. (The compiler
could not choose what to do sooner.)

F The statement break, with which each branch is finishing in the previous illustration, is faculta-
tive. But if you would not quote it, the program would not jump out of the switch statement
and would continue in executing the code in the next branch. Sometimes it is suitable, but in
prevailing number of cases the break statement will be contained there.

958. You were true, it is really complicated. Could you find a really simple little example for me to understand it
better?

I show you how you can use this statement for choosing the right code performing the task of the
method paint(Painter). We have three methods. At first we need to assign some indexes to them. Let’s
define the following constants that can be evaluated in the compile time:

private static final int DO_WHILE=0, FOR=1, WHILE=2;

In the listing 41.9 you can see the version using the if … else if sequence and in the listing 41.10 you
can see the version using the switch statement.

Both versions are equivalent in their functions. They both define the method which invokes the de-
sired method (the method, the index of which is in the index variable). But the first of them gradually
tests all possibilities until the selected one is found, whilst the switch version jumps directly into the
relevant branch. As you see separate branches don’t have to finish with the statement break. If I skip
over the possibility not to quote the break statement, because I want so that executing of the code
would continue with the next branch, I have also other possibilities of finishing. In this case I conclud-
ed each branch with the return statement, because after jumping out of the switch statement nothing
had to be done.

959. Isn’t the defined solution too complicated?

Yes, it is. However, I defined it in this way to show you all kinds of loops and differences among them
as well as the switch statement. You find it in the final project in this lesson; however, you don’t need
to keep it for the future. On the other hand the only drawback of this solution is its length. The speed
of execution is almost the same as the speed of the paint(Painter) method defined directly with the
do…while loop.

Change of the Module for Ring
960. I’m afraid that the ring’s modifications do not finish by defining the method paint(Painter).

You are true. To use this ring fully, it should implement the IModular interface. And for this you are
still missing several methods. I will show you the definition of the method setModule(int). Defining the
remaining methods will be your exercise. You can train the loops in these definitions, so be careful.

I will present you the definition of the method setModule(int) to show you that adjusting the mod-
ule is not as simple as you could imagine for the first sight. To give you in illustrative idea, I advise
you to draw a square grid and draw e.g. the known L-shape ring into it. And now draw another
square grid over it, the fields of which will have their sides twice or four times bigger and realize what
you will have to modify to re-draw the ring from one square net into the other one. You will have to

458 Part 3: Advanced Creating of OO Programs

change not only the size of individual road-fields, but also their positions. Due to I was afraid
you may have problems in defining this method I prepared it in the listing 41.11. Let’s explain the
definition.

Listing 41.9: The paint(Painter) method using a sequence of the if … else if sequence

public void paint(Painter painter)
{
 int index = DO_WHILE;
 if (index == DO_WHILE) {
 paintUsingDoWhile(painter);
 }
 else if (index == FOR) {
 paintUsingFor(painter);
 }
 else if (index == WHILE) {
 paintUsingWhile(painter);
 }
 else {
 throw new RuntimeException("\nUnknown method type: " + index);
 }
 return
}

Listing 41.10: The paint(Painter) method using the switch statement

public void paint(Painter painter)
{
 int index = DO_WHILE;
 switch (DO_WHILE)
 {
 case DO_WHILE: paintUsingDoWhile(painter); return;
 case FOR: paintUsingFor(painter); return;
 case WHILE: paintUsingWhile(painter); return;
 default:
 throw new RuntimeException("\nUnknown method type: " + index);
 }
 return
}

Listing 41.11: The setModul(int) method in the Ring class

public void setModule(int newModule)
{
 double oldModule = getModule();
 double ratio = newModule / oldModule;

 CM.stopPainting(); {
 RoadField field = startField;
 //Sets the new module and positions to all road fields
 do {
 Position pixelPosition = field.getPosition();

 //Derive its relative position
 double relX = (pixelPosition.x - ringPosition.x);

www.dbooks.org

https://www.dbooks.org/

41. The Loops 459

 double relY = (pixelPosition.y - ringPosition.y);

 //Derive the pixel position from the field position
 field.setPosition(ringPosition.x + (int)(relX * ratio + .5),
 ringPosition.y + (int)(relY * ratio + .5));
 field.setModule(newModule);
 field = field.getNext();
 } while (field != startField);
 } CM.returnPainting();
}
1. First of all it asks the ring for its current module and saves the obtained value as the oldMOdule.

As you surely remember, this method counts also the position as its side effect.
2. For a while it forbids the canvas manager re-painting to avoid the situation that the user would

see how the ring’s size and position changes field by field, because its intention is to move the
entire ring altogether. At this place I would like to draw your attention to useful unification of
pair commands (e.g. stopPainting – returnPainting) with brackets surrounding the block. If the-
se commands would stay lonely as any other, most likely you would forget the second
command in such long methods.

3. It defines the loop it has used in defining the drawing method. At first the loop control variable
field is defined and initialized. At the end of the loop body this variable is modified and behind
the body it is tested to reveal, if the loop body should be executed once more.

4. In the loop body it counts the relative position of the current field to the whole ring. Only this
relative position (offset) should be changed according to the module. The counted new relative
position is then again added to the ring position to obtain the field absolute position.

961. Why did you declare the relX and relY variables as double when you converted the result back to int later on?

I wanted to eliminate the possible rounding errors. As you certainly remember, the result of division
of two integers is also an integer – 1/2=0. So if you want to resize the module to one half and declare all
variables as int, the ratio would be zero.

962. Why do you work with relative positions? Isn’t it uselessly complicated?

No, it is not. When you change the module (i.e. the size) of an object, you change not only the sizes of
its parts, but also their distances and so their positions. However the position of the whole object (i.e.
the position of the circumscribed rectangle) should not change. Thus, when the object size changes,
only the offsets if its parts to the object origin changes. (Have a look at the section Position and Module
Setting on page 216.)

963. Well, you’ve got me again. Go on.

The modifications of the Ring class are almost done. Don’t forget to remove the last parameter in the
constructor (the Multishape) – we stopped to use it. Remove also the shape field. Then compile the class
and if you forget to remove using of the shape field somewhere, the compiler shows it as a syntax
error.

460 Part 3: Advanced Creating of OO Programs

964. But when I modified the Ring class, I have to modify also other classes.

Yes, but it should be much simpler. For example in the RingBuilder class you remove the notion about
Multishape and you should do the same in the RoadField class. Everything should be compiled and the
old test should run.

965. I would like to see, how the module setting is operating.

There’s nothing easier. I modified the class RingTest. And I added a test method in which firstly both
rings are reduced and then again enlarged. To notice the change better there is a translucent rectangle
drawn over them, the module’s change has no influence at it and thus it has a constant size and
constant location. You can find the definition of the method in the listing 41.12.

Listing 41.12: The testModuleChange test method verifying the ring’s ability to change the module size in the
RingTest class

@Test
public void testModuleChange()
{
 class Wrapper implements IPaintable
 {
 IPaintable paintable = new Rectangle(50, 50, 100, 100,
 NamedColor.BLUE.translucent());
 @Override
 public void paint(Painter painter)
 {
 paintable.paint(painter);
 }
 }
 CM.setSize(8, 7);
 CM.add(new Wrapper());
 IO.inform("Reference rectangle shown");
 for (int krok = 25; krok < 150; krok += 75) {
 CM.setStep(krok);
 ringSquare.setModule(krok);
 ringLShape.setModule(krok);
 IO.inform("Step modified to " + krok);
 }
}

966. Why did you define the Wrapper class inside the test method? Why did not you use directly the Rectangle?

I needed an object that is not influenced by changes of canvas step. When the canvas step is changed,
the canvas manager asks all objects implementing IChangeable and IModular to adapt to the new step
size (our rings are also asked). So I needed an object that is only paintable, nothing more. Thus I de-
fined a class that implements only the IPaintable interface and therefore the canvas manager does not
ask its object to adapt.

Thus you can check that only the positions and sizes of our rings change. The position and size of
the reference rectangle is all the time the same.

www.dbooks.org

https://www.dbooks.org/

41. The Loops 461

The ParallelRace Class
967. The rings really change the size of their road-fields and move them into the relevant canvas fields. Does it mean

the race can be started?

I think yes. But I suggest few tiny improvements. Let’s use the fact that you can set the required ring
position and you will not enter in advance how many racers can apply. You will simply take on new
racers and prepare rings for them, despite the fact that you would know they do not fit at the implicit
canvas. When somebody stops registration of further racers and starts the race, the starting method
discovers how large canvas can be created and asks the canvas manager to adjust the needed number
of columns and change suitably the step size (I remind that the module overtakes this size), so that
individual rings would fit at the canvas after these changes.

968. How the program recognizes how big canvas should be created?

You declare the class fields that will remember the maximal permissible size of the canvas. This size
can be set any time. The starting method will use the size which will be valid in time of its running.

969. Shall we create a new class?

Yes, we will create a class called ParallelRace, because it will be able to organize races, where several
racers compete on parallel rings. You can see its definition in the listing 41.13. I tried to comment it
sufficiently, so that you would understand all. Go through it and tell me what is clear and unclear to
you.

Listing 41.13: The ParallelRace class

/***
 * Instances of the {@code Race} class represent races
 * that can be attended.
 * The race is characterized by the ring where the vehicles run.
 * This ring is created by a factory object passed to constructor in parameter.
 * The racers can subsequently register at the race.
 * All registered racers compete together in parallel,
 * each on its own ring instance.
 */
public class ParallelRace implements IRace
{
 //== CONSTANT CLASS FIELDS ===

 /** Manager of the canvas on which the instance will be painted. */
 private static final CanvasManager CM = CanvasManager.getInstance();

 /** Default maximal available canvas width, where all the rings should fit.
 * Each racer has a ring of its own and particular rings
 * are separated with an empty column. */
 private static final int DEFAULT_MAX_CANVAS_WIDTH = 1000;

 /** Default maximal available canvas height, where should each ring fits. */
 private static final int DEFAULT_MAX_CANVAS_HEIGHT = 700;

462 Part 3: Advanced Creating of OO Programs

 //== VARIABLE CLASS FIELDS ===

 /** Maximal available canvas width, where all the rings should fit.
 * Each racer has a ring of its own
 * and particular rings are separated with an empty column. */
 private static int maxCanvasWidth = DEFAULT_MAX_CANVAS_WIDTH;

 /** Maximal available canvas height, where the ring should fit. */
 private static int maxCanvasHeight = DEFAULT_MAX_CANVAS_HEIGHT;

 //== CONSTANT INSTANCE FIELDS ==

 /** Map mapping the racer to the crate with information about this racer. */
 private final Map<IRacer, Info> racer2info = new HashMap<>();

 /** Number of rounds of the race. */
 private final int roundNumber;

 /** Factory generated the rings. */
 private final IRingFactory ringFactory;

 //== VARIABLE INSTANCE FIELDS ==

 /** Currently set canvas module. */
 private int module;

 /** System time of the start. */
 private long time0;

 /** Number of registered racers. */
 private int racersNumber = 0;

 /** Number of columns and rows of the ring in use. */
 private int ringColumns, ringRows;

 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 /***
 * Remember the maximal allowed canvas size.
 *
 * @param width Max allowed pixel width
 * @param height Max allowed pixel height
 */
 public static void setMaxCanvasSize(int width, int height)
 {
 ParallelRace.maxCanvasWidth = width;
 ParallelRace.maxCanvasHeight = height;
 }

 //##

www.dbooks.org

https://www.dbooks.org/

41. The Loops 463

 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /***
 * Creates an instance that will be able to organize
 * one ring race on rings generated by the given factory.
 *
 * @param ringFactory Factory creating rings for the race
 */
 public ParallelRace(IRingFactory ringFactory)
 {
 this(ringFactory, 1);
 }

 /***
 * Creates an instance that will be able to organize race
 * with the given number of rounds on rings generated by the given factory.
 *
 * @param ringFactory Factory creating rings for the race
 * @param roundNumber Number of rounds of the race
 */
 public ParallelRace(IRingFactory ringFactory, int roundNumber)
 {
 this.ringFactory = ringFactory;
 this.roundNumber = roundNumber;
 this.module = CM.getStep(); //Temporary value until the start
 }

 //== OTHER NON-PRIVATE INSTANCE METHODS ====================================

 /***
 * Opens a dialog announcing start
 * and after closing it, starts measuring the time.
 */
 public void start()
 {
 Collection<Info> infos = racer2info.values();
 prepareCanvas(); //Sets it size so that the rings would just fit
 for (Info info : infos) {
 info.controller.start();
 }
 IO.inform("After confirming this window\n" +
 "the time starts to be measured");
 time0 = System.currentTimeMillis();
 }

 /***
 * Finishes the race, terminates all registrations
 * and prepares for the new ones.
 */
 public void stop()
 {
 racer2info.clear();
 }

464 Part 3: Advanced Creating of OO Programs

 /***
 * Registers the given racer, places it at the race start,
 * learns its needed keys
 * and registers its controller as a keyboard listener.
 *
 * @param racer Racer registering for the race
 */
 @Override
 public void register(IRacer racer)
 {
 if (racer2info.containsKey(racer)) {
 IO.inform("The racer cannot be registered twice: " + racer);
 return;
 }
 Ring ring = prepareNextRing(); //Modify number of racers
 RoadField start = ring.getStartField();
 RoadField target = start.getNext();
 Controller controller = Controller.createFor(racer);

 Info info = new Info(ring, start, target,
 controller, roundNumber, racer);
 racer2info.put(racer, info);

 //Ensure, that both, racer as well as its ring, will be visible
 CM.add(ring);
 CM.addAbove(ring, racer);
 }

 /***
 * Checks that the racer reaches the right running target (checkpoint).
 * If yes, prepares the next target position, if no, does nothing.
 *
 * @param racer Racer announcing reaching the next position
 */
 @Override
 public void checkpoint(IRacer racer)
 {
 Info info = racer2info.get(racer);
 if (info == null) {
 return; //==========>
 }
 Position pz = racer.getPosition();
 Position pc = info.targetField.getPosition();
 if (pz.equals(pc)) {
 if (info.targetField == info.startField) {
 info.roundsLeft--;
 if (info.roundsLeft == 0) {
 finishRace(racer, info);
 return; //==========>
 }
 }
 info.targetField = info.targetField.getNext();
 }
 }

www.dbooks.org

https://www.dbooks.org/

41. The Loops 465

 /***
 * Returns a string representation of the object – its text signature.
 *
 * @return A string representation of the object
 */
 @Override
 public String toString()
 {
 return "ParallelRace(factory=" + ringFactory +
 ", racersNumber=" + racersNumber +
 ", module=" + module + ")";
 }

 //== PRIVATE AND AUXILIARY INSTANCE METHODS ================================

 /***
 * Prepares the next ring and returns it.
 *
 * @return The requested ring
 */
 private Ring prepareNextRing()
 {
 int x = racersNumber * (ringColumns + 1) * module;
 Position position = new Position(x, 0);
 Ring ring = ringFactory.createRing(position,
 NamedColor.getNamedColor(racersNumber));
 racersNumber++;
 if (racersNumber == 1) {
 Size ringFieldSize = ring.getFieldSize();
 ringColumns = ringFieldSize.width;
 ringRows = ringFieldSize.height;
 }
 return ring;
 }

 /***
 * Finishes the race for the given racer.
 *
 * @param racer Racer finishing the race
 * @param info Crate with information about racer
 */
 private void finishRace(IRacer racer, Info info)
 {
 long now = System.currentTimeMillis();
 info.controller.stop();
 int time = (int)(now - time0 + 50) / 100;
 System.out.println("The racer " + racer.getName() +
 " finished the race in the time " +
 time/10 + "," + time%10 + " second");
 racer2info.remove(racer);
 if (racer2info.isEmpty()) {
 System.out.println("Race finished");
 }
 }

466 Part 3: Advanced Creating of OO Programs

 /***
 * Prepares the canvas so that all rings just fit in it.
 */
 private void prepareCanvas()
 {
 int canvasColumns = (ringColumns + 1) * racersNumber - 1;
 int xStep = maxCanvasWidth / canvasColumns;
 int yStep = maxCanvasHeight / ringRows;
 this.module = Math.min(xStep, yStep);
 CM.setStepAndSize(module, canvasColumns, ringRows);

 CM.stopPainting(); {
 Collection<Info> infos = racer2info.values();
 for (Info info : infos) {
 Ring ring = info.ring;
 ring.setModule(module);
 CM.add(ring);
 info.racer.setDirection(ring.getStartField().getDirection());
 info.racer.setPosition (ring.getStartField().getPosition());
 info.racer.setModule(module);
 }
 } CM.returnPainting();
 }

 //== MEMBER DATA TYPES ===

 /***
 * Internal crate containing the basic needed information
 * about racer and its current state.
 */
 private static class Info
 {
 /** Ring, where the race takes place. */
 private final Ring ring;

 /** The corresponding racer. */
 private final IRacer racer;

 /** Controller mediating the control from a keyboard. */
 private final Controller controller;

 /** The starting (and also finishing) field. */
 private final RoadField startField;

 /** The next running target field with a checkpoint
 * checking, if the racer really runs through it. */
 private RoadField targetField;

 /** Number of remaining rounds. */
 private int roundsLeft;

www.dbooks.org

https://www.dbooks.org/

41. The Loops 467

 /***
 * Defines a new crate and initializes its fields.
 *
 * @param ring Ring, where the race takes place
 * @param startField The starting (and also finishing) field
 * @param targetField The first checkpoint
 * @param controller Controller, mediating the control from a keyboard
 * @param roundsNumber Number of rounds
 * @param racer Racer, information of which the crate holds
 */
 Info(Ring ring, RoadField startField, RoadField targetField,
 Controller controller, int roundsNumber,
 IRacer racer)
 {
 this.ring = ring;
 this.startField = startField;
 this.targetField= targetField;
 this.controller = controller;
 this.roundsLeft = roundsNumber;
 this.racer = racer;
 }
 }

 //== TESTING CLASSES AND METHODS ===

 /***
 * The test method.
 */
 public static void test()
 {
 int racers = 4;
 int size = racers * 100;
 int rounds = 2;
 ParallelRace.setMaxCanvasSize(size, size);
 IRingFactory iFact = new OShapeRingFactory(2, 2, Direction8.SOUTH);
 ParallelRace race = new ParallelRace(iFact, rounds);

 for (int i=1; i <= racers; i++) {
 Arrow arrow = new Arrow(0, 0, NamedColor.WHITE);
 Vehicle_B vb = new Vehicle_B(arrow);
 vb.setName(NamedColor.getNamedColor(i-1).getName());
 vb.registerFor(race);
 }
 race.start();
 }
 // /** @param args Command line arguments - not used. */
 // public static void main(String[] args) { test(); }
}

468 Part 3: Advanced Creating of OO Programs

Exercise
970. I overtook your class from the closing project of the lesson and it does not work.

Because you did not finish the implementation of the interface IModular with the Ring class which I
gave you as an exercise. After you will supplement it, it will be operating.

Review
Let’s review what you have learned in this lesson:

F The postponed initialization means that the field is not initialized by a constructor, but its value
is adjusted in the moment when somebody needs it.

F In case you need to use a loop whose closing is decided somewhere inside its body, you will use
an endless loop. Leaving the loop is the realized by the statement break.

F You should align the set of decisions if … else if … else if … when all expressions else are
aligned under the initial if.

F The method which – besides its main task- makes also something else is called a method with
side effects.

F You should avoid using of methods with side effects if possible. In case you would use them,
then their side effects should be used only inside the definition of their class.

F The loop with an end condition i.e. the do-while loop has the following syntax:
do <statement> while (<condition>) ;

F The loop with the end condition tests fulfilling the condition after executing the body and
therefore executes its body always at least once.

F The syntactic definition of the loop while is as follows
while (<podmínka>) <příkaz>

F The loop while can be simply converted to the for loop and on the contrary.

F The switch statement is used in case you need to decide among one of several follow-up possi-
bilities.

F The definition of the switch statement is created by a head and by a set of notices with constants
that have to be evaluated in time of compilation.

F The switch statement can decide according to the value of the integer expression or according to
the value of the reference to an object of enum type.

F When adjusting the object’s module you have to realize that by changing the module not only
the object’s size, but also its position is changed.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 141z_Loops project.

www.dbooks.org

https://www.dbooks.org/

42. Lists and Their Ordering 469

42 Lists and Their Ordering
42. Lists and Their Ordering – 000000

42 Lists and Their Ordering
What you will learn in this lesson
In this lesson you will develop factories for producing rings, so that they would be able to catch the possi-
ble incorrect user inputs. You will become acquainted with the enumerated (enum) types and you will
learn to define their simpler version. After that you will see the state diagram of UML language and how
it is possible to program solving of certain problems. Then you will learn the work with lists and how to
sort them. Next I will explain what is the native sorting and you will become acquainted with the design
pattern Command. Finally you will see how it is possible to use this pattern for ordering a list in case
when the native sorting does not suit.

Project:
In this lesson you continue in using the 141z_Loops project.

Enum Types
971. When I tried to define factories for some more complex rings, it happened several times that I forgot to close

the ring and to my surprise the builder passed over such ring. Shouldn’t I teach the builder to produce only
properly constructed rings?

That’s a good idea. And you immediately will learn how to create your own enumerated types (also
called enumeration or enum types). Until now you worked with only enum type Direction8. I would
say it’s the proper time to learn creating your own ones.

972. Remind me once more, why they are called enum.

I already explained it in the section Enumeration Type – Multiton on page 102 – they have this name be-
cause they have their instances defined by an enumeration. All their instances are listed in the class
definition and you cannot change this set, i.e. you cannot add nor remove any further instance.

973. How can I create my own enum type?

It is simple as follows:
1. you press the button requiring creating a new class,
2. in the subsequently opened dialog Create New Class you will set the switch Class Type to the

value Enum,
3. and then you confirm your complete assignment.

BlueJ opens the file created according to the enum type design. I would say that it is too complicated
for your today’s training, because besides the definition of values it takes into account that you will
equip the instances of a given type with methods and various further abilities.

470 Part 3: Advanced Creating of OO Programs

Today I wouldn’t like to analyze all possibilities of the enum type, but I would show you how it is
possible to define the simplest variant which will offer nothing more than the most essential things.
Ask BlueJ to define an empty class and modify it according to the listing 42.1, where you will find the
definition of an enum type and with which you will further work.

Listing 42.1: The enum type BuilderState

/***
 * Instances of the {@code BuilderState} represent particular states,
 * in which an object can be.
 */
public enum BuilderState
{
 /** Ready for start ring building. */ READY,
 /** Building started, we can add. */ BUILDING,
 /** The ring was finished (closed). */ FINISHED;
}

As you can see, the keyword class in the enum type definition is replaced with the keyword enum and
the body starts with the list of values of this type separated by commas and finished with a semicolon.
After this list the same members (fields, methods, types) can follow as in other classes (it is sufficient
to see the type Direction8), but for now we will continue in enum types containing only a list of values.

Enum Type Using

974. I see three names with documentation comments in the definition – I suppose that they are those listed values
of the enum type.

Yes – they are names of stages in which the ring builder can be found. Each of its building method is
applicable only if the builder is in the proper state. Let’s define a field in which the current state of the
builder will be saved. Then the method will ask if the builder is in the proper state and according to
the answer it will execute the required items or throws an exception.

975. It’s not necessary to define a new type for it. I can mark individual states as 1-2-3 and define the state field as
an integer.

Of course, you can do it and formerly it was done like that. But there are several disadvantages. The
most significant is that you cannot provide that some number would not get into the given field by
mistake – you cannot provide the type control of used values. Generally, modern programming rec-
ommends using the enum type anytime, when the number, which you would use, should not serve
really for calculating.

The State Diagram
976. Well, I will use values of enum type for representing the state. Could you explain me, how do you mean it with

those states?

The ring builder can be in three clearly defined states as follows:

www.dbooks.org

https://www.dbooks.org/

42. Lists and Their Ordering 471

F At the beginning, after the creating, it is in the state READY, prepared to build a new ring. The on-
ly “building” message you can send to it in this state, is startTo(Direction8), which asks locating
of the first road-field of the future ring, passing through in the entered direction.

F When opening the building of a new ring by locating the first road-field, the builder transits to
the state BUILDING. In this state it can accept two messages:

F the continueTo(Direction8) message, after which it adds another road-field and continues
to stay in the state BUILDING, or

F the closeTo(Direction8) message, after which it closes the ring and ends its building. After
processing of this message it transits into the state FINISHED.

F The builder in the state FINISHED waits until it receives the message getRing(), in which it is asked
for freshly built ring. Reacting at this message the builder transits again to the state READY and is
prepared to start building another ring.

Whole this transferring among states can be illustratively displayed in the state diagram, which is one
of the UML diagrams. You can see the builder’s state diagram at the figure 42.1. The rounded rectan-
gles represent states and the arrows show transitions among them.

I think that having this information you might be able to modify individual methods of the builder
alone, but to be sure, I will show you how to modify the definition of getRing() method in the listing 42.2.

READY

BUILDING FINISHED

startTo

closeTo

getRing

continueTo
Figure 42.1

The state diagram showing transitions among individual states of the ring builder

Listing 42.2: The method getRing() in the RingBuilder class

public Ring getRing()
{
 if (state != FINISHED) {
 throw new RuntimeException(
 "\nRing building is not finished yet; it is in the state: " +
 state);
 }
 state = READY;
 return new Ring(startField);
}

472 Part 3: Advanced Creating of OO Programs

The Lists
977. The race is already nearly perfect. Only announcing of results is missing. Could we add it?

The class is not yet prepared for reporting the results, but you can help with it. The first what you
have to do is to prepare a container which would be ordered according to the achieved results. There
are two of currently used containers, suitable for this purpose, namely:

F the list about which I was already speaking as one of the collections, and

F the array, which is a static container with properties very similar to the list ones.

I would choose the list, because it is more general and you will not have to learn any new syntactic
constructions.

978. When you are speaking about sorting, we could create three result documents. The first one would be sorted ac-
cording to who arrived as the first, the second one according to racers’ names and the third one according to
rings, which they followed.

Oh, a good idea, but fortunately it will be not so complicated. However, you will have to create anoth-
er field, because you have to remember the finish times of individual racers even after you will leave
the method finishRace, to wait the finish of another racer.

You define a field – a list named finishes, to which you will save everything. But you should think
over what you will save in it. Principally you have two possibilities:

F To save only references to the racers and any time you will need to get some information you
will draw it up from the map racer2info.

F To save crates with information concerning the racers into it – there are also references to
relevant racers in them since the last lesson.

Have a look at the current definition of the finishRace method and tell which possibility you would
choose.

979. When you give me hints like that, I’ve finally found it. I have to save infos (instances of the Info class) there
because the finishRace method removes the racer’s record from the map after his arrival.

You say it well, although we could choose also the other possibility, which is not to remove the racer
from the map and count the racers who have already arrived to the finish. But I will incline to what
you suggest. Therefore the field finishes will be declared as follows:

/** List with the racers ordered by their finishing time. */
private final List<Info> finishes = new ArrayList<Info>();

Notice, that I again declared the field through the interface (in this case java.util.List) and I initialized
it by the newly created instance of java.util.ArrayList class.

I would like to recommend the ArrayList class to your attention. It is the most used class of the col-
lection library. It is used not only as a list, but also as a general collection. In case that certain method
returns a general collection on which no special requirements are laid, it uses very often an instance of
the ArrayList class for it. I recommend it to you as well.

www.dbooks.org

https://www.dbooks.org/

42. Lists and Their Ordering 473

980. You always digress to general principles. I’d like to get back to the race. This list is initialized immediately in a
declaration and also the map is initialized in the same way. Therefore I suppose that it’s a habit of collection
fields.

The fields which are collections are really often initialized already in the declaration, where an empty
collection of the relevant type is assigned to them. In the course of the program’s operating this
collection is filled in and, if need be, it is also cleared again.

Modifications of the ParallelRace Class
981. Well, the field is installed. Where will something be inserted in it?

I would not start with where something will be inserted in it, but on the contrary, where it will be
cleared, not to have references of the previous race in it. Try to think over where you would clear it
out?

982. After I will write all result documents and I will not need the saved info.

That’s one possibility. The second one is to clear it out before starting each new race. The advantage of
this variant is that the whole time since the finish of one race until the start of the next race you will
have the relevant info to your disposal, if you would like to create some other result document by
chance.

Let’s choose this version (because it’s my idea J). Add the following statement at the beginning of
the start() method

finishes.clear();

which will clear out the possible previous result document (precisely it will clear out the content of the
list that was a background for the result document), which means the list will be pretty empty in time
of the next race finish.

983. When I changed the starting method, should I change also the registration, which is immediately behind it?

You will have to modify it slightly, because of what you have thought out you would need to remem-
ber the info concerning the given racer together with his starting number (and thus also the number of
his ring), as well as the resulting time and the order in which he arrived to the finish. Therefore you
have to extend your private crate Info by these three fields and you have to add a parameter to its con-
structor, in which the racer’s starting number (it is the number of its ring as well) will be saved. And
that’s all in the registration.

984. The checkpoint probably will not change.

You are true. Skip it over and go immediately to the finishRace method. You will save the arrival time
and the order in which the racer arrived to the finish into this info. After the arrival of the last racer –
instead of previous simple printing of the announcement – you call the evaluateRace method, which
will take care about the required evaluation.

474 Part 3: Advanced Creating of OO Programs

985. Why should I save to info in which order the given racer arrived? It can be recognized according to his place in
the list, can’t be?

No, you can recognize it only at the beginning where the list is ordered according to rings’ numbers.
Then we should remember it, because you intend to print several result documents ordered according
to different rules. If you will quote the racer’s placing also in documents ordered according to names
or rings, you have to save them in info.

You can see in the listing 42.3, where I put the new version of this method, that the new item was
added into the list with the help of calling the method add(E) which is common for all collections (I
remind that E is the type parameter of the collection and it indicates the type of saved elements).

The list has in its contract that the added element will be always placed at the end of the list. It
means that if you will insert racers into the list according to their arrival, the list will remember this
order and after you will open it, the list will keep this ordering.

Listing 42.3: The modified version of the method finishRace in the ParallelRace class

private void finishRace(IRacer racer, Info info)
{
 long now = System.currentTimeMillis();
 info.controller.stop();
 int time = (int)(now - time0 + 50) / 100;
 System.out.println("The racer " + racer.getName() +
 " finished the race in the time " +
 time/10 + "," + time%10 + " second");

 //Remeber the racer's info with its finish time
 info.time = time;
 finishes.add(info);
 info.placings = finishes.size();
 racer2info.remove(racer);
 if (racer2info.isEmpty()) {
 evaluateRace();
 }
}

986. Should I understand it that if I select components from a set or from a general collection in the loop, I receive
them randomly?

Neither the general collection, nor the set guarantee the order in which they would pass you the saved
elements. Just now I don’t want to expand it; I will explain it in details in the next volume including
the reasons.

987. Hmm. Your code is strange. I see that you save the arrival time into info and then you add info into the list. I
understand it. But I don’t understand why after saving you insert the size of the list into its field finishes.

Because there are as many elements in the list at the given time, as how many racers arrived to the fin-
ish. I save the racer and then I ask how many of them are in the list. When I’ve inserted the racer in the
list, the whole number of racers in this list is the same as the order of the just added racer.

www.dbooks.org

https://www.dbooks.org/

42. Lists and Their Ordering 475

988. But it’s strange why you save information into the saved info.

Realize that info does not know that it is saved. It is sitting somewhere at heap and does not move.
There is no saved instance of Info class in the list; there is only a reference to this instance (similarly as
in your variables). Therefore it’s the same if you work with it before saving or after. It means the
following statement

info.rank = finishes.size();

will be executed as if no info would be saved. The only difference is in the fact that after adding the
instance the size of the list will increase so that the list contains as many elements as how many racers
arrived to the finish. If you would like to enter the racer’s order into the list before saving this info,
you should remember it and increment after each racer’s arrival, or you would have to add one to the
list size before saving the racer.

989. Oh, pretty nice tricks. I don’t know if I will learn using of such tiny tricks in my programs.

Don’t be afraid, it will come. When you are learning a foreign language, you often have the feeling
that there are many things which you cannot remember, and when you start speaking, you use them
without realizing it.

But let’s leave general contemplation and let’s return to the topic. The method evaluateRace is re-
sponsible for writing the complex result document (see the listing 42.4). It allows to the list to be sort-
ed according to the required criterion and then it asks the writeResults method, to write down the sort-
ing list, and at the same time it passes a message in the parameter describing the subsequently printed
table of records.

Listing 42.4: The method evaluateRace in the ParallelRace class

/***
 * Evaluates the whole race, i.e. writes the records of particular racers.
 * The first list will be ordered according to their placing,
 * the second according to the alphabet
 * and the third according to numbers of their rings.
 */
private void evaluateRace()
{
 writeResults("Resulting placement:");

 Collections.sort(finishes);
 writeResults("Results according to alphabet:");

 Collections.sort(finishes, new CompByRings());
 writeResults("Results according to the ring numbers:");
}

990. I see that it will be more complicated with the sorting, so I will ask you firstly to demonstrate me the
writeResults method.

I agree. But I would say that the method is so simple that you surely would be able to write it alone –
see the listing 42.5. Firstly it prints the new line followed by the message and then, in the loop, it takes
one list item after another, discovers whole necessary information and prints it.

476 Part 3: Advanced Creating of OO Programs

Listing 42.5: The method writeResults(String) in the ParallelRace class

/***
 * Write a report followed by information about particular racers
 * ordered by the list {@link #finishes} to the standard output.
 * Each racer will be written on a separate line
 * with its final placing, ring's number, time and name.
 *
 * @param title Title starting the whole report
 */
private void writeResults(String title)
{
 System.out.println("\n" + title);
 for (Info info : finishes) {
 int placing = info.placing;
 String name = info.racer.getName();
 int time = info.time;
 int number = info.number;
 System.out.println(placing + ". o" + number + " - " +
 time/10 + "," + time%10 + " - " + name);
 }
}

Sorting the List Content
991. It is really simple. So explain me the sorting.

’In the listing 42.4 you can see calling the writeResults method at the beginning without sorting the el-
ements before that. I told you that it is possible, because when the racers were entered into the list (to
be precise info about them) in the order in which they arrived to the finish, and the list remembers this
sorting, and provides it in the loop in the writeResults method.

But for other two scorecards you have to order the list yourself. There are two overloaded versions
of the method sort for list sorting, located in the librarian class java.util.Collections. (Please, notice
the final s in the class name – it is the only difference from the name of the java.util.Collection
interface specifying general collection properties.)

Native (Natural) Sorting
992. But how the method recognizes according to which criterion the components should be listed? When I remind for

example a telephone list of companies – it has two volumes. The first one contains companies according to the
names, the second one according to areas of their activities.

The programmers solve the similar problem. To arrange a list of numbers is simple. Each schoolchild
knows which number is higher and which is lower. But even here they have to solve the question
whether arrange the numbers in ascending or descending order.

In case of objects it’s a little bit more complicated, because various aspects can be taken as a basis.
In majority situations the most advantageous is to let the decision to one of the compared object.

www.dbooks.org

https://www.dbooks.org/

42. Lists and Their Ordering 477

Java defines interface types java.lang.Comparable<T> that is implemented by classes, the instances of
which know to decide which of them is “bigger”. The Comparable interface requires an implementation
of the method:

public int compareTo(T object)

This method defines the so called native sorting (sometimes it is called also natural sorting) of
instances of its class. It returns:

F the negative integer in case if this is considered as lower than the parameter,

F zero, if both instances are equivalent, and

F the positive integer in case if this is considered as higher that the entered parameter.

Similarly as the contract of the method equals(Object) also the contract of this method requires ful-
filling of several conditions, with which the mathematicians characterize the inequality. (The term
contract was not used for a long time – you can remind its meaning in the section Signature versus
Contract on page 112.) I will not analyze these conditions, because the currently defined methods al-
ways fulfill them. If sometimes you would define certain inequality, you can see these conditions in
documentation any time.

993. I would say that it’s quite clear how the objects define which of them is bigger. It means now you could use this
program as an example of such definition.

You are true; the one-parametric version of the sort method supposes the native sorting. Therefore the
list of instances of Info type is given to it in the listing 42.4. If the compiler should not announce a syn-
tactic error, the Info class has to implement the interface Comparable<Info>. Then the relevant declara-
tion should be completed into the class header as well as the definition of the compareTo(Info) method
should be added into the class body according to the listing 42.6.

Listing 42.6: The definition of the method compareTo(Info) in the ParallelRace.Info class

/***
 * Compare the racer's name
 * with the name of the racer obtained in argument.
 *
 * @param o Object for comparing
 * @return If this name is less, returns negative number,
 * if it is equal, returns zero
 * and if it is grater, returns a positive number.
 */
@Override
public int compareTo(Info o)
{
 //return this.racer.getName().compareTo(o.racer.getName());
 String myName = this.racer.getName();
 String itsName = o .racer.getName();
 return myName.compareTo(itsName);
}

478 Part 3: Advanced Creating of OO Programs

At the beginning of the method’s body there is a commented statement which solves all. Due to I was
afraid that you might not understand it; I itemized it into several statements. You can verify that by
uncommenting it and by commenting next three statements you get the same result.

I repeat again, that I don’t press on you to write the programs in such condensed way, but it’s good
to know that the more experienced programmers do it and you should be able to “decode” such
statement.

994. Passing over those ciphers you sometimes provide me, I ask you, for what the just defined method is serving
besides the compiler needs it for compiling the method.

When the method sort orders the items in a list, it needs to recognize which item do you consider as
the higher one and which is lower. Therefore it used the known principle of the servant and declared
the interface that has to implement items to be ordered. Thus, by implementing this method you tell
your idea, how to recognize which of the compared objects is the bigger, to the sorting algorithm and,
by that you influence the sorting.

995. And why this way is called the native sorting?

The word native is taken from Latin nativus – natural. The classes and their instances are born with
this way of sorting, because the method compareTo is one of their methods.

In the method of the listing 42.6 the sorting according to the racer’s name has been announced as
the basic (inborn) way of sorting the instances of the Info class. In case you would like to sort these
instances in any other way, you have to choose alternative solution.

Alternative Sorting and the Design Pattern Command
996. The alternative solution is the two-parametric version of the sort method, isn’t it?

Yes, it is. The two-parametric version of the method implements the design pattern Command. You use
it in situations, when you know that at the given place you will have to do something, but you don’t
know what. You know only the contract of the required operation.

The design pattern Command suggests asking for the given code as a method’s parameter. In lan-
guages, which don’t know passing the code as an argument, it is necessary to wrap the code into a
method and the method into an object. To make clear, what the given object should know, you have to
define the interface, in which you declare requirements for this object, i.e. what the signature of the
method, which will be responsible for executing this command, will be, and, of course, also the
relevant contract.

When some object would like to call a method with a command parameter, it will precisely know,
what exactly should be carried out. It wraps the appropriate code into a method and this method into
an object. Then it passes this object to the called method in the command parameter. The called
method then asks the obtained object at relevant places to execute the required operation.

997. To hear it so generally, it looks interesting, but I would like to get again an example – best of all just the ours.

When some object doesn’t want to order instances according to their “inborn” sorting (and it doesn’t
matter if it is not suitable or if the given class instances have no native sorting defined), it has to speci-
fy, how to recognize, which instance should be ahead and which at the back of the sorted list. This

www.dbooks.org

https://www.dbooks.org/

42. Lists and Their Ordering 479

decision, what is higher and what is lower, is just the action, about which the author of the sort meth-
od knew it would be executed many times, but he/she did not know how. Therefore he/she used the
above described design pattern Command. He defined the interface Comparator<T>, in which the type
parameter T represents the object type that has to be compared. This interface always requires an
implementation of the method with the signature as follows

public int compare(T o1, T o2)

This method receives two objects and returns the result of their comparison - similarly as the compareTo
method defining the native sorting used for returning. In case you would sort certain list in your spe-
cial way, you should call the method sort, to which you pass the given list in the first parameter and
the comparator in the second parameter, and the method will always ask the comparator which of
those two entered elements is higher.

998. Aha. It means in addition the comparator will have to be defined.

Yes, and due to the fact that any from the surrounding classes should not be bothered with the fact
that the ParallelRace class needs a comparator for making out perfect scorecards, you should again
define it as its private static class. You can see its definition in the listing 42.7.

Listing 42.7: The class ParallelRace.CompByRings

/***
 * Class implementing the {@literal Comparator<Info>} interface.
 * Its instance compares two infos according to our criterion -
 * in this case according to the ring used by the racer.
 */
private static class CompByRings implements Comparator<Info>
{
 /***
 * Compares the given infos and takes as the greater that one,
 * the ring of which has grater number (it is placed more to the right).
 *
 * @param i1 First compared info
 * @param i2 Second compared info
 * @return If {@code i1.number} is less than {@code i2.number},
 * it returns negative number, if they are equal,
 * it returns zero, otherwise it returns a positive number.
 */
 @Override
 public int compare(Info i1, Info i2)
 {
 return i1.number - i2.number;
 }
}

480 Part 3: Advanced Creating of OO Programs

999. If I understood it properly, so as soon as certain class implements the Comparable interface, I can sort its in-
stances. And when I get a foreign class, which does not implement this interface, I can define a comparator for
it and again I can sort its instances.

You understood it properly. You only have to find the instances which you wish to order in certain
container, whose content can be sorted. Until now I was speaking about lists only. In the next lesson I
will present an array, the content of which can be sorted as well. But for now I am finished.

1000. I have few unclear items. You told that when working with objects, it does not matter if they are saved in a con-
tainer, because in the given container there is only a reference to an object that continues to stay at its original
place at the heap. It means, that I can have more references to an object and I can sort these references in vari-
ous ways in various containers, e.g. according to different fields. But when the field is changed, sorting in the
container loses its sense.

Well, but the fields according to which you compare should be defined as constants. We were speak-
ing about that in the section Value Types and Reference Types on page 259. In case you need to sort the
objects according to the variable field, you should firstly think over if you have any error in the pro-
gram proposal, because such requirement is always suspicious. But in case you are solving one of the
extraordinary problems, when you really need something like that, you have to take into account that
such sorting will be valid only until the first change of such field of any of the sorted objects. But as
you can see, those are more advanced questions dealing with the project proposals and I would really
prefer to postpone it to the next volume.

1001. We were speaking a long time about sorting the elements in a container, but before that you told, that I cannot
rely on sorting of elements in containers (at least some of the containers). So there is a bit of chaos in it.

It’s no reason for it. Each container type has a definition in its contract to what you can rely on. Gener-
ally, a set does not guarantee an order, in which the saved elements will be given to you (despite some
special sets which do guarantee it), but the list guarantees it. In case you need to discover, if the ele-
ment is already in the container, choose a set. In case you need to have the possibility to sort elements
and to have the guarantee that you can go through the container in the entered order, choose the list.
In case you would have any other requirement, find such container, which can meet your require-
ment, or define your own one. But this is again a topic for the next volume.

Exercise
1002. Will I have another task besides the one to make the new version of the ParallelRace class run?

For some time, you have been playing with arrows and rings, driving with cars along them and you
disregard the traffic light. Let’s return to it. Define the enum type TrafficLightState and add the meth-
ods getState() and setState(TrafficLightState) to the traffic light. To test, how all lights are shining,
add the allLightsOn() method to the traffic light which switches all lights. Then the traffic light should
be in one of the following states LIGHTS_OFF, ATTENTION, STOP, GET_READY, GO and LIGHTS_ON.

Then I would recommend you to examine sorting of elements in the list. Define the method in the
TestUtility class with the following signature

public void sortList(List<IModular> list);

www.dbooks.org

https://www.dbooks.org/

42. Lists and Their Ordering 481

The method will sort objects in the parameter list according to the module size (the bigger is prior to
the smaller). Then objects of the same size will be ordered firstly according to the horizontal coordi-
nate (and for change the smaller will be prior to the bigger), and in case of equality, according to the
vertical coordinate (again the smaller is prior to the bigger). (I suppose it’s obvious you have to define
a comparator for such sorting.) After that, press the resulting list at the standard output.

Then call this method from individual test classes of module objects and add the list of objects from
the fixture to it. At this occasion you can examine that in case you will include one element twice into
the list, it will remain there twice. After sorting both elements one will be along the other.

Unfortunately you cannot examine functioning of the last decision (the same module and the same
horizontal coordinate), because there are no equally big instances with either the equal horizontal (nor
vertical) coordinate in it. But you can supplement them.

Review
Let’s review what you have learned in this lesson:

F The instances of enum types are defined by an enumeration. When the program is running, you
cannot neither create any new instance, nor delete any existing one.

F The class keyword is replaced by the enum keyword in the definition of the enum type, and the
body starts with the list of values of this type, separated by commas and finished with the semi-
colon.

F The enum type can contain the same members as other classes.

F The state machine diagram is one of the UML diagrams. The rounded rectangles in it represent
the states and the arrows mark transfers among them.

F The list is a collection which keeps information about the order of saved objects.

F Properties of the general list are defined by the java.util.List interface.

F The List interface is implemented for example by the ArrayList class, which is the most used
implementation of the list and often also of the general collection.

F Mostly they are initialized immediately in the declaration as empty during using collections,
and during the program course they are fulfilled, and if need be, again cleared out.

F The add(E) method, where E is the type parameter of the list, adds the new element at the end of
the list.

F When working with objects, it does not matter whether they are already saved in certain con-
tainer, because in the given container there is only a reference to an object that stays at its origi-
nal place at the heap.

F For sorting of lists there are two versions of the sort method in the java.util.Collections class.

F The one-parametric version requires so that the elements in the list would be instances of clas-
ses implementing the java.util.Comparable interface.

482 Part 3: Advanced Creating of OO Programs

F The Comparable interface requires from its instances the definition of the compareTo method, whose
parameter is an object with which you compare the given object. The method returns a negative
integer, zero, or a positive integer when this object is less than, equal to, or greater than the
specified object.

F Ordering specified by the compareTo method is named as native or natural.

F In case you need to sort elements in a list according to the different criterion, you should use
double-parametric version of the sort method, to which you pass a comparator in the second
parameter.

F The comparator is an instance of the class implementing the java.util.Comparator interface. It re-
quires from its instances implementing of the int compare(T o1, T o2) method, which compares
its two parameters and returns a negative integer, zero, or a positive integer when the first
argument is less than, equal to, or greater than the second one.

F Using of comparator is an application of the design pattern Command.

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all
exercises is in the 142z_Lists project.

www.dbooks.org

https://www.dbooks.org/

43. The Array 483

43 The Array
43. The Array – 000000

43 The Array
What you will learn in this lesson
In this lesson you will become acquainted with the arrays and how to work with them. You will see how
they are used for defining the method with the variable number of parameters. You will read the explana-
tion that they can be sorted similarly as the lists and you will see the class which uses arrays for convert-
ing numbers to words. At the conclusion you will see also the loop while and the statement switch.

Project:
In this lesson you continue in using the 142z_Lists project.

Declaration of an Array Variable
1003. In the previous lesson in the section The Lists on page 472 you told that besides the list also an array would be

suitable for preparation of the scorecard. You mentioned the array also when you started to explain what con-
tainers mean. But until now you did not explain what the array means.

Well, I will rectify it immediately. As I have already told, the arrays are static containers. When you
create them, you have to announce how many elements fit into them, and this count cannot be
changed. On the other side, you can insert into them not only references to objects but also values of
primitive types.

1004. My friend told me that arrays can change their size in Basic.

But then they are not classis arrays, but more lists. The fact they are called arrays in Basic, is only a
marketing matter which has to persuade amateurs that this language is better. In fact their array is on-
ly an equivalent of the class ArralyList, which I presented to you in the last lesson.

But I stop slander other languages and I return to the array. The main advantage of arrays com-
pared to dynamic containers, with which you were working up to now, is that they have the direct
support in the machine code of the used processor. Therefore they enable very quick carrying out of
certain operations. If you would have a look at the source code of dynamic containers, you will see
that their efficiency is very often programmed just with the help of arrays.

1005. Finish your general speeches and show me how such array is used in a program.

The array is declared in such way that, behind the type of elements which will be inserted in it, you
write empty square brackets followed by the name of the variable in which the reference to the given
array will be saved – for example as follows:

int[] aInt; //Array of integger
String[] aStr; //Array of strings
IMovable[] aImo; //Array of objects implementing IMovable
String[][] aaStr; //Array of array of strings (array of string array)

484 Part 3: Advanced Creating of OO Programs

As I tried to show in the last example, the array’s element can be anything including another array.
This is suitable for example in case you need to save values of certain table. You can use the lastly de-
clared array aaStr for example in case you would have a table with first names in its first column, sur-
names in the second one and e-mail addresses of given persons in the third one. Then you define the
array of the table’s line and this line will be the array of texts.

Then often a number of dimensions of the given array are mentioned. The number of dimensions
means the count of squared brackets. Therefore in the previous example the first three arrays are
one-dimensional, the fourth array is two-dimensional.

1006. How many dimensions can have the array?

Theoretically 256, but in practice it usually has one or two dimensions, exceptionally three. Practically
you cannot meet more dimensions.

Creating and Initializing an Array
1007. I have declared an array. How I will create it?

The array is an object. Therefore it is created with the help of the operator new, and you can choose, if
you will create it uninitialized (precisely explicitly uninitialized, i.e. with zeroed elements) or initial-
ized. In the first case you say the required size of the created array to the operator new by writing an
expression into square brackets after the type name. Value of this expression specifies the size
(number of elements) of the created array, e.g. as follows:

aInt = new int[5]; //Creates an array with the first five prime numbers
aStr = new String[5][3]; //Creates a table with 5 rows and 3 columns

//We can count the size of the created array in the nick of time:
aaStr = new RoadField[2 * (columns + rows)];

As I have already said, the array created in this way is not initialized, which means it contains only ze-
ros that may represent also null, false or empty character. You have to realize this, especially in case of
arrays of objects. These arrays do not contain any objects, i.e. they contain really only null-s. Very of-
ten the programmers who are coming to Java from other languages – e.g. C++, Pascal or Delphi – are
surprised by this.

1008. And when I would like to create initialized arrays?

Then you have two possibilities. Either you want to write down the creating as well as initializing the
array as a part of its declaration, or you create and initialize the array somewhere within the code. If
creation and initialization of the relevant array is a part of a variable declaration, you can skip over
calling of the operator new and you can write squared brackets with the list of values separated by
commas after the equation mark.

int[] a5p = { 1, 2, 3, 5, 7 }; //Array of the first five primes
String[] season = {"spring", "summer", "autumn", "winter"};
String[][]address = { {"Tom", "Jones", "tom.jones@gemail.com" },
 {"Elvis", "Presley", "ep@yahoo.com" },
 {"Michael", "Jackson", " michael@email.org} };

www.dbooks.org

https://www.dbooks.org/

43. The Array 485

The compiler will understand that it has to create an array, and it will derive the array’s size from the
number of values. If you will initialize a more-dimensional array, i.e. an array the elements of which
are again arrays; you again quote such element as a list of values closed in squared brackets.

1009. And what about the other possibility, when I would like to create and initialize the array in the code?

In this way you have two possibilities even now. Let’s start with the more complicated one, which you
can use anywhere. In case you are outside of a declaration and you would come to the opinion that
just now it is suitable to create an initialized array, you start equally as with the uninitialized, i.e. you
call the operator new and write down the type of the created object after it including the empty squared
brackets, similarly as in the declaration. Then you put braces with initializing values. If I would not
use the quoted initializations in the declaration but somewhere in the middle of the code, it would
look out as follows:

a5p = new int[] { 1, 2, 3, 5, 7 }; // Array of the first five primes
season = new String[] {"spring", "summer", "autumn", "winter"};
address = new String[][] { {"Tom", "Jones", "tom.jones@gemail.com" },
 {"Elvis", "Presley", "ep@yahoo.com" },
 {"Michael", "Jackson", " michael@email.org} };

Thus you can assign the created arrays not only to variables but also when passing parameters. Imag-
ine, that for example you need to know, if certain array includes the beforehand known values. Let’s
say that my task for students is to write down the primes(int,int) method, which returns the sorted
array of prime numbers among the entered parameters. When I use the equals(int[],int[])method in
the java.util.Arrays class, which compares two entered arrays, the result in my control program can
look out as follows (the reference to the object of the tested student is saved in the student variable):

int[] result = student.primes(10, 20);
boolean right = Arrays.equals(new int[] {11, 13, 17, 19}, result);

Methods with a Variable Number of Parameters
1010. You spoke about certain simpler possibility.

You have already met it– you can use this simpler possibility when you are using a method with a
variable number of parameters. The “triple-dot” parameter is in fact an array, with which you can
work in the middle of the method as just with the ordinary array.

1011. And this reminds me that you explained in details, how to create the array, but I don’t know anything how to
use it.

You already know something – I showed you that you can use the colon loop for working with values
in the array. And after all you can try it. At the end of the last lesson I put an exercise for creating test
methods added into the test classes of the relevant shapes. These methods should verify if you defined
properly the sortList(List<IModular>) method in the TestUtility class. I suppose that similarly as in the
sample solution you created an empty list, and gradually you added individual instances of the
template and then you pass this list to the test method for sorting.

486 Part 3: Advanced Creating of OO Programs

Now I will show you the alternative possibility. Let’s supplement the TestUtility class with the
newListIModular method, to which you can add any sum of instances of this interface. You can see
the definition in the listing 43.1.

Listing 43.1: The newListIModular method in the TestUtility class

/***
 * Creates a new list (precisely {@link ArrayList}) of {@link IModular}
 * objects and fills it with values obtained in parameters.
 *
 * @param values Values initializing the created list
 * @return New list filled with the given values
 */
public static List<IModular> newListIModular(IModular... values)
{
 List<IModular> list = new ArrayList<>();
 for (IModular value : values) {
 list.add(value);
 }
 return list;
}

When you would declare in the method’s header that the parameter is an array, you have to assign in-
to it the required array similarly as you did it for example in the listing 40.3 on page 438. Then you can
define the body of the test method in the class ArrowTest for example as follows:

List<IModular> list = TestUtility.newListIModular(
 arrow0, arrowXY, arrowXYB, arrowXYM, arrowXYMB, arrow0);
TestUtility.sortList(list);

If need be you can unify both statements into one and modify the method’s body into the form

 TestUtility.sortList(TestUtility.newListIModular(
 arrow0, arrowXY, arrowXYB, arrowXYM, arrowXYMB, arrow0));

How to Use the Array
1012. I remember that you already showed me using of the colon statement for in the method with the variable num-

ber of parameters. Could the array be used in a different way than in the loop?

Working with the array elements in the loop is far more frequent, but you can access to elements
saved in the array separately. But you have to know, where the element is saved in the array, you
have to know its index. All positions in the array are indexed (numbered). The initial array position
has the index 0 (zero) and each next one has the index higher by one.

1013. Why the positions are not numbered one, two, three etc.?

Since then a lot of problems you are meeting disappear – for instance why the year 1234 belongs to the
13th century. And moreover, many calculations are more effective. Keep in mind that all good pro-
gramming languages are indexing from zero. And thus, it follows that the index of the last element in
the array is (numberOfElements – 1). Despite the fact laics consider it as strange for the first sight, after
some time they become accustomed to it and would not like to return to indexation from one.

www.dbooks.org

https://www.dbooks.org/

43. The Array 487

1014. Well, so show me certain usage, where I would work with individual array elements.

I will show you the definition of the method, which selects and returns maximum from entered val-
ues. Or even better: the definition of this method is your exercise today, and I will show you the defi-
nition of a little bit more complicated method, that returns index of the highest element. You can find
its code in the listing 43.2. Notice, how I ask for the value of the array element: I quote the array name
followed by the index of the element, the value of which I am interested in, and this index is written in
squared brackets.

Listing 43.2: The indexOfMax(int…) method in the ArrayTest class

/***
 * Returns the index of the greatest number among the given numbers.
 *
 * @param ii Analyzed numbers
 * @return Index of the greatest number
 */
public static int indexOfMax(int... ii)
{
 int index = 0;
 int max = ii[0];
 for (int i=1; i < ii.length; i++) {
 if (ii[i] > max) {
 index = i;
 max = ii[i];
 }
 }
 return index;
}

1015. Why didn’t you use the colon for?

This method cannot use the colon loop for, because at the beginning it remembers the value (as well as
the index) of the initial element and then it goes through the array only from the element with the in-
dex 1. The colon loop for does not know going through only a part of the array. It works according to
the principle all or nothing. As soon as you need to go through only an array’s part, you have to use
the classic form of the loop for.

Notice also, how the loop is programmed. The program goes through the particular array element
by element until it comes to the element which is bigger than the current maximum and proclaims it
as a maximum, i.e. remembers its value and its index.

1016. What the length field which you use in the loop header contains?

In this (constant) field the array length is placed, i.e. the number of its elements. The quoted header is
the typical header of the for loop, through the body of which you pass. If you would go through the
whole array, you would only save zero into the loop control variable as an initial value, because (as I
already said) the array’s elements are indexed from zero.

488 Part 3: Advanced Creating of OO Programs

1017. Do you have an example in which I have to use the classic for loop?

You have to use the classic form of the loop whenever you need to save something into the array. The
colon for offers you only what it found in cells, but it does not enable you to change their content.
Thus, if you would define a method which receives an array as a parameter and returns another array,
whose elements contain the second power of values of the first array’s elements, it could look out as in
the listing 43.3.

Listing 43.3: The square(double[]) method in the ArrayTest class

public static double[] square(double[] dd)
{
 double[] result = new double[dd.length];
 for (int i=0; i < dd.length; i++) {
 result[i] = dd[i] * dd[i];
 }
 return result;
}

As I already told, the length of the array does not change during its life. Therefore if you save some-
thing into the array, you cannot ask to put it at the end, as it was possible with the list. Anytime you
read something from the array or you save something into it, you always have to say with which ar-
ray’s cell you want to work, you have to quote its index. Then the virtual machine checks if such cell
exists and if yes, it reads the required value or save it. But if the array does not contain such index, it
throws the ArrayIndexOutOfBoundsException, and you can read the used false index value in its message.

Sorting of the Array Content
1018. I suppose that you can sort the values in the array similarly as previously in the list.

Yes, the only difference compared to lists is, that methods working with arrays are defined in the
class java.util.Arrays. For sorting the arrays you can find here a whole variety of methods differing
with the type of elements of the sorted array – for each primitive type there are two methods: one is
sorting the whole array and the other only the assigned part of it. Besides that there is another slew of
methods for further operations – for example a set of methods equals mentioned at the beginning of
the lesson, which compare two specified arrays.

However, among methods for sorting values of primitive types you will not find a version to
which you could enter the used comparator. You can find such version only among methods for sort-
ing arrays with values of object types.

How to Express Numbers with Words
1019. Can we try an example for using the array?

I have a little example here, which I used in one of my previous textbooks. It shows how you can de-
fine a class the static method of which converts the number to its expression in words. The whole def-
inition (you can find it in the listing 43.4) is based on using the arrays, so go through it. This definition
converts numbers only until one thousand. And in the package utility you can find its sister, which is
able to convert all positive numbers of the long type.

www.dbooks.org

https://www.dbooks.org/

43. The Array 489

Listing 43.4: The class ByWords

/***
 * The {@code ByWords} class allows to translate the integer numbers
 * into text showing how they can be said by words.
 */
public final class ByWords
{
 //== CONSTANT CLASS FIELDS ===

 /** The maximum translatable value */
 public static final long MAX = 999L;

 private static final String UNITS[] = new String[] {
 "", "one", "two", "three", "four",
 "five", "six", "seven", "eight", "nine",
 "ten", "eleven", "twelve", "thirteen", "fourteen",
 "fifteen", "sixteen", "seventeen", "eighteen", "nineteen",
 };

 private static final String TENS[] = new String[] {
 "", "ten", "twenty", "thirty", "forty",
 "fifty", "sixty", "seventy", "eighty", "ninety"
 };

 private static final String HUNDRED = " hundred";

 private static final String AND = " and ";

 private static final String[] TRIADS = { "",
 "thousand", "million", "billion", "trillion",
 "quadrillion", "quintillion"
 };

 //== OTHER NON-PRIVATE CLASS METHODS =======================================

 /***
 * Returns a string representing the given number expressed by words.
 *
 * @param number Converted number
 * @return Word representation of the given number
 */
 public static String number(long number)
 {
 if (number == 0) {
 return "zero"; //==========>
 }
 if (number > 0) {
 return convert(number);
 }
 else {
 return "minus " + convert(-number);
 }
 }

490 Part 3: Advanced Creating of OO Programs

 //##
 //== CONSTUCTORS AND FACTORY METHODS =======================================

 /** Private constructor preventing creation of an instance. */
 private ByWords() {}

 //== PRIVATE AND AUXILIARY CLASS METHODS ===================================

 /***
 * Returns a string representing the given number expressed by words.
 *
 * @param number Converted number
 * @return Word representation of the given number
 */
 private static String convert(long number)
 {
 String[] texts = new String[TRIADS.length];
 texts[0] = hundred((int)(number % 1000));
 int triad = 0;
 do {
 int trinum = (int)(number % 1000);
 if (trinum == 0)
 {
 triad++;
 continue;
 }
 String trinumString = hundred(trinum);
 String triadString = TRIADS[triad];
 texts[triad] = trinumString + " " + triadString;
 triad++;
 } while ((number /= 1000) > 0);
 StringBuilder sb = new StringBuilder();
 for (int i = triad-1; i >= 0; i--)
 {
 if (texts[i] == null) {
 continue;
 }
 if (sb.length() > 0) {
 sb.append(" ");
 }
 sb.append(texts[i]);
 }
// String ret = sb.toString();
 return sb.toString();
 }

 /***
 * Returns a string representing the given number from 1 to 999
 * expressed by words.
 *
 * @param number Converted number
 * @return Word representation of the given number
 */

www.dbooks.org

https://www.dbooks.org/

43. The Array 491

 private static String hundred(int number)
 {
 int units = number % 10;
 int ten_units= number % 100;
 int tens2 = number / 10;
 int tens1 = tens2 % 10;
 int hundreds = tens2 / 10;

 StringBuilder sb = new StringBuilder();
 if (hundreds > 0) {
 sb.append(UNITS[hundreds]).append(HUNDRED);
 }
 if ((tens1 > 0) || (units > 0)) {
 if (hundreds > 0) {
 sb.append(AND);
 }
 if (ten_units < 20) {
 sb.append(UNITS[ten_units]);
 }
 else {
 sb.append(TENS[tens1]);
 if ((tens1 > 0) && (units > 0)) {
 sb.append(' ');
 }
 sb.append(UNITS[units]);
 }
 }
 return sb.toString();
 }

 //== TESTING CLASSES AND METHODS ===

 /***
 * The test method.
 */
 public static void test()
 {
 java.util.Random rnd = new java.util.Random();
 for (int i = 0; i < 100; i++)
 {
 long n = rnd.nextLong();
 }
 }
 /** @param args Command line arguments - not used. */
 public static void main(String[] args) { test(); }
}

492 Part 3: Advanced Creating of OO Programs

Exercise
1020. Well, it was enough for me. So what will be today’s exercise?

I said your today’s exercise during this lesson. Define a method with variable number of parameters
which will return the value of the highest of its parameters. And if you dare, you can try a version
which will receive a comparator in the first version with the help of which it decides about the
remaining parameters and which of them is the biggest.

Then study the Slovy class and think over how to extend it, so that it would be able to convert also
numbers bigger than 999. You will find such version in the package utility. However, it uses certain
constructions which will be explained only in the next volume.

Review
Let’s review what you have learned in this lesson:

F Arrays are static containers that enable to save also primitive type values directly, i.e. without
using their wrapper objects.

F The main advantage of arrays is the direct support of working with them in the machine code of
the processor.

F The array is declared by writing empty squared brackets after the type of elements that should
be saved into it, followed by the name of the variable to which the reference to the given array
is saved – e.g.

int[] intArray;

F The number of array sizes (dimensions) is defined by the number of square brackets – e.g.

double[][][] threeDimensional;

F An empty uninitialized array is created with the help of the operator new followed by the name
of the array’s element types and by squared brackets with quoted number of elements – e.g.

intArray = new int[100];

F You can create an initialized array in a declaration by writing the equals sign behind the name
of the declared variable and then you name the initial values of array elements in braces. The
array’s size will be derived from the number of elements – e.g.

String[] initializedArray = { "zeroth", "first", "second" };

F Arrays created in the code are initialized simply by quoting braces with the list of initial values
instead of square brackets behind the operator new and behind the name of array elements type.
The array’s size will be derived from the number of elements.

String sorted = Arrays.sort(new String[] {"John", "Tom", "Mary"});

F Each array’s element has its index. The array elements are indexed from zero.

F The index of the last element is always smaller by one than the number of array elements.

www.dbooks.org

https://www.dbooks.org/

43. The Array 493

F The arrays have a constant integer field length, which contains the array’s size (number of ele-
ments).

Project:
The resulting form of the project to which we came at the end of the lesson and after completing all exer-
cises is in the 143z_Arrays project.

494 Part 3: Advanced Creating of OO Programs

44 The Finale
44. The Finale – 000000

44 The Finale
What you will learn in this lesson
In this final lesson I will only say good bye and I will outline which program I prepared for you in accom-
panying programs for the concluding self-study.

Project:
In this lesson you continue in using the 143z_Arrays project.

1021. Well, and what you have prepared for me?

I prepared a lot of further things for you, but I think that we should finish at the best. We went togeth-
er through the very basics of object oriented programming and I showed you how to make object pro-
gramming in the Java language.

As I told you at the beginning, I tried to look into various areas which enable you to understand
how the object oriented programs are developed. But it was just a look into majority of areas, because
there was neither space nor time for more systematic explanation.

As I told you during previous lessons, I intend to continue with this topic in another volume of this
book in which I would like to explain systematically all areas that were just started. Besides that I
promised you to complete the explanation on inheritance as well as inheritance of implementation
which is the base of class inheritance. And moreover, I would like to touch several other topics which
are rarely mentioned in books for beginners.

1022. What you would advise me to read when I would not like to wait before you finish editing of the second vol-
ume?

Probably I will advise you to read something about class inheritance because when studying pro-
grams of other people you might meet it. But be prepared that majority of textbooks do not expand on
various trickiness you can meet in using the class inheritance. I say “self-critically” that you can be-
come acquainted with this trickiness best in my book Java 8 – Textbook of the Object Oriented Architecture
for the Slightly Intermediate Programmers. However, there is a disadvantage: roughly two thirds of its
content was just explained here.

The both above mentioned books deal more with how to think in object programming. In case you
would like to discover something about syntactic rules and supplement your knowledge in Java by
topics that were only slightly mentioned (e.g. what the standard library offers), you will find a num-
ber of books as well as freely available texts. You can start with The Java™ Tutorial

1023. Well, this is the end?

Yes, this is the end. I will be looking forward that you will take fancy to programming and that you
will show off your creations at the conference pages that might inspire others.

www.dbooks.org

https://www.dbooks.org/

Index

@After, 176
@Before, 176
@Override, 173
@Test, 176
access

private, 71
public, 71

accessor method, 40
animace

OOPNZ_115_A1_SouboryVProjektechBlueJ,
137

OOPNZ_116_A1_PrazdnaTrida, 146
OOPNZ_117_A1_FormalniASkutecneParam

etry, 154
OOPNZ_131_A1_Debugger, 317

animation, 4
LOOTP_101a_Handling, 5
LOOTP_101b_IDE_BlueJ, 8
LOOTP_102a_Compilation, 17
LOOTP_103a_First_messages, 23
LOOTP_104a_Tests_class, 29
LOOTP_105a_Return_primitive_value, 35
LOOTP_106a_Return_object, 48
LOOTP_107_e1_House, 57
LOOTP_107_e2_Face, 57
LOOTP_107_e3_Robot, 57, 75
LOOTP_107a_Messages_with_parameters,

56
LOOTP_108_e1_House, 66
LOOTP_108_e2_Face, 66
LOOTP_108_e3_Robot, 66
LOOTP_108a_Object_parameters, 63
LOOTP_109_e1_House, 75
LOOTP_109_e2_Face, 75
OOPNZ_109_A1_DoplneniPripravku, 72
OOPNZ_109_A2_UtrobyObjektu, 74
OOPNZ_110_A1_Interface, 86
OOPNZ_111_A1_Mnohotvar, 98
OOPNZ_112_A1_ViceRozhrani, 107
OOPNZ_113_A1_DedicnostRozhrani, 119
OOPNZ_114_A1_SpravcePlatna, 131

annotation
@After, 176
@Before, 176
@Override, 173
@Test, 176

apostrophe, 245
application

creation, 326
main class, 326

area
reference, 380

argument, 150
architecture, 115
Architecture First, 2
arity, 253
array

creation, 484
index, 486
initialization, 484
sorting, 488
use, 486

arrow
dependency, 15, 27
implementation, 86

arrows
uses

deny, 83
attribute, 68, 214, 221

private, 69
public, 69
static, 69, 73

backup copy, 141
block, 216, 385

initializing
static, 290

BlueJ, 6
BlueJ command

Compile, 17
Create Test Method, 28
Executed actions ► Test Fixture, 27

496 OOP – Learn Object Oriented Thinking and Programming

Run Tests, 28
Test Fixture ► Object bench, 27

boolean, 36, 242
breakpoint, 308
button

Compile, 17
Continue, 311
Get, 39, 69
Halt, 311
Inspect, 69
New Class, 26
Replace, 53
Run Tests, 28, 130
Show Source, 227
Show static fields, 73
Step, 311
Step Into, 311
Terminate, 311

byte, 37, 242
call sequence, 313
CanvasManager, 126
casting

default, 401
explicit, 401

circumscribed rectangle, 444
class, 11, 15, 16, 20

associated test class, 92
defined

Apron, 320
Arrow, 192, 200, 209
Auto, 149
BuilderState, 470
Call, 297
Canvas, 15
CanvasManager, 126
Car, 192, 200, 209, 216
CCI, 291
Circular, 373
DirectableCircular, 387
Direction8, 15
Dispatcher, 320, 321
Ellipse, 15
Empty, 134

House, 65
Info, 410
IO, 15
Light, 163
Mover, 77, 81, 102, 104
MultishapeTest, 128
NamedColor, 15, 320
Number, 320
ParallelRace, 461, 473
Position, 234
Race, 402
RaceLShape, 410
RaceLShape.Info, 410
Rectangle, 15
Resizer, 106
Ring, 352, 357
RingBuilder, 352, 354
RingTest, 362
RoadField, 347
Space, 320
Tests, 26, 27, 127
TestUtility, 285
Town, 266
TrafficLight, 149, 192, 200
TrafficLights, 209
Triangle, 15
Vehicle_A, 391
Xkrements, 426

field, 68
child class, 60
import into project, 84
kind of class, 134
name

full, 336
simple, 336

New Class, 26
standard

Object, 242
standard class template, 184
standard library

ArrayList<E>, 472
Arrays, 488
Collections, 476

www.dbooks.org

https://www.dbooks.org/

Index 497

Object, 60
System, 246

String, 46
test class, 25

method setUp, 176
of class, 91

type of class, 26
class diagram, 14
class file, 135
class test class, 91
code

source code
comment, 181
formatting, 147
indenting, 147

collection
important methods, 422

command
Comment, 181
conditional

embedded, 399
Uncomment, 182

comment
block comment, 182
documentation, 182, 183

formatting, 186
line comment, 182

comments
javadoc

tags, 187
compilation, 16
Compile, 17
compile-time

constants, 301
expression, 301

conditional statement
complete, 437
simple, 395

constant, 218
compile-time constants, 301
compile-time expression, 301

constructor, 30
definition, 144

header, 144
how it works, 197
name, 145
this statement, 199

container, 407
dynamic, 407
static, 407

context menu, 18
conversion

default, 401
explicit, 401

copy
backup, 141

Crate, 231
cycle

for(
), 423

data type, 80
debugger, 308

call sequence, 313
window, 310

declaration, 50
default

casting, 401
conversion, 401

dependency arrow, 15, 27
design pattern, 100

Command, 478
Crate, 231
Decorator, 366
Enum type, 102
Enumeration type, 102
Library class, 101, 279
Multiton, 102
Prototype, 96
Servant, 102, 277
Simple factory method, 101
Single Factory method, 266
Singleton, 101, 266
Static factory method, 101
Utility class, 101, 279

diagram
class diagram, 14

498 OOP – Learn Object Oriented Thinking and Programming

state machine, 470
documentation

class, 79
documentation comment, 183
double, 37, 242
Eclipse, 7
encapsulation, 159
enum type, 15, 469
Enum type, 102
Enumeration type, 102
exception, 428
explicit

casting, 401
conversion, 401

field, 214
class field, 263
initialization, 215
lifetime, 216
static, 73, 263

file
*.class, 135
*.ctxt, 135
*.java, 135
auxiliary, 135
class file, 135
compiled, 135
package.bluej, 135
README.TXT, 16
source file, 135

final, 218
fixture

test fixture, 25
float, 37, 242
Fowler

rule, 148
French quotation marks, 15
garbage collector, 37, 38, 47
getter, 40, 222
getXxx, 40
guillemets, 15
hatching, 16
heap, 37
Hollywood principle, 122

char, 37, 242
child class, 60
IDE, 6
IDEA, 7
identifier, 20, 36, 39, 43
implementation, 78
implementation hiding, 159
import

static, 360
import class into project, 84
index, 486
inheritance, 61
inheritance of interfaces, 108
instance, 11, 19, 22

field, 68
int, 37, 242
Integrated Development Environment, 6
IntelliJ IDEA, 7
interactive mode, 16
interface

defined
IRingFactory, 435
IUFOFactory, 321

from standard library
Collection<E>, 421
Deque<E>, 422
List<E>, 422
Map<K,V>, 422
Queue<E>, 422
Set<E>, 422

interface, 78, 80, 171
defined

IMovable, 104
IResizable, 106
ISaucer, 320
IShape, 77, 81, 102
IUFO, 320
IUFOFactory, 320
UFOTest, 320

inheritance, 108
interface

defined
IDirectable, 386

www.dbooks.org

https://www.dbooks.org/

Index 499

interface
standard library

List<E>, 472
iterator, 424
Java Development Kit, 6
JDK, 6
key, 408
keyword, 44
kind of class, 134
library

standard library, 36
Library class, 101
Liskov Substitution Principle, 116
list

linked, 348
sorting

native, 476
natural, 476

local
variable, 213

local variable, 214, 316
initialization, 215
lifetime, 216

long, 37, 242
loop

endless, 440
for

body, 440
classic, 439
header, 440

LSP, 116
main class, 326
memory manager, 37, 38
message, 12, 22

list of messages, 18
sending, 31
to IDE, 18
with parameters, 12

method, 30
accessor, 40
accessory method, 222
auxiliary, 212
calling, 31

defined
auxSwapPositionsWithCheck, 279

getter, 222
mutator, 40
return value, 47
setter, 222
setUp, 176
tearDown, 176
with variable number of parameters, 438, 485

mode
interactive, 16

modifier
final, 218
usage, 264

Multiton, 102
mutator method, 40
name

conventions for packages, 339
full, 336
simple, 336

names
conventions, 331

NetBeans, 7
new, 18
New Class, 26
object, 10, 19, 37, 38, 45

comparison, 240
state, 68

object bench, 21, 22
object oriented program, 13
object oriented programming, 10
object type, 36
OOP, 10
operand, 161
operator, 161

!, 254
!=, 253
%, 208
&, 255
&&, 255
*, 207
/, 207
|, 256

500 OOP – Learn Object Oriented Thinking and Programming

||, 256
<, 253
<=, 253
=, 160
==, 253
>, 253
>=, 253
assignment, 160
binary, 253
comparison, 253
conjunction, 255
disjunction, 256
division, 207
instanceof, 256
modulo, 208
multiplication, 207
negation, 254
nullary, 253
postdecrement, 426
postincrement, 426
predecrement, 426
preincrement, 426
reminder after division, 208
unary, 253

output
standard

error, 248
package, 330, 335

name convention, 339
panel

local variables, 316
parameter, 12, 50, 214

actual, 150
formal, 150
initialization, 215
lifetime, 216
this, 194
type, 412

pattern
design

Command, 478
Enum type, 102
Enumeration type, 102

Multiton, 102
Singleton, 101

design pattern, 100
Decorator, 366
Library class, 101, 279
prototype, 96
Servant, 102, 277
Simple factory method, 101
Static factory method, 101
Utility class, 101, 279

primitive type, 22, 36
principle

dependency injection, 124
dependency inversion, 124
Hollywood, 122
Liskov Substitution Principle, 116
LSP, 116

program
tracing, 311

program
object oriented, 13
structured, 13

program
stepping, 311

project, 13
101a_Shapes, 13

property, 221
Prototype, 96
qualification, 161

this, 162
quotation marks, 59, 245
README.TXT, 16
rectangle

circumscribed, 444
recursion, 366
refactoring, 276
reference, 19, 22, 37, 38, 45

how to get it, 38
return stack, 313
Servant, 102
setter, 40, 222
setXxx, 40
short, 37, 242

www.dbooks.org

https://www.dbooks.org/

Index 501

Simple factory method, 101
Singleton, 101
source code

comment, 181
formatting, 147
indenting, 147

stack
return stack, 314

standalone application, 326
standard class template, 184
standard library, 36
state machine diagram, 470
statement

conditional
complete, 437
simple, 395

import
star notation, 343

import static, 360
loop

for(
), 423

package, 335
Static factory method, 101
stepping, 311
stereotype, 15, 27

enum, 15
interface, 83
unit test, 27

string
concatenation, 241

String, 46, 54
structured program, 13
switch

kind of class, 134
tag

@author, 187
@param, 187
@return, 187
@version, 187

tags
javadoc, 187

template

standard class, 184
test

creation, 28
return the proper values, 225

test class, 25
test fixture, 25
text representation, 241
text signature, 241
this, 162
this statement, 199
time

measurement, 400
tracing, 311
type

boolean, 36, 242
byte, 37, 242
double, 37, 242
enum, 15
enum type, 469
float, 37, 242
char, 37, 242
immutable, 260
int, 37, 242
long, 37, 242
mutable, 260
object, 36
primitive, 22, 36
short, 37, 242
void, 36
wrapper, 408

UFO, 319
UML, 14

class diagram, 14
state machine diagram, 470

Unified Modeling Language. UML
Utility class, 101
value

in map, 408
magic, 219
permissible, 36
return value

test, 225
variable, 20

502 OOP – Learn Object Oriented Thinking and Programming

local, 213, 214, 316
initialization, 215
lifetime, 216

virtual machine, 23

restart, 23, 28
void, 22, 36
whitespace, 139, 182

www.dbooks.org

https://www.dbooks.org/

	Reaction of Readers
	Brief Content
	Detailed Content
	Acknowledgement
	Preface
	Author’s Foreword
	Part 1: Interactive mode
	1 The Prologue
	Methodology Used
	The Presentation Concept
	The Accompanying Animations
	What You Will Need
	File Manager
	JDK and JRE
	BlueJ Environment

	Working with BlueJ
	Review

	2 The OOP – Get Acquainted
	The Object Oriented World
	The Objects
	The Classes
	The Messages
	The Structured vs. Object Oriented Program

	The First Project
	The Graphic Language UML
	Classes in the Project

	The Compilation
	Review

	3 We Are Sending First Messages
	The Instances and References to Them
	Creating a New Instance
	The Object Bench
	The Messages Sent to Instances

	The Virtual Machine
	Review

	4 The Test Class
	The Test Fixture
	Creating the New Class
	Creating the Test Fixture
	Creating the Test
	Methods and Constructors
	Review

	5 The Messages Requiring a Value
	Return Type
	Obtaining the Return Value
	Primitive and Object Types
	References to Objects
	Record of Method Calling
	The getXxx and setXxx Messages/Methods
	Review

	6 The Messages Requiring an Object
	The Rules for Creating the Identifiers
	Getting the Reference to the Returned Object
	The Instance of String Type
	How to Write the Strings
	Memory Management – Garbage Collector
	Using Methods Returning the Value in Tests
	Review

	7 The Messages with Parameters
	The Meaning of Parameters
	The Object Construction Using Parameters
	The Dialog Structure for Sending Messages with Parameters
	The Example Continued

	Once More the Object vs. the Reference
	The Parameters of String Type
	The Animation
	Exercise
	Review

	8 The Object Type Parameters
	The Significance of Quotation Marks when Entering the Strings
	The Class Object
	The Object Type Parameters
	Direct Passing of the Message Return Value
	Briefer Record of Messages
	Exercise
	Review

	9 The Expedition into the Interior of Instances
	Fields of Instances and of Classes
	Working with the Fields
	The Messages Requesting a Field Value
	Field Accessibility
	Test Fixture Extending
	Monitoring of Field Values
	Static Fields – Class Fields
	Exercise
	Review

	10 The Interface
	Motivation
	Interface vs. Implementation
	Interface as a Data Type
	Interface versus interface

	Practical Usage
	Preparation of a New Project
	Importing the Class from Another Project

	Implementation of an interface by the Class
	Exercise
	Review

	11 The Interface Continued
	Readiness for the Future Extension
	The Example: Multishape

	Test Class of the Class
	Variable Number of Parameters
	The Design Pattern Prototype
	Verifying of the Multishape Functioning
	Exercise
	Review

	12 The Introduction into Design Patterns
	Design Patterns
	Examples of Design Patterns
	The Implementation of More Interface Types
	Exercise
	Review

	13 The Inheritance of Interface Types
	Hierarchy of the Types
	Three Types of Inheriting
	One interface Missing
	Signature versus Contract
	Definition of a New Interface Type
	New Hierarchy of the Interface Types
	Inheriting of the Interface Types
	Documentation of the Project
	Exercise
	Review

	14 Mediator and Listener
	Observer – Listener – Subscriber
	How to Prevent Mutual Cancelling of Shapes
	The Canvas Manager and Its Project
	Recursion

	Other New Features
	Exercise
	Review

	Part 2: Basics of Creating OO Programs
	15 The First Code
	The New Empty Class
	Files in BlueJ Projects
	The Source Code of the Empty Class
	Constructor
	Adjustment of Presets
	Exercise
	Review

	16 The First Constructor
	Definition of the Constructor
	Name of the Constructor
	The Working Constructor
	Source Code Formatting
	More Complex Example
	Exercise
	Review

	17 Parameters
	Parameters and Arguments
	Renaming the Class
	The Test Class of the Light Class
	Exercise
	Review

	18 The Fields and the Methods
	The Light Has to Learn
	Introducing Fields
	Encapsulation and Implementation Hiding
	The Assignment of the Value to the Field
	Method Definitions
	The Qualification
	The Conflict of Names of a Field and of a Parameter
	Exercise
	Review

	19 Implementation of an interface
	Interconnecting the Source Code with the Class Diagram
	The Abstract Methods and Classes
	Implementation of a Method Declared by an Implemented Interface
	The @Override Annotation

	The Interface and the Class File
	Test Class
	Exercise
	Review

	20 Comments
	Commenting Parts of a Code
	Comments in Java
	Documentation Comments
	Documentation of the Classes and the Whole Project
	The Standard Class Template
	Formatting of the Documentation Comments
	Javadoc Tags
	Comments Marking Sections of the Source Code

	Empty Method’s Pattern
	Exercise
	Review

	21 Using of this
	The Hidden Parameter this
	Unsuitable Copying of the Code
	The Details of the Constructor’s Work
	Adjustment of the Constructors Using this
	Exercise
	Review

	22 Overloading
	Further Constructors
	Overloading of the Methods
	The Identifiers of Parameters
	The Identification of the Called Method
	The Basic Arithmetic Operators
	Exercise
	Review

	23 The Local Variables
	The Auxiliary Methods
	The Local Variables
	Fields × Parameters × Local Variables
	The Applicability (The Range of Validity)
	The Initialization (Assigning the Initial Value)
	The Lifetime

	Position and Module Setting
	The Constants and the Magic Values
	Exercise
	Review

	24 Methods Returning a Value
	Fields versus Properties
	The Accessory methods
	The Properties Saved in the Fields
	Returning of the Values Obtained by Calculation
	Object Equality Testing
	Test of Returning the Proper Value
	Exercise
	Review

	25 The Crate
	The Fields Representing a Set of Values
	Passing Parameters by Value and by Reference
	Crate / Transport Object
	The Constants
	Methods Working with the Crate
	Exercise
	1. Put the project 125b_Crate_Start into operation
	2. Import the classes Light, Arrow, TrafficLight and Car and put them into operation
	3. Supplement and Test these Classes

	Review

	26 Strings and How to Work with Them
	Problems with Comparing the Objects
	Concatenation of the Text Strings
	Text Representation (Text Signature)
	Line Ending
	The Escape Sequence
	The Standard Output
	Terminal Window

	The Standard Error Output
	Exercise
	Review

	27 A Bit of Logic
	Problems with Objects Comparing
	The Cast Operator (Type)
	Numerical Comparison Operators < <= == >= > !=
	Operators and their Arity
	Comparison of Objects
	Logical Complement Operator !
	Conjunction (ConditionalAnd) Operators && and &
	Disjunction (ConditionalOr) Operators || and |
	Type Comparison Operator instanceof
	Contract of the equals(Object) Method
	Value Types and Reference Types
	Reference Types
	Value Types

	Exercise
	Review

	28 Class Methods and Fields
	Counted Objects
	Static Fields
	Order of Modifiers
	Program Modifications
	Innovation of the toString() Method
	Town
	Entering
	An Analysis

	Exercise
	Review

	29 Refactoring of the Code
	What is Refactoring
	How to Solve Our Problem
	 The IModular Interface
	A Servant Class
	The Method auxSwapPositionsWithCheck
	Generalization of a Method
	Adjustment for Arrows
	Adaptation of Test Classes

	The testPositionSize Test Method
	Generalization of a Copied Method
	Adapting the Method to Different Requirements

	Exercise
	Review

	30 Static Constructor – Class Constructor
	Class Constructor – Static Constructor
	The Call class
	Loading and Initializing of a Class
	Details of Class Initializing

	What Should Be Remembered
	Procedure of Instance Creating
	Details on Constructing an Object Once Again

	Instance Instruction
	Exercise
	Review

	31 Debugger
	The Importance of Debugger
	Activating of the Debugger
	Debugger’s Window
	Stepping through / Tracing the Program
	The Call Sequence Panel
	Return Stack
	Local Variables
	Stepping through Test Methods
	Exercise
	Review

	32 Creating of an Standalone Application
	Assignment
	The Dispatcher Class
	The IUFOFactory Interface
	Design Pattern Factory Method
	The IUFO Interface
	The move(int) Method
	A Constructor
	Controlling by Direct Message Sending
	Controlling from a Keyboard

	Creating a Standalone Application
	The Main Class of an Application
	Creating Executable Archives
	Exercise
	Review

	Part 3: Advanced Creating of OO Programs
	33 Packages
	Packages and Folders
	Big Programs and Their Problems
	Conventions for Project Names
	Creating Packages in BlueJ
	The package statement
	Tree of Packages
	Simple and Full Names
	Package java.lang
	The import Statement
	Package Name Convention
	Change in Package Dividing
	Why the Star Notation is Unsuitable
	Exercise
	Review

	34 Linking of Instances
	Conditions, the Future Objects Have to Meet
	The RoadField Class
	The Ring Class
	The Design Pattern Builder
	The RingBuilder Class
	Creating of Rings
	Static Import
	The RingTest Class
	Exercise
	Review

	35 Decorator
	Recursion
	Analysis of Error Message
	Multimover Class and IMultimovable Interface
	Ambitions of Objects
	Design Pattern Decorator
	The Circular Class
	Test Completing
	Exercise
	Review

	36 Teaching Cars to Turn
	Reference Area and Relative Coordinates
	Creating of Objects Turned to Entered Direction
	Effective Re-drawing of Modified Objects
	Block
	The IDirectable Interface
	Decorator DirectableCircular
	Exercise
	Review

	37 Controlling from Keyboard
	The Controller
	Preparation of the Race
	Conditional Statement – the if Statement
	Using a Block
	The IRacer Interface
	Premature return
	Embedded Conditional Statement
	Time Measurement
	Automatic and Explicit Casting
	Finishing the Race Class
	Exercise
	Review

	38 Containers and Maps
	Containers and a Library of Collections
	Dictionaries and Maps
	Member Classes
	The Map<K,V> Interface and the HashMap<K,V> Class
	Generic Types and Type Parameters
	Interface vs. Implementation
	Initialization

	The Registration
	The Check of Transits
	The End of the Race
	The IRace Interface
	Exercise
	Review

	39 Further Programming Constructions
	Collections that Can Be Received from a Map
	Collection Library
	The for(:) Loop
	Race for Several Rings
	Increment and Decrement Operators
	Exceptions and Their Throwing
	Further Corrections in Older Classes
	Exercise
	Review

	40 The Factory Method Second Time
	Problems with Variant Rings
	The IRingFactory Interface
	More Complex Factory
	Complete Conditional Statement
	Methods with a Variable Number of Parameters
	The Classic for Loop
	Exercise
	Review

	41 The Loops
	Size of a Roadfield
	The Lazy Initialization
	Determining of Lower and Upper Limits
	Leaving the Loop from Inside of Its Body
	The Sequence of if … else if
	Side Effects of Methods
	Loops Taxonomy
	The while Loop – the Loop with a Condition at the Beginning
	The do … while Loop – the Loop with a Condition at the End

	The switch Statement
	Change of the Module for Ring
	The ParallelRace Class
	Exercise
	Review

	42 Lists and Their Ordering
	Enum Types
	Enum Type Using

	The State Diagram
	The Lists
	Modifications of the ParallelRace Class
	Sorting the List Content
	Native (Natural) Sorting
	Alternative Sorting and the Design Pattern Command
	Exercise
	Review

	43 The Array
	Declaration of an Array Variable
	Creating and Initializing an Array
	Methods with a Variable Number of Parameters
	How to Use the Array
	Sorting of the Array Content
	How to Express Numbers with Words
	Exercise
	Review

	44 The Finale
	Index

	Záložky Wordu
	L000___Vnitrek
	L000_z_KonecUvodu
	L001__c_Predehra
	L001_1c_Animace
	L001_2c_Potreby
	L001_2o1c_SpravceSouboru
	L001_2o2c_JDK
	L001_2o3c_BJ_IDE
	L001_2o4c_NB_IDE
	L001_3c_JakSBlueJ
	A101A2T_BlueJ_Prostredi
	A101A2_BlueJ_Prostredi
	L001_4c_Opakovani
	L002__c_Uvod
	L002_1c_ObjektoveOrientovanySvet
	L002_1c_1_Objekty
	L002_1c_2_Tridy
	L002_1c_3_Zpravy
	L002_1c_4_KlasickyAOOProgram
	L002_3c_PrvniProjekt
	L001_2c_2_TridyVProjektu
	L002_4c_Preklad
	L002_Xc_Opakovani
	L003__c_PosilamePrvniZpravy
	o003_1c_MN_TridyObdelnik
	L003_1c_InstanceAOdkazy
	L003_1c_VytvorNoveInstance
	L003_3c_ZpravyPosilaneInstancim
	Z3
	L003_2c_VirtualniStroj
	L003_Xc_Opakovani
	L004__c_TestovaciTrida
	L004_1c_TestovaciPripravek
	L004_2c_VytvoreniNoveTridy
	L004_3c_VytvoreniPripravku
	o004_2_MN_TestTridy
	L004_4c_VytvoreniTestu
	o004_3_PosunutyTest
	o004_4c_ZadejJmenoTestu
	L004_4c_MetodyAKonstruktory
	L004_4c_MetodyAKonstruktory
	L004_4c_1_Metody
	L004_Xc_Opakovani
	L005__c_ZpravyZadajiciHodn
	L005_1c_TypNávratHodn
	o005_1_TriangleContextMenu
	L005_2c_ZiskNavratHodn
	o005_2_TojuhelnikGetKrok
	L005_3c_PrimitivniAObjektoveTypy
	L005_4c_OdkazyNaObjekty
	R005_04_88_GarbageCollector
	o005_3_obdelnik1GetBarva
	L005_5_ZapisVolaniMetody
	L005_6c_GetSet
	L005_Xc_Opakovani
	L006__c_ZpravyZadajiciObjekt
	L006_1c_PravidlaIdentifikatoru
	o006_1_getBarvaCervena
	L006_2c_OdkazNaVracObjekt
	o006_2_zvetsiZasOdkazu
	o006_3c_DOsNazvemBarvyObdelniku
	L006_3c_JakPsatStringy
	L006_4c_SpravcePameti
	o006_4c_NavratSTestem
	o006_5c_Opravdu
	L006_Xc_Opakovani
	L007__c_ZpravySParametry
	L007_1c_VyznamParametru
	L007_2c_ParametrizKonstrukceObjektu
	o007_1_DO_parametry
	L007_2c_StrukturaDOsParametry
	o007_2_ReplaceTestFixture
	L007_3c_ObjektVersusOdkaz
	R007_Fig3Caption
	L007_4e_1_Fig3FixtureCreated
	o007_3_IOZpravaPripravekVytvoren
	o007_4_FixturePrepared
	L007_5c_Animace
	L007_Ec_Cviceni
	o007_5c_CviceniPripravek
	L007_Xc_Opakovani
	L008__c_ParamObjektTypu
	o007_1_SeznamZadanychHodnot
	L008_1c_TridaObject
	o008_2_PrekrytiMetody
	L007_4c_ParamObjektTypu
	OLE_LINK1
	OLE_LINK2
	L008_3c_1_PrimePredaniNavratHodnoty
	o008_4c_VolaniMetodyVParametru
	L008_4c_StrucnyZapisZprav
	L008_Ec_Cviceni
	L008_Xc_Opakovani
	L009__c_VyletDoNitraInstanci
	L008_3c_AtribInstATridy
	L008_4c_PraceSAtributy
	R008_Fig2InspWindow
	L008_4e_1_Fif2InspectClass
	R008_Obr2KukDoObjektu
	o009_1_UtrobyTridyBarva
	L009_1c_ZpravyZadajHodnAtrib
	L009_2c_DostupnostAtributu
	L009_3c_RozsireniPripravku
	L009_4c_SledovaniAttributu
	o009_3_triangle1_inspection
	L009_5c_AttrTridy
	o009_4c_TriangleClassAttr
	L009_Ec_Cviceni
	Z2
	L009_Xc_Opakovani
	L010__c_Rozhrani
	L010_2c_InterfaceXImplementace
	o010c1_EditorSRozhranim
	L010_3e_InterfaceAsADataType
	R010_3_TheOnlyOneConstant
	o010_1_Projekt_010a_02_Tvary
	o010c_1_ZruseniCarZavislosti
	o010c_3_PreuisporadanyProjekt
	L010_4e_3_ImplementaceRozhraniTridou
	o011_1c_ProjektSTridouMnohotvar
	L011_2c_TestovaciTridaTridy
	o011_2c_AktivujNastrojeTest
	o011_3c_VytvorTestTridu
	L011_3c_PromennyPocetParametru
	o011_4c_PromennyPocetParametru
	o011_5c_PripravekMnohotvaru
	L012_2c_PrikladyNavrhovychVzoru
	L012_2c_1_KnihovniTrida
	L012_2c_4_VyctovyTyp
	L012_2c_9_Sluzebnik
	R012_2c_9_CoJeSluzebnik
	o012_2c_Implementace3Rozhrani
	o012_2c_Implementace4Rozhrani
	L013_2c_TriDruhyDedeni
	L013_3c_SignaturaXKontrakt
	L013_1c_VytvarimeRozhrani
	o013_2c_NovaHierarchie
	L013_7c_UplnaDokumentaceProjektu
	o013_3c_DokumentaceProjektu
	L014__c_ProstrednikAPosluchac
	o014_1aa_Mediator
	o014_2a_MediatorObserver
	o014_1c_ProjektA11Spravce
	o014_2c_KonstrukceMnohotvraruM1
	L014_5c_1_Rekurze
	L010__c_PrvniKod
	L015_1c_NovaPrazdnaTrida
	L010_2c_SouboryVBJProjektech
	o015_1c_NovaPrazdnaTrida
	L010_3c_ZdrojPrazdneTridy
	o015_2c_OtevritVEditoru
	o015_3c_EditorPrazdnaTrida
	o015_4c_TridaPrelozena
	L015_4c_Konstruktor
	L011_5c_NastavPredvoleb
	o015_5c_DO_Nastaveni
	L010_Ec_Cviceni
	L010_Xc_Revision
	L011__c_PrvniKonstruktor
	L011_1c_DefiniceKonstruktoru
	p016_01_Empty
	L011_2c_JmenoKonstruktoru
	o016_1c_PrikazyZasilajiciZpravu
	L011_3c_PracujiciKonstruktor
	p016_02_Empty_NonEmptyConstructor
	L011_4c_UpravaZdrojKodu
	R016_1c_FowlerKazdyTrouba
	p016_03_Arrow
	o016_2c_Cviceni
	L011_Ec_Cviceni
	L011_Xc_Opakovani
	L017__c_Parametry
	L012__c_Parametery
	L012_1c_FormalniASkutecneParametry
	p017_01_Empty_int_int
	p017_02_Empty_int_int_Color
	L012_2c_PrejmenovaniTridy
	o017_1c_InvalidMethodDeclaration
	L013_1c_TestovaciTrida
	L017_Ec_Cviceni
	p017_03_Arrow_3constructors
	L012_Xc_Opakovani
	o017_2c_Projekt_017z
	L018__c_PrvniMetody
	L018_1c_SvetloSeUci
	L018_2c_ZavedeniAtributu
	L018_3c_HodnotaAtributu
	p018_Light_withBulb
	L018_4c_DefiniceMetod
	p018_02_Light_switchOff
	L018_6c_Kvalifikace
	L018_5c_KonfliktJmen
	p018_3c_Svetlo
	L018_Ec_Cviceni
	o018_04_Arrow_3fields_3methods
	p018_5c_2kratCyklusSemaforu
	L018_Xc_Opakovani
	p019_01_IPaintable
	o019_1c_IKresleny_SRC
	p019_02_paint_Painter
	L019_3c_1_AnotaceOverride
	L019_5c_TestovaciTrida
	p019_3c_SvetloTest
	p019_04_setUp
	p019_05_paint_Painter
	o019z_2c_Projekt_019z
	p020_1c_StandardniSvetlo
	L020_6c_1_DokumentacniZnacky
	p020_2c_VysledneSvetlo
	p020_3c_SablonaMetody
	p021_01_Light_blink
	p021_2c_SvetoSBarvou
	L021_2c_NekoprujKod
	p021_03_Light_3constructors
	L013__c_Pretezovani
	L013_2c_DalsiKonstruktory
	p022_1c_Svetlo
	p022_2c_SvetloTest
	L013_3c_PretezovaniMetod
	L013_4c_IdentifikatoryParametru
	L013_5c_IdentifkaceVolaneMetody
	L022_5c_ZakladniAritmetickeOperatory
	p022_3c_KonstrAuto
	o022_1c_AutoVMrizce
	L013_Ec_Cviceni
	L013_Xc_Opakovani
	p023_1c_pomBlikani
	p023_1c_KonstrAutoLP
	L023_3c_AtribParamLokalProm
	L023_3c_3_DelkaZivota
	L023_4e_PositionAndModuleSetting
	p023_3c_AutoPoziceRozmer
	p023_4c_pomPoziceVelikost
	p024_01_Light_getColor
	p024_2c_getPrumerIsZhasnute
	L024_6c_TestVraceneHodnoty
	o024_1c_TestNavratoveHodnoty
	o024_2c_ZhavarovanyTest
	o024_4c_Projekt_024z
	L023_1c_SadyHodnot
	OLE_LINK4
	OLE_LINK3
	L023_2c_Prepravka
	L023_4c_Konstanty
	p025_1c_Pozice
	p025_2c_getSetPozice
	p023_3c_pomProhodPozice
	p026_1c_pomProhodPoziceSKontrolou
	L015_2c_SkladaniRetezcu
	p026_2c_toString
	o026_1c_Pozice10_20
	L015_3c_ZnakKonceRadku
	o026_2c_3Pozice
	L017_1c_EscapeSekvence
	o026_3c_ViceradkovaZprava
	p026_3c_StandardníVýstup
	o026_4c_OknoTerminalu
	o026_5c_MistniNabidkaTerminalu
	p026_2c_testOdradkovani
	L027__c_TrochaLogiky
	L027_1c_ProblemySPorovnanim
	L024_5c_OperatorPretypovani
	p027_1c_equalsVýchozí
	L024_6c_OperatorAND
	p027_2c_equalsPorovnaPozice
	L027_4c_MetodaInstanceOf
	p027_3c_funkcniEquals
	L027_5c_MetodaEqualsObject
	L027_Bc_HodnotoveAOdkazoveTypy
	L026_1c_PocitaneObjekty
	L026_1c_StatickeAtributy
	L026_2c_PoradiModifikatoru
	L026_2c_PoradiModifikatoru
	L026_3c_UpravyProgramu
	p028_1c_atributySvetlo
	p028_2c_Svetlo5
	L026_4c_Inovace_toString
	p028_3c_toString
	p028_4c_Mesto
	L028_7_Ot577_NajdiOdpoved
	p029_1c_IModulovy
	o029_1c_ProjektSImodulovy
	L029_4e_ServantClass
	p029_2c_prohodSKontrolou_v2
	p029_3c_upravPomPlynuleProhod
	p028_7c_testPlynuleProhod
	p029_5c_TestUtility
	L030_1__ClassConstructor
	p030_1c_Konstrukce
	p030_2c_Volani
	L030_3c_1_PodrobnostiOInicializaciTridy
	L030_4_WhatShouldBeRemembered
	L016_1c_Dulezitost
	L016_2c_Spusteni
	o031_1c_Zarazka
	L016_3c_Okno
	o031_2c_Debugger
	L016_4c_Krokovani
	L031_5c_PosloupnostVolani
	L031_6c_ZNA
	L032__c_VytvoreniSamostatneAplikace
	o032_1c_OknoUFO
	o032_2c_VytvorSouborJAR
	L033__c_Balicky
	o032_1c_Projekt_032b
	o032_2c_ImportVsehoDoSpravce
	o033e3_ParentPackageIconInBackground
	o032_1c_StrukturaBalicku
	L033_8c_javaLang
	p031_1c_RozmisteniVBaliccich
	o032_3c_MistniNabidkaRodice
	p034_1c_TridaPoleCesty
	L034_3c_TOkruh
	p034_2c_TStavitelCest
	p034_3c_TOkruh
	L034_7e_StaticImport
	R034_8c_ZjistiNasledovnika
	p034_4c_OkruhTest
	L035_1_Recursion
	p035_1c_NekonecnaPomPresunRec
	L035_1c_AnalyzaChyboveZpravy
	p035_2c_pomPresunRek
	o035_1c_Dekorator
	p035_3_TridaOkruzni
	p035_4c_testSkupinovy
	o035_2c_testSkupinovy
	p036_1c_KonstrSipkaOld
	p036_2c_KonstrSipkaNew
	p036_3c_setSmer
	p036_4c_setModul
	L036_4c_BlokPrikazu
	p036_5c_setPozice
	p036_5c_IOtocny
	p036_6c_presunuto
	p036_8c_objedOkruh
	p037_1c_VozidloA
	p037_3c_prujezdniKontrola
	p037_3c_IZavodnik
	p037_3c_prujezdniKontrolaB
	o037_1c_ImplicKonverze
	p037_5c_Zavod
	p037_5c_TZavod
	p038_1c_Zavod_L_Polotovar
	L138_1_GenericTypes
	p038_2c_registrace
	p038_3c_pripravDalsiOkruh
	p038_3c_prujezdniKontrola
	o039_1c_KnihovnaKolekci
	p039_1c_start
	p039_2c_prujezdniKontrola
	p039_3c_Xkrementy
	o003_2c_Xkrementy
	p039_4c_aktivniNa
	p039_5c_konstrPoleCesty
	p039_6c_equals
	p040_1c_ITovarnaOkruhu
	p040_2c_vytvorOkruh
	Z1
	p040_3c_dotvorOkruh
	p040_4c_getPOblast
	p040_5c_aniMVTT_klasik
	p040_6c_aniMVTT_efekt
	o041_1c_IfThenElse
	p041_4c_getRPPozicePočátku
	p041_6e_countFiledsUsingFor
	L043_6c_CyklusWhile
	p041_7e_countFiledsUsingWhile
	p041_5c_nakresli
	p041_6e_paintUsingDoWhile
	p041_9e_setStavIfElseIf
	p041_Ae_setStavSwitch
	p042_6c_setModul
	p041_7c_testZmenaModulu
	p041_8c_Zavod_T
	p042_1c_StavStavitele
	o042_1c_StavovyDiagram
	p042_2c_getOkruh
	L042_3c_Seznamy
	p042_3c_konecZavodu
	p042_4c_vyhodnotZavod
	p042_5c_vypisDojezdy
	p042_6c_compareTo
	p042_7c_CompDleOkruhu
	p043_1c_newListIModulovy
	p043_2c_indexMaxima
	p043_3c_kvadrat
	p043_4c_Slovy
	L099_Konec
	R_TridVAPI
	R_TridVeStandKnihovne
	R_VerzeSDK
	Prj_101a_Shapes
	Prj_104z_TestClass
	Prj_107z_Parameters
	Prj_108z_Object_parameters
	Prj_109z_Object_inspection

