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Abstract. KernelF is a functional language built on top of MPS. It is
designed to be highly extensible and embeddable in order to support
its use at the core of domain-specific languages, realising an approach
we sometimes call Funclerative Programming. ”Funclerative” is of course
a mash-up of ”functional” and ”declarative” and refers to the idea of
using functional programming in the small, and declarative language
constructs for the larger-scale, often domain-specific, structures in a
program. We have used KernelF in a wide range of languages including
health and medicine, insurance contract definition, security analysis,
salary calculations, smart contracts and language-definition. In this paper,
I illustrate the evolution of KernelF over the last two years. I discuss
requirements on the language, and how those drove design decisions. I
showcase a couple of the DSLs we built on top of KernelF to explain how
MPS was used to enable the necessary language modularity. I demonstrate
how we have integrated the Z3 solver to verify some aspects of programs.
I present the architecture we have used to use KernelF-based DSLs in
safety-critical environments. I close the keynote with an outlook on how
KernelF might evolve in the future, and point out a few challenges for
which we don’t yet have good solutions.

Keywords: Domain-specific Languages, Language Modularity, Function
Programming, Language Engineering, Meta Programming

1 Introduction

1.1 Funclerative Programming

Functional programming is suitable for programming in the small [8], for compact
algorithms. It is not ideally suited for programming in the large. Reasons include
the lack of means for grouping functions into interfaces, hiding information, and
defining contracts. To compensate for this, languages combine the functional
paradigm with other paradigms, such as object-oriented programming in Scala [22].
Higher-level frameworks such as MapReduce [7] also provide more coarse-grained
control over program execution that goes beyond the typical building blocks of
functional languages: function calls, higher order functions and monads.

KernelF combines functional programming in the small, and declarative
structures and behaviours in the large, in an approach we sometimes call “fun-
clerative programming”. Instead of using one particular paradigm for providing
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coarse-grained behaviors and structure to programs, we extend a functional core
language with custom, domain-specific abstractions.

1.2 Domain-Specific Languages

The need for custom abstractions on top of a functional core arises from domain-
specific languages (DSLs). In our industry work, we1 develop many di↵erent
DSLs in a wide variety of di↵erent domains (we show a few examples in Section
5). All except the very trivial ones require a ”calculation core”: arithmetics, com-
parison, logical expressions, as well as functions, records and enums. Functional
programming is perfectly suited for this task, because the lack of side-e↵ects
makes programs easy to analyse, and hence, safe to integrate into a DSL.

However, for most real-world DSL, functional abstractions alone are not suf-
ficient. Instead, higher-level abstractions for the coarse-grained, often stateful
behaviors are required, such as state machines, data flow or imperative pro-
gramming. Finally, these DSLs operate on domain-specific data structures such
as treatment logs in healthcare, insurance products or contract definitions in
logistics. Constructing these from functional abstractions (or classes/objects)
alone is not practical, since the result would be too limiting in terms of notation,
static analyzability and IDE support. Thus, a three layer architecture for DSLs
is typical in our work:

– Layer 1: Functional abstractions
– Layer 2: Higher-level behaviors, based on established paradigms
– Layer 3: Domain-specific data structures

1.3 A Reusable Functional Kernel Language

The domain specificity resides mostly in layers two and three, so there is potential
for reuse of the functional abstractions of layer one. KernelF, the language
discussed in this paper, is a functional language optimized for reuse as layer one.
To make this feasible, it must be extensible, restrictable and configurable.

Extension Extension refers to adding additional language constructs to the
language. For example, if KernelF is used to express guard conditions in the
transitions of state machines, it must be possible to add new expressions that refer
to the parameters of the events that trigger the transition. This must be possible
without invasively modifying the definition of KernelF itself, and the extension
must comprise structure, notation, scoping and type systems. To further enhance
the potential for reuse, independently developed extensions should be combinable,
again without invasive modification of the definition of any of the used languages
(a feature called extension composition in [11]).

Restriction This refers to the ability to not expose certain language concepts
to the end user; for example, a DSL might not need support for enums or option

1 ’We’ referes to the team of languages engineers at itemis Stuttgart.
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types, so it must be possible to remove all traces of those concepts from KernelF
when it is used in a particular DSL. In particular, the associated keywords should
not be recognised and the IDE should not propose all related concepts in the
code completion menu.

Configurability In KernelF, this refers specifically to the ability to replace
the primitive types. Often, a DSL will come with its own notion of numbers or
strings, and those must then be used by KernelF. This is not exactly the same
problem as restriction or extension because the type system will internally rely
on those primitive types. Consider a size operation; the type system must type
this operation to whatever (positive) integral type used by the surrounding DSL,
so the primitive types used by built-in operators must be configurable.

1.4 Design Guidelines for the use in DSLs

KernelF is intended to be used as the calculation core of DSLs. Many of the users
of these DSLs may not be programmers – most will certainly not be experts in
functional programming. To make the language suitable for this purpose, it should
adhere to the following guidelines, in addition to being extensible, restrictable
and configurable, as discussed above.

Simplicity Users should not be surprised or overwhelmed. Thus, the language
should use familiar or easy to learn abstractions and notations wherever possible.
Advanced concepts, such as function composition or monads are not suitable.
More generally, the ability to allow users to define their own (structural or
behavioral) abstractions in their programs can be limited (in the service of the
goal of simplicity), because those can be provided in domain-specific language
extensions. A subrequirement of simplicity is readability; it is particularly
relevant because many of the potential users who write KernelF code will start
out by reading KernelF code when reviewing code written by other users. Scaring
prospective users away during the reading phase is not helpful.

Robustness Since the users of the DSLs that embeds KernelF may not be
experienced programmers the language should not have features that make
it easy to make dangerous mistakes (such as pointer arithmetics, unbounded
strings or overflow for numbers). To the contrary, the language should make
”doing the right thing” easy. For example, handling errors should be integrated
into the type system as opposed to C’s approach of making checking of errno
completely optional. It should also enable advanced analyses, for example, to
detect unhandled cases in switch-style constructs.

IDE Integration DSLs must come with good an IDE, otherwise they are
not accepted by users. This means that the language should be designed so
that it can be supported well by IDEs. Such support includes code completion,
type checking, refactoring and debugging. IDE support is a way of achieving
writability, i.e., the ease with which code can be written. Writability is often
at odds with readability, which is why we optimize the syntax, once written, for
readability, and use IDE support to simplify writing code. In addition, programs
should be executable with a short turnaround, to support end users to “play”
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with the programs. Seeing what a program does is often easier for inexperienced
users than imagining a program’s behavior based on the program code.

Portability The various languages into which KernelF is embedded use di↵erent
means of execution such as code generation to Java and C, direct execution by
interpreting the AST as well as transformation into intermediate languages for
execution in cloud or mobile applications. KernelF should not contain features
that prevent execution on any of these platforms. Also, while not a core feature
of the language, a su�cient set of language tests should be provided to align the
semantics of the various execution platforms.

1.5 Language Engineering and MPS

KernelF, and all the DSLs discussed in this paper, are built with Jetbrains
MPS.2 MPS is a language workbench [12], a tool for developing ecosystems
of languages. MPS has been used for many interesting and significantly-sized
languages over the last years, the biggest one probably being mbeddr [29,32], a
set of C extensions optimized for embedded programming. MPS supports a wide
range of modular language composition, in particular, extension and restriction
are supported directly [26]. This is possible because of two fundamental properties
of MPS. First, it relies on a projectional editor. Because projectional editors do
not use parsing, no syntactic ambiguities arise when independently developed
languages are combined. Second, MPS has been designed to not just develop one
language, but ecosystems of collaborating languages. The formalisms for defining
structure, type systems and scopes have all been designed with modularity and
composition in mind; some details on language development with MPS are shown
in Appendix D, and the general MPS language design philosophy is discussed
in Appendix E. We analyze MPS’ suitability for modular language composition
based on experience with mbeddr in [30] (the paper also evaluates MPS more
generally). MPS’ projectional editor also allows the use of a wide range of di↵erent
notations such as tables, diagrams, math symbols as well as structured (“code”)
and unstructured (“prose”) text [31], a feature we exploit extensively in the
construction of DSLs. Projectional editors have historically had a bad reputation
regarding usability. However, recent advances as implemented natively in MPS
and in an extension called grammar cells [33] lead to good editor productivity
and user acceptance [3].

2 KernelF Overview

2.1 Language

In this section I point out the most important language features of KernelF. For
all of them, Appendix A provides more details and code examples; for many of
these features we also show examples part of the case studies in Section 5.

2
https://www.jetbrains.com/mps/
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Purity and E↵ects At its core, KernelF is a pure language. All expressions
are e↵ect-free. There are no variables, only named (local and global) values. All
values, including collections are immutable. Of course, no sensible program can
be written this way; but it is expected that the hosting DSL has domain-specific
means of dealing with state. The core language thus supports e↵ect tracking;
each expression can describe whether it performs a read or modify e↵ect.

Types, Literals and Operators KernelF comes with Boolean and string
types which work as one would expect. Numeric types comprise int and real,
even though they are constrained out of the language in most of the DSLs. Instead,
the number[min|max]{decimals} type is used, where the range and precision
are explicitly specified. The type system performs range calculations for added
type safety, and a change of the number of decimals has to be performed explicitly.
The usual operators are defined on those types. No null values are supported,
instead, the language supports option types (written as opt<T> for any type T).
Type checking is static, and most types can be inferred (exceptions are function
arguments, record members and return types for recursive functions). Finally,
KernelF supports type definitions written as type <name>: <OriginalType>,
useful for numbers with ranges/precisions, collections, and constraints (see below).

Loops and Conditionals KernelF has no loops (except higher-order functions
on collections). The basic if <cond> then <expr-1> else <expr-2> distin-
guishes between two cases, whereas alt | <cond-1> => <expr-1> ... <cond-n>
=> <expr-n> |, laid out vertically, evaluates to expr-i if cond-i holds. if is
also used to test options: if isSome(v) then v else w returns a T if v is of
type opt<T> and v actually contains a value; it returns w if v contains a none.
Various additional conditionals, in particular, decision tables and decision trees,
are supported as part of a language extension.

Functions and Blocks Functions use the usual syntax. Argument types have
to be specified, the return type can be inferred except for recursive functions.
The block expression, which is used instead of let, is written as

{<expr-1> ... <expr-n> <expr-ret>}, laid out vertically. The block

evaluates to <expr-ret>, and all other expressions must either have an e↵ect
or must be local values that are referenced downstream, written as val v =
<expr>. Function types are written as (T-1, T-2, ... T-n => T). Values of
function types can executed using the () operator. Currying is supported via
f.bind(v) if f is a function value. Lambdas are written as |a-1: T-1, ... a-n:
T-n: <expr>| or, for lambdas with one argument which is then named it, as |...
it ...|. References to functions (which can be used as values for function types)
are written as :f for any function f. KernelF also supports extension functions
where the first argument can be written as the left side of a dot expression.

Error Handling Language support for error handling relies on attempt types.
Typically used with functions, if the function returns a T plus one of several
errors, then the return type is attempt<T|E-1,... E-n> where the Es are error
literals. Error values can be returned using error(E); clients can react to errors
using
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try <e> => <s> error <E-1> => <e-1> ... error <E-n> => <e-n>

, where <expr> has an attempt type, and the overall try evaluates to
<success> if <expr> does not represent an error, or one of the <expr-i> if
expr evaluates to an error literal E-i.

Collections Lists, sets and maps are supported, together with the usual higher-
order functions. Collections specify their element type, plus an optional size
constraint, e.g. list<T>[min|max]. Literals use the same keyword; for example,
set(1, 2, 3) or map("Joe" => 12, "Jim" => 100).

User-defined Types KernelF supports enums, both plain and with associated
values. Tuples are supported as well, their types are written as [<T-1>, ...
<T-n>] and their values are written as [<expr-1>, ... <expr-n>]. Member
are accessed positionally, using array-access notation (tuplevalue[p]). Records
are declared using a Pascal-like notation, record values are constructed via
#T(<expr-1>, ..., <expr-n>) or a semi-graphical build<T> expression. Mem-
bers are accessed using dot notation.

Constraints KernelF supports constraints that are checked at runtime. They
appear in several places, usually after the where keyword. type definitions can
constrain the values; records can constrain their members, function can define
pre- and postconditions, which typically constrain parameters or return values.

Boxes and Transactions KernelF makes the notion of mutable state explicit
through boxes. A value v of type box<T> represents an immutable reference to a
mutable “memory location”, of type T (similar to refs in Clojure [16]). The box
contents can change over time, but each value in the box is immutable. v.val
accesses the value inside the box, v.update(<expr>) sets the contents of the box
to expr. Inside the update, the it expression represents the current value; this
way, evolutions of the box contents can be written in a compact form, as in this
example for a box lb of type box<list<string>>, where an additional value is ap-
pended to the contents of the box: lb.update(it.plus("additionalEntry")).
To make working with boxes safe, .val has a read e↵ect, and update has a
modify e↵ect. Modifications to multiple boxes can be grouped into transactions.
An failed update to any box, for example, because of a violation of a type
constraint, rolls back the updates on all boxes.

State Machines Once we had boxes to store evolving state, it was obvious
that we need first-class support for expressing behavior that depends on state, i.e.,
state machines. KernelF state machines declare states, one of them initial, and the
states can also be nested. Machines also declare events, which can optionally have
arguments. State machines are passive, i.e., they have to be actively triggered
by passing an event (and optionally, arguments) into an instance. A state owns
transitions which, reacting to an event, bring the machine into a new target state.
There are also automatic transitions that can be triggered by timeouts or other
implicitly occurring events. State machines support entry and exit actions on
states as well as transition actions.
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2.2 Definition of the Semantics

The semantics of KernelF are given by the interpreter that ships with the language,
together with a su�ciently large amount of test cases. No other formal definition
of the language semantics is provided. To align the semantics of generators with
the reference semantics given by the interpreter, one can simply generate the test
cases to the target platform and then run them there – if all pass, the (relevant,
functional) semantics are identical.

2.3 Tooling

Similar to the previous subsection, this one provides an overview over the tooling
provided for KernelF; details are in Appendix B. Tooling is crucial for the
acceptance of DSLs with their users, and all tooling discussed here for the core
of KernelF is also available for the DSLs built on top of KernelF.

An IDE, implicitly provided by MPS, supports the usual editor features
(syntax coloring, formatting, error markup, code completion, go to definition,
find usages, tooltips) as well as version control integration including di↵/merge
support for arbitrary syntax. An interpreter is integrated directly into the IDE,
supporting live execution of (suitably structured) programs. The interpreter is
implemented in Java. A code generator to Java is available because most of the
DSLs we build are ultimately mapped to Java code. To make semantic alignment
with the interpreter easier, the generated code relies on the same persistent col-
lections library as the interpreter, and also uses Java’s BigInteger/BigDecimal
for numbers. A read-eval-print-loop (REPL) is available for interactive use
of the language. A debugger is available, it relies on rendering the execution
trace as a tree, and overlaid directly over the code. One language module of
KernelF supports writing tests, and, relying on the interpreter, they can be
executed directly in the IDE, leading to the usual red/green visual feedback,
directly in the code. Taken together, the REPL, tests, interpreter and debugger
lead to a very “live” programming experience with quick feedback. To ensure
test quality, KernelF supports coverage measurement, both structural (are all
language features used, and how) and relative to the interpreter (are all parts of
the interpreter executed). KernelF’s test infrastructure also supports test case
generation for language constructs that take arguments lists (functions, records)
as well as mutation testing with interactive visualisation of the mutated code.
Finally, we are in the process of integrating KernelF with the Z3 solver to
provide advanced error checking.

3 Design Decision

Based on the goals for KernelF outlined in Section 1, we have made the design
decisions outlined in this section.
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3.1 General Design Decisions

Static Types KernelF is statically typed. This means that every type is known
by the IDE (as well as the interpreter or generator). If a user is interested in the
type of an expression, they can always press Ctrl-Shift-T to see that type. This
helps with the design goals of [ simplicity ] and [ idesupport ], but also with
[ robustness ], because more aspects of the semantics can be checked statically
in the IDE. For example, the number ranges discussed below are an example of
such advanced checks.

Numeric Types Instead of int and real types known from programming
languages, KernelF uses the number[min|max]{prec} type. This is motivated
primarily be [ robustness ] because it supports more end-user relevant checks.
The type system performs simple range computations, such as those listed below.

– Number literals have a type that has a singleton range based on their value and
number of decimal digits (e.g., 42.2 has the type number[42.2|42.2]{1}.

– Supertypes of numeric types merge the ranges (for example, the supertype of
number[5|5], number[10|20] and number[30|50] is number[5|50]. This is
an over approximation (i.e., simplification in the type system implementation),
because the type system could know that, for example, the value 25 is not
allowed. However, to implement this, a number type would have to have
several ranges; we decided that this would be too complicated (both for users
and the language implementor) and induce performance penalties in type
checking; so we decided to live with the over approximation.

– For arithmetic operations (currently +, -, * and /), the type system com-
putes the correct result ranges; for example, if variables of type number[0|5]
and number[3|8] are added, the resulting type is number[3|13].

– A division always results in an infinite precision value; if a di↵erent precision
is required, the prevision<>() operator has to be used.

We are making the simplifying tradeo↵s consciously, because, in the extreme,
we would have to implement a type system that supports dependent types (or
abstract interpretation of code); this is clearly out of scope.

Type Inference To avoid the need to explicitly specify types (especially the
attempt types, collections and number types can get long), KernelF supports
type inference; this supports both [ readability ]and [ writeability ]. The
types of all constructs are inferred, with the following exceptions:

– Arguments and record members always require explicit types because they
are declarations without associated expressions from which to infer the type.

– Recursive functions require a type because our type system cannot figure out
the type of the body if this body contains a call to the same function.

If a required type is missing, an error message is annotated. Users can also use
an intention on nodes that have optional type declarations (functions, constants)
and have the IDE annotate the inferred type.
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No Generics KernelF does not support generics in user-defined functions,
another consequence of our goal of [ simplicity ]. However, the built-in collec-
tions are generic (users explicitly specify the element type) and operations like
map, select, or tail retain the type information thanks to the type system
implementation in MPS. Domain-specific extensions can also define their own
“generic” language extensions, similar to collections.

Option and Attempt Types To support our goal of [ robustness ], the
type system supports option types and attempt types. Options force client code to
deal with the possibility of null (or none) values in programs. Similarly, attempt
types deal systematically with errors and force the client code to handle them (or
return the attempt type to its own caller). The design of the syntax for testing
for and unpacking options was subject of a lot of fine-grained design discussion.
See Appendix C for details.

No Exceptions KernelF does not support exceptions. The reason is that these
are hard or expensive to implement on some of the expected target platforms (such
as generation to C); [ portability ] would be compromised. Instead, attempt
types and the constraints can be used for error handling.

No Reflection or Meta Programming By deciding to rely on the language
engineering capabilities of MPS, the language does not require an elaborate
reflective type system (like Scala) or meta programming support to enable
extension and embedding.

No Function Composition and Monads We decided not to implement
full support for monads; for our current use cases, this is acceptable and keeps
the implementation of the type system simpler, which supports our goal of
extensibility. Note that, because many operations and operators for T also work
for opt<T>, users can defer dealing with options and errors until it makes sense
to them; no nested if isSome(...) ... are required.

E↵ect Tracking and Types E↵ect tracking is not implemented with the type
system: an e↵ect is not declared as part of the type signature of a function (or other
construct). There are two reasons for this decision. First, for various technical
reasons of the way the MPS type system engine works, this would be ine�cient.
Second, language extenders and embedders would have to deal with the resulting
complexity when integrating with KernelF’s type system. Instead, the analysis
is based on the AST structure and relies on implementing the IMayHaveEffect
interface and overriding its effectDescriptor method correctly. While this is
simpler for the language implementor or extender, a drawback of this approach
is an over approximation in one particular case: if you declare a function to take
a function type that has an e↵ect, then, even if a call passes a function without
an e↵ect, the call will still be marked as having an e↵ect:

fun f*(g: ( =>* string)) = g.exec()* // declaration
f*(:noEffect) // call

Not Designed for Building Abstractions KernelF is not optimized for
building custom structural or behavioral abstractions. For example, it has no
classes and no module system. The reason for this apparent deficiency lies in
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the layered approach to DSL design shown at the end of Section 1.2: the DSLs
in which we see KernelF used ship their own domain-specific structural and
behavioral abstractions. More generally, if sophisticated abstractions are needed
(for example, for concurrency), these can be added as first-class concepts through
language engineering in MPS.

There are also no algebraic data types. Option types and attempt types
can be seen as a special case of algebraic data types, but we decided against
implementing the general case for two reasons. The first reason is the general
non-need for building abstractions. And second, by making attempt and option
types first class, we can support them with special syntax and type checks (e.g.,
the try expression for attempt types) or by making an existing concept aware of
them (the if statement wrt. option types).

Keyword-rich In contrast to the tradition of functional languages, KernelF
is keyword-rich; it has relatively many first-class language constructs. There
are several reasons for this decisions, the main reason being simplified analyz-
ability: if a language contains first-class abstractions for semantically relevant
concepts, analyses are easier to build. These, in turn, enable better IDE support
(helping with [ simplicity ] and making the language easier to explore for the
DSL users) and also make it easier to build generators for di↵erent platforms
([ portability ]) Finally, in contrast to languages that do not rely on a language
workbench, the use of first-class concepts does not mean that the language is
sealed: new first-class concepts can be added through language extension easily.

3.2 Extension and Embedding

Here is a quick overview of the typical approaches used for extension of KernelF.
We illustrate all of them in our case studies in Section 5.

Abstract Concepts A few concepts act as implicit extension points. They
are defined as abstract concepts or interfaces in KernelF, to enable extending
languages to extend these concepts. They include Expression itself, IDotTarget
(the right side of a dot expression), IFunctionLike (for function-like callable
entities with arguments), IContracted (for things with constraints) and Type
(as the super concept of all types used in KernelF). IToplevelExprContent is
the interface implemented by all declarations (records, functions, typedefs).

Syntactic Freedom A core ingredient to extension is MPS’ flexibility regarding
the concrete syntax itself: tables, trees, math or diagrams are an important enabler
for making KernelF rich in terms of the user experience.

KernelF is Modular The language itself is modular; it consists of several MPS
languages that can be (re-)used separately, as long as the dependencies shown in
Figure 1 are respected. Importantly, it is possible to use only the basic expressions
(base), or expressions with functional abstractions (lambda). Nothing depends
on the simpleTypes, so these can be replaced by a di↵erent set of primitive types
(discussed below). We briefly discuss the dependencies (other than those to base)
between the languages and explain why they exist and/or why they do not hurt:
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Fig. 1. Dependencies between the language modules in KernelF.

– A: required because of higher-order functions (where, map) on collections
– B: path navigation usually also has 1:n paths, which requires collections
– C: repl is a utility typically used when developing larger systems, which

usually also use toplevel expressions; so the dependency does not hurt.
– D: tests are themselves top level elements; also, a dependency on toplevel

does not hurt for a test model.
– E: functions in toplevel require generic function-like support from lambda
– F: the transactions in mutable require the blocks from lambda.

Removing Concepts In many cases, embedding a language into a host
language requires the removal of some of the concepts from the language. One
way of achieving this is to use only those language modules that are needed;
see previous paragraph. If a finer granularity is needed the host language can
use constraints to prevent the use of particular concepts in specific contexts.
A concept whose use is constraint this way cannot be entered by the user – it
behaves exactly as if it were actually removed from the language.

Exchangeable Primitive Types Many DSLs come with their own primitive
types, so it is crucial that it is possible to not use kernelF.primitiveTypes
when KernelF is embedded into a particular DSL. Preventing the user from
entering a particular type into the program can be achieved with the approach
described in the previous paragraph. However, the type system rules in the
kernelF.base language rely on primitive types (some built-in expressions must
be typed to Boolean or integer). This means that the types constructed in those
rules types must also be exchangeable. To make this possible, KernelF internally
uses a factory to construct primitive types. Using an extension point, the host
language can contribute a di↵erent primitive type factory, thereby completely
replacing the primitive types in KernelF.

Structure vs. Types The types and the underlying typing rules can be reused
independent from the language concepts. For example, if a language extension
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defines a its own data structures (e.g., a relational data model), the collection
types from KernelF can be used to represent the type of a 1:n relation.

Scoping Scopes are used to resolve references. Every DSL (potentially) has
its own way of looking up constants, functions, records, typedefs or its own
domain-specific declarations. To make the lookup strategy configurable, KernelF
provides an interface IVisibleElementProvider. Host language root concepts
can implement this interface and hence control the visibility of declarations.

Overriding Syntax Imagine embedding KernelF into a language that uses
German keywords: the keywords of KernelF must now be adapted. MPS’ support
for multiple editors for the same concepts makes this possible.

4 Evolution

Number Types Initially, KernelF had been designed with the usual types for
numbers: int and float. However, even in our very first customer projects it
turned out that those numeric types are really too much focussed on the need
of programmers (or even processors), and that almost no business domain finds
those types useful. Thus we quickly implemented the number types as described
earlier. Since this happened during the first real-world use, this evolution did not
involve any migration of existing, real-world models of customers, making the
evolution process very simple.

Transparent Options and Attempts Initially, option types and attempt
types were more restrictive than what has been described in this paper. For
example, if a value of option<T> is expected, users had to return some(t) instead
of just t. Similarly for attempt types: users had to return a success(t). Options
and attempts also were not transparent for operators. For example, the following
code was illegal, users first had to unpack the options to get at the actual values,
which lead to hard to read nested if expressions.

val something : opt<number> = 10
val noText : opt<string> = none
something + 10 ==> 20 <option[number[-inf|inf]{0}]>
noText.length ==> none <option[number[0|inf]{0}]>

The reasons for the initial decision to do it in the more strict way were twofold.
One, we thought that the more explicit syntax would make it clearer for users what
was going on (less magic). Instead it turned out it was perceived as unintuitive
and annoying. The second reason was that the original explicit version was easier
to implement in terms of the type system and the interpreter, so we decided to
go with the simpler option.

The migration to the current version happened after significant end-user code
had been written, and so we implemented an automatic migration where possible:
all some(t) and success(t)were replaced by just t by migration script that was
automatically executed once users opened the an existing model once the new
language version was installed. The unnecessary unpackings were flagged with
a warning that explained the now possible simpler version. We expected users
to make the change manually because we were not able to reliably detect and
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transform all cases, and because automated non-trivial changes to users’ code is
often not desired by users.

Enums with Data Originally, enums were available only in the traditional
form, i.e., without associated values. However, it turned out that one major use
case for enums was to use them almost like a database table, where the structured
value of one enum literal would refer to another enum literal (through using
tuples or records as their value type):

enum T<TData> {
t1 -> #TData(100, true, u1)
t2 -> #TData(200, false, u2)
t3 -> #TData(300, true, u2)

}

enum U<number> {
u1 -> 42
u2 -> 33

}

Records According to our own design goal to keep KernelF small and simple,
and in particular, the assumption that the host language would supply all (non-
primitive) data structures, we originally did not have records. However, it turned
out that this was a bad idea: records are useful as temporary data structures,
even if the hosting DSL defines the notion of a component, class or insurance
contract. Records are also useful for testing many other language constructs.
However we did not add advanced features to records, such as inheritance; we
reserve such features for host language domain-specific data types.

The internal implementation for records is based on interfaces. This way, it
is very easy for extension developers to create their own, record-like structures
that, for example, use custom syntax or support features such as inheritance.
This extension hook has been used in several KernelF-based DSLs by now.

Range Qualifiers A very common situation is to work with ranges of numbers.
With the original scope of KernelF, for example, one could use an alt expression
to compute a value r based on slices of another value t:

val r = alt | t < 10 => A |
| t < 10 && t < 20 => B | // or t.range[10..20]
| t > 20 => C |

However, as our users told us, this is perceived as unintuitive. The situation gets
worse once uses range checks as part of decision tables, where many more such
conditions have to be used. Our solution to this approach was to create explicit
range qualifiers, so one could write the following code:

val r = split t | < 10 => A |
| 10..20 => B |
| > 20 => C |

These are not really expressions, because, for example < 10 does not directly
specify on which value the check has to be performed; that argument is implicit
from the context. This is why these range qualifiers can only be used under
expressions that have been built specifically for use with range qualifiers. The
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split expression is an example. We decided to make this part of the core KernelF
language instead of an extension because these constructs are used regularly.

Enhanced E↵ects Tracking Originally, there was only one effect flag: an
expression either has an e↵ect or it does not. However, when extending KernelF
with mutable data, it became clear that we must distinguish between read and
modify e↵ects because, for example, a function’s precondition or a condition in
an if is allowed to contain expression that have read e↵ects, but it is an error for
them to have write e↵ects. Interpreting “has e↵ect” as “has modify e↵ect” also
does not work, because, even for expressions with read e↵ects, caching is invalid.

So far we have decided not to distinguish further between di↵erent kinds of
e↵ects (IO, for example), because this distinction is irrelevant for our main use
of e↵ect tracking, namely caching in the interpreter.

Mutable State The initial plan for KernelF was to build a purely functional
language and leave all state handling to extensions. While this is still funda-
mentally the case, it turned out that a general framework for dealing with state
(beyond the declaration of e↵ect discussed in the previous paragraph) is useful.
In particular, boxes enable the use of all functional/immutable data structures in
a mutable way, and transactions handle the coordinated modification of multiple
box-style values. The functionality is implemented as a framework (with interfaces
such as IBoxValue or ITransactionalValue), and even if DSLs define their own
abstractions and syntax for dealing with state, the use of those interfaces joins it
together in a common semantic framework. This is why the kernelf.mutable
language extension is now part of KernelF.

5 Case Studies

In this section I will present languages we built that extend and/or embed
KernelF. Basically, they are all used in real-world customer projects, even though
I took some liberty in assigning features to languages to make the discussion here
more compact. We will discuss three of them in detail in the next subsections.

Utilities A reusable language extension that supports decision tables of various
shapes (actually rendered as tables), decision trees (actually rendered as trees),
math notation (sum symbols, fraction bars, roots). Examples are in Figure 2. All
of these are Expressions and can (and are) used in many di↵erent languages.
The language also supports range specifiers (> 3 4..8) as well as type tags (useful
to, for example, track tainted data or required confidentiality levels, as in fun
publish(d: Data<!secret>, receiver: Address)).
Solver Language Many language concepts benefit from various checks with
a solver. For example, the decision trees and tables mentioned above can be
checked for completeness and overlap-freedom. To simplify the integration of the
solver with (domain-specific) language constructs, we have built an intermediate
language that abstracts over the solver API. It provides was of defining constrained
variables, as well as typical tasks for the solver, such as checking completeness,
consistency, equality, progressive refinement or subsetting of expressions. The
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Fig. 2. utils extension: decision trees, multi-valued decision tables and math symbols.

intermediate language itself makes use of KernelF to represent the expressions,
but uses di↵erent primitive types.

Healthcare Voluntis’ mobile apps help patients with therapies and treatments.
The apps let users log data and they recommend actions such as taking a
medication of a particular dose, behaving in particular ways or calling their
medical team. The algorithms in these apps are “programmed” by doctors and
healthcare professionals (HCP) using a KernelF-based DSL. The language reuses
decision tables and trees and supports component-based behavioral modules,
in particular, state machines. A second language supports expressing test and
simulation scenarios. We discuss this language in detail in Section 5.3.

Salary/Tax Calculation The purpose of this language is the specification
of algorithms for salary and tax calculations based on German law. We have
build extensions for ER-style data modeling as well as for calculation rules
that re-compute the data in a reactive way. The calculation rules and other
declarations can be polymorphic regarding their validity periods (the tax must
be calculated with rule A between until 2017, and then using rule B from 2018
onwards). Finally, the language support temporal arithmetics, with operators
overloaded to work with data whose value changes over time. Details about this
language are presented in Section 5.1.

Smart Contracts We have developed a set of language extensions for e�ciently
and reliably defining smart contracts that emphasize multi-party collaborative
processes. The language extensions comprise state machines (which are not
specific to smart contracts), declarative abstractions for multi-party decisions,
agreements and auctions, as well as ways of declaratively preventing several game-
theoretical attack scenarios. This language also relies on boxes and transactions
to manage a contract’s state. Section 5.2 provides details.

Public Benefits This system uses form-style syntax with embedded KernelF
expressions to let legal experts formalize German public benefits law (unem-
ployment payments, social welfare, old-age care support). In addition to the
forms, the system has domain-specific expressions for representing idioms in
public benefits payments. Finally, systematically representing the variability in
law between Germany’s 16 states is another challenge for which this language
provides custom-built abstractions and syntax.

Insurances Insurance mathematicians use many conventions when writing
down there heavily numerical, recursive functions. For example, they distinguish
between iterator variables and parameters, where parameters remain constant
in (recursive) calls to functions that declare the same parameters (see Figure 3).
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Fig. 3. Definition of numerical, iterative insurance math formulas. Notice the calls
to l and D that pass the parameters implicitly. The type of q as defined in the data
dictionary (not shown) is a lookup table, which is why the lookup method is available.

Sameness is established by relating them to a common data dictionary definition,
which is why the parameters do not declare types when they are used in functions;
those types are in the data dictionary. The language also relies heavily on various
forms of lookup tables.

Cloud-based App Development Our customer uses a proprietary object-
oriented programming language to develop and customize cloud-based applica-
tions. The language provides first-class support for their particular style of UIs
and persistence layer. KernelF is used as the functional core, the object-oriented
abstractions and a module system is built around it. Execution is based on
their own, existing cloud-based interpreter infrastructure, so KernelF (and their
embedding language) is transformed to their interpreter’s byte code format.

Systems Engineering Several customers use MPS-based DSLs for systems en-
gineering, focusing on di↵erent aspects (such as structural modeling, performance
prediction, and security analysis). All reuse a common, hierarchical component
modeling language and a feature modeling language, both rendered in their natu-
ral graphical notations. KernelF expressions are embedded in various places, to
define define type constraints on interfaces, to compute aggregate attribute values,
to propagate configuration values and to navigate over component structures.

Meta Languages As part of the Convecton3 project, a new browser-based
language workbench, we have developed a set of new meta languages which all
rely on KernelF regarding their functional core. The interesting challenges here
is the delineation between expressing behaviors functionally and domain-specific
declarative abstractions.4 The former are straight forward to build (and debug),
but the latter have advantages in terms of forward execution (for example, to
automatically derive quick fixes for errors). The code below illustrates a scope
definition that determines the valid targets for a reference. Note how it separates
the language feature (from) and path from the filter that selects targets; the
former two can be reused for the create parts.

scope FunCall::function -> pick from Module::declarations
path (node, prnt) = node.container<Module>.imported()

filter (node, prnt, candidate) = candidate.isPublic()
create (node, prnt, futureParent, prefix) = mkLabel(prefix)

3
http://convecton.io

4
https://languageengineering.io/thoughts-on-declarativeness-fc4cfd4f1832
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Fig. 4. Overview over the languages created in this system and their dependencies. The
reasons for the dependencies are as follows: A: mixed arithmetics between dates and
numbers; B: temporal slices use date values; C: temporal values support higher-order
operations that contain lambdas; D: both contain top level declarations; E: treats the
BlockExpression specially; F: requires ILValue for data field assignments; G: special
typing rules for dealing with temporal values in calculation rules. Note that all of them
depend on kernelf.base; the dependency has been elided to declutter the diagram.

at (node, prnt) = before(node.ancestor<Declaration>)

5.1 Salary/Tax Calculation

For this project, we have created several languages, as shown in Figure 4. date is
a language or representing dates and some of their arithmetics. currency contains
types, literals and arithmetics for working with EUR currency. data provides
entities and their relationships. The core of the system is in the temporal and
calculation extensions. temporal contains temporal data types, literals and
arithmetics, and calculation contains to-be-computed data structures as well
as the rules to calculate them. In particular, the language supports the evolution
of calculation rules over time, a core feature for representing the changing tax
law. We discuss each of these languages in the remainder of this section.
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Date Types The system has to deal a lot with dates: people get married at
particular dates, their salary changes at particular points in time and a salary
calculation is valid for a particular month. So we need data types for dates, plus
arithmetic operations for adding time periods to dates or finding the number
of days between two dates. In the date extension we introduced a date type,
as well as date literals, written as /yyyy mm dd/. They can be used like any
other primitive type in KernelF, and the literals are expressions whose type is
DateType, the concept behind date. The following is then valid:

fun printDate(d: date) {...}
val today = /2018 01 23/ // date type inferred
{ printDate(today) }

The reason for the unusual notation for date literals is to retain [ writeability ]
despite a particular drawback of the projectional editor: eager binding. If we
were to use yyyy/mm/dd then, when you enter the slash behind the year, MPS
interprets this as a division binary operator. Since there is no context by which
to distinguish these two cases, the user would have to disambiguate manually,
which is tedious. We could use the German notation: dd.mm.yyyy. Even though
dd.mm would be initially interpreted as a number with a decimal point, entering
the second dot could be used to trigger a further transformation to a date literal.
However, using the /yyyy mm dd/ notation is just the simpler solution, despite
its slightly worse [ readability ] and domain alignment.

We have overloaded a few operators to work with date types, in particular +
and -. The former can be used to add days (the base unit of time in this system),
and the latter can be used to compute the number of days between two dates,
i.e., to subtract two dates. The following is valid:

val nextWeek: date = today + 7
val lastYear: date = today - 365 // ignoring leap years for now :-)
val howLongIsAYear: number = lastYear - today

To make this valid KernelF, no structural changes are required, since the operators
already exist. However, the type system and the interpreter have to be adapted.
Both of these, however, can be done modularly, in the date language. For the
type system, we add a new overloaded operations rules, an MPS concept that
supports polymorphic typing, typically used with operators:

overloaded operations for PlusExpression
left argument :==: <date>
right argument :<=: <int>
result type { <date> }

overloaded operations for MinusExpression overloaded operations for MinusExpression
left argument :==: <date> left argument :==: <date>
right argument :<=: <int> right argument :==: <date>
result type { <date> } result type { <number> }

MPS executes overloaded operations by searching for all of those contributed by
the set of languages used in a particular model, and then executing the first one
that matches; since core KernelF has no rules that involve date types, the ones
defined by the extension language apply.
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The interpreter extension works in a similar way: we define a new inter-
preter that lives in the date extension that contains the two evaluators for
PlusExpression and MinusExpression. Both first perform a check of the types
of the arguments, and if they don’t fit, return tryAnotherInterpreter, which
triggers the the interpreter framework to continue its search for a matching
evaluator. Otherwise we use the JDK’s date API for the respective arithmetics.

Currency Types Another primitive type we have introduced for this system
is currency. It is fundamentally a number with two decimals, the literals are
written as NN.DD EUR. Their implementation is essentially identical to the date
types discussed above, so we do not discuss it any further.

Temporal Types A more interesting extension concerns temporal types. The
notation TT[U] represents a temporal version of a base type U. Temporality
means that a variable ttu: TT[U] does not represent a single value; instead, ttu
is a sequence of (date, U)-pairs, expressing when the particular value of ttu
changed to a particular u: U. The following example states that on Jan 1, 2017
the salary became 5.000 EUR, and on May 1 it changed to 6.000 EUR.

val salary : TT[currency] = TT | /2017 01 01/ => 5.000 EUR |
| /2017 05 01/ => 6.000 EUR |

The reason for adding temporal types is that this customer’s system is bitempo-
ral [18], which means that the system manages two dimensions of time for each
data item. The first one represents a data item’s evolution over time, also known
as its validity time. The above salary is an example, and it is readily obvious
why this is useful: almost all quantities in (database-style) systems change as time
passes. Representing this as a first class concept in a language makes computation
with these values simpler, as we shall see. The second dimension of time is the
transaction time, i.e., the time at which something became known to the system
(and was stored). In a bitemporal system, the database stores both.

val salary#/2017 10 07/ = TT | /2017 01 01/ => 5.000 EUR |
| /2017 05 01/ => 6.000 EUR |

val salary#/2017 11 05/ = TT | /2017 01 01/ => 5.000 EUR |
| /2017 05 01/ => 5.500 EUR |

The example here essentially says that, on Oct 7, 2017, we knew that the salary
was as in the previous example; but on Nov 05 we changed the second value to
5.500 EUR; we probably corrected a mistake. The database now contains both
states of knowledge, the one from October, and the one from November. A typical
use case in the context of our customer’s system is to calculate the resulting tax
for both perspectives, and then issue compensating transactions. In the example,
the person would probably get some money back.

A fully bitemporal system is quite complex, not just in terms of the database
and the implementation, but also from the perspective of the user, i.e., the person
who uses the DSL to create the salary/tax calculation rules. This is why, in
the interest of [ simplicity ], we only represent the first dimension (validity
time) in the DSL programs, and handle the second one as part of a surrounding
framework; we will not discuss it any further.
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Fig. 5. Reslicing of temporal values; a and b are temporal values, s is a regular scalar.
When a temporal value is “operatored” with a scalar, the slices remain the same, but
their values change. In the case of two temporal values, the slices intersect, and the
values are computed per intersection.

The temporal types support overloaded operators. Their most important
characteristic is that they “reslice” the temporal periods according to what is
shown intuitively in Figure 5; except for the slicing, the semantics of the operators
regarding the basic types remain unchanged.

In the implementation, we once again had to overload the typing rules for
the operators, this time for TemporalTypes. In this overload we fell back on the
typing rules of the base type. For an operator op, TT[U] op TT[V] is allowed
if U op V is allowed by the existing KernelF type system. The interpreter was
built similarly to the one for data types, except that the implementation of the
arithmetics is more complicated. Lots of test cases helped us get it right.

The overloaded operators let users write arithmetic code that works with
temporal data as if it was regular, scalar data. Being able to do this was one
major goal of this extension. But to e↵ectively work with temporal data, more
support is required, as illustrated below (values beginning with d are dates, and
values beginning with tt are temporal):

– always(v) transforms a value v: U into a temporal value ttv: TT[U] with
exactly one slice that is dated to a predefined “beginning of time” date.

– ttv.add(d, v) adds a new slice to ttv begins at d and has the value v.
– ttv.valueAt(d) returns the scalar value at time d.
– ttv.between(d1, d2) cuts the slices to within the range d1 .. d2. In ad-

dition, ttv.after(d1) and ttv.before(d2) are also supported.
– ttv.reduce(S, r) where r: daterange (a type that represents time peri-

ods) reduces a temporal value back to a scalar. The operation takes into
account the slices within the time period r (for example, the month for
which taxes are calculated) and a reduction strategy S. The strategy includes
LAST (the value of the last slice in r), SUM (sums up all slice values), and
WEIGHTED_AVERAGE where the sum is weighted with the relative lengths of
each slice value. We will see examples of reduce below.

Basic Data To model the basic data with which the system works (employee,
address, employer, employment), the language supports another extension for
data modeling. It supports entities with members which have either primitive,
temporal, or other entities as type. In the latter case, cardinalities can be specified,
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as well as whether the relationship is containment or reference. Constraints, i.e.,
Boolean validation rules, are supported for entities as well. The language supports
a textual and a (fully editable) graphical notation that can be switched on demand.
Since this is “just another entity language” we do not discuss it any further.

Result Data Result data are part of the resulting salary or tax calculations.
Once computed, they are persisted in the database. The result data structures
are similar to basic data entities in that the have a list of members. However, they
are di↵erent in two important ways: first, they are always keyed by one or more
basic data entities. For example, a SalaryCalculation result data item is always
associated with an Employment entity, or the TaxBill result is associated with a
Person entity. Second, result data items are time-indexed (which is di↵erent from
being temporal). A time index identifies a discrete point in time and is typically
year or month: the SalaryCalculation is indexed monthly, and TaxBill is
indexed yearly. The association with the basic data entity and the time index
uniquely identify each result data record. In the end, it is the purpose of the
system to compute all result data item for all valid entity/time combinations.

Calculation Rules A calculation rule’s purpose is to compute a result data
item for a given entity/time pair; so each rule is thus associated with one result
data item. The rule also declares which other result data items it uses in its
calculation. Consider the following example:

result data [monthly] Salary { result data [monthly] Tax {
employment -> Employment // basic data person -> Person // basic data
amount : currency amount : currency

} }

calculation for Tax
depends Salary foreach person.employments // depends on Salaries of all employments

as salaries // of the Tax bill’s person
// in the respective time

calculate [monthly] {
val factor = // do some weird tax math
val total := salaries.amount.sum // sum up all salaries in current month
amount := total * factor // populate fields of the result data item
employment := ctx.employment // ctx is available in all calculations

}

Here, the calculation of the Tax relies on the calculation of the Salary. More
specifically, it depends on all Salary calculations for the current Tax’s person’s
employments. Because these dependencies are explicit, they can be exploited
during the execution. They can be used eagerly, like a function call: when the user
requests the Tax for a particular person and month, the corresponding calculation
rule is triggered, which in turn, when it calls s.amount, triggers the calculation
of the Salaries. While this style of execution is good enough for in-IDE testing
with the interpreter, a scalable engine for the data center will work in a reactive
style. If a data item is changed, the dependencies are used in the reverse direction,
and all dependent, upstream data is recalculated and persisted. This way, data is
accessible to the user without the calculation delay incurred by the functional
style. This is an example of [ portability ] in the sense that di↵erent execution
engines with di↵erent requirements in terms of performance and scalability can
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use the same specification. Importantly, the dependencies can also take into
account the time index. Consider the next example:

calculation for SalaryReport // data structure indexed to an Employment
depends Salary as s

Salary[month.prev] as s_last
calculate [monthly] {

currentSalary := s.amount
lastMonthsSalary := s_last.amount
delta := s.amount - s_last.amount

}

The monthly salary report contains data from the previous month, as a means of
providing context for the employee. In the example above, the SalaryReport data
structure that stores this di↵erence, has a dependency on the current months’s
Salary and on the one from the previous month, expressed with a little sub-
language for expressing dependencies that take time into account. Since it is
declarative (not full expressions!), it can also be evaluated in reverse order; it
works with the reactive execution engine.

The salary and the report calculation rules are also marked as monthly. This
is automatically derived from the data structure, which is time indexed monthly
as well. This way it is clear that the execution of the Salary calculation rule
always happens for a given time period, or increment (a month in this example).
This leads to various syntactic simplifications. Consider the following:

calculation for Salary
depends ...
calculate [monthly] {

val e = ctx.employment
val totalHoursWorked = e.workedHours.reduce(SUM)
val averageWage = e.wage.reduce(WEIGHTED_AVERAGE)
val religion = e.person.religion.reduce(LAST, increment.year)

}

As we have seen above, the reduce operator requires the specification of a
daterange, the time period for which the reduction applies. Because we are in
a time-indexed context (monthly), this time period is implicit (the particular
month) and we do not have to specify it. However, it can be specified if we need a
di↵erent time period, as shown in the religion example, where we want to get the
last slice’s value in the current increment’s year. Not having to specify the date
range explicitly helps with syntactic [ simplicity ], but also [ robustness ]
because of the reduced potential for errors.

Note that in the code above, we use five KernelF extension languages together:
the data language (the employment reference), the currencies (in the wages), the
date extension (as part of the temporal types), the temporal types themselves
as well as the main extension for result data and calculation rules. Except for
an explicit dependency from temporal types to dates, there is no language-level
coordination code (composite grammars, disambiguation logic); the extensions
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are independent, but still used together in the same program. Please refer to
Figure 4 to recap the dependencies between the various languages.

Variants and Validity Calculation rules depend on result data items, not
on particular calculation rules for items. This is because there can be many
calculation rules for a single result data item. There are two primary reasons for
this. First, di↵erent calculations might apply for various context, such as di↵erent
states, for married or unmarried people or for weekly vs. monthly pay. Instead
of making all of these distinctions with conditionals in one rule, we can define a
set of rules where each rule declares its applicability up front. Conditionals vs.
multiple rules allow di↵erent tradeo↵s regarding modularity, understandability
and duplication, and thus help with [ simplicity ] and [ robustness ]. The
second reason is that the algorithms embodied by the rules change over time,
usually because of changes in the law that forms the basis for the calculation.
Thus, a calculation specifies applicability and validity:

calculation for Tax calculation for Tax
depends Salary as s depends Salary as s

valid from /2017 01 01/ SomeOtherThing as t
calculate [monthly] { valid from /2017 07 01/

... if ctx.employment.person.homeAddress.state == BW
} calculate [monthly] { .. }

In the example above, we define a generally applicable Tax calculation that is
valid from Jan 1, 2017. From Jul 1, a special rule has to be used if the employee
lives in the BW state. If some other calculation rule declares a dependency on Tax,
then, during execution, a dynamic dispatch will be performed that takes valid
and if into account. The reason why this works is that all rules for a given result
data item have the same signature (no arguments), so a transparent runtime
dispatch is feasible – just as in object-oriented programming. However, the data
structure can also change:

result data [monthly] Salary { result data [monthly] Salary from /2017 10 01/ {
employment -> Employment employment -> Employment
amount : currency amount : currency

} taxFree : boolean
}

In this example, from Oct 1, we have to populate a Boolean flag that determines
if that salary is tax free. In this case the IDE has to be aware of the new version,
because the code that the user writes must now populate this field; instead of
this version being a runtime dispatch only, it now has to be taken into account
by the scoping rules and the IDE.

IDE Features To keep track of the validity and applicability, we have imple-
mented several IDE features, illustrated in Figure 6. First, through a drop down
box in the toolbar, users can optionally select a date for which they want to see
the rules. If a date is selected, the editor evaluates the validity expressions and
shows only those calculation rules that are valid at this point. In addition, if the
user selects a data item in the editor, a palette shows all the rules that apply to
this item. If the user selects a calculation rule, the palette shows the other rules
for the same data item, as well as all (directly) downstream dependencies. There
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Fig. 6. IDE features that support the language: date chooser to adapt the code to show
only those parts that are valid at that date; context buttons for the currently selected
result data item and for the currently selected rule.

Fig. 7. Example of allowed (Rule-A/Rule-B) and non-allowed (Rule-B/Data-B) mis-
alignment between validity periods.

is a synergistic relationship between the language design and [ idesupport ]: if
the applicability and validity were implemented as conditionals in the body of a
rule, if would be much harder to provide this kind of tool support.

The IDE also helps with consistency. Since the validity is only specified using
a from date, there is no need to check for consistency and completeness. However,
we will implement a graphical timeline that shows how the periods of various rules
and their dependencies align. However, there is one particular aspect that must
be verified for the combination of runtime polymorphism (as used in calculation
rules) and static polymorphism (as used for the result data structures). Consider
the scenario in Figure 7. Assuming that A depends on B, it is not a problem
that the validity periods for the variants for Rule-A and Rule-B do not fully
overlap, because the runtime dispatch is transparent to the programmer. However,
the validity period misalignment between Rule-B and its result data structure
Data-B is an error because the same rule would have to work with di↵erent data
structures, in the IDE. This is not possible.

Generalised Variability Framework Based on the experience with this
project, we are working on generalised variability support for KernelF. It will
be realized as a framework to make it easy to define variants of any top-level
declaration. The existing declarations (functions, records, enums, values, and
the like), will be hooked into the framework so they can be varied by default.
This will be an invasive change, because it will be necessary for those concepts
to implement additional interfaces defined by the framework.

The framework will support runtime variability and static variability. For the
former, the dispatch will have to be integrated into the interpreter (and other
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Fig. 8. An example feature model that describes a car. Notice the graphical notation
the exactly reflects the feature modeling standard.

execution engines). At the same time, the signature must not change. For static
variability the signature is allowed to change, and the variability is handled in
the scoping logic.

A second important aspect of this framework is that the actual variability
clause, i.e., the condition that expresses when the varied declaration is valid,
is pluggable; the validity period condition discussed in this case study will be
one default implementation, a presence condition expressed over features from a
feature model will be another one. Feature models have already been implemented
as part of our DSLs for systems engineering and can be plugged in easily; Figure
8 shows an example. The pluggable variability clause will also bring its own
consistency checking. For example, for feature model-based presence conditions,
a solver-based check for completeness and consistency would be supplied.

5.2 Smart Contracts

Blockchains [24] and smart contracts promise trusted, distributed execution
of arbitrary programs. Ethereum [34] is currently the most relevant platform
as a consequence of its flexible VM, expressive languages, comparatively ma-
ture infrastructure and adoption rate. Several languages, all compiling to EVM
bytecode, exist, the most widely used one is Solidity. Solidity5 is essentially a
general-purpose programming language that also has some features that are
specific to Ethereum’s VM and distributed execution model.

However, Solidity does not provide first-class support for the typical patterns
found in the distributed, multi-party contrats for which blockchains are supposedly
ideally suited. Such abstractions are critical if we consider that a lot of the interest
in blockchains and smart contracts comes from non-technical people in domains
such as finance [23], logistics [20] or (computational) law.6 They are very likely also
the people who are interested in the specific behaviors encoded in the contracts.
So, while ensuring the correctness of the EVM and blockchain infrastructure is
crucial [17,2], a concise, understandable and (functionally) verifiable specification
of contracts is also crucial. The language introduced here has this goal, but is of
course not the only [13] one.7

5
http://solidity.readthedocs.io/

6
https://www.artificiallawyer.com/2018/01/19/

welcome-to-the-first-computational-law-blockchain-festival/

7
https://runtimeverification.com/blog/?p=496
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Fig. 9. A language architecture consisting of industry-specific DSLs, a set of common
abstractions in EMPCL, the KernelF foundation, plus generation to blockchain-based
execution infrastructures and verification tools for ensuring functional correctness.

Figure 9 shows stack of languages that potentially achieves this goal. At the
top we envision DSLs that are specific to the business domains for which contracts
should be specified. We have some exposure to finance, logistics and law, and
the requirements are quite di↵erent. On the level below we envision a language
(dubbed EMPCL) that has the basic abstractions for executable multi-party
collaborative processes. This language, in turn, extends and embeds KernelF. For
execution, the contract behaviors are generated to suitable blockchain technologies,
and for verification, an integration with model checkers and solvers is useful. In
this chapter we focus on a prototypical implementation of EMPCL.

Processes A contract’s evolution over time is inherently stateful. The work
on smart contracts drove many of KernelF’s extensions for stateful programs,
such as boxes and transactions (see Boxes and Transactions in Section 2 as well
as Appendix A.14 and Appendix A.16). Before we illustrate those features, let
me introduce the notion of a process. A process is a declarative description of a
stateful, potentially long-running behavior. The process definition configures the
behavior and determines how programs interact with it in terms of commands
(that trigger changes in the process) and values (how the environment can
observe the process state). Processes are a good baseline for representing the
idiomatic behaviors expressed in Smart Contracts such as decisions, agreements or
auctions. We performed a preliminary domain analysis for decisions and identified
the following variations points: which parties are involved in the decision, and
can that list of parties be changed dynamically during the execution of the
decision process, what is the decision procedure (unanimous, majority, specific
threshold or completely custom), is a minimum turnout required, is there a time
limit for making the decision, and can votes by a particular party be revoked.
Figure 10 shows the notation used for MultiPartyDecisions, and a few example
configurations (ignore the code completion menus for now). Once defined this
way, processes can be instantiated and used; the code below uses the leftmost
process in Figure 10.

val s = run(Unanimous) // continued
s.vote(bernd) s.vote(markus)
s.vote(bernd) assert(s.decisionTaken)
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The process above has one command vote(party) and one Boolean value,
decisionTaken. Which commands and values are available, depends on the con-
figuration of the process. For example, if we were to configure dynamic parties,
an additional command addParty(party) would be available (an example of
[ idesupport ]). This is interesting in two respects. From a language design
perspective, the fact that available commands and values depend on the pro-
cess configuration prevents the user from making certain mistakes; a degree of
correctness-by-construction is guaranteed, helping with [ robustness ]. As a
point of comparison, this feature could not be provided by an OO framework,
because it requires an IDE’s awareness of the program’s semantics, specifically
for the process abstraction.

Second, it is interesting from a language implementation perspective. Normally,
a method call is an actual reference (in terms of the MPS AST) to the method
declaration. Here, no method vote or decisionTaken is available to act as
reference targets. This is why we have implemented a “reflective” mechanism for
commands and values. The process declares and registers them with a descriptor,
depending on the process’s configuration:

final IDCommand VOTE = new IDCommand("vote", new IDArg("who", <PartyType()>));
final IDValue DEC_TAKEN_BOOL = new IDValue("decisionTaken", PTF.createBooleanType());
final IDCommand ADD_PARTY = new IDCommand("addParty", new IDArg("who", <PartyType()>));

public void populateDescriptor(ProcessDescriptor d) {
d.add(VOTE);
d.add(DEC_TAKEN_BOOL);
if (this.dynamic) { // this queries the dynamic flag in the process definition

d.add(ADD_PARTY);
}

}

The invocation syntax (process.value and process.command(args)) is also
generic: the node on the right side of the dot is not a reference, as mentioned
above, instead it only stores the string that represents the name of the value or
command. Code completion proposes only those strings that correspond to the
currently active values or commands on the target process, and the type checker
also relies on the descriptors to check for valid names and arguments. A language
user cannot tell the di↵erence; it behaves exactly like “native” references.

Meta Functions This is also a good place to demonstrate how to “escape
from declarativeness”: what to do if you want to provide a declarative means
for configuring something (supporting [ simplicity ] for the simple cases), but
still allow the option of injecting arbitrary code. We will illustrate this with
the process’ decision procedure: in terms of structure, the process has a child
proc that is a DecisionProcedure, which is an abstract concept. I has three
subconcepts: UnanimousDecProc, MajorityDecProc and CustomDecProc. The
first two are just keywords, whereas the last one looks as follows:8

procedure: custom (voted, participated) = voted.size > (2/3) * participated.size

8 The syntax of meta functions is generic, and it can be adapted in terms of its level of
detail as shown in Figure 40.
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The custom decision procedure embeds a meta function. A meta function has
a number of parameters as well as an expression that computes a value from
the parameters. Meta functions are a generic utility, they can be configured and
executed easily: in terms of structure, CustomDecProc only has to implement
IMetaFunctionContext. In its behavior, it overrides the createMetaFunction
method to create the meta function structurally; in particular, it specifies the
name, return type and arguments:

public node<MetaFunction> createMetaFunction()
createNew(PTF.createBooleanType(), "custom procedure")

.addArg("voted", <ImmutableSetType(baseType: PartyType())>)

.addArg("participated", <ImmutableSetType(baseType: PartyType())>);
}

Execution is just as straightforward. The DecisionProcedure declares a behavior
method isDecided that returns true of false, depending on whether the decision
has been made or not. The custom procedure implements it as follows:

public boolean isDecided(PSet parties, PSet whoVoted,
IContext ctx, ComputationTrace trace)

(boolean)(new MFI(ctx, this.function).run(whoVoted, parties, trace));
}

This code instantiates the meta function interpreter (MFI), passing the interpreter
context and the to-be-executed function (the function child is inherited from
IMetaFunctionContext). Calling run, we pass values for the two arguments
defined for the function, voted and participated. The return value is the
Boolean flag that indicates whether the decision is successfully taken or not.

State, Boxes, and Transactions The primary benefit of boxes is that existing
immutable data structures and their APIs can be reused in a mutable way in
the sense that the box stores an evolving sequence of immutable values. All
immutable data structures can immediately be used this way. In addition, boxes
allow a straightforward implementation of transactions:

– The user marks the start of a transaction in the program code; a Transaction
object is put into the interpreter context

– For any update of a box, the new value is stored in a map<box, value> that
lives inside the transaction object; the box contents are not actually modified.

– Inside a transaction, a box read is redirected to a lookup in the map9 (which
we can find out by looking for a Transaction object in the context)

– When we commit the transaction, the actual box contents are updated based
on the map inside the Transaction

– If the transaction is cancelled (for whatever reason), the map is discarded
and the boxes stay unchanged

There are also language constructs that make sense only in a stateful context.
The processes introduced above, as well as the state machines we will discuss
below, are examples. For them, there is no point in defining an immutable API,

9 Note that this also works if multiple transactions run in a concurrent context; isolation
is maintained because the boxes themselves are not updated.
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Fig. 10. A couple of di↵erent configurations of the multi-party-decision process and
the resulting available entries in the code completion menu.

and consequently there is also no benefit in using boxes to be able to reuse an
immutable API in a mutable context. This is why the decision’s vote or addParty
commands directly change the state of the process; they are a mutable API.
However, internally, objects that are mutable in this way still rely on immutable
data. In other words, a change to the state of the process internally sets a new,
updated state object.

public void handleCommand(IDCommand command) {
if (command.is(VOTE)) {

string party = (string) payload.first;
state = state.voteFor(party); // old state is cloned with a new vote

}
...

}

E↵ectively, this makes a process (and other similar construct) a kind of “implicit
box”. Explicit and implicit share the runtime API through which they interact
with a transaction. This way, they can be used together:

val voteCount = box(0) fun voteAndCount(Party whoVotes)
val process = run(Unanimous) newTx { process.vote(whoVotes)

voteCount.update(it + 1) }

When calling the transactional function voteAndCount, and if the vote(whoVotes)
fails (for example, because the party whoVotes is not a valid voter), then both
the process and the voteCount remain unchanged.

Live Values and the REPL The values published by the processes provide
a peek into its internal state, based on a generic, reflectively-defined API. In
addition, using a LiveValue wrapper, the processes provide these values in a
structured way, suitable for display in the REPL. Because of this homogeneous
structure, the REPL highlights the di↵s between the current state and the
previous one. Figure 11 shows a REPL session.

The generic interaction mechanisms of processes (and their generalised version,
IInteractors) are a good starting point for building simulators or other end-user
oriented UIs (roughly similar to [5]). For example, commands can rendered as
buttons, and the values can be rendered as text labels or other widget. Because
the internal state is a sequence of mutable values that can be retained in such
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Fig. 11. A REPL session where a processes is wrapped in a LiveValue to support
structured rendering of the internal state and di↵s that highlight its evolution.

Fig. 12. Two decision processes used in the complex example contract.

a simulator, it is easy to build “time travel” functionality [4] or even branching,
where users can interactively explore back and forth the behaviors of contracts.

More Complex Contracts We decided on declarative abstractions for the
core decision, agreement, auction and sales processes because those are ubiquitous
in smart contracts. In some sense they can be seen as the building blocks of
contracts. In addition, it is feasible to capture the vast majority of real-world
variants into a set of configuration parameters. However, the overall contracts
that make use of these building blocks show more variability, which is why it is
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more useful to use a less specific language for those: state machines are obvious
candidates. Consider the following requirement for a non-trivial smart contract:10

An online community has to continuously maintain a (selling) decision; it can

be revoked or granted as time passes. A group of individuals, called the deciders,

vote for and against this decision. The vote has to be unanimous. In addition,

additional people can be allowed into the group of deciders. The existing deciders

vote for new candidates, by simple majority, but with a time limit. Once allowed

into the group of deciders, the new member can participate in the sell/no-sell

decision. Multiple member approval processes can go on at the same time. While

a member request is pending, the sales decision cannot be changed.

The implementation of this contract relies on two declarative decision processes,
Sale (to maintain the sales decision) and AccessControl (one is instantiated
for each allow-in of a potential new decider). Both configurations are shown in
Figure 12. The remaining state machine-based implementation of this contract is
as follows (we omit the state machine declaration itself). First, we define the
events which we want to use to control the contract:

event openAccess // go to the mode where we allow new guys to request to join
event requestAccess(newGuy: party) // a new guy wants to join the deciders
event terminateAccessRequest(who: party, newGuy: party) // kill a decision procedure
event voteForAccess(voter: party, newGuy: party) // vote for a new guy to become decider
event letsSell // go to the state where we maintain the sell/no-sell decision
event voteForSelling(who: party) // vote for the sale decision
event voteForStopSelling(who: party) // vote against the sale decision

Next, we instantiate one Sale process in the state machine, and define a map
from party to AccessControl where we store all pending access requests. We
also define a query (essentially a parameterless Boolean function) that reports
whether the selling decision is currently true or false. The observable flag means
that the query can be invoked from outside the state machine:

var sale = run(Sale)
var pendingAccess = box(map<party, AccessControl>())
observable query currentlySelling = sale.decisionTaken

The similarity between processes and state machines is not coincidental: in fact,
the state machine also implements IInteractor, the events act as commands and
the observable queries or variables correspond to values. Thus, state machines can
be used in the same interactive way (for example in the REPL) as the processes
in the previous paragraph.

Next we define a few helper functions used inside the state machine; the /R
or /RM flags indicate the kind of e↵ect they have (read only, or read-modify):
fun isDecider/R(who: party) = sale.registeredParties.contains(who)
fun isPending/R(who: party) = pendingAccess.val.keys.contains(who)
fun hasPending/R() = pendingAccess.val.size != 0

The core logic is implemented in the next few states. The first one represents the
phase where the contract is gathering new members. The following code handles
the requestAccess event, where a new party can request access to the group:

10 Another extensively documented example can be found in [25].
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on requestAccess(newGuy) [!isDecider/R(newGuy)] : {
val acc = run(AccessControl)
pendingAccess.update(it.put(newGuy->acc))
acc.addParties(sale.registeredParties)

}

The transition only fires if the newGuy is not yet among the existing deciders (see
guard condition); then we create a new AccessControl process and store it in the
map that keeps track of the currently pending membership requests. Before that
new AccessControl process can work, we have to populate it with the existing
deciders, because it is them who make the decision about the membership of the
newGuy. Note that this transition has no target state, so it remains in the current
one; its only purpose is to perform the action associated with the transition.

The second transition terminates an existing access request if one of the
deciders chooses to do so. The event has two arguments, the party who request
termination and the party whose membership request should be terminated. The
guard condition checks that these two parties actually play the respective roles. If
everything is in order, we just delete the corresponding AccessControl process
from the map of pending accesses.

on terminateAccessRequest(who, newGuy) [isDecider/R(who) && isPending/R(newGuy)]
: pendingAccess.update(it.remove(newGuy))

Next we deal with a current member (voter) voting for a new guy. Again,
we use the guard condition to establish the roles. We then get the newGuy’s
AccessControl from the pending list and submit our vote. If after the voting the
decision has been taken, we add the newGuy to the parties of our Sale process
and remove their AccessControl from the list of pendings.

on voteForAccess(voter, newGuy) [isPending/R(newGuy) && isDecider/R(voter)] : {
val acc = pendingAccess.val[newGuy]
acc.vote(voter)
if acc.decisionTaken then {

sale.addParty(newGuy)
pendingAccess.update(it.remove(newGuy))

} else none
}

The last thing we do in the requestAccess state is to handle the request to
move to the selling state, which is only possible if there are no pending requests
(which is why current deciders can terminate pending requests by force):

on letsSell [!hasPending/R()] -> selling

The selling state is really simple. It handles voting for and against the sales
decision maintained by the contract, as well as the openAccess event which
gets us back into the state where we accept new members. Note how the actual
logic of making the sales decision, independent of its own complexity, is handled
completely by the Sale process.

state selling {
on openAccess -> gatheringMembers
on voteForSelling(who) [isDecider/R(who)] : sale.vote(who)
on voteForStopSelling(who) [isDecider/R(who)] : sale.revoke(who)

}
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Game Theory, Interceptors and Context Arguments Game theory [14]
looks at how rules in cooperative processes (“games”) impact the outcome, and
also how the parties taking part in the game can cheat, i.e., exploit the rules for
their own benefit. Smart contracts are cooperative processes, which is why they
are susceptible to “game-theoretical” exploits.

For example, a sybil attack [9] is one where a reputation-based system is
subverted by one (real-world) party creating loads of fake (logical) identities
who then behave in accordance with the real world party’s goals. For example,
consider a decision that is based on majority vote. An attacker could create lots
of additional parties and thereby taking over the majority, leading to a decision in
the interest of the attacker. While there are many potential ways how such attacks
can be thwarted, one approach is to limit the rate at which new parties can
request to join the process. Instead of requiring users to implement this manually,
the state machine language supports a declarative way: the rate at which events
come into a state machine can be limited (helping with [ robustness ] without
compromising [ writeability ]). The following code expresses that while the
machine is in state requesting, only three commands per second are allowed. If
more requests come in, they are rejected.

state requesting [rate(3/1000|commands-only)] {
...

}

The code between the brackets registers an interceptor (the term is inspired
by CORBA [21]). Interceptors see every incoming event before transitions have
an opportunity to react to them. They can then let it pass through, change
parameters in the event, or discard it. Interceptors can maintain their own
internal state. They can be seen as a guard condition that applies for a whole
state (or substates), and not just a particular transition. The rate interceptor
discards events if the rate exceeds the one specified.

Looking at the example, you can see that many events take the sender as
an argument, usually in order to check that the event is authorised (the sender
is among the current deciders). This is typical for smart contracts, and in fact,
every message sent into an Ethereum contract carries an implicit sender address.
Implicit arguments, called context arguments, are also available for interactors.
Together with an interceptor, this can be used for authorization:

state playing [senderIs(players)] {
on offerBid(money) : bids := bids.put(sender->money)
...

}

The senderIs() interceptor checks whether the context argument sender is
supplied by the client (and rejects the event if not), and verifies that the sender
is in the collection passed as an argument to senderIs (and rejects the event if
not). In addition, because any transition in the state will only be executed if a
sender is given, the interceptor makes the sender variable available inside the
state. It can be used just like an explicitly given argument. In the example above
we use it to create an entry in the bids map that is keyed by the sender.
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The last interceptor worth mentioning in the context of smart contracts and
game theoretical exploits is the takeTurns interceptor. Many “games” require
a fair allocation of opportunities to participating parties. One way of achieving
this is to run a game turn-by-turn, where each party can make one “move” in
every “round”. Consider the bidding process example:

state playing [senderIs(players)] {
state bidding [takeTurns(players|ordered|after 1000 remove)] {

on offerBid(money) : bids := bids.put(sender->money)
if [timeInState > 2000] -> finished

}
...

}

The takeTurns interceptor can be configured regarding the strictness of the
turn-by-turn policy. Unordered means that in each round, every party has to
make a move, but the order within each round is not relevant. ordered means
that the order given by the list of parties passed to the interceptor is strictly
enforced. A violation leads to a rejection of the command. The interceptor also
provides access to the list of allowed next movers; this could potentially be used
to notify parties that it is their turn.

There is a risk of a denial-of-service attack in the case of ordered turn taking:
if the next party p does not make its move, the whole process is stuck. Nobody
else can make a move because it is p’s turn. This is why a turn-by-turn game
should always include a timeout, 1000 in the example above. If the next party
does not make their move within 1000 time units, that party is permanently
removed from the list of participants; alternatively, it can also be skipped.

5.3 Healthcare

Like all the other case studies, the set of languages built for this system builds
on top of KernelF and extends it with new expressions (see Figure 13). High-
level domain-specific behaviors are expressed as state machines, as explained
below. However, this system is interesting because it removed about two thirds of
KernelF (by constraining it out of program written in the context of this system).
For example, attempt types, option types, some of the advanced operators as well
as some of the collection operations are not accessible to the users of this system.

Reactive Algorithm The main algorithm controls notifications and reminders
submitted to the mobile operating system and reacts to a user’s data submissions.
It also makes high-level decision as to the execution of the algorithm and manages
data collected from the user (in what one could call databases).

The top level abstraction is the component, a unit of behavior. Components
can be instantiated and then started by other components, hierarchically. When a
parent component starts a child component, it supplies values to the parameters
defined by the child components (just like an operating system that starts a
process). The child then runs concurrently with the parent; it communicates
with the parent by sending output data events. The parent component can react
to those events. By waiting for particular events (see below), the parent can
synchronise with (wait for completion of) a child it started.
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Fig. 13. The core of this system is a restricted version of KernelF. On top, we have
developed a set of functional extensions that help medical professionals make non-
trivial (multi-criteria) decisions. The core of the medical algorithm is expressed through
state machines, and validation is performed through a testing and scenario description
language. At the top is a language for configuring generated visualisations and reports.

In addition, a component also provides other means of interaction with its
environment, and in particular with the user, through the UI. A component can
bring up a UI, for example, a questionnaire where the user can then select one
of several options. A component can also register reminders: essentially, this is
an entry in the phone’s calendar. The framework that runs the applications on
the phone keeps track of the created notifications, and retracts them if the user
reacted, or if a timeout occurs.

The implementation of the behavior inside a component can potentially be
done in many ways to be able to handle future styles of applications. For now,
only a state-based implementation is supported: the content of a component is a
hierarchical state machine. The abstractions are the usual ones: nested states,
events, transitions, guards, actions .

Consider the following example: the application wants the user to measure
their blood sugar at 08:00 the next morning. To this end, the application registers
a reminder for 07:55, 08:00 and 08:10. Once a new blood sugar value is entered
by the user at roughly 8am, the remaining reminders can be retracted. In contrast,
if no value is entered by 08:10, the process might have to react to that: for
example, a message might have to be shown to the user reminding them of the
importance of a timely blood sugar measurement, or, if things become more
serious, their medical team might have to be notified by the app. To realize this
behavior, a timeout event in the state machine is necessary.

The code to implement this behavior looks roughly like the following. We start
by defining a helper function that computes the next time at which a blood sugar
measurement should take place. The time literals, and the associated types use an
addition data type datetime whose implementation is similar to the one defined
in the salary/tax case study in Section 5.111. Second, we define a timeseries

11 We are currently consolidating both into a common datetime extension.
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for the blood sugar measurements. Time series are essentially records with an
index of type datetime, and are also defined specifically for this system:

fun nextTime() {
alt | now in [08:01 .. 11:45] => 12:00 |

| now in [11:46 .. 17:45] => 18:00 |
| otherwise => 08:00 |

}

timeseries BloodSugarSeries {
value: number[50|400]

}

The meat of the blood sugar measurement functionality is in a component
AcquireBloodSugar. It has two configuration parameters; the time at which the
next measurement should take place, as well as the time series in which to store
the measurement.12

component AcquireBloodSugar

parameters t : datetime
db: BloodSugarSeries

Next, we define the interface of the component; it handles events of type
BloodSugarMeasurement from the UI layer. In addition, it emits the ok and
missed events, both without arguments.

inputs BloodSugarMeasurement(bs: BloodSugar)

outputs ok
missed

Next we declare a reminder. A reminder is essentially a group of OS-level reminders
which, as we will see below, are managed as a group from the perspective of
the algorithm. The reminders are defined relative to the time t passed to the
component as a parameter.

val r = reminders at t - 15 : "Please enter blood sugar in 15 minutes"
at t - 5 : "Please enter blood sugar in 5 minutes"
at t : "Please enter blood sugar now"
at t + 10 : "URGENT: Please enter your blood sugar"

Finally, we define the actual behavior of the component. Note that, because
on mobile phones the app is passive when not in focus, and because it cannot
actively push content to the user (except through reminders), the app is reactive.
This is why a state machine is a very good fit. The start block is executed after
the component is started (essentially a constructor). We create the reminders
and unconditionally transition to the waiting state. In that state, as the name
suggests, we passively wait for input events, i.e., the BloodSugarMeasurement.
If one occurs, and the current time is within 20 minutes of the scheduled time
t, then we store the measurement in the time series, and terminate with the
ok event (terminate(<evt>) is a shorthand for sending an event (send(<evt>))
and then just terminating the execution of the component). If we do not receive

12 The actual syntax relied a little bit more on boxes and other semi-graphical elements;
we use text here so we do not have to resort to images.
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the event within t + 20, we terminate with a missed event. In any case, once the
waiting state is left, the OS-level reminders associated with r are all cancelled.

start: createReminders(r)
-> waiting

state waiting:
exit: cancelReminders(r)
on BloodSugarMeasurement

when now in [t - 20 .. t + 20]
store now, bs in db
terminate(ok)

when now < t - 20
message "too early, please submit around {t}"

if now > t + 20
terminate(missed)

Here is the (simplified) main state machine for the diabetes application that uses
the AcquireBloodSugar component above. It creates and starts the Acquire-
ıBloodSugar in its running state. It then keeps track of the missed measurements
and, if too many are missed, notifies the medical team.

component DiabetesApp

val db: = createDatabase<BloodSugarData>

val missed: counter = 0

state running:
val abs = AcquireBloodSugar.start(nextTime(), bloodSugarDB)
on abs.ok

abs.start(nextTime(), bloodSugarDB)
on abs.missed

missed.increment(1)
abs.start(nextTime(), bloodSugarDB)

if missed > 5
-> error

state error:
notifyMedicalTeam("missed blood sugar too often")

Decision Support As part of the overall reactive algorithm, many complex
decisions have to be made. To represent those as intuitively as possible, we have
implemented a decision support language. All abstractions in that language,
at a high-level, can be seen as functions: based on a list of arguments, the
function returns one or more values. Plain functions are available for arithmetic
calculations. However, it is typical of medical decisions that they depend on
the interactions between several criteria. To improve the [ readability ] of a
function call for non-programmers, we support a style of signature that reads like
a sentence fragment. For example, the function in Figure 14 can be annotated
with a syntax template that allows the following function call:

val riskScore = blood pressure risk for systolic <expr-1> and diastolic <expr-2>

The code completion and type checks for expr-1 and expr-2 work as usual,
but this notation provides more context for the two values a plain function call
BpScopeDecisionTable(<expr-1>, <expr-2>).

To improve [ readability ] of the actual decision algorithm (and thus make
it easier to validate), they are often represented as decision trees (Figure 14) or
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Fig. 14. A decision tree; the green/up edges represent yes answers to the preceding
node, the red/down edges represent no.

Fig. 15. A decision table that specifically works on ranges of values. Note the compact
syntax for range representation.

decision tables. As mentioned in Section 2, basic tables and trees are available in
KernelF’s utility language. However, special forms are needed (and have been
built specifically for this project). An example is a table that splits two values
into ranges and returns a result based on these ranges. Figure 15 shows a table
that returns a score; scores represent standardised severities or risks that are then
used in the algorithm. KernelF’s number types with ranges, and their associated
static checking, is also an important ingredient to being able to improving the
[ robustness ] of the algorithms.

Testing Testing is an important contributor to the success of this project, and
we put significant e↵ort into defining a suitable set of languages. For testing
functions and function-like abstractions, regular JUnit-style function tests are
supported; Figure 17 shows an example. The first of the tests in Figure 17 tests
a function with one argument, the second one passes an argument list, and the
last one shows how complex data structures, in this case, a patient’s replies to a
questionnaire, are passed to the test. The table notations for testing based on
equivalence partitions in shown in Figure 16.

Scenario tests (Figure 18) are more involved because they take into account
the execution of the reactive main algorithm over time. They are expressed in
the well-known given-when-then style,13 which is, for example, also supported by
Cucumber.14 To express the passage of time and occurrences at specific times,

13
https://martinfowler.com/bliki/GivenWhenThen.html

14
https://cucumber.io/
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Fig. 16. Equivalence partitions help test complex structures with relevant combinations
of values.

Fig. 17. Function tests call a function (or something function-like, such as a decision tree
or table) with the arguments specified after given, and then check that the expected

valued is returned. The answers construct represents a user’s reply to a questionnaire;
it can be seen as an instance of a record.

the at notation is used. The execution of the tests is based on a simulation. The
number of steps and the time resolution is derived from the scenario specification.

Simulation The purpose of the simulator is to let healthcare professionals
“play” with an algorithm. To this end, the in-IDE interpreter executes algorithms
and renders a UI that resembles the one on the phone (Figure 19, right). A set
of DSLs is available to structure the UI; lower-level styling support is available
through Javascript and CSS. A control panel lets users configure a particular
simulation and also fast-forward in time (Figure 19, left). There is also a debugger
that, while relying on the same interpreter, provides a lower-level view on the
execution of algorithms. It is not used by HCPs.

Documentation Generation An important output is the medical protocol,
a visualisation of the complete algorithm for review by HCPs, associated medical
personnel not trained in the use of the PLUTO DSLs, as well as external reviewers.
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Fig. 18. Scenarios follow the established given-when-then style: given preconditions,
when something happens, then a set of assertions must hold. Scenarios express the
passage of time, as well as points in time when something happens or is asserted.

The outputs are too large to show in the paper; they are essentially graphviz-style
flow charts with a couple of special notational elements. It is often necessary to
highlight specific aspects on the overall algorithm, so the generation of the flow
chart can be configured using a DSL (Figure 20). It supports:

– The level of detail (Deep in the example)
– The tags that should be included and excluded. Model elements can be

tagged, for example, whether they are part of the default flow or whether
they are relevant for complications in the treatment. A visualisation might
highlight specific tags.

– Color mappings for tags (e.g., render the case for complications in red)
– Human-readable labels for states or messages in order to make them more

understandable for outsides.

The reason why these configurations are represented as models (expressed in
their own DSL) as opposed to just configuring a particular visualisation through
a dialog is that many such configurations exist, and they must be reproduced in
bulk, automatically, as the algorithm evolves.

Execution We provide two separate execution infrastructures, which is im-
portant for quality assurance, as discussed below. The first one is an in-IDE
interpreter. It reuses the existing KernelF interpreter. For the functional ab-
stractions developed in this project, we have built additional interpreters using
the same interpreter infrastructure also used in KernelF. For the reactive, state-
machine based part of the system, an interpreter was built using plain Java code
that works on the MPS AST. It drives the overall execution and invokes the
functional interpreter. A similar approach has been taken for the scenario testing
DSL. The in-IDE interpreter provide short turnaround times for the users of the
DSL and are an example [ idesupport ].
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Fig. 19. Control panel to configure and execute simulations.

Fig. 20. Configuration for the generation of medical protocol flow charts.

The execution on the mobile phone is based on a second interpreter. It is
implemented in C++ so it can be used on iOS and Android platforms. A platform
adapter provides unified access to the necessary operating system services, such
as the system clock, reminders and notifications, as well as networking APIs.
The C++ interpreter works on an XML representation of the AST, essentially a
generic serialisation format for the MPS AST structure. Directly using the AST
is infeasible, because MPS is written in Java, and the runtime needed to be C++
for performance and portability. The reason why an interpreter was used in the
first place (as opposed to generating C++ code from the algorithm) was because
of the required update times: if a problem is found with the algorithm, an update
has to be delivered as soon as possible. Waiting for the the clearance of Apple’s
review team was not an option.

Quality Assurance Ensuring the correctness of the algorithm models (valida-
tion) as well as their correct execution on the mobile phones (verification) was
a major aspect of this project. Both because the well-being of human beings is
directly at stake, and because the approach has to get FDA approval; otherwise
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Fig. 21. Execution architecture of the languages: an IDE-interpreter plus an interpreter
on the phone implemented that works on an XML representation of the algorithms.

the applications cannot be legally sold, jeopardising the business case. While a
detailed discussion of our verification and validation approach is beyond the scope
of this paper, here are the steps we took, based on a systematic risk analysis:

– Improved review-ability of the models because of the domain-oriented ab-
stractions and notations

– Further validation of the model by healthcare experts using the simulator
– Extensive set of unit and scenario test cases that reach very high coverage of

the algorithms
– Test generation to improve coverage
– Mutation testing [19] (aka fuzzing) to ensure sensitivity of tests
– Coverage measurement also of the language structure, the Java interpreter,

and the C++ interpreter implementation, and 100% coverage for those.
– Redundant [15] execution of all tests in the two interpreters to find random

errors in each
– The two interpreters were implemented by di↵erent (teams of) developers to

avoid systematic errors
– Architectural safety mechanisms such as runtime watchdogs [15] based on

independently specified invariants.

˜˜˜

This concludes our case studies. Figure 22 summarizes the extensions, aligning
them with the three layers introduced at the end of Section 1.2. Both, the
salary/tax and healthcare case studies contribute to all layers, as suggested by
Section 1.2. The smart contracts case study is a little bit di↵erent: because it is
an “experimental” set of languages, there are no domain-specific data structures
or types; we used the built-in ones. Based on our experience in the logistics
domain, a fully fledged contract language would need schemas, mappings to
actual documents, types for money and time, as well as physical units.

As a concluding remark of this chapter, the case studies should have given
the reader a good illustration of the philosophy of MPS-based language design
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Fig. 22. Overview of the extensions to functional abstractions, higher-level behavior,
structures and IDE extensions for the three case studies.

introduced in Section E. It is really more like “libraries with syntax and type
system”, with lots of first-class concepts aligned closely with the application
domain.

6 Challenges and Open Issues

In terms of language engineering, the development of KernelF is relatively similar
to the development of mbeddr, which we have evaluated extensively in [30]. This
is why this paper focuses on the language design in the development of KernelF.
However, a couple of issues are worth pointing out specifically in the context of
KernelF, even though they have been mentioned generally in [30].

6.1 Type System

The type system was the biggest challenge in the current implementation. I will
point out two problems that both relate to subtyping.

Number Types The first one relates to number types. Normally, MPS deter-
mines subtype relationships via subtyping rules. For a given type, a subtyping rule
returns the list of direct supertypes. MPS uses those to build a type hierarchy,
and also uses it during type checking in situations like val v: T = <expr> with
expr: U, where U must be a subtype of T. Now consider the situation where T is
number[0|100] and U is number[5|10]. Cleary, the range 5..10 is a subrange of
0..100, so the subtyping holds. But it is impossible to enumerate all supertypes
of a number type, because there are infinitely many. MPS has replacement rules

for this case. They are called as a last resort: if a type check fails, the engine
tries the suitable replacement rules and sees if, by performing the specified type
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replacements, the type check can be made to succeed. For number types, we have
defined the following replacement rule (slightly simplified):

replacement rule for supertype :==: NumberType as super
and subtype :==: NumberType as sub {

applicable if { sub.range.isSubrangeOf(super.range); }
replace {}

}

The rule applies if two NumberTypes are tested for a subtype relationship. It then
checks if the ranges of the two types are in the required relationship. If so, the
rule executes, which means the original type equation is replaced with the one
given in the replace part. Since this is empty here, the original typing rule is
e↵ectively discarded. Since there’s nothing to fail, no error is shown.

We use replacement rules for a few other reasons as well, for example, in the
context of type definitions. Here is the catch: replacements are only executed
once during the solver’s attempt at solving the type system equations. So if
the replacement rules create a new set of equations which can only be solved by

applying more (di↵erent) replacement rules, this does not work. As of now, we
have not found a way to solve this problem. Sprinkling explicit casts over the
a↵ected programs helps, but of course this is unintuitive for the end user.

Options and Attempts The second problem relates to the computation of
supertypes in the presence of option and attempt types. Consider the following
program. What is the type of alt?

fun f( ... ) = alt | <cond-1> => 42 |
| <cond-2> => 33.33 |
| <cond-3> => error(FAIL) |
| <cond-3> => error(FATAL) |

A common supertype is typically calculated in the following way (see also Ap-
pendix D.5):

typing rule for AltExpression {
var T;
foreach alternative in node.alternatives {

T :>=: typeof(alternative.then);
}
typeof(node) :==: T;

}

For each of the alternatives, this code submits a type equation to the solver
which states that T, the to-be-calculated type of alt, is the-same-or-supertype
of the type of the then part of the particular alternative. T ends up as the least
common supertype of all the types of the thens. However, here the situtation is
di↵erent, the correct type is attempt<real|FAIL, FATAL>, i.e., the least common
supertype of all non-error values, wrapped in an attempt type that lists all the
possible errors. A similar issue arises if you mix values with none, because this
introduces an option. Now consider the following:

fun f( ... ) = alt | <cond-1> => 42 |
| <cond-2> => 33 |
| <cond-3> => error(FAIL) |
| <cond-3> => none |
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There are two potentially correct types: attempt<opt<number[33|42]>, FAIL>
and opt<attempt<number[33|42], FAIL>>, depending on the order of treating
errors and options. We were not able to compute this type by using MPS’
declarative type system DSL and resorted to imperative code. This code essentially
treats attempts and options explicitly. This means, for example, that we could
not implement options and attempt modularly: they are “baked into” the core
type system. And one such baked in rule is that you cannot mix options and
attempts; so the code above is flagged as illegal. For the DSLs we have built so
far, this is an acceptable restriction.

6.2 Reactive Interpreter

Consider the following code, which might be part of a larger program (the
functions) and test data (the values plus the assertions):

// test data for John
val j_last = "Doe"
val j_first = "John"
val j_birthYear = 1974

fun greet(f: string, l: string) = "Hello " + f + " " + l
fun age(y: int) = currentYear() - y
fun birthday(f: string, l: string, y: int) =
"Happy " + age(y) + ". birthday, " + f + " " + l

test case Test_John {
assert (1) greet(j_first, j_last) equals "Hello John Doe"
assert (2) greet("Geddy", "Lee") equals "Hello Geddy Lee"
assert (3) age(j_birthYear) equals 44
assert (4) birthday(j_first, j_last, j_birthYear) equals "Happy 44. birthday, John Doe"

}

The Status Quo Our current interpreter works on-demand, always runs to
completion. On-demand means that a recomputation is explicitly requested. The
request can happen in two ways. One way is for the user to press Ctrl-Alt-Enter
on a program node that has a manual check (indicated through an interface
implemented by the node’s concept). Alternatively, the execution of manual checks
(and thus, the interpeter) can be triggered by the type system, in which case MPS
uses heuristics to decide when to trigger the update. In the above example (and
in the current KernelF implementation), the assertions implement the required
interface, so users can reevaluate an assert this way. Ctrl-Alt-Enter also works
for containers, so pressing it on the whole test case, or the surround (but not
shown) tests suite recalculates all of them.

Once a recalculation is triggered it always recalculates everything, to com-
pletion. So, for example, when triggering the recomputation on the last assert,
the interpreter for assert is invoked. It invokes the interpreter for the actual
and expected slots. The string literal in the expected slot is trivial. The actual
slot evaluates the function call. In turn, it evaluates the arguments (by calling
the interpreter for the val references, and then, transitively, the interpreter for
the init expressions on the vals) and then dispatches to the birthday function.
Inside, among other things, evaluates the call to the age function.

Reactivity A more scalable way would work as follows:

– A change to Geddy would trigger assertion 2
– Changing any of the j_ values would never trigger 2
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– A change to j_last would trigger recalculation of 1 and 4
– A change to j_age would trigger recalculation of 3 and 4

We would also expect that, even if 4 is recalculated because j_last has changed,
we would not execute the call to age inside birthday, because the argument to
age, j_birthYear, did not change. Finally, we would also expect the on-demand
recalculation for changes to the program: if we change the implementation of
age, then 3 would have to be recalculated, but also 4, because it indirectly relies
on age. This behavior would be just like in Excel15: you can imagine the vals as
cells with user-entered values, the asserts as cells with formulas in them and the
function calls as macros. To make this reactive architecture work, the following
ingredients are required:

– Change Notifications: the engine that triggers the interpreter must be notified
of changes to program nodes. Since MPS is a projectional editor, and changes
to the AST are already performed essentially via an architecture that relies
on events, those change events are easy to get.

– Reverse Dependencies: MPS maintains a fully resolved AST, i.e., even refer-
ences such as j_first in assertion 1 or the reference to age in assertion 3 are
maintained as fully resolved “object pointers”. However, in order to find out
which parts of the program must be recomputed, the reverse dependencies
are required: if the string literal "Doe" is changed, then we have to follow the
upstream tree of containment and reference dependencies (as indicated in
Figure 23). MPS does not currently maintain (all of) these reverse dependen-
cies. However, we assume we can maintain our own overlay data structure
that is updated based on the same program change events just mentioned.

– Persistent Interpreter: Currently, the interpreter is restarted from scratch
for every evaluation request (explicitly or by the type system). Restarting
the interpreter means that the interpreter context, the data structure that
maintains the interpreter’s internal state, is also recreated, which means
that all caches are empty. Thus, when a function is called with an argument
for which it has been called before (and the function is pure), then the
interpreter will recompute the function’s result instead of reusing the one
from the cache. So, again assuming a change to "Doe", this triggers the
recomputation of assertion 4, which calls birthday, which then calls age.
Even though the argument to age did not change, the function is re-executed,
because the (empty) cache does not know the previous result. To fix this issue,
the interpreter’s context (and thus, caches), would have to be maintained
persistently during a user’s interactive editing session.

All of these changes are absolutely feasible, and we will work on this architecture
in the future. While the current implementation is not very scalable, we can, for
now, live with the limitation because the in-IDE-interpreter is used for testing,
and test cases are usually small and thus still run reasonably quickly. For systems
that require larger integration test-style scenarios, we have explicit mocking
features that act as “breakpoints” in the execution of the interpreter.

15 An analogy that many of our users like to draw in more ways than is good for us!
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Fig. 23. The example code for reactive interpreters shown with the reverse dependencies
relevant for a change to the value "Doe". Solid lines represent containment, dashed lines
represent reference dependencies.

6.3 Shadow Models

Many language extension add new abstractions on top of existing ones. This
means that for their semantic definition, they can be “desugared” to more basic
constructs. The alt expression is an obvious example:

alt | <cond-1> => <val-1> |
| <cond-2> => <val-2> |
...
| otherwise => <val-n> |

desugars to
if <cond-> then <val-1> else
if <cond-2> then <val-2> else

...
else <val-n>

It is idiomatic for MPS generators to be stacked, and they can be scheduled to
perform desugarings to a base language, before that language is processed further.
Essentially, all of mbeddr’s C extensions are translated this way. It would be
nice if the same approach could be used with interpreters as well: programs are
reduced to their most basic form, which is then submitted to the interpreter.
This way, the interpreter only has to be defined for a minimal language. More
importantly, the same desugaring could be used independent of what is done
with the desugared, basic form of the program: it could be interpreted, submitted
to a Java generator, or translated to the solver. You can see while this approach
is very desirable for reasons of reduced e↵ort and improved quality.

The reason why the approach works well with generators is that those are
executed on demand; when the user requests a (re-)build of the model, the
cascade of generators is executed according to their relative priorities (“higher”
desugarings first). However, the interpreter is expected to run interactively, which
means, very fast: as the user changes parts of the program, the interpreter should
be executed and the results updated. The same is true for the checks performed
with the solver. What we would need is an incremental maintenance of the
desugared (or otherwise derived) models. While it is easy in MPS to receive
fine-grained notification of changes to programs, we have not yet found a way
of expressing the necessary incremental graph transformations. While we are
actively working on this challenge, for now, every language concept requires a
native interpreter, i.e., one that is specifically implemented for the (potentially
desugarable) language concept.
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7 Related Work

7.1 Dynamic Languages

A widespread approach for building embedded DSLs is the use of dynamic
languages that support reflection and flexible syntax. Prime examples are Groovy
and Ruby. However, the approach is not suitable for our purposes, for several
reasons. First, the implementation based on reflection prevents static analysis
and (automatic) IDE support. Second, the syntax of extensions is limited to the
freedom given by the grammars of the respective language.16 In addition, the
languages are all not purely functional and provide no support for explicit e↵ects
tracking. We discarded this option early and clearly.

7.2 Other Base Languages

mbeddr C mbeddr [32] is an implementation of C in MPS. It uses the same
extension mechanisms as KernelF because it is built on MPS as well. Like KernelF,
mbeddr C is implemented in a modular way, i.e., even the core of C is split into
several languages. One of them, com.mbeddr.core.expressions, contains only
the C expressions and primitive types. In particular, it does not have user-defined
data types, pointers, statements, or a module system. The idea was to make this
a kind of core expression language to be hosted in other DSL. In practice, this
works well as long as that DSL generates to C. However, even in this core language
subset, there are many implicit assumptions about C, making it unsuitable as a
generic, embeddable expression language; building an interpreter is also tough. It
also misses many useful features, such as higher-order functions.

When we started seeing the need for a core expression language, we thought
about generalising the mbeddr expressions; however, we decided against it and
started KernelF: the required changes would have been too great, making mbeddr
C too complicated. The use cases are just too di↵erent.

MPS BaseLanguage MPS ships with a language called BaseLanguage – it
wears its purpose clearly on its sleeve. It is fundamentally a slightly extended
version of Java (for example, it had higher order functions and closures long
before they were standardised as part of Java 8). It also ships with a set of
(modular) extensions for meta programming, supplying language constructs, to,
for example, create, navigate and query ASTs.

BaseLanguage has been used successfully – by us and others – as the basis for
DSLs. If those DSLs either extend Java or at least generate to Java, BaseLanguage
is a great fit and the recommended way to go. Even though it is not built in a
modular way, MPS’ support for restricting languages using constraints is powerful
enough to cut it down to what is relevant in any particular DSL.

However, similar to mbeddr C, it su↵ers from its tight connection to Java
in terms of data types, operators and assumptions about the context in which

16 Both of these points are clearly illustrated by a customer’s (not very satisfying)
attempt at building a whole range of business DSLs with Groovy.
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expressions are used. The fact that it is not a purely functional language and
does not support e↵ects tracking also makes it much harder to analyze. It also
has several features, such as generics, that make it harder to extend. Finally, its
long evolution in MPS also means that it carries around a lot of baggage; we
decided that it is worth the e↵ort to build a new, clean base language.

Xbase/Xtend Xbase [10] is a functional language that ships with Xtext17.
Similar to KernelF, its purpose is to be extended and embedded in the context of
DSLs. Xtend18 is a full programming language (with classes, modules and e↵ects)
that embeds Xbase expressions. Similar to Kotlin19 and Ceylon20, its goal is to
be a better, cleaned up Java, while not being as sophisticated/complex as Scala.
For the purposes of being an embeddable base language, Xtend’s scope is too big
(like Java or C), so we limit our discussion in this paragraph to Xbase.

In terms of its suitability as a base language, Xbase su↵ers from several
problems. The most obvious one for our use case is that it is implemented in
Xtext, and is thus useless for MPS-based languages. Of course, this does not
say anything about its conceptual suitability as a core language. However, there
are also two significant conceptual problems. First, because of the fact that it
is implemented in Xtext, its support for modular extension or embedding are
limited: one cannot use several independently developed extensions in the same
program in a modular way. Consequently, no such extensions are known to us,
or documented in the literature. Second, Xbase is very tightly coupled to Java:
it uses Java classes, generates to Java and even its IDE support is realized by
maintaining Java shadow models in the background. While this is a great benefit
for Java-based languages (the goal of Xbase), it is a drawback in general.

In terms of its core abstractions, many of the ideas in KernelF and Xbase
are similar: everything is an expression, functional abstractions, no modules or
statements (those are supplied by Xtend).

7.3 Lisp-Style Languages

Lisp-style languages have a long tradition of being extensible with new constructs
and being used at the core of other systems, such as Emacs. Racket21 takes this
to an extreme and allows significant syntactical flexibility for Lisp or extensions.
We decided against this style of language for several reasons:

First, while, generally, it is a matter of taste (and of getting used to it) whether
developers like or hate the syntax, it is very clear that (our) end users do not
like it. Thus, adopting this syntactical style was out of the question.

Second, existing Lisp implementations are parser-based, and even the meta-
programming facilities rely on integrated parsing through macros. This limits

17
https://www.eclipse.org/Xtext/

18
http://www.eclipse.org/xtend/

19
https://kotlinlang.org/

20
https://ceylon-lang.org/

21
https://racket-lang.org/
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the syntactic freedom to textual notations in general, and to the capabilities of
the macro system more specifically. We needed more flexibility.

Third, we wanted language extensions to be first-class: instead of defining
them through meta programming, we wanted the power of a language workbench.
Of course we could have implemented (a version of) Lisp im MPS and then
used MPS’ extension mechanisms to build first-class extensions. However, then
we would not make use of Lisp’s inherent extensibility, while still getting the
end-user-unsuitable syntactic style – clearly not a good tradeo↵.

Finally, Lisp language extensions only extend the language, not the IDE.
However, for our use cases, the IDE is just as important as the language itself, so
any language extension or embedding must also be known to the IDE. Lisp does
not support this (at least not out of the box).

7.4 Embeddable Languages

Lua22 is a small and embeddable language. In contrast to KernelF, it is not
functional – it has e↵ects and statements. Also, the notion of extension relates to
extending the C-based runtime system, not the front-end syntax. So, out of the
box, Lua would not have been an alternative to the development of KernelF.

However, we could have reimplemented Lua in MPS and used MPS’ language
engineering facilities for syntactic extension. While possible, this would still mean
that we would use a procedural language as opposed to a functional one, which
was at odds with our design goals. On the plus side is Lua’s small and e�cient
runtime system. While we did not perform any comparisons, it is certainly faster
than our MPS-integrated AST interpreter. However, performance considerations
are not a core requirement for the IDE-integrated interpreter. If fast execution is
required, we generate to Java or C, or implement reactivity (Section 6.2).

7.5 Other Language Workbenches

This paper is not about evaluating MPS’ suitability as a language workbench;
see [30] instead. Thus, a detailed evaluation about alternative implementation
technologies for KernelF is outside the scope of this paper. Nonetheless, if, for
some reason, we could not use MPS for KernelF and our customer projects,
Racket would probably be the best alternative.

8 Conclusion

We have built KernelF as a base language for DSLs. This means that it must
be extensible (so new, domain-specific language constructs can be added), em-
beddable (so it can be used as part of a variety of host languages) and language
concepts users do not need must be removable or replaceable. Our case studies
show that we have achieved this goal. Since developing KernelF, we have used it

22
https://www.lua.org/
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in most customer projects that required expressions or a full-blown programming
language as a basis.

Why were we successful? Two factors contribute. One is that we have built
KernelF after years and years of building DSLs. So we had a pretty good
understanding of the features required for the language, and to make it extensible
and embeddable. In particular, the design that enables extensibility was based
on our experience with mbeddr C, which has proven to be extensible as well. We
also had a good understanding of what features not to include, because they are
typically contributed by the hosting DSL. The second factor is MPS itself. As we
have analyzed in [30], MPS supports this kind of modular language engineering
extremely well.

We continue to use KernelF as a basis for our DSL work. We are also using it
as the core of a set of meta languages in our new web-based language workbench
Convecton. Once it is expressive enough, we will implement KernelF in Convecton
so we have it available as a base language for Convecton-based DSLs as well.

˜˜˜
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A KernelF Reference

In this section we describe the KernelF language. The description is complete in
the sense that it describes every important feature. However, it is incomplete in
that it does not mention every detail; for example, several of the obvious binary
operators or collection operations are not mentioned. They can be found out
easily through code completion in the editor.

A.1 Types and Literals

Three basic types are part of KernelF: boolean, number, and string. This is a
very limited set, but it can be extended through language engineering. They can
also be restricted or entirely replaced if a particular host language wants to use
other types.

val aBool: boolean = true
val anInt: number = 42
val aReal: number{2} = 33.33
val aString: string = "Hello"

Boolean types are obvious; for strings, it is worth mentioning that KernelF also
support string interpolation, because this is usually more understandable to
non-programmers than concatenating strings with +:

val concatString = "Hello " + anInt + " and " + (3 + anInt)
val interpolString = ’’’Hello $(anInt) and $(3 + anInt)’’’

The number type needs a little bit more explanation. A number has a range and
a precision. The following patterns exist to specify number types:

// integer type, unlimited range
number => number[-inf|inf]{0}
// positive integer
number[0|inf] => number[0|inf]{0}
// integer type, range as specified
number[10|20] => number[10|20]{0}
// decimal type with 2 decimal places, unlimited range
number{2} => number[-inf|inf]{2}
// range as specified, precision derived from range decimals
number[3.3|4.5] => number[3.3|4.5]{1}

The precision of numbers can be modified with the precision operator:

type preciseT: number[0|10]{5}
type roundedT: number[0|10]{2}
type wholeT: number[0|10]{0}
val precisePI: preciseT = 3.14156
val roundedPI: roundedT = precision<round up to 2>(precisePI)
val wholePI wholeT = precision<cut to 0>(0)
test case Precision {
assert precisePI equals 3.14156 <number[0|10]{5}>
assert roundedPI equals 3.15 <number[0|10]{2}>
assert wholePI equals 3 <number[0|10]>

}

There are also operators to ensure a value stays in its bounds but cutting too big
or too small values.
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val high = limit<wholeT>(20)
val mid = limit<wholeT>(5)
val low = limit<wholeT>(-1)
test case TestLimit {
assert high equals 10 <number[0|10]>
assert mid equals 5 <number[0|10]>
assert low equals 0 <number[0|10]>

}

A note on brackets We try to use the various brackets consistently. We use
regular round parentheses for value constructors, functions calls, built-in functions
(like limit above) and for precedence. We use angle brackets for everything that
relates to types, specifically type arguments (as in list<int>). Finally, we use
square brackets for tuples, indexed collection access, number ranges (as shown
above). Curly braces are used for blocks and in the special case of number
precision.

A.2 Basic Operators

KernelF provides the usual unary and binary operators, using infix notation.
Precedence is similar to Java, parentheses are available. Note that the type system
performs type inference (discussed in more detail in Section 3.1). As part of that,
it performs basic arithmetic computations on the ranges of numeric types.

42 + 33 ==> 75 <number[75|75]{0}>
42 + 2 * 3 ==> 48 <number[48|48]{0}>
aReal + anInt ==> 75.33 <number[75.33|75.33]>
if aBool then 42 else 33 ==> 42 <number[33|42]{0}>

type tt: number[-10|10]
val n3, n4: tt = 0
val n34: number[-100|100] = n3 * n4

A few less trivial operators are also available, expressed as member functions.
For example, you can test for membership in a list of values or a range:

val fourtyTwo = 42
fourtyTwo.oneOf[33, 42, 666] ==> true <boolean>
fourtyTwo.inRange[0..42] ==> true <boolean>
// notice open upper bracket: excluded upper limit
fourtyTwo.inRange[0..42[ ==> false >boolean>

A.3 Null Values and Option Types

Option types are used to handle null values in a typesafe way. The constant
maybe in the code below can either be an actual number value, or nothing (i.e.,
none), depending on the value of aBool. This is why the constant is typed as an
option<number> instead of just number. The if expression then produces either
none or 42.

val maybe : option<number> = if aBool then 42 else none
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Most operators, as well as many dot operations, are overloaded to also work
with option<T> if they are defined for T. If one of the arguments is none, then
the whole expression evaluates to none. In this sense, a none value ”bubbles” up.
Note that the type system represents this; the + operator and the length call in
the example below are also option types!

val nothing : opt<number> = none
val something : opt<number> = 10
val noText : opt<string> = none

nothing + 10 ==> none <option[number[-inf|inf]{0}]>
something + 10 ==> 20 <option[number[-inf|inf]{0}]>
noText.length ==> none <option[number[0|inf]{0}]>

To test whether an option actually contains a value, you can use the isSome
expression as shown below:

val maybeHasAValue : boolean = isSome(maybe)

To explicitly extract the value from an option type (i.e., to transform an option<T>
to a T), a special form of the if expression can be used for this purpose, as shown
in the example below. As mentioned above, the isSome expression is a query
that tests if the option contains a value; inside the then part, the val expression
refers to the value extracted from the option; val cannot be used in the else
branch, so it is syntactically impossible to access the (then non-existent) value in
the option.

if isSome(maybe) then val else 0 ==> 42 <number[42]>

If the name val is ambiguous, then the name can be changed using an as clause;
the example also illustrates that several expressions can be tested at the same
time.

if isSome(f(a)) as t1 && isSome(f(c)) as t2 then t1 + t2 else 0

A shorthand operator opt ?: alt is also available; it returns the value inside
the option if the option is a some, and the alt value otherwise:

val anInt = maybe(a, b) ?: 0

A.4 Error Handling using Attempt Types

In the same way that KernelF encodes null checks into the type system using
option types, KernelF also provides type system support for handling errors using
attempt types. An attempt type has a base type that represent the payload (e.g.,
return value in a function) if the attempt succeeds. It also has a number of error
literals that have to be handled by the client code. An attempt type is written as
attempt<baseType|err1, err2,..,errN>. As a consequence of type inference,
such a type is hardly ever written down in a program.

Error handling has two ingredients. The first step is reporting the error.
In the example below, this is performed in the getHTML function. Depending
on what happens when it attempts to retrieve the HTML, it either returns the
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payload or reports an error using error(<error>). The type inference mechanism
inferes the type attempt<string|timeout, err404> for the alt expression and,
transitively, the function getHTML.
fun getHTML(url: string) : attempt<string|timeout, error404>

= alt |..successful.. => theHTML |
|..timeout.. => error(timeout) |
|..unreachable.. => error(error404) |

The client has to “unpack” the payload from the attempt type using the try
expression. In the successful case, the val expression provides access to the
payload of the attempt type. Errors can either be handled one by one (as shown
in below), or with a generic error clause.

val toDisplay : string = try getHTML("http://mbeddr.com") => val
error<timeout> => "Timeout"
error<error404> => "Not Found"

As with the unpacking of options using isSome, it is possible to assign a name to
the result of the called function, so that name can be used instead of val in the
success case:

try getHTML("http://mbeddr.com") as data => data
...

If not all errors are handled, the type of the try expression remains an attempt
type. In the above example, we may not handle the error404 case:

val toDisplay = try getHTML("http://mbeddr.com") => val
error<timeout> => "Timeout"

In this case, the type of try, and hence of toDisplay, would be attempt<string|error404>.
This way, error handling can be delegated to an upstream caller. To force complete
handling of all errors, two strategies can be applied. The first one involves a type
constraint to express that the success type is expected:

val toDisplay: string = try getHTML("http://mbeddr.com") => val
error<timeout> => "Timeout"

In an incomplete case, where not all errors are handled (either individually or
with a generic error clause), the type of try will remain an attempt type with
the non-handled errors. If an explicit return type expects a non-attempt type, this
type incompatibility will return in an error. A way of forcing the try expression
to handle all errors is to use the complete flag, as shown below. It reports an
error on the try expression directly if not all errors are handled:

// try will have error b/c error404 is not handled
val toDisplay = try complete getHTML("http://mbeddr.com") => val

error<timeout> => "Timeout"

Similar to option types, the attempt types are also overridden wrt. to their
success type for the same operators and dot expressions. The error literals are
propagated accordingly.

getHTML("http://mbeddr.com").length ==> 4
<attempt[number[0|inf]{0}|[error404, timeout]]>

getHTML("http://doesntExist.com").length ==> error(error404)
<attempt[number[0|inf]{0}|[error404, timeout]]>
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A.5 Functions and Extension Functions

Even though the notion of “callable units of program functionality” is often
domain-specific, KernelF includes a default abstraction for functions. Functions
have a name, a list of arguments, an optional return type and an expression
as the body; the code below shows a few examples. The body can use the
block expression, which supports values as temporary variables (similar to a let
expression, but with a more friendly syntax). The return type is optional as it
can be inferred. For recursive functions it is mandatory.

fun add(a: number, b: number) = a + b
fun addWithType(a: number, b: number) : number = a + b
fun biggerFun(a: number) = {
val t1 = 2 * a
val t2 = t1 + a
t2

}

KernelF also supports extension functions. They must have at least one argument,
the one that acts as the this variable. They can then be called using dot notation
on an expression of the type of the first argument. In contrast to regular functions,
the advantage is in IDE support: code completion will only show those functions
that are valid for the first argument. Note that, at least for now, no polymorphism
is supported.

ext fun isSomethingInIt(this: list<number>) = this.size != 0
list(1, 2, 3).isSomethingInIt() ==> true <boolean>

A.6 Function Types, Closures, Function References and
Higher-Order Functions

KernelF has full support for function types, closures and function references as
well as higher-order functions.

We start by using a type definition to define abbreviations for two function
types. The first one, INT_BINOP is the type of functions that take two numbers
and return a number. The second one represents functions that map one number
to another. Using typedefs is not necessary for function types, they can also be
used directly. But since these types become long’ish, using a type makes sense.

type INT_BINOP : (number, number => number)
type INT_UNOP : (number => number)

Next, we define a function mul that is of type INT_BINOP. We can verify this by
assigning a reference to that function (using the colon operator) to a variable
mulFun : INT_BINOP. Alternatively we can define a closure, i.e., an anonymous
function, and assign it to a similarly typed variable mulCls. Closures use the
vertical bar for delineation.

fun mul(a: number, b: number) = a * b
val mulFun: INT_BINOP = :mul
val mulCls: INT_BINOP = |a: number, b: number => a * b|
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We can now define a higher-order function doWithTwoInts that takes two integers
as arguments, as well as value of type INT_BINOP. The body of the function
executes the function or lambda, forwarding the two arguments. The next two
lines verify this behavior by calling doWithTwoInts with both mulFun and mulCls;
note the two di↵erent syntaxes to “call” function values:

fun doWithTwoInts1(x: number, y: number, op: INT_BINOP) =
op.exec(x, y)

fun doWithTwoInts2(x: number, y: number, op: INT_BINOP) =
op(x, y)

doWithTwoInts(2, 3, mulCls) ==> 6 <number>
doWithTwoInts(2, 3, mulFun) ==> 6 <number>

Finally, KernelF also supports currying, i.e., the binding of some of a function’s
arguments, returning new functions with correspondingly fewer arguments. The
value multiplyWithTwo in the example below is a function that takes one ar-
gument, because the other one has already been bound to the value 2 using
bind. We could add an optional type to the constant (val multiplyWithTwo:
INT_UNOP = ...) to verify that the type is indeed INT_UNOP. For demonstration
purposes we define another higher-order function and call it.

val multiplyWithTwo = mulCls.bind(2)
fun doWithOneInt(x: int, op: INT_UNOP) = op.exec(x)
doWithOneInt(5, multiplyWithTwo) ==> 10 <number>

A.7 Collections

KernelF has lists, sets and maps. All are subtypes of collections. While
KernelF does not have generics in general, the collections are parametrized with
their element types. They are also covariant.

val reals = list(1.41, 2.71, 3.14)
val names = set("Markus", "Markus", "Tamas")
val hometowns = map("Markus"->"Heidenheim", "Tamas" ->"Puspokladany")
val col : collection<real> = reals

The collections support the usual simple operations, a few are shown in the
following example code. Of course, like all other values in KernelF, collections are
immutable; the operations to not modify the value on which they are called, the
return a modified copy. This is illustrated by the second line, where the original
reals list is still list(1.41, 2.71, 3.14).

reals ==> list(1.41, 2.71, 3.14) <list<number[0.00|100.00]{2}>>
reals.add(1.00) ==> list(1.41, 2.71, 3.14, 1.00) <list<number[0.00|100.00]{2}>>
reals.at(1) ==> 2.71 <number[0.00|100.00]{2}>
reals[2] ==> 3.14 <number[0.00|100.00]{2}>
names.isEmpty ==> false <boolean>
names.size ==> 2 <number>
hometowns["Tamas"] ==> "Budapest" <string>

Notice that the reals.add(1.00) will lead to an error because it tries to
add a 1.00 to a list of number[1.41|3.14]{2}, i.e. 1.00 is out of range!
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To fix this, the reals collection must be given an explicit type, for example
number[0.00|100.00]23.

The usual higher order functions on collections are also available. They can
be used in three forms: you can pass in a function reference, a closure (both
introduced before), and also a shorthand version of the closure, where the it
argument is implicit. The latter is the default.

val ints = list(1, 2, 3, 4)
fun isGreaterTwo(it: number) = it > 2
ints.where(:isGreaterTwo) ==> list(3, 4) <list<number[1|4]>>
ints.where(|number r => r > 2|) ==> list(3, 4) <list<number[1|4]>>
ints.where(|it > 2|) ==> list(3, 4) <list<number[1|4]>>

More examples are shown below; the list of operations is expected to grow over
time.

ints.map(|it + 1|) ==> list(2, 3, 4, 5) <list<number>>
ints.any(|it < 0|) ==> false <boolean>
ints.all(|it > 3|) ==> false <boolean>

There is also a foreach which requires the lambda expression inside to have a
side e↵ect; it ”performs” the side e↵ect and then returns the original list. We
discuss e↵ects in Section A.13.

Inside where, foreach and map, the variable counter is available; it has a
zero-based index value of the current iteration (i.e., 0 in the first iteration, 1 in
the second, etc.).

A.8 Tuples

Tuples are non-declared multi-element values. The type is written as [T1, T2,
.., Tn], and the literals look essentially the same way: [expr1, expr2, ..,
exprN]. Tuple elements be accessed using an array-access-like bracket notation.

ext fun minMax(this: list<number>) = [this.min, this.max]
ints.minMax() ==> [1, 4] <[number, number]>
ints.minMax()[0] ==> 1 <number>
ints.minMax()[1] ==> 4 <number>

A.9 Records and Path Expressions

Like Tuples, records are structured data, but they are explicitly declared and
the members are named. KernelF has them primarily for completeness and for
prototyping; experience tells us that most data structures are domain-specific
and thus contributed by a language that embeds KernelF.

record Company {
offices: list<Office>
emps : list<Person>

}
record Person {

23 In later version of the type system, a suitable type might be derived automatically.
Currently, the element added to a list must be a subtype of the element in the list.
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lastName : string
middleInitial: option<string>
firstName : string

}
record Office {
branchName: string

}

A literal syntax is also supported:

val officeLuenen = #Office{"Luenen"}
val comp = #Company{
list(#Office{"Stuttgart"}, officeLuenen),
list(#Person{"Markus", none , "Voelter"},

#Person{"Tamas", "M", "Szabo"})
}

Path expressions can be used to navigate along nested records structures, as
shown in the examples below.

comp.emps.firstName ==> list("Voelter", "Szabo") <collection<string>>
comp.emps.firstName.last ==> "Szabo" <string>
comp.emps.map(|Person p => "Hello " + p.firstName|).first ==> "Hello Markus" <string>

In addition, a semi-graphical builder expression is available for constructing
complex structures. An example is shown in Figure 24. It can be used for any
hierarchical structure, not just records, if a suitable adapter is provided.

Fig. 24. The builder expression uses collapsible trees to build hierarchical structures.

Like all other values in KernelF, record instances are immutable. However,
there is a convenient syntax to “modify” record instances, i.e., create copies with
some member values changed:

val me = #Person{"Markus", none, "Voelter"}
val meWithX = me.with(firstName = old + "X", lastName = lastName + "X")
val meSwitched = me.with(firstName = lastName, lastName = firstName)
val brother = me.with(firstName = "Mathias")

brother ==> #Person{"Mathias", none, "Voelter"} <Person>
meWithX ==> #Person{"MarkusX", none, "VoelterX"} <Person>
meSwitched ==> #Person{"Voelter", none, "Markus"} <Person>

Grouping The groupBy operation supports grouping the entries in an existing
collection by a key. The result is a new collection of type group<KT, MT> where
KT is the type of the key expression and MT is the type of the members of each
group (the type of the original collection). In the example in Figure 25 the KT is



LXII

string and the MT is Item. On a variable of type group<KT, MT> one can use
the key operation to retrieve the current group’s key, and members to access all
the members of that group.

Fig. 25. Example code showing grouping, projection of anonymous records and string
joining/termination.

Anonymous Records The project operation supports the on-the-fly creation
of anonymous records. In the example in Figure 25, we create one that has two
fields, author and cats.24 project is typed to a collection of this anonymous
record. As a consequence of type inference, the anonymous record can be used
with full IDE support; however, since the type has no name it cannot be mentioned
in the program. So, for example, the authorCats value could not be annotated
with an explicit type, and it cannot be used as a function argument (because this
would require an explicit type).

String Lists Lists of strings can be transformed into a single string using the
join(s) and terminate(s) expressions. join separates two subsequent strings
by s, whereas terminate terminates each one with s. Figure 25 shows an example.

A.10 Enums

Enums are also supported in KernelF, with regular and valued flavors. Regular
enums just define a list of literals; their type is the enum itself (see the use of
Color in the code snippet below). Literals can be marked as qualified, which
means that their literals have to be referenced using enum name before the colon
to deal with potentially overlapping literal names.

enum Color { red, green, blue }
enum Starbucks qualified { large, venti, monster }
val ocean: Color = blue
val coffee = Starbucks:large

24 This is short for categories and does not related to the animal :-).
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Valued enums associate an arbitrary value with each literal; all values of a
particular enum must be of the same type. That type is declared after the name
of the enum, adding that type makes an enum a valued enum. From an enum
literal reference, you can get the associated value using the value operation.

enum StarbuckSizes<number> {
big -> 100
venti -> 200
mega -> 300

}

enum Family<Person> {
me -> #Person{"Markus", none, "Voelter"}
myBrother -> #Person{"Mathias", none, "Voelter"}

}

me.value.firstName ==> "Markus" [string]
big.value ==> 100 [number]

A.11 Unit Tests and Constraints

Tests Built-in support for unit tests is important, because, as we describe
in subsection 2.2, the semantics of KernelF is defined via a test suite; so we
needed the ability to conveniently write collections of unit tests even during the
implementation of KernelF. Test support is also essential to help users write
good code; even our target audience of “programming domain experts” realizes
the importance of testing and use the feature extensively.

At the core of the unit test support is the test case: a test case has a name
and a number of test case items. The default item is an assertion that compares
an expected and an actual value. The comparison operator itself is equation
by default, but can be extended through language extension. The second test
case item is confail, which expects a constraint failure to occur as part of the
evaluation of the actual result (see below for constraints). The constructs that
can go into a test case, the test case items, can be extended as well. For example,
users can add set up or tear down code if they want to test expressions with side
e↵ects. A test suite finally groups tests, plus other top level contents (records,
functions, constants). It is also possible to reference entities outside the test suite.
Figure 32 shows an example.

Constraints KernelF supports checking of runtime constraints. Several forms
exist, all illustrated in Figure 26:

– Attached to a value: it is checked after the value has been computed.
– Attached to a typedef or record, it is checked whenever a value is checked

against an explicitly declared type: when initialising a value, when returning
from a function, and when passing an argument into a function. For chained
type definitions, the constraints are joined in a conjunction (”anded”together).
Constraints for records are also checked when the record is instantiated using
a record literal #R{..} or when it is ”changed” using the with operation.

– Type check on an expression: it checks the type and also the constraints
associated with the type.
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– Attached to functions in the form of pre- and postconditions. They are
checked before and after the execution of the function, respectively.

Constraint failures lead to a target platform-specific reaction. The default im-
plementation in the interpreter throws a ConstraintFailureException (whose
occurence can be tested using the confail test item). The output of the exception
logs a stacktrace of the failed constraint; see below. The long URL in line two is
the URL of the node in the MPS source code that failed; you can paste it into
your browser, and MPS will select the particular node.

ERROR: Postcondition failed for res.inRange[0..1]
http://localhost:8080/select/DEFAULT/r:3dff0a9...

at [Function] PaperDescription.oddOrEven(10)
[Function] PaperDescription.function1(10)
[Function] PaperDescription.function2(10)

Fig. 26. Constraints can be attached to values, to functions (in the form of pre- and
postconditions), to records, and to types. In the latter case, they are checked whenever
a type is explicitly specified in values, function arguments, return types and type
constraint expressions.

In case of a failed constraint, execution terminates. If, in the example above, the
error should be communicated back to the caller, regular error handling should
be used:

fun oddOrEven(i: number) = alt | i == 1 => success(0) |
| i == 2 => success(1) |
| i == 3 => success(0) |
| i == 4 => success(1) |
| otherwise => error(range) |

For constraints on types, it is also possible to query the conformance of a value
against this type explicitly from the program (i.e., without throwing a runtime



LXV

exception). Types can contribute constraints as well as custom error messages
that can be reported to the user.

type Speed: number[-50|250]
type FwdSpeed: Speed where it >= 0

val validSpeed1 = check<Speed>(-10)
val validSpeed2 = check<Speed>(50)
val invSpeed = check<Speed>(300)
val invFwdSpeed1 = check<FwdSpeed>(-10)
val invFwdSpeed2 = check<FwdSpeed>(300)

test case TestConstraintsCheck {
assert validSpeed1.ok equals true
assert validSpeed2.ok equals true
assert if validSpeed1 then 1 else 0 equals 1
assert invSpeed.ok equals false
assert invSpeed.err equals "value is over minimum (250)"
assert invFwdSpeed1.ok equals false
assert invFwdSpeed2.ok equals false

}

If you want to test for constraints explicitly using the check expression, you
cannot assign the type to the variable, because this would lead to a constraint
before the explicit test gets invoked. Thus, the following code would be illegal,
because the assertion in the test case would never be executed; the runtime
constraint check in val aSpeed: Speed = 300 would occur first.

val aSpeed: Speed = 300
val validSpeed = check<Speed>(aSpeed)
test case TestConstraintsCheck {
assert validSpeed.ok equals true

}

Using an unconstrained integer (or not specifying a type at all) solves this
problem:

val aSpeed: number = 300
val validSpeed = check<Speed>(aSpeed)

Forcing Types Assigning a “bigger” type to a “smaller” type is prevented by
the type system; thus the following error:

val bigRge : number[0|100] = 50
val smallRge : number[10|20] = bigRge // error

However, in the following piece of code, we know that the value will fit into
number[10..20], even though the type system cannot figure it out25 and will
report an error.

val smallRge : number[10|20] = if bigRge > 20 then 20 else bigRge

To solve this issue, you need an explicit type cast:

val smallRge : number[10|20] = cast<number[10|20]>(if bigRge > 20 then 20 else bigRge)

25 Future version of the type system may be able to figure it out by improving the
number range calculation.
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A cast essentially prevents type checks and delegates checking to runtime; in
other words, the runtime constraint checks of the target type are applied to the
value returned by the cast expression (range between 10 and 20 in this case).
Note that, because of type inference, the type of the val can be omitted, resulting
in the following code:

val smallRge = cast<number[10|20]>(if bigRge > 20 then 20 else bigRge)

To recap: a type specified on an argument or value is checked by the type system.
A cast type is not checked by the type system, but the value has to conform
to the target type at runtime. There is no way to avoid all static and runtime
checks; KernelF always at least provides runtime safety.

A.12 Type Tags

A type tag is additional information attached to the type, that is tracked and
checked by the type system. Consider a web application that processes data
entered by the user. A function process(txt: string) may be defined to handle
the data entered by the user. To ensure that txt does not contain executable code
(cf. code-injection attacks), the string has to be sanitized. Until this happens,
the data must be considered tainted [?]. Type tags can be used to ensure that a
function can only work with sanitized strings:

// returns an arbitrary string
fun getData(url: string) : string { "data" }
// accepts a string that must be marked as sanitized
fun storeInDB(data: string<sanitized>) : boolean = ...
...
// v is a regular string
val v = getData("http://voelter.de")
// trying to pass it storeInDB fails because it
// does not have the sanitized tag
val invalid = storeInDB(v) // error
// sanitise is a special operator that cleans up the string,
// and them marks it as sanitized; passing to storeInDB works
val valid = storeInDB(sanitise[v])

The sanitized tag is an example of a unary tag. A type can be marked to have
the tag (<tag>), to not have the tag (<!tag>), or to be unspecified. The tag
definition determines the type compatibility rules between those three options.
For sanitized, a type with no specification corresponds to <!sanitized>; in
other words, if we don’t know, we cannot assume the string has been sanitized.

In addition, the system supports n-ary tags as well. They define a set of
tag values (e.g., confidential, secret, topsecret) with an ordering between
them (e.g., confidential < secret < topsecret). The type checking for tags
takes this ordering into account, as is illustrated by the code below:

val somethingUnclassified : string = "hello"
val somethingConfidential : string<confidential> = "hello"
val somethingSecret : string<secret> = "hello"
val somethingTopSecret : string<topsecret> = "hello"

fun publish(data: string) = ...
val p1 = publish(somethingUnclassified)
val p2 = publish(somethingConfidential) // ERROR
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val p3 = publish(somethingSecret) // ERROR
val p4 = publish(somethingTopSecret) // ERROR

fun putIntoCIAArchive(data: string<confidential+>) = ...
val a1 = putIntoCIAArchive(somethingUnclassified) // ERROR
val a2 = putIntoCIAArchive(somethingConfidential)
val a3 = putIntoCIAArchive(somethingTopSecret)
val a4 = putIntoCIAArchive(somethingSecret)

fun tellANavyGeneral(data: string<secret->) = ...
val g1 = tellANavyGeneral(somethingConfidential)
val g2 = tellANavyGeneral(somethingSecret)
val g3 = tellANavyGeneral(somethingTopSecret) // ERROR
val g4 = tellANavyGeneral(somethingUnclassified)

A.13 E↵ects Tracking

KernelF at its core is a functional language and none of the expressions in KernelF
have a side e↵ect. This means, for example, that an execution engine can cache
the results of functions that are called repeatedly with the same arguments; the
default KernelF interpreter does this. However, KernelF may be extended to
support expressions with side e↵ects or be embedded in a language that has
e↵ects. Then, it must be possible to analyze which functions (or other parts of
programs) can be cached, and which cannot because they have e↵ects. Similarly,
it must be allowed to call a function with an e↵ect without capturing its return
value (which is an error otherwise).

To enable this, KernelF supports e↵ects tracking. It distinguishes between
read and write e↵ects, and for write e↵ects it also tracks idempotence.

Consider the following example:

fun standardise/RM(data: number) {
val filtered = filter(data)
effect[data]
if filtered > data then filtered else data

}

Here, effect[..] is a demo expression provided by a language extension that has
a side e↵ect. This is signalled to the checker by implementing IMayHaveEffect in
the language concept and returning an EffectDescriptor from its effectDescriptor
method; the descriptor has Boolean flags for the various supported kinds of e↵ects.

Because it is called inside the standardise function, that function must also
be marked to have an e↵ect. This is done by entering /R (reads), /M (modifies)
or /RM (reads + modifies) behind the function name; an error will be reported
otherwise. The mechanism also works for function types: you can mark a function
type as allowing e↵ects, by entering the flag after the arrow in the function type;
this is shown in the argument of the function below. If declared this way, it is
legal to pass in functions that has an e↵ect (or not).

fun doSomethingWithAnEffect/RM(f: ( =>/RM string)) = f.exec/RM()

Note that the function call (to exec in this case) is automatically marked to
have an e↵ect if the called function has an e↵ect.
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A.14 Boxes

Immutable data means that you cannot change a value once it has been created.
For primitive types, this is intuitive:

val a = 1 + 2
val b = 3 + a
val x = a + b

1 + 2 creates a new value 3, and adding a and b creates a new value c. Values
can also not be reassigned because anybody who has a reference to x now sees
the value of x change.

val x = a + b
x = x + 1 // invalid

Instead you have to invent a new name for the new value, however, this leads to
many new (temporary) names. Let us look at collections. Assume you have a list
of three elements and you add a fourth one:

val l1 = list(1, 2, 3)
val l2 = l1.plus(4)
assert l1.size == 3
assert l2.size == 4

Here, too, the original list remains unchanged and you get a new list, one that
now has a fourth element, as the result of l1.plus(4).

So, how do you store changing global state, for example, a database of
measurements? Using a new variable for each updated “state of the database” is
not a solution because it is the database that is supposed to change. One solution
would be to introduce variables (as opposed to the values used so far):

var db = list(1, 2, 3) // note the r instead of the l
fun store/M(x: int) {
db.add(x)

}

For this to work, you will have to mark the add operation to have an e↵ect,
which will, transitively, also give store an e↵ect. However, add does not exist on
immutable lists, so you need a whole second set of APIs for mutable collections.
The list in this example cannot be the same list as the one used earlier; it’s a
mutable list, maybe called mlist. In conclusion, you need mutable versions of all
collections. This approach is a valid solution, and some languages, for example,
Scala, use it. However, it is a lot of work and should be avoided.

Boxes Boxes are an alternative approach that do not require mutable version
of all immutable data structures. Boxes explicitly values inside. The box itself is
immutable (i.e., its own reference stays stable), but its contents can change:

val globalcounter: box<int> = box(0)
fun incrCounter() {
globalcounter.update(globalcounter.val + 1)

}

Apart from creation, boxes have two operations: a val that returns the contents
of the box, as well as a update(newval) that sets a new value. The former has a
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read e↵ect, the latter a modify e↵ect. When you update the box’s content, you
pass a new value; you do not need additional APIs for changing value. The boxes
themselves are generic, as shown with the next example of boxed collections:

val db = box(list(1, 2, 3)) // we’re back to a value here!
fun store(x: int) {
db.update(db.val.plus(4))

}

The big advantage of this approach is that no mutable data structures are
required, the original immutable APIs (plus the generic box functionality) are
enough. However, the syntax is a little bit chatty. To make it more concise, the
it expression provides access to the current content of the box:

val globaxlcounter = box(0)
val db = box(list(1, 2, 3))
fun incrCounter() { globalcounter.update(it + 1) }
fun store(x: int) { db.update(it.plus(4)) }

Interpreter In terms of implementation, for example, in an interpreter,
boxes are really just wrapper objects with a method to get and set a generic
java.lang.Object box content. The val and update operations call those meth-
ods on the runtime Java object.

public class BoxValue {
private Object value;
public BoxValue(Object initial) { this.value = initial; }
public void set(Object newValue) { this.value = newValue; }
public Object get() { this.value; }

}

A.15 Native Mutable Data

The reason for boxes is that existing immutable data types can be used in a
mutable way. However, this is only useful if you have immutable data structures
to reuse this way in the first place; some data structures are inherently mutable,
and they can use a box-free syntax.

State Machine Example The embodiment of changing state are state ma-
chines, and Figure 27 shows minimal one that represents a (slightly contrived)
counter:

It defines two events, one to initialise the machine’s counter, and the other
one to increment it. It has two states, an initial state and operational state. The
init event goes from the initial init state to the count state, where it then
accepts inc events. If the by value is less than 10, the counter gets incremented,
otherwise a counter of invalids incrementation attempts is increased.

Since the state machine’s purpose is to represent changing state over time, we
don’t have to pretend anything is immutable. This is why we allow an assignment
operator := inside a state machine. Inside a state machine you can also read
one of its variables by just mentioning its name (as in invalids + 1); you don’t
need the val.

The following code shows how to use a state machine from client code:
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Fig. 27. A state machine is an example of natively mutable data structure.

val ctr = start(CounterToMax).init(0) // start creates instance
fun doStuffWithCounter() {
ctr.inc(5) // now 5
ctr.inc(3) // now 8
ctr.inc(20) // invalid; still 8
assert ctr.counter == 8
assert ctr.invalids == 1

}

Note that even though there is mutable state (and the various operations on state
machines have e↵ects), there are no boxes; no update or val is required. However,
internally the state machines still have box semantics (in the implementation,
several interfaces for IBoxLike things are used to generalise box-like behavior).
But state machines have been purpose-built to have state, there is no need
to reuse existing immutable APIs, as was the case for primitive operators and
collections.

Interpreter Let’s look at the interpreter. To implement the variable references
inside state machines, we use an interface ICanBeUsedAsLValue to mark that
they can be used on the left side of an assignment (an “lvalue”). The interface
has a method isUsedAsLValue that detects structurally, from the AST, if a
particular variable reference is on the left side of an assignment. The interpreter
uses this method to determine what it needs to evaluate to: the box if it is used
as a lvalue, and the box contents otherwise. Here is the generic interpreter for
the assignment; note how it relies on the runtime representation of things that
can be lvalues to implement the ILValue interface to generically implement this
functionality:

Object rvalue = #right; // recursively call interpreter
Object lvalue = #left; // on the two arguments
if (lvalue instanceof ILValue) { // must be an ILValue
// which has update method
((ILValue) lvalue).updateValue(rvalue);

} else {
throw new InvalidValueException(node.left, "not an ILValue");

}
return rvalue;
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In the case of state machines, the interpreter plays together with, the VarRef
concept that represents references to state machine variables:

SmValue currentMachine = (SmValue) env[SmValue.THIS];
SMVarValue value = currentMachine.getVar(node.var);
if (node.isUsedAsLValue()) {
return value; // returns the box

} else {
return value.value(); // returns box contents

}

It first retrieves the currently executing instance of the state machine from
the environment (the triggers put that there), and then asks the current state
machine for the variable that it references. Note that this returns the ILValue-
implementing class that represents the variable. Then comes the crucial distinction:
if the current variable reference is used in lvalue position, we return the ILValue
(so that the assignment interpreter can call update). Otherwise we directly return
the contents of the box (e.g., an int)

A.16 Transactions

Take a look at the following code:

type intLE5: int where it <= 5
val c1: box<intLE5> = box(0)
val c2: box<intLE5> = box(0)
fun incrementCounters(x1: int, x2: int) {
c1.update(it + x1)
c2.update(it + x2)

}
fun main() {
incrementCounters(1, 1)
incrementCounters(3, 5)

}

Boxes respect the constraints on their content type: if you set a value that violates
a constraint, than the update fails. What actually happens then is configurable,
at least in KernelF’s default interpreter: output a log message and continue, or
throw an exception that terminates the interpreter. While, in the second case, the
program stops anyway, and so it does not matter which value is set, in the first case
we run into the problem that, for the second invocation of incrementCounters,
c1 is updated correctly, but the update of c2 is faulty. Transactions can help
with this:

fun incrementCounters(x1: int, x2: int) newtx{
c1.update(it + x1)
c2.update(it + x2)

}

A transaction block is like a regular block, but if something fails inside it (in-
terpreter: an exception is thrown), it rolls back all the changes to mutable
data inside that transaction. Because the box contents themselvers are im-
mutable, the interpreter simply stores the value of each box (or more generally,
ITransactionalValue) before it performs the update and remembers them in
the transaction. On rollback, it just re-sets the value. This also works with state
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machines, and with combinations of state machines and other boxes, as shown in
the example below where the state machine modifies other global data.

Fig. 28. An example of using transactions with di↵erent mutable data structures.

The language also supports nested transactions (which can be rolled back
individually) as well as the distinction between starting a new transaction (with
newtx) and a block requiring to be executed in an existing transaction (using
intx).

Interpreter The reason why transactions work also with state machines is
that the current total state of a state machine is also an immutable object; in
other words, it also implements ITransactionalValue. The implementation of
the transaction in the interpreter looks like this:

Transaction tx = new Transaction(node);
env[Transaction.KEY] = tx; // store in env for nested calls
try {
Object res = #body;
tx.commit();
return res;

} catch (SomethingWentWrong ex) {
tx.rollback();

} finally {
env[Transaction.KEY] = null; // no tx active anymore

}

This form of transactional memory is also used in Clojure, as far as I understand.
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A.17 State Machines

We have introduced basic state machines above. In this section we’ll introduce
the remaining features of state machines.

Nested States States can be nested. A state S that itself contains states
considers the first F one as the initial state. Any entry into S automatically
enters F, recursively.

Actions State machines support entry and exit actions on states as well as
transition actions. Ordering of their execution is always exit-transition-entry.
For nested states, the exit actions are executed inside-out, the entry actions are
executed outside in.

Automatic Transitions In addition to transitions that are triggered by events
(expressed using the on keyword), automatic transitions are also supported. They
are introduced by the keyword if and do not include a triggering event, only a
guard condition. They are executed upon state entry (after the entry actions) or
if no triggered transition fires.

Timeouts A particular use case for automatic transitions is to use the
timeInState variable in the guard condition to implement time-dependent be-
haviours. It contains the time since the last (re-)entry of the state. Notice that if
a transition on E -> S fires, this counts as a reentry. If you want to “stay” in the
state, then avoid the -> S. Note that if you do not specify a target state, then
the transition must have an action. A transition with no action and no target
state is illegal (because it does not do anything).

A.18 Clocks

KernelF supports clocks. There is a built-in type clock whose values have a time
operation that returns the current time millis of the underlying clock. New values
of type clock can be created by using two expressions: systemclock returns a
clock that represents the clock of the underlying system. artificialclock(init)
returns a clock initialized to the init value. Note that artificialclock is also of
type artificialclock, which, in addition to time, also has an advanceBy(delta)
operation that moves the clock forward by delta units. The tick operation cor-
responds to advanceBy(1).

Artificial clocks are useful for testing. However, built-in expressions such as
the timeInState mentioned above default to the global clock. By default, the
global clock is the systemclock. If you want to use an artificial clock for testing.
you must register it as the global clock using the §global-clock pragma.
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B KernelF Tooling

B.1 MPS-based IDE

The KernelF language is of course not dependent on any particular IDE. However,
what makes KernelF relevant (and not just another functional language) is its
extensibility and embeddability. For this, it relies on MPS’ meta programming
facilities. In other words, KernelF can only be sensibly used within MPS. This
also means that the IDE support MPS provides is the IDE support for KernelF.
Like for any other language, MPS provides syntax highlighting, code completion,
goto definition, find usages, and type checking. Because MPS is a projectional
editor, it also implicitly provides formatting. Since all of this is pretty standard,
we will not discuss this further.

What is worth mentioning is that this IDE support also automatically works
for all extensions of KernelF, and it keeps working if KernelF is embedded
into another language. No ambiguities arise from combining grammars, and no
disambiguation code has to be written.

B.2 Interpreter

KernelF comes with an in-IDE interpreter that directly interprets MPS’ AST.
The semantic implementation of the language concepts is implemented in Java.
Note that it is not optimized for performance (in which case a completely di↵erent
architecture would be required), but for quick feedback for DSL code, in particular
for test cases. The interpreter can be executed on assert entries in test cases;
it can be started either from the context menu or with Ctrl/Cmd-Alt-Enter.
Complete test cases and test suites can also be executed using the same menu/keys.

Notice that the interpreter performs extensive caching for expressions that
have no e↵ects. In particular, function calls with the same arguments are executed
only once (per interpreter session) if the function has no e↵ect. It is thus important
that e↵ect tracking is implemented correctly in language concepts.

B.3 Read-Eval-Print-Loop

KernelF ships with a read-eval-print-loop (REPL; Figure 29 shows an exam-
ple). It is represented as its own root and is persisted; but its interaction is
more like a console in the sense that whenever you evaluate an entry (using
Ctrl/Cmd-Alt-Enter) the next one is created and focused. Each entry is num-
bered, and you can refer to each one using the $N expression.

By default, each entry in a REPL is evaluated once, and you “grow” the REPL
by adding new expressions. However, by checking the downstream updates
option, you can change any REPL expression, and all the transitively dependent
ones are then reevaluated as well.

The easiest way to start a REPL is to select any expression in a KernelF
program and use the Open REPL intention. It then creates a new REPL, adds the
expression in the first entry and evaluates it. By using the Close and Return
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Fig. 29. An example of a REPL session on a clock expression.

button in the REPL, the REPL is deleted and the node from which it was opened
is put back in focus.

B.4 Debugger

One of the benefits of a functional language is that there is no program state
to evolve; all computations can be seen as a tree of computed values. This
means that debugging does not require the step-and-inspect style we know from
imperative languages. Instead, debugging can just illustrate the computation tree
in a convenient way.

KernelF ships with a debugger that is based on this approach. Fundamentally,
a computation in the KernelF interpreter collects a trace, and this trace can be
inspected.26 The debugger, also known as the tracer, can be invoked for anything
that has no upstream dependencies, i.e., test case assertions, global values
and functions that have no arguments. Other domain-specific “main program
like”-constructs may be available in a DSL. Whereas the interpreter is invoked
via Ctrl-Alt-Enter, the debugger is invoked with Ctrl-Alt-Shift-Enter (or
the Show Trace menu item in the context menu of the respective program node).

Debugger Components The debugger comes with three components: the
frame tree, the value inspector and the code decorator; we will discuss each in turn.
The frame tree shows a hierarchy of frames. Frames are “coarse-grained” entities
in the computation tree such as functions and function calls, local values or if
expressions. Importantly, the tree does not show the program nodes, it shows the
computation steps involving these program nodes. This is important, because any
node may be executed several times during as computation, but with di↵erent
values, producing a di↵erent result (consider val f = x() + x(), recursion, or
the lambdas in higher-order functions). The frame tree shows the hierarchical
nesting of those computation steps. Each node in the tree has an optional label

26 The trace can also be collected from other sources, for example, a KernelF program
that has been generated to Java code, as long as the runtime also collects trace data.
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Fig. 30. The frame tree as shown in the debugger.

(for example, cond or then), the (abbreviated) syntax, the (abbreviated) value
and the time it took to compute it27. The tree node shows a yellow [E] if that
node has (had) an e↵ect. If the node throws a constraint failure, this is highlighted
in red, in place of the blue value.

Next to the frame tree we see the value inspector. When clicking on a node in
the tree, the inspector shows the structure (if any) of the value of the tree node.
For example, an instance of a record as a tree, and if an expression returns an
MPS node, that node is clickable, selecting that node in the MPS editor.

When double-clicking a node in the frame tree, the respective node is decorated
in the source. As shown in Figure 31, it associates a value with each AST node.
Depending on the node’s complexity, it shows no value at all (for literals, because
the value would be the same as the node syntax), or shows it next to or below
the node. The color is governed by the nesting depth. The decorated code always
represents one particular value assignment. Thus, to debug the values for lambda
in the iterations of a coll.where(lambda) higher order functions, you would
click on the respective nodes in the frame tree, highlighting each instance in the
code.

Fig. 31. Decorated code that associates values with syntax nodes.

Debugger UI The debugger opens a new frame tree for each root for which
the user opens the debugger. The red X closes the current tab. The green arrow
re-executes the same root, if it is re-executable (as determines by the debugged
program node). This is useful after updating the code. Node that the expansion
state of the tree is retained across re-executions. The little grey round X removes
all code decorations created by the current tab. The blue filter icon toggles

27 We might evolve the tracer to also support a simple form of profiling in the future.
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between the regular tree where only coarse-grained frames are shown and a view
where all interpreter steps are included. While this is usually overwhelming, it
can sometimes be useful. The reset arrow reverts the tree to its original expansion
state (see below). The collapse all and expand all buttons should be obvious.

Breakpoints and Run To Breakpoints and Run To are two features known
from classical debuggers. A breakpoint stops execution on a specific statement,
and Run To runs the program until it reaches a particular statement. We have
adapted these ideas in the tracer to the world of debugging functional code. A
program node can be marked as REVEAL using an intention. Marked this way,
when the debugger is invoked, the tree is expanded to show all instances of that
node, marked with a red [R]. This way it is easy to identify a particular node in
an execution trace. Run To means that you execute the program to a particular
point. In the tracer, the Select Next Trace selects the next trace for the node
on which it is called in the tree. Select All Traces highlights all of them.

B.5 Test Execution

The default execution mechanism for test suites is the built-in interpreter. Depend-
ing on the execute automatically flag, tests are run automatically (technically,
in the MPS type system) or manually. In the latter case, Ctrl-Alt-Enter triggers
a test item, a test case or a test suite, depending on where Ctrl-Alt-Enter is
pressed.

Fig. 32. Test suites in KernelF. They can either be executed automatically (as part of
MPS’ type system) or on demand (by pressing Ctrl-Enter at any level in the suite).
Color coding highlights success and failure.
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B.6 Coverage Measurement

KernelF is being used for a wide range of applications, some of them in safety-
critical areas. It is thus important to ensure the quality of the language itself,
plus its extensions. This is why KernelF ships with a coverage analyzer for its
test cases. The coverage analyzer provides structural and interpreter coverage
checking. An assessment reports various statistics on the coverage, as shown in
Figure 33.

Structural coverage means that the analyzer checks that all properties, chil-
dren, and references are used in test cases. Heuristics assess the average complexity
and size of the expressions in the test case. Minimum and maximum complexity
thresholds can be defined to force developers to write ”unit tests” (low complexi-
ty/size) and ”integration tests” (higher complexity/size).

Interpreter coverage refers to the coverage of the interpreter that runs the
language by default. It verifies that the evaluator for all language concepts is
executed at least once. By marking branches in the interpreter, one can also
ensure that all relevant branches in the interpreter code are executed at last once.
Furthermore, if the interpreter works with collections (such as an argument list of
a function), one can check that the interpreter runs at least once with an empty
list, with a list of one element, and with a list of more than one element. Finally,
the interpreter coverage analyzer can also track the ranges and distributions of
numeric (and potentially other) values to make transparent the range of numbers
used to exercise the interpreter.

The main limitation of the analyzer is that it does not analyze combinatorial
coverage, i.e., the possible combinations of language concepts and/or value ranges.

B.7 Test Case Generation

KernelF supports test case generation; an example is shown in Figure 34. While
this requires a more detailed explanation, here are the core characteristics. The
generator works on any language construct that accepts a vector-style input,
such as functions. There are di↵erent producers28, currently we support random
(which creates the specified number of random values that are each compatible
with the n-th vector element’s type) and eqclass (which selects “interesting”
values for each type and then generates vectors with all permutations). If a vector
is executed, several things can happen:

– A precondition (if one is given) can fail, reported as [PRE] error message.
Using an intention, such vectors can be marked as Invalid Input, which,
when running the vector again, makes the vector green. A second intention
can physically remove all Invalid Input vectors.

– A postcondition (if one is given) can fail. This is a genuine test failure and
must be adressed.

28 Currently they work only for primitive types, not for collections or records. This will
be improved in the future.



LXXIX

Fig. 33. Example of interpreter coverage measurement. Users specify the language,
concepts that should be ignored (because they are not interpreted and should hence
not be part of the coverage analysis). The analyzer reports missing branches, calculates
a coverage ratio, and tracks number ranges.
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– If an expected result is specified, and the vector evaluates to something else,
this is also a failure that must be adressed.

– If not result value is given, and no constraints fail, all vectors will succeed. The
actual values can then be copied into the result column using an intention.
While this looks initially pointless, such vectors are useful as a safety net for
downstream refactorings of the test subject.

Fig. 34. A couple of examples for test case generation; refer to the text for details.

B.8 Mutation Testing

The testing infrastructure also supports mutation testing. Mutation testing is
about judging the quality of a test suite by making ”random” changes to the
test subject and then detecting if one or more tests in the suite fail. If no test
fails, this means that the tests are not specific enough. A high quality test suite
is one where for each introduced mutation at least one test fails. The changes
performed by the mutator are extensible; currently we support

– Replacement of Boolean subexpressions with true and false
– Negation of Boolean expressions
– Replacement of arithmetic operations with others, e.g. + with *, - with /
– Replacement of boolean relations with others, e.g. > with >=, == and <=
– Exchange of the then and else part of conditions.

Currently we support mutation testing only vector test itemis, i.e., those that
define a set of test vectors for a single test subject. They are also used for the
test case generation discussed above.

Figure 35 shows an example. A vector test item is used for the function add,
and, using an intention, we have attached a mutator to the item. Using another
intention, the specified number mutation attempts can be executed. Technically,
we create a clone of the current model for each mutation; those mutations where
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Fig. 35. An example of mutation testing.

Fig. 36. Highlighting of code mutations. The mutated code is red, the original one is
grey.
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the set of tests does not fail are kept around; the other are deleted (unless keep
all is set to true). Another intention can be used to delete all the mutant models.

The original model, the one where we started the mutation process, contains
pointers to all the mutated nodes to provide an overview of the problematic code
locations; they are attached to the mutator with the -> notation. Following the
references leads to the mutated code which shows the new and the original node
side-by-side. A couple of examples are shown in Figure 36. Note that the mutator
can also touch indirectly used functions; the particular scope of the mutations is
defined by the test subject adapter.
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C Language Design Example: “unpacking” options

In this section we provide a more detailed discussion of one particular language
design decision to illustrate how user expectations and MPS tool capabilities
lead to the final solution. We struggled with this one for a while, and this section
illustrates the thought process. The example is about “unpacking” option values,
i.e., checking if a value of type option<T> contains a T and not none.
The Starting Point We started with a first-class concept with some, plus an
expression val that would provide access to the optioned value if it is some and
not none. Having a first-class concept makes analyses simple to build, because
it is simple to recognise a check for some because the language concept directly
expresses it.

fun f(x: option<number>) = with some x => val + 10

We also experimented with using a dot expression to access the optioned value:

fun f(x: option<number>) = with some x => x.val none 10

This second version would not work for complex expression such as function calls,
since repeating the complex expression before the dot is syntactically ugly and
leads to errors if the called function has side e↵ects. We decided on the first
alternative.

Naming However, this alternative will result in a problem if several with
some expressions are nested because val would be ambiguous. The name of the
expression used to refer to the value must be changeable. One solution would be
to define a value explicitly:

fun f(x: number, y: number) = {
val xval = with some maybe(x) => val none 10
with some maybe(y) => val + xval none 20

}

However, this is too verbose. We came up with two versions of an abbreviation
to define names for the tested value:

fun f(x: number) = with some v = maybe(x) => v none 10
fun f(x: number) = with some maybe(x) as v => v none 10

We preferred <expr> as <name> over <name> = <expr> because it cannot be
confused with an assignment (which we do not support in KernelF). It is also easier
from the perspective of the user, because you can add the name (syntactically
and in terms of typing sequence) after the expression the user wants to test.
Finally, KernelF already has a facility for optionally naming things with an as
su�x. The above can then be written as:

fun f(x: number, y: number) = {
with some maybe(x) as xval

=> with some maybe(y) as yval => xval + yval
none 0

none 0
}
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To avoid nesting, we allowed comma-separated tests:

fun f(x: number, y: number) =
with some maybe(x) as xval, maybe(y) as yval

=> xval + yval none 0

Using If Expressions The first-class concept with some turned out to be
ugly, and also introduced new keywords for something where users intuitively
wanted to use an if; so we allowed the if statement to be used, again with the
same options:

fun f(x: option<number>) = if isSome(x) then val else 10
fun f(x: option<number>) = if isSome(x) then x.val else 10
fun f(x: number) = if isSome(maybe(x)) then val else 10
fun f(x: number) = if isSome(maybe(x) as v) then v else 10

A problem with using the existing if expression is that users can construct
arbitrarily complex expressions, such as the following:

fun f(x: option<number>) = if isSome(x) || g(x) then val else 10

In this case it cannot (easily) be statically checked that inside the then branch,
x always has a value. To enforce this, we ensure that the isSome expression is
the topmost expression in the if; it cannot be combined with others. This is
trivial to check structurally and avoids the need for advanced semantic analysis
of complex expressions.

We had the idea of interpreting an option type as Boolean to allow this
syntax:

fun f(x: option<number>) = if x then val else 10

However, we discarded this option because, for our target audience, we think
that too much type magic is too complicated. Another idea was to use the name
of the tested variable (if it is a simple expression) in the then part, and type it
to the content of the option. This would allow the following syntax:

fun f(x: option<number>) = if isSome(x) then x else 10

This is harder to implement because the type of x is now di↵erent depending on
the location in the source. This is not easily possible with MPS’ type system.
Alternatively, the second x could be made to be a di↵erent language concept
(which comes with a di↵erent type), but then one has to prevent the use of the
original x in the then part. This would require all reference concepts to be aware
of the mechanism; every scoping function would have to call a filter method.
While this makes language extension a little bit harder (users have to call the
filtering function), we decided that this is worth it: since one cannot do anything
else inside the then part, providing the “unpacked” value there makes sense.

Final Design We settled on the following syntax. The if conforms to users’
expectations, the as avoids confusion with assignments, and we provided the
magic of “automatic unpacking” inside the then part.

fun f(x: option<number>) = if isSome(x) then x else 10
fun f(x: number) = if isSome(maybe(x) as v) then v else 10
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For multiple tested values we now use && instead of the comma, because the &&
is used in logical expressions already as a conjunction; note that other logical
operators are not supported on isSme tests.

fun f(x: number, y: option<number>) =
if isSome(maybe(x)) as xval && isSome(y)

then xval + y else 0
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D Language Development with MPS

This section describes language development with MPS. As a running example,
this section illustrates the development of the alt expression. This section is not
a full tutorial for which we refer the reader to [28], [6] [27] and [1].

Example The running example we use in this section shows the implementation
of one of the language features of KernelF: the alt expression. Its purpose it
to return a value based on a set of conditions; it is roughly similar to a switch
statement in Java. Figure 37 shows an example.It defines a function with two
arguments, one for the pulse of a person, and the other one representing their
age. Based on these values, we compute a risk factor for the person. To achieve
this, we use an alt expression that looks at the two contributing factors and
returns the risk.29 Note that an expression must always evaluate to a value. So
for alt to be correct, all possible combinations of the inspected values must be
taken into account. To ensure this, KernelF includes a solver that checks all cases
in the alt expression for completeness; we do not discuss the solver integration
here. Alternatively, the user can also add a catch-all case using the otherwise
condition. We use an attempt type to signal the error.

Terminology We introduce some of the most important terminology used in
MPS. A program denotes code written by an end user. It is represented as the
AST and projected in whatever notation is defined for the language in which the
program is written. A program consists of a tree of nodes (the AST) with resolved
cross-references between nodes (so it is e↵ectively a graph). A root node is a
node that has no parent; it is edited in its own editor tab in the MPS IDE and
intuitively corresponds to a file in a classical IDE. The model is the granularity of
physical storage in MPS. It is an XML file and contains a number of root nodes,
each with its own tree/graph beneath it. Models are owned by modules, and a
project is a collection of modules.30 Modules come in three kinds: Languages
are modules that contain language implementations. Solutions are modules that
contain end-user programs, as well as support libraries for languages. Thus,

29 In practice, we would probably use a two-dimensional decision table that splits the
two ranges separately, but a table is too complex an example to use here.

30 For Eclipse users: the project corresponds to the Eclipse Workspace, the modules
correspond to projects and models correspond to files or packages.

Fig. 37. Example use of the alt expression in a function.
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language modules are the meta level relative to solution modules. Devkits are
groups of languages to simplify a solution’s import of related groups of languages.
Finally, the BaseLanguage is MPS’ (slightly extended) version of Java. It can
be used for Java programming (in solutions) and also plays a role in language
implementation. We now discuss some details of the various languages used for
language implementation.

A language definition consists of language aspects such as structure, editor or
type system. Each of the aspects is implemented with an aspect-specific DSL.
Some of these DSLs are declarative, others are rule-based, and yet others are
imperative. However, all of them reuse MPS’ BaseLanguage to some extent,
typically by embedding BaseLanguage expressions or statements. All of them are
also optimized for modular language definition. We discuss each language aspect
below, each in a separate subsection. We start with a subsection on language
modularity and dependencies in general.

D.1 Created and Used Languages

The alt expression developed in this running example is part of KernelF’s core.
However, for the purpose of this tutorial, we assume that it is a modular language
extension, whose development must not require changes to KernelF itself. Thus
we start out by creating a new language org.kernelf.ext.decisions. Because
we will reuse parts of the definition of KernelF, we make this new language extend
org.kernelf.base; it is part of the modularised implementation of KernelF.
Creating new languages and defining their dependencies is handled via menu
items and property dialogs in MPS; we do not show these in this paper.

D.2 Structure

A language contains a number of language concepts (known as meta class or AST
type in other tools). Each of the language aspects mentioned before contributes
to each concept’s definition. In this sense, a language definition in MPS is a
2-dimensional matrix of concepts and aspects.

The definition of a language concept starts with its structure, because all
other aspects refer to the structure of concepts in one form or another. For
our example we need two concepts: the AltExpression itself as well as the
otherwise expression used inside its body.

The otherwise expression is a keyword expression, i.e., it is an expression
with a language-defined structure and syntax. It has no further substructure
under it (in terms of the AST). Here is the structure definition:31

concept OtherwiseExpr extends Expression
alias otherwise

31 As long as MPS uses textual notations for language definition, we show the example
code as text; when non-textual notations are used, such as in editor definitions, we
use screenshots.



LXXXVIII

MPS uses an object-oriented style subtyping to implement structural com-
patibility: if the OtherwiseExpr is to be legal in places where KernelF ex-
pects an Expression (being a functional language, this is almost everywhere),
then OtherwiseExpr has to extend KernelF’s Expression concept. It is visible
here because our new language extends org.kernelf.base, which contains the
Expression concept.

The alias is the string a user has to type (or select from the code completion
menu) to enter an instance of OtherwiseExpr when editing a program. It is
good practice, though not technically required, to make the alias the same as the
leading keyword of the concrete syntax of the concept; in case of Otherwise the
two are identical.

The AltExpression also extends KernelF’s Expressions, and defines an alias
alt. In addition, it implements two interfaces that integrate the new expression
with the e↵ect tracking framework of KernelF.

concept AltExpression extends Expression
implements IMayHaveEffect

alias: alt
children:

alternatives : AltOption [0..n]

Importantly, the AltExpression also defines a child collection alternatives
that represents a <cond> => <value> pair. The cardinality is many, and the
concept is itself defined as below; this should be rather self-explanatory now.

concept AltOption implements IMayAllowEffect
children:

when : Expression [1]
then : Expression [1]

D.3 Editors

In MPS, editors play the role of the concrete syntax, or notation: they define how
an instance of a concept is visually represented. They also define actions that
customize how the user interacts with the instance of the concept when editing a
program. We discuss both below.

Notation Each language concept has its own editor.32 An editor consists of
a collection of editor cells. There are many di↵erent kinds of cells available for
use by the language developer: examples include constant cells, cells that contain
child nodes, collection cells that act as containers for more cells as well as cells
that render arbitrary strings. The editor for the OtherwiseExpr is the simplest
one possible: it contains a single constant cell with the text “otherwise”.

Figure 38 (left) shows the editor definitions of the AltExpression. It contains
a horizontal collection ([> .. <]) at the top level, which in turn contains a
constant cell with the value alt and vertical child collection ((/ .. /)) of the
alternatives. Each of the AltOptions in the alternatives collection uses
its own editor, as discussed next. Three more details are configured in the

32 A concept can have several editors; they can be switched for each program.
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Fig. 38. The editor definition for the AltExpression (left), and the AltOption (right).

inspector33. First, the alternatives child collection is marked as foldable, i.e.,
a little minus signs show up in the gutter of the editor that let the user collapse
the alt expression. In folded/collapsed mode, the editor shows a text instead
of the options, that text is computed inside a read-only model access cell. In
this example, it simply returns the string "{N options}", where N is the number
of options in the alt. Second, the layout of the collection is actually vertical
grid, not just vertical. This makes sure that the => symbols of all options are
aligned underneath each other, leading to a cleaner syntax. The third setting done
in the inspector sets the draw-brackets style attribute to true, which makes the
surrounding large brackets show up in the editor.

For the AltOption, shown on the right side of Figure 38, we basically have a
horizontal list with three elements: a child cell %when% that embeds the condition,
the constant cell for the => symbol, and another child cell for the then child. We
discuss the special wrap cell next.

Actions In addition to the definition of the visual representation of concepts
in the editor, the editor aspect also defines how users interact with the notation.
Examples of such interactions include:

– Deletion: what happens when the user presses Backspace on a given cell.
– Side transformations: how can tree structures be entered linearly (entering

2+3 by typing 2, then + and then 3).
– Substitutions: allow a local variable declaration (such as int32 x;) to be

created by entering the type int32.

Traditionally, in raw MPS, language developers have to implement all these
actions with a very low-level DSL, which is very tedious and error-prone. In
particular, it is easy to create inconsistent editing behaviors, which confuses
users. To solve this problem, we have developed grammar cells [33]. They provide
special cells that imply their editing actions. We always use grammar cells to
define languages in MPS; it is a huge boost to productivity and language (editor)
quality.

One of them is the wrap cell. It is placed around a child cell in an editor
definition, and has the following behavior: in places where an AltOption is
expected, the user can also enter an Expression (because the wrap cell is placed
around a child of concept Expression, the when of an AltOption). If the user
enters an Expression, the editor removes the just entered Expression, creates

33 A kind of property view that allows the specification of additional details for editor
cells; not shown in Figure 38.
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an AltOption, sets the Expression as its when child, and inserts the thusly
created AltOption at the location where the user entered the initial Expression.

D.4 Constraints

As a first approximation, the validity of a program is determined by the structure:
only nodes of a compatible concept (in terms of subtyping through the extends
or implements relationship between concepts/interfaces) can be instantiated in
a given program location. However, validity is further determined by typing rules
(see next subsection) and constraints. A constraint is a Boolean expression that
determines whether a structurally compatible concept can actually be instantiated
in a given location, thereby further restricting the tree structure beyond pure
structural compatibility.

Tree Constraints The OtherwiseExpr extends Expression, so, structurally,
it can be used wherever an Expression is expected. However, from a semantic
perspective, it is only valid directly in the when child of an AltOption. To enforce
this, we define a can be child constraint for the OtherwiseExpr:

constraints for OtherwiseExpr
can be child

(childConcept, node, parentNode, containingLink)->boolean {
parentNode.isInstanceOf(AltOption) && containingLink == link(AltOption/when)

}

Note that constraints prevent the user from entering invalid code34. This means
that they are executed before the node, in this case the OtherwiseExpr, has been
created. This is why the constraint is expressed in terms of the parentNode: we
check if the parent is an AltOption, and we check that we are in the when slot.
Note that this enforces that otherwise is used as the top level expression in the
when slot; if we could nest it in a deeper expression tree (a typical situation) we
would write the constraint as follows:

constraints for OtherwiseExpr
can be child

(childConcept, node, parentNode, containingLink)->boolean {
// grab the containing AltOption from anywhere above us
// the + includes the parentNode itself in the search
node<> ao = parentNode.ancestor<AltOption, +);
// not allowed if no AltOption is above us
if (ao == null) return false;
return (containingLink == link(AltOption/when) // direct containment

|| ao.when.descendants.contains(node); // indirect containment
}

Scopes Constraints are also used to express visibility rules, known as scopes in
MPS. A scope is a constraint that determines which target nodes are visible to a
reference (as opposed to the containment constraints discussed before). These
targets are then made available to the user through the code completion menu, so
they can be selected or just typed in (scopes also lead to error markers in the case

34 Remember that a projectional editor only lets the user enter programs that are
structurally valid.
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where a (now) invalid reference was entered when the scope was (erroneously)
still more permissive). Our language extension does not contain any references,
but we can look at the ConstantRefs used to refer to the two age thresholds in
Figure 37. The structure is defined as follows:

concept ConstantRef extends Expression
references:

constant : Constant [1]

This reference can refer to any global constant declaration; it is the responsibility
of the scope to determine the set of valid targets. Since the reference is typed
to be a Constant, the scope implementation must return a sequence of global
variable declaration nodes (an nsequence<Constant>). The implementation of
the scope shown below starts from the enclosing node, navigates up the tree to
find the Library in which the current node resides, gets its contents and filters
for Constants. Since it is structurally ensured that KernelF code is written in
Librarys, we can assume that one of the ancestors is actually a Library.
constraints for ConstantRef:
link constant scope:

(enclosingNode, pos) -> nsequence<Constant> {
enclosingNode.ancestor<Library>.contents.ofConcept<Constant>;

}

Note that this implementation is slightly simplified compared to KernelF’s actual
implementation of this scope, because KernelF uses a set of library functions to
take import relationships between modules into account.

D.5 Type System

The type system aspect encodes the static semantics of a language; it ensures the
consistency of the types in the program and also checks other arbitrary correctness
rules beyond structure.35 We start with the latter, because it is di↵erent in an
interesting way from the constraints just discussed.

Checking Rules As discussed above, constraints use Boolean expressions
to determine whether a node is valid in a given program location. If it is not
valid, they prevent the user from entering that node. The type system’s checking
rules similarly use Boolean expressions to determine validity. However, they are
evaluated after the node has already been entered. Instead of preventing invalid
use, they flag invalid use with a red squiggly line and an error message after the
fact. The following code shows a checking rule for the Otherwise expression: it
is only legal in the last of the options.36

35 In traditional, parser-based language definitions, the type system is typically con-
sidered to also include the name-based resolution of references. However, in MPS,
references are not encoded by name resolution rules, but by actual references to the
unique ID of the target node that are established upon entering the reference (by
code completion or plain typing).

36 The interpreter we will implement later will always evaluate the otherwise last, but
to make this clear to the reader of the program, we enforce that the syntax reflects
this.
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checking rule for OtherwiseExpr {
ensure node.parent == node.ancestor<AltExpression>.alternatives.last

else error "otherwise can only be used in the last alternative"
on node.when;

}

The ensure statements verifies that the otherwise’s parent AltOption is the
last of the containing AltExpression’s alternatives. If it is not, it annotates the
error message. In addition to ensure statements, checking rules can also use
regular if statements to check more complex conditions, and report errors using
the error statement.

Typing Rules Our example also makes use of actual typing rules: the first one
ensures that the when part of an AltOption is of type boolean:

typing rule for AltOption {
typeof(node.when) :==: <boolean>;

}

MPS’ type system relies on typing equations: for every concept, the developer
specifies one or more typing equations. MPS then instantiates all type equations
for all program nodes and uses a solver [?,?] to infer types and detect typing errors.
Here we declare a typing equation that expresses that the type of the current
node’s when child must be identical to an instance of BooleanType (written using
the quotation syntax). Note that the :==: operator is not an assignment, but it
establishes type equivalence. If one of the two arguments evaluates to an unbound
type variable (based on all the other typing equations for the given program), the
operator propagates the type to the unbound type variable, thus implementing
type inference. If both arguments of :==: return actual types, then the operator
acts as a constraint: if the two types are not the same, an error is reported. There
are additional typing operators beyond :==:. For example, :<=: takes subtypes
into account. A small detail worth mentioning here is that the actual typing rule
looks slightly di↵erent:

typing rule for AltOption {
typeof(node.when) :==: PTF.createBooleanType();

}

PTF is the factory for the primitive types, and it is used to realize the exchangeable
primitive types feature required for KernelF’s embeddability.

A more interesting typing rule is the one for the alt expression itself: the
type of alt must be the “smallest common supertype” of all the then children of
all alternatives. In principle, this could be written as follows:

typing rule for AltExpression {
var T;
foreach alternative in node.alternatives {

T :>=: typeof(alternative.then);
}
typeof(node) :==: T;

}

We declare a type variable T which will become the type of the alt expression;
see the last line where we equate the typeof(node) with T. To compute T, we
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iterate over all alternatives and register an equation that expresses that T must
be the same or a supertype of the type of the then part of each alternative. Again,
note that the :>=: is not an assignment, it is a constraint on T; MPS solves the
equation system created by registering all the equations for all alternatives with
the type system solver.

If you look at the typing rule for the actual alt expression in KernelF, it
looks quite di↵erent. This is because dealing with options, attempts and number
types requires a lot of more di↵erentiated treatment of super types. However,
this is beyond the scope of this tutorial.

D.6 Behavior

The behavior aspect allows the definition of methods on concepts. These act similar
to Java methods and can be invoked from all other aspects (often called from
constraints, the type system and generators). Methods are polymorphic, and they
can also be declared on interfaces. For example, the IMayAllowEffect interface
(implemented by AltOption) defines several abstract behaviour methods, among
them allowsEffect(node<> n). It has to be implemented by the concepts that
implement IMayAllowEffect and return an error string if the argument node
has an invalid e↵ect, and null otherwise. AltOption implements it as follows:

public string allowsEffect(node<> n) overrides IMayAllowEffect.allowsEffect {
if (n == this.when) {

return EffectDescriptor.reads().allows(n, "only read effects allowed for when");
}
null;

}

EffectDescriptor.reads() creates and e↵ect descriptor that allows only read
e↵ects, and the allows call checks if the argument n either has no e↵ect or a
read e↵ect; if it has a modify e↵ect, then the methods returns the error message
passed as the second argument.

allowsEffect is invoked generically by a checking rule which annotates the
returned error message, if any, to the respective node.

D.7 Generators

The name generator is a little bit misleading: in fact, generators are tree transfor-
mations that map a source AST to an output AST. Generators consist of various
di↵erent kinds of transformations rules, which in turn make use of templates,
i.e., fragments of target language code that determine how the source AST is
transformed to the target AST. We skip the discussion of generators, because
they are not discussed any further in this paper; we focus on interpreters. Refer to
the tutorials referenced at the beginning of this chapter for details on generators.

D.8 Interpreters

At the core, interpreters are essentially Java code blocks associated with language
concepts. Each code block, called an evaluator, has two tasks: return a Java
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Fig. 39. The evaluator for the AltExpression in the interpreter.

object that represents the value to which the AST node evaluates, and recursively
invoking the interpreter for child nodes or reference targets, using their returned
value in the computation of its own return value.

An interpreter is a collection of such evaluators – typically all the evaluators
defined for the concepts in a particular language – with a declaration of the lan-
guage to which the interpreter applies and priorities relative to other interpreters,
the latter supporting shadowing of evaluators.

There might be several evaluators for one language concept (in the same
or in di↵erent interpreters), which either use di↵erent type guards to support
dispatching, or they return tryNextInterpreter if, after trying, they find out
they are not able to evaluate a particular node.

Figure 39 shows the evaluator for the AltExpression. The evaluator uses the
alias alt as a marker, has an empty type guard (it would be written between
the brackets), and then has a Java code block to perform the evaluation. The
Java code first iterates over all non-otherwise alternatives and recursively calls
the interpreter for the when part of each AltOption; the #(<expr>) syntax
recursively calls the interpreter on expr. We know that the type checker ensures
that the when expression of AltOptions is a Boolean, and we rely on the fact
that the Booleans used in KernelF are always represented as Java boolean in
the interpreter, so we can perform a cast. If the when evaluates to true, then we
recursively call the interpreter on the then child of that AltOption and return
this value as the result of the evaluation of the alt. If no alternative is true, we
end up where we check if there is an otherwise. If so, we evaluate and return its
then part. If not, we have an inconsistent program. We return null, which is
generically detected as an internal error and stops the interpreter.

The pink statements refer to the coverage analyzer. We declare two branches,
and then “cover” them if we visit the branch statements as part of the execution
of the interpreter.
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D.9 Intentions

Intentions are program transformations that change the program in the editor
(as opposed to generators which transform programs during MPS’ make process).
Intentions are invoked by pressing Alt-Enter on a program node and then
selecting a particular intention from the menu that pops up. MPS has a DSL for
specifying such intentions, but the actual transformation is typically implemented
procedurally using BaseLanguage. Since intentions are not very important for
the remainder of the paper we do not discuss them any further.

D.10 Refactorings

Refactorings are available from the context menu. They are also implemented
procedurally. While they are important for the user, they are not particularly
important for the rest of this paper, so we provide no more details.

D.11 IDE Customisation

MPS supports the customisation of various aspects of the user interface of the
tool itself, including buttons, menu items, customised project views as well as
additional windows. These customisations are crucially important for building
end user friendly products based on MPS. However, they are not relevant to
language engineering per se, which is why we do not discuss them in this paper.

E The MPS Language Design Philosophy

It is possible to use MPS to define programming languages that work like any
other one: a relatively small set of language constructs designed for letting the
user define their own abstractions plus a large standard library on which users
can build. For example, MPS ships with an implementation of Java (called
BaseLanguage) which is fundamentally similar to standard Java 7. The whole
JDK is available for users to build on. However, when exploiting MPS’ unique
characteristics, the resulting languages look very di↵erent.

Syntactic Forms Because of the wide range of supported notations (mentioned
in the previous subsection; code, prose, tables, diagrams, math), MPS-based
DSLs often use more syntactic variety than languages built with other tools.
It is also possible to define completely custom notations that do not fit any of
these paradigms. Notations can also be mixed (nesting one in another, using
them next to each other in the same “file”). Since MPS is unique in this respect
among industry-strength language workbenches, it is not uncommon that MPS
is specifically selected as the tool to implement a particular language because of
this feature.

Language Modules instead of Libraries In general-purpose programming
languages (GPLs), new abstractions are provided through libraries37, developed

37 In this context, we consider frameworks a form of library.
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with the language itself. This is possible because GPLs are built for defining
abstractions.38 However, as a means of providing new abstractions for program-
mers, libraries are limited in the sense that they cannot meaningfully extend the
language syntax, type system and IDE.

In idiomatic use of MPS, additional abstractions are provided through lan-
guage extensions, defined outside the language, using MPS’ language definition
facilities. A language extension can be seen as a library plus syntax, type system
and IDE support (and a semantics definition via an interpreter or generator).
As Appendix D shows, the structure definition of languages is object-oriented,
and many of the design patterns relevant for libraries and frameworks can also
be found in MPS languages. Examples include the Adapter/Bridge/Strategy
patterns or the separation of the construction of a data structure from its subse-
quent interpretation or execution. This approach fits extremely well with DSLs,
which, because of their purpose and target audience, often do not come with
sophisticated means of building custom abstractions.

One very nice feature of libraries is that, in general, they can be composed.
For example, you can use the collections from the Java standard library together
with the Joda Time library for date and time handling and the Spring framework
for developing server-side applications. There is no need to explicitly combine the
frameworks, the combination “just works”. While this composability is not true
for language composition in general (primarily because of syntactic ambiguities),
it is true with MPS: for all intents and purposes, language extensions can
be composed modularly, just like libraries. The approach also has the same
limitations: one cannot statically prove that the composition will work, and the
set of libraries/language extensions might not fit well in terms if their style.
However, if language extensions are developed in a coordinated, but still modular
way, as stack of extensions, these limitations do not apply. KernelF is such as
stack.

To illustrate the di↵erence between library and language extension, I will
provide two examples. The first one concerns the collection in KernelF. Consider
the following code:

val l1 = list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) // type inferred to list<int>
val l2: list<int> = l1.where(|it > 5|).select(|it / 2|) // type inferred to list<real>

// results in type error for l2

The collections are generic: the collection type carries the type of the list elements,
either explicitly specified (l2) or inferred (l1). However, KernelF does not
generally support generic types. For example, users cannot write the following:

fun<type T1, type T2> typedPair(v1: T1, v2: T2): [T1, T2] = [v1, v2]

Generics are not generally necessary for DSLs. In fact, their exposure to the user
will be often be confusing, and it will make the job of the language extender harder,
because they have to take into account generics for all extensions. However, for
collections, an explicit specification of their element type is useful and intuitive,

38 In some languages, there are parts that are optimized for library developers, often,
because they are more complicated to understand.
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which is why the language extension for collections supports it. The where and
select operators in the example above are also language extensions, available
on list types. These could have been implemented with extension functions in a
standard library. However, because they have to work with the collections’ type
parameters and because they use a particular kind of type inference not generally
supported by KernelF, these are also built using language extension.

As a second example, take a look at the state machines towards the end of
Section 5.2. They come with a rich syntax, specific type checks, and dedicated
IDE support. It is hard to imagine how the state machine feature could be
provided by a library, even in a language with meaningful meta programming
facilities.

Because of the ease of developing languages in a modular way, we try to sepa-
rate generally useful KernelF extensions from actual customer-specific extensions
when we run projects; the generally useful parts become a customer-independent
KernelF extension – if you will, the equivalent of a standard library, but as lan-
guages. For example, in the salary/tax cases study Section 5.1, the (independent)
extensions for dates, currencies and temporal types are generic, and have been
moved into the KernelF project. The languages for data and calculations lives
under the customer’s control.

The last point of comparison between libraries and language extensions is
the e↵ort to create them. For an experienced developer, the development of a
language extension is not significantly more e↵ort than the e↵ort to write a
library.39 In addition, because language development and language use in MPS
happens in the same environment, turn-around time is very quick, supporting
iterative, and example-driven language development, just as if you develop a
library together with representative examples of its use.

More First-class Concepts As a consequence of the increased reliance on
language extensions, a (stack of) MPS language(s) will typically be more keyword-
heavy than non-MPS languages. While this may o↵end the sense of style of some
developers, this has two distinct advantages.

First, because more concepts are first-class, the IDE can know the semantics
of those concepts and provide better support in terms of analyses. This, in
turn, can be used to create meaningful error messages that align with the
particular semantics of an extension. For example, in state machines, if the
user creates a transition to the start state (assuming scoping allows this in
the first place), an error message could read Start states cannot be used
as the target of a transition, and in smaller font, below, Start states
are pseudo states that are only used internally during startup. In a
library-based solution, or one that relies on meta programming, very likely this
problem cannot be determined statically at all, and would lead to a runtime
error. Alternatively, the error message would perhaps be much more generic, as
in Type StartState is not a subtype of State or something, which is also
not very helpful to the end user.

39 A sophisticated type system, notation or specific IDE support increases that e↵ort,
but then there is also a bigger benefit.
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Second, the language is easier to explore, primarily because code completion
has more sensible things to show. In a minimal language like Scheme, the contents
of the code completion menu are essentially the completions for the basic syntactic
forms such as atoms, lists or functions, plus calls to existing functions. This makes
it harder for the user to explore the things they can do with a language.

Focus on Evolution Because languages and their extensions contain compara-
tively many first-class concepts, and many reflect a business domain that evolves,
the languages we build with MPS also evolve quickly. Evolution in this context
can mean one of two things. First, we may build additional languages on top of
a core language, while keeping the core language stable; we grow the stack of
languages into one or more domains. KernelF is designed to evolve like this, and
this paper illustrates the process.

The other notion of evolution is the actual invasive evolution of the language
itself (to make it concrete: you’ll ship a new version of kernelf.jar, whereas
in the extension case above you ship additional jars that rely on an unchanged
kernelf.jar). If the new version is compatible with the previous version, this
case is simple: just deploy the new version of the language, and users now have
more features, while the existing programs remain valid. If the new version is
not backward compatible, then existing programs become invalid. For this case,
MPS supports explicit language versioning. As the language developer makes a
breaking change to a language, they increment the version counter of the language
and provide a migration script. When a language user opens an existing model
after the new version has been deployed, the scripts run automatically, bringing
the model up-to-date. If no algorithmic migration is feasible (because the user
has to make a semantic decision not previously necessary), the recommended
approach is to keep the old construct around, deprecate it, and output an error
message that tells the user that a manual migration is necessary.

Note how this is a much more robust infrastructure for dealing with program
migration than what is possible with libraries: an incompatible change prompts a
generic error from the type checker or compiler, and automatic program migration
is not available (outside of experimental systems). All in all, iterative development
of languages becomes feasible, even when taking into account models that are “in
the wild” with language users.

Recasting Tools as Languages Traditional programming systems consist of
the language and libraries, the compiler and type checker, and an IDE. Many
added-value services, for example, those for program understanding, testing, and
debugging, are part of the IDE; more specifically, they rely on tool windows
and other service-specific UI elements (buttons, menues, etc.). Because of MPS’
flexibility in how editors can be defined, we use languages and language extensions
for things that would be tool windows or other IDE addons in classical languages
and IDEs. Examples include the REPL and its rendering of structured values
(Figure 11), the overlay of variable values over the program code during debugging
(Figure 31), test coverage and other assessment results (Figure 33), generated test
vectors and their validity state (Figure 34) and the di�ng of mutated programs
vs. their original in the context of mutation testing (Figure 36).
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Fig. 40. Three di↵erent levels of details for the projections of functions in Convecton
meta languages: (A) types and names, (B) names only, with types available through an
IDE action, and (C) nothing at all.

As a consequence, the notion of what constitutes a “language” is much broader
in MPS, compared to the traditional understanding. A side-e↵ect of this approach
is that the chrome of the development environment – the set of windows, tabs,
buttons, menus and such – can be reduced, because “everything happens in the
editor, through typing, code completion and intentions”. Since complaints about
MPS’ too cluttered tool UI is among the most-heard complaints among our users,
we consider this side-e↵ect an advantage.

More Reliance on the IDE There is no meaningful standard for the im-
plementation of languages, which means that, once a language is implemented
with one particular language workbench, it cannot be ported to another language
workbench.40 This is all the more true for MPS, which, because of its particular
style of language implementation, is unique among language workbenches. Specif-
ically because of its projectional editor, MPS languages cannot be used outside
of the MPS tool. While this can be seen as a drawback, the flip side is that one
can assume the IDE to always be present, and the language can be designed
assuming the IDE and its services. I list a few examples below:

– Di↵erent projection modes: Instead of making a design decision on which
level of detail should be used for function signatures, the user can switch (see
Figure 40). This is useful because users with di↵erent levels of proficiency
will prefer di↵erent styles: the newbie prefers the explicitly listed types, and
once one gets more proficient, one appreciates the conciseness of alternative
(C).

– Read-only editor contents: In many DSLs we use them to create a more
form-style editor experience, with non-editable labels. In mbeddr, when
a component implements an operation defined in an interface, we use a
read-only projection of the operation’s signature in the implementation.

– Intentions: These little in-place transformations of the program are available
from a drop down menu activated with Alt-Enter (they are known as Quick
Fixes in Eclipse). In some languages, especially non-textual ones, these are
the only way to access certain constructs – you can’t just type them. Many
examples of this can be found in those languages that recast traditional IDE
services (see previous paragraph). While replying on intentions might be

40 Unless one implements it completely from scratch.
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unintuitive for text-focused programmers, we teach our users to consider the
intentions menu to be an integral part of the editor experience.

A Hybrid Domain-specific languages in general, and our approach in particular,
are a hybrid between between modeling and software language engineering. From
modeling we borrow declarativeness and high-level, domain specific concepts;
multiple integrated languages; meta modeling for defining the structure of lan-
guages (named properties and links, inheritance, actual references); notational
freedom, and in particular, diagrams. From the field of software language engi-
neering we adopt a focus on behavior and integration of fine-grained aspects,
such as expressions; actual type checking and not just constraint checks; powerful,
productivity-focused IDEs; and textual languages. We like to think that the
approach combines the best of these two worlds and leads to convincing outcomes.
We will show this with our case studies in Section 5.
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