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Preface 

The ParCo2019 conference was hosted by Charles University, Prague, Czech Repub-

lic. This event marked thirty-six years of ParCo conferences. During the past decades 

the conference proved to be not only a mirror of the advances made in the develop-

ment and use of parallel computing, but also a stimulator for advancing research and 
development of many new technologies. 

During the opening session of the conference it was noted that 2019 also marked 

four decades of cluster computing. In 1979 a cluster system with a simple MIMD (Mul-

tiple Instruction Multiple Data) architecture using COTS (Components Off The Shelf) 

be-came operational. A short historical overview of the development and results ob-
tained with the cluster system is given in the note titled: Four Decades of Cluster Com-

puting included in these proceedings. The research done with this system brought about 

in-ternational cooperation involving a number of researchers. These international con-

nections resulted in the start of the international ParCo conferences in 1983, which in 

turn initiated the journal Parallel Computing (Elsevier) and later the book series Ad-

vances in Parallel Computing (Elsevier and IOS Press).  
The scientific program of the ParCo2019 conference consisted of invited talks, 

con-tributed papers and papers presented as part of symposia. The invited speakers 

were: 

• Torsten Hoeffler: Performance Portability with Data-Centric Parallel Pro-

gramming 

• Thomas Lippert: Scalability, Cost-Effectiveness and Composability of Large-
Scale Supercomputers through Modularity 

• Ian Foster: Coding the Continuum (slides at www.parco.org/slides/Foster.pdf) 

• Jaroslav Cervinka: High Performance Computing at Skoda Auto 

• Mikhail Dyakonov: Will we ever have a quantum computer? 

• Erik D’Hollander: Empowering Parallel Computing with Field Programmable 

Gate Arrays 
• Jean-Pierre Panziera: Addressing the Exascale Challenges (slides at 

www.parco.org/slides/Panziera.pdf) 

• Jean-Marc Denis: European Processor Initiative: The European Vision for Ex-

ascale Ages and Beyond (slides at www.parco.org/slides/Denis.pdf) 

Two Invited Speakers chose to submit a paper for inclusion in the proceedings. In 
addition slides presented by three speakers are available on the ParCo Website. 

Contributed papers presented at the conference were selected based on paper pro-

posals. Submitted papers were reviewed in a first round prior to the conference and 

again in a second round at the presentation of the papers. The results and recommenda-

tions from the two review rounds were communicated to authors. Authors of accepted 

papers were given the option to submit a revised version of their paper. The proceed-
ings thus only include papers that were accepted after their presentation at the confer-

ence. The papers ultimately selected for publication give a wide ranging overview of 

the current status of Parallel Computing research, developments and applications. 
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Four symposia were organised and presented as part of the conference. Organisers 

of Symposia were responsible for the reviewing of the respective papers presented and 

submitted for publication. 

The Editors are indebted to all persons who assisted in making the conference a 

suc-cess. These include the staff at the registration desk and the technical staff who 

ensured the functioning of all equipment. A particular word of thanks is due to Siavash 
Ghiasvand from the Dresden University of Technology for his support in compiling the 

final version of the manuscript of these proceedings. 

A final note needs mentioning: This is the first volume in the Advances in Parallel 

Computing book series that is published as an Open Access (OA) book, making the 

contents of the book freely accessible to everyone. The publication of the proceedings 
as an OA book does not change the indexing of the published material in any way.  

Ian Foster 

Gerhard Joubert 

Luděk Kučera 

Wolfgang Nagel 

Frans Peters 
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Four Decades of Cluster Computing

Gerhard JOUBERTa,1, Anthony MAEDERb 
a Clausthal University of Technology, Germany

b  Flinders University, Adelaide, Australia

Abstract. 

During the latter half of the 1970s high performance computers (HPC) were con-
structed using specially designed and manufactured hardware. The preferred archi-
tectures  were  vector  or  array  processors, as these  allowed for  high speed pro-
cessing of a large class of scientific/engineering applications. Due to the high cost
of the development and construction of such HPC systems, the number of avail-
able installations was limited. Researchers often had to apply for compute time on
such systems and wait for weeks before being allowed access. Cheaper and more
accessible HPC systems were thus in great need. The concept to construct high
performance  parallel  computers  with  distributed  Multiple  Instruction  Multiple
Data (MIMD) architectures using standard off-the-shelf  hardware  promised the
construction of affordable supercomputers. Considerable scepticism existed at the
time about the feasibility that MIMD systems could offer significant increases in
processing speeds. The reasons for this were due to Amdahl’s Law, coupled with
the overheads resulting from slow communication between nodes and the complex
scheduling and synchronisation of parallel tasks.  In order to investigate the poten-
tial  of  MIMD systems constructed with  existing  off-the-shelf  hardware  a  first
simple two processor system was constructed that finally became operational in
1979. In this paper aspects of this system and some of the results achieved are re-
viewed.

Keywords. MIMD parallel computer, cluster computer, parallel algorithms, speed-
up, gain factor.

1. Introduction

During the 1960s and 1970s the solution of  increasingly complex scientific problems

resulted in a demand for more powerful computers. The available sequential processors

proved unable to meet these demands. The attempts implemented in the late 1960s to

optimise the execution of  sequential  program code by  analysing program execution

patterns resulted in optimised execution strategies [1, 2]. These attempts to increase the

processing speeds of sequential SISD (Single Instruction Single Data) computers were

limited and did not offer the compute power needed for the processing of compute in-

tensive problems. A typical problem at the time was to be able to compute a 24 hour

weather forecast in less than 24 hours. 

A next step was to speed up the execution of compute intensive sections of a pro-

gram through specially designed hardware. An often occurring operation in scientific

computations is the processing  of vectors and matrices. Such operations can be ex-

ecuted in parallel by SIMD (Single Instruction Multiple Data) processors. It was thus a

natural approach in the 1970’s to develop vector and array processors as the supercom-

1 Lange-Feld-Str. 45, Hanover, Germany. E-mail: gerhard.joubert@tu-clausthal.de

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200017
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puters of the day. Examples are the ICL DAP (Distributed Array Processor), ILLIAC,

CRAY, etc. 

The problem was that the development of such specially designed and built ma-

chines was expensive. The use of such supercomputers by researchers as well as soft-

ware developers was limited due to the high cost of purchasing and running these sys-

tems. In addition the programming of applications software often had to resort to ma-

chine level instructions in order to utilise the particular hardware characteristics of the

available machine. 

The development of integrated circuits during the early 1970’s, which enabled the

large scale production of processors at ever lower cost, opened up the possibility to use

such components to construct MIMD parallel computers at low cost. The concept pro-

posed in a non-published talk in 1976 [3] was that the future of high performance com-

puting at acceptable costs was possible by using standard COTS (Components Off The

Shelf) to construct low-cost parallel computers. The architecture of such systems could

be adapted by using standard as well as special compute nodes, different storage archi-

tectures and various interconnection networks.

The concept of developing such systems was, however, deemed unattractive dur-

ing the late 1970’s mainly due to two aspects. The first was Amdahl’s Law [4] that

only a relatively small percentage of programs could be parallelised, and the second

was that the synchronisation and communication requirements would create an over-

head, which made parallel systems highly inefficient. A further aspect that hampered

the acceptance of MIMD systems, was Grosch’s Law [5], which stated that computer

performance increases as the square of the cost, i.e. if a computer costs twice as much

one could expect it to be four times more powerful. This does not apply to MIMD sys-

tems as the addition of nodes results in a linear increase in compute power. Moore’s

Law  [6]  maintained  in  1965 that  the  number  of  components  per  integrated  circuit

doubled every year, which was revised in 1975 to double every two years. This resulted

in an estimated doubling of computer chip performance due to design improvements

about every 18 months.  It was an open question in how far these developments could

offset the inherent disadvantages of MIMD systems.

In 1977 Prof. Tsutomu Hoshino and Prof. Kawai started a project in Japan to con-

struct a parallel computer using standard components. Their aim was to develop a par-

allel system architecture that could be used to solve particular problems. The system

was later called the PAX computer [7]. This approach was different from that described

in the following sections, where the general applicability of MIMD systems to solve

compute intensive problems was the main objective.

 2. A Simple MIMD Parallel Computer

In 1976/77 a project was started at the University of Natal, South Africa to investigate

the  possibilities  of  achieving  higher compute  performances  by  connecting  standard

available mini-computers [8].  The final development stage was reached in 1979 when

the system was upgraded to have both nodes with identical hardware. The parallel sys-

tem was later named the CSUN (Computer System of the University of Natal) [8]. 

The project involved three aspects, viz. hardware and architecture, network and

software.
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2.1 Hardware and Architecture

The available hardware consisted of two standard HP1000 mini-computers. The pro-

cessors were identical, but the memory sizes differed initially. The architecture decided

on was a master-slave configuration with distributed memories. No commonly access-

ible  memory  was  available.  The  HP1000 offered  a  micro  programming  capability,

which allowed for special functions to be executed at high speed. 

Fig. 1: The cluster system, admired by Chris Handley2 

2.2 Network

The connection of the two nodes had to offer high communication speeds. This was

realised by using a high-speed connection available for HP1000 mini computers for

logging high volumes of data collected by scientific instruments. The cable was adap-

ted by HP to supply a computer interface at both ends allowing the interconnection of

the two nodes via interface cards installed in each machine. These interfaces were user

configurable by means of adjustable switch settings for timing or logistic characterist-

ics,  allowing a computer-to-computer  mode. The maximum transmission  speed was

one million 16 bit words per second.

2.3 Software

The Real Time Operating System (RTOS), HP-RTE, available for the HP1000 offered

the basic platform for running and managing the nodes. The system had to be enhanced

2 
Later: University of Otago, New Zealand
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by additional software modules to achieve the control of the overall parallel computer

system. A monitor was developed to create an interface for users to input and run pro-

grams. Programs and data were provided on punched cards or tape. 

A  critical  component  was  the  communication  between the two nodes.  For this

drivers  were developed that also allowed for the synchronisation of tasks. With the

master-slave organisation of the system the slave always had to be under control of the

master. In an interrupt-driven environment this is easily accomplished. The communic-

ation available between the two nodes did not allow to transmit specific interrupt sig-

nals between the two machines. Thus data controlled transmission, i.e. sending all mes-

sages with header information, was used. Both sender and receiver had to wait for ac-

knowledgement from the counterpart before message transmission could begin. This

caused an additional overhead for the synchronisation of tasks.

  The master node was responsible for all controlling activities. It prepared tasks

for execution by the slave, downloaded these together with the data needed to the slave,

which then started executing the tasks. The master in the meantime prepared its own

tasks and executed these in parallel,  exchanging intermediate results  with the slave.

The master also executed any serial tasks as required. The later upgrade of the system

to have two equally equipped nodes simplified task scheduling. 

Such a setup is of course very sensitive to the volume and frequency of data trans-

mission. This must thus be considered by programmers when selecting an algorithm for

solving a particular problem.

No programming tools for developing parallel software were available at the time.

The standard programming language for scientific applications was FORTRAN. A pre-

compiler was developed that processed instructions from programmers to automatically

create parallel tasks that were inserted in the FORTRAN program code. The compiler

subsequently created tasks that could be executed in parallel, which information was

used to schedule the parallel execution of tasks. 

3. Applications 

The aim with the project was to show that at least some algorithms could be executed

in less time by a cluster constructed with standard components. The two-node cluster

was a starting point that  could be easily  expanded by  adding more, not necessarily

identical, nodes.  

The physical limitations of the available nodes as well as the architecture of the

cluster  limited  the  classes  of  problems that  could  possibly  be  efficiently  executed.

Thus, a comparatively low volume of interprocessor data transfers as well as few syn-

chronisation points relative to the amount of computational work, was an advantage.

Problems implemented on the cluster were, for example:

• Partial Differential Equations: One-dimensional heat equation solved by expli-

cit and implicit difference methods [9]

• Solution of tridiagonal linear systems [10]

• Numerical integration [11].
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4. Gain Factor

Several  methods for assessing  parallel  computer performance are available, such  as

speedup, cost, etc. These metrics proved insufficient, especially in view of Amdahl’s

Law [4], for a comparison of the overall time used to solve a problem on a sequential

processor and the MIMD system described above.

The measurement needed was a comparison of overall sequential compute time, Ts,

and overall parallel compute time, Tp. A further aspect was that the optimal sequential

and parallel algorithms may differ substantially. Thus, in the comparisons, the optimal

algorithm for each processing mode—sequential or parallel—was used.

A large number of  aspects  influence the value of  Tp,  such  as organisation  and

speed of processors (these need not be identical, thus potentially resulting in a hetero-

geneous  system),  interprocessor  communication  speed,  communications  software

design, construction of algorithms, etc. In practice time measurements can be made to

obtain values for Ts and Tp for particular algorithms. This gives a Gain Factor:

G = (Ts - Tp)/Ts

  

If 0 < G  ≤ 1 parallel processing offers an advantage over sequential processing.

The upper limit, G = 1, is obtained when Tp, the overall time used to solve a problem

with the parallel machine, is zero. When G ≤ 0 parallel computation offers no advant-

age. Note that G applies equally well to the performance measurement of heterogen-

eous systems, and includes communication and administration overheads and covers

the limitations expressed in Amdahl's Law.

Results obtained for a number of test cases using the two node cluster, are [12]: 

• Solution of tridiagonal linear systems, 120x120: G = 0.42 

• One-dimensional diffusion equation, 30.000 time steps: G = 0.481

• Numerical integration, 30.000 steps: G = 0.497.

With a two node cluster the value of G ≤ 0.5. 

These results  showed that,  at  least  in  some cases,  parallel  processing  using  an

MIMD system with distributed memories may offer significant advantages.  

5. Conclusions

The results  obtained with the simple two-node MIMD parallel  system showed that

clusters constructed with standard components can be used to boost the execution of

parallel algorithms for solving certain classes of problems. 

The results obtained with the system prompted further research on the effects of

more nodes, different connection networks and suitable algorithms. 

This work resulted in the start of the international  Parallel Computing (ParCo)

conference series with the first conference held in 1983 in West-Berlin. The aims with

these events was to stimulate research and development of all types of parallel systems,

as it was clear from the outset that not one architecture is suitable for solving all prob-

lems.

It took more than a decade for the idea of using standard components to construct

HPC systems to be adopted by industry on a comprehensive scale. It was also only

gradually realised that the flexibility of cluster systems allowed for the processing of a
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wide range of compute intensive and/or large scale problems. The resulting advent of

cheaper parallel systems built  with commodity  hardware lead to many specially de-

signed HPC systems becoming less competitive due to their high price tags and limited

application spectrum. The resulting major crisis in the supercomputing industry during

the late 1980’s and early 1990’s lead to the demise of many companies supplying spe-

cially designed hardware aimed at particular problem classes..

Exascale computing is presently the next step in HPC and this will require extreme

parallelism, employing many thousands or millions of nodes, to achieve its goals. 

With  the end of  Moore’s  Law  approaching,  new technologies  may  emerge,  to

achieve the future development of HPC beyond exascale. 
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Abstract. In the hypothetical quantum computing one replaces the classical two-
state bit by a quantum element (qubit) with two basic states, ↑ and ↓. Its arbitrary 

state is described by the wave function ψ = a↑+ b↓, where a and b are complex 
amplitudes, satisfying the normalization condition. Unlike the classical bit, that 

can be only in one of the two states, ↑ or ↓, the qubit can be in a continuum of 

states defined by the quantum amplitudes a and b. The qubit is 
a continuous object.  At a given moment, the state of a quantum computer 

with N qubits is characterized by 2N quantum amplitudes, which are continuous 

variables restricted by the normalization condition only. Thus, the hypothetical 
quantum computer is an analog machine characterized by a super-astronomical 

number of continuous variables (even for N~100÷1000). Their values cannot be 

arbitrary, they must be under our control. Thus the answer to the question in title 
is: When physicists and engineers will learn to keep under control this number of 

continuous parameters, which means - never.  

Keywords. Quantum computing, qubits 

1. Introduction 

The idea of quantum computing was first put forward in a rather vague form by the 

Russian mathematician Yuri Manin in 1980. In 1981 it was independently proposed 

(also in a vague form) by Richard Feynman. Realizing that (because of the exponential 

increase of the number of quantum states) computer simulations of quantum systems 

become impossible when the system is large enough, he advanced the idea that to make 

them efficient the computer itself should operate in the quantum mode: “Nature isn’t 
classical and if you want to make a simulation of Nature, you’d better make it quantum 

mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy”. 

David Deutsch in 1985, formally described the universal quantum computer, as a 

quantum analog of the Universal Turing machine.  

The subject did not attract much attention until Peter Shor in 1994 proposed an 
algorithm allowing to factor very large numbers on an ideal quantum computer  much 

faster compared to the conventional (classical) computer. This outstanding theoretical 

result has triggered an explosion of general interest in quantum computing and many 

thousands of research papers, mostly theoretical, have been and still continue to be  

published at an increasing rate.  

 
1 Laboratoire Charles Coulomb, Université Montpellier, cc 070, 34095 Montpellier, France 

michel.dyakonov@gmail.com  

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200019

11



2. Progress 

During the last 20 years one can hardly find an issue of any science digest magazine, or 

even of a serious physical journal, that does not address quantum computing. Quantum 

Information Centers are opening all over the globe, funds are generously distributed, 

and breathtaking perspectives are presented to the layman by enthusiastic scientists and 

journalists. Many researchers feel obliged to justify whatever research they are doing 

by claiming that it has some relevance to quantum computing.   

Computer scientists are proving and publishing new theorems related to quantum 

computers at a rate of ~ ten articles per day. A huge number of proposals have been 

published for various physical objects that could serve as quantum bits, or qubits.  As 

of October 7, 2019, Google gives 6 970 000 results for “quantum computing”, and 201 
000 results for “quantum computing with”, and these numbers increase every day. The 

impression has been created that quantum computing is going to be the next 

technological revolution of the 21st  century. When will we have useful quantum 

computers? The most optimistic experts say: “In 10 years”, others predict 20 to 30 

years (note that those expectations have remained unchanged during the last 20 years), 

and the most cautious ones say: “Not in my lifetime”. The present author belongs to the 
meager minority answering “Not in any foreseeable future”, and this point of view is 

being explained below.  

At a given moment the state of the classical computer is described by a sequence 

(↑↓↑↑↓↑↓↓…), where ↑ and ↓ represent bits of information – realized as the on and off 

states of individual transistors. With N transistors, there are 2N different possible states 

of the computer. The computation process consists in a sequence of switching some 
transistors between their ↑ and ↓ states according to a prescribed program.  

 

In quantum computing one replaces the classical two-state element by a quantum 

element with two basic states, the quantum bit, or qubit. The simplest  object of this 

kind is the electron internal angular momentum, spin,  with the peculiar quantum 

property of having only two possible projections on any axis: +1/2 or -1/2 (in units of 
the Planck constant). For some chosen  axis, we  again denote the two basic quantum 

states of the spin as ↑ and ↓.  

 

However, an arbitrary spin state is described by the wave function ψ = a↑+ b↓, where a 

and b are complex numbers, satisfying the condition |a|2 + |b|2 = 1, so that |a|2 and |b|2 

are the probabilities for the spin to be in the basic states ↑ and ↓ respectively.   

 

In contrast to the classical bit that can be only in one of the two states, ↑ and ↓, the 

qubit can be in a continuum of states defined by the quantum amplitudes a and b. This 

property is often described by the rather mystical and frightening statement that the 

qubit can exist simultaneously in both of its ↑ and ↓ states. (This is like saying that a 
vector in the xy plane directed at 45o to the x-axis simultaneously points both in the x- 

and y-directions - a statement that is true in some sense, but does not have much useful 

content.)  

 

Note that since a and b are complex numbers satisfying the normalization condition, 

and since the overall phase of the wave function is irrelevant, there remain two free 
parameters defining the state of a single qubit (exactly like for a classical vector whose 
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orientation in space is defined by two polar angles). This analogy does not apply any 

more when the number of qubits is 2 or more.  

 

With two qubits, there are 22 = 4 basic states: (↑↑), (↑↓), (↓↑), and (↓↓). Accordingly, 

they are described by the wave function ψ = a(↑↑) + b(↑↓) + c(↓↑) + d(↓↓) with 4 

complex amplitudes a, b, c, and d. In the general case of N qubits, the state of the 
system is described by 2N complex amplitudes restricted by the normalization condition 

only.  

 

While the state of the classical computer with N bits at any given moment 

coincides with one of its 2N possible discreet states, the state of a quantum 

computer with N qubits is described by the values of  2N  continuous variables, the 

quantum amplitudes.   

 

This is the origin of the supposed power of the quantum computer, but it is also the 

reason for it's great fragility and vulnerability. The information processing is supposed 

to be done by applying unitary transformations (quantum gates), that change these 
amplitudes a, b, c... in a precise and controlled manner. The number of qubits needed to 

have a useful machine (i.e. one that can compete with your laptop in solving certain 

problems, like e.g. factoring very large numbers by Shor's algorithm) is estimated to be 

103 − 105. Thus the number of continuous variables describing the state of such a 

quantum computer at any given moment is at least 21000 (~ 10300 ) which is much, much 

greater than the number of particles in the whole Universe (this is only ~ 1080)! 
 

At this point a normal engineer, or an experimenter, looses interest. Indeed, possible 

errors in a classical computer consist in the fact that one or more transistors are 

switched off instead of being switched on, or vice versa. This certainly is an unwanted 

occurrence, but can be dealt with by relatively simple methods employing redundance. 

  
In contrast, accomplishing the Sisyphean task of keeping under control 10300 

continuous variables is absolutely unimaginable. However, the QC theorists have 

succeeded in transmitting to the media and to the general public the belief that the 

feasibility of large-scale quantum computing has been proved via the famous threshold 

theorem: once the error per qubit per gate is below a certain value, indefinitely long 
quantum computation becomes feasible, at a cost of substantially increasing the 

number of qubits needed (the logical qubit is encoded by several physical qubits). Very 

luckily, the number of qubits increases only polynomially with the size of computation, 

so that the total number of qubits needed must increase from N =103 to N =106─109 

only (with a corresponding increase of the unimaginable number of  2N  continuous 

parameters defining the state of the whole machine!!!).  

3. Experimental studies  

Experimental studies related to the idea of quantum computing make only a small part 

of the huge QC literature. They represent the nec plus ultra of the modern experimental 

technique, they are extremely difficult and inspire respect and admiration.  The goal of 

such proof-of-principle experiments is to show the possibility to realize the basic 

quantum operations, as well as to demonstrate some elements of quantum algorithms. 
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The number of qubits used is below 10, usually from 3 to Apparently, going from 5 

qubits to 50 (the goal set by the ARDA Experts Panel road map for the year 2012!) 

presents hardly surmountable experimental difficulties and the reasons for this should 

be understood. Most probably, they are related to the simple fact that 25 = 32, while 250 

= 1125899906842624.  

By contrast, the theory of quantum computing, which largely dominates in the  
literature, does not appear to meet any substantial difficulties in dealing with millions 

of qubits. Various noise models are being considered, and it has been proved (under 

certain assumptions) that errors generated by “local” noise can be corrected by 

carefully designed and very ingenious methods, involving, among other tricks, massive 

parallelism: many thousands of gates should be applied simultaneously to different 
pairs of qubits and many thousands of measurements should be done simultaneously 

too.  

An important issue is related to the energies of the ↑ and  ↓ states. While the notion of 

energy is of primordial importance in all domains of physics, both classical and 

quantum, it is not in the vocabulary of QC theorists. (Surprisingly, they also have no 

use for other indispensable attributes of Quantum Mechanics, like Hamiltonian and 

Schroedinger equation).  

They implicitly assume that the energies of all 2N states of an ensemble of qubits are 

exactly equal. Otherwise, the existence of an energy difference ∆E leads to oscillations 

of the quantum amplitudes with a frequency Ω = ∆E/ ћ, where  ћ is the Planck 

constant, and this is a basic fact of Quantum Mechanics. (For example, one of the 

popular candidates for a qubit, the electron spin, will make a precession around the 
direction of the Earth's magnetic field with a frequency  ~ 1 MHz).  Should the Earth's 

magnetic field be screened, and if yes, with what precision?   

Whatever is the nature of qubits, some energy differences  will necessarily exist 

because of stray fields, various interactions, etc. resulting in a chaotic dynamics of the 

whole system, which will completely disorganize the performance of the quantum 

machine. I am not aware of any studies of this very general problem.  

Let us recall that our laptops have originated from the construction of the elementary 

electronic calculator which replaced the abacus in the 60is. Step by step 

improvements and developments of this simple device resulted in the supercomputers 

that we have today.   

 
With quantum computing, this natural process has been reversed: the field started with 

fantastic promises of breaking security codes and changing our world forever.  

However, after more than 20 years of unprecedented hype there still is nothing real to 

show. Forget "quantum supremacy" and factoring atrociously large numbers.  Just 

show us some working quantum device, however simple, e.g. a quantum school 

calculator which could perform operations like 3+5, or 3x5, and maybe even factor 15 
by using Shor's algorithm!  I would not mind if this quantum calculator had the size of 

a 3 story building and immersed in liquid Helium... 

 

However, 25 years after Shor's seminal theoretical work, which triggered the whole 

field of quantum computing, and many, many billions of dollars spent, these 
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elementary tasks are still far beyond our capabilities. This fact does not inspire any 

confidence.  

4. Conclusions.  

The hypothetical quantum computer is a system with an unimaginable number of 

continuous degrees of freedom - the values of the 2N quantum amplitudes with N ~ 

103–105 . These values cannot be arbitrary, they should be under our control with a 
high precision (which has yet to be defined).  

 

Riding a bike, after some training, we learn to successfully control 3 degrees of 

freedom: the velocity,  the direction, and the angle that our body makes with respect to 

the pavement. A circus artist manages to ride a one-wheel bike with 4 degrees of 
freedom. Now, imagine a bike  having 1000 (or 21000 !) joints that allow free rotations 

of their parts with respect to each other. Will anybody be capable of riding this 

machine?  

 

Thus, the answer to the question in title is: As soon as the physicists and the engineers 

will learn to control this number of degrees of freedom, which means - NEVER. 
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Empowering Parallel Computing with
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Abstract. After more than 30 years, reconfigurable computing has grown from a
concept to a mature field of science and technology. The cornerstone of this evo-
lution is the field programmable gate array, a building block enabling the configu-
ration of a custom hardware architecture. The departure from static von Neumann-
like architectures opens the way to eliminate the instruction overhead and to op-
timize the execution speed and power consumption. FPGAs now live in a grow-
ing ecosystem of development tools, enabling software programmers to map al-
gorithms directly onto hardware. Applications abound in many directions, includ-
ing data centers, IoT, AI, image processing and space exploration. The increasing
success of FPGAs is largely due to an improved toolchain with solid high-level
synthesis support as well as a better integration with processor and memory sys-
tems. On the other hand, long compile times and complex design exploration re-
main areas for improvement. In this paper we address the evolution of FPGAs to-
wards advanced multi-functional accelerators, discuss different programming mod-
els and their HLS language implementations, as well as high-performance tuning
of FPGAs integrated into a heterogeneous platform. We pinpoint fallacies and pit-
falls, and identify opportunities for language enhancements and architectural re-
finements.

Keywords. FPGAs, high-level synthesis, high-performance computing, design
space exploration

1. Introduction

Parallel Computing is predominantly focusing on high performance computing. It typi-
cally covers three major domains: architectures, algorithms and applications. These three
components are considered a joint force to accelerate computations. Modern applications
have an ever growing processing need. This is the case for many areas such as artificial
intelligence, image processing, Internet of Things, and big data, not to mention cyber
physical systems, which is the topic of one of the Horizon 2020 calls by the European
Commission [14]. Despite an exponential rise of computing power for CPUs in general,
we see that since 2003 the performance rate is dropping [19], first of all due to the Den-
nard scaling [9], which is actually a problem of warming up caused by a continuously
rising clock frequency. A second aspect, not related to technology but to the type of ap-
plication, is Amdahl’s law [1], which is analyzed using parallel program models in sec-
tion 5. The third one is the end of Moore’s law [26], because transistors cannot prac-
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tically be made smaller than a few silicon atoms. This means that we have to go new
ways to accelerate the computations. One of the accelerators notoriously present in our
today’s desktops and supercomputers is the graphics processing unit. A GPU is an ex-
cellent device for parallel number crunching, originally rooted in image processing, but
which since many years has outgrown this application domain by an order of magnitude.
While GPUs are voracious number crunchers, graphics processing units are not a one
size fits all architecture for every problem on the earth. A GPU is best suited for mas-
sively parallel computations. It has a fixed architecture consisting of many parallel pro-
cessing engines, and a fast thread manager which is able to switch very quickly between
threads waiting for data from the memory.

A major alternative emerging as a rising star is the field programmable gate array. In
contrast to the GPU, the field programmable gate array has not a fixed but a flexible, re-
configurable architecture. An FPGA behaves metaphorically speaking like a chameleon
because it is able to adapt itself to the type of the algorithm. This compute engine allows
to build an ad hoc architecture which is a one-to-one mapping of the algorithm onto the
hardware. There is no program, no instructions, just an interconnection of computing el-
ements and control logic performing the task implied by the algorithm. This brings us to
a very regular layout of the field programmable gate array: it consists of logic elements,
computing elements such as digital signal processors, memory elements or RAM blocks,
input-output elements at the border, clock signals to synchronize all the operations and
finally a network of programmable interconnections used to configure the control and
data paths of the design (Fig. 1).

Figure 1. FPGA architecture with basic logic elements, programmable interconnects, I/O pins, block RAM
and digital signal processors.

The so-called programming of an FPGA involves mapping a logic design, including
DSPs and their interconnections, onto the physical hardware of the FPGA. This is done
in two steps. First, a high-level synthesis or HLS compiler converts the program into a
task graph, assigns the nodes of the graph to computing resources of the FPGA, maps
the edges to control and data paths between the computing elements and generates a
low-level hardware description in VHDL or Verilog. In the second step, the hardware
description is mapped, placed and routed onto the physical available resources of the
FPGA. The result is stored in a binary file, called the bitstream, which is uploaded to the
configuration memory of the FPGA. After configuration, i.e. setting the interconnections,
the programmed FPGA can operate e.g. as a data flow engine.
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The rest of this paper is organized as follows. The origins of FPGAs are presented
in section 2. The back-end of an FPGA compiler is described in section 3 and section 4
introduces the front end of high-level synthesis compilers, including performance factors
and design exploration. The differences between FPGA and GPU accelerators are ad-
dressed in section 5, in particular focusing on the typical programming styles and appli-
cation areas of both accelerators when using the same programming language OpenCL.
Section 6 explores an integrated FPGA-CPU environment, including shared virtual mem-
ory, coherent caching and high bandwidth, as presented in the HARP-v2 platform. The
power of this platform is illustrated by a guided image filter application. In section 7
some common misconceptions are addressed and concluding remarks are given in sec-
tion 8.

2. History

Field programmable gate arrays have come a long way. They found their origin in the 60s
when researchers were looking for new computer architectures as an alternative for the
stored program concept of von Neumann. Not that the stored program concept was a bad
idea, on the contrary: it is an ingenious innovation to put instructions and data in the same
memory and to reconfigure the processor during instruction fetch and decode cycles.
Why then look for new architectures? Well, by configuring the control and data paths at
each instruction, the von Neumann computer trades in performance for flexibility.

The first person to challenge the von Neumann concept was Gerald Estrin from
UCLA [12]. His idea was to extend the traditional computer, which he called a fixed ar-
chitecture, with a variable part, used to implement complex logic functions. He built a six
by six motherboard to hold configurable computing and memory elements. The compute
elements implemented functions much more complex than the simple instructions in the
fixed architecture. The backside of the motherboard consists of a wiring panel to inter-
connect the different components. Programming the ”fix+variable” computer was quite
a challenge, e.g. the computation of the eigenvalues of a symmetric matrix is described
in a publication of 20 pages and resulted in a speedup of 4 with respect to an existing
IBM computer [13]. Although these results are modest, they show that implementing
an algorithm directly into hardware is beneficial. The question remains how this can be
done efficiently.

In 1975 Jack Dennis of MIT pioneered a new architecture which he called the data-
flow processor [10]. The architecture consists of a large set of computing elements which
can be arbitrarily interconnected and which fire when data is present on the inputs. Pro-
gramming the dataflow processor consists of interconnecting the computing elements
according to the dataflow graph of the algorithm and percolating the data from the top.
There are two performance gains. First, since the program is not stored in a memory, the
instruction fetch and instruction decode phases are eliminated, leading to a performance
gain of 20 to 40%. Second, the parallelism is maximally exploited, because it is only
limited by the dependencies in the algorithm and by the available computing elements.
A drawback of the first dataflow architecture is that the computing resources may be
underutilized when occupied by a single data stream. Therefore Arvind, a colleague of
Jack Dennis, proposed the tagged dataflow architecture [2] in which several separate data
streams are identified by tokens with different colors and tokenized data compete for the
compute resources in the system.
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Why did these new architectures not materialize? Obviously, the technology was
lagging behind, compared to the large-scale integration of today and also silicon com-
pilers were still in their infancy. These problems have been largely overcome by the
confluence and synergistic effects of hardware and software developments together with
a major progress in the detection and management of parallelism in programs. Paral-
lel computing techniques and versatile micro-electronics created a fertile ground for a
new kind of architecture, the field programmable gate array. Almost simultaneously two
companies were established. In 1974 Altera (now Intel) was founded by graduates of the
University of Minnesota and in 1975 Xilinx was created with people from university of
Illinois. Together these companies own more than 80% of the FPGA market. Nowadays,
the field of FPGAs has grown into a mature hardware technology enhanced by two soft-
ware developments. First, the integrated development tools now incorporate cycle ac-
curate logic simulation, power and performance estimations and resource usage reports.
Second, the support of high-level synthesis languages allows algorithms and programs
to be written in C or OpenCL, and converted into low-level VHDL for implementation
on the FPGA, thereby gaining several orders of magnitude in design exploration and de-
velopment time. Nevertheless, programming FPGAs with high-level synthesis tools still
requires a minimal notion of the underlying hardware.

3. Compiler back end

The smallest compute element of an FPGA, the lookup table or LUT, calculates an ar-
bitrary logic function of a number of input variables. Several logic functions with the
same inputs are calculated in parallel with the same LUT. Since the propagation delay
of a LUT is much smaller than the clock cycle time of the FPGA, many LUTs can be
cascaded into a long chain within the time frame of one clock cycle and thus create com-
plex functions, such as an integer addition or multiplication. When the combined prop-
agation delay becomes larger than the clock cycle time, the result is put into a flip-flop.
The combination of a lookup table and the flip-flop is called a basic logic element. This
element can be configured either as a logic function or as a state element, depending on
the use of the flip-flop.

A high-level synthesis compiler converts a high-level program into LUTs, DSPs,
gates, and their interconnections. Consider a sequence of functions operating on a data
stream, y = f1( f2(. . . fn(x))). Each of the functions is synthesized such that the combi-
national execution time is less than one clock cycle time and the result is stored in a
flip-flop where it is ready for the next function. This creates a pipeline with a latency
equal to the number of functions and a throughput of one result per cycle, as soon as the
pipeline is filled with data. How is a pipeline created by the compiler? Let us look at a
simple example, y= ax+b, represented by the task graph in figure 2. Assuming that the
multiplication and the addition require one clock cycle each, then the compiler inserts
registers or flip-flops to hold the intermediate results. The computation takes three clock
cycles, one to read the input elements, one for the multiplication and one for the addition.
Let us now extend this operation for arrays of n elements, y[i] = a[i]x[i]+b[i]; i= 0 . . .n
as described in a loop statement. In this case, the compiler creates extra control logic to
fetch the input variables, launch the computation and store the output.

The output of an HLS compiler is a description of the data- and control paths, mem-
ory, registers, flip-flops, and interconnection logic, written in a low-level hardware lan-
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Figure 2. Task graph, registers (squares), I/O data streams and control logic for y= ax+b.

guage such as VHDL or Verilog. Next, the placement and routing of the hardware de-
scription are done by mapping, placing and routing the design onto the FPGA, taking
into account the available resources. The resulting configuration of the hardware design
is written into a bitstream file used to set the interconnections in the FPGA. The bitstream
is moved to a persistent memory (e.g. flash memory) and from there it is stored in the
configuration memory at the boot time of the FPGA. It is important to note that high-
level synthesis compilers such as Vivado HLS of Xilinx or OpenCL of Intel run typically
in about five minutes whereas the hardware place and route tools run in the order of five
hours.

4. Compiler front end

Before long there were early birds attempting to create high-level synthesis compilers,
mostly based on the knowledge and ideas of parallel computing developed in the 80s. The
efficiency of these compilers was limited, partly due to the lack of detailed inside knowl-
edge and proprietary information from the FPGA vendors [27]. Everything has turned
around since Xilinx and Altera, now Intel, have developed high-level synthesis tools for
their own devices, leading to Vivado HLS [28] by Xilinx or OpenCL [17] by Altera and
Intel. Besides these imperative C-like languages, Maxeler developed a dataflow-oriented
language Maxeler Java [3].

4.1. Design space exploration

The approach to obtain efficient hardware with high-level synthesis is the same for
OpenCL and Vivado HLS: maximize the compute power using DSPs and maximize the
reuse of local data, since on-chip BRAM memory is limited. This calls for algorithms
with a high arithmetic density, i.e. a large number of operations per byte I/O [8]. The first
step is to adapt the algorithm to the computational model of an FPGA and carry out an
initial performance evaluation. Next, pragmas are inserted to improve the performance
taking into account the available resource budget of DSPs, BRAMS, and LUTs. In gen-
eral, it is not required to know low-level programming or detailed characteristics of the
FPGA because most information is available in the compiler reports. Further refining can
be done by simulation, emulation, and profiling. The interactive phase of generating an
efficient design is called the design space exploration.
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4.2. Performance factors

Key performance factors during the design space exploration are:

• clock frequency. A small clock cycle time limits the amount of work that can
be done in one cycle and therefore more flip-flops and cycles will be needed to
implement the design. This has an impact on speed and resource consumption.
An HLS compiler will optimize the clock frequency, based on the value requested
by the user and the capabilities of the hardware.

• pipelining. If the compiler is able to create pipelines with n stages, the execution
speed increases to n times the speed of the non-pipelined version.

• parallelism.When an algorithm hasm independent data streams, the compiler can
organizem parallel pipelines and therefore multiply the speedup by the number of
pipelines. Examples are executing pipelined dot product calculations of a matrix
multiplication in parallel or using parallel streams in systolic computations [16].
The challenge here is to feed all pipelines simultaneously.

The bottom line is that the performance of an FPGA depends on two basic principles:
cram as much as possible operations into a pipeline and create as many pipelines as
possible which can be fed simultaneously.

4.3. The initiation interval

For maximum performance, pipelines need new data in each and every clock cycle.
Pipeline bubbles and gaps are caused by memory or data dependencies. Memory depen-
dencies occur when the number and width of data ports to the cache or DDR memory are
insufficient to provide continuous parallel data streams to all pipelines. Data dependen-
cies occur when computing elements have to wait more than one cycle for the results of
other computing elements in order to carry out the computation. Both memory and data
dependencies involve an action from the programmer. Off-chip memory dependencies
due to bandwidth limitations are removed by using on-chip cache cores or reduced using
fast interfaces, such as PCI-Express. Memory dependencies caused by contention for the
limited number of on-chip BRAM memory ports are avoided by partitioning data over
many parallel accessible memory banks. Data dependencies occur between loop itera-
tions when the result of one iteration is used in a subsequent iteration. The impact of
loop carried dependencies is expressed by the initiation interval, II. The initiation inter-
val of a loop is the number of cycles one has to wait before a new iteration can start.
Ideally, the initiation interval II = 1. However, due to data or memory dependencies, the
initiation interval may become larger than 1 for example, II = 2. In that case, the perfor-
mance drops by 50%. The initiation interval is therefore one of the most important loop
characteristics shown in the compiler reports.

There are a number of hints to improve loop operations: loops are unrolled to in-
crease the number of parallel iterations and generate more opportunities for pipelining.
Complete unrolling may lead to an overuse of resources, requiring partial loop unrolling.
The bandwidth usage is improved by coalescing load operations, leading to single wide
data fetches instead of doing sequential loads. Memory locations unknown at compile
time, caused by pointer arithmetic or complex index calculations, are an area of concern.
In nested loops it is better to represent matrices as multidimensional arrays instead of
using a computed index into a single array.
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To illustrate the impact of design space exploration, consider the program in list-
ing 1. A constant is added to a matrix in a double nested loop, l1 and l2. The pragmas of
the Vivado HLS compiler used are unroll, pipeline and array partitioning. The pragmas
are applied selectively according to the scenarios in table 1. Unrolling the outer loop
gives no speedup. Unrolling the inner loop creates 512 parallel iterations, generating a
modest 6-fold speedup. The reason is that FPGA memory banks have 2 ports, therefore
we can only read two values per cycle, i.e. start 2 iterations in parallel in each cycle.
The inner loop takes 512/2 = 256 cycles, whereas the same loop without pragmas takes
512*3 = 1536 cycles (3 cycles for respectively read, add and write). The solution is to
increase the number of memory banks by partitioning the arrays din and dout. This
scenario leads to a better speedup of 512, but still leaves an initiation interval of II = 3 in
the outer loop, because the parallel iterations of the inner loop don’t overlap and there-
fore an inner loop iteration takes 3 cycles. Pipelining the outer loop implies unrolling the
inner loop according to the compiler documentation. Without partitioning, we again ob-
tain a speedup of 6, due to the memory bottleneck. Pipelining the inner loop, plus array
partitioning, creates overlapping iterations, an initiation interval II = 1 and a speedup
of 1529. The same happens if we pipeline the outer loop, which implies unrolling and
pipelining the inner loop completely.

Listing 1 Design space exploration, optimal case, II=1.
# d e f i n e N 512
void n e s t e d l o o p ( i n t d in [N] [N] , i n t dou t [N] [N] ) {
#pragma HLS ARRAY PARTITION v a r i a b l e = d in f a c t o r =256 dim=2
#pragma HLS ARRAY PARTITION v a r i a b l e =dou t f a c t o r =256 dim=2
l 1 : f o r ( i n t i = 0 ; i < N; i ++) {
#pragma HLS PIPELINE
l 2 : f o r ( i n t j = 0 ; j < N; j ++) {

dou t [ i ] [ j ] = d in [ i ] [ j ] + 40 ;
}

}
re turn ;

}

Scenario Outer (l1) Inner (l2) Array partitioning II Speedup

Unroll x 1

Unroll x 256 6

Unroll x x 3 512

Pipeline x 256 6

Pipeline x x 1 1,529

Pipeline x x 1 1,529

Table 1. Design space exploration using unrolling, pipelining and array partitioning.

This simple design space exploration shows a performance improvement of more
than 1500 with a number of well-chosen pragmas.
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5. FPGA vs GPU programming: pipelining vs parallelism

Since more than two decades the performance gain of processors is hampered by clock
rate and transistor scaling constraints. In accelerators such as GPUs, low clock rates have
been replaced by explicit parallelism, yielding chips with hundreds or even thousands
cores per chip die [21]. The exponential growth of parallel cores requires a proportional
scaling of the problem parallelism. Recently, Hennessy and Patterson have illustrated
that the law of Amdahl comes into play for the diminishing processing speed between
the years 2011 and 2015 [19]. In this period GPUs were growing at a fast pace, and it
reminds us that the basic power of GPUs is not always applicable in every algorithm.
Amdahl’s law specifies that we cannot diminish the execution time below the critical
execution path of serial calculations, even if everything else is parallelized. This has two
consequences for HPC programming: 1) the amount of serial computations in a program
needs to be minimized and 2) highly parallel computers or GPUs require applications
with ample parallelism. The first consequence is visible in figure 3, displaying the max-
imum speedup with p processors as a function of the critical serial part. Even with only
2% serial operations, the speedup is limited by 50, irrespective of the number of pro-
cessors used, see figure 3. For the impact of the second consequence, we look at the
distribution of the parallelism in a program.

Figure 3. Application dependent speedup limit, Amdahl’s law.

5.1. Distribution of parallelism in ordinary programs

Ideally, all p processors of a multiprocessor work all the time, so the parallelism is p.
Ruby Lee studied three other distributions [23]: the equal time, equal work and inverse
work hypothesis. Equal time means that the program executes an equal amount of time
with respectively 1, 2 up to p processors operating in parallel. Equal work means that the
amount of work executed with i processors is proportional to i, i = 1 . . . p. The inverse
work hypothesis means that the amount of work done by i processors in parallel is in-
versely proportional to i. These hypotheses give rise to three analytical formulas for the
speedup, respectively Set = O(p) for the equal time distribution, Sew = O(p/ ln(p)) for
the equal work distribution and Siw = O(ln(p)) for the inverse work distribution, with
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et = equal time, ew = equal work and iw = inverse work hypothesis. As an example, a
workload of 48 units executed on 4 processors has a minimal execution time of 12 units.
Equal time, equal work and inverse work distributions of the parallelism increase the
execution time to respectively 19.2, 25.0 and 32.8 units. Ruby Lee also analyzed the par-
allelism of a large number of programs using the Paraphrase compiler at Illinois [22,23].
The results are shown in table 2.

Available processors Speedup Sp Hypothesis

1–10 O(p) Equal time
11–1000 O(p/ ln(p)) Equal work

1001–10000 O(ln(p)) . . .O(p/ ln(p)) Transient
>10000 O(ln(p)) Inverse work

Table 2. Speedup bounds for applications with diminshing parallelism.

In this study, the exploitable parallelism diminishes with a growing number of avail-
able processors. Although this is an old empirical observation, it may reflect that Am-
dahl’s law is actually a law of diminishing parallelism. Since GPUs are largely dependent
on massive parallelism this may also explain the decreasing rise of the computing speed
in the years 2011-2015 due to Amdahl’s law.

5.2. The case of OpenCL

Partly due to the success of OpenCL for programming GPUs, FPGA vendors Altera/In-
tel and also Xilinx have selected this language for high-level synthesis [7]. However,
GPUs and FPGAs are fundamentally different and this is reflected in the way an OpenCL
compiler for FPGAs is designed and used.

GPUs have ample parallel cores called streaming multi-processors. These are most
useful for SIMD calculations, which are launched in OpenCL by the NDRange kernel.
An NDRange kernel executes the same iteration on parallel processors for each index
in the n-dimensional iteration space of a nested loop. In a GPU architecture, the index
points of a parallel loop are organized into groups of 32 threads, each executing the same
instruction of the iteration for different index values [24]. Such a group of 32 threads is
called a warp. All warps compete for execution and the warp scheduler assigns a SIMD
instruction to a warp for which all data are available. This means that a GPU operates
strictly in a single instruction multiple data or SIMD mode. When the data for a warp are
not available, the warp scheduler assigns another warp for which data are ready. The fast
thread switching allows to hide the memory latency of the waiting threads.

GPU FPGA

Fast warp (thread) scheduler Fixed configuration, no thread switching
Independent iterations Loop carried dependencies OK
Massively parallel (SIMD) Pipelined execution (MISD)
Large memory Small memory footprint
Send → Calculate → Receive Streaming data, comp./comm. overlap

Table 3. Operational differences between GPU and FPGA.
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When implementing this mode of operation on an FPGA, we are faced with a num-
ber of discrepancies and operational differences, see table 3. First, an FPGA has no warp
scheduler, since the design of a program is fixed in the configuration memory of the
FPGA. This precludes thread switching to hide the memory latency, one of the major
performance factors in GPUs. As a consequence, all data for the warp need to be avail-
able at all times, creating an extra hurdle since FPGAs usually have a small memory
footprint and no cache on chip. Second, all threads in a warp operate independently and
therefore require parallel loops without loop carried dependencies between iterations.
This precludes the generation of long pipelines, which are favorable for execution on
FPGAs. Third, since a GPU has its own hierarchy of memories and caches, the data is
moved to the GPU, processed, and the results are sent back to the CPU. In contrast,
FPGAs are best fit for long streams of data that are processed using overlapping compu-
tation and buffered communication. It becomes clear that FPGAs and GPUs are not so
much competitors, but have a complementary role when it comes to different application
domains.

5.3. Vector types in OpenCL

As an alternative to the resource-hungry NDRange loop control, OpenCL for FPGAs
supports the more efficient vector data types. Vector types allow to operate in a SIMD
fashion on vector data. This creates parallel pipelines, thereby multiplying the pipeline
performance by the number of parallel data streams operating in lockstep. An example is
the use of a vector type in the matrix multiplicationC = A×B by specifying the rows of
matrix B as float8 vectors. In this way, 8 elements of the product matrix are calculated
simultaneously within the pipelined inner loop (see listing 2). This results in 8 new values
per cycle.

Listing 2: Vectored pipelines. Matrix B has data type float8. Loop j creates 8 pipelines
each operating in SIMD fashion on 8 vector elements in loop k.

# d e f i n e T f l o a t 8

k e r n e l void a t t r i b u t e ( ( t a s k ) )
matmul ( g l o b a l f l o a t ∗ r e s t r i c t A,

g l o b a l T ∗ r e s t r i c t B , g l o b a l T ∗ r e s t r i c t C)
{

f o r ( i n t i = 0 ; i<N; i ++)
f o r ( i n t j = 0 ; j<N; j += 8)
{ / / 8 p a r a l l e l p i p e l i n e s

T vsum = 0 ;
#pragma u n r o l l 8

/ / g e n e r a t e p i p e l i n e d k−l oop
f o r ( i n t k = 0 ; k<n ; k++)

vsum += A[ i ∗N+k ] ∗ B[ k∗N/8 + j / 8 ] ;
C[ i ∗N/8+ j / 8 ] = vsum ;

}
}
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6. Advancing FPGA accelerator integration

FPGAs have a limited amount of on-chip storage, much less than GPUs. Therefore, the
interaction between an FPGA accelerator and the CPU is more crucial than for GPUs.
FPGA connects with a data stream either using a PCI-express bus, by accessing device
data directly such as with video input or via an on-chip interconnect such as the AXI
bus in the Zynq. A tighter integration is beneficial, but presents a number of other prob-
lems such as using a common cache, translating the virtual addresses of the CPU into
addressable locations in the FPGA and sharing virtual memory between CPU and FPGA.

6.1. The HARP platform

In order to explore several design improvements, Intel has created a research platform
consisting of a fast Xeon Broadwell processor and an Arria 10 FPGA, together with extra
hardware for caching, and a high-speed CPU-FPGA interconnection [29]. In addition,
the OpenCL language is supported for this platform [4]. The Heterogeneous Architecture
Research Platform (HARP) introduces three innovations shown in figure 4. First, the
local DDR RAM at the FPGA side is replaced by a transparently shared DDR memory
at the CPU side. This includes IP cores translating physical FPGA addresses into virtual
CPU addresses, a Quick Path Interconnect and two PCI-Express channels, providing
a combined maximum bandwidth of 28 GB/s, managed by the channel steering logic.
Second, the FPGA contains a fixed hardware cache of 64 KB as well as an application-
specific cache, generated by the OpenCL compiler. Third, the OpenCL implementation
includes coherent shared virtual memory (SVM) support between the FPGA and the
CPU.

Figure 4. HARP architecture with coherent shared memory, fast interconnection and 2 local caches.

There are a number of questions that can be addressed: how efficient is the cache,
how large is the bandwidth between the FPGA and the CPU and what is the benefit of the
shared memory between the CPU and the FPGA. Regarding the bandwidth, we found
that the real achieved bandwidth is between 15 and 16 GB/s, depending on the buffer
size [15]. Regarding the cache, we have to make the distinction between the fixed 64 KB
Soft IP cache of the FPGA Interface Unit (FIU) and a special OpenCL cache which
is implemented by the compiler based on the data structures and usage in the OpenCL
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program. In order to study the cache performance, we exploited the temporal locality
by repeatedly reading a buffer with increasing length from the CPU. The specialized
OpenCL cache was able to double the bandwidth with respect to the fixed cache in the
Arria 10, see figure 5.

Figure 5. Cache efficiency: the OpenCL application-generated cache doubles the available bandwidth (red).
The FIU cache was measured by disabling the OpenCL cache using the volatile keyword (blue).

Finally, in a traditional FPGA-CPU configuration, the CPU memory cannot be ac-
cessed by the FPGA, therefore OpenCL buffers are required to explicitly send and re-
ceive data, which is time-consuming. Furthermore, cache coherency is lost. In the HARP
platform, a shared virtual memory (SVM) space has been implemented to transparently
access data in the memory of the processor. As a result, data is sent to, or read from the
FPGA on demand. This improves the communication efficiency and avoids extra buffer
space in the FPGA.

6.2. Case study: a guided image filter

The impact of the innovations were tested using the ”guided image filter” (GIF) image
processing algorithm [18]. The guided image filter takes two images: a raw noisy input
image I and an image with extra information G, for example LIDAR data, which is used
to improve the noisy image. GIF is a convolution algorithm in which an output pixel
Oi is obtained by averaging the input pixels I j multiplied with weighted guidance pixels
W (Gj) in a window of radius r (r = 1,3,5...) centered around pixel i. The general form
is

Oi = ∑
j
W (Gj)I j (1)

The algorithm uses a sliding window buffer to receive streaming input data and
reuses most of the data in consecutive pixel calculations, see figure 6.
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Figure 6. Sliding window with radius r = 1 in the guided filter algorithm. Windows I and G are used to
calculate pixel O.

Figure 7. Measurements of the guided filter on the HARPv2 platform: bandwidth, OpenCL generated cache
hit rate, impact of using shared virtual memory vs. copying data into local memory buffers.

6.3. Results

The key performance indicators (KPIs) of this example are the bandwidth, the cache effi-
ciency and the impact of the shared memory. The KPIs obtained in [15] are summarized
in figure 7. The algorithm has been tested on full HD color images (1920x1080x3 pixels)
with radius r = 3. The pipelined and vectorized design is compute-bound and has a data
throughput of 1.7 GB/s for reads and 1.5 GB/s for writes. The OpenCL cache hit rate is
81.5% and 95.4% for the input and guidance images respectively, showing the favorable
impact of an algorithm-specific designed cache. The use of shared virtual memory in-
stead of loading data into local buffers increases the frame rate from 30 to 45 frames per
second. These results are obtained using floating-point operations and correspond to the
maximum design fitting on the FPGA. As mentioned in [15], a larger radius generates
more computations per frame. Using fixed-point instead of floating-point calculations, a
radius r = 6 can be implemented, yielding 74 frames per second.
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This example shows that OpenCL and the HARP platform go together well. The
HARP platform offers a high bandwidth and a shared memory architecture. OpenCL,
on the other hand, adds a design-specific generated cache and the use of shared virtual
memory to the application developer.

7. Fallacies and pitfalls

The world of FPGAs is exciting, but also challenging, there are a lot of high expectations,
but also misconceptions. We would like to address some of these particular items or
issues here.

One kernel fits all sizes

It is reasonable to expect that one compute kernel can be used for any size of data. This
is mostly not true because the hardware generated depends on the kernel arguments. E.g.
the number of rows and columns of a matrix multiplication are used to reserve local
buffers, since the FPGA has no dynamic memory. Smaller matrices are fine, but one
loses the unused resources. Larger matrices require other techniques such as block matrix
multiplication to get the job done [11]. An FPGA kernel is thus less flexible than CPU
or GPU procedures.

Switching kernels in an FPGA or a GPU is equally fast

This is true only if there are enough resources to store multiple kernels simultaneously
in the logic fabric. Otherwise, switching between multiple kernels implies a full or par-
tial reconfiguration for each kernel, and this takes in the order of milliseconds or even
seconds [30]. In a GPU, a kernel switch is as fast as a procedure call. However, running
multiple kernels simultaneously by sharing processors is more complicated and involves
merging several kernels [31].

OpenCL is a standardized language for FPGAs

While OpenCL is a standard, its usage, attributes, pragmas and programming model are
not standardized across the FPGA vendors. This applies also to the compiler reports
which are used to optimize the design. E.g. the initiation interval is tabulated for each
loop in the Xilinx reports whereas it is specified for basic blocks in the Intel reports.
The Xilinx software gives the total number of cycles as well as the expected frequency
which allows to calculate the execution time of the kernel and even the number of GFlops
straight from the compiler report. Intel shows the number of cycles for each node in the
task graph and each basic block. It is not obvious to calculate the total number of cycles
from the task graph of the program. See also the tutorial [20].

FPGA programming eats time

As is mentioned in section 3, compiling an HLS program typically requires in the order
of several minutes, whereas implementing the hardware design into a bitstream can take
many hours. Since HLS resource usage and cycle time reporting is quite accurate and not
time-hungry, HLS design space exploration shows a much more favorable development
cycle time than what is generally assumed.
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An OpenCL program for a GPU is easily portable to an FPGA

The GPU architecture differs fundamentally from the FPGA, e.g. FPGAs have a small
memory and no hardware thread switching. Hardware thread reordering, proposed
in [25], doubles the resource usage due to arbitration logic and extra memory manage-
ment. The GPU parallel programming style using the NDrange kernel consumes a lot of
resources when used in the FPGA. OpenCL kernels for FPGAs are mostly single work
items, which are then pipelined. Finally, FPGAs require a thorough design space explo-
ration to optimize resource usage or to obtain a significant speedup. For these reasons, it
is often better to redesign the algorithm from the ground up to orient the program to the
characteristic features and optimizations of an FPGA [5].

8. Conclusion

Field programmable gate arrays have become a significant player in parallel computing
systems. While the support of a common OpenCL language suggests a transparent use
of GPUs and FPGAs accelerators, the application domain, algorithm selection and pro-
gramming style is substantially different. The initial high expectations have made way
for a more realistic view and a focus on better tools and design concepts, with good re-
sults. A number of key improvements to be expected are a tight integration of FPGAs
in SoCs, enhanced compiler reporting, standardized pragmas as well as increased use of
HLS languages for reconfigurable computing in software engineering curricula [6].
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Abstract. Nowadays, machine learning techniques based on deep neural networks
are everywhere, from image classification and recognition or language translation
to autonomous driving or stock market prediction. One of the most prominent fields
of application is medicine, where AI techniques promote and promise the person-
alized medicine. In this work, we entered in this field to study the prostate cancer
prediction from images digitalized from hematoxylin and eosin stained biopsies.
We chose this illness since prostate cancer is a very common type of cancer and
the second cause of death in men. We did this work in collaboration with Hospital
Reina Sofia of Murcia. As newcomers, we faced a lot of problems to start with,
and questioned ourselves about many issues. This paper shows our experiences in
developing and training two convolutional neural networks from scratch, exposing
the importance of both the preprocessing steps (cropping raw images to tiles, label-
ing, and filtering), and the postprocessing steps (i.e., to obtain results understand-
able for doctors). Therefore, the paper describes lessons learned in building CNN
models for prostate cancer detection from biopsy slides.

Keywords. Deep learning, Prostate cancer detection, Neural networks

1. Introduction

Deep learning has become more and more ubiquitous in everybody’s day life. Specif-
ically, deep neural networks have been incorporated into numerous fields, such as im-
age classification, language processing, economics, video games, and medicine. In some
tasks, this new technology is being able to outperform human performance.

Progress in hardware technologies and cost reduction have caused new approaches
in deep neural networks, outperforming older machine learning techniques. Nowadays it
is possible to afford more and more complex problems, then it is important to have some
practice and experience on it.

One of the most prominent fields of application of deep learning techniques is in
medicine. Initially, applications of deep learning in medicine were limited to radiology
images [1], but later (since end of 2016) it began to apply for other kinds of images [2–5].

Medical image analysis has started to implement deep learning for screening and
localization of malignant zones. Additionally, other medical areas are working with these
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kind of techniques as well, like the analysis of the genetic information inside DNA and
RNA series [6]. The common objective is not replace physicians with deep learning
techniques, but supporting them to make better diagnoses.

Although our research group is focused on High-Performance Computing (HPC)
and its applications, some years ago we got attracted by using our knowledge on HPC
techniques to improve the precision and execution time of deep learning workloads from
a real medical case. Then, we joined Prof. Enrique Poblet-Martı́nez and his research team
from the Hospital Reina Sofı́a of Murcia to work in the field of “Detection of Prostate
Cancer by biopsy slides”. The final objective of our new research line is to create a model
able to recognize tumorous zones in biopsy slides as a preliminary screening, hence
allowing doctors to focus on the tumorous cases.

This paper presents our first experiences in this field, showing the way we took to
learn about Deep Neural Networks (DNNs) tackling a real problem from the medicine
field. We started by choosing the MXNet framework as our platform where our codes
have been run. The first lesson we learned was the major role that the preprocessing steps
play to observe a good behaviour of the CNN network . Next, we realized about modify-
ing the hyper-parameters of the network to tune its behaviour and further improve its “ac-
cuary”. Finally, we discovered the importance of the postprocessing steps to present the
neural network’s output in a format understandable by pathologists. In this first attempt,
we achieved an AUC satistic metric of 82% in discriminating healthy from cancerous
images using Inception V3.

The rest of the paper is organized as follows: Section II introduces the main concepts
managed throughout this paper, related to deep learning frameworks, accelerators, and
prostate cancer. Section III reports the machine and configuration used. The methodology
is described in Section IV. Section V contains the obtained experimental results. Finally,
Section VI exposes our conclusions and give some hint for future work.

2. Background

2.1. Machine Learning & Deep Learning

Theoretical and mathematical models of the artificial intelligence techniques were de-
veloped in the twentieth century. One of these models are ANNs (Artificial Neural Net-
works), a type of brain-inspired learning algorithm, built from small units called neurons.
The most classical one, MLP (MultiLayer Perceptron) network, With enough layers, and
enough perceptrons per layer, is able to represent any mathematical function [7]. How-
ever, when the amount of data grows, networks built exclusively from perceptrons can be
very inefficient. Therefore, new types of neural networks should be made, being CNNs
(Convolutional Neural Networks) the most known ones. The most distinguished layers
in these networks are convolution and pooling, taking input data structured as channels
of two dimensions.

Once the network is defined, with more or fewer layers, there are two different
phases: inference, and training. In the inference phase, a set of inputs are presented to the
network, and a set of outputs are given by the network, like any mathematical function.
But training phase is more complicated, using an algorithm, it starts to teach the network
to do something useful.
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Before starting training, a initialization step is needed to set the different parameters
of the network. This step might appear trivial or optional, but a bad starting point may
make the network never be able to learn. Also, it is possible to bring this data from
another neural network model, called Transfer Learning [8].

SGD (Stochastic Gradient Descendent) is the most known training algorithm for
neural networks, but it is not the only one, there others like Adam [9] and DCASGD [10]
among others. SGD is a variant of GD (Gradient Descendent) but used with batches. A
batch is a group of input data of fixed size.

Then, the iteration process is as follow: First the Feed-Forward step, where data
is presented to the network in batches, storing the result for later use. Then, the Back-
Propagation step that compares all the results from the previous step with ground truth,
and propagates backward on the network to calculate the gradient estimate. Finally, with
the gradient estimation, all weights and biases are updated in the Update step.

There are some metrics to observe the precision of the neural network, being the
most common accuracy, mse, macc, and cross-entropy. In classification, the most used is
accuracy, giving the percentage of correctly predicted cases over the total. In classifica-
tion, AUC statistic metric has started to be used in neural networks for medicine. AUC
is the Area Under the Curve, to be specific, under the ROC curve. A ROC curve is a Re-
ceiver Operating Characteristic Curve [11], and it is commonly used to know how good
is a binary classifier.

2.2. Frameworks & HPC

Machine learning techniques could be difficult to code and debug, therefore many frame-
works have been developed to ease its use. Most of them are open source with software
for most of the types of neural networks. The most known ones are Caffe, Caffe2, Ten-
sorflow, Theano, PyTorch, Mxnet, and CNTK among others [12]. And there are frame-
works like Keras, providing a more high-level experience, running on top of some of the
aforementioned frameworks.

Specifically, the training phase is very time-consuming, since it is evaluating an op-
timization problem with hundreds, thousands, or even millions of parameters. Therefore,
the reduction of the training phase execution time is a desirable feature for all frame-
works. Thanks to this shorter training time, scientists using theses frameworks can ex-
plore a wide solution space, and even develop more complex networks.

The rise of High-Performance Computing (HPC) applied not only to grand challenge
problems but also to common problems has revolutionized the machine learning field.
All major vendors offer products which can be used for deep learning, as GPUs from
Nvidia and AMD or scalable Xeons from Intel. Also, proprietary designs have emerged
using ASICs, FPGAs or systolic arrays. Maybe the most well known is the development
of the TPUs from Google [13].

2.3. Prostate Cancer

Prostate cancer is the most common cancer and the second leading cause of death in
men [14]. Nowadays, pathologists have a large number of slides to diagnose, making
diagnosis very long. Reduce this diagnosis time would help to focus on the needed cases.

Prostate biopsies are hematoxylin and eosin stained (H&E) and normally stored in-
side a crystal. These biopsies need to be transformed to digital images to be used by
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Figure 1. a: Custom Neural Network inspired on LeNet. b: Inception V3

https://cloud.google.com/tpu/docs/inception-v3-advanced.

deep learning techniques. To do that, there are systems able to scan biopsies into a high-
resolution image, called WSI (whole slide images). These WSI allow the application of
image analysis techniques to prostate biopsies.

Using these WSIs, there are some approaches developing deep learning models to
detect prostate cancer in biopsy slides [15–17]. Some of them try to find the tumorous
zones and classify them using the Gleason’s pattern.

3. Our Experience

3.1. Settings

In this study, we have used the MXNet 1.3.0 framework running with Cuda 9.2, and
cuDNN 7.4.1. Statistical data was obtained with scikit-learn 0.20.2. Our compute ma-
chine is running CentOS Linux 7.5.1804 with Linux 3.10.0-862.14.4, powered by two In-
tel(R) Xeon(R) CPU E5-2603 v3 @ 1.60GHz with 64 GiB RAMmemory, and a Geforce
GTX 1080 8GB GDDR5X. For storage, we have a 500GB Samsung SSD 850. Finally,
the scanner used to digitalize biopsies was iScan Coreo Ventana, able to produce BIF,
TIFF and JPEG2000 image formats, from 1x to 40x magnification.

Two neural networks architectures have been used. The first one is a basic CNN
(Figure 1) based on LeNet [18] and previously used in a medical environment [2, 19].
The second one is Inception v3, a very common network used for image classification
(Figure 1). To clarify these figures, next we detail the different layers from the LeNet-
based network. At the beginning is the input image (3 channels of 128x128 pixels); then
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(a) (b)

(c) (d)

Figure 2. An example of a biopsy. a: a crystal with 3 slabs of a biopsy. b: scanned biopsy with all slabs. c: a
slab extracted from the scanned image. d: a labeled slab of a biopsy, green zones denote tumors.

a convolution of 16 filters with a kernel size of 3x3; its size is reduced by a 2x2 max
pooling layer; then, another convolution is applied, but with a kernel size of 5x5 and 4
filters, followed again with another 2x2 max pooling; in the end, we have an MLP with
sizes 500, 30, and 2, each one with sigmoid activation; and a SoftMax layer at the end.

3.2. Preprocessing Database

As mentioned before, WSI images have a high resolution scanned image. Our selected
framework, MXNet, cannot use this multiple format. Then, we chose the TIFF format to
convert it later to JPG. These TIFFs have multiple layers, the first one is an image of the
biopsy (Figure 2), the next one is a thumbnail, and the consecutive ones are 20x, 10x, 5x,
2.5x, 1.25x, 0.625x, 0.3125x, 0.15625x, 0.078125x magnifications.

The start point was to set a magnification value for the images. Pathologists usually
select 20x magnification to find tumors, therefore we extract this specific image from the
multilayer TIFF image (Figure 2), resulting in a size of 200 ∼ 500 megapixels. Also, as
all slabs from the biopsy are very similar, doctors decided which one will be used .

Next, we ask pathologists for labeling tumorous zones in the biopsy slide, distin-
guishing affected biopsies from healthy ones, and locating the affected areas (like Figure
2).

However, even using only one slab from the biopsy, the image is too big to be used
as such. To cope with this problem, we followed the approach of cropping the image in
many rectangular tiles, treating the image as many tiles on a wall. We did this inspired
on previous works in the medicine field [3]. Making this, we could process each tile in-
dependently from others, solving the size problem. As a downside, we missed some rele-
vant information such as the relative position of the file in the image and the surrounding
area.

The slide’s background had much noise. Our first approach was to try to relax the
white’s definition. Then, we considered that every pixel with each RGB component above
value 215 is white, instead of 255. After that, it was necessary to define how many white
pixels should have the tile to be marked as white. We studied our database to find a good
percentage (Figure 3). We selected 3 values (95%, 50%, and 20%), and test if there was
any difference. As it can be seen in the Figure 3, 95% was the best value.
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Figure 3. Number of tiles left. a: amount of no cancer tiles in our database after removing tiles with x% of
white pixels. b: amount of cancer tiles in our database after removing tiles with x% of white pixels.

The next question we faced was the following: How should be the proportion of
cancerous tiles against healthy tiles? To answer this, we prepared 3 datasets with different
proportions: 30% cancer - 70% no cancer, 50% cancer - 50% no cancer, and 70% cancer
- 30% no cancer. We found that, in our case, giving enough epochs, all datasets got
approximately the same precision. Another problem when 50% - 50% is not used is
the class imbalance which can force the network to favour classes most common in the
database, sometimes to the limit of outputting always that class.

As images are between 0 and 255 in all of their components, we finished the pre-
processing step adding a normalization stage, with the objective of mapping all values
between 0 and 1. In this case, this stage divides all the components by 255.

When working with small datasets, a common practice is data augmentation. There
are a lot of data augmentation techniques, from rotating and flipping to brightness and
contrast changes. We started using random rotations and flips, achieving a noticeable
improvement in the accuracy of the network.

3.3. Neural Network

As mentioned, on other studies, there are plenty of different neural networks, such as
ResNet [20], Inception, Alexnet, VCG, LeNet, etc. In this case, we decided to test two
networks (Figure 1). The first one is a small convolution neural network inspired in
LeNet. And the second one is Inception V3, very used in medical image analysis. Ini-
tially, we thought that the smaller network would be faster and more accurate because it
could specialize more than larger one.

Transfer learning is very popular today, especially when the amount of available data
is very low. This technique allows to use a good starting point and requiring less epoch
to learn the problem. However, in this work, we wanted to start from the beginning. As
we do not used it, all weights were randomly initialized.

3.4. Postprocessing

From the last layer of the network (SoftMax), we got two probabilities, the first one was
the probability of being a healthy tile, and the second was the probability of being a
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Figure 4. Training accuracy per epoch. a: LeNet based network with 100 epochs. b: Inception V3 network
with 15 epochs.

tumorous tile. Then, we took a threshold to determine when an image is cancerous and
when it was not, in this case we used 50% as the threshold. Later, we started to use alpha
blending to get a heatmap.

Then, the output gives the probability for each tile of being healthy or not. How-
ever, this is not enough. In the clinical environment, doctors want to see the output in a
more visual manner. We proposed two ways to approach this: masking and recoloring.
Masking implies making an image to be superimposed to the original, allowing to see
both images at the same time. Recoloring is similar to the mask but applied directly to
the image. Both methods were very similar but imply different results. For this study,
we chose recolor, because it allowed us to have only one image at the output and not
carrying both.

4. Results & Lessons Learned

In the training phase, we run our two neural network models with random rotations and
flips, a learning rate of 0.001, and 0.9 as momentum. All values initialized with Xavier
average at 1. The LeNet based network was run for a total of 100 epochs with 8 images
per batch. And Inception V3 for 15 epochs with 16 images per batch.

During this work, obtaining data was a very complex task, and we ended using 21
prostate biopsies (391,174 tiles). From that, 17 was for training (302,186 tiles), and after
cleaning and data normalization, we ended with 11,552 tiles. These numbers could seem
quite large, but they are from 17 biopsies. Therefore, in Figure 4, we can observe that
LeNet network is overfitted by the small input data.

In the testing phase, we used 4 biopsies (88,988 tiles), and after cleaning and data
normalization, we ended with 7,954 tiles. We achieved an AUC of 82% using Inception
V3, and an AUC of 65% in our small network. We show an example tissue, the ground
truth by pathologists, and the result obtained from the network reconstructed (Figure 5).

Regarding to Table 1 and Figure 5, our small network was able to address a little
about the recognition of tumorous tiles in a prostate biopsy in a reasonable time. Also the
inference of a new biopsy is really fast. On the other hand, Inception V3 takes the double
of time making only 15% of epochs, but achieving better results. The main problem was
the shortage of the data, because our data did not gather all kind of tumorous biopsies.
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Figure 5. Obtained Results: a: Example Tissue, b: Ground Truth, c: Output Image. ROC Curves with AUC
value (d: for own LeNet based network, e: Inception V3).

Task Time

Initial Preprocessing 15 mins
Data Base 1 min
Data sieve 3 hours

Postprocessing 18 mins

(a)

Phases
Networks

LeNet V3

Training 1 hour 2 hours
Inference 2 min 6 min

(b)

Table 1. Execution Times: a: Times for common processing tasks in both networks. b: Time for each network
phase.

From all experiences we collected throughout this experiment, we would like to
show the main lessons we have learned:

• The importance of preprocessing: We started using the raw image and quickly
we found that image dimensions and image size were a problem. With the tiling
we realized that the network was not able to learn anything, excluding distin-
guish background from the tissue. Only after making at least one preprocessing
technique, we started to get some acceptable results.

• Quantity and quality of the data: Neural networks need a lot of data, not all
fields of study have data available, and can take too much time to generate them.
But letting this aside, the data have to be good data. We need a good sample from
all possible values to get good results.

• Neural network architecture: There are a lot of pre-made neural networks ready
to be trained. We started with a basic convolutional neural network, although soon
we tested a more complex neural network. The complex configuration obtained
better results, although this made the training phase slower and more memory
bound limited.
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• Postprocessing may be critical in some cases: In real-world applications, the
output needs to be understandable. Moreover, in the medical field is mandatory
to visualize the output so doctors can check the works done by the deep learning
algorithms. Therefore, in this sector is important both to obtain a good accuracy
and to properly show the output in a clear and user-friendly way.

• HPC requirements: The training phase is very expensive in computational
power, due to tthe many calculations made to crunch the big data used. It is really
easy to have memory boundary problems when working with neural networks.
Machines with a reasonable amount of memory and high performance computing
help to reduce this phase from months to only some hours.

5. Conclusions & Future Work

In this paper, we have exposed the common problems found when developing a neural
network for the first time for a medical case. Starting from the raw data, it is a challenging
problem the selection of which kind of data choose and how organize it. Also, there are
many parameters to be tuned to start learning patterns from the input. Besides, output
format can be relevant and may incur a complex step.

As developing a neural network is a very complex task, we have attempted with this
work to show our errors and problems on it to help newcomers. We have concluded that
preprocessing and the quantity and quality of the data are very important when look-
ing for good accuracy. Also, our small neural network was outperformed by Inception
V3, showing us that the prostate cancer detection could be very complex for our simple
network.

Further research could be conducted in various directions. The problem exposed to
the neural network may reach a better accuracy obtaining more data and more precise
labeling. Also, a more refined neural network and preprocessing steps could help. Ad-
ditionally, preprocessing and postprocessing techniques could be improved to take less
time and get near instant results.
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Shih, John Tomaszewski, Fabio A. González, and Anant Madabhushi. Accurate and reproducible in-
vasive breast cancer detection in whole-slide images: A deep learning approach for quantifying tumor
extent. Scientific Reports, 7(1):46450, 2017.

[4] Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos, Navneet Narula, Matija Snuderl,
David Fenyö, Andre L. Moreira, Narges Razavian, and Aristotelis Tsirigos. Classification and muta-
tion prediction from non–small cell lung cancer histopathology images using deep learning. Nature
Medicine, 24:1559–1567, 2018.

[5] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Se-
bastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115–118, January 2017.

[6] Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver Stegle. Deep learning for computa-
tional biology. Molecular Systems Biology, 12(7):878, 2016.

[7] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
4(2):251 – 257, 1991.

[8] Vivienne Sze, Yu Hsin Chen, Tien Ju Yang, and Joel S. Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[10] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhiming Ma, and Tie-Yan Liu. Asyn-
chronous stochastic gradient descent with delay compensation for distributed deep learning. CoRR,
abs/1609.08326, 2016.

[11] Kelly H Zou, A James O’Malley, and Laura Mauri. Receiver-operating characteristic analysis for eval-
uating diagnostic tests and predictive models. Circulation, 115(5):654–657, Feb 2007.

[12] W. G. Hatcher and W. Yu. A survey of deep learning: Platforms, applications and emerging research
trends. IEEE Access, 6:24411–24432, 2018.

[13] Norman P. Jouppi, Cliff Young, and Nishant et al Patil. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, pages 1–12, New York, NY, USA, 2017. ACM.

[14] Simon Rodney, Taimur Tariq Shah, Hitendra RH Patel, and Manit Arya. Key papers in prostate cancer.
Expert Review of Anticancer Therapy, 14(11):1379–1384, 2014.

[15] Geert Litjens, Clara I. Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal, Iringo Kovacs,
Christina Hulsbergen - van de Kaa, Peter Bult, Bram van Ginneken, and Jeroen van der Laak. Deep
learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports,
6(1):26286, 2016.

[16] Kunal Nagpal, Davis Foote, and Yun Liu et al. Development and validation of a deep learning algorithm
for improving gleason scoring of prostate cancer. CoRR, abs/1811.06497, 2018.

[17] Eirini Arvaniti, Kim S. Fricker, Michael Moret, Niels J. Rupp, Thomas Hermanns, Christian Fankhauser,
Norbert Wey, Peter J. Wild, Jan H. Rueschoff, and Manfred Claassen. Automated gleason grading of
prostate cancer tissue microarrays via deep learning. bioRxiv, 2018.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

[19] S. Sarraf and G. Tofighi. Deep learning-based pipeline to recognize alzheimer’s disease using fmri data.
In 2016 Future Technologies Conference (FTC), pages 816–820, Dec 2016.

[20] Songtao Guo and Zhouwang Yang. Multi-channel-resnet: An integration framework towards skin lesion
analysis. Informatics in Medicine Unlocked, 12:67–74, 2018.

E.J. Gómez-Hernández and J.M. García / First Experiences on Applying Deep Learning Techniques44



Deep Generative Model Driven Protein
Folding Simulations

Heng MA a Debsindhu BHOWMIK a Hyungro LEE b Matteo TURILLI b

Michael YOUNG a Shantenu JHA b,c Arvind RAMANATHAN d

aCSED, Oak Ridge National Laboratory, Oak Ridge, TN 37830
bRADICAL, ECE, Rutgers University, Piscataway, NJ 08854, USA

cBrookhaven National Laboratory, Upton, New York, 11973
dData Science and Learning, Argonne National Laboratory, Lemont, IL 60439

Abstract. Significant progress in computer hardware and software have enabled
molecular dynamics (MD) simulations to model complex biological phenomena
such as protein folding. However, enabling MD simulations to access biologically
relevant timescales (e.g., beyond milliseconds) still remains challenging. These
limitations include (1) quantifying which set of states have already been (suffi-
ciently) sampled in an ensemble of MD runs, and (2) identifying novel states from
which simulations can be initiated to sample rare events (e.g., sampling folding
events). With the recent success of deep learning and artificial intelligence tech-
niques in analyzing large datasets, we posit that these techniques can also be used
to adaptively guide MD simulations to model such complex biological phenomena.
Leveraging our recently developed unsupervised deep learning technique to clus-
ter protein folding trajectories into partially folded intermediates, we build an iter-
ative workflow that enables our generative model to be coupled with all-atom MD
simulations to fold small protein systems on emerging high performance comput-
ing platforms. We demonstrate our approach in folding Fs-peptide and the β -β -
α (BBA) fold, FSD-EY. Our adaptive workflow enables us to achieve an overall
root-mean squared deviation (RMSD) to the native state of 1.6 Å and 4.4 Å respec-
tively for Fs-peptide and FSD-EY. We also highlight some emerging challenges
in the context of designing scalable workflows when data intensive deep learning
techniques are coupled to compute intensive MD simulations.

Keywords. Deep learning, Workflows, Molecular dynamics, Protein folding

1. Introduction

Multiscale molecular simulations are widely used to model complex biological phe-
nomena, such as protein folding, protein-ligand (e.g., small molecule, ligand/ drug, pro-
tein) interactions, and self-assembly [1,2]. However, much of these phenomena occur at
timescales that are fundamentally challenging for molecular simulations to access, even
with advances in both hardware and software technologies [3]. Hence, there is a need to
develop scalable, adaptive simulation strategies that can enable sampling of timescales
relevant to these biological phenomena.

Many adaptive sampling techniques [4,5,6,7,8,9] have been proposed. All these
techniques share some similar characteristics, including (a) the need for efficient and au-
tomated approaches to identify a small number of relevant conformational coordinates
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(either through clustering and/or dimensionality reduction techniques) [10,11,12], and
(b) the identification of the ‘next’ set of simulations to run such that more trajectories are
successful in attaining a specific end goal (e.g., protein that is well folded, protein bound
to its target ligand, etc.) [8,9].

These adaptive simulations present methodological and infrastructral challenges.
Ref. [4] provides important validation of the power of adaptive methods over traditional
“vanilla” molecular dynamics (MD) simulations or “ensemble” simulations. Ref. [13]
highlights challenges of such workflows on high-performance computing platforms.

We recently developed a deep learning based approach that uses convolutions and a
variational autoencoder (CVAE) to cluster simulations in an unsupervised manner [14].
We have shown that our CVAE can discover and identify intermediate states from pro-
tein folding pathways; further, the CVAE-learned latent dimensions cluster conforma-
tions into biophysically relevant features such as number of native contacts, or root mean
squared deviation (RMSD) to the native state.

We posit that the CVAE learned latent features can be used to drive adaptive sam-
pling within MD simulations, where the next set of simulations to run are decided based
on a measure of ‘novelty’ of the simulation/ trajectory frame observed.

Integrating CVAE concurrently with large-scale ensemble simulations on high-
peformance computing platforms entails the aforementioned complexity of adaptive
workflows [13], while introducing additional infrastructural challenges. These arise from
the concurrent and adaptive execution of heterogeneous simulations and learning work-
loads requiring sophisticated workload and performance balancing, inter alia.

In this paper, we implement a baseline version of our deep learning driven adaptive
sampling workflow with multiple concurrent instances of MD simulations and CVAEs.
Our contributions can be summarized as follows:

• We demonstrate that deep learning based approaches can be used to drive adaptive
MD simulations at scale. We demonstrate our approach in folding small proteins,
namely Fs-peptide and the β -β -α-fold (BBA) protein and show that it is possible
to fold them using deep learning driven adaptive sampling strategy.

• We highlight parallel computing challenges arising from the unique characteris-
tics of the worklfow, viz., training of deep learning algorithms can take almost as
much time as running simulations, necessitating novel developments to deal with
heterogeneous task placement, resource management and scheduling.

Taken together, our approach demonstrates the feasibility of coupling deep learning (DL)
and artificial intelligence (AI) workflows with conventional all-atom MD simulations.

2. Related Work

Adaptive sampling techniques have been widely developed for MD simulations. A thor-
ough review of this area of research is beyond the scope of this paper – however, we re-
fer the interested reader to [15] for more details. From a computational point of view,
adaptive sampling techniques require the use of specialized middle-ware that allows for
scheduling, managing and orchestrating hundreds (if not thousands) of loosely coupled
simulations that are guided by statistical approaches [16,17,18].
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More recently, the development of machine learning techniques such as Markov
State Models (MSM) and its integration with adaptive sampling techniques have proven
quite useful for selecting the optimal number of stating points (for simulations) while si-
multaneously improving the convergence in these simulations [19]. When combined with
sampling techniques such as umbrella sampling, MSM-based estimators can provide fur-
ther insights into complex biological processes [20]. With advances in machine learn-
ing techniques, especially deep learning methods [21,14,22,8], we examined whether us-
ing such generative models could be advantageous in the context of accelerating protein
folding simulations.

3. Methods

3.1. Workflow description

Two key components of the workflow include the MD simulation module and the deep-
learning based CVAE module, which are described below.

Molecular dynamics (MD) simulations: The MD simulations are performed on GPUs
with OpenMM 7.3.0 [23]. Both the Fs-peptide and BBA systems were modeled using the
Amberff99SB-ildn force field [24] in implicit Onufriev-Bashford-Case GBSA solvent
model [25]. The non-bonded interactions are cut off at 10.0 Å and no periodic boundary
condition was applied. All the bonds to hydrogen are fixed to their equilibrium value and
simulations were run using a 2 fs time step. Langevin integrator was used to maintain
the system temperature at 300 K with a friction coefficient at 91 ps−1. The initial config-
uration was optimized using L-BFGS local energy minimizer with tolerance of 10 kJ/-
mol and maximum of 100 iterations. The initial velocity is assigned to each atom from a
Boltzmann distribution at 300 K. We also added a new reporter to calculate the contact
matrix of Cα atoms in the protein (using a distance cut-off of 8 Å in hdf5 format using
the MDAnalysis module [26,27] that could be used as inputs to the deep learning module
(described below). Each simulation run outputs a frame every 50 ps.

Convolutional Variational Autoencoder (CVAE): Autoencoder is a deep neural network
architecture that can represent high dimensional data in a low dimensional latent space
while retaining the key information [28]. With its unique hourglass shaped architecture,
an autoencoder compresses input data into a latent space with reduced dimension and
reconstructs it to the original data. We use the CVAE to cluster the conformations from
our simulations in an unsupervised manner [14,29]. Currently in our workflow, we use
the number of latent dimensions as a hyperparameter (varying between {3, . . . ,6}) and
use the CVAE that most accurately reconstructs the input contact maps [14,29]. CVAE
was implemented using Keras/TensorFlow and trained on a V100 GPU for 100 epochs.

Assembling our workflow: As illustrated in Figure 1, our prototype workflow couples
the two components. In the first stage, the objective is to initially train the CVAE to deter-
mine the optimal number of latent dimensions required to faithfully reconstruct the sim-
ulation data. We commence our runs as an ensemble of equilibriumMD simulations. En-
semble MD simulations are known to enable better sampling of the conformational land-
scape, and also can be run in an embarrassingly parallel manner. The simulation data is
converted into a contact map representation (to overcome issues with rotation/translation
within the simulation box) and are streamed at regular intervals into the CVAE module.
The output from the first stage is an optimally learned latent representation of the simu-
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lation data, which organizes the landscape into clusters consisting of conformations with
similar biophysical features (e.g., RMSD to the native state). Note that this is an emer-
gent property of the clustering and the RMSD to the native state is not used as part of
training data.
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Figure 1.: Deep generative model driven protein fold-
ing simulation workflow.

In the second stage,
our objective is to identify
the most viable/ promis-
ing next set of starting
states for propagating our
MD simulations towards
the folded state. We switch
the use of CVAE to in-
fer from newly generated
contact maps (from simu-
lations) and observe how
they are clustered. Based on
their similarity to the na-
tive state (measured by the

RMSD), a subset of these conformations are selected for propagating additional MD
runs. The workflow is continued until the protein is folded (i.e., conformations reach a
user-defined RMSD value to the native state).

3.2. Implementation, Software and Compute Platform

We used the Celery software to implement the aforementioned workflow. Celery is an
asynchronous task scheduler with a flexible distributed system to process messages and
manage operations, which enables real-time task processing and scheduling. The tasks
can be executed and controlled by the Celery worker server asynchronously or syn-
chronously. Celery applications use callables to represent the modules that are part of the
workflow. Once called, the task client adds to the task queue a message where its unique
name is referred so that the worker can locate the right function to execute. The flexibility
of Celery framework enables real-time interfacing to manage resource and excise con-
trol over the task scheduling and execution. With MD simulation and CVAE tasks mod-
ulized as Celery compatible callables, they are monitored and controlled through Celery
Python interface. According to the strategy demonstrated in Figure 1, we simply build
multi-task workflows, which supports a large volume of concurrent tasks with real-time
interfacing and decision-making. The use of Celery framework allows us to establish a
baseline for estimating the compute requirements of our workflow.

We tested our deep learning driven adaptive simulation framework on the NVIDIA
DGX-2 system at Oak Ridge National Laboratory (ORNL). The DGX-2 system provides
more than 2 petaflops of computational power from a single node that leverages its 16
interconnected NVIDIA Tesla V100-SXM3-32GB GPUs. This enables us to distribute
the MD simulations and CVAE training onto 12 and 4 GPUs respectively. All the com-
ponents in the workflow are encapsulated within a Python script that manages the var-
ious tasks through Celery. It first initializes the Celery worker along with the selected
broker, RabbitMQ. All 16 GPUs are then employed for MD simulations to first gener-
ate 100,000 conformers as the initial training data for CVAE. With 5 minute interval be-

H. Ma et al. / Deep Generative Model Driven Protein Folding Simulations48



tween iterations, the trained CVAE periodically compress MD simulation conformers
from MD trajectories into data points of latent space, which are subsequently evaluated
with density-based spatial clustering of applications with noise (DBSCAN) for outlying
conformations [30]. We used DBSCAN for its relative simplicity and also to establish
a baseline implementation of our code. For Fs-peptide, outliers were collected with all
four trained CVAE models and only CVAE with 6 dimensional latent space was applied
for BBA outlier searching. In each iteration, the MD runs are examined for outliers. Sim-
ulations that pass an initial threshold of 20,000 frames (1 μs) for Fs-peptide and 10,000
(0.5 μs) for BBA, but do not produce any outliers for the last 5000 frames (250 ns of
simulation time) are purged. With the available GPUs from such MD runs, new MD sim-
ulations are launched from the the outliers to ensure appropriate resource management
and usage.

4. Results

In previous work [14], we have shown that the CVAE can learn a latent space from the Fs-
peptide simulations such that the conformations from the simulations cluster into distinct
clusters consisting of folded and unfolded states. When parameters such as the RMSD
(to the native state) and the fraction of native contacts are used to annotate the latent di-
mensions [31], we showed that these latent representations correspond to reaction coor-
dinates that describe how a protein may fold (beginning with the unfolded state ensem-
ble). Thus, we posit that we can propagate the simulations along these low-dimensional
representations and can drive simulations to sample folded states of the protein in a rela-
tively short number of iterations.

Figure 2 summarizes the results of our folding simulations of Fs-peptide. The pep-
tide consists of 21 residues – Ace-A5(AAARA)3A-NME – where Ace and NME rep-
resent the N- and C-terminal end caps of the peptide respectively, and A represents the
amino acid Alanine, where as R represents the amino acid Arginine. It is often used as a
prototypical system for protein folding and adopts a fully helical structure as part of its
native state ensemble [32]. Previous simulations used implicit solvent simulations using
the GBSA-OBC potentials and the AMBER-FF99SB-ILDN force-field with an aggre-
gate simulation time of 14 μs at 300K [32]. We used the same settings for our MD sim-
ulations and initiated our workflow. Summary statistics of the simulations are provided
in Table 1. A total of 90 iterations of the workflow was run to obtain a total sampling of
54.198 μs. Note that the sampling time of the MD simulations is an aggregate measure
similar to the ones reported in previous studies.

We began by examining the RMSD with respect to the native state from all of our
simulations. As shown in Figure 2A, 13 of the total of 31 simulations are unproductive
– i.e., they do not sample the native state consisting of the fully formed α-helix. This is
not entirely surprising given that the starting state consists of a nearly linear peptide with
no residual secondary structures. Based on this observation, we posited that our CVAE
model can be used to identify partially folded states from the simulations. We also ex-
amined the histogram of the RMSD values computed for each conformation with respect
to the native state ensemble (Figure 2B). Based on the histograms, we can reasonably
choose a threshold of 3.1Å or less to depict the folded state ensemble, followed by 4.6 Å
for partially folded states, and 8.3 Å for the unfolded states. Any trajectory that shows
RMSD values beyond 8.3 Å are only sampling the unfolded state of the protein.
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Figure 2. CVAE-driven folding simulations of Fs-peptide.(A) Root mean squared deviation (RMSD) with re-
spect to the native/ folded state from the 31 trajectories generated using our adaptive workflow for the Fs-pep-
tide system. Only productive simulations – i.e., simulations that achieve a RMSD cut-off of 4.5 Å or less are
highlighted for clarity. The rest of the simulations are shown in light gray. (B) A histogram of the RMSD val-
ues in panel (A) depicting the RMSD cut-off for identifying folded, partially folded, and unfolded ensembles
from the data. The corresponding regions are also marked in panel (A). (C) Using the RMSD to the native state
as a measure of foldedness of the system, we project the simulation data onto a three dimensional latent repre-
sentation learned by the CVAE. Note that the folded states (low RMSD values highlighted in deeper shades of
blue) are separated from the folding intermediate (shades of green and yellow) and the unfolded states (darker
shades of red).(D) A zoomed in projection of the last 0.5 μs of simulations generated along with the original
projections (shown in pale gray, subsampled at every 100th snapshot). (E) highlights the same but just show-
ing the samples from the last 0.5 μs to highlight the differences between folded and unfolded states. (F) shows
representative snapshots from our simulations with respect to the unfolded, partial folded, and native state en-
sembles. Note that the cartoon representation shown in orange represents the native state (minimum RMSD of
1.6 Å to reference structure) determined from our simulations.

The projections of all the 31 simulations onto the learned CVAE is depicted in Figure
2C. Collectively, z1-z3 provide a description of the Fs-peptide folding process. Notably,
much of the folded conformational states (highlighted in blue, indicating low RMSD to
the native state) are clustered together. Similarly, the unfolded conformations (confor-
mations colored in darker shades of red with higher RMSD to the native state ensemble)
are also clustered together. Taking this further, we examined if the similarity in the con-
formations hold even with a smaller partition of the data (see Figures 2D and E), namely
the last 10% of the overall simulation data. This can be treated as a test set from which
new simulations are initiated. Notably, from these simulations we observe the presence
of roughly three arms in the projections (Figure 2E) consisting of: (1) partially folded
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System Total no.
simulations

Total
simulation
time (μs)

(Shortest*,
Longest)
simulations
(μs)

Iterations Min.
RMSD
(Å)

Fs-peptide 31 54.198 1.01, 3.4 90 1.6
BBA (FSD-EY) 45 18.562 0.517,

0.873
100 4.44

Table 1. Summary statistics of simulations. *Only considering the simulations that pass the initial threshold.

highlighted in shades of green/yellow, (2) unfolded state ensemble highlighted in shades
of red, and (3) a much smaller ensemble of folded states (highlighted in blue).

For each of these states, we can also extract the structural characteristics with respect
to the folded state (Figure 2F). Many of the unfolded states do not consist of any sec-
ondary structural features (top and bottom left panels). The partially folded states consist
of partial turns/ helical structures. The final folded state (with RMSD of 1.6 Å) consists
of most (if not all) helical turns in the protein.

4.1. Folding simulations of FSD-EY

The BBA protein namely, FSD-EY is a designed protein that adopts a β -β -α-fold in
its native state; however this protein tends to be dynamic in solution [33,34]. Similar to
other zinc-finger proteins, the structure of the protein can potentially vary, and represents
a challenging use-case for testing our workflow. As shown in Figure. 3, our simulations
do start with a completly unfolded state of the protein (average RMSD to native state is
about 12 Å. Using an aggregated MD sampling time of 18 μs, we note that we reach a
RMSD value of 4.44 Å.

Although we do not sample the native state of the protein consisting of the β -β -
α-fold, we are still able to sample regions of the landscape that consist of a defined
hydrophobic core consisting of the highlighted residues in Figure 3D. Except for the
dynamic C-terminal end, where the hydrophobic interactions between F21 and F25 are
not entirely stable, the conformations that exhibit low RMSD values to the native state
depict the presence of this hydrophobic core. We expect that extending these simulations
further using the CVAE-driven protocol will enhance these interactions allowing it to
fold completely.

5. Discussion

As artificial intelligence (AI) and deep learning (DL) techniques become more pervasive
for analyzing scientific datasets, there is an emerging need for supporting AI/DL coupled
workflows to traditional HPC applications such as MD simulations. Our approach pro-
vides a proof-of-concept for how we can guide MD simulations to sample folded state
ensemble of small proteins using DL techniques. The approach that we chose was based
on building a generative model for protein conformations and identifying new starting
conformations for additional MD sampling. Although the generative model was only
used to identify novel conformations for extending our MD simulations, it nevertheless
allowed us to guide the MD simulations towards sampling folded conformations of the
protein systems we considered.

Although DL approaches can take significantly longer time to train, we deliberately
chose a prototypic DL approach, namely CVAE, to train on our MD simulation data (Ta-
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Figure 3. CVAE-driven folding simulations of BBA-fold, FSD-EY. (A) RMSD plots with respect to the native
state of FSD-EY depicting the near-native state (blue), partially folded states (green) and unfolded (red) trajec-
tories similar to Figure 2. (B) A histogram of the RSMD values to the native state. (C) The learned projections
from the CVAE for the trajecotries; similar to the Fs-peptide system, we can observe the clustering of confor-
mations based on their RMSD values to the native state. We have used a RMSD cut-off of 10Å to highlight
states closer to the native state. (D) Although we could not fully fold the protein, we do observe the presence
of a well-formed hydrophobic core except for one residue (F25) at the C-terminal end of the protein.

System DL training
(100 epochs;
minutes)

Time per
epoch
(seconds)

Inference time
(ms/frame)

MD
simulations
(ns per minute)

Fs-peptide 7 5 5.13 1.25
BBA 11 7 1.27 1.20

Table 2. Summary statistics of time taken by the individual components of our workflow: (1) train and infer
from the CVAE for each system, and (2) running the MD simulation.

ble 2). As can be seen from the table, the computational cost of training and inference
times for the CVAE model is on par with the cost for running our MD simulations. That
is, within the time required to train our CVAE model, our MD simulations progress only
by about a nanosecond. Thus, starting up of new MD simulations based on the guid-
ance received from our CVAE model will not affect the workflow’s overall performance.
Further, our MD simulations were run using implicit solvent models, which also signif-
icantly reduces their computational times. Further, each contact map is no more than a
couple of kilobytes of data and hence we did not require the utilization of intrinsic ca-
pabilities of the NVIDIA DGX-2, including the ability to potentially stream data across
GPUs/ processors.

A primary motivation for this work was to use ML/DL based analysis to drive MD
simulations, and to calibrate results against non ML/DL driven approaches. In Ref. [12]
Fox et al introduced the concept of “Effective Performance” that is achieved by com-
bining learning with simulation and without changing the traditional system characteris-
tics. Our selection of physical systems, in particular the BBA peptide allows to provide
a coarse-grained estimate for the effective performance of CVAE based adaptive sam-
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pling. Using Ref. [4] as reference data, we find that the effective performance of CVAE
based sampling is at least a factor of 20 greater than ”vanilla” MSM based sampling ap-
proaches. Our estimate is based upon the convergence of simulated BBA structures to its
reference structures to within 4.5 Å. Note that the ExTASY based simulations in Ref. [4]
are at least two orders of magnitude more efficient that reference DE Shaw simulations.
In future work, we will extend our effective performance estimate to Villin head piece
(VHP) and refine our estimates for BBA.

We expect that the concomitant increase in data sizes for larger MD simulations
would necessitate the use of streaming approaches. Similarly, as the time required to train
our DL models with data-/model- parallel approaches increases, it will require the use
of emerging memory hierarchy architectures to facilitate efficient data handling/ trans-
fer across compute nodes that are dedicated for training and simulation. Further, data in-
tensive techniques such as reinforcement learning and/or active learning could also have
been used to guide our MD simulations.

The requirements of the ML/DL driven simulations outlined in this paper are repre-
sentative of ML/DL driven adaptive workflows — where the status of the intermediate
data analysis drive subsequent computations. Adaptive workflows pose significant chal-
lenges [13] compared to workflows whose execution trajectory is predetermined a priori.
Further, the integration of diverse ML/DL approaches as the intermediate analysis driv-
ing subsequent computations adds additional complexity, which includes but is not lim-
ited to heterogeneous workload, load balancing and resource management. Scalable exe-
cution and modern HPC platforms implies the need for specialized middleware that sup-
port address these challenges. We are addressing these aspects as part of ongoing work
and future development built upon RADICAL-Cybertools [13,35].

The source code, associated datasets including the generated simulations and deep
learning models are available on https://github.com/acadev/Parco2019 baseline.
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Abstract. We propose a novel approach combining vector autoregressive models
and data assimilation to conduct econometric inference for high dimensional prob-
lems in cryptocurrency markets. We label this new model TVP-VAR-DA. As the
resulting algorithm is computationally very expensive, it mandates the introduction
of a problem decomposition and its implementation in a parallel computing envi-
ronment. We study its scalability and prediction accuracy under various specifica-
tions.

Keywords. Econometrics, Inference, Cryptocurrencies, Data Assimilation, Parallel
Computing, Problem Decomposition

1. Introduction

The ongoing digitisation of the economy has led to an abundance of data. Some insti-
tutions such as the Bank of England [8] argue that it is only a matter of time until the
nature of economic data changes and will be as granular and continuous as is already the
case for traffic and weather data. A very prominent example is the emergence of cryp-
tocurrency markets, in which every single transaction is traceable on a publicly available
ledger and is updated on a minute by minute bases [14,4], with the ledgers data size
continuously growing. Hence, this new economic phenomenon provides an ideal exam-
ple for the digitisation of economic data and also exposes the limitations of econometric
inference at scale.
Due to these developments, economic modeling needs to take computational constraints
more into account and incorporate sensible ways to speed up and enable larger scale
analysis without the loss of accuracy. Whilst uncommon in economics, this resembles
the approach in computational sciences in which researchers often face the problem of
trade-offs between accuracy and computational efficiency. Our work therefore aims at
bridging this gap by presenting a mathematical formulation of a generalisable economic
model in which we explicitly account for scalability and parallelisation as well as evalu-
ate and compare accuracy.
The model class we consider are vector autoregressive models with time varying param-
eters (TVP-VAR) [9]. TVP-VARs are time series models often used for economic policy
analysis and forecasting, describing the interrelationship of economic variables dynami-
cally over time and also model latent economic states whose structure economists exploit
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for policy analysis [5]. Most conducted studies are small scale [15] because the inclusion
of time varying latent states with multiple lagged coefficients leads to parameter matri-
ces whose size increases with the square of the number of variables in the model. This
makes CPU time requirements highly nonlinear with respect to the number of variables
and thus calls for parallel computing methods [7].
Due to the fact that economists need to study and compare various model parameteri-
sations such as lag length selection, it is important that such models can be computed
in reasonable amounts of time without losing accuracy. We thus introduce a domain de-
composition approach for significant performance gains. The parallelisation we intro-
duce is on the mathematical formulation of the problem. We decompose the datasets in
time windows with possible overlaps and we propose a mathematical model formulation
based on domain decomposition. We present and study the performance of the parallel
algorithm implemented on a distributed computing architecture. Also, the algorithm’s
scalability is studied taking into account the execution time.
To study the models performance, we use generated data as well as a dataset that con-
sists of up to 121 identified exchanges on the Bitcoin blockchain. The data is available
in multiple frequencies and spans multiple years. Each exchange is represented as an on-
chain address cluster of hundreds of addresses. Thus for each exchange, multiple time
series are of interest: the aggregate amount of Bitcoin they hold over time, the number
of inflows and outflows, as well as transaction rate within a given timeframe. We fur-
ther expand this with available off-chain data such as price and trading volume of ex-
changes. This allows for investigation of economic questions such as if a large inflow of
Bitcoins has a negative effect of the price of a given exchange, i.e if the rules of supply
and demand hold for individual exchanges.

2. The Economic Model

In order to conduct economic inference we combine a TVP-VAR with a Data Assimila-
tion (DA) Framework. DA is an uncertainty quantification technique used to incorporate
observational data into a prediction model ([2]) in order to improve numerical forecasted
results. As previously discussed, TVP-VAR is a time series model for the analysis of
economic systems using latent state variables. The model is outlined in Eq. 1 to 3. We
propose a new model which combines TVP-VAR with DA, naming it TVP-VAR-DA.
Due to the high dimensionality of the model and the number of state variables used to
describe cryptocurrency markets, the TVP-VAR-DA is a large scale problem that should
be solved in suitable acceptable time. It mandates the use of parallel computing envi-
ronments. In this paper, we formally address the parallelism problem by defining the
parallel TVP-VAR-DA model based on a problem decomposition approach. In fact, as
claimed in [7], the partitioning problem (i.e, decomposability: to break the problem into
small enough independent less complex subproblems) is a universal source of scalable
parallelism.
To exemplify the model, the basic structure of the univariate TVP-VAR model is:

ỹt = x̃tφt + ε̃t σ̃t (1)

φt = φt−1+ ν̃t (2)

log(σ̃2
t ) = log(σ̃2

t−1)+ ξ̃t (3)
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where scalar ỹt is the time t value of the dependent variable for t = 1, ..,T , x̃t is a 1×
q vector of predictors and lagged dependent variables and φt the coefficient vector of
corresponding dimension. The errors follow the distributions: ε̃t ∼N(0,1), ν̃t ∼N(0, Q̃t)
and ξ̃t ∼ N(0, R̃t). Eq. 1 describes the relationship of an economic variable with other
series of interest. The evolution of this relationship over time is given by Eq. 2, whereas
Eq. 3 models changes in the volatility of variables over time.

Generalisation In order to generalise the model in Eq. 1-3 to arbitrary lag length and
number of variables under consideration, it is necessary to re-express the model in a more
general matrix notation:

yt = Φ1yt−1+ ...+Φlyt−l +μt + εtσt (4)

where yt is now a q× 1 vector of variables we wish to study, μt a vector of means and
Φl is a q×q coefficient matrix. σt is of the same dimension as yt whereas εt is a diagonal
matrix. To write this compactly, we define Xt = [y′t−1, ...,y

′
t−l ,1]

′ and Φ = [Φ1, ...,Φl ,μ]′.
Define K = (ql+ 1) as the product of variables q and lag length l including a constant.
Thus Xt is of dimension K×1 and Φ of dimension K×q.
Vectorisation of Φ is performed in order to include variable lag length which is necessary
for policy analysis while preserving markovian properties of the resulting state-space
model. Therefore define xt = I⊗Xt using Kronecker product ⊗, where I is the identity
matrix and define βt = vec(Φ), where vec() stacks the columns of a matrix. This allows
us to rewrite the VAR in compact notation similar to the univariate case and express it in
state space form:

yt = x′tβt + εtσt (5)

βt = Fβt−1+ vt (6)

log(σ2
t ) = log(σ2

t−1)+ξt (7)

where βt is now of dimension qK × 1 with corresponding transition matrix F and x′t
of dimension q× qK, where log(σ2

t ) in Eq. 7 scales accordingly. The terms εt , νt and
ξt are zero mean errors and will be denoted in the linearization and algorithm section
for clarity. Distributional assumptions remain the same with εt ∼ N(0, I), νt ∼ N(0,Qt)
and ξt ∼ N(0,Rt) with the covariance matrices scaling accordingly. The above equations
form a state space model with a stochastic volatility term, that can be approximated via a
variety of filtering techniques (see e.g. [10], [3], [11]). Our TVP-VAR-DA methodology
is able to produce point forecasts in high-dimensional settings, while also generating the
history of latent state variables for analysis, taking into account the interdependencies
of many variables, incorporating more information and thus reducing omitted variable
bias. The solution to this model which takes into account parallelisation due to domain
decomposition is described in the next section.

3. The Parallel Model

The optimal values of parameters βt and σt are obtained via the following DA method-
ology:
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βt ,σt = argmin
β ,σ

J(β ,σ) (8)

with

J(β ,σ) =
∣∣|β −βt−1+νt |

∣∣
Q−1
t

+ ||log
(
σ2
t−1

σ2

)
+ξt ||R−1

t
(9)

In order to partition the problem, let Ω ⊂ R
M denote the domain2. DD(Ω) then consti-

tutes a partitioning with overlaps such thatDD(Ω)= {Ωi}1,...,p with Ωi =(xi,t ,yi,t)t=0,...Ti
where Ti < T , Ωi ⊂ R

ri , ri ≤ M and for i = 1, ..., p is such that Ω = ∪p
i=1Ωi with

Ωi∩Ω j = Ωi j 	=∅. This allows us to restate the problem as:

Ji(βi,σi) = ||βi−βi,t−1+νi,t ||Q−1
i,t

+ ||log
(
σ2
i,t−1

σ2
i

)
+ξi,t ||R−1

i,t
(10)

where furthermore yi,t , xi,t are the restrictions of the corresponding quantities in (5), (6),
(7) and (8) on the subdomains which constitute the decomposition. In order to minimise
the function in (10) on each subdomain, we pose ∇(Ji(βi,σi)) = 0 and we solve the
normal equations which conduct to a modified version of the Kalman Filter [2,12]:

βi,t = βi,t−1+Kt(yi,t − xi,tβi,t−1), t = 1, . . . ,Ti (11)

log(σ2
i,t) = log(σ2

i,t−1)+K∗
i,t(y

∗
i,t − log(σ2

i,t−1)), t = 1, . . . ,Ti (12)

where

Ki,t = Qi,t−1x′i,t(xi,tQi,t−1x′i,t +σi,t)−1 (13)
and

K∗
i,t = Ri,t−1(Ri,t−1)

−1, y∗i,t = log((yi,t − xi,tβi,t−1)
2)− ln(ξ 2) (14)

as described in detail in Algorithm 1 applied to each subdomain Ωi where for ease of
notation we drop subdomain subscript i. The Algorithm depicts the main steps and also
includes a condition σ̄ , in which log(σ2

i,t) can be modeled as time varying or constant
over time.

4. Dataset

We conduct our experiments on two datasets. The first one is generated artificially in
order to check model specifications and to generate more well-behaved data. The second
dataset consists of on-chain as well as off-chain data of the cryptocurrency market.

2The training data set is defined as D = {(xi,yi), i= 1, ...,M}
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Algorithm 1 The TVP-VAR-DA algorithm A(Ωi, p) based on domain decomposition for
each subdomain Ωi, where DD(Ω) = {Ωi}1,...,p
1: Input Ωi = (xi,t ,yi,t)t=0,...T
2: Initialise Priors Q0, R0, ξ , F , β0, σ0
3: specify σ̄
4: for for t=1...T do

Prediction Step
5: βt−1 = Fβt−1 � Predicted Mean
6: Qt−1 = FQt−1F

′
� Predicted Variance

7: ηt−1 = yt − xtβt−1 � Forecast Error
Stochastic Volatility

8: if σt 	= σ̄ then � Define Constant or Stochastic Volatility
9: Construct y∗t = log((yt − xtβt−1)

2)− ln(ξ 2)
10: K∗

t = Rt−1(Rt−1)
−1 � Gain Matrix

11: log(σ2
t ) = log(σ2

t−1)+K∗
t (y

∗
t − log(σ2

t−1)) � Posterior Mean of log(σ2
t )

12: Rt = (I−K∗
t )Rt−1 � Posterior Variance of log(σ2

t )
13: else

14: σt = σ̄
15:16: end if

Updating Step
17: ft = xtQt−1x′t +σt � Forecast Variance
18: Kt = Qt−1x′t(xtQt−1x′t +σt)−1 � Gain Matrix
19: βt = βt−1+Kt(yt − xtβt−1) � Posterior Mean of βt
20: Qt = (I−Ktxt)Qt−1 � Posterior Variance of βt
21: end for

Dataset 1 In order to verify the correct tracking of the state equation we create an
artifical dataset that is generated according to the following underlying specifications:

yt = X ′
t γt + e1,t (15)

γt = γt−1+ e2,t + e3,t (16)

Where γ is the time varying state variable, and e1,e2,e3 are ∼ i.i.d N(0,ei) white noise
processes. Data matrix Xt is generated in a similar fashion as standardised i.i.d process.
γt and yt are generated as outlined above.
The dimensions of the dataset are created to match the real dataset and are of problem
sizeM= 1100,M= 8200,M= 27900 andM= 655600 respectively, these correspond to
the number of entries in xt for each timestep which resemble combinations of variables
and lag lengths included in the model.

Dataset 2 The main dataset of interest is the cryptocurrency market dataset. There are
two types of data, one labeled on-chain data is the data derived directly from the Bitcoin
blockchain. In short, the blockchain can be described as a distributed ledger system in
which a multitude of nodes receive and process transactions created by other actors.
Every transaction leads from one public address to another. All nodes in the network then
synchronise the state of the ledger to form a global consensus on which address owns
how much Bitcoin. The network is pseudonymous: all addresses and their balance are
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visible through time, although it is not directly visible by whom the address is controlled.
Some researchers such as [13] created and verified heuristics in which it is possible to
link addresses to entities such as exchanges and other services. Interested readers are
referred to other sources such as [14] or [6]. Based on this heuristic the on-chain dataset
consists of 121 exchanges which are partially identified on the blockchain by the authors
of https://www.walletexplorer.com/. Given this we calculate its hourly balance and the
number of inflows as well outflows of Bitcoins. The second part of that set which we label
off-chain data consists of the prices as well as volume of Bitcoin on selected exchanges
which were identified in the first dataset. These sets constitute matrices xt and yt in Eq. 5
whereas the latent state variable βt give an economic interpretation of the relationship of
the underlying dynamics of off-chain and on-chain data. Data is available up to minute
frequency and spans from 2014 until early 2019. Due to the noisy nature of the data
we focus on hourly frequency to show the scalability properties of our model. For all
experiments we add constants for numerical stability in the algorithm and interpolate
missing values to make forecasting results more comparable. Fig. 1 displays the on-chain
Bitcoin balance as well as the off-chain trading volume of the Kraken.com exchange for
a selected period.

Figure 1. Example of on-chain and off-chain data: The amount of Bitcoin a set of addresses associated to an
exchange on the blockchain hold as well as the trading volume on the exchange itself

5. Computational Time and Scalability

We evaluate the performance of Algorithm 1 onDataset 1 as we know this does not affect
the generality of our study. We computed the values of execution time and we evaluated
the scale-up factor. The scale-up factor for a problem decomposition of the function (10)
is defined as [1]:

Sp(M, pM) =
TpM
Tp

, (17)

where p denotes the number of running processors, M denotes the problem size and
pM is the minimum number of processors used for the problem of size M. Table 1
shows the values of the execution time of Algorithm 1 for a problem of size M =
1100,8200,27900,65600 created to match the real dataset which resemble combinations
of variables and lag lengths included in the model. The experiments are run on a cluster
with multiple 2.40GHz Intel Core i7-6700 CPUs and 256GB RAM available.
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Problem Size M = 1100 M = 8200 M = 27900 M = 65600

Processors Tp (seconds) Tp (seconds) Tp (seconds) Tp (seconds)

2 10.47×100 19.70×101 - -
4 4.93×100 99.33×100 98.61×101 50.60×102

8 2.46×100 53.53×100 50.65×101 25.55×102

16 1.25×100 29.26×100 31.78×101 13.63×102

32 0.99×100 18.34×100 14.41×101 10.87×102

Table 1. Generated data table including stochastic volatility displaying computational time. Experiments ran
on Imperial Cluster CX2

Figure 2. Values of scale-up factor for problem size M = 1100,8200 with pM = 2 and M = 27900,65600
with pM = 4

6. Forecast Comparison

This section evaluates the performance of the model in terms of forecasting. Mean
squared forecast errors (MSFE) as well as mean absolute forecast errors (MAFE) are
used to compare model quality in-sample. This is based on direct point forecasts, evalu-
ating the residuals of predicted and realised values:

MSFE =
N

∑
n=0

(
∑T−h
τ=τ0(y

r
t,n− ŷt,n)2

T −h− τ0+1

)
(18) MAFE =

N

∑
n=0

(
∑T−h
τ=τ0

∣∣∣yrt,n− ŷt,n
∣∣∣

T −h− τ0+1

)
(19)

where h = 1 is the forecast horizon, evaluated before updating the state parameters and
τ0 = 1, the starting date of the forecasting exercise. yrt,n represents the actual realisation
of a variable, while ŷt,n represents the corresponding point forecast. The results in the
tables are reported as averages over all included time series respectively, indicated by
index n.

Fig. 3 shows the MSFE for one of the experiments using real data. Comparing both
axes shows how after the TVP-VAR-DA assimilation the forecasting error decreases by
multiple magnitudes, validating the predictive performance of the model.

The results for all experiments are reported in Table 2 and 3. We plot the ratio of
forecasting errors before ŷt|t−1 and after ŷt|t assimilation of observations, corresponding
to forecasts generated via parameters in line 5 and 19 in Algorithm 1. The increase in
forecasting accuracy is observable across all problem sizes for both generated and real
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Figure 3. Comparison of forecasting errors before and after assimilation, depicting the average squared fore-
casting error at each timestep for problem size M = 1100

Problem Size M = 1100 M = 8200 M = 27900 M = 65600

Processors MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE

2 2.26e−5 1.98e−4 3.65e−6 8.49e−5 - - - -
4 3.38e−5 3.55e−4 6.94e−6 1.64e−4 3.27e−6 1.18e−4 1.44e−6 7.97e−5

8 5.18e−5 7.02e−4 8.87e−6 2.95e−4 3.82e−6 2.07e−4 1.77e−6 1.45e−4

16 6.65e−5 1.26e−3 1.13e−5 5.31e−4 4.27e−6 3.47e−4 2.11e−6 2.25e−4

32 7.33e−5 2.08e−3 1.12e−5 8.02−4 3.97e−6 4.95e−4 2.24e−6 3.35e−4

Table 2. Generated data table including stochastic volatility displaying accuracy ratios before and after
assimilation

Problem Size M = 1100 M = 8200 M = 27900 M = 65600

Processors MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE

2 7.11e−6 8.07e−4 1.46e−5 3.36e−3 - - - -
4 1.11e−5 8.22e−4 1.46e−5 3.35e−3 1.14e−5 2.55e−3 1.60e−6 2.26e−3

8 1.95e−5 8.52e−4 1.47e−5 3.35e−3 1.15e−5 2.56e−3 3.39e−6 6.96e−3

16 5.29e−5 9.32e−4 1.81e−5 3.38e−3 1.46e−5 2.59e−3 1.07e−6 1.37e−2

32 9.11e−5 1.06e−3 2.1e−5 3.42e−3 1.73e−5 2.63e−3 5.09e−6 9.21e−3

Table 3. Real data table including stochastic volatility displaying accuracy ratios before and after assimilation

data, although more pronounced for the MSFE metric. By introducing the domain de-
composition we see a slight decrease in accuracy when then number of processors in-
crease but still improve forecasts by similar orders of magnitude. We use results of ad-
junct subdomains with no overlap to provide a lower bound for accuracy. The relative
increase in errors due to domain decomposition is decreasing in larger scale problems
compared to small ones. In Table 2 it is observable that, across all processors specifi-
cations, with increasing problem size the MSFE ratio decreases consistently, meaning
that the larger the problem, the larger the increase in forecasting accuracy after assimi-
lation. A similar patterns holds for the MAFE ratios. In contrast, Table 3 shows higher
forecasting error ratios across all problem sizes except for the smallest. The forecasting
ratio is performing better in the case of synthetic data since the data generation algorithm
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is specified in such a way that it aligns with model assumptions of the TVP-VAR-DA,
whereas using real cryptocurrency data, the errors are more pronounced due to the more
erratic nature of the data.

7. Economic Results

As a case study, we analyse latent state parameters over the summer of 2015 and 2016
which represent the interaction of on-chain and off-chain movements of the Kraken.com
exchange. Figure 4 displays selected entries from state vector βt over time. In particular
the predictive effect of price and trading volume changes on Bitcoin flows. In the top
figure it is observable that in August 2015 changes in trading volume are associated with
a decrease in bitcoin balance and thus outflow of bitcoins whereas in the same period for
2016 this relationship has nearly vanished. This is evidence that over time the on-chain
activity has become more decoupled from actual price action on exchanges, which might
be driven by other factors such as sentiment. It it also observable that around the change
from August to September price changes have a significant positive effect on the inflow
of Bitcoin, providing evidence for seasonal cycles in how the flow of Bitcoins affect
exchanges.

Figure 4. 2015 and 2016 hourly evolution of state variables of Kraken bitcoin blockchain balance and its
relation to Kraken price and trading Volume changes.
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8. Conclusion

We introduced a new model type that is capable of doing econometric inference at scale
by leveraging a data assimilation approach. We show how already in the formulation of
the problem we can take into account domain decomposition and parallelisation, show-
ing how similar to computational sciences, economists can increase computational fea-
sibility without sacrificing too much accuracy. We compared model performance and
showed that the model generated latent economic variables which help to analyze eco-
nomic phenomena such as the interaction of entities in cryptocurrency markets. Future
work can include additional parallelisations of the algorithm or inference techniques
which are unfeasible in standard environments, such as doing a fully Bayesian treatment
of the TVP-VAR-DA model, as well as doing real-time forecasting and inference with
high frequency data at scale.
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Abstract. Cloud Computing has emerged as an interesting alternative for running
business applications, but this might not be true for scientific applications. A com-
parison between HPC systems and cloud infrastructure not always sees the lat-
ter winning over the former, especially when only performance and economical
aspects are taken into account. But if other factors, such as turnaround time and
user preference, come into play, the landscape of the usage convenience changes.
Choosing the right infrastructure, then, can be essentially seen as a multi-attribute
decision-making problem. In this paper we introduce an evaluation model, based on
a weighted geometric aggregation function, that takes into account a set of param-
eters, among which job geometry, cost, execution and turnaround time. The notion
of user preference modulates the model, and allows to determine which platform,
cloud or HPC, might be the best one. The model has then been used to evaluate the
best architecture for several runs of two applications, based on two different com-
munication models. Results show that the model is robust and there is a not negli-
gible number of runs for which a cloud infrastructure seems to be the best place for
running scientific jobs.

Keywords. cloud computing, HPC, workload, cost-benefit analysis, turnaround
time

1. Introduction

Cloud vs on-premise HPC for scientific applications is a long-standing debate [1–5], that
has been tackled from many viewpoints, including the cost-perspective [6–8]. Contrary
to widespread belief, a cost-benefit analysis comparing cloud infrastructures and HPC
systems from the economical point-of view not always sees the cloud as the winner, un-
less applications allow for preemptible virtual instances. We got this result porting on the
cloud two real applications (Cross Motif Search and BloodFlow) that have completely
different patterns in their usage of computation and communication resources [9–12].
The former shows a simple master/worker communication model and is therefore less
prone to the cloud inefficiency in message routing; the latter instead depends heavily on
efficient point-to-point and collective communication primitives. Results show that nei-
ther from the performance perspective nor for the economical point-of-view, cloud seems
to be a convenient place for running scientific application. But such a comparison is not
fair as it does not take into account any factor which make Cloud so appealing. Indeed,
just taking into account the turnaround time, the landscape of the usage convenience of
the cloud computing changes. Building an evaluation model might help researchers to
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understand which platform might be the best one depending on the user preference, the
execution time, the cost for computing and the expected waiting time in the queue. To
build such a model, a characterization of the workload of a real HPC system needs to
be done in order to understand the job waiting time depending on the job geometry (job
size, amount of memory, maximum runtime), job failure, setup time and maintenance
time.

Many previous works [13–15] have already characterized the workload of the HPC
systems, but most of them aimed at evaluating the resource utilization and improve the
scheduling algorithms to get the highest system utilization possible. Many others instead
tried to predict the waiting time using machine learning techniques [16–19]. In our work,
instead, we want to characterize the workload of an HPC system, named Marconi, in
order to assess the job waiting time. Such time is then introduced in a utility function
which is used to evaluate the best infrastructure (between Marconi and Google Cloud)
for running both target applications.

The paper is structured as follows: in Sec. 2, we describe Cross Motif Search and
BloodFlow applications and their communication models. Section 3 summarizes the per-
formance results we got running Cross Motif Search and BloodFlow on two similar ar-
chitectures, Marconi, an HPC system, and Google Cloud Infrastructure, showing that
both from the performance and from the economical perspective the cloud lags behind
the HPC system, justifying the reason to introduce the turnaround time as a factor to
make a fair comparison. In Sec. 4, we describe all the parameters, such as the job wait-
ing time and the virtual instance startup time, that should be kept into account for mak-
ing a better evaluation of both infrastructures. Section 5 shows a characterization of the
jobs submitted on Marconi, with a focus on the job waiting time. Section 6 measures
the virtual instance startup time on the Google Cloud Platform for different configura-
tions. Section 7 puts the resulting job waiting time and virtual instance startup time into a
decision-making model which uses the weighted geometric aggregation function to build
a utility function. Such function also takes the elapsed time measured running Cross Mo-
tif Search and BloodFlow on the cloud and on Marconi, and makes an evaluation of both
platform in order to understand which run is executed more conveniently on the HPC
infrastructure and which one on the cloud, taking into account performance, cost and
user preference. According to our utility function, the best infrastructure might not be
the one which minimizes cost or maximizes performance, but that which optimizes the
user expectation. Section 8 concludes the paper.

2. The target applications

An efficient interconnection network is of paramount importance for getting a high per-
formance in many scientific applications. The communication model embedded in the
application and the underlying network infrastructure, are two major factors that should
not be ignored during transition toward the cloud. For this reason, to study whether or not
cloud computing can be considered convenient for running scientific applications, from
the performance perspective as well as the economical one, we selected two different
applications, respectively Cross Motif Search and BloodFlow, which are based on two
different communication models. The first application is based on a master/worker com-
munication pattern and the time spent in communication is very small if compared with
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Figure 1. The CMS scalability on Marconi and on the cloud.

the whole elapsed time; the second one, instead, relies on a much more complex commu-
nication pattern, making extensive use of collective functions to scatter and gather data.
Being based on two communication models which are opposite to each other, the two
applications can be considered representative for a large subset of scientific applications.
The following subsections describe both applications and their communication model.

2.1. Cross Motif Search

Cross Motif Search (CMS) [20] is a biological application which is able to look for
recurring geometrical patterns in the secondary structures of proteins. The core algorithm
relies on the generalized Hough transform [21] is used to find recurring geometrical
patterns.

The last implementation of CMS [22] uses MPI standard to deliver messages across
all processes. The communication model is very simple, as it is based on the traditional
master/worker pattern. After starting the application, master and workers communicate
to each other just using simple MPI primitives. Profiling activities [9] showed that the
impact of the communication in the application performance is almost negligible if com-
pared with the whole execution time. The last implementation of CMS [10, 23] was
moved to the cloud in order to study its scalability and compare the cloud performance
against the HPC performance. Figure 1 shows the application scalability for two similar
architecture: an HPC system, named Marconi, and the cloud infrastructure provided by
Google. The application showed a good scalability even on the cloud infrastructure as
increasing the number of concurrent MPI processes, the time spent by the application is
reduced, as on the HPC system. As the amount of messages exchanged among processes
is not dependent on the number of concurrent processes, the scalability is good even
increasing further the CPU number.
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Figure 2. The BloodFlow scalability on Marconi and on the cloud.

2.2. BloodFlow

BloodFlow [24, 25] is a hemodynamics application which is able to run simulations of
patient specific hemodynamics of an aorta through computational fluid dynamic analysis.
The tool relies on a Navier-Stokes partial differential equation system, which is solved
by using numerical approximations. A good description of BloodFlow can be found in
[24, 26–28].

Profiling activities on BloodFlow [12] revealed that the application makes use of
many MPI functions, point-to-point as well as collective, and that communication is a
key factor which can affect application performance.

BloodFlow has been moved on the Cloud although the analysis we did on [10] re-
vealed that BloodFlow might suffer if run on the cloud infrastructure, due to its huge
amount of communication and the low network performance on the cloud system. Figure
2 compares the elapsed time measured running the application on both different archi-
tectures (Marconi and Cloud) and using different core numbers. The application seems
to be able to perform well with a small number of concurrent processes, but when such
number grows up the elapsed time becomes soon unmanageable and running the applica-
tion on the cloud infrastructure is not convenient at all. A similar behaviour ensues even
on Marconi, but at much higher core number (256-512).

3. Comparing performance and economical results

According to the results shown in figures 1 and 2, it is clear that CMS is able to scale
very well even on the cloud but BloodFlow performs worse as it stops scaling at 32 cores,
much before than on the HPC system. This comparison highlights that scientific applica-
tions based on a complex communication pattern, such as BloodFlow, might meet several
troubles being run on the cloud while those applications based on simple communication
model, like CMS, are good candidates to be executed on a cloud environment, because

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC72



of the small impact of the interconnection network. In conclusion, cloud computing does
not seem to be yet a convenient place for running scientific application at least from the
performance perspective.

To understand if Cloud Computing can be convenient at least from the economical
perspective, we estimated the cost for running a virtual instance on three different cloud
platforms provided respectively by Google, Amazon and Microsoft, in order to compare
it with the cost of using a similar configuration in the HPC environment. Each virtual
instance in the cluster runs a Red Hat Enterprise Linux distribution and is equipped with
8 cores, 16 GB of memory RAM and 100 GB of Hard Disk. All virtual instances have
also been created in a physical cluster based in London. Our analysis revealsed that
Microsoft is slightly more expensive (0.53 dollars per hour) than the other two providers
(0.41 dollars per hour) but Google wins the comparison as the Amazon billing policy is
less convenient because, for example, the cost is computed by hours and not by seconds
as in Google. All costs have been computed using the calculator tool made available from
all three providers [29–31] and are valid as of March 2019. Even though Google is the
cheapest solution, it is still more expensive than Marconi, where the cost per hour for
8 cores is two times lower than Google. And even using preemptible instances (that is,
instances that can be stopped if other tasks require access to those resources) the cost,
which is dropped by half, stays still higher than on Marconi. In conclusion, not even
from the economical perspective cloud seems to be convenient, in the economical setting
available at the moment of the experiments (cost estimation on Marconi was based on
billing for commercial user).

4. The evaluation model

Looking at the results showed in the Section 3, it might sound that, for scientific re-
searchers, cloud is a burden rather than an opportunity. This might be true if only perfor-
mance and cost are taken into account. But if other factors [32–35] come in, comparison
might yield different results. For example, as the jobs on HPC systems are not usually
executed on-the-fly but put in a queue, they might experience a not negligible waiting
time. Then, introducing the turnaround time (which is the sum of execution time and job
queue delay) as further factor to compare HPC and Cloud systems, the landscape of the
usage convenience changes. In our vision, a fair comparison between cloud and HPC
infrastructures should take into account not just performance and economical aspects but
also waiting time, job failure, job setup time, maintenance time as well as the user pref-
erences. A time-sensible user might be willing to pay a bit more for getting the results
sooner and then the chosen architecture will be different according to its preferences.
Choosing the right infrastructure can be essentially seen as a multi-attribute decision-
making problem. A proper model based on all these attributes might help researchers to
understand which platform might be the best one depending on the user preference, the
execution time, the cost for computing and the expected waiting time in the queue. The
selected architecture might not be the highest performing one, nor the most affordable,
but that one which maximizes the utility function describing the model.

To measure the effectiveness of each platform using several attributes, we devised
a utility function based on the weighted geometric aggregation function. The attributes
taken into account by the formula are user preference, execution time, core hour cost,
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expected waiting time in the queue for HPC system and virtual instance startup time
for the cloud. Formulas 1 and 2 describe the utility function we adopt for measure the
convenience to use the HPC infrastructure UM or the Cloud system UC for running any
application.

UM =

(
TM +WM

max(TM +WM,TC+SC)

)λ
∗
(

CM

max(CM,CC)

)(1−λ )
(1)

UC =

(
TC+SC

max(TM +WM,TC+SC)

)λ
∗
(

CC

max(CM,CC)

)(1−λ )
(2)

In these formulas, TM ,WM andCM are respectively the elapsed time, the job waiting
time and the cost for running the application on the HPC system, while TC, SC and CC
are the elapsed time, the virtual instance startup time and the cost for running the same
application on the cloud. Parameter λ instead is the user preference. Its value ranges be-
tween 0 and 1. A value λ=0 means that the user is more sensible to the cost (and then
the user would like to have the results at a lower cost, without being interested in the
time to completion for getting such results); on the opposite side, λ=1 is the preference
of a user who is mainly interested in minimizing the time to completion thus optimizing
turnaround time. With this utility function, turnaround time comes in as a criterion for
assessment. The model is validated by assessing all runs of CMS and BloodFlow appli-
cations on both Marconi and Cloud. IfUC is lower thanUM , users would choose Cloud as
the preferred platform for running the applications, otherwise Marconi is the best choice.

As already mentioned, the utility function takes the time spent by the applications to
be executed on the cloud and on Marconi and their relative costs. Furthermore, it requires
the Waiting Time and the Virtual Instance Startup Time which need to be characterized.
For this reason, in order to get both information, Sections 5 and 6 make a characterization
of both times.

5. The workload analysis

The results described in this section refer to the jobs which have been successfully exe-
cuted on Marconi A1 partition during eight months, from the 23rd of January up to the
26th of September 2018. During such observed period of time, the number of jobs sub-
mitted on Marconi A1 and successfully completed has been equal to 844,975. Half of
all completed jobs terminated their execution in less than 43 seconds, while 80% stayed
running for less than 1,400 seconds (almost 23 minutes). Only a negligible percentage
of jobs (0.06%) took more than 24 hours to complete its execution, with a maximum
elapsed time equals to 417,311.

5.1. Job Clusterization

Jobs on Marconi are submitted through Slurm [36]. Using Slurm, users can specify the
task to run, the amount of required resources (number of cores and amount of memory),
the wall time, which is the time the job might be left running the most, and finally the
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queue where the job has to be put on. A queue is not handled like a pure FIFO queue.
Each job is assigned a priority index which is computed with a complex formula taking
into account many factors such as the waiting time in the queue, the size of the job
(core number and amount of memory), the required wall time and furthermore a fair
share factor which slows down jobs submitted by users who have almost spent their
monthly hours. Because of this scheduling policy, the waiting time spent by a job cannot
be computed in advance and might be highly variable. Furthermore, as the queue is
chosen by the user at submission time, each queue contains jobs having highly variable
geometries, making the queue-oriented classification not proper to be used as a way to
classify jobs according to their geometry and the time spent running. For this reason, in
order to get sets of more homogeneous jobs, we decided to use k-means as partitioning
method for job clusterization. Instead of fixing a priori the number of clusters, we iterated
k-means method several times, until the covariance coefficient was lower than 1.1 for all
clusters. The covariance coefficient cc for the i-th cluster is computed as in formula 3:

cci =
sd(JiElapsedTime)+ sd(JiCPUNumber)

mean(JiElapsedTime)+mean(JiCPUNumber)
(3)

where sd is the standard deviation function, mean instead is the mean function and Ji is
the set of jobs belonging to the i-th cluster.

Our test showed that the ideal cluster number is 16, because using a smaller cluster-
ization number makes the covariance coefficient higher the 1.1 at least for one cluster.

5.2. Job Waiting time

5.2.1. A global perspective

An overview on the waiting time of all jobs started on A1 partition shows that the time
spent by each job is not negligible as it can last even several days. Indeed, 5.56% of
the jobs had to wait at least 24 hours before being run. Only 19.21% instead has been
executed almost immediately, while almost fifty percent of the jobs waited at least two
minutes before being run.

5.2.2. Waiting time by clusters

We also did a characterization of the clusters we found using k-mean technique. The
analysis revealed that the median waiting time for all clusters ranges between 3 seconds
(cluster 7) and 92,094 seconds (cluster 1).

5.2.3. Relative Waiting Time by Clusters

As the main aim of this work is to characterize the waiting time the jobs might experience
on an HPC system like Marconi, we studied how the relative waiting time changes inside
each cluster. We define the relative waiting time RWT as follows:

RWT =
WaitingTime
ElapsedTime

(4)
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Table 1. Relative Waiting Time for all clusters

cluster
CPU Number

interval

Elapsed Time

interval (sec.)
median mean 3rd quartile max

cluster 1 1 - 4752 34387 - 62258 2.17 5.50 8.15 42.96

cluster 2 1 - 4176 1864 - 8176 0.07 6.21 2.54 248.46

cluster 3 1 - 1872 735 - 1234 1.48 15.84 6.91 1,015.34

cluster 4 1 - 512 282 - 534 2.51 29.57 9.74 1,461.78

cluster 5 1 - 216 200 - 335 1.88 25.82 12.24 2,528.10

cluster 6 2048 - 7488 1 - 6643 708.14 2,341.14 3,387.19 69,066.80

cluster 7 1 - 34 1 - 46 0.50 409.09 11.00 313,432.00

cluster 8 1 - 5760 6960 - 19590 0.23 3.38 3.51 133.06

cluster 9 1 - 5760 62227 - 417311 0.06 1.33 1.28 20.95

cluster 10 1 - 5760 18892 - 34880 1.12 5.27 5.84 64.79

cluster 11 1 - 180 103 - 208 0.76 28.31 5.45 4,120.61

cluster 12 1 - 1872 1035 - 2593 0.47 14.39 2.51 507.77

cluster 13 162 - 2088 1 - 920 0.80 381.70 4.60 37,7678.50

cluster 14 1 - 1024 473 - 803 3.40 37.16 27.68 1,809.86

cluster 15 1 - 72 39 - 117 1.80 99.38 12.53 20,702.60

cluster 16 30 - 162 1 - 111 1.50 284.07 13.87 166,114.00

This value is always greater than or equal to 0. Better values are close to 0. The higher
the relative waiting time, the greater the impact of the waiting time on the elapsed time.
Table 1 shows the numerical values of such distribution. The mean value is almost al-
ways greater than the third quartile. This highlights that the distribution is badly affected
by some outlier making the mean value and the maximum value much higher than the
median value. For this reason, median value can better describe the waiting time because
it is insensitive to the presence of outliers.

6. Virtual Instance Startup

Formulas 1 and 2 take into account not only the waiting time, which has been charac-
terized in the previous section, but also the virtual instance startup time. Many works
[37–39] have already studied Virtual Instance Startup Time and its relations with other
factors such as the time of the day, operating system image size, instance type, data center
location and number of instances requested at the same time. Nethertheless, we checked
virtual instance startup time for a number of cluster configurations typically used for the
benchmark suite of applications we are interested in. The analysis covers startup time
measured when activating a cluster of three virtual instances on a physical infrastructure
hosted in the West US (us-west2-a). Each virtual instance is equipped with CentOS 7,
50GB of virtual disk and using different virtual hardware configurations (from 1 to 8
cores, from 3.75 to 30 GB of RAM). Times have been measured starting virtual instance
from a custom tool written using the Google SDK. Our tests revealed that the median
startup time is about 10 seconds.
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Table 2. Cluster distribution for CMS and BloodFlow runs

CPU Number 4 CPU 8 CPU 16 CPU 32 CPU 64 CPU 128 CPU 256 CPU

CMS 8 8 2 12 3

BloodFlow 14 4 5 11 15 16

Figure 3. Preferred architecture for running CMS.

7. Applying the evaluation model on both applications

As described in Sec. 4, the utility function takes the time spent by the applications to be
executed on the cloud and on Marconi and their relative costs. Furthermore, it requires
the Virtual Instance Startup Time SC and theWaiting TimeWM . The previous section gave
us a measure of the time spent by a virtual instance to get ready to start the application,
which can be fixed to 10. For the parameter WM instead of using a single value on all
runs, we decided to identify the cluster which each run might belong to, according to
the job geometry. Then, the median relative waiting time RWM for the selected cluster
is chosen as a factor to determine the waiting time used in the utility function. The job
waiting time WM then can be easily computed as follows:

WM = RWM ∗TM (5)

where TM is the job elapsed time. To be clearer, lets consider the first run of CMS. The
application took 15,074.32 seconds using 16 cores. According to the job clusterization
defined in table 1, the run might belong to the cluster number 8, where the median relative
waiting time for all job in the cluster is 0.23. Then for this run, the estimated waiting
time WM is equal to 15,074.32 * 0.23 = 3,467.09 seconds. The last run of BloodFlow,
instead, took 51.22 seconds using 128 cores. Then this run belongs to the cluster number
16, having a relative waiting time equals to 1.50. Then for such run, the waiting time is
equal to 76.83 seconds. Table 2 shows the cluster where each run for both applications
belongs to.

Now, we have got all data needed to apply the utility function and assess the best
platform. Figures 3 and 4 show which architecture might be the preferred for each run
depending on the user preference. Light gray areas represent runs for which the cloud
infrastructure is better. Looking at the table describing CMS, for 22% of all runs, the
cloud Infrastructure seems to be the best architecture for running the application. For
BloodFlow, instead, this percentage is higher, namely 48%.
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Figure 4. Preferred architecture for running BloodFlow.

The results described so far are heavily dependent on the relative waiting time in-
troduced in our model. Indeed, if we suppose to rise the relative waiting time of cluster
2 (which is the cluster where the 64-core CMS runs belong in) from 0.07 to 0.40, the
cloud preference for CMS rises from 22% to 28%. It is worth noting that the increase
we introduced changing the relative waiting time from 0.07 to 0.40, is not negligible. In
fact, supposing to have an elapsed time of 3,681.70 seconds (which is the real elapsed
time CMS took being run on Marconi using 64 cores), changing the relative waiting time
from 0.07 to 0.40, the waiting time goes from 258 seconds to 1,473. According to this
observation, we can state that our model is robust, since a high perturbation of the rela-
tive waiting time brings a small variation in the convenience to use the cloud infrastruc-
ture rather than the HPC system. The results presented above also show that although
cloud computing might be more expensive and less powerful than the HPC system, when
turnaround time becomes important, cloud computing can be a convenient alternative for
running scientific applications.

8. Conclusion

Studying the convenience to use Cloud Infrastructures as alternative to HPC systems for
running scientific application is not easy as it should take into account many factors, not
only related to the performance and economical aspect. Even the user preference plays
an important role as some users might prefer to have results as fast as possible, others
instead might wish spending less. In this paper we introduced a new model for the cloud
convenience evaluation which takes into account performance, cost, user preference and
waiting time. The model has then been applied to study the best architecture to run two
different applications, based on two different communication models. Results show that
our model is robust as high perturbations in the relative waiting time bring small variation
in the results. Furthermore, there is a not negligible number of runs of both applications
for which Cloud seems to be the better place, according to our evaluation mode.
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Abstract. The real time coding of high resolution JPEG2000 video requires spe-

cialized hardware architectures like Field-Programmable Gate Arrays (FPGAs).

Commonly, implementations of JPEG2000 in other architectures such as Graphics

Processing Units (GPUs) do not attain sufficient throughput because the algorithms

employed in the standard are inherently sequential, which prevents the use of fine-

grain parallelism needed to achieve the full GPU performance. This paper presents

an architecture for an end-to-end wavelet-based video codec that uses the frame-

work of JPEG2000 but introduces distinct modifications that enable the use of fine-

grain parallelism for its acceleration in GPUs. The proposed codec partly employs

our previous research on the parallelization of two stages of the JPEG2000 coding

process. The proposed solution achieves real-time processing of 4K video in com-

modity GPUs, with much better power-efficiency ratios compared to server-grade

Central Processing Unit (CPU) systems running the standard JPEG2000 codec.

Keywords. Wavelet-based video coding, high-throughput video coding, JPEG2000,

GPU, CUDA.

1. Introduction

High definition video with resolutions ranging from 2K to 4K is nowadays common

in devices such as TVs, digital cinema projectors, and mobiles. Among others, the

JPEG2000 standard (ISO/IEC 15444) is employed for such video content in fields like

TV production or digital cinema. This standard provides excellent coding performance

and advanced features, such as quality progression, partial transmission, or error re-

silience [1]. Nonetheless, the algorithms employed to achieve them are very demanding

computationally. They transform, code, and reorganize the data in three main stages that

require multiple scans and coding operations. This results in long execution times and

complex implementations. In the case of digital cinema, for instance, field-programmable

gate arrays are required to achieve real-time decoding of 2K and 4K video.
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The first stage of most wavelet-based image/video codecs (including JPEG2000) re-

duces the image redundancy through the discrete wavelet transform (DWT). The opera-

tions performed by the DWT can be parallelized, so DWT implementations for parallel

architectures have been widely studied in the literature [2–4]. The second stage employs

bitplane coding together with arithmetic coding to reduce the statistical redundancy of

wavelet coefficients. This stage scans the coefficients one-by-one, producing a result for

each that can not be obtained without all the previous. This causality renders parallelism

at the bitplane coding engine a very challenging task. Even though there are some works

in the literature with this purpose [5–12], none of them is able to exploit the full potential

of GPUs. The third stage of the pipeline reorganizes the data and forms the compressed

file.

Aware of the high complexity of JPEG2000, the Joint Photographics Experts Group

launched in June 2017 a call for proposals [13] aimed to develop an alternate algorithm

for the bitplane and arithmetic coding stage that increases the throughput of the codec.

This JPEG2000 part is described in [14,15]. It increases performance about 10× though

penalizes coding performance about 10%. Also, it sacrifices quality scalability, which

may become an issue in image/video transmission scenarios.

In the same line of work but well before this call for proposals, we started a line of re-

search whose final goal is to devise an end-to-end image/video codec that can exploit the

fine-grain parallelism of GPUs while maintaining the same features of JPEG2000. For

the bitplane and arithmetic coding engine, we introduced a bitplane coding strategy with

parallel coefficient processing (BPC-PaCo) that does not hold dependencies among coef-

ficients, allowing efficient implementations in GPUs [16–19]. This engine can effectively

exploit the parallelism of SIMD architectures, which results in high speedup factors and

lower power consumption with respect to the fastest implementations of JPEG2000, ei-

ther executed in multi-core CPUs or in GPUs. Evidently, BPC-PaCo is not compliant

with the standard, but it does not sacrifice quality scalability and it penalizes coding per-

formance only about 2%. For the DWT, we also proposed an efficient architecture in [2]

that achieves high performance in GPUs.

The first implementation of the end-to-end codec for GPUs was presented in [20].

Nonetheless, that implementation is only able to process individual high-resolution im-

ages. This paper presents a vastly improved implementation that processes video se-

quences in real-time thanks to the introduction of stream management with multiple CPU

threads, a double-buffer strategy, and event handling to synchronize GPU and CPU op-

erations. Experimental results achieved with consumer-grade GPUs suggest that the pro-

posed codec achieves a throughput that allows encoding and decoding 4K video in real-

time and yields highly better power consumption ratios than JPEG2000 codecs executed

in CPUs.

The rest of the paper is structured as follows. Section 2 explains the basics of the

Nvidia GPU architecture. Section 3 briefly describes the different parts of the JPEG2000

standard. Section 4 describes the proposed end-to-end codec in detail. Section 5 provides

experimental results achieved when coding high resolution video in two GPUs and com-

pares our results with Kakadu [21], one of the best multi-thread JPEG2000 implementa-

tions. The last section concludes summarizing this work.
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2. Overview of Nvidia GPUs

Nvidia GPUs are hardware devices with tens of individual computing units called stream-

ing multiprocessor (SMs). These SMs can work independently, allowing the GPU to pro-

cess different sequences of operations, called streams, in parallel. This permits the exe-

cution of multiple algorithms in an interleaved fashion, which increases the opportunities

for parallelism and thereby the throughput achieved. The SMs execute multiple 32-wide

SIMD instructions (i.e., vector instructions) simultaneously.

GPUs from Nvidia employ the CUDA programming model, which defines a com-

putation structure composed by (potentially) hundreds of thousands of threads grouped

into warps (each with 32-threads), with each warp assigned to a thread block [22]. While

the hardware device executes 32-wide SIMD instructions, a software CUDA thread is

the virtualization of one of the lanes of the instruction. From the first CUDA-compatible

architecture (v1.0) up to Pascal (v6.2), warps execute instructions in a lock-step syn-

chronous fashion, featuring an implicit synchronization at the end of any divergence [23].

From Volta (v7.0) onward, the implicit synchronization is not included at the end of the

branching instructions, and must be coded explicitly if needed [24]. Warps in a thread

block are executed asynchronously and can cooperate via on-chip fast memories, using

explicit synchronizing barrier instructions when required.

The CUDA memory model is hierarchically organized as follows: there is a space of

local memory private to each thread, a shared memory private to each thread block, and

a global memory public to all threads in the kernel application. From a microarchitecture

point of view, the local memory reserved per thread is located either in the registers or the

off-chip memory, depending on the available resources. In the proposed implementation,

the host memory (CPU RAM) and the device memory (GPU VRAM) are accessed as

different, non-unified memory regions, explicitly managing the moment and the amount

of data which are copied between them.

3. Overview of JPEG2000

Our GPU codec carries out the same steps as JPEG2000, so they are briefly described be-

low. Depending on the encoding mode employed, either lossy or lossless, the operations

involved may be irreversible or reversible, respectively. Irreversible operations improve

the compression ratio though they sacrifice image quality slightly.

The first stage of the coding pipeline is the DWT. Our implementation uses a lifting

scheme approach [25] due to its low computational complexity. It applies a series of

arithmetic operations first row by row and then column by column. The DWT outputs

four different subbands, with three of them including smaller detail images and the fourth

including the original image at lower resolution and higher energy. These operations

are carried out (typically) 5 times within the fourth subband, with each iteration in a

lower resolution subband. For lossy compression, the operations employ floating-point

arithmetic, so the resulting data are converted to integers before the next stage. This

conversion is performed via deadzone quantization [1].

The second stage applies bitplane coding with arithmetic coding. The wavelet coeffi-

cients are conceptually partitioned in small sets of typically 64×64 wavelet coefficients,

called codeblocks. The strategy adopted to process each codeblock consists in coding
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the most relevant information first. The data are divided in bitplanes, with each bitplane

containing the set of bits from the same binary position of the unsigned binary represen-

tation of each coefficient. Encoding begins from the most significant bitplane (i.e., the

one with the highest magnitude within the codeblock) to the lowest one. In JPEG2000,

each bitplane is scanned in three coding passes. The first pass is called Significance Prop-

agation Pass. This pass only processes the bits of those coefficients that have at least one

significant neighbor. A coefficient is called significant from that bitplane that holds the

first non-zero bit to the lowest. The second coding pass is called Magnitude Refinement

Pass. It visits the coefficients that are significant in higher bitplanes. The Cleanup Pass

processes the coefficients not visited in the previous passes. This coding strategy aims

to code the information which holds more information first, effectively reducing distor-

tion [26]. Each bit emitted by the bitplane coder is fed to the arithmetic coder along with

its contextual information. The context considers the number of neighbors that are sig-

nificant, employed to determine a probability for the processed bit. This probability is

employed by the arithmetic coder to generate the final bitstream.

The compressed data of codeblocks can be truncated to fit a target bitrate. The

method to carry out this optimization process is not defined in the standard, so each im-

plementation may adopt its own solution. The final stage reorganizes the data and adds

ancillary information needed by the decoder to decode the original image. The decoder

carries out the same steps of the encoder in reverse order.

4. Proposed Codec

The proposed codec is implemented in CUDA. CUDA is employed instead of OpenCL

because it provides the latest improvements in the newest architectures. JPEG2000

exposes fine-grain parallelism in all coding stages except for the bitplane coder. Ex-

cept from the bitplane and arithmetic coder, our proposal produces the same output as

JPEG2000 in each stage employing a parallel architecture that extracts most of the GPU

performance. BPC-PaCo is employed in the bitplane coding engine [18, 19]. As previ-

ously stated, this engine is not compliant with the standard though it preserves the same

features and allows parallelism at a fine-grain level.

Algorithm 1 describes the main steps of the proposed codec. Fig. 1 also illustrates

its main stages. First, the required memory to process the entire video is allocated in the

host CPU RAM (lines 1-2) and in the GPU DRAM, which are respectively referred to

as MH and MD. Next, two CPU threads are created, denoted by t1 and t2 in Algorithm 1,

to manage the input/output from/to the hard disk (lines 3-6 and 10-13, respectively). The

codec utilizes a double-buffer strategy per stream. This double-buffer is employed for

both reading the raw data and writing the compressed file, so four buffers are allocated

for each stream. These buffers are referred to as MH [i] and MD[i] for the input, and MH [o]
and MD[o] for the output, with {i,o} ∈ {1..2}. When reading, the data from one buffer

are processed while the other is filled. For writing, the compressed data are transferred

to the host from one GPU buffer while the other is already empty and can be filled with

compressed data from the frame that is being processed. This buffer structure enables

the parallelization of the processing task in two streams, removes the risk of a system

memory overflow and increases the utilization of the system resources. Both threads are

constantly checking the buffers to start data transfers as soon as possible.
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Figure 1. Illustration of the steps performed by the proposed video codec using two streams of execution.

Algorithm 1. Main routine of the codec

1: CPUMemoryAllocation()

2: GPUGlobalMemoryAllocation()

3: for each empty MH [i] do

4: MH [i]← HDRead()

5: MD[i]←MH [i]
6: end for

7: D← DWT Q(MD[i])
8: {Bl}← BPC AC(D)

9: MD[o]← CR({Bl})
10: for each filled MD[o] do

11: MH [o]←MD[o]
12: HDWrite(MH [o])
13: end for

t1

S1,2

t2

From lines 7 to 9 in Algo-

rithm 1 the GPU functions, or ker-

nels, to code a frame are called.

The compression of each frame is

carried out with three kernels. Two

GPU streams, denoted by S1,2, are

employed to process a maximum

of two frames simultaneously. Typi-

cally, each kernel transfers the data to

be processed from the global mem-

ory MD[i] to the local memory R

to accelerate memory accesses. The

kernel DWT Q(·) receives the orig-

inal frame data as input and gen-

erates quantized wavelet coefficients

that are the input of BPC AC(·).

BPC AC(·) generates a bitstream per codeblock, referred to as Bl , with l ∈ {1..L̂}, L̂ be-

ing the number of codeblocks in each frame. This set of bitstreams is reorganized in the

last kernel CR(·), which also adds ancillary information for decoding. This kernel does

not transfer the compressed data to local registers since it only needs to reorganize the

data in global memory.

As illustrated in Fig. 1, the use of two GPU streams allows the processing of two

frames in parallel, increasing the throughput of the codec. Evidently, the three stages of

the coding pipeline are carried out sequentially in each stream. Once a frame is coded,

the resulting data are sent asynchronously to the host memory and the stream begins

processing the next frame immediately. The three kernels are devised and implemented

to extract fine-grain parallelism in the GPU. The proposed GPU-oriented architecture is

able to process either high-resolution images or video in real time. Next, a brief descrip-

tion of each kernel is provided.

C. de Cea-Dominguez et al. / GPU Architecture for Wavelet-Based Video Coding Acceleration 87



4.1. Discrete wavelet transform

The adopted DWT implementation [2] in our codec employs a register-based acceler-

ation strategy [27] that transfers data from the global memory MD[i] to local registers,

avoiding the use of shared memory. Threads communicate among them via shuffle in-

structions. This strategy allows data reuse and sharing, taking advantage of the fine-grain

parallelism and data access locality of the algorithm. First, the image is conceptually

divided in blocks that are independently processed by warps. This permits coarse-grain

parallelism, populating more SMs of the GPU. The blocks take into account data de-

pendencies of the transform, so they include some samples from adjacent blocks form-

ing a halo. The halo is needed to obtain the same result as if the DWT was applied to

the whole image at once. Within each block, the DWT is applied via the lifting scheme,

which alternatively processes in the vertical and horizontal axis odd and even samples.

If the compression mode is lossy, quantization is applied after the DWT since the next

kernel requires integers.

4.2. Bitplane coding with parallel coefficient processing

The coefficients resulting from the DWT Q(·) are conceptually partitioned in small

sets called codeblocks. Typically, each codeblock contains 64×64 coefficients. They are

transferred to the local memory to speed up the processing, like in the previous kernel.

Codeblocks do not hold dependencies among them, so they are processed independently.

The processing of codeblocks in parallel requires coarse-grain, control-divergent strate-

gies that are employed in many implementations of the original JPEG2000 standard. In

addition to this parallelism, the coding engine BPC-PaCo employed in this stage extracts

fine-grain parallelism in the coding of the codeblock.

BPC-PaCo is based on bitplane coding, like JPEG2000. A particular feature of BPC-

PaCo is that it conceptually divides the codeblock in 32 columns holding two coefficients

each. Each codeblock is processed by a warp, and each 2-coefficient column is processed

by a thread of the warp. Each thread carries out a modified version of significance coding

that does not require cleanup, and the magnitude refinement pass. To employ only 2

coding passes instead of 3 like in JPEG2000 significantly increases the throughput [19].

Each emitted bit is coded via context-based arithmetic coding. To form the context of

the coefficient, threads need to cooperate among them so that each coefficient can obtain

information of all its adjacent neighbors. Again, this cooperation is performed via shuffle

instructions. BPC-PaCo utilizes 32 arithmetic coders so that each thread in the warp

can code all bits that it emits. The codewords generated by the arithmetic coders are

interleaved in an optimal fashion in the final bitstream generated for the codeblock. The

result of kernel BPC AC(·) is the set {Bl} that contains a bitstream per codeblock, with

l ∈ {1..L̂} and L̂ being the number of codeblocks per component. The probability model

employed by the arithmetic coders is static, i.e., it employs pre-defined probabilities that

are computed via a training set of images. This coding strategy permits the use of coarse-

and fine-grain parallelism, since both the codeblocks and the coefficients within them are

coded in parallel.
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cores clock memory peak FP32 memory

SMs × SM frequency bandwidth throughput TDP size

GTX 1080 Ti 28 128 1923 MHz 484 GB/s 13.78 TFlops 250 W 11 GB

GTX 960M 5 128 1176 MHz 80 GB/s 1.5 TFlops 60 W 2 GB

Table 1. Features of the GPUs employed.

4.3. Codestream reorganization (CR)

The bitstreams produced for each codeblock have different size depending on the data

coded, as depicted in Fig. 1. This results in data scattered in the output buffer of the

global memory. The final stage of the coding process reorganizes these data putting them

in a compact structure that can be transferred to the main memory of the host MH [o]
and then written to the disk. This stage also includes auxiliary information in the final

codestream for decoding.

When a warp compresses a codeblock, the lengths of the bitstreams are stored in

a vector of integers L = {L1,L2, · · · ,LL̂
}. Then an aggregated list of lengths, i.e., L′ =

{0,L1,L1 + L2, · · · ,L1 + · · ·+ L
L̂
} is generated via the Device Scan primitive from the

Nvidia CUB framework [28]. To accelerate the access to this list, a fast lookup table,

denoted by LUTL′ is created. This LUT is generated applying a binary search over L′

in which each position represents some positions of the original map. Our experience

indicates that speedups about 2× are achieved by using such a strategy. Kernel CR(·)
then uses this LUT so that each thread transfers 2 bytes of the codeblock’s data to the

final output buffer.

5. Experimental Results

The throughput achieved by the proposed codec is compared with Kakadu v7.A.2 [21]

in the experiments below. Kakadu is among the fastest implementations of JPEG2000,

with multi-thread support for multi-core CPUs. It is programmed in C++ and is heavily

optimized via assembly instructions. In the tests below, Kakadu is executed in a platform

that has 4 AMD Opteron 6376 CPUs running at 2.3 GHz, employing a total of 32 threads

of execution. Results from other JPEG2000 implementations in GPUs [11, 12] are not

included herein because their throughput is similar or inferior to that of Kakadu, with

the exception of Comprimato [10], which does not offer any option to test its implemen-

tation. Our codec is executed in the consumer-grade GPUs reported in Table 1, namely,

the high-end GTX 1080 Ti for desktops, and the low-end GTX 960M for laptops. The

tests code a video sequence of 948 frames of size 2048×832, gray-scale, and bit-depth

of 8 bits per sample. The results shown below do not consider the I/O time needed to

read/write the files from/to the disk since that may affect execution times significantly

depending on the device employed. In all implementations, data are read from the host

memory, where they are preloaded before starting the execution.

The first test evaluates the throughput achieved by our codec when using 1 or 2

GPU streams. The results are depicted in Fig. 2. The vertical axis reports the throughput

achieved, in Mega samples per second (Msamples/sec.). The results for 1 and 2 streams

are depicted for each GPU and for the encoding and decoding process. Using 2 streams

provides a performance increase about 26% (7%) in the encoding process and 22% (9%)
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Figure 2. Evaluation of the throughput achieved when using 1 and 2 execution streams.
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Figure 3. Evaluation of the throughput achieved by the proposed codec and Kakadu.

in the decoding process for the 1080 Ti (960M) GPU. The performance gain depends on

the peak throughput of each GPU. The 1080 Ti has ample resources to process more than

one frame whereas the 960M almost saturates its resources when coding a single frame

(i.e., 1 stream).

The second test evaluates the throughput of the proposed codec running 2 streams

and Kakadu. Fig. 3 depicts the obtained results. The proposed codec executed in the

1080 Ti yields a throughput about 5× higher than that of Kakadu. For the 960M, the

throughput achieved is about 2× higher than that of Kakadu. Nonetheless, we recall that

Kakadu is executed in an expensive multi-CPU platform, whereas the proposed codec

employs commodity GPUs. Fig. 3 also depicts the throughput needed to process digital

cinema video at resolutions of 2K and 4K in real time (straight horizontal lines). The

results suggest that the proposed codec running in the 1080 Ti (960M) can process 4K
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Figure 4. Evaluation of the power efficiency achieved by the proposed codec and Kakadu.

(2K) video in real time.

The third test evaluates power consumption. Fig. 4 depicts the results yield by

Kakadu and our codec. In this case, the vertical axis reports Msamples processed per

Watt consumed. Kakadu employs four high-end AMD Opteron processors, each with a

thermal design power (TDP) of 115W, whereas the 1080 Ti and 960M GPUs have a TDP

of 250W and 60W, respectively. The low power consumption of the 960M makes it the

most efficient, being approximately 12×more power efficient than Kakadu for encoding

and about 17× for decoding. The proposed codec executed in the 1080 Ti is less power-

hungry than Kakadu too, with increases in efficiency about 9× and 10× for the encoder

and decoder, respectively.

6. Conclusions

The JPEG2000 standard is mainly devised to exploit the coarse-grain parallelism pro-

vided in CPUs. When employed to code high-resolution video in scenarios such as TV

production or digital cinema, implementations need specialized hardware or expensive

computer platforms to meet real-time requirements. So far, implementations for cheaper

devices such as GPUs are not able to achieve high throughput because the innermost

algorithms of the coding system do not exhibit enough fine-grain parallelism. This paper

introduces a fully parallel end-to-end codec that employs the framework of JPEG2000

but that provides –in all stages of the coding pipeline– distinct modifications that permits

the use of fine-grain parallelism. This can be effectively exploited when executed in ar-

chitectures that highly rely on SIMD parallelism such as those found in Nvidia GPUs.

Experimental results coding high-resolution video indicates that the proposed codec is

5× faster than the most efficient implementations of JPEG2000 while reducing the power

consumption more than 10×. None of the advanced features of JPEG2000 are sacrificed

in the proposed codec, so it is ideal for scenarios that deal with massive data sets and/or

power constraints.
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Abstract. GPGPU computation of microscopic pedestrian simulations has been
largely restricted to Cellular Automata and differential equations models, leaving
out most agent-based models that rely on sequential updates. We combine a linked-
cell data structure to reduce neighborhood complexity with a massive parallel fil-
tering technique to identify agents that can be updated in parallel, thus extending
GPGPU computation to one such model, the Optimal Steps Model. We compare
two different OpenCL implementations: a parallel event-driven update scheme and
a parallel update scheme that violates the event order for the sake of parallelism.We
achieve significant speed ups for both in two benchmark scenarios making faster
than real-time simulations possible even for large-scale scenarios.

Keywords. discrete event simulation, agent-based simulation, pedestrian dynamics,
GPGPU, linked cell algorithm

1. Introduction

Modelling of crowd dynamics has become an important area of research. It helps to un-
derstand the interaction of large crowds on a macroscopic level. Results of reliable crowd
simulations support safety managers, engineers, event managers and security staff in
their decisions. Off-line simulations allow testing of architectural solutions for buildings
or facilities for mass events. Nowadays, the application of pedestrians simulations goes
beyond off-line simulations. There is a growing interest in and a need for on-line data-
driven simulations. Such simulations can predict the future — but only if the computa-
tion is faster than real-time. Since microscopic crowd simulations are computationally
expensive, they must be accelerated to enable predictive simulations on a large scale.

With the breakdown of Dennard scaling, clock frequencies of single Central Pro-
cessing Units (CPUs) no longer increase significantly. As a consequence, manufactur-
ers turned their attention towards multi-core processors. In contrast to CPUs, the hard-
ware architecture of Graphics Processing Units (GPU) is designed for massive paral-
lelism. Since GPUs are part of many current and upcoming supercomputers, efficient
exploitation of GPUs has become essential in scientific computing. Additionally, GPUs
offer thousands of cores inside affordable off-the-shelf workstations making general-
purpose Graphics Processing Units (GPGPUs) a source of cheap and efficient computa-
tional power. In crowd dynamics thousands or even millions of virtual pedestrians move
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simultaneously. At the same time, they are spatially separated, which implies that there
is a chance for parallel updates. Consequently, we consider how to exploit GPUs for
large-scale crowd simulations.

To simulate thousands of pedestrians in real-time, Cellular Automata (CA) based
models are an attractive choice. Space is discretized by a regular and fixed grid of cells
and agents are usually represented by occupied cells. This regularity induces efficiency
with respect to computational complexity even without parallelism but it also causes in-
flexibility and inaccuracy in terms of modelling. Motion is restricted to the grid mak-
ing CA unsuitable for scenarios with high pedestrian densities or fine spatial granular-
ity. (GPGPU) for CA modelling has been explored and successfully applied by many
researchers [1,2,3,4,5,6].

Other wide-spread classes of microscopic pedestrian models are force- and velocity-
based models where a set of ordinary differential equations (ODEs) describes motion.
In contrast to Cellular Automata, agents move in continuous space. Discretization of
the continuous model is necessary to numerically solve the equations. Especially for
crowded scenarios, accurate results imply small time steps and thus a lot of computa-
tional power. In [3] the authors discuss GPU implementations of a CA model, the Social
Distance Model (SDM), and the force-based Social Force Model (SFM). They achieve a
speed up factor of approximately 4 by exploiting GPGPU.

Almost all microscopic models are, in fact, agent-based models (ABMs). There is a
lot of research on using hardware accelerators for ABMs but mostly outside the field of
pedestrian dynamics. An extensive overview can be found in [7].

In this contribution we extend massive parallelism through GPUs to another class of
agent-based pedestrian models represented by the well validated Optimal Steps Model
(OSM) [8,9,10]. In the OSM each agent steps ahead in two dimensional space, driven by
its individual pace. The agent’s next position is found by solving an optimization prob-
lem. Thus the OSM is discrete in time and continuous in space. We present and compare
two implementations of the OSM which differ in their update schemes: an inherently
sequential event-driven update scheme, which is the OSM’s original update scheme, and
a newer parallel update scheme.

2. The Optimal Steps Model

The OSM combines aspects from both, CA and differential equation models. It inher-
its rule-based discrete stepping events from CA and motion in continuous space from
differential equation models. Furthermore, it can be classified as an agent-based model
(ABM), since each agent is individualized by its unique free-flow speed vfree and stride
length λ . The principle idea behind the OSM is that the natural stepwise movement of
pedestrians leads to a spatial discretization within the simulation [11,9]: Let Ω be the
simulated spatial domain and Ωout ⊂ Ω the obstacle domain, that is, all space covered by
obstacles such as walls. Let Ωin = Ω\Ωout be the walkable part of the scenario. Further-
more, let ∂Ωout be the scenario boundary. Pedestrians are represented by circular shaped
agents of radius rp = 0.195 meters. They move inside Ωin. Agents can step forward in
any direction by choosing a position inside their stepping circle. See Fig. 1a. The radius
of an agent’s stepping circle is derived from the experimentally observed linear depen-
dency of the stride length on the free-flow speed presented in [8]. That is, the radius is
given by
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λ = β0+β1× vfree+ ε, (1)

where vfree is the agent’s free-flow speed and ε is a normally distributed error term,
ε ∼N (0,σ). The intercept β0 and slope β1 stem from a regression through experimental
data [8]. Therefore, λ represents the natural stride length of the the modelled pedestrian.
To obtain a heterogeneous population, the free-flow speed is chosen from a truncated
normal distribution. Let xk be the current position of agent i and τi be the event time of its
next step, then the next position xk+1 is found by optimizing a utility function Φ within
the stepping circle around the agent:

xk+1 = arg min
y ∈ Pi

Φi(y), with Pi = {y : ‖y− xk‖ ≤ λi} (2)

The Optimal Steps Model is event driven. In fact, the linear dependency between
free-flow speed and step length also uniquely determines each agent’s pace: While the
model moves the agent to xk+1 in an instant, its next footstep event occurs at τi+λi/vi,free.
In our free and open implementation of the OSM [10], the optimization problem is cur-
rently solved either by the Nelder-Mead method or by a brute force evaluation on a dis-
cretization of Pi [12] visualized in Fig. 1.

The utility function Φ, which is often interpreted as a potential field, ensures that
the destination is reached while skirting obstacles and other agents. We consider it more
closely, because calculating Φ contains computationally expensive steps. Let Φi be the
utility function, or potential field, of agent i. It is given by a sum of sub-utilities or sub-
potentials: Φi = Φt,Γ +Φo+Φp,i.

Φt,Γ: contributes attraction to a target Γ and is given by the solution of the eikonal
equation. Φt,Γ(x) encodes the travel time required to reach Γ starting from x.
All agents approaching the same target share a common target potential field.

Φo: contributes repulsion caused by obstacles and depends on the distance dΩ(x) =
min
y∈∂Ω

‖x− y‖, which is the shortest distance to the closest obstacle.

Φp,i: is the sum of local repulsion terms caused by other agents and depends on the
distance to these agents.

The target and obstacle potential fields are static but Φp changes dynamically with the
movement of agents. Both repulsive potentials increase with decreasing distance to ob-

a) Ilustration of footsteps of agent i. The circles (blue) indicate the
actual step radius λi and the shaded area (blue) represents the agent
torso of radius rp.

b) Approximation of Pi
by equidistant points in-
side the step circle.

Figure 1. Computation of the next agent position.
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stacles and other agents, respectively. Each sub-potential of Φp is realized by a function
that has compact support, that is, it is zero outside a small area of influence. For a more
detailed description of the modelling aspects we refer to [11,9].

Regarding computational complexity Φp is the crucial part. Each sub-potential in-
cludes the evaluation of a square root and an exponential function. Therefore, we aim at
computing as many sub-potentials as possible in parallel. One essential property to work
with is that Φp is a local function. More precisely, if x is the position of agent j with j �= i
then its contribution to Φp,i at y is zero if and only if ‖x−y‖> wp. The locality property
and the fact that agents are spatially separated imply that footstep events of agent are
not likely to interfere with each other if they are close in time but distant in space. This
permits us to exploit parallelism.

2.1. The Event-driven Update Scheme

The orginal OSM is event-driven. The event-driven update scheme processes events in
their natural order, that is, the way they occur. In terms of the OSM this ensures that
for the choice of the next footstep at time t all footstep events which starts at τ < t are
already processed. From a modelling perspective this implies that pedestrians can antici-
pate currently processed footsteps of nearby pedestrians. Therefore, Φp actually depends
on agents’ positions in the very near future. By using the event-driven update scheme the
OSM becomes a discrete event simulation (DES) model. Note that even though pedes-
trians only anticipate the movement of nearby pedestrians, this can lead to a chain of
navigation adaptations propagating through the whole spatial domain.

2.2. The Parallel Update Scheme

An alternative implementation of the OSM presented in [13] suggest a parallel update
scheme. The parallel update scheme uses a global synchronizing clock. An increase of
the clock by a fixed time step Δt processes all footstep events within (t; t+Δt] in parallel.

a) A target potential Φ̂t,Γ spreads out like
wave from a target on the bottom left.

b) Distance function d̂Ω which gives the
minimal distance to the nearest obstacle.

Figure 2. Plot of solutions of the Eikonal equation of a real world scenario of size 450× 400 square meters.
White areas are contained in Ωout and therefore not walkable.
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This means that we need to deal with potential collisions. The parallel update scheme
consist of the following steps:

seek: parallel computation of the next desired positions
move: parallel movement of agents and adjustment of their event time if their event

time is the smallest among all competing agents

Agents are competing if their bodies overlap with respect to their desired position. These
two steps are repeated until all event times are greater than t+Δt. It is important to notice
that Φp changes with each repetition. For the first seek call Φp depends on the agents’
positions at time t.

2.3. Parallel versus Event-driven Update Scheme

Currently, all OSM parameters are calibrated for the event-driven update scheme. If one
wants to use the parallel update for predictive simulations, the parameters must be re-
calibrated. The parallel update scheme produces the same result as the event-driven up-
date scheme if move only effects one agent, that is, if Δt is sufficient small. In [13] the
authors showed that, otherwise, the parallel update scheme produces larger evacuation
times. This indicates that agents use sub-optimal paths to their destinations because they
lose some of their ability to anticipate other agent’s motion. We decided to compare
computation times and estimate speed-ups for both schemes.

3. OpenCL Implementations of the Optimal Steps Model

We base our implementation on OpenCL to support a broad range of hardware accelera-
tors. It is integrated in our open source framework Vadere [10] which is written in Java.
To call our OpenCL kernels within Java, we use the Lightweight Java Game Library
3.2.3 [14].

The OSM is a model on the operational level. It executes locomotion when each
agent’s destination is known. Route choice, or selection of the destination, is part of the
tactical level, which is, in principle, a decision making process. As such its implementa-
tion consists of divergent code paths which does not lend itself to execution on the GPU.
Consequently, we focus on the operational level and keep the execution of the tactical
level on the CPU.

At the start of the simulation the host (CPU) writes the necessary data (all required
agent information, Φt,Γ and dΩ) to the device (GPU). The host defines how much time
the simulation should be stepped forward by the device. After the device has finished its
computation the result is transferred back to the host. This allows us to incorporate the
tactical level if necessary.

For the sake of simplicity we assume a constant number of n agents during the
simulation which are numbered from 0 to n−1 having the same target Γ. To compute the
target and obstacle potentials on the GPU, Φt,Γ and the distance function dΩ are required.
We approximate both by Φ̂t,Γ and d̂Ω, receptively. They are depicted in Fig. 2. Φ̂t,Γ and
d̂Ω are solutions of the eikonal equation computed by the Fast Marching Method [15] for
a regular grid. In case of the target potential the initial wave front of the Fast Marching
Method starts at the target boundary ∂Γ, i. e., Φ̂t,Γ(x) = 0 if x ∈ Γ. In case of the distance
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function, it starts at ∂Ω, i. e., d̂Ω(x) = 0 if x ∈ Ωout. The computation is done on the host.
Both grids are transferred into the global memory of the GPU. Values in between grid
points are bilinearly interpolated. Furthermore, an approximation of the possible next
footstep positions P is computed using a unit circle depicted in Fig. 1 and transferred
into cached constant memory. This means that we are using optimizing by “brute force”.
The possible next positions for agent i at position xi are given by

Pi = {q | p×λi+ xi, p ∈ P}, (3)

where P are the points inside a unit. All required constants such as the domain size and
the grid size of Φ̂t,Γ and d̂Ω are also transferred to constant device memory. To make
use of beneficial coalesce memory, we convert the arrays of structure (AoS), used by
the CPU code of Vadere, into a structure of arrays (SoA). Listings 1 and 2 depicts the
difference and list all required agent information.

class Agent {

float x;

float y;

float eventTime;

float speed;

float strideLength;

}

Listing 1: Arrays of structure used in object
oriented programming.

class Agents {

float [] x;

float [] y;

float [] eventTime;

float [] speed;

float [] strideLength;

}

Listing 2: Structure of arrays used in
GPGPU programming.

3.1. The Linked Cell Algorithm

In order to avoid the O(n2) complexity of the neighbours search we exploit the locality
of agent potentials. Dynamic data structures are difficult to manage on the GPU. The
linked cell data structure is a well-known technique to deal with this. We adopt it for our
purposes. Let wΩ,hΩ be the width and height of a tight bounding rectangle enclosing the
whole simulation domain Ω and let c be the cell size of the linked cell data structure,
then we divide the space into

wc×hc = l,with wc = �wΩ/c	,hc = �hΩ/c	 (4)

cells uniquely numbered from 0 to l−1. We choose c such that for a given cell, it suffice
to consider only agents in its Moore neighborhood to compute the next position of any
agent within the cell. Let vmax,smax be the maximum speed and stride length over all
agents. Then a cell size

c=max{smax,vmax×Δt}+ rp+wp, (5)

is sufficient, if we reconstruct the data structure every Δt seconds. Before each update
cycle (simulating Δt seconds) we construct the data structure by using an OpenCL im-
plementation of the algorithm described in [16,17] which consist of three steps:
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hash: for each agent with position (x,y) its cell id (hash) is computed by
h(x,y) = wc×
y/c�+ 
x/c�

sort: agents ids are sorted by a bitonic sort according to their cell id
ordering: agents, i. e., all arrays of the SoA depicted in Listing 2 are reordered

according to the sort result
find: cell start indices and cell end indices are detected by unequal consecutive

cell ids

The construction is depicted in Fig. 3. The reordering does not only simplify the ac-
cess to nearby agents but additionally increases the cache hit rate during the following
computation steps of the cycle.

3.2. The Parallel Update Scheme

Implementing the parallel update scheme for the GPU is straightforward. One update cy-
cle is realized by invoking multiple OpenCL kernel functions which steps the simulation
time from t to t+Δt. A cycle is completed if there exist no more agent with an event time
smaller or equal to t+Δt. For each agent we have to remember two positions: its actual
position and its next possible position. Therefore, we extend the SoA by two additional
floating point arrays.

3.2.1. Seek

After the linked cell date structure is constructed, we compute the agents’ next possible
position in parallel. Each agent is assigned to a different work item (thread) executing the
seek kernel. If the agents’ next footstep happens before t+Δt, that is, if τ ≤ t+Δt, the
next possible best position is computed. The work item reduces all possible positions to
the best one by solving Eq. (2). Finally, the resulting position is saved in global memory.

3.2.2. Move

For each agent the move kernel is executed on a different work item (thread). This kernel
tests if there are any collisions with respect to the possible next positions (calculated by
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the seek kernel) agents within the Moore neighbourhood of the linked cell data structure.
If there is none, we update the agents event time

τ ← τ+(λi/vi,free) (6)

and position accordingly. Otherwise, we mark the cycle as conflicted. We repeat the
cycle, that is, the seek and move operation until there is no collision detected and all
event times are greater than t+Δt.

3.3. The Event-driven Update Scheme

The number of agents the event-driven update can update in parallel is greatly reduced
compared to the parallel update. An upper bound is given by the number of cells l. And
in the worst we can only update a single agent. Therefore, we split the computation of
the next agent position into |P| tasks, where |P| is the number of possible next positions
of agent i. Let M contain the agent ids of all agents we can update in parallel. Then we
evaluate

Φi(xi+ z×λi), for i ∈ M,z ∈ P (7)

in parallel. Beforehand, we have to efficiently compute M which is realized by the fol-
lowing three kernel functions.

3.3.1. Cellfilter

We implement two filters which are processed consecutively. The first cellfilter is in-
voked for each cell of the linked cell data structure. It iterates over all agents of a specific
cell and filters the agent with the smallest event time τ ≤ t+Δt. Its id is written into an
array M′ of size wc×hc. If no agent was found, which happens if the cell is empty, −1
is written instead. Compare Fig. 4.
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3.3.2. Gridfilter

The second kernel gridfilter is also invoked for each cell and filters the left-over agents.
It replaces the id by −1 if there is an agent in the Moore neighbourhood with a smaller
event time. Note that each work item only has to test 8 agents due to the first filter.

3.3.3. Align

The result of the filtering is a large integer array M′ of size wc×hc containing some agent
ids and a lot of negative ones. To compute |M| we use a modified prefix sum using the
algorithm presented in [18]. Instead of summing everything up, we only add 1 if the array
value is none negative. Additionally, we compute a second prefix sum array K ignoring
all positive values. Since all agent ids are non negative and all other array entries are set
to −1, −K[ j] gives the number of cells with an id smaller than j that are unaffected by
any movement update. It follows that j+K[ j] is equal to the number of cells with an id
smaller than j which are affected by changes. The align kernel is invoked for each cell.
Let i be the id of a work item (thread), then all work items generates the aligned array M

of |M| agent ids by executing the following assignment in parallel:

M[i+K[i]]← M′[i], if M′[i]≥ 0. (8)

After executing the align kernel, M only contains agent ids of the agent which can be
updated in parallel. Compare Fig. 5.

3.3.4. Move

To use fast shared memory the move kernel is executed by |M|×|P| work items grouped
into |M| work groups. The i-th work item (thread) of the j-th work group (thread group)
computes ΦM[ j](xi) where xi is the i-th possible next position. All immediate results are
saved into shared memory. Therefore, each work group requires |P|× 3× 4 bytes local
memory, i. e., 2×4 bytes for each point in P and four bytes to save each evaluation of Φ.
After all work items complete their task, the final next position is computed by a parallel
reduction using �|P|/2	 work items which finally solves Eq. (2). The first work item of
each work group writes the resulting next position back to global memory. We repeat the
cycle, i. e., cellfilter, gridfilter, align, move until M is empty.
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parallel update scheme event-driven update scheme

OpenCL

(GPU)

OpenCL

(CPU

Java

(CPU)

OpenCL

(GPU)

OpenCL

(CPU)

Java

(CPU)

10k 3 15 80 20 99 140

100k 13 119 1190 60 546 2100

500k 74 1348 12137 160 2875 30096

Table 1. Average computation time in milliseconds of Δt = 0.4 seconds simulation time of the open space
scenario for 10×103,100×103 and 500×103 agents.

4. Comparison of Computation Times

In order to compare computation times of all implementations, we carry out a series of
tests. The parallel event-driven update scheme is expected to perform best for evenly
distributed and well-separated agents because in this case their footstep events are likely
to be independent from each other. It should perform worst if cells are either empty or
highly populated. Therefore, we use two benchmark scenarios. The first one consist of
multiple bottlenecks which yield high local densities. Even the multi-bottleneck scenario
is simple, it imitates more complex geometries and situations by generating a wide range
of densities, i. e., from low densities at the start of the simulation to high densities at the
time of congestion. For the second scenario we evenly distribute agents inside a large
rectangle at the bottom and place the target at the top. Both scenarios are depicted in
Fig. 6. For all tests |P| is approximated by 32 points and Δt is set to 0.4 seconds. Note that
our OpenCL implementation uses single precision and the existing Java implementation
double precision.

Tests were carried out on the following hardware platform: Intel i5-7400 Quad-Core
(3.50 GHz), 8 GB DDR4 SDRAM and a graphics card NVIDIA GeForce GTX 1050 Ti
/ 4 GB GDDR5 VRAM.

In open space, i. e., for the second scenario, using GPGPU computation over the
existing Java implementation speeds up the simulation by multiple order of magnitude,
i. e., the simulation runs more than 100 times faster. Running the same OpenCL code
on the CPU is 5− 18 times slower compared to the GPU. The GPU scales much bet-
ter for a growing number of agents. Compare Table 1. Furthermore, during the simula-
tion the computation times do not significantly fluctuate. The multi-bottleneck scenario

a) Bottleneck scneario. b) Open space scenario.

Figure 6. Illustration of both benchmark scenarios. All agents are uniformly distributed inside the green rect-
angle at t = 0 seconds. They walk towards their orange target at the top. The blue trajectories reveals the agents’
movement through one of the 6 bottlenecks (left) and straight towards their top target (right).
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Figure 7. Comparison of computation times over a simulation run of the multi bottleneck scenario for 100 and
500 thousand agents using the parallel and event-driven update scheme. The computation time is required to
simulate Δt = 0.4 seconds.

benchmark reveals that computation times do fluctuate during the simulation run, if the
event-driven update scheme is used. As expected, the computation slows down because
agents approach the bottlenecks, and thus move closer together. After approximately 100
simulated seconds, the computation time reach a plateau because more and more agents
passed the bottleneck. Figure 7 illustrated this phenomenon. The jump at 300 seconds
for 500 thousand simulated agents might be the result of some caching effect but further
investigations are required.

5. Conclusion

We proposed mechanisms to enable GPU computation for the agent-based Optimal Steps
Model which simulates pedestrian dynamics. We presented two implementations: One
relied on a parallel update scheme thus modifying the original model. The other paral-
lelized an inherently sequential event-driven update scheme by efficiently identifying in-
dependent events and by splitting the event computation into multiple independent tasks.
For this we combined a linked cell data structure with massive parallel filtering. We
achieved speed-ups of multiple order magnitude for both update schemes compared to
the single threaded Java version. Using the same code base but different devices shows
that for the chosen hardware setup, the GPU outperforms the CPU by a factor up to 18
for both update schemes. For our specific hardware setup and two non-trivial benchmark
scenarios we were able to simulate up to half a million agents faster than real-time. Our
techniques can be carried over to any model where the agents’ influence remains local
and where agents are spatially spread. This is true for many models. Thus we showed
that there is great potential in using GPGPU for pedestrian dynamics beyond CA models
or differential equation models.
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Abstract. The exact diagonalization is the most accurate approach for solving the
Hubbard model. The approach calculates the ground state of the Hamiltonian de-
rived exactly from the model. Since the Hamiltonian is a large sparse symmet-
ric matrix, we usually utilize an iteration method. It has been reported that the
LOBPCG method is one of the most effectual solvers for this problem. Since most
operations of the method are linear operations, the method can be executed on
CUDA GPU, which is one of the mainstream processors, by using cuBLAS and
cuSPARSE libraries straightforwardly. However, since the routines are executed
one after the other, cached data can not be reused among other routines. In this
research, we tune the routines by fusing some of their loop operations in order to
reuse cached data. Moreover, we propose the tuning strategies for the Hamiltonian-
vector multiplication with shared memory system in consideration of the charac-
ter of the Hamiltonian. The numerical test on NVIDIA Tesla P100 shows that the
tuned LOBPCG code is about 1.5 times faster than the code with cuBLAS and
cuSPARSE routines.

Keywords. LOBPCG method, CUDA GPU, CUDA Fortran, cuSPARSE, cuBLAS,
Hubbard model, quantum lattice systems

1. Introduction

The Hubbard model[1][2] has attracted a tremendous number of physicists since the
model exhibits a lot of interesting phenomenon such as High-Tc superconductivity. When
we solve the ground state (the smallest eigenvalue and the corresponding eigenvector)
of the Hamiltonian derived from the model, we can understand its properties. Therefore,
a lot of computational methods for solving this problem have been proposed. The most
accurate one is the exact diagonalization which directly solves the ground state of the
Hamiltonian derived exactly from the model. Since the Hamiltonian is a huge sparse
symmetric matrix, we usually solve the eigenvalue problem with an iteration method,
such as the Lanczos method[3], the LOBPCG method[4][5], and so on.
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The graphics processing unit (GPU), which is one of the mainstream processors,
achieves an excellent performance with regular data access pattern. Since most of oper-
ations of the LOBPCG method are linear ones, the method can be executed on CUDA
GPU by using cuBLAS routines[6]. Moreover, since the Hamiltonian can be decomposed
into three matrices, whose non-zero elements are arranged regularly, by considering its
physical property[7][8], we have proposed the code for the Hamiltonian-vector multi-
plication using the non-zero patterns in the three matrices. We reported in [8] that the
code was faster than cuSPARSE routines[9] on CUDA 4.0. However, cuSPARSE rou-
tines have been tuned, and then, nowadays they are faster than our proposed codes (see
Table 1).

In this research, we focus on the shared memory whose access speed is much faster
than the local global memory’s. And then, we propose new strategy to store the matrix
data in the shared memory when performing Hamiltonian-vector multiplication. More-
over, we fuse some linear operations, which can be calculated using cuBLAS routines,
to improve the cache performance.

The rest of the paper of structured as follows. In Section 2, we briefly introduce the
algorithm of the Hamiltonian-vector multiplication and its conventional calculation strat-
egy. And we propose the tuning strategies for the multiplication using the shared mem-
ory system on CUDA GPU. Section 3 presents the tuning strategies for other operations
of the LOBPCG method. Section 4 shows the result of numerical test on NVIDIA Tesla
P100. A summary and conclusion are given in Section 5.

2. Tuning strategy for Hamiltonian-vector multiplication

2.1. Hamiltonian-vector multiplication

The Hamiltonian of the Hubbard model is given as

H =−t ∑
i, j,σ

c†
jσciσ +∑

i
Uini↑ni↓, (1)

where t is the hopping parameter from a site to another one andUi is the repulsive energy
for one-site double occupation of two fermion the i-th site. Quantities ci,σ , c†

i,σ and ni,σ
are the annihilation, the creation, and the number operator of a fermion with pseudo-spin
σ on the i-th site, respectively. When we solve the ground state of the Hamiltonian, we
can understand the property of the model.

Here, the Hamiltonian is a huge sparse symmetric matrix, therefore, we usually uti-
lize an iteration method, such as the Lanczos method, the LOBPCG method, and so on.
Since the most time-consuming operation of the solvers is the matrix-vector multiplica-
tion, it is crucial to tune the Hamiltonian-vector multiplication. Therefore, the storage
formats of the Hamiltonian and the vector are crucial for high performance computing.
Here, the multiplication Hv can be split as

Hv= Dv+(I↓ ⊗A↑)v+(A↓ ⊗ I↑)v, (2)

where I↑(↓), A↑(↓), and D are the identity matrix, a sparse symmetric matrix derived from
the hopping of an up-spin (a down-spin), and a diagonal matrix from the repulsive energy,
respectively[10]. The multiplication (2) can be represented as
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i=(blockIdx%x-1)*blockDim%x+threadIdx%x
j=(blockIdx%y-1)*blockDim%y+threadIdx%y
ix=threadIdx%x; iy=threadIdx%y
V s(ix,iy)=V new(i,j)
call syncthreads()

!!
i=(blockIdx%y-1)*blockDim%x+threadIdx%x
j=(blockIdx%x-1)*blockDim%y+threadIdx%y
ix=threadIdx%x; iy=threadIdx%y
do k=iru(i), iru(i+1)-1
V s(iy,ix)=V s(iy,ix)+Au(k)*Vr(j,icu(k))

enddo
call syncthreads()

!!
i=(blockIdx%x-1)*blockDim%x+threadIdx%x
j=(blockIdx%y-1)*blockDim%y+threadIdx%y
ix=threadIdx%x; iy=threadIdx%y
V new(i,j)=V s(ix,iy)

(a) A↑V
i=(blockIdx%y-1)*blockDim%x+threadIdx%x
j=(blockIdx%x-1)*blockDim%y+threadIdx%y
do k=ird(j), ird(j+1)-1
V new(i,j)=V new(i,j)+V(i,icd(k))*Ad(k)

enddo

(b) VAT
↓

Figure 1. Schematic CUDA Fortran code of A↑V and VAT
↓ . The data of V and Vr are stored in column-major

order and row-major one, respectively. Here, V s is the shared memory array. The non-zero elements of the
matrices A↑ and A↓ are stored in the CRS format, that is, the vectors A*, ic*, and ir* store the the values of
non-zero elements, the column indexes of the elements, and the indexes where each row starts.

Vnew
i, j = D̄i, jVi, j+

m

∑
k=1

A↑i,kVk, j+
n

∑
k=1

Vi,kA↓k, j (3)

where the subscript i, j of the matrix is represented as the (i, j)-th element and V and D̄
are constructed from the elements of the vector v and the diagonal elements of the matrix
D in consideration of the physical property of the Hubbard model, respectively[10].

2.2. Conventional multiplication strategy

When the data of the matrix V are stored in column-major order, we can execute the
multiplication (2) with contiguous memory access on CUDA Fortran by the following:

1. Vnew ← elementwise product of D̄ and V ,
2. Vr ←V (row-major ← column-major (transpose)),
3. Vnew ←Vnew+A↑Vr, (see Fig.1 (a))
4. Vnew ←Vnew+VAT

↓ . (see Fig.1 (b))

On the other hand, we can execute the multiplication (2) with cuSPARSE routines
as follows:

1. V1 ← elementwise product D̄ and V
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real(8), shared :: au s(ndim)
integer, shared :: icu s(ndim)

!
i =(blockIdx%x-1)*blockDim%x + threadIdx%y
i0=(blockIdx%x-1)*blockDim%x + 1
k =iru(i)-1
k0=k-iru(i0)
k1=iru(i+1)-iru(i)
do l=0,k1-1,blockDim%x
if (threadIdx%x+l.le.k1) then
au s(k0+l+threadIdx%x)=Au(k+l+threadIdx%x)
icu s(k0+l+threadIdx%x)=icu(k+l+threadIdx%x)

endif
enddo

!
call syncthreads()

Figure 2. Schematic CUDA Fortran code for storing the data of the matrix A↑ the shared memory. Since we
store the matrix using the CRS format, therefore, the target vectors are Au and icu, which store the values
of non-zero elements and the column indexes of the elements. In this code, the built-in variable blockDim%y
should be equal to blockDim%x. Moreover, we set the value blockDim%x so that the coalescing access can be
realized for not only this operation but also the matrix-vector multiplication A↑V .

2. V1 ←V1 +A↑V (using “cusparseDcsrmm”),
3. V2 ← A↓VT (using “cusparseDcsrmm2”),
4. Vnew ←V1 +(V2)

T (transpose and addition).

It was reported in [8] that the former algorithm (our algorithm) was faster than the
latter (cuSPARSE) on CUDA 4.0. However, the cuSPARSE routines have been tuned,
consequently, they are nowadays faster than our conventional method (see Table 1).

2.3. Tuning strategies by considering memory access

When the codes shown in Fig. 1 are executed on GPU, all threads in a block requires
the same data of the matrices A↑ and A↓. In the conventional strategy, since the data are
stored in the global memory, each thread has to access them individually. On the other
hand, GPU has the shared memory system which can be accessed by all threads even
faster than the global one. And, the target data can be stored in the shared memory just
by accessing the data stored in the global memory by any one thread, not all threads.
Therefore, it is expected that the performance improves by storing data of the matrices
on the shared memory. However, since the size of the shared memory on GPU is very
small, all data can not be stored. Then, when executing a thread block, we store only data
required for the calculation in the shared memory (see Fig. 2).

Moreover, we fuse a do-loop of the elementwise product of D̄ andV with that ofVAT
↓

to improve the cache performance. Table 1 shows the elapsed time for the multiplication
on GPU system in Japan Atomic Energy Agency (see Table 2). The result indicates that
the tuned code is about 1.3 times faster than cuSPARSE routines on a recent GPU system.
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Table 1. Elapsed time of Hamiltonian-vector multiplication on GPU system in Japan Atomic Energy Agency
(see Table 2). The target Hamiltonian is derived from 2-dimensional (4×4-site) Hubbard model with 7 up-spins
and 7 down-ones. In the tuned code, the elementwise product of D̄ and V is fused with the multiplication VAT

↓ ,
therefore the table indicates the sum of their elapsed times.

Elapsed time (msec)
Conventional cuSPARSE Tuned

Elementwise product of D̄ and V 5.66 5.66
13.44

VAT
↓ 28.85 9.06

A↑V 33.70 19.07 13.11
Transpose (and addition) 4.50 7.93 4.50

Total 72.71 41.72 31.05

Dimension of A↑(A↓): 11440
Number of non-zero elements of A↑(A↓): 144144
Dimension of Hamiltonian: 130873600

Table 2. Details of GPU system in Japan Atomic Energy Agency.

Processor Intel Xeon E5-2680 v4

GPU NVIDIA Tesla P100

Fortran Compiler pgfortran 17.1-0
CUDA Version 8.0
Compile option -O3 -Mcuda=6.0 -lcublas -lcusparse -llapack -lblas

3. Tuning strategies for other operations of LOBPCG method

In this section, we propose the tuning strategies for operations other than the matrix-
vector multiplication of the LOBPCG method shown in Fig. 3.

First, we focus on the two 3×3-dimensional symmetric matrices (SA and Sb in Fig.
3). In order to construct them, we have to calculate ten inner product operations using six
vectors2. These operations can be realized by executing cuBLAS routine cublasddot

ten times. However, since these operations are executed one after the other, we can not
reuse cached data which were used in other operations. Therefore, we fuse ten operations
and store the data in the shared memory to improve cache performance. The most im-
portant operation in an inner product on GPU is sum-reduction. When the shared mem-
ory system is used appropriately, the operation can be executed efficiently on GPU[11].
However, the shared memory is too small to store all data. Therefore, we decompose the
vectors so that we can store the decomposed data in the shared memory, and we calcu-
late partial sums of ten inner products using the decomposed vectors (see Fig. 4). After
that, we calculate the global sums of partial sums using the shared memory system. The
elapsed time using cuBLAS and our proposed code for the inner product operations on
NVIDIA Tesla P100 for the same problem in Table 1 are 33.29 msec and 25.53 msec,
respectively.

Moreover, Fig. 5 shows the operations to update the vectors x, p, X , P, and w in the
LOBPCG method. Each operation can be realized using a cuBLAS routine. On the other

2Twelve inner products are required to construct the two matrices. However, since two vectors w and p are
normalized, there is no need to calculate the two inner products (w,w) and (p, p).
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xxx0 := an initial guess, ppp0 := 0
xxx0 := xxx0/‖xxx0‖, X0 := Axxx0, P0 := 0, μ−1 := (xxx0,X0), www0 := X0 −μ−1xxx0
do k=0, ... until convergence
Wk := Awwwk
SA := {wwwk,xxxk, pppk}T {Wk,Xk,Pk}
SB := {wwwk,xxxk, pppk}T {wwwk,xxxk, pppk}
Solve the smallest eigenvalue μ and the corresponding vector vvv,
SAvvv= μSBvvv, vvv= (α,β ,γ)T .

μk := (μ +(xxxk,Xk))/2
xxxk+1 := αwwwk+βxxxk+ γ pppk, xxxk+1 := xxxk+1/‖xxxk+1‖, pppk+1 := αwwwk+ γ pppk, pppk+1 := pppk+1/‖pppk+1‖
Xk+1 := αWk+βXk+ γPk, Xk+1 := Xk+1/‖xxxk+1‖, Pk+1 := αWk+ γPk, Pk+1 := Pk+1/‖pppk+1‖
wwwk+1 := Xk+1 −μkxxxk+1, wwwk+1 := wwwk+1/‖wwwk+1‖

enddo

Figure 3. Algorithms of LOBPCG method for the matrix A. Here, X , P, and W mean the vectors multiplied
by the matrix A, that is, Ax, Ap, and Aw, respectively.

real(8), shared :: V s(128,3)
!!
i=2*(blockIdx%x-1)*blockDim%x+threadIdx%x
ith=threadIdx%x
ibl=blockIdx%x
!!
V s(ith,1)=x(i)*x(i)+x(i+128)*x(i+128)
V s(ith,2)=x(i)*w(i)+x(i+128)*w(i+128)
V s(ith,3)=w(i)*w(i)+w(i+128)*w(i+128)
call syncthreads()
!!
do k=1,3
do j=6,0,-1
n=2**j
if (ith.le.n) V s(ith,k)=V s(ith,k)+V s(ith+n,k)
call syncthreads()

enddo
enddo
v(ibl,1)=V s(1,1);v(ibl,2)=V s(1,2);v(ibl,3)=V s(1,3);

Figure 4. Schematic CUDA Fortran code for calculating partial sums ( v(∗,1), v(∗,2), and v(∗,3)) of three
inner products (x,x), (x,w), and (w,w) from two vectors x and w using the shared memory array V s. Here,
the code is executed using partitioned vectors whose length is 256, that is, the built-in variable blockDim%x is
set as 128. After this calculation, the global sum is calculated using the partial ones. In actual execution of the
LOBPCG method, we use the code extended with a similar strategy for calculating ten inner products using six
vectors.

hand, when we consider the data dependencies, we can replace all loops of the operations
with one loop as shown in Fig. 6. In addition, it is necessary to normalize vectors p, P,
w and W using pnorm(= ||p||) and wnorm(= ||w||) before the inner product operations
mentioned above, because the more the iteration converges, the smaller the norms of p
and w become3. The normalization can be executed using a routine cublasdscal, but
their loops can be also combined with the fused loop of the inner product operations

3It is also necessary to normalize the vectors x and X . However, the norm of the vector x is theoretically
1, therefore, these normalization are executed after calculating SA and SB. And we correct the corresponding
elements of SA and SB in accordance with these normalization.
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p← γ p (cublasdscal); P← γP (cublasdscal)
p← p+αw (cublasdaxpy);P← P+αW (cublasdaxpy)
x← βx (cublasdscal); X ← βX (cublasdscal)
x← x+ p (cublasdaxpy); X ← X+P (cublasdaxpy)
w← X (cublasdcopy); w← w−λx (cublasdaxpy)
pnorm←||p|| (cublasdnrm2); wnorm←||w|| (cublasdnrm2)

Figure 5. Operations to update vectors and calculate norm of vectors in LOBPCG method. All loops of the
operations, which can be realized using cuBLAS routines, can be fused into one loop by considering data
dependencies.

real(8), shared :: V s(128,2)
!!
i=2*(blockIdx%x-1)*blockDim%x+threadIdx%x
ith=threadIdx%x
ibl=blockIdx%x
!!
p(i)=γ*p(i)+α*w(i); p(i+128)=γ*p(i+128)+α*w(i+128);
P(i)=γ*P(i)+α*W(i); P(i+128)=γ*P(i+128)+α*W(i+128);
x(i)=β*x(i)+p(i); x(i+128)=β*x(i+128)+p(i+128);
X(i)=β*X(i)+P(i); X(i+128)=β*X(i+128)+P(i+128);
w(i)=X(i)-λx(i); w(i+128)=X(i+128)-λx(i+128);
V s(ith,1)=p(i)*p(i)+p(i+128)*p(i+128)
V s(ith,2)=w(i)*w(i)+w(i+128)*w(i+128)
call syncthreads()
!!
do k=1,2
do j=6,0,-1
n=2**j
if (ith.le.n) V s(ith,k)=V s(ith,k)+V s(ith+n,k)
call syncthreads()

enddo
enddo
v(ibl,1)=V s(1,1);v(ibl,2)=V s(1,2);

Figure 6. Schematic CUDA Fortran code for fusing all operations shown in Fig. 5. We calculate the partial
sums ( v(∗,∗) and v(∗,2)) of two inner products (p, p), and (w,w) using the shared memory array V s. Here,
we set the built-in variable blockDim%x as 128. After this calculation, we calculate the two global sums using
the partial ones, and then, the square root of them.

mentioned above. It is expected that these loop fusion operations improve the cache
performance and realize speedup.

4. Numerical test

In this section, we examine the performance of the LOBPCG method for the Hubbard
model. We solve the ground state (the minimal eigenvalue and the corresponding eigen-
vector) of the eigenvalue problem derived from a 2-dimensional (4×4-site) model with 7
up-spins and 7 down-ones using the LOBPCG method on the GPU system, whose details
are shown in Table 2. Table 3 shows the number of the iterations, the elapsed time, and
the performance. The result indicates that the conventional method is slower than that us-
ing cuSPARSE routines. Moreover, it is confirmed that the performance improves by par-
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Table 3. Elapsed time and performance for exact diagonalization on NVIDIA Tesla P100. The target Hamil-
tonian is the same as Table 1. Here, the Hamiltonian-vector multiplication is executed using the conventional
code, cuSPARSE, and the tuned one. Moreover, other operations are execute using cuBLAS and the tuned
code.

Multiplication Conventional cuSPARSE Tuned Tuned

Others cuBLAS cuBLAS cuBLAS Tuned

Number of iterations 164 164 164 164

Elapsed time (sec) 30.24 24.90 23.12 16.57

Performance (GFLOPS) 69.0 83.8 90.3 125.9

tially storing the matrix elements on the shared memory and its performance is superior
to cuSPARSE’s one. And then, when other operations are also tuned, the code achieves
speedup of 1.5 times faster than the code using cuBLAS and cuSPARSE routines.

5. Conclusions

We have proposed the tuning strategy using the shared memory for Hamiltonian-vector
multiplication on the exact diagonalization method for the Hubbard model for the CUDA
GPU. Since the size of the shared memory is very small, we store only the matrix data
required by the executing block in the shared memory. The numerical result shows that
the matrix-vector multiplication using the strategy is about 1.3 times faster than that
using the cuSPARSE routines. Moreover, we also tuned other linear operations of the
LOBPCG method in order to reuse more cached data. Therefore, we fused some loops
into one loop by considering data dependencies. At a result, it is confirmed that the
LOBPCG method using the proposed tuning strategies is about 1.5 times faster than that
using cuBLAS and cuSPARSE routines.

In future work, in order to examine the physical property of a large Hubbard model,
we aim to realize the high performance exact diagonalization on multi-GPU systems. For
this aim, we plan to investigate the tuning strategies in consideration of the effects of the
data communication between GPUs and/or CPUs.
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Parallel Smoothers in Multigrid Method
for Heterogeneous CPU-GPU Environment
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Abstract. Modern-day supercomputers are equipped with sophisticated graphics
processing units (GPUs) along with high-performance CPUs. Adapting existing al-
gorithms specifically to GPU has resulted in under-utilization of CPU computing
power. In this respect, we parallelize Jacobi and successive-over relaxation (SOR),
which are used as smoother in multigrid method to maximize the combined uti-
lization of both CPUs and GPUs. We study the performance of multigrid method
in terms of total execution time by employing different hybrid parallel approaches,
viz. accelerating the smoothing operation using only GPU across all multigrid lev-
els, alternately switching between GPU and CPU based on the multigrid level and
our proposed novel approach of using combination of GPU and CPU across all
multigrid levels. Our experiments demonstrate a significant speedup using the hy-
brid parallel approaches, across different problem sizes and finite element types, as
compared to the MPI only approach. However, the scalability challenge persists for
the hybrid parallel multigrid smoothers.

Keywords. Parallel multigrid method, multi-GPU, multi-core, hybrid CPU-GPU

1. Introduction

Supercomputers today are equipped with multi-core CPU and multi-GPU to gain max-
imum performance. A single node of the top supercomputers supports up to 64 CPU
cores with multiple GPUs. To utilize such massive computing power, there has been a
significant effort to adapt existing algorithms onto the GPU architecture. In general, the
compute extensive tasks are off-loaded to GPU while the CPU acts as a mediator per-
forming data transfer, launching kernel call to the GPU or waiting idly in cases of block-
ing device API calls. Such practices have resulted in under-utilization of available CPU
cores. The pressing need to utilize the combined computing capability of both GPUs and
CPUs is even more relevant in case of small scale systems like personal computers that
can support up to two GPU cards and up to eight CPU cores.

One of the centrepiece tasks that demand acceleration in the scientific computing
community is solving a linear system of equations that generally arise from discretiza-
tion of partial differential equations (PDEs) using a numerical method such as finite el-
ement. The multigrid method is considered to be the most efficient solver for such large
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Table 1. Time taken by different operations at each level of multigrid V-cycle

Level N
Pre-Smoothing

Time (msec)

Post-Smoothing

Time (msec)

Restriction

(msec)

Prolongation

(msec)

6 2,146,689 980.0 980.0 768.0 725.0

5 274,625 119.0 118.0 97.0 92.0

4 35,937 14.0 14.0 12.0 11.0

3 4,913 1.6 1.6 1.3 1.1

2 729 0.1 0.1 0.1 0.1

1 125 0.04

sparse system of equations, with O(N) computational complexity where N is the num-
ber of unknowns. Among the key operations of multigrid method, viz. smoothing, re-
striction and prolongation, smoothing is significantly time-consuming. Table 1 shows the
time taken by different operations in a six-level geometric multigrid V-cycle. There is
a notable difference in time taken by smoothing compared to other operations for fine
mesh. In this respect, our main contribution is to improve the performance of geometric
multigrid solver by developing hybrid parallel smoothers that concurrently utilizes all
available computing resources in heterogeneous distributed systems. The hybrid parallel
smoothers are implemented in our in-house finite element package ParMooN [1].

The rest of the paper is organized as follows: Section 2 discusses relevant work
to accelerate the multigrid method. Section 3 gives a brief introduction to the geomet-
ric multigrid solver, the framework of ParMooN package and the model equation used
for experiments. Section 4 describes the three different hybrid parallel approaches for
smoothers. The experimental results and analysis are presented in Section 5 and Section
6 concludes the paper with key takeaways and future work.

2. Related Work

The problem of concurrent utilization of different computing resources has been previ-
ously studied in the literature. In [2], a parallel Jacobi iterative algorithm has been devel-
oped to exploit the computing capability of CPU along with the accelerators Xeon-Phi
and GPU on a single node. In the case of multigrid method, existing approaches have
adapted the key operations of smoothing and grid transfer to GPU architecture. The per-
formance effect of combining the MPI only implementation of smoothers and grid trans-
fer operators with either OpenMP or accelerators has been investigated in [3]. Another
approach of mapping the fine level operations of geometric multigrid V-cycle to GPU
and coarse level operations to CPU has been studied in [4]. The challenges of integrat-
ing existing MPI-based finite element package FEAST with GPU accelerated multigrid
solvers has been presented in [5].

3. Background and Model Problem

3.1. Geometric Multigrid Method

Geometric multigrid (GMG) method is the most efficient iterative technique for solving a
system of equations derived from a structured mesh. It operates on a hierarchy of meshes
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ranging from coarse to fine level l, where l = 0, ...,L. The fine mesh is obtained by
successively refining the coarse mesh L times uniformly. A typical multigrid γ-cycle is
shown in Algorithm 1. For γ = 1 and γ = 2, the cycle becomes a V-cycle and W-cycle
respectively. Classical iterative methods such as Jacobi or Successive-over relaxation
(SOR) is used as a smoother due to their property of quick dampening of oscillatory
modes. Multigrid method further leverages this property by recursively projecting the
residual onto a coarser mesh where the smooth modes appear oscillatory. Few iterations
of Jacobi or SOR work effectively on the coarse mesh and the computed correction is
projected back to the fine mesh and used to update the original solution.

Algorithm 1 Multigrid γ-Cycle
1: Procedure MG-CYCLE(l)
2: if l == 0 then

3: Solve Alul = fl exactly {coarsest level}
4: else

5: Apply pre-smoothing α times on Alul = fl with an initial guess for ul
6: Restrict the residual to the next coarse level fl−1 = Rl−1

l ( fl−Alul), where R is the
restriction operator from l to (l−1) level

7: Set ul−1 = 0
8: for j = 0 to γl do

9: MG-CYCLE(l−1)
10: end for

11: Prolongate ul−1 to next fine level as ũl = ul+Pl
l−1ul−1, where P is the prolongation

operator from (l−1) to l level
12: Apply post-smoothing α times on Alul = fl with an initial guess as ũl
13: end if

3.2. Parallel Framework of ParMooN

In the parallel framework of ParMooN package [1], the input mesh is partitioned using
METIS [6] software and the collection of cells is distributed across the MPI processes.
Each process is allocated a sub-domain of cells on which it performs computations. Dis-
cretization of the domain leads to defining the degrees of freedom (DOFs) that consti-
tute the unknowns. For a 3D mesh geometry, DOFs may be defined on vertices, edges,
faces and in the interior of the cell based on the type of finite element used. Further,
there are three types of finite element, viz. conforming, nonconforming and discontin-
uous type and we have considered conforming Q1, Q2 and nonconforming Qnc

1 type of
finite elements as shown in Figure 1.

NDOF = 8 NDOF = 27 NDOF = 6

Figure 1. Conforming Q1, Q2 and nonconforming Qnc
1 finite element

N. Iyer and S. Ganesan / Parallel Smoothers in Multigrid Method116



Each MPI process classifies the DOFs into different types to facilitate communication of
the solution with the neighbouring processes. The marking of DOFs in an individual pro-
cess for a 2D domain is shown in Figure 2. The DOFs defined on the sub-domain bound-
aries are called Interface DOFs. These DOFs are shared by neighbouring MPI processes
and the process that computes the solution at these DOFs mark the DOFs as Master DOF.
All other processes sharing this DOF, mark it as Slave DOF. The DOFs that belong to
the same process and are connected to Interface DOFs are called as Dependent DOFs.
The Dependent DOF connected to a Slave DOF is called as Dependent1 DOF, otherwise
it is called as Dependent2 DOF. The DOFs that belong to neighbouring processes but are
connected to Interface DOFs are tagged as Halo DOFs. Further, Halo DOF connected
to Master DOF is marked as Halo1, otherwise it is marked Halo2 DOF. The remaining
DOFs owned by the process are defined as Independent DOFs.

D2D2D2D1

D1

D1

D1

I

I

I

I

II

I

I

I

H1H1H1H1H1H2

H2

H2

H2

H2

H2

MMMMM

S

S

S

SP0

P1P2

P3

Master

Dependent1

Dependent2

Independent

Slave

Halo

Figure 2. DOF Nomenclature using Q1 finite element in a 2D domain for P0 process

The Master DOF in one process corresponds to Slave DOF in neighbouring processes.
Similarly, Dependent1 and Dependent2 DOF correspond to Halo1 and Halo2 DOF.
Hence, during each smoothing iteration, it is sufficient for each process to communicate
the Master and Dependent1 DOFs with the neighbouring processes while the Depen-
dent2 DOFs are communicated for every restriction and prolongation operations. The
smoothing operation at each multigrid level including the coarsest level is performed us-
ing either Jacobi and SOR. The restriction and prolongation operators in ParMooN are
as per [7] that proposed a general grid transfer operator between arbitrary finite element
spaces.

3.3. Model Problem

We consider the steady-state Poisson equation with Dirichlet boundary condition on do-
main Ω ⊆ R

3 given by,

−Δu= f in Ω

u= 0 on ∂Ω.
(1)

Here, u is the unknown scalar quantity and the source term f is chosen in such a way that
the analytical solution u= sin(πx)sin(πy)sin(πz) satisfies equation (1). The equation is
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Figure 3. Cuboid domain partitioned among four MPI processes

solved in parallel by multiple MPI processes in ParMooN. The input domain is consid-
ered as a cuboid, shown in Figure 3 and is meshed using hexahedral cells. Equation (1) is
discretized using standard Galerkin finite element method and subsequently the system
of linear equations is solved up to a fixed precision using geometric multigrid V-cycles.

4. Implementation of Hybrid Parallel Smoother in Multigrid Method

4.1. DOF colouring

In SOR, each MPI process computes and communicates the DOFs in a pre-defined order
based on the DOF type as shown in Algorithm 2. To perform the SOR iteration on GPU,
the independent sets of DOFs that can be updated simultaneously must be identified. The
colouring algorithm assigns a colour to each DOF such that no two connected DOFs of
the same type have the same colour. A maximum of O(dm) colours will be used, where
dm is the maximum number of neighbours of the same type of DOF. The maximum
neighbours of a DOF depend on the mesh structure and on the type of finite elements.

Algorithm 2 SOR Iteration at each MPI process
for j = 0 to nsmooth do

Compute Master DOF
Communicate Master DOF
Compute Dependent1 DOF
Communicate Dependent1 DOF
Compute Dependent2 DOF
Compute Independent DOF

end for

Once the DOFs of all types are coloured, a CUDA kernel is launched to compute the
DOFs that are assigned the same colour. Kernels are launched sequentially for each type
of DOF as shown in Algorithm 2. DOF colouring step is not required in case of Jacobi
iterations as the updated DOFs are computed using old DOF values. Hence, all DOFs
can be updated in parallel.
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4.2. Sparse Matrix-Vector Multiplication on GPU

The smoothing iterations in both Jacobi and SOR, involve repeated sparse matrix-vector
multiplication (SpMV). The global stiffness matrix in ParMooN is stored in compressed
sparse row (CSR) format. The CUDA kernels, CSR Scalar and CSR Vector proposed in
[8] for performing SpMV in CSR format on GPU, are modified to perform the smoothing
iterations. The CSR Scalar approach assigns a single CUDA thread whereas CSR Vector
approach assigns a warp (32 threads) to perform a matrix row and vector multiplication.
The performance benefits of both approaches are studied in our experiments.

4.3. Hybrid Parallel Approaches

We have designed three major approaches that decides whether the smoothing iteration
is to be performed on GPU or CPU. The approaches are described as follows.

4.3.1. GPU only

In this approach, the smoothing iterations are performed on GPU for all types of DOFs
and across all levels of multigrid. The iteration proceeds in the same manner as in Al-
gorithm 2. For each type of DOF, a CUDA kernel is launched for each colour in case of
SOR otherwise a single CUDA kernel is launched in case of Jacobi.

4.3.2. CPU-GPU non-overlapping

In this approach, the smoothing iterations are performed on GPU or CPU based on the
level of the multigrid. A threshold multigrid level is empirically chosen such that the
iterations on and above the chosen multigrid level are performed on GPU whereas the
iterations below the threshold level are performed on CPU for all types of DOFs. As the
system size is large on fine levels of multigrid, the ratio of number of DOFs to the total
number of colours is high, thus allowing us to exploit fine-grained parallelism on GPU.
At coarse levels of multigrid, the small system size makes CPU more suitable solver as
it is better optimized for memory access.

4.3.3. CPU-GPU overlapping

In the case of SOR, each iteration is divided between CPU and GPU based on the type
of DOF. The Independent DOFs constitute the major chunk of the total DOFs. Also, the
Independent and Dependent2 DOFs need not be communicated during an iteration and
hence these two types of DOFs are offloaded to GPU. The host process concurrently
computes Master and Dependent1 DOFs and handles communication with other pro-
cesses. The computation of boundary Independent DOFs require the updated Dependent1
DOF values and hence it is transferred from CPU to GPU and merged with GPU solu-
tion. Similarly, the Master DOFs are transferred to GPU and merged with GPU solution.
The Independent and Dependent2 DOFs are transferred to CPU and merged with CPU
solution at the end of the iteration. All merging operations are performed on the GPU and
transferred back to CPU whenever required. Figure 4 shows a schematic representation
of the various concurrent operations on CPU and GPU for a single SOR iteration.

In the case of Jacobi, the total DOFs are partitioned between GPU and CPU using an
empirically chosen ratio of 4:1. At the end of each iteration, the GPU solution is merged
with CPU solution.
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The kernel calls to compute Independent DOFs are performed based on the ratio of the
number of Independent DOFs to colours. If the ratio is greater than the empirically cho-
sen value then a single kernel is launched per colour else the kernel calls for different
colours are merged, thus trading off synchronous update to avoid kernel launch overhead.

CPU GPU
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Figure 4. Schematic representation of CPU-GPU overlapping algorithm for a single SOR iteration

4.4. CUDA optimizations

Different aspects of CUDA programming optimizations incorporated are as follows:

1. Minimum data transfer between CPU and GPU: The required data structures are
transferred only once before the start of the smoothing step. During smoothing,
only the solution array is transferred to merge the solution.

2. Maximum shared memory usage: The CUDA kernels use two separate shared
memory arrays, one to perform parallel warp-wide reduction while computing
the matrix row and vector dot product and the other to store the diagonal element
of each row which is needed to update the DOF during the iteration.

3. Maximum CUDA occupancy: The threads per block value is set to maximize the
occupancy value of each streaming multiprocessor (SM).

4. Implicit synchronization using warp-based operation: Since the CSR Vector ap-
proach uses warp-based approach to perform SpMV, no explicit synchronization
is required within the CUDA kernel call.

5. Use of Multi-Process Service (MPS): We use MPS that allows the kernel and data
transfer operations from multiple MPI processes to overlap on a single GPU.
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5. Experimental Results

Experiments are performed to compare the strong scaling performance of the different
hybrid parallel approaches with the existing MPI only approach of ParMooN for the
following three variants:

1. Types of smoother: Jacobi and SOR
2. Size of problem: Small (100 K), medium (1000 K) and large (10000 K)
3. Types of finite element: conforming Q1, Q2 and nonconforming Qnc

1

The variable multigrid parameters used for different experiments are listed in Table 2.
The experiments are executed on CRAY XC40 machine at SERC, Indian Institute of
Science, Bangalore [9]. A single node in the cluster has an Intel IvyBridge 2.4 GHz based
single CPU socket with 12 cores along with an NVIDIA Tesla K40 GPU card with 2880
cores and 12GB device memory. The small and medium size problem experiments are
performed using four nodes with up to eight CPU cores per node and large size problems
are performed using up to eight nodes with eight CPU cores per node.

Table 2. Multigrid Solver Parameters

Smoother FE type Levels N npre npost ncoarse ωsmoother

Jacobi
Q2 4 2000 K

5 5 10 0.67Qnc
1 5 6000 K

Q1 4 2000 K

SOR

Q2 4 2000 K

5 5 10 1.00
Qnc

1 5 6000 K

Q1

6 17000 K
5 2000 K
4 300 K

5.1. Scaling performance of hybrid parallel smoothers using different finite elements

Figure 5 shows the total time taken by the geometric multigrid solver using different hy-
brid parallel approaches for the smoother. We use CSR Vector approach for smoothing
iteration on GPU. The total time includes solving as well as communication time be-
tween neighbouring processes of the multigrid solver. At low scale, the hybrid parallel
approaches applied to smoothers have reduced the solving time significantly compared
to MPI only approach and that too, across different finite elements. The average reduc-
tion in solving time across different finite elements for two MPI processes is 39% and
77% using Jacobi and SOR, respectively. The hybrid parallel approaches however, are
not able to perform consistently at higher scales. The poor scaling performance of GPU
approaches may be attributed to the decrease in problem size per process causing reduced
parallelism and significant increase in data transfer and kernel launching overheads.

Among the three hybrid parallel approaches, the performance of GPU only and
CPU-GPU non-overlapping are quite comparable. The GPU only performs better at low
scale whereas the performance of CPU-GPU non-overlapping gets better at higher scales
because of the involvement of CPU at coarse levels of multigrid. CPU-GPU overlapping
approach performs slightly poorer at low scales since the CPU workload is higher and
hence takes more time to complete the computation as compared to GPU. However, the
performance matches with other approaches as the scale increases.
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Figure 5. Scaling performance of GMG solver using Jacobi and SOR smoothers for conforming Q1, Q2 and
nonconforming Qnc

1 finite elements for medium size problems (1000 K)

5.2. Performance of hybrid parallel smoothers across different problem sizes

The performance trend of the hybrid parallel approaches is tested across different prob-
lem sizes. Table 3 shows the speedup obtained across three different problem sizes of 300
K(small), 2000 K(medium) and 17000 K(large) with SOR smoother and Q1 finite ele-
ment. For small problem size, the performance slowly degrades with an increasing num-
ber of processes using hybrid parallel smoother. The speedup achieved using each of the
approaches increases on increasing the problem size. The speedup trend for GPU only
and CPU-GPU non-overlapping is almost comparable. The CPU-GPU non-overlapping
results in better speedup compared to GPU only, as the scale of processes increases.

Table 3. Speedup of hybrid parallel approaches to MPI only approach across different problem sizes

N GPU only
CPU-GPU

overlapping

CPU-GPU

non-overlapping

Number of processes Number of processes Number of processes
4 8 16 32 4 8 16 32 4 8 16 32

300 K 1.97 1.26 0.72 0.31 1.20 1.15 0.71 0.31 1.38 1.47 0.93 0.42
2000 K 3.73 3.09 2.25 1.31 3.17 2.62 1.80 1.16 3.61 2.99 2.32 1.32

17000 K 3.89 4.17 3.77 3.05 3.90 3.69 2.96 2.41 4.30 4.19 3.80 3.12

5.3. Performance gain using CSR Vector

The CSR Scalar and CSR Vector approaches are tested for conforming Q1, Q2 and
nonconforming Qnc

1 finite elements using SOR smoother. Figure 6 shows the speedup
achieved using CSR Vector compared to CSR Scalar using GPU only approach.

CSR Vector performs better across all the considered finite elements. The higher-
order finite element particularly Q2 type benefit more (∼ 3 times) using the CSR Vector
approach as there are more number of non-zeroes in each matrix row thus exploiting
fine-grained parallelism. This reduction in solving time can be leveraged to compensate
for higher communication time observed in general for higher-order finite elements.
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Figure 6. CSR Vector and CSR Scalar comparison for different finite elements

6. Conclusions

We have implemented and analyzed three different hybrid parallel approaches for multi-
grid smoother. The GPU only and CPU-GPU non-overlapping approaches give better
speedup in certain scales compared toMPI only, but fail to utilize all computing resources
simultaneously in a heterogeneous distributed system. The proposed novel CPU-GPU
overlapping approach overcomes this drawback and performs comparably to both GPU
only and CPU-GPU non-overlapping, provided the ratio of computing speed to workload
is balanced between CPU and GPU. Individually, the studied approaches shows poor
scalability. The GPU only gives good performance benefits at fine mesh having large
problem size. The CPU-GPU overlapping works well on the intermediate mesh where
there is better load balancing. On the coarse mesh, MPI only works best with small prob-
lem size. This leads us to explore the use of a combination of different approaches to
further optimize the performance of the multigrid method. In future, we have planned
to improve the scaling behaviour by deriving a heuristic to switch between the hybrid
parallel approaches based on the mesh size and the number of MPI processes.
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Abstract. System performance variability is a significant challenge to scalability of
tightly-coupled iterative applications. Asynchronous variants perform better, but an
imbalance in progress can result in slower convergence or even failure to converge,
as old data is used for updates. In shared memory, this can be countered using pro-
gressive load balancing (PLB). We present a distributed memory extension to PLB
(DPLB) by running PLB on nodes and adding a balancing layer between nodes.
We demonstrate that this method is able to mitigate system performance variation
by reducing global progress imbalance 1.08x–4.05x and time to solution variabil-
ity 1.11x–2.89x. In addition, the method scales without significant overhead to 100
nodes.

Keywords. asynchronous algorithm, load balancing, performance variability,
iterative algorithm, system noise

1. Introduction

With the ever increasing scale of high performance computing systems, there comes
an array of new challenges. Technical, architectural and economic hurdles need to be
overcome in order to build and deploy an exascale machine. However, creating the right
hardware is only half the answer; software that can run on it efficiently is an essential
part.

Any algorithm or application aiming to run on millions of parallel threads, which
may be running at varying speeds, must be able to cope with performance variability.
In such a scenario, tightly synchronising algorithms are not a suitable choice. Instead,
we consider asynchronous or “chaotic” algorithms [1] which can make progress with
stale data if some other thread has stalled. This allows for greater flexibility in adjusting
to performance variability. Nevertheless this does not mean variability can be ignored
completely. It still affects time required to reach the solution, but in a more complex
manner than with synchronous algorithms. Therefore it is interesting to consider load
balancing in the context of asynchronous algorithms.
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Note that in this paper we are not considering task based parallelism, where asyn-
chrony refers to replacing global synchronisation with point-to-point synchronisation to
satisfy data dependencies.

A recent approach [2] called progressive load balancing (PLB) was introduced to
address the asynchronous context. The method was shown to be able to effectively mit-
igate the effect of a slow core in a shared memory environment. PLB achieves this by
periodically moving work between CPU cores, not in order to equalise iteration rates,
but to bound progress imbalance; it is balancing load over time, not instantaneously. In
the present paper we build upon PLB and extend it to the distributed memory setting.
Specifically, this paper makes the following contributions:

• A description of an implementation strategy extending PLB to distributed memory.
• An evaluation of the application of distributed PLB (DPLB) to balance the load in
an iterative asynchronous algorithm.

2. Background

As we move towards exascale computing, synchronisation in applications is an increas-
ingly important issue. Performance of individual cores, sockets and entire nodes that, on
paper are identical, is in fact variable. This is due to factors such as energy efficiency and
temperature management [3–5], random OS noise [6], and network latency variation [7].
Increasing the number of components that an application is run on also increases the like-
lihood that performance variation will be encountered; this is an increasing issue when
considering exascale [8]. Synchronisation in applications within this hardware context
results in large loss of efficiency, even running at the rate of the slowest component.
While static load balancing can help, ultimately it is of limited use because the machine’s
performance can change at runtime.

Given the efficiency limitations of large scale synchronisation, it is natural to con-
sider algorithms that do not rely on strict synchronous execution. In asynchronous algo-
rithms, data synchronisation points are removed to allow the use of stale data if other
workers in the system have not made progress due to stalls. There exist various iterative
convergent algorithms where this is possible [1, 9–12]. Performance in asynchronous al-
gorithms is generally dictated by a tradeoff between iteration rate and convergence rate.
The former is usually improved by going asynchronous, but the latter may suffer because
of the use of stale values, at the extreme resulting in failure to converge [13]. It fol-
lows that system performance variability is still a concern because it results in “progress
variability”.

The issue of progress variability in asynchronous algorithms has previously been
tackled using a load balancing approach called progressive load balancing [2]. It is
framed as a load balancing method specific to asynchronous algorithms since they do not
require balance to be instantaneous. Instead, balancing is done over time by effectively
swapping iteration rates of different problem subdomains. In other words, balance is in
a state of dynamic (not static) equilibrium; update rates of problem subdomains keep
changing but the difference in number of updates between subdomains is bounded. This
leads to a dynamically controlled level of asynchrony in the system, which was shown to
be effective at dealing with performance variation in shared memory.
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In more detail, the global problem domain (e.g. a 2D grid for solving Jacobi’s algo-
rithm in 2 dimensions) can be split into more subdomains than there are threads. Then
each thread will have multiple subdomains to continually update. The update rate per
subdomain is inversely proportional to the number of subdomains that a thread owns.
Thus the update rate of a particular subdomain can be increased or decreased by remov-
ing from or adding to the owning thread’s workload respectively. PLB uses this mech-
anism to periodically move subdomain ownership between threads in order to limit up-
date staleness without wasting CPU time spent on waiting for stragglers. In the resulting
pattern some subdomains get updated quicker for a time, using stale values, but later the
update rates are changed so that the subdomain that had raced ahead begins to iterate
slower and eventually falls behind at which point the process is reversed again. In this
paper we will later see how the scheme can be extended to distributed memory with a
separate layer to move subdomains between nodes and the PLB mechanism to integrate
the subdomains within nodes.

2.1. Related Work

The area of load balancing is an active field of research, however the majority of tech-
niques are developed for, and applied to, synchronous algorithms and so may not tran-
sition well to asynchronous algorithms or require significant changes to the techniques.
For example, work stealing is a popular and scalable method [14]. Workers process local
queues of tasks and when they run out, more work is stolen from work queues of other
workers. In this form it cannot be applied to asynchronous algorithms because work-
ers in principle never run out of work and always appear busy, so they would just use
continuously more stale values. Work stealing can be applied to semi-synchronous algo-
rithms, where a maximum staleness bound is enforced so the amount of work available
per worker does have a limit. However, our experiments showed that the method does not
work well in the semi-synchronous case because the system soon reaches a state where
there are many starved workers and not much work to steal. Hence we are focusing on
techniques that have been shown to be applicable to asynchronous algorithms, which is
a key criterion for us.

A few examples of load balancing of asynchronous algorithms in distributed mem-
ory exist. For instance, Bahi et al. show a load balancing algorithm applied to a 1D sten-
cil application [15]. This algorithm sends parts of the working array from one worker to
a less loaded neighbour. The algorithm is similar to PLB, however it seeks a static load
balance while PLB aims to create dynamic equilibrium, which can result in good balance
with coarser work adjustments. Additionally, the proposed algorithm is presented in 1
dimension only; an extension to multiple dimensions would be difficult to design and
implement.

A more passive balancing approach has been applied to large scale deep learn-
ing [10]. The application uses asynchronous stochastic gradient descent as the core al-
gorithm. Groups of synchronous workers are linked together asynchronously to update
parameter servers for the model under training. This hybrid asynchronous-synchronous
scheme balances statistical and hardware efficiency by tweaking the sizes and the number
of synchronous groups, but cannot deal with performance variation changes at runtime.

Another strategy is to ignore performance variance itself and rather deal with the
resulting staleness. There are various examples of such algorithmic corrections for stale
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values applied to asynchronous stochastic gradient descent [16,17]. A limitation of these
approaches is a lack of generalisation to other applications.

Our test problem in this work is asynchronous Jacobi’s algorithm (see Sec. 4). This
problem has been previously examined by Bethune et al. at large scale [18]. They ob-
served large variations in numbers of iterations completed by different processes. This
resulted in a significant increase in the number of iterations taken to converge. They also
document a case where a single core running at half speed doubled the runtime of a 32k
core synchronous run.

3. Extending PLB to Distributed Memory

While PLB was shown to be successful in a shared memory setting, for it to be truly
valuable it needs to be able to scale further. In this paper we extend the method and
evaluate its effectiveness in a distributed memory setting.

3.1. DPLB

To extend PLB we add a layer that moves work between nodes. This method is referred
to as distributed progressive load balancing (DPLB). In DPLB we run PLB on each
node, and add infrequent work movements across nodes. This extension is important
for situations where whole nodes are affected by noise and are significantly slower than
others.

The main steps in the algorithm are as follows:

1. Periodically, with a set frequency, nodes find out the average number of updates
performed on other nodes.

2. The difference between the highest and lowest averages are compared to a set
threshold.

3. If the difference is larger than the threshold, the least progressed node sends a
randomly chosen problem subdomain to the node that has advanced the most.

4. The node that has received the subdomain assigns it one of its cores initially, but,
since PLB is running on every node, the subdomain gets moved between cores as
is required to balance progress on the node.

The implementation details of these steps will vary based on the problem that is
being solved and the programming techniques and libraries used, but we will next explain
some of the most important implementation considerations for our example case.

3.2. Implementation

In our implementation we target iterative convergent algorithms that can be parallelised
by splitting the global problem domain into smaller subdomains. We also assume that
data is being exchanged between the subdomains using “halos”. Stencil applications
match this pattern closely, however the balancing principles presented here are not lim-
ited to this class of applications.

Distributed communications are implemented mainly using MPI single sided calls.
This communication paradigm is well suited to asynchronous algorithms, since it min-
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Table 1. “Cirrus” test system details (www.cirrus.ac.uk)

System type SGI ICE XA Topology Hypercube, 282 nodes
CPU Sockets 2 L3 cache 45 MB
CPU Intel E5-2695 RAM per CPU 128 GB
Core count per CPU 18 Compiler GCC 6.2
Clock 2.1 GHz MPI library Intel 17.0
Interconnect FDR Infiniband Main compilation flags -O2

imises the need for global synchronisation. Also, the application can be more dynamic
because there is no need to match specific sends and receives. Some two sided commu-
nication still exists, but only where the matching does not interfere with asynchrony. On
node we use OpenMP threading.

Information gathering about work progress of nodes is done using a reduction imple-
mented using RMA operations. Every node publishes a small data structure containing
the average progress of its problem subdomains. Other nodes can query these structures
with a get operation when global balance is being checked.

An important part of the implementation is moving subdomains between nodes dy-
namically and adjusting communication targets. To ensure scalability, it is important to
avoid introducing a global bottleneck here, for example by using a centralised table of
subdomain physical locations. Instead, in our implementation subdomains keep track of
just their neighbours’ locations. When a subdomain moves, it leaves behind a message
with its new host rank (i.e. MPI rank). When its neighbours perform halo exchange, as
part of the halo they also receive the message that the subdomain has moved and which
is the new rank that should be queried for the desired halos.

The main component facilitating this interaction is metadata appended to halos,
specifically an ID and owner rank. Upon retrieval of a halo, the metadata is checked to
make sure it is as expected (initial locations of subdomains are known). If the metadata
rank is not the same as the rank the halo was received from, the halo and associated sub-
domain have moved (the rank that does the moving changes the halo metadata to reflect
the rank to which it has migrated). Once the new rank is known, an array of halo dis-
placements is retrieved from the target rank. The array is searched to find the physical
memory location of the target halo. The halo can now be retrieved and the ID checked
to make sure they are correct. Only the communicating neighbours were involved in this
transaction, which makes it scalable.

4. Experiments

As our test application we use Jacobi’s algorithm applied to the diffusion problem in 2
dimensions. This is an iterative convergent stencil application which is often used when
testing asynchronous algorithms due to its simplicity and numerical stability [1]. We use
a Gaussian shaped function as the boundary condition along one edge, the others being
set to zero. The problem domain is distributed across nodes in 1 dimension, along the x
axis.

We used the HPC system Cirrus for our experiments. Hardware and compiler details
are listed in Table 1.
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While there is inherent noise and imbalance in the system, for some experiments we
inject artificial noise to simulate particular scenarios in order to have repeatable exper-
iments. Noise is generated by running an additional background thread that sleeps and
busy-waits for set amounts of time. Additionally, the workers’ niceness is set to a high
value so that they have lower priority, thus yielding to the noise generating threads when
active.

We chose a noise level of 40% per CPU socket (i.e. the CPU effectively runs at 60%
of its normal clock frequency). This value is the mean of worst case clock frequency
variations due to manufacturing variability observed in [4] when limiting node power - a
factor to consider in future exascale systems with global power constraints. Also, Chun-
duri et al. report application runtime variability between 1.18x and 1.74x (38% on aver-
age) related to network congestion on a production system [19]. For experiments where
we slow down a whole node, we chose the same level to make comparisons between
experiments more direct. This can happen if both sockets are slow, the node is hot from
a previous job or if there is significant network congestion.

Each experiment was repeated multiple times on different sets of nodes. Where pos-
sible, a series of experiments with differing settings (e.g. normal, normal plus balancer,
normal plus balancer plus noise etc.) were repeated on the same node set so that differ-
ences between the experiments would be mainly due to algorithmic differences, instead
of node conditions.

In time to solution (TTS) experiments the application runs until the global l2-norm
of the residual, normalised by its initial value, reaches a threshold. We set this threshold
at 10−3. Generally the threshold is smaller in real applications, however here we wanted
to limit the total execution time and focus on performance metrics rather than the final
solution.

We use a problem size of 1000 by 1000 values per core. Thus, in the 15 node exper-
iments the global problem size is 6k by 90k and in the 100 node experiments it is 6k by
600k.

5. Evaluations

In this section we present an experimental evaluation of DPLB acting on semi-
synchronous and asynchronous Jacobi. Figures 1 to 3 show time to solution results com-
paring performance before and after applying DPLB (each bar represents 9 to 20 data
points). Less time and smaller variance is better. These figures include tables of iteration
rates (in units of 1000 iterations per second per node) and staleness (most stale halo en-
countered). The specific settings of PLB parameters were chosen to be the same as in [2]
because these were found to give good performance (nPairs = 6, lowThresh = 2,
highThresh = 6). DPLB performs balancing across nodes every 0.5 seconds with
PLB balancing each CPU socket separately every 0.001 seconds. The semi-synchronous
staleness bound is set to 30 and in both the semi-synchronous and the asynchronous
experiments each core initially holds 4 problem subdomains.

To test the method we run Jacobi on 15 nodes while growing the number of nodes
with a slow CPU socket. In order to survey the range of possible noise scenarios, a portion
of the experiments has noise placed randomly and at fixed locations. For the latter we
picked “worst case” and “best case” noise placement, based on the problem that is being
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Figure 1. Effect of DPLB on semi-synchronous Jacobi running on 15 nodes. Color indicates the number of
CPU sockets running 40% slower. The table shows median values.
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Figure 2. Effect of DPLB on asynchronous Jacobi running on 15 nodes. Color indicates the number of CPU
sockets running 40% slower. The table shows median values.

solved. The initial conditions put a Gaussian shaped source in the middle of the problem
domain, so updates in the middle contribute more towards reducing the residual than the
edges. Thus we add noise to components that are initially responsible for the middle of
the problem domain to get worst case performance and add noise to edges to get best
case performance.

Figure 1 shows results for the semi-synchronous version. Without balancing, the
time to solution gradually increases; we also observed instances of 200%–260% slow-
down when 6, 7 or 8 sockets were noisy. DPLB mitigates the noise noticeably for all
noise counts, and avoids the large outliers at higher noisy socket counts. Since progress
imbalance is capped, the performance difference comes from DPLB sustaining a higher
iteration rate. The balanced version’s median TTS is reduced by 3–10%, except for the
noiseless case where the unbalanced version is 5% faster on average. We note that the
current implementation allows the staleness bound to be overstepped slightly due to sub-
domain updates occurring while some subdomains are being transferred between nodes.

Results for the asynchronous version can be seen in Figure 2. In the table it can be
seen that iteration rate is not affected adversely by DPLB and halo staleness is reduced
1.08x–1.61x. As a result, the balanced asynchronous version converges quicker for every
noise setting, with a median reduction of up to 6%. TTS of the balanced version is larger
than that of the noiseless case, but this is to be expected even with perfect balancing since
slow components take away the total amount of available compute power in the system.
Furthermore, the worst case TTS grows at a higher rate without DPLB, which implies
reduced scalability. With DPLB the worst case TTS remains mostly flat until noise is
added to 5 or more sockets.

Because the asynchronous version shows better performance than the semi-
synchronous version overall, we test it further by slowing down whole nodes, not just
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Figure 3. Effect of DPLB on asynchronous Jacobi running on 15 nodes. Color indicates the number of nodes
running 40% slower. The table shows median values.

individual CPU sockets. This can occur if a job is assigned a hot node or if there is a
lot of network communication from other jobs going through the node’s links. These
results can be seen in Figure 3. The overall patterns are similar to the previous case, but
more pronounced. Balancing reduces median TTS by up to 6% again, but the reduction
in worst case TTS and staleness is significantly higher at 1.24x–4.05x.

An important feature to emphasise is the excellent reduction in performance vari-
ability due to DPLB. Table 2 shows, for each noisy component count, the ratio of the
unbalanced version’s spread of TTS (distance between the boxplots’ whiskers) against
that of the balanced version. The last column of the table shows this ratio applied to the
spread of TTS across all counts of noisy components, i.e. between the highest top whisker
and lowest bottom whisker in each category. The change for the semi-synchronous code
varies between 0.06x (the balanced version is more variable) and 4.00x (the balanced
version is less variable). However, for the asynchronous code, balancing always reduces
variance, ranging from 1.14x and 11.07x. If the number of noisy components is not set at
any particular value, the balanced versions range from 1.11x to 2.89x less variant. This
increased consistency in runtime is crucial for time sensitive applications, e.g. predicting
the path of a hurricane using weather simulation. It is also important in cases such as
application scheduling on shared compute resources, benchmarking and keeping within
budget of HPC resources.

As a final test, we ran our code on 100 nodes (3600 cores) with highly variable noise
settings from run to run in order to simulate a real life scenario. For each individual
run we selected a random set of nodes to be noisy; the size of the set was also chosen
randomly between 0 and 15. The level of slowdown on each node in the set was chosen
randomly between 15% and 40%. We obtained 42 data points with the asynchronous
Jacobi code and another 42 with asynchronous Jacobi plus DPLB. The results can be seen
in Table 3. Both versions performed very similarly. The test problem, when increased in
size, proved to be highly resilient to random noise so adding load balancing in this case
did not reduce time further. However, other inputs can be more sensitive to noise and
this experiment shows that DPLB has no significant overhead in this setting and it scales
perfectly well.

On the whole, the results of the asynchronous algorithm with DPLB show greatly re-
duced variance in TTS and variability in update progress of problem subdomains. In ad-
dition, the worst case noise scenario TTS is less when DPLB is added while the best case
noise scenario is slightly higher. These observations taken together indicate that smooth-
ing noise is beneficial in the majority of the time. While reducing progress imbalance
occurring in a less critical part of the problem domain results in a small increase in TTS,
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Table 2. Runtime variability ratios

# slow ssync, socket async, socket async, node

0 0.06 1.14 8.12
1 1.21 1.86 1.47
2 4.00 2.42 3.50
3 2.19 3.55 3.88
4 1.81 4.24 6.26
5 1.03 3.39 7.65
6 0.83 4.37 5.06
7 0.89 1.51 5.71
8 1.71 3.41 11.07

extremes 1.11 1.51 2.89

Table 3. Runtime comparison on 100 nodes

(seconds) mean min max std. dev.

async 118.1 118.2 120.9 1.3
async + DPLB 118.1 115.2 120.7 1.4

not reducing imbalance in a more critical part results in a much larger increase in TTS.
On average, the risk of excessive runtime and progress imbalance of an asynchronous
algorithm can be noticeably reduced with DPLB.

6. Conclusions

We have presented a method (DPLB) for applying progressive load balancing to an asyn-
chronous algorithm in a distributed memory setting by adding periodic movement of
work between nodes and running PLB on the nodes. Evaluation of DPLB showed that it
is able to mitigate system performance variation by a reduction of 1.08x–4.05x in global
progress imbalance and by 1.11x–2.89x in time to solution variability. We did not ob-
serve any significant overheads even when running on 100 nodes. In future work we
plan to apply DPLB to other asynchronous iterative algorithms where there is scope for
splitting the problem domain and moving it between computing units, for example the
Schwarz method or stochastic gradient descent (SGD). This technique improves the re-
silience of asynchronous algorithms to noise and hence increase their value as compo-
nents for meeting the exascale challenge.
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Learning-Based Load Balancing
for Massively Parallel Simulations

of Hot Fusion Plasmas
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Abstract The sparse grid combination technique can be used to mitigate the curse
of dimensionality and to gain insight into the physics of hot fusion plasmas with the
gyrokinetic code GENE. With the sparse grid combination technique, massively par-
allel simulations can be performed on target resolutions that would be prohibitively
large for standard full grid simulations. This can be achieved by numerically decou-
pling the target simulation into several smaller ones. Their time dependent evolu-
tion requires load balancing to obtain near optimal scaling beyond the scaling capa-
bilities of GENE itself. This approach requires that good estimates for the runtimes
exist.

This paper revisits this topic for large-scale nonlinear global simulations and in-
vestigates common machine learning techniques, such as support vector regression
and neural networks. It is shown that, provided enough data can be collected, load
modeling by data-driven techniques can outperform expert knowledge-based fits –
the current state-of-the-art approach.

Keywords. load balancing, gyrokinetics, exascale, machine learning, sparse grid
combination technique, machine learning

1. Introduction

The research on hot fusion plasmas remains a pressing topic, and understanding the rel-
evant processes through simulation is necessary to optimize large experimental reactors
such as ITER. While such devices in fusion research are being built, simulation results
should always be one step ahead to assist in understanding and planning experiments [1].
This does not simply happen due to Moore’s Law (and successors), because the gyroki-
netic formulation of the Vlasov-Maxwell equations is at least five-dimensional, and nu-
merical discretizations in higher dimensions suffer the so-called “curse of dimension-
ality”. We have proposed the sparse grid combination technique to mitigate the curse
of dimensionality and to gain insight into the physics of hot fusion plasmas [2] with
the gyrokinetic code GENE [1]. It replaces the computationally infeasible target solution
by a combination of many smaller solutions. Using our parallel combination technique
framework, one can compute the partial solutions in parallel process groups, where each
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process group is assigned multiple tasks, i.e., partial solutions, to solve [3]. At this point,
load balancing becomes crucial, since imbalanced task distributions will lead to unnec-
essary idle times for thousands of processors. Previous work investigated load balancing
for linear local initial-value computations with the combination technique [4]. For sim-
ulations that fully capture the global non-stationary behavior of the plasma, this is not
sufficient any more. We therefore revisit this topic, in order to facilitate computations at
scales that have not been attempted with the combination technique before.

Accordingly, this paper first gives a comprehensive introduction to the scientific
background, i.e., global nonlinear gyrokinetic simulations with GENE and decoupling via
our sparse grid combination technique framework. We discuss how load imbalances can
arise by mis-estimating simulation runtimes. As the main contribution of this paper, we
improve on the state of the art by introducing machine learning methods for load balanc-
ing. We follow Heene et al. [4] and try to find a good a-priori estimate of the runtime of
each task. Runtime data on varying tasks is collected depending on simulation parame-
ters and the degree of parallelization. We have compared different methods of predicting
the runtimes on previously unseen grids: nearest neighbor interpolation, support vector
regression and neural networks, as well as the state-of-the-art model based on expert
knowledge. The latter is still a reasonable approach for our purposes, but can be out-
performed by a neural-network based prediction. It follows that by collecting data early
on, we can save on efficiency losses and re-initialization overhead for large simulations,
while being able to extend our models as we collect more runtime data.

2. Scientific Background

2.1. Gyrokinetic Simulations with the GENE Code

The GENE code is a state-of-the-art solver for the Maxwell-Vlasov system of equations,
consisting of the Maxwell equations and the Vlasov equation

∂Fσ
∂ t

+
dX

dt
·∇Fσ +

dv‖
dt

∂Fσ
∂v‖

+
dμ
dt
∂Fσ
∂μ

= 0, (1)

which connects the plasma particle distribution function f to the electromagnetic
field [5]. While f is actually located in six-dimensional phase space, the gyrokinetic
transform reduces these to five, by integrating out the gyration direction of the plasma
particles. The remaining cartesian dimensions for GENE’s Eulerian approach are denoted
by x,y,z,v‖,μ . The time step integration is performed through an explicit fourth-order
Runge-Kutta scheme.

Even though the complexity of solving is drastically reduced by the gyrokinetic
transform, the computational work required for solving the integro-differential equations
still suffers the curse of dimensionality – simulations are unfeasible for high resolutions.

A simplified way of looking at the equations that GENE solves is splitting into a
linear and nonlinear part

∂ f
∂ t

= L ( f )+N ( f ). (2)
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While previous work looked at times measured for executing only the linear part of
the simulation – and for relatively low resolutions – this topic needs revisiting, now
that we are dealing with nonlinear, global large-scale simulations. The nonlinear part of
the model becomes dominant, and to capture the chaotic behavior it produces, higher
minimal resolutions are required. As the maximum resolution is further increased, more
features can be resolved [5].

At this point, we need to clearly distinguish two different effects that affect the run-
time of a GENE simulation: the time per time step is the time needed to process one
single explicit time step, which we assume to stay constant during the course of a given
simulation, and adaptive time-stepping needed to ensure stability, which will change
nonlinearly with the simulated fields [6].

This paper will focus on the time per time step needed for a given simulation grid.
This is a reasonable restriction for scenarios where we assume that a combination takes
place after all grids have progressed by one time step – more on this in the next section,
which focuses on the combination technique for sparse grids.

2.2. Massively Parallel Computation with the Sparse Grid Combination Technique

Our approach to break the curse of dimensionality is the use of the sparse grid combina-
tion technique [7]. The basic idea is that we can run the simulation on many relatively
coarse anisotropic grids in the index set I; the d-dimensional level vector ��= [�1, . . . , �d ]

defines each grid’s resolution as 2�i +1 in dimension i. I contains all�� in the convex hull
of the simplex spanned by the minimum level ��min and the corners of the cartesian hy-
percube between ��min and the maximum level ��max. The combination results in a sparse
grid representation f (c)

f (c) = ∑
��∈I

c�� f�� , c�� = ∑
�z≤�1

(−1)|�z|1 χI(��+�z). (3)

of the solution, defined on a finer (target) grid of resolution ��max. χI is the characteristic
function of I. For a thorough description of sparse grids and the combination technique
please refer to [8].

− − −+ + + =

Figure 1. Schematic of the standard sparse grid combination technique with ��min = [2,2] and ��max = [4,4]

Existing legacy solvers for cartesian grids can be used in a black-box fashion, and
they do not need to be refactored to implement the numerical operators on the sparse grid
itself. With respect to the GENE code, this means that one can start multiple instances of
GENE to compute the solution to the same physical problem on one of these grids respec-
tively [2]. We will call this combination of simulation parameters and grid resolution ��
a task. After the simulation has progressed by a defined time interval for each task, the
solution is recombined by the use of the combination technique, cf. Fig. 1, such that the
values match on all points which are shared between grids. Note that the simulation step
for one task is independent of other tasks, meaning that the tasks can be processed in an
embarrassingly parallel manner [3].
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Figure 2. Possible parallel computation scheme of the grids in Fig. 1

Since the GENE simulations considered here are far too large to fit on a single node
– usually requiring 20 to hundreds of GB in main memory – our C++ framework for the
sparse grid combination technique employs a manager-worker scheme, where a worker
consists of a whole process group using up to thousands of cores. The manager distributes
tasks to the process groups. Currently, the framework is restricted to process groups of
the same size only. Each process group will execute the assigned tasks one after the other,
each until the simulation time of the next combination step is reached. Then, the grids
of the tasks are updated with the results of the other tasks by way of the combination
technique. This usually means that some of the process groups will have to wait for the
longest-running one to finish, as illustrated by the gap in Fig. 2. If we assume the simplest
set-up where every task uses the same time step, the optimization reduces to finding the
best possible assignment of tasks to the process groups.

But what is a well-balanced assignment of tasks with respect to the process groups?
This is the core question of this paper, and the following sections will present an approach
to answer it.

3. Data-driven Load Modeling

Load balancing in HPC is often implemented by sophisticated domain decomposition
schemes [9], or by reserving resources to different parts of the algorithm, such as differ-
ent solvers [10]. We however are concerned with a particular set-up in which balance of
load is asserted at a larger scale by an approach that is offered by the sparse grid com-
bination technique. We estimate the runtime of single grids beforehand, and assign them
to process groups from “longest” to “shortest”, filling up idle times, cf. Fig. 2. At the
same time, the black box solver may use additional load balancing internally. To the best
of our knowledge, modeling the runtime of simulation time steps via machine learning
techniques has not been implemented for the combination technique before.

The problem considered here is closely connected to basic scheduling algorithms.
Let us assume, however, that re-assignment of a task to another process group is a costly
operation that should be avoided. In our set-up, this is based on the fact that, in addition
to the data on the grid, large amounts of internal simulation data are required per task –
e.g., the GENE gyro matrix. If a task were to be moved, the internal data would have to
be explicitly transferred or recomputed on the target process group, and the initialization
of GENE can take over one hundred regular time step lengths. This is in addition to the
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time required to transfer the current grid (which for high resolutions may contain a large
amount of data, up to several GB).

Note that the runtime of GENE is determined by many factors which impede the
use of a simple linear or performance model normal form ansatz: adding to the usual
caching and communication effects, the sparsity pattern of the gyro matrix, an update
algorithm with access complexity in O(n2x), and the fast fourier transform applied in
y direction influence the run time heavily. But since GENE is run on many different
machines, runtime data may be collected across many different machines and physical
problems, in order to obtain a transferable load model at no additional computational
cost.

3.1. Data Acquisition

Data was collected on the Hazel Hen supercomputer, a Cray XC40 system with Intel
Haswell processors, two sockets per node, each at 12 cores. GENE was started with pa-
rameters for a scenario with adiabatic electrons at different discretizations, i.e., the level
vector �� that lives in the gyrokinetic dimensions x,y,z,v‖,μ . Samples were randomly
selected between ��min = [6,4,3,4,3] and ��max = [14,8,6,8,6], leaving out grids that are
too small to represent the underlying physics, and also those that would be larger than
229 degrees of freedom in total. This was done for different levels of parallelization, for
power-of-two node counts from 25 to 215. We will denote the processor count for each
sample by 2p. For 215, only about half as many samples were taken as for the other 2p,
since this data was quite costly to obtain. Note that previous work [4] considered grid
sizes small enough to fit on 25 = 32 cores on Hazel Hen, such that the higher degrees of
parallelization were not a matter of discussion then.

As a simplification, the parallelization was constrained to a specific strategy depend-
ing on the level vector ��. Domain knowledge by the GENE developers is leveraged to al-
ways set a close-to-optimal parallelization: parallelize from the outer to the inner loops,
i.e., first in μ direction, then in v‖, and so on. This approach was validated on a small
subset of the space (31 samples) where exhaustive parallelization tests were run: com-
paring the optimal runtime to the runtime obtained by way of this heuristic gave an av-
erage runtime penalty of ≈ 15%. The prediction of optimal parallelizations was beyond
the scope of this work but would be interesting for future work into data-driven methods
for GENE.

To summarize, our inputs x are the level vector �� and the degree of parallelization p

xi = (�x,i, �y,i, �z,i, �v‖,i, �μ,i, pi), (4)

which means that sample i had a resolution of 2�x,i grid points in x direction, and was
run on 2pi processes. On these samples xi, GENE was run to find the resulting runtime
t∗ (averaged over 20 time steps). Out of the 2048 randomly sampled tasks, 1837 fit into
the main memory of the assigned processes. They constitute our training/validation data
set (80% or 1470 samples) and the test set, on which the comparisons in Section 4 will
be based. The corresponding outputs – the actual wall clock times – are distributed un-
evenly: the mean is at 0.957, while the median runtime is only 0.268. The long-tail shape
of the distribution is similar for the whole data set and the separate parallelizations, as
well as the test schemes discussed in Section 4.1.

In the following, we investigate how the runtime can be estimated based on this data.
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3.2. Data-Driven Methods for Load Balancing

For our purposes, data driven means that, apart from the input data, no further domain
knowledge about the physical or computational properties of the tasks need to be known
– they should be represented by the learned model that we generate from data.

We first predict the runtimes of the tasks. Based on these estimates, a descendingly
ordered list is created, and the corresponding tasks are distributed to the process groups
accordingly. Note that a good ordering is more important than an accurate prediction of
the actual runtimes. Heene et al. [4] discussed the differences between static and (initial)
dynamic load balancing. Whereas in static load balancing, the full task assignment is
given at the beginning of the simulation, the dynamic variant will wait for the currently
running task to finish before assigning the next in a work-stealing fashion. This dynamic
assignment is done for the first time step only. Here, we will focus on the dynamic variant.
We start by discussing the anisotropy-based model currently in use for the application. It
is then compared to three different machine learning approaches.

3.2.1. Anisotropy-based Fits for Runtime Estimation based on Expert Knowledge

Following up on previous work by Heene et al. [4], we tested model-based fits to predict
the runtime of tasks based on the resolutions in the different directions. The dependence
on the overall number of points r(N) is modeled based on expert knowledge by an ex-
ponential fit for each degree of parallelization p individually. These estimations are then
enriched with another least-squares fit h on the anisotropy s of the level vector ��

r(N) := mNk+ c, h(�s��) = c+
d−1

∑
i=1

cis��,i, �s��,i =
��i

|��|1
(5)

to give the overall runtime estimate

t(N,�s��) = r(N) ·h(�s��). (6)

The model is based on the observation that higher resolutions in some directions
lead to substantially higher runtime and memory footprints. This least-squares fit on
the runtime thus constitutes an expert knowledge-based baseline against which we can
compare.

3.2.2. Nearest Neighbor

The nearest neighbor estimator stores all the data in the training data set. To predict the
runtime, it takes the features of the test data and returns the value of the closest training
point (in Euclidean norm). If it is queried for a data point that has the same distance to
multiple known points, it will randomly return any of the neighbors’ values.

We can think of the nearest neighbor estimation as “zero-th order extrapolation”, the
best guess we can make without actually doing any computation on the data.
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3.2.3. Support Vector Regression

Support vector regression (SVR) is an application of support vector machines to regres-
sion problems [11]. The regressor is defined by learned weights w, which are determined
by minimizing ‖w‖ = 〈w,w〉 subject to linear constraints. The constraints are designed
to make sure that predictions which fall within an error of ε of the true value will not
contribute to the loss; the inner product 〈·, ·〉 is approximated by kernel functions k us-
ing a regularization parameter C [11]. For our tests, the (Gaussian) radial basis function
kernel exp(−γ‖�xi−�x j‖2) was employed. The SVR parameters were optimized by a grid
search algorithm employing five-fold cross validation. Results are shown in Table 1.

For both SVR and Nearest Neighbor the scikit-learn Python library [12] was
used. It was also used to perform standard feature scaling on the input data x for the SVR
and the neural network regression, which the next section is going to discuss.

Regularization / error weightC Soft margin width ε RBF kernel “pointiness” γ
450 0.01 0.05

Table 1. Optimal SVR parameters on our training / validation data set

3.2.4. Neural Network / Multi-Layer Perceptron Regression

In a feed-forward artificial neural network (ANN), a function is modelled by matrix and
bias vector weights, which transform the input linearly, followed by the application of
a (usually) nonlinear activation function φ . This is done successively, layer by layer, to
return the output, which is the modelled value. The transition of data y from layer l to
layer l+1 may be described by the matrix and vector weights w and b as

yl+1, j = φ(bl+1, j+
nk

∑
k
wl+1,k, j · yl+1,k), �y0 =�x (7)

where nk is the width of layer l. The training of the network – i.e., fitting the weights –
is done by the backpropagation algorithm, using stochastic optimization heuristics. For
a thorough description of neural networks, please refer to [13].

Hyperparameter Fitting by Genetic Algorithms We used the Tensorflow pack-
age [14] to learn the training data set with five-fold cross-validation, using the robust Hu-
ber regression loss function, cf. [13]. The training was run for 100 epochs, with no batch
processing. Since choosing the optimal hyperparameters for ANNs by hand is notori-
ously difficult, genetic techniques to select the network architecture have been shown to
work in many settings [15,16]. Here, genetic selection was applied on layer depth (1−9),
layer width (1−11), activation function, and optimizer. The fitness was the negative vali-
dation root-mean-square error (RMSE). To prevent overfitting, only those configurations
that had a maximum of 700 weights to be adjusted were considered, which amounts to
about half the size of the training / validation data set. The results are shown in Table 2.
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# hidden layers # nodes / layer activation function optimizer
6 7 tf.nn.elu tf.keras.optimizers.Adam

Table 2. Optimal neural network parameters on our training / validation data set

4. Results

The standard machine learning metric – error on previously-unseen test data (“zero-
shot test”) – returned the results shown in Table 3. The neural network was randomly
initialized before training. As additional set-up, one out of five trained networks was
selected by lowest validation error; only this one was used to capture the error on the
test sets in Section 4.1. We can see by comparing the two rightmost bars that this is
not cherry-picking good random results but that the test errors are low on every trained
network.

Anisotropy
#DOF 55

N. Neighbor
1470

SVR
1282

Neural
337

Neural best of 5
0
1
2
3
4

2.08
1.19

0.42 0.16 0.12R
M

SE

Table 3. Test errors (RMSE), based on 64 different train / test splits on the data

We observe that the estimation accuracy on the runtimes is seemingly quite good for
the learning algorithms. But note that in comparison to the output distribution discussed
in Section 3.1, which has a median runtime of 0.268, the estimation errors are still rel-
atively high. Also, the estimation accuracy of the expected runtime is only suitable for
evaluation to some extent. After all, a runtime estimate may be arbitrarily bad, but still
help us achieve optimal scheduling if the relative ordering between the tasks is correctly
represented. We will see in the next section that this leads to different outcomes if the
models are applied to an actual combination scheme data set.

4.1. Results on Full Scenarios

Let us consider a test scenario, which is an actual standard combination scheme at phys-
ically relevant scales: The scheme consists of 124 grids, with level vectors between
[7,4,3,4,3] and [11,8,6,8,6]; we are approximating a full grid with 239 unknowns with
grids between 221 and 225 unknowns. All of the grids could be processed on 256 pro-
cessors (p = 8) respectively. We also conducted a larger test case which could only be
executed on bigger process groups, yielding similar results.

The resulting graph, Fig. 3, shows the parallel efficiency of the task assignment
obtained depending on which trained model is used, how large the process groups are
chosen (p), and how many of them there are. To make this more visually graspable, they
are also averaged by method, displayed on the bottom.

We see that there are overlaps, but also a clear tendency: the neural network predicts
the ordering often nearly-optimal, followed by the anisotropy-based model. The nearest-
neighbor heuristic and the SVR still return reasonable results, considering we mostly get
parallel efficiencies above 80%. The fact that they are lower for SVR than for the other
approaches may be due to the already moderate number of input dimensions.
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Figure 3. Parallel efficiencies for the test scenario. Note that data is included for p= 8 to 13.

Note that this experiment was done analytically, by adding up the exact runtimes
off-line; actually running all these simulations would have been too costly. Accordingly,
the true memory requirements are not represented here, but it is safe to assume that

1. the curves for low levels of parallelization will only be valid for the higher numbers
of processes (as otherwise there will not be enough total memory available), and

2. high memory footprints strongly correlate with high runtimes, such that balancing
runtimes will also balance memory usage to some extent.

We can observe that loads can be estimated well by using data-driven techniques
for load balancing, despite the rather data-scarce setting. Furthermore, the data-driven
approaches outperform the baseline based on expert knowledge not only in regions with
plenty of data points, but also in those parameter regions where extrapolation dominates:
for large numbers of processes. Still, the data-driven approaches excel only if enough
data is at hand. It is therefore essential to keep track of GENE runtimes and the simulation
parameters and metadata, such as system architecture and GENE version.

This could potentially pay off even more when using process groups of different
sizes [17], which could be an interesting subject of study in the future.

5. Conclusion

In this paper, we studied the data-based prediction of runtimes for load balancing. This
enabled us to obtain good load balances for the massively parallel sparse grid combi-
nation technique with GENE. While the expert knowledge-based model used until now
is reasonable, it can be outperformed by purely data-driven methods such as neural net-
works, given enough data and automated selection of network parameters.

Based on this insight, it is now feasible to collect run time data for GENE simulations
on the job, improving data-driven load models along the way. Especially with respect
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to different resolutions, at least knowledge about a good ordering between tasks should
be possible even across compute systems. Let us note that data-driven approaches for
load balancing are most suited for situations where the concrete code is considered a
black-box. If, however, the behavior of the compute and communication systems, as well
as the algorithm and its implementation are well-understood and stable, it will be more
beneficial to use model-based approaches. In all other cases, one should use carefully
selected data-driven approaches, especially when a lot of compute time is at stake – such
as with the massively parallel sparse grid combination technique employed with GENE.
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Abstract. In this work, we combine several previous efforts to simulate a large-
scale soot particle agglomeration with a dynamic, multi-scale turbulent background
flow field. We build upon previous simulations which include 3.2 million parti-
cles and implement load-balancing into the used simulation software as well as
tests of the load-balancing mechanisms on this scenario. We increase the simu-
lation to 109.85 million particles, superpose a dynamically changing multi-scale
background flow field and use our software enhancements to the molecular dynam-
ics software ESPResSo to simulate this on a Cray XC40 supercomputer. To verify
that our setup reproduces essential physics we scale the influence of the flow field
down to make the scenario mostly homogeneous on the subdomain scale. Finally,
we show that even on the homogeneous version of this soot particle agglomeration
simulation, load-balancing still pays off.

Keywords. molecular dynamics, short-range, dynamic load-balancing, soot-
particle agglomeration, domain decomposition

1. Introduction

Short-range molecular dynamics (MD) [1] is an important field in Computational Sci-
ences. One particular example of a real-world application is the simulation of soot par-
ticle agglomeration, which, for example, is relevant for the efficiency of industrial pro-
cesses. In these processes, particles collide and link irreversibly. Of particular interest is
the morphology of the resulting agglomerates. Because results of a computer simulation
allows the examination of morphology of agglomerates over time, computer simulation
plays an important role in this area.

The approach we use has been described in [2,3]: Agglomeration processes are sim-
ulated in a precomputed, turbulent flow field. Clustering of particles is driven by Brown-
ian motion as well as the background flow, which gets more important as the particle den-
sity decreases. The influence of a turbulent background flow field is of particular interest
in particle agglomeration simulations. While small turbulence scales can be resolved in
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small simulations, the question remains if large, multi-scale turbulence flows critically
influence the results.

In order to get to more realistic agglomeration simulations we use a larger and
dynamically changing flow field that covers more scales of turbulence as well as a
larger setup including the number of particles. Starting from the largest simulation in [3]
(“Case 6”), we increase the domain size by a factor of 3.25. This allows us to cover more
realistic scales of turbulence. We keep the original particle loading. Hence, we increase
the number of primary particles from 3.2 million in [3] by a factor of 3.253 ≈ 34.33 to
109.85 million.

This scenario is very large considering the elaborate physical bonding model used.
In fact, to the best of our knowledge it is the largest simulation with ESPResSo so far.
And, because we simulate an agglomeration process, the simulation naturally gets more
and more heterogeneous over time. Simulations of these sizes and types pose two major
challenges: (1) We need large-scale parallelism to cope with a simulation of this size,
and (2) we must dynamically adapt the domain decomposition to the changing particle
distribution in order to cope with load-imbalances arising from heterogeneity.

These challenges require us to combine this large-scale real world scenario with
our previous efforts to bring dynamic load-balancing to the MD software ESPResSo. In
particular, we need to make use of dynamic load-balancing at runtime, the newly created,
non-regularly partitioned grids and their associated asynchronous communication [4,5]
as well as other contributions to the MD software at hand, like parallel input and output
using MPI-IO.

In order to validate the physical correctness of the scenario and assess the applicabil-
ity of our load-balancing methods, we use a rather homogeneous version of the scenario.
A more homogeneous scenario allows us to first focus on physical correctness of the
setup while not crucially depending on the best possible load-balancing. Following the
simulation, we can test the applicability of our load-balancing methods for this scenario.

The remainder of this work is structured as follows: In Section 2 we report on related
research. In Section 3 we elaborate on the numerical simulation models as well as the
used code and our load-balancing methodology. We describe our simulation setup in
Section 4. Subsequently, in Section 5 we show the physical results and our assessment of
load-balancing for this setup. Finally, in Section 6 we summarize our work and conclude
with a note on further topics to investigate.

2. Related Work

At the core of our modeling are Langevin-based agglomeration processes. These have,
e.g., been studied in [6]. We are, however, interested in agglomeration processes that
are subject to a turbulent background flow field and that links particles irreversibly. This
linking process should completely prohibit rotation and sliding of the particles. To this
end, the Langevin-based model has been augmented in [2,3] to include a coupling to a
static flow field as well as dynamic bonding to link particles irreversibly at runtime. In [2]
several bonding models that effectively prohibit sliding are proposed and evaluated. We
use the so-called “AB” (all-bonds) model from this work, which has the advantage, that
it does not require the addition of virtual particles.

A different approach to tackle the upscaling of agglomeration simulation is coarse-
graining, i.e. aggregating whole clusters into one “super particle” (during the simulation)
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and, thus, reducing the total computational burden. This is still a field of active research,
as the involved modeling is complex. For example, coarse grained particle need to accu-
rately resolve the collision probabilities of the underlying “real” cluster. Algorithmically,
this kind of dynamic coarse graining leads to larger cell sizes and, thus, likely to less par-
allelism and more load-imbalances. Studies and first results for this approach are, e.g.,
presented in [7]. However, the technique described there is not ready yet for large-scale
simulations such as ours.

For load-balancing several heuristics are used in existing MD (and other) software.
We have discussed details on the most commonly used ones in [8] and have imple-
mented some of them in the MD software ESPResSo in [4,9,5]. In this work, we focus on
the partitioner based on Space-filling curves (SFC) leveraging the well-known and scal-
able library p4est [10,11], which in turn uses the Z-curve [12]. The actual partitioning
for SFC-based algorithms is performed using so-called chain-on-chain partitioning [13].
Several studies find graph partitioning performs best because of its superior model while
SFC-based partitioning is fast and consumes less memory [14,15]. A more theoretical
review of several partitioning algorithms can be found in [16] listing important proper-
ties like speed, memory usage, etc. Eibl and Rüde [17] inspect different partitioners for
the discrete element method and find that there is a trade-off between scalability and
quality of partitioning and recommend an SFC-based strategy for small and mid-sized
scenarios. Particularly for MD, several methods are implemented in the simulation soft-
ware “ls1 mardyn” and compared in [18,19,20]. These studies also present cost heuris-
tics to estimate the load of individual subdomains. They give us enough reason to focus
on SFC-based partitioning first for our current work.

3. Methodology

Our main methodological approach is two-part. First, we explain what numerical models
we use to simulate a soot particle agglomeration process within the molecular dynamics
framework. Second, we explain what parallelization and load-balancing approaches we
use for the implementation of the numerical models. Additionally, we briefly introduce
the relevant quantities for analyzing the shape of agglomerates.

3.1. Numerical Models

Wemodel intermolecular interactions with the well-known Lennard-Jones-12-6 potential
which consists of an attractive and a repulsive part,

ULJ(r) = 4ε
((σ

r

)12
−
(σ
r

)6
)
,

where σ and ε are properties of the modeled primary particles. Particles can be bound
together with distance-based and angular harmonic bonds. Their associated potentials
are given as

Udistance(r) =
1
2
kh (r− r0)

2 , and Uangular(φ) =
1
2
ka (φ −φ0)2,
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Figure 1. Visualization of bonding at runtime. Left: If two particles are closer than the collision distance, the
algorithm aims to finds a third particle within the collision distance to establish a triangular bonding struc-
ture. Right: The bonding structure consists of three angular bonds (indicated as θ1,θ2,θ3) as well as three
distance-based bonds (indicated as l1, l2, l3) between the particle pairs. If no third particle could be found, only
the distance bond l1 is created.

where r0 and φ0 are the equilibrium distance and angle, respectively, and kh and ka spring
constants. These bonds are established in groups at runtime for each triple of particles
that collides. This so-called “AB” model is adapted from [2] and depicted in Figure 1.
Note, that the equilibrium angle φ0 is not constant across bonds but rather different for
each one. It is chosen as the angle between the particles at collision time.

In order to model frictional influence from a fluid and Brownian motion, we use
Langevin Dynamics. A study of purely Langevin-driven agglomeration processes with-
out turbulent background flow can be found in [6]. The equation of motion is given as:

m�̈x= �f − γ
(
�̇x−�uflow(t,�x)

)
+�R(t), (1)

where �f are the forces given by the intermolecular potentials described above. Addition-
ally, �R(t) is a random noise, which, together with the frictional term γ (�̇x−�uflow(t,�x))
models Brownian motion and the temperature, as well as the frictional influence of the
fluid. The velocities �uflow(t,�x) stem from the fluid (external flow field) at time t and po-
sition �x. Analogously to [3] we model the friction between the fluid and the particles
by Stokes’ law, so γ = 3πμσ/Cc where μ is the viscosity of the fluid, σ the particle
diameter and Cc being the Cunningham correction factor. In ESPResSo, Langevin Dy-
namics is implemented with a Velocity Verlet integrator, see e.g. [21], combined with a
so-called Langevin thermostat [22] that applies the frictional and random forces given
the temperature and γ .

3.2. Parallelization and Load-Balancing

We use the simulation software ESPResSo2 [23,22], which covers all the relevant physics
involved. Relevant parts of the dynamic bonding mechanisms have been implemented in
the course of [2,3] and are also described in [23]. ESPResSo uses the Linked-Cell algo-
rithm [24] in combination with Verlet lists to calculate forces stemming from short-range
potentials, like the Lennard-Jones potential, in linear time. Based on the Linked-Cell
discretization, ESPResSo defines a uniform spatial domain decomposition to allow for
MPI-based parallelization [22]. While the simulation core of ESPResSo is implemented
in C++, it exposes a Python-based front-end for setting up the scenario and controlling
the simulation [25].

2Extensible Simulation Package for Research on Soft Matter, http://www.espressomd.org
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Figure 2. Left: A sketch of a segment of an MD simulation. The gray arrows depict regular time steps. From
time to time the domain decomposition has to be adapted to the underlying scenario (indicated by the “re-
balancing” boxes). We outline our implementation on the right: The user calls a function “repart” from their
script. The linked cell grid (“cell system”) internally asks the grid to repartition itself and then sets up the
established partitioning in the core of the simulation software. Afterwards, cell payload (particles) is migrated
transparently for the user.

Our adaptions keep the MPI-only parallelization and its 1:1 mapping of subdomains
to processes. In [4] we devised a general scheme to change this fixed decomposition,
allowing for arbitrary ones. Based on this work, we have implemented different decom-
positions. We make the load-balancing mechanism available to the user, so they can con-
veniently implement strategies for partitioning scenarios in the simulation scripts them-
selves. Note that this load-balancing mechanism is not constrained to the application pre-
sented in this work. It can be employed to any heterogeneous simulation in ESPResSo.
We depict this ability to do dynamic repartitioning and sketch the underlying implemen-
tation in Figure 2.

Given a function m that defines a suitable load metric or measurement of ex-
ecution time for every process p ∈ {1, . . . ,P}, we partition based on the imbalance
I (m). The imbalance is defined as the maximum over average load measurement:
I (m) = Pmax{m(p)}

∑p m(p)
. In the current setup, we use I (m)> 1.1 as criterion with the load

metric m(p) as the number of particles of process p and partition at most every 1000
time steps. In [4] we have shown for a smaller agglomeration scenario that choosing the
number of particles as metric m(p) performs best among a range of different choices.

3.3. Analysis

An important characterization of particle clusters is their fractal dimension Df [26]. It is
the power law relationship of the number of particles to their radius, see e.g. [27], and
calculated as

N =
( rg
d

)Df
,

with N the number of particles in the cluster, d = σ
2 and rg the radius of gyration, which

is the standard deviation of the particle positions�ri in a cluster:
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n̂ T σ l0

6.25 ·10−3 600K 20 nm 2600σ
Table 1. Basic MD simulation parameters.

σ ε∗ t∗

20 nm 1.25 ·10−20 J 14 ns
Table 2. Reference values used for nondimensional-
ization of physical quantities in the MD simulation.

rg =

√
1
N

N

∑
i=1

||�r−�ri||2 , with r =
1
N

N

∑
i=1

�ri.

4. Simulation Setup

The basic simulation parameters, which will be explained in the following, can be found
in Table 1. The reference length, energy and time used for nondimensionalization of the
MD simulation can be found in Table 2. The simulation comprises 109.85 ·106 particles,
the largest simulation with ESPResSo so far. Each of these primary particles has a diam-
eter of σ = 20nm. Initially, they are placed in a simulation box of size l0 = 2600σ , uni-
formly randomly distributed. We employ periodic boundary conditions in all dimensions.
The particle loading is n̂= 6.25 ·10−3. The temperature of the solvent is T = 600K.

The flow field is primarily characterized by its kinematic viscosity ν and its dissipa-
tion rate ε . Based on these, we can derive the characteristic time scales, namely Brow-
nian diffusion time tBM and the Kolmogorov time scale tk. These allow us to define the
nondimensional Péclet number Pe= tBM

tk
that describes the relative importance of turbu-

lence over Brownian motion. The second nondimensional quantity that is used in [3] to
describe a scenario is the Knudsen number Kn =

lmfp
σ/2 , where lmfp is the mean free path

length of the flow.
Our goal is to reproduce a larger version with more turbulent flow scales of “Case 6”

from [3]. This setup uses Kn = 11 and Pe = 1. To achieve that, we generate the ex-
ternal background flow field in a separate pre-processing step using a Direct Numeri-
cal Simulation (DNS) of homogeneous, isotropic forced turbulence in a box of length
L= 2π l0 ≈ 326.7μm. It solves the incompressible Navier-Stokes equations with periodic
boundary conditions, discretized on a 64× 64× 64 mesh. This mesh is unrelated to the
linked cell grid and only defines the resolution of the flow field in the later MD simula-
tion. The viscosity is ν = 5.13 ·10−5m/s2 and the dissipation rate ε = 1.25 ·1010m2/s3,
which equals the desired values of Kn and Pe. These, however, lead to very heteroge-
neous particle distributions as we have shown in [4,5] on basis of “Case 6” from [3].
For first experiments at scale, we keep the particle distribution mostly homogeneous on
the subdomain scale by reducing the influence of the flow field in the transport equation.
Therefore, we scale down �uflow(t,�xi) in Equation 1 by about 1/3. This rescales the gra-
dients of the velocity by an equal factor, and, thus, also the dissipation rate. So in our
current simulation the Péclet number is roughly a third of the intended target value.

We compute 6 ·107 iterations, each having a length of dt= 10−4 t∗ = 1.4fs. Thus, the
end of the simulation is at tend = 8.4μs. The bonding constants k̃a and k̃h are estimated
according to [3] to k̃a = k̃h = 1000ε∗. As collision distance, we use rcol = σ .

As mentioned above, we have extended and use the simulation software ESPResSo
as it implements all relevant numerical models, especially dynamic bonding at runtime.
We perform the scenario setup as follows: (1) Setup random particles with zero veloci-
ties, (2) initialize all required potentials, (3) equilibrate the system using steepest descend
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Figure 3. Histogram of the number of agglomerates
per size. Size is in number of particles per agglomer-
ate. The location of the maximum indicates that the
agglomeration process has left its initial state where
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ticles.
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Figure 4. Average fractal dimension Df of agglom-
erates of all agglomerates of a certain radius of gy-
ration at different time steps. While t = 100 t∗ is still
early in the simulation, the average Df does not vary
much in later time steps.

integration [25], (4) reset velocities and forces to zero, (5) setup the thermostat as well
as collision detection and dynamic bonding, and (6) start the simulation.

5. Results

One indicator of how much the agglomeration process has progressed in time, is the
number of agglomerates of a certain size. We present a histogram of the sizes of the
agglomeration for tend = 600 t∗ in Figure 3. We clearly see that the most prevalent clus-
ter size is about one order of magnitude higher than the smallest possible (2 primary
particles). This means that the simulation has left the initial state where the growth of
agglomerates is mainly driven by primary particle collisions. At tend process is primarily
driven by cluster-cluster collisions for significant growth of the agglomerates.

In Figure 4 we plot the average Df of all agglomerates with more than 15 particles
at t = 100 t∗, 300 t∗, and 600 t∗ depending on the radius of gyration of the agglomerates.
This relationship enables scientists to understand the agglomeration process and to de-
termine its influence on larger industrial processes and products. Therefore, the criterion
for stopping the simulation in [3] is when the individual lines converge. While the pro-
cess clearly has not converged yet at t = 100 t∗ in Figure 4, the difference in Df for the
same rg between t = 300 t∗ and 600 t∗ gets significantly smaller, indicating a possible
convergence. Since the agglomerates are still rather small (rg ≤ 10), the average fractal
dimension is in the range of 1.9 ≤ Df ≤ 2.2. These Df are a bit higher than the ones
published by [3] using the same ansatz, as well as experimental data obtained from soot
aggregates in (turbulent) flames, see e.g. [28]. However, the smaller the velocities of the
superposed, turbulent background flow field in Equation 1, the higher the influence of
Brownian motion. In this case, [3] also states, that with a higher influence of Brownian
motion, Df approaches 2 for larger agglomerates. Beyond that we can see a trend for
agglomerates with larger rg to have a smaller Df . In conclusion, we can say, that we are
able to reproduce physical results for the simulation of soot particle agglomeration, and
we assume that the mentioned differences stem from the smaller flow field velocities.
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5.1. Load-balancing

Although we enforce a more or less homogeneous particle distribution among the subdo-
mains, we still use load-balancing to counteract smaller heterogeneity that evolves over
time. For unscaled versions of this scenario, good load-balancing is crucial as our studies
on the smaller 3.2 million particle setup [4,5] have shown. Therefore, we also test and
show load-balancing results here. The simulation ran on “Hazel Hen” at the High Per-
formance Computing Center Stuttgart (HLRS). It is a Cray XC40 machine with 2 Intel
Xeon E5-2680v3 (“Haswell” microarchitecture) per node, each of which has 12 cores
(not counting Simultaneous Multi-Threading) and a Cray Aries interconnect.

We use the snapshot at tend = 600 t∗ for our test. We run the test on 300 nodes,
i.e. 7200 processes. The imbalance in the number of particles for a decomposition into
equally sized boxes (MPI Dims create) is about 18.4%, which is quite homogeneous.
The runtimes for the default parallelization and our load-balanced one can be found
in Figure 5. We plot the relevant runtimes in the following way: Let

f1 =max{tforce(p)}Pp=1,

f2 =max{tforce(p)+ tcomm(p)}Pp=1, and

f3 =max{tforce(p)+ tcomm(p)+ tint(p)+ tsync(p)}Pp=1,

where “force”, “comm”, “int” and “sync” refer to the individual components: force cal-
culation, communication, integration and synchronization. Then, we plot f1, f2− f1 and
f3− f2− f1, i.e. the difference of the individual maxima runtimes of the phases. We can
see, that despite the homogeneous particle distribution, we achieve a runtime reduction
of about 10%. Additionally, in Figure 6 we can see, that the load-balancing is capable of
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keeping the imbalance at about the desired level of 1.1 during almost the entire 6 million
time steps. The occasional spikes are still being investigated. Given the overall behavior,
however, it is likely, that the spikes stem from runtime noise.

6. Conclusion

We successfully combined several previous works into one large-scale, load-balanced
soot particle agglomeration simulation. We set up the simulation with a complex physical
bonding model, as well as a dynamically changing, multi-scale turbulent background
flow field. We increased the simulation to over 100 million particles, which is over 30
times larger than previous works with ESPResSo and, to the best of our knowledge, the
largest simulation ever with ESPResSo.

In order to assess the physical correctness of the new setup, we kept the simulation
rather homogeneous by rescaling the velocities stemming from the superposed flow field.
This way, we did not have to deal with large heterogeneity, and we were able to reproduce
previous results. We showed that the resulting fractal dimensions of the clusters seem
reasonable and consistent with previous results. Also, we showed, that even though we
keep heterogeneity low, load-balancing is still able to reduce the runtimes by about 10%
and to consistently keep the imbalance in runtime low throughout the simulation.

6.1. Future Work

There are two paths that we will pursue further. As we have verified that the setup is phys-
ically correct and that load-balancing pays off, the first path is to use a physically correct
flow field with Pe≈ 1. This will let us study the impact of the multi-scale turbulent and
dynamic background flow field on agglomeration processes at physically relevant scales.

Second, we have implemented different kinds of load-balancing methods in previous
work [4,9,5], some of which might be more suitable for the heterogeneous version of
the simulation. We intend to test different methods as well as different metrics and relate
them to scenario properties in order to gain deeper insight into the problem of balancing
heterogeneous simulations with a low average fractal dimension of the clusters.
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Abstract. A roadmap for autotuning task-based numerical libraries is presented.
Carefully chosen experiments are carried out when the numerical library is being
installed to assess its performance. Real and simulated executions are considered to
optimize the routine. The discussion is illustrated with a task-based tile Cholesky
factorization, and the aim is to find the optimum tile size for any problem size,
using the Chameleon numerical linear algebra package on top of the StarPU run-
time system and also with the SimGrid simulator. The study shows that combin-
ing a smart exploration strategy of the search space with both real and simulated
executions results in a fast, reliable autotuning process.

Keywords. autotuning, linear algebra, task-based programming, heterogeneous
computing, simulation

1. Introduction

The complexity of modern computers makes the design of high performance numerical
libraries extremely challenging. Task-based programming paradigms have been proved
to alleviate the exercise, as part of the burden is delegated to a third party software, com-
monly referred to as a runtime system. Nonetheless, the resulting libraries are often left
with one or more parameters to be carefully set up in order to achieve high performance.
This work describes an approach on how to use autotuning techniques to select the best
values for some algorithmic parameters of the linear algebra routines of these kinds of
libraries.

The proposed approach is applied to routines of Chameleon [1]. The computational
kernels of the library are used as building blocks for higher-level routines designed for
heterogeneous platforms composed of multicore CPUs with one or more GPUs. This
dense linear algebra library is derived from PLASMA [2] and internally uses StarPU [3],
a runtime system which enables us to express parallelism through sequential-like code
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and which schedules the different tasks over the hybrid processing units. These tasks are
executed by using optimized implementations of linear algebra libraries, such as Intel
MKL [4] for multicore CPU and MAGMA [5] or cuBLAS [6] for GPU. In previous
works, several frameworks have been developed which focus on how to optimize linear
algebra kernels on heterogeneous platforms [7,8]. Other approaches are proposed to pre-
dict the performance of a dynamic task-based runtime system for heterogeneous multi-
core architectures [9]. In contrast with those previous works, we propose the application
of tuning strategies to obtain the best value of the algorithmic parameters of the routines
for an efficient use of the hybrid components in the computational node. The application
of these strategies is illustrated with the Cholesky routine, a fundamental and represen-
tative linear algebra algorithm, with the focus on the selection of the value for the tile
size.

The rest of the paper is organized as follows. Section 2 introduces the Cholesky
routine of Chameleon and how it is executed by using the StarPU runtime system. Sec-
tion 3 describes the training strategies proposed for selecting the best values for the tile
size. Experimental results are shown in Section 4 for a heterogeneous platform. Possible
extensions of the methodology are discussed in Section 5. Section 6 concludes the paper.

2. Cholesky Routine of Chameleon

The Cholesky factorization (or Cholesky decomposition) of an n×n real symmetric pos-
itive definite matrix A has the form A = LLT , where L is an n× n real lower triangular
matrix with positive diagonal elements. This factorization is mainly used as a first step
for the numerical solution of linear equations Ax = b, where A is a symmetric, positive
definite matrix.

The reference implementation of the Cholesky factorization for machines with hier-
archical levels of memory is part of the LAPACK library [10]. It consists of a succession
of panel (or block column) factorizations followed by updates of the trailing submatrix.

In the Chameleon library, the Cholesky routine follows a tile-based scheme in which
the n×n matrix to be factorized is split in multiple submatrices, or tiles, of size nb×nb
[1]. To enable the concurrent use of all the computational units on a heterogeneous plat-
form, the Chameleon library splits the work into smaller tasks, which correspond to the
computational kernels involved in performing the decomposition: potrf, trsm, gemm
and syrk. The complexity of scheduling these tasks, solving data dependencies and of
data consistency is delegated to StarPU [3]. By default, it uses the lws scheduler, because
it provides correct load balancing and locality, and also takes into account priorities, al-
though different scheduling policies can be selected, such as eager, prio, ws,. . . However,
none of them considers the selection of the best value to use for the tile size, nb, in the
Cholesky routine. Therefore, it is necessary to develop optimization strategies to suitably
select the best value for nb.

Figure 1 shows the steps for executing a linear algebra routine of Chameleon (such
as the Cholesky decomposition) using the StarPU runtime system. Each routine is com-
puted following a tile-based algorithm. Then, a direct acyclic graph is created with the
dependencies between tasks and, finally, these tasks are scheduled using the StarPU run-
time system, which executes each of the tasks in the different computational units with
the use of optimized implementations of the basic linear algebra routines.
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Figure 1. Execution of a linear algebra routine in Chameleon.

3. Training Strategies

Our study focuses initially on applying training strategies to select the value for the tile
size, nb, of the Cholesky routine for a number of selected and representative problem
sizes. Empirical and simulated approaches are combined with exhaustive and pruned
searching methods. So, four resulting training strategies are considered:

S1: Empirical+Exhaustive

A naive approach for tuning the library would be to collect empirical data exhaustively
from a large set of experiments for representative problem sizes. The routine is exper-
imentally executed on the heterogeneous platform using a set of tile sizes for each se-
lected problem size, n. As a result, the performance for each pair (n,nb) is obtained and
stored for further use.

S2: Empirical+Pruned

Usually the time employed by S1 approach is very high. So, to reduce the experimenta-
tion time, ensuring at the same time results close to the exhaustive ones, a pruned strat-
egy of the search space can be used. It exploits the fact that the tile size nb trades off
the performance of an individual task (the higher the nb, the higher the performance of
the task) with the concurrency between tasks (the smaller the nb, the wider the DAG of
tasks). We therefore consider a strategy similar to the one employed on multicore-only
platforms [11]. In the proposed approach, the search starts with the lowest problem size
(e.g, n= 2000) and seeks the optimum tile size nb. Once a given problem size n has been
explored, the next problem size (n = 4000,8000, . . ., in that order) is investigated. The
key idea is that the search continues with the next problem size using as its starting-point
the best tile size selected for the previous problem size. For instance, if the optimum tile
size for n= 4000 is nb= 256, the pruned strategy directly assesses nb= 256 (not evalu-
ating the previous value for the tile size) for n= 8000 and, then, the next tile size (in in-
creasing order) is considered until it reaches a tile size with which the performance is not
improved. Then, the process continues with the next problem size using as starting-point
the best nb obtained for the previous problem size, and so on.
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S3: Simulated+Exhaustive

The S1 and S2 strategies require access to a heterogeneous platform for the experiments.
Instead, we can use a simulator and apply an off-line training strategy on a separate
laptop. For this purpose, we use the SimGrid simulator [9]. During an empirical phase,
for each tile size and set of problem sizes, a very quick sampling of data is collected for
each of the routine kernels and the generated information is stored in files called codelets.
The information stored is based on performance models of the execution time, which can
be history-based or regression-based, and is used by the simulator to estimate the duration
of a task. After that, the simulator could be used over these codelets on a personal laptop
to estimate the performance for each pair (n, nb), so reducing the experimentation time
with respect to the empirical approaches.

S4: Simulated+Pruned

This strategy is applied in the same way as S2, but using the information collected after
applying the S3 strategy. The goal is to further reduce the search time required to obtain
the tile size for each problem size while maintaining a good performance estimation.

4. Experimental Results

The experiments were carried out on a heterogeneous node with 12 CPU cores (2
hexa-core) and 6 NVIDIA GPUs (4 GeForce GTX590 and 2 Tesla K20c) using
the set of problem sizes {2000,4000,8000, . . . ,32000} and a fixed set of tile sizes
{208,256,288,320,384,448,512,576}.

4.1. Searching the Tile Size

The results obtained for the Cholesky routine of Chameleon using the exhaustive strate-
gies (S1 and S3) are shown in Figure 2. Figure 2a shows the results obtained with the em-
pirical S1 strategy. The performance (y-axis) for each problem size significantly depends
on the tile size nb, reaching the asymptotic value when using the highest tile sizes in
larger problem sizes. Figure 2b, instead, shows the results when using the simulated S3
strategy. The performance achieved for each problem size is very similar to that obtained
with the empirical strategy, especially for large matrix and tile sizes.

If we consider the empirical and simulated approaches using the pruned strategy,
satisfactory results are obtained. Figure 3 shows that the performances obtained with the
S1 and S2 strategies perfectly overlap, but both approaches use the actual platform to
perform the search for the tile-size values. The simulated S3 and S4 strategies, however,
return very decent tuning without (almost) using the actual compute node during the
training phase, achieving performance results similar to the empirical ones.

The results obtained with the four strategies are similar in terms of performance, but
not in terms of the search time required. Table 1 compares the nb value selected for each
problem size using each one of the strategies (values also shown in Figure 3) and the time
employed in finding each value during the search process. In the empirical approaches
(S1 and S2 strategies) the selected values for the tile size are identical, but the search time
employed is lower when using the pruned strategy. The S1 strategy uses 30 minutes of
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2a. Empirical Performance

nb= 576 nb= 512
nb= 448 nb= 384
nb= 320 nb= 288
nb= 256 nb= 208
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2b. Simulated Performance

nb= 576 nb= 512
nb= 448 nb= 384
nb= 320 nb= 288
nb= 256 nb= 208

Figure 2. Empirical (2a) and simulated (2b) performance of the Cholesky routine of Chameleon using a fixed
set of nb values for each problem size.
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Figure 3. Performance of the Cholesky routine of Chameleon after applying each of the four considered
strategies (the selected nb value by each strategy is also displayed).

platform time to find the nb values. However, by using the S2 pruned strategy, the time is
reduced to 154 seconds. With the simulated approaches (S3 and S4 strategies), the values
obtained for the tile size are similar to those obtained with the empirical approaches,
but with much less search time, and the search can be done on a separate laptop. For
small and medium problem sizes, the nb values differ slightly from those obtained with
the empirical approaches due to small variations in the performance estimated by the
simulator, but the time employed in searching for the nb values is reduced. With the
S3 strategy, the simulation time is about 30 minutes and with the S4 pruned strategy it
is reduced to only 84 seconds. There are some entries in the table for the S2 and S4
pruning strategies for which the time is not displayed (represented as ‘-’). This is because
when the search reaches the highest value considered for nb, this value is used for higher
problem sizes, so no time is spent searching for them.
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Table 1. Value for the tile size (nb) for each problem size using the different strategies and execution time (in
seconds) employed during the search for each strategy and problem size.

S1 S2 S3 S4
n nb time nb time nb time nb time

2000 208 67 208 17 208 2 208 1
4000 256 71 256 25 208 5 208 3
8000 448 89 448 67 256 24 256 13
12000 576 125 576 45 576 67 576 67
16000 576 184 576 - 576 143 576 -
20000 576 273 576 - 576 321 576 -
24000 576 400 576 - 576 470 576 -
28000 576 581 576 - 576 753 576 -

4.2. Testing the Training Strategies

Once the routine has been trained for a set of problem sizes and different values for the
tile size, we test the validity of the training with a set of experiments for an intermediate
set of problem sizes. This testing process consists of applying an interpolation process
to the information stored for the tile size during the search process performed by each
of the training strategies. The goal of this tuning strategy is to analyze how far the re-
sults obtained (in terms of Gflops) with the tile size selected are with respect to the ex-
perimental optimum. Table 2 compares the results obtained. In general, the selected nb
value (nb column) differs slightly from the optimum (nb opt column). Furthermore, the
deviation of the performance with the tuning strategy with respect to the experimental
optimum (dev column) is quite small, mainly for large problem sizes (between 1% and
5%). Nevertheless, this interpolation process can be considered a valid tuning strategy
because it allows fast prediction of a good value for nb for a given problem size.

Table 2. Comparison of the tile size (nb) selected by applying an interpolation process with respect to the
experimental optimum. The dev column shows the deviation of the performance (in %) obtained with each
tuning strategy with respect to the highest experimental performance.

S1 S2 S3 S4
n nb opt nb dev nb dev nb dev nb dev

3000 240 232 5 232 5 208 2 208 2
6000 288 352 12 352 12 232 15 232 15
10000 512 512 0 512 0 416 5 416 5
14000 672 576 3 576 3 576 3 576 3
18000 672 576 3 576 3 576 3 576 3
22000 896 576 1 576 1 576 1 576 1
26000 896 576 1 576 1 576 1 576 1

5. Extensions to the Experimental Study

So far, the experiments have been carried out considering a fixed set of values for the tile
size and using all the computing units of the heterogeneous node. Results are satisfactory
for the proposed training strategies, but when an intermediate set of problem sizes is used
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(e.g, by a user), the decisions in the selection of the value for the algorithmic parameters
are not always the best ones [12,13]. In this section we analyze how to improve the tuning
process, either by adjusting the search for the tile size or by selecting the appropriate
number of computing units to use.

5.1. Other Values for the Tile Size

Experimental results show that when an interpolation process is applied for some prob-
lem sizes, the deviation in Gflops with the selected nb is a little too far from the opti-
mum. Rather than searching for the optimum value for nb, we can consider neighboring
values and analyze the variability obtained in terms of performance in order to decide the
best value for nb. Table 3 shows the deviation obtained for each one of the intermediate
problem sizes when considering three values to the left and to the right of the interpo-
lated one (nb column). The value used to obtain the next (or previous) neighbor is set
according to the problem size. For n≤ 5000 a value of 8; for 5000< n< 10000 a value
of 16 and for n ≥ 10000 a value of 32. Therefore, the distance value used for nb could
be automatized according to the range of problem sizes considered. A positive value in
the deviation means an increase in performance over that achieved with the selected nb
by the interpolation process, and a negative value means a decrease in the performance.
In general, when n≤ 10000, the lowest deviation (or best improvement) is achieved with
the immediately previous neighbor to nb. Instead, when n > 10000, the best neighbor
is usually the third in increasing order with respect to nb. Therefore, the interpolation
process could be slightly adjusted for a better selection of the tile size to use for a given
problem size. For that, a search process could be applied, starting from the interpolated
values for nb and considering both the distance value for nb in function of the problem
size, and a percentage value for cases where an extreme value for nb is reached, in order
to continue exploring in that direction until a new value decreases the performance.

Table 3. Comparison of the performance variability (in %) obtained with several neighbors with respect to the
selected tile size (nb).

n nb1 dev nb2 dev nb3 dev nb nb4 dev nb5 dev nb6 dev

3000 208 +4 216 +2 224 +3 232 240 +5 248 -10 256 -6
6000 304 +6 320 +7 336 +12 352 368 -4 384 +2 400 +1
10000 416 -5 448 -2 480 -1 512 544 -6 576 -3 608 -4
14000 480 0 512 +1 544 -2 576 608 -1 640 +1 672 +3
18000 480 -3 512 -4 544 -7 576 608 -3 640 -3 672 +3
22000 480 -6 512 -3 544 -8 576 608 -3 640 -2 672 -1
26000 480 -7 512 -3 544 -8 576 608 -3 640 -3 672 -1

5.2. Other Algorithmic Parameters

As mentioned, the StarPU runtime system is able to efficiently schedule the kernels
among the available computational units of the system, but it tends to execute them us-
ing all the devices of the node. Our proposal is to analyze whether an appropriate se-
lection of the number of computational units to use for each problem size allows better
performances with an efficient use of the computational resources. We apply a selective
search process which consists of successively adding computing units (CPU and each
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GPU), following an increasingly powerful order. It is important to notice that the current
version of StarPU does not support the data-transfer model between GPUs implemented
on the latest NVIDIA devices. So, the process starts by searching for the best tile size
for the current problem size and platform configuration (the initial device considered is
the CPU). Then, the search continues by adding the most powerful GPU, and the best
value for the tile size is searched for by applying a bi-directional guided search, using as
starting-point the best value obtained for the previous platform configuration. When the
process finishes, both the best platform configuration and tile size for each problem size
are obtained. Table 4 shows the results of applying this tuning process for a set of prob-
lem sizes on the heterogeneous node considered (12 CPU cores and 6 NVIDIA GPUs:
4 GeForce GTX590, numbered 0, 2, 3 and 4, and 2 Tesla K20c, numbered 1 and 5). It
is important to note that StarPU only uses physical cores of the CPU (without hyper-
threading), therefore, the number of CPU cores is adjusted depending on the number of
GPUs used, since one CPU core is intended to manage one GPU. For the set of prob-
lem sizes considered, the search process takes about 185 minutes, but each experiment
is performed 10 times in order to obtain representative means for the Gflops. For small
problem sizes, a subset of the computing units of the node is selected, but when the
problem size increases it tends to use all the computing units. Column ‘Tuned Gflops’
shows the performance obtained with the configuration selected by the tuning process,
and ‘Cham Gflops’ shows the performance of the routine when it is executed with the
same tile size but using the default platform configuration. For all problem sizes, the best
performance is obtained in the tuned case even when the whole platform is used, since
by default StarPU schedules the tasks among workers (each of the GPUs) based on data
dependencies, but does not take into account the computational power of the computing
units. Therefore, despite the search time employed, this tuning process is a good strategy
to consider if we want to efficiently use the computing units of the node.

Table 4. Performance obtained for each problem size with the best configuration selected (Tuned G f lops)
and using the default platform configuration (Cham G f lops).

Computing Units
n nb CPU Cores GPU IDs Tuned G f lops Cham G f lops

1000 112 12 {−} 76 46
2000 192 9 {1,5,0} 164 117
3000 192 8 {1,5,0,2} 285 196
4000 240 7 {1,5,0,2,3} 412 352
5000 256 6 {1,5,0,2,3,4} 545 465
6000 256 6 {1,5,0,2,3,4} 626 554
7000 320 6 {1,5,0,2,3,4} 687 608
8000 320 6 {1,5,0,2,3,4} 753 682
9000 304 6 {1,5,0,2,3,4} 791 713
10000 304 6 {1,5,0,2,3,4} 834 758
11000 512 6 {1,5,0,2,3,4} 880 803
12000 576 6 {1,5,0,2,3,4} 909 896
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6. Conclusions

Task-based libraries allow us to efficiently schedule and execute linear algebra kernels on
heterogeneous platforms, but they are not able to decide the best values for some algo-
rithmic parameters of the routines, such as the tile size nb. In this work we propose some
tuning strategies for selecting satisfactory values for the tile size on tile-based routines.
We also analyze the best number of computing units to use for each problem size on a
heterogeneous platform. The Cholesky routine is considered as proof of concept, using
highly optimized implementations of the Cholesky factorization both for multicore and
GPU. We focus on the tile size as the algorithmic parameter to optimize because this
routine is executed in the Chameleon library by following a tile-based algorithm. The
experimental results obtained are satisfactory, showing that the pruning strategies (both
with empirical and simulated approaches) are good options to select the value for the tile
size for each problem size in a short time, allowing us to obtain performances close to the
experimental optima. Also, we show that a good selection of the computing units of the
node for each problem size (mainly for medium problem sizes) is paramount if we want
to efficiently use the computational resources with a better exploitation of the system.
Our aim is to apply the proposed methodology to other linear algebra routines (such as
LU or QR factorization) and to integrate the tuning process inside the Chameleon library,
extending the study of selecting which computing units to use to bigger heterogeneous
platforms (with a large number of computational resources).
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Batched 3D-Distributed FFT Kernels
Towards Practical DNS Codes
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Abstract. This work introduces a new idea of batched 3D-FFT with a survey of data
decomposition methods and a review of the states-of-arts high performance parallel
FFT libraries. Besides, it is argued that the particular usage of multiple FFTs has
been associated with the batched execution. The batched 3D-FFT kernel, which
is performed on the K computer, shows 45.9% speedup when N and P are 20483

and 128, respectively. The batched FFT allows the developer to take advantage of
a flexible internal data layout and scheduling to improve the total performance.

Keywords. 3DFFT, parallel FFT library, Batched execution, Optimization of
invocation of multiple FFTs, FFTE-C

Introduction

Three-dimensional Fast Fourier Transform (hereafter 3DFFT) is widely used in the field
of computational science, such as the direct numerical simulation (DNS) of incompress-
ible flow turbulence. A lot of studies claim the necessity of a high performance 3DFFT
library for large scale and high-resolution simulations (for example, see [1]).

The 1D-FFT is naturally one of the numerical kernels influenced by memory band-
width, which has a computational complexity of O(N logN) and memory transfer with
O(N) data length. Practical usage of memory, such as the cache blocking and a higher
radix FFT kernel, was investigated to optimize the single-node performance. For the
multi-process parallelization of the 3DFFT, we have two technical issues: i) the short of
parallelism, and ii) the significant communication overhead. One conventional solution
to them is to select a higher dimensional data decomposition. It is known that the 2D
and 3D decomposition yield a higher degree of parallelism than the simple 1D decom-
position. To select the appropriate communication scheme is significant for the multiple-
node operation as well. On the other hand, there is no much room to improve the per-
formance of the single FFT kernel itself. However, we can apply more advanced par-
allel optimization techniques on an application with multiple independent FFTs being
frequently called. For instance, the implementation technique and internal advanced task
scheduling may result in significant performance improvement when a large number of
FFTs are called.
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Figure 1. Schematic diagram of a 3DFFT

Our contributions in this study are mainly summarized in two parts. First, we de-
velop a high performance three-dimensional FFT library with several possible data-
distribution. Second, we introduce the idea of the batched execution, which exploits a
flexible internal data layout and scheduling. In particular, the latter works overlapping
with communication and computation for several independent 3DFFTs. Eventually, we
obtain an excellent speedup on the K computer by the overlap technique.

The rest of this paper consists of an overview of 3DFFT, methodology, implementa-
tions, and states-of-arts libraries. Then, a new idea of Batched execution to reduce sev-
eral performance bottlenecks is introduced in section 2. In section 3, performance inves-
tigation and benchmark on the K computer are demonstrated. Section 4 concludes this
study and shows some future works untouched in this work.

1. Methodology and Implementation of 3DFFT

Most of the recent advanced FFT libraries support 2D and 3D parallel FFT routines,
for example, FFTW[2], FFTE[3], 2decomp[4], P3DFFT[5], et al. These libraries exploit
many optimizing features such as on SIMD, thread parallelism, and MPI parallel as well.
Since supercomputer is composed of interconnected computing nodes, we must divide
the technical issues into optimal performance on a single node, then optimize them. In
this work, we make use of the FFTE implementation [3] as a portable and high perfor-
mance 1DFFT kernel.

1.1. Implementation of 3D FFT

The 3D DFT is defined as

Y (βx,βy,βz) =
nx−1

∑
αx=0

ny−1

∑
αy=0

nz−1

∑
αz=0

X(αx,αy,αz)ω
αxβx
nx ωαyβy

ny ωαzβz
nz (1)

where, X and Y refer to the three-dimensional input and output data with an nx × ny ×
nz rectangular coordinate, respectively. The 3D-DFT consists of ny·nz, nz·nx or nx·ny

one-dimensional FFTs in each direction as shown in Fig. 1. For the 1D-FFT in each
direction, they must be realigned or redistributed so that the data are obligatory arranged
in a consecutive manner on the memory hierarchy.

Parallel FFT has another issue due to the data decomposition across multiple proces-
sors. We must re-distribute the data so that the one-dimensional target data to be trans-
formed is gathered on a local memory of a particular process. In the case that the process
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Figure 2. 1D-, 2D-, 3D data decompositions

Figure 3. Data redistribution (left: pencil decomposition, right: volumetric decomposition)

grid is associated with the regular spatial grid, all-to-all personalized communication [6],
which is defined as a collective communication MPI_Alltoall in the MPI specification,
is required. Generally, we consider three ways to distribute 3D data: the slab decomposi-
tion, the pencil decomposition, and the volumetric decomposition, as presented in Fig. 2.
What is more, for the volumetric decomposition, we can select an appropriate communi-
cation algorithm either a naı̈ve one or the Jung’s algorithm [7] according to the network
configuration.

1.2. Pencil Decomposition versus Volumetric Decomposition

The pencil decomposition is used in major FFT libraries, such as FFTE[3] and
2decomp[4]. In the pencil decomposition, two alltoall communications and four trans-
positions are essential (Fig.3, left). On the other hand, in the volumetric decomposition,
each dimensional FFT on a single process must be done due to an obligation of a con-
secutive data arrangement. This data retrieval on a single process results in worse perfor-
mance than the pencil decomposition even if we expect a higher degree of parallelism.
The naı̈ve communication pattern, which is done in an alternating direction fashion,
needs five alltoall collectives. This method is called as 1d-alltoall. An advanced method
can be applied within three times of communication by combining the 1D grouping and
the 2D grouping, which is Jung’s algorithm and we call it 2d-alltoall (Fig.3, right). When
we suppose to use a 3D or higher dimensional torus network with two types of alltoall
communications based on pair-wise protocols and 3D-Torus protocols presented in [6],
the communication costs for each decomposition are estimated as in Table 1 (T1D: slub,
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Table 1. All-to-All cost for multi-dimensional decomposition FFTs

Pairwise 3D-Torus

T1D (α0 +αP)+βNP−1 3α 3
√

P+(3/2)βNP−2/3

T2D 2(α0 +α
√

P)+2βNP−1 4α 4
√

P+2βNP−3/4

T2D+1d 5(α0 +α 3
√

P)+5βNP−1 5α 3
√

P+(5/2)βN−2/3

T3D+2d 3α0 +α(2 3
√

P+P2/3)+3βNP−1 4α 3
√

P+2βNP−2/3

T2D: pencil, T3D+1d: volumetric+1d-alltoall, and T3D+2d: volumetric+2d-alltoall). Here, P
and N represent the number of processes and the global problem size (N3), respectively.
Also, “α” (or “α0”) and β refer to the communication overhead [sec] and the recipro-
cal of throughput [sec/Byte], respectively. This analytic result suggests that the pencil
decomposition is likely to minimize the communication cost in most cases.

On the contrary to previous discussions, it is natural for practical applications to
arrange the volumetric data distribution because of its simple and straightforward map-
ping of the volume of data onto a processor grid. There is no clear answer about this
inconsistent issue, but it should be distinguishable from the cases where spatial division
and FFTs are separable issues either when we call FFTs or investigate complex numeri-
cal integration by the spectral method. Moreover, both 3D+1d and 3D+2d include redis-
tribution from the volumetric decomposition to the pencil decompositions, essentially.
We recognize a room of optimization in the internal selection of spatial data division
and management of invoking multiple FFTs. The next section follows this argument and
shows our implementation of the Batched 3D-FFT routine, which is intended to reduce
the cost of the communication overhead.

2. Batched FFT

2.1. Idea of general Batched execution

The idea of Batch processing is one of the task-oriented programming methodologies
and task scheduling where independent task invocations are queued on a many-core
processor or GPU accelerators. A typical example of Batch processing is multitask-
ing/multithread parallel processing by using Batched BLAS [8,9]. One of the primary
purposes of Batched BLAS is to increase the processing efficiency of all tasks by allocat-
ing extremely coarse-grained tasks to the appropriate granularity of core groups and in-
crease system availability by an efficient parallel task scheduling. Furthermore, for small-
scale problems, data structures can be internally converted, and hardware-specific tech-
niques, such as SIMD and cache lines, can be applied accordingly. Due to this, smaller
problems can take advantage of SIMD and cache lines as well.

Many FFTs are frequently applied to calculate convolutions in frequency space in-
stead of calculating nonlinear terms in the spectral method. The idea of a Batched execu-
tion is practical to reduce the overall execution time because the expensive startup cost
is concealed behind the processing time of Batched components. In fact, a typical DNS
code such as in [1,10] has six inverse-FFTs and twelve FFTs without dependency, thus
overlapping is available in any intra-group FFT between the FFT+transposition opera-
tions performed internally and the communication as shown in Fig. 4.
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Figure 4. Simple sketch of overlapping data transposition and a 1D-FFT

2.2. Preliminary Implementation of Batched FFT APIs

FFTW and p3dfft define ‘many’ API, which is designated to simplify thread paralleliza-
tion in units of plans, but the part that passes multiple plans collectively to functions
can be classified as a Batch processing. The ‘many’ API functions of FFTW are imple-
mented as a serialized version; however, an MPI parallel version performs only for a one-
dimensional FFT. On the other hand, the latest p3dfft also supports multi-dimensional
FFT. Cufft for CUDA-GPUs provides a batched FFT functionality for small data in order
to accelerate the deep learning computing.

Suppose that we have independently computable variables, and those array sizes
and distribution methods are the same. As shown in the previous section, the parallel
3DFFT operates a 1DFFT on a local variable, and the communication operation for
another variable works independently. Therefore, it is possible to overlap both opera-
tions. Ultimately, we aim to conceal the full part of the calculation (local 1DFFTs) be-
hind the communication and increase the total system utilization. Fig. 5 illustrates the
overlapping of communication and calculation when eight variables are divided into
four groups, with each containing two FFT tasks. When we have n independent 3DFFT
tasks and TFFT-x = TFFT-y = TFFT-z � TAlltoAll/2 holds, the optimal time is smaller than
2TFFT-* + nTAlltoall. In general, the cost of successive or combined AlltoAll operations
is degraded. Thus, this approach is more effective if no significant overhead occurs in
the actual implementation (overlap mechanism and other operations such as data copy,
merging, sorting, and so on).

We devised two different implementations, i) ALLTOALLW + derived data types, ii)
buffer reordering, as well as using synchronous and asynchronous ALLTOALL. Specifi-
cally, in the implementation i), we introduce a user-derived MPI data type for the sender
and receiver to invoke only one MPI_Alltoallw for the transposition of two three-
dimensional arrays. The implementation ii) introduces a send buffer and a receive buffer
to realign two array data into one serialized array. The scheduling of the FFT tasks
includes another grouping parameter, which specifies how many tasks are packed. As
shown in Fig. 5, the grouping parameter affects parallelism and concurrency of the Batch
processing. Thus, the scheduling algorithm is tunable, and we can optimize the Batched
FFT by choosing an appropriate grouping parameter.
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Figure 5. Advanced task scheduning on a Batched execution

3. Numerical Experiment and Discussions

The benchmarks were executed on several processors and a supercomputer as follows,

1. K: The K Computer, Fujitsu Sparc64 XIIIfx (2GHz, 8cores),
2. FX100: Fujitsu Sparc64 IXfx (1.975GHz, 32cores),
3. KNL: Intel Xeon Phi 7250 (Knight Landing) (1.4GHz, 68cores), and
4. Skylake: Intel Xeon Gold 6148 (2.4GHz, 20cores, 2sockets).

The execution time of data-decompositions of a 3-dimensional real FFT was
measured on the K computer with a large number of computational nodes, from
64 to 1,024. The number of threads was 8 and fixed as the same as the number
of physical cores. On each system, vendor-supplied compiler, for example, Fujitsu
C/C ++ compiler version 1.2.0 or Intel C/C++ compiler version 18.0.1 was used
with the most reasonably optimization options, -Kfast -Kopenmp -Kmfunc=2, or
-O3 -fma -xHOST -axMIC-AVX512, respectively. The system specification of the K
computer is shown in the Appendix.

3.1. A 1DFFT kernel (FFTE-C)

FFTE-C is a C language version of FFTE [3]. FFTE comprises radix 2, 3, 4, 5, and 8
kernels, and is capable of doing an FFT for 1-, 2-, and 3-dimensional data of length
n = 2p ·3q ·5r. Since the source code was written in the conventional Fortran77 (partly in
Fortran90 or PGI CUDA Fortran), we were motivated to remake a C version in order to
perform pointer-oriented data handling for a Batch processing and more advanced task
scheduling. Furthermore, we newly introduced a radix 16 FFT kernel.

The roofline model defined by min
{

Fpeak, Bpeak ×Operational intensity
}

reflects
the performance estimation of a target program that is supposed to be possibly bounded
by the memory bandwidth [11]. Here, Fpeak, Bpeak refer to the theoretical peak perfor-
mance of floating-point calculation and the theoretical peak of memory bandwidth, re-
spectively. Table 2 summarizes the values of parameters (the number of issues of loads,
stores, real additions, and real multiplications) and Byte/Flop ratio for the innermost loop
of the target 1DFFT code. The table shows that a higher radix kernel has a more signifi-
cant operational intensity. Thus, the performance upper bound of higher radix FFT raises
according to the roofline model analysis.

We measured the performance of 1D FFTE-C kernel for a 16,777,216(=166) dimen-
sional data on each of four processors, and Table 3 presents their roofline performance
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Table 2. The number of LDs, STs and floating-point operations and byte/flop ratio for the innermost loop of
radix-2, 4, 8, 16 FFT kernels

Radix-2 Radix-4 Radix-8 Radix-16

Loads 4 8 16 32

Stores 4 8 16 32

Multiplications 4 12 32 84

Additions 6 22 66 174

Byte/Flop ratio 6.400 3.765 2.612 1.984

Table 3. Roofline Performance Evaluations by using four types of processors

K FX100 KNL Skylake

Fpeak (1CPU) [GFlop/s] 128 1011 3046 1536

Bpeak (1CPU) [GB/s] 46.6 302 490 87

Flop counts [GFlop] 1.42 1.42 1.42 1.42

Total memory access [GB] 2.15 2.15 2.15 2.15

Roofline [GFlop/s] 34.09 232.02 421.06 82.11

Roofline [ms] 57.20 8.52 4.85 25.61

Experiment [ms] 288.82 16.55 7.48 29.43

Ratio Experiment/Roofline 0.20 0.52 0.65 0.87

evaluations. Since our FFTE-C kernel was mainly developed on an Intel Xeon Gold
(Skylake) and tuned up thoughtfully, 87% of the roofline performance is acceptable as
well as Intel Xeon Phi (KNL) showed similar roofline performance.

On the other hand, on Fujitsu processors, especially, Sparc64 VIIIfx, the same code
has achieved only 20% of the roofline performance. In the case that the radix is a power
of two, the six-step FFT, which is employed in the FFTE library, also folds the array in-
ternally with a stride of multiply of the power of two. In such data arrangement, multiple
FFTs processed simultaneously conflict resources of the 2 way L1 cache frequently. On
another Fujitsu processor, FX100 (Sparc64 IXfx), because the L1 cache is doubled in set
associativity, the penalty resulting from the cache thrashing is dismissed and overhead
has been relaxed.

3.2. Performance improvement of Batched 3DFFT

As a result of numerical experiments (Fig.6) on the K computer, the pencil decomposi-
tion (indicated as 2decomp) requires more time for calculations other than communica-
tion; in other words, the communication time achieves about half of the total execution
time. Also, the pencil decomposition shows the highest performance regardless of the
problem size and the number of nodes. When the problem size is 1,0243, the calcula-
tion time is more significant other than communication for 2D decomposition. When the
problem size is 2,0483, the communication time occupies about half of the total exe-
cution time. The performance per compute node is generally low from the performance
analysis of 1D-FFTE, but nevertheless, the ratio of the communication time to the to-
tal execution time degrades because the network performance of Torus interconnects is
relatively higher.

Fig.7 demonstrates that the execution time of the Batched-FFT is reduced by more
or less 30% compared with that without overlap. Even if MPI_Ialltoall does not work
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Figure 6. Performance comparison among 1D-, 2D-, 3D decomposition on K (Upper: 1,0243, Bottom:
2,0483)

as an expected non-blocking collective function on the K computer, we achieved a 45.9%
speedup when P=128 with an expense of one physical processing core out of 8 for com-
munication. It concludes a remarkable performance improvement by the Batch process-
ing with a simple scheduling mechanism.

Fig. 8 shows the experimental result of the advanced Batch processing, in which 12
variables were targeted, and grouping and pipeline scheduling presented in Fig. 5 were
performed. Although the two methods shown in the previous section were implemented,
the advantages of grouping has not been confirmed, instead, the startup overhead was
slightly increased though it was initially expected to be reduced. Therefore, it is nec-
essary to optimize the data arrangement and the alltoall function itself by using other
derived types.

4. Summary

In this study, we surveyed data decomposition methods of the 3D-FFT and developed
a high performance parallel FFT library based on the pencil decomposition. Besides, a
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Figure 8. Preliminaly result of Advanced Batched 3D-FFT implementations on K (left: derived type, right:
reordering)

particular usage of multiple FFTs has been associated with the idea of the Batched exe-
cution. The Batched 3D-FFT kernel performed on the K computer gains 45.9% speedup
in performance when N = 2,0483 and P= 128. The Batched FFT allows the developer to
take advantage of a flexible internal data layout and pipeline to improve the total perfor-
mance. Currently, the supported functions and possible optimization are limited. More
advanced optimization by handling abstracted multiple FFT operations and performance
improvement are our future works as well as evaluation of real application codes such as
DNS codes on the supercomputer Fugaku, which is the successor of the K computer.
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A. The hardware specification of the K computer

Total peak performance 10.62 PFlops

Number of nodes 82,994

Node Socket (CPU+ICU) 1

Performance 128 GFLOPS

Memory 16GB

Memory throughput 64GB/s (8 cores)

Interconnect Product Tofu Interconnect

Topology 6D-Mesh/Torus

CPU Product SPARC64TM VIII fx

Cores 8

Operating frequency 2.0 GHz

L1 cache (each core) L1I: 32KB/2way

L1D: 32KB/2way

L2 cache 6MB/12way

SIMD 2DFPs(FMA)×2pipes
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On Superlinear Speedups of a Parallel
NFA Induction Algorithm

Tomasz JASTRZĄB a,1

a Institute of Informatics, Silesian University of Technology, Gliwice, Poland

Abstract. The parallel induction algorithm discussed in the paper finds a mini-
mal nondeterministic finite automaton (NFA) consistent with the given sample. The
sample consists of examples and counterexamples, i.e., words that are accepted
and rejected by the automaton. The algorithm transforms the problem to a fam-
ily of constraint satisfaction problems solved in parallel. Only the first solution
is sought, which means that upon finding a consistent automaton, the remaining
processes terminate their execution. We analyze the parallel algorithm in terms of
achieved speedups. In particular, we discuss the reasons of the observed superlin-
ear speedups. The analysis includes experiments conducted for the samples defined
over the alphabets of different sizes.

Keywords. parallel algorithm, superlinear speedup, nondeterministic automata
induction, constraint satisfaction

1. Introduction

Deterministic and nondeterministic finite automata play a crucial role in various practical
applications, including artificial intelligence, grammatical inference, and bioinformatics
[1,2,3]. The last field of application is particularly interesting, as also stated in [4], since
the automata can be used to detect patterns hidden in bioinformatics data. In this con-
text, automata can act as classifiers for previously unseen sequences, or as generators,
producing new sequences that may bear some biological meaning.

A nondeterministic finite automaton (NFA) is given by a tuple A= (Q,Σ,δ ,q0,QF),
where Q is a finite set of states, Σ is an alphabet, δ : Q×Σ → 2Q is a transition function,
q0 ∈ Q is an initial state and QF ⊆ Q is a set of final states [5]. A sample S = (S+,S−)
consists of two sets of words, where a word w is a finite sequence of symbols defined
over the alphabet Σ, set S+ contains examples, while set S− contains counterexamples.

The aim of the parallel induction algorithm is to find a minimal NFA consistent with
the given sample S. The automaton is consistent with S iff it accepts all the examples and
rejects all the counterexamples. A word w is accepted by the automaton A iff there exists
a sequence of transitions between state q0 and at least one state q ∈ QF on which the
word is read. Otherwise, the word is rejected. The automaton is consistent and minimal
iff no two states can be merged together without losing the consistency.

1Corresponding Author: Tomasz Jastrząb, Institute of Informatics, Silesian University of Technology,
ul. Akademicka 16, 44-100 Gliwice, Poland; E-mail: Tomasz.Jastrzab@polsl.pl.
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The induction of minimal consistent NFA is known to be hard. It was shown that
NFA minimization is impossible from polynomial time and data [6]. It was also shown
that even if the sample is given in the form of a deterministic finite automaton, the prob-
lem is PSPACE-complete [7]. Hence, the use of parallel computing is vital for efficient
solving of the problem at hand.

In the paper, we study a parallel algorithm for solving the minimal NFA induction
problem. The algorithm constructs first a set of independent constraint satisfaction prob-
lems (CSP), described in detail in Section 2, and then solves them in parallel. We also
consider a modified version of the algorithm in which each CSP is solved independently
according to a number of different variable orderings. Furthermore, we discuss the im-
plications of the use of shared and distributed memory models, including the issues of
distributed computation termination and the overhead of interprocess communication.

The main contribution of the paper is the analysis of the achieved speedups. We
focus in particular on the superlinear speedups2 observed for certain samples. We provide
explanations of the anomalies. We analyze the speedups in the function of the number
of processes, but also with respect to the input samples. They differ in the sizes of the
alphabets, the lengths of the examples and counterexamples and the sizes of the resulting
automata. We consider different samples including the ones presented in the literature
[9] and randomly generated based on the publicly available resources [10].

The rest of the paper is organized as follows. In Section 2 we present the problem
formulation considered in the paper. In Section 3 we discuss the basic and modified
parallel induction algorithms. Section 4 contains the results of the experiments and the
discussion of the superlinear speedups. Finally, in Section 5 we present the conclusions.

2. Problem Formulation

The problem of minimal consistent NFA induction can be viewed from two different
perspectives. Namely:

1. It is an optimization problem, if we first induce any consistent NFA, and later
reduce it by merging redundant states.

2. It is a decision problem, if we first fix the number of states, and later search for a
consistent automaton with the given number of states.

Note that in the first case, the final size of the automaton depends on the order in which
the merges are performed. As a consequence, the resulting automaton need not be mini-
mal. With the second approach, by taking the number of states to be k = 1,2, . . ., we not
only find the consistent automaton for the given k, but we can also prove that it is indeed
minimal, if no consistent NFA exists for k− 1 states. However, even for the decision
problem, the solution (i.e., the induced NFA) does not have to be unique.

There exists a number of algorithms following the first approach towards NFA in-
duction mentioned above. They include the DeLeTe2 algorithm [11], Nondeterministic
Regular Positive Negative Inference (NRPNI) [12], and the state merging algoriths based
on the notions of unambiguous [13] or universal [14] automata. The algorithm discussed
in [14] has been extended in [15], to produce an algorithm that is independent of the or-

2A superlinear speedup occurs when the achieved speedup is greater than the number of used processes. For
more information see [8].
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der in which the merges are performed. Yet another approach was taken in [16], in which
subautomata consistent with the set S− were generated for each member of the set S+,
and were later removed when an example was accepted by a different subautomaton.

The decision problem formulation was pursued in [17], in which the basic encoding
of the induction problem as a CSP was proposed. The encoding was later improved in
[18,19], which allowed for a significant reduction of the solution space size. The impact
of the selected variable ordering schemes on the performance of parallel induction algo-
rithms was also investigated in [20,4]. Finally, some considerations related to the possi-
bility of using multiple variable orderings at the same time were presented in [21]. In the
current paper, we further elaborate on this possibility in terms of achieved speedups.

Let us now recall the CSP-based formulation of the induction problem solved by the
parallel algorithms described in Section 3. The description is based on [19] and corre-
sponds to the decision problem stated before. Let k be the given number of states and l
be the size of the alphabet. We assume two types of binary variables y and z. Variables
yi, i= 0,1, . . . ,k2l−1, denote the elements of the transition function δ , and variables z j,
j= 0,1, . . . ,k−1, mark the states as final or non-final. Let Σ be ordered lexicographically
and let loc(a) denote the zero-based position of a symbol a within Σ. Then each index i
of a variable yi, corresponding to a transition qm

a→ qn, qm,qn ∈ Q, is given by [17]:

i= k2 · loc(a)+ k ·m+n. (1)

Given the variables defined above, the consistency of the automaton with the sample
S= (S+,S−) is defined as follows:

1. If set S+ or set S− contains the empty word λ , then z0 = 1, for λ ∈ S+ (the empty
word is accepted), and z0 = 0, for λ ∈ S− (the empty word is rejected).

2. For all examples, the word w is accepted by the NFA iff there exists a sequence
of transitions over which word w is spelled out, provided that this sequence ends
in a final state. Therefore, for each w ∈ S+ \{λ}, it holds that:

∨
j=0..k−1

⎛
⎝ ∨

1..k|w|−1

(yi1 ∧ yi2 ∧ . . .∧ yi|w|)

⎞
⎠∧ z j = 1, (2)

where i1, i2, . . . , i|w| are the indices of yi variables computed according to Eq. (1),
for 0≤ m,n< k and a ∈ Σ appearing in word w.

3. For all counterexamples, the word w is rejected by the NFA iff no sequence of
transitions over which word w is spelled out exists, or such a sequence ends in a
non-final state. Therefore, for each w ∈ S− \{λ}, it holds that:

∨
j=0..k−1

⎛
⎝ ∨

1..k|w|−1

(yi1 ∧ yi2 ∧ . . .∧ yi|w|)

⎞
⎠∧ z j = 0, (3)

where i1, i2, . . . , il are defined as before.

Example 1. To clarify Eqs. (2) and (3) let us consider the following example. Let the
sample be S = ({a,aa,ba,bba},{λ ,b,ab}) and let k = 2. Since λ ∈ S− we have z0 = 0.
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Since z1 = 0 cannot lead to a valid solution (no word would be accepted), we set z1 = 1.
Equations (2) and (3), after applying values of z0 and z1, take the following form:

for word a: y1 = 1
for word aa: y0∧ y1∨ y1∧ y3 = 1
for word ba: y4∧ y1∨ y5∧ y3 = 1
for word bba: y4∧ y4∧ y1∨ y4∧ y5∧ y3∨ y5∧ y6∧ y1∨ y5∧ y7∧ y3 = 1
for word b: y5 = 0
for word ab: y0∧ y5∨ y1∧ y7 = 0

After solving the above equations we get that y1 = 1, y4 = 1, y0 ∨ y3 = 1, y5 =

0, and y7 = 0. It means that the resulting automaton contains the transitions q0
a→ q1,

q0
b→ q0 and at least one of the transitions q0

a→ q0 or q1
a→ q1. Moreover, the automaton

cannot contain the transitions q0
b→ q1 and q1

b→ q1. The existence of transitions related
to variables y2 (transition q1

a→ q0) and y6 (transition q1
b→ q0) cannot be determined

based on the given sample S. The example solutions are shown in Figure 1.

a, b

a
q0 q1

b a

a
q0 q1

Figure 1. Automata consistent with sample S, in which y0 = 1, y1 = 1, y4 = 1 (left), and y1 = 1, y3 = 1, y4 = 1

3. Parallel Algorithms

Let us now discuss the basic parallel algorithm for solving the induction problem [21].
As already stated, it aims at solving independent CSPs in parallel to speed up the com-
putation. Note that the algorithm, shown in Figure 2, searches for one solution only.

The algorithm BASICPARINDUCTION starts by checking if the value of variable
z0 can be established based on the presence of the empty word (line 2). Depending on
the outcome of this check, it sets the number of possible CSPs n as follows: (i) n =
2k−1, for λ /∈ (S+∪S−), (ii) n= 2k−1, for λ ∈ S+, (iii) n= 2k−1−1, for λ ∈ S−. These
CSPs are then distributed among processes (line 3). Each process employs a backtracking
procedure (lines 5–10), to find the assignments of values to y variables.

There are a few points about the algorithm shown in Figure 2 that are worth men-
tioning. First of all, structure Zs is a k-element vector of z j variables’ values. Based on
these values, Eqs. (2) and (3) are simplified by removing the terms for which z j = 0
(see Example 1). Secondly, the way in which the CSPs are distributed among processes
in the parfor loop (line 3) depends on the used memory model. For a shared memory
model, new processes may be forked by a master process, while for a distributed memory
model, the processes may be assigned to the Zs vectors based on their ranks. In either
case the interprocess communication overhead at this point is minimal. Thirdly, for each
CSP both the yi variables and their values are selected according to the given ordering
scheme (line 6), which is the same for each CSP (see [21] for a discussion of other pos-
sibilities). Finally, since we search for the first solution, upon finding it the computation
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1: procedure BASICPARINDUCTION(S,k)
2: if λ ∈ (S+∪S−) then set z0 accordingly
3: parfor s← 1to n do

4: Zs ← assignment of values to z j variables, 0≤ j < k
5: � start backtracking procedure
6: select next yi and assign value according to the given ordering
7: evaluate Eqs. (2) and (3)
8: if contradition found then change value or return to the previous yi
9: if solution found then notify other processes and terminate

10: � end backtracking procedure
11: end parfor

12: end procedure

Figure 2. The basic parallel induction algorithm

terminates. The way in which the termination procedure is realized, depends again on the
memory model used. In case of the shared memory model, it is enough to use a global
Boolean flag protected against simultaneous read-write access by a mutex. In case of the
distributed memory model, a message has to be sent to other processes, indicating that
they may terminate their execution. However, to receive the message, each process has
to periodically check for message arrival. Hence, the distributed memory model incurs
some time overhead resulting from channel probing and interprocess communication.

The modified version of the parallel induction algorithm is shown in Figure 3. It
applies multiple ordering schemes to each of the analyzed CSPs. The intuition behind
this approach is that the “best” ordering is not known in advance, and it may differ
between respective CSPs. Thus, to increase the chances for efficient computation, we
employ multiple orderings to the same instance of the CSP. This way we also capitalize
on the negative results, i.e., when the process using some ordering determines that no
solution exists for the given CSP (given Zs), it notifies the other processes working on
the same CSP, that they should terminate their execution. This way, the time to solve a
given CSP is shorter, and equal to the run time of the process using the “best” ordering.

Let us discuss the effects of the memory models on the MULTIVOPARINDUCTION

algorithm. The distribution of computation ocurrs in lines 3 and 5. Let n be the number of
CSPs and m be the number of ordering schemes. Then in the shared memory model, we
can fork nm processes, divide them into n groups working on the Zs vectors and for each
process in the given group apply a different ordering scheme for the same Zs. In case of
the distributed memory model, we can still use the process ranks, but this time we have
to group the processes working on the same vector Zs. As to the termination procedure,
for the shared memory model, we need a set of global Boolean flags, one for each group
of processes working on the same CSP, to indicate negative results. For the distributed
memory model, we need to introduce a different message type for each group of pro-
cesses, to indicate group termination, as opposed to global termination when the solution
is found. Therefore, the overhead of interprocess communication does not change for the
distributed memory model, while it increases for the shared memory model, due to the
need for access synchronization to the group termination flag.

Figures 4 and 5 show the work distribution and interprocess communication related
to the termination procedure for the two parallel algorithms. For the basic algorithm, we

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm 183



1: procedure MULTIVOPARINDUCTION(S,k)
2: if λ ∈ (S+∪S−) then set z0 accordingly
3: parfor s← 1to n do

4: Zs ← assignment of values to z j variables, 0≤ j < k
5: parfor t ← 1to m do

6: � start backtracking procedure
7: select next yi and assign value according to the given ordering t
8: evaluate Eqs. (2) and (3)
9: if contradition found then change value or return to the previous yi

10: if solution found then notify other processes and terminate
11: � end backtracking procedure
12: end parfor

13: if solution not found then notify other processes working on Zs and terminate
14: end parfor

15: end procedure

Figure 3. The modified parallel induction algorithm

assumed that the number of processes is equal to n, while for the modified version, this
number is equal to nm.

Process P1 Process P2 Process Pn

Z1 Z2 Zn

global termination flag

. . .

Figure 4. Work distribution and computation termination procedure for BASICPARINDUCTION algorithm

4. Experiments

The parallel algorithms were implemented in Java and executed on a pair of 12-core Intel
Haswell 2.3 GHz processors with 128 GB RAM. The read-write access to the shared
memory was protected using the ���������	
� keyword. The time measurements were
performed using ���
���������
�� function.

The experiments were conducted for the selected Tomita languages [9] and for the
samples built from the peptides listed in WALTZ-DB database [10]. The Tomita lan-
guages are defined over the alphabet {0,1}, while the peptides are based on an alphabet
of up to 20 symbols, representing amino acids. The summary of the differences between
these two sample sources is shown in Table 1.

The experiments aimed at observing the speedups obtained by the basic and mod-
ified parallel algorithms. The algorithms used three different ordering schemes, namely
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Process P
(1)
1 Process P

(1)
m Process P

(n)
1 Process P

(n)
m

Z1 Z1 Zn Zn

group termination flag group termination flag

global termination flag

. . . . . .. . .

Figure 5. Work distribution and computation termination procedure for MULTIVOPARINDUCTION algorithm

Table 1. Comparison of sample characterisitcs based on Tomita languages and WALTZ-DB samples

Sample characteristic Tomita languages WALTZ-DB samples

Number of samples N 10 50
Number of states k 3–4 2–3
Alphabet size |Σ| 2 18–20
Sample size |S+|+ |S−| 20–25 50
Word length |w| 0–18 5–6
Contains empty word λ ∈ (S+ ∪S−) yes no

the deg scheme [22], as well as the min-max-ex and min-max-cex schemes [4]. The deg
scheme uses static ordering based on variable degree, while the other two schemes use
dynamic ordering based on the examples and counterexamples, respectively.

In the first experiment we compared the basic parallel algorithm executed by a single
process and by the number of processes corresponding to n. The distribution of obtained
speedups, for different variable orderings, is shown in Figure 6. The box plots show the
minimum and maximum speedup values (marked by the lines extending from the box),
together with the first, second, and third quartile (marked by the box itself).

Based on the results shown in Figure 6 we noticed two kinds of anomalies. On the
one hand, we observed slowdowns present mostly for the Tomita languages. On the other
hand, we noted the superlinear speedups (up to 8500) in case of WALTZ-DB samples.

0.6

1.2

1.8

2.4

3.0

deg min-max-ex min-max-cex

S

100

101

102

103

104

deg min-max-ex min-max-cex

S

Figure 6. Speedups achieved by the BASICPARINDUCTION algorithm for the Tomita languages (left) and
WALTZ-DB samples
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The reason for the negative anomalies is that when the solution found during the
sequential and parallel execution of the algorithm is the same, the latter approach intro-
duces an overhead resulting from parallelism. Since the processes read from and write to
the shared memory, access synchronization occurs. Furthermore, the NUMA architecture
of the processors also affects the distribution of memory access times. This in turn intro-
duces certain delays to the overall execution time. The reasons for positive anomalies are
two-fold. Either there exists more than one solution for the given sample, or the solution
is found for a CSP that is not the first one analyzed. In the former case, the algorithm
executed in parallel allows to find the “simplest” solution, i.e., the solution that can be
found in the shortest time. In the latter case, the parallel algorithm is able to bypass the
“hard” CSP instances that have to be solved during the sequential run of the algorithm.

Example 2. Let us assume that a two-state automaton is sought. We consider three
different CSPs resulting from the pairs of assignments Z0 = 〈0,1〉, Z1 = 〈1,0〉, and Z2 =
〈1,1〉. Let us assume that the execution times are τ0 = 10 s, τ1 = 1 s, and τ2 = 25 s,
and that a solution exists for the cases Z0 and Z1. The sequential execution takes 10 s
(solution for Z0 found), while the parallel execution for n = 3 processes takes only 1 s
(solution for Z1 found), which gives a speedup of 10.

Example 3. Let us assume that a two-state automaton is sought. We consider three
different CSPs resulting from the pairs of assignments Z0 = 〈0,1〉, Z1 = 〈1,0〉, and Z2 =
〈1,1〉. Let us assume that the execution times are now τ0 = 25 s, τ1 = 1 s, and τ2 = 10 s,
and that a solution exists for the case Z1. The sequential execution takes 26 s (cases Z0
and Z1 considered), while the parallel execution for n= 3 processes takes only 1 s (after
solution for Z1 is found all processes terminate), which gives a speedup of 26.

In the experiments performed for the WALTZ-DB samples, we counted 25, 34, and
34 cases in which a different solution was found by the sequential and parallel algorithm
using deg, min-max-ex, and min-max-cex, respectively. Out of these cases, there were 12,
19, and 11 cases which resulted in superlinear speedups. Additionally, for the cases in
which the sequential and parallel execution provided the same solution, there were 13,
14, and 5 cases, in which we observed superlinear speedups.

In the second experiment we used the MULTIVOPARINDUCTION algorithm to ob-
serve how the use of multiple ordering schemes affects the execution times. In particular,
we compared the run times of the modified algorithm with the sequential executions of
the basic algorithm. The summary of obtained speedups is shown in Table 2.

Based on the results shown in Table 2, we note that the use of multiple orderings
sometimes fails to bring any improvement in the execution time, regardless of the type of
sample (see min columns). It is caused by even more frequent synchronization between
processes, occurring also within the groups solving the same CSP. However, we observe
that the MULTIVOPARINDUCTION algorithm allows also for large superlinear speedups

Table 2. Speedups achieved by the MULTIVOPARINDUCTION algorithm with respect to the basic algorithm

deg min-max-ex min-max-cex

Sample source min max avg min max avg min max avg

Tomita 0.1 2.8 0.7 0.2 17.6 2.8 0.2 23.1 3.8
WALTZ-DB 0.1 115.1 13.6 0.9 38101.7 2688.8 0.5 96.8 11.6
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(see max columns in WALTZ-DB row). These speedups are observed for the ordering
schemes different than the one that found the solution. It is so because, the “best” order-
ing can produce the solution in much shorter time than the other orderings, bypassing
also their problems in solving certain CSPs.

We noted that in case of the WALTZ-DB samples, the deg ordering scheme was
usually the one that allowed to find the solution in the shortest time (for 30 out of 50
samples). The same trend was also preserved for Tomita languages, for which the deg
ordering scheme was the fastest in 7 out of 10 cases.

5. Conclusions

We analyzed the speedups obtained by the basic and modified parallel algorithms for
NFA induction. For the Tomita languages, defined over two-symbol alphabet, we usually
observed negative anomalies, i.e., the algorithms slowed down with the increase of the
number of processes. Furthermore, these samples turned out to be easy enough to be
solved efficiently even by a single process. For the peptide-based samples of WALTZ-
DB database, the parallelism was expolited to a larger extent. Firstly, there were 3 cases
in which the sequential execution of the algorithm failed to find the solution within the
time limit of 8 hours. And secondly, we observed superlinear speedups of up to 8500 for
no more than 7 processes, and over 38000, for up to 21 processes.

To explain the differences between the two kinds of samples, let us note that the
solution space is given by 2k

2l , where k is the number of states and l is the alphabet size.
Therefore, for the Tomita languages we need to consider at most 232 ≈ 4 · 109 different
assignments of values to y variables. For the WALTZ-DB samples, we get 2180 ≈ 1018

possible assignments. Therefore, the bigger solution space allows for better use of the
parallelism and increases also the probability that more than one solution exists. Hence,
it allows to achieve superlinear speedups in the cases discussed in Examples 2 and 3.

In the future, we plan to investigate the performance of the algorithms in the cases
in which more than one solution is sought. In particular, we are interested in analyzing
how the number and types of used variable ordering schemes would affect the speedups.
Moreover, we plan to investigate deeper the reasons for the observed slowdowns.
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Abstract. We present a Domain Decomposition Reduced Order Data Assimila-
tion (DD-RODA) model which combines Non-Intrusive Reduced Order Modelling
(NIROM) method with a Data Assimilation (DA) model. The NIROM is defined
on a partition of the domain in sub-domains with overlapping regions and the DA
is defined on a partition of the domain in sub-domains without overlapping re-
gions. This choice allows to avoid communications among the processes during the
Data Assimilation phase. However, during the balance phase, the model exploits
the domain decomposition implemented in DD-NIROM which balances the results
among the processes exploiting overlapping regions. The model is applied to the
pollutant dispersion within an urban environment. Simulations are performed using
the open-source, finite-element, fluid dynamics model Fluidity.

Keywords. Numerical simulations, Reduced Order Models, Data Assimilation,
Domain Decomposition

1. Introduction

It is estimated that by 2050, around four-million deaths per year will be attributable to
outdoor air pollution (twice the current mortality rate) [1]. This mandates the develop-
ment of techniques that can be used for emergency response, real-time operational pre-
diction and management. Numerical simulations are extensively used as a predictive tool
to better understand complex air flows and pollution transport on the scale of individual
buildings, city blocks and entire cities [2]. Fast-running Non-Intrusive Reduced Order
Model (NIROM) for predicting the turbulent air flows has been proved to be an effi-
cient method to provide numerical forecasting results [3]. However, due to the reduced
space on which the model operates, the solution includes uncertainties that are somewhat
ambiguous [3]. Additionally, any computational methodology contributes to uncertainty
due to finite precision and the consequent accumulation and amplification of round-off
errors. Taking into account these uncertainties is essential for the acceptance of any nu-
merical simulation. The main question is how to incorporate data (e.g. from physical
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measurements) in models in a suitable way, in order to improve model predictions and
quantify prediction uncertainty.

Here, the focus is on the prediction of nonlinear dynamical systems: the classical
application example being weather forecasting. In this paper, we combine a Domain De-
composition NIROM (DD-NIROM) method [4] with Data Assimilation (DA). DA is an
uncertainty quantification technique used to incorporate observed data into a prediction
model in order to improve numerical forecasted results. The DD-RODA (Domain De-
composition Reduced Order Data Assimilation) model we propose in this paper achieves
both efficiency and accuracy by including Variational DA (VarDA) into DD-NIROM.

The DD-NIROM can be constructed by a combination of proper orthogonal decom-
position (POD) and machine learning methods or interpolation methods. The key idea
of the DD-NIROM is that it constructs a set of hypersurfaces representing the reduced
system (including linear and non-linear processes). The novelty of the NIROM and DD-
NIROM, presented in [3], lies in how they are generated, i.e. how the hypersurfaces
are calculated using a machine learning method. The model we introduce in this paper
combines the state of the art of domain decomposition reduced order models with an
efficient variational DA model defined on an optimal reduced space [5,6,7,8] and on
a decomposition of the domain in sub-domains named (DD-DA). Even if the DD-DA
method we employ is efficient, it lacks of efficiency in the pre-processing phase which
mainly consists in evaluating and computing the background error covariance matrices.
Modelling and specification of the covariance matrix of background error constitute im-
portant components of any data assimilation system [9]. The main attributes of the back-
ground error covariance matrix are: to spread out the information from the observations;
to provide statistically consistent increments at the neighboring grid points; and to ensure
that observations of one model variable produce dynamically consistent increments in
the other model variables. The use of DD-NIROM for the pre-processing phase of the
DD-DA process can improve the efficiency of the whole prediction-correction cycle with
a consequent improvement of the operational prediction model fidelity.

In summary, in this paper we combine a Domain Decomposition Non-intrusive Re-
duced Order Modelling method [4] with Domain Decomposition Data Assimilation [8,7]
in a Domain Decomposition Reduced Order Data Assimilation (DD-RODA) model in
order to achieve both accuracy and efficiency in our simulations. An important advantage
of the DD-RODA approach is that once the DD-NIROM model is obtained, there is no
need to refer to the full model while performing DD-DA. With this approach, in fact, we
improve

• the accuracy of the DD-NIROMmodel by introducing information from observed
data using the variational DD-DA process.

• the efficiency of the DD-DA process in the pre-processing phase: we use the DD-
NIROM results to train our background error covariance matrices resulting in a
strong reduction of the overall execution time.

We demonstrate the accuracy and the scalability of our approach. A mathematical
formulation of the model is provided.

The model is tested on the pollutant dispersion within an urban environment. Sim-
ulations are performed using the open-source, finite-element, fluid dynamics software
Fluidity (http://fluidityproject.github.io/). The details of the equations solved and their
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implementations can be found in [10,11,12]. In this paper, the state variable consists of
values of pollution concentration. However, the algorithm and numerical methods pro-
posed in this work can be applied to other physical problem involving other equations
and/or state variables.

2. Reduced Order Assimilation model

Let u be a state variable and let f represent a full physical system:

u̇ = f (u, t) (1)

where t denotes the time.
Let Ω be the discrete spatial domain and let P(Ω) =

{
Ω j

}
j=1,...,s be a partition of Ω

in s sub-domains. Let u j be the restriction of the state variable u on the sub-domain Ω j.
In this work, a Domain Decomposition Non-intrusive Reduced Order Modelling (DD-
NIROM) method is used to enhance the computational efficiency. The reduced order
model projects the sub-domains of the full physical system with a big dimensional size
onto a reduced space sub-domains with a much smaller dimensional size, therefore it is
faster to solve.
Let n denotes a time level, the DD-NIROM uses a Proper Orthogonal Decomposition
(POD) method and Gaussian Process Regression (GPR) method to approximate the so-
lutions of equation (1).

In DD-NIROM based on the POD method, any variables un
j (for example, the veloc-

ity or tracers) at time level n can be expressed by the expansion,

un
j = u j+

M

∑
i=1
αn

jiφ ji, (2)

where αn
ji (i ∈ {1,2, . . . ,M}) denotes the POD coefficients of the POD basis functions at

the time level n. φ ji are the POD basis functions.M is the number of POD basis functions
(M << N) which can represent most (99% for example) of energy within the chosen
solution snapshots. u j represents the mean of the snapshots.

Let n be a fixed time level and let un
j be a state variable expressed by DD-NIROM

as described in equation (2). Let enj = u j −un
j be the error introduced by replacing the

full physical system in (1) by the NIROM model (2). We introduce a DD-Reduce Order
Assimilation process by which the DD-NIROM model in (2) is combined with a DD-
Data Assimilation method in order to improve the accuracy of the solution un

j (i.e. reduce
enj ) introducing information by observation of the state variable u j.

Let vnj be an observation of the state variable at time n, the aim of DD-Reduced
Order Data Assimilation (DD-RODA) problem is to find an optimal trade-off between
the prediction made based on the DD-NIROM system state un

j (background) defined in
(2) and the available observation vnj . For a fixed time step n, given un

j , vnj and a mapping

Hj : un
j �→ vnj , (3)
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the DD-RODA process consists in finding uDD−RODA
j as inverse solution of

vnj = Hj
(
uDD−RODA) , (4)

subject to the constraint that uDD−RODA
j = un

j , i.e.:

uDD−RODA
j = u j+

M

∑
i=1
αn

jiφ ji. (5)

where φ ji denotes the POD basis functions. Since Hj is typically rank deficient, equation
(4) is an ill-posed inverse problem [13,14]. The Tikhonov formulation [15,16] leads to
an unconstrained least squares problem, where the term in (5) provided by DD-NIROM
ensures the existence of a unique solution in (4). The DD-RODA process can then be
described as follows:

uDD−RODA
j = argminu j

{
‖u j−un

j‖2B−1
j
+‖vnj −H (u j)‖2Rj

−1

}
(6)

where Rj and Bj are the observation and model error covariance matrices respectively,
defined on each subdomain Ω j, j = 1, . . . ,s:

Rj := σ2
0 I j, (7)

with 0≤ σ2
0 ≤ 1 and I j the identity matrix,

Bj =VjVT
j (8)

where Vj is the deviance matrix [6]. If equation (6) is linearised around the background
state [17], we have:

u j = un
j +δu j (9)

where δu j = u j−un
j denotes the increments. The DD-RODA problem is formulated by

the following form:

δu
DD−RODA
j = argminδu j J j(δu j) (10)

where

Jj(δu j) =
1
2
δu

T
j B−1

j δu j+
1
2
(H jδu j−dDD−NIROM

j )TR−1
j (H jδu j−dDD−NIROM

j ) (11)

and

dDD−NIROM
j = [vnj −Hj

(
un
j
)
] (12)

is the misfit between the observation and the solution computed by DD-NIROM (see
Algorithm 1) and
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Hj (u j)� Hj
(
un
j
)
+H jδu j (13)

denotes the linearised observational and model operators evaluated at u j = un
j where H j

is the Hessian of Hj. In equation (10), the minimisation problem is defined on the field of
increments [18]. In order to avoid the inversion of B j, as B j = V jV

T
j , the minimisation

can be computed with respect to a new variable [17] w j = V+
j δu j and V+

j denotes the
generalised inverse of V j:

wDD−RODA
j = argminw j J j(w j) (14)

where

Jj(w j) =
1
2

wT
j w j+

1
2
(HV jw j−dDD−NIROM

j )TR−1
j (HV jw j−dDD−NIROM

j ) (15)

In the next section, DD-RODA is applied to improve the pollutant dispersion pre-
diction within an urban environment. Simulations are performed using the open-source,
finite-element, fluid dynamics model Fluidity.

3. Numerical example

The capability of DD-RODA has been estimated using an urban environment located
in London South Bank University (LSBU) area (London, UK) shown in Figure 1. The
computational domain has a size of [0,2041]× [0,2288]× [0,250] (metres). This work
uses the 3D non-hydrostatic Navier-Stokes equations as the full physical system,

∇ ·u = 0, (16)

∂u

∂ t
+u ·∇u = −∇p+∇ · τττ, (17)

where u ≡ (u,v,w)T is the velocity, p = p̃/ρ0 is the normalised pressure (p̃ being the
pressure and ρ0 the constant reference density) and τττ denotes the stress tensor.

Simulations were carried out for the study area using Fluidity, an open-source, finite-
element, fluid dynamics model [12]. The dispersion of pollutant is described by the clas-
sic advection-diffusion equation with the pollutant concentration treated as a passive
scalar. A source term was added to the advection-diffusion equation to mimic a constant
release of pollutant generated by traffic in a busy intersection for example. The location
of the point source is depicted by the red sphere in Figure 1(a). The time step was adap-
tive based on the Courant (CFL) number defined by the user, and the Crank-Nicholson
scheme was used for the time discretization [11,10]. The mesh is shown in Figure 1(c).
The outlet boundary condition was defined by a zero-pressure (no-stress) condition; per-
fect slip boundary conditions were applied at the top and on the sides of the domain
and no-slip boundary conditions were applied on all building facades and the bottom
surface of the domain. A synthetic incoming-eddy method was used at the inlet [20] to
mimic the behaviour of the boundary layer. The mean velocity profile was prescribed as
in equation (18):
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Algorithm 1 DD-RODA algorithm on each sub-domain Ω j, j = 1, ...,s
� The following are known: { fi}mi=1, {φφφ i}mi=1, Hj and Rj

ααα0
j = ααα j(t0) � Initialisation of POD coefficients

for n= 1 to Nt do
t = t0+nΔt � Current time

� Step (a): calculate the POD coefficients, αααn
j , at the current time step:

for i= 1 to m do

αn
ji = f ji(αn−1

j1 ,αn−1
j2 , . . . ,αn−1

jm )

endfor

� Step (b): obtain the solution un
j in the full space at the current time, t, by projecting

αn
ji onto the full space using equation (2):

un
j = 0

for i= 1 to m do
un
j = un

j +αn
jiφφφ ji

endfor

� Step (c): compute the optimal background error covariance matrix:
Vn

j = un
j − ū j

V j = {V j,V
n
j}

endfor

V jτ = TSVD(V,τ). � Truncated SVD regularised matrix [6,19]

� Step (d): solve the reduced order assimilation process (6):
dDD−NIROM
j ← vnj −Hju

n
j � Compute the misfit

G j ← H jV jτw j−dDD−NIROM
j

wDD−RODA
j = argminw j

{
1
2wT

j w j+
1
2GT

j R−1
j G j

}
� Compute the minimum

δuDD−RODA
j ← V jτw j � From the reduced to physical space

uDD−RODA
j ← un

j +δuDD−RODA
j

(u,v,w) =
(
0.97561ln

( z
0.01

)
,0,0

)
(18)

where z denotes the height (in m). The inlet length-scale LLL and Reynolds stresses RRReee
are prescribed constant and equal to 100 m and 0.8 respectively, for the diagonal com-
ponents, and zero elsewhere. Zero velocity is prescribed on the bottom and on the wall
boundaries. Zero stress conditions is set to be p= 0 at the outlet boundary and a perfect
slip condition is specified on the vertical lateral boundaries. Experiments have been im-
plemented and tested on 3 high performance nodes equipped with bi-Xeon E5-2650 v3
CPU and 250GB of RAM with Python 3.5
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(a)

(b) (c)

Figure 1. (a) London South Bank University (LSBU) test case area. The red sphere denotes the location of the
pollution source and the blue arrows denote the wind direction. (b) 3D computational domain and (c) surface
mesh of the test site.

The accuracy of the DD-RODA results is evaluated by the mean squared error on each
sub-domain:

MSE(u j) =
‖u j−uCj ‖L2
‖uCj ‖L2

(19)

computed with respect to a control variable uCj provided by observed data, for j =
1, . . . ,s and s denotes the number of sub-domains. Figure 2 shows the values of
MSE(uDD−NIROM) and MSE(uDD−RODA) for a decomposition made of s = 16 sub-
domains running on p= 16 processors. We can observe that the error decreases for each
sub-domain. We observe a bigger gain in terms of accuracy reduction in sub-domains
where the pollution concentration is more diffused. Fox example, the sub-domain num-
ber 11 presents a bigger gain as shown in Figure 2, this sub-domain is the central sub-
domain in Figure 4 (orange colour).

We evaluated the execution time needed to compute the solution of the DD-RODA
model using Algorithm 1. Let Ts denote the execution time of Algorithm 1 for a do-
main decomposition made of s sub-domains. We assume that p= s, where p denotes the
number of processors and we pose:

Ts = max{Tsi}i=1,...,s (20)

where Tsi denotes the execution time for each processor on each sub-domain. The total
execution time is shown in Figure 3(a). There is a clear decreasing trend in the total ex-
ecution time with the increase of number of processors. Figure 3(b) shows the values of
execution time of DD-NIROM and Fluidity on p= 4,16,32 processors for a decomposi-
tion of s= 4,16,32 sub-domains. The gain in terms of execution time provided by using
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Figure 2. Values ofMSE(uDD−NIROM) andMSE(uDD−RODA) for a decomposition made of s= 16 sub-domains
running on p= 16 processors

DD-NIROM instead of Fluidity strongly impact on the efficiency of the pre-processing
to the Data Assimilation phase (Step (c) of Algorithm 1) for computing the covariance
matrices Vj for each time step n.

(a) (b)

Figure 3. (a) Values of execution times of DD-NIROM and DD-RODA for a number of sub-domains
s= 4,16,32 running on p= 4,16,32 processors (plot in linear scale) (b) Values of execution time for running
1 time step of DD-NIROM and Fluidity on p= 4,16,32 processors (plot in log scale).

Figure 4 shows the impact of DD-RODA on the iso-surface of the pollutant concen-
tration for 5.10−1kg/m3 computed in parallel with p = 16 processors and generated by
a point source. Figure 4(a) shows the results predicted by DD-NIROM, i.e. uDD−NIROM ,
while Figure 4(b) shows the observed data, i.e. v. Values v are assimilated in parallel
by DD-RODA to correct the forecasting data uDD−NIROM . The assimilated data after the
DD-RODA process, i.e. uDD−RODA, are then obtained (Figure 4(c)).

4. Conclusions

In this paper, we have presented a Domain Decomposition Reduced Order Data Assim-
ilation (DD-RODA) model which is a fusion of the Non-Intrusive Reduced Order Mod-
elling method with a 3D Data Assimilation both defined on a decomposition of the do-
main in sub-domains. We proved that our approach improves both accuracy of the DD-
NIROMmodel and efficiency of the DA process. The accuracy of the DD-NIROMmodel
is improved by introducing information from observed data exploiting the 3D variational
DA process. The efficiency of the DA process is mainly improved in the pre-processing
phase. In fact, we used the DD-NIROM results to train our background error covariance
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(a) uDD−NIROM : predicted pollutant iso-surface by DD-
NIROM.

(b) v: observed pollutant iso-surface.

(c) uDD−RODA: assimilated pollutant iso-surface by DD-
RODA.

Figure 4. Iso-surface, in white, of the pollutant concentration for 5.10−1kg/m3 computed in parallel with
p= 16 and generated by a point source.

matrices and we have shown that this implies a strong reduction of the overall execution
time. The efficiency and the accuracy of our model were discussed and tested using a 3D
case of air flows and pollution transport in an urban environment. The algorithms and the
method proposed are, however, enough generic and can be used easily for other physical
problems.

R. Arcucci et al. / A Domain Decomposition Reduced Order Model with Data Assimilation 197



Acknowledgments

This work is supported by the EPSRC Grand Challenge grant “Managing Air for Green
Inner Cities” (MAGIC) EP/N010221/1 and by the EPSRC Centre for Mathematics of
Precision Healthcare EP/N0145291/1.

References

[1] Jos Lelieveld, John S Evans, Mohammed Fnais, Despina Giannadaki, and Andrea Pozzer. The contri-
bution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569):367,
2015.

[2] Bert Blocken. Computational fluid dynamics for urban physics: Importance, scales, possibilities, lim-
itations and ten tips and tricks towards accurate and reliable simulations. Building and Environment,
91:219–245, 2015.

[3] D Xiao, CE Heaney, L Mottet, F Fang, W Lin, IM Navon, Y Guo, OK Matar, AG Robins, and CC Pain.
A reduced order model for turbulent flows in the urban environment using machine learning. Building
and Environment, 148:323–337, 2019.

[4] D Xiao, CE Heaney, F Fang, L Mottet, R Hu, DA Bistrian, E Aristodemou, IM Navon, and CC Pain.
A domain decomposition non-intrusive reduced order model for turbulent flows. Computers & Fluids,
2019.

[5] R. Arcucci, C. Pain, and Y. Guo. Effective variational data assimilation in air-pollution prediction. Big
Data Mining and Analytics, 1(4):297 – 307, 2018.

[6] R. Arcucci, L. Mottet, C. Pain, and Y. Guo. Optimal reduced space for variational data assimilation.
Journal of Computational Physics, 2018.

[7] R. Arcucci, L. DAmore, L. Carracciuolo, G. Scotti, and G. Laccetti. A decomposition of the tikhonov
regularization functional oriented to exploit hybrid multilevel parallelism. International Journal of Par-
allel Programming, 45(5):1214–1235, 2017.

[8] R. Arcucci, L. Carracciuolo, and R. Toumi. Toward a preconditioned scalable 3dvar for assimilating
sea surface temperature collected into the caspian sea. Journal of Numerical Analysis, Industrial and
Applied Mathematics, 12(1-2):9–28, 2018.

[9] D.G. Cacuci, I. M. Navon, and M. Ionescu-Bujor. Computational methods for data evaluation and
assimilation. CRC Press, 2013.

[10] R. Ford, C. C. Pain, M. D. Piggott, A. J. H. Goddard, C. R. E. de Oliveira, and A. P. Umpleby. A nonhy-
drostatic finite-element model for three-dimensional stratified oceanic flows. part i: Model formulation.
Monthly Weather Review, 132:2816–2831, 2004.

[11] E. Aristodemou, T. Bentham, C. Pain, and A. Robins. A comparison of mesh-adaptive les with wind
tunnel data for flow past buildings: Mean flows and velocity fluctuations. Atmospheric Environment,
43:6238–6253, 2009.

[12] Imperial College London AMCG. Fluidity manual v4.1.12. 4 2015.
[13] H. K. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems. Kluwer, 1996.
[14] N. Nichols. Mathematical concepts in data assimilation. W. Lahoz, et al. (Eds.), Data Assimilation,

Springer, 2010.
[15] P.C. Hansen. Rank deficient and discrete ill-posed problems. SIAM, Philadelphia, 1998.
[16] Y. Wang, I. M. Navon, X. Wang, and Y. Cheng. 2D Burgers equation with large Reynolds number using

POD/DEIM and calibration. International Journal for Numerical Methods in Fluids, 82(12):909–931,
2016.

[17] A.C. Lorenc. Development of an operational variational assimilation scheme. Journal of the Meteoro-
logical Society of Japan, 75:339–346, 1997.

[18] JP. Courtier. A strategy for operational implementation of 4d-var, using an incremental approach. Q J R
Meteorol Soc, 120(519):1367–1387, 1994.

[19] R. Arcucci, L. D’Amore, J. Pistoia, R. Toumi, and A. Murli. On the variational data assimilation problem
solving and sensitivity analysis. Journal of Computational Physics, pages 311–326, 2017.

[20] D. Pavlidis, G.J. Gorman, J.L.M.A. Gomes, C. Pain, and H. ApSimon. Synthetic-Eddy Method for
Urban Atmospheric Flow Modelling. Boundary-Layer Meteorology, 136:285–299, 2010.

R. Arcucci et al. / A Domain Decomposition Reduced Order Model with Data Assimilation198



Predicting Performance of Classical and

Modified BiCGStab Iterative Methods
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Abstract. The paper focuses on comparison of the efficiency of various formula-

tions of BiCGStab iterative methods in the parallel computations. The analytical

execution time model, based on the volume of data transfers with the memory, is

presented. The corresponding model predictions are validated with results of the

calculations. The proposed model is used to compare the performance of the classi-

cal BiCGStab and Pipelined BiCGStab method formulations. The obtained model

predictions and simulation results are compared with results of other authors.

Keywords. Krylov subspace iterative methods, analytical execution time model,

BiCGStab, Pipelined BiCGStab, scalability

1. Introduction

Improving efficiency of Krylov subspace iterative methods on high performance compute

systems is among the topics of active research for decades. These methods are widely

used to solve large sparse systems of linear algebraic equations occurred as a result of

spatial discretization of the corresponding differential equations. The Krylov subspace

methods typically consist of three types of algebraic operations: vector updates, dot prod-

ucts and matrix-vector multiplications. The first ones are the local operations, the second

ones require global reduction and the third ones require the corresponding communica-

tions with neighbour processes. While the time for local communications with neigh-

bours is typically independent of the number of compute processes (at least in case of

using graph partitioning methods to minimize the number of neighbours and the corre-

sponding volume of communications), the time to perform global communications grows

with increasing the number of compute processes.

Multiple attempts have been performed to reformulate the corresponding methods

in order to change the sequence of calculations to minimize the time spent on communi-

cations. Among the unpreconditioned BiCGStab methods, the Improved BiCGStab [1]

and Pipelined BiCGStab [2] are the non-limiting examples of the corresponding modi-

fied methods. The Improved BiCGStab method combines together multiple dot products,

thus allowing to reduce three global reductions of classical BiCGStab method per each

iteration to only one. The Pipelined BiCGStab needs two global reductions, but the al-

gorithm allows to overlap the corresponding communications by calculations of matrix-

1Corresponding Author: Boris Krasnopolsky, Institute of Mechanics, Lomonosov Moscow State University,
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vector multiplications. The proposed optimizations, however, require some extra vector

operations, thus making the range of applicability and optimality for each of the methods

a priori not evident. The authors have shown [2] that the Pipelined BiCGStab starts to

outperform the classical BiCGStab at the scales of several compute nodes. The presented

results, however, were not analysed in terms of the achieved performance, thus leaving

some doubts when interpreting these results.

The current paper discusses the formulation of the analytical execution time model

and shows detailed comparison of the classical BiCGStab and reformulated Pipelined

BiCGStab methods with both analytical model predictions and calculation results. The

presented results lead to a different conclusion compared the one stated in [2]. Possible

reasons for the observed deviations are also discussed.

The rest of the paper is organized as follows. The second section provides descrip-

tion of the analytical execution time model and corresponding estimates for the classical

and Pipelined BiCGStab methods. The third section contains description of the testing

methodology used for benchmarking. The fourth section presents the analytical model

validation results and thorough comparison of the classical and Pipelined BiCGStab

methods. The possible reasons of deviations with results of [2] are also highlighted. The

conclusion section finalizes the paper.

2. Analytical Execution Time Model

Accurate analysis of the time measurements and the achieved performance requires com-

parison with the calculation results by the other authors or some analytical models jus-

tifying the obtained results. The current paper provides the details of the analytical ex-

ecution time model, allowing to predict the calculation times for the Krylov subspace

iterative methods. The proposed expressions deal with the BiCGStab methods, however,

the same methodology can be applied to other Krylov subspace methods.

Opposite to the models discussed in [4,5], which are based on the number of floating

point operations to perform the computations, the current model is based on the volume

of data transfers with the memory. The Krylov subspace iterative methods comprise of

the vector operations and matrix-vector multiplications, and performance of these oper-

ations is limited by the memory bandwidth of the compute system [6]. This fact makes

the volume of data transfers the more natural choice as a basis of the performance model

than the number of floating point operations.

The proposed analytical model accounts the times to perform the vector operations,

Tvec, matrix-vector multiplications, Tmul , and the time spent on communications. The last

one includes the times for local communications (exchanges with local neighbours when

performing matrix-vector multiplications) and global reductions (global operations when

calculating dot products). The local communications are typically overlapped by the cal-

culations with the local matrix blocks, while the possibility to hide the global commu-

nications by the calculations depends on the specific method formulation. The classical

BiCGStab method requires 22 vector read/write operations, 2 matrix-vector multiplica-

tions and 3 global reductions per each iteration; global reductions are not overlapped by

calculations and act as global synchronization points. This leads to the corresponding

expression for the execution time:

T BiCGStab(p) = 22Tvec(p)+2TSpMV (p)+3TG(p), (1)
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where

Tvec(p) =
8N

b p
, (2)

TSpMV (p) = max(Tmul(p),TL(l)) , (3)

Tmul(p) =
N (8(C+1)+4(3C+1))

b p
. (4)

Here, N is the problem size, p is the number of compute nodes, b is the compute node

memory bandwidth, C is the average number of non-zero elements per matrix row; float-

ing point numbers are assumed 8 bytes, integers are assumed 4 bytes, and the sparse

matrix is stored in the CSR format. Following [3,7], it is expected the overhead to calcu-

lations due to communications for local non-blocking point-to-point communications in

Eq. (3) is negligible and ignored in the matrix-vector execution time expression.

The Pipelined BiCGStab method requires 43 vector read/write operations, 2 matrix-

vector multiplications and 2 global reductions, but allows to overlap these communica-

tions by the matrix-vector multiplications:

T PipeBiCGStab(p) = 43Tvec(p)+2max(TSpMV (p)+ γTG(p),TG(p)) , (5)

where γ is the overlapping overhead parameter, characterizing the efficiency of the asyn-

chronous non-blocking global communications (γ = 0 indicates ideal overlap and no

overhead when performing global communications; γ = 1 indicates no overlap of com-

munications by computations; γ > 1 indicates the slowdown of communications due to

progression of asynchronous non-blocking communications performed in background).

To conclude, the expressions for the local and global communication times must

be provided. These functions are expressed in the form of polynomials, and the coeffi-

cients of the polynomials are fitted by results of the specific MPI benchmarks. The de-

tails of the benchmarks developed can be found in [3]. For the Lomonosov and HPC5

supercomputers used in the tests the following values have been obtained:

• Lomonosov:

TG(p, l) = 3.5 ·10−6 +1.7 ·10−6 l0.21 p0.54
, (6)

TL(l) =

{
2.4 ·10−6 +6.9 ·10−8 l0.56

, l ≤ 2048 bytes,

3.2 ·10−6 +2 ·10−9 l , l > 2048 bytes.
(7)

• HPC5:

TG(p, l) = 5.6 ·10−6 +9.7 ·10−7 l0.3 p0.63
, (8)

TL(l) =

{
4.4 ·10−6 +1.2 ·10−9 l , l ≤ 2048 bytes,

7.1 ·10−6 +6.4 ·10−10 l , l > 2048 bytes.
(9)
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Table 1. Specifications of Lomonosov and HPC5 supercomputers.

Supercomputer Lomonosov HPC5

Processor model Intel Xeon X5570 Intel Xeon E5-2650 v2

Processors 2 2

Cores 4 8

Instruction set SSE4.2 AVX

LLC size, MB 8 20

RAM Bandwidth, GB/s 16 40

LLC Bandwidth, GB/s 46 170

Interconnect Infiniband QDR Infiniband FDR

MPI library Intel MPI 2017 Intel MPI 2017

Compiler Icc 17.0.1 Gcc 7.3.0

3. Test Cases and Testing Methodology

Both the analytical model predictions and calculation results presented below were per-

formed with the test matrix of 106 unknowns obtained as a result of discretization of 2D

Poisson equation on a regular grid of 10002 cells with the 5-point stencil. To measure

the single iteration execution time for the BiCGStab methods, the constant number of

iterations Nit = 1000 was calculated. The benchmarking was performed for two hard-

ware platforms Lomonosov and HPC5; the key characteristics of these compute systems

are summarized in Table 1. The estimates for the real random-access memory (RAM)

and last level cache (LLC) bandwidths presented in the table were obtained with help of

STREAM benchmark [8].

The implementations of BiCGStab and Pipelined BiCGStab methods in the newly

developing library for solving large sparse systems of linear algebraic equations XAMG

were used for the numerical validation. The current version of the XAMG library sup-

ports MPI parallelization. All the presented simulation results (up to 128 and 64 nodes

for Lomonosov and HPC5 supercomputers respectively) were performed utilizing all

available CPU cores per node with one rank per core mapping. In all the cases the lexi-

cographical ordering of the matrix was used when distributing data across the compute

processes.

4. Validation Results

The proposed simple execution time model allows to compare the efficiency of various

methods and outline their range of applicability. The current section contains results of

the validation of the proposed analytical model and detailed comparison of the efficiency

of classical BiCGStab and Pipelined BiCGStab methods.

4.1. Analytical Model Validation

The first step of the validation and benchmarking procedure considers comparison of the

analytical model predictions with the numerical calculation results. The corresponding

comparison includes results for two iterative methods, classical BiCGStab and Pipelined

BiCGStab, and two hardware platforms, Lomonosov and HPC5 supercomputers. For the
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Figure 1. Analytical predictions and numerical simulation results for the Lomonosov supercomputer.

classical BiCGStab method the plots (Figures 1, 2) contain two theoretical curves corre-

sponding to RAM and LLC bandwidth predictions; these curves limit the expected range

of the execution times for the calculation results. For the Pipelined BiCGStab method the

plots contain four theoretical curves. The proposed estimate Eq. (5) contains additional

overlapping overhead parameter, γ , and the presented results show two limiting cases for

this parameter (γ = 0 reflects ideal overlap of asynchronous non-blocking global com-

munications by calculations and γ = 1 reflects the case with no overlap).

Calculation results obtained for the Lomonosov supercomputer (Figure 1) fit the

range outlined by the analytical model predictions. At the scale of several compute nodes

the calculation results comply with the RAM bandwidth predictions. Increasing the num-

ber of compute nodes the memory consumption per node decreases and the data starts

to fit the cache. This is reflected in shifting of the calculation results towards the LLC

bandwidth predictions.

Results for the Pipelined BiCGStab method presented in this section do not assume

any special techniques to perform the asynchronous non-blocking global communica-

tions. One can see that the calculation results demonstrate better match with the analyti-

cal model predictions for the case with no overlap of global communications by calcula-

tions; this agrees with results shown in [3,7].

Results for the second hardware platform presented in Figure 2 reproduce all the

tendencies indicated for the Lomonosov supercomputer. For the test matrix considered

the calculation times even with the single compute node become lower than the RAM

bandwidth predictions. This is a consequence of the 2.5 times higher LLC capacity of

the processors installed in the compute nodes of the HPC5 system and rather small size

of the test matrix (the test matrix considered needs about 60MB to store the data in the

CSR format).

Results presented above allow to conclude that:

• the proposed analytical execution time model correctly predicts the corresponding

methods execution times achieved in practice;

• implementations of the methods in the XAMG library do not contain any serious

performance issues.

This makes possible to use the analytical model and the implementations of the meth-

ods for the systematic comparison of the efficiency of classical BiCGStab and Pipelined

BiCGStab methods.
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Figure 2. Analytical predictions and numerical simulation results for the HPC5 supercomputer.

4.2. Comparing Efficiency of BiCGStab Methods

Analytical expressions Eq. (1) and Eq. (5) for the execution times of the methods allow

to estimate the range of applicability for the methods considered in the paper. Comparing

these expressions, one can see that even in case of ideal overlap of global communica-

tions by the calculations without any overhead, γ = 0, the typical range of applicability

for the Pipelined BiCGStab method starts with

N �
1

10

TG b p

8
. (10)

This relation gives very narrow range of optimality for the Pipelined BiCGStab method:

the matrix block per each compute node must be small, N � 105, or the amount of com-

pute nodes must be large enough the global synchronization time to be comparable with

milliseconds. Accounting the realistic values of the overlapping overhead when perform-

ing asynchronous non-blocking global reductions with short messages for the current

compute platforms, the expected range of applicability would be even smaller. Other-

wise, the classical BiCGStab will outperform the modified method.

It should be noted the conclusion formulated above contradicts with results pre-

sented in [2]. For the similar test matrix and compute system architecture as Lomonosov

supercomputer (the test platform used in [2] has the same interconnect and the CPU gen-

eration, only differing in the number of cores) the authors have shown the advantage of

Pipelined BiCGStab starting with 4 compute nodes. The plot in Figure 3 summarizes

the calculation results obtained in this work and the ones from [2]. The present results

demonstrate much better execution times and parallel efficiency for both compute sys-

tems used for benchmarking. The classical BiCGStab outperforms the modified method

for all the points except the only one, 20 nodes for HPC5 compute system, where the per-

formance for both formulations become equal. It is reasonable to expect that equalling

of the performance for both methods is related with the decreased number of global re-

duction operations (modified method has two global reductions compared three for the

original one), but not the effect of global communications overlap.

The authors in [2] used the progression threads implemented in the MPICH-3.1.3

library to perform the asynchronous execution of non-blocking collective communi-

cations. The same functionality is also available in Intel MPI 2017, used in the cur-

rent test session. The same series of experiments has been repeated with activated soft-

ware progression threads. The obtained results are summarized in Figure 4. These re-

sults, however, raise lots of questions. Activation of software progression threads for
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Figure 3. Comparison of the execution times for the single iteration of BiCGStab and Pipelined BiCGStab

methods performed on two compute systems with results presented in [2].

Figure 4. Effect of software progression threads on performance of the iterative methods.

the Lomonosov supercomputer leads to a smooth degradation of performance with in-

creasing the number of compute nodes. This effect is more noticeable for the classical

method formulation, while for the Pipelined BiCGStab it is, probably, compensated by

the communications overlap.

Completely different situation is observed for the HPC5 compute platform. Activa-

tion of software threads leads to a performance degradation even for the calculations with

the single compute node. While for the classical BiCGStab some speedup still can be

achieved with increasing the number of compute nodes, execution times for the Pipelined

BiCGStab method remain almost constant independently on the amount of compute

nodes. Such a behaviour is expected strange and needs further investigation. Meanwhile,

the obtained results clearly show that the software progression does not allow to ob-

tain any simulation speedup for the algorithms with asynchronous non-blocking global

reductions with short messages and lead to a performance degradation compared with

synchronous global communications.

5. Conclusion

The current paper discusses the efficiency of various Krylov subspace iterative methods

for solving systems of linear algebraic equations, and, specifically, focuses on the com-

parison of the BiCGStab method formulations. The analytical execution time model is

B. Krasnopolsky / Predicting Performance of Classical and Modified BiCGStab Iterative Methods 205



proposed to compare the performance of the methods and outline the range of applicabil-

ity for each of them. The model is based on the volume of data transfers with the memory

needed to perform the calculations. Correctness of the model is validated by results of

numerical simulations. It is shown that the calculation results fit the range of the expected

execution times predicted by the analytical model.

The range of optimality for the Pipelined BiCGStab method is highlighted. For the

moderate numbers of compute nodes the size of the problem should not exceed 105 un-

knowns per compute node for the typical compute system.

The obtained analytical model predictions and calculation results are compared with

results of other authors. It is shown that the current implementation of the methods signif-

icantly outperforms results published in [2] and suggests different conclusions about the

preference of the Pipelined BiCGStab method. The range of optimality for the modified

method formulation is expected at much higher scales of compute nodes than indicated

in [2].

The efficiency of software progression threads to reduce the time spent on asyn-

chronous global communications is investigated. The obtained results demonstrate sig-

nificant slowdown for the runs with activated software progression. This clearly indi-

cates that software progression functionality is inapplicable for the algorithms actively

performing global reductions with short messages.
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Abstract. We present preliminary results of a GPU porting of all main Gad-
get3 modules (gravity computation, SPH density computation, SPH hydrodynamic
force, and thermal conduction) using OpenACC directives. Here we assign one
GPU to each MPI rank and exploit both the host and accellerator capabilities by
overlapping computations on the CPUs and GPUs: while GPUs asynchronously
compute interactions between particles within their MPI ranks, CPUs perform tree-
walks and MPI communications of neighbouring particles. We profile various por-
tions of the code to understand the origin of our speedup, where we find that a peak
speedup is not achieved because of time-steps with few active particles. We run a
hydrodynamic cosmological simulation from the Magneticum project, with 2 ·107
particles, where we find a final total speedup of ≈ 2. We also present the results of
an encouraging scaling test of a preliminary gravity-only OpenACC porting, run in
the context of the EuroHack17 event, where the prototype of the porting proved to
keep a constant speedup up to 1024 GPUs.

Keywords. GPU, OpenACC, SPH, Barnes-Hut, Astrophysics

1. Introduction

The parallel N-body code Gadget3 [1,2] is nowadays one of the most used high-
performing codes for large cosmological hydrodynamic simulations [3]. Gadget3 ex-
ploits hybrid MPI/OpenMP parallelism. Each MPI task owns a region of the domain
composed by contiguous chunks of Hilbert-ordered particles, and, at each time-step com-
municates guest particles that interact with regions belonging to other MPI tasks. Dark
matter, gas and stars are sampled by particles and interact through gravity using the
Barnes-Hut [4] approximation for short-range interactions and Particle-Mesh for long
range interactions. Hydrodynamics of gas particles is modelled using an improved ver-
sion of Smoothed Particle Hydrodynamics (SPH) [5] by [6].

SPH is implemented in Gadget3 with two different modules: the first one computes
particle densities by multiple iterations and the second one computes hydrodynamic
forces. Additionally Gadget3 implements other physical processes as thermal conduction
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Figure 1. Gas projected density of a portion of the cosmological simulation Magneticum Box4/hr (2 · 107
particles). Left panel shows the gas distribution of the initial conditions of the simulation; central panel shows
particles in the middle of a simulation (where dark matter haloes start forming); right panel show particles at
the end of the simulation. Color values are log-scaled.

and sub-resolution models for star formation and black hole evolution. Star particles in-
teract only through gravity, however, they are created based on properties of gas particles
as in [7].

Each of the above mentioned modules share the same pattern: they compute the
force acting on a list of active particles by performing a tree walk over groups of one
or more active particles and find all neighbouring particles within a given distance [8].
Being Gadget3 a parallel code, when searching for neighbours, the code will also identify
regions of the tree that belongs to a different MPI rank. After this identification, MPI
ranks will exchange neighbouring particles. In the second phase of each module, MPI
ranks will compute forces acting on guest particles due to local contributions. When a
MPI rank has computed the interactions over the received guest particles, it will send
the results back to their original MPI rank, which will merge the received contributions
with the one from local neighbours. Gadget3 uses a relatively small exchange buffer
(≈ 300MB per node) compared to the memory occupied by particles in a large simulation
(> 20GB per node), and for this reason, it is not possible to exchange boundary particles
all at one time: first and second phases must be repeated until all active particles have
been processed.

Figure 1 shows the projected gas density in three different phases of a simulation.
While the initial conditions of a simulation (left panel) contains nearly homogeneous
matter distribution, as simulation time increases (from left to right panels), dark mat-
ter forms haloes and filaments. Particles inside a clustered region are driven by much
stronger accelerations than particles outside these regions, thus Gadget3 uses an adaptive
time-stepping scheme where active particles are updated with a kick-drift-kick solver[2].

Since small time-steps have only few active particles, to improve the performance
during the neighbour search, the code drifts only tree-nodes and non-active particles that
are encountered during such neighbour search. The previously mentioned drift and filling
of the export buffer are not thread-safe and are encapsulated inside OpenMP critical
regions.

The most time consuming modules are Gravity (≈ 15%, of the time), SPH (≈ 30%
of the time) and thermal conduction (≈ 14%. of the time). The remaining time is mostly
taken by the domain decomposition (≈ 16% of the time) and the so called halo finder
[9] (≈ 8% of the time).

In this work we present a porting of all main Gadget3 modules (gravity computation,
SPH density computation, hydrodynamic force, and thermal conduction) on GPUs using
OpenACC [10].
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We decided to port these modules, because, besides being the most time consuming
modules, they are the ones that spend most time in loops of kernel functions, and thus
are suitable for GPUS.

Our approach overlaps computations between the host and the CPU. GPUs asyn-
chronously compute physical interactions between particles within the same computing
node while CPUs perform tree walks, fills the export buffer and communicates particles.
Because of memory limitations, we offload a module per time to the GPU. We test our
porting using the Magneticum1 suite of simulations. In particular we use Box4/hr with
2 · 107 particles and Box3/hr with 3.8 · 108 particles. We also test our code with differ-
ent architectures, as P100 and V100 GPUs with NVLink technology [11], with the PGI
compiler with and without CUDA [12] Unified Memory [13].

In Section 2 we discuss the obstacles that prevent an easy porting of the Gadget3
code and our choices of GPU porting. In Section 3 we profile the code and show the
speedup of our porting over different portions of a cosmological hydrodynamic simula-
tion. In Section 4 we draw our conclusions and discuss future projects.

2. Challenges and Strategies in Accelerating Gadget3

Here below we list various limitations that prevent an easy porting of the whole code
Gadget3 to the GPUs:

• The code do not benefit from vectorisation because it stores data in arrays of large
data structures (≈ 500B each) that do not fit modern architecture caches. Chang-
ing the data layout to a structure of arrays would require a massive refactoring ef-
fort and introduce additional memory movement (of packing and unpacking data)
in the domain decomposition.

• The use of blocking MPI communications (to exchange neighbouring particles
between MPI ranks) poses a limit in fully utilising GPUs and CPUs.

• Time-steps with too few active particles won’t fully exploit GPU parallelism, thus
preventing the code to speedup;

• There are thread-locking operations at each tree walk (drift of particles and fill of
shared export buffer for communications).

• GPUs memories have less capacity than their host memories, thus simulations
that keeps all data in GPUs will require more computing nodes than CPU only
runs.

• Gadget3 has been built over a decennial effort of developers who implemented
various flavours of gravity, SPH solvers, and sub-resolution models that have
been extensively tested; rewriting these modules using CUDA/OpenCL languages
would imply a massive rewrite of portions of such modules with associated risks
of adding mistakes.

For these reasons, a directive-based approach that uses OpenACC [10] has been
adopted. This reduces modifications of the ongoing development of Gadget3 and further-
more makes it possible to still run the code on CPU-only systems.

1http://www.magneticum.org
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2.1. Memory Transfer

To minimize communication between CPUs and GPUs, one would ideally load the initial
conditions of the simulation in the memory of the GPU and run the whole simulation on
GPUs. This solution has two problems: first of all, time steps with few active particles
won’t perform on the GPUs, and since current GPUs typically have less memory than
their hosts, one would need more nodes than a CPU-only run.

To clarify the last point, let’s consider the case of a very large cosmological simu-
lation that was run within the LRZ Extreme Scaling Workhop in 2015 [14]. Such simu-
lation (Magneticum Box0/mr) had 1.2 ·107 particles per node, each node was allocating
4GB for the Barnes Hut tree, 22GB for the basic quantities used in gravity (e.g. position,
mass, acceleration ecc..), and additional 14GB for the SPH-only part (that is split in den-
sity computation and hydro-force computation), 0.6GB for the metal evolution and an
additional amount of 4GB for the active particle list and to store the Hilbert space-filling-
curve keys, for a grand total of 40GB per node.

It is clear that a 16GBGPU system (as for instance, the ones in Piz Daint2) would not
be able to store the same number of particles of its underlying host. On the other hand,
it has enough memory to store the particle properties of each single Gadget3 module at
a time.

To solve this issue and to be able to exploit the GPU memory at its best, we decided
to only upload, for each Gadget module, the properties that are necessary for such module
(or for other successive modules) in the current time step. With this technique we are
able to upload more particles per timestep, but we can upload only the minimal set of
properties required by each module at time. The drawback of this approach is that at each
timestep we need to download the data back to the GPU, with its associated overhead.

To further minimise the data transfer of the particle properties, we send separately
properties that are read-only (masses, positions, ecc..) and download only updated prop-
erties (e.g. acceleration).

Additionally, with this approach we minimise the amount of code we have to write/-
modify: we use the same Gadget routines used to process guest neighbouring particles
coming from a different MPI rank. We set up the code so GPUs use the already exist-
ing routines to exchange data, but in this case, particles are exchanged between host and
GPUs.

2.2. Adaptive Timesteps

Large, high resolution, cosmological simulations have both void regions and clustered
regions. Particles in void regions evolve with large timesteps because of the small force
acting on them, compared to clustered regions where the stronger force requires very
small timesteps.

After nearly half of the simulation time, it is very common to have timebins with
only one or very few active particles. Since time-steps with such a low amount of active
particles won’t benefit from the single instruction multiple thread (SIMT) paradigm of
GPUs, we decided to keep small timebins (with less than a given threshold Nmin active
particles) to run on the CPU only.

2https://www.cscs.ch/computers/piz-daint/
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The reason behind this choice is twofold: (i) with a high number of active particles,
the offload time is small compared to computations and (ii) it is possible to drift all
particles and tree-nodes of the simulated volume at the beginning of these time-steps in
the host, with OpenMP.

OpenACC turned out to be the best tool to implement this decision because it makes
it possible to use the same code on both GPU and CPU with a small effort.

2.3. MPI Communication

One of the main advantages of our porting is that it overlaps CPU work with the GPU
computation. We decided to overlap the CPU and the GPU computation in the following
way: while the GPU loops over the active particles and computes local interactions, the
CPU takes care of walking the tree for each active particle in order to perform all MPI
send/receive of guest particles.

When the host receives a list of guest particles it decides to queue it to the GPU
computation or to process it on the CPU, based on the facts that (i) the GPU did finish
local interactions or not and (ii) the number of received particles is less than Nmin.

2.4. Barnes-Hut, SPH and Thermal Conduction Differences

Although SPH, thermal conduction and Barnes Hut algorithms have many similarities,
there are some main differences to take into account when porting Gadget on GPUs.
First of all, in a Barnes-Hut solver, particles interact with distant tree nodes as they were
point-like pseudo particles, in contrast with SPH and conduction solvers where there are
only particle-particle interactions within a pre-defined distance. As a consequence, the
implementation of Barnes-Hut algorithm embed the particle-particle interaction compu-
tation in the tree walk itself. On the other hand, in SPH and thermal conduction solvers,
neighbours are collected in a list and processed in a separate step. Additionally, SPH
and thermal conduction need to find a set of neighbours within a fixed distance, while
Barnes-Hut operates with a so-called opening criteria, namely the angle between the
target particle and the tree cells.

In our OpenACC porting, this implies that gravity acceleration computation will be
inside a tree walk branch, which will limit the peak GPU performance. While in the
SPH and conduction modules it is possible to disentangle the tree walk from the force
computation. The drawback is that it is not well known a priori the amount of neighbours
of a given SPH particle (especially in zoom-in simulations). The CPU implementation
overcomes this problem by allocating a neighbour buffer for each thread of a size that
is equal to the number of local particles. Since it is practically impossible to allocate
such a long buffer on each GPU thread, our porting performs a tree walk and neighbour
interactions in chunks of Nchunk neighbours.

3. Profiling

We tested our implementation over different setups and architectures, were we found the
values of Nmin = 103 and Nchunk = 32 to be optimal in always maximizing the speedup.
Time steps with a number of active particles less than 103 tipically performs better in the
CPU than in the GPU.
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Figure 2. Timeline of the profiling obtained with the nvToolsExt library of the OpenACC code: upload and
download to GPU (green and blue bars), GPU computation (yellow and purple bars), CPU tree walk (orange
bar) and MPI communications (red bar). The full iteration takes 2.4s, while the CPU version of the code, run
with the same setup, took 11.4s.

The value of Nmin do not need to be extremely accurate. In fact the number of parti-
cles between one time bin and the other changes exponentially, from our experience, the
number of particles between a small step and the next one goes from few hundreds to
few thousands.

3.1. Tests of One Density Iteration

Figure shows a time-line of the profiling (obtained with the nvToolsExt library ) of3

a SPH density iteration over all particles of the Magneticum/Box4/hr simulation (2 ·107
particles) on a Power9 system with 2 MPI ranks per node, each with 20 OpenMP threads
plus one Tesla V100 GPU. With this setup we used all cores of a node (and without using
hyper-threading). Each socket has NVLink interconnection technology between CPUs
and GPUs.

In this setup, upload and download timings (green and blue bars) sums up to 0.053s
(for a total of 1.2GB) and are negligible compared to the GPU computation time (yellow
and purple bars), that take up to 2.4s. CPU tree walks (orange bar) takes 2.9s and MPI
communications (red bar) take 0.04s and overlaps the GPU computations.

The whole density iteration took 3.2s, while the same set-up, when run completely
on CPUs, took 11.4s. Of which 11s spent in computation and the remaining 0.4s spent
in MPI communications.

Thus, a SPH density iteration over all active particle have a speedup of 4.5.However,
the speedup of the full simulation will be lower because a number of iterations have only
very few active particles and do not perform well on GPUs.

We then briefly tested the possibility of using Unified Memory for our OpenACC
porting. In particular, we run Magneticum Box4/hr simulations with 2 MPI rank, each
using one V100 GPU connected with NVLink.

The iteration without Unified Memory took 1.9s, where 0.4s were spent in memory
transfer, while the run with Unified Memory: 2.0s. They pratically takes the same time.
The advantage of Unified Memory is that one does not have to manually write code to
restrict the transfer of data to its minimum necessary amount.

3https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/nvtx_

library.htm

2
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Figure 3. Time consumed by SPH and gravity for a simulation with 3.8 · 108 particles. Left panel shows the
time consumed by the standard version, run over 3 nodes, each with 4 MPI ranks and each with 40 threads.
Right panel shows the same configuration for the OpenACC porting where each MPI rank had one Tesla V100
GPU connected with NVLink.

3.2. Tests of One Timestep

Figure 3 shows the timing of a whole timestep of the various Gadget modules. In this
test, to maximize the number of particles for a given node, we run Magneticum Box4/hr
simulation, that has 3.8 · 5733 = 1.2 · 108 particles. We run this simulation on a Power9
system with 4 sockets per node, each with 10 cores and one V100 GPU.We used 3 nodes,
each with 4 MPI ranks, and each MPI rank with 40 OpenMP threads (thus using Power
architectures hyper threading).

Here we can see how, at least for the first time-step, most of the speedup is consistent
over both the Barnes-Hut solver and the full SPH computation to a factor of 3 for SPH
and ≈ 4 for the gravitaty computations.

In particular, all SPH density iterations within the timestep took 1600s for the GPU
version and 5400s (with a speedup of 3.3) for the CPU version. While the SPH com-
putation of hydrodynamic forces tooks 200s for the GPU version and 700s for the CPU
version (with a speedup of 3.5).

The speedup of this test case is lower than the one obtained in the previous test case
because in a whole timestep there are density iterations that have a very low number of
particles.

3.3. Tests of Full Run

We then run a whole simulation with Barnes-Hut, SPH and thermal conduction ported
with OpenACC. As described above, we offload these modules to the GPU only when
the number of active particles is greater than the treeshold Nmin = 103.
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We run such simulation on the Piz Daint system. Here we used 8 MPI tasks in 1
node, 4 OpenMP threads and one Tesla P100 for each MPI task. In such system, GPUs
are connected to the host with PCI Express technology. At the end of a simulation, the
speed-up (compared to the same set-up of the Gadget3 standard version) are as follows:

• Barnes-Hut speedup: 1.8
• SPH speedup: 2.6
• Thermal conduction speedup: 3.0
• Total speedup: 2.1

Noteworthy, SPH speedup is lower than the speedup obtained for a single timestep
as in the previous sub section (and for a single iteration of a density computation). The
reason behind this slowdown is twofold: the number of density iterations that contains a
small number of active particles increases as the simulation time evolves. For this reason
we found a final total speedup to be lower than the one obtained for the first timestep.

After porting Gravity, SPH and thermal conduction to the GPU, one of the upcom-
ing bottlenecks became the cooling and star formation module, taking ≈ 5% of the com-
puting time. Here we upload the cooling tables to the GPUs and keep them there as long
as needed. We then run the whole cooling and star formation process in the GPU, which
have a speedup of ≈ 1.6, when comparing a run with P100 GPUs and a run with 12
Haswell CPUs4.

3.4. Scaling Test of Gravity Only

Figure 4 shows the results of a scaling obtained at the EuroHack17 at CSCS5. At that
time the preliminary version of the code was able to run over one GPU per computing
node, and we ported only the first phase of the Barnes-Hut gravity solver. In this test we
run a gravity-only run with increasing particle sizes in order to occupy more and more
computing nodes, and varied the number of MPIranks up to 1024. Where the data point
with the largest number of CPUs (and GPUs) is simulation is Magneticum Box2/hr, that
has with 2 · 15843 = 7.9 · 109 particles. Both the OpenACC and the standard runs uses
the same amount of CPUs.

4. Conclusions and Outlook

We presented a porting of all main Gadget3 modules (gravity computation, SPH density
computation, hydrodynamic force, and thermal conduction) on GPUs using OpenACC.

We justified our choices of the porting as:

• the use OpenACC minimizes the rewriting of code and to let the community keep
working on both CPU and GPU;

• OpenACC is also useful since we offload to the GPU only timesteps with a high
number of active particles (as they won’t perform well in a GPU);

• during a simulation, and at every timestep, we offload to the GPU only one mod-
ule per time as to maximize the number of particle per each host;

4https://www.cscs.ch/publications/stories/2018/conradin-roffler-my-internship-at-cscs/
5https://github.com/fomics/EuroHack17/wiki/GadgetACC
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Figure 4. Scaling of a preliminary Gadget3 OpenACC porting of the gravity module, done at the EuroHack17
at CSCS. Y-axis show the speedup with respect to the CPU only version over 12 cores. Black (bottom) lines
show the data by varying the number of MPI ranks (X axis) for a CPU-only run. Red (upper) lines show data for
the OpenACC version, on the same number of CPUs and one additional GPU for each MPI rank. Continuous
lines show the tree-walk speedup, dotted-dashed lines show the speedup for the gravity module, dashed lines
show the speedup of the whole time step.

• by doing so, we exploit the host machine by overlapping GPU and CPU compu-
tations (as the CPU takes care of neighbour exchanges).

We used the same kind of porting paradigm on all Gadget modules, and showed
how it keeps its speedup over different architectures (e.g. V100+NVLink or P100+PCI
Express) and number of devices. This points to the direction that this kind of porting,
which involves CPU/GPU computational overlap, is stable over different modules and
architectures and may be useful for other multi-node N-body solvers.

Although we performed only one test that executes all modules up to the end of the
simulation (Sec. 3.3), the various tests gave us the possibility to probe the performance
on different configurations: with V100+NVLink technology (Sec. 3.1), with P100+PCI
Express (Sec. 3.2), and over a large number of GPUs (Sec. 3.4). The EuroHack17 scaling
in particular, showed how our approach (although it tests only one module, namely the
gravity module) is capable of keeping its speedup up to a thousand of GPUs.

These tests were also useful to investigate the origin of the speedup by gradually
increasing the profiled region of simulations, here we found that: (i) a single SPH density
iteration, where we found a speedup of ≈ 4.5; (ii) a full time step, where we found a
timestep of ≈ 3.5; (iii) to a full simulation and to a large number of GPUs where we
found a total speedup of ≈ 2.

We briefly tested Unified Memory and found that, in our preliminary tests, this
technology reaches the same performance of our explicit memory management. Unified
Memory is a solution we will explore further because one does not have to manually set
up the data transfer (which is not trivial in Gadget, since every timestep has only a subset
of active particles).
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Additionally, from that experience we found that the Domain Decomposition and
the Tree Build are the new bottleneck of very large runs, once one speeds up the other
modules with our OpenACC porting.

An initial step towards porting other modules of Gadget have been done, where we
ported the cooling and star formation module. The other upcoming bottlenecks are the
domain decomposition and the tree build algorithms, which by now are neither MPI
parallel nor OpenMP parallel.
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Dai YANG, Tilman KÜSTNER, Rami AL-RIHAWI, and Martin SCHULZ

{d.yang, tilman.kuestner, martin.w.j.schulz}@tum.de
Chair of Computer Architecture and Parallel Systems

Technical University of Munich

Abstract. Memory bandwidth plays an essential role in high performance
computing. Its impact on system performance is evident when run-
ning applications with a low arithmetic intensity. Therefore, high band-
width memory is on the agenda of many vendors. However, depend-
ing on the memory architecture, other optimizations are required to ex-
ploit the performance gain from high bandwidth memory technology. In
this paper, we present our optimizations for the Maximum Likelihood
Expectation-Maximization (MLEM) algorithm, a method for positron
emission tomography (PET) image reconstruction, with a sparse matrix-
vector (SpMV) kernel. The results show significant improvement in per-
formance when executing the code on an Intel Xeon Phi processor with
MCDRAM when compared to multi-channel DRAM. We further iden-
tify that the latency of the MCDRAM becomes a new limiting factor,
requiring further optimization. Ultimately, after implementing cache-
blocking optimization, we achieved a total memory bandwidth of up to
180 GB/s for the SpMV operation.

Keywords. Intel Xeon Phi, MCDRAM, Sparse Matrix-Vector Multiplication,
Maximum Likelihood Expectation-Maximization, Positron Emission
Tomography

1. Introduction

The Intel Xeon Phi product family, based on the Intel Many-Integrated-Core
(MIC) architecture, targets high-performance computing (HPC) applications [26].
Especially the Knights Landing (KNL) microarchitecture provides a large number
of cores, achieving a high aggregated performance and a high performance per
watt ratio [5]. The package also includes 3D-stacked DRAM, which provides a
high memory bandwidth. The KNL may be a discontinued product, but the design
of both utilizing many-core architecture and high bandwidth memory remains
important for modern HPC systems. Other notable products featuring a high
bandwidth memory architecture include both NVIDIA and AMD’s graphics cards.

Positron Emission Tomography (PET) is a medical imaging modality with
clinical value for the detection, staging, and monitoring of many diseases. It is
a functional imaging technique, as it allows the observation of metabolic pro-
cesses. A radioactive tracer is injected into the patient or subject. The tracer
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undergoes beta decay, emitting positrons, which annihilated with electrons, cre-
ating two 511 keV gamma photons traveling in opposite directions. The scanner
consists of a ring of detectors, with scintillator crystals and photodiodes. When
two detectors each record a photon within a certain time window, an annihila-
tion event is assumed somewhere along the line connecting the detectors, called
the Line of Response (LOR). In reality, we have a Tube of Response (TOR), as
two detectors can detect events not only from a line but from a larger, roughly
polyhedral portion of the three-dimensional space inside the scanner tube, called
Field of View (FOV). The number of detected events influences the quality of
the measurement, while the covered area of the field of view by LORs affects the
achievable resolution. The resolution is usually better at the center than at the
edges of the field of view. For image reconstruction, the field of view is divided
into a three-dimensional grid, where each grid cell is called a voxel.

In this paper we use the small animal PET scanner MADPET-II as an ex-
ample (see Figure 1 (left)). The scanner has a unique design consisting of two
concentric rings of detectors, which increases sensitivity while preserving spatial
resolution [15]. To obtain an image from the scanner, the detector output – called
list-mode sinogram – needs to be reconstructed using a system matrix.

There is a number of image reconstruction algorithms used in medical
imaging. The algorithms used in our MADPET-II is Maximum Likelihood
Expectation-Maximization (MLEM) [24]. A detailed mathematical description of
the physical processes involved in tomography systems, such as the attenuation
and scattering of photons in the body, is presented by Vazquaz et al. [29].

The main contributions of this paper are:

• We present an optimized MLEM implementation for modern many-core
systems.

• We show the impact of increased memory bandwidth on Sparse Matrix-
Vector (SpMV) operation performance in MLEM by benchmarking our
implementation on an Intel Xeon Phi (KNL) based system.

• We identify the role of latency and propose future optimization recommen-
dations for MLEM and SpMV codes in general.

2. Intel Xeon Phi Knight’s Landing

Applications can be classified by the limitation on their performance into three
categories, namely compute bound, (memory) latency bound, and (memory)
bandwidth bound. To improve the performance of a compute bound application,
the utilization of more cores is sufficient. To improve the performance of a memory
(bandwidth) bound applications, two memory technologies with a higher mem-
ory bandwidth are developed: the High Bandwidth Memory(HBM) and the Hy-
brid Memory Cube(HMC). Both of the technologies are based on 3D-stacking of
the classic DRAM dies. These memory modules are physically installed onto the
processor package. However, stacking of the DRAM chips requires a significantly
higher amount of wiring and controlling logic, which results in a higher latency of
the memory. On the Intel Xeon Phi processor with Knight’s Landing (KNL) ar-
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Figure 1. (Left): Illustration of the small animal PET scanner [14]. (Right): Diagram demon-
strating an overview of the KNL Architecture.

chitecture, an HMC-based high bandwidth memory called Multi-Channel DRAM
(MCDRAM) is embedded in the processor. Finally, to improve the performance
of memory (latency) bound application, advanced optimization techniques such
as cache-blocking and prefetching can be used.

The Xeon Phi Knights Landing (KNL) is part of the Xeon Phi family of
processors, which is based on the Intel MIC architecture. The MIC architecture
integrates many x86 processor cores with vectorization support to deliver massive
parallelism. It is designed for high-performance computing applications [7].

In general, the KNL chip consists of tiles, MCDRAM, DRAM, and I/O, as
shown in Figure 1. Each tile consists of two simple out-of-order cores that are
derived from Intel Atom cores (based on the Silvermont microarchitecture). Each
core supports up to 4 (hyper-)threads per core - running at 1.3 to 1.5 GHz. They
are equipped with a 32KB L1 data cache and a 32KB L1 instruction cache. A
1MB L2 cache is shared among a single tile. The MCDRAM consists of 8x2GB
blocks connected to different memory controllers located on different regions of
the processor. The two DDR memory controllers support six channels with a
bandwidth of up to 90 GB per second. The MCDRAM on KNL processors can
be used in three different modes, namely Cache, Flat, and Hybrid. An overview
is given below. In this paper, we used the flat mode to control MCDRAM usage.

• Cache: MCDRAM can be used as the Last Level Cache (LLC).
• Flat: The entire MCDRAM memory is added to the address space extend-
ing the space of the existing DDR4 Memory. In this mode, it is possible to
allocate memory in the MCDRAM explicitly.

• Hybrid: It allows the MCDRAM to be partitioned into a part-cache and
part-flat configuration by specifying a ratio between the two, either 75% -
25%, 50% - 50%, or 25% - 75%.

In addition to the MCDRAM configuration, there are several ways to con-
figure the memory subsystem: All-to-all (A2A), Quadrant (quad), Hemisphere
(HEMI), Sub-NUMA Clustering 4 (SNC4) and Sub-NUMA Clustering 2 (SNC2).
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Detailed descriptions of these cluster modes are given by Jeffers et al. [9] and
Sodani et al. [26]. A short overview of the differences between the cluster modes
used in this paper is presented through the following scenario:

• All-to-All (A2A): In this cluster mode, memory addresses are uniformly
distributed across all Tile Directories (TDs) plus the memory (MCDRAM
and DDR) is set to UMA.

• Sub-NUMA Clustering 4 (SNC4): The memory subsystem divides the tiles
into 4 clusters resulting in separate cache-coherent clusters.

3. The Maximum Likelihood Expectation-Maximization (MLEM) Algorithm

One widely used iterative reconstruction method for emission tomography is the
Maximum Likelihood (ML) reconstruction using the Expectation-Maximization
(EM) algorithm, which was proposed by Shepp et al. [24] in 1982. The algorithm
uses the iteration scheme given in (1), where N is the number of voxels; M is the
number of detector pairs; f is the 3D image that is reconstructed; A is the system
matrix of size M ×N , which describes the geometrical and physical properties of
the scanner; g is the measured list-mode sinogram of size M and q is the iteration
number. The algorithm is based on the probability matrix A = aij , where each
element represents the probability of a gamma photon discharge from a voxel j
being recorded by a given pair of detectors i.

f
(q+1)
j =

fq
j

∑N
l=1 alj

N∑

i=1

(
aij

( gi
∑M

k=1 aikf
q
k

)
(1)

The algorithm starts with an initial estimate, a grey image. Then, in each
iteration, it executes the following steps:

• Forward projection: h = Af . Project the current approximation of the
image into the detector space.

• Correlation: ci =
gi
hi

. Correlate the projection to the actual measurement.

• Backward projection: u = AT c. Project the correlation factor back into
image space by multiplying with the transposed matrix.

• Update image: fq+1
j =

fq
j

nj
uj . Update the image with the back-projected

correlation factor and apply a normalization n.

The runtime of the algorithm is dominated by the two sparse matrix-vector
operations, forward and backward projection. Note that we do not need to create
and store the transposed matrix AT , as the backward projection can be computed
as uT = cTA.
The system matrix describes the geometrical and physical properties of the scan-
ner. For MADPET-II, the field of view is divided into a grid of 140 × 140 × 40
voxel in x-, y- and z-dimension, respectively. The 1152 detectors result in 664,128
unique detector pairs or lines of response. The matrix was generated by the Detec-
tor Response Function (DRF) model [10,27]. The matrix is stored in Compressed
Sparse Row (CSR) format using single-precision floating-point numbers. (For a
list of commonly used formats see Barrett et al. [1]).
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For parallelization, the matrix is partitioned into blocks of rows with approx-
imately the same number of non-zero elements per block. This results in good,
albeit not perfect load balancing. A more fine-grained approach, which cuts ele-
ments within one row, is possible, but would result in additional management or
copying overhead.

4. First Optimization for KNL Architecture and MCDRAM

Our existing MLEM code uses both OpenMP and MPI. In order to achieve the
best performance for KNL, we have optimized our MLEM implementation with
the following steps:

• We make all memory allocations on the MCDRAM by using the memkind

library.
• We rewrite the matrix loading part to support the special memory allo-
cation in the MCDRAM. In particular, a set of OpenMP threads are cre-
ated prior to memory allocation, and the matrix is directly copied into the
corresponding memory by each thread during initialization. This ensures
memory first touch for all threads. We further enforce thread reuse and
thread pinning during kernel execution.

• We add #pragma unroll and #pragma ivdep into the kernel to assist auto-
vectorization for SIMD execution using the AVX512 units of the processor.

To summarize, we improved the data loading process to support high band-
width memory and ensure locality. In addition, we enabled and assisted the auto-
vectorization to improve instruction-level data parallelization.

5. Evaluation

To show the influence of MCDRAM on the execution time of MLEM, we compile
and run our code on CoolMUC-III, which is built of 148 compute nodes. Each node
consists of one Intel Xeon Phi 7210F (Knight’s Landing, KNL) processor with
64 cores, 256 threads, 96 GB of main memory and 16 GB of on-chip MCDRAM.
The memory subsystem is configured for Sub-NUMA clustering (SNC4 ) mode
and all-to-all (A2A) modes. The MCDRAM is configured to be flat addressable.
According to Intel, maximum bandwidth of 490GB/s for the MCDRAM and
90GB/s for the DDR RAM can be achieved on this processor [19].

To investigate the effect of high bandwidth memory, we have run our MLEM
code with three different memory configurations: A2A, DDR-A2A, and SNC4,
where DDR-A2A represents the result of the native execution on the DDR4 main
memory. The MCDRAM itself is also set to flat mode. As mentioned in Section 4,
we use the memkind library and its hbw alloc to explicitly allocate memory
on the MCDRAM. For experiments on the DDR-4 memory, a standard malloc

is used. We run setup runs ten times. During each run, the algorithm records
the iteration time for the forward projections and backward projections, as well
as the total iteration time. The first iteration is disregarded as we consider it
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Figure 2. Runtime Comparison of MLEM on CoolMUC-III. The bars (from left to right in each
cluster) represent A2A, DDR-A2A, and SNC4.

as warm-up time. The total kernel runtime per iteration, its speedup, and the
memory bandwidth for the forward projection are assessed. In this paper, we
analyze the forward projection for evaluation because the backward projection
requires random access into memory space, which is significantly slower than
streaming as required by the forward projection. The results of our experiments
are summarized in Figure 2 and 3.

Figure 2 shows the comparison of runtime per iteration in seconds on
CoolMUC-III using different memory configurations/modes. Best performance is
achieved using the A2A setting on the MCDRAM. The SNC4 setup follows with
a slightly higher runtime. The fastest runtime with 64 threads on A2A mode is
around 0.24s per iteration. We achieve a maximum speedup of about 50x, showing
almost perfect scaling behavior. The runtime of the DDR-A2A version is signifi-
cantly higher when using 32 or 64 OMP threads. In addition, the speedup curve
indicates a typical saturating line that shows reducing speedup with increasing
numbers of threads, indicating that the memory bandwidth limit is hit.

However, our speedup curve indicates a near linear increase of speedup in
relation to the number of threads for executions on the MCDRAM. This shows
that the code is capable of exploiting the higher memory bandwidth.

Figure 3 shows the corresponding bandwidth achieved for the forward pro-
jection, which contributes up to ˜50% to the runtime per iteration. The best
memory bandwidth is achieved using the A2A mode on MCDRAM, which re-
flects the result from Figure 2. The slightly higher bandwidth on A2A mode over
SNC4 mode is also found in other research, such as stated by Ramos et al. [20].
However, the difference between A2A and SNC4 is not significant. The maximum
bandwidth at 76GB/s on the DDR-4 memory is close to the maximum of 90GB/s
with stream benchmark. The bandwidth observed on the MCDRAM is double as
high as on the DDR-4, with a maximum of appox. 150GB/s. Although we are
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Figure 3. Memory Bandwidth Utilization Comparison of MLEM on CoolMUC-III. The bars
(from left to right in each cluster) represent A2A, DDR-A2A, and SNC4.

able to exploit the higher bandwidth of the MCDRAM, we are not able to utilize
the full memory bandwidth limit of 490GB/s on MCDRAM. We assume that the
cause of this huge gap is the small L2 cache size, which makes it impossible to
store the entire working vector within the cache, requiring more frequent load-
/store operations. Combined with a high latency introduced by the MCDRAM,
the kernels suffer from the frequent load/store operations. Similar results can also
be found in related research by Saule et al. [23]. Anecdotal evidence collected by
enforcing software prefetching by using -qopt-prefetch shows slightly increased
performance, which reflects the memory latency boundary.

Further optimization featuring the implementation of a cache-blocking scheme
for the working vector is implemented to reduce latency impact. This way, we are
able to achieve a bandwidth of approx. 180GB/s on the MCDRAM with the A2A
configuration.

6. Related Work

Speeding up iterative emission tomography image reconstruction, such as MLEM,
has been an important research topic. Improvements have been made on the
algorithmic side [6, 11, 21], as well as on the implementation side [3]. Work has
also been done porting the MLEM algorithm to distributed GPU clusters [3,16].

Lui et al. [12] investigated the performance of sparse matrix-vector multipli-
cation (SpMV) on the Knights Corner (KNC), the predecessor of the Knights
Landing architecture. They are able to reach 90% of the device’s peak memory
bandwidth by using a specialized data structure. Bell and Garland [2] show tech-
niques on how to implement SpMV on GPUs (which typically include high band-
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width memory nowadays), resulting in a good performance in several sparsity
classes.

As KNL offers a number of configuration possibilities, it is especially impor-
tant to review the work done in this field, with respect to cluster modes, memory
modes, and thread affinity.

Rosales et al. [22] investigated the effect of cluster modes on the performance
of HPC applications. The paper uses mini applications (MiniFE [4], MiniMD
[4], and LBS3D [30]) to observe the performance differences in A2A and QUAD
cluster modes running 1 to 256 threads. The results from MiniFE and MiniMD,
using DRAM or MCDRAM, show that A2A mode scales comparable to or better
than the quad mode. On the other hand, the results from LBS3D when using
MCDRAM show varying performance behavior. When using DRAM with A2A
mode, the code performs better or similar to quad mode. Moreover, A2A mode
scales slightly better than QUAD mode when using MCDRAM and significantly
better when using DRAM. Ultimately, the effects of the cluster modes seem to
be dependent on the application.

Smith et al. [25] compared the effect of the MCDRAM memory modes,
flat and cache, on the performance of sparse tensor factorization, using several
datasets. The results reveal that both flat and cache mode perform identically
when the dataset fits into MCDRAM; otherwise flat mode performs better than
cache mode. Peng et al. [18] thoroughly investigated the effects of memory modes
across several applications and benchmarks. The paper shows the performance of
XSBench [28] over a range of problem sizes, Graph500 [17] over a range of graph
sizes, GUPS [13] over a range of table sizes, MiniFE [4] over a range of matrix
sizes, and DGEMM [13] over a range of array sizes in flat and cache modes. The
results of XSBench and DGEMM show similar performance, Graph500 and GPUs
show varying performance, and MiniFE shows flat outperforms the cache mode.

Jabbie et al. [8] observed the performance of the classical elliptic test problem
of the Poisson equation on KNL. The work tests two pinning techniques, scatter
and balanced, over a range of processes and threads using a hybrid approach. The
results show no observable difference in runtime behavior.

7. Conclusion and Future Work

In this paper, we present an implementation of a medical image reconstruc-
tion algorithm, the Maximum Likelihood Expectation-Maximization (MLEM),
for Positron Emission Topography (PET), optimized for Intel’s KNL architec-
ture high memory bandwidth. We investigated the effects of the higher memory
bandwidth on our MLEM and provide optimization considerations for SpMV-like
code.

We show that SpMV kernels are able to exploit the higher memory band-
width. However, the higher memory latency makes it hard to exploit the full
potential of the MCDRAM on KNL. The massive parallelization combined with
high memory bandwidth and latency hiding via cache-blocking provides a signif-
icant speedup of MLEM. Overall we achieve a maximum memory bandwidth of
180GB/s on the KNL processor with MCDRAM, which is a significant improve-
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ment for our MLEM code.

The next steps are to optimize the matrix storage format and apply further la-
tency hiding technologies to further speedup MLEM. We will also evaluate the
efficiency of high bandwidth memory for MLEM on GPU architectures.
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Abstract. The EU has launched EuroHPC Joint Undertaking initiative plan to 
build an exascale HPC by 2025. A petascale HPC will be built in Slovenia in a 

concerted effort by 2020. The aim is to establish a national HPC system by own 

design with low maintenance and power consumption costs of the system. The 
HPC architecture will be unique, built from the off-the-shelf state-of-the-art 

components, and will operate using the open-source system software. A small 
HPC prototype system of about 200 TFLOP/s computing capability will be built in 

the first phase to test various computing nodes and components, which will be 

later integrated into a full-scale supercomputer with approx. 2 PFLOP/s. The 
throughput of Infiniband and Ethernet interconnect solutions will be of particular 

interest. The presentation is first focused on the architecture of HPC prototype 

consisting of 82 heterogeneous nodes based on double AMD Epyc and Intel Xeon 
SCL processors in combination with GPU nodes, with the discussion of possible 

variations of interconnect configurations. The network configuration of full-scale 

HPC with 600 AMD Epyc nodes, GPU nodes and large hard drive storage with a 
connection to HPC prototype will be discussed next. Possibilities of open source 

software for operating, provisioning and maintaining system, as well as flexibility 

and security of several options for user access, will be given in conclusion. 

Keywords. HPC architecture, petascale, heterogenous CPU-GPU, open-source 

1. Introduction 

Roadmaps are clear for building exascale HPC in China by 2020 [1] and the USA by 

2021 [2], while the EU has the plan to build exascale HPC by 2025 [3]. Slovenia has 

joined to Declaration Cooperation framework on High-Performance Computing in 

2017 with an obligation to build integrated high-performance computing infrastructure, 

which will enable a competitive level of research and industry. 

There is some computer infrastructure in Slovenia, which could be classified as 

high-performance computing. Some systems had begun in the late 20th century as 

research projects building computer grids and HPC systems, but most systems were 

small scale. Largest HPC in Slovenia today is performing with speed about 43 

TFLOPS. Therefore, it was decided to build an HPC in the scope of petascale. As this 

is considerably more than any other system in Slovenia, it will be established as a 

national HPC system.   
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There are two ways to build an HPC system. The easiest way is to buy an existing 

system from vendors like IBM, HP, Cray, NVIDIA, etc. Beside of higher initial and 

maintenance cost, such a system is also more rigid than custom build system. Various 

researchers, from the very different research field, will use national HPC system. The 

system should also provide a large number of services for the research community. One 

major requirement is the provision of a national repository of open access publications 

and research data. HPC vendors usually compete with benchmark test, which will 

prove that the system efficiently solves customer problems. With a diversity of research 

areas from massive parallel simulations to artificial intelligence problems or big data 

analysis, it is impossible to identify a simple benchmark test. 

Because of that, HPC-RIVR was designed to be custom build heterogeneous [4] 

and very flexible to cover various research areas. Besides that, it should include large 

storage for research data. Another aspect is the maintenance cost of HPC-RIVR system. 

Power consumption is the main cause of HPC running cost and one of the major 

requirement for equipment was power efficiency. Another aspect was compatibility 

with the majority of software and efficiency of various hardware solutions. After 

comparing different solutions using benchmarks [5], the initial design was drawn. 

Some unknown remains, so it was decided to build HPC prototype first, to test some 

hardware and software configurations.  

The system software is also not vendor based and only open-source software will 

be used. This requires the development of custom-based procedures and scripts for 

provisioning and maintenance of system software. Beside standard batch submission of 

jobs, user-friendly interfaces for HPC usage are developed [6]. HPC prototype is 

dedicated to development and testing system software, user interfaces and special 

configurations, while HPC-RIVR is designed as a production system where tested 

changes will be applied when needed. 

 

2. HPC prototype 

HPC prototype was designed to test various configurations and setup. Size of HPC 

prototype is about 10% of the size of the complete HPC system. It is built with a 

flexible design with equipment installed in a container presented if figure 1. Container 

with a length of 6,5 m and width and height of 2,9 m is equipped with all support 

system needed for HPC computer. Several racks are installed in the container, as can be 

seen from figure 1. Four racks are dedicated to HPC servers and two racks include a 

power supply with UPS and supporting systems for fire alarm and remote surveillance. 

The redundant mechanical and electrical cooling system is installed in the container so 

that there is a warm zone on one side of racks and cool zone on the other side. 

Network connection of HPC prototype is realized with optical connectors 

providing 10 Gb/s connections to the internet, which will be later replaced by 100 Gb/s 

connection to HPC-RIVR system. Interconnect is built with two Mellanox 3800 

Ethernet 100Gb/s switches each with 64 ports. As every HPC component is at a short 

distance to the switch, DAC copper cables using QSFP28 connector are used for the 

connection. Switches also enable connection of 10GBase-LR SFP+ module using an 

adapter which converts 40 Gb/s speed to 10 Gb/s and enables connection to existing 10 

Gb/s switches. Three additional Ethernet Quanta T148-LY4R 1 Gb/s switches are used 

for network management connection. 
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Figure 1. Container for HPC prototype. 

 

Part of the HPC prototype is interconnected using Mellanox 8700 HDR100 100 

Gb/s Infiniband switch. The first draft of the system considered EDR Infiniband switch 

with only 36 ports therefore, there were not enough ports for the whole system. With 

the new switch, it is possible to connect all nodes to Infiniband as each port can 

connect to two HDR100 interface cards. Also, previously planned interfaces in form of 

single port ConnectX-5 VPI network card were replaced by new ConnectX-6 interface 

cards which also have two modes of operation, one for 100 Gb/s Ethernet and one for 

HDR100 Infiniband. The distance of Ethernet connection between switch and 

component is rather small, so copper cables with QSFP56 HDR connectors were used. 

The main purpose of the Infiniband switch is the comparison of performance 

between Ethernet and Infiniband interconnect. Although there are some results of 

Infiniband versus Ethernet comparisons [7], it is strongly dependent on packet size. In 

the report [7] the speed is almost identical for small packets while there is a huge 

difference for larger packets. Therefore, our purpose is to test network speed using 

typical applications utilizing either Infiniband or Ethernet interconnect. Results of 

comparison will influence the architecture of HPC-RIVR regarding interconnecting and 

it is possible that this will enable more cost-effective architecture of a network for our 

petascale HPC-RIVR. 
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HPC prototype is presented in figure 2, where it is shown that some nodes are 

connected only to Ethernet switch, while others are connected to Ethernet and 

Infiniband switch as discussed above. During tests, this configuration could change and 

SSD storage servers might be connected to Infiniband switch for testing purposes. 

There are three computers of figure 2, which are designated with the name 

SuperMicro Server. These servers have the role of a head node and general-purpose 

servers with different services like Slurm, Web servers, etc. Each SuperMicro Server 

consists of two AMD Epyc 16C/32T 7301 2.2G 64M processors on board with 256 GB 

DDR4-2666 LRDIMM ECC, with two 480 GB SSD SATA drive configured in RAID 

1 and with two 100 Gb/s Eth/IB Mellanox ConnectX-6 VPI network card. Each 

ConnectX-6 VPI network card could be connected to 100 Gb/s Ethernet switch or HDR 

Infiniband switch. 

There are also three computers in figure 2, with the name SuperMicro Storage. 

These are storage servers with one AMD EPYC 24C/48T 7401P 2.0G 64M processor 

on board, with 256 GB DDR4-2666 LRDIMM ECC, with two 480 GB SSD SATA 

drive configured in RAID 1 and with two 100 Gb/s Eth/IB Mellanox ConnectX-6 VPI 

network card. Although there is a connection to Ethernet switch in figure 2, network 

cards can also connect to Infiniband switch. The better configuration will be considered 

for future use. Each storage servers contains 24 1,92 TB SSD drives beside two system 

drives. Storage servers are organized using CEPH [8], which also will provide testing 

for implementation on petascale HPC. The total size of SSD storage is 138 TB, which 

gives 69 TB of risky storage size and 46 TB of safe storage size [9]. 

Node SuperMicro GPU in figure 2 is a compute node with NVIDIA graphical 

accelerator boards. Each node consists of two Intel Gold SKL-SP 6128 6C/12T 3.4G 

processors, 256 GB DDR4-2666 LRDIMM ECC RAM, with two 480 GB SSD SATA 

drive configured in RAID 1, two 100 Gb/s Eth/IB Mellanox ConnectX-6 VPI network 

cards and four NVIDIA TESLA V100 32G PCI-E x16 boards. Each NVIDIA TESLA 

V100 board have 5120 cores enabling 7 double-precision TFLOPS. Usually, NVIDIA 

graphics boards are used with combination with INTEL processors and usage of AMD 

processors is not well proven with this combination. GPU nodes are connected to 

HDR100 Infiniband and to 100 Gb/s Ethernet and there is also plan to compare 

computational speed using one or another network. 

Ethernet and Infiniband compute nodes in figure 2 are AMD processor-based. 

Because the first draft of HPC prototype was planned with one EDR Infiniband switch, 

there were only 36 ports available for connecting Infiniband nodes. Change to HDR 

Infiniband switch occurred at last moment, therefore only 28 nodes were equipped with 

two interface cards and other nodes will be equipped with additional interface cards in 

case it will be shown that HDR100 Infiniband offers considerable benefits over 100 

Gb/s Ethernet. 

Each compute node consist of two AMD EPYC 32C/64T 7501 2.0G 64M 

processors, 512 GB DDR4-2666 LRDIMM ECC RAM and two 960 GB SSD SATA 

drive configured in RAID 1. There are 28 nodes which have two 100 Gb/s Eth/IB 

Mellanox ConnectX-6 VPI network cards and are connected to HDR100 Infiniband 

and 100Gb/s Ethernet. Other 48 nodes have only one ConnectX-6 VPI network card 

and are connected only to 100 Gb/s Ethernet. Nodes are built into 2U chassis, which 

can contain four nodes. This enables compact build in half of the space required for 

1U/1N chassis.  
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Figure 2. HPC prototype. 
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Power consumption is maximum 2,2 kW per chassis and total maximum power 

consumption for AMD compute nodes is 41.8 kW. GPU compute nodes maximum 

total power consumption is 12 kW, storage server consumes 6 kW, servers 1,5 kW and 

switches 3 kW. Maximum total power consumption without cooling is about 64,3 kW. 

System software for HPC prototype is based on open source solutions. Head node 

operating system is CentOS [10] while compute nodes will use the most efficient 

UNIX flavour available. Provisioning is based on Foreman [11] with a combination of 

Puppet [12] customization. There will be several configurations tested on HPC 

prototype with either batch usage using Slurm [13] and Nordungrid ARC [14] and 

more direct access via web interfaces and virtualization. Most of the work will be based 

on running applications built-in containers like Singularity [15]. 

HPC prototype system was installed and is in the testing phase since July 2019. 

Container with cooling where cabinets with HPC servers and nodes were stacked is 

shown in figures 3 and 4. 

 

 
Figure 3. HPC prototype container. 
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Figure 4. HPC cabinets with servers and nodes. 

3. Petascale HPC-RIVR 

While HPC prototype is assembled and different hardware and software solutions are 

tested, complete HPC-RIVR is still in design. Reason for that is partly in the fact that 

results of testing will influence the final design and partly because technology is 

currently changing. There are new processors with more cores presented and will be in 

production this year. Infiniband speed will double this year and products with new PCI 

4.0 bus will emerge. Therefore, the design of HPC-RIVR is somehow outlined, but it is 

very flexible to adapt to new technology and findings of tests on HPC prototype. 

Therefore, the final version is still under consideration and might be influenced by the 

vendor’s proposals. 

Rough design of HPC-RIVR consist of Ethernet network and Infiniband 

interconnect of head nodes, servers, compute nodes with an x86 processor, compute 

node with GPUs, SSD storage servers and hard disk storage servers. Network scheme 

of the design is shown in figure 5. 

Ethernet is designed with redundant switches which should have large buffers to 

allow high throughput as it is expected that a large amount of data will be transferred to 

and from HPC. The consequence of that is more latency, but traffic between compute 

nodes should flow on Infiniband with low latency. If testing on HPC prototype proves 

that 100 Gb/s Ethernet switches with low latency can compete with Infiniband, the 

design will change accordingly and the cost of interconnect will be much lower. 

Research results from literature shows, that latency of Infiniband is still much lower 

than Ethernet, hence, a dual network is required. Additionally, there is the third 

network for management, which is served by 1 Gb/s switches and is not shown in 

figure 5. 
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The speed of the Ethernet network with presented configuration can be much 

lower at compute nodes and hard disk storage servers. It is designed with speeds of 25 

Gb/s resulting in a lower cost of Ethernet network. Hard disk storage servers are 

connected with redundant connections, which on one hand double the speed and on the 

other hand makes the network more reliable.  

Infiniband interconnect is based on HDR 200 Gb/s, but 200 Gb/s speed will be 

used only between switches. Nodes will use HDR 100 Gb/s interfaces and for HPC-

RIVR 24 HDR 200 Gb/s switches are required for level 1 and 10 HDR 200 Gb/s 

switches for level 2 switch with the 3-1 blocking scheme. The total number of nodes 

connected to Infiniband is about 700, which requires 700 cables or optical fibres, while 

the connection between level 1 and level 2 switch requires 240 cables. 

There are 30 general-purpose servers, which will be used as head nodes or 

dedicated nodes for services like scheduling, maintenance or user interfaces. The 

configuration of such server is identical as SuperMicro servers in HPC prototype, 

which is described above. 

 

 
Figure 5. HPC-RIVR design. 

 

In figure 5 HDD storage and SSD storage is presented in the bottom row. SSD 

storage is runtime storage for program and user data. SSD storage is designed with 22 

servers each containing 24 SSD drives each with 1,92 TB space. The server is identical 

to SuperMicro storage in HPC prototype. Total SSD storage is therefore about 1 PB of 

raw space and will be configured using CEPH, which gives 483 TB of safe space. 

Similarly, HDD servers are designed with 20 servers where each is containing 90 hard 

disks each with 12 TB space. Storage servers will be configured using CEPH, with 

total raw space of 21.6 PB with 10.26 PB of safe space with two replicas. 

GPU compute nodes are identical as in HPC prototype with four NVIDIA V100 

boards. There is a total of 30 GPU servers in the design, with a total of 120 NVIDIA 

V100 boards. Compute nodes with x86 cores are same as Infiniband nodes in HPC 

prototype in the current design of HPC RIVR. As new processor with 64 cores emerges 

now, compute nodes might be different and there will be fewer nodes and required 

network connections.   
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The expected power consumption of HPC-RIVR is about 600 kW and an 

additional 200 kW for cooling. Power supplies and cooling equipment is currently 

under construction and dedicated space is prepared for installation in the next months. 

In figure 6 preparation for building HPC-RIVR is shown. 

 

 
Figure 6. The equipment and dedicated space for HPC-RIVR. 

4. Conclusions 

Designing petascale HPC from scratch is a difficult task, comparing with the selection 

of the final product offered by established vendors. The final design has required an 

initial design of HPC prototype, where some results and solutions are expected. HPC 

prototype will also enable a more realistic estimate of our goal of achieving PFLOPS 

operation. Theoretically, designed hardware should result in value above 1 PFLOPS, 

but the final number will be calculated with the LINPACK [16] test. 

As hardware is near the final design and system software will be finalized in HPC 

prototype, the majority of the work is still ahead. HPC-RIVR will be used by a variety 

of researchers with specific needs and requirements. Teams of researchers are currently 

building different applications for these needs and creating web portals and special user 

interfaces, which will enable user-friendly use of HPC. Findings during building HPC-

RIVR and various software solutions could be used on the way to European exascale 

HPC. 
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Design of an FPGA- ased Matrix 

Multiplier with Task Parallelism 

Yiyu TANa,1, Toshiyuki IMAMURA 
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 RIKEN Center for Computational Science, Kobe, Hyogo, Japan 

Abstract. Matrix multiplication requires computer systems have huge computing 
capability and data throughputs as problem size is increased. In this research, an 

OpenCL-based matrix multiplier with task parallelism is designed and implemented 

by using the FPGA board DE5a-NET to improve computation throughput and 
energy efficiency. The matrix multiplier is based on the systolic array architecture 

with 10 × 16 processing elements (PEs), and all modules except the data loading 
modules are autorun to hide computation overhead. When data are single-precision 

floating-point, the proposed matrix multiplier averagely achieves about 785 

GFLOPs in computation throughput and 66.75 GFLOPs/W in energy efficiency. 
Compared with the Intel’s OpenCL example with data parallelism on FPGA, the 

SGEMM routines in the Intel MKL and OpenBLAS libraries executed on a desktop 

with 32 GB DDR4 RAMs and an Intel i7-6800K processor running at 3.4 GHz, the 
proposed matrix multiplier averagely outperforms by 3.2 times, 1.3 times, and 1.6 

times in computation throughput, and by 2.9 times, 10.5 times, and 11.8 times in 

energy efficiency, respectively, even though the fabrication technology is 20 nm in 
the FPGA while it is 14 nm in the CPU. Although the proposed FPGA-based matrix 

multiplier only delivers 6.5% of the computation throughput of the SGEMM routine 

in the cuBLAS performed on the Nvidia TITAN V GPU, it outperforms by 1.2 times 
in energy efficiency even though the fabrication technology of the GPU is 12 nm. 

Keywords. Matrix multiplication, FPGA, OpenCL 

1. Introduction  

Matrix multiplication is one of the fundamental building blocks of linear algebra, and 

has been widely applied in high performance computing (HPC) to solve scientific and 

engineering problems, such as deep learning, data analytics, and so on. In general, matrix 

multiplication requires computing systems to have huge computation capability and 

memory bandwidth as problem size grows. Nowadays, many methods and algorithms 

have already been developed to speed up computation through parallel programming 

techniques or improving the efficiency of memory hierarchy to reduce data access 

overhead in supercomputers, GPUs, multicores, many-cores, and cluster systems. On the 

other hand, power problems become more and more serious in HPC systems, and 

heterogeneous architectures are becoming the mainstream, in which GPUs or FPGAs are 

tightly integrated with multicore processors as accelerators to reduce power consumption, 

especially FPGAs. FPGAs deliver much higher energy efficiency through data 

parallelism and pipelining parallelism using a sea of individually PEs running at low 
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clock frequency. In recent years, an FPGA contains thousands of hardened floating-point 

arithmetic units and million-byte on-chip block RAMs (BRAMs). Furthermore, high-

level synthesis tools let developers shift their focus from low-level HDL-based designs 

to C, C++, or OpenCL codes annotated with directives, which makes the system 

development much easier and development time being shortened. All these lead FPGAs 

to become attractive in HPC.  

FPGA-based acceleration on matrix multiplication has received much attention in 

industry and academics. Zhuo et al. [1] and Dou et al. [2] proposed a matrix multiplier 

with PEs being one-dimensional linear array architecture. Zhuo et al. analyzed the design 

tradeoffs and optimized the design based on the hardware constraints. Dou et al. proposed 

a parallel block algorithm to improving performance by exploiting the data locality and 

reusability. Based on their work, Wu et al. [3] developed an I/O and memory optimized 

blocking algorithm to improve memory efficiency and reduce the required hardware 

resources. Kumar et al. [4] also presented a one-dimensional array architecture of PEs 

and applied the rank-1 update algorithm to schedule input data to PEs. Different with the 

architectures proposed by Dou and Zhou, this architecture distributes the same elements 

of the first matrix to all PEs through broadcasting. Pedram et al. [5][6] introduced a two-

dimensional linear array architecture for matrix multiplication, in which data exchange 

between PEs was performed through row/column broadcasting buses. Such two-

dimensional architecture provides benefits in scalability, addressing, and data movement 

over one-dimensional array architecture.  

There are other FPGA-based accelerators on matrix multiplication for different 

purposes. Giefers et al. [7] presented an FPGA-based accelerator for matrix 

multiplication on a hybrid FPGA/CPU system to study energy efficiency. Jiang et al. [8] 

introduced a scalable macro-pipelined accelerator to perform matrix multiplication to 

exploit temporal parallelism and architectural scalability. Wang et al. [9] integrated 

multiple matrix accelerators with a master processor and built a universal matrix 

processor. Z. Jovanovic et al. [10] presented an accelerator to minimize resource 

utilization and maximum clock frequency by returning the computation results to the 

host processor as soon as they were computed. Andrade et al. [11] adopted high-level 

synthesis approach to generate two-dimensional embedded processor arrays for matrix 

algorithms. Holland [12] proposed high-level synthesis optimization strategies to 

maximize the utilization of the DSPs and BRAMs in blocked matrix multiplication. In 

this research, an FPGA-based matrix multiplier with task parallelism is presented for 

large-scale matrix multiplication. The major contributions of this work are as follows. 
(1) Design and implementation of a matrix multiplier with task parallelism. The matrix 

multiplier is based on the systolic array architecture with 10 × 16 PEs, and data 
reuse and optimization techniques are applied to improve computing performance 
and energy efficiency. 

(2) Task parallelism and data vectorization. The system is partitioned into different 
single-work-item kernels according to dataflow, and most of the kernels work at the 
autorun mode to reduce computation overhead. High-speed and high-bandwidth 
buffers are adopted to exchange data between PEs and kernels. Data vectorization 
is applied to compute the dot product of multiple data inside a PE to enhance the 
computation capability. The proposed system averagely achieves about 785 
GFLOPs in computation throughput and 66.75 GFLOPs/W in energy efficiency in 
the case of data being single-precision floating-point.  

The remainder of this paper is organized as follows. The system design and 
implementation are introduced in Section 2. In Section 3, performance evaluation results 
are presented, followed by conclusions drawn in Section 4. 
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2. System Design and Implementation 

A matrix multiplication  is generally defined as follows: 

 

Where A, B, and C are , , and  matrices, respectively. The 

computations from the above formula can be described by the pseudocode shown in 

Figure 1. In Figure 1, a matrix multiplication consists of three loops, and their positions 

can be changed. The computations require 2×M×P×N floating-point operations and 

M×P+P×N+M×N memory accesses. To speed up the computations, firstly, the 

computation load in a clock cycle should be maximized, which means more floating-

point multipliers and adders are involved into computation and work in parallel to get 

one or more of the scalar product Cij at a clock cycle. This may be achieved by unrolling 

the inner loop (k) and outer loops (i and j) to get more parallel iterations at arithmetic 

level. At circuit level, it is achieved using deep pipelining of floating-point multiplication 

and addition units inside a PE, and many PEs are applied to calculate Cij. Although the 

loops can be unrolled completely, they are limited by the number of DSP blocks inside 

an FPGA, which are applied to implement the floating-point arithmetic units. Secondly, 

parallel data stream is needed to feed the pipeline and shorten the overhead of data access. 

Thus, on-chip buffers are demanded to store the elements of matrices A and B in advance. 

In general, multiple-port and large-size buffers can read/write data in parallel and keep 

more data, but they are constrained by the size of BRAMs inside an FPGA. In addition, 

the overheads to writing data from external memory to on-chip buffers are affected by 

memory bandwidth. To address these, the blocked matrix multiplication algorithm is 

applied to partition the matrices into smaller blocks (sub-matrices), and parallelisms, 

such as data parallelism and task parallelism, are put on the sub-matrix multiplications. 

In this research, the matrix multipliers based on such two parallelisms are designed using 

OpenCL programming language and implemented using FPGA, respectively.  
 

 

 
 

 

 
 

 

Figure 1. Pseudocode of a matrix multiplication. 

2.1 Matrix Multiplier with Data Parallelism 

The matrix multiplier with data parallelism is referenced from the Intel’s OpenCL design 

example [13], and the related code is shown in Figure 2. Both matrices A and B are stored 

by row-major in the host, and two local buffers, A_local and B_local, are defined to store 

the block data of matrices A and B, respectively (lines 4 and 5). Matrices A and B are 

written into the on-board DDR memory from the host machine before computation, and 

then a block of A and a block of B are read into A_local and B_local to perform the 

product of two blocks by the computation engine, which is defined by the N-dimensional 

index space (NDRange) in the OpenCL execution model through the attribute option 

      for i = 0; i < M; i++ 

          for j = 0; j < N; j++ { 

             sum = 0.0; 
             for k = 0; k < P; k++ 

                 sum = sum + A[i][k] × B[k][j]; 

             C[i][j] = sum;} 
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__attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1))). The calculated 

product C[i][j] is written into the on-board DDR memory (line 24), and finally 

transferred to the host machine after all computations are finished. Along with data 

reading from the external memory (lines 14 - 17), the block data of B are transposed 

before they are stored in the local buffer (line 17) to ensure consecutive data access 

during computation (line 21). Furthermore, the inner loop in Figure 1 is fully unrolled 

by adding the directive (line 19) to instruct the OpenCL compiler to implement 

parallelism by using more DSP blocks, and the outer loop in Figure 1 is parallelized and 

realized through introducing the two-dimensional computing engine defined by the 

NDRange. The main disadvantage of this matrix multiplier is that system will be stalled 

until computations in a block are completed (line 22) and new blocks are fed into the 

local buffers (line 18) to maintain data synchronization.  

OpenCL code for blocked matrix multiplication 

1:  __kernel void matrixmult ( __global float �restrict C, __global float �A,  

2:                                             __global float �B, int A_width, int B_width)  { 

3:   //define local storage for a block of input matrices A and B 

4:     __local float A_local[BLOCK_SIZE][BLOCK_SIZE]; 
5:     __local float B_local[BLOCK_SIZE][BLOCK_SIZE]; 

6:    int block_x = get_group_id(0);   //define block index: row 

7:    int block_y = get_group_id(1);   //define block index: column 
8:    int local_x = get_local_id(0);   //define local index: row 

9:    int local_y = get_local_id(1);   //define local index: column 

10:  int a_start = A_width�BLOCK_SIZE�block_y;   //loop start and stop points 

11:  int a_end = a_start + A_width - 1; 

12:  int b_start = BLOCK_SIZE � block_x; 

13:  float sum = 0.0f; 

14:  for (int aa=a_start, bb=b_start; aa<=a_end; aa+=BLOCK_SIZE, bb+= (BLOCK_SIZE�B_width)) { 

15:     // load the matrices into local memory, and perform B<=BT  

16:     A_local[local_y][local_x]=A[aa+A_width�local_y+local_x]; 

17:     B_local[local_x][local_y]=B[bb+B_width�local_y+local_x]; 

18:     barrier(CLK_LOCAL_MEM_FENCE); // wait for the entire block to be loaded. 

19:     #pragma unroll 
20:     for (int k = 0; k< BLOCK_SIZE; ++k) { 

21:          sum += A_local[local_y][k]�B_local[local_x][k]; } 

22:     barrier(CLK_LOCAL_MEM_FENCE);  // wait for completion of computation. 
23:    } 

24     C[get_global_id(1)�get_global_size(0)+get_global_id(0)]=sum; // store result in matrix C 

25:  } 

Figure 2. OpenCL code for blocked matrix multiplication with data parallelism. 

As shown in Figure 2, blocks of both matrices are read into the local buffers at each 

iteration, and multiplications are then carried out by the computation engine. The number 

of iterations is determined by the block size and matrix scale. The required hardware 

resources are affected by the complexity of the kernel shown in Figure 2, and not 

associated with the dimensions of matrices A and B, which only affect the number of 

iterations. In Figure 2, the consumed hardware resources are mainly determined by the 

size of local buffers (A_local and B_local), the unrolling of inner loop, the scale of the 

arithmetic array defined by the NDRange, and the kernel vectorization to specify the 

number of work items within a work group to execute in a single instruction multiple 

data (SIMD) fashion. Except for the kernel vectorization and the unrolling of inner loop 

being specified individually, the size of local buffers and the scale of the arithmetic array 

are determined by the block size. Consequently, the block size has great impacts on the 

required hardware resources and system performance. 
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2.2 Matrix Multiplier with Task Parallelism 

In the matrix multiplier with task parallelism, the system is divided into different function 

modules in accordance to the data flow, and each function module is described as a kernel 

in OpenCL. As illustrated in Figure 3, the system consists of the computing kernel, data-

feeding modules (feed_mat_A_kernel and feed_mat_B_kernel), matrix-loading modules 

(load_mat_A_kernel and load_mat_B_kernel), and data output module. Each kernel 

works with single work-item. Except for the matrix-loading modules, other kernels run 

at the autorun mode to reduce computation overhead. The function of each module is 

described as follows in detail. 

� Matrix-loading modules. The matrix-loading modules read data from the on-board 

DDR memory into buffers according to the data vectorization, block size, block 

position, and data reuse.  

� Data-feeding modules. The data-feeding modules read data from the buffer and feed 

the related data to the computing kernel. As shown in Figure 3, the number of data-

feeding modules for matrices A and B equals to the number of rows and columns of 

the systolic array in computing kernel, respectively. Each data-feeding module will 

check and feed the corresponding data to the specific row or column of the computing 

kernel, and then forward the other data to the next neighbor data-feeding module. 

� Computing kernel. The computing kernel is a systolic array with 10 × 16 PEs, and 

high-speed and high-bandwidth channels are applied to connect PEs and kernels. In 

the computing kernel, data of matrix A are shifted from the left to right while data of 

matrix B are moved from the top to bottom in the systolic array to reuse data. 

� PE. The PE is the arithmetic unit to perform computation. The block diagram of a PE 

is presented in Figure 4, which consists of eight arithmetic units to compute the dot 

product of eight data at a clock cycle through pipelining, namely the data 

vectorization is eight. In Figure 4, each arithmetic unit is generated by the IP 

generator from the Quartus Prime Pro to perform different operations, and is 

implemented by using the hardened DSP blocks inside FPGA. In the current design, 

each arithmetic unit consumes one DSP block, which contains an adder and a 

multiplier with single-precision.  

� Data output module. The data output module outputs the computation results to the 

on-board DDR memory. Similar as the data-feeding module for matrix B, several 

data output modules will be applied in accordance to the column of the systolic array 

in the computing kernel. 

2.3 System Implementation  

The matrix multipliers with data parallelism and task parallelism are compiled by using 

the Intel FPGA SDK for OpenCL 16.1 and implemented by using an FPGA board DE5a-

NET from Terasic [16], which includes an Intel Arria 10 GX FPGA 

10AX115N2F45E1SG and 8 GB on-board DDR3 memory. The FPGA contains 1518 

hardened single-precision floating-point units, 427,200 ALMs, and 53 Mb M20K 

memory. The on-board memory is arranged at two independent channels with each being 

4 GB. The matrices A and B are written into different banks of the on-board memory 

through PCIe bus, and they are accessed independently through different channels. The 

product, namely the matrix C, is firstly stored into the same memory bank as the matrix 

A, and finally written back to the host machine. In the matrix multiplier with data 
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parallelism, the block size is 128 128 and the kernel vectorization is four. In contrast, 

in the matrix multiplier with task parallelism, the data vectorization is eight, and the 

block size of matrix A is 320 256 while the block size of matrix B is 256 512. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. System block diagram.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Block diagram of a PE. 

The kernel code is compiled into the intermediate representations, applied necessary 

optimizations, converted to the Verilog files, and then performed synthesis, placement 

and routing to generate the final FPGA bitstream by the Intel FPGA SDK for OpenCL. 

Table 1 presents the hardware resource utilization in the two matrix multipliers in the 

case of data being single-precision floating-point. As shown in Table 1, the matrix 

multiplier with task parallelism utilizes more DSP blocks and gains much higher clock 

frequency over the matrix multiplier with data parallelism on FPGA. In both systems, 

the system performance is constrained by the size of on-chip BRAM blocks. Although 

the matrix multiplier with data parallelism consumes less DSP blocks (34%), if the block 

size is increase further to use more DSP blocks to improve system performance, such as 

256 256, the on-chip BRAM blocks will be exhausted and the system cannot be 

synthesized because the block size affects the utilization of the BRAM blocks and DSP 
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blocks. On the other hand, in the matrix multiplier with task parallelism, the systolic 

array and data vectorization are determined by the available DSP blocks and BRAM 

blocks inside the FPGA. In the current design, the optimal systolic array contains 10 × 

16 PEs, and the data vectorization is eight, which means each PE consumes eight DSP 

blocks. Therefore, the matrix multiplier requires 1280 (10×16×8) DSP blocks. Although 

the systolic array can be scaled up to 11 × 16 PEs according to the available hardware 

resources of the FPGA, the system is not synthesizable by the Intel FPGA SDK for 

OpenCL. In addition, the clock frequency of the proposed matrix multiplier with task 

parallelism is much higher than the matrix multiplier with data parallelism because of 

more optimized data path in accordance to the dataflow.  

Table 1. Hardware resource utilization 

 

3. Performance Evaluation  

The proposed matrix multiplier is implemented by using the FPGA board DE5a-NET, 

and its performance is evaluated and compared with the matrix multiplier with data 

parallelism on FPGA [14-15], the SGEMM routine in the cuBLAS performed on the 

Nvidia TITAN V GPU [17], the SGEMM routines in the Intel MKL(version:2018.0.128) 

and OpenBLAS (version: 0.2.20) executed on a desktop machine with 32 GB DDR 

RAMs and an Intel i7-6800K processor running at 3.4 GHz. The operating system of the 

desktop machine is CentOS 7.0, and the compiler for the OpenBLAS is gcc 4.9.4. The 

compiler for the OpenCL is Intel FPGA SDK for OpenCL 16.1. In the GPU system, the 

host machine contains an Intel Xeon W-2123 processor with CentOS 7.4, CUDA 10.0, 

and the GPU driver version being 410.73. The fabrication technology in the FPGA Arria 

10 is 20 nm while it is 14 nm and 12 nm in the Intel i7-6800K processor and TITAN V 

GPU, respectively. The execution time and power consumption are measured, and the 

computation throughput and energy efficiency are estimated. During estimation, the 

matrices are square and data are single-precision. 

3.1 Computation throughput 

Figure 5 shows the computation performance in the case of different matrix scales. The 

computation throughput is almost fixed on the FPGA system as the matrix scale is 

increased because the operations become computation-bound. However, it fluctuates in 

the SGEMM routines on the GPU with cuBLAS and the desktop machine with the MKL 

and OpenBLAS libraries. For example, when the matrix scale is increased from 7680 × 

7680 to 20480 × 20480, the computation throughput in the FPGA-based matrix 

multiplier with data parallelism and task parallelism is about 240 GFLOPs and 780 

GFLOPs, respectively. But the computation throughput of the SGEMM routine on the 

GPU is decreased from 13.47 TFLOPs to 11.28 TFLOPs. Similarly, the computation 

throughput is firstly increased from 586.23 GFLOPs to 631.03 GFLOPs, and then 

dropped to 532.43 GFLOPs in the SGEMM routine on the desktop machine with the 

MKL library. In Figure 5, the proposed matrix multiplier with task parallelism averagely 

Logic utilization DSP blocks RAM blocks Clock frequency

Task parallelism 237128(56%) 1280(84%) 2529(93%) 305 MHz

Data parallelism 92002(22%) 520 (34%) 1774(65%) 235 MHz

Matrix multiplier
Hardware resource
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offers about 785 GFLOPs in computation throughput, which is about 3.2 times, 1.3 times, 

1.6 times, and 6.5% in average over the matrix multiplier with data parallelism on FPGA, 

the SGEMM routines in the MKL and the OpenBLAS executed on the desktop machine, 

and the SGEMM routine in the cuBLAS performed on the TITAN V GPU, respectively. 

In addition, the block size of matrices A and B impacts on the computation throughput. 

If matrices A and B are 5120 × 4096 and 4096 × 8192, and the block sizes of A and B 

are 160 × 128 and 128 × 256, the computation throughput of the matrix multiplier with 

task parallelism is increased to about 868 GFLOPs. 

Figure 5. Computation throughput.  

3.2 Energy Efficiency 

To estimate the energy efficiency, the input current and voltage of the FPGA board and 

the desktop machine with the MKL and OpenBLAS libraries are measured every 200 ms 

by using a digital multimeter PC720M from the Sanwa when the FPGA system and the 

desktop machine are idle and active, respectively. The power consumption is calculated 

by multiplying the voltage and the current difference. The energy efficiency is computed 

by using equation 1. 

_

( )

computation throughput
efficiency

active idle

E
P

V I I
�

� �
                                                                              (1) 

where E is the computation throughput, V is the voltage, and I is the current.  is the 

current when the SGEMM routine is performed or the FPGA board is active, and  is 

the system current without computation. The term  denotes the actual 

consumed current by computations in the FPGA and the desktop machine with the 

SGEMM routine. The activeI  and idleI  are the average of the measured values. In the 

GPU, the energy consumption is obtained through the 

“nvmlDeviceGetTotalEnergyConsumption” function provided by the Nvidia 

management library.  
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Figure 6 shows the energy efficiency of the FPGA-based matrix multipliers, the 

SGEMM routines in the MKL and OpenBLAS executed on the desktop machine, and 

the SGEMM routine in the cuBLAS performed on the GPU. The energy efficiency of 

the proposed matrix multiplier with task parallelism ranges from 71.74 GFLOPs/W to 

63.32 GFLOPs/W, and is about 66.75 GFLOPs/W in average, which is about 2.9 times, 

1.2 times, 10.5 times, and 11.8 times, over the FPGA-based matrix multiplier with data 

parallelism, the SGEMM routine on the GPU, and the SGEMM routines on the desktop 

machine with the Intel MKL and the OpenBLAS, respectively, even though the 

fabrication technology of the FPGA (20 nm) is significantly lagged behind that of the 

CPU (14 nm) and the GPU (12 nm). In addition, the proposed system gains much higher 

energy efficiency in the case of small problem size because the computation throughput 

is almost fixed while the consumed current by the FPGA is increased as the problem size 

grows. 

Figure 6. Energy efficiency. 

4. Conclusions 

Matrix multiplication is one of the basic building blocks of linear algebra, and widely 

applied in the HPC to solve scientific and engineering problems. Its performance 

significantly affects the whole system performance, especially when the problem size is 

large. In addition, power problem becomes more and more serious in HPC systems. In 

this research, an FPGA-based matrix multiplier with task parallelism is developed to 

improve system performance and energy efficiency for large-scale matrix multiplication, 

in which system is divided into different kernels in accordance to the data flow, a systolic 

array is adopted to carry out computations, and high-speed and high-bandwidth buffers 

are used to connect PEs in the systolic array and different kernels. It outperforms the 

FPGA-based matrix multiplier with data parallelism and the SGEMM routines in the 

highly optimized MKL and OpenBLAS libraries executed on a desktop machine in 
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computation throughput and energy efficiency. Compared with the SGEMM routine in 

the cuBLAS performed on the Nvidia TITAN V GPU, the proposed matrix multiplier is 

significantly defeated in computing performance, but it wins in energy efficiency. In 

future work, we will port and optimize the proposed design on other FPGA platforms 

with more hardware resources and multiple FPGAs to evaluate its performance, and 

compare the performance with the popular Xeon gold processor in HPC. 
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Abstract. Various parallel computer benchmarking projects have been around 

since early 1990s but the adopted so far approaches for performance analysis 
require a significant revision in view of the recent developments of both the 

relevant application domains and the underlying computer technologies. This 

paper presents a novel performance evaluation methodology based on assessing 
the processing rate of two orthogonal use cases — dense and sparse physical 

systems — as well as the energy efficiency for both. Evaluation results with two 

popular codes — HPL and HPCG — validate our approach and demonstrate its 
use for analysis and interpretation in order to identify and confirm current 

technological challenges as well as to track and roadmap the future application 

performance of physical system simulations. 

Keywords. Performance and energy efficiency analysis, Peta- and Exa-scale 

systems, Performance evaluation methodology 

1. Introduction 

Computer simulation of physical real-world phenomena emerged with the invention of 

electronic digital computing and has been increasingly adopted as one of the most 

successful modern methods for scientific discovery. Arguably, the main reasons for this 

success has been the rapid development of novel computer technologies that has led to 

the creation of powerful supercomputers, large distributed systems, high-performance 

computing frameworks with access to huge data sets, and high throughput 

communications. In addition, unique and sophisticated scientific instruments and 

facilities, such as giant electronic microscopes, nuclear physics accelerators, or 

sophisticated equipment for medical imaging are becoming integral parts of those 

complex computing infrastructures. Subsequently, the term ‘e-science’ was quickly 

embraced by the professional community to capture these new revolutionary methods 

for scientific discovery via computer simulations of physical systems [1].  

Focusing on the application domain for physical system simulations, this paper 

explains in detail our performance evaluation methodology with the most-recent results, 

analysis and interpretation based on the relevant technical report [2] produced by the 

Applications Benchmarking (AB) International Focus Team (IFT) as part of the IEEE 
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International Roadmap for Devices and Systems (IRDS) initiative2. Since 2015, IRDS 

is the successor of the International Technology Roadmap for Semiconductors (ITRS), 

which used to be provided by the Semiconductor Industry Association [3]. The mission 

of AB IFT is to identify key application areas, and to track and roadmap the 

performance of these applications for the next 15 years. Given a list of market drivers 

from the Systems and Architectures IFT, the AB IFT investigates and applies long-term 

analysis to identify the important or critical application areas for different user 

communities. Table 1 summarizes the ones that are under consideration at present. 

Table 1. Application areas. 

Application area Description 
Big data analytics Data mining to identify nodes in a large graph that satisfy a given feature or

features. 
Feature recognition Graphical dynamic moving image (movie) recognition of a class of targets (e.g. 

face, car). This can include neuromorphic / deep learning approaches such as

deep neural networks. 
Discrete event simulation Large discrete event simulation of a discretized-time system. (e.g., large

computer system simulation) Generally used to model engineered systems. 

Computation is integer-based. 
Physical system simulation Simulation of physical real-world phenomena. Typically, finite-element based.

Examples include fluid flow, weather prediction, thermo-evolution.

Computation is floating-point-based. 
Optimization Integer NP-hard optimization problems, often solved with near-optimal

approximation techniques. 

Graphics, augmented 
reality, virtual reality. 

Large scale, real-time photorealistic rendering driven by physical world models. 
Examples include interactive gaming, augmented reality, virtual reality. 

 

In order to track these areas, the AB IFT relies upon existing standard benchmarks 

where available. These benchmarks should fulfil two criteria: 

� Benchmark Code Availability: There are several sets of benchmark codes 

available that cover each application area. However, many of these 

benchmarks either cover only a portion of an application area or cover more 

than one application area.  

� Benchmark Results Availability: In order for benchmarks to be useful for 

projecting a trend in performance vs. time, there must be a sufficiently long 

history of benchmark scores. At a minimum, AB IFT believes that at least 4 

years prior to the current day of results should be available.  

The most important application codes for physical system simulations are typically 

based on finite-element algorithms — such as boundary element method, N-body 

problem, fast multipole method, hierarchical matrices, iterative stencil computations — 

while the computations constitute heavy workloads that conventionally are dominated 

by floating-point arithmetic. Example applications include areas such as climate 

modelling, plasma physics (fusion), medical imaging, fluid flow, and thermo-evolution. 

In addition, physical system simulation is critical to product design in the automobile 

and aerospace industries as well as for obtaining more accurate climate modelling and 

prediction. Our results confirm that: 

� The area of physical system simulations requires innovative computer 

architectures because the data locality we have been expecting from our 

 
2 https://irds.ieee.org/ 
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applications for three decades is disappearing. Novel solutions that can help 

addressing the “3rd Locality Wall” challenge [4] are urgently needed.  

� Since the application area of physical system simulations is based 

predominantly on floating-point arithmetic, novel architecture proposals that 

address floating-point processing challenges are also expected to have 

substantial impact, particularly for dense system computations. 

� Energy efficiency indicators need urgent improvements by at least an order of 

magnitude. This is equally valid for both homogeneous and heterogeneous 

architectures including accelerators and FPGAs.  

The rest of this paper is organized as follows. Section 2 provides a review of 

previous work in the area. Section 3 introduces our novel approach and methodology 

while Section 4 presents experimental results with corresponding discussions. Section 5 

outlines some of the important technological challenges. Finally, Section 6 concludes 

the paper. 

2. Background 

Taking the viewpoint of application programmers and end-users, this section outlines 

the major benchmarking efforts that have been part of the developments in this field 

over the years. 

2.1. NAS Parallel Benchmarks 

The NAS Parallel Benchmarks (NPB) include the descriptions of several (initially 

eight) “pencil and paper” algorithms [5]. Realistically, all of them are computational 

kernels although the authors claim that the suite includes three "simulated applications" 

but this claim is from the early 90s and it does not sound convincingly today. The NPB 

benchmarking methodology does not involve any hierarchy and each of the kernels is 

to be used individually for performance measurements. The codes cover only the 

Computational Fluid Dynamics (CFD) application domain which is of primary interest 

for NASA. 

2.2. GENESIS Distributed-Memory Benchmarks 

The GENESIS codes [6] were developed in a 3-layer hierarchy — low-level micro-

benchmarks, kernels, and compact applications. This was intended to express the 

performance of higher-level codes via a composition of performance results produced 

by the kernels in the layer below. However, this proved to be a difficult task, 

particularly when including sufficiently broad set of computational science codes in the 

compact applications layer. 

2.3. PARKBENCH Committee 

The PARKBENCH Public International Benchmarks for Parallel Computers [7]. This 

was an ambitious international effort to glue together the most popular parallel 

benchmarks at that time — NPB, GENESIS, and several kernels including LINPACK 
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[8]. The PARKBENCH suite adopted the hierarchical approach from GENESIS, thus 

inheriting the same difficulties described above. 

2.4. SPEC 

All major machine vendors have participated in the development of SPEC HPG (High 

Performance Group), since achieving portability across all involved platforms has been 

an important concern in the development process [9]. The goal was to achieve both 

functional and performance portability. Functional portability ensured that the 

makefiles and run tools worked properly on all systems, and that the benchmarks ran 

and validated consistently. To achieve performance portability, SPEC accommodated 

several requests by individual participants to add small code modifications that took 

advantage of key features of their machines. There are many SPEC HPG benchmarking 

results available, but their main role is to confirm that new hardware products and 

platforms have been validated by the vendors. 

2.5. Dwarfs — Computational Patterns 

Another more recent “pencil and paper” parallel benchmark suite is the Dwarfs Mine 

based on the initial “Seven Dwarfs” proposal (2004) by Phillip Colella. The Dwarfs 

(computational patterns) are described as well-defined targets from algorithmic, 

software, and architecture standpoints. The number of Dwarfs (which are really kernels 

with some of them mapped to NPB) was then extended to 13 in the “View from 

Berkeley” Technical Report [10]. The report confirms “presence” of the 13 Dwarfs in 6 

broad application domains — embedded computing, general-purpose computing, 

machine learning, graphics/games, databases and RMS (recognition/mining/synthesis) 

codes. Some recent studies suggest that more Dwarfs should be added for other 

application domains, while it is also not clear if the existing ones are sufficient for the 

domains described in the “View from Berkeley” Technical Report. The Dwarfs Mine 

description adopts a bottom-up hierarchical approach like GENESIS and then 

PARKBENCH. Although more systematic, it suffers from the same benchmarking 

hierarchy difficulties. Furthermore, the availability of benchmarking codes and results 

is very limited but even more importantly, the application domains are different from 

the ones selected by the AB IFT in the IEEE IRDS initiative.  

3. Methodology 

Over the years, the relevant benchmarking projects described in Section 2 above, have 

covered predominantly dense physical system simulations, in which high 

computational intensity carries over when parallel implementations are built to solve 

bigger problems faster. As long as emphasis was on dense problems, this approach 

resulted in systems with increasing computational performance and was the 

presumption behind the selection of the LINPACK benchmark [8] for the very popular 

semi-annual TOP500 rankings of supercomputers [11].  

Many new applications with very high economic potential — such as big data 

analytics, machine learning, real-time feature recognition, recommendation systems, 

and even physical simulations - have been emerging in the last 10-15 years. However, 
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these codes typically feature irregular or dynamic solution grids and spend much more 

of their computation in non-floating-point operations such as address computations and 

comparisons, with addresses that are no longer regular or cache-friendly. The 

computational intensity of such programs is far less than for dense kernels, and the 

result is that for many real codes today, even those in traditional scientific cases, the 

efficiency of the floating-point units that have become the focal point of modern core 

architectures has dropped from the >90% to <5%. This emergence of applications with 

data-intensive characteristics — e.g. with execution times dominated by data access 

and data movement — has been recognized recently as the “3rd Locality Wall” for 

advances in computer architecture [4]. 

To highlight the inefficiencies described above, and to identify architectures which 

may be more efficient, a new evaluation code was introduced in 2014 called HPCG3 

(High Performance Conjugate Gradient) benchmark [12]. HPCG also solves Ax=b 

problems, but where A is a very sparse matrix — normally, with 27 non-zeros in rows 

that may be millions of elements in width. On current systems, floating point efficiency 

mirrors that seen in full scientific codes. For example, one of the fastest 

supercomputers in the world in terms of dense linear algebra is the Chinese TaihuLight, 

but that same supercomputer can achieve only 0.4% of its peak floating-point 

capability on the sparse HPCG benchmark. Detailed analysis lead to the conclusion that 

HPCG performance in terms of useful floating-point operations is dominated by 

memory bandwidth to the point that the number of cores and their floating-point 

capabilities are irrelevant [13]. There are of course application codes with highly 

irregular and latency-bound memory access that deliver significantly lower 

performance, but they are uncommon. While HPCG does not represent the worst-case 

scenario, it has been widely accepted as a typical performance yardstick for memory-

bound applications. 

Therefore, our selected benchmark codes that cover the “Physical System 

Simulation” application area of interest are the High-Performance LINPACK (HPL) 

and the HPCG. Both are very popular codes with very good regularity of results since 

June 2014. Another very important reason for selecting HPL and HPCG is that they 

represent different types of real-world phenomena — the HPL models dense physical 

systems while the HPCG models sparse physical systems. Therefore, the available 

benchmarking results provide excellent opportunities for comparisons and 

interpretation, as well as lay out a relatively well-balanced overall picture of the whole 

domain for physical system simulation applications. Our approach is to explore a 3-

dimensional space — dense systems performance, sparse systems performance, and 

energy efficiency for both cases. 

4. Performance Results 

With HPL as the representative of dense system performance and HPCG as the 

representative for sparse systems, there are readily available performance and energy 

results published twice per year (June and November) with rankings of up to 500 

systems for those two benchmarks since June 2014.  

 
3 http://www.hpcg-benchmark.org/ 
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Figure 1. Average performance of HPL (dense systems) vs. HPCG (sparse systems). 

 

We have further decided to use the average of the top 10 performance and energy 

results for each of these two benchmarks. This latter choice could be a point for further 

discussion and optimization of the benchmarking approach for this application domain. 

We have selected the 10 best only (rather than a larger number) because of the very 

limited HPCG results in the early years of publicly available HPCG measurements. 

Figure 1 shows a significant performance gap of nearly 2 orders of magnitude 

between HPL and HPCG results in the last several years. The increase of the average 

HPL performance since June 2016 is because of the introduction of the Chinese 

Sunway TaihuLight system. The most recent increase of both HPL and HPCG 

performance is visible since June 2018 after the installation of the Summit 

supercomputer at ORNL. An optimistic expectation here would be to observe that the 

gap keeps closing and then assess the rate of this progress. Unfortunately, we do not 

have any evidence that the observed performance gap is in fact closing to any degree. 

Thus, we can draw the conclusion that one of the main challenges ahead will be to 

significantly increase sparse systems performance with any future computing systems 

designed for this application domain. While it is clear that reaching Eflop/s 

performance with HPL will happen soon, it is equally clear that this achievement will 

leave this significant gap between dense and sparse system performance unchanged. 

Figure 2 complements the above analysis by showing a similar gap of 

approximately 2 orders of magnitude for the fraction of peak performance results 

between HPL and HPCG. This provides clear evidence of something we have known 

for years — our production codes, which usually implement sparse system simulations, 

are unable to deliver more than a few percent of the peak system performance that HPL 

results would seem to promise. The figure shows that this gap has not been reducing, 

and further points out the need to address sparse system performance in the next 

generation of computer architectures designed for this application domain. 
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Figure 2. Fraction of peak performance for HPL (dense systems) vs. HPCG (sparse systems). 

Figure 3. HPL (dense systems) vs. HPCG (sparse systems) vs. the most energy-efficient supercomputers on 

the Green 500 list. 

The energy efficiency dimension of our evaluation is depicted in Figure 3. The 

current supercomputing designs appear to be able to scale up to 200 Pflop/s while 

remaining within the recommended 20 MW system power consumption envelope. An 

optimistic estimate based on this would require five times improvements in energy 

efficiency, and seven times improvements in the HPL performance currently delivered 

by the Summit supercomputer. However, such improvements are not realistic, since the 

best energy efficiency results and rankings are different from the HPL ranking (see 

comments above about the top 10 ranked results). Therefore, a more realistic projection 
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based on the current (end of 2019) Summit results is that one needs ten times energy 

efficiency improvement and ten times higher HPL performance to reach the Eflop/s 

barrier. Unfortunately, this would only fulfil the desired performance and energy 

efficiency for the computation of dense physical systems such as the HPL benchmark.  

Similar performance versus energy efficiency analysis and projections for sparse 

systems based on the HPCG results look much more pessimistic. Here the two orders 

of magnitude lower performance delivered for sparse systems by the current 

supercomputing architectures strongly impact the energy efficiency. 

5. Technological Challenges 

Following the results and the discussion presented in the previous section, the main 

technological challenges that could help drive the future developments and 

improvements in the field of physical system simulation a summarised briefly below. 

5.1. Reduced Data Movement 

Since the late 1980s, reducing significantly the data movement has been one of the 

most important challenges towards achieving higher computer performance. Achieving 

higher bandwidth and lower latency for accessing and moving data — both locally 

(memory systems) and remotely (interconnection networks) — are key challenges 

towards building supercomputers at Eflop/s level and beyond. Breakthrough 

architecture solutions addressing those challenges could potentially enable up to two 

orders of magnitude higher performance particularly for sparse physical system 

simulations. More specifically, forthcoming designs of High Bandwidth Memory 

(HBM) such as HBM3+ and HBM4 expected to be released between 2022 and 2024, 

are likely to change substantially the application performance landscape for future 

supercomputers. 

5.2. Efficient Floating-Point Arithmetic 

Established in 1985, the IEEE 754 Standard for Floating-Point Arithmetic was renewed 

again in July 2019 [14]. However, the level of interest in this standard has been 

declining following critical comments about various important aspects of IEEE 754 

including wasted cycles, energy inefficiencies, and accuracy. Unfortunately, the path 

forward is unclear at present and may involve keeping this standard as an option at 

least for backward compatibility while developing and implementing novel and more 

efficient solutions. Several efforts to address these problems follow two main 

approaches. 

� Analysis of specific algorithms and re-writing of existing codes in order to 

improve the performance by using lower or mixed floating-point precision 

without compromising accuracy. This approach has been shown to work well 

but only for specific algorithms/codes, and with significant dedicated efforts 

for each case [15]. 

� More radical approaches proposing new solutions have been under 

development including the Posit Arithmetic proposal [16]. This work 
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introduces a new data type — posit — as a replacement for the traditional 

floating-point data type because of its advantages. For example, posits 

guarantee higher accuracy and bitwise identical results across different 

systems which have been recognized as the main weaknesses of the IEEE 754 

Standard. In addition, they enable more economical design with high 

efficiency which lowers the cost and the consumed power while providing 

higher bandwidth and lower latency for memory access. 

5.3. Low Consumed Power 

During the last two decades, further developments of computer architecture and 

microprocessor hardware have been hitting the so-called “Energy Wall” because of 

their excessive demands for more energy. Subsequently, we have been ushering in a 

new era with electric power and temperature as the primary concerns for scalable 

computing. This is a very difficult and complex problem which requires revolutionary 

disruptive methods with a stronger integration among hardware features, system 

software and applications. Equally important are the capabilities for fine-grained spatial 

and temporal instrumentation, measurement and dynamic optimization, in order to 

facilitate energy-efficient computing across all layers of current and future computer 

systems. Moreover, the interplay between power, temperature and performance add 

another layer of complexity to this already difficult group of challenges. 

Existing approaches for energy efficient computing rely heavily on power efficient 

hardware in isolation which is far from acceptable for the emerging challenges. 

Furthermore, hardware techniques, like dynamic voltage and frequency scaling, are 

often limited by their granularity (very coarse power management) or by their scope (a 

very limited system view). More specifically, recent developments of multi-core 

processors recognize energy monitoring and tuning as one of the main challenges 

towards achieving higher performance, given the growing power and temperature 

constraints. To address these challenges, one needs both suitable energy abstraction and 

corresponding instrumentation which are amongst the core topics of ongoing research 

and development work. Another approach is the use of application-specific accelerators 

to improve the application performance, while reducing the total consumed power 

which in turn minimises the overall thermal energy dissipation. 

6. Conclusions 

The application area of physical system simulations urgently needs novel and 

innovative architectures that provide solutions resolving the 3rd Locality Wall 

challenge. This includes both novel memory systems and interconnection networks 

offering much higher bandwidth and lower latency. Energy efficiency indicators also 

need urgent improvements by at least an order of magnitude. This requirement is 

equally valid for both homogeneous and heterogeneous architectures (including 

accelerators and FPGAs) that need further comparisons and analysis. Since the 

application area of physical system simulations is based predominantly on floating-

point arithmetic, novel architecture proposals that address floating-point processing 

challenges can also be expected to have substantial impact, particularly for dense 

system computations. 
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Abstract. The Friends-of-Friends (FoF) algorithm is a standard technique used in
cosmological N-body simulations to identify structures. Its goal is to find clusters
of particles (called groups) that are separated by at most a cut-off radius. N-body
simulations typically use most of the memory present on a node, leaving very little
free for a FoF algorithm to run on-the-fly. We propose a new method that utilises
the common Union-Find data structure and a hybrid MPI+threads approach. The al-
gorithm can also be expressed elegantly in a task-based formalism if such a frame-
work is used in the rest of the application. We have implemented our algorithm in
the open-source cosmological code, SWIFT. Our implementation displays excellent
strong- and weak-scaling behaviour on realistic problems and compares favourably
(speed-up of 18x) over other methods commonly used in the N-body community.

Keywords. Friends-of-Friends; Union-Find; MPI; Threads; Efficiency

1. Introduction

Over the last four decades cosmological simulations have been the main tool used by
physicists to confront their theoretical predictions to observations. By creating more-
and-more realistic universes they have been able to revolutionise our understanding of
the cosmos and establish the current cosmological model. These simulations typically
involve the evolution of large numbers of particles or resolution elements under the laws
of gravity and hydrodynamics. Given the large volumes simulated and the ever-growing
need for more details, these simulations are often at the forefront of research in HPC and
require ever-increasing computing capabilities. For instance, the current record holder,
the Euclid flagship simulation [1], evolved 8× 1012 particles from the Big Bang to the
present day and generated peta-bytes of data.

Putting aside the question of running such simulations, analysing these large vol-
umes of data poses huge computational challenges as even the most basic operations re-
quire sizeable facilities to simply host the data in memory. One of the most-widely used
post-processing tool for such simulations is the Friends-of-Friends (FoF) method [2],
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which is designed to identify groups of particles that are within a certain linking-length,
lx, of each other. If the linking-length is chosen to be small enough then the method will
identify groups that correspond to structures of particles that have formed due to gravity
and hence capture information about the evolution of the Universe. More specifically
two particles are in the same group if they are at a distance smaller than lx of each other.
Particles can be linked to multiple other particles and all particles linked in this way are
in the same group 2. The size of a group is later defined as the number of particles that
are linked to each other by this criterion. Particles without any neighbours within lx form
a group of size one. Since producing catalogs of particle groups in post-processing can
be prohibitively expensive, in terms of i/o at least, it is common practice to apply the FoF
method on-the-fly at fixed time intervals over the course of the N-body simulation. This
also allows the production of FoF outputs at a higher frequency. Over the years many
dedicated stand-alone FoF packages have been implemented, recent examples used in
production runs include [3–5]. Nevertheless, the challenge of efficiently distributing the
method over large numbers of nodes on-the-fly, i.e. whilst reusing the pre-existing data
structures put in place for the N-body solver, still remains.

In this paper we present a FoF implementation that exploits the hybrid shared/dis-
tributed parallelism built into the SWIFT cosmological code 3 [6, 7] to achieve excel-
lent efficiency whilst also being able to run at regular intervals over the course of large
cosmological simulations.

2. FoF using the Union-Find algorithm

FoF is related to the more general problem of Euclidean minimum spanning trees (here
in 3 dimensions), which is a very well-studied problem (e.g. [8, 9]) with algorithms that
are near-linear in the worst case, but differs crucially in that:

• The maximum Euclidean distance considered is limited, thus limiting the range of
neighbours for each node, and

• We are not interested in the exact structure of the resulting minimum spanning
tree (or set of trees), but only in which nodes belong to the same trees.

The problem is therefore equivalent to the disjoint-set union (or union-find) problem
[10, 11], and the FoF method we have implemented is based on the approaches used for
its solution in shared/distributed-memory parallel settings [12–15].

A disjoint-set data structure is the basis for the algorithm, which maintains a col-
lection of dynamic non-overlapping sets consisting of N distinct elements. Each set is
identified by a representative element (the root). It is widely used in the calculation of
minimum spanning trees in graphs and the computation of connected components.

The Union-Find algorithm is designed around two operations: Union, which merges
a pair of sets and Find, which identifies the set a given element resides in. The data struc-
ture is typically implemented using a forest, where each tree represents a connected set
and the root of each tree identifies the set. Initially each set contains one element which

2More mathematically, the problem can be expressed as determining the connected components of a graph
G , based on a set of points P, where G is defined as G = (P,E) with the set E = {{u,v} : dist(u,v)� lx} and
u,v ∈ P.

3See also www.swiftsim.com.
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is the sole member of its set and its set’s representative. Two sets containing elements
that are within the linking-length distance, lx, are merged using the Union operation4.

There are several standard ways to optimise the Union-Find algorithm. The Union
operation for example, can be implemented using Union-by-size which links smaller sets
to larger ones and Union-by-rank that links sets with shorter trees to sets which have
taller trees. However, we will use Union-by-root and make the larger root always point
to the smaller root, where the initial root of each set is assigned by its offset in the array.
This allows us to bypass the issues with parallelism (see below) reported by [15].

Another common optimisation technique is path compression. Each tree vertex tra-
versed in a Find operation is set to point to the root of the set. This means that subsequent
Find operations are quicker as most vertices will point directly to the root; reducing the
rank of each particle and hence lowering the (theoretical) loss of performance using a
Union-by-root approach over a Union-by-rank.

The Union-Find algorithm has been extensively parallelised in the literature for both
shared and distributed memory machines: [12–14]. The novelty of our paper is the intro-
duction of a hybrid shared/distributed memory algorithm that uses a task-based frame-
work, which can be run on-the-fly within our N-body code that imposes a spatial decom-
position.

3. Implementation in the SWIFT code

3.1. Serial implementation

In practice the Union-Find data structure is implemented using an array of length, N,
where N is the total number of particles and each element represents a particle. The array
is initialised so that each particle exists in its own group, i.e each element is set to the
offset of the particle in the array. A neighbour search is then performed over the particles
using the linking-length, lx, as the search criterion. The Find operation is used on all
particles that are neighbours to return their roots. Two groups are then merged using the
Union operation, where the smaller of the two roots is used as the group label henceforth.
For example:

1 for (int i = 0; i < N; i++)
2 for (int j = 0; j < N; j++)
3 if(i == j) continue; // Avoid self
4 r = particle_dist(parts[i], parts[j]);
5 if (r < l_x)
6 // Find operation
7 int root_i = fof_find(i, group_index);
8 int root_j = fof_find(j, group_index);
9 // Union operation

10 if(root_i < root_j) group_index[root_j] = root_i;
11 else group_index[root_i] = root_j;

Code 1: Union-Find with a simple iteration over neighbours.

4In the context of the FoF method we use the following terminology: a set is referred to as a group and an
element is an individual particle.
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Figure 1. FoF Union-Find using task-based parallelism. Each coloured cell represents a single task. Self tasks
are created for each cell and pair tasks are created between cells that lie within the cut-off radius, lx, of each
other. A self task performs a FoF search on particles in a single cell whereas a pair task carries out a FoF search
between particles in neighbouring cells. Tasks are placed into a queue. A group of threads pick and execute
tasks from the queue concurrently until there are none remaining.

where parts is the particle array and group index is the array that represents the
Union-Find data structure.

As in the case of minimum spanning tree problems, we make use of the octree
(quadtree in 2D) present in SWIFT to significantly reduce the cost of the neighbour
search, by only recursing on pairs of cells that are within the requested cut-off radius, lx,
of each other. We note, however, that the best performance is achieved when the size of
the tree nodes matches the linking-length (see the technique of [4] or [5]), but that tai-
loring the octree node sizes would hinder the performance of the rest of the SWIFT code
and is hence not an option. Once the tree has been setup, the problem becomes almost
embarrassingly parallel and we split the workload evenly either between: (a) a group of
threads, or equivalently (b) a set of tasks (see Fig. 1). We implement the latter in SWIFT

using a variant of the QUICKSCHED tasking library [16].

3.2. Shared memory parallelism

In order to parallelise the algorithm a subtle issue needs to be taken care of, i.e. each
thread must have a consistent view of the tree data. For example, consider two roots:
ri and r j, we need to ensure that one thread does not find ri < r j whilst another con-
cludes ri > r j. One possibility would be to use locks when writing to the Union-Find data
structure (group index), but this would hinder scalability as more and more threads
try to access the list. We instead solve this problem by checking that the value of ri has
not changed between being read and being found to be lower than r j. If ri has changed
between these events the process is repeated until the value of ri remains constant.
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We implement the Union operation in a thread-safe manner by using the Compare
And Swap (CAS) atomic, proposed by [12]:

1 int atomic_update_root(volatile size_t *address, size_t y) {
2

3 size_t *size_t_ptr = (size_t *)address;
4

5 size_t old_val = *address;
6 size_t test_val = old_val;
7 size_t new_val = y;
8

9 old_val = atomic_cas(size_t_ptr, test_val, new_val);
10

11 return (test_val == old_val);
12 }
13

14 void fof_union(size_t i, size_t j, size_t *group_index) {
15 int result = 0;
16 // Loop until the root can be set to a new value.
17 do {
18 size_t root_i = fof_find(i, group_index);
19 size_t root_j = fof_find(j, group_index);
20

21 if(root_j < root_i)
22 result = atomic_update_root(&group_index[root_i], root_j);
23 else
24 result = atomic_update_root(&group_index[root_j], root_i);
25

26 } while (!result);
27 }

Code 2: Using a CAS atomic operation to perform the Union of two groups in a thread-safe manner.

This ensures any update to group index is lock-free, and hence avoids any perfor-
mance penalties introduced by locks. A weakness of this method, however, is that the
CAS operation can only update a single variable at a time5. Therefore, if a (formally
more efficient) Union-by-size or Union-by-rank version of the algorithm were to be used,
it would require a lock instead of an atomic to avoid data races. One solution to this prob-
lem is to adopt the approach by [15], where the Union is instead randomised. It avoids
having to update two variables per Union as the size or rank of a group is not stored in
addition to the root.

We also tested a version of our parallel algorithm using the randomisation technique
proposed by [15]. This implementation showed similar times to solution compared to our
basic approach. This is due to the fact that we only use the root of a group to perform
a Union operation, and hence do not suffer from the weakness of the Anderson & Woll
implementation [12]. Our specific workloads, where the rank of the elements added in the
Union operations are typically small, are another reason why we did not see a noticeable
increase in performance. For these reasons we chose to use our simpler solution and stick
to the Union-by-root method.

5There has been an attempt by [17] to implement a multi-variable CAS operation, but their results show that
in practice the performance of this approach is not superior to traditional locking techniques.
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3.3. Distributed memory parallelism

For larger simulations, particles are distributed across multiple nodes (see Fig. 2). To
address the problem of groups spanning multiple nodes, we follow the strategy outlined
by [14] and improve upon it to handle the case where the number of groups is much
larger than 102.

We first perform a multi-threaded local Union-Find on each node, as described in
Section 3.2, followed by assigning unique group IDs across all nodes. This is done by
computing an offset based upon the MPI rank of the node. Each rank, p, computes a
sum of the total number of particles contained on every MPI rank lower than itself,

i<p
∑
i=0

Ni,

where Ni is the total number of particles present on rank i. The sum is then used to offset
all group IDs on the local node. In practice this is done using MPI Scan:

1 long long num_parts_cumulative;
2 long long num_parts_local = num_parts;
3 MPI_Scan(&num_parts_local, &num_parts_cumulative, 1, MPI_LONG_LONG,
4 MPI_SUM, MPI_COMM_WORLD);
5 size_t node_offset = num_parts_cumulative - num_parts_local;

Code 3: Computing the node offset with MPI Scan.

Next, we identify links between groups that span at least two node domains, only
communicating information for groups that are within the linking-length, lx, of the do-
main boundaries. This greatly reduces the amount of data replication. The final step per-
forms a global gather communication (MPI Allgatherv) on the list of group links so
that every node has access to the global list of group links (global group links).
Each node then applies the Union-Find to global group links, only updating the
roots of groups which are local to them. This ensures that all spanning groups are merged
and each node agrees upon group ownership.

In order to apply the Union-Find on the global list we map each group ID to a number
between 0 and the total number of group IDs that span node domains. The same group ID
may appear multiple times in the list, therefore we need to search for the first occurrence
of it and use the index as input to the Find operation. This ensures that the result of the
Find operation is correct, as the group ID could have previously been updated from a
group merger earlier in the list. See Fig. 3.

Naively one may think that each rank need only run the Union-Find on the group
links that it shares with its neighbouring ranks. However, Fig. 2 shows a particle distri-
bution that forms a group on rank 0 that is indirectly linked to the group on rank 2 via
the groups on ranks 3 and 4. This group linkage will be overlooked if each rank only
searches for links with its direct neighbours.

If we use the same Union strategy as the local FoF, the distribution of roots of span-
ning groups will be skewed towards the lower MPI ranks. This can lead to a load im-
balance between nodes when assigning new local roots during Step 4. To address this
problem we use Union-by-size when merging groups across MPI domains. This creates
an even work load between ranks as Union-by-size will assign roots more arbitrarily and
will only be based upon the domain decomposition.
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Figure 2. Distributed Union-Find over MPI. Particles are distributed across each MPI rank and the following
steps are performed: 1) a local FoF is performed on each MPI rank; 2) relabel group IDs so that they are
globally unique; 3) identify links between groups that span two MPI domains; 4) merge distributed groups and
agree on ownership. The figure also illustrates an edge case that can occur. The group on rank 0 is indirectly
linked to the group on rank 2 via the groups on ranks 3 and 4. If we were to only merge groups between MPI
ranks that are direct neighbours in step 4), we would fail to take into account this subtlety and miss the indirect
group links.

0 1 2 3 4 5 6 7 8 9

2 4 6 902 2 4 6 9

Figure 3. Step 4 in the distributed Union-Find method. Distributed groups are merged and each MPI rank
agrees on group ownership. The global group links array stores all group links that span anMPI domain,
each unique ID in the list is unpacked into global group id and mapped to a number between 0 and the
total number of unique group IDs in the list (global group index). Find is applied to each pair of links in
the list, where the group offset (find i & find j) into global group id is used as input. This ensures
that Find returns the correct group ID in the case where it has been updated in an earlier group merger (Union).
The pair of groups are then merged using the Union operation and global group index is updated.

3.4. Implementation details

3.4.1. Hash table

Performing the last step of the distributed FoF algorithm can become quite expensive,
as the length of global group links scales with the node count. This is because
searching for the index of a group ID into the list roughly takes O(N2) operations. A
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hash table on the other hand has constant look-up times, O(1). Therefore we construct a
hash table of group IDs in the list and store their index into global group links.

We also make use of a hash table when calculating the group sizes in the local FoF.
To find the group sizes in serial we loop through the group index array and increment
group size indexed by the root of the group that each particle is in:

1 for (int i = 0; i < N; i++)
2 group_size[fof_find(i, group_index)]++;

Code 4: Group size calculation in serial.

In parallel we divide N by the number of threads and have each thread work on a section
of group index. We avoid race conditions between threads by protecting access to
group size. To do this we use a hash table to store the group sizes and root of each
group. Once we have looped over group index, we pull out each element of the hash
table and write the intermediate group size to the global group size array using an
atomic addition (for instance GNU C’s sync fetch and add).

3.4.2. Early elimination of small groups

The majority of groups in cosmological simulations are of lone particles. We were able to
take advantage of this fact to lower the memory footprint significantly when calculating
group sizes. When constructing the hash table only groups of size � 2 were stored. We
achieved this by initialising each element of the group size array to 1, which allowed
us to exclude root particles in the hash table as their contribution to the group size was
already accounted for.

3.4.3. Path compression optimisation

The Find operation is a tree traversal that retrieves the root of a group for a given particle.
Hence, the execution time is dominated by the depth of the tree at each particle. To
amortise the cost of this operation we have implemented path compression. But instead
of compressing trees of all depths, we found it was quicker to only compress trees with
a depth of at least 2.

4. Results

To test the performance of our FoF implementation we ran a number of different bench-
marks. We measured the strong- and weak-scaling performance as well as the speed-up
over another FoF application. All results were obtained on the COSMA-7 DiRAC 2.5x
“Memory Intensive” System, located at the University of Durham 6. The results are based

6The system consists of 452 nodes of 2 Intel Xeon Gold 5120 CPUs running at 2.2GHz (14 physical cores
with AVX512 capability) with 512 GBytes of RAM. The nodes are connected using Mellanox EDR Infiniband
in a 2:1 blocking configuration. The strong scaling results were obtained by running on the MAD02 machine
at Durham with Turbo Boost disabled for the purposes of obtaining accurate measurements. It is a quad socket
system each with an Intel Xeon Platinum 8180 CPU running at 2.5GHz (28 physical cores with AVX512
capability) with 1.5 TBytes of RAM. See https://dirac.ac.uk/resources/#MemoryIntensive
for more details on each system.
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on version 0.8.2 of SWIFT (git revision f05bd301), which implements the algorithm
described in Section 3.

4.1. Measurement methodology

To get a realistic workload, all benchmarks were carried out using particle data from
the flagship EAGLE simulations [18] at late times (redshift z = 0.1). The input data
contains 4.25×108 particles split into∼ 2×105 groups of length> 20. The workload is
representative of an actual production run of SWIFT and nicely fits within a single node’s
memory. To create a weak-scaling test, we replicate the simulation volume periodicallyN
times along each axis, creating problem sizes that are N3 larger than the original volume.

We used the Intel compiler and MPI library v.18.0.27 as well as the GNU compiler
v.9.1.08. To obtain precise execution times we used the RDTSC cycle counter and con-
verted the cycle counts to seconds using the clock-speed of the CPU. Each data point
is the average time of 3 independent runs and the standard deviation is used to measure
the uncertainty. For the weak-scaling tests, we use 4 MPI ranks per node (2 per NUMA
region) and use the MPI version of the code even for the single-node data point in order
to have the same MPI-related overheads throughout the test. The strong-scaling test does
not use MPI and hence probes the efficiency of the shared memory algorithm.

4.2. Strong- and weak-scaling results

The strong scaling results are shown in the left hand panel of Fig. 4. We stress that
these results were obtained starting from one core and keeping the problem size con-
stant. Turbo Boost was also disabled on the node for the purposes of obtaining accurate
measurements. We display very good strong scaling and maintain a high parallel effi-
ciency, achieving 77% on 112 cores. Only dropping in efficiency when hyper-threads are
used, but this can be explained by resource contention between competing threads. This
is a result of our shared memory strategy: effective load balancing between threads us-
ing an octree and task-based parallelism; and a lock-less implementation of the parallel
Union-Find algorithm.

The right-hand panel displays the weak-scaling performance, where we achieve
good scaling up to 10,206 cores despite the overhead costs of MPI communication. The
last data point corresponds to a simulation with 3× 1011 particles. The jump from 1⁄2 a
node to 4 nodes is a result of the MPI communication being performed over the network,
as opposed to on a single node. Additionally, since that data point only uses half the avail-
able cores on the node, a better memory throughput is achieved and the cores are running
at a slightly higher clock speed (2.9 vs. 2.6 GHz) thanks to Turbo Boost. We hence only
consider the results starting from the next data point (4 nodes) where all the cores are
busy on each node. From that point onwards, the gradual increase in runtime is a result
of the network, as it has a greater effect at higher node counts and becomes the limiting
factor. The loss in performance running on 10,206 with ICC is 34%. Starting from the
second data point (where the nodes are now using all cores and do not suffer from the
caveats mentioned above), we obtain a significant improvement only losing 15% going
from 4 (= 23 the original problem size) to 3641⁄2 nodes (= 93 the original problem size).

7with the flags -O3 -xCORE-AVX512.
8with the flags -O3 -ffast-math -march=skylake-avx512 -mavx512dq.
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Figure 4. SWIFT FoF scaling results on a representative cosmological problem. The particle data is taken from
the EAGLE simulations [18] from a snapshot at redshift z = 0.1, i.e. near the end of the calculation when the
distribution of particles is far from uniform. (Left) Strong scaling results. The particle load was kept constant
at 4.25×108 whilst the number of cores was increased. As the benchmark was performed on one node, the
non-MPI version of the algorithm was used. We maintain very good strong scaling performance and obtain
77% parallel efficiency on 112 cores. The efficiency drops when running with hyper threads due to resource
contention between threads. (Right) Weak-scaling results. The number of particles per core is kept constant at
3×107, as we increase the core count. We use 4 MPI ranks per node (2 ranks per socket). For convenience,
the total number of MPI ranks used is indicated by the labels above the data points. The vertical arrow displays
the percentage loss in performance running on 10,206 cores, which was 43% for GCC and 34% for ICC. We
achieve good weak scaling from 1⁄2 a node to 3641⁄2 nodes (a factor of 729 increase in the number of particles and
number of cores) despite the overhead costs of MPI communication. For both panels, the standard deviation of
each measurement is smaller than the symbol size.

There is also a noticeable difference in runtime between the Intel and GNU compilers for
the first three data points, with GNU showing a speed-up of ∼13% over Intel. A similar
discrepancy is also seen in the strong scaling results.

This is a combination of a highly efficient parallel Union-Find algorithm within
a single node and a scalable distributed memory strategy between nodes. The domain
decomposition implemented in SWIFT also plays a role so as to keep the work load
balanced between MPI ranks (see [6] and [19]).

4.3. Comparison to other software

As another performance test we compared our implementation against VELOCIRAP-
TOR [3], a FoF application commonly used in the literature. We used the same setup as
in the strong-scaling test and ran on the MAD02 machine using the Intel compiler and
MPI library v.18.0.29. We ran the non-MPI version of our code and the MPI version of
VELOCIRAPTOR with 1 rank per core. Our FoF took 13.2s to run to completion and
VELOCIRAPTOR took 242s, leading to a net speed-up of 18.3x10. Both codes yield the
same answer. Given the large difference in run time on one node and the good weak-

9with the flags -O3 -xCORE-AVX512
10Note that we used the MPI version of VELOCIRAPTOR as it was significantly faster than its shared-

memory (OpenMP) version which took 1882s running with 112 threads on the same setup.
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scaling displayed by our implementation, we decided not to compare our performance
with VELOCIRAPTOR at scale.

5. Conclusions

We presented an efficient and scalable new implementation of the FoF method that is
commonly used to identify structure in cosmological simulations. The Union-Find data
structure was used to create a forest of particles, where each tree contains a set of particles
that share the same group. A hybrid approach was adopted using threads and MPI, which
allows it to optimally utilise both shared and distributed memory machines. We made use
of atomics to update the list of particle groups which ensures our implementation remains
lock-free. The neighbour search over particles was sped up using the octree present in the
SWIFT code. A hash table was used in both the group size calculation and group merging
across MPI domains to lower the memory footprint and improve the time to solution.

When implemented in the SWIFT code our FoF algorithm achieves good weak-
scaling from 14 to 10,206 cores and displays good strong-scaling performance, main-
taining 77% parallel efficiency running on 112 cores. We also compare favourably with
the commonly used FoF application VELOCIRAPTOR, obtaining a speed-up of 18x over
it. Together with the weak-scaling performance displayed up to 104 cores this speed-up
should allow for an efficient run time when used on-the-fly in production simulations
using � 105 cores.
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Abstract The hybrid scheme block row-projection method implemented
in the ABCD Solver is designed for solving large sparse unsymmetric
systems of equations on distributed memory parallel computers. The
method implements a block Cimmino iterative scheme, accelerated with
a stabilized block conjugate gradient algorithm. An augmented pseudo-
direct variant has also been developed to overcome convergence issues.
Both methods are included in the ABCD solver with a hybrid paral-
lelization scheme. The parallel performance of the ABCD Solver is im-
proved in the first non-beta release, version 1.0, which we present in this
paper. Novel algorithms for the distribution of partitions to processes
are introduced to minimize communication as well as to balance the
workload. Furthermore, the master-slave approach on each subsystem
is also improved in order to achieve higher scalability through run-time
placement of processes. We illustrate the improved parallel scalability
of the ABCD Solver on a distributed memory architecture by solving
several problems from the SuiteSparse Matrix Collection.

Keywords. Block Cimmino, hybrid solver, sparse matrix, distributed
memory parallelism, iterative solver

1. The iterative and augmented block-Cimmino method

The Augmented Block Cimmino Distributed Solver (ABCD Solver) is a dis-
tributed hybrid scheme designed to solve large sparse unsymmetric linear systems
of the form:
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Ax = b, (1)

where A is a full row rank m× n matrix, m ≤ n, x is a vector of size n and b is
a vector of size m. The approach is based on the block Cimmino row projection
method (BC) [1]. BC is applied to the system which is partitioned in p row blocks
where p < m. Starting from an arbitrary initial estimate x(0), a BC iteration
improves the estimated solution by summing the projections of the current iterate
on the subspaces spanned by the blocks of rows to converge to a solution. The
convergence rate of BC is known to be slow [2]. When looking at the fixed point
of the iterations, we obtain the following equivalent system:

Hx = k, where

⎧⎪⎪⎨
⎪⎪⎩

H =
p∑

i=1

PR(AT
i )

=
p∑

i=1

A+
i Ai

k =
p∑

i=1

A+
i bi.

(2)

As the row blocks Ai are assumed to have full row rank, H is symmetric and
positive definite. To accelerate the convergence of the block Cimmino method,
we solve instead this system using a block conjugate gradient algorithm (BCG)
improved with stabilization of both residuals and directions [3]. The convergence
of this method stays problem dependent and in some cases, convergence profiles
with long plateaux can be observed. The eigenvalues of the matrix H are directly
linked to the principal angles between subspaces spanned by the row partitions.
If these angles are wider, the convergence becomes faster.

As an alternative, that we call ABCD, our solver also offers the possibility of

constructing a larger system

[
A C
B S

] [
x
y

]
=

[
b
f

]
where the numerical orthogonality

between partitions is enforced. As a result, the block Cimmino method converges
in exactly one iteration and x is the solution of the original system. This results
in a pseudo-direct method [4] with the solution dependent on the projections as
in BC, and on the direct solution of a system involving the matrix S. However,
the efficiency of such an approach, compared to other sparse direct solvers, de-
pends on the size or the density of the condensed system S which are problem
dependent. Implementation of both ABCD and BC are available in the ABCD
Solver3 package.

2. Hybrid parallelism

In this section, we present the parallelization scheme of the ABCD Solver us-
ing MPI and OpenMP, and the need for an optimization of the load balancing
and communication reduction. Both BC and ABCD methods perform the same
preprocessing steps. Firstly, after scaling the system, we partition the matrix so
that the principal angles between the subspaces given by the partitions are not
too small, and the sizes of the partitions are balanced. There are many ways to
construct these partitions. In the case of an iterative solution with BC, we will

3http://abcd.enseeiht.fr/
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consider graph partitioners on the normal equations as they tend to reduce the
number of iterations, as illustrated in [5]. In the case of the pseudo-direct solu-
tion with ABCD, we shall consider instead the multilevel hypergraph partitioner
PaToH [6], which essentially decreases the size of the augmentation scheme, see
[7]. Secondly, the basic idea is to distribute each partition to one process, called
master, which builds an augmented system [8] used to compute the projection on
the subspace spanned by the block of rows in the partition.

Thirdly, these augmented systems are solved using the sparse direct solver
MUMPS4 [9]. This direct solver uses the well-known multifrontal method and
performs three steps: analysis (preprocessing, estimation of workload and mem-
ory), LDLT factorization, and finally solve (forward elimination and backward
substitution). Analysis and factorization must only be performed once, while one
solve is needed to compute each projection at each iteration. These local pro-
jections are then summed through non-blocking point-to-point communications
between masters. The amount of data communicated is equal to the number of
shared columns, called interconnections. Note that additionally in ABCD, the
matrix S is built in an embarrassingly parallel way by computing each column
with a projection independently, then S is given in distributed form directly to
MUMPS for a parallel solve on the global communicator (see [4] and [7] for the
details of the construction and solution of S).

The ABCD Solver is a hybrid scheme, in the sense that the method is iterative
but relies on a direct solver for each subproblem defined by the partition. The
solver also implements a hybrid parallelism in the sense that several levels of
parallelism are exploited at the same time:

1. the projections are independent and can be computed in parallel,
2. the MUMPS solver introduces two levels of parallelism: through the ex-

ploitation of its elimination tree and through the factorization of large
frontal matrices using parallel linear algebra dense kernels.

Depending on the number of processes and the number of partitions, there
are various possibilities for scheduling the computations. In the following sections
of the article, we propose and study three different approaches for this. In the
first approach, we consider an equal number of processes and partitions, in which
case each master has exactly one partition. We experiment, in Section 3, to find
the optimal number of processes per node to reduce the execution time.

In the second approach, the number of MPI processes is assumed to be less
than the number of partitions. In such a case, the idea would then be to assign
groups of partitions to the masters, which will construct one single block diagonal
system, made with the various partitions. This block diagonal system can then
be solved as before using MUMPS, and the goal is to balance the workload over
all masters when distributing the partitions. In Section 4, we propose a new
algorithm that aims to group partitions on each master so as to minimize the
overhead of communication between masters, and at the same time equilibrate
the load balance across masters.

In the third approach, we assume more MPI processes than partitions, in
which case processes with no partitions can be associated with the masters, as

4http://mumps-solver.org/
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slave processes, in order to contribute to the parallel computations in MUMPS.
The target is to set master-slaves groups with balanced workloads, by taking
into account the anticipated number of flops given by the MUMPS analysis of
each partition. In Section 5, we first present a fast and optimal assignment of
the slaves that balances the workload across subgroups of processes. Then we
introduce a new method to assign the processes, masters and slaves, in the physical
computing resources to decrease the communication overhead both within and
between master-slaves groups depending on the method used, BC or ABCD.

In the ABCD Solver, we distinguish three types of communications [7]: the
inter-communication between masters which occurs when summing the projec-
tions; the intra-communication inside master-slaves group which only occurs when
computing a projection using MUMPS; finally in ABCD, global communication
when solving the system based on S.

To illustrate the impact of our contributions, we run the ABCD Solver on
three matrices from the SuiteSparse Matrix Collection [10]. Table 1 shows charac-
teristics of the matrices. We conduct our experiments on MareNostrum4, a peta-
scale supercomputer at the Barcelona Supercomputing Center5. It is a cluster
with Intel Xeon Platinum processors. Each compute node is a 2-socket system
where the 24 cores of each processor constitute a separate NUMA (non-uniform
memory access) domain and nodes are interconnected with the Intel Omni-Path
architecture. MareNostrum4 offers 96 GB RAM memory per NUMA domain,
which means around 4 GB per core.

Table 1. Characteristics of the test matrices. n: the order of the matrix, nnz: the number of
nonzero values in the matrix.

Matrix n (×106) nnz (×106) nnz/n kind

hamrle3 1.45 5.51 3.81 circuit simulation problem

cage15 5.15 99.20 19.24 directed weighted graph

memchip 2.70 13.00 4.93 circuit simulation problem

3. Optimal node configuration

When the number of partitions equals the number of processes, we determine the
best distribution of MPI processes with respect to the execution time. With a
fixed number of 128 MPI processes and an equal number of 128 partitions, we in-
crease the number of processes per node from 2 to 64. Table 2 shows the execution
times and we see that 2 MPI processes per node yields the minimum overall times.
Although this results in more communication, because the linear algebra kernels
used throughout the code and in MUMPS are memory-bound, they benefit from
distributing the memory. Fewer processes per node implies less concurrent access
to memory and faster computation. We will allocate 2 processes per node as our
optimal configuration in the rest of the paper.
Since only a subset of nodes is used by MPI processes, when increasing the num-
ber of nodes we have the possibility of activating OpenMP parallelism but do
not study this here where we focus on workload balancing and communication
reduction.

5https://www.bsc.es/marenostrum/marenostrum
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Table 2. Timings for the factorization of the augmented systems, for the BCG in BC, and for
the pseudo-direct solution in ABCD. All runs were with 128 MPI processes spread with ppn
processes per node and 128 partitions. Note that the memory required for ABCD was too large
to solve the system cage15 on MareNostrum4.

Matrix ppn nodes
BC ABCD

facto(s) BCG(s) it. facto(s) sol.(s)

Hamrle3

32 4 0.17 192 500 0.22 9.44
16 8 0.19 138 ” 0.21 9.48
4 32 0.18 79 ” 0.20 9.50
2 64 0.18 77 ” 0.22 10.10

cage15

32 4 1 550 65 17 - -
16 8 1 380 52 ” - -
4 32 1 230 40 ” - -
2 64 1 210 38 ” - -

memchip

32 4 0.44 361 500 0.42 29.60
16 8 0.31 269 ” 0.31 29.70
4 32 0.28 171 ” 0.29 28.80
2 64 0.27 168 ” 0.29 28.10

4. Load balancing: distribution of partitions

In the case where the number of partitions is higher than the number of processes,
a master process owns a group of partitions. In this section, the goal is to distribute
the partitions to the masters with the right trade-off between balancing the weight
of the local groups of partitions over all processes and minimizing the overhead
in communication between masters.

4.1. Balancing the weight of the local partitions

We first consider only balancing the weights of the partitions. The weights should
represent the future workload to compute projections. In the absence of more
precise data at this point of the solver, we simply use the number of rows as a
crude measure. Although this gives reasonable results here, it can result in bad
load imbalance. In the next section, we will use accurately estimated workloads
from a latter phase of the solver to distribute the slave processes. To balance the
weights, we use the greedy algorithm introduced in [7]. The algorithm distributes
partitions sorted in decreasing order of weights to masters. At each step, the
master with current lowest accumulated weight receives a partition. This process
results in an optimal distribution of the partitions over all masters in terms of
balancing our criterion.

4.2. Minimize the overhead of communication

Globally, balancing the weights of local sets of partitions is not the only concern,
one should also consider the overhead from inter-communication between masters
resulting from the distributed sum of local projections and, in ABCD, from the
parallel solution of the condensed system S. Therefore, the best distribution of the
partitions should find the right trade-off between this communication, i.e. mini-
mizing the number of interconnected columns between processors, and balancing
the workload over processes in order to achieve minimum parallel execution time.
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We propose a new algorithm which is based on this principle. The algorithm
first creates a graph G. The vertices of G are the partitions weighted by their
respective size. There is an edge between two vertices if the corresponding parti-
tions are interconnected, i.e. they share a nonzero column, and the cost of that
edge equals the number of such columns. In the final step, we partition G using
the multilevel graph partitioning tool METIS [11] to minimize the number of in-
terconnections between the groups of partitions for each master, with a parameter
μ that allows a certain imbalance in the accumulated weight over the groups of
partitions.

4.3. Experimental results

The experiments are conducted on the three matrices with the greedy algorithm
(Greedy) and the communication reducing algorithm where μ = 1% (Comm1 )
and μ = 10% (Comm10 ). Each matrix is partitioned into 1 024 blocks and is
solved using 128 MPI processes spread over 64 distributed nodes with no mul-
tithreading. The numerically aware partitioning [5] is applied for BC, and the
PaToH hypergraph partitioner is used for ABCD. Results are reported in Table
3. The column ‘Com. col%’ of Table 3 reports the total communication volume,
equal to the number of interconnected columns, normalized with respect to the
greedy method. The table also reports execution times for the factorization as
well as the imbalance ratio between the slowest and average factorization times
over all masters. Finally, the table gives the BCG execution time and iterations
for BC, and the time to compute the pseudo-direct solution including the solution
of the system S for ABCD.

As seen in the table, for BC, the proposed methods Comm1 and Comm10
achieve around 55% and 62% reduction in the total number of exchanged columns
for the cases of Hamrle3 and memchip, respectively. This improvement in turn
leads to faster parallel execution of BCG for Hamrle3 and memchip. Our experi-
ments show that the larger ratio μ has a limited effect on the reduction of the total
size of communication. On the other hand, for cage15, although there is consider-
able reduction in the communication values, the execution time increases slightly
because the overhead of load imbalance absorbs the gain from the minimization
of communication.

In the case of ABCD, there is only one iteration, thus each communication
is only performed once. Compared to the gain of having balanced workloads over
the MUMPS instances, the final communication overhead is low and thus the
time only increases, slightly, with the proposed algorithm.

5. Placement of masters and slaves

In this section, we consider the case where there are more processes than parti-
tions. We make use of the extra processes to act as slaves to help the master MPI
processes to parallelize the computation further. We balance the workload over all
masters by assigning more slaves to a master with a relatively higher workload.
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Table 3. Impact of the distribution of partitions on the execution times. All runs were with 1024
partitions and 128 MPI processes on 64 nodes with no multithreading. (Com. col: Normalized
column reduction values with respect to the Greedy algorithm. tot: Total time in seconds. it:
Number of iterations required for convergence. imb: ratio of maximum over average factorization
times. Sol. time: Total solution time in seconds)

BC ABCD

Matrix Algo.
Com. Fact. BCG Com. Fact. Sol.

col% tot imb tot it. col% tot imb time

Hamrle3
Greedy 100 0.22 1.62 714.25 4249 100 0.24 1.21 8.17
Comm1 46 0.19 1.26 700.66 4249 42 0.25 1.35 9.12
Comm10 45 0.20 1.36 713.69 4249 41 0.20 1.36 8.79

cage15
Greedy 100 20.41 1.97 28.01 18 - - - -
Comm1 44 42.61 3.94 34.62 18 - - - -
Comm10 44 48.82 3.75 35.00 18 - - - -

memchip
Greedy 100 0.36 1.18 299.23 791 100 0.32 1.18 5.64
Comm1 38 0.33 1.22 298.89 791 32 0.34 1.27 5.74
Comm10 38 0.35 1.21 292.05 791 31 0.33 1.23 5.72

5.1. Assignment of the slaves

We consider wk the accurate estimated workload of master k ∈ {1..nb masters}
given by MUMPS, i.e. the number of flops required for MUMPS factorization.
We propose a new 2-step algorithm for the distribution of the slaves. Firstly,
considering the number of slaves corresponding to the relative workload of each
master k:
s
(theo)
k = (wk/

∑#masters
i=1 wi) × #slaves, a number of slaves equal to the floor

part of this amount is assigned to each master. Since most of the slaves are now
associated with a master, the second step only has to allocate the remaining
slaves. Secondly, we apply a greedy algorithm: at each step, one of the remaining
slaves is assigned to the master-slave group with the currently highest average
workload, until all slaves have been assigned. We obtain an optimal distribution of
the slaves in terms of average workload and, thanks to the first step, the number
of greedy searches performed is decreased.

5.2. Hierarchy of the computing architectures

The ABCD Solver is designed to solve large systems on distributed memory ar-
chitectures where the computing resources are hierarchically structured, as is the
case here with the supercomputer MareNostrum4.

When launching our distributed application, we specify a certain number of
MPI processes per node which are allocated by the batch system. As a result,
when the program starts, processes are already allocated and placed on the system
architecture in a certain way. Depending on the situation at runtime, we need to
decide which processes will be given the role of master or slave in order to minimize
the total overhead of the communication between masters (inter-communication)
on the one hand, and inside master-slaves groups (intra-communication) on the
other hand. This process consists of three steps: firstly the placement of the
masters, secondly the assignment of the number of slaves as in the last section
using the estimation of the workload with MUMPS, and thirdly choosing the
slaves for each master depending on its position in the architecture.
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Two opposite approaches emerge in this situation. We can place masters close
to each other to accelerate inter-communication, and we refer to this approach as
Compact, or we place the master-slaves group together on a node to simultane-
ously improve intra-communication, and decrease concurrent access to memory
by masters. We refer to this latter approach as Scatter.

5.3. Explicit placement of masters and slaves over nodes

The approach first implemented in the ABCD Solver, see [7], is Compact: the
first ranks of MPI make the masters and the rest of the processes are assigned
in a sequence to them as slaves depending on the rank. Although this approach
minimizes the inter-communication, both the intra-communication as well as the
sequential calls to dense kernels, known to be memory-bound, are slowed down
due to concurrent memory access among masters.

Based on the results obtained in Section 3, mainly for BC, we have seen that
spreading processes over the nodes is better because of more efficient memory
access. Thus, we propose to implement the Scatter approach to improve the ex-
ecution time of the ABCD Solver. Note that we currently use a “manual” im-
plementation of this approach, but this could be replaced by architecture aware
mechanisms in the future [12]. We define two algorithms for placement of the
masters and the slaves.

The principle of these algorithms is simple:

• To place masters, we first gather information to know which node each
process is on. We then assign one master per non-full node in a zig-zag
fashion, starting from the biggest node to smallest then alternating.

• To place slaves, we first sort the masters in descending number of desired
slaves. Then for each master, we place the slaves in the corresponding node
and, if some are left, we group the remaining ones in other nodes as closely
as possible.

In Figure 1, we illustrate the effect of the Compact and Scatter approach on
a toy example. We partition a matrix in 3 partitions solved using block Cimmino
with 12 processes. We define 3 masters each with 3 slaves and launch the solver
on 3 nodes each with 4 processes.

Figure 1. 3 nodes with 4 processes on each and we have 3 masters with 3 slaves each. Mi

corresponds to the master i and the Sj of the same colour is its slave j. (Left) Compact scheme,
(Right) Scatter scheme.
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5.4. Experimental results

The results are presented in Table 4. Firstly, we observe that the execution times
for factorization remain mostly unchanged for both algorithms for memchip and
Hamrle3. In the case of cage15, which is dominated by this phase, the execution
time of factorization is decreased in Scatter, benefiting from less concurrent ac-
cess to memory. Concerning the BC method, the times for the sum of projections,
which is included in the time for BCG, can increase in some cases with the Scatter
approach, due to most master-slaves communicators being spread over the nodes.
However, the overall BCG run-times always benefit from spreading the masters
over the nodes, inducing less concurrency in memory access, and from grouping
master-slaves groups, thanks to faster intra-communication. The effects of chang-
ing the algorithm are overall very small. In the end, we only have 2 processes
per node so changing their placement does not change the global performance.
We ran the experiment for the matrices Hamrle3 and memchip again, using 16
processes per node, thus 128 MPI processes on 8 nodes. The memory required for
cage15 was too high for this configuration. Regarding the run-time of the BCG,
Hamrle3 is solved in 203s with Compact and 161s with Scatter, while memchip is
solved in 254s with Compact and 186s with Scatter. While the overall run-time
with Scatter is higher than running with only 2 processes per node, the differ-
ence is only 4.5% for both matrices. Using the Compact algorithm however, the
degradation is around 25%. This means that using the Scatter algorithm is more
robust to having multiple active cores per node, which is a big step towards gain-
ing scalability. However, in the case of ABCD the time to compute the pseudo-
direct solution no longer benefits from spreading the masters with Scatter. In this
approach, the computation is completely distributed, thus the overhead in com-
munication absorbs the improvement from lower concurrent access to memory.
Overall, the timings are not too different. Because of an implementation mixing
together multiple layers of parallelism from MUMPS and the partitioning itself,
the hybrid parallelism used is robust.

Table 4. Impact of the placement of masters and slaves on the execution times of ABCD
Solver iterative method. All runs were with 32 partitions and 128 MPI on 64 nodes with no
multithreading.

Matrix Algo.
Block Cimmino ABCD

facto(s) BCG(s) it. proj. sum(s) facto(s) Sol.(s)

Hamrle3
Compact 0.41 159 500 76.4 0.36 43.2
Scatter 0.40 154 500 77.4 0.33 45.1

cage15
Compact 567 22.7 15 14.6 - -
Scatter 560 22.3 15 14.7 - -

memchip
Compact 0.40 184 365 89.1 0.46 24.8
Scatter 0.43 178 365 85.8 0.45 28.8

6. Conclusion

We have shown the potential improvement that can be obtained in a master-slave
scheme by considering the minimization of communication on an equal footing
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with the balancing of workload. Firstly, we proposed a new distribution of par-
titions such that we decrease the communication between masters in the block
Cimmino method, thus decreasing the total execution time in a context where
many iterations are necessary with processes communicating for each iteration.
Secondly, we propose a new way of attributing the roles of master or slave to
processes depending on the run-time situation on the machine. We have identi-
fied two specific schemes : scattering the masters over the nodes is well adapted
to the block Cimmino method, especially when the number of iterations is high,
while compacting the masters in the same nodes is adapted for the augmented
block Cimmino pseudo-direct method. Furthermore, the Scatter approach is more
robust with respect to the number of processes per node, which is a big step to-
wards scalability. Finally, we demonstrate the improved parallel scalability on a
distributed memory architecture.
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Abstract. This paper presents a quantitative evaluation of the power usage over
time in data-intensive applications that use MapReduce over MPI. We leverage
the PAPI powercap tool to identify ideal conditions for execution of our mini-
applications in terms of (1) dataset characteristics (e.g., unique words in datasets);
(2) system characteristics (e.g., KNL and KNM); and (3) implementation of the
MapReduce programming model (e.g., impact of various optimizations). Results
illustrate the high power utilization and runtime costs of data management on HPC
architectures.

Keywords. Data management, KNL, KNM, PAPI, Combiner optimizations

1. Introduction

The contributions of this paper are in the growing high performance computing (HPC)
field of data analytics and are at the cross-section of empirical collection of performance
results and the rigorous, reproducible methodology for their collection. Our work ex-
pands traditional metrics such as execution times to include metrics such as power usage
and energy usage associated with data analytics and data management. We move away
from the traditional compute-intensive workflows towards data-intensive workloads with
a focus on MapReduce programming models as they gain momentum in the HPC com-
munity.

Emerging HPC platforms are generally designed with data management and, in par-
ticular, the associated power usage in mind. Trends in HP exhibits the widening gap be-
tween flops and IO bandwidth peaks. The latter is capped to contain the power usage
of the HPC systems. In other words, the need for power capping on these systems has
created substantial constraint on the bandwidths with respect to moving data through the
memory hierarchy. Overall, it is a common belief that data management (i.e., process-
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ing data on the core and moving data through the memory hierarchy) is power-intensive.
Still, little work is available in providing quantitative evaluations of these costs.

The paper tackles this problem by addressing the need to quantitatively measure the
impacts of data management on performance inMapReduce-based applications when ex-
ecuted on HPC systems. Specifically, we present studies on the impact of power capping
on performance metrics such as runtime and power usage over time for data-intensive
application on top of a MapReduce over MPI framework. The key questions that we look
to answer are: Can we determine what data characteristics are the most relevant to the
trade-offs between power usage and performance? Can we identify the effects of power
capping on the performance of data-intensive applications using the MapReduce pro-
gramming model on HPC systems? Can we separate the impact of the application itself
from the impact of the middleware and the monitoring system on power usage?

2. Testing Environment for Power Measurements

Multilayer Testing Environment: Our testing environment is composed of multiple
layers . The middleware layer manages the data analytics. Because we are working on
HPC systems, we use Mimir, an open source implementation of MapReduce over MPI,
that we enhance with the Performance Application Programming Interface (PAPI) mon-
itoring and capping performance tool. The hardware layer includes two many-core sys-
tems that fully support Mimir and PAPI. We target the MapReduce (MR) programming
model [1] for the data management and analytics because these processes are broadly
used and suitable for a wide variety of data applications. Implementations of MapReduce
over MPI have gained the most traction in HPC because they provide C/C++ interfaces
that are more convenient to integrate with existing scientific applications compared with
Java, Scala, or Python interfaces. Moreover, they can use the high-speed interconnection
network through MPI. More traditional frameworks such as Hadoop [2,3] and Spark [4]
or tuned versions of these popular MapReduce frameworks on HPC systems [5–8] do
not support one or multiple of the following features: they do not provide on-node per-
sistent storage; do not work well (or work at all) on many commodity-network-oriented
protocols, such as TCP/IP or RDMA over Ethernet; are not tuned for system software
stacks on HPC platforms, including the operating system and computational libraries; or
are specialized for a given scientific computing, and hence lack generality. For example,
supercomputers such as the IBM Blue Gene/Q [9] use specialized lightweight operating
systems that do not provide the same capabilities as those that a traditional operating
system such as Linux or Windows might.

We use Mimir [10–12] as ourMapReduce over MPI framework. Mimir is among the
few state-of-the-art, memory-efficient MapReduce over MPI implementations that are
open source and support memory efficiency and scalability; reduced synchronizations;
reduced data staging and improved memory management; improved load balancing; and
capabilities to handle I/O variability. Mimir’s in-memory workflow includes a pipeline
combiner workflow to compress data before shuffling and reduce operation, using mem-
ory more efficiently and balancing memory usage; a dynamic repartition method that
mitigates data skew on MapReduce applications without obviously increasing their peak
memory usage; and a strategy for splitting single superkeys across processes and further
mitigating the impact of data skew, by relaxing the MapReduce model constraints on key
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partitioning. A MapReduce job traditionally involves three stages: map, shuffle, and re-
duce. The map stage processes the input data using a user-defined map callback function
(map operation) and generates intermediate 〈key,value〉 (KV) pairs. The shuffle stage
performs an all-to-all communication that distributes the intermediate KV pairs across
all processes. In this stage KV pairs with the same key are also merged and stored in
〈key,〈value1,value2...〉〉 (KMV) lists. The reduce stage processes the KMV lists with a
user-defined reduce callback function and generates the final output. In Mimir, the shuf-
fling stage consists of two decoupled phases: an aggregate phase that interleaves with
the map operations and executes the MPI AllToAllv communication calls and a convert
phase that precedes the reduce operations by dynamically allocating space and assign-
ing KV pairs to list the KVs. The map and reduce operations are implemented by using
user callback functions. The aggregate and convert phases are implicit: the user does not
explicitly start these phases. This design offers two advantages. First, it breaks global
synchronizations between map and aggregate phases and between convert and reduce
phases. Mimir determines when the intermediate data should be sent and merged. Mimir
also pipelines the four phases to minimize unnecessary memory usage. We still retain
the global synchronization between the map + aggregate and convert + reduce phases,
which is required by the MapReduce programming model.

We plug PAPI [13] into Mimir to set power caps and collect power usage over time,
using the powercap interface that is built into the Linux kernel. The purpose of this in-
terface is to expose the Intel RAPL (Running Average Power Limit) [14] settings to
userspace, as opposed to directly accessing the RAPL model-specific registers (MSRs),
which would require elevated privileges. PAPI provides access to performance counters
for monitoring and analysis. We use PAPI to measure the core power/energy consump-
tion, power limit, power of memory accesses, and core frequency. PAPI’s powercap com-
ponent [15] gives access to Intel’s RAPL interface, which employs the DVFS technique
to apply power limits.

Data-Intensive Miniapplications: We implemented and use three data-intensive
miniapplications extracted from the WordCount benchmark: (1) Map+Aggregate, which
contains only the map and shuffle phases (without the convert and reduce phases);
(2) GroupByKey, which adds the convert/reduce operations for a complete, traditional
MapReduce execution; and (3) ReduceByKey, which locally combines KVs with match-
ing keys immediately before shuffling and after shuffling (i.e., combiner optimizations
in state-of-the-art MR frameworks).

Data Generation: We generate different datasets with a large number of words (4
billion) and a variable number of unique words. In the rest of the paper, each dataset is
identified as XBY, where X is the number of billions of total words and Y is the number
of unique words repeated in the dataset. Our dataset is larger than available datasets com-
monly used in benchmarking (e.g., the Wikipedia dataset from the PUMA dataset [16]).
The controlled generation of data allows us to create a controlled testing environment
that we can use to separate the different factors impacting power consumption in data
management. It also enables reproducibility of our results. The Wikipedia dataset with
its highly heterogeneous type and length of words would not allow us to handle the same
level of controlled testing. The software used for the data generation is open source, as
part of the Mimir software [17]. The total number of words defines the overall workload
across the processes: the larger the number, the higher the workload per process. The
number of unique words determines how the KMV are distributed across processes dur-
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ing shuffle. The number of unique words also affects the percentage of the dataset that
can be combined (i.e., unique words with the same key are combined locally to a single
KV pair) before and after shuffling in ReduceByKey. In other words, a larger number
of unique words means that fewer KV pairs can be combined (i.e., data can be reduced
in size) before and after shuffling in ReduceByKey. For example, a dataset of 4 billion
words with 72 unique words (4B72) can exhibit up to a 99% combinability rate before
the shuffling, whereas a dataset of 4 billion words and 42 million unique words (4B42M)
results in only a 25% combinability rate.

3. Performance Analysis

Environment Setting: We measure power usage over time, total energy, and runtime of
our miniapplications using two generations of HPC architectures. The first system is a fat
node with 68 cores and four hardware threads per core (272 total) the Intel Xeon Phi 7250
Knights Landing (KNL) with a thermal design point (TDP) of 215 watts. The second
system is a fat node with 72 cores and four hardware threads per core (288 total) Intel
Xeon Phi 7295 Knights Mill (KNM) architecture with the same TDP of 215 watts. We
use PAPI to measure the impact of the data management across cores on power. PAPI’s
event PACKAGE allows us to monitor the energy consumption of the entire CPU socket.
The PAPI event DRAM ENERGY monitors the energy consumption of the off-package
memory (DDR4). When not otherwise specified, we measure average energy on the core
subsystem, including MCDRAM, memory controller, and 2-D mesh interconnect, and
on the DDR4 memory at the 100 ms sample rate, a standard rate recommended by the
PAPI developers. Finer-grained rates are also assessed. We generate synthetic data that
fully fits into the Mimir’s system memory, avoiding disk I/O during our tests. We repeat
each test three times, with the first of each run shown on graphs to integrate cold-cache
effects. We observed a modest variability (less than 2%) across the three runs.

Impact of MapReduce Stages and Architectures: To quantify the impact of the
Map+Aggregate versus Convert+Reduce components of the MapReduce job and of dif-
ferent architectures, we measure the power metrics for (a) the combined map opera-
tions and aggregate phases of the shuffle stage and (b) GroupByKey (i.e., the complete
Map+Shuffle+Reduce workflow) on KNL and KNM using datasets of 4 billion words
and 68 unique words on KNL and 72 unique words on KNM, respectively. The number
of unique words allows us to fully use the cores available on each HPC architecture. The
words are distributed by cutting the dataset in chunks, with each chunk having interleav-
ing sequences of the different words (e.g., at a smaller scale with four unique words “a,”
“b,” “c,” and “d,” each chuck contains a sequence of “abcdabacdabcd...”).

Figures 1a and 1b present power measurement for Map+Aggregate on KNL and
KNM, respectively. Figures 1c and 1d present power measurement for GroupByKey on
KNL and KNM, respectively. In each figure, we draw three pairs of curves for three
power caps: 215, 140, and 120 watts. For each pair, the higher curve is the processor
power, and the lower is the DRAM power. We observe that for all the tests, none of our
runs exceed 160 watts during runtime (75 watts below system TDP). To study perfor-
mance impacts, we intentionally impose caps of 140 and 120 watts, which are lower than
the miniapplication’s max power but higher than the minimum core power usage when
idle. We also observe the same patterns for the power usage on both KNL and KNM
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(a) KNL Map+Aggregate (68 workds) (b) KNM Map+Aggregate (72 words)

(c) KNL GroupByKey (68 words) (d) KNM GroupByKey (72 words)

Figure 1. Average power for Map+Aggregate and GroupByKey on KNL and KNM.

architectures; however, tests on KNM have a lower runtime, especially at power limits
that are below the normal power usage of the benchmark. This is due to the KNM’s
higher number of cores. Because of the similar patterns and fact that KNM is the more
recent chip, we focus on KNM in the rest of the paper. More important, we observe
additional 59–64% runtime associated with the convert phase and reduce operations.
The DRAM power forms only a small portion of total power use, making up only be-
tween 4% and 15% of the combined processor and DRAM power. Memory power con-
sumption increases during the map and aggregate stages of GroupByKey (and in the
Map+Aggregate miniapplication). For Map+Aggregate and GroupByKey, when limiting
power to 120 watts, we observe an increase in runtime ranging from 5% to 33%. Com-
paring Map+Aggregate with GroupByKey allows us to quantify the high runtime and
energy costs of the reduce stage. The reduce stage adds 333%–355% more runtime and
335%–359% more energy to Map+Aggregate.

Impact of Combiner Optimizations: MapReduce frameworks have been substan-
tially optimized by switching from the traditional Map+Shuffle+Reduce workflow in
GroupByKey to the enhanced workflow based on combiner optimizations in Reduce-
ByKey , for which before, both shuffling and reduce operations, unique words with the
same key are combined locally. In general, combiner optimizations can be used for those
MapReduce applications that are both associative and commutative (e.g., WordCount),
supporting merging KVs with the same key and still providing the correct outcomes. In
combiner phases, KV pairs with the same values are combined locally on each node that
has just performed the map operation (preshuffling). Once the shuffling of KV pairs is
completed and chunks of KV pairs are assigned to processes based on someMapReduce-
specific hash function, KV pairs from different processes with the same keys are again
combined locally before the reduce operation is performed (postshuffling). From an im-
plementation point of view, in Mimir, the preshuffling and postshuffling processes are
executed with combiner callbacks. A first combiner callback is applied before the MPI
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(a) GroupByKey – without optimizations (b) ReduceByKey – with optimizations

Figure 2. Impact of combiner optimizations on power usage in a dataset with combinability rate of 99.99%.

Table 1. Datasets used to quantify the impact of different levels of combinability (combinability rate).

Dataset Total Words Unique Words Combinability Rate

4B72 4B 72 >99%
4B1M 4B 1,111,104 98%
4B50M 4B 49,999,968 10%

communication stage, reducing the communication size, and a second combiner callback
is applied after the MPI communication stage, reducing the memory size to store KVs.
Figures 2a and 2b show results without combiner optimizations (i.e., GroupByKey) and
with combiner optimizations (i.e., ReduceByKey) for a dataset that can exhibit a combin-
ability rate of 99.99% (i.e., the number of KV pairs can be reduced by combining those
with the same keys to 0.01% of the initial number because of the very high number of re-
peated key). Comparing GroupByKey with ReduceByKey allows us to quantify the cost
of moving data between processes. Combining KVs before shuffling in ReduceByKey
substantially reduces the runtime of the application (up to 46% less runtime) and the
power usage over time (up to 11,800 joules saved, or a 50% reduction). One important
observation that emerges from this comparison is the intrinsic power cap (without the
need of PAPI’s cap) that ReduceByKey exhibits for a highly combinable dataset (in Fig-
ure 2b). The power usage of the three executions (with 240, 140, and 120 power cap) are
all substantially below the defined power caps. In the next two sections we further study
the reasons for the implicit capping, by looking into the impacts of the data combinability
rate and the MPI buffer size for the shuffling.

Impact of Data Combinability: A KV pair is combined with an existing KV if
it is a duplicate of the other KV in the same map process (i.e., the combiner callback
combines the new KV with the existing KV). Given a dataset and its number of unique
words, the fraction of a dataset that is combinable (called combinability rate) can be
calculated as follows:

Rate=
Nw− (Np ∗Nu)

Nw
, (1)

where Nw is the number of total words, Nu is the number of unique words, and Np is
the number of processors. Table 1 presents the datasets used in this paper with the total
number of words (Nw), the number of unique words (Nu), and the combinability rate.
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(a) 4B72 (b) 4B1M (c) 4B50M

Figure 3. Power usage with combiner optimizations for datasets with different combinability rates.

Figures 3a– 3c show the power and time metrics for selected datasets in Table 1, with
increasing numbers of unique words and decreasing combinability rates. In the progres-
sion of the nine figures, we observe how, when zooming into the combiner performance
for datasets with different numbers of unique words (and thus different combinability
rates), both the power usage over time and runtime vary around a “sweet spot” region
(i.e., a region of minimum runtime and energy). This sweet spot region is around 5,000
unique words for our 4 billion word dataset. For smaller numbers of unique words and
high combinability rates, we encounter latency associated with the inability to fill MPI
communication buffers and the intrinsic strategy of Mimir to less frequently initiate the
shuffling. For larger numbers of unique words, the memory and processor power usage
begin oscillating. This oscillatory pattern is due to (1) a lower capability of the combiner
optimizations to reduce data chunks in size, (2) a larger number of KV pairs locally man-
aged by each map process in its assigned chunk, and (3) the process’s frequent memory
accesses to swap parts of the larger chunk in and out of memory.

Impact of Communication Buffering: In the tests above, we used a default send
buffer size in Mimir of 64 MB. Each map process uses an MPI send buffer to store the
KV pairs in groups based on a receiving reduce process. The assignment of a group to
a specific process is based on a hash function in Mimir. All the buffers are sent to the
reduce processes with an MPI AllToAllv call when one of the map processes has its send
buffer full. In this section, we consider different communication buffer sizes in Mimir
(i.e., different sizes triggering the exchange of data among processes in the aggregate
phase of the MapReduce workflow) and different data features (i.e., number of unique
words in our 4 billion word dataset) to study the impact of Mimir’s setting on power
usage over time.

Three possible scenarios can be observed. In the first scenario, the send buffer size of
each process is partially underutilized because the different unique KV pairs are not fill-
ing it. Note that we are using the combiner optimizations to reduce the use of the buffer.
This is the case for our dataset of 4 billion words with only 72 unique words used to build
the large dataset. Figure 4a shows an example for a small case study of two processes,
each one with a data chunk of 8 “a” datasets. The send buffer is divided into two equal-
sized partitions, where two is the number of processes executing our MapReduce appli-
cation. Mimir’s default setting temporarily suspends the computation stage and switches
to the shuffling when a partition in the send buffer is full. The fact that there are not
sufficient unique words to trigger the shuffling results in the execution of map operations
and combiner callbacks in an almost-sequential execution. The implicit power cap is the
ultimate consequence of a set of cores that are not pushed to their max workload poten-
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tial. We observe the same phenomena with our datasets and 72 unique words. Figures 5a
and 5d show the power usage over time when 72 unique words make up the entire 4
billion words dataset. Figures 5a refers to a scenario in which the send buffer is 32 MB;
Figure 5d refers to a scenario in which the send buffer is 64 MB. The buffer that is twice
as large results in a larger execution time (almost twice larger), indicating that the larger
the buffer,the longer Mimir postpones triggering the aggregate phase in the shuffling. At
the same time, the low power usage does not require any intervention with PAPI’s power
capping.

In the second scenario, the buffer size of each process is fully used: the different
unique KV pairs are filling it while the map operations are performed. Figure 4b shows
an example for a small case study of two processes, each one with a chunk “abababab”
words (where “a” and “b” are the unique words). The send buffer fills regularly, and
the aggregate phase is triggered and interleaves with the map operations, resulting in
the performance sweet spot. Figures 5e and 5b show the power usage when 5K unique
words make up the entire 4 billion word dataset but two different send buffer sizes (i.e.,
32 MB and 128 MB). The sweet spot occurs for the same number of unique words,
independently from the buffer size. Moreover, the power usage is no longer implicitly
defined but is explicitly set up by the PAPI power cap. As with the previous tests, lower
power cap results in larger runtime. The performance degradation is within tolerable
range.

In the third scenario, the buffer size of each process is overutilized: the different
unique KV pairs do not fit in the single partitions of the send buffers. Figure 4c shows an
example for a small case study of two processes, each one with the chunk “abacdabcd”
(where “a,” “b,” “c,” and “d” are the unique words). At time t, the send buffer fills with the
“a” and “b” words, Mimir does not trigger the shuffling but continues the map operations.
The buffer has to be copied to the memory. When new map operations on “a” and “b”
words are performed, segments of the buffer have to be retrieved, as show in Figure 4d
for a hypothetic time t + 1. We observe the same phenomena with datasets with large
number of unique words (e.g., 42 million in Figures 5f and 5c). These two figures show
the oscillatory behavior of both CPU and memory power usage over time when moving
the buffer through the memory hierarchy (i.e., cache to memory and back). The larger
the buffer, the larger the waving pattern observed and, once again, the larger the runtime.

Overhead of Monitoring Frequency: The last aspect we study in this paper is the
overhead associated with measuring power usage with PAPI. We consider three sample
granularities to collect the power measurements: 100-millisecond sample rate (the default
setting), 50-millisecond sample rate, and 5-millisecond sample rate. Values measured by
PAPI are energy consumption over the interval of 100 ms, 50 ms, and 5 ms, respectively.
The smaller the interval (and thus the more samples collected), the more the overhead.
At the same time, the smaller the interval, the more accurate the power values (i.e.,
less biased by outliers within the sample interval). We measure the power usage for
two critical cases: the case in which the system is intrinsically capping the power (e.g.,
with only 72 unique words in Figures 6a, 6b, and 6c) and the case in which the system
forwards parts of the send buffer down the memory hierarchy (e.g., with 42 mission
unique words in Figures 6d, 6e, and 6f). The figures show us that the overhead associated
with PAPI is marginal and that the average values at 100 ms are sufficiently close to the
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(b) Fully utilized buffer
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(c) Overutilized buffer (time t)
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(d) Overutilized buffer (time t+1)

Figure 4. Small scale examples of underutilized, fully utilized, and overutilized send buffers in the map +
aggregate phases of ReduceByKey.

values at 5 ms to conclude that power usage does not exhibit variability within the larger
interval and there are no outliers within the 100 ms interval.

4. Lessons Learned

We have observed the following from our performance analysis. First, combiner op-
timizations offer significant power performance benefits for our miniapplications. We
observe up to a 46% reduction in runtime and up to a 50% reduction in energy con-
sumption when comparing results between GroupByKey and the combiner-optimized
ReduceByKey on the same dataset. These results demonstrate the high power perfor-
mance cost of data management on HPC systems, given the significant performance gain
yielded by reducing data management via the combiner optimization. Second, he un-
optimized reduce stage in the GroupByKey miniapplications has high runtime and en-
ergy costs. Comparing GroupByKey with the Map+Aggregate miniapplication, which
stops before the reduce stage, shows costs of 333% to 355% more runtime and 335% to
359% more energy consumption when adding the reduce stage to the execution. Third,
the Map+Aggregate and GroupByKey miniapplications suffer an increase of 5% to 33%
more runtime when run under a 120-watt power cap. When running ReduceByKey, with

J. Davis et al. / Characterization of Power Usage and Performance in Data-Intensive Applications 295



(a) 32 MB 4B72 (b) 128 MB 4B5K (c) 128 MB 4B42M

(d) 64 MB 4B72 (e) 32 MB 4B5K (f) 16 MB 4B42M

Figure 5. Power usage over time and runtime exhibiting underutilized buffers for 4 billion word datasets.

its combiner optimizations, over the same highly combinable dataset, we observe an im-
plicit power cap, below 120 watts. This arises from the very high input dataset com-
binability and large communication buffer size. Fourth, the power performance of the
combiner optimizations varies according to the combinability rate of the input dataset
around a “sweet spot” region of minimum runtime and energy consumption. This sweet
spot is at a combinability rate near 99%, or about 5,000 unique words for a dataset of
4 billion total words. At small numbers of unique words and high combinability rates,
performance degrades because of the inability to fill the MPI communication buffers.
At large numbers of unique words and low combinability rates, performance degrades
because of the increased number of KVs that each process must manage. Fifth, the size
of the Mimir communication buffer used is significant to the power performance of the
combiner optimizations in the ReduceByKey miniapp. Performance degrades when the
chosen buffer size is either over- or underutilized, depending on the combinability of the
input data. Last, the overhead associated with PAPI measurement is marginal, as demon-
strated by the lack of impact of decreasing the rate of sampling from 100 to 5 ms. Further,
the 100 ms rate is sufficiently fine-grained, because decreasing the sample rate did not
lead to greater variability in power usage over time. All these observations can serve as
rules of thumb for effective data management using MapReduce over MPI programming
languages on HPC architectures. Work in progress is integrating these lessons learned
into Mimir, making the framework power-aware (i.e., able to leverage implicit power
capping while still controlling power usage in the background, idle to the user).

5. Conclusion

In this paper, we quantitatively measure the impact of data management across cores
on power usage for a set of MapReduce-based miniapps that are data intensive on two
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(a) 100 ms 4B72 (b) 50 ms 4B72 (c) 5 ms 4B72

(d) 100 ms 4B42M (e) 50 ms 4B42M (f) 5 ms 4B42M

Figure 6. Power usage over time with different sample rates of 100 ms, 50 ms, and 5 ms, for a case study with
intrinsically power capping (e.g., with only 72 unique words in Figures 6a, 6b, and 6c) and for a case study
forwarding parts of the send buffer to memory during the map operations (e.g., with 42 million unique words
in Figures 6d, 6e, and 6f).

many-core systems: KNL and KNM. Among our observations, we notice how combiner
optimizations lead to up to a 46% reduction in runtime and a 50% reduction in energy
usage, without the need for a power cap.

Our future work includes (1) understanding how far our observations are from a
general principle relating power cap and performance; (2) studying ways of reducing
data movement other than the combiner used in this paper; and (3) understanding how
the settings of the underlying MapReduce framework can be tuned during runtime to
extend the “sweet spot” regions (i.e., regions of minimum runtime and power usage).

6. Acknowledgments

This work was supported by NSF CCF 1841758.

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”Communications
of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] —, “Apahce Hadoop,” http://hadoop.apache.org/.
[3] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

J. Davis et al. / Characterization of Power Usage and Performance in Data-Intensive Applications 297



[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with
working sets,” HotCloud, vol. 10, p. 10, 2010.

[5] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu, “DataMPI: Extending MPI to Hadoop-like big data comput-
ing,” in 2014 IEEE 28th International Parallel and Distributed Processing Symposium (IPDPS), 2014.

[6] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and J. Srinivasan, “Scaling Spark on HPC sys-
tems,” in 25th ACM International Symposium on High-Performance Parallel and Distributed Computing
(HPDC), 2016, pp. 97–110.

[7] X. Yang, N. Liu, B. Feng, X.-H. Sun, and S. Zhou, “PortHadoop: Support direct HPC data processing in
Hadoop,” in 2015 IEEE International Conference on Big Data (Big Data), 2015, pp. 223–232.

[8] Y. Wang, R. Goldstone, W. Yu, and T. Wang, “Characterization and optimization of memory-resident
MapReduce on HPC systems,” in 2014 IEEE 28th International Parallel and Distributed Processing
Symposium (IPDPS), 2014, pp. 799–808.

[9] —, “IBM BG/Q Architecture,” https://www.alcf.anl.gov/files/IBM_BGQ_Architecture_0.

pdf.
[10] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer, “Mimir: Memory-efficient and

scalable MapReduce for large supercomputing systems,” in Proceedings of the 31th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2017.

[11] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer, “On the power of combiner opti-
mizations in MapReduce over MPI workflows.” in Proceedings of the IEEE 24th International Confer-
ence on Parallel and Distributed Systems (ICPADS), 2018.

[12] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer, “Memory-Efficient and Skew-
Tolerant MapReduce over MPI for Supercomputing Systems” in IEEE Transactions on Parallel and Dis-
tributed Systems (IEEE TPDS), 2019.

[13] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance data with PAPI-C,” pp. 157–
173, 2010.

[14] A. Haidar and et al., “Investigating power capping toward energy-efficient scientific applications,” Con-
currency Computat Pract Exper., 2018.

[15] A. Haidar, H. Jagode, A. YarKhan, P. Vaccaro, S. Tomov, and J. Dongarra, “Power-aware computing:
Measurement, control, and performance analysis for intel xeon phi,” in 2017 IEEE High Performance
Extreme Computing Conference (HPEC), Sep. 2017, pp. 1–7.

[16] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar, “PUMA: Purdue MapReduce Benchmarks
Suite,” Technical Report 437, Purdue University, 2012.

[17] —, “Mimir: MapReduce over MPI,” https://github.com/TauferLab/Mimir-dev.git.

J. Davis et al. / Characterization of Power Usage and Performance in Data-Intensive Applications298



Feedback-Driven Performance and
Precision Tuning for Automatic Fixed

Point Exploitation

Daniele CATTANEO Michele CHIARI Stefano CHERUBIN Antonio DI BELLO and
Giovanni AGOSTA

Dipartimento di Elettronica, Informazione e Bioingegneria – Politecnico di Milano

Abstract. Precision tuning is an emerging class of techniques that leverage the
trade-off between accuracy and performance in a wide range of numerical appli-
cations. We employ TAFFO, a compiler-based state-of-the-art framework that relies
on fixed point representations to perform precision tuning. It converts floating-point
computations into a fixed point version with comparable semantics, in order to ob-
tain performance improvements. Usually, the process of fixed point type selection
aims at the minimization of the round-off error introduced by the precision reduc-
tion. However, this approach introduces a large number of type cast operations,
generating an overhead that may overcome the performance improvements of the
conversion to fixed point formats. We propose a control loop architecture that ex-
ploits the static analyses provided by TAFFO to reduce the number of type cast op-
erations while keeping the error under a given threshold. We evaluate our approach
on three benchmarks of the AXBENCH suite, and we show that in all cases we are
able to achieve performance improvements while keeping the introduced numerical
error below the given tolerance threshold.

Keywords. precision tuning, fixed point, error estimation, performance estimation

1. Introduction

The scale of computer applications has been steadily increasing across all domains, from
embedded systems to High Performance Computing (HPC). In the past, the Dennard
scaling and Moore’s Law have been the enabling factors for this growth, allowing ap-
plication developers – especially in High Performance Computing – to reduce the effort
spent in fine tuning the resource usage of applications [12]. However, their end has ush-
ered in a new stage in application development, where careful allocation of computa-
tional resources is more rewarding than in the past.

In particular, in HPC application development it is common practice to oversize the
data types with respect to the accuracy of the results needed by the application. In fact,
tuning the size of data types is a time-consuming and error-prone task. In the context
of resource-constrained embedded systems, it is customarily performed manually. How-
ever, in HPC application development such methods are not feasible due to the scale of
the applications and their data sets. To relieve the programmer from this task, we intro-
duced in our previous work [6,4] a compiler-based precision tuning assistant toolchain.
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Subsequent evolutions lead us to the development of the state-of-the-art precision tuner
based on the LLVM framework, TAFFO [7].

TAFFO performs precision tuning mainly by exploiting the fixed point numerical
representation. Fixed point representations are an important resource in application de-
velopment whenever the need to overcome computational resource limitations emerges.
Such representations are predominantly employed in embedded applications. Addition-
ally, they are also exploited as a mean to data size tuning for HPC tasks. TAFFO receives
programmer hints as input and it later infers value range information on the data flows in
a compilation unit. Then, it transforms the code to use the most appropriate fixed point
data types at the intermediate representation level. It is robust enough to support au-
tomated conversion for complex C++ benchmarks without rewriting the computational
kernels into less expressive languages, such as ANSI C. It is also able to operate both on
parallel and serial code.

However, adopting fixed point data types requires fine tuning to achieve performance
benefits. In fact, optimizing the allocation of data types to minimize precision loss will
impact the execution time, because of the increased number of data type casts, i.e. con-
versions between different fixed point types. Additionally, we have to consider that some
architectures are more suited to fixed point computations than others. To address the chal-
lenge of controlling the performance benefits of the floating point to fixed point conver-
sion, we propose as the main contribution of this work a control-loop regulation approach
to adjust the adverse effects of the precision tuning task. This control loop leverages a
performance and accuracy estimation pass, tailored to the TAFFO toolchain. We call this
new step Feedback Estimator. The Feedback Estimator is based on a combination of ma-
chine learning techniques, and traditional static control flow analyses. The control loop
uses the data collected by the Feedback Estimator to improve the floating point to fixed
point transformation, by making the chosen precision mix more homogeneous, thus min-
imizing the number of data type casts. After the aforementioned improvements, the com-
pilation process is repeated, realizing a feedback process between the mixed-precision
compiler transformation and the performance evaluation component.

We verify the effectiveness of the Feedback Estimator through a meaningful subset
of AXBENCH [23], a well-known approximate computing benchmark suite. In all the
benchmarks we considered, we were able to significantly reduce the amount of type cast
operations, without significantly compromising the accuracy of the computation, which
remains within a satisfactory threshold provided by the user. The reduction of the number
of type casts results in a direct reduction of the number of instructions in the program,
thus improving the performances of the converted code.

The rest of the article is organized as follows: in Section 2 we describe the main ex-
isting solutions concerning this problem, in Section 3 we describe the approach we pro-
pose in more detail, in Section 4 we show the results of the application of our technique
to selected AXBENCH benchmarks, and we give our concluding remarks in Section 5.

2. Related Works

This work places itself in the prolific field of reduced precision computation and in par-
ticular, static precision tuning. Tools in the state-of-the-art are aimed at automatically
producing an optimized version of a given numerical program, that sacrifices computa-
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tion accuracy to obtain performance gains. Such tools either target the entire program
[17,15,19,2], or just computational kernels identified by the user [16,22,20,9]. Perfor-
mance gains are obtained by using smaller data types, by using fixed point in place of
floating point computations, or both. In order to apply this transformation without exces-
sively degrading their accuracy, the precision requirements on the numerical computa-
tions must be evaluated, either dynamically [8,19], or statically [9]. An instruction-wise
estimation of such requirements allows a very tailored choice of the data types to be used,
allowing to minimize data width while keeping a sufficient accuracy. However, this may
result in a very heterogeneous precision mix, which requires a very frequent introduc-
tion of cast instructions (i.e. bit shifts, when using fixed point types), every time a type
mismatch arises in the data flow graph. As a result, the performances of the optimized
code degrade, possibly nullifying the gains caused by smaller type width. Also, a high
variety of data types in the precision mix may decrease the vectorization opportunities
for architectures supporting SIMD instructions.

Different approaches have been proposed in the literature to measure and to limit this
overhead. FRIDGE [16], Precimonious [22], CRAFT [18], and PetaBricks [2] perform
a dynamic estimation of the obtained performance gains by executing and profiling the
optimized code on a representative input dataset. This solution may, however, not always
be feasible, due to the time required to perform the profiling, or to the unavailability of
a sufficiently representative input dataset. Alternatively, the overhead can be estimated
a priori via heuristics, such as the number of cast instructions introduced by the code
conversion. For example, FPTuner [8] exposes a user-defined threshold for the amount
of type casts that the tool may insert into the code. This approach has the drawback of
requiring a certain skill for the user to pick the threshold. Autoscaler for C [17] and other
works [19] iteratively optimize the fixed point code by reordering instructions to remove
the shift operations whenever possible. Daisy [9] estimates the profitability of type trans-
formations by means of a cost function based on the number of cast instructions. Finally,
HiFPTuner [15] minimizes the number of cast operations by building a data-dependency
tree, and trying to assign the same data type to all values in the same cut of the tree.

An excessive reduction of precision mix heterogeneity may severely degrade compu-
tation accuracy. To pursue a reasonable trade-off between these two goals, precision tun-
ing tools need to estimate the numerical error introduced by the transformation. FRIDGE,
Precimonious, CRAFT, Autoscaler for C, and HiFPTuner decide whether the accuracy
degradation is acceptable by performing an explorative run of the reduced precision ver-
sion on a representative input dataset. The reliability of this approach depends on the ex-
tent to which the validation dataset covers the range of possible real inputs. Other tools,
such as Daisy, perform a conservative static estimation of the error bounds by means of
error propagation techniques.

3. Proposed Solution

We propose an extension of the TAFFO framework that implements a control loop regula-
tion to adjust the effects of the precision tuning task. TAFFO is composed by five stages,
namely code pre-processing, value range analysis, data type allocation, code conversion,
and feedback estimation. As shown in Figure 1, our control loop design uses the feedback
estimation stage to understand whether the proposed mixed precision version should be
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Figure 1. A flow-chart detailing the overall architecture of TAFFO. The extension with the control loop regu-
lation over the latest components of the toolchain is highligthed in red.

improved or not. The control loop acts on the data type allocation stage. In particular, we
expose a parameter q from that stage that represents the granularity of the bit partitioning
for the fixed point data types.

The goal of this control loop regulation is to maximizing the performance improve-
ment while keeping the error within an acceptable threshold. This task entails the min-
imization of the number of type cast operations in the final mixed precision code. We
consider the number of type casts that are statically present in the program, as opposed
to the number of type casts actually executed. The trivial solution of this minimization
problem would be an uniform bit partitioning across the whole program. However, the
uniform bit partitioning in the data type allocation stage would significantly impact on
the error, which may exceed the given threshold. TAFFO already provides a fine-grained
bit partitioning in the data type allocation stage. We aim at iteratively reducing the gran-
ularity of this allocation to limit the number of bit shift instructions. This new parameter
q of the data type allocation can be interpreted as a similarity threshold. Whenever the
distance between two fixed point bit partitioning p1 and p2 is lower than q, then p1 and
p2 can be merged into a single bit partitioning p12.

3.1. Similarity distance

Let p1 and p2 be two fixed point bit partitionings of the same total width, and let f1 and
f2 be their respective number of fractional bits, defining the place of the decimal delim-
iter. The similarity distance between them is defined as | f1 − f2|. This definition of the
distance between two types allows the data type allocator to remove type cast instruc-
tions while keeping a limit on the additional error introduced. The order of magnitude
of the latter is directly proportional to q, the maximum distance between two types that
allows them to be merged into a single one. The resulting type is the one among the two
that has the highest number of integer bits (and so the minimum number of fractional
bits), so that no potential overflows are introduced.

3.2. The Feedback Analyses

TAFFO implements two kinds of analyses in its feedback estimation step. The first one
is a functional analysis of the mixed precision code. It is named Error estimation and
it evaluates the impact of the round-off error due to the real number representation for
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each intermediate and output value. It propagates rounding errors represented as Affine
Forms [11,10], based on the variable ranges estimated by the value range analysis com-
ponent. The second analysis classifies the mixed precision version on the basis of the
expected speedup with respect to the original version. This performance estimation step
predicts whether the mixed precision version is going to be much slower (speedup< 0.8),
much faster (speedup ≥ 1.2), or almost the same of the original version. It is based
on a Gradient Boosting classifier [14], provided by the machine learning framework
scikit-learn [21].

Although the error estimation provides a conservative over-approximation of the
round-off error, it captures the trend of the actual round-off error at runtime. Figure 2,
Figure 3, and Figure 4 reflect this property. We want to save compilation time by avoid-
ing the code generation and execution of mixed precision versions that are likely to be
not profitable. Therefore, the minimization of the estimated error is a good proxy for
the minimization of the actual error at runtime. On the contrary, the TAFFO performance
estimation only provides a coarse-grained classification. The difference between the op-
timal solution and a solution that is close to the optimal is not likely to be captured by
this classification. Thus, the TAFFO classification does not represent a metric which is
sufficient to drive the regulator from the performance point of view.

We compute the number of type cast instruction that are removed by the merge
of fixed point bit partitioning in the data type allocation stage by using the exposed
parameter q. This metric is monotonous non-decreasing with respect to q. As this metric
represents the number of instructions that were removed from the application, we design
an heuristic regulation function that assumes a positive correlation between the number
of removed type cast and the speedup.

3.3. Regulation Policy

The purpose of the regulation policy is to try to achieve a significant speedup, while
maintaining the error within acceptable bounds. The user is required to provide a bound
emax for the maximum acceptable absolute error on the output values. Then, two different
settings are available for the policy: it can be set to either maximize speedup, or minimize
error. In the former case, it explores values of q starting from q = 32, and decreases q
until the estimated error becomes lower than emax. If the speedup is deemed negative at
q= 32, or if it is still negative when the error reaches emax, it means it is not possible to
achieve a speedup while keeping the error acceptable. In this case, the program is not con-
verted to fixed point format. The pseudocode in Algorithm 1 formalizes this description.

Algorithm 1.: Performance Maximization

q← 32
error ← estimate error(q)
speedup ← estimate speedup(q)
while error > emax and speedup == faster do

q← q−1
error ← estimate error(q)
speedup ← estimate speedup(q)

end while

if speedup == faster and error ≤ emax then

return q
else

return −1
end if

Algorithm 2.: Error Minimization

q← 0
error ← estimate error(q)
speedup ← estimate speedup(q)
while error ≤ emax and speedup �= faster do

q← q+1
error ← estimate error(q)
speedup ← estimate speedup(q)

end while

if speedup == faster and error ≤ emax then

return q
else

return −1
end if
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The setting that minimizes error is essentially symmetric, since it starts from q= 0, and it
increases it until the estimated speedup becomes greater than 1.2, while the error remains
≤ emax, as we can see in Algorithm 2.

4. Evaluation

We evaluated our feedback-driven approach on three benchmarks form AXBENCH [23],
a popular approximate computing benchmark suite. The benchmarks we chose, which
are the implementations of real-world numerical algorithms from different domains, are
Black-Scholes, FFT and K-means. Below we describe the results we obtained for each
benchmark, and the behavior of the regulation policy.

4.1. Black-Scholes
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Figure 2. Measured and estimated error for the Black-Scholes benchmark.

Black-Scholes is a financial application that numerically computes the equation for
the value of European call options according to the Black-Scholes model of a financial
market. Its input dataset consists of 48,000 options. The accuracy of the optimized ver-
sion is evaluated by computing the average absolute error of its output with respect to
the floating point version.

Figure 2 shows the measured (left) and estimated (right) absolute errors with respect
to parameter q. Note that the feedback analysis overestimates the absolute error by two
orders of magnitude, which is in line with other results obtained with the technique we
used [10]. Nevertheless, the estimated error consistently follows the shape of the mea-
sured one when varying parameter q. In the few cases it does not, the error bound is
still conservative. Thus, it is possible to use it to tune parameter q, in order to improve
performance. The performance estimator predicts a positive speedup for all values of q.
If the regulation policy is set to maximize accuracy, the framework chooses q= 0 as the
final parameter setting. If, on the contrary, it is set to maximize performance, it chooses
q= 32, as the estimated error remains acceptable.

The number of removed casts, which is shown in Figure 5, increases with q, and its
variation with respect to q is consistent with the absolute error. When q = 32, all casts
are removed, which ensures that there is a performance improvement, due to the lower
number of instructions involved in the computation. In all benchmarks, the maximum
value of q is 32, because this is the width of all fixed point data types used.
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Figure 6 shows the relation between the number of removed casts and the measured
relative error on the output. Clearly, from the point of view of numerical accuracy Black-
Scholes is not very sensitive to the removal of cast instructions, as its relative error re-
mains well below 1%, even when removing all casts. This allows the optimized version
of the benchmark to achieve the maximum performance improvement.

4.2. FFT
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Figure 3. Measured and estimated error for the FFT benchmark.

FFT is an implementation of the Radix-2 Cooley-Tukey Fast Fourier Transform,
an algorithm widely used in signal processing. It receives as an input signal a discrete
rectangular wave of period K and duty cycle 1% in the time domain, and converts it into
the frequency domain. Again, the output accuracy is measured by computing the absolute
error.

The measured and estimated errors are reported in Figure 3. This time, the esti-
mated error becomes extremely high for q ≥ 4, exceeding the user-defined error thresh-
old, which is emax = 50Hz, corresponding to a relative error around 1%. The regulation
policy chooses q = 3 when optimizing performance, thus removing around 19% of cast
instructions. This is a rather significant improvement, even if the value of q remains low.
Figure 6 shows how the measured relative error approaches and becomes greater than
1% as the amount of removed casts gets higher than around 19%.

Instead, q = 0 is chosen when optimizing error, since the speedup due to the sole
conversion of floating point computations to fixed point types is still estimated as high.

Note that, according to Figure 5, even with q = 32, only 37.5% of the cast instruc-
tions are removed. This is due to the fact that the data type allocation stage always re-
frains frommerging two types when this operation could potentially cause overflows dur-
ing the execution, according to the value ranges estimated for each variable. This makes
sure the accuracy reductions due to the optimization are gradual, and do not compromise
the correctness of the program completely.

4.3. K-means

K-means uses a popular machine learning algorithm to classify pixels from an image into
a user-specified number of clusters. As an input dataset for its evaluation, we use the one
provided by AXBENCH, i.e. a set of RGB pictures. The error introduced by the fixed-
point optimization is measured and estimated on the Euclidean distance between single
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Figure 4. Measured and estimated error for the K-means benchmark.

0 5 10 15 20 25 30 35

0

20

40

60

80

100

q

#
ca

st
s
re
m
ov

ed
(%

)

BlackScholes
FFT

K-means

Figure 5. Percentage of type cast instructions removed for all valid values of q, with respect to the number of
type casts when q= 0.

pixels and cluster centroids. The distance results from the main computational kernel of
the application, and it determines the classification of each pixel in its cluster. Its error
is thus significantly representative of the cluster misclassification rate introduced by the
optimization.

In this case, the only significant change in accuracy occurs between q= 18 and q=
19, for both the measured and the estimated error. The chosen error threshold is emax =
2 · 10−2, and the speedup is always estimated greater than 1.2. Therefore, the policy
chooses q = 0 when optimizing for accuracy, and q = 18 when optimizing for speedup,
thus removing 26% of the cast instructions. The number of removed cast instruction is
sensible for this benchmark, too. Again, a number of cast instructions cannot be removed
even with q= 32, due to overflow concerns.

5. Conclusion

In this paper, we presented a major extension of the TAFFO framework for precision tun-
ing. In particular, we introduced a control loop for data type selection, which is governed
by a feedback estimation component. The proposed modifications enable TAFFO to re-
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Figure 6. Measured relative error with respect to the amount of cast instructions removed.

duce the number of data type casts. This effect is achieved by merging similar fixed point
configurations whenever the impact of such merge is zero or particularly small. This
feature enables significant performance improvements. An experimental campaign car-
ried out on the AXBENCH benchmark suite for approximate computing, restricted to the
benchmarks that include significant floating point computations, shows the effectiveness
of the proposed approach. Indeed, TAFFO is able to explore the approximation options, to
correctly estimate the error introduced by different levels of optimization (corresponding
to the aggressiveness of the data type casts removal), and to identify the best solution
in performance at the requested accuracy level. As a result, when imposing an accuracy
threshold of 1% numerical error, TAFFO produces an optimized version with a number
of cast instructions between 19% and 100% lower than the baseline version with the de-
fault precision mix, resulting in a performance speedup, due to the reduced number of
instructions.

As future development, we plan to extend the set of data types managed by
TAFFO with the half-precision floating point bfloat16 [1] and arbitrary precision data
types [13,3]. This extension entails the porting of all the analyses and transformations
to generic data types, but will expand usefulness of TAFFO to many HPC use cases,
such as simulations of chaotic systems. An additional development line involves the cou-
pling of the TAFFO framework with a dynamic partial re-compilation framework such as
LIBVC [5] to implement dynamic precision tuning.
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Abstract. This paper deals with the solution of an inverse time fractional diffu-
sion equation described by a Caputo fractional derivative. Numerical simulations,
involving large domains, give rise to a huge practical problem. Hence, by starting
from an accurate meshless localized collocation method using radial basis func-
tions (RBFs), here we propose a fast algorithm which exploits the GPU-CUDA ca-
pabilities. More in detail, we first developed a C code which uses the well-known
numerical library LAPACK to perform basic linear algebra operations in order to
implement an efficient sequential algorithm. Then we propose a GPU software
based on ad hoc parallel CUDA-kernels and efficient usage of parallel numerical
libraries available for GPUs. Performance analysis will show the reliability and the
efficiency of the proposed parallel implementation.

Keywords. Fractional calculus; GPU computing; parallel algorithms; CUDA

1. Introduction

In recent decades, fractional calculus theory received high interest due to its applica-
tion in several fields in science and engineering. Indeed, fractional models are beneficial
and powerful mathematical tools to describe the inherent properties of processes in me-
chanics, chemistry, physics, and other sciences [1,2,3]. Main methods to solve fractional
models include meshless and radial basis functions based methods which represent reli-
able and efficient techniques, specially suitable for high-dimensional and irregular com-
putational domains [4,5]. This choice is because they allow to avoid the expensive task
related to the mesh construction. However, as is well-known, the use of global RBFs
in such cases gives rise to very ill-conditioned discrete problems. Moreover, practical
problems with large domains increase the computational cost dramatically. Therefore,
the use of fast algorithms and parallel computational kernels becomes unavoidable and
necessary. So, in this work, by starting from an accurate meshless localized collocation
method using local radial point interpolation (LRPI), we propose a fast algorithm which
exploits the GPU-CUDA capabilities. More in detail, we first developed a C code based
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on the numerical library LAPACK to perform all basic linear algebra operations. Then,
we moved on a GPU-parallel software based on ad hoc parallel CUDA-kernels and ef-
ficient usage of parallel numerical libraries available on CUDA (Compute Unified De-
vice Architecture) environment. To be specific, to improve performances, we introduce
a parallel approach which implements parallel modules by using the CUDA computing
platform for GPUs [6] (a massively parallel architecture, also know as Graphic Cards,
for general purpose computing). Moreover, this GPU-parallel software involves the use
of the cuSOLVER library [7], which in turn provides all the functions of LAPACK for
the GPU environment, and it includes a easy-to-use interface making possible to vary
both the main parameters of the problem and the blocks and threads configuration which
are required by the parallel execution.

The rest of the paper is organized as follows: section 2 briefly describes the problem
we deal with and the numerical procedure to discretize the related inverse time fractional
diffusion equation; in section 3 the description of both sequential and parallel implemen-
tation details of the algorithms is given; in section 4 the experimental results highlight the
performance gain, in terms of execution times and speed-up, compared to the sequential
version; finally, conclusions close the paper in section 5.

2. Mathematical model and numerical procedure details

In the current work we deal with the solution of a two-dimensional inverse time fractional
diffusion equation [8,9,10], defined as follows:

c
0D

α
t v(x, t) = κΔv(x, t)+ f (x, t), x = (x,y) ∈ Ω ⊆ R2, t ∈ ]0,T ], (1)

with the initial and Dirichlet boundary conditions:

v(x,0) = ϕ(x), x ∈ Ω,

v(x, t) = ψ1(x, t), x ∈ Γ1, t ∈ ]0,T ],

v(x, t) = ψ2(x)ρ(t), x ∈ Γ2, t ∈ ]0,T ], (2)

and the non-local boundary condition:

∫∫
Ω
v(x, t)dx = h(t), t ∈ ]0,T ], (3)

where v(x, t) and ρ(t) are unknown functions and c
0D

α
t = ∂α

∂ tα denotes the Caputo frac-
tional derivative of order α ∈ ]0,1]. The numerical approach to discretize the problem (1)
is summarized as follows [8,9].

2.1 The time discretization approximation

Let us choose a time step τ > 0 and set tn = nτ , for n = 0, . . . ,T/τ (assume T/τ be an
integer). By substituting t = tn+1 in the equation (1), the following relation is obtained:

c
0D

α
t v(x, t

n+1) = κΔv(x, tn+1)+ f (x, tn+1), (x, tn+1) ∈ Ω× (0,T ]. (4)
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Therefore, we exploit the following second-order time discretization for the Caputo
derivative of v(x, t) at point t = tn+1 [11,12]:

[
c
0D

α
t v(x, t)

]
t=tn+1

=
n+1

∑
j=0

ωα( j)
τα

v(x, tn+1− j)− t−α

Γ(1−α)
v(x,0)+O(τ2), (5)

where:

ωα( j)=

⎧⎪⎨
⎪⎩
α+2
2

pα0 , j = 0,
α+2
2

pαj −
α
2
pαj−1, j > 0,

and pαj =

⎧⎨
⎩

1, j = 0,(
1− α+1

j

)
pαj−1, j ≥ 1.

By substituting the equation (5) in (4) the following relation is obtained:

ωα(0)
τα

vn+1−κΔvn+1 =−
n

∑
j=1

ωα( j)
τα

vn+1− j+
t−α

Γ(1−α)
v0+ f n+1, (6)

with f n+1 = f (x, tn+1) and vn+1− j = v(x, tn+1− j) ( j = 0, . . . ,n+1).

2.2 The meshless localized collocation method

This section describes the meshless localized collocation approach. This choice is be-
cause, in last decades, meshless methods have been employed successfully in several
fields of science and engineering [4] and allow to avoid the expensive task related to the
mesh construction. In the meshless localized collocation method, the global domain Ω is
partitioned into local sub-domains Ωi (i= 1, . . . ,N) corresponding to every point. These
sub-domains ordinarily are circles or squares and cover the entire global domain Ω. Then
the radial point interpolation shape functions, φi, are constructed locally over each Ωi by
combining radial basis functions and the monomial basis function [10] corresponding to
each local field point xi. In the current work, it is used one of the most popular RBFs,
i.e., the generalized multiquadric radial basis function (GMQ-RBF) φ(r) = (r2 + c2)q

(q=2.5) where c is the shape parameter. The local radial point interpolation shape func-
tion generates the N×N sparse matrix Φ. Therefore v can be approximated by:

v(x) =
N

∑
i=1
φi(x)vi (7)

where φi(x) = φ(‖x−xi‖2) (the norm ‖x−xi‖2 denotes the Euclidean distance between
x and field point xi). Substituting formula (7) in equations (6), (2) and (3) yields:

N

∑
i=1

[
ωα(0)
τα

φi(x j)−κ
[
∂ 2φi
∂x2

+
∂ 2φi
∂y2

]
(x j)

]
vn+1
i =−

n

∑
j=1

ωα( j)
τα

N

∑
i=1
φi(x j)v

n+1− j
i

+
t−α

Γ(1−α)

N

∑
i=1
φi(x j)v0+ f n+1, j = 1, . . . ,NΩ (8)

N

∑
i=1
φi(x j)vn+1

i = ψn+1
1 (x j), j = NΩ +1, . . . ,NΩ +NΓ1 , (9)
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N

∑
i=1
φi(x j)vn+1

i = ψn+1
2 (x j)ρn+1, j = NΩ +NΓ1 +1, . . . ,NΩ +NΓ1 +NΓ2 , (10)

N

∑
i=1

(∫
Ω
φi(x)dΩ

)
vn+1
i = hn+1. (11)

The collocation equations (8) are referred to the NΩ interior points in Ω, while the NΓ1
equations (9) and the NΓ2 equations (10) (involving also the unknown ρn+1 = ρ(tn+1))
arise from the initial and Dirichlet boundary conditions. Finally, a further equation is
obtained by means of 2D Gaussian-Legendre quadrature rules of order 15. Therefore,
the time discretization approximation and the local collocation strategy construct a linear
system of N+1 linear equations with N+1 unknown coefficients (N =NΩ+NΓ1 +NΓ2 ).
The unknown coefficients v(n+1) = (vn+1

1 , . . . ,vn+1
N ,ρn+1) are obtained by solving the

sparse linear system:

A v(n+1) = B(n+1), (12)

where A is a (N+ 1)× (N+ 1) coefficient matrix and B(n+1) is a (N+ 1) vector. Let
us notice that, unlike B(n+1), the coefficient matrix A does not change its entries along
time steps. Moreover, due to the local approach the coefficient matrix A is sparse.
Previous discussion can be summarized through the following scheme, Algorithm 1,
which describes the main steps of the numerical procedure.

Algorithm 1 Pseudo-code for problem (1)
Input: κ,α,T,τ ,ϕ,Ψ1,Ψ2,h,

{xi}NΩ
i=1, % interior points

{xi+NΩ}
NΓ1
i=1 % Γ1 boundary points

{xi+NΩ+NΓ1
}NΓ2
i=1 % Γ2 boundary points

Output:
{
{vn+1

i }Ni=1

}T/τ−1

n=0
,

{ρn+1}T/τ−1
n=0

1: build A % by following (8,9,10,11)

2: for n= 0,1, . . . ,T/τ−1 % loop on time slices

3: build B(n+1) % by following (8,9,10,11)

4: compute v(n+1) : % solution of A v(n+1) = B(n+1) in (12)

5: endfor

3. Sequential and parallel implementation

In order to implement the Algorithm 1, we need to define: a 2D regular grid, called
CenterPoints and the sub-sets center I, center b1 and center b2, the interior
points and the boundary points of the CenterPoints, respectively. Therefore, we find
for each fixed interior point (i= 1, . . . ,size(center I)) its local neighbors and, by eval-
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uating the Laplacian of the local RBF interpolating function, we build the i-th row
of A total (i.e. A). We highlight that this step requires to solve multiple linear sys-
tems of small size (number of neighbors) for each point in center I. Thus we build
next size(center b1) + size(center b2) rows of A total (by using (9) and (10))
and we build last row of A total by evaluating the integral in (3) by means of 2D
Gaussian-Legendre quadrature rules of order 15. Finally, after, a discrete 1D time inter-
val tt= [0 : τ : T ], with step τ , generation, for each time in tt, we build the right-hand
side vector B (i.e. B(n+1)) and we solve the sparse linear system A total · sol = B,
where sol is the computed value of v(n+1).
Algorithm 2 illustrates the necessary steps in detail. Observe that, our sequential imple-
mentation provides the multiple linear systems solution, at lines 9, 10 and 11 by using
the routine dgesv of the LAPACK library based on the LU factorization method, while
to solve the sparse linear system, at line 16, a specific routine of the CSPARSE library
is employed [14], i.e. the cs lusol routine, typical for linear systems characterized by
sparse coefficient matrices.

Algorithm 2 Sequential algorithm
1: STEP 0: input phase

2: generate CenterPoints

3: find Center I % interior points

4: find Center b1 % boundary points

5: find Center b2 % boundary points

6: STEP 1: construction of the coefficient matrix

7: for each point of CenterPoints

8: find its local neighbors

9: solve multiple linear systems % one for each point of center I

10: solve multiple linear systems % one for each point of center b1

11: solve multiple linear systems % one for each point of center b2

12: endfor

13: STEP 2: loop on time

14: for n= 0;n< T/τ;step= 1 do

15: build B % (by using results of lines 8,9,10,11)

16: solve A total · sol = B

17: set sol M[n+1]:=sol

18: end for

19: STEP 3: output phase and condition number evaluation

20: reshape matrix sol M

Starting from some preliminary and interesting results obtained in [13], where a
multicore strategy was used, here we propose a different parallel approach that exploits
the powerful of modern GPU architectures. This new implementation comes from the
idea of increasing the threads number (using all cores available on the GPU architecture)
in order to observe the optimal gain obtained by using last generation parallel machines.

Firstly, to achieve a satisfying execution of our code (in terms of execution time
but, above all, to ensure that the software reaches the highest performance) we car-
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ried out an ad-hoc configuration of the CUDA environment, because for large input a
high number of bytes are needed to be allocated with respect to the number of oper-
ations. So, for each thread, the local stack and heap size have increased by using the
cudaThreadSetLimit(op, size ) routine and by setting parameters:

– op:=cudaLimitMallocHeapSize
– size:=1024*1024*1024.

This routine has to be called before the CUDA environment starts. In this way, we tried
to overcome, as possible, the well-known problem of the limited memory inherent to the
GPU architectures. Moreover, with this arrangement it is possible to allocate memory
dynamically on a GPU and, as explained later, to reduce the transfer of host-device data.
About the decomposition approach, we combine the classical domain decomposition
with a more sophisticated functional decomposition, following this schema: each sub-
domain of work is demanded to a set of threads, using one-dimensional blocks and grid,
if the chosen number of threads is less or equal than 1024; otherwise the blocks and the
grid are set as two-dimensional structures. Therefore, following the domain decomposi-
tion approach, each thread is linked at a single input point and it performs all the oper-
ations needed to build the final sparse matrix; while in accordance with the functional
decomposition, a pool of threads, based on a fixed configuration, works on different tasks
of the overall algorithm in a parallel way.
More in detail, we describe our GPU-parallel approach STEP by STEP referring to the
serial version showed in Algorithm 2.

The input phase, in STEP 0, uses a domain decomposition-based parallelization
strategy. The local neighbors are defined by considering a sub-set of the CenterPoint
set. In particular, for each point the thread associated with it builds the sub-domains cor-
responding to the inner points and the boundary points. In this way, the construction of
local structures becomes very simple and faster.
In STEP 1 the build of the sparse matrix coefficient is designed following the domain de-
composition criterion and the functional decomposition approach: for each sub-domain
of the CenterPoint set the local neighbors are found, as in the STEP 0, therefore, each
thread (linked at one input point) builds the local corresponding multiple linear systems
whose solutions will be computed by a pull of threads, asynchronously, and then col-
lected in the global matrix A total.

In order to avoid the copy overhead, a suitable workload distribution is performed
by using Algorithm 3.

Algorithm 3 Compute global matrix for each thread
1: index = threadIdx.x + (blockDim.x * blockIdx.x) % thread index defi-

nition
2: g Mats[], g Terms[] % allocation on the host
3: FOR ALL thread
4: g Mats[index] % local matrix building
5: g Terms[index] % local note terms computation
6: ENDFOR ALL
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Observe that, at lines 4, 5, 6 the values are computed and stored in the local memory of
each thread in a one-dimensional array following the row-major order method.
Now, to solve the local multiple linear systems a specific technique has been imple-
mented, because CUDA are not able to directly call the routines of the cuSOLVER li-
brary from the device. More precisely, firstly the local matrices are transferred on the
host and collected in a global array whose the rows size is equal to the thread number.
In this array each portion, related to a single thread, contains the local matrix. A similar
approach is used to build and store the right-hand side vectors of each linear system.
Therefore, from the host each local portion of the global matrices g Mats and g Terms

are used as parameters for the routine cusolverDnDgetrs of the cuSOLVER-Dense
library, called to solve each linear system, as shown in Algorithm 4.

Algorithm 4 Solving local Linear Systems - Host code
1: start cuSOLVER & cuBLAS environments
2: index = threadIdx.x + (blockDim.x * blockIdx.x) % thread index defi-

nition
3: FOR ALL thread-pull
4: call cuSOLVER routine with g Mats[index] and g Terms[index]

5: syncthreads()

6: copy result in the A total sparse matrix
7: ENDFOR ALL

The solutions, returned by the cuSOLVER routine are inserted in the A total sparse
matrix. During this phase we perform a synchronization by using the syncthreads()

routine, in order to avoid any memory contention. The final STEP 2 provides the sparse
linear system solution. It is executed in a similar way to what described in the STEP 1,
i.e. following the scheme showed in Algorithm 3 to manage the host-device data transfer.
For this last STEP only the domain decomposition approach has been used. To be spe-
cific, the loop for, related to time discretization, runs in parallel on T threads (correspond-
ing to the time interval size). However, before to compute this final STEP, a copy of the
A total sparse matrix is stored in the local memory of each thread using the CSR for-
mat, [16]. Everything described is shown in detail in Algorithm 5. More in details, each
thread builds the local B vector by using the cublasDgemv() routine of the cuBLAS
library [15], for solving a matrix-vector multiplication, at line 6. Hence, the main sparse
linear system is solved by the host with the cusolverSpDcsrlsvlu() routine of the
cuSOLVER library, at each time step.

4. Numerical tests

The GPU-parallel algorithm, described in the previous section, has been implemented on
a computer machine with the following technical specifications:

• two CPU Intel Xeon with 6 cores, E5-2609v3, 1.9 Ghz, 32GB of RAM, 4 chan-
nels 51Gb/s memory bandwidth

• two NVIDIA GeForce GTX TITAN X, 3072 CUDA cores, 1 Ghz Core clock for
core, 12 GB DDR5, 336 GBs as bandwidth
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Algorithm 5 Solving the sparse linear system
1: start a CUDA pool of T threads
2: on the device:
3: index = threadIdx.x + (blockDim.x * blockIdx.x) % compute index

thread
4: allocation g B[] % contains i-th B vector
5: FOR ALL thread
6: build B

7: g B[i th] = B

8: ENDFOR ALL
9: return to host:

10: for n= 0;n< T ;step= 1/τ do

11: solve A total · sol = g B[n]

12: set sol M[n+1]:=sol

13: end for

In the following we show some numerical tests in order to highlight the performance gain
in terms of execution times and memory occupancy. In Table 1 some executions of our
software are shown, by varying both the input size and the threads configuration. Time
values are obtained by averaging ten test runs for all each considered case.

Table 1. Execution times in seconds (s) achieved, by varying the CUDA configuration: block × threads and
the problem input size.

input size serial times 1 × 256 1 × 512 1 × 1024 2 × 256 2 × 512 2 × 1024

3.6 ×103 1.6 ×103 5.48 1.40 2.30 3.66 4.32 7.50
8.1 ×103 1.2 ×104 7.60 1.86 3.45 5.42 6.72 13.22
1.0 ×104 3.19 ×104 13.30 3.60 4.56 7.88 8.24 18.77

1.69 ×104 1.66 ×105 17.25 5.20 6.28 10.62 12.32 23.00
1.98 ×104 2.46 ×105 19.89 8.12 9.10 13.4 16.20 27.82
2.25 ×104 3.9 ×105 26.80 8.12 14.22 17.65 21.20 32.10

As we can see, a significant gain with respect to the serial version is achieved. This is
essentially due to a suitable choice for the memory setup and to the adaptive combination
of the different parallel strategies considered. As illustrated in the previous section, these
options allow us a good workload balance. More in details, the execution time of the
sequential algorithm grows considerably as the input point number increases. However
a noticeable speed up is observed in the GPU-parallel version. To be specific, the better
execution is reached by using 1×512 threads. A probable simple reason which explains
this result should be that for our graphic card, according the rules for a correct configu-
ration of the CUDA environment (that depend on the relationship between the maximum
size of the allocable constant memory and the number of CUDA cores per multiproces-
sor) the optimal number of threads per block is 512. Moreover, we highlight that, for all
last executions where the input is very large, the execution time increases, because of the
high bandwidth required during the computation. In fact, using a large number of threads
execution times grow for the spurious threads given but not used for the computation.
We just observe this phenomenon looking at the different ways of increasing the times
by comparing the second last column and the last one.
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In Table 2 the execution times, for each single kernel by varying the input size and
fixing as CUDA configuration: 1×512, are shown. As expected the most expensive ker-
nel, in terms of execution time, is the cusolverDnDgetrs( ) routine, which is the ker-
nel used to solve the multiple linear system needed to build the sparse matrix A total.
This task, despite the parallel decomposition/functional approach combination, remains
the most expensive in the computation.

Table 2. Time execution analysis for each CUDA Kernel: the first lines corresponding to the execution times
of computational kernels are expressed in milliseconds, while the execution times of transferred data (the last
two lines) are reported in microseconds.

cudaKernel 3.6×103 8.1×103 1.0×104 1.69×104 1.98×104 2.25×104

firstKernel() 394.12 938.03 1095.78 1860.17 2167.66 2634.25

computeMatrix() 9.47 22.40 27.34 44.42 52.09 59.18

computeCenterb1b2 4.22 9.45 11.72 21.81 24.85 28.37

computeCenterI 3.04 6.85 9.53 14.77 17.82 19.02

cusolverDnDgetrs 962.32 1132.71 2306.38 2910.57 3729.67 5305.31

cublasDgemv() 1.89 4.95 5.25 8.87 11.42 13.81

cusolverSpDcsrlsvlu 205.81 464.50 571.69 966.14 1132.28 1328.66

CUDA memcpy HtoD 808.33 2117.74 2245.36 3814.86 4142.87 5082.12

CUDA memcpy DtoH 640.22 1667.41 1887.38 2809.85 3151.21 4002.37

Time values in previous table positively confirm the efficiency of the proposed soft-
ware by showing the low weight of host-device-host communications with respect to the
computational workload. Conclusive considerations on the performance of our algorithm
can be made by analyzing Table 3.

Table 3. Memory usage in MBytes (MB) - configuration blocks/threads = 1×512.

N MB

3.6 × 103 1165

8.1 × 103 1183

1.0 × 104 1215

N MB

1.69 × 104 1251

1.98 × 104 1332

2.25 × 104 1491

From this table, we deduce that the GPU version allows us to obtain a very good mem-
ory occupation, typical of the use of CUDA architectures. In fact, the low use of global
CUDA memory (for our graphic card maximum 12213 MBytes) is due to the high uti-
lization of local threads memory, which in addition to reducing the time of device-host-
device copy limits the use of the global memory, stemming all the work in the local
thread work-space.

5. Conclusions

In this paper, we proposed a GPU-parallel algorithm to solve a two-dimensional in-
verse time fractional diffusion equation. The algorithm implements a numerical proce-
dure based on the discretization of the Caputo fractional derivative and on the use of a
meshless localized collocation method exploiting the radial basis functions properties.
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The parallel approach, based our CUDA-kernels efficient implementation and on a reli-
able use of ad-hoc parallel numerical libraries available on CUDA, provides a significant
performance gain in terms of execution times and memory occupancy.

Acknowledgement

This paper has been supported by project Algoritmi innovativi per interpolazione, ap-
prossimazione e quadratura (AIIAQ) and project Algoritmi numerici e software per il
trattamento di dati su larga scala in ambienti HPC (LSDAHPC).

References

[1] Mohebbi, Akbar, Mostafa Abbaszadeh, and Mehdi Dehghan. ”The use of a meshless technique based
on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation
arising in quantum mechanics.” Engineering Analysis with Boundary Elements 37.2 (2013): 475-485.
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Abstract.

Graphics Processing Units (GPUs) have been widely used to speed up the execu-
tion of various meta-heuristics for solving hard optimization problems. In the case
of Ant Colony Optimization (ACO), many implementations with very distinct par-
allelization strategies and speedups have been already proposed and evaluated on
the Traveling Salesman Problem (TSP). On the one hand, a coarse-grained strategy
applies the parallelization on the ant-level and is the most intuitive and common
strategy found in the literature. On the other hand, a fine-grained strategy also par-
allelizes the internal work of each ant, creating a higher degree of parallelization.
Although many parallel implementations of ACO exist, the influence of the algo-
rithm parameters (e.g., the number of ants) and the problem configurations (e.g.,
the number of nodes in the graph) on the performance of coarse- and fine-grained
parallelization strategies has not been investigated so far. Thus, this work performs
a series of experiments and provides speedup analyses of two distinct ACO par-
allelization strategies compared to a sequential implementation for different TSP
configurations and colony sizes. The results show that the considered factors can
significantly impact the performance of parallelization strategies, particularly for
larger problems. Furthermore, we provide a recommendation for the parallelization
strategy and colony size to use for a given problem size and some insights for the
development of other GPU-based meta-heuristics.

Keywords. Parallel Ant Colony Optimization, Graphic Processing Units, Parallelization
Strategies

1. Introduction

Ant Colony Optimization (ACO) is a well-established algorithm to solve combinatorial
optimization problems, such as the TSP, based on the behaviour of foraging ants [4].
Analogously to the ants behaviour in the natural environment, ants in ACO try to find
the path (a combination of edges) with the lowest cost (e.g. shortest distance). At each
iteration, each ant constructs a complete solution by a step-wise selection of the next
edge to traverse based on its pheromone concentration: the higher the concentration, the
higher is the probability of an edge of being chosen.

As the number of edges and vertices in the graph increases, the number of possible
combinations explodes, thus requiring more calculations for each ant during the path cre-
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ation process. Since more ants are required to explore a large search space appropriately,
the computation becomes even more costly. Hence, the parallelization of ACO is crucial
for finding high-quality solutions to large problems in acceptable execution time.

The easy access to high-performance computing hardware, such as multi-core CPUs
and GPUs, is promoting much effort towards the parallelization of metaheuristics by op-
timally splitting the workload among the several cores available, providing maximum oc-
cupancy as possible. The challenge is also to avoid overheads, mostly due to the commu-
nication between the different memory hierarchies [6], different processes, or different
threads.

The different parallel formulations of ACO can be divided into groups according to
the strategy applied and the degree of parallelization [8]. The first and most intuitive strat-
egy is to parallelize the work of the different ants. The advantage is a simple, straight-
forward implementation, since the work of each ant just needs to be assigned to one of
several concurrent threads. This approach already enables significant reductions of the
execution time. It is often found in literature [2,3,5] and here referred as coarse-grained
parallelization. The number of threads generated by the coarse-grained implementations
is equal to the number of ants in the colony. This number is typically much lower than
the value necessary to provide full occupation of a modern GPU with thousands of cores.

To overcome those drawbacks, fine-grained parallel strategies have been used in
other works to explore better all computational power of a modern GPU [1,11,12]. When
applied to ACO, this strategy parallelizes (in addition to the ants) the many probability
calculations performed inside the ant’s path creation process. In this approach, one ant is
referred to as a block of threads and each probability calculation is performed in a single
thread.

Considering both parallelization strategies mentioned so far, it has not been investi-
gated how the problem configuration and the algorithm configuration affect the perfor-
mance, and what are the benefits when compared to a sequential implementation. There-
fore, in this work, both strategies are tested and evaluated in distinct scenarios. The goal
is to state for which cases a fine-grained strategy is more beneficial than a coarse-grained
parallelization.

This paper is organized as follow. Section 2 describes the ACO algorithm and the
main features of the vanilla version. The parallelization strategies investigated in this
work are described in Section 3. In Section 4, we describe our experimental comparison
of the different parallelization approaches and the results obtained from them. Conclu-
sions, insights and possible future work are presented in Section 5.

2. Ant Colony Optimization

Like other swarm-based metaheuristics, ACO is based on simple agents (i.e. the ants)
that cooperate with each other to find improved solutions. The difference is that, in ACO,
individuals do not represent a solution themselves. Instead, they are responsible for con-
structing solutions at every iteration of the algorithm over the influence of the environ-
ment (e.g. pheromones on each edge of the graph). Algorithm 1 presents the basic struc-
ture for ACO in its basic implementation for TSP.

The construction of a solution is performed step-by-step in a probabilistic manner.
The solutions are built adding components to a partial solution, until a complete solution
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Algorithm 1 Sequential ACO algorithm

Initialize graph
Initialize pheromone trails
while (Stop criterion is not met) do

for each ant do

Construction Solution
end for

Pheromone update
end while

is reached. In the case of the TSP problem, the probability of visiting a vertex is calcu-
lated considering the distance to this vertex and the amount of pheromone present on the
edge leading to this vertex. It can be calculated as:

pi, j =
[τi, j]α [ηi, j]

β

∑lεN [τi,l ]
α [ηi,l ]

β ∀ jεN (1)

where τi, j is the amount of pheromone between vertices i and j, ηi, j = 1/distancei j,
α and β are parameters that determine, how much the pheromone quantity and the dis-
tance shall influence the probability, respectively. With all probabilities calculated, the
ant is able to choose which vertex will be visited next. The process is repeated until a
tour is complete.

The next phase is the pheromone update which can be divided into two parts, evap-
oration and deposit. Pheromone evaporation removes an equal fraction of pheromone of
each edge in the graph (Equation 2). This process is important to decrease the relevance
of edges that were visited in earlier stages of the search, thus favouring more exploration
of the search space and avoiding getting trap in local optimum.

τi, j := (1−ρ)∗ τi, j (2)

where, ρ ∈ [0..1] defines the evaporation rate. Afterwards, the pheromone deposit
take place. Now, each ant is responsible to deposit pheromone at each edge visited on the
tour that was created during the latest tour construction phase. The amount of pheromone
is proportional to the quality of the tour constructed by ant the ant that constructed the
tour with the shortest path will deposit a higher amount of pheromone (Equation 3).

τi, j := τi, j+Δt (3)

where Δt is calculated as 1/Dk and Dk is the length of the tour generated by ant k.
Over time, the amount of pheromone will increase on the edges that are often con-

tributing to generate the shortest paths. The more pheromone they have, the more likely
they will be chosen by ants in the subsequent tour construction phases. The ants will use
these high-rated partial solutions to build new tours and possibly improved/shorter ones.

3. GPU-based Ant Colony Optimization

The conception of GPU-based algorithms can be a very complicated and error-prone
task. The use of a framework, such as CUDA, becomes necessary to support the develop-
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ment and execution of such algorithms. Supported by all Nvidia GPUs, CUDA provides
several tools and a programming model for the development of highly parallel applica-
tions.

The computing power and aspects of a GPU and CUDA have notable differences
compared to CPUs. A GPU is composed of a set of streaming multiprocessors (SM),
each containing several cores. Cores inside an SM execute the same instruction simulta-
neously, following a SIMT schema (Single Instruction Multiple Threads).

GPUs also have different memory management. The main, largest and slowest mem-
ory space on the GPU is the global memory. Each SM has its own memory called shared
memory. This memory is accessible to all threads running on this SM and it is not acces-
sible for other SMs. Furthermore, each thread has a local memory which is only accessi-
ble by itself.

One of the advantages of using CUDA is the clear distinction of sequential and
parallel parts of the code. The sequential parts are normally executed by the CPU, while
the parallel parts, so-called CUDA kernels, are executed on the GPU. When launching a
CUDA kernel, the programmer must specify how many CUDA blocks shall be used and
how many threads each block will have. CUDA blocks are groups of threads that will be
assigned to the same SM. Inside an SM, each block will be sub-divided into groups of
e.g. 32 threads called warps. SMs execute one warp at a time until all threads have been
processed.

Despite the bigger amount of cores present in GPUs, some limitations must be also
taken into account. For example, when launching kernels, each block is assigned to an
SM and blocks that are not allocated due to a lack of resources are queued until resources
are available again. Limitations of an SM that determine this behavior are, for example,
the maximum number of blocks, the maximum number of threads and the maximum size
of data that can be loaded at once.

The implementations mentioned in this work consider all these factors. Algorithm 2
shows the basic template for the GPU-based ACO implementations used here, from the
initialization and transfer of data to the GPU, to the parallel execution of the algorithm.
The executions of the algorithms themselves run completely on the GPU side, avoiding
overhead. 2

Algorithm 2 Pseudo-code GPU-ACO

1: initialize ACO
2: initialize GPU
3: while stop criterion is not met do

4: tour construction kernel <<< n blocks,n threads>>>;
5: pheromone update kernel <<< 1,1>>>;
6: end while

7: copy results to host
8: clear GPU

2For simplicity, we here focus on the vanilla version of ACO as presented in Section 2 and do not take into
account enhancements as in [9].
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3.1. Coarse-grained ACO

The coarse-grained GPU-ACO has as its main idea the parallelization on the ant-level.
To implement this strategy for the TSP, the CUDA kernel for the tour construction phase
must execute the instructions regarding a single ant’s work, as shown in Algorithm 3.
Each ant is represented by a thread, which can be captured using CUDA’s grid system
(line 1). The while loop (line 2) is responsible for the tour construction, where in each
step the next city to be visited is chosen. The calculation of the probabilities is executed
sequentially, following the for loop in line 4. Afterwards, each ant decides on the next
city using its probability calculations (line 7 and 8).3

Algorithm 3 Coarse-grained tour construction kernel

1: ant i= blockIdx.x∗blockDim.x+ threadIdx.x;
2: while tour is not complete do

3: cityi = get current city(ant i)
4: for each city j do

5: if city j is a neighbor of cityi and city j has not been visited yet then

6: calc probability(cityi,city j);
7: end if

8: end for

9: chose next city(ant i);
10: end while

Typically, when launching a CUDA kernel, the number of threads per block is set to a
multiple of 32, respecting the warp size as mentioned previously. In this implementation,
it is not a problem to fit the colony size to a value that fits. Also, the number of blocks
can be set to balance the threads among the SMs. For many typical colony sizes, this
strategy makes use of a relatively small number of threads compared to what a modern
GPU can handle. Thus, the coarse-grained parallelization is often not sufficient to exploit
the computing power of a GPU and an additional parallelization approach is needed as
presented in the next subsection.

Furthermore, the instructions executed inside the tour construction kernel make it
not ideal for a GPU execution. The conditional statements used to check whether the
cities are linked and whether the considered city has already been visited (line 5 of al-
gorithm 3), create branches in the algorithm. As threads that belong to the same CUDA
block must execute the same instruction at the same time (SIMT), branching makes some
threads go idle while other threads execute a certain branch.

3.2. Fine-grained ACO

The fine-grained strategy for GPU-ACO aims at the additional parallelization of each
ant’s tour construction. In this strategy, each CUDA block represents an ant and the tour
construction work is distributed among threads as shown in Algorithm 4. By doing so, the
probability calculations performed at each step of the tour construction are now executed
in parallel. Furthermore, control instructions are now assigned to a single thread (lines 9
and 14).

3The pheromone update could be executed in parallel as well. For simplicity, we refrain from doing so here.
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Algorithm 4 fine grain parallel tour construction

1: ant i= blockIdx.x;
2: city j = threadIdx.x;
3: while (tour is not complete(ant i)) do

4: cityi = get current city(ant i)
5: d eta= compute inverted distance(cityi,city j); // see line behind Eq. 1
6: d tau= compute pheromone(cityi,city j); // see line behind Eq. 1
7: Synchronize;
8: if threadIdx.x== 0 then

9: d sum= compute denominator(ant i); // see denominator in Eq. 1
10: end if

11: Synchronize;
12: calc probability(cityi,city j,d eta,d tau,d sum); // see Eq. 1
13: if threadIdx.x== 0 then

14: chose next city(ant i);
15: end if

16: Synchronize;
17: end while

This strategy benefits from the higher parallelization level. It naturally sets the quan-
tity of CUDA blocks and threads in a way that better occupies the GPU, when compared
to the coarse-grained parallelization, in particular for smaller colonies. A higher number
of threads spread among several blocks are ideal for the GPU execution.

Furthermore, the instructions executed by each thread are simpler when compared to
the coarse-grained implementation. In this case, only one thread per block is responsible
for the instructions with conditional statements. In the coarse-grained implementation,
all threads execute conditional statements, leading to the serialization of the execution.

The negative point in this strategy is the lack of control of the number of blocks and
threads. As the number of threads per block is equal to the number of available edges in
the graph, it is not necessarily a multiple of 32. Also, for bigger colony sizes, the number
of blocks that can be allocated simultaneously is easily reached and the remaining blocks
are then executed sequentially.

4. Experiments and Results

In order to run the different ACO approaches, an HPC cluster with GPUs was used. The
sequential version of the algorithm used the normal partition of the cluster, in which
the computing nodes are equipped with Intel Xeon Gold 6140 CPUs with 18 cores (36
threads) running at 2.3GHz (turbo boost frequency up to 3.7GHz) and 192GB RAM. Our
GPU-ACO implementations used the partition that is equipped with K20 NVidia Tesla
accelerators. Each of these GPUs has 2496 cores running at 706MHz, 5GB memory and
they run CUDA 3.5.

The experiments performed in this work include several instances of the TSP prob-
lem taken from popular repositories [7,10]. The selected TSP instances have different
number of vertices (→ Table 1) so that the behavior of considered ACO implementations
are evaluated on various problem sizes.
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Table 1. TSPLIB

Instance dj38 qa194 d198 a280 lin318 pcb442 rat783 lu980 pr1002

# vertices 38 194 198 280 318 442 783 980 1002

Each implementation was tested using different colony sizes (1024, 2048, 4096 and
8192 ants) for all TSP instances. It is important to remark that, in this work, the fitness
achieved is not relevant and the focus of the analysis is rather on the execution time.
Since all three implementations are based on the same algorithm and just vary on the
parallelization strategy, they achieve similar fitnesses when using the same colony size.

The execution time of the sequential implementation of ACO is displayed in Table
2. Table 3 displays the speedup achieved with both parallelization strategies. It is impor-
tant to mention that the speedup was calculated using the execution time for the whole
algorithm. In the case of the GPU execution, it includes not only the tour construction
process but also the initialization of the GPU, data transfers from host to device and other
calculations.

Table 2. Execution time in seconds - sequential implementation

Problem\Ants 1024 2048 4096 8192

dj38 2.29 4.58 9.16 18.33

qa194 41.24 82.48 164.96 329.93

d198 43.47 86.94 173.88 347.76

a280 87.17 174.33 348.66 697.33

lin318 114.82 229.64 459.28 918.57

pcb442 227.28 454.56 909.13 1818.25

rat783 806.01 1612.03 3224.06 6448.14

lu980 2271.36 4542.71 9085.42 18170.85

pr1002 1529.82 3059.65 6119.30 12238.60

Both parallelization strategies used in this work presented significant speedups. Only
for the smallest TSP instance (d j38), the coarse-grained ACO was slower than the se-
quential implementation, and the speedup achieved by the fine-grained implementation
was also not so significant. In this case, the amount of work to be processed does not

Table 3. Speedup rates compared to sequential ACO

Coarse-grained ACO Fine-grained ACO

Problem\Ants 1024 2048 4096 8192 1024 2048 4096 8192

dj38 0.47 0.62 0.72 0.71 0.75 0.78 0.79 0.72

qa194 0.96 1.37 1.71 1.93 2.11 2.11 2.03 2.00

d198 0.99 1.41 1.77 2.01 2.13 2.10 2.04 2.01

a280 1.09 1.64 2.23 2.66 2.60 2.65 2.67 2.69

lin318 1.13 1.73 2.41 2.95 2.85 2.93 2.98 3.01

pcb442 1.21 1.96 2.90 3.75 3.08 3.32 3.44 3.51

rat783 1.18 2.09 3.42 4.74 3.20 3.65 3.96 3.92

lu980 2.95 5.18 8.45 11.72 7.97 9.08 9.79 9.67

pr1002 1.22 2.24 3.88 5.81 4.15 4.67 4.99 4.99
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Figure 1. Speedup Comparison - lin318

Figure 2. Speedup Comparison - lu980

justify the use of parallel strategies and the extra costs involved (i.e. starting the GPU,
transferring data between devices).

Furthermore, in most of the cases, the fine-grained ACO enables a higher speedup
when compared to the coarse-grained implementation, since the the later does not pro-
vide enough parallelism. The speedup comparison of the lin318 instance (Figure 1)
shows that the fine-grained implementation achieved a higher speedup for all colony
sizes, although the gap between the speedups decreases as the colony size increases.

For TSP instances with a higher number of cities (i.e. rat783, lu980, pr1002), the
scenario changes and the coarse-grained implementation enables a higher speedup when
using 8192 ants. For 8192 ants, there is now enough coarse-grained parallelism to fully
exploit the hardware and, in contrast to the fine-grained implementation, there are no idle
cores when combining the results obtained for different neighbor cities as in lines 9 and
14 of algorithm 4 (see Figure 2).

The results show that there is no universal best parallelization strategy between the
ones evaluated in this work. The speedup correlates with the parameters of the problem,
namely colony size and graph size. These parameters influence directly how the algo-
rithm behaves on the GPU, how the data structures are created and how the multiproces-
sors are occupied by the program.
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For the coarse-grained implementation, running ACO with a smaller colony size
over problems with a low number of vertices is not enough to achieve a full occupation of
the GPU. This fact explains why the speedup curve for the coarse-grained implementa-
tion is ascending with the colony size, while the fine-grained implementation is stable or
decreasing. Using the coarse-grained strategy and independently of the TSP instance, a
colony of 1024 ants, organized in 32 blocks of 32 threads, is mapped to the GPU cores at
once. As the GPU is not fully occupied (the one used in our experiments has 2496 cores),
all blocks can be loaded into the processors and execute simultaneously. The same hap-
pens for 2048 ants. For 4096 ants, where there are four times more threads, all blocks
could still be resident on the streaming multiprocessors. Only with 8192 ants, the limit
of resident blocks of the whole GPU is exceeded. In this case, 256 blocks are created,
while the maximum number of resident blocks for the whole GPU is equal to 208. Hence
not all blocks can be handled simultaneously.

Conversely, the fine-grained implementation makes better use of the high number
of GPU cores even for the smallest colony sizes. It profits from creating a high number
of blocks, one for each ant, and each block with several threads. Also, the threads pro-
cessed during the tour construction have a smaller number of instructions and contain
less conditional statements, which are serialized on the GPUs.

The fine-grained implementation is only penalized when applying a bigger colony
size to a bigger graph. In this case, not only the number of blocks to be created is quite
high, but also the GPU is not able to process the same quantity of blocks at the same
time, since they need more resources. This scenario leads to an increase in the number
of blocks that have to wait until resources are available on the GPU.

5. Conclusion

We have presented an analysis of two different parallelization strategies for the GPU-
ACO algorithm applied to the TSP problem. One strategy parallelizes the ants work,
while the other parallelizes the internal calculations. Both approaches were applied to
distinct TSP instances in order to have a comparison of different scenarios and problem
sizes. We also investigated how the colony size impacts the execution time of the algo-
rithm according to the parallelization strategy chosen. The achieved speedup in relation
to the sequential implementation was the measure used to compare both strategies.

Our experiments show that the coarse-grained implementation is already capable of
generating a significant speedup when compared to the sequential version. The abstrac-
tion of parallelizing the work of each ant is quite intuitive and easy to implement, justi-
fying its presence in many other works in literature. On the other hand, it is quite hard to
generate enough parallelization (CUDA blocks and threads) to fully occupy a GPU using
this coarse-grained strategy. Furthermore, the work performed inside each thread con-
tains several conditional statements, creating branches in the execution of the algorithm,
which impacts negatively the execution time.

With the fine-grained strategy, we were able to achieve a higher degree of paral-
lelization, which presented a beneficial influence on the execution time of the algorithm.
The additional parallelization of the internal work of each ant promoted a better distri-
bution of processing among the GPU cores available. Furthermore, the work performed
by each thread is much simpler than the threads generated by the coarse-grained strat-
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egy. The fine-grained threads do not generate branching conditions, which is ideal for
the GPU execution (SIMT). The speedup achieved by this strategy was higher than the
coarse-grained strategy in most of the cases.

For experiments using a bigger instance of the TSP and a larger colony size, the
fine-grained strategy generated so much parallelization that the GPU could not handle it
in an optimal way. The number of blocks and threads was just bigger than the amount
that could be handled simultaneously by the GPU, leading to a sequential execution of
waiting blocks and threads. The overhead generated in these cases impacts the execution
time negatively in a way that the coarse-grained was able to present shorter execution
times. This fact magnifies the importance of knowing the hardware limitations and the
characteristics of the problem being tackled in order to choose the proper parallelization
strategy.

As a continuation of this work, we would like to extend the investigation towards
other parallelization strategies and enhancements to the algorithm that can work in favour
of parallelism. Also, other different parallel applications, such as other meta-heuristics,
may benefit from our insights gained by the two-level parallelism. Furthermore, the
knowledge acquired during this process will also be used to create a high-level paral-
lelization framework that might be able to adapt itself aiming a better performance.
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Abstract. Advanced algorithms for large-scale electronic structure calculations are
mostly based on processing multi-dimensional sparse data. Examples are sparse
matrix-matrix multiplications in linear-scaling Kohn-Sham calculations or the effi-
cient determination of the exact exchange energy. When going beyond mean field
approaches, e.g. for Moller-Plesset perturbation theory, RPA and Coupled-Cluster
methods, or the GW methods, it becomes necessary to manipulate higher-order
sparse tensors. Very similar problems are also encountered in other domains, like
signal processing, data mining, computer vision, and machine learning. With the
idea that the most of the tensor operations can be mapped to matrices, we have im-
plemented sparse tensor algebra functionalities in the frames of the sparse matrix
linear algebra library DBCSR (Distributed Block Compressed Sparse Row). DBCSR
has been specifically designed to efficiently perform blocked-sparse matrix opera-
tions, so it becomes natural to extend its functionality to include tensor operations.
We describe the newly developed tensor interface and algorithms. In particular, we
introduce the tensor contraction based on a fast rectangular sparse matrix multipli-
cation algorithm.

Keywords. sparse matrix-matrix multiplications, sparse tensor algebra, multi-
threading, MPI parallelization, accelerators

1. Introduction

Most, if not all the modern scientific simulation packages utilize matrix algebra opera-
tions. Often, due to the nature of simulated systems, the structure of matrices and tensors
is sparse with a low degree of nonzero elements (< 10%). Applications exploiting the
sparsity include the linear scaling density functional theory [1], cubic scaling RPA algo-
rithm and a similar approach to fast, quadratic scaling Hartree-Fock exchange [2] in the
quantum chemistry CP2K framework [3]. The first method works with sparse matrices,
while the other two algorithms rely on contractions involving sparse 3-rank tensors. Due
to the nature of the studied chemical systems, this naturally leads to a blocked sparsity
pattern, with chemically motivated block sizes. Therefore, the implementation of such
methods requires convenient and effective tools and libraries to work also with block-
sparse matrices and tensors, with a range of occupancy between 0.01% up to dense.
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The highly optimized linear algebra library DBCSR (Distributed Block Compressed
Sparse Row) has been specifically designed to efficiently perform block-sparse and dense
matrix operations, covering a range of occupancy between 0.01% up to dense. It is par-
allelized using MPI and OpenMP, and can exploit GPU accelerators using CUDA. The
more detailed description of these features can be found in the previous works [4,5,6].
Here we give an overview of the library in section 2.

Although DBCSR supports multiplications of rectangular matrices, the implemented
algorithm was inefficient whenever the resulting matrix has a much smaller size than
input matrix sizes (< 1000 smaller). This matrix multiplication can be used for the real-
ization of tensor contraction since the tensor contraction can be mapped to matrix-matrix
multiplications [7]. In section 3 we present an optimized implementation for such a case.
Additionally, we have developed the tensor algebra operations as an extension of the
DBCSR library. In section 4 we present an overview of the new functionalities. The main
operation which is used in tensor algebra is a contraction between two tensors over a set
of indices. In many of methods, the rank of tensors is no more than 4 and therefore the
non-trivial contractions can be performed over 1-3 indices. Finally, section 5 reports the
conclusion.

1.1. Related Work

Other implementations of tensor libraries are described in Ref. [8,9,10,11,12], while
Ref. [13] presents an overview of tensor algebra applications. The proposed tensor li-
brary implementation in DBCSR differs from these implementations since it is specifi-
cally targeting block-sparse tensor contractions with a wide range of occupancy between
0.01− 10% by optimally exploiting block sparsity. Existing parallel sparse tensor li-
braries have limited parallel scalability [10], do not prove to be more efficient compared
to the dense case [8], or have low sequential efficiency [9]. For matrix-matrix multipli-
cations, the DBCSR library already provides an efficient and scalable solution without the
above-mentioned shortcomings.

2. The DBCSR Library

DBCSR is written in Fortran and is freely available under the GPL license from https://

github.com/cp2k/dbcsr. DBCSR matrices are stored in a blocked compressed sparse
row (CSR) format distributed over a two-dimensional grid of P MPI processes. Matrix-
matrix multiplication is implemented by means of the Cannon algorithm [14]. As part of
this work, two novel implementations are specifically introduced for rectangular matrix
multiplications similar to one iteration of CARMA algorithm [15] (see section 3) and for
the tensor contraction algorithm (see section 4). The latter uses the same idea as for the
rectangular matrix multiplication with a slightly different implementation.

In the Cannon algorithm, only the matrices A and B are communicated for the mul-
tiplication C = C+A×B. The amount of communicated data by each process scales
as O(1/

√
P). These communications are implemented with asynchronous point-to-point

MPI calls, using the MPI Funneled mode [6]. The local multiplication will start as soon
as all the data has arrived at the destination process, and it is possible to overlap the local
computation with the communication if the network allows that.
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The local computation consists of pairwise multiplications of small dense matrix
blocks, with dimensions (m× k) for A blocks and (k× n) for B blocks. It employs a
cache-oblivious matrix traversal to fix the order in which matrix blocks need to be com-
puted, in order to improve memory locality. First, the algorithm loops over A matrix
row-blocks and then, for each row-block, over B matrix column-blocks. Then, the corre-
sponding multiplications are organized in batches. Multiple batches can be computed in
parallel on the CPU by means of OpenMP threads or alternatively executed on a GPU. A
static assignment of batches with a given A matrix row-block to threads is employed in
order to avoid race conditions. Processing the batches has to be highly efficient. For this
reason, specific libraries were developed that outperform vendor BLAS libraries, namely
LIBCUSMM for GPU and LIBXSMM for CPU/KNL systems [16,17].

For GPU execution, data is organized in such a way that the transfers between the
host and the GPU are minimized. A double-buffering technique, based on CUDA streams
and events, is used to maximize the occupancy of the GPU and to hide the data trans-
fer latency [5]. When the GPU is fully loaded, the computation may be simultaneously
done on the CPU. LIBCUSMM employs an auto-tuning framework in combination with a
machine learning model to find optimal parameters and implementations for each given
set of block dimensions. For a multiplication of given dimensions (m,n,k), LIBCUSMM’s
CUDA kernels are parametrized over 7 parameters, affecting:

• algorithm (different matrix read/write strategies)
• amount of work and number of threads per CUDA block
• number of matrix element computed by one CUDA thread
• tiling sizes

yielding≈ 30,000 - 150,000 possible parameter combinations for each of about≈ 75,000
requestable (m,n,k)-kernels. These parameter combinations result in vastly different per-
formances. We use machine learning to derive a performance model from a subset of
tuning data that accurately predicts performance over the complete kernel set. The model
uses regression trees and hand-engineered features derived from the matrix dimensions,
kernel parameters, and GPU characteristics and constraints. To perform the multiplica-
tion the library uses Just-In-Time (JIT) generated kernels or dispatches the already gen-
erated code. In this way, the library can achieve a speedup in the range of 2–4x with
respect to batched DGEMM in cuBLAS.

DBCSR operations include sum, dot product, and multiplication of matrices, and the
most important operations on single matrices, such as transpose and trace. Additionally,
the library includes some of the linear algebra methods, such as the sign matrix algo-
rithm [1] and matrix inverse. These methods were ported from CP2K to DBCSR. The sign
matrix algorithm is used in the linear scaling density functional theory in order to find a
ground state of the quantum systems. As associated methods, we have ported the matrix-
vector multiplication operation and an interface to some SCALAPACK operations.

3. Optimized Rectangular Matrix Multiplication Algorithm and Implementation

Despite the Cannon algorithm gives in general good performance for the sparse matrix
multiplication of any size, it loses its efficiency in the case where the size of the resulting
matrix C (SC = OCMN) is much smaller than the sizes of the input A (SA = OAMK)
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and/or B (SB =OBKN) matrices, whereM,N,K are the dimensions of the dense matrices
and OA,OB,OC their occupancy values. This is a direct consequence of the algorithm
since it requires the communication of A and B data on a 2D grid of P processors, while
C remains local to each processor. In particular, for the multiplication of two rectangular
matrices the Cannon algorithm requires to communicate per each processor 5

Tw =
SA+SB√

P
=

K(OAM+OBN)√
P

. (1)

Therefore, the communication will be dominated by one of the dimension whenever is
much larger than the other two. We can distinguish the two important cases:

1. M � K and N � K, which corresponds to SC �{SA,SB}
2. K �M and K ≤ N, which corresponds to SB �{SA,SC}

According to Ref. [18], a communication-optimal algorithm for this case is obtained by
dividing the original matrix multiplication into smaller tasks such that each task is lo-
cal to a process subgroup. Inspired by this idea, we redistribute the matrices on a linear
MPI grid (see Figure 1) and perform the multiplication locally. We describe the imple-
mentations for the two cases in the following subsections. We also report the results of
some tests we performed for a variety of matrix, block sizes and occupancy values of our
interests (10%− 50% often present in CP2K). We used double precision matrices with
sizes of the order M,N = N , K = N 2 and N = 103. The calculations were performed
using the Cray XC50 “Piz Daint” supercomputer at the Swiss National Supercomputing
Centre (CSCS). Each node of the system is equipped by a CPU Intel Xeon E5-2690 v3
@ 2.60GHz (12 cores, 64GB DRAM) and a GPU NVIDIA Tesla P100 (16GB HBM).
For the MPI configuration, we used 1 rank per node and 12 OpenMP threads per rank.
Each multiplication was performed 100 times to exclude the fluctuations of performance
due to hardware glitches.

3.1. SC �{SA,SB}
Matrices A and B are redistributed on a linear MPI grid and the A matrix is transposed,
such as the longest dimension K is now distributed over the P processors (see Figure 1a).
Then a local multiplication is executed, which gives C̃i = AT

i ·Bi, with i = 1, ...,P. Here
C̃i corresponds to a partial result of the full, undistributed, matrix C. Therefore we have
to reduce all C̃i and redistribute the result according to the original 2D grid distribution
and sum to the inputC matrix to get the final distributedC matrix result over the 2D grid
(see Figure 2). This algorithm runs in P steps, where for each step we send and receive
the proper C data and run the local reduction. It is implemented with MPI asynchronous
communications, such as we do overlap the communication of the data with the local
reduction. In the end, each processor requires SC data. Including the initial redistribution
of the A and B matrices, we get that the total amount of data communicated by each
processor is:

T ′
w =

2D →1D grid(
SA+SB

P

)
+SC. (2)

5Here we assume a uniform distribution of the non-zero elements in the matrices without losing generality.
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Figure 1. Communication-avoiding algorithm for the rectangular matrix-matrix multiplication. a) Middle di-
mension K is the largest (case 1),C is replicated and A and B are distributed on a linear grid. b) Outer dimension
M is the largest (case 2),C and A are distributed on a linear grid and B is cloned or distributed.

We can now consider the ratio with the Cannon algorithm (Eq. 1), which leads to a
reduction in communicated data

√
P/(1+RP), where R= SC/(SA+SB). Therefore, the

ratio scales as O(1/
√
P). Finally, it is important to note that by multiplication of the

sparse matrices even with high sparsity the result might be dense (so called Birthday
Paradox [19]). We can evaluate an upper limit on the OC by combining the Eq. 1 and
Eq. 2 such that Tw < T ′

w:

OC <
1

MN

(
Tw− SA+SB

P

)
(3)

If we omit redistribution costs and assume that OA = OB = O then we can write:

OC

O
<

K(M+N)
MN

√
P

. (4)

As an example, forM,N =N , K =N 2 and N = 103, P= 100 we get OC/O< 2 ·102.
The results of the tests are presented in Figure 3a. Overall, the new implementation

gives a speed-up up to 3x with respect to the Cannon algorithm for high occupancy
(> 10%), which becomes negligible when we reach the upper limit reported in the Eq. 3.
As expected, the speed-up decreases with the number of processors.

3.2. SB �{SA,SC}

Matrices A and B are redistributed in a linear MPI grid, such as the longest dimension K
is now distributed over the P processors (see Figure 1b). A virtual column-grid is created
for the A matrix to be compatible with the row-grid of the matrix B. Then the standard
Cannon algorithm is executed over this virtual topology made of P steps. Virtual column-
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Figure 2. Reduce operation of the matrixC after the local multiplication when SC �{SA,SB}.

grid does not require communication of the A data and therefore only the communication
of the matrix B is required. Finally, C result is redistributed to the original 2D grid and
accumulated to the input C matrix. The total amount of communicated data by each
processor is:

T ′′
w =

2D →1D→2D grid(
SA+SB+SC

P

)
+SB. (5)

Also in this case the ratio of the communicated data with respect to Cannon implemen-
tation scales as O(1/

√
P).

The results of the tests are presented in Figure 3b. Overall, the new implementation
gives a speed-up of up to 20% with respect to the Cannon algorithm for high occupancy
(> 10%) or up to 100% for the matrices close to dense (∼ 50%). The time for the redis-
tribution and the overhead introduced by the virtual grid creation limits the benefit of the
new implementation. For the same reasons, the benefit of the new algorithm is negligible
or even worse for low occupancy.

4. Sparse Tensor Algebra Implementation

DBCSRwas originally developed to enable linear scaling electronic structure methods that
are mainly based on the multiplication of sparse square matrices. Similar strategies em-
ploying sparse data can also be employed for methods beyond density functional theory
that provide better accuracy at significantly higher computational costs than Kohn-Sham
density functional theory. In the case of the electron correlation methods MP2 and RPA,
the canonical implementation scales at least quartic with system sizes, thereby prevent-
ing the study of large systems (hundreds to thousands of atoms). An initial DBCSR-based
cubic scaling implementation of RPA was reported in Ref. [2], enabling calculations of
thousands of atoms. Here we report strategies to optimize and generalize this initial im-
plementation by extending the DBCSR library to multi-dimensional tensors. A general-
ized implementation of tensor operations in DBCSR instead of specialized implementa-
tions in the application code is desirable to manage code complexity and to easily extend
the current implementation to other methods such as Hartree-Fock exchange or GW. The
formalism of our RPA implementation was already described in Ref. [2] and here we
emphasize the general characteristics of the tensor operations appearing in this and sim-
ilar methods. We describe the requirements we pose for a tensor framework that should
provide all relevant tensor operations in a general API.

As in DBCSR, the sparsity of the tensors is based on the representation of molec-
ular orbitals in terms of a localized atom-centered basis. A blocked sparsity pattern is
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Figure 3. Execution time ratios for two types of considered rectangular matrix multiplications on a 1D grid
in comparison with the regular 2D Cannon algorithm. (a) The first type, SC � {SA,SB}, shows significant
improvement for higher occupancy (50%) and less pronounced for the lower one (10%). (b) The second type,
SB � {SA,SC}, shows moderate to high speedup for higher occupancy (50%) and poor to moderate behavior
for the lower occupancy (10%). In both cases, the benefit of the implementation reduces with the number of
nodes, as expected.

equally important for the tensor implementation to efficiently incorporate sparse data
while keeping the significant overhead for the handling of sparse indices low. Tensors
can have arbitrary ranks, most relevant are tensors with ranks between 2 and 4. The main
operation is tensor contraction where a sum over one or more indices of two tensors is
performed. Our implementation is based on the property that tensor contractions are iso-
morphic to matrix-matrix multiplications [7]. This allows us to implement tensor con-
traction by mapping tensors to matrices – the contraction is then internally performed by
a call to the existing implementation of sparse matrix-matrix multiplication.

Recasting tensor contraction in terms of matrix-matrix multiplication imposes some
requirements on the distribution and the matrix representation of the tensors, most im-
portantly that one matrix dimension represents the indices to sum over and the other ma-
trix dimension represents all other indices. If these requirements are not met, conversion
steps are required before and after matrix-matrix multiplication which involves the re-
distribution of all tensor data. In order to avoid these relatively expensive redistribution
steps, the tensor API gives the caller tight control over the distribution and the matrix
representation of tensors, such that tensors can be created in a compatible layout and the
redistribution step can be skipped in a tensor contraction. Data redistribution is then only
strictly needed if a tensor appears in multiple contraction expressions involving sums
over different indices.

While this approach of mapping tensors to matrices allows for an implementation of
tensor operations as thin layers around an existing matrix library, the resulting matrices
are problematic since one dimension is much larger than the other dimension. For the
example of a 3 rank tensor with size N×N×N, two tensor dimensions are mapped to
one matrix dimension such that one matrix dimension grows quadratically with the size
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of the other dimension. The DBCSR library must thus be extended in a way that it can
efficiently store and multiply tall-and-skinny matrices contrary to the previous target of
square matrices.

One limitation of the DBCSR matrix format is the index data replicated on all MPI
ranks which contain information about block sizes and the distribution of blocks along
each of the matrix dimensions. If the size of the matrix index corresponds to the number
of atoms N in a system, this limits the scalability of DBCSR to a few tens of millions of
particles [1]. For 3-rank tensors where the largest matrix dimension grows as N2, this
limit is already hit at a few thousand atoms, representing a much bigger issue in practice.
Thus an extension to the DBCSR matrix format must be provided to store large tensors
without exhausting memory due to replicated index data. Another challenge is to mul-
tiply tall-and-skinny matrices communication-efficiently, where the algorithm described
in section 3 comes into play.

Our requirements for memory-efficient storage and communication-efficient multi-
plication can both be met by dividing the largest matrix dimension, resulting in smaller
and approximately square submatrices that can be handled by DBCSR. The storing of the
full matrix index and the multiplication acting on submatrices are managed by an in-
between tall-and-skinny matrix layer on top of DBCSR that serves as a basis for the tensor
implementation. The tall-and-skinny matrix layer is designed in a way that the index data
is not explicitly stored but provided by externally defined function objects, to avoid the
above-mentioned limitation of the DBCSR format. The matrix index is thus handled in the
tensor layer and is calculated on the fly from the tensor index. Due to the fully distributed
sparse data layout, the matrix index calculation happens only when accessing a locally
present non-zero block and does not add any overhead.

The main difference between the implementation of tall-and-skinny matrix multipli-
cation and the one implemented in DBCSR internally (see section 3) is that instead of rely-
ing on a linear process grid, the grid may have arbitrary dimensions. The submatrices are
obtained on MPI subgroups by dividing any of the two grid dimensions by an arbitrary
factor. This ensures that an optimal split factor can always be chosen, independently of
the total number of processes, for any grid dimensions. Thus n-rank tensors can be rep-
resented on an arbitrary n-dimensional process grids where the grid dimension should
be chosen as balanced as possible for a load-balanced distribution of data. The multi-
plication algorithm for contraction can then be run directly without additional costly re-
distribution steps (for tall-and-skinny matrices, the bandwidth cost of redistributing data
exceeds the bandwidth cost for the multiplication [15]).

5. Conclusion

We have presented a new implementation for the rectangular matrix-matrix multiplica-
tion algorithm in the DBCSR library that is able to speed-up the execution up to 3x for
matrix sizes and occupancy values of 10%− 50% which are often present in CP2K cal-
culations. We have described the newly developed tensor operations that generalize the
DBCSR library to multidimensional tensor contraction for low-scaling electronic structure
methods beyond density functional theory. These functionalities are the basic building
block for the CP2K quantum chemistry and solid-state physics software package.
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[8] Cannada A Lewis, Justus A Calvin, and Edward F Valeev. Clustered Low-Rank Tensor Format: Introduc-
tion and Application to Fast Construction of Hartree-Fock Exchange. arXiv preprint arXiv:1510.01156,
2015.

[9] Edgar Solomonik and Torsten Hoefler. Sparse Tensor Algebra as a Parallel Programming Model. arXiv
preprint arXiv:1512.00066, 2015.

[10] Evgeny Epifanovsky, Michael Wormit, Tomasz Ku, Arie Landau, Dmitry Zuev, Kirill Khistyaev,
Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I. Krylov. New implementation of high-
level correlated methods using a general block tensor library for high-performance electronic structure
calculations. Journal of Computational Chemistry, 34(26):2293–2309, 2013.

[11] Samyam Rajbhandari, Akshay Nikam, Pai-Wei Lai, Kevin Stock, Sriram Krishnamoorthy, and P Sa-
dayappan. Framework for distributed contractions of tensors with symmetry. Preprint, Ohio State Uni-
versity, 2013.

[12] Walter Landry. Implementing a High Performance Tensor Library. Scientific Programming, 11(4):273–
290, December 2003.

[13] Tamara G. Kolda and Brett W. Bader. Tensor Decompositions and Applications. SIAM Rev., 51(3):455–
500, August 2009.

[14] Lynn Elliot Cannon. A cellular computer to implement the Kalman Filter Algorithm. PhD thesis,
Montana State University, 1969.

[15] James Demmel, David Eliahu, Armando Fox, Shoaib Kamil, Benjamin Lipshitz, Oded Schwartz, and
Omer Spillinger. Communication-optimal parallel recursive rectangular matrix multiplication. In Pro-
ceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing,
IPDPS ’13, pages 261–272, Washington, DC, USA, 2013. IEEE Computer Society.

[16] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. LIBXSMM: Accelerating
Small Matrix Multiplications by Runtime Code Generation. In Proceedings of the International Confer-

I. Sivkov et al. / DBCSR: A Blocked Sparse Tensor Algebra Library 339



ence for High Performance Computing, Networking, Storage and Analysis, SC ’16, pages 84:1–84:11,
Piscataway, NJ, USA, 2016. IEEE Press.
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Abstract. Hydro-PED [1] is a numerical simulation software which models nucle-
ation and propagation of damage zones and seismicity patterns induced by well-
bore fluid injection. While most of the studies in geo-physical simulation acceler-
ation and parallelization usually focus on exascale scenarios which are translated
into vast meshes, encouraging a distributed fashion of parallelization, the nature
of the current simulations of Hydro-PED dictates amount of data that can conve-
niently fit on a single compute node - NUMA and accelerator memory alike. Thus
shared-memory parallelization (such as OpenMP) can be fully implemented. In or-
der to utilize this insight, Hydro-PED was interfaced with Trilinos [2] linear alge-
bra solvers package, which enabled an evolution to iterative methods such as CG
and GMRES. Additionally, several code sectors were parallelized and offloaded to
an accelerator using OpenMP in a fine grained manner. The changes implemented
in Hydro-PED gained a total speedup of x5-x12, which will enable Hydro-PED to
calculate long-term simulation scenarios of hundreds of years in a feasible time - a
few weeks rather than a year.

Keywords. Geological Simulation, Accelerators, Numerical Linear Algebra,
Shared Memory, Trilinos

1. Introduction

On the past few decades, the increasing compute power encourages the development and
usage of scientific computer simulations as a preliminary step before traditional exper-
iments and industrial development. The geophysical research area is no exceptional as
applications like FLAC [4], GEOS [5] and others provide numerical simulations for a
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Figure 1. [1] Hydro-PED simulation of damage to granite wellbore after 80 hours of fluid injection.

wide range of geophysical scenarios [6] [7]. Hydro-PED [1] was developed in 2013 in
order to simulate hydro fracturing [8].

Hydro-PED was first introduced as a serial program written in Fortran 90, which
models nucleation and propagation of damage zones and seismicity patterns induced by
wellbore fluid injection. The model formulation of Hydro-PED accounts for the follow-
ing general aspects of brittle rock deformation: (1) Nonlinear elasticity that connects the
effective elastic moduli to a damage variable and loading conditions; (2) Evolution of
the damage variable as a function of the ongoing deformation and gradual conversion of
elastic strain to permanent inelastic deformation during material degradation; (3) Macro-
scopic brittle instability at a critical level of damage and related rapid conversion of elas-
tic strain to permanent inelastic strain; (4) Coupling between deformation and porous
fluid flow through poro-elastic constitutive relationships incorporating damage rheology
with Biot’s poroelasticity. Figure 1 presents an output from Hydro-PED simulation of
damage to granite wellbore after 80 hours of fluid injection, originally presented on [1].

Most of the studies in geo-physical simulation software acceleration and paralleliza-
tion usually focus on exascale scenarios which simulate mesh simulation while focusing
on either wide areas or high resolution. As a result, most of the simulations result in a vast
and dense mesh of cells, encouraging software developers to adopt a distributed fashion
of parallelization in order to divide the computational load between as many computa-
tional cores as possible. However, this is not the case in current Hydro-PED simulated
scenarios as even a relatively coarse grained mesh with static pre-defined fine area near
the wellbore edges, provides valuable insights about the simulated scenario. Therefore,
the nature of the current simulations of Hydro-PED dictates the amount of data that can
conveniently fit on a single compute node - NUMA and accelerator memory alike. thus
shared-memory parallelization (such as OpenMP) can be fully implemented. Neverthe-
less, while Hydro-PED also supports simulations of a short-range of time, the long-term
simulations are of special interest in the context of damage estimation. However, the time
dimension is not subject to parallelization since each timestep depends on its precestor
timestep. When it came to simulation of hundred of years in high definition, the run-
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Figure 2. Schematic overview of the relations between Hydro-PED modules. The Thremodynamics module
is currently under development.

time of Hydro-PED became unfeasible. Consequently, it was crucial to inspect various
approaches in order to accelerate each simultaion timestep on a single node.

2. Hydro-PED - Hydro Poro-elastic Damage simulation

Hydro-PED consists of two modules: (1) Mechanical-Damage module and (2) Hydrolog-
ical module. The mechanical module iterates over all simulation cells and solves relevant
geo-physical equations using Explicit Finite Difference Lagrangian Method (EFDLM),
while the hydrological uses the Finite Element Method (FEM) to transform the diffusion
equations into a linear equations system. Later, the module initiates a third party direct
solver (HSL [9]). A tetrahedral mesh is used to describe the physical area throughout all
simulation modules. Each tetrahedron is referred as element and each of its vertices is
referred as node. Another module which couples heat equations is currently under devel-
opment. Figure 2 provides a schematic overview of the relations between the modules.
These relations will be explained on the following subsection.

2.1. EFDLM Mechanics Module

Explicit Finite Difference Langrangian Method (Hence EFDLM) is a fully explicit nu-
merical method relies on a large-strain explicit Langragian formulation originally devel-
oped by Cundall [10].

The module solves the force balance equation for each node in the mesh. The forces
over the body are induced from the underground stresses and a Frequency Independent
Damping. Using the force balance, the velocity of each node is obtained. Later, the strain
tensor of each element is being calculated, which is induced by the combination of elastic
and plastic strain. The strain tensor enables the calculation of the new coordinates of each
node. Using this data, the module produces the volume (V ) and permeability (K) of each
element which will be used in the hydrological module.

The mechanical module uses an adaptive timestep. This timestep is calculated at
each iteration such that simulation cycles will be more frequent whenever a rapid changes
occur, and will be rare when there are no notable changes on rock’s form. The damage
state of the rock is calculated at each step. Whenever a failure occurs, the simulation
walks into a subroutine called drop which performs several healing actions.

Prior to the current work, some OpenMP directives were implemented in certain
parts of the mechanical module of Hydro-PED. However, the acceleration achieved by
these directives were insufficient.
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2.2. FEM Hydrology Module

On each hydrological step, the corresponding module receives the current volume and
permeability level of each element. The module solves a differential equation which de-
scribes the diffusion of fluid pressure through the rock. In order to do so, the module uses
the well-known finite elements method (FEM) which yields a system of linear algebraic
equations. For a given N elements, the equations are of type A�x=�b, where A is a N×N
sparse symmetric positive matrix, b is a pre-calculated vector of size N representing the
flux on each element, and x is the target solution vector of size N. The vector x repre-
sents the pressure (P) on each element. These values will be used later by the mechanical
module to simulate the next timestep.

Since Hydrological changes in the wellbore tends to be less extensive, a hydrological
step will occur after every couple of mechanical steps, excepts when the mechanical
timestep is too long. Due to the adaptive timestep mechanism implemented in Hydro-
PED, the geological changes between each two consecutive steps are relatively small.
Consequently, the numerical errors generated by the simulation are minor and can be
neglected.

2.3. FEM Heat Module (under development)

The heat module will be called at every hydrological step. It shall receive the fluids ve-
locity (v f ) and calculate the diffusion and advection of the temperature over the fluids.
Using the finite elements method, the heat equations can be translated into a system of
linear algebraic equations, A�x=�b. However, due to the advection, matrix Awill be asym-
metric. This fact enforces a usage of slightly different solution methods. The solution of
the linear system yields the density (ρ) and viscosity (μ) of the fluid.

2.4. Implications of the input file

The nature of the input file implicate the concrete execution in several ways. First, it
dictates the size of the grid which strongly influences the actual size of the arrays. By
Amdahl’s law, bigger problem size derives greater parallelization potential. Hence, the
input file implicates the speedup factor.

Second, the material type and the balance of forces defined in the input file influ-
ences the size of the timestep of both the mechanics and the hydrology modules. A frac-
tional crystalized rock suffering from great pressure forces, tends to have rapid nucleation
and propogation of fraction, which in turn increases the amount of mechanical timesteps.
On the other hand, porous rocks will require additional hydrological steps. Hence, the
speedup factors of each module will dictate total speedup of hydro-PED which will be
different for each simulation scenario.

2.5. Bottlenecks and Challenges

Considering the common scenario, most of the computation time of Hydro-PED is spent
by the solution process of the hydrological linear algebraic system. After the construction
of the the system (i.e. constructing matrix A, and vector�b, and after allocating memory
space for the solution vector�x, the system was sent to a third-party solver library called
HSL [9]. This solver uses an algorithm which has time complexity of O(n3) (for matrix
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Figure 3. TAU profile results for the mechanical
module. Red bars represents execution time of sub-
routine derivation.

Figure 4. TAU profile results for move grid’s execu-
tion time per call. Most of the time was spent by the
main thread.

of size n× n), as will be explained on section 4. Hence, finding more efficient way to
solve the linear system, given the modern heterogeneous system architectures, was one
of the first necessary steps.

Another disadvantage of using HSL was its lack of support for asymmetric matrices.
Keeping on mind that the next challenge will be the coupling of the heat module with
the current modules, which will yield an asymmetric matrix, forced a search after new
solvers.

Yet another aspect which was investigated is how to boost the performance of the
mechanical module itself. As mentioned before, some parts of the module were paral-
lelized using OpenMP directives in a fine-grained manner. However, we were curious
whether the power of accelerators can be utilized to achieve another speedup, which, as
mentioned before, was crucial in order to shorten the amount of time the run spent on
each timestep.

3. Speedup Using Explicit Asynchronous Offload

In order to find how to exploit better performance from the mechanical module, a
parallelization-driven profile of the code was conducted. The profile focused the search
to a subroutine which calculated the displacement of mesh elements coordinates. While
the execution-time per-call of the subroutine was relatively small, this subroutine was
called over and over, resulting in a consumption of on not less than 41% of module’s total
runtime. By implementing both parallelization and time-sharing offload, extra speedup
was achieved.

3.1. Profiling

TAU Performance System [11] is a commonly-used profiler which is aimed to the task of
profiling runtime of parallel applications. TAU shows how much time was consumed by
each subroutine on each MPI rank and by each thread. Profiling Hydro-PED using TAU
provided the bar-chart provided on figure 3 (the bars representing threads #17-#31 were
deleted as they showed just the same behavior as the other threads). It is clear from the
chart, that most of the runtime is consumed by the subroutine indicated by dark-red color.
This subroutine turned to be a subroutine called derivation which is initiated from the
subroutine move grid. The subroutine move grid is used to calculate the displacement of
elements’ coordinates (based on the velocities induced by the pressure vectors). Closer
inspection of the subroutine showed that each invocation of the subroutine is relatively
fast (figure 4). However, this subroutine is used on frequent occasions which explains its
vast time consumption.
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1 subroutine move_grid(dt)

2 ...

3 ! calculate new coordinates based on velocities

4 do i=1,nodes_count

5 cord(i) = cord(i) + vel(i)*dt

6 end do

7

8 do i = 1,elements_count

9 ! derivation of basic functions

10 call derivation(i,cord,dr)

11 strain(i) = calculate_new_strain(strain(i), dr)

12 ! update fluid pressure

13 pf_el(i) = calculate_new_pressure(pf_el(i), dr, dt)

14 end do

15 return

16 end subroutine move_grid

Listing 1: The implementation of move grid subroutine.

Listing 1 provides the implementation of subroutine move grid. Note that parts
of the code were encapsulated in subroutines (i.e. calculate new pressure and calcu-
late new strain) for simplicity. After close inspection of the called subroutines, making
sure that move grid is a SIMD (Single Instruction Multiple Data) calculation, the en-
tire content of the subroutine was wrapped in OpenMP’s parallel-SIMD directive. In or-
der to further improve the runtime, we considered offload to Intel® Xeon-Phi® 5110p
co-processor (formerly known as Knights Corner - KNC) [12]. The performance on
newer Xeon-Phis should outperforms our results. Offload to GPGPU accelerators using
OpenMP 4.5 is not yet fully supported by most common Fortran compilers. As it will be
implemented, we will be able to perform the same offload to NVIDIA® accelerators as
well.

3.2. Asynchronous Accelerator Offload

In order to use the accelerator we consider a host-target model where the NUMA cores
of the machine are considered as the host which executes the application. Whenever
needed, the host can offload part of the computation to one of the accelerators attached
to it. Hence, the accelerators are referred as the targets. The offload is done by special
system calls who can be initiated either by run-time API or compiler directives (such as
in OpenMP 4.5 [13]).

In order to perform a calculation on an accelerator, the input data should be of-
floaded to the accelerator first. Later, after the accelerator completes its calculations, the
results should be sent back to the host. The time consumed by the communication be-
tween the host and the target is relatively large and is correlated linearly with the size of
the data. Consequently, the effectiveness of of the offload is usually subject to the com-
putational load of the calculation itself. Nevertheless, while move grid’s computational
load is pretty light, one can benefit from splitting the calculation between the host and the
accelerator. The basic idea is to send the input arrays to the accelerator asynchronously
as soon as possible, even before move grid was called. Than, when the application initi-
ates the subroutine, cord array will be calculated by both the host and the target simul-
taneously. Then, the host will calculate part of strain and pf el array, while the target
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Figure 5. A timeline that demonstrates a common execution scenario where move grid runs simultaneously
on both host and target. The communication between the host and the target is asynchronous.

will calculate the rest of these arrays. Whenever the host finished calculating his part, he
will continue the execution of the program to the point where the value of strain or pf el
are necessary. Whenever the target finishes his part of the computation he will send his
output back to the host asynchronously.

This concept is demonstrated by the timeline presented on figure 5. The red line
above represents the host, and the green line below represents the target. The timeline
starts with the calculation of the arrays which are crucial for the calculations performed
on move grid. Whenever these arrays are ready, they will be offloaded to the accelerator,
while the host performs another calculations. When the host steps into move grid, the
target will initiate the calculation on his part of the data. The host may continue with
miscellenous calculations while the target still calculates his part. However, whenever
the host reaches a part of the code where either strain or pf el arrays are crucial, he will
make sure the fresh data from the target was received (otherwise, he will wait).

1 subroutine move_grid(dt)

2 ...

3 !dir£ offload begin target(mic:0) wait(vel_signal) nocopy(cord : REUSE

RETAIN) out(strain(1:phi_length): REUSE RETAIN) nocopy(vel : REUSE

RETAIN) nocopy(m_biot : REUSE RETAIN) nocopy(nop : REUSE RETAIN)

nocopy(de,dr,i,j,ii,nn,n) in(dt,nodes_count,phi_length)

signal(strain_signal)

↪→
↪→
↪→
↪→

4 call move_grid_inline(1,phi_length)

5 !dir£ end offload

6

7 !dir£ offload begin target(mic:1) wait(vel_signal) nocopy(cord : REUSE

RETAIN) out(strain(phi_length+1:2*phi_length) : REUSE RETAIN) nocopy(vel

: REUSE RETAIN) nocopy(m_biot : REUSE RETAIN) nocopy(nop : REUSE RETAIN)

nocopy(de,dr,i,j,ii,nn,n) in(dt,nodes_count,phi_length)

signal(strain_signal)

↪→
↪→
↪→
↪→

8 call move_grid_inline(phi_length+1,2*phi_length)

9 !dir£ end offload

10

11 ! Host Part

12 call move_grid_inline(2*phi_length+1,ne)

13 return

14

15 contains

16 subroutine move_grid_inline(offset_begin,offset_end)

17 end subroutine move_grid

Listing 2: The implementation of the asynchronous offload in move grid subroutine.
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Listing 2 shows how the asynchronous offload was implemented using OpenMP.
The main logic of move grid subroutine was moved to another subroutine called
move grid inline (listing 3) which gets two parameters which indicate the beginning
and end indices of the strains array which should be handled on the current invocation.
The subroutine move grid calls move grid inline three time: one time for each MIC and
one time for the host itself. The commands which call the MICs’ move grid inline are
wrapped in an offload directive which waits to a vel signal signal indicating the calcula-
tion of the velocities array has already been done. The directive states the identity of the
traget MIC, and dictates allocation and transport of the part of the strains array which
is being handled. Whenever the MIC finishes calculating the strains vector, it sends a
strain signal signal.

1 subroutine move_grid_inline(offset_begin,offset_end)

2 !dir£ attributes forceinline :: move_grid_inline

3 !dir£ attributes offload:mic :: move_grid_inline

4 integer :: offset_begin,offset_end

5

6 !£OMP PARALLEL

7 !£OMP DO SIMD

8 do i=1,nodes_count

9 cord(i) = cord(i) + vel(i)*dt

10 end do

11 !£OMP DO SIMD PRIVATE(dr,ii,de,j,nn)

12 do i = (offset_begin),(offset_end)

13 call derivation(i,cord,dr)

14 strain(i) = calculate_new_strain(strain(i), dr)

15 end do

16 !£OMP END PARALLEL

17 end subroutine

Listing 3: The implementation of move grid inline subroutine.

3.3. Results

We implemented an asynchronous offload of move grid subroutine. The results were
tested on a machine with two sockets Intel® Xeon® CPU E5-2660 v2 processors. Each
of them has 10 cores with clock rate of 2.2GHz. The machine contains two Intel® Xeon-
Phi® 5110p co-processors. The total runtime of move grid was measured on three set-
tings: (1) Host only mode. That is, all the calculations were performed on the host itself.
(2) Offload of about two-thirds of the array to one accelerator. (3) Offload of 5/11 of the
array to each of the two accelerators. Figure 6 shows the measured runtime for each of
the settings. The offload to two coprocessors gained a speedup of about factor two com-
pared to the host-only setting. This results suggests that asynchronous offloading is ben-
eficial. As offload latency of accelerators is getting smaller ans smaller in modern archi-
tectures, asynchronous offload and host-target shared computations may be implemented
on computations to enhance their performance.

We should note that the NUMA nature of the node is undifferentiated by the current
implementation of the EFDLM module. That is, the memory is allocated on the master
thread’s socket memory. This implementations derives some overhead when remote ac-
cess is done from the second socket. Obviously, when all the threads are allocated on a

H. Levin et al. / Acceleration of Hydro Poro-Elastic Damage Simulation348



move grid Runtime

0

50

100

150
x1

x1.27

x1.90

Ti
m
e
(m

in
s)

CPUs
1 MIC
2 MICs

Figure 6. The runtime (in minutes) of subroutinemove grid using: (1) only CPUs, (2) CPUs and one Xeon-Phi
accelerator, (3) CPUs and two Xeon-Phi accelerators.

single UMA (such as if a compact affinity was defined), this overhead should not occur.
However, when the grid defining the scenario is sufficiently large, the speedup gained by
distributing the problem to more than one socket’s amount of threads overcomes the time
overhead.

4. Speedup Using Advanced Linear Algebra Solvers

The task of solving linear algebraic systems of equations is one of the fundamental prob-
lems in scientific computing. During the past decades a lot of methods were devised in
order to tie the best solution method to each problem given any hardware architecture.
While initiation of third-party libraries of solvers for this task is usually the preferable
step, it should be taken into account that not all the solvers were created equal. Each
solver may use different methods which may applicable for different type of matrices
[14]. Furthermore, not all the solvers implemented in a way that exploits the features and
characteristics of the underlying hardware. The last fact is even more true when it comes
to heterogeneous hardware and accelerators [15]. Consequently, when we looked for a
way to speedup the hydrology module, the linear solver was the usual suspect.

4.1. Methods to Solve Linear Algebraic Equations

Roughly speaking, all the algorithms to solve linear systems can be divided to two types:
(1) Linear methods, which translate the original system into equivalent more simple sys-
tem, and then solve the equivalent system. (2) Iterative methods, which starts with initial
guess (�x0) for the solution vector �x. Later, the iterative algorithm calculates the residual
which is the ”distance” between the guess and the correct solution, i.e. |A�x0−A�x|. The
algorithm will try to refine the initial guess until the residual will be lower than a prede-
fined threshold. Each linear algorithm is distinct by the permutations and factorizations
it adopts to achieve the equivalent system. Each iterative algorithm is distinct by the way
it performs the refinements.

In order to achieve the simple equivalent system in linear methods, there are several
techniques to manipulate the original system. These techniques usually evolves all the
vector and matrix cells in the entire system. Therefore, the time complexity of the equiv-
alent system calculation step is usually larger than O(n2) (considering a system with
matrix A of size n× n). The time complexity of the solution step is usually O(n2). One
way to achieve a simple equivalent system is to perform a LU-factorization [16], where
A = LU such that L (respectively U) is a matrix which have non-zero values only on
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its lower (respectively upper) triangle. Prior to these work, Hydro-PED used the linear
solver HSL MA87 [17] which uses Cholesky factorization where A= LLT such that L is
a matrix which have non-zero values only on its lower triangle, and LT is transposed L.
Both LU-factorization and LLT -factorization have time complexity of O(n3).

While the calculation of the equivalent system in linear methods evolves the entire
vector and matrix cells in the system, the calculation of the residual in iterative method
can be done by using only the non-zero cells solely. Consequently, using iterative meth-
ods on sparse matrices (i.e.

∣∣{(i, j)|Ai, j �= 0}∣∣ = O(n) ), the time complexity of each it-
eration will be O(n) plus the time complexity of the solution refinement step which is
usuallyO(n) too. In conclusion, the time complexity of iterative method which is applied
on matrix A of size n×n and which is converged after k iterations will be O(nk).

4.2. Trilinos - Solver for Heterogeneous Systems

Trilinos [2] is a collection of open source libraries which are used as building blocks.
Following a recent work about usage of second-generation Trilinos [18], we used several
libraries which we interfaced with Hydro-PED:

• Techos - Provides wrappers for BLAS and LAPACK, smart pointers and parame-
ter lists [19].

• Kokkos - Implements a programming model in C++ for writing performance
portable applications targeting all major HPC platforms. It supports MPI,
OpenMP, Pthreads and CUDA [20].

• Tpetra - Implements linear algebra objects which are built on Kokkos [21].
• Belos - Implements most of the common iterative solution methods of linear sys-
tems [22].

The combination of these building blocks provides a strong and versatile framework to
solve linear systems. The main additive value of Trilinos is the usage of Kokkos as an en-
capsulated framework which enables the programmer to exploit different types of HPC
architectures and technologies without any major changes in the code. This fundamen-
tal feature makes Trilinos optimal for heterogenous systems which contains traditional
CPUs along with GPGPUs and Xeon-Phis. Moreover, Trilinos uses blocking (i.e. tiling)
methods in order to achieve better performance by dwelling each block in a single UMA.
This NUMA-aware approach gains greater speedups as shown in [23].

We used Belos package to implement the well known iterative algorithm Conjugate-
Gradients (CG) [24] which shows relatively rapid convergence for symmetric matrices
(as the matrix yielded by the diffusion equations of the hydrology module). We may use
the Generalized minimal residual (GMRES) method [25] in the future when we will deal
with asymmetric matrices on the heat module.

4.3. Reuslts

In Hydro-PED’s hydrology model, each timestep yields a new matrix which is slightly
different from the previous matrix. Therefore, we would not be able to exploit the ad-
vantage of one-time factorization in the linear method. Furthermore, for a matrix of size
n×n yielded by Hydro-PED, there will be about 12n non-zero values (due to geograph-
ical and geometrical considerations [1]). Moreover, the differences in the solution vector
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�x between each two consecutive steps is relatively small such that the solution of previ-
ous timestep may be used as a good initial guess for the following timestep. As a result
of these consideration, HSL’s linear solver was replaced with the implementation of CG
given by Trilinos’ Belos package.

We tested both HSL and Trilinos on a common scenario of a mesh with 110,000
nodes. Both tests ran on 32 cores provided by machine with two sockets of Intel® Xeon®
Gold 6130. Figure 7 shows the overall runtime of each solver (in seconds). The average
number of iterations needed until Trilinos solver converged was 160. Trilinos showed
speedup of almost x8 comparing to HSL MA87.

We investigated the influence of GPU accelerators on the runtime of Trilinos. We
used a relatively big (but still applicable) scenario of a mesh with 8.5 million nodes which
took about 2GB of GPU memory capacity. We ran several simulations with this mesh,
each takes different number of iterations to converge. The simulations ran on a machine
with two sockets of Intel® Xeon® Gold 6130 and one NVIDIA® Tesla® V100 GPGPU.
Figure 8 shows the overall runtime of Trilinos solver using different amount of iterations.
We can learn from the trends of the chart that while the initialization of the solver using
the GPU took about 3 times more than the initialization without accelerator (probably
due to memory offload), the runtime of each iteration on the GPU was 15 times faster
than on the CPUs. Consequently, the usage of GPU started to pay-off starting from 20
iterations.

5. Conclusion

In this paper we show several useful techniques to profile, analyze, and enhance the per-
formance of scientific applications on a shared-memory environment, using geophysical
application as a test-case. Hydro-PED’s code was built in a heterogeneous and modular
fashion which dictated different kinds of treatment. In the mechanics module, the explicit
manner of calculations directed us to profile the runtime and find bottlenecks. In the hy-
drology module, which was based on FEM and linear systems, we used an of-the-shelf
solution. However, choosing this solution should be done carefully, as we demonstrated.

Both on the hydrology module and the mechanics module, the usage of accelerators
gained an extra speedup which are shown in figure 9. These speedups were gained either
by synchronous or asynchronous offload. These techniques can be implemented in many
other places, both in Hydro-PED and in another applications.

As both the balance between hydrological and mechanical steps, and the amount
of iterations until convergence of Trilinos changes between different scenarios, the total
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Figure 9. The speedup gained by: (1) asynchronous offload in the mechanics module, (2) using Trilinos in
the hydrology module, and (3) overall. Note that the overall speedup of Hydro-PED is dictated by the balance
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speedup of our work is expected to be between x5-x12 comparing to the original execu-
tion. Using this speedup, a large-scale simulation which would have taken a year, will
finish on a few weeks.
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Abstract.

While since mid-seventies it has been clearly shown that relativistic effects play
a crucial role for the complete understanding of the chemistry of molecules espe-
cially when heavy elements are involved, still nowadays in most of the case the
relativistic effects are introduced via approximate methods. The main motivation
behind the introduction of such approximation, respect to the natural and most rig-
orous component (4c) formalism derived from the Dirac equation, is the computa-
tional burden. In the present paper we are proposing a review of the BERTHA code
that, together with the recently introduced Python bindings, represents the state of
the art for full 4c calculations both in term of performances as well as in terms of
code usability.

Keywords. four-component Dirac-Kohn-Sham

1. Introduction

Relativistic effects, arising by the fast moving of the core electrons and propagating into
the valence region, it has been largely shown to become very important for the proper
understanding of the chemical properties of molecules [1,2]. Indeed, expecially when
heavy or Super-Heavy atom are involved the inclusion of relativistic effects is fudamental
also in the deep understanding of the chemical bond [3,4]

More recently the developments of new Free Electron Lasers (FEL) provide a range
of opportunities to achieve significant advances that extend the boundaries of our knowl-
edge in the field of atomic and molecular science and promise to obtain direct informa-
tion on the basis processes of energy relaxation/ transfer in molecules (how charge, spin,
orbital and eventually nuclear degrees of freedom interact to redistribute the energy). The
development of accurate theoretical and computational methods, based on first princi-
ples, for the accurate characterization of electronic dynamics including spin-orbit cou-
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pling in molecular systems containing heavy atoms is now one of the most important
challenges of theoretical chemistry and computational science [5].

Because of the computational cost of the rigorous way to include relativity (includ-
ing spin-orbit effect) in the modelling of molecular systems, a disparate set of approxi-
mate methods have been derived from the strictly relativistic 4-component (4c) formal-
ism derived from the Dirac equation by Bertha Swirles [6]. Among these the so called 2-
components approximation, deriving from the decoupling the ”large” and ”small” com-
ponents of the Dirac spinors [7], is the most used. Maybe the Douglas-Kroll-Hess [8]
and Zero Order Regular Approximation hamiltonians [9] are, amoung others, the most
popular two-component schemes. Both of them have found a wide range of applications
with implementations in several modern commercial codes.

Clearly the introduction of the cited approximation scheme is motivated by the in-
trisic computational difficulty realted to a proper full 4c approach. The BERTHA code,
we will describe here, is basically built around a smart and efficient algorithm for the
analytical evaluation of relativistic electronic repulsion integrals, developed by Quiney
and Grant in Oxford more than a decade ago [10], representing the relativistic general-
ization of the well-known McMurchie-Davidson algorithm [11]. As we will show in the
following we have extended the applicability range of all-electron DKS calculations, ex-
ploiting density fitting techniques and parallelization strategies, to large clusters of heavy
metals [12].

Aside what previously stated more recently we introduced a maior improvement in
the BERTHA code usability introducing a set of Python bindings [13]. In the present
paper, after a review of the parallelization strategies adopted, we will describe in details
the PyBERTHA charecteristics and implementation. Finally we will conclude with a test
case of the code involving the interection of a flerovium atom [14] with some gold atoms
cluster.

The achievements, we will describe in the following, represent the state of the art
for full 4c calculations and give us the ideal starting point for the necessary further de-
velopment of methods of relativistic theory.

2. Computational details

In the following subsections we will give all the details about the fundamental features
of the BERTHA code. Specifically we will summarizing the basic strategy behind the
parallelization of the code, and ,maybe more importantly, we will give all the details
about the newly developed Python interface of BERTHA.

2.1. Parallelization strategy

Historically the main motivation for the use of approximate methods to include relativity
(e.g. including spin-orbit effect) in the modelling of molecular systems is the assumption
that full 4c approach is computationally too demanding [15,16]. While this is in principle
an obvious assumption, we have shown that one can drastically reduce the computational
cost of a Dirac-Kohn-Sham (DKS) calculation, by implementing various parallelization
and memory distribution [17,18,12] schemes and by introducing new algorithms, such as
those based on the method ”density fitting” [19]. We already shown that is now possible
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to carry out DFT calculations at full relativistic 4c level in an efficient way, and thus
exploit the full power behind the DKS equations, in a wide range of molecular systems [4,
20,3].

The main goal we prosecuted has been to almost nullify any serial portion of the
code, being inspired by the basic idea behind Amdahl’s law [21]. On the other hand, con-
sidering the amount of memory required to perform a DFT calculations at full relativistic
4c level, we designed an ad-hoc method to simulate shared memory for distributed mem-
ory computers following a path already designed by other quantum chemistry softwares
(e.g., ADF [22] uses GlobalArray [23], GAMESS-US [24] uses the Distributed Data In-
terface [25] library). The ad-hoc method we designed as been specifically shaped on the
data distribution induced by the problem, more specifically dictated by the grouping of
G-spinor basis functions in sets characterized by common origin and angular momentum.

In order to recall the main aspects of the implemented parallelization strategy, it is
important to point out the fundamental steps of each BERTHA run. Once the molecular
system geometry has been specified, together with the basis and fitting set to be used,
provided an initial guess density (i.e. cast as a superposition of atomic densities), the den-

sity fitting is carried out. Soon after the software builds the Coulomb plus exchange-

correlation matrix, and at this stage, only during the first iteration, also the one-electron

and overlap matrices are computed and stored in memory as they do not vary from cycle
to cycle. Finally the DKS matrix is assembled and the eigenvalue problem is solved.

While the full description of the implemented parallelization strategy has been re-
ported in our previous works[17,18,12], for the sake of completeness here we are report-
ing only a quick overview starting from the results presented in Figure 1. As the reported
results indicate we are able to achieve good results both in term of speed-up as well in
terms of memory distribution.
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Figure 1. On the left panel we are reporting the speed-up obtained for the Au20−Fl complex with the current
implementation of BERTHA. On the right panel we are instead reporting the memory allocated per process,
for the same molecular system, when running the code using an increasing number of processes P. The results
are obtained compiling the code with Intel Parallel Studio XE 2019 and Intel Math Kernel Library , and
running on a two nodes cluster quipped with Intel(R) Xeon(R) CPU E5-2650 v2 at 2.60GHz and InfiniBand
interconnection.

Whenever a linear algebra operation is needed we took advantage of the widely
available ScaLAPACK [26] library. We recall here that the P processes of a generic
parallel execution are, in ScaLAPACK, mapped onto a PrxPc two-dimensional process
grid of Pr process rows and Pc process columns. Almost consequently any dense matrix
is then decomposed into blocks of suitable size, which are uniformly distributed along
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each dimension of the process grid according to a specific the so-called Block Cyclic
Distribution (BCD) pattern.

We implemented some utility functions (see [17,18,12] for details) that are used
to efficiently map the main matrices as they are computed into the BCD distribution
schema. It is indeed important to underline as the memory consumption per process,
thanks to the cited approach, is always well under control as well reported in the right
panel of Figure 1. We even observe cases of superlinear performance when the small
size of the local arrays permits improved cache reuse to prevail over other factors. Also
considering that the PZHEGVX function we are using to carry out the complex DKS
matrix diagonalization is able to converge on a given subset of eigenvectors. That is,
in our case, we are converging only in the occupied spinors subset and this gives us an
evident advantage respect to the serial code, where instead we are always converging on
the full set of spinors.

The grid shape affects appreciably the performance of the linear algebra routines and
different routines may be differently influenced depending on the block size, number of
processes, and size of molecular systems. We already reported a spread in performance
of up to 50% when rectangular processes grids are used, this appear to be unfavorable
mainly for the diagonalization step compared to square grids [18]. Clearly this explain
the decrease on performances observed when 30 process are used. Indeed we are using a
rectangular processes grid, that is a 5x6 or equivalently 6x5 one, thus a rectangular one.

2.2. PyBERTHA: a Python API for the BERTHA code

Undoubtedly the Python programming language is emerging as one of the most impor-
tant and used HLL [27,13] also in the field of scientific computing. Python HLL, besides
providing an extensive range of modules to be used to solve comprehensive set of com-
putational problems, enables for a quick prototyping, being so a natural choice in the
BERTHA project.

The very first step toward a Python binding started reworking the original ”mono-
lithic” FORTRAN [28] BERTHA code so that it becomes a set of SO libraries: libbertha

containing all the basic kernel functions, libberthaserial to perform the serial run, and
libberthaparalleshm to execute the parallel computation. Once this very first step has
been completed the computational kernel of the DKS calculation it is driven by a FOR-
TRAN module named bertha wrapper. The FORTRAN module contains a set of meth-
ods to access to all the basic quantities, such as energy, density and DKS matrices and
more. That same FORTRAN module is used to access all the basic functionality such as:
bertha init to perform all the memory allocations, bertha main to run the main SCF
iterations, clearly bertha finalize to basically free all the memory, and more.

Finally the main PyBERTHA module, named berthamod, has been developed us-
ing the ctypes Python module. The cited module provides C compatible data types,
and allows calling functions in shared libraries. In order to simplify the direct interlan-
guage communication between Python and FORTRAN, we developed a C layer called
c wrapper, as well summarized in Figure 2.

In the actual version of the code the input geometry, basis and fitting set are specified
via a file and the related set fnameinput and set fittfname methods. Additionally the
pybertha class is populated with all the basic functionality need to easily implements
basic procedure as a single-point energy calculation (i.e. using the run and get etotal

L. Storchi et al. / BERTHA and PyBERTHA 357



libertha.so libberthaserial.so libberthaparalleshm.so

bertha_wrapper module

C_WRAPPER

BERTHAMOD

C

PYTHON

FORTRAN

Figure 2. An overview of the software and HLL layers.

methods), or geometry optimization and also much more complex procedures as for ex-
ample a real-time TDDFT [5] (i.e. using realtime init, get realtime dipolematrix and
get realtime fock to obtain the DKS matrix given as an input a density matrix).

All data produced at the FORTRAN layer and retrieved at the Python level can
be easily handled in case of scalars. Instead when we need to transfer matrices, and
in our case matrices of complex numbers, we used the FORTRANC interoperability
iso c binding module and two Python functions: doublevct to complexmat to convert
array of double into Python complex numpy.array[29], and complexmat to doublevct

to perform the opposite operation. For the sake of completeness we are reporting in the
following the code of the two cited functions:

de f c omp l e xma t t o doub l e v c t ( inm ) :

i f l e n ( inm . shape ) != 2 :
r e t u r n None

i f inm . shape [ 0 ] != inm . shape [ 1 ] :
r e t u r n None

dim = inm . shape [ 0 ]

c b u f f e r = numpy . z e r o s ( (2∗ dim∗dim ) , d t ype=numpy . doub l e )
c b u f f e r = numpy . a s c o n t i g u o u s a r r a y ( c b u f f e r , d t ype=numpy . doub l e )

c b u f f e r [ 0 : : 2 ] = inm . f l a t t e n ( ) . r e a l
c b u f f e r [ 1 : : 2 ] = inm . f l a t t e n ( ) . imag

r e t u r n c b u f f e r

de f d oub l e v c t t o c omp l e xma t ( i n v e c t o r , dim ) :

i f ( i n v e c t o r . s i z e != (2∗dim∗dim ) ) :
r e t u r n None

outm = numpy . z e r o s ( ( dim , dim ) , d t ype=numpy . complex128 )

i nm t x r e a l = numpy . r e s h a p e ( i n v e c t o r [ 0 : : 2 ] , ( dim , dim ) )
inmtximag = numpy . r e s h a p e ( i n v e c t o r [ 1 : : 2 ] , ( dim , dim ) )
outm [ : , : ] = i nm t x r e a l [ : , : ] + 1 j ∗ inmtximag [ : , : ]

r e t u r n outm

The approach to move data from the FORTRAN layer up to the Python one we just
described it is not necessarily the most efficient, indeed one can maybe use a direct mem-
ory mapping between the FORTRAN array and the numpy ones. Nevertheless, given
the results of the Python overhead we will shortly illustrate, we believe that the way we
used it is the less error-prone and the best compromise in term of code portability and
efficiency.

Indeed adopting the described technique we performed some test to exactly estimate
the overhead related to the Python binding. All the results, reported in Table 1, have
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been obtained compiling the code with the Intel(R) FORTRAN and Python compilers
(version: 2018.3.222), but similar results, in term of percentage of the Python binding
overhead, have been obtained using the GNU compilers.

Table 1. We are reporting the impact of the Python binding in the total execution time using 10 SCF iterations.
The code has been executed on a Intel(R) Xeon(R) CPU E3-1220 compiling the code with the Intel(R) compiler
version: 2018.3.222

System
Matrix
Dimension

Wall-time 10 SCF
iterations
with Python (s)

Wall-time 10 SCF
iterations
without Python (s)

Python overhead
10 SCF iterations

H2O 140 3.910 3.906 0.09 %
Au2 1560 104.458 104.354 0.99 %
Au4 3152 613.912 613.483 0.07 %
Au8 6304 3965.911 3964.078 0.05 %

Looking at Table 1 it is evident that the impact of the Python binding is almost
always lower then 0.1 % and thus it is clearly negligible. The only system where the
overhead is higher then 0.1 % is the Au2 gold cluster. We may only speculate that in such
a case there is some effect related to the cache memory size, indeed the most demanding
part of the Python binding is essentially related to a memory-to-memory copy.

As we already pointed-out the Python binding overhead is almost solely related to
the arrays copying process that, in the case of a single point ENERGY calculation, is
executed just once at the end. Thus clearly, in the case of a standard single point energy
calculation, the Python binding has no impact on the serial execution time of BERTHA
at all.

3. Bond Analysis of Au20−Fl complex with NOCV/CD method

In the last decade, experiments were carried out to compare the chemical behaviour of
SHEs (Super Heavy Elements) with that of their lighter homologues of the 6th period.
For example by gas-phase thermochromatography studies of volatility through adsorp-
tion on gold surfaces [30].

Here we will try shed some light on the Au20−Fl interaction using the NOCV/CD
analysis scheme [4]. In a previous work we presented the formalism used to decompose
the CD function in terms of NOCVs in the context of the relativistic four-component
framework where spin-orbit coupling is included variationally [4].

The core idea of the approach is the decomposition, via natural orbitals for chem-
ical valence (NOCV), of the so-called charge-displacement (CD) function into additive
chemically meaningful components.

Firstly we start recalling the CD function that is defined as a partial integration along
a suitable z axis of the difference Δρ(x,y,z′) between the electron density of the adduct
and that of its non-interacting fragments (that is the Au20 gold cluster and Fl atom in our
specific case) placed at the same equilibrium position they occupy in the adduct:

Δq(z) =
∫ z

−∞
dz′

∫ ∞

−∞

∫ ∞

−∞
Δρ(x,y,z′)dxdy (1)
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In the previous equation the integration axis is obviously chosen following some
physical criteria, for instance the bond axis between the fragments appears to be the
most convenient choice in our case. Any CD function features positive values along z
when, upon formation of the bond, charge is transferred from right to left across a plane
perpendicular to the bond axis through z. On the contrary negative values of the CD
function identify charge flow in the opposite direction.

Finally, it is worth noting that the electron density difference can be further parti-
tioned when both the adduct and its constituting fragments belong to the same symmetry
group, Δρ can be expressed in terms of additive symmetry components. More generally,
a different scheme can been applied to provide the decomposition of the Δρ in terms of
contributions arising from the molecular spinors most involved in the bonding. Natural
orbitals for chemical valence (NOCV) were introduced by Mitoraj and Michalak [31] as
descriptors of chemical bond. The cited formalism allows a very compact description of
the bonding phenomenon, indeed the electron density difference Δρ can be brought into
diagonal contributions in terms of NOCVs (i.e. additive chemically meaningful compo-
nents).

The cited NOVC/CD analysis has been applied to the Au20−Fl complex, as reported
in Figure 3, using a molecular geometry as reported in a previous work [20]. It is some-
how important to underline the fact that, while the geometry optimization of the gold
cluster has been performed using the zero-order regular approximation (ZORA)[32],
both the Flerovium gold cluster distance and clearly all the calculation needed to produce
the final NOCV/CD results, have been performed using BERTHA.
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Figure 3. On the left panel we are reporting Au20 −Fl complex. On the right panel instead the CD analysis
for the Au20 −Fl bond is reported, where the dots on the axis mark the z coordinate of the atoms. We are
reporting the contribution to deformation density, Δρ , of the four most significant NOCV-pairs (Δρ ′

1, Δρ ′
2, Δρ ′

3
and Δρ ′

4,).

In Figure 3 we are reporting the complex geometry, on the left panel, and the CD
curves on the right. The fundamental feature of the Δρ CD curve is that Δq(z) is appre-
ciably positive everywhere in the cluster region. This means that there is a shift of charge
from the Fl atom towards the gold cluster. More interestingly, the shift of charge does
not stop at the nearest Au layer but extends appreciably down to the fourth layer. Another
interesting feature of the Δρ CD curve is showing are the two peaks, one corresponding
to the zone between the first and second Au layers, and the other corresponding to the
gold-Fl binding region.

Finally looking at Figure 3, it is undoubtedly interesting to see how we are able
to split the total CD curve into several additive chemically meaningful components. In
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the figure we are reporting only the first four NOCVs, that are quantitatively the most
relevant. It is clear how the total curve, that it is highlighting an shift of charge from the
Fl atom towards the gold cluster, is instead made of two different contributions. The first,
Δρ ′

1, is indeed representing a shift of charge from the Flerovium toward the gold cluster,
but the other three curves are instead displaying and an opposite charge flow, from the
Au20 cluster toward the Fl atom.

The reported results give a clear view of the power the NOVC/CD analysis, that it
is able to give clear insights on the nature of a chemical bond in a simple and visual
way. It is somehow important here to remark the fact that these results have been made
possible only by the previously reported effort in terms of code optimization and code
parallelization.

4. Conclusions and perspectives

As already stated mainly because of the computational cost of the rigorous way to include
relativity in the modelling of molecular systems, a disparate set of approximate methods
have been derived from the strictly relativistic 4-component (4c) formalism derived from
the Dirac equation by Bertha Swirles [6].

In the present work we described the BERTHA code, that as a result of our effort,
can be considered the state of the art for full 4c calculations. Indeed, thanks to the the
parallelization strategies and density fitting techniques adopted, we have been able to ex-
tend the applicability range of all-electron DKS calculations to extremely big molecular
systems.

In addition, we introduced also a set of Python bindings (so called PyBERTHA),
that we demonstrated to have almost a negligible impact in terms of time consumption.
Instead the introduction of such software layer improved enormously the code usability,
especially respect to the original FORTRAN version.

Specifically, due to the actual enormous diffusion of the Python programming lan-
guage, we hope to spread the use of full 4c calculations to a larger scientific popula-
tion. Indeed, thanks to the introduced Python API, it is now simple and quick to imple-
ment and test new approaches based on the basic building blocks provided by the current
version of PyBETHA.

Clearly, given the described abstraction layer it is now easy to extend the API as
needed. In a future coming version we are planning to add all the fundamental functions
to specify the input geometry and basis set in a more user-friendly (i.e. pythonic) way.
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Prediction- ased Partitions Evaluation
Algorithm for Resource Allocation
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Abstract. Resource allocation is a well-known problem, with a large number of
research contributions towards efficient utilisation of the massive hardware paral-
lelism using various exact and heuristic approaches. We address the problem of op-
timising resources usage on deeply heterogeneous platforms in the context of HPC
systems running multiple applications with different quality of service levels. Our
approach manages the partitioning within a single heterogeneous node aiming at
serving as many critical applications as possible while leaving to the upper levels
of runtime resource management the decision to preempt resources or to launch the
critical application on a different node. We investigate predictive allocation algo-
rithms, allowing to serve up to 20% more high priority requests when using a mov-
ing average or machine learning prediction model vs baseline without prediction.

Keywords. NUMA Shared Memory, Resource management, Prediction, Memory
management, High Performance Computing

1. Introduction

The push towards Exascale supercomputers is leading to increasingly heterogeneous
High Performance Computing (HPC) architectures, characterised by the coupling of ac-
celerators to the more traditional HPC cores. Such future HPC architectures integrating
different kinds of hardware accelerators, such as general-purpose graphics processing
units (GPGPUs) and reconfigurable computing resources (e.g. Field Programmable Gate
Arrays, FPGA), can be classified as deeply heterogeneous architectures [1]. At the same
time, the new classes of applications, such as real-time high-performance applications,
are emerging that require Quality of Service (QoS) guarantees. The typical practice of
reserving a subset of the supercomputer to a single application becomes less attractive,
leading to the exploration of cloud technologies in the context [2]. So that, a viable sce-
nario is that of multiple applications, with different QoS levels, coexisting on the same
deeply heterogeneous HPC infrastructure and sharing accelerators. For this scenario to
be successful in practice, resources need to be allocated with a vision that includes both
the application requirements and the current and future state of the overall system.

Thus, resource utilisation prediction can be employed to forecast the future state of
the cluster based on statistical information on past behaviour. Then the prediction can
be used to guide the response to the resource allocation request in the best way to ful-
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fil the QoS requirements of the applications while optimising the use of resources (pri-
marily, processing elements and memory) in a system-wide perspective. Recent studies
in resource utilisation prediction are directed to resource optimisation in cloud architec-
tures [3], on the other hand, research related to the prediction in HPC is mostly focused
on the predicting execution time and queue waiting time. More specific prediction for
HPC application is presented in [4]. A grammar-based approach for modelling and pre-
dicting the I/O behaviour of HPC applications allows to recognise when future I/O op-
erations will occur (i.e., predict the interarrival time between I/O requests), as well as
where and how much data will be accessed. [5] gives an in-depth survey of the most re-
cent state-of-art memory management techniques for HPC and Cloud Computing which
are used on the different layers of hardware/software stack.

In this work, we focus on the memory-centric prediction-based partitions evalua-
tion algorithm for resource allocation on deeply heterogeneous Non-Uniform Memory
Access (NUMA) architectures. Here, multiple accelerators coexist within a single node
and can cooperate for a single application composed of multiple kernels, or they can be
partitioned among different applications. For efficient resource allocation, resource and
memory management solutions should be closely interrelated to take into account data
dependencies between tasks. The proposed approach regards to the hierarchical resource
management strategy that includes the following levels of resource management [1]: The

Global Resource Manager (GRM) runs on a general-purpose node (GN), and it is in
charge of workload balancing and thermal control of the entire system; The Local Re-

source Manager (LRM) runs on the heterogeneous nodes (HN) and on the slave GN,
and it is in charge of the allocation of intra-node resources, allowing multiple applica-
tions to share resources. Our approach manages resource allocation across different ap-
plications within a single heterogeneous node as a part of LRM in a way that maximises
resource usage while preserving the predictable execution time of critical applications.

The contribution can be summarised as follows: concept and implementation: a
core concept of Prediction-based Partitions Evaluation Algorithm for resource allocation
and several implementations of this concept were derived; assessment: a comprehensive
assessment was provided, including measurements for a proof of concept implementa-
tion, showing the overall feasibility of the approach, as well as its scalability.

The rest of this paper is organised as follows. In Section 2 we briefly introduce the
target heterogeneous architecture. In Section 3 we state our problem and describe our
proposed solution, while in Section 4 we provide an experimental evaluation. Finally, in
Section 5, we draw some conclusions and highlight future research.

2. Background: Runtime management in MANGO Project

The MANGO project aims at addressing the power, performance, and predictability
space by dynamically using heterogeneous processing elements in a QoS sensitive com-
puting scenario. The key feature of the MANGO resource management system is its tight
integration with the programming model, which lightens the burden on the application
developers, as they do not need to handle the mapping of kernels and buffers on suitable
HN units [6]. A host-side low-level runtime API allows developers to indicate to the run-
time which components (kernels, memory buffers, and synchronisation events) need to
be shared within the heterogeneous node. These components are then connected into a
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Figure 1. Overview of the target system: (1) task graph, (2) partition list, (3) partition evaluation system.

task-graph to provide the resource manager with the information needed to generate the
best feasible resource allocation for the requested QoS. Figure 1 (1) shows an example
of a task graph composed of several kernels and buffers. One or more processing units
can perform each kernel. A buffer may be used as an output buffer for one kernel and as
an input buffer for a different one. Therefore, the resource manager allocates resources
based on knowledge of both the system hardware status and the application requirements
and priorities.

2.1. Memory awareness

In our target architecture, all the memory modules in a given HN share a single physical
address space that can be accessed by all the computational units (ARM-based nodes,
GPU-like accelerators, and hardware accelerators) [1]. Despite the shared physical ad-
dress space, we differentiate the following types of memory buffers: shared memory

buffer is a memory buffer that may be simultaneously accessed by multiple kernels,
such as buffer_0 on Figure 1 (1); private memory buffer is a memory buffer that may
be accessed by only one kernel, such as buffer_4 on Figure 1 (1).

To achieve the optimal unit-memory connection characteristics, we proposed to use a
fuzzy multi-criteria analysis with pairwise comparison [7]. The choice between memory
units is based on a prediction of the future resource state to maximise the ability to
allocate future high priority requests.

We adopt the following criteria for private buffer allocation: cpr0 - distance between
processing and memory units (in hops); cpr1 - bandwidth; cpr2 - jitter. Criteria cshi , i =
0..5 are employed for shared buffer allocation and consist of the mean and standard

deviation of the criteria cpr. Fuzzy sets
∼
C are defined on the universal sets of P with

the membership functions ml(pi) that show the degree of membership of an element
pi ∈ P to a fuzzy set

∼
cl for each criterion in C ( lpr = 0..2 and lsh = 0..5) on the basis of

pairwise comparisons of elements of P with the relative importance coefficients wpr
l and

wsh
l , ∑w= 1 for applying the concentration or dilation to the fuzzy sets.

3. Partition Evaluation Algorithm

3.1. Problem Statement

We are given a HN topology, H = {Uf ,Ub,Mf ,Mb}, where Uf and Ub indicates the set
of free and busy units, respectively, Mf indicates the memory units with all the space
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available for allocation, Mb indicates the memory units with fully or partially allocated
space and a set of task-graphs Tg = {tg0, . . . , tgn}, tg =< B,K > where B is a set of
requested memory buffers and K is a set of kernels. Considering a particular tg, for
each buffer b ∈ B of size S(b) there is a kernel or set of kernels K(b) which uses b
(e.g., kernel read buffer k r→ b and/or write to buffer k w→ b) and a partition or set of
partitions P = {<M,U >0, ...,<M,U >m} appropriate to allocate b on H, where M is
a memory unit of size S(M), S(M) ≥ S(B), U ∈ Uf and ∀ki ∈ K ∃u j ∈ U that able to
execute ki. For each kernel k ∈K there is a set of preferred target processing architectures
Archpre f s(k) =< Arch0, ...,Archl > that is noted by developer. Each application has a
specific priority level appl = {applh,appll}, where the high priority application applh
needed to be allocated with the requested QoS on the current HN, and the low priority
application appll could be rescheduled on the another HN. Figure 1 (2) shows a graphical
representation of an example of partitions, which could be produced by the resource
allocation algorithm.

All combinations of the preferred processing architectures among with all the pos-
sible mappings of the kernel to the specific unit and memory allocations can be found by
brute-force exploration. However, this approach can be time consuming other the leading
to find a redundant set of mapping solutions. The overall number of mappings can be
estimated by the following formula:

Nmap =
NK

∏
i=1

((∑arch(i)
a=1 Na

U )− ki)!

((∑arch(i)
a=1 Na

U )− (1+ ki))!
× (NM)

NB (1)

where ki = ∑i
kernel=1 [∃kernel = j| j ∈ 1..i∧arch(i) = arch( j)] e.g. ki is the number of

kernels for which at least one preferred architecture is the same, Nmap is the number of
mappings, NK and NB are respectively the number of kernels and buffers in tg, Na

U is the
number of units with the specified architecture a, NM is the number of memory units.

Given the size of the solution space, the time needed to find suitable solutions can
often be too long for considering the execution at runtime. The heuristic goal is to limit
the number of resource partitions to consider, based on the exploitation of historical
data about the previous application executions. Without additional constraints, buffers
from different task-graphs could be allocated on the same memory unit. This allocation
can cause unpredictable interference of concurrent applications on shared memory and
routing bandwidth. The easiest way to ensure that the bus access requests are served
immediately is to separate resources for concurrent applications. This approach does
not solve the interference problem between concurrent tasks of a single application but
mitigates the stochastic influence of independent applications.

We aim to find the best Ps =<Ms,Us >, Ps ∈P for each sequentially arriving tgi ∈ Tg
by the criteriaC= {Cpr,Csh}with the following conditions: size: ∑S(B)≤∑S(Ms); iso-

lation: Ms ∈Mf and ∀mi,u j such thatmi ∈Ms,u j ∈Us ∃< u j,mi > and ∀mi,u j such that
mi ∈Ms,u j ∈Ub !∃< u j,mi >, where the tuple< u j,mi > defines the permitted network-

ing connection between u j and mi; multi-criteria analysis: Ps = maxi

{
minl[ml(pi)]

w

pi

}
;

prediction model: the usage of Mf for appll is avoided in the case of predicting the use
of Mf by applh.

In the case of heterogeneous systems, significant on-chip constraints, such as limited
memory and route bandwidth, need to take into account. At this stage, we only consider
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Figure 2. An example of partitions a) with rectan-
gular isolated areas b) with irregular isolated areas
(S - selected unit, A - additional unit, M - memory
unit).

Figure 3. Input vectors and output classes for the
prediction models vased on SVM algorithm.

the subproblem of resources allocation to available tiles without taking into account the
consequences for the communication. Heuristics have to be used to find a solution with
a reasonable quality within an acceptable time. Accordingly, we investigated the parti-
tion evaluation method based on memory usage prediction and memory characteristics
comparison. A graphical overview of the proposed approach is presented in Figure 1 (3).

3.2. Isolated partition

The processing units and the memory units are connected through a 2D-mesh NoC. Each
processing unit has four routing ports with an XY routing algorithm implemented to al-
low network connection between units. In order to limit bandwidth utilisation, processing
units have to be allocated close to the memory unit. We proposed to select the processing
units in the nearest von Neumann neighbourhood to the memory unit so as to ensure the
smallest average distance from each processing unit to the memory unit. We consider
two ways of forming the isolated area presented in Figure 2: rectangular: selected units
are supplemented by adjacent ones to form a rectangular area; irregular: selected units
are supplemented by adjacent ones to provide access to the memory units.

The available routing bandwidth on the boundary is set to 0 so as to avoid bandwidth
resources usage from others partition. The rectangular area guarantees a networking con-
nection from each processing unit to the memory unit in the specific partition. However,
this isolation method occupies a large number of free processing units. On the other hand,
the second approach makes it possible to use processing resources more economically.
However, this type of partitioning requires moving from the simple XY routing algorithm
to the adaptive XY routing algorithm, since memory unit becomes unreachable for some
processing units (as an example units Si and S j in Figure 2b).

3.3. Prediction model

In general, a resource management system is based on an algorithm that takes runtime
decisions on the basis of continuously updated information about the state of the re-
sources. By predicting the future state of resources we can improve the quality of the
management decisions [8]. We are suggesting the models that can, at runtime, predict the
future use of resources so that management decisions aimed at increasing the service of
high priority requests can be made.

Predictions are based on statistical information. These can be seen as statistical se-
ries, that is ordered collections of data Y = {Yi−n−1, ....,Yi} beginning at moment ti−n−1
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and covering events up to the final moment ti, where Yj is a pair Yj = (t j,v j). The first
element t j defines the moment in time and the second element v j defines the value of one
variable of interest (in our case, it is an allocated size of the memory unit). We consid-
ered statistical series based on: time: time sampling is carried out so that the time be-
tween allocations is taken into account; events: resources allocation is considered as the
occurrence of an event for which only the order of allocation and not the time matters.

Two linear prediction models that can be applied to runtime contexts were imple-

mented: the moving average method: Ỹi+1 =mi−1+
1
n
(Yi−Yi−n), wheremi−n - moving

average for n periods before the forecast; the exponential weighted average method:

Ỹi+1 = αYi+(1−α)Ỹi, where α - smoothing constant.
To take into account the adequacy of the prediction model Theil’s coefficient of

inequalityU = ∑n
i=1 (Yi−Fi)2/(∑n

i=1F
2
i +∑n

i=1Y
2
i ) was chosen. Theil’s coefficient takes

the value equal to zero when the prediction model is accurate, and the value equal to one
when the forecast is inadequate. The proposed evaluation algorithm does not consider
prediction in cases coefficient is greater than 0.5.

To assess the possibility of using machine learning in runtime contexts, we used
dlib C++ library’s [9] implementation of the pegasos algorithm for online training

of SVM. The prediction model was redefined to a simple binary classification problem
in the following way: input: model is described as a two-dimensional input vector by
the size and time derived from the last allocation; output: prediction is represented by
two possible states of the units (busy or free) as output classes; kernel: radial basis
function kernel defines the allocation-deallocation trend. A graphical representation of
the input vectors and output classes is shown in Figure 3. In addition to online train-
ing, the trainer for a C-SVM using the SMO algorithm for solving the same binary
classification problems was used.

3.4. Partitions evaluation

The overview of partitions evaluation algorithm is presented in [10] with buffer analy-
sis described in detail in Algorithm 1. The input of the Algorithm 1 receives the quan-
titative interaction characteristics between the memory unit m onto which the analysed
buffer b is mapped and the processing units ui onto which the kernels that read and/or
write to the buffer are mapped, such that propr = (ui

r→ m).Properties, i = 0..nr and
propw = (ui

w→ m).Properties, i = 0..nw. At the first step, it looks through the memory-
units characteristics of each analysed partition (line 1). Some of these characteristics
change at runtime (e.g., available bandwidth) or are constant (e.g., distance in hops). If
the current buffer is used by one kernel privately (line 2), then the value of each crite-
rion val(cpr) is saved as-is (lines 3-4). Otherwise, the value of each criterion val(csh)
is accumulated by calculating the mean and standard deviation (lines 6-9). In the next
part, the matrices of pairwise comparisons Mc are filled. The total number of matrices
coincides with the number of criteria. Since the matrix of pairwise comparisons is diag-
onal, symmetric and transitive, at line 11 all diagonal elements are set to 1, at lines 15-16
and 17-18 elements are calculated as a ratio of the specific criterion values of the two
compared partitions i and j depending on the optimisation goal, that is, c→ max, as for
bandwidth, or c→ min, as for distance. The degree of membership dmc[i] is calculated
for each partition i (line 20) and for each criterion c (line 21) as one over the sum of
the elements in the corresponding column of the matrix Mc (lines 21-23). At line 24, the
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ALGORITHM 1: Buffer analysis

Data: Memory-units read-write characteristics < m, propr, propw >0, ...,< m, propr, propw >n

Result: Partition scores s= {s0, ...,sn} for the buffer b
1 for i= 0 to n do

2 if propir.size()+ propiw.size() = 1∨ (propir,w.size() = 1∧ propir = propiw) then

3 foreach cpr ∈C do

4 val(cpr)⇐ (propir ∨ propiw).GetProperty(cpr) ;
5 else

6 foreach csh ∈C do

7 foreach propir and propiw do

8 val(csh)⇐ propir.GetProperty(csh);
9 val(csh)⇐ propiw.GetProperty(csh);

10 for i= 0 to n do

11 Mc[i][i]⇐ 1 /* matrix of pairwise comparisons */

12 for j = i+1 to n do

13 foreach c ∈C do

14 if c→ max then

15 Mc[i][ j]⇐ val(c)[i]/val(c)[ j];
16 Mc[ j][i]⇐ val(c)[ j]/val(c)[i];
17 else

18 Mc[i][ j]⇐ val(c)[ j]/val(c)[i];
19 Mc[ j][i]⇐ val(c)[i]/val(c)[ j];
20 for i= 0 to n do

21 foreach c ∈C do

22 dmc[i]⇐ ∑n
j=0M

c[i][ j];
23 dmc[i]⇐ (1.0÷dmc[i])w /* degree of membership */

24 s[i]⇐minc(dm[i]) /* intersection */

25 for i= 0 to n do

26 if GetPrediction(mi) = Buzy then

27 s[i]⇐ s[i]×−1.0;

score of evaluated partition is set equal to the minimal value of the corresponding degree
of membership. Finally, at lines 25-27, the overall score for each partition is updated
according to the predicted memory state.

In the case of prediction errors, the proposed approach acts in the following way. If
the appearance of the high priority applications is underpredicted, it allocates a higher
number of the low priority applications and a fewer number of the high priority applica-
tions. In the case of overprediction of the high priority applications, the number of low
priority applications is fewer than it could be allocated.

4. Experimental Evaluation

As the deeply heterogeneous architecture targeted by our work is currently under de-
velopment, we investigated the proposed partition evaluation algorithm on the singe ap-
plication execution in [10]. Overall, the proposed approach succeeded in evaluating the
best and worst resource mappings. The memory status prediction among with partitions
isolation is evaluated through a simulation-based approach.
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Figure 4. Arrival rates

Figure 5. General scheme of the simulation

4.1. Experimental Setup

Event simulator mimics the job submission of users on a time-driven basis. The appli-
cation pool was composed of workflows with a specific priority. According to our sce-
nario where applications often perform the same tasks multiple times, but additional re-
quests must also be handled, the arrival process was modelled including a mix of sched-
uled recurring applications targeting the same workflow with the same resources requests
and non-recurring applications targeting various workflows. A polynomial function pro-
posed in [11] defined the scheduled arrival process. As shown in Figure 4, accounting
records [12] from the national grid of the Czech republic and Curie supercomputer oper-
ated by CEA have the arrival process similar to the mentioned above. To model events oc-
curred completely at random at intermittent times, the Poisson process was used. The test
tasks flow is consists of 30 days, where weekends are simulated by only non-recurring
applications targeting various workflows occurred at random.

The target platform emulation library implements hardware-dependent API and al-
lows performing resource allocation in a simulation mode. The three major resources, in-
cluding units (processors/accelerators), memory buffers located in DDR memories, and
bandwidth, are under control of the local resource manager of the emulator. All these
resources are kept as internal configuration and offered for reservation based on their
availability and platform restrictions. The selected configuration of the HN includes 30
processing units of two types of architecture placed in five rows and six columns grid and
four memory units. The general scheme of the emulation is shown in Figure 5. Here, the
experiments employed the same configuration and sequences of emulated applications.

Seven task-graphs presented in Figure 6 were created relying on the synthetic work-
flow [13]. The task-graphs have a various number of kernels (from 4 up to 13) and in-
put/output buffers for each kernel. Runtime, types of kernels, memory requests and the
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Figure 6. Task-graphs of the synthetic workflows

Table 1. Basic statistics for program simulation

motif leadmm molsci glimmer gene2life scoop psload

runtime 9090 4990 1020 901 540 98 50

kernels T0/T1 12/1 4/2 5 /0 4/0 8/0 1/5 4/0

memory (MB) 1696 3535 55 2185 2.6 22 379

n. partitions 8.75E+30 1.25E+11 8.36E+10 2.61E+08 1.99E+18 1.81E+10 6.53E+07

maximum number of possible mappings on the experimental architecture according to
the equation (1) are presented in Table 1.

In this paper, we consider the design-time mapping policies called recipe [10]. This
file is used to specify both the per-task requirements and, optionally, a set of resource
mapping solutions that the resource manager should consider at runtime. In order to
investigate the time spent by evaluation and allocation algorithms, we have limited the
number of mappings in the recipe to 50 and 700.

We analysed the proposed approach with the following prediction models and
ways to form statistical series: Base: baseline approach without prediction model(PM);
MAonEvent: approach with PM based on moving average method with event-based
statistical series; MAonTime: approach with PM based on moving average method
with time-based statistical series; EXPonEvent: approach with PM based on exponen-
tial weighted average method with event-based statistical series; EXPonTime: approach
with PM based on exponential weighted average method with event-based statistical se-
ries; SVM: approach with PM based on pegasos algorithm for online training of SVM.
SVMtrain: approach with PM based on C-SVM training on the 30 days arrival flow
simulated in addition to the one used for experiments.

4.2. Experimental Results

First, we investigated the proposed approach with the number of mappings in the recipe
limited to 50. As we expected, the resource allocation algorithm without isolation and
without prediction models gives the high degree of successful allocations. As shown in
Figure 7, the inclusion of the prediction model based on the moving average method in
the algorithm without isolation increases by 17% the density of the high priority requests
with a decrease by 12% of the overall number of the hosted application. As shown in the
Figure 7 (row 3), it is caused by a high rate of rejected low priority application.Other pre-
diction models have no significant impact on the amount of hosted applications (approx
5%). The isolation decreases the number of applications that can be allocated on the HN
simultaneously. For instance, rectangular area isolation reduces the number of hosted ap-
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Figure 7. Percentage of the hosted high priority applications (row 1) all successful allocations (row 2) and
rejected low priority applications by prediction (row 3) using resource allocation algorithm based on the rect-
angular and irregular area isolation and without isolation (max 50 mappings per application).

plications by 10%. Thus, for the resource allocation algorithms based on isolation, the
prediction model increases the percentage of successful high priority applications. Let us
consider hosted high priority applications which use resources that are allocated on the
basis of rectangular area isolation using exponential weighted average prediction model.
As shown in Figure 7, the percentage of these applications increases by 10% regard-
ing the applications which use resources without prediction model and decreases by less
than 5% regarding the applications which do not use isolation. In addition to this, the
total amount of hosted applications increases slightly. The prediction model based on the
moving average method in the algorithm with isolation shows a significant decrease in
the overall number of the hosted application due to a large number of rejects due to the
memory state prediction and therefore does not allocate applications with low priority.

The algorithm based on the SVM online training gives the approx. 20% advantage in
hosted high priority applications regarding the baseline for the algorithm with rectangu-
lar area isolation and approx 8% increase regarding the baseline for the algorithm with-
out isolation. Also, in the case of isolation, the prediction model based on the moving
average method gives a large number of rejects due to the memory state prediction and
therefore does not allocate applications with low priority. The trained SVM algorithm
both for rectangular and irregular area isolations provides approx. the same number of
high priority applications as the algorithm with prediction based on the moving average
method. At the same time, for irregular area isolation, the amount of high priority appli-
cation allocation increases by 20% regarding the baseline without prediction model, and
increases approx. by 10% regarding the algorithm without isolation and prediction.

Generally, the proposed approach, with the number of mappings in the recipe limited
to 50, gives adequate time for evaluation and allocation for considering the execution
of the policy at runtime. As shown on Figure 8, algorithms with the prediction model
based on the SVM algorithms, with both online and pre-trained learning, give approx.
four times higher evaluation time than the algorithms with linear statistical prediction
models. Nevertheless, the allocation time for the SVM algorithm with online training is
approx. ten times higher than those of the statistical methods.

A more significant number of mappings in the recipe increase both evaluation and
allocation time. Figure 9 shows the dramatical increase in evaluation time for algorithms
with machine learning prediction models, especially for resource allocation without re-
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Figure 8. Evaluation (row 1) and allocation (row 2) time (in ms) using resource allocation algorithm based
on the rectangular and irregular area isolation and without isolation (max 50 mappings per application).

Figure 9. Evaluation (row 1) and allocation (row 2) time (in ms) using resource allocation algorithm based
on the rectangular and irregular area isolation and without isolation.

source isolation. The reason is in the fewer number of possible mappings with additional
conditions on the simultaneous use of memory tile. The allocation time increases rapidly
for approach with the prediction model based on the SVM algorithm with online training.
It is caused by the time spent on training SVM following each new allocation.

5. Conclusions & Future Developments

In this paper, we have introduced a predictive method for partition evaluation within
deeply heterogeneous architectures with NUMA shared memory. The target platform
deals with workloads with different priorities for resource allocation requests, classified
as a high priority and best effort. Through the use of predictive algorithms, we were able
to serve up to 53% of the high priority requests vs a baseline of 32% without prediction
on the isolated area. The effort on evaluation and allocation time by statistical prediction
model is inessential and is about 15 and 0.1 ms respectively. It is worth noticing that
prediction model based on machine learning algorithm with online training gives higher
evaluation and allocation time (20 and 0.8 ms respectively) and pre-trained algorithm
gives higher evaluation time (up to 100 ms) while allocation time is in the same range
as for baseline algorithm. Nevertheless, partition evaluation using the prediction model
based on machine learning is still under consideration due to relatively short time per
allocation and slightly better results also for allocation without isolation. The proposed
approach does not assume the only correct prediction model. We aim using the prediction
model and the mapping isolation, depending on the global state of the system. The Global
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Resource Manager taking into account the current workload and thermal state of the
entire system is in charge of using the specific isolation and prediction policy. In future
works, we will provide additional analysis by considering the influence of the knowledge
of the possible plan of the application execution on the resources prediction models.
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Abstract. Code generation specified by a DSL is a popular method to manage
maintenance effort and introduce an abstraction layer for higher reusability. In the
case of Galerkin methods, the Unified Form Language is a DSL for the weak for-
mulation of a differential equation. In this paper, we present the framework-specific
code generation for DUNE and ExaStencils from a problem formulated in the UFL.
Moreover, we present optimization strategies, which are applied during the gener-
ation process.

Keywords. code generation, dune, exastencils, DG, UFL

1. Introduction

The Finite Element Method (FEM) is widely used for the numerical solution of partial
differential equations. Variants like the discontinuous Galerkin (dG) method have drawn
much attention within the last two decades. Applications range from hyperbolic problems
like shallow water or Maxwell’s equations to non-linear degenerated parabolic problems
like multi-phase flow in porous media.

To solve these equations, the discretized problems at hand are usually manually ex-
pressed in a programming language. This usually involves using some FEM library or
framework. Instead of this tedious work, the mathematical problem can be expressed at
a higher level, and the code which obtains the numerical solution is generated. The code
generation allows for a more flexible interface while remaining the performance com-
pared to the manually written code. To define a given mathematical problem, we use the
Unified Form Language (UFL) [1]. UFL is a domain-specific language (DSL) designed
for specifying finite element discretizations in variational form and was initiated by the
FEniCS Project [2].

We aim at providing code transformation components to support UFL in two differ-
ent frameworks, DUNE and ExaStencils. DUNE [3,4] is a flexible framework for Multi-
Physics- and Multi-Domain-Simulations, and the first option we consider as a backend
for our code generation pipeline. ExaStencils [5] is a whole-program code generation
framework working on block-structured grids that we use as a second backend for the
generation of a dG-kernel. In this case, only certain types of elements, grids, and dG
discretizations are supported.

Different HPC Frameworks
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In this paper, we introduce the targeted frameworks, explain the details of the gen-
eration pipeline, and compare the two approaches of generating dG-kernels in terms of
flexibility and possible optimizations. To showcase the flexibility of our code generation,
we consider a simple model problem, the linear transport equation. Within a single code
transformation tool, we can handle transformations for different mesh types, two dif-
ferent frameworks, and mesh specific mathematical optimizations. The aim of our code
generator is the generation of back end optimized target code, based on a simple problem
description in UFL.

1.1. Related Work

UFL is used by both FEniCS [2] and Firedrake [6] frameworks for decleration of FEM
of variational form. Recently the Firedrake project made efforts to incorporate loopy’s
intermediate representation (IR) into their generation framework [7]. The authors use
loopy’s IR to vectorize computations across multiple elements with promising perfor-
mance results. The dune-pdelab specific code generation of our toolchain with a fo-
cus on optimizing dG kernels was first described in [8]. For the ExaStencils framework,
a similar approach for quadrature-free shallow water equations was presented in [9].

2. Targeted Frameworks

Our code generation approach targets two different simulation frameworks, DUNE and
ExaStencils. Although both aim to provide easy-to-use frameworks for solving partial
differential equations (PDEs), the taken approaches differ significantly. DUNE can run
its kernels on any mesh, whereas the specific nature of ExaStencils is limited only to
regular and cartesian grids. To highlight these different needs and requirements for the
code generator, we briefly describe these two frameworks.

2.1. DUNE

DUNE [3,4,10] is a C++ simulation framework for solving PDEs. DUNE relies heav-
ily on generic programming. This allows the compiler to remove most interface-related
runtime overhead. Instead of a monolithic codebase, DUNE is composed of several core
modules, with a clear separation of concerns.

The dune-common module supplies basic dense linear algebra, MPI com-
munications, a build system infrastructure and further basic functionality. dune-
localfunctions supplies a wide range of finite element basis functions, e.g. (dis-
continuous) Lagrange functions, Raviart-Thomas basis functions or orthonormal basis
functions. Reference element implementations for different geometries and quadrature
rules defined on those elements are provided by dune-geometry and dune-istl
offers iterative solvers and preconditioners for sparse matrices with blocking.

The dune-grid module defines a hierarchical grid interface, which is imple-
mented by multiple grid managers. The interface is general enough to support grids with
a wide range of features, e.g., structured and unstructured grids, conforming and non-
conforming refinement, or support for multiple element types. This means that switch-
ing from one grid implementation to another usually only requires changing the type of
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the grid, and further adjustment of user code is not necessary. Additionally, the interface
supports parallelization using MPI.

Discretizations modules, such as dune-fem [11] or dune-pdelab [12], provide
abstractions for finite volume or finite element methods. As an example, dune-pdelab
introduces C++ classes equivalent to the mathematical notion of grid function spaces or
grid operators, which apply element local kernels to every element in the specified grid.
Using dune-pdelab, the finite volume or finite element assembly is automated to the
point where users merely need to supply the element-local kernels and select the right
solution scheme. Of course, users are still free to extend functionality by providing their
implementations of the defined interfaces.

2.2. ExaStencils

ExaStencils is a whole-program generator [5,13], which provides a multi-layered domain
specific language. Its primary focus lies on the generation of highly efficient geomet-
ric multigrid solvers for partial differential equations. ExaStencils itself is implemented
in Scala. Scala, among other things, provides a powerful pattern matching mechanism,
which makes the implementation of the compiler and generator software simpler in terms
of development time and maintenance efforts.

The DSL, called ExaSlang [14] offers four different abstraction levels. The contin-
uous specification of the whole simulated problem, i.e., equations, unknowns, bound-
ary conditions, and the computational domain, is described in the first layer. The sec-
ond layer states the discretized version of the problem, whereas the third layer describes
a suitable solver. The combination of the second and third layers results in a complete
program specification. Transitioning between these layers themselves is done in a semi-
automatic manner under users’ guidance. Users decide which layer is most suited for
the description of the application. ExaStencils supports the transformation of ExaSlang
into C++ and CUDA code, thus targeting different platforms. During this transformation,
ExaStencils performs several optimization strategies, e.g., address precalculation, loop
transformations including loop blocking, reordering and condition elimination, explicit
vectorization, and loop carried common subexpression elimination.

In the case of C++ and a CPU target, ExaStencils can parallelize the generated code.
Depending on the settings, it generates code with OpenMP, MPI, or both. For the MPI
case, necessary ghost-layers or overlapping of fields can be automatically introduced as
well. Given the required parallelization and the patches of fields, i.e., the splitting of
the domain onto processes, ExaStencils provides the communication routines between
the patches. Although ExaStencils was designed primarily for multigrid methods, it is
perfectly capable of handling stencil-only applications as well.

3. Code Generation

Our code generation is based on the domain-specific language UFL [1,15]. Developed
by the FEniCS [2] project, UFL describes the weak formulation of a PDE in Python. It is,
therefore, best suited for finite element methods. Describing a PDE with UFL is closely
related to the theoretical formulation of the PDE.

In the following example, we demonstrate the usage of UFL. Consider the Poisson
Equation (1) with its weak formulation: Find u ∈ H1

0 such that u solves Equation (2).
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−Δu= f in Ω,

u= 0 on ∂Ω.
(1)

a(u,v) = F(v) ∀v ∈ H1
0 , where

a(u,v) =
∫

Ω
∇u ·∇v dx

F(v) =
∫

Ω
f v dx

(2)

A discretization of this problem can be constructed by choosing a triangulation for
Ω and approximating H1

0 by a space consisting of globally continuous and piecewise
linear functions and the corresponding UFL formulation, without boundary treatment,
now reads:

mesh = # triangulation of Omega
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = # analytic definition of f
a = inner(grad(u), grad(v)) * dx
F = f * v * dx

Listing 1: Example UFL File

As can be seen in Listing 1, operator overloading and supplying appropriate named
functions and constants allows for a straight forward translation of the weak formulation
into UFL. UFL’s representation is an abstract syntax tree (AST) of high-level mathemat-
ical objects as well as necessary linear algebra objects. However, representation on this
level is insufficient for most optimizations or transformations towards high-performance
computing. Therefore, the UFL-AST is transformed into an IR, which is suitable for the
optimizations needed in the backend.

Our choice for this IR is loopy [16] together with pymbolic [17]. Pymbolic is a
library for precise manipulation of symbolic expressions and is a perfect fit for repre-
senting expressions inside a code generation framework. We have chosen pymbolic over
other computer algebra systems like sympy [18] because it does not change expressions
implicitly and is easily extensible. Loopy’s computational kernels are described by loop
domains and instructions, and thus loopy is capable of handling statements, their depen-
dencies, loops, and control flow. Additionally, loopy comes with a range of transforma-
tions based on the polyhedral model, e.g., loop tiling or loop fusion, which was shown
using in a finite element method context [19]. Choosing loopy was evident since it fits
perfectly as the IR.

Our code generator realizes the transformation from an UFL-AST into the IR by a
tree traversal approach. As can be seen in Figure 1, this approach is used by both frame-
works. The generation of the IR, which is post-processed by one of the backends after-
ward, also depends on the selection of the targeted framework. Thus the output expressed
by the IR differs for both backends.

The traversal is realized by a visitor object with type-based function dispatch. We
separate the UFL-AST node types into four different categories, geometry evaluations,
basis evaluations, quadrature evaluation, and backend agnostic, which are mostly linear
algebra nodes. For the node types in the first three categories, the transformation into the
IR is backend-specific, for nodes from the last categories, it does not depend on the back
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Figure 1. UFL Generation Pipeline

end. For each category, UFL-AST visitor classes are defined, which only handle the node
types according to its category. The full visitor type is constructed using mixins with one
class from each category. There is one additional back end specific mixin, keeping track
of which equation in a system of PDEs is currently handled.

Together with the UFL file, the generation needs additional information, which is
contained in the INI file. It may contain information about the selection of optimizations,
spatial and temporal discretization, element type, and other settings.

3.1. DUNE Specific Generation

The dune-pdelab framework provides many components needed for finite element
assembly, as mentioned in Section 2.1. Since these components have been thoroughly
tested and used, even in high-performance settings, we rely on these parts and do not
generate code replacing them. Instead, we generate local kernels, which compute element
local or face local integrals. The local kernels are the most expensive part of the assembly
process, except for trivial integrals. Thus, we expect the most performance gain from
focusing on generating optimized code for these local kernels.

The dune-pdelab code generation is divided into three possible paths. The de-
fault path implements the generic dune-pdelab implementation of the tree visitor.
The other two paths implement back end specific optimizations for high order dG or for
low order continuous Galerkin (cG) discretizations. Each implementation has its opti-
mizations for different grid types. We currently distinguish between equidistant, axis-
parallel, multilinear, or generic grids. Currently, the optimizing paths of the generation
require quadrilateral or hexahedral meshes, whereas the generic path also works with
simplices.

In the case of tensor product finite element basis functions and reference elements,
sum factorizing reduces the complexity of the local assembly process. This is especially
rewarding for higher-order dG discretizations. The article [8] describes several vector-
ization strategies for sum-factorized kernels realized in our code generator, e.g., batch-
ing several sum-factorized sub kernels. The selection of the vectorization strategy can be
defined manually or decided automatically either by a cost model or by auto-tuning.

Low order cG discretizations do not profit from sum factorization as much as dG
discretizations. In these cases, locally structured meshes are a better approach. Using this
optimization, a notable performance gain is achieved by operating on multiple elements
in one local kernel. Additionally, this allows for cross element vectorization, which oth-
erwise would be cumbersome to realize in dune-pdelab. Users have to request this
optimization explicitly since using locally structured meshes increases the number of
degrees of freedom similarly to uniform refinement. This needs to be addressed when
creating a coarse grid.

Hardware-based optimizations, e.g., vectorization, loop tiling, or loop fusion, are
possible in both optimized code generation paths. These kinds of optimizations are real-
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ized as transformations of the loopy IR after the UFL form is transformed into the IR. In
contrast, optimizations relying on the grid type or basis function type are handled dur-
ing the transformation from UFL into the loopy IR, since these may induce algorithmic
changes. Because of C’s lack of standardized vectorization, loopy does not generate vec-
torized C code by default. We added a custom back end, which uses the wrappers defined
in the vector class library [20] for generating vectorized instructions.

It is possible to generate local kernels for both matrix-based and matrix-free com-
putations. Matrix-based computations can rely on a wide range of preconditioners for
accelerating the solution of a linear system, but they gain only limited performance from
recent hardware developments like vectorization. Matrix free computations, on the other
hand, are FLOP bound and thus gain significant performance increases from vectoriza-
tion, but the access to robust preconditioner is limited. Therefore, our optimizations are
most effective for matrix-free computations.

3.2. ExaStencils Specific Generation

In contrast to DUNE, ExaStencils does not provide any components regarding the finite
element method. The only data structure it provides is a Field. Because of this limitation,
and because ExaStencils is a multigrid and stencil generation tool, we focus only on the
particular case of a regular grid. More precisely, the focus lies on a cartesian grid, which
has two triangles per square. With this limitation, the ExaStencils generation uses back
end specific optimizations.

The generation itself consists of three steps. At first, the given UFL is preprocessed
and traversed with an ExaStencils specific visitor, which translates the UFL description
into an intermediate representation consisting of Loopy and Pymbolic expressions. Dur-
ing this step, we evaluate quadrature points, weights, basis functions, and the derivatives
of basis functions. The evaluation is possible because of the limitations of the mesh and
is the essential optimization step.

Secondly, the IR is expressed as ExaStencils code. This includes unrolling of loops,
gathering additional information for the ExaStencils generator, and translate the IR as
ExaStencils function. For the translation of the loopy IR, we introduced a new back-
end for the ExaSlang language. Additional information given to the generation process
contains the domain and array size, parallelization strategy.

The generation from the UFL formulation does not create any initialization of fields,
visualization, time-stepping loop, nor a main-function. In those cases, we use the infor-
mation from the INI file and use Jinja [21] templates for a flexible implementation of
said accompanying program components.

In the last step of the whole generation process, the generated files are translated
into C++ with ExaStencils. During this step, ExaStencils performs the optimization and
parallelization, as described in the previous section.

The cartesian grid is visualized in Figure 2. Each cell has one lower and one upper
triangle. The coefficients of the triangles are stored in two separate arrays and utilize
the regularity of the grid, to create stencil kernels. The generated code consists of three
kernels. One handles the integration of the volume of the triangle. The second one han-
dles the integration on the faces and accesses its neighbors in a stencil pattern. The third
kernel takes care of the boundaries, and triangles directly adjacent to boundaries.
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Figure 2. ExaStencil Grids

4. Numerical Evaluation

In this section, we verify our toolchain in terms of correctness and scaling using the
linear transport equation,

∂tu+β ·∇u= 0 in Ω× (0,T )

u= 0 on ΓD

u(·,0) = u0 in Ω

This equation can be used to model the transport of a concentration through a domain.
We choose a discontinuous Galerkin approach with upwinding for the discretization of
the problem, leading to the following UFL description in Listing 2.

def upwinding_flux(normal, inside, outside):
return (conditional(inner(beta, normal) > 0, inside, outside) *

inner(beta, normal))
# definition of test and trial functions u and v, beta and initial value
n = FacetNormal(cell)(’+’)
# mass operator for temporal discretization
mass = u * v * dx
# residual operator r(u,v) = a(u,v) - F(v) for spatial discretization
r = (-1. * u * inner(beta, grad(v)) * dx +

upwinding_flux(n, u(’+’), u(’-’)) * jump(v) * dS)

Listing 2: Linear Transport

In terms of expressiveness, we can compare the lines of code (LOC) of the UFL
and INI specification, and the generated code. The specification consists of 76 LOC. The
code generation produces 339 LOC for DUNE and 1203 LOC for ExaStencils. In the
following, we verify the correctness of our code generator by examining the convergence
for a simple configuration. Additionally, we investigate the weak scaling of our generated
code.

4.1. Convergence Test

For the convergence test, we use Ω = [0,1]2 and T = 0.5 with an constant advection
β = [1 1]T . The inital condition u0(x) has a bell shaped concentration of the form
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Figure 3. Numerical Evaluation

u0(x) = cos(π||x− x0||) for x in a radius of r = 0.15 around x0 = [0.25 0.25]T and oth-
erwise u0 = 0. The exact solution at time t = 0.5 is the same as the initial value, except
that the concentration is centered around x0 = [0.75 0.75]. During this time frame, the
homogenous Dirichlet condition is applicable, since the concentration does not reach the
boundary.

Both backends use explicit time-stepping schemes for the temporal discretization,
with a timestep size small enough to achieve a stable simulation. Currently, ExaStencils
only supports the explicit Euler method, while dune-pdelab also supports higher-
order Runge-Kutta methods, in this case, a third-order strong stability preserving scheme
from [22].

ExaStencils uses a structured simplicial grid, while dune-pdelab uses an unstruc-
tured simplicial grid with the grid implementation from dune-uggrid. The coarse
structured grid consists of 1600 elements, while the unstructured grid has 1700 elements
on the coarsest level. In both cases, the grid is refined up to three times. Figure 3a
shows the the L2 error of the approximate solution at time t = 0.5 for each refinement
level. As expected, a convergence order of 2 can be seen.

4.2. Weak Scaling

Next, we investigate the weak scaling of our generated codes. With weak scaling, we can
show that the generated kernels still work with the respective framework at hand. Since
only element local kernels are generated for the dune-pdelab backend, the following
results are only influenced by the scalability of the used DUNE components. In [23,
24] the scaling capabilities of the dune-istl module are shown and in [25] scaling
results using the dune-pdelab module can be found. In the case of ExaStencils, the
kernels are generated for individual MPI processes, and its performance capabilities were
demonstrated in [26]. The communication itself happens outside of the kernels and is
entirely handled by the ExaStencils framework.

We consider the same test case as above, with 500 timesteps and a grid of the size
100× 100 per core for DUNE and of the size 128× 128 per core for ExaStencils. We
simulate on the SuperMUC-NG system, which is located at Leibnitz Supercomputing
Center (LRZ) in Munich.
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From Figure 3b it can be seen that the dune-pdelab code achives over 90% par-
allel efficiency, which is consistent with earlier findings [23,24]. The generated code for
ExaStencils achieves over 95% parallel efficiency. This demonstrates the proper usage
of our frameworks.

5. Conclusion and Outlook

In this paper, we have shown that we can use one toolchain to generate UFL for different
back ends, namely DUNE and ExaStencils. This approach provides us with a general
and flexible description of a mathematical problem, which can be numerically solved
with code generation to said back ends. In the particular case of the cartesian grid, we
can utilize the excellent speed of ExaStencils, while still having the possibility to rely
on DUNE’s performance for any more general problem. This approach is extensible to
other back ends as well, which is already done for FEniCS and Firedrake frameworks.
However, each framework can still have a different intention, approach, and specific
optimizations. FEniCS’s primary focus is on usability and generality, at which it excels,
while our work is primarily focused on performance. Firedrake is also geared towards
performance, but during their code generations, they use different IRs for algorithmic
and hardware optimizations. For future projects, a detailed comparison with Firedrake
and its pipeline is inevitable.

The simple example of linear transport shows a promising possibility of generating
fast code for a cartesian grid with ExaStencils. In the future, this approach should be
expanded to regular grids together with completing all features of the UFL. This includes
having a solver for systems of linear equations and condition-based fluxes. In future
work, the dune-pdelab specific code generation will explore additional optimizations
possible within the IR. Furthermore, the generation of an optimized preconditioner will
be investigated.
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Abstract. This paper investigates the use of invasive computing to enforce the
power budget in an HPC infrastructure. Invasive MPI along with the Invasive Re-
source Manager (IRM) provides an infrastructure for developing malleable/inva-
sive applications. In IRM, a power model is used to predict the power consumption
of each application. If a violation in power corridor is predicted, IRM reconfig-
ures the node allocation among the applications to keep the whole system back into
the power corridor. Since development of invasive applications is a complex task,
a new programming model called Elastic Phase Oriented Programming (EPOP)
is developed to simplify the invasive programming. This model is also capable of
collecting and sharing power usage metrics as well as performance metrics to IRM.

Keywords. dynamic resource management, power corridor enforcement, MPI,
High Performance Computing, Slurm Batch Scheduler

1. Introduction

Current contracts between energy companies and compute centers are written in ac-
cordance to the so called power corridor. Therefore, the power consumption must be
bounded by certain upper and lower limits. If the compute center goes beyond those lim-
its (i.e., if consumes less or more than what it is stipulated in the contract) some fines
could be applied by the energy company. The compute center can act as well as a power
stabilizer for the grid load [1]. This means that dynamic adaptions of the power corridor
might be part of the electricity contract, and could be requested by the electricity com-
pany. The compute center will have economic incentives for doing so, decreasing the
electricity costs. To enforce the upper limit it is possible to use well-known techniques
such as power capping; nevertheless these cannot be used to enforce the lower limit (i.e.,
to increase the system power consumption). In this work we show how a new paradigm
for parallel computing, namely invasive computing, can be used for such case.

Invasive computing is a paradigm introduced by Teich [2]. A program that follows
this paradigm, called henceforth ”invasive program”, should be able to request, use and
finally free processing, communication, and memory resources in the neighborhood of
its computing environment.

An invasive program is by definition malleable. This in turn means that certain op-
timizations, which would be otherwise hindered, are now possible. A nice example that
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comes to hand is MPI, which usually has a very static view of the application. All the
tasks that are created at the beginning of the application run when the batch scheduler has
distributed the resources. The resources are exclusively reserved for this job and the tasks
continue running until the end of it. In contrast, the resources assigned to an invasive
program could change at runtime.

Within the Transregio Special Research Centre Invasic (TRR89), TUM investigates
invasive resource management for HPC systems. We developed an MPI extension called
iMPI [3,4] which allows through three new MPI functions writing invasive MPI appli-
cations. In combination with an extension of the Slurm batch scheduler, nodes can be
dynamically redistributed among running MPI applications. This enables reducing idle
nodes by more flexible scheduling, increased energy efficiency by redistributing nodes
according to application efficiency, and supporting novel, dynamic applications, such as
a Tsunami simulation that can use the resources more efficiently.

Development of invasive applications presents certain challenges. For example, the
developer must take care of defining where an adaptation is possible, handling the newly
joining processes, redistribution of data, among others. This results in a complex control
flow which makes the development of invasive application difficult.

This paper reports on our two contributions. First contribution is a high level pro-
gramming model on top of iMPI called EPOP (Elastic Phase Oriented Programming
model) that simplifies the programming of iMPI applications by providing explicit con-
trol flow between elastic and rigid program phases. Second contribution is a power corri-
dor management infrastructure using extensions we made to iMPI, IRM and EPOP sys-
tem to collect power measurements, compute a power model and use it to keep the sys-
tem inside the power corridor by redistributing resources. The presented work is based
on an early prototype developed in [5,6] which was consolidated and extended.

This paper is divided into 6 sections. Section 2 will give an overview about the re-
lated work. Section 3 acts as an introduction to create invasive applications using our in-
frastructure. Section 4 explains in detail how the power corridor mangement was imple-
mented followed by section 5 which presents the evaluation of the infrastructure. Finally,
section 6 presents the conclusions.

2. Related work

EPOP is a programming model that provides malleability to MPI applications using the
invasive infrastructure provided by iMPI and IRM. Charm++ and Adaptive Message
Passing Interface (AMPI) [7] also supports the malleability of jobs by checkpoint restart
along with the task migration and dynamic load balancing. AMPI abstracts the MPI pro-
cesses as migratable threads and the runtime system of Charm++ deals with the schedul-
ing and migration of these threads. Standard MPI is extended to support the Charm++
runtime system. AMPI follows a message-driven execution model and there is oversub-
scription due to the threading. In contrast, EPOP is based on the invasive properties of the
iMPI and uses the standard MPI execution model with no oversubscription. EPOP can
also provide application specific profiling information like the node level power usage
and mpi time to IRM.

There are several techniques employed by supercomputing centers to control the
system-wide power consumption. One such notable technique is dynamically shutting
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down the jobs when a power budget is reached [8]. There is an approach where scheduler
decides the future job allocation based on an application’s power efficiency in the past
runs. Another technique is the usage of Intelligent energy-aware backfilling algorithms
along with stoppage of a node to control the total power usage [9]. In some techniques,
idle nodes are selectively powered down to meet the power requirements [10]. Another
power management approach is to utilize the power capping mechanisms supported by
the hardware as well as forcing a system to operate at specified frequencies. There are
plenty of researches [11] focussing on power capping as well as dynamic frequency scal-
ing techniques to bring down the power usage of the system. One such approach is us-
ing CPU and memory Dynamic Voltage and Frequency Scaling (DVFS) for system-wide
power capping [12]. One important difference between our work and these techniques is
that ours use invasive computing for dynamic power corridor management. Also, most
of these systems are using a reactive approach, which means that they only act once the
system is out of the power corridor. In contrast, we use a proactive approach where re-
source adaptations are performed based on the power usage predictions. Additionally,
our system can also handle dynamic power budget requirements.

3. Programming Invasive MPI Applications

Invasive applications can be developed using an invasive infrastructure, which in this
case is constituted by the Invasive Resource Manager (IRM) along with the Invasive
MPI (iMPI). IRM provides dynamic resource management and iMPI provides routines
to utilize this dynamism.

IRM is an extension of the Simple Linux Utility for Resource Management (Slurm)
[13]. IRM decides to expand/shrink an application based on its performance. IRM in-
forms iMPI of the decision. iMPI[4] is an extension to MPICH [14], where the following
new operations have been added to bring dynamism:

MPI Init adapt(...) signals the resource manager that the application will be adaptive.

MPI Probe adapt(...) is used to check whether there are any resource changes.

MPI Comm adapt begin(...) is called to begin the adaptation window.

MPI Comm adapt commit() finalizes resource adaptation.

Pseudocode for creating an iMPI application is shown in Listing 1. In the beginning,
MPI_Init_adapt() is used to signal IRM that the application is invasive. It is also
used to distinguish whether a process was created as part of a resource change or
was it created at the start of application (Listing 1, lines 4-7). This is essential since
MPI_Comm_adapt_begin() should immediately be called by the newly joining process
to start the adaptation(Listing 1, lines 8-11). This call will notify IRM that the newly
created processes are ready and IRM then notifies the existing processes about resource
redistribution.
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1 . . .
2 MP I I n i t a d a p t ( . . . , mytype )
3 / / I n i t i a l i z a t i o n b l o c k
4 i f mytype = s t a r t i n g p r o c e s s {
5 s e t p h a s e i n d e x = 0
6 }
7 e l s e { / / Newly j o i n i n g p r o c e s s e s
8 MPI Comm adapt begin ( . . . ) ;
9 / / R e d i s t r i b u t e da ta

10 MPI Comm adapt commit ( ) ;
11 }
12 / / Begin e l a s t i c b l o c k 1
13 i f ( p h a s e i n d e x == 0){
14 whi le ( b l o c k c o n d i t i o n ){
15 MPI Probe adap t ( . . . )
16 i f r e s o u r c e c h a n g e {
17 MPI Comm adapt begin ( . . . )
18 / / R e d i s t r i b u t e da ta
19 MPI Comm adapt commit ( )
20 }
21 i t e r a t i o n n umb e r ++;
22 / / Compute I n t e n s i v e p a r t
23 }
24 ph a s e i n d e x ++;
25 }
26 / / End e l a s t i c b l o c k 1
27 . . .
28 / / Begin e l a s t i c b l o c k n
29 i f ( p h a s e i n d e x == n ){
30 . . .
31 }
32 / / End e l a s t i c b l o c k n
33 / / F i n a l i z a t i o n b l o c k
34 . . .

Listing 1: Pseudocode of a simple iMPI
program

1. . .
2void i n i t b l o c k ( . . . ) {
3/ / Code i n i n i t i a l i z a t i o n b l o c k
4}
5s e t I n i t ( i n i t b l o c k ) ;
6
7
8
9void e l a s t i c b l o c k 1 ( . . . ) {
10/∗ Compute i n t e n s i v e p a r t o f
11e l a s t i c b l o c k 1 ∗ /
12}
13bool b l o c k c o n d i t i o n ( . . . ) {
14/ / Looping o f e l a s t i c b l o c k
15}
16void r e s o u r c e c h a n g e ( . . . ) {
17/ / R e d i s t r i b u t e da ta
18}
19s e t E l a s t i c ( e l a s t i c b l o c k 1 ,
20b l o c k c o n d i t i o n ,
21r e s o u r c e c h a n g e ) ;
22
23
24. . .
25
26s e t E l a s t i c ( e l a s t i c b l o c k n , . . . ) ;
27
28. . .
29
30void f i n a l i z e b l o c k ( . . . ) {
31/ / Code i n f i n a l i z a t i o n b l o c k
32}
33s e t R i g i d ( f i n a l i z e b l o c k , . . . ) ;
34. . .

Listing 2: Pseudocode in Listing 1 as an
EPOP program

Meanwhile, the existing processes should frequently check for the resource change
using MPI_Probe_adapt() during the computation. In case of a resource change,
MPI_Comm_adapt_begin() is called in order to take part in the adaptation (Listing 1,
lines 15-19).

Once all the processes are at the adaptation window, the entry point, required data,
etc. can be distributed (Listing 1, line 9 and 18) among new processes. Entry point refers
to the application region where the new processes can safely join the existing processes.
In the lines 13 and 29 of Listing 1, phase_index is used to identify these phases/entry
points. As seen in Listing 1, the application is logically divided into different elastic
blocks (parts of code where resource redistribution is possible) for creating suitable entry
points for the joining processes. MPI_Comm_adapt_commit() is then called to finalize
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the adaptation. After this point, all the processes continue the computation.
One of the issues with such an invasive application is the multiple control flows. As

seen from Listing 1, the pre-existing processes should identify the entry points, probe
for resource changes, enter the adaptation window, redistribute the data and entry points,
etc while the newly joining processes should immediately enter the adaptation window
and wait for the entry points, data, etc. This complicates the invasive application devel-
opment.

The Elastic Phase Oriented Programming model (EPOP) simplifies this application
development process by providing the concept of ”Phases” to mark different parts of an
application. A simple invasive application can have three logical parts/phases: an initial-
ization part, a compute intensive part that can be benefited from the resource adaptation
and a finalization part to write the results. EPOP provides different ”Phases” to represent
these parts. They are:

Init phase : to represent initialization part of an application.

Elastic phase : to represent compute intensive part of the application that can benefit
from resource adaptation.

Rigid phase : to represent parts of an application that does not need resource adaptation.

Branch phase : to switch between different phases.

A simple EPOP version of the application in Listing 1 is shown in Listing 2. The
EPOP driver, which is in charge of control flow in EPOP applications, will call iMPI
routines in the background (not shown in the listing) to make it invasive.

Elastic block in Listing 1 (lines 13-26) contains a looping construct (line 14) that
determines how many times the main compute part (line 22) will be called. It also con-
tains a resource change probing part (line 15), which checks for a resource change and
does data distribution, and an entry point transfer in case of a resource change (lines
16-20). These parts can be represented as a collection of simple functions like in Listing
2 (lines 14-26) and can be marked as an elastic phase using setElastic(...). EPOP
will probe for resource change and will call the resource_change function correspond-
ing to the elastic phase whenever there is a resource redistribution. Whenever the newly
joining processes are available, EPOP will bring it into the resource_change function
of the current elastic phase. As a result, phase_index used in lines 13 and 29 of Listing
1 is not needed in EPOP. The phases are executed in the same order as they are declared
(In Listing 2, lines 5,19,25 and 33 will declare phases).

EPOP and iMPI only provide methods to simplify the addition/removal of processes
into/from an application. In addition EPOP will also bring all the processes to a common
entry point specified by the developer. During resource change, a developer is responsi-
ble for maintaining the topological properties of the application (for example; create a
new topology with a new number of processes) as well as redistributing the data among
existing and joining/leaving processes. This design decision was made because each ap-
plication has its own data distribution, which might be based on number of processes,
threads, and other things known by the developer. For iMPI/EPOP application, users can
redistribute the data among all processes during the adaptation window and hence after
adaptation every process has the required data to do the computation.
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4. Power corridor management

4.1. Measurements

Since we were using proactive approach for power management, we needed to predict
whether the system will go out of power corridor. This prediction is done using the
time series analysis techniques described in Section 4.2 which in turn require previous
power measurements. On Intel systems, such as the one used for the testing, energy
consumption estimations are done through the Running Average Power Limit (RAPL)
sensors [15], and these values can be accessed via the Model Specific Registers (MSR).
The power can then be derived by dividing this value by the time between measurements.
There are multiple libraries that can be used to access these registers. For this case, we
chose to use LIKWID [16].

The infrastructure was deployed on a job allocation in SuperMUC [17]. There was
no cluster level measurement infrastructure available to us, and thus using RAPL was
the only possible way to obtain power measurements. This also meant that we had to
focus on the power consumed on the nodes, omitting the cooling system, networking
components, storage system, etc. Nevertheless, measuring only the power consumed by
the nodes is still enough to demonstrate the effectiveness of using resource redistribution
as a power corridor management technique. Additionally, if a cluster wide tool becomes
available, then the input power values can be taken from it instead of RAPL.

IRM communicates to the EPOP driver the frequency and number of measurements
to be taken. Next, one rank per node will create a thread in charge of taking power mea-
surements. Once it has accumulated the required number, they are aggregated by the
leading node, and then sent to the scheduler. At this point, IRM receives the measure-
ments and stores them. Once it has enough data, the forecast module comes into play.
The main purpose of this module is to predict the future maximum and minimum power
consumption of the system. They represent the worst case scenarios, i.e., the cases where
the system could go out of the power corridor.

4.2. Forecasting

Using time series analysis one can try to find an underlying structure of some data, such
as power consumption values. Two things are required: 1. a valid time series to work
with. 2. A specific method to analyse the data. For the latter, we have chosen to use
three techniques, the AutoRegressive Integrated Moving Average (ARIMA), Seasonal
ARIMA with exogenous regressors (SARIMAX) and the Holt-Winters method.

ARIMA is a ”classical model”, in the sense that it has been studied extensively. It is
composed of an Integrated component, which is in charge of making data stationary, and
an ARMA component, which models this stationary data. The latter can again be sub-
divided into an AutoRegressive component (AR), which captures the relation between
the current value of the time series and some of its past values, and a Moving Average
component (MA) that represents the influence of an often unexplained random shock.
Using both of them, plus the Integrated component, one can derive the ARIMA model.
SARIMAX is an extension of ARIMA that supports time series with a seasonal com-
ponent. The third method used in this work, called Holt-Winters or Third Exponential
Smoothing, assigns exponentially decreasing weights to past observations. It is capable
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of model data with both trend and seasonality, distinguishing for the latter the case of
additive and multiplicative seasonality.

4.3. Decision Making

Every time the controller predicts that the system might go outside the power corridor, it
is necessary to redistribute the nodes to try to prevent it. This problem is expressed more
formally in Equation 1, where we have K applications running on a system with N nodes
(K ≤ N). We assume that every idle node consumes pidle power. The idea is to minimize
the power consumed f (kidle) by the idle nodes, such that both the upper U and lower L
boundaries are fulfilled.

MINIMIZE

f (kidle) = kidle ∗ pidle
SUBJECT TO

l ≤
K−1

∑
i=0

ki ∗ p(i)min+ kidle ∗ pidle

u≥
K−1

∑
i=0

ki ∗ p(i)max+ kidle ∗ pidle

1≤ ki ≤ N, ki ∈ N\{0}, i= 0, · · · ,K−1

0≤ kidle < N, kidle ∈ N

(1)

The solution to the system is found via Pulp, a Python Integer Programming Solver
module [18]. In turn, Pulp acts as an interface to several solvers. In this case we have
used Coin-or Branch and Cut (CBC). We tested Pulp with systems with K = 2,4,8 and
16, and the solving time was always under 0.5 seconds. Considering that a decision has
to be made from one schedule pass to the next, Pulp is fast enough. Once a valid node
distribution is found, an adaptation occurs (see Section 3).

4.4. Guarantees

In an infrastructure with a size of N Nodes, where K applications are running:
Our system will enforce upper power corridorU , if and only if the power consump-

tion of the system when each application runs in only one node is less than the power
corridor upper boundU , as expressed in Equation 2.

U ≥
K

∑
i=1

p(i)max+(N−K)∗ pidle (2)

Similarly, our system will enforce lower power corridor L, if and only if, the power
consumption of the system is greater than the lower power corridor boundary when the
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most power consuming application A is running on N− (K−1) nodes. This is shown in
Equation 3.

L≤
K−1

∑
i=1

p(i)max+(N− (K−1))∗ kA ∗ pA (3)

5. Evaluation

The power corridor management infrastructure was run as a standard Load Leveler job in
SuperMUC Phase 2 [17]. The infrastructure was run on 32 nodes (896 processes) for the
forecasting and upper power corridor enforcement tests while the remaining tests were
performed on 16 nodes (448 processes). Three EPOP applications (2D Jacobi heat sim-
ulation, LU decomposition and Pi calculation) were used to evaluate the infrastructure.
This evaluation is a proof-of-concept that the dynamic resource management can be used
for enforcing the power corridor on a system with varying power constraints.

5.1. Forecasting

Power consumption predictions from three different models are shown in Figure 1a.
These models were trained on-the-fly and the one with the highest accuracy was cho-
sen by IRM for forecasting. As observed in Figure 1a, the SARIMA model produced
more accurate predictions among the different models and was used by IRM to make the
scheduling decisions. Accuracy of the model was determined using the Mean Absolute
Percentage Error (MAPE).

5.2. Upper and Lower Power Corridor Enforcement

Figure 1b and 1c shows the effect of dynamic resource adaptation on system wide power
usage. Initially, two EPOP applications were started with 12 nodes for Application 1 and
20 for Application 2. The power corridor was set between 3000 and 4000Watts. It can be
seen from Figure 1b that the upper power bound has already been violated from the start
of the applications. Therefore, during the first scheduler pass, the system redistributes
the number of nodes. As a result, application 1 was reduced to 3 nodes and application
2 was expanded to 24 nodes. This lead to the reduction of power usage, bringing back
the system to the power corridor after 300 seconds. During the next scheduler passes, the
forecast module predicts no violation of the power corridor and as a result, the resource
configuration remained same.

Similarly, the lower power corridor enforcement is shown in Figure 1c. The power
corridor was set between 1500 and 2500 watts. Two applications (Jacobi heat simulation
and LU decomposition) were started with 4 nodes each. It can be observed that the lower
power corridor of the system was violated from the beginning. To enforce the power
corridor, IRM shrunk Application 1 to 2 nodes and expanded Application 2 to 14 nodes
during the first scheduler pass. As a result, the system was back in the power corridor.

J. John et al. / Invasive Computing for Power Corridor Management 393



(a) Forecasting the power usage (b) Upper power corridor enforcement

(c) Lower power corridor enforcement (d) Dynamic power corridor enforcement

Figure 1. Power Corridor Management

5.3. Dynamic Power Corridor Enforcement

Dynamic power corridor enforcement is shown in Figure 1d. Initially, the power corridor
was set between 100 and 600 watts. An invasive Pi calculation application was started on
a single node. It can be observed that the system is in the power corridor. Then the power
corridor was shifted to 700 and 1200 watts. IRM expanded the application to 9 nodes and
brought back the system into the power corridor. The power corridor was then increased
to 1300 and 1900 watts. We can observe from Figure 1d that IRM again redistributed the
resources to bring the system back in the power corridor. This test simulates dynamically
changing power constraints and how the system is responding to it.

6. Conclusion and Outlook

Power corridor management is crucial for supercomputing centers. As more and more
renewable energy sources are used for power generation, HPC centers must be flexible
in adapting to the energy requirements, since the supply of renewable energy will be
varying due to external factors. Resource dynamism and flexible scheduling can be used
to accommodate such dynamic scenarios. We have shown in this paper that invasive
computing can be used as a mechanism to enforce the power corridor. We were able
to regulate power consumption without taking drastic measures, such as killing power-
hungry applications. One of the shortcomings of this invasive approach is that frequent
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resource redistributions can be expensive. Our ongoing work, a hybrid system which can
use DVFS along with invasive computing to manage power requirements, addresses this
shortcoming.
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Abstract. In this work, we investigate the performance impact of using the Rust
programming language instead of the C++ one to implement two basic parallel pat-
terns as provided by the FASTFLOW parallel library. The rationale of using Rust

is that it is a modern system-level language capable to statically guarantee that if a
data reference is sent over a communication channel, the ownership of the reference
is transferred from the producer to the consumer. Such reference-passing semantics
is at the base of the FASTFLOW programming model. However, the FASTFLOW

library does not enforce nor checks its correct usage leaving this burden to the pro-
grammer. The results obtained comparing the FASTFLOW/C++, and the Rust im-
plementations of the same implementation schema of the Task-Farm and Pipeline
patterns show that Rust is a valid alternative to C++ for the FASTFLOW library with
indubitable benefits in terms of programmability.

Keywords. Multi-cores, parallel programming, reference capability, Rust, C++

1. Introduction

Multi-core and many-core processors are today largely used both in professional and
consumer settings. Multi-cores are tightly-coupled Multiple-Instruction Multiple-Data
(MIMD) architectures. They are shared-memory multiprocessors systems integrated into
a single chip, often referred to as Chip Multi-Processors (CMP). Many-core processors
are CMP systems that are designed to employ a high degree of parallelism (currently up
to a few hundred cores), by using a large number of simpler cores than those used in
general-purpose multi-cores. The broad diffusion of CMP systems has had and still is
having, an important effect on how software is developed.

In these systems, the physically shared memory is the primary means of cooperation
among threads and processes running on different cores. Communications occur implic-
itly through loads and stores coordinated by synchronization protocols typically imple-
mented using locks. Locks seriously limit concurrency, they are costly operations requir-
ing the intervention from the OS to suspend the thread and restore it later. Moreover,
locks might introduce deadlock situations into the application, and, therefore, increase
the debugging and maintainability software phases.

A different approach is to use message passing semantics to coordinate the concur-
rent entities. A message induces an implicit synchronization between the sender and the
receiver. This model may be used merely for synchronization purposes while data may
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be shared exploiting the cache-coherent hardware capabilities of modern CMPs. Indeed,
sharing mutable data in a producer-consumer fashion is generally more efficient than
explicit copying, especially for large data structures. However data sharing is danger-
ous. Changes to a data reference might propagate producing unexpected data-races, i.e.
two concurrent operations (where at least one is a write operation) to the same memory
location without any synchronization.

The message passing model is used as a synchronization mechanism in some C++-
based parallel library, such for example FASTFLOW [3] and GrPPI [5]. The C++ pro-
gramming language is commonly used for its large set of features and its performance.
However, it does not provide strong guarantees for memory safety. Modern program-
ming languages such as Rust [10] and Pony [4] have a reference capability system that
statically checks access permissions to memory locations. In Rust, this feature is ex-
pressed with the concept of ownership [7]. The idea behind ownership is that, although
multiple aliases to a resource may exist simultaneously, to perform specific actions on
the resource (e.g., reading or writing a memory location) should require some unique
capability owned by exactly one alias at any point in time during the execution of the
program. This concept permits to enforce at compile time that every time a variable is
sent over a communication channel, its ownership capability is also sent, so the sender
cannot access the data anymore [11]. Such reference capability semantics is employed in
the C++-based FASTFLOW parallel programming library. FASTFLOW is a library offer-
ing both high-level parallel patterns as well as composable parallel building blocks suit-
able for building run-time systems for new DSLs or for building new high-level parallel
patterns. However, the reference capability semantics is not enforced by the FASTFLOW

library, leaving the burden of respecting the semantics directly to the run-time system
programmer.

In this work, we analyze the implications on the programming model and on the
overall application performance of using the Rust language to implement the FAST-
FLOW parallel semantics. Specifically, we considered two simple synthetic benchmarks
implemented by using two FASTFLOW parallel patterns: the Task-Farm pattern and the
Pipeline pattern. These two patterns are particularly relevant because they are used in
FASTFLOW as basic building blocks of other more complex parallel patterns (e.g., Par-
allelFor Divide&Conquer, and Macro Data-Flow). We aim to demonstrate that a system-
level language such as Rust which provides strong statically checked features to the pro-
grammer can be a valid alternative to C++ to write the parallel patterns offered by the
FASTFLOW library. From the programming model standpoint, the Rust implementation
has the additional advantage of statically enforcing the FASTFLOW producer-consumer
semantics at the language level. To meet the objective, the FASTFLOW communica-
tion channel implemented as a Single-Producer Single-Consumer (SPSC) lock-free un-
bounded queue [2] has been adequately and safely wrapped to build a Rust library to
be used for the implementation of inter-thread communication channels in Rust. The
results obtained by running the synthetic benchmarks on a 24-core Intel multi-core plat-
form, demonstrate that the Rust implementation of the benchmarks considered exhibits
the same level of performance of the FASTFLOW C++ implementation.

The remaining of this paper is organized as follows. The next section presents the
background, specifically the FASTFLOW and the Rust language features. Then, Section 3
provides the motivations of this work. The experimental tests are described in Section 4.
Finally, Section 5 briefly reviews similar works and summarizes our contributions.
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Figure 1. FASTFLOW library producer-consumer semantics: sending references to shared data over a SPSC
lock-free FIFO channel.

2. Background

2.1. FASTFLOW

FASTFLOW is a C++ parallel programming library targeting multi/many-cores and offer-
ing a multi-level API to the parallel programmer [3,]. At the top level of the FASTFLOW
software stack, there are some ready-to-use high-level parallel patterns such as Pipeline
Task-Farm, ParallelFor, Divide&Conquer, StencilReduce, Macro Data-Flow and so on.
At a lower level of abstraction, the library provides customizable sequential and parallel
building blocks addressing the needs of the run-time system programmer. The idea is
that new high-level patterns or new high-level libraries can be built by a proper assembly
of the building blocks [1].

The library was conceived to support highly efficient stream parallel computations
on heterogeneous multi-cores. The library is released open-source under the LGPLv3
licence 2.

The FASTFLOW library is realized as a modern C++ header-only template library
that allows the programmer to simplify the development of parallel applications mod-
eled as a structured directed data-flow graph (called concurrency graph) of processing
nodes. A FASTFLOW node represents a basic unit of computation. Each node can have
zero or more input channels and zero or more output channels. The graph of concurrent
nodes is constructed by the assembly of sequential and parallel building blocks as well
as higher-level parallel patterns. A generic node of the concurrency graph (being it either
standalone or part of a more complex parallel pattern) performs a loop that: i) gets a data
item (through a memory reference to a data structure) from one of its input channels; ii)
executes a functional code (i.e. business logic) working on the data item and possibly on
a state maintained by the node itself; iii) puts a memory reference to the result item into
one or multiple output channels selected according to a predefined or user-defined pol-
icy. Input and output channels are implemented with a Single-Producer Single-Consumer
(SPSC) FIFO queue. Operations on FASTFLOW queues (that can have either bounded or
unbounded capacity) are based on non-blocking lock-free synchronizations enabling fast
data processing in high-frequency streaming applications [2].

From the programming model standpoint, the FASTFLOW library follows the well-
known Data-Flow parallel model where channels do not carry plain data but references
to heap-allocated data. The semantics of sending data references over a communication
channel is that of transferring the ownership of the data pointed by the reference from the
sender node (producer) to the receiver node (consumer) (see also the schema in Figure 1).
The data reference is de facto a capability, i.e. a logical token that grants access to a given

2FASTFLOW home: http://calvados.di.unipi.it/fastflow
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data structure or to a portion of a data structure. On the basis of this reference-passing
semantics, the receiver is expected to have exclusive access to the data value received
from one of the input channels, while the producer is expected to not use the reference
anymore. This semantics is not directly enforced by the library itself with any static or
run-time checks.

2.2. Rust

Rust [10], is a modern system-level programming language that focuses on memory
safety and performance.

The principal novelty of Rust is in the management of memory. Languages like
C/C++ provide the user with total control on memory allocation and deallocation. Pro-
grammers can create, destroy and manipulate the memory space without any limitation.
This is a very attractive feature for expert programmers, but it can also lead to very subtle
bugs and vulnerabilities (e.g., buffer overflow). Other popular languages such as Java,
rely on a Garbage Collector (GC) to safely manage memory without the explicit inter-
vention of the user. The increased security comes along with some performance degra-
dation due to the GC service running in the background trying to reclaim unused mem-
ory. Instead, the Rust language deals with memory management through the ownership
concept [8]. The compiler statically checks a set of rules to control the memory allo-
cation/deallocation and memory accesses. Therefore, the compiler guarantees a certain
level of memory safety at the price of a more complex and longer compilation process
but without any additional overheads at running time.

Concerning the owenship feature, once a variable is bound with a value, it gains
exclusive ownership of it. Therefore, only the owner can access that memory location
until it transfers the exclusive ownership to another variable. The ownership rule states
three simple concepts [8]: 1) each value has a variable that is called owner; 2) there can
be only one owner at a time; 3) when the owner goes out of scope, the value will be
dropped.

Values stored in the heap maintain the same rules and when the owner variable goes
out of scope the memory is automatically released. In this way the user does not have
to directly deal with allocation and deallocation instructions avoiding the risk of double
frees or memory leaks.

To improve the flexibility of the language, Rust also implements the borrowing
concept through memory references. It is possible to create an immutable reference by
using & and a mutable reference by using &mut. Both of them borrow the value from the
original owner. The compiler imposes the following rules: 1) at any given point in time,
only one mutable reference or any number of immutable references may exist; 2) the
borrowed value cannot be accessed by the original owner; 3) when the reference goes
out of scope the ownership goes back to the original owner.

Rust has also the lifetimes concept to avoid dangling references. A lifetime is the
scope in which a reference is valid and the compiler enforces that it must be smaller of the
scope of the value referenced. Lifetimes are usually inferred by the compiler. However,
there are cases in witch the user has to annotate functions with life time parameters.

Finally, Rust provides native threads support, synchronization mechanisms such as
mutex and atomic variables as well as Multi-Producer Single-Consumer (MPSC) com-
munication channels for connecting threads. Indeed, the compiler guarantees that either
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multiple threads have only read access to a memory location or only one thread has read
and write access to it. To manage the mutability of variables and to guarantee memory
safety in multi-thread applications, Rust defines the Send and Sync traits. The Send

marker trait indicates that ownership of the type implementing Send can be transferred
between threads. Almost every type in Rust implements Send and types composed en-
tirely of types that are Send-able are themselves Send-able. The Sync trait indicates that
it is safe for the type implementing Sync to be referenced from multiple threads.

3. Motivations

Many mainstream parallel programming libraries are written in C/C++ primarily for per-
formance reasons. Often, the burden of maintaining non-interference among threads im-
plementing the application is in charge of the parallel programmer which has to correctly
use either locks or (hopefully) suitable high-level parallel abstractions (e.g., parallel pat-
terns). From the one hand, the usage of low-level synchronization mechanisms allows
the programmer to have great flexibility and to tweak the code applying specific opti-
mizations, but on the other hand, it exposes to potential unexpected behaviors and subtle
data-races.

The so-called “modern C++” (i.e. C++11 and above) introduced move semantics
and smart pointers features which greatly help the programmers to avoid errors related
to pointer arithmetic without affecting (in the majority of cases) the overall performance.
However, the responsibility to correctly use such new features is still in charge of the pro-
grammer that might not be a parallel programming expert. Moreover, in some situations,
C++move semantics may produce additional data copies, for example in the one-to-many
communication pattern implementing a data scattering operation.

Figure 2. Logical schema of the FASTFLOW two-stage pipeline described in Listing 1.

As an example, a valid FASTFLOW program is the one sketched in Listing 1. It
implements a two-stage pipeline where the two stages work disjointly on two distinct
portions of the same vector in a producer-consumer fashion. The producer (S1) allocates
a standard vector of size 2N and then uses two raw pointers to point to two distinct parts
of the vector that are swapped at every producer-consumer iteration. Each stage works
on a portion of length N of the initial vector. The logical schema of this simple producer-
consumer use-case is sketched in Figure 2.

In this simple example, there is no guarantee that within the workS1 or workS2
functions some wrong accesses to a portion of the vector may produce data-races due to
buffer overruns. This kind of implementation would not be possible in the Rust language
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1 struct Stage1: ff_node_t<float> {

2 Stage1():base(2*N) {}

3 int svc_init() {

4 initialize(base);

5 p1=base.data(); p2=p1+N;

6 std::swap(p1,p2);

7 return 0;

8 }

9 float* svc(float* in) {

10 if(haveToStop(p1,p2))

11 return EOS;

12 std::swap(p1,p2);

13 ff_send_out(p1);

14 workS1(p2, N, 10.0);

15 return GO_ON;

16 }

17 std::vector<float> base;

18 float *p1,*p2;

19 } S1;

20 struct Stage2: ff_node_t<float> {

21 float* svc(float* in) {

22 workS2(in, N, 20.0);

23 return in;

24 }

25 } S2;

26

27 int main() {}

28 // creates the pipeline

29 ff_Pipe pipe(S1,S2);

30 // creates the feedback channel

31 pipe.wrap_around();

32 // synchronous execution

33 if(pipe.run_and_wait_end()<0) {

34 error("running pipe\n");

35 return -1;

36 }

37 return 0;

38 }

Listing 1: A simple producer consumer program in FASTFLOW

because the ownership rule is violated by the concurrent ownership of the vector by the
two stages. In Rust, the programmer that wants to implement a similar program is forced
to declare two separated vectors and to alternatively move the vectors’ ownership through
the communication channel connecting the two nodes. Moreover, accesses outside the
boundaries of the two vectors is checked at run-time. It is worth noting that, a similar
implementation is also possible in C++ but, while in Rust there is basically no other
way to implement that program, in C++ there is nothing that may prevent a potentially
dangerous implementation using raw pointers.

Concerning the FASTFLOW parallel library, the point is that the potentially wrong
usage of the reference-passing capability approach, which is at the base of the FAST-
FLOW programming model, is not checked by the library and the potential faulty behav-
ior is not signaled to the user. The programmer must properly use the provided mecha-
nisms according to the programming model. To alleviate the burden of the programmer,
we decided to re-implement the FASTFLOW library using a language that can enforce
reference capability at compile time. In this work, we want to measure the performance
impact of using the Rust language with respect to a less-safe C++ implementation. Rust
allows static checking at a higher level of abstraction than the one used to check the C++
move semantics. Our uphold that a proper combination of a system-level language with
strong static checking features and a structured parallel programming methodology such
the one offered by the FASTFLOW parallel library can significantly help the program-
mer to produce efficient and portable code with reduced programming effort and shorter
time-to-solution.
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4. Evaluation

In this section, we show the performance evaluation of using the Rust programming
language instead of the C++ one in the implementation of two benchmarks based on two
well-known FASTFLOW parallel patterns, namely the Task-Farm and the Pipeline. We
selected these two patterns because they are used within the FASTFLOW library as basic
building blocks for the implementation of other more complex parallel patterns.

4.1. Low-level mechanisms implementation

To have a fair performance comparison between the implementations of the two bench-
marks, we need an implementation of the FASTFLOW communication channel in Rust.
Initially, we considered to use the Multi-Producer Single-Consumer (MPSC) unbounded
queue provided by the Rust standard library, but we found out that it does not deliver the
expected performance, particularly for fine-grained computation. Therefore, we decided
to port the C++-based FASTFLOW lock-free Single-Producer Single-Consumer (SPSC)
unbounded queue [2] in Rust. However, instead of writing it from scratch mimicking
the same FASTFLOW implementation, we decided to create a memory-safe Rust inter-
face to the original C++-based FASTFLOW queue. The name of the Rust interface for the
queue is ff buffer3.

Figure 3. Integration of the FASTFLOW’s unbounded SPSC lock-free queue in Rust.

Figure 3 shows the logical schema of the ff buffer library that we used to integrate
the FASTFLOW queue in Rust. The implementation is composed of two distinct parts:
the RustAPI providing a memory-safe interface of the queue, and the static C library that
exposes the “unsafe” C interface of the C++ implementation. The ff buffer library can
be directly compiled as a standard Rust library. Moreover, it is possible to use the Cross
Language Linking Time Optimization4 feature of the LLVM compiler infrastructure to
reduce the overhead of jumping back and forth between Rust and C++.

Another FASTFLOW feature we decided to use in the experiments is the ability to
automatically pin all the spawned threads to distinct machine cores to improve the ap-
plication performance when the number of threads is less than or equal to the available

3Git repository link https://github.com/lucarin91/ff_buffer
4http://blog.llvm.org/2019/09/closing-gap-cross-language-lto-between.html
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cores. For this purpose we used the Rust third-party library core affinity5 to set the
thread-to-core affinity for all Rust threads according to a simple round-robin assignment
strategy.

Figure 4. Implementation schema of the Task-Farm pattern (left-hand side) and of the Pipeline with feedback
channel pattern (right-hand side).

In Figure 4 are sketched the implementation schemes of the two FASTFLOW parallel
patterns that we used as benchmarks for comparing the performance of the C++ and Rust
versions. The one on the left-hand side is the implementation of the Task-Farm pattern
where the pool of Workers is composed of sequential nodes. Each node is implemented
as a thread. In the tests we executed, each Worker performs a configurable number of
floating-point operations on each input data element. The Emitter node is in charge to
assign data elements to theWorkers according to a pre-defined or user-defined scheduling
policy. We considered a simple round-robin assignment. The data elements produced by
the Workers are all collected by the Collector node. This test aims to study the scalability
of the Task-Farm pattern by varying the number of Worker threads.

On the right-hand side of Figure 4 is shown the Pipeline with feedback pattern as
implemented in FASTFLOW. In the tests we executed, we considered a Master stage
(the first one) and a configurable set of other stages. The Master stage is in charge of
generating a fixed-length stream of data elements in batches. The other stages of the
pipeline chain only forward the input element received to the next stage. The last stage
of the pipeline is connected to the Master stage, forming a circular pipeline. This test
aims to study the maximum throughput sustained by the Pipeline pattern by varying the
number of stages.

4.2. Results

All tests reported in this section were conducted on an Intel Xeon Server equipped with
two Intel E5-2695 Ivy Bridge CPUs running at 2.40GHz and featuring 24 cores (12 per
socket). Each hyper-threaded core has 32KB private L1, 256KB private L2 and 30MB of
L3 shared cache. The machine has 64GB of DDR3 RAM, running Linux 3.14.49 x86 64
with the CPUfreq performance governor enabled and turbo boost disabled. We used the
GNU gcc compiler version 7.2.0 with the O3 optimization flag enabled and the rustc
compiler version 1.38.0 with opt-level=3.

The tests were executed ten times, and the values reported in the plots is the average
value of all runs. The standard deviation is small (less than 1%) and thus omitted for
readability reasons.

5https://crates.io/crates/core_affinity
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Figure 5. Left:) Scalability of the Task-Farm pattern implementation with two different computation granu-
larities. Right:) Throughput of the Pipeline pattern with feedback channel varying the number of stages.

For the Task-Farm pattern we considered a stream of 50,000 elements and two
different per-element computation granularities: small (about ∼5 μs), and large (about
∼5ms). On the left-hand side of Figure 5 is shown the scalability of the Task-Farm pat-
tern written in C++ (i.e. FASTFLOW v.3.0.0) and in Rust, respectively. The results show
that the two versions have similar performance figures both for the small and large test
cases. Both versions exhibit good scalability figures when the number of total threads
used (that is equal to the number of Workers plus two) is less than or equal to the num-
ber of physical cores of the machine (this is the grey area of the plot). The Rust imple-
mentation of the benchmark uses a more simple (and aggressive) dequeueing strategy
than the one offered by the FASTFLOW library. Moreover, the Rust version leverages on
the jemalloc memory allocator. These two optimizations allow to slightly improve the
performance of the Rust version in the small test case when the number of Workers is
high. Conversely, for the large test case, the more aggressive polling approach used in
the Rust implementation produce more overhead when the number of threads is greater
than the available logical cores (i.e. the case of 48 Workers).

For the Pipeline test case, we consider a total number of 1M elements divided in an
initial batch of 1K elements and 4K small batches each one containing 256 elements.
Figure 5 shows the number of messages exchanged per second by varying the number
of stages of the pipeline chain. The performance of the two versions is almost the same,
and the throughput increases almost linearly with the number of stages with a small drop
corresponding to 24 pipeline stages because from that point more threads than physical
core are used.

The results obtained demonstrate that there is no significant performance difference
between the C++ and Rust versions for the two patterns considered.

5. Related Work and Summary

The Rust programming language is attracting increasing interest in the parallel commu-
nity because of its comparable performance with C/C++ and its memory safety.

Libraries such as rsmpi6 and Raycon7 are examples of well-known parallel program-
ming libraries that moved from C/C++ to Rust. Rsmpi is a MPI binding for Rust, and

6https://github.com/bsteinb/rsmpi
7https://github.com/rayon-rs/rayon

L. Rinaldi et al. / Enforcing Reference Capability in FastFlow with Rust404



it permits to use the MPI library from within Rust programs. Raycon is a data parallel
library similar to the OpenMP standard. It supports parallel computations such as map,
flap-map, filter, sorting and reduce over Rust collections.

Other research works such as [6] and [9] try to improve and extend the Rust own-
ership system to better support parallel computations. The former proposes a statically
checked communication protocol between threads. The latter proposes an extension of
the ownership system where it is possible to specify that the same thread can own mul-
tiple times the same variable. Such extension simplifies code writing, especially in an
event-based system, while maintaining the same security guarantees.

In this work, we evaluated the impact of statically enforcing the reference-passing
semantics used in the FASTFLOW parallel programming library by using the Rust lan-
guage features. We evaluated the impact on the performance of a Rust implementation
of the Task-Farm and Pipeline pattern as provided by the FASTFLOW library. The results
obtained show that the Rust language can be a valid alternative to the C++ one for imple-
menting the FASTFLOW parallel patterns with several benefits in terms of programmabil-
ity. However, more work is needed to build the entire software stack of the FASTFLOW
library.

As future work, we intend to analyze and discuss the implementation of other par-
allel patterns and in particular of the Map one which poses non-trivial implementation
problems if implemented in Rust.
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AITuning: Machine Learning- ased
Tuning Tool for Run-Time
Communication Libraries

Alessandro Fanfarillo a,1, Davide Del Vento a

aNational Center for Atmospheric Research, Boulder, Colorado, USA

Abstract. In this work, we address the problem of tuning communication libraries
by using a deep reinforcement learning approach. Reinforcement learning is a ma-
chine learning technique incredibly effective in solving game-like situations. In
fact, tuning a set of parameters in a communication library in order to get better
performance in a parallel application can be expressed as a game: Find the right
combination/path that provides the best reward. Even though AITuning has been
designed to be utilized with different run-time libraries, we focused this work on
applying it to the OpenCoarrays run-time communication library, built on top of
MPI-3. This work not only shows the potential of using a reinforcement learning
algorithm for tuning communication libraries, but also demonstrates how the MPI
Tool Information Interface, introduced by the MPI-3 standard, can be used effec-
tively by run-time libraries to improve the performance without human interven-
tion.

Keywords. MPI Machine Learning Reinforcement Learning Coarray Fortran

1. Motivaton

Tuning a general-purpose communication library is tightly related to the communication
pattern utilized by the application, the network interconnect, the computer architecture,
and the problem size. Profilers and other performance analysis tools have improved sub-
stantially in recent years and they are now able to provide the user with very accurate and
descriptive interpretations of the various bottlenecks in a parallel application. However,
most users in the scientific computing community do not have the time or expertise to
study and tune the parameters of the communication libraries used by their codes. In fact,
optimizing the parameters of communication libraries requires technical knowledge and
time to try different configurations. For example, most Message Passing Interface (MPI)
implementations offer hundreds of parameters that can provide significant speedup if
they are set to their optimal value (which varies depending on the application), compared
to the default configuration.

Furthermore, general-purpose communication libraries, like MPI, express several
parallel programming models (e.g. one-sided, message-passing, task-based, etc...), and
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the optimal setting of a parameter used for a programming model might impact the per-
formance when used on a different application, using a different programming model.

On the other hand, run-time communication libraries usually express fewer parallel
programming models than general-purpose parallel programming libraries, and thus the
communication pattern exposed by a run-time library can be interpreted and modeled
much more easily.

In this work, we explore the use of machine learning techniques to optimize a par-
ticular run-time communication library, namely the OpenCoarrays run-time (used by the
GNU Fortran compiler to implement the coarray support) and particularly its implemen-
tation on top of MPI-3.

Another important goal of this work is to demonstrate how the MPI Tool Informa-
tion Interface, introduced by the MPI-3 standard, can be used effectively for automatic
performance improvements when used by run-time libraries based on MPI-3, such as
OpenCoarrays.

2. Related Work

The problem of tuning and auto-tuning communication libraries, like MPI, has been
tackled several times in the past, using many different approaches.

In [10], Miceli et al. propose AutoTune, an extension of Periscope [1], an automatic
distributed performance analysis tool. This framework tries to optimize a parallel appli-
cation under many aspects including MPI tuning, thread affinity, and CPU frequency.

In [15], Sikora et al. extend again Periscope as part of the AutoTune project to im-
plement autotuning capabilities for MPI applications. The output of the framework pro-
posed is a set of tuning recommendation that can be integrated into the production ver-
sion of the code. This tool provides the user with evolutionary algorithms able to heuris-
tically guide the search of the most significant tuning parameters in MPI by executing a
reasonable number of experiments.

Pellegrini et al. in [12] propose the use of two machine learning algorithms (decision
trees and neural networks), to implement a predictive model that analyzes any MPI input
program, and according to gained knowledge of the architecture, produces the value
of a set of a predefined runtime parameters that provide optimal speedup. The overall
approach proposed by Pellegrini et al. is similar to what we describe in this work, but our
machine learning approach and modelization is completely different because it makes
use of deep reinforcement learning techniques.

3. (Deep) Reinforcement Learning

The idea behind Reinforcement Learning (RL) is to have a learner called agent which
interacts with an environment through actions. The environment responds to the actions
and it presents new situations to the agent. The environment also gives rise to rewards:
a numerical representation that the agent tries to maximize. The final goal of Reinforce-
ment Learning is to find a policy, that maximizes the overall reward for the agent. A pol-
icy is a mapping from states to probabilities of selecting a certain action. Reinforcement
Learning methods specify how the agent changes its policy as a result of experience.
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Q-Learning is a reinforcement learning technique. It belongs to the class of model-
free methods and tries to estimate the Q-value function using the update equation ex-
pressed in 1.

Q(st ,at) = Q(st ,at)+α [rt+1+ γmax
a

Q(st+1,a)−Q(st ,at)] (1)

Q-learning is just the Bellman optimality equation applied iteratively to evaluate and
improve the Q-value function in a model-free problem, using a greedy policy. In other
words, the best update rule to estimate the optimal action-value function Q for a given
state, is the quantity that leads to the optimal policy. The optimal policy is the one given
by the Bellman optimality equation, which is the max Q among all possible actions in
the next state.

The Q-learning algorithm can be implemented by just keeping track of the Q-values
of all the visited states in a table, but this is prohibitive for real problem with a large
number of states.

Alternatively, one could estimate the Q-value of the states, using various techniques.
One of these is called “Deep Q-Learning” and it involves the use of a deep neural network
for the estimate. Unfortunately, applying non-linear function approximators to model-
free algorithms, such as Q-learning, could cause the Q-network to diverge [16], however
there have been works to fix the divergence issue such as the gradient temporal-difference
methods like [7] and [8].

The most famous and meaningful example of successful application of deep rein-
forcement learning is probably [11], where a convolutional neural network has been used
to interpret the state of an Atari video game to produce the values of Q for all the possible
actions allowed by the game. In the Atari work [11], the stability of the Q-learning algo-
rithm, while using neural networks, is guaranteed by two mechanisms: experience replay
and fixed Q-targets. Experience replay is random sampling over the entire experience
accumulated and applying an optimization step on the neural network using the samples.
This mechanism makes sure to break the temporal correlation of the experience observed
by the network, resulting in a better stability and convergence of the algorithm. Q-targets
means that the Q values used to compute the updates of the Q-learning algorithm belong
to a neural network trained on old values. In [11], the authors use two neural networks,
an they switch between the two after a certain number of steps to compute the Q-value
for the targets in the Q-learning algorithm.

4. Potential in Communication Library Introspection

Understanding the performance issues of an MPI code is an operation that requires low-
level information; for example, knowing how much time is spent in an MPI Recv can
help to understand whether the application suffers of poor load balancing or just high
communication costs. Such a low-level information is usually hidden into the internal
variables of the MPI implementation. For example, a typical information that can be
useful to know is how many messages are in the Unexpected Message Queue waiting to
be received?.

With the new tools information interface introduced in MPI-3, MPI provides a stan-
dard way to access performance data contained inside the MPI implementation (called
performance variables) and internal variables that control the behavior of the implemen-
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tation (called control variables). An example of a control variable is the one that defines
the threshold, associated with the message size, that decides whether a message should
be sent using the eager or rendezvous protocol.

Although the performance variables are common to any MPI implementation (e.g.,
Unexpected Message Queue length), the MPI Forum does not specify a direct way
to get the status of these variables. The intent of the MPI Tool Information Interface
(from now on MPI T, see Section 4.1) is to enable an MPI implementation to expose
implementation-specific details; for this reason is not possible to define variables that
all MPI implementations must provide. This approach is called introspection. The most
common use case for the MPI T is to provide performance information and control vari-
ables to profilers and debuggers in order to help the users understanding issues and bot-
tlenecks in MPI applications.

It is possible to write applications that take advantage of the information provided
by MPI T, but introducing such low-level concepts in user code is not advisable. We be-
lieve that the best opportunities to improve the performance of an MPI application using
MPI T are in the run-time communication libraries built on top of MPI. In fact, MPI T
has been already successfully used by run-time communication libraries to select the
best algorithm based on the support provided by the MPI implementation. For example,
Fanfarillo and Hammond in [5] use the MPI T to select the best algorithm to implement
events in OpenCoarrays [4], with a remarkable performance enhancement.

4.1. MPI Tool Information Interface (MPI T)

MPI T provides a standard interface to access performance variables and control vari-
ables. For both types of variables, there are several common concepts. In order to access
a variable, an handle must be created first. With the handle the MPI implementation can
provide low-overhead access to the internal variable.

Control variables allow the use to influence how the MPI implementation works.
In order to use a control variable, the variable needs to be discovered. MPI provides
functions to implement introspection, discover how many control variables are available,
getting their details and modifying their values. During this work, we found out that it is
important to modify all the control variables values before calling MPI Init.

Performance variables are usually expressed in terms of queue lengths, waiting
times, re-transmission attempts. For example, in a load imbalanced situations, where
some processes make send requests before that the corresponding receives have been
posted, the length of the unexpected message queue will be longer on some processes
than on others. Another typical symptom of load imbalance is the longer time spent in a
receive, waiting for the data to arrive. By combining the data with an understanding of
how the implementation works, profilers are able to provide clues to the programmer on
how to determine the source of the performance problem. The way performance vari-
ables are accessed is similar to the way control variables are managed but performance
variables require an additional step: the creation of a session. A session enables different
parts of the code to access and modify a performance variable in a way that is specific
to that part of the code. In other words, a session provides a way to isolate the use of a
performance variable to a specific part of the code. In order to read the value associated
with a performance variable the creation of handle and session should be performed after
calling MPI Init.
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4.2. OpenCoarrays

OpenCoarrays [4] is an open-source software project for developing, porting and tuning
transport layers that support coarray Fortran compilers. It targets compilers that conform
to the coarray parallel programming feature set specified in the Fortran 2008 standard. It
also supports several features defined in the Fortran 2018 standard including: events for
fine-grain synchronization between parallel entities, failed images to manage failures,
collective/reduction (called collective), and a partial implementation of teams, used to
create independent subgroups of parallel entities. Currently, it is used as the run-time
communication library by the GNU Fortran (GFortran) compiler.

OpenCoarrays defines an application binary interface (ABI) that translates high-
level communication and synchronization requests into low-level calls to a user-specified
communication run-time library. This design decision liberates compiler teams from
hardwiring communication-library choice into their compilers and it frees Fortran pro-
grammers to express parallel algorithms once, and reuse identical CAF source with
whichever communication library is most efficient for a given hardware platform.

Since the first release of OpenCoarrays (August 2014), the widest coverage of coar-
ray features was provided by a MPI based run-time library (LIBCAF MPI). Because
of the one-sided nature of coarrays, the run-time library uses almost exclusively MPI
one-sided communication routines based on passive synchronization.

5. AITuning Design

AITuning has been designed as a separate component from run-time communication
libraries. Its purpose is to guide the automatic tuning process of the libraries utilizing
machine learning techniques. It is written in C++ and it is structured to be completely
agnostic of run-time libraries, communication libraries, and machine learning algorithms
and paradigms (although RL approaches are well suited for this problem).

5.1. Architecture

2The Controller class exposes a set of methods identified by the prefix AITuning *

that can be called by the run-time library. The method AITuning start(string

layer) takes a string representing the communication layer to be used. This method
needs to be called before the initialization of the communication library (in this case
MPI Init thread). In order to plug AITuning in OpenCoarrays without changing the
source code of the latter, we decided to use the MPI Profiling Interface. We created
wrappers for the MPI functions that AITuning needs to interact with (e.g. MPI Init and
MPI Finalize) and called the AITuning * methods from there.

As explained in Section 4.1, control variables and performance variables needed to
be set before and after the actual call to MPI Init thread, respectively. Once the layer
has been passed to the Controller object, a specific CollectionCreator is instantiated us-
ing the CollectionCreator object. The actual collection (in our case MPICHCollection-
Creator) has predefined lists of control and performance variables that we decided and
used for a specific AI component.

2A class diagram of the architecture is available on https://github.com/NCAR/AITuning
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In order to make AITuning general enough to handle any kind of control and
performance variables, we decided to declare the classes ControlVariable and
PerformanceVariable as abstract. In fact, besides the default control and performance
variables defined in a specific Collection object (related to a specific communication li-
brary implementation), it is possible to define UserDefined Performance Variables. This
class of variables allows the user to defined specific performance variables, like the time
spent to run the entire application, the time spent to execute a MPI Win flush and simi-
lar. Since they all inherit from the abstract class PerformanceVariable, they can be stored
in the CollectionPerformanceVar object. In order to read performance variables, specific
objects of the class Probes should be used. This class makes sure that the performance
variables read using MPI T or any other way (user defined included), respect certain
criteria, like datatype, precision, and range.

All the performance variables keep track of the values detected during the program
execution. At the end of the execution, in a wrapper of MPI Finalize, statistics of the
values get collected (e.g. average, max, min, median) and they will form the “state”
representation passed to the AI component.

The entire machine learning process is performed in the MPI Finalize wrapper,
at the end of the program. The AI components receives a representation of the state of
the application, which represents the state of the environment in a reinforcement learn-
ing setting. The reward gets computed in the AI component, based on previous data (in
particular total execution time) and the reinforcement learning algorithm gets trained on
the new data and produces a new action, defined as a “change” for a control variable. The
new values for the control variables will be used during the next execution of the same
application. A detailed description of the training process and AI component is provided
in Section 5.2.

Not all the performance variables are the same; a variable like total time cannot be
passed to the RL algorithm as an absolute value. In fact, the same application has very
different execution times when run on a different numbers of processes. In AITuning
it is possible to declare a performance variable as “Relative”. During the first run, the
performance variable declared as relative will maintain in memory the absolute value of
the quantity they represent. During the other runs, all the values of a relative performance
variable are express as the difference between the absolute value obtained during the first
run and the current absolute value. For example, if we consider the total execution time as
performance variables, a positive value can be seen as a performance improvement, since
during the first run the execution time was higher that the new value. This representation
allowed us to write easy reward functions based on the results of relative variables.

5.2. Training

As first step, all the values of the performance variables are “standardized” against a ref-
erence run. To do so, a first run (or set of runs) is used as a reference for performance
variables related to time and to a specific run in a consistent way. For this reason, when
AITuning is active, the first run of the application is used to record the performance vari-
ables of the application when using a vanilla MPI implementation. The user communi-
cates the first run by setting an environment variable AITUNING FIRST RUN = 1.

For every run other than the first, the algorithm produces a new action in the form
of a “change” on a control variable. Each control variable has a fixed “step” to be used
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to change the absolute value of the control variable. For example, the MPICH control
variable MPIR CVAR ASYNC PROGRESS which controls the use of a helper thread to im-
plement MPI asynchronous progress, can assume only two values: 0 and 1. On the other
hand, the variable MPIR CVAR CH3 EAGER MAX MSG SIZE assumes a numerical value
representing the message size threshold to switch from the eager to the rendezvous pro-
tocol: in this case AITuning will change its value in predefined steps of 1024.

In every run, the neural network in charge of estimating the Q-value produces an es-
timate of the Q-value given a certain state provided by the performance variables. At the
end of the run, the new reward gets computed and the neural network gets retrained based
on the outcome. In order to make the Q-learning stable, we used the replay technique
described in Section 3. We pick a random subset of the whole experience accumulated
every 200 runs, and we train the neural network on that. We have not implemented the
Q-target technique.

5.3. Control and Performance Variables for MPICH

For now, we focused our efforts only MPICH-3.2.1 because of the small num-
ber of control and performance variables exposed by the implementation, which
made our reinforcement learning algorithm design and training faster. The con-
trol variables chosen for MPICH-3.2.1 are ASYNC_PROGRESS, CH3_ENABLE_HCOLL,
CH3_RMA_DELAY_ISSUING_FOR_PIGGYBACKING,
CH3_RMA_OP_PIGGYBACK_LOCK_DATA_SIZE, POLLS_BEFORE_YIELD,
CH3_EAGER_MAX_MSG_SIZE. The only performance variable chosen from MPICH-3.2.1
was unexpected recvq length, representing the length of the unexpected message
queue. We use several user-defined performance variables related to the average and
maximum time needed to complete MPI Win Flush, MPI Put,MPI Get, and total appli-
cation time. We also added the number of processes used in the run as input parameter.

5.4. Inference

AITuning will be shipped along with OpenCoarrays already trained for several MPI im-
plementations and transport layers (e.g. GASNet). When the user decides to activate
AITuning, he/she will compile OpenCoarrays using the PMPI wrapper. At this point, we
recommend the user to run their application for at least 20 times. During these 20 runs,
the RL algorithm will “explore” the new application and produce the right combination
of parameters. During this exploration phase, AITuning may produce a configuration
that penalizes the performance. At the end of the 20 runs, AITuning analyzes the results,
discards the runs where the performance was penalized, and applies the median over the
values of the control variables of the runs that provided good results within 5% from
the best (creating an ensemble). Further runs of the same applications with different data
input but same number of images will not require additional runs.

6. Experimental Evaluation

In order to train AITuning properly on MPICH-3.2.1, we decided to use two different
supercomputers: Cheyenne (NCAR) an SGI machine with InfiniBand network intercon-
nect and Edison (NERSC) a Cray XC30 with Aries interconnect. For the training we
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decided to use four main codes parallelized with Coarrays Fortran: 1) CloverLeaf [9], 2)
Lattice-Boltzmann code [13], 3) Skeleton Particle-in-cell [2], 4) Parallel Research Ker-
nels [3]. We have run the aforementioned codes using a different number of processes
going from 64 to 2048 for a total of 5000 runs.

6.1. Intermediate Complexity Atmospheric Research

The Intermediate Complexity Atmospheric Research (ICAR) [6] model developed at
NCAR, is a simplified atmospheric model designed primarily for climate downscaling,
atmospheric sensitivity tests, and educational uses. ICAR is a quasi-dynamical downscal-
ing approach that uses simplified wind dynamics to perform high-resolution meteorolog-
ical simulations 100 to 1000 times faster than a traditional atmospheric model and can
therefore be used to better characterize uncertainty across numerical weather prediction
models and climate models, and in dynamical downscaling.

In [14], Rouson et al. developed a mini-app of the ICAR model using coarray For-
tran, showing great performance improvements. Since then, lead developer of ICAR,
Ethan Gutmann, developed a fully functional version of ICAR based on coarray Fortran,
which we used for testing AITuning. The version of ICAR we used is a full atmospheric
model; the code include computation, communication and IO parts.

6.2. Results Evaluation

In Figure 1, we report the results obtained for ICAR running on Cheyenne using the
default “vanilla” configuration set in MPICH-3.2.1, the optimized configuration found
by AITuning after running ICAR 20 times, and an human optimized version based on
reasonable guesses. The “default” bars represent the total time needed to complete a test
case on ICAR using the default settings and in both cases, with 256 and 512 images, it
provides the worst performance. On the other hand, the “optimized” version produced by
AITuning always leads to the best performance. In both the 256 and 512 images cases,
the manual optimization increased the eager limit by an order of magnitude higher than
the default while leaving all the other setting as in the default configuration. For the case
with 256 images, the optimized version provides 13% performance improvement com-
pared to the vanilla version. For the case with 512 images, the optimized version provide
25% performance improvement over the vanilla version, mostly because of the higher
communication cost imposed by the higher number of processes and same problem size
(strong scaling).

The most influential tuning parameter for the ICAR test case resulted to be the
presence of the asynchronous progress thread. We also noticed that some parameters
have a different influence based on the number of processes being used. In particu-
lar, the value of MPICH POLLS BEFORE YIELD played a much more relevant role in the
case with 512 images than in the case with 256 images. This is not surprising because
ICAR attempt to overlap computation with communication by using coarray “puts” in-
stead of “gets”. For the 256 case, the optimal configuration found by AITuning had
MPICH POLLS BEFORE YIELD set to the default value 1000, meaning that it was found
not relevant. On the other hand, for the 512 images case, AITuning found a value of
1100. We manually changed the value of MPICH POLLS BEFORE YIELD by keeping the
configurations found by AITuning the same for both cases and found that in the case with
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Figure 1. Performance comparison between default and optimized configurations

512 images, a value of MPICH POLLS BEFORE YIELD between 1200 and 1500 provides
the best performance, so it seems there is still room for improvement.

7. Conclusions and Future Work

In this work, we presented AITuning, a machine learning-base tuning tool for run-time
libraries. AITuning has been released under open-source license and it is currently avail-
able on github 3. It currently works with the OpenCoarrays library, but its structure allows
it to be extended to any run-time communication library, based on any communication
layer. To the best of our knowledge, this paper is a unique contribution because it is the
first attempt to try to find the optimal tuning parameters used a deep reinforcement learn-
ing algorithm and MPI T. We tested AITuning and our RL algorithm, carefully designed
for MPICH-3.2.1, using a real atmospheric code: ICAR. AITuning was able to produce a
configuration of parameters that lead to 13% and 25% performance improvement for the
case running on 256 and 512 images, respectively, compared to the default configuration.
It also improves performance compared to an expertly tuned configuration, marginally
for 256 images and substantially for 512.

In the future, we plan to extend our analysis to other MPI implementations with a
higher number of control and performance variables. Furthermore, we will explore more
options on the RL algorithm, and potentially other machine learning approaches. In our
brief preliminary tests, it has been clear that whatever technique is chosen, it must be very
robust to the noise of run-to-run variability. However, finding the best learning algorithm
for AITuning is beyond the scope of this paper and left for a future work.

Finally, to better evaluate the results of the tool, we plan to test it on a larger number
of machines and on a larger and more diverse set of applications.

3https://github.com/NCAR/AITuning
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[7] Hamid R. Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and Richard S.
Sutton. Convergent temporal-difference learning with arbitrary smooth function approximation. In
Proceedings of the 22Nd International Conference on Neural Information Processing Systems, NIPS’09,
pages 1204–1212, USA, 2009. Curran Associates Inc.
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Towards Benchmarking the Asynchronous

Progress of Non-Blocking MPI Operations
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Abstract. This  paper  discusses  the  problem of  reliable  benchmarking of  non-
blocking  MPI  communications,  both  non-blocking  point-to-point  and  non-

blocking  MPI-3  collective  operations.  The  problem  of  accurate  and  practical

estimating  the  level  of  calculation/communication overlapping (communication
hiding  efficiency)  is  discussed.  Authors  propose  the  efficiency  estimation

approach and methodology which is different from previous well-known works.

The new IMB-ASYNC benchmark design is proposed. Some practical tests were
made on Lomonosov-2 supercomputer using widely used Intel MPI 2017 Update 1

MPI implementation. The results of the tests are discussed, and the future work on

IMB-ASYNC testing and development is outlined.

Keywords. MPI, non-blocking, asynchronous, benchmarking

1. Introduction

The non-blocking MPI communications, both point-to-point and MPI-3 non-blocking

collectives are important tools which allow the design of MPI-based parallel algorithms

that avoid rigid, fully blocking communication patterns. The use of non-blocking MPI

operations  also  makes  it  possible  to  introduce  algorithm  designs  which  imply

calculation/communication overlapping to hide the cross-rank communication latency.

The problem in the latter case is that MPI standard does not require from MPI library

implementers  to  make  non-blocking  communication  operations  partially  or  fully

asynchronous.  This  means  that  for  a  good  level  of  calculation/communication

overlapping some effort from both middleware implementers and parallel code authors

may be required.

To estimate which level of asynchronous message passing progress at the same

time  with  intensive  calculations  can  be  expected  on  a  particular  machine  using  a

particular communication middleware setup, the general purpose benchmarking tools

can be used. The popular MPI micro-benchmarks OSU [1] and IMB [2]  include only a

small subset of scenarios that may help to estimate which calculation/communication

overlapping level might be available for some practical applications. The authors faced

at least two cases in their work when existing benchmarking tools do not give a full

picture: i) in sparse linear algebra applications, there are several research results [4]

offering  the  non-blocking  MPI_Iallreduce  call  usage  in  Krylov  subspace  iterative

methods  to  hide  the  latency  of  dot  product  calculations;  ii)  point-to-point

communications  with  neighbors  are  also  widely  used  (in  their  non-blocking  forms

namely) in sparse linear algebra applications due to good potential of communication
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latency  hiding.  Before the new MPI-based code development,  it  is  nice to estimate

which overlapping can be expected in both cases, and how the overlapping depends on

a particular middleware/hardware and how it changes at scale: these estimations help a

lot at the algorithm choice stage. This necessity is not limited to sparse linear algebra

problems.

The goal  of  this  work  is  to  offer  the  basic  and  practical  design  of  some new

benchmarks which may meet the demand of parallel algorithm developers challenged

with  the  problem  of  hiding  the  communication  latency  and  to  offer  the

calculation/communication overlapping efficiency estimation method.

Figure 1. Communication Hiding Efficiency, Eq. (1): 2 nodes, async_pt2pt benchmark.

2. IMB-ASYNC Benchmark

The group of benchmark codes described in this paper is a newly developed extension

to the open-source Intel MPI Benchmark 2019 suite, made by authors as a separate

project [3]. The name for the benchmark group – IMB-ASYNC – is chosen to match

the naming conventions of other IMB benchmark groups. The difference between the

benchmarks in question and older parts of IMB suite is that all of their non-blocking

variants  include tunable computational  load simulation procedure. The time for this

procedure  to  produce  CPU  load  can  be  set  up  from  the  command  line  with  ~1

microsecond precision. This makes it possible to estimate calculation/communication

overlap carefully for every scenario.

The IMB-ASYNC code includes:

1. Point-to-point benchmarks estimating the pair-wise communications between

regular pairs of  ranks from the MPI_COMM_WORLD communicator. The

ping-pong style communications in each pair are implemented in two ways:

"sync_pt2pt"  is  a  sequence  of  blocking  MPI_Send  and  MPI_Recv  calls

(reversed in its order in one of  the ranks of  a pair) and "async_pt2pt" is a

sequence of non-blocking MPI_Isend, MPI_Irecv, followed by optional block,

simulating  high  computational  load,  with  MPI_Waitall  call  finishing  the
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benchmark iteration. The design of blocking kind of this benchmark is made

similar to a well-known "PingPong" benchmark of IMB-MPI1 suite.

2. Point-to-point  benchmark  estimating  the  neighborhood  communications

between  a  given  rank  and  two  or  more  neighbor  ranks.  It  also  has  two

implementations:  blocking  ("sync_exch")  and  non-blocking  ("async_exch")

flavors, and is equipped with the same optional computational load simulation

procedure for a non-blocking kind.

3. Collective  benchmark  ("sync_allreduce",  "async_allreduce")  estimating

blocking and non-blocking kind of one of most popular collective operations.

Non-blocking kind is also equipped with the same optional computational load

simulation procedure.

Figure 2. Communication Hiding Efficiency, Eq. (1): 16 nodes, async_pt2pt benchmark.

Typical  running  session  for  IMB-ASYNC  benchmarks  includes  at  least  three

benchmark runs:

1. Run the benchmark to calibrate calculations simulating loop. This operation

can be made once for the whole testing session. The aim is to find out how

many loop iterations make approximately 10 microseconds of computing time

on an environment being tested in normal mode. The calibration parameter is

later  used  during  the  non-blocking  communications  benchmarking  to

eliminate possible influence the async progress actions on actual calculation

process being done at the same time as the communications.

2. For each benchmark type and message size, run the version of a benchmark

which uses blocking MPI communications. This step should typically be done

separately  from  the  following  one  for  3  main  reasons:  i)  it  provides  a

productivity  baseline  which  can  be  used  later  to  estimate,  how  effective

corresponding non-blocking MPI communications are and how effective the

asynchronous progress is; ii) the time of communication execution provides a

hint  to  which  amount  of  time  for  calculations  simulating  loop  during  the

following  non-blocking  run  is  reasonable;  iii)  the  non-blocking  run  may

require different parameters of MPI environment to be set up (i.e. the case
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with dedicated progress thread or threads configuration, which is  discussed

later).

3. For each  benchmark  type and message size,  run  the version  of  benchmark

which uses non-blocking communications and calculations simulating loop,

running at the same time. The amount of time the calculations simulating loop

is running must be given explicitly in command line, and typically must not be

less  than  pure  communication  time obtained on  a benchmarking  step  with

blocking communications. The loop calibrating parameter, from the first stage

of testing, must also be passed explicitly as a command line parameter. Non-

blocking version of benchmarks reports as its result not only a wall time of the

benchmarking  routine,  but  also  calculates  the  Communication  Overhead

value,  which  consists  of  execution  time  of  all  MPI  calls  plus  a  rate  of

calculations simulating loop slowdown according to a given calibration value. 

It is the combination of two independent runs of the benchmark that gives good

basis  to  analyze  the  real  asynchronous  performance  of  MPI  implementation  being

tested and the real rate of communication hiding which an application developer may

expect in a particular case.

3. Asynchronous Progress Implementation Details

The asynchronous progress of MPI operations may be implemented in different ways.

First, the progress can be made "transparently" by communication hardware. However,

it is uncommon for up-to-date MPI libraries to have "transparent", hardware-supported

asynchronous  progress  for  all  possible  non-blocking  operations  and  message  sizes.

Then,  there  are  techniques  at  the  application  level  which  may  "stimulate"  or

"accelerate"  the  asynchronous  progress  in  some  particular  cases.   The  specialized

"progression threads" usage (like MPICH_ASYNC_PROGRESS-related technique for

MPICH-based implementation) is often discussed in literature. Also, the popular way

of software-based progress acceleration is: to do "manual progression" via periodical

calls of MPI_Test or MPI_Probe functions during the progress of computations.

Figure 3. Communication Hiding Efficiency, Eq. (1): 64 nodes, async_pt2pt benchmark.
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The  progression  thread  approach  is  being  discussed  for  a  long  time.  Possible

advantages and caveats of the approach were analyzed in [6]. At least one practical

implementation  is  available as  a  part  of  well-known  MPICH MPI library.  Another

implementation  is  discussed  in  [7].  Modern  research  on  using  dedicated  cores  for

progression threads and other related aspects is discussed in [8]. This quick overview

shows  that  the  way  of  accelerating  asynchronous  message  passing  progress  via

dedicated progression threads is an acute research topic.

The  approach  of  periodical  calls  of  MPI_Test  or  MPI_Probe  functions  is  also

worth to be estimated with benchmarking. For this purpose, the calculation simulating

loop of the IMB-ASYNC benchmarks includes the section of MPI_Test calls for all the

MPI requests appeared in a benchmark. This section can be switched on or off with

benchmark command line parameters.

4. Efficiency Estimation Method and Computational Experiment Methodology

The main goal of the estimation is to understand the time benefit one may have by

hiding communications behind the calculations for each message. For this purpose, the

simulative calculation procedure in the non-blocking versions of benchmarks is turned

on. Amount of computing cycles is chosen manually so that communication time was

1.5-2 times less than the computation time (see "Calculation time" table rows). This

way to choose calculation cycle length is chosen because it corresponds to the majority

of use cases: normally calculation-intensive algorithms have enough CPU workload to

hide calculation latency, and the situations when calculation time is comparable with

communication time seems to be a corner case of extreme scaling attempts.

The  communication  overhead  which  appears  in  this  running  mode  is  then

compared  to  the  baseline  time  of  blocking  communications  to  find  out  the

Communication Hiding Efficiency:

E = 100% – (Tover / Tsync) * 100% (1)

where  Tover is  the  communication  overhead  time  in  calculation/communication

mode, Tsync is the baseline.

Table  1. IMB-ASYNC  sync_pt2pt,  async_pt2pt  results  on  Lomonosov-2.  Point-to-point  pairwise
communications.

2 nodes (28 ranks): 4 128 2048 32768 524288

Pure communication time, blocking MPI (Tsync) 3.5 4.9 38.7 613.9 10172.4

Overhead, no special progress measures 1.3 1.3 7.0 136.4 3495.4

Overhead, manual progress (Tover1) 1.9 1.7 7.4 90.2 214.3
Overhead, MPICH_ASYNC_PROGRESS (Tover2) 1.5 1.2 7.0 122.6 3289.6

16 nodes (224 ranks):

Pure communication time, blocking MPI (Tsync) 7.9 13.4 186.0 2927.1 46630.4

Overhead, no special progress measures 3.5 5.0 17.7 153.2 2436.8
Overhead, manual progress (Tover1) 3.3 5.1 16.6 153.2 2436.8

Overhead, MPICH_ASYNC_PROGRESS (Tover2) 55.4 47.4 87.0 2300.4 45772.0

64 nodes (896 ranks):

Pure communication time, blocking MPI (Tsync) 8.0 13.4 184.8 2919.1 47465.5
Overhead, no special progress measures 6.3 8.0 143.4 1442.8 27571.3

Overhead, manual progress (Tover1) 6.4 8.1 147.3 1483.7 27428.5

Overhead, MPICH_ASYNC_PROGRESS (Tover2) 61.3 61.4 727.0 5147.2 95445.1
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The Efficiency of 100% means that thanks to non-blocking communication form

usage, all the communications are successfully hidden by computations. This is the best

possible case. The worst case is when Efficiency values become negative: it means that

combining the non-blocking communications with calculations is even slower than the

sequential combination of calculations and blocking communications.

Please note that this Efficiency estimation method is different from the one used in

IMB-NBC  suite [5].   IMB-NBC  compares  the  communication  overhead  time  in

calculation/communication  mode  with  the  pure  latency  of  asynchronous

communication call without calculations. This way of estimating the efficiency is not

quite practical, because the choice is normally made between two modes: synchronous

communications serialized with calculations or non-blocking communications with the

goal to overlap them with communications. Moreover, in IMB-NBC methodology, it is

difficult to estimate correctly which penalty the progress thread introduces since both

estimation of baseline time and the benchmark of interest are made during the same

execution session, and possible penalty influences both figures. The IMB-NBC suite

always use the calculation time equal to baseline communication time. This  doesn't

give the possibility to adjust the calculation/communication overlap case according to

the practical interest of the algorithm designer. Also, IMB-NBC doesn't try to estimate

possible efficiency loss due to calculations slowdown when progress thread technique

is used to support asynchronous progress.

Figure 4. Communication Hiding Efficiency, Eq. (1): 2 nodes, async_allreduce benchmark.

5.  Practical Computational Experiments

The benchmark code was tested on Lomonosov-2 supercomputer of the Lomonosov

Moscow State University. A short selection of the benchmarking results is given in

Table 1 and Table 2.

The full subscription of 2, 16 and 64 computing nodes (14 cores and 14 ranks per

node  with  per-core  affinity)  was  used  to  estimate  the  asynchronous  progress

expectations  with  Intel  MPI  2017.1  library.  The  baseline  is  the  time  taken  by  a
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blocking version of each benchmark (see "Pure communication time, blocking MPI"

table rows).

Table  2. IMB-ASYNC  sync_allreduce,  async_allreduce  results  on  Lomonosov-2.  MPI_Allreduce,
MPI_Iallreduce communications on the full MPI_COMM_WORLD.

2 nodes (28 ranks): 4 128 2048 32768 524288

Pure communication time, blocking MPI (Tsync) 12.0 15.0 46.0 308.9 7221.7

Overhead, no special progress measures 12.5 15.3 46.0 388.2 7241.4

Overhead, manual progress (Tover1) 12.7 15.7 41.0 365.7 6913.5
Overhead, MPICH_ASYNC_PROGRESS (Tover2) 231.4 278.9 290.8 216.9 1534.1

16 nodes (224 ranks):

Pure communication time, blocking MPI (Tsync) 36.6 35.9 81.1 547.9 8184.8

Overhead, no special progress measures 37.6 39.9 84.5 551.2 7718.8
Overhead, manual progress (Tover1) 37.0 39.6 69.1 458.3 7331.3

Overhead, MPICH_ASYNC_PROGRESS (Tover2) 863.3 875.7 834.8 192.8 3136.7

64 nodes (896 ranks):

Pure communication time, blocking MPI (Tsync) 60.6 58.7 107.5 655.8 9192.8
Overhead, no special progress measures 60.4 57.3 139.5 823.6 7585.6

Overhead, manual progress (Tover1) 55.8 55.9 136.4 725.3 7508.4

Overhead, MPICH_ASYNC_PROGRESS (Tover2) 617.8 626.6 778.1 1262.1 21514.5

Two kinds of progress-support techniques were estimated:  the "Manual progress"

table rows show the results of enabling manual progression via periodical MPI_Test

calls in the benchmark code; the "MPICH_ASYNC_PROGRESS" rows show what the

internal progress-thread based technique of Intel MPI 2017.1 library may offer instead.

The  above  mentioned  table  rows  show  the  Communcation  Overhead  value

calculated by IMB-ASYNC benchmark as described in section 2 of this article. The

first row in Table 1 and Table 2 shows the amount of elements in each MPI message.

Message element is MPI_DOUBLE. All the times are given in microseconds. 

Figure 5. Communication Hiding Efficiency, Eq. (1): 16 nodes, async_allreduce benchmark.
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The Communication Hiding Efficiency parameter can be calculated from the data

given in Table 1 and Table 2 using Eq. (1). The graphical representation of observed

efficiency values is shown on Figures 1-6.

The  resulting  Communication  Hiding  Efficiency  for  point-to-point

communications reaches values of 80-90% in experiments without any special progress

measures and in experiments with "manual" progression. "Manual" progression don't

seem  to  give  any  benefit  over  ordinary  runs.  Best  results  are  observed  for  larger

message sizes. On smaller message sizes, Communication Hiding Efficiency drops to

values about 50%. The experiments at a scale of 64 nodes show worse efficiency: all

the observed at this scale values of efficiency are between 20% and 50%.

The  figures  for  MPICH_ASYNC_PROGRESS-enabled  experiments  are  much

worse: efficiency values for smaller message sizes are negative, which means the actual

slowing  down  the  communication  operation,  in  many  cases  the  communication

becomes several times slower. Positive efficiency in this mode observed only for larger

message  sizes.  At  scale  of  64  nodes,  all  efficiency  values  in

MPICH_ASYNC_PROGRESS mode are negative.

The  resulting  Communication  Hiding  Efficiency  for  MPI_Iallreduce  collective

operation appears to be of negative or small positive value for the majority of tested

cases. The exception are a few cases with two largest message sizes of this experiment

set,  where MPICH_ASYNC_PROGRESS mode shows efficiency  of  20%-80%,  but

this efficiency switches to negative values at a scale of 64 nodes.

Figure 6. Communication Hiding Efficiency, Eq. (1): 64 nodes, async_allreduce benchmark.

6. Conclusion and Future Work

The presented IMB-ASYNC benchmark suite is an attempt to implement a reliable tool

inherited from a well-known and well-tested IMB code for  both  point-to-point  and

collective  MPI  benchmarks.  The  demand  of  such  a  benchmark  comes  from  both

application  level  developers  and  message-passing  middleware  developers  since  the

asynchronous message passing progress, implemented both in hardware and software is
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a foremost feature of any modern MPI implementation. The calculation/communication

overlapping efficiency estimation method is proposed.

The particular results of testing sessions on Lomonosov-2, which are described in

section 5 of this article and illustrated by Tables 1-2 and Figures 1-6, may lead to a few

conclusions:

1. MPICH_ASYNC_PROGRESS=1  option  of  Intel  MPI  library  (at  least  of

2017.1  its  version)  at  many  test  points  gives  extremely  huge  penalty,

especially at lower message sizes and at higher scale. Moreover, during the

experiments  it  was  noticed,  that  the  MPI  performance  when  the

MPICH_ASYNC_PROGRESS is enabled tend to be very variative from one

execution to another. Worst cases are even 2 times worse than those given in

this paper. This makes it very doubtful that there is any reasonable application

of this mode in practice.

2. Manual  progression  support  of  non-blocking  point-to-point  operations  with

periodical  MPI_Test()  calls  doesn't  change  anything  in  asynchronous

progression of this type of communication, or the changes are of no practical

importance.

3. There  is  no way  to  significantly  improve  the asynchronous  progression  of

non-blocking  collective  operations  over  small  messages  (at  least,

MPI_Iallreduce())  with  Intel  MPI  2017.1  on  Lomonosov-2  supercomputer.

This  fact makes serious impact on parallel algorithms choice for new code

which is created to be run on Lomonosov-2 system.

As a part of possible future work, it is worth estimating the same metrics for Intel

MPI 2019.5 and OpenMPI versions 2, 3 and 4 which are also installed on Lomonosov-

2 system to see the full picture. The comparative tests on some other HPC systems are

also in our plans.
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Abstract. MuPAT, an interactive multiple precision arithmetic toolbox for use on
MATLAB and Scilab, enables users to handle quadruple- and octuple-precision
arithmetic operations. MuPAT uses the DD and QD algorithms, which require from
10 to 600 double-precision floating-point operations for each DD or QD operation,
which entails corresponding execution time costs. In order to reduce the execu-
tion time of vector and matrix operations, we apply FMA, AVX2, and OpenMP to
MuPAT by using the MATLAB executable file. Unit stride access is required for
high performance and it makes vectorization with AVX2 easier. Larger blocks are
suitable for parallelization with OpenMP. That is, AVX2 is suitable for the inner-
most loop and OpenMP is suitable for the outer loop. One result of adopting the
described configuration is that matrix multiplication is nearly 13 times faster in a
four-core environment. By using parallel processing in this way, the execution time
of some DD vector operations is almost twice that of the original double-precision
floating-point operations without parallel processing.

Keywords. DD, Double-Double, MATLAB, AVX2, Multicore

1. Introduction

In floating-point arithmetic, rounding error is unavoidable. The accumulation of round-
ing errors leads to unreliable and inaccurate results. One of the ways to reduce round-
ing errors is to use a high-precision arithmetic. For example, the high-precision arith-
metic is used for improving the convergence of Krylov subspace methods [1] and is used
in semidefinite programming problems [2]. Most high-precision arithmetics are imple-
mented through software emulation such as the QD library [3].

Our team developed MuPAT , an open-source interactive Multiple Precision
Arithmetic Toolbox [4,5] for use with the MATLAB and Scilab computing environ-
ments. MuPAT uses the DD (Double-Double) [6,7] and QD (Quad-Double) [3,7] algo-
rithms, which are based on a combination of double-precision arithmetic operations. The
high execution time cost is due to the large number of operations. We accelerate the DD
arithmetics using FMA [8], AVX2 [8], and OpenMP [9].
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FMA (Fused Multiply-Add) can perform a double-precision floating-point multiply-
add operation in one step with a single rounding, AVX2 (Advanced Vector Extensions 2)
instructions can process four double-precision data at once, and OpenMP enables thread-
level parallelism in a shared memory.

2. DD Arithmetic

DD (Double-Double) arithmetic [6,7] is based on an algorithm that enables quasi
quadruple-precision arithmetic. A DD number a is represented by a combination of two
double-precision numbers ahi and alo such as a = ahi+ alo. According to the DD algo-
rithm, each arithmetic operation of DD requires 10 to 30 double-precision floating-point
operations and the order of computation must be maintained.
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Figure 1. DD addition and multiplication. a, b, and c are DD numbers. The symbols ⊕, �, and ⊗ denote
the double-precision floating-point operators and the symbols +, −, and × denote mathematical operators.
f l(a×b+ c) means FMA.

The algorithms for DD addition and multiplication are shown in Figure 1. The num-
ber of double-precision floating-point operations for DD addition is 11. The DD mul-
tiplication algorithm utilizes FMA (Fused Multiply-Add). FMA can execute a double-
precision multiply-add operation in one instruction with a single rounding. By us-
ing FMA instructions, the rounding error is reduced. The number of double-precision
floating-point operations for DD multiplication is 7 with FMA and 24 without FMA.
Thus, the number of double-precision floating-point operations for the DD multiply-add
is 18 (=11+7).

3. Environment of Parallelization

Since the order of computation in DD arithmetic cannot be changed, we consider pro-
cessing multiple data simultaneously by using data-level parallelism for acceleration.
The unit of time of each operation is not changed, but if multiple results can be ob-
tained in one unit of time, then the total execution time is reduced. We applied data-level
parallelism to vector and matrix operations.

AVX2 (Advanced Vector Extensions 2) instructions [8] can process four double-
precision data in one unit of time. The same arithmetic operations are applied to these
four data. To do this, four double-precision data must be prepared on a SIMD register.
An AVX2 load instruction can load four double-precision data from a continuous mem-
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ory location in one unit of time. However, for a discontinuous memory location, four
scalar load instructions are needed. AVX2 instructions cannot sum up the SIMD register
elements. The performance may increase four-fold.

OpenMP [9] allows thread-level parallelism on shared memory for a multicore envi-
ronment. Each thread is a separate process with its own instructions and data. By process-
ing threads with the different cores simultaneously, the performance may be increased
by the number of cores. A loop is parallelized by putting a pragma directive above the
loop. There are two scheduling methods: block and cyclic scheduling.

We assume the memory references should be in column order, since MATLAB
stores data column-wise.

Performance [Gflops/sec] is defined as the number of double-precision floating-
point operations [flops] divided by the execution time [sec]. The upper bound of perfor-
mance is defined as min(computational performance, memory performance×operational
intensity). The computational performance [Gflops/sec] is defined as the product of clock
frequency for the CPU [Hz] and the number of flops which can be computed in one unit
of time [flops/sec]. Performance is increased four-fold using AVX2 and by the number
of cores using OpenMP. Memory performance [Gbytes/sec] is defined as 8 bytes/cycle
times the product of clock frequency for memory [GHz] and the number of channels.
Operational intensity (O. I.) [flops/bytes] is defined as the number of double-precision
floating-point operations [flops] divided by the number of memory references [bytes].

We used an Intel Core i7 7820HQ, 2.90 GHz CPU, with LPDDR3-2133 memory and
Intel compiler 18.0.3 with options -O2, -fma, -mavx, -fopenmp, and -fp-model precise.
The peak computational performance of a single core including FMA is 5.80 Gflops/sec,
and that of AVX2 or that of four cores is 23.20 Gflops/sec. Performance is 92.80 Gflop-
s/sec using AVX2 with four cores. The peak memory performance is 34.13 Gbytes/sec
because there are two channels.

Performance is bounded by computational performance or memory performance
[10]. Performance is bounded by memory performance when operational intensity is
0.17 (= 5.80/34.13) or lower without parallelization, 0.68 (= 23.20/34.13) or lower when
using AVX2 or OpenMP, and 2.72 (= 92.80/34.13) or lower when using both AVX2 and
OpenMP. When operational intensity is higher than those values, performance is bounded
by computational performance.

4. Experiment in DD Arithmetic for Matrix and Vector Operations

4.1. DD Vector Operations

In vector operations, the four elements of a vector are processed simultaneously using
AVX2. When using OpenMP, different parts of the vector are processed by each thread.
When we compute the inner product with AVX2, we must sum up the four SIMD register
elements, with requires three scalar additions. In the case of using OpenMP, since we
must sum up the p thread elements, p−1 scalar additions are needed. When using both
AVX2 and OpenMP, each thread computes a partial sum with a vector of length N/p
using AVX2. Then, these partial sums are converted to a global sum.

Table 1 shows the operational intensity (O. I.) and the experimental results of vec-
tor operations when the dimension is 4,096,000. In many vector operations, the upper
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bound is calculated by the product of memory performance and its operational intensity.
According to Table 1, the performances of four operations (yyy= αxxx, zzz= xxx+yyy, zzz= xxx+xxx,
and zzz= αxxx+ yyy) with a new vector variable on the left is nearly 20% of the upper bound
of performance when using both AVX2 and OpenMP. However, the performances of six
operations (xxx = αxxx, yyy = xxx+ yyy, xxx = xxx+ xxx, yyy = αxxx+ yyy, α = xxxT yyy, and β = xxxT xxx) with no
new vector variables on the left are nearly 70% of the upper bound of performance when
using both AVX2 and OpenMP. Since the four operations yyy = αxxx, zzz = xxx+ yyy, zzz = xxx+ xxx,
and zzz= αxxx+ yyy require memory allocation, it is difficult to achieve high performance by
parallelization. The other six operations do not have the overhead of allocating memory.
Figure 2 shows the performances of αxxx, xxx+ yyy, and αxxx+ yyy with and without the over-
head of allocating memory. As N becomes larger, the differences in performance increase
between with and without overhead.

Table 1. Number of double-precision floating-point operations [flops], number of memory references [bytes],
operational intensity [flops/bytes], memory requirement, and performances [Gflops/sec] for DD vector opera-
tions for N = 4,096,000.

Flops
Memory

references
O. I.

Memory
requirement

Serial AVX2 OpenMP
AVX2&
OpenMP

yyy= αxxx 7N 2N×16 0.22 2N 1.19 1.51 1.30 1.25

xxx= αxxx 7N 2N×16 0.22 N 2.05 4.78 5.03 5.21

zzz= xxx+ yyy 11N 3N×16 0.23 3N 1.96 2.05 2.15 1.67

yyy= xxx+ yyy 11N 3N×16 0.23 2N 4.10 5.18 5.56 5.43

zzz= xxx+ xxx 11N 2N×16 0.34 2N 2.25 2.25 2.15 2.25

xxx= xxx+ xxx 11N 2N×16 0.34 N 4.10 8.19 7.51 8.34

zzz= αxxx+ yyy 18N 3N×16 0.38 3N 2.23 3.21 3.35 2.73

yyy= αxxx+ yyy 18N 3N×16 0.38 2N 2.84 7.37 8.57 8.78

α = xxxT yyy 18N 2N×16 0.56 2N 2.30 7.76 8.19 14.18

β = xxxT xxx 18N N×16 1.13 N 2.30 8.67 8.38 26.33

104 105 106 4×106

N

1

2

3

4

5

6

7

8

9

10

Pe
rf

or
m

an
ce

 [
G

fl
op

s/
se

c]

z=x+y
y=x+y

Figure 2. Performances [Gflops/sec] using AVX2 and OpenMP for αxxx, xxx+ yyy, and αxxx+ yyy.

For all ten operations, a higher operational intensity results in a higher performance.
For the same operational intensity, performance is higher for a smaller memory require-
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ment. It is also important for high performance to reduce the number of memory refer-
ences and the memory requirements.

In summary, for vector operations, when memory allocation overhead is not re-
quired, the performances are almost 70% of the upper bound by using AVX2 and
OpenMP. Otherwise, the performances are degraded to 20%.

4.2. DD Matrix-Vector Multiplication

Matrix-vector multiplication yyy = Axxx is written as yi = ∑ai jx j. The operational inten-
sity of matrix-vector multiplication is 1.13, because the number of double-precision
floating-point operations is 7N2 +11N(N−1) and the number of memory references is
(N2 +2N)×16, and this operation is limited by memory performance when using both
AVX2 and OpenMP. Matrix-vector multiplication has two algorithms, PB and PDOT.
The memory references for the matrix A are column order in PB, and those for matrix A
are row order in PDOT. Since MATLAB stores data column-wise, the memory references
for PB are continuous. Unit stride access can be used for PB.

4.2.1. AVX2

There are four algorithms using AVX2 shown in Figure 3. The order to load elements
of matrix A is by column in PDOTPB and PBPB, and by row in PDOTPDOT and PBPDOT.
Here, a prefix v indicates a vector and the variables are DD numbers. The variables
va, vx, and vy hold the four DD numbers. The vload instruction loads four continuous
data as a(i, j) to a(i+ 3, j) or x( j) to x( j+ 3). The vmuladd(vy,va,vx) instruction per-
forms the multiply-add operation vy= vy+ va∗ vx to compute four elements simultane-
ously and costs 18 double-precision floating-point operations. The vmul(va,vx) instruc-
tion is the multiplication operation vy = va ∗ vx and costs 7 double-precision floating-
point operations. The sum(vy) instruction sums the data in the SIMD register and costs
11×3 double-precision floating-point operations.
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Figure 3. Algorithms using AVX2 for yyy= Axxx.
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Table 2. Instructions and performances [Gflops/sec] for yyy= Axxx for N=2,500.

Computation Load Store Serial AVX2 OpenMP
AVX2&
OpenMP

PDOT N2 muladd 2N2 load N store 1.25 - 4.96 -

PB N2 muladd
N load

2N2 load
N2 store 3.55 - 12.77 -

PDOTPDOT

N2/4
vmuladd

N sum

N setzero

N2 load

N2/4 vload

N store - 1.64 - 6.11

PDOTPB
N2/4
vmuladd

N/4 setzero

N2/4 vload

N2/4 broadcast

N/4
vstore

- 4.96 - 10.58

PBPDOT

N2/4 vmul

N2/4 sum

N2/4 add

N/4 vload

5N2/4 load

N2/4
store

- 3.89 - 14.72

PBPB
N2/4
vmuladd

N broadcast

N2/2 vload

N2/4
vstore

- 11.97 - 25.63

It is clear from comparing PDOT with PB in Table 2 that unit stride access is required
to achieve high performance. Since the performance for PBPB (11.97) is increased almost
four-fold from that shown for PB (3.35), and that for PDOTPB (4.96) is also increased
four-fold from the PDOT value (1.25) shown in Table 2, it is clearly important to use
the vmuladd instruction instead of muladd in order to increase performance. To improve
performance with the vmuladd instruction, the vload and vstore instructions must also
be used.

4.2.2. AVX2 and OpenMP

The performance of PBPB using AVX2 in the innermost loop was the highest as shown
in Section 4.2.1. Since we assume that the innermost loop i is parallelized by AVX2, we
parallelize the outer loop by OpenMP.

As in Table 2, when using AVX2 and OpenMP, the performances of PBPB
(11.97→25.63) and PDOTPB (4.96→10.58), which have improved performance with
AVX2, are only twice as high as the case of just AVX2. By using AVX2 and OpenMP,
the performances of PDOTPDOT (1.64→6.11) and PBPDOT (3.89→14.72), which did not
improve much with AVX2, is nearly four times higher than the case of just AVX2. Since
the OpenMP can parallelize and accelerate regardless of the order of memory references,
the performances of PDOTPDOT and PBPDOT can be increased by using OpenMP. The
performance of PBPB is the highest for using AVX2 and OpenMP, 25.63 Gflops/sec, and
it is almost 7 times faster than before parallelization.

As shown in Table 2, even using both AVX2 and OpenMP, the execution time cannot
be reduced 16-fold (AVX2 × four cores) compared to without parallelization. Since the
operational intensity of matrix-vector multiplication is 1.13, which is lower than 2.72,
matrix-vector multiplication is limited by memory performance when using AVX2 and
OpenMP. Since the upper bound of performance is 38.53 Gflops/sec, which is calculated
using operational intensity × memory performance, the performance 25.63 Gflops/sec is
67% of the upper bound of performance.
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As for DD matrix-vector multiplication, when using the AVX2 vmuladd, vload and
vstore instructions with OpenMP applied to the outer loop, the performance can reach
67% of the upper bound.
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Figure 4. Performances [Gflops/sec] for Serial, AVX2 or OpenMP, and AVX2 and OpenMP for yyy= Axxx.

4.3. DD Matrix-Matrix Multiplication

Matrix multiplication C = AB is written as ci j = ∑aikbk j with three nested loops i, j,
and k. Since operational intensity for matrix multiplication is quite high, at O(N) =
18N3/(3N2 × 16), this operation is limited by computational performance. As we have
seen in Section 4.2, unit stride access is essential to achieve high performance. If the
innermost processed loop is the k or j loop, then unit stride access cannot be performed,
because MATLAB stores data in column-wise order. Since the index of the innermost
loop for matrix multiplication must be i, there are two implementation algorithms: MP
and PDOT. MP uses j-k-i order and PDOT uses k- j-i order for the loops.

AVX2 is easily applied to the loops in both algorithms, MP and PDOT. In order to
parallelize using vload and vstore instructions, the loop of index i should be processed
as a vector, in which case, its performance increases almost four-fold, as shown in Table
3. One of the remaining loops, with index j or k, will be parallelized by OpenMP. Figure
5 shows the four algorithms according to which loops are parallelized.

Table 3. Instructions and performances [Gflops/sec] for C = AB for N = 2,500.

Additional
Instructions

Serial AVX2
OpenMP

block
OpenMP

cyclic

AVX2&
OpenMP

block

AVX2&
OpenMP

cyclic

MP 3.60 13.73 13.04 12.88 46.71 45.58

MPPB
N2 load/store

N2 sum
- - 13.04 13.08 29.46 29.36

PDOT 3.67 12.25 12.79 12.62 15.06 15.02

PDOTPDOT
N load/store

N sum
- - 7.55 7.76 8.46 8.54
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Figure 5. Algorithms using OpenMP for C = AB.

MP and PDOT are easily parallelized with putting the “#pragma omp f or” directive
above an intended f or statement, as shown in Figure 5. All the threads in MPPB and
PDOTPDOT can potentially process and update the same data location in parallel. To
avoid this problem, in each thread, we defined thread-local vector vtl for holding a partial
sum as a private variable. Thread-local vector vtl requires memory equal to the product
of N× 16 and the number of threads. Accumulation to a global sum from each partial
sum is processed serially by inserting a “#pragma omp critical” directive. Each sum(vtl)
in Figure 5 costs 11pN double-precision floating-point operations, where p denotes the
number of threads. In Figure 5, c(:, j) denotes the j-th column of array c. MP and PDOT
can be processed in serial without OpenMP. However, executing MPPB and PDOTPDOT
requires using OpenMP.

In the case of OpenMP, as shown in Table 3, the performances for MP and PDOT are
almost 13 Gflops/sec, or about four times higher than without parallelization, but that for
PDOTPDOT is about 8 Gflops/sec, which is lower than other cases. There is almost no dif-
ference between block and cyclic scheduling. PDOTPDOT needs one sum(vtl) for each in-
nermost loop, total cost of sum(vtl) becomes 11pN3 double-precision floating-point op-
erations. MPPB also needs sum(vtl), but its total cost is 11pN2 double-precision floating-
point operations because of once for each nested loop. Since DD Matrix multiplication
requires 18N3 double-precision floating-point operations, the overhead for PDOTPDOT
is extremely large and greater than original computations. Since the additional overhead
for parallelization in MP is much less than that for MPPB, as shown in Figure 5, the per-
formance for MP was higher than that of MPPB, as shown in Table 3. It is clear that less
additional overhead for parallelization is required for high performance.

When using both AVX2 and OpenMP, there is a difference in performance between
PDOT and MP for large N, as shown in Figure 6. Since the all elements of ci j are updated
N times in PDOT, but a column of ci j are updated N times in MP. The data locality of MP
is higher than that of PDOT. Thus, the performance of MP is higher than that of PDOT.

Since operational intensity for matrix multiplication is larger than 2.72, the upper
bound of performance for matrix multiplication is 92.80 Gflops/sec. The DD matrix mul-
tiplication has a 16-fold increase, because this operation is limited by computational per-
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Figure 6. Performances [Gflops/sec] using AVX2 and OpenMP in block scheduling for C = AB.

formance. Although MP demonstrates the best performance 46.71 Gflops/sec, 50% of the
upper bound of performance and 13-fold higher than without parallelization (46.71/3.60).

When operational intensity is high and the outer loop is parallelized by using
OpenMP with less additional overhead, the operation is much accelerated. Thus, in order
to use both AVX2 and OpenMP, it is important to vectorize the innermost loop by using
AVX2 and parallelize outer loops by using OpenMP while avoiding the same memory
location being updated by different threads.

Table 4. Execution time [sec] in double-precision and DD precision. N=4,096,000 for vector operations, and
N=2,500 for matrix-vector multiplication.

xxx= αxxx yyy= xxx+ yyy yyy= αxxx+ yyy α = xxxT yyy yyy= Axxx

Double 0.0028 0.0042 0.0042 0.0027 0.0022

DD (AVX2 & OpenMP) 0.0055 0.0083 0.0084 0.0052 0.0044

DD / Double 1.96 1.98 2.00 1.93 2.00

5. Conclusion

In response to demands for ways to facilitate high-precision arithmetic with an interac-
tive computing environment, we developed MuPAT on Scilab/MATLAB. MuPAT uses
DD and QD arithmetics that require large numbers of double-precision floating-point
operations. Executing DD arithmetic operations takes 10 to 30 times the execution time
of double-precision floating-point operations, due to the heavy computation load and the
need to maintain computation order.

We utilized computation offloading to call an outer C function with the MATLAB
executable file, and parallelized the computation by using AVX2 and OpenMP. By using
a C executable with MATLAB, the code becomes platform dependent, but we intended to
achieve fast computation using data-level parallelism such as with AVX2 and OpenMP
instead of platform independence. We used an FMA (Fused Multiply-Add) based algo-
rithm to reduce rounding errors.

AVX2 (Advanced Vector Extensions 2) executes operations on four double-
precision numbers simultaneously. To achieve high performance, it requires that vector-
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ized fused multiply-add operations and load/store instructions be used. Unit stride access
is essential for using vector load/store instructions. OpenMP enables the same opera-
tions to process different data within threads on different cores. To avoid the same data
location from being accessed by different threads, we should apply OpenMP to as large
a block as possible.

Thus, in order to use both AVX2 and OpenMP, it is important to vectorize the inner-
most loop by using AVX2 and parallelize outer loops by using OpenMP while avoiding
the same memory location being updated by different threads. By utilizing both AVX2
and OpenMP, the performance of the matrix-vector multiplications became 25.63 Gflop-
s/sec (67% of the upper bound), and the performance of matrix multiplication became
46.71 Gflops/sec (50% of the upper bound). Each DD arithmetic operation requires 10 to
30 double-precision floating-point operations, however the execution time of these DD
operations for vector operations and matrix-vector multiplication in parallel processing
became only about twice that of the original double-precision floating-point operations
without parallel processing.

The performance of these DD operations is bounded by memory performance. It is
possible to compute many more operations in the same time if no additional data are
required. The execution times of yyy = xxx+ yyy and yyy = αxxx+ yyy are the same. These facts
mean that parallel processing provides us more accurate results and/or processes a much
larger workload for during the same time without an extra cost.
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[8] Intel Intrinsics Guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide/
[9] P. S. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011.

[10] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance model for
multicore architectures, Communications of the ACM 52 (2009), 65-76.

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT440



Dynamic Runtime and Energy
Optimization for Power- apped HPC

Applications
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Abstract. Future large-scale high-performance computing clusters will face a
power wall where the peak power draw of these clusters exceeds the maximal
power-supplying capability of the surrounding infrastructure. To use the limited
power budget efficiently, we developed a dynamic strategy to tackle execution time
imbalance issues through power shifting and frequency limitation. By applying this
strategy to NPB OpenMP benchmarks, we succeed in a continuous enforcement
of power draw under a specified power cap. At the same time, execution time is
reduced by up to 12.8% and the energy to solution is reduced by up to 12.3%,
compared to a native power strategy.

Keywords. power capping, performance optimization, energy reduction, power
shifting, core frequency limitation

1. Introduction

Large-scale high-performance computing (HPC) clusters face a power wall where their
peak power draw exceeds the power supplying capacity of the surrounding infrastructure
[1]. The power draw of these clusters has to be limited in order to avoid hardware dam-
age. Under this constraint, utilizing the power budget efficiently and minimizing the exe-
cution time of running jobs are required in order to improve the clusters’ job throughput.

Execution of a parallel job suffers frequently from imbalance among parallel tasks.
In this work, a parallel task can be an MPI process or an OpenMP thread. Each task
may reach a global synchronization call, like barrier, with distinct delays. The imbalance
can be caused by inherited load imbalance of the job, but can also be caused by power
capping at runtime.

Due to variations at manufacturing, processors have distinct power efficiencies, de-
fined as the number of watts needed to execute certain operations. Enforcing a power cap
on these processors causes distinct performance loss, like floating-point operation rate
[FLOP/s]. The loss happens because of the different amounts of power need be cut to
remain under the power cap[2]. Therefore, power-capping causes an additional runtime
execution imbalance.

Because of diverse factors causing an execution imbalance, it is difficult to analyze
and handle the imbalance issue before the execution. In this work, we developed a dy-
namic power and frequency management (DPF) method to detect, analyze and handle
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runtime imbalances issue. Applying DPF to NPB OpenMP benchmarks, we achieved up
to 12.8% performance improvement and saved up to 12.3% energy compared to a native
strategy.

The remainder of the paper is structured as follows: in Section 2, we describe related
work briefly. In section 3, we illustrate and analyze execution imbalance issues in detail.
Based upon the imbalance observations, we introduce the DPF method to tackle these
issues in section 4. In the subsequent Section, we evaluate DPF with NPB benchmarks
in comparison with a native management strategy. In the last section, we conclude this
work.

2. Related work

Several large scale clusters are facing a power wall issue and several works had been
contributed to investigate and optimize performance of power-capped applications and
clusters[3][2][4][5][6][7].

Routree et al. [2] observed that power capping causes performance imbalance among
processors of the same model since processors have distinct power efficiencies. This kind
of imbalance causes execution time imbalance of parallel tasks.

The authors of [6] and [7] introduced a static power budgeting method to handle
the imbalance issue. They measured and documented the processors’ power efficiencies.
Then they increased the power budget of less power-efficient hardware to improve the
overall performance. However, the static methods are limited in scalability and usability
since each processor needs to be measured and characterized accordingly.

[4] and [5] introduced dynamic methods to tackle the disadvantages of the static
methods separately. Marathe et al. [5] archived performance optimization through fine-
grained management of power budget, thread concurrency, and core clock rate. Gholkar
et al. [4] improved performance through careful power shifting. Both works require on-
line power and frequency monitoring.

Our DPF implementation differs from the other dynamic methods[4] and [5]. DPF
assumes the power budget for a job is dynamically adjustable at runtime [8]; DPF avoids
hardware monitoring as far as possible; DPF manages hardware with limitations instead
of direct manipulation on power or frequency.

3. Platform and Power Capping

In this section, we present the hardware platform where our measurements were con-
ducted at first. We present power values and performance characteristics of the proces-
sors. In the end, we illustrate scenes of a power-capped cluster where this work con-
tributes to.

3.1. Hardware Platform and Software

Measurements in the following sections were conducted on a computing node which
is chosen randomly from the CLAIX-2016 system at RWTH Aachen university. This
node possesses two processors of Intel Xeon E5-2650 V4. Each processor has 12 cores
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with hyper-threading deactivated, attached with 64 GB DRAM. The processors can be
clocked up to 2.5 GHz with activated Turbo Boost.

The thermal designed power (TDP) of each processor is 105 watts while the power
can be throttled down to 53 watts according to the runtime average power limitation
(RAPL) setting[9]. RAPL is a technology introduced by Intel which enables power
measurements. The power values provided by RAPL are well verified in many aspects
[10],[11],[12],[13]. On the other hand, RAPL enables power capping where a user can
specify a power value and a time window. RAPL enforces that the average power draw
of the time window remains under the specified power value, regardless of what kind of
operations are being performed.

RAPL manages power of a processor in three domains, the PKG, PP0 and DRAM
domain1 [14]. The PKG domain is in charge of power management of core and uncore
area where arithmetic logic units (ALU) and last-level cache are located respectively.
The DRAM domains manages power of DRAM. In this work, we only adjust the PKG
domain since it has a high power draw compared to the DRAM domain. In addition,
power capping the DRAM domain decreases the execution performance seriously since
memory bandwidth is the performance bottleneck for many scientific-technical applica-
tions.

Compared to the per-processor power capping through RAPL, each core of the pro-
cessors can be adjusted independently because of the intergrated dynamic voltrage and
frequency scaling (DVFS), and fully integrated voltage regulator (FIVIR)[15] technolo-
gies. In this work, we limit the maximal frequency using Linux /sys/devices/system/cpu/
cpui/cpufreq/scaling max freq interface instead of setting a concrete frequency. Through
the frequency limitation, hardware is allowed to choose a concrete frequency to meet a
power cap automatically and flexibly.

We employ the NPB OpenMP [16] benchmarks of the size C and a home-grown
synthetic benchmark (this benchmark will be introduced in the Section 5.1). The bench-
marks in our measurements always occupy all available cores with parallel tasks, i.e., 24
threads.

3.2. Power Efficiency Variation of Hardware

Due to manufacturing variations, processors of the same product line can have diverse
power efficiencies. We define power efficiency as the power draw of a processor per-
forming certain operations: the higher the power draw, the less efficient the processor is.
Figure 1 illustrates power efficiencies of the two processors of our testbed. The power
draw of each benchmark differs. On processor 0, ft draws more than 90 watts while is
consumes 61 watts in average. In particular, processor 0 is about 10% less power efficient
than processor 1 (processor 0 consumes 8 watts more than processor 1 in average.).

We observed a similar power variation in many other RWTH HPC cluster’s nodes
with different degree of variations.

3.3. Performance Variation under Power Capping

The enforcement of a power cap causes performance degradation, i.e. applications will
perform slowly. We measured relative execution time extension of NPB benchmarks

1The PP0 domain is not supported on our platform.
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Figure 1. Power draw of two processors

capped at 53 watts compared to executions at TDP. Measurements were conducted on
sockets one after another. Results are illustrated in Figure 2.

The amount of performance degradation depends on many factors. It depends on
applications’ peak power draw. The higher the peak power is, the more power needs to be
capped and the more performance will be throttled. Since ft has a higher power draw than
is illustrated in Figure 1, ft’s performance degradation is greater than is, as illustrated in
Figure 2.

The degradation also depends on the performed operations by the applications, like
memory-bound or compute-bound operations. bt and sp have a similar peak power draw
in Figure 1, but the performance degradation differs a lot (12% vs. 24% on processor 0)
since the measured L3 cache miss rates of bt and sp are quite different( 2E-4 and 1.2E-3
misses per second).

In particular, the degradation depends on the power efficiency of the underlying
processors. On a power-inefficient processor, more power needs to be capped compared
to on a power-efficient processor. The frequency of the inefficient processor is throttled
greatly and the performance degradation is tendentiously high, as illustrated by Figure 2.
Processor 0 has more performance loss than processor 1 for all benchmarks.

3.4. Dynamic Power Budgeting on a Power-capped Cluster

Because of infrastructure limitations, power supplying can be insufficient for a cluster
running at its peak power draw. On such a cluster, power budgeting methods were de-
veloped [8][17] to accelerate executions as far as possible. The methods schedule power
to jobs dynamically and according to jobs’ states. For an individual job, power budget
varies from time to time. In this context, the DPF method needs to track the jobs’ power
budget and enforces the average power draw under the current budget.
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4. Dynamic Resource Management to Eliminate Imbalance

An execution of a parallel job on a power-capped cluster may suffer from an imbalanced
execution time among parallel tasks. In this section, we justify and present our dynamic
algorithm to tackle the imbalance issue and improve the jobs’ performance.

4.1. Why Dynamic Management?

An imbalanced execution of a job can be caused by many factors. The job may have
inherited load imbalance, i.e. parallel tasks obtain uneven loads. The load imbalance is
individual to an application even to an input dataset.

In addition, the execution imbalance can also be caused by varied performance of
power-capped processors as illustrated is Figure 2. The degree of imbalance is deter-
mined by the processors and the power cap.

Because of individual imbalances and runtime factors, a static analysis that predicts
and handles imbalance before an execution is complex and imprecise. In contrast, a dy-
namic runtime imbalance tracking and handling are more promising. Assuming that a job
consists of iterative executions of parallel regions and the imbalance remains constant
among iterations, we track the imbalance of the previous region, calculate and distribute
resources in a way to eliminate the imbalance for the next iteration. This dynamic algo-
rithm is a light-weight solution since it does not require any prerequisite knowledge of
the hardware or the software.

4.2. Load Imbalance Detection and Elimination

Normally, an HPC application executes one or multiple parallel regions iteratively. A
parallel region is defined as a section of execution between two global synchronization
calls, such as barriers. The entire execution time Tapp can be calculated as a sum:
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Figure 3. Two-level resource management

Tapp = ∑Tr (1)

Tr is the execution time of a parallel region r. Under the assumption that synchronization
time is negligible, Tr is determined as

Tr = max(Tt
r ),∀t ∈ parallel tasks (2)

namely by the slowest (critical) task.
Tapp can be reduced by accelerating the critical task of each parallel region r through

a high power budget or a high core frequency. Since a power-capped application has a
limited power budget, the required power budget needs to be moved or shifted from other
tasks. If the overall power cap remained and the execution is accelerated, the job’s energy
consumption will be reduced.

4.3. Power Shifting and Frequency Limitation to Minimize Execution Time

We developed a two-level resource management approach, the DPF, to minimize Tapp,
illustrated by a tree in Figure 3. The tree design is constructed according to the avail-
able resource management technologies, RAPL and DVFS. On top of the tree a central
resource manager monitors available power-budget for the job. In the middle, a proces-
sor manager manages its own power draw using RAPL. At the bottom, a core manager
manages its own frequency through DVFS.

The managers are integrated into each parallel task which are bound to physical
cores. In general, the task with ID 0 of a job is the central resource manager. A single
task on each processor manages the processor’s power. Besides, each task is a core freq
manager.

The computation time T p of a processor within the parallel region r is defined as the
maximum computation time of parallel tasks executing on the processor in Eq. (3).

T p
r = max(T j

r ),∀ j runs on processor p (3)

A critical processor p is the processor with the maximal T p
r . Executions on p can be

accelerated through enlarging its power budget PB. The required power enlargement FP
(free power) needs be collected from other sockets through Eq. (4).

FP= ∑(SP, i f T p
r < α ·T p

r and PBp >MinPB, ∀p ∈ P) (4)

SP is a predefined step power (e.g. one watt). MinPB is the minimal power budget in-
herited in hardware to assure a stable operation. α ∈ (0,1) is a threshold that determines
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when power can be shifted. α is a sensitive parameter: a high α causes corrupted resource
adjustment frequently due to the tiny runtime deviation; a low α eliminates improvement
potential since the resource rescheduling occurs rarely.

A critical task t within a processor is the task with the maximal execution time
Tt
r . t should always run without any frequency limitation while the frequency of other

tasks can be limited. In this way, more power will be allocated to the critical task. The
frequency limitation is calculated using Eq. (5):

Fnew =

⎧⎪⎨
⎪⎩

0, if Tt
r ≥ T p

r

Fcurrent +1, if Tt
r ≤ β ·T p

r

Fcurrent , otherwise
(5)

Here, the frequency setting F is similar to ACPI P-states [18] where the higher F
is, the lower the actual frequency of the hardware is. β is a sensitive scaling parameter
similar to α in Eq. (4). In the first case where Tt

r ≥ T p
r , the frequency is reset to the valid

maximum. In the second case, the tasks’ frequency is limited to a lower level. Otherwise,
the current frequency is retained.

Through an execution, once a parallel regions r is encountered, the central resource
manager checks and updates the job’s current power budget. If the power budget is
changed, the new budget is distributed evenly among processors. Frequency limitation
of each core is reset to the valid maximum. Otherwise, power budget and frequency will
be recalculated for each processor and for each core.

After a parallel region execution, each task stops its execution time. The time values
are collected from task freq managers to the central resource manager. Algorithm 1
illustrate the implementation.

4.4. Implementation and Overhead

We implemented the DPF for common MPI and OpenMP jobs. To eliminate the expen-
diture in recognizing parallel regions, we employ OMPT [19] and PMPI [20] tools for
automatic detection.

Since a parallel region can be small and the resource-scheduling time overhead com-
pared to the execution time can be high, we introduced three techniques to eliminate the
overhead:

• If the execution of an identified region is shorter than 0.01 seconds, no resource
recalculation takes place.

• DPF tracks current resource settings. If the newly-calculated settings are identical
to the current settings, no resource scheduling takes place.

• Hardware setting occurs locally and in parallel. Each task manages its own core
frequency. A single task of each processor enforces the power cap.

In particular, the DPF only tracks time consumption. Monitoring of other hardware
settings, like actual power draw and actual frequency, is unnecessary since it is irrelevant
to calculate settings of the next step. Using this method, monitoring overheads can be
eliminated essentially.
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Algorithm 1: Resource management

1 Function resource scheduling()
2 if taskID = centralManagerID then

3 calculate and distribute power budget for each processor;

4 if taskID = processorManagerID then

5 receive and set power cap;
6 calculate and distribute freq;

7 set freq;
8 start time measurement;

9 Function time collection()
10 stop time measurement;
11 send time to processor manager;
12 if taskID = processorManagerID then

13 receive time;
14 calculate processors’ critical time;
15 send processor critical time to the central manager;

16 if taskID = centralManagerID then

17 receive time;

18 Function job execution()
19 Parallel

20 call resource scheduling();
21 doing some operations;
22 call time collection();

5. Evaluation

At the beginning, we illustrate how power and clock rate are managed for a synthetic
benchmark. Then, we present the overhead introduced by DPF. At the end, we evaluate
energy and execution time reduction through DPF compared to a native strategy with
NPB benchmarks2.

5.1. Dynamic Power and Clock Rate Management

As described in previous sections, the dynamic resource manager should a) enforce the
power draw under a specified power cap continuously, b) react to a changed power lim-
itation quickly and c) manage resources to eliminate execution imbalance. We verified
the management process with a synthetic benchmark on the hardware platform.

The synthetic benchmark executes a parallel region in a loop. The iterations are
divided into three phases. In the first phase, power cap for each processor is changed
from 80 watts to 70 watts (from 160 watts to 140 watts for two processors). In the second

2The EP, UA and LU benchmarks are not suitable for the investigation since they only have very short
regions, or a single parallel region or inconsistent execution time.
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Figure 5. Run-time processor frequency monitoring

phase, tasks on processor 1 obtain 25% more load than the others. In the third phase,
load of the two processors is reversed.

During the benchmark execution, we sampled the actual power draw and core fre-
quency at 1 Hz. The results are illustrated in Figure 4 and Figure 5. As expected, the
power draw remains permanently under the configured power cap, except the second af-
ter the cap is throttled from 80 to 70 watts (the measured power amounts to 77 watts).
This violation is due to the interleaving of the sampling and power-adjusting points.

The measured power and frequency of phases 2 and 3 in Figures 4 and 5 illustrate
that the resources are scheduled to eliminate load imbalance. In phase 2, more power is
shifted to processor 1 whose cores are clocked up. In phase 3, power is shifted back to
processor 0 immediately after a new load imbalance is detected.

5.2. Overhead of the Resource Management

Since the time overhead of DPF can be critical for short parallel regions, we evaluate the
overhead with NPB OpenMP benchmarks.
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During the measurements, power was capped to TDP (105 watts) on each processor.
The actual execution is not power capped at all. However, DPF calculates power and
frequency settings continuously and may set the hardware rarely.

We started each benchmark ten times with or without DPF and recorded the execu-
tion time. The overheads calculated as

Overhead =
TDPF

TNODPF
−1

is illustrated in Figure 6. TDPF and TNODPF are the execution time with DPF and the
average execution time without DPF, respectively.

The executions with DPF have some deviations up to ±2%. Regardless of the de-
viations, the DPF overhead amounts to lower than 2% in the worst case, and in average
lower than 1%.

5.3. Execution Time and Energy Consumption Optimization

We attached DPF to NPB OMP benchmarks of size C for validation. Capping to 55,
60, 65 and 70 watts, we measured execution time and energy consumption. Figure 7
illustrates normalized DPF time and energy compared to the values of a native strategy.
The native strategy sets equal and constant power caps among processors.

For most benchmarks the achieved execution time improvements are higher than
the observable deviation illustrated in Figure 6, except the cg at 65 watts and sp at 70
watts. The average improvements amount to about 4% for all power caps. In some cases,
executions can be accelerated by up to 12.8%. At the same time, energy can be saved by
up to 12.31%.

6. Conclusion

Because of the high power draw of an HPC cluster, the power needs be capped to avoid
hardware damage in the future. However, power capping causes performance variation
among processors due to their distinct power efficiencies.

In this work, we introduced a dynamic method, the DPF, that schedules power and
limits frequencies to tackle the performance variation issue. DPF monitors runtime and
hardware in a light-weight way. It succeeds in remaining the power draw under a speci-
fied power cap. At the same time, it accelerates executions and reduces energy consump-
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Figure 7. Improvements provided by DPF for executions with NPB OMP benchmarks

tion. For instance, applying DPF on NPB benchmarks executions were accelerated up to
12.8% and the energy consumption was reduced up to 12.3%.

In the future, we will improve the DPF for large-scale executions where hardware
variation is more significant and DPF overheads need be reduced much more.
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Paradigm Shift in Program Structure of

Takayuki UMEDA 1
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Abstract. Performance measurement of the particle-in-cell (PIC) method for col-
lisionless plasma is made on the strong scaling of the thread-level parallelism with
OpenMP. The conventional program structure of the PIC method, in which a single
loop statement involves an iteration through the list of particles, is compared with
the new program structure, in which outer multiple loop statements involve itera-
tions through spatial grid cells and the most inner single loop statement involves
an iteration through the list of particles. The present strong scaling measurement
shows that the new program structure improves both performance and scalability
of the PIC code from the conventional program structure. The new code runs about
three times faster than the conventional code without sorting of the list of particles.

Keywords. high performance computing, particle-in-cell method, space plasma,
kinetic simulation, thread-level parallelism, performance measurement

Introduction

The Particle-In-Cell (PIC) method has now become used widely in various scientific
fields. The PIC was first developed for plasma physics by geophysicists, radio scientists,
and nuclear-fusion scientists. The standard numerical schemes for the PIC method for
studying collisionless space plasma were established in early 1980s [1,2].

In the general PIC method, force fields are defined on grid cells, while particles
move in the grid cells in accordance with the equation of motion. This is why the method
is called the “particle-in-cell” method. Performance tuning of the PIC method is an issue
in high-performance computing, since the PIC method solves the time development of
both Eulerian variables (force fields) and Lagrangian variables (position and velocity of
particles).

The force field at the position of a particles is interpolated from the force fields on
neighbor grid cells. The zeroth moment (mass and charge) and the first moment (mo-
mentum and electric current) are assigned to neighbor grid cells by using the similar
procedure to the interpolation of fields. In these operations, an index of a grid cell in
which a particle belongs to is computed from the position of the particle. When particles
are placed independently of grid cells, data access to the arrays of force fields and the
arrays of moments becomes random, which causes a cache miss. The cache miss can be
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suppressed and the computational performance of the PIC method can be improved by
sorting of the list of particles in accordance with the order of the index of grid cells [3,4].

In the present study, a program structure used in molecular dynamic (MD) simula-
tions and astrophysical N-body simulations is implement into the PIC method, in which
each grid cell has a sorted list of particles for computing particle-particle interactions
faster [5]. The program structure of the new PIC method has outer multiple loop state-
ments and a most inner single loop statement that involve iterations through spatial grid
cells and an iteration through the list of particles, respectively [6]. On the other hand,
the program structure of the conventional PIC method has a single loop statement that
involves an iteration through the list of particles only [1,2,3,4].

Performances of three different programs of the PIC simulations for collisionless
plasma are measured. The first is the conventional program structure, in which particles
are placed randomly in the simulation domain. The second is also the conventional PIC
method but the index of particles is sorted in accordance with the order of the indexes of
grid cells at each time step. The third program has the new program structure, in which
the index of particles is sorted in accordance with the order of the indexes of grid cells
at each time step. A measurement of strong scaling is performed to study how the new
program structure improve the performance and scalability of the PIC method on a single
compute node with the thread-level parallelism with OpenMP. Note that performances
on massively parallel computers with the process-level parallelism by Message Passing
Interface library (e.g., Refs.[7,8,9]) and on Graphic Processing Unit with OpenCL (e.g.,
Ref.[10]) are out of scope of the present study.

1. Overview of numerical schemes

The PIC method for collisionless space plasma solves the first-principle equations, i.e.,
the Maxwell equations for electromagnetic fields (1) and the Newton equations of motion
for charged particles (2),

∇×B = μ0J+
1

c2
∂E

∂t

∇×E = −∂B

∂t
∇ ·E =

ρ

ε0∇ ·B = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1)

drp
dt

= vp

d

dt
(γpvp) =

qp
mp

{E(rp) + vp ×B(rp)}

⎫⎪⎬
⎪⎭ (2)

where E, B, J, ρ, μ0, ε0 and c represent the electric field, the magnetic field, the current
density, the charge density, the magnetic permeability, the dielectric constant and the
speed of light, respectively. The quantities r, v, γ, q and m represent the position, the
velocity, the Lorentz factor, the charge and the mass, with the subscript p being the p-th
particle. The current density and the charge density in Eq.(1) must satisfy the continuity
equation for charge,
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∂ρ

∂t
+∇ · J = 0. (3)

The continuity equation for charge (3) satisfies both of Maxwell equation (1) and Boltz-
mann (Vlasov) equation for particle species s,

∂fs
∂t

+ v · ∂fs
∂r

+
qs
ms

(E+ v ×B) · ∂fs
∂v

= 0, (4)

which describes the statistical behavior of the equations of motion (2).
The Maxwell equations (1) are solved with the Finite Difference Time Domain

(FDTD) method [11], in which electromagnetic fields on staggered grid cells are com-
puted with the second-order leap-frog time-integration together with the second-order
central difference. The equations of motion for charged particles (2) are solved with the
second-order leap-frog time-integration based on the Buneman-Boris scheme [12,13].
The Sokolov interpolation scheme [14] is used to interpolate electromagnetic fields on
neighbor grid cells to particle positions. The current density is computed with the charge
conservation scheme [15] which exactly satisfies the continuity equation for charge (3).

The present PIC code is parallelized in two levels. As the first-level thread paral-
lelism, the computation of velocity and position of particles in accordance with the equa-
tions of motion (2) and the computation of current density in accordance with the con-
tinuity equation for charge (3) are parallelized with OpenMP. The “particle decomposi-
tion” with the standard message passing interface (MPI) library is also adopted as the
second-level process parallelism, in which the computation of velocity and position of
particles and the computation of current density for electrons and positively-charged ions
are decomposed into two processes. Note that the domain decomposition with MPI as
the third-level parallelism is out of scope of the present study.

2. Program structures

The PIC code for collisionless plasma has four kernels. The first kernel updates the ve-
locity of charged particles, as shown in Figures 1 and 3. The second kernel update the
position of charged particles and computes the current density, as shown in Figures 2 and
4. The third kernel update electromagnetic fields based on the Maxwell equations. The
fourth kernel sorts the index of particles. Since the load of the third kernel is generally
less than 0.1% of the total load of the entire kernels, the performance of the field kernel
is not of interest in the present study.

In the conventional PIC method, a single loop involving an iteration through the in-
dex of particles, p, is used to compute the current density, the velocity and the position of
particles. Figures 1 and 2 show FORTRAN programs of the velocity and current kernels,
respectively. At lines 3–5 in Figures 1 and 2, the indexes of grid cells nearest the p-th par-
ticle, (i,j,k) are obtained based on the position vector of the p-th particle, (x,y,z).
Here, x(p) is the x-coordinate of the p-th particle position, and i is used as an index
in a 3D arrays, (fx,fy,fz) and (cjx,cjy,cjz). At lines 6–9 in Figures 1 and 2,
a set of weights, (w1,w2,w3,...), is computed by the numerical interpolation at the
position of the p-th particle.

In Figure 1, the acceleration vector of the p-th particle, (ax,ay,az), are com-
puted from forces on the neighbor grid cells, (fx,fy,fz), by using the set of weights,
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(w1,w2,w3,...) as at lines 10–12. Then, the velocity vector of the p-th particle,
(vx,vy,vz), is updated at lines 13–15. In Figure 2, the current density due to the mo-
tion of the p-th particle is accumulated on neighbor grid cells by using the set of weights,
(w1,w2,w3,...) as at lines 10–19. These loop statements are thread-parallelized
with OpenMP. In the accumulation of the current density, the reduction operation of the
arrays (cjx,cjy,cjz) on each thread is needed. Note that a collective communica-
tion (i.e., MPI_Allreduce()) among particle species s is also necessary to compute
the total current density in the second-level parallelism of the particle decomposition
with MPI.

The position of particles, (x,y,z), is generally independent of the index of par-
ticles, p. The access to the arrays fx,fy,fz at lines 10–12 in Figure 1 corresponds
to random load. The access to the arrays cjx,cjy,cjz at lines 10–19 in Figure 2 is
random load and store. Hence, cache misses are often caused in these operations. When
the list of particles is sorted in accordance with the position of particles, then the access
to the arrays fx,fy,fz and cjx,cjy,cjz is sequential and the cache miss can be
suppressed.

In the new program structure, quadruple loop statements are used, as shown in Fig-
ures 3 and 4, in three dimensional simulations. (Note that triple and double loop state-
ments are used in two- and one-dimensional simulations, respectively.) The outer three
loop statements involving iterations through k, j, and i are thread-parallelized with the
loop collapsing of OpenMP. This is because there is a possibility that the number of
threads on many-core architectures is larger than the number of iteration (i.e., number
of grid cells) in a single spatial dimension. The number of particles, np, on each grid
cells, (i,j,k), and the pointer to (i.e., the index of) the head of the particle list on the
grid cell, psta, are used in the new program structure. The most inner loop statement
(at line 5 and 9 in Figure 3 and 4, respectively) involves an iteration through the list of
particles from psta(i,j,k) to psta(i,j,k)-1+np(i,j,k). Hence, the index
of particles, p, must be sorted in accordance with the order of the indexes of grid cells,
(i,j,k).

In the new program structure, it is clear that the access to the arrays fx,fy,fz at
lines 10–13 in Figure 3 is sequential load. The access to the arrays cjx,cjy,cjz at
lines 25–34 in Figure 4 is also sequential store and load. In the most inner loop statement
in Figure 4, the current density due to the motion of the p-th charged particle is accu-
mulated into temporary scalar variables rather than arrays to use cache memory more
efficiently as seen at lines 14–23. Note that the “static” schedule for the DO directive of
OpenMP with a chunk size of one is adopted. This is because the number of particles
on each grid cells is generally nonuniform, and a load imbalance is often caused with a
large chunk size.

It is noted that there are additional operations in the new program structure, i.e.,
computation of the number of particles on each grid cells and the pointer to the head of
particle list, and the sorting of the index of particles. In the present study, a counting sort
parallelized with OpenMP [16] is used, in which the counting and the sorting operations
are performed simultaneously.
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1 !$OMP DO
2 DO p=1,np
3 i = x(p)
4 j = y(p)
5 k = z(p)
6 w1=...
7 w2=...
8 w3=...
9 :
10 ax = w1*fx(i,j,k)+w2*fx(i+1,j,k)+w3*fx(i,j+1,k)+...
11 ay = w1*fy(i,j,k)+w2*fy(i+1,j,k)+w3*fy(i,j+1,k)+...
12 az = w1*fz(i,j,k)+w2*fz(i+1,j,k)+w3*fz(i,j+1,k)+...
13 vx(p) = vx(p)+ax*dt
14 vy(p) = vy(p)+ay*dt
15 vz(p) = vz(p)+az*dt
16 END DO
17 !$OMP END DO

Figure 1. Program structure of the conventional PIC method in FORTRAN for computing the velocity of
particles.

1 !$OMP DO REDUCTION(+:cjx,cjy,cjz)
2 DO p=1,np
3 i = x(p)
4 j = y(p)
5 k = z(p)
6 w1=...
7 w2=...
8 w3=...
9 :
10 cjx(i,j,k) = cjx(i,j,k) + w1*vx(p)
11 cjy(i,j,k) = cjy(i,j,k) + w1*vy(p)
12 cjz(i,j,k) = cjz(i,j,k) + w1*vz(p)
13 cjx(i+1,j,k) = cjx(i+1,j,k) + w2*vx(p)
14 cjy(i+1,j,k) = cjy(i+1,j,k) + w2*vy(p)
15 cjz(i+1,j,k) = cjz(i+1,j,k) + w2*vz(p)
16 cjx(i,j+1,k) = cjx(i,j+1,k) + w3*vx(p)
17 cjy(i,j+1,k) = cjy(i,j+1,k) + w3*vy(p)
18 cjz(i,j+1,k) = cjz(i,j+1,k) + w3*vz(p)
19 :
20 END DO
21 !$OMP END DO

Figure 2. Program structure of the conventional PIC method in FORTRAN for computing the current density.
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1 !$OMP DO COLLAPSE(3) SCHEDULE(static,1)
2 DO k=1,nz
3 DO j=1,ny
4 DO i=1,nx
5 DO p=psta(i,j,k),psta(i,j,k)-1+np(i,j,k)
6 w1=...
7 w2=...
8 w3=...
9 :
10 ax = w1*fx(i,j,k)+w2*fx(i+1,j,k)+w3*fx(i,j+1,k)+...
11 ay = w1*fy(i,j,k)+w2*fy(i+1,j,k)+w3*fy(i,j+1,k)+...
12 az = w1*fz(i,j,k)+w2*fz(i+1,j,k)+w3*fz(i,j+1,k)+...
13 vx(p) = vx(p)+ax*dt
14 vy(p) = vy(p)+ay*dt
15 vz(p) = vz(p)+az*dt
16 END DO
17 END DO
18 END DO
19 END DO
20 !$OMP END DO

Figure 3. Program structure of the new PIC method in FORTRAN for computing the velocity of particles.

3. Performance measurement

In the present performance measurement, three different programs of the two-dimensional
PIC code are used. “Program 1” is the conventional PIC code where the program struc-
ture has a single loop statement involving an iteration through the list of particles as
shown in Figures 1 and 2. At the initial state, particles are placed randomly in the simu-
lation domain. “Program 2” is the conventional PIC code as well, but the index of parti-
cles is sorted in accordance with the order of the indexes of grid cells at each time step.
“Program 3” has the new program structure, which has outer multiple loop statements
involving iterations through the spatial grid cells and the most inner single loop state-
ment involving an iteration through the list of particles as shown in Figures 3 and 4. The
indexes of particles must be sorted in accordance with the order of the indexes of grid
cells at each time step to use the new program structure.

The performances of the these programs are measured on a single compute node
that has 512 GB of DDR4 shared memory and a dual Xeon E5-2697 v4 proces-
sor (Broadwell, 2.3 GHz). The processor has 18 compute cores and a total of 36
processes are executable on a single node, with the hyper-threading technology dis-
abled. The Intel Parallel Studio XE Cluster Edition Ver.17.0.1.132 is installed on
the system. The compiler option used in the present performance measurement is
“-ipo -ip -O3 -xCORE-AVX2 -qopenmp.”

The number of grid cells is fixed to Nx = 500 and Ny = 500. The number of
particles is also fixed to Np = 25, 000, 000 for each of particle species, i.e., positively-
charged ion and electrons. The total size of the job corresponds to ≈ 4 GB including
temporary work arrays. The elapsed time for 100 timesteps is measured. One process is
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1 !$OMP DO COLLAPSE(3) SCHEDULE(static,1) &
!$OMP REDUCTION(+:cjx,cjy,cjz)

2 DO k=1,nz
3 DO j=1,ny
4 DO i=1,nx
5 cjx1=0.0; cjy1=0.0; cjz1=0.0
6 cjx2=0.0; cjy2=0.0; cjz2=0.0
7 cjx3=0.0; cjy3=0.0; cjz3=0.0
8 :
9 DO p=psta(i,j,k),psta(i,j,k)-1+np(i,j,k)
10 w1=...
11 w2=...
12 w3=...
13 :
14 cjx1 = cjx1 + w1*vx(p)
15 cjy1 = cjy1 + w1*vy(p)
16 cjz1 = cjz1 + w1*vz(p)
17 cjx2 = cjx2 + w2*vx(p)
18 cjy2 = cjy2 + w2*vy(p)
19 cjz2 = cjz2 + w2*vz(p)
20 cjx3 = cjx3 + w3*vx(p)
21 cjy3 = cjy3 + w3*vy(p)
22 cjz3 = cjz3 + w3*vz(p)
23 :
24 END DO
25 cjx(i,j,k) = cjx(i,j,k) + cjx1
26 cjy(i,j,k) = cjy(i,j,k) + cjy1
27 cjz(i,j,k) = cjz(i,j,k) + cjz1
28 cjx(i+1,j,k) = cjx(i+1,j,k) + cjx2
29 cjy(i+1,j,k) = cjy(i+1,j,k) + cjy2
30 cjz(i+1,j,k) = cjz(i+1,j,k) + cjz2
31 cjx(i,j+1,k) = cjx(i,j+1,k) + cjx3
32 cjy(i,j+1,k) = cjy(i,j+1,k) + cjy3
33 cjz(i,j+1,k) = cjz(i,j+1,k) + cjz3
34 :
35 END DO
36 END DO
37 END DO
38 !$OMP END DO

Figure 4. Program structure of the new PIC method in FORTRAN for computing the current density.

used for each of the two particle species. The number of processes per compute node is
fixed to two, and a measurement of strong scaling is performed by changing the number
of threads per process.

Figure 5 shows the result of the performance measurement. Panels (a), (b), (c), and
(d) show the strong scaling of the “velocity” kernel, “current” kernel, “sort” kernel, and
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the entire program, respectively. The circles, squares and “x”-mark correspond to the
results of Programs 1 (conventional program structure with unsorted list of particles), 2
(conventional program structure with sorted list of particles), and 3 (new program struc-
ture), respectively.

The velocity kernel of all the programs scales very well, suggesting that the random
load does not affect the scalability of OpenMP. The velocity kernel of Program 2 runs
about two times faster than that of Program 1 due to the sorted list of particles. The
velocity kernel of Program 3 runs about two times faster than that of Program 2 due to
the new program structure.

The current kernel of Program 1 scales until eight threads per process. The per-
formance of the current kernel of Program 1 becomes worse with sixteen and eighteen
threads per process because of a cache miss in the random store. The current kernel of
Program 2 runs about two times faster than that of Program 1 due to the sorted list of
particles (until eight threads per process). The current kernel of Program 2 scales well.
However, an overhead of the reduction of OpenMP becomes larger as the number of
threads is larger. The scalability of the current kernel of Program 3 is not excellent, be-
cause an overhead of the reduction of OpenMP (∼ 0.1 sec per timestep) is included in
the performance measurement. However, the current kernel of Program 3 runs about four
times faster than that of Program 2.

The sort kernel (of Programs 2 and 3) scales well until eight threads per process.
The scalability becomes worse with sixteen and eighteen threads per process due to the
prefix sum of the counting sort, which cannot be parallelized. Note that Program 1 does
not use the sort kernel.

The ratio of the load of the velocity kernel to the current kernel in Program 1 is about
1:2. The ratio of the load of the velocity kernel to the current kernel to the sort kernel in
Program 2 is about 2:4:3. The ratio of the load of the velocity kernel to the current kernel
to the sort kernel in Program 3 is about 1:1:2. Program 2 runs about 1.5 times faster than
Program 1. Program 3 runs about two times faster than Program 2.

4. Conclusion

Since the PIC method solves the time development of both of Eulerian and Lagrangian
variables, its performance tuning has been an issue in high-performance computing.
Cache misses are often caused in the random access to arrays from particles, because
the indexes of particles are generally independent of the position of particles, i.e., the
indexes of arrays. By sorting the list of particles in accordance with the order of the in-
dexes of grid cells, both of the performance and the scalability of the PIC method can be
improved substantially.

The conventional program structure has a single loop statement involving an itera-
tion through the list of particles only. In the present study, a new program structure is
also implemented into the PIC method, which has multiple loop statements involving
iterations through both of the indexes of spatial grid cells and the list of particles. The
new program structure also improved the performance of the PIC code from the con-
ventional program structure. The new code runs about three times faster than the con-
ventional code without sorted list of particles and two times faster than the conventional
code with sorted list of particles.
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Figure 5. Strong scaling of the PIC code. Elapse time of (a) “velocity” kernel, (b) “current” kernel, (c)
“sort” kernel, and (d) the entire program for 100 timesteps with Nx = 500 and Ny = 500 and
Np = 25, 000, 000 × 2 (ions and electrons). The circles, squares and “x”-mark correspond to the results of
Programs 1 (conventional program structure with unsorted list of particles), 2 (conventional program structure
with sorted list of particles), and 3 (new program structure), respectively.

The overhead of the reduction of OpenMP in the accumulation of current density
of a single particle into arrays is visible in the present performance measurement with
a large number of threads per process. Use of a loop tiling with multi-color ordering
instead of the reduction in the thread-level parallelism with OpenMP is left as a future
task, which is expected to improve the scalability of the current kernel.
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Backus FP Revisited: A Parallel Perspective
on Modern Multicores
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Abstract. We discuss an open source implementation of Backus FP formalism in
C++. Our implementation preserves all the nice formal properties of the original
language. The implementation is fully C++17 compliant and leverages standard
concurrency mechanisms. It provides linear scalability on state-of-the-art shared
memory multi cores. By preserving the possibility to use all the rules of the associ-
ated “algebra of programs” described by Backus more that 40 years ago, the C++
FP implementation is a natural candidate to be used to introduce parallel program-
ming concepts in core parallel computing courses.

Keywords. parallel patterns, algorithmic skeletons, code refactoring, structured
parallelism

1. Introduction

Backus Turing award lecture [Bac78] dates back in the late ’70 but provides different
features that may be very interesting in these days characterized by the pervasive pres-
ence of different kind of parallel devices. Backus designed a programming framework
(FP) aimed at relieving the programmers from the burden of explicitly controlling traffic
through the Von Neumann bottleneck via memory references. Computations in FP are
represented by compositions of functions that may be i) data combiners (just re-shaping
data), ii) data transformers (e.g. arithmetic functions) and iii) higher order functional (an
apply-to-all and an insert functions that represent kind of map and reduce computations).

As an example, trans represents the transpose data combiner: given a sequence of
sequences it returns the sequence of sequences made by the corresponding items in the
original inner sequences. The distr and distl data combiners get a sequence and an object
and return the sequence of sequences made of the items of the original sequence paired
(in a new sequence) with the object. The two variants represent distribution of the right
object into the left sequence and vice-versa. Higher order functions include [ f ,g], the
higher order function that builds a sequence of two items obtained applying f and g
respectively on the input item, α that is the apply-to-all higher order function, applying
the function parameter to all items in the input sequence, and finally / that is the insert
higher order function, “summing up” all items in the input sequence by means of the
parameter function (see Fig. 1 for the main FP function definition).

The typical code shown to illustrate FP features is the code implementing matrix
multiplication. In FP data is represented in sequences, enclosed in angle brackets (〈. . .〉).
A matrix will be therefore represented as a sequence of sequences (the matrix rows). In
order to provide the matrix multiplication code, first we define the inner products as:
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Higher order fuctions
α f : 〈x1 . . .xn〉 ≡ 〈 f (x1) . . . f (xn)〉
/⊕ : 〈x1 . . .xn〉 ≡ 〈x1⊕ . . .⊕ xn〉
[ f ,g] : x≡ 〈 f (x),g(x)〉
f ◦g : x≡ f (g(x))

Fuctions (data transformers)
binop :< x,y>≡ x binop y

Data combiners
distl : 〈a,〈x1 . . .xn〉〉 ≡ 〈〈a,x1〉 . . .〈a,xn〉〉
distr : 〈〈x1 . . .xn〉,a〉 ≡ 〈〈x1,a〉 . . .〈xn,a〉〉
rotl : 〈x1 . . .xn〉 ≡ 〈x2 . . .xn,x1〉
rotr : 〈x1 . . .xn〉 ≡ 〈xn,x1 . . .xn−1〉
trans : 〈〈< x1 . . .xn〉〈y1 . . .yn〉〉 ≡ 〈〈x1,y1〉 . . .〈xn,yn〉〉
i : 〈x1 . . .xi . . .xn〉 ≡ xi
All functions are ⊥ preserving. Whenever x is or contains ⊥ then f : x=⊥ for any f

Figure 1. Main FP components

IP≡ (/+)◦ (α×)◦ trans

The computation of the inner product applied to a sequence of two sequences repre-
senting the two vectors may be described by the following (rewriting) steps:

(/+)◦ (α×)◦ trans : 〈〈1,2,3〉,〈4,2,2〉〉 →
(/+)◦ (α×) : 〈〈1,4〉,〈2,2〉,〈3,2〉〉 → (/+) : 〈1,4,6〉 → 11

Then the matrix multiplication (input is a sequence of two matrices, each represented as
a sequence of sequences (rows)) may be defined as follows:

MM≡ (ααIP)︸ ︷︷ ︸
compute code

◦(α distl)◦distr◦ [1, trans◦2]︸ ︷︷ ︸
data routing code

In the MM code, the right part represents the computation needed to prepare the data
for the actual computation part ((ααIP), that is apply IP on all the sequences build of a
row of the first matrix and a column of the second one, as prepared byu the data routing
code from the initial pair of matrices). Actually, the definition of IP may be used in place
of the IP call in MM, which leads to the expression:

(αα((/+)◦ (α×)︸ ︷︷ ︸
compute code

◦ trans))◦ (α distl)◦distr◦ [1, trans◦2]︸ ︷︷ ︸
data routing code

with an even longer “data routing” part on the right and a correspondingly longer “com-
putational” part on the left.

In his work, Backus stressed the fact FP may be used as an algebra of programs,
with different rules that can be used to transform programs into functionally equivalent,
syntactically different programs. Despite the fact parallel execution of programs was
not considered in the paper, the higher order functions and the data combiners may be
interpreted as parallel operations. Different researchers pointed out that FP programs
naturally express parallel computations (e.g. [WB94,M1]). We claim that the idea of

A. di Giorgio and M. Danelutto / Backus FP Revisited466



separating data combiners from actual computations may be useful to express different
kind of optimizations.

In this paper, we discuss a framework (fpar) providing Backus FP as an embedded
parallel DSL in C++. The implementation leverages the modern features recently in-
cluded in C++ as well as different existing libraries for parallelism support (OpenMP)
and to implement immutable data structures (see Sec. 2.0.3). We will show that programs
written in fpar may be automatically parallelized achieving proper speedups on small
size shared memory multi-cores using standard C++ mechanisms (threads) and state-of-
the-art parallel programming frameworks (OpenMP). In addition, we will discuss how
we may apply known and proven correct program transformations that actually improve
application performance by coarsening parallel computations (map fusion rule) or im-
proving the data combiner usage (zip rules).

The usage of refactoring rules preserving the functional semantics while chang-
ing/improving non functional properties of programs is of great importance. The avail-
ability of such refactoring rules has been proven to be a viable solution to explore alter-
native implementations of parallel applications even before actually starting their cod-
ing, especially in the framework of structured parallel programming [BHD+13,GD18,
MRR12]. The implementation of fpar preserves all the properties of Backus’ FP frame-
work and, in particular, it can be used to show how different refactoring rules may be ap-
plied to simple numerical computations such that the rules improve different kind of non
functional properties (performance, as shown in Sec. 3, as well as data locality or load
balancing, not covered in this paper). Overall this provides the possibility to run simple
exercise in classroom whose complexity is far less than the complexity involved in run-
ning patterned applications such as those developed using different C++ based parallel
programming frameworks [dRADFG17,Rei07].

Finally, we want to point out an additional argument in favour of the usage of FP,
related to the utilization of data parallel accelerators. FP code exposes the data trans-
formations needed to subsequently execute map and reduce functionals. This can be ex-
ploited while targeting GPU accelerators. In fact the composition of combiners may be
used to optimize data transfers to and from GPU accelerators, and the apply-to-all and
insert functionals naturally define proper and efficient GPU kernels. Despite we do not
discuss explicitly in this paper these aspects, they may contribute to the development of
automatic parallelization of programs targeting both CPU cores (as we demonstrated)
and GPU cores.

The paper contribution can be summarized as follows.

• We introduce a modern C++ implementation of Backus’ FP targeting shared mem-
ory multi-cores via OpenMP and we

• We discuss an experiment parallelizing a simple neural network training code. The
parallelization comes for free after turning classical imperative code into FP code.

• We discuss how a trivial application of some “algebra of programs” transformation
may be used to improve the performance of the original application FP code.

• Finally, we show how decently grained FP computations scale on state-of-the-art
shared memory multicores.
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2. Implementation

fpar is an implementation of Backus FP in C++17. The implementation is provided as
an open source library and available on github2. The library is actually provided as an
header only package as the compiler optimization techniques may greatly benefit from
the simultaneous compilation of both library and business logic (user) code.

2.1. Data types

fpar aims at reproducing the key features of FP as faithful as possible. In particular, data
types are implemented via a single variadic template class Object that encapsulates a
variant type:

template <typename... Ts>

class Object {

private:

variant<monostate, Ts..., flex_vector<Object<Ts...>>> _obj;

public:

template <typename T> Object(const T& obj) : _obj(obj) {}

template <typename T> operator T () const { return get<T>(_obj); }

};

This enables the possibility to express polymorphic objects that can assume values
of one of the types specified in the instance of the template or, recursively, sequences of
such objects. Finally, a further alternative is the empty type ⊥ which is represented as
an instance of monostate that is also conveniently denoted as the constant expression
Bottom. The advantage of using this technique is twofold: on one hand the use of variant
enforces type safety [std19], on the other hand the possibility of identifying alternatives
of the possible types as variadic arguments frees the implementation from a fixed set of
available types. However, programmer has to declare the types of the items eventually
appearing in sequences before actually using them. As an example, if we want to have
integers and floating point numbers in a sequence, we must use the following code:

using namespace fpar;

using Number = Object<int, double>;

Sequence<Number> X = {0.0, 42, 1.0, 23.0};

2.2. Functions

All of the basic arithmetic and logic operators and functions to manipulate and access
sequences are implemented. In addition, higher order functions, called functionals, are
also provided. It is worth pointing out that all of them are unary functions that take and
return (constant references to) Object instances. Therefore, an n-ary function takes a
sequence of n objects acting as multiple arguments (e.g., the plus operator takes the
sequence of the two needed operands).

Since the available types are decided by the programmer, all of the functions and
functionals provided by fpar are function templates that take as template parameter the
instantiated Object class. Some of them also have an additional template parameter that
specifies the kind of execution (parallel or sequential). As an example, the following code
defines a function that squares all items in a sequence in parallel:

2https://github.com/alessandrodgr/fpar
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auto square =

apply_to_all<par_exec, Number>([](const Number& x) { return (x*x); });

In this case, an OpenMP parallel for is used to implement the apply_to_all. Par-
allelism degree used in parallel computations of fpar may be fixed through OMP_NUM_

THREADS variable, as usual. If a seq_exec was used as first template parameter of the
apply-to-all, the application of a square function on a sequence would have been per-
formed sequentially. In other cases, such as the insert (foldr) and condition function-
als, the mechanisms used for the parallel evaluation strategy are the ones provided by the
standard library (thread, async, future).

2.3. Immutability

In order to respect the “functionality” of the FP framework, data managed by the fpar
library are implemented using an immutable data structure implementation [Pue17], pro-
vided by the immer library3.

An alternative version does not use immutable data structures requiring a little bit
more attention while coding applications, but providing better performances when ex-
ecuting functionals in par_exec mode. It is worth pointing out fpar pays a penalty in
terms of performance w.r.t. non fpar equivalent code, mainly due to data type boxing that,
besides usual overhead, impairs automatic vectorization opportunities. We are currently
working to overcome this limitation.

However, the usage of immutable data structures, in addition to the const-correctness
enforced by the constant reference parameter passing, gives two main advantages: i) in
many cases it rules out eventual data races that otherwise the programmer should take
care of, and ii) it keeps the semantics of parallelized constructs unchanged.
This last property is a consequence of the fact that functions with no side effects naturally
introduce independence among the tasks executing the constructs in parallel and, since
these constructs are parallelized via embarrassingly parallel algorithms (parallel for) task
independence is a prerequisite for the correctness of the results.

The only case where purity is not enough to guarantee the correctness of the re-
sult is the insert functional (foldr), where also commutativity and associativity of the
reducing function is asked [MRR12].

Finally, the main consequence of keeping unchanged the semantics of these con-
structs is that all of the laws and theorems given by the “algebra of programs” also hold
for parallel programs. Therefore, fpar programs performance can be optimized using two
different, not necessarily disjoint, approaches:

• parallelization of constructs
• simplification of programs via algebraic laws

As an example, the first kind of optimization can be applied to the inner product function
IP presented in Sec. 1, whose fpar implementation is:

auto ip =

(insert<par_exec>(add, Number(0)) *

(apply_to_all<par_exec, Number>(mul) *

trans<Number>))(x);

3https://github.com/arximboldi/immer
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As explained before, the parallelization happens for the insert and apply_to_all
functionals, since their execution flag is set to par_exec. However, in this case we can
further optimize the program by applying, for example, the rule for zip introduction
(α f ◦ trans≡ zip f ):

auto ip =

(insert<par_exec>(add, Number(0)) *

(zip<par_exec, Number>(mul))(x);

Doing so, the amount of computation along with memory operations is drastically
reduced, resulting in a better performing program equivalent to the original one. Also
notice that in the original code there was a sequential part computing the transposition
of the two input vectors (trans), while the transformed code is fully parallelized, except
for the function composition.

3. Experimental validation

We first discuss an experiment aimed at demonstrating the applicability of the refactor-
ing rules typical of the FP framework and the possibility to achieve notable performance
increases through refactoring. In this experiment, we parallelized a simple Neural Net-
work training code with fpar. The original code is written as a loop iterating steps that
include matrix multiplications, matrix differences and matrix items transformations. The
single iteration can be expressed in FP considering the application of the following steps,
working on different input and temporary data sequences: a matrix multiplication, an α ,
a zip4, another α , a second zip, a second matrix multiplication and eventually a final zip.
These phases eventually result in the following excerpt of C++ code:

auto out = (apply_to_all<par_exec, Number>(sigmoid) *

apply_to_all<par_exec, Number>(ip(W)))(X);

auto err = (apply_to_all<par_exec, Number>(sub_op<double, Number>) *

trans<par_exec, Number> *

construct<seq_exec, Number>({constant<Number>(Y), id<Number>}))(out);

auto delta = (apply_to_all<par_exec, Number>(mul_op<double, Number>) *

trans<par_exec, Number> *

construct<seq_exec, Number>({

constant<Number>(err), apply_to_all<par_exec, Number>(sigmoidder)

}))(out);

auto WDelta = (apply_to_all<par_exec, Number>(ip(delta)) *

trans<par_exec, Number>)(X);

W = (apply_to_all<par_exec, Number>(add_op<double, Number>) *

trans<par_exec, Number> *

construct<seq_exec, Number>({constant<Number>(W), id<Number>}))(WDelta);

The code computes the same results of the original, C++ only, sequential code and
achieves decent speedups on single socket multi-core systems with 64bit Linux 4.15 and

4the zip combiner may be defined in FP as follows: zip f ≡ (α f )◦ trans
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Figure 2. Original and transformed code TC on a i5 laptop (4 core, 2 way hyper threading) left and on a dual
Xeon(R) CPU E5-2698 v4 server (40 cores, 2 way hyper threading) (right). X axis: parallelism degree, Y axis:
TC in μsecs

g++ 9.0.1. Leveraging on the FP formal background, the application represented by FP
code may be rewritten using different rules of the algebra, namely:

• (α f )◦ (α g)≡ α( f ◦ g) (map fusion)
• α f ◦ trans≡ zip f (zip intro)
• (zip f )◦ [α g◦1, α h◦2]≡ zip ( f ◦ [g◦1,h◦2]) (zip generalize)

In principle, the transformation in the C++ code may be performed automatically,
may be following an approach such as the one proposed in [GD17] for more generic and
high level parallel pattern applications.

By manually applying the rules mentioned above, we obtain the code listed below
that turns out to compute the correct results (as expected, due to the proven correctness of
the transformation rules used) but also to compute results with better performance w.r.t.
the original code.

auto out =

apply_to_all<par_exec, Number>(

construct<seq_exec, Number>({id<Number>, sigmoidder}) *

sigmoid * ip1(W)

)(X);

auto delta = (zip<par_exec, Number>(sub_and_mul) *

construct<seq_exec, Number>({constant<Number>(Y),

id<Number>}))(out);

W = (zip<par_exec, Number>(

add_op<double, Number> *

construct<seq_exec, Number>({select<2, Number>,

ip1(delta) * select<1, Number>})

) * construct<seq_exec, Number>({

trans<par_exec, Number>,

constant<Number>(W)

}))(X);

Fig. 2 shows some results we achieved running our FP version of the neural network
training code on different architectures. Fig. 2 (right) shows the completion time (TC)
with input matrix size 256x256 on a I7 laptop with 4 cores, with 2-way hyper-threading.
Measured and ideal times are shown. Transformed code performs better both in absolute
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business logic weight (left) and input size (right) in the computation of a synthetic FP application. Speedup
computed w.r.t. plain C++17 sequential code.

times and in scalability w.r.t. original FP code. Fig. 2 (left) shows scalability results on
a Xeon E5 v4 server relative to 1024x1024 matrix size, confirming the kind of results
observed on smaller parallelism degrees on the I7 processor. Eventually, Fig. 3 shows
impact of computational grain. The completion times show (log scale on the Y-axis) are
relative to an experiment run on both an Intel Xeon PHI KNL [MMM+17] and an AMD
Epyc 7551 with different input matrix sizes: 256x256 and 1024x1024. In both cases, the
transformed version performs much better than the original one, either stopping scaling
after the original version (256x256 version) or even not stopping improving times with
parallelism degree while the original version actually stops quite early.

The numbers shown here are good when comparing the two different versions of
the code. However, in absolute they demonstrate quite an amount of overhead derived
from the ”pure” implementation of FP. As an example, the usage of immutable data
structures–while greatly simplifying the overall parallelism management–introduces a
considerable overhead with respect to the very same computations implemented using
plain std::vector data type. We therefore run a different set of experiments aimed at
showing strong and weak scaling properties of fpar. Using synthetic applications, we
looked for the typical computational grain needed to go closer to ideal speedups and to
the effect of working on larger and larger data structures. The results are summarized
in Fig. 4. The left plot shows that close to ideal speedup can actually be achieved when
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Figure 5. Weak scalability of typical FP code (AMD Epyc 7551, 64 cores, 2 way hyperthreading). Scaled
speedup computed w.r.t. plain C++17 sequential code.

the grain of the parallel computation (time spent in a single parallel activity) is close
or higher to the milliseconds. This allows to conclude that our FP implementation is
definitely not fine grain but still can achieve decent strong scalability. The right plot
shows speedups achieved when increasing the size of the processed data. Fig. 5 shows
typical results achieved with the synthetic applications in terms of weak scalability.

4. Conclusions

In this paper we briefly discussed a modern open source implementation of Backus’ FP
exploiting pure C++17: fpar. We discussed how fpar implementation preserves all the
nice properties of Backus algebra of programs and how fpar can be used to improve
performance of parallel programs through the application of simple program refactoring
rules from FP. fpar implementation demonstrated fairly good scalability on state-of-the-
art shared multicore architectures. The experiments run with the synthetic applications
also demonstrate that fpar implementation exploits medium to coarse grain parallelism
pretty efficiently on the same state-of-the-art shared memory parallel architectures. Al-
though other modern programming languages include some of the FP features discussed
and exploited in this work, the clean and minimal design of FP supported the efficiency
achieved by fpar. Other functional programming languages (Haskell and Erlang, just to
mention two well know and widely adopted languages) also support parallelism at differ-
ent levels and regularities. Refactoring techniques have also been designed to improve or
introduce parallelism [BLH12]. Some of the advantages of these languages are that FP
programs can be easily expressed via, for example, point-free programming and more-
over, they natively support immutable data structures and purity without the need of ex-
ternal libraries. Therefore, they are probably more optimized than fpar with respect of
these techniques and features that were artificially tuned inside of our C++17 implemen-
tation, as showed in Sec. 2. However the proper usage of these much more sophisticated
languages requires different/more significant effort than the one required to understand
and use fpar, especially for the parallelisation of programs that in our library is achieved
just by setting a flag. Last but not least, the clean and easy to understand implementation
of fpar makes it suitable to be adopted in parallel programming courses to demonstrate
refactoring techniques for parallel programming.
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Abstract. Today’s computer architectures are increasingly specialized and hetero-
geneous configurations of computational units are common. To provide efficient
programming of these systems while still achieving good performance, including
performance portability across platforms, high-level parallel programming libraries
and tool-chains are used, such as the skeleton programming framework SkePU.
SkePUworks on heterogeneous systems by automatically generating program com-
ponents, "user functions", for multiple different execution units in the system, such
as CPU and GPU, from a high-level C++ program. This work extends this multi-
backend approach by providing the possibility for the programmer to provide ad-
ditional variants of these user functions tailored for different scenarios, such as
platform constraints. This paper introduces the overall approach of multi-variant
user functions, provides several use cases including explicit SIMD vectorization
for supported hardware, and evaluates the result of these optimizations that can be
achieved using this extension.

Keywords. Skeleton programming, SkePU, Heterogeneous computing, Multi-
variant user functions, Vectorization

1. Introduction

Programming of complex multi-core and heterogeneous computer architectures can be a
difficult task, especially when there is a desire to fully and efficiently utilize the available
processing resources. Managing the required workload distribution, synchronisation, and
data management often requires expert knowledge and long-time experience. This is
especially true if also performance portability is desired, as different systems can vary
widely in terms of both the number and types of processing cores, as well as in other
characteristics such as memory hierarchy.

High-level parallel programming frameworks aim to improve on this situation by re-
ducing the user-facing complexity of programs. A small number of highly optimized but
still general programming building blocks are presented through a high-level interface.
This category of frameworks include application specific languages, PGAS (Partitioned
Global Address Space) interfaces, dataflow models, and more, but most importantly for
this paper: the skeleton programming [4] concept, borrowing the higher-order operations
of functional programming such as map and reduce, and implemented as an abstrac-
tion level that is portable across both multi-core and heterogeneous computers and larger
supercomputer clusters. Skeleton programming uses generic building blocks encoding
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common computational patterns as the high-level programming interface. Examples of
such patterns are often divided into two categories: data parallel patterns such as the
aforementioned map and reduce, and task parallel patterns including task farming and
parallel divide-and-conquer, among others.

The core contribution of this paper is a generalization of the variant selection mech-
anism for the skeleton programming framework SkePU, where the problem-specific, se-
quential user code used to customize a skeleton at skeleton instantiation can be provided
in several variants, some of which might even be platform-specific. This is done in a
general-purpose programming environment, which differentiates the approach from ex-
isting domain-specific variant selection [8]. Our work is also tightly integrated with a
platform modeling system [10] allowing build-time lookup of eligible variants going be-
yond only algorithmic choice or minor variations in performance tuning parameters. The
approach is powerful and flexible enough to allow selection based on hardware architec-
ture, levels of heterogeneity, software installations, and more.

Relevant background on SkePU is introduced in Section 2, followed by the idea and
implementation of the core contribution in Section 3. We present several use cases in
Section 4 and experimental evaluation results in Section 5. We discuss related work in
Section 6 and conclusions and future work in Section 7.

2. Background: SkePU

One example of a skeleton programming framework is SkePU2 [6, 7], a C++ compiler
toolchain and runtime library implementing data-parallel skeleton programming. SkePU
targets heterogeneous systems with multiple backends, such as multi-core CPU, GPUs
using either CUDA or OpenCL, or even a "hybrid" combination of several backends at
once [15]. Each skeleton pattern defined in SkePU (one of Map, Reduce, MapReduce,
Scan, or MapOverlap) is instantiated with a user function, typically a small piece of
code that is applied once for each element in the input data at run-time. This creates
a skeleton instance that can be called like a normal C++ function, but internally pro-
vides automatic backend selection and data management (using smart containers) across
backends.

The SkePU framework performs source code analysis of the input program by an
external source-to-source compiler. This tool locates SkePU skeleton instances used by
the programmer, and identifies the user functions that are needed to instantiate them. The
parameter signature and body of these functions is used to generate fully instantiated
backend wrappers and kernels for each user function and skeleton instance (including
distinct source files for GPU execution). Each user function therefore has a number of
(implicit) implementation variants available for it, and the runtime library part of SkePU
will select automatically among these variants at program execution time.

The main contribution of this paper is the extension of the variant selection system
in SkePU to be a user-facing feature of the framework, as presented in the next section.

2http://www.ida.liu.se/labs/pelab/skepu/

A. Ernstsson and C. Kessler / Multi-Variant User Functions476

http://www.ida.liu.se/labs/pelab/skepu/
http://www.ida.liu.se/labs/pelab/skepu/


Executable

Source-to-source compiler

Backend compiler (e.g., GCC)

Program sources

SkePU 
headers

Backend sources 
(C++, OpenCL, etc.)

XPDL Compiler

platform.xml

manifest.hpp

variant1.cpp

variant2.cpp

User function variants

(subdirectories)

…
…

Figure 1. Overview of the components involved in SkePU variant selection and subsequent build process.

3. Idea and Implementation

There are multiple scenarios where a user function with a singular definition can be too
restrictive for the purposes of performance: use cases include algorithms with different
tradeoffs in time complexity versus memory complexity (some platforms may have very
limited memory space available per execution thread), instruction set architecture dif-
ferences such as native double or half precision floating point arithmetics, the existence
of SIMD vector instructions, or other hardware-accelerated implementations of com-
mon computations. Since these attributes are constrained on the underlying platform,
the software-defined code variants must somehow be declared compatible only with the
appropriate hardware configurations. For this we employ a combination of language at-
tributes, annotations at source-code level that are recognized by the SkePU source-to-
source compiler, in addition to the platform description language XPDL [10].

A platform description (such as the one given in Listing 1) is supplied to the SkePU
source-to-source compiler and depending on the attributes in the model, user function
variants are either included or removed from the resulting program. In this example, the
user function variant in Listing 3 requires the Intel AVX extension to the instruction set.
The list of variants for each user function and their prerequisites for inclusion are de-
clared in a manifest file (example given in Listing 4). Here XPDL metaprogramming
queries or other statically evaluated expressions can be used. As the model in Listing
1 declares the platform to support this extension (line 7 in Listing 1), this vectorized
variant will be included for variant selection at run-time. In cases where library or bi-
nary compatibility is not required for the extension, this filtering of eligible variants can
also happen at run-time, as long as the XPDL model is available for querying. This ap-
proach is preferred when a single program executable might run on different hardware
configurations.

User function variants are defined externally from the main source file. The vari-
ants are placed in individual source files in subdirectories, following a standard naming
schema, with one directory for each user function. A component implementation descrip-
tor file defines the hardware platform and run-time requirements for each variant. See
Figure 1 for an illustration of the workflow: the outlined rectangles denote directories in
the file system and the filled rectangles represent files.
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Listing 1: XPDL model for an Intel Xeon Gold 6130 CPU. Please refer to XPDL publi-
cations [10] and documentation for details about the syntax.

1 <?xml version="1.0" encoding="UTF-8"?>
<xpdl:model xmlns:xpdl="http://www.xpdl.com/xpdl_cpu"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.xpdl.com/xpdl_cpu xpdl_cpu.xsd ">
<xpdl:component type="cpu" />

6 <xpdl:cpu name="Intel_Xeon_Gold_6130" num_of_cores="16"
num_of_threads="32" isa_extensions="avx avx2">

<xpdl:group prefix="core_group" quantity="16">
<xpdl:core frequency="2.1" unit="GHz" />
<xpdl:cache name="L1" size="32" unit="KiB" set="16" />

11 <xpdl:cache name="L2" size="1" unit="MiB" set="16" />
</xpdl:group>
<xpdl:cache name="L3" size="22" unit="MiB" set="1" />
<xpdl:power_model type="power_model_Gold_6130"></xpdl:power_model>
</xpdl:cpu>

16 </xpdl:model>

4. Use Cases

In this section we present two use cases in detail: user function vectorization and multi-
variant components with the Call skeleton. We also provide further examples for appli-
cation of multi-variant components at the end of the section.

4.1. Vectorization Example

As an example of where user function variants are applicable, consider instruction set
extensions for SIMD vectorization. These extensions allow the processor to compute the
same instruction in parallel over multiple data items, even from a single thread. Many
compilers today are auto-vectorizing [11–13], but this optimization requires a number of
preconditions to be satisfied, such as the correct data alignment and no pointer aliasing;
and even then, additional compiler flags are often required. For a high-level parallel
program such as a SkePU application, aggressive inlining and loop unrolling must also be
applied by the backend (external to SkePU) compiler before there is even an opportunity
for auto-vectorization.

For the aforementioned reasons, vectorization is a good motivational use case for
multi-variant user functions. Consider the SkePU program in Listing 2. The program per-
forms element-wise addition of two vectors using the SkePU Map skeleton with arity 2.
The user function add is trivial, with two inputs (one from each vector) and the function
body returning the sum of the two elements. This user function is straight-forward for
the SkePU source-to-source compiler to handle when generating output for all backends:
sequential CPU, OpenMP, CUDA, and OpenCL; it is just a matter of copying the func-
tion body. However, by this approach, the CPU backends will not be guaranteed opti-
mal performance in the case of the hardware platform supporting SIMD ISA extensions.
As such, it makes sense to provide a variant of add and make it available for run-time
selection.
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Listing 2: A SkePU program performing element-wise vector addition.

float add(float a, float b) { return a + b; }

int main(int argc, char *argv[])
4 {

const size_t size = N; // multiple of 8
auto vector_sum = skepu2::Map<2>(add);
skepu2::Vector<float> v1(size), v2(size), res(size);
vector_sum(res, v1, v2);

9 }

Listing 3: Variant of the add user function with explicit vectorization.

1 #pragma skepu vectorize 8
void add(float* c, const float *a, const float *b)
{

__m256 av = _mm256_load_ps(a);
__m256 bv = _mm256_load_ps(b);

6 __m256 cv = _mm256_add_ps(av, bv);
_mm256_store_ps(c, cv); // return by pointer

}

Listing 4: Manifest file for user function add.

skepu::VariantList {
2 skepu::Variant("add_avx",

skepu::Requires(
xpdl::includes<xpdl::cpu_1::isa_extensions, xpdl_avx>::value

), skepu::Backend::Type::CPU
)

7 };

Listing 3 contains a variant of add that is defined in a separate file as outlined in
Section 3. This file is referenced from the manifest, as seen in Listing 4. In this case,
there needs to be a block of eight elements available for the function to enable the use
of SIMD instructions, which is different in signature to the default variant.3 This variant
uses compiler intrinsic functions which map directly to Intel AVX instructions. The ele-
ments in this variant are passed and returned by pointer, and the component implemen-
tation descriptor contains the specification of how many elements it accepts in one block
(here illustrated by an inline pragma). The elements in the array have to be copied to
intermediate vector registers before computation.

3The need for framework support in this example is not a universal trait; user function variants can be defined
with the same signature and even without any required platform constraints.
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4.2. Generalized Multi-variant Components with the Call Skeleton

The version 2 revision of SkePU [7] introduced an atypical skeleton construct known as
Call. The Call skeleton, unlike all other skeleton constructs in SkePU and other typical
skeleton programming libraries, does not encode a computational pattern, but rather is
an entry point for a self-contained component for arbitrary computations. This construct
is highly useful in SkePU for two main reasons: firstly, not all computations can be
efficiently expressed as data-parallel algorithms, which is the type of patterns present in
SkePU, and it is desirable to let generic computations integrate with the smart container
and backend selection and tuning systems within SkePU. Secondly, the optimal way to
structure computations is in general different for different parallel backends; there needs
to be a way to provide variants also for these non-skeleton computations.

A common class of computations that fit the above criteria are sorting algorithms.
Another example is the fast Fourier transform (FFT) [19], which has several highly op-
timized implementations available at library level. In cases such as FFT, an instance of
Call can instantiated with a naive sequential FFT algorithm as the default user function,
and additional user function variants are specified as shown in Figure 1 and implemented
as thin wrappers over libraries such as FFTW for CPU and CuFFT for Nvidia GPUs.
Both the backend type and the presence of libraries in the target system is specified and
taken into account for variant selection.

4.3. Other Use Cases

There are a number of other use cases for when multi-variant user functions can be
useful for improving performance portability. Below are some suggestions: The user can
specify a hand-optimized user function variant to be used only with a certain backend,
such as CUDA (declared via the platform attribute in the user function’s component
implementation descriptor), while the generic auto-generated user function is used for
all other backends. Even within the same backend and the same platform constraints,
complex user functions may offer multiple variants implementing the same computation
by different algorithmic approaches. Selection between the variants can be controlled
by input size and shape, as well as other run-time properties such as idle resources and
memory pressure. See e.g. the CellSort sorting algorithm [9] where the algorithm used is
closely coupled to the characteristic architecture and instruction set of the Cell processor.
When SkePU skeletons are invoked from a language other than C++, components that
have a variant defined for that language would have lower overhead due to bridging and
data representation and would open up for improved compiler optimization.

5. Performance Evaluation

We present performance evaluations for two distinct use cases for multi-variant user
functions: vectorization of Map-type skeleton applications on real and complex numbers,
and specialization of the algorithms used in the user function of a stencil-type image
filtering operation using MapOverlap.
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Figure 2. Element-wise vector addition, three variants. Execution time normalized (per element).
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Figure 3. Element-wise complex vector multiplication, three variants. Execution time normalized (per ele-
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5.1. Vectorization

To demonstrate the performance gained from vectorization of user functions in a scenario
in which automatic compiler optimization might be prohibited, we test the example from
Section 4.1 using the Intel C++ Compiler v.18.0.1. -O3 level optimization is enabled for
all benchmarks, and the results are presented as the average of 100 runs. All computations
are performed on single-precision floating point data. The target system uses Intel Xeon
Gold 6130 processors. Two vectorization scenarios are evaluated:

Element-wise vector addition: Three variants are compared: no vectorization, and
vectorization by a factor of four and eight, respectively.

Element-wise vector multiplication of complex numbers: Complex numbers
stored in struct-of-arrays format, with four input data containers in total. Three versions
are tested: no vectorization, factor eight direct vectorization, and a refactored vectorized
version using fused multiply add (FMA) vector instructions.

For scalar element addition, the results show that there is always a benefit of vec-
torization if available. However, as seen in Figure 2 the overhead of loading and stor-
ing vector registers is significant when there is only one vector instruction to compute.
The choice between four element vector instructions and eight element variants does not
matter as much, as the best performer is inconsistent. It is clear that more computation is
required to get the most out of manual vectorization.

We also evaluate complex number multiplication (Figure 3). The complex numbers
are stored in cartesian form and multiplied element-wise according to (a+bi)×(c+di) =
(ac−bd)+(ad+bc)i. There are more vector instructions to amortize the register transfer
overhead over in this case, even though the number of inputs is doubled. An alternate
version with FMA instructions provides more efficient computation but at the cost of
reducing this amortization factor.

A. Ernstsson and C. Kessler / Multi-Variant User Functions 481



Table 1. User function variants for median filtering.

Variant Time complexity Memory complexity Dependencies

Double loop O(n2) O(1) None

Histogram O(n+ |D|) O(|D|) None

qsort O(n logn) O(n) C standard library
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Figure 4. Median filtering using different median computation algorithms.

5.2. Median Filtering

To demonstrate and evaluate the application of multi-variant user functions to provide
different algorithmic approaches to the same computation, we look at the median filter-
ing operation on images. For each pixel in the output image, the filter selects the me-
dian value of all pixels in a region surrounding the corresponding pixel in the input im-
age. The region is defined by a radius, the same in both x and y dimensions. Using the
MapOverlap skeleton, the image filter is then implemented directly by providing the
median-finding algorithm as the user function. This can be done in several ways: by sort-
ing the elements in the region, brute-force counting search, or by a histogram collec-
tion, among others. The characteristics of the aforementioned three approaches are com-
pared in Table 1 (in the table, n denotes input size and |D| denotes the size of the value
domain).

A comparison of execution times for the different variants is presented in Figure 4.
The OpenCL variants target a single NVIDIA Tesla K20c GPU. The radius is varied in
the range 1-9 pixels, but note that this has an effect in two dimensions and will scale the
input region in the user function quadratically. The input image is fixed at 512 × 512
pixels, in 24-bit RGB format. The results show that there is no algorithm that is optimal
across both backends; we even see that, on the GPU, the best variant varies with the filter
radius.

6. Related Work

High-level parallel programming using skeletons or patterns [4] allows to model seman-
tics as well as parallelization-relevant properties (such as type of parallelism, data ac-
cess pattern, data locality constraints) of a computation using special predefined generic
constructs (called skeletons or patterns) at a level of abstraction that is clearly above that
of source code (such as OpenMP, OpenCL or CUDA). Existing skeleton programming
frameworks include SkePU [6, 7], FastFlow [1], Marrow [14], GrPPI [5], Thrust [3] and
others.
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None of these skeleton programming frameworks considered automated, platform-
specific operator specialization for multi-element groups in skeleton instantiations or
calls. Lift, [18] on the other hand is a framework consisting of a functional pattern-based
programming language, a compiler and an intermediate representation with pre-defined
skeleton-like constructs for the hierarchical, functional modeling of data-parallel com-
putations. It allows for (cost-model directed) rewriting of Lift IR trees by a design space
exploration process to automatically take into account platform-specific structures such
as SIMD operations, data transfers and data layout transformations, which can be ex-
pressed by OpenCL-specific constructs. While Lift is more general than our method, it
requires the programmer to specify skeleton instances as a hierarchically nested func-
tional decomposition of multiple primitive operators. In contrast, our approach is based
on the simpler SkePU programming API, which is more high-level and does not require
special tooling nor automated design space exploration nor an explicit intermediate rep-
resentation.

PetaBricks is another framework which also exposes algorithmic variant ("choice")
selection [2, 16]. In contrast to SkePU, PetaBricks is task-oriented with a more involved
run-time scheduling system, and does not integrate a platform modeling subsystem into
the toolflow.

It is also possible to take a more domain-specific approach. SLinGen [17] is a gen-
erative programming environment for linear algebra which outputs optimized C code,
including optional vectorization driven by intrinsics. The Cl1ck system for matrix com-
putations [8] focuses on generating multiple alternative application variants for a single
operation.

The limitations of compiler auto-vectorization are explored by Larsen et al. [11] who
also suggest improvements to the programming language and environment to facilitate
the optimization in more scenarios.

7. Conclusions and future work

Introducing multi-variant user functions increases the performance portability aspect of
SkePU programs by allowing the (expert) user to supply optimized source code for dif-
ferent target architectures. The extension is optional to use and not source breaking, and
does not impact the programmability of the SkePU framework.

The multi-variant user functions is a part of the multi-variant component program-
ming model developed within the EXA2PRO4 project. Definition and declaration of user
function variants will follow the general component declaration syntax in the EXA2PRO
compilation workflow and, together with SkePU skeletons as components themselves,
provide nested component selection in the EXA2PRO run-time system.
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Abstract. POETS (Partially Ordered Event Triggered Systems) is a significantly different way of 

approaching large, compute intensive problems. The evolution of traditional computer technology has taken 

us from simple machines with tiny memory and (by todays standards) glacial clock speeds, to multi-gigabyte 

architectures running orders of magnitude faster, but with the same fundamental process at the heart: a 

central core doing one thing at a time. Over the past few years, architectures have appeared containing 

multiple cores, but exploiting these efficiently in the general case remains a 'holy grail' of computer science. 

POETS takes an alternative approach, made possible only today by the proliferation of cheap, small cores 

and massive reconfigurable platforms. Rather than program explicitly the behaviour of each core and each 

communication between them, as is done in conventional supercomputers, here the programmer defines a set 

of relatively small, simple behaviours for the set of cores, and leaves them to get on with it - with the right 

behavioural definitions, the system 'self-organises' to produce the desired results. 

Keywords. Multicore/manycore systems, Heterogeneous systems, Accelerators 

1. Introduction 

Moores Law[1]: the number of transistors on a chip doubles every 18 months or so. 

Dennard scaling[2]: as transistors get smaller, the power density stays constant, so 

dissipated power remains proportional to area. Koomeys Law[3]: the number of 

computations per joule of energy dissipated increases in line with Moores Law. 

These principles have guided commentary on the computing industry for a long 

while. Two are exponentials, (and no exponent is sustainable indefinitely in nature), 

and the other runs into trouble in the opposite direction: semiconductor device physics 

cannot avoid leakage and quantum effects forever. However, they are all - quite 

soundly - based on physical effects, and are the domain of the fabrication engineer. 

A parallel problem is the continued absence of any general theory of parallel 

computing. There are multiple academic publications on theoretical aspects of various 

parallel computing models, but the general problem remains hard. Technology gives us 

a new Moores Law: the number of cores on a silicon platform rises exponentially and 

starts to push at the boundaries of manageability - a new roadblock, alongside the 

power wall, the memory wall, process spread....[7]. In a conventional parallel system, 

huge swathes of data are moved around to benefit from the compute capabilities 

afforded by multiple processors. Bubbles in pipelines must be filled. Every cycle of 
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every thread must produce useful data: The Beast must be fed. The choreography of 

this dance is controlled - designed - by the software architect, and in the vast majority 

of cases the complexity issue is side-stepped by making much of the compute 

functionality exact duplicates of some cornerstone behaviour. What cannot be side-

stepped by this technique are the relative costs of communications and compute. As 

computation grows in size, so too do the necessary support datastructures, and the 

proportion of wallclock spent communicating increases unhelpfully at the expense of 

the time spent computing. Fabrication technology is realising exa-scale compute, but 

simultaneously exposing the problems intrinsic to exa-scale communication. 

Concurrent event-based computing is an approach intended to address 

simultaneously the complexity and the communication problems. The foundation work 

in this space has been reported previously in this conference series[4] and elsewhere [5-

6,8]. In essence, the idea is that vast numbers of tiny compute units, each with a small 

amount of state, interconnected by a narrow but fast (hardware brokered) 

communications fabric, carrying information in small, fixed size packets, can provide 

far superior performance in terms of cost and power dissipation - and in some cases, 

also compute capability. In this paper, we discuss firstly the concept in general terms, 

and then provide an outline of a prototype architecture, designed to exploit the idea of 

computation based around an unchoreographed non-deterministic 'packet storm'. We 

then provide some initial physical scaling measurements derived from two application 

areas that have been implemented on the event-based architecture. 

 

2. The concept 

Without loss of generality, consider the numerical solution of some physical matrix-

based (discrete grid) problem using an iterative process - Gauss-Seidl or Jacobi, for 

example. Note there is no requirement for regularity or any kind of dimensional 

planarity. The solution process will consist of some number of embedded loops, or 

some kind of traversal sequence, moving over the data points of the grid in some 

trajectory
2 determined by the programmer. At each point, the local state is updated by a 

                                                           
2 By "solution trajectory", we mean the movement of the overall system state, as 

opposed to individual atomic data flows. 
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Figure 1: Gauss-Seidl, Jacobi and event-based relaxation 
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function of some set of physically adjacent states, and computation moves on. The 

solution trajectory is deterministic, and dictated by the programmer. It is not until the 

system reaches some form of numerical equilibrium that we assign physical meaning to 

the numerical results. If we have a single thread machine, we may use Gauss-Seidl for 

a fast convergence. If we have multiple cores available, we can use Jacobi (over) 

relaxation and double-buffer the data, achieving still faster overall performance. The 

numerical solution sequence at each grid point converges more slowly than the 

comparable trajectory in the Gauss-Seidl regime, because Jacobi is using data that is 

less fresh than Gauss-Seidl. However, both these approaches have controlled, 

deterministic solution trajectories, and this control is a waste of compute if all we are 

interested in is the asymptotic solution. The goal here is to do away with this 

component of determinism, which saves communication time, and thereby exploit the 

physical parallelism available more efficiently (because we are not paying for control). 

Ultimately, this (ideally) gives constant scaling. 

Consider an alternative approach: Each grid point - there may be millions - has a 

compute unit associated with it. Each compute unit maintains knowledge of its own 

state, plus ghosts of its logical neighbours. Leaving aside the starting and stopping 

problems (described later), the behaviour of each unit is almost trivial. It does nothing 

until it receives notification (a data packet) telling it that one of its logical neighbours 

has changed state. On receipt of such a notification, the unit recomputes its own state. 

If the state has not changed, the unit returns to quiescence. If it has, the unit 

asynchronously broadcasts this fact to its logical neighbours (unacknowledged data-

push). It is easy to see that once this process starts, a packet storm will develop quite 

quickly, as each unit continually re-evaluates its own state and broadcasts the change. 

Some packets will be delayed: the design intention is that the wallclock cost of 

computing a state update is small, but it cannot be zero, and it certainly cannot be relied 

upon to be uniform over the system. The notion of simulated time across the compute 

fabric cannot be defined in any meaningful way whatsoever. How can we achieve 

useful compute in these circumstances? Some units will be computing with 'stale' data, 

but we don't mind, because 'fresher' values will be along in short (wallclock) order. We 

have wasted a (trivial) amount of compute, but this is the price for not having to impose 

(and pay for) high-level data choreography. The solution trajectory is non-deterministic, 

but has no physical meaning anyway in any compute regime; only the asymptotic 

numerical solution is stable and physically meaningful. This state of affairs obviously 

depends on the numerical properties of the equation set; some are wildly unstable and 

unsuitable for this technique. At present, we have a loose formalism for deciding if a 

technique is suitable: if any change of state caused by a packet arrival unconditionally 

results in the decrease of (some numerical definition of) energy, then the process will 

terminate. This is not an all-embracing criterion, and further study is needed. However, 

the size of the application space for which this approach is useful is large and growing. 

Event-based processing is not a new concept; space constraints preclude a useful 

bibliography. What is timely is the ability of technology - now - to provide us with 

sufficient numbers of processing units that the architecture can be made to usefully fit 

the problem, rather than the other way around. 

 

3. A prototype architecture 

Event-based computing is appropriate for systems that can be decomposed into a 

discrete mesh, albeit one with sometimes millions of nodes. Many important 
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engineering problems[4] fall into this category. POETS introduces a system based on 

linking an event-based abstract problem definition to an event-based physical compute 

platform. From the perspective of abstract application definition, a problem consists of 

an arbitrary graph of devices. A device captures the behaviour of a vertex in the 

discrete distributed model of the physical system (it could be a point on a wire-mesh 

model of a thermal system, or a single CFD point). From the perspective of abstract 

compute, the system consists of a large number (O(millions)) of extremely small, cheap 

compute units. These are interconnected by a fixed, fast packet-based communication 

infrastructure. The packets are small (64 bytes) and entirely hardware-mediated. There 

is no MPI-like software message layer. The arbitrary application graph is mapped onto 

the fixed hardware graph by initialisation software (called the Orchestrator), and 

thereafter device can talk to logical neighbour devices logically transparently via 

hardware. Central points of this system: 

� It is computationally asynchronous: there is no central 'overseer' clock. 

� The state memory is distributed throughout the physical system, and devices 

have no visibility of any memory other than that which is local to them. 

� Communication is via short, hardware brokered packets. Packet transits are 

non-deterministic (once launched, the sender loses visibility of the packet, and until it 

physically arrives, the receiver has no visibility or knowledge of the impending arrival. 

Packets can take an unpredictable amount of time to arrive, and in extremis it is 

possible for the communication stream to be non-transitive. 

By far the most significant aspect of the system lies in the way packets are 

communicated. In any packet-based communications system with finite internal 

buffering, if material is injected into the infrastructure faster than it is removed, 

something must give: either the communications system must refuse to accept further 

packet injections, or packets must be dropped. In POETS, packet launch is proscribed 

until and unless the hardware can guarantee (at least part of) the route is open. Whilst 

this does not solve the problem of local congestion, it moves it to the point at which it 

can be most responsibly addressed: the sending component. The sender can 

� Abandon the send attempt. 

� Repeat the attempt at some future (real) time. 

� Modify the packet and try again. 

Although (ultimately) guaranteeing data delivery, it is easy to see how this can 

contribute to the data shear that can lead to non-transitivity. 

 

3.1 The hardware platform 

 

The underlying system platform consists of a six-layer hierarchy - see figure 2 - not 

dissimilar to the GPGPU stack. 

At the highest level, a POETS system consists of a set of physical boxes. Each box 

contains a mothership (an X86 conventional machine) and a set of boards. A board 

hosts a DE5 development system of 6 FPGAs Every subsequent layer in the system is 

synthesized on the FPGA, and so can easily be modified. The FPGA contains a fixed 

(inasmuch as anything is fixed on an FPGA) graph of mailboxes and ports. The latter 

connect the cross-board mailboxes The former contains a number of slots (currently 4) 

that play host to a dynamic stream of 64 byte packets. 

Each mailbox is connected (register mapped) to a synthesized RISC V core (250MHz), 

which is itself hyperthreaded. The current system (recall everything is synthesized) 

uses 32 bits to address the threads, limiting the maximum thread count to 4G [9]. 
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3.2 The software stack 
 

The computational problem, from the perspective of the domain-specific user, is of an 

arbitrary graph of application devices. The user defines the application graph in 

terms of named vertices (devices), each device presenting a set of numbered pins, and 

each pin may be connected to an arbitrary set of pins on other devices (and itself, if 

need be). The user may also define a supervisor. This is a kind of uber-device, the 

design intent of which is to oversee and facilitate command, control and data 

exfiltration. Figure 3 illustrates this. The important point here is that the mapping of 

devices to threads is decided by configuration software (the Orchestrator). Each 

mothership contains an instance of the supervisor (so the number of supervisor 

instances is dictated by the hardware). The mapping of supervisor instance to device 

subset is controlled by the Orchestrator. The supervisor behaviour must be defined by 

the user in the absence of hard knowledge of which device subset it will be overseeing 

- although the supervisor can always interrogate the device graph and find out. 

 

3.3 Executing an application 
 

What, then, constitutes the definition of an application graph? The application 

programmer defines the POETS graphs as two components: the graph topology and the 

device behaviour. The intent (hope?) is that the emergent behaviour of these 

components will produce the desired result - refer to the non-deterministic solution 

trajectory outlined in the previous section. 

Graph topology is defined conventionally as a set of named, typed device instances 

with numbered (typed) pins, plus a set of pin-to-pin connections. Pins may only 

connect to pins of identical type. 

Device behaviour is defined by a set of handlers. A hardware thread may play host to a 

number of (logical) devices (nominally 1024, but this figure is largely arbitrary). 

Multiple devices per thread represents an area of local temporal sequentialisation in the 

overall dataflow, so prima facie is to be avoided. Resident on each thread is a software 

skeleton (called the softswitch) which is effectively a spinner, interrogating the 

mailboxes attached to its host core 

and forwarding packets to the target 

device. (All the devices mapped to a 

specific thread share a hardware (32-

bit) address. 1024 devices/thread 

gives a theoretical hard total system 

size of 4T devices.) 

Each device contains a small state 

space (further subdivided into static 

properties and mutable state). Any 

incoming packets to a device are 

passed to the handler (invoked by the 

softswitch): the precise behaviour is 

domain-specific and user defined (the 

programmer embeds fragments of C 

into the device handler definitions), 

but in general the device handler - as 

a consequence of the incident packet - 
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Figure 2: The POETS hardware stack 
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may (optionally) change the internal device state and/or emit packets of its own to its 

(logical) device neighbours and/or supervisor. 

Note that the user (or any external source) may inject packets into the device graph via 

the Orchestrator - (MPI) - supervisor path. 

The Orchestrator is an asynchronous, heterogeneous MPI universe, resident on the set 

of motherships (plus any other processors connected to the MPI backbone). The 

Orchestrator controls the configuration of the system. Within its own datastructures, it 

contains 

� A model of the available POETS hardware platform (vertex capacities, 

capabilities and connectivity). 

� A model of the (abstract) application graph (devices, pins and types, device 

and supervisor behaviours). 

It is responsible for 

� Mapping the device graph to the thread set/graph (this single phase 

encapsulates the most numerically intensive functionality of the Orchestrator, and 

draws heavily from the world of IC placement, assignment and routing). 

� Labeling the logical devices with a hardware address. 

� Assembling the code fragments describing device behaviour and the device 

state space definitions with the softswitch skeleton, cross-compiling and linking the 

composite source with the low-level RISC-V library to produce the binary code (to be 

executed on the RISC-V threads), and downloading these binaries to the target cores. 

Further details of note: 

� The RISC-V has a Harvard architecture, and so the data space memory maps 

produced by the Orchestrator are obviously thread unique (and thus a function of the 

device:thread mapping), but the instruction space in each core is shared by all the 

threads on that core. This is not as restrictive as it might appear - in intended use, the 

vast majority of the devices will be of very few types, so the Orchestrator can ensure 

that all the devices on a core are of the same type without undue stress on the mapping 

penalty function. (This issue draws from the openMP GPU thread affinity problem). 

� The Orchestrator part of the MPI universe is itself multi-threaded, and so can 

spin off the cross-compilers in a set of conventional X86 threads. 

 
 

Figure 3: Supervisors and devices 
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4. Performance: scaling behaviour 
 

Two example application domains are presented here: solving the heat equation, and an 

example from computational chemistry. 

 

4.1 The heat equation 
The heat equation (section 2) 
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�� . A steady state solution of this equation has the 

temperature of each grid point with mutable state (temperature) as an average of the 

temperatures of its logical neighbours. (Time varying forcing heat sources necessitate 

the introduction of thermal capacities which complicate the point unnecessarily here.) 

 

4.1.1 Knowing when to stop 
 

Solving the equation numerically is an iterative process. In a conventional computing 

environment, some limit function looks to establish if the overall or average change in 

temperature value per iteration step has fallen below some pre-defined value; once this 

situation is detected, the system is deemed to have converged. In a packet-storm based 

system, this notion is less well defined, as individual packet latencies may vary wildly, 

and the time taken to notify the outside world of a putative convergence can be many 

times larger than an individual packet lifetime. Here we compromise: 

Like the conventional approach, we ignore temperature changes below a pre-defined 

value, so the system eventually stops sending packets. However, the individual devices 

have no knowledge that this has occurred as they have no notion of time. We introduce 

the idea of a heartbeat: a software-implemented idle detection method that is fully 

defined by the application writer in the handlers that they provide. (We use the term 

"heartbeat" because there is no clock-like regularity implied.) 

Heartbeats are a type of packet that is emitted frequently (see below); each device 

counts how many heartbeats it has received, the count being reset any time the device 

receives a packet from one of its logical neighbours. When this count reaches a pre-

defined limit, the device emits an "end" packet to the supervisor. This packet also 

contains the device current temperature, fulfilling the role of data exfiltration. An end 

packet can be cancelled at any time prior to all the supervisors flagging finished, should 

a device receive any subsequent packets from its logical neighbours. 

In our initial implementation, we generate heartbeats asynchronously at the thread level. 

Each device has a user-defined OnIdle handler that may be executed by the softswitch 

when there is no other work to do (no packets to send or receive). We usurp the "first" 

device on each thread to count the number of times this softswitch handler is executed. 

When this reaches a pre-defined limit, a heartbeat is sent to each other device on the 

same thread, bypassing the mailbox. Two counters are required as an individual device 

has no knowledge of any packets received by other devices in the same thread. 

 

4.1.2 Heat equation – performance 
 

Figure 4 shows the wall-clock execution time a series of simulations of n-by-n two-

dimensional heated plates on a POETS system and a single-threaded 3.8 GHz Intel i7 
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machine. On the POETS engine, a device calculates the temperature for a single point 

and convergence is detected using Heartbeats as described in 4.1.1. Devices on POETS 

are currently mapped to threads naïvely. Near-linear scaling is observed between 6,400 

and 78,400 devices (with an anomaly at 16,900 devices). There is a discontinuity 

between 78,400 and 96,100 devices where the simulation fails to converge. We 

currently have no explanation for this. Near-linear scaling continues between 96,100 

and 1,000,000 devices, albeit at a greater wallclock time. 

 

Figure 4: Heat plate simulation performance 
 

4.2 Computational chemistry 
 

The explosion of compute capability over the past decades has had a transformative 

effect on what may be achieved, and few fields have benefitted as much as 

computational chemistry: by solving the equations of motion of individual atoms and 

molecules, the demonstrated emergent behaviour is effectively that of a chemical 

reaction, with all the complexity that that implies. We live in interesting times: yes, we 

can compute the trajectories of individual atoms, and so simulate real chemical 

interactions, but to extract physically meaningful results requires the reaction 

trajectories of millions of particles followed over billions of timesteps. Even by the 

standards of the compute resources available today, such an undertaking is hugely 

expensive, and techniques are constantly being developed to make the undertaking less 

costly. Two strategies come together to provide a significant increase in what may be 

achieved in this area: Dissipative Particle Dynamics (DPD) and POETS. 

 

4.2.1 Dissipative particle dynamics 
 

Interesting chemistry usually (but not always) involves large organic molecules, where 

a carbon backbone folds in complex ways, depending on its surroundings and the 

ligands attached to side-chains. Usually, 'interesting' behaviour is a function of some 

gross stereochemical attribute of the system, not the detail: there is no point in 

following the behaviour of each atom in a -CH3 group, because the relationship 
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between the three hydrogens and the central carbon is unlikely to change significantly, 

no matter what happens to the rest of the molecule in the large. Without loss of (too 

much) generality, then, we can replace the four-atom subsystem with a single pseudo-

particle - call it a bead. This idea of locally replacing relatively inflexible and 

internally uninteresting subgroups of atoms can be extended, sometimes cutting down 

the number of individual elements in a molecule by half an order of magnitude. As 

each individual atom in a bead itself contributes several degrees of freedom to any 

simulation, this represents a considerable decrease in the computational load. 

The system under simulation usually consists of some number of large, complicated 

organic molecules, modeled by a set of beads. The beads are interconnected by 

Hookean and angular bonds, (representing chemical bonds), and usually immersed in 

some environment (water?) where each water molecule is represented by a single bead. 

(For reasons that are beyond the scope of this paper, systems incorporating electric 

charge do not analyze well in DPD). The simulation consists of integrating Newtons' 

equations of motion for each bead, marching forwards in discrete time steps. The forces 

acting on each bead at each time step are relatively simple:  

� Some bead-bead repulsive force 

� Some dissipative (damping) force 

� Some random (thermal) force 

Within 'sensible' limits, the gross behaviour of the overall system is quite insensitive to 

the exact numerical form of the force-fields. 

 

4.2.2 The compute environment 
 

Clearly this problem is amenable to parallelisation. The traditional supercomputer 

approach (using MPI) to this kind of simulation is to tile space with three-dimensional 

cuboids (wrapping round the boundaries to give a continuous periodic physical model), 

map each cuboid to a compute core, and to give each core responsibility for simulation 

of the interactions of the beads within that cuboid. Movement of beads across cuboid 

boundaries is handled by means of 'ghost' layers, and the simulation rate (the ratio of 

simulated time to wallclock time) is some function of the resources available to the 

core, the size of the system under simulation, and the number of beads per core. None 

of this is particularly novel, but the ideas map elegantly onto the POETS architecture, 

where we can easily and cheaply bring to bear many thousands of individual cores. 

 

4.2.3 Dissipative particle dynamics - performance 
 

Figure 5 below shows the computational cost of a simulation of two immiscible liquids. 

There is no termination configuration, the simulation is uninteresting and is simply 

allowed to run for the same number of timesteps for each point on the figure. For 

comparison, the sequential line is generated on a single thread, single core, 3GHz Intel 

i7 machine. The POETS line is generated from a small POETS system, containing 

6144 threads. The wallclock cost of the simulation is (almost) flat up to 6144 devices, 

showing that the parallelism is (almost) perfect. The slight slope is due to the physical 

latency of moving packets about the system - communication costs. At 6144, the 

system is forced to start doubling up on the number of devices/thread - see earlier 

comments about serialization in the softswitch - and the runtime cost immediately 

doubles. Another discontinuity is visible at about 12000 devices, and thereafter the 

performance degenerates as network congestion starts to take its toll. 
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5. Final comments 
 

These are small systems (the next system to be built is under construction - this will be 

an order of magnitude larger, and will move the inflections in figure 5 to the right 

correspondingly). Even though network congestion has an effect on the performance, in 

both examples, the system continues to function (section 3). However much traffic is 

injected into the communications fabric, the system waits locally until the network is 

drained by computation, and processing continues. 

Figure 5: POETS DPD performance 
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Abstract. The interdisciplinary field of neuroscience has made significant
progress in recent decades, providing the scientific community in gen-
eral with a new level of understanding on how the brain works beyond
the store-and-fire model found in traditional neural networks. Mean-
while, Machine Learning (ML) based on established models has seen
a surge of interest in the High Performance Computing (HPC) com-
munity, especially through the use of high-end accelerators, such as
Graphical Processing Units(GPUs), including HPC clusters of same.
In our work, we are motivated to exploit these high-performance com-
puting developments and understand the scaling challenges for new–
biologically inspired–learning models on leadership-class HPC resources.
These emerging models feature sparse and random connectivity pro-
files that map to more loosely-coupled parallel architectures with a
large number of CPU cores per node. Contrasted with traditional ML
codes, these methods exploit loosely-coupled sparse data structures as
opposed to tightly-coupled dense matrix computations, which benefit
from SIMD-style parallelism found on GPUs. In this paper we introduce
a hybrid Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) parallelization scheme to accelerate and scale our computa-
tional model based on the dynamics of cortical tissue. We ran compu-
tational tests on a leadership class visualization and analysis cluster at
Argonne National Laboratory. We include a study of strong and weak
scaling, where we obtained parallel efficiency measures with a minimum
above 87% and a maximum above 97% for simulations of our biologically
inspired neural network on up to 64 computing nodes running 8 threads
each. This study shows promise of the MPI+OpenMP hybrid approach
to support flexible and biologically-inspired computational experimen-
tal scenarios. In addition, we present the viability in the application of
these strategies in high-end leadership computers in the future.
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Introduction

Neuroscience has undoubtedly provided a more in-depth understanding of brain
organization in the last decades. Nevertheless, mainstream Artificial Intelligence
(AI) research is yet to incorporate these advancements in their models. This fact
could be attributed–at least in part–to the success accomplished by some AI
approaches–such as Deep Convolutional Neural Networks–which have achieved
classification accuracy levels without precedent in the last years. Despite this,
some researchers from the AI community recognize that in order to overcome
current AI limitations and to create intelligent machines it will be necessary to
understand and mimic the brain [1,2]. In such sense, to better understand and
explore more deeply how the brain may process information it is essential to use
more complex and biophysically accurate neuron and network models than the
ones that are prevalent today.

The model of Hodgkin-Huxley (HH) [3]–for example–simulates synaptic re-
ceptors and ion channels explicitly. Nevertheless, the more interesting the bio-
logical mechanisms, the more limited they are by the size and complexity of the
networks. There are some alternative models such as spiking model [4] and the
integrate-and-fire model [5] which have been proposed as a simplification of the
HH model. Such models demand less computational power, but are not able to
directly simulate the biological dynamics present in ion channels. On the other
side, we find deep learning (DL) applications [6] that are partially inspired by
the biology of the visual ventral pathway, which have dramatically improved the
state-of-the-art in many AI domains while ignoring–at the same time–important
biological facts and giving priority to computational efficiency and classification
accuracy.

Finding the appropriate level of detail in modeling the brain seems to be the
holy grail to disentangle the mysteries of animal behavior. In [7] we introduced
a biologically inspired and fully unsupervised neurocomputational approach fol-
lowing sequence learning mechanisms applied in [1], and gathering what are–
under our point of view–only relevant neuro-anatomical and neuro-physiological
facts in order to process information in cortical tissue. In such work we sim-
ulated columnar organization, spontaneous micro-columnar formation, adapta-
tion to contextual activations and Sparse Distributed Representations(SDRs) pro-
duced by means of partial N-Methyl-D-aspartic acid (NMDA) depolarization.
Our pyramidal neuron model dissociated proximal from distal dendritic branches.
Proximal dendrites acted as a homogeneous set receiving only afferent informa-
tion. Information in proximal dendrites determined a bunch of neural units in a
Cortical Column (CC) which could be activated depending on the previous acti-
vations in the same as well as in neighboring CCs. Distal dendrites–on the other
hand–received only lateral and apical information acting as independent detec-
tors. Distal dendritic information pre-activated neural units putting them in a
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predictive state in order to receive future afferent information. Some important
remarks in reference to the neurocomputational approach are: (i) proximal affer-
ent dendrites do not determine a neuron to fire, instead, they bias its probability
of doing so, (ii) distal dendritic branches are independent computing elements
that contribute to somatic firing by means of dendritic spikes, and (iii) predic-
tion failures in the network produce a phenomenon called Massive Firing Event
(MFE) which manifests with the activation of many neurons in a CC impairing
SDRs formation. The model’s feature abstraction capabilities showed promising
phonetic invariance and generalization attributes, improving the performance of a
Support Vector Machine (SVM) classifier for monosyllabic, disyllabic and trisyl-
labic word classification tasks in the presence of environmental disturbances such
as white noise, reverberation, and pitch and voice variations. The work aimed
to gather only biologically relevant aspects avoiding loading simulations with ex-
cessive computational burden and–at the same time–capturing the essence of the
information processing properties of the cortex.

With these points in mind, certain aspects were taken into account in or-
der to pursue the implementation of our computational model. Firstly, the bi-
ological plausibility of our model freed us from the need to compute gradients.
Even though there are important works supporting the idea that credit assigna-
ment–the ultimate goal of backpropagation–could be a phenomenon happening
in cortical tissue [8], we pondered that it is unknown whether teaching signals
exist in the brain. Furthermore, there is not enough evidence to include a too
complex mechanism in our model yet. Instead, we decided to be conservative in
this respect. Secondly, prevalent DL frameworks are mainly biased towards GPU
parallelization on CUDA cores. Albeit those frameworks have been extremely
optimized to take the maximum advantage especially from NVIDIA cards, too
many conditions have to be satisfied in order to obtain the best performance.
Moreover, there exists an acute specialization of such technologies towards the
precise development of certain DL frameworks with little room for innovative
and specifically biologically plausible implementations. In that sense, one of the
biggest problems in such approaches arises when trying to implement neural pop-
ulations with sparse or random connectivity structures. Those implementations–
strongly demanded in biologically plausible modelling–compromise coalescence in
GPU cards and seriously impair performance [9].

Following this line, we implemented our model in C++14 using Object-oriented
programing (OOP) paradigm and parallelized it by means of a hybrid strategy
using MPI and OpenMP (Fig. 1). The OOP paradigm gave us a powerful tool to
compose modular structures allowing the management of complex computational
graphs. MPI enabled our model to run on distributed memory systems in a co-
herent and stable way. Finally, OpenMP provided a fine grained distribution of
workload inside each computing node with the option to schedule the OpenMP
threads dynamically. This allowed to manage different options of thread affinity
and to vary the number of threads in each computing node, among other options.

The measurements of scaling efficiency returned by our tests allow us to
claim that this parallelization strategy is a promising procedure to approach new
computational implementations, with more biological plausibility and with more
irregular and unstructured data-sets in high-end leadership computer resources.
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Figure 1. Encoder Layer (EL) MPI+OpenMP parallelization.

Related Work

The computational effort demanded by the brain’s specifications force us to con-
sider only those physiological and anatomical features which are key for infor-
mation processing avoiding loading computational simulations with unnecessary
biological detail. In the same direction, parallelization strategies have to be as
highly qualified as to face the challenges presented by the implementation of
new–biologically accurate–computational approaches on HPC resources.

Brain-Inspired Artificial Neural Network (ANN) Computational Approaches

The development of ANNs is classified in three generations regarding their com-
putational units [10,11]. In 1943, the first generation of ANNs came from Mc-
Culloch and Pitts [12]. The authors introduced neurons as computational units
which received binary inputs through associated weights and produced threshold
dependent binary outputs. Important derivations from such ANNs are multilayer
perceptrons, Hopfield nets and Boltzman Machines.

In the second generation, neural units are computational elements whose out-
puts represent a continuous set of possible values obtained by means of activation
functions applied to the weighted sum of the inputs. Common activation functions
are sigmoid, polynomial or exponential functions. Examples of these networks are
feedforward and recurrent sigmoidal neural nets. An extremely important fea-
ture of these networks is that they support learning algorithms based on gradient
descend–such as the popular backpropagation. Finally, the real-valued outputs of
networks of this generation are interpreted as firing rates in real neurons.
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Important behavioral and physiological evidence though made firing rate in-
terpretation questionable, and gave rise to the third generation of ANNs which em-
ploy spiking neurons–or integrate and fire neurons–as computational units [3,4,5].
These models–unlike the second generation models–use timing of single action
potential–or spikes–to encode information. Including the concept of time in their
processing model, Spiking Neural Networks(SNNs) could capture neural behavior
more accurately than traditional neural networks. Unlike traditional ANNs, the
main idea is that neurons in a SNN do not fire at each cycle, and rather they fire
only if a membrane potential reaches its threshold.

In spite of such compelling modeling approach, threshold circuits like the ones
introduced by the first generation could be seen as abstract models for digital
computation on networks of spiking neurons. In such sense, one bit in active state
could be interpreted as a neuron firing within certain short time window and
the same bit in inactive state could be interpreted as the same neuron non-firing
within such time window [13]. This coding strategy provides a good model for a
network of spiking neurons as long as firing times among pre and postsynaptic
neurons are synchronized within a few msec time window. There is evidence sup-
porting the fact that this strongly synchronized activity does really occur within
the nervous system [14,15].

In such sense, there are new algorithmic developments [1,7] which instead of
modeling precise timing activations, prioritize the different roles of proximal and
distal dendritic configurations incorporating important physiological and anatom-
ical phenomena, such as the consideration of dendritic branches as active process-
ing elements, the microcolumnar organization in cortical tissue and the sparse
patterns of activation in the neocortex–among others. Almost all ANNs, such as
those used in deep learning [6] and spiking neural networks [10], use artificial
neurons without considering active dendrites and with an unrealistic low num-
ber of synapses. These facts suggest that these ANNs are missing fundamental
functional properties present in the brain.

CPUs and GPUs for ANN Large Simulations

In the realm of biologically plausible computational models the CPU/GPU di-
chotomy is not clearly defined. In [9] for example, the authors analyzed the ad-
vantages and drawbacks of the CPU and GPU parallelization in different shared
memory parallel paradigms, such as OpenMP, Compute Unified Device Archi-
tecture (CUDA) and Open Computing Language (OpenCL) of mean-firing rate
neurons. The authors inspected different speed limiters such as floating point
precision, thread configuration, data organization and connectivity structure of
the networks. Parallel CPU implementations greatly benefited smaller networks,
mostly because of cache effects. Large networks–on the other hand–benefited from
the GPU only if they demanded memory beyond the available on CPU caches,
otherwise an OpenMP implementation was highly preferred. The authors com-
pared several structure representations on the different parallel frameworks show-
ing that on CPUs, these representations reached almost the same computation
time. On GPUs instead, the performance was significantly affected by violations
of coalescence induced by heterogeneous data structures. Finally, the most serious

D. Dematties et al. / Towards High-End Scalability on Biologically-Inspired Computational Models 501



problem appeared when the network had a sparse or random connectivity struc-
ture, i.e. neurons received connections randomly from other neurons, and not in
an organized or ascending order. As the authors pointed out, this totally broke
down the performance of GPU implementations, while CPUs were only slightly
affected. This was perhaps the strongest argument against GPU implementations
of mean-firing rate neural networks, since this sparse connectivity is a repeated
pattern in biological networks as well as it is in the computational model presented
in this paper.

Materials and Methods

In this paper we introduce a parallelization strategy with great independence on
data coalescence and show how it scales efficiently on distributed memory systems
while running our biologically-inspired computational model which simulates cor-
tical dynamics with highly sparse and random connectivity profiles [7].

Our group pursued the implementation of a completely unsupervised and
biologically inspired computational model–the Encoder Layer (EL) in [7]–which
incorporated key properties from the mammalian cortex and returned phonetic
features that improved the classification accuracy levels of the SVM algorithm in
word classification tasks. This happened in the presence of noise, reverberation
and pitch and voice variations not present during training [7]. In this paper we
introduce the parallelization strategy applied to the Encoder Layer (EL) code
which is approached by means of a hybrid MPI and OpenMP paradigm and
through the use of MPI I/O parallel file system with Checkpoint and Restart
capacity in the training stage where there is total flexibility in terms of the number
of ranks with which the execution is restarted (Fig. 1).

We performed all computational experiments on Cooley [16], a visualization
and analysis cluster at Argonne National Laboratory in which we executed scaling
tests on the EL–the central algorithm in our model–using up to 64 nodes (one
MPI rank per node) and up to 8 OpenMP threads per node/rank. We performed
strong and weak scaling tests and measured scaling efficiency.

We parallelized the Encoder Layer (EL) in a way that each MPI rank ends up
with one or more CCs and the CCs in each rank are distributed among different
OpenMP threads. Fig. 1 shows a hypothetical distribution of CCs in an EL with
3 by 8 (24) CCs among three MPI ranks with three OpenMP threads per rank.
Certain ranks could take care of a different number of CCs depending on the
number of MPI ranks as well as the number of CCs in the EL. Each MPI rank
distributes its CCs among different threads in the same fashion.

Information among MPI ranks must be transferred in each time step. We
gather all the information corresponding to the CCs in each rank and then use
MPI Bcast function to transmit such information using a special communication
protocol by means of which we specify the boundaries in the information corre-
sponding to each CC. By means of this strategy, each MPI rank has to call MPI
Bcast just once in order to transmit its data.

The EL uses MPI I/O parallel file system to save its status. Each MPI rank
gathers all the data corresponding to its CCs in the EL and puts such data in a

D. Dematties et al. / Towards High-End Scalability on Biologically-Inspired Computational Models502



std::stringstream class. Then such MPI rank communicates the part of the file
it will use to the other MPI ranks in order to store the data without interfering
with the other ranks in the MPI environment. Finally, each MPI rank saves all its
data with a unique call to MPI Write using the complete std::stringstream.
An EL with a different number of ranks can load the same file without affecting
the final results.

In this work, each MPI rank runs in a different node and keeps all the data
that corresponds to the EL object. Although this general EL data is replicated in
each MPI rank, this is not significant compared to the data corresponding to the
CC objects. Each MPI rank keeps only the data for those CCs which are under
its charge.

Results

In this paper we tested the scaling efficiency of the parallelization strategies used
in the EL by means of strong and weak scaling tests (Fig. 2). We conducted our
tests on Cooley, a cluster to analyze and visualize data produced on high-end
supercomputers at Argonne National Laboratory. Cooley has 126 compute nodes;
each node has 12 CPU cores. The entire system has a total of 47 terabytes of
system RAM. The Cooley node configuration has an Intel Haswell architecture
with two 2.4 GHz Intel Haswell E5-2620 v3 processors (6 cores per CPU, 12 cores
total), 384GB RAM, FDR Infiniband interconnect and 345GB local scratch space.

Figs. 2a and 2b show the strong scaling capacity of our code in terms of
number of processing elements used for the task. In these tests we constrained the
code to run one MPI rank per node. Each MPI rank spreads a specific number
of threads through the different CPUs in its corresponding node as shown in
Fig. 1. The problem size stayed fixed and the number of processing elements was
increased. Straight lines in Fig. 2a show–at first–a good scaling capacity. Such
fact is confirmed by Fig. 2b which shows the strong scaling efficiency 1.

In order to avoid scaling efficiency degradation, the EL has to keep certain
number of CCs per OpenMP thread. We tested the scaling running on up to
64 nodes with 8 OpenMP threads each, since the more nodes you incorporate,
the more Inter-Process Communication (IPC) load you have. In order to keep
a considerable number of CCs per OpenMP thread, we generated an EL with
16384 CCs. In the worst scenario there were 64 computing nodes with 8 OpenMP
threads each (512 threads), the model ended up distributing 32 CCs per OpenMP
thread. Each CC in this model had 225 neural units to reach a total of 3686400
neural units and 1706803200 synapses in the EL.

As can be seen in Fig. 2b, the larger amount of computing nodes (MPI ranks)
with the consequent growth of MPI IPC load did not affect the strong scaling
efficiency of the model which was above 87% when running 8 threads per node,
but was above 97% when running two threads per node for 64 nodes.

1Let t1 be the amount of time to complete a work unit with 1 processing element, and tN
the amount of time to complete the same unit of work with N processing elements, the Strong
Scaling Efficiency is: t1/(N ∗ tN ) ∗ 100
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(a) Strong Scaling. Run time vs. the number of
nodes for different number of threads per node.

(b) Strong Scaling. Efficiency vs. the number
of nodes for different numbers of threads per
node. Race line (reference) is taken at 8 com-
puting nodes.

(c) Weak Scaling. Run time vs. the number of
nodes for different number of threads per node.

(d) Weak Scaling. Efficiency vs. the number
of nodes for different numbers of threads per
node.

Figure 2. Strong and Weak scaling tests of the EL algorithm on Cooley nodes. Each MPI rank
runs in a different node with 1, 2, 4 and 8 OpenMP threads running in each rank.

In reference to Weak Scaling, in order to keep the ratio of CCs per OpenMP
thread constant, we used increasing EL sizes and kept a ratio of 32 CCs per
OpenMP thread. Figs. 2c and 2d show the weak scaling performance of the model.
In this case the problem workload assigned to each processing element stayed
constant and additional elements were used to solve a larger total problem. The
horizontal lines in Fig. 2c show–at first–a good scenario. As can be seen in Fig. 2d,
the scaling efficiency was always above 75% 2. These measures show that the
model parallel execution was not affected by MPI IPC load as the number of
computing nodes increased. This scenario was specially evident for the case of
one OpenMP thread in whose case the worst efficiency was above 95%.

Discussion and Conclusion

In this paper we show how parallelization strategies with great independence on
data coalescence, scale efficiently on distributed memory systems while running

2Let t1 be the amount of time to complete a work unit with 1 processing element, and tN
the amount of time to complete N times the same unit of work with N processing elements, the
Weak Scaling Efficiency is: t1/tN ∗ 100
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a biologically inspired computational model with highly sparse and random con-
nectivity profile.

Algorithmic implementations strongly based on Single Instruction, Multiple
Data (SIMD) parallel computing architectures, impose important restrictions on
memory data alignment. OpenMP threads in shared memory systems are instead
highly independent and powerful processing abstractions which can perform com-
plex tasks with eventual vectorization optimizations when possible.

Our findings show that the parallelization strategies used in this work present
good and robust scaling efficiency even in the face of intensive IPC loads. Such
behavior can be kept in a sustained manner. Achieving load balance in dis-
tributed memory systems is extremely expensive, given the amount of IPC over-
load needed. In this manner, we claim that the best way to balance computational
load among computing elements is to try to confine as much computational load as
possible in a shared memory unit without far exceeding the concurrent threading
or hyperthreading capacity and/or cache memory capacity provided by a node.
Once such conditions are satisfied, it is relatively straightforward to spawn a num-
ber of threads in which the work could be distributed. Once in a shared mem-
ory system, OpenMP threads are much lighter than MPI processes, and they do
not need complex communication methods to share data. Furthermore, OpenMP
threads can manage load balancing efficiently and automatically since OpenMP
manages dynamic parallel schedule on its own. This is highly desirable, specially
in a simulation environment in which individual modules–such as CCs in our
cortical model–are not uniformly analogous in terms of size and or connectivity.
In MPI instead, the programmer has to deal with load balancing using intensive
IPC which is highly expensive especially when the communication is carried out
among processes in different nodes. On the other side, OpenMP threads suffer
from false sharing in the CPUs caches, but with a highly flexible parallelization
scheme as the one used in section Materials and Methods, the user can flexibly
vary the parallelization granularity as to achieve the best performance, avoiding
that each thread exceeds the quota of cache memory available in each CPU.

In Fig. 2 the phenomenon of super-linear speedup is present for several cases.
In [17] the authors pointed out that: The superlinear speedup performance in per-
sistent algorithms occurs mainly due to the increased cache resources in the paral-
lel computer architectures, the prefetching of shared variables in shared memory or-
ganization, or better scheduling in heterogeneous environments. The effects of the
shared memory architectures also impact the performance behavior of the granular
and scalable algorithms. We endorse such statement and consider it sustainable as
a general explanation for our case. Nevertheless, we also consider that more in
depth analysis of memory utilization using profiling tools will be needed in the
future.

The scenario in which the computational burden assigned to each shared
memory system is distributed among a set of highly lightweight, flexible and dy-
namic OpenMP threads, is really favorable in a context in which the number of
CPUs sharing memory increases specially in high-end supercomputers. In such
respect and in the face of the good results returned by our experiments, we eval-
uate as viable the implementation of these parallelization strategies in high end
supercomputers in the future.
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We thus claim that this work introduces parallelization strategies whose flexi-
bility and robustness are particularly useful in overly variable and biologically in-
spired computational scientific scenarios whose modelization approaches can vary
dramatically in different biologically accurate implementations strategies in which
there are erratic network structures with highly sparse and random connectivity
profiles.
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Abstract. Scientific visualization tools are essential for the understanding of phys-
ical simulation, as it gives a visualization aspect of the simulated phenomena. In
the past years, data produced by simulations join the big-data trend. To maintain
a reasonable reaction time of the user’s commands, many scientific tools tend to
introduce parallelism schemes to their software. As the number of cores in any
given architecture increases, the need for software to utilize the architecture is in-
evitable. Thus, GraphiX - a scientific visualization tool parallelized in a shared-
memory fashion via OpenMP version 4.5 was created. We chose Gnuplot as the
graphical utility for GraphiX due to its speed as it is written in C. GraphiX par-
allelism scheme’s work-balance is nearly perfect and scales well both in terms of
memory and amount of cores. We achieved a maximum of 560% speedup with 16
cores while visualizing approx 3 million cells.

Keywords. Visualization, HCI, OpenMP, GUI, NUMA, SMP, ParaView, VisIt,
MATLAB, multi-core

1. Introduction

Scientific visualization tools play an important role in the understanding of simulated
physical data [2], exploring the data produced and debugging the simulation itself. This
data is produced by various scientific simulations and is analyzed by placing the data
in some visual context. Among these scientific simulations are computational fluid dy-
namics, molecular dynamics and so forth. Nowadays, many scientific visualization tools
can be used in a variety of ways to visualize data as heat maps, contours, isosurfaces,
three-dimensional and unstructured meshes. One important aspect these tools must take
into account is how fast the tool can process the user’s command or data and produce a
visual image [3].

As the demand for simulation resolution increases, the amount of data produced by
simulation also increases [4], i.e the data that needs to be processed by the visualization

1This work was supported by the Lynn and William Frankel Center for Computer Science. Computational
support was provided by the NegevHPC project [1].
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tool, combined with the complicated ways to represent the data, leads to long response
time, thus harming the user’s experience. One approach visualization tools may take to
shorten the response time is introducing the distributed-memory parallelism schemes [5]
to the tool, such as done in VisIt [6], ParaView [7], Tecplot [8] and many more.

The distributed-memory model consists of multiple processes with different address
space, that may coordinate in some manner to perform a task. These processing units
may reside on completely different computer nodes using MPI (Message Passing Inter-
face) [9] to communicate with one another. With this approach, data is automatically
read, processed, and if needed rendered, in a distributed manner. Thus, dividing the work-
load and the data between the processing units and decreasing the response time results
in an improvement of the HCI (Human-Computer Interaction).

2. Previous Work

Many current scientific visualization tools ease the work of the scientist. Some of these
visualization tools provide the graphical aspect and it is in the scientists’ duty to write the
data-parsing and plotting methodology. These tools are fast in response time and flexi-
ble in their options (as the scientist has full command on how to plot). However, these
tools are less scalable, even at the presence of multi-core hardware, as they are work in
a serial fashion. For example, MATLAB [10], which is a numerical computing environ-
ment and programming language developed by MathWorks. Among MATLAB’s various
features are multi-dimension plotting, contour generation, histograms, vector fields and
more. However, besides the parallel computing toolbox [11], MATLAB is a serial soft-
ware. In the similar well-known open-source mimic,Matplotlib [12] is a Python plotting
library with a similar syntax to MATLAB’s plotting commands. Matplotlib is capable of
two-dimension plots with different options such as color-maps, histograms and more.
Nevertheless, is still not essentially parallel.

There are many more tools with the same rationale - focusing on providing a fast-
response graphic visualization of data such asGnuplot [13] ,GNUOctave [14] etc. How-
ever, as previously mentioned, these tools require manual parsing of the data, and specif-
ically producing (via command-line or code) the wanted plot. To further ease the job of
the scientist, some scientific visualization tools provide the processing and parsing of
the data, and already include built-in scientific-relevant options such as contours, iso-
surfaces, color-maps, mesh generation and more. In contrary to the previous tools, these
introduced with scalable parallelization schemes to the parsing and rendering stages. For
example, VisIt is an open-source, scalable, interactive, parallel up-to three-dimensional
visualization tool developed by Lawrence Livermore National Laboratory (LLNL). VisIt
supports multiple operating systems such as Unix, Windows and Mac, and multiple sci-
entific data formats. Users can manipulate and change their data by applying different
operators and mathematical expressions on the data, save their results and images and
even produce animations. Moreover, users can use the tool to have a better understanding
of their data and even use it to debug their code. VisIt’s parallelism scheme [15] is based
on the distributed-memory model. The most frequent parallel mode in VisIt is where data
is partitioned and distributed over the different processing units - the MPI tasks. Each
MPI task is responsible for the analysis of the data, i.e on the different operators applied
to the data. Additionally, the MPI tasks are responsible for the rendering of its chunk of
data and the resulting images from each task are composite together. In most of the cases,
the parallelism behind VisIt is in an embarrassingly parallel fashion, meaning there is no
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need for communication between the processing units. However, in cases where the data
needs to be shared among the processing units due to streamlining calculation or vol-
ume rendering, the processing units will coordinate and communicate via the MPI API.
Another scalable, parallel visualization tool that is based on VisIt and extends its paral-
lelization scheme is VisIt-OSPRay [16]. The rationale behind this system is to visualize
hundreds of gigabytes and even terabytes of data efficiently on regular processors (Intel
Xeon [17]) and co-processors (Intel Xeon-Phi [18]). VisIt-OSPRay implements a hybrid
parallelization scheme, that includes both a distributed-memory model (processes) and
a shared-memory model (threads). In the final stage of the visualization - the final im-
age composition, the composition in the same node will be done by using threads thus,
minimizing communication overhead and using the shared memory between the threads
while the composition between different nodes will be done via MPI. A similar tool to
VisIt is ParaView [19]. This tool is an open-source, multi-platform data analysis, parallel
up-to three-dimensional visualization tool developed by Los Alamos National Labora-
tory. ParaView, similarly to VisIt, was developed to visualize both small datasets which
are suited for laptops, personal computers, etc. and large scale datasets that are suited
for HPCs. ParaView was designed in layers: The most basic layer is the visualization
toolkit (VTK), which provides the data representation, algorithms and the connection
between the two. The second layer of ParaView’s design is the parallel extension to the
first layer (VTK). The parallel layer allows the execution of the algorithms on shared and
distributed memory machines. The third layer is the graphical user interface (GUI) itself
which provides the transparency of the visualization and the rendering. ParaView sup-
ports many options such as contours and isosurfaces, vector fields and more. ParaView’s
parallelism scheme [7] is based on the distributed-memory model, and works in the same
work fashion as VisIt. ParaView implements its parallelism scheme the same way VisIt
uses MPI. Each MPI task reads a portion of the data, processes it, and if needed will
render the data in a parallel manner. The communication between the MPI tasks is han-
dled by the internal modules, i.e every algorithm is implemented in a parallel manner and
contains the communication schemes. Figure 1 presents a common way to implement a
visualization tool with MPI.

Graphical
User

Interface
Viewer Parallel Engine

Parallel Engine

Parallel Engine

Database
Server

Local Server

Remote Server

Figure 1. Visualization tool scheme with distributed memory parallelism in ParaView and VisIt.
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3. Problem Formulation

As seen in section 2, the distributed-memory model is a common visualization approach
tools take to enhance the user’s experience. However, the use of distributed computing
and the work-fashion in those tools has some major disadvantages [20]:

• Distributed Computing Overhead: When executing commands on the whole
dataset, the processing units need to communicate and synchronize with one an-
other - a situation that creates communication overhead. Furthermore, executing
a parallel visualization on a Symmetric multiprocessing (SMP) or Non-uniform
memory access (NUMA) architecture leads to unnecessary communication over-
head, as there is no need for such communication as they can all share the same
physical memory and can access it.

• Slow HCI: In many cases when there is a need for immediate visualization, even
of relatively large amount of data [∼ second], the data can actually fit on a single
socket [21] - both in terms of memory and computational power - and thus the
distribution of the domain on many nodes in order to utilize more cores is counter-
effective. Furthermore, the creation of MPI processes even on the same socket is
longer than spawning threads, which can be done in the shared-memory model.
Additionally, initializing the GUI and Viewer results in spawning MPI processes
which of course is time-consuming. However, one can leave the GUI open and
save the initializing time but it is not recommended as it is resource-wasteful.

• Non-Optimized Resource Utilization: As the current distributed visualization
tools use a parallel engine that launches the processes to the nodes throughout all
of the tool usages - regardless of actual service - it also implies that the computa-
tional resources are in many cases idle but still allocated.

However, in the past years, multi-core architectures become more and more com-
mon in desktops, laptops, mobile, etc [22]. The multi-core architecture provides a way
for software developers to introduce parallel schemes such as the shared-memory paral-
lelization [23], thus decreasing the software’s response time and allowing more compli-
cated operations. The shared-memory model consists of processing units that share the
same address space, allowing the processing units to exchange data and communicate
with minimal overhead.

As the number of those cores and the amount of their RAM increase [24], the
need for distributing the data on different processing units decreases. Thus, introducing
shared-memory model parallel schemes can lead to faster response time and optimized
resource management [25]. Regarding scientific visualization, distributed tools were cre-
ated first and foremost for complicated and extreme high-resolution simulations and are
suited for the HPC arena. On the contrary, simplified visualization tools were created for
visualization of lower to medium resolution than the latter and are suited for desktops
computers or single socket of NUMA computers. This distinction is very common in
the sciences work fashion, and as such of great interest to be improved in both cases.
Due to the increased usage of multi-core architectures in all computational architectures
since the year of 2005 [22], the gap between these two types of visualization tools can be
reduced by introducing shared-memory parallel schemes to the tools, and most urgently
to the desktop and single-socket NUMA suited ones. Therefore, we created GraphiX a
Fast HCI SMP scientific visualization tool. Figure 2 illustrates the need for such tool.
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The existing gap between HPC and PC in terms of simulations, PC will usually run small
scale simulations (low dimension) and HPC will run big scale simulation (high resolu-
tion, high dimension), which leads to a need for a tool that can benefit from the com-
mon architecture - multi-core. Thus, suitable for both architectures and bridging the gap
between the two.

Personal Computer

2-16 cores
4-32GB RAM

Serial simulation
Low dimension

Serial Visualization

Cluster, Grid, HPC

32-64 cores per node
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Figure 2. Illustration of the need for GraphiX.

4. GraphiX

GraphiX is a fast HCI-suited scientific visualization tool for both SMP and NUMA up
to three-dimension. GraphiX supports several ways to visualize the data such as vol-
ume mesh representation, color-maps, contours, x-axis/y-axis mirroring, presenting data
related to the mesh, and more.
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GraphiX graphical utility is based on Gnuplot [26]. We chose Gnuplot because it is
open-source and written in C and C++ while MATLAB is a proprietary software and not
open-source. Additionally,MATLAB cannot be parallelized in shared or distributed mem-
ory thus, choosing this tool as the graphical utility is impractical. Although Matplotlib is
open-source and can be parallelized (with threads, not OpenMP) but less effective than
parallelization in C, Gnuplot is more suited for OpenMP.

Gnuplot [13] is an interactive, multi-platform up-to three-dimensional visualization
tool. Unlike VisIt and ParaView,Gnuplot is not parallel in any way and is a command-line
driven visualization tool, rather than GUI driven. Nevertheless, it is a fast visualization
tool written in C/C++ and was created to allow scientists to visualize different functions
and data interactively and non-interactively. It also supports different interactive screen
displays such as Qt, wxWidgets, x11 or system-specific. Users can also direct their plots
to different file types such as pdf, eps, gif, jpeg, LaTeX, svg and more.

GraphiX GUI is written in Python and the heavy computational operations such
as mesh creation, contour line calculations, and color-map interpolations are written in
Cython [25]. Cython is a programming language designed to give C-like performances
while maintaining the simplicity of Python syntax. In cases of large data and many oper-
ations, we used OpenMP under Cython.

Parallelism schemes were introduced to two main modules inside GraphiX. The first
module, as discussed above, is responsible for reading and parsing the initial data (cre-
ating the polygon’s coordinates, contours calculations, etc.), and creating the Gnuplot’s
commands that will later produce the visual image. For the second module, Gnuplot’s
source code was partially introduced with shared-memory parallelism via OpenMP [23],
specifically the source code that creates the polygons (the mesh and color-map) which
is the most time-consuming part as will be discussed in section 5. The rationale behind
introducing Gnuplot with OpenMP is explained in section 3, which is minimizing the
overhead and optimizing the use of the common modern architecture - multi-core pro-
cessing.

GraphiX workflow consists of four main modules: GUI, Controller, File Handler
and Gnuplot communicator along with Gnuplot’s source code. Figure 3 illustrates the
main modules and work-flow.

Graphical
User Interface Controller

Gnuplot
Communicator

Gnuplot
Process

File HandlerResponse

Command

Local Server

Remote Server

Figure 3. GraphiX’s work-flow.

4.1. Graphic User Interface

The Graphic User Interface module handles the user’s requests and interactions. As seen
in figure 4 and in section 4, GraphiX can produce contours, color-maps, axis mirroring,
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along with providing the cell’s physical data when clicked. The GUI is written in Python
with PyQt [27] as the visualization kit. The GUI contains a window (the Viewer) that is
connected automatically to a Gnuplot process. This means that when Gnuplot displays
the plot it is automatically drawn on to the Viewer. Figure 4 presents the GUI part, which
includes all the different options such as contours, skipping to the next plot, showing the
physical data of a cell and more. In figure 5 different simulations are plotted on the GUI,
withGnuplot as the graphical utility. Among the plots are Sedov-Taylor simulation (blast
wave) mesh presentation and pressure color-map, and Rayleigh-Taylor instability mesh
presentation and density color-map.

Figure 4. Graphix Graphic User Interface.

(a) Sedov-Taylor simulation. (b) Sedov-Taylor density color map.

(c) Rayleigh-Taylor pressure contours. (d) Rayleigh-Taylor pressure color map.

Figure 5. GraphiX visualization on different simulations.

4.2. Controller

The Controller module is the main module that connects all the other modules. The
module stores all the data (coordinates, physical data such as pressure and temperature
and more) of the plot. Additionally, the creation of contour lines, color-map and the
mesh is done in this module. As mentioned, GraphiX is written in Python. Due to this,
operations that require heavy calculations such as contours, mesh and color-map creation
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may lead to long response time (compared to low-level programming languages such as
C). To cope with this problem and speedup this process, these modules were written in
Cython.

When a user executes a command the GUI sends the request to the Controller. The
Controller then executes the appropriate action via the File Handling module. Finally, the
Controller will send the file name, and if needed more data, to Gnuplot’s communicator
(see below 4.4) that will later send the appropriate execution command to Gnuplot.

4.3. File Handling

The File Handling module is the module that handles two main parts. The first part
reads and parses (if needed) the user’s data. The second part creates temporary files (in-
memory file system /tmp/ to maximize the I/O operations) that contain the commands
Gnuplotwill later execute. For example, producing a mesh inGraphiX is usually done via
Gnuplot’s polygon objects. To create the appropriate polygon objects the coordinates are
parsed and connected in some manner. Afterward, a temporary file is created where each
line defines a Gnuplot polygon object. Finally, Gnuplot’s load command is executed on
the temporary file and the mesh is presented on the Viewer. Currently GraphiX supports
only the VTK input file format. However, it is possible to extend this part and support
additional formats.

4.4. Gnuplot Communicator and Parallel Source Code

Gnuplot Communicator and Source Code module consists of two separate modules that
are strongly connected. Because Gnuplot is a command-line based visualization tool, the
first module, the communicator, opens a Gnuplot process shell (command-line) and is in
charge of sending the Gnuplot commands such as the load command, the plot command
etc. Furthermore, the module receives messages back from the Gnuplot process. For
example, clicking coordinates that provide the cell physical data.

The second module consists of Gnuplot’s modified OpenMP parallel source code.
It was found that producing color-maps is the most computationally intensive and time-
consuming part in Gnuplot. Producing color-maps is done by creating polygons with
some value that represents its’ color. Gnuplot creates polygons by creating a linked-list
of objects (objects can be polygons, rectangles etc.). Each time a new polygon is cre-
ated it is added in some manner to the linked list. Thus, to speed-up the process of cre-
ating the polygons the function load_file, which in fact creates the linked-list of poly-
gons, was introduced with shared-memory parallelism - OpenMP. As the Gnuplot load
command is executed to produce the color-map, the parallelism scheme was introduced
to the function load_file that parses each line of the file and creates the linked-list of
polygons accordingly. The parallelism scheme is based on dividing the linked-list to the
working threads, i.e each thread that is spawned by the OpenMP run-time environment is
responsible on parsing the specific file line and eventually creating a polygon that is part
of its own private and independent linked-list. Finally, once all the threads finish creat-
ing their linked-lists, the master-thread links them together. In NUMA architectures the
OpenMP run-time environment may execute the threads on processing units (cores) that
reside on different sockets, resulting in more frequent false-sharing [28], thus reducing
the speedup gained. To overcome this [29], thread affinity and placement were included
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in the parallelization schemes using OpenMP 4.5 [30]. The following figure illustrates
the parallelization scheme, given N polygon objects (the yellow rectangle) and K threads
the workload will be:

Obj 0 Obj 1 Obj N
K

Thread 1

Obj N
K +1 Obj N

K +2 Obj 2N
K

Thread 2

Obj
(K−1)N+K

K

Obj
(K−1)N+2K

K
Obj N−1

Thread K

... ...

... ...

Figure 6. Illustration of Gnuplot parallelization scheme.

5. Parallelism and Performances Evaluation

Evaluating GraphiX’s parallelism scheme (or in other words Gnuplot’s modified par-
allel source code) in terms of speed and memory scaling was done by creating a file
that contains many polygon-objects and executing GraphiX color-map command, which
as mentioned is the most time consuming operation (in Gnuplot’s source code it is the
load_file function). First, evaluating GraphiX’s thread-scaling capability was tested with
{1, 2, 4, 8, 16, 32} threads with a 500MByte file which is roughly 3,850,000 polygons.
GraphiX was executed on the NUMA architecture with two different options of a new
OpenMP 4.5 feature, the thread affinity with the options of close and spread. The thread
affinity close option spawns new threads as close as possible to the master thread, thus
utilizing the cache-usage and local memory, while the spread option spreads the threads
across the machine (on different sockets) as much as possible, thus utilizing the memory-
bandwidth. As one can see from figure 7, spawning threads close to the master thread
yields better speedup, as the algorithm behind the creation of the polygons is better uti-
lized with cache-sharing. The parallelism scheme (with close) scales well until 8 cores.
Although there is a slight speedup with 16 threads compared to 8, it was found that 8
threads on the NUMA architecture yield the optimal results in terms of performance per
dollar. It is also notable that nowadays most desktops and laptops have 8 to 16 cores in
a SMP architecture. This further indicates that the parallelism scheme is suited for SMP
architecture as close ensures the threads are created within the same socket. Addition-
ally, the two trends intersect at 32 threads as this is the number of cores on the machine,
thus there is no meaning for close or spread as they perform in the same way. Further-
more, we included the well-known theoretical Amdahl’s law graph to demonstrate that
the speedup of Gnuplot total execution is almost the same, as the function load_file takes
approximately 99% of the total execution time.

To evaluate GraphiX’s memory-scaling capabilities, similarly to evaluating the
thread-scaling capability, GraphiX color-map option was tested with files of sizes

6
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Figure 7. Speedup of the GraphiX color-map creation with 500MByte file compared to serial GraphiX.

100MByte (∼770,000 polygons), 500MByte (∼3,850,000 polygons), 1GByte (∼7,700,000
polygons), 2GByte (∼15,200,000 polygons) and 4GByte (∼30,000,000 polygons).
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Figure 8. Speedup of the GraphiX color-map creation over different file sizes compared to serial GraphiX
execution with thread affinity close.

To evaluate GraphiX workload between threads, it was compiled with Scalasca [31]
- a tool that analyzes and measures a programs runtime behavior. One of the features
in Scalasca is to identify performance bottlenecks - specifically in our case, the work-
balance between the threads - and to verify that there are no bottlenecks in Gnuplot’s
modified source code. As seen in figure 9 on the third column, the execution time of
each thread in the OpenMP region is nearly the same, pointing out that the work-balance
between all 16 threads is the same.

R. Harel and G. Oren / GraphiX518



Figure 9. GraphiX Parallelisem with 16 threads, exhibiting near perfect load-balancing.

6. Conclusions

As the trend of multi-core architectures is getting more and more popular, the introduc-
tion of shared-memory parallelism scheme to software is necessary in order to utilize
this architecture. Scientific visualization tools are no exception to this introduction, thus
GraphiX, a fast two/three dimension visualization tool suited for every multi-core archi-
tecture, was created. The most time-consuming option found in GraphiX was the color-
map, thus OpenMP directives were introduced to the tool. As shown in section 5 the
parallelism scheme’s work-balance is perfect and scales well with both the problem size
and the number of threads, and achieve a speedup of ∼5.6 at peak with 16 cores.
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Abstract.
Large scale parallel applications have evolved beyond the tipping

point where there are compelling reasons to analyze, visualize and other-
wise process output data from scientific simulations in situ rather than
writing data to filesystems for post-processing. This modern approach
to in situ integration is served by recently developed technologies such as
Ascent, which is purpose-built to transparently integrate runtime anal-
ysis and visualization into many different types of scientific domains.
The TAU Performance System (TAU ) is a comprehensive suite of tools
that have been developed to measure the performance of large scale
parallel libraries and applications. TAU is widely-adopted and available
on leading-edge HPC platforms, but has traditionally relied on post-
processing steps to visualize and understand application performance.
In this paper, we describe the integration of Ascent and TAU for two
complementary purposes: Analyzing Ascent performance as it serves the
visualization needs of scientific applications, and visualizing TAU per-
formance data at runtime. We demonstrate the immediate benefits of
this in situ integration, reducing the time to insight while presenting
performance data in a perspective familiar to the application scientist.
In the future, the integration of TAU’s performance observations will
enable Ascent to reconfigure its behavior at runtime in order to consis-
tently stay within user-defined performance constraints while processing
visualizations for complex and dynamic HPC applications.

Keywords. HPC, performance measurement, runtime visualization.

1. Introduction

Parallel applications developed for large-scale, high-performance computing
(HPC) continue to increase in sophistication and complexity. To a great extent,
this is driven by the advances in computational modeling of scientific and en-
gineering phenomena that will demand the next-generation hardware technolo-
gies fueling the HPC evolution. The ability of applications to harness the greater
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computational resources of HPC systems will deliver results of finer precision,
higher resolution, and more significant predictive power. The challenge, of course,
is to develop applications that can maximize the performance potential of present
and future HPC platforms. This represents the flip side of the sophistication
and complexity problem. Applications will need advanced parallel programming,
language, runtime system, and communication interface technologies to produce
programs that can utilize the heterogeneous many-core processors, multi-level
memory architecture, and fast interconnect hardware effectively and do so in a
performance portable manner.

The dual nature of what defines HPC application success — advanced sci-
entific outcomes and highly-efficient execution — is reflected in tools created to
further enhance that success, again in the context of HPC sophistication and
complexity. For example, analysis and visualization tools are central to the under-
standing of science and engineering simulation results. The last 30 years has seen
a steady progression from tools generating analysis and visualization products
post hoc to those running in situ with the application [1]. The reasons are conse-
quential of simulation fidelity and HPC scale, making it increasingly intractable
to save and process huge modeling data offline [2]. In a similar manner, the im-
portance of parallel performance measurement, analysis, and visualization tools
is central to understanding and tuning applications on HPC machines. Contem-
poraneous to the transition of in situ analysis and visualization, runtime perfor-
mance data introspection, analytics, and feedback are becoming more relevant in
performance systems. Again, the reasons are due to HPC idiosyncrasies, including
larger performance data size, more factors affecting performance variation, and
non-deterministic performance dynamics as a result of asynchronous execution,
all making post mortem performance methods less productive.

Like brothers from a different mother, we consider in this paper the oppor-
tunities for the inter-operation of a parallel performance system with an in situ
analysis and visualization framework. Interestingly, the shared HPC heritage po-
sitions these tools today in a place that begs for their integration and supports it.
We will demonstrate the merits of the endeavor by focusing on two leading efforts:
the Ascent in situ project [3] and the TAU Performance System R© [4]. Ascent is
being developed by a multi-institution effort funded by the U.S. Department of
Energy (DOE) Exascale Computing Project (ECP) [5] to deliver in situ analy-
sis and visualization technology ECP application teams. TAU provides portable,
robust performance measurement and analysis of HPC applications and systems.

There are three perspectives that we will investigate, the first two of which we
will describe in this paper. One perspective looks at the use of TAU to instrument,
measure, and analyze the Ascent infrastructure. TAU is particularly suited to
observing the execution of large-scale software [6] and can directly be applied to
characterize the performance of Ascent components. Ascent’s performance will
correlate with the application-specific analytics and visualization requirements for
which it is being used. Based on the performance analysis, Ascent developers will
be able to understand inefficiencies and optimize performance for specific usage
scenarios.

Another perspective involves the use of Ascent for application performance
analytics and visualization. Here our interest is to gather and process perfor-
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mance data online (from TAU’s measurement of the application measurement
and systems-level information) and utilize Ascent’s infrastructure to analyze and
visualize the data in situ. Specifically, we program Ascent’s runtime with filters to
interface with TAU performance measurements, application-specific values, and
system information during periods when Ascent is invoked.

It is reasonable to assume that TAU and Ascent will co-exist in HPC plat-
forms and applications. Thus, an outcome in pursuing the two perspectives above
is to validate the cross-leveraging of Ascent and TAU technologies. A third, in-
triguing perspective comes from more tightly-coupled integration of TAU and
Ascent whereby they are being used cooperatively in online tuning and adaptive
control of the application. We envision this taking several forms. For instance,
suppose that the user constrains in situ analytics and visualization to take no
more than 10% of the application’s execution time. TAU could be used to mea-
sure the performance of both the application and Ascent, thereby informing the
Ascent infrastructure when corrective action is necessary.

Another possibility is to develop joint analytics that take into account a com-
bination of performance data, application variables, and other execution state to
guide policies concerning how the application should advance. Innovations tak-
ing place in both Ascent and TAU for supporting application triggers [7], feed-
back mechanisms, and autonomic management make this especially salient for
integration purposes. Furthermore, there are strong motivations to extend As-
cent’s and TAU’s operation to scientific workflows where in situ concerns of com-
putational productivity and performance efficiency involve interactions between
multiple simulation modules and workflow components.

Our plan is to evaluate these perspectives with benchmark applications taken
from the ECP proxy applications project. These include two of the applications
that are part of the Ascent test programs, LULESH and Cloverleaf3D. We ran
our experiments on large-scale HPC machines at DOE national laboratories. The
main research objectives are to investigate effective methods and explore develop-
ment strategies for the integration of two state-of-the-art runtime infrastructures
for HPC, principally Ascent for in situ analytics and visualization and TAU for
parallel performance measurement and analysis.

2. Applied Technologies

2.1. Ascent

Ascent [3] is a library for in situ visualization and analysis. Simulation geometry
and results are passed to Ascent at runtime in order to generate periodic analysis
results without the need to write much larger simulation data to disk for post-
mortem analysis. It differs from other in situ libraries in its focus on “flyweight
processing,” meaning small API, small binary size, small execution overhead,
small memory footprint, and few dependencies on other libraries. Ascent supports
zero-copy in situ (meaning that it can share memory with a simulation code),
and supports parallelism both within a node and across nodes. Its parallelism
within a node comes from incorporating the VTK-m project [8], which focuses on
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delivering portable performance across many-core architectures for visualization
and analysis algorithms. It has been demonstrated good performance on 16,384
cores of the Oak Ridge Titan machine [9], 16,384 GPUs on Lawrence Livermore’s
Summit machine, and 2,048 GPUs on Oak Ridge’s Summit.

2.2. TAU and PerfStubs

The TAU Performance System [4] is a portable profiling and tracing toolkit for
performance analysis of parallel programs written in Fortran, C/C++, Java, and
Python. TAU is capable of gathering performance information through system-
interrupt-based sampling and/or instrumentation of functions, methods, basic
blocks, and statements. The instrumentation can be inserted in the source code
automatically with a TAU specific compiler wrapper based on the Program
Database Toolkit (PDT) [10], dynamically using DyninstAPI [11], at runtime in
the Java Virtual Machine or Python runtime, or manually using the instrumen-
tation API (application programming interface). TAU measurements represent
first-person, per-OS (operating system) thread measurements for all processes in
a distributed application, such as an MPI application. TAU measurements are
collected as profile summaries and/or a full event trace.

While application developers are willing to instrument their source code for
performance measurement or correctness testing, they are frequently reluctant
to add a build dependency for their library or application. The TAU library has
many useful features, however can be complex to configure for a given system,
and has several configuration options that are mutually exclusive and may require
multiple configurations and builds for a given performance experiment. Also, a li-
brary such as Ascent is meant to be integrated into larger simulation applications
and a complex configuration/build process for “optional” features will prevent
adoption of these technologies. Finally, many applications already include some
instrumentation to provide rudimentary performance measurement for the pur-
poses of reporting at the end of execution. For these reasons, we have developed a
simple instrumentation interface library called PerfStubs that attempts to resolve
API symbols at link time (using weak symbol overrides) or at runtime (using the
dynamic library loader). PerfStubs itself is a small library (one source file) with
no additional build dependencies and can quickly be installed on a system.

If the PerfStubs symbols are not defined in the application symbol table at
runtime, the instrumentation API will check to see if the function pointer is de-
fined (not-null) and if not, return – an acceptable amount of negligible overhead. If
the symbols are resolved at the program startup process, function pointers are as-
signed the resolved addresses and the PerfStubs API will “feed” any performance
measurement tool that implements the tool interface. TAU includes the tau exec

script that will preload the TAU shared object libraries and provide the symbol
implementations needed by the perfstubs interface. Other measurement libraries
(e.g. APEX, Score-P, Caliper) could also implement the simple API and be used
with the interface. Because the instrumentation interface is pre-processor macro-
based, it can be entirely removed at compile time if the PerfStubs API is not
desired. In fact, the Ascent library already has implemented its own macro-based
instrumentation, and the PerfStubs API was easily integrated into that code, as
well as into specific places in the Ascent code base, as described in Section 3.
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Figure 1. The application (black line) and Ascent (blue line) execute synchronously, with TAU
performance measurements (red line) possibly enabled. The transition points between them is
an opportunity to link in TAU performance data analysis, including the passing of information
to Ascent in a friendly manner for further processing. Profile snapshots are an example of online
performance data processing.

2.3. Integration Model

The Ascent operational design provides the basis for the strategy we pursued for

TAU integration. Specifically, Ascent is invoked synchronously by the application

at certain places during its execution. Ascent then operates while the application

is halted. Upon completion of its work, Ascent returns to the application and

it continues. This process repeats until the application finishes. Adding TAU to

the mix is straightforward. First, in general, we are interested in performance

measurement of both the application and Ascent. This is enabled through TAU’s

instrumentation and measurement mechanisms. Second, gaining access to perfor-

mance data at runtime is possible with new TAU’s plugin architecture. The ap-

plication/Ascent transition points present an opportunity to look at the current

measurements, run analytics, and pass results to Ascent for further processing.

In essence, the transitions are used as triggers for TAU analysis.

Our integration design is demonstrated in Figure 1. Shown is a sequence of

phases of application execution (black line) followed by Ascent execution (blue

line). The dashed arrows indicate the transition points. The red line indicates

TAU performance measurement taking place during both the application and

Ascent. Dashed gray lines further highlight calls to the TAU plugin (red box)

at the beginning and end of Ascent processing. For example, the plugin could

be capturing a snapshot of the present performance data state, designated as

Pi. These snapshots could be stored for post-mortem analysis and/or processed

online.

Profile snapshots can be used to isolate the application’s performance from

Ascent’s performance. From Figure 1, we can use Pi, Pi+1, and Pi+2 to compute

the performance for the application phase by “subtracting” Pi from Pi+1 for every

event and metric measured. Similarly, we can compute the performance for the

Ascent phase by subtracting Pi+1 from Pi+2. This is similar to the procedure we

implemented in the examples described in Section 3. If the TAU plugin stored the

computed performance for each phase, it is further possible to compare between

phases to detect certain features or changes in performance behavior that might

reflect application dynamics.
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Figure 2. TAU profile data from a representative run of Lulesh integrated with Ascent. MPI and
Lulesh timers have been filtered out for space considerations. Only data from rank 0 is shown.

3. Application Examples

3.1. Measuring Ascent with TAU

The first goal of the Ascent-TAU integration is to measure the Ascent library for
the purpose of performance evaluation and eventually, guided execution based
on performance characteristics (future work). As described in Section 2.2, the
Ascent library includes its own instrumentation macros. It was straightforward to
integrate perfstubs start() and perfstubs stop() API calls into these macro
definitions that are frequently used when Ascent is integrated into a simulation.
In addition, primary entry points to the Ascent library were instrumented, such
as the Ascent() object constructor, open(), close(), publish() and execute()

operations as well as the Flow operation pipeline executed by the execute()

function. A TAU static phase [12] was also defined around the region of code
where the simulation pauses execution in order for Ascent to render simulation
output. Figure 2 shows an example TAU profile measurement of the Ascent library
integrated with the Lulesh application.

3.2. Visualizing TAU data with Ascent

The second goal of the integration is to use the Ascent library to visualize per-
formance data from the application. This can be achieved using different per-
spectives. For example, the application performance data can be rendered as a
collection of stacked bar charts, representing the per-process performance profile
from each of the MPI ranks. Figure 3 (left) shows the performance data from
MPI ranks, represented as stacked bar charts. Each color represents a different
timed region of the application, showing only the top 5 contributors (the rest are
aggregated).

However, a much more interesting perspective is shown when the performance
data is projected in the scientific domain. Figure 3 (right) shows the respective
time spent in the main computational loop for all sub-domains at the end of the
last iteration. What had started as a regular grid has been distorted due to the
nature of the Lagrangian computation. Interestingly, the MPI rank computing

A.D. Malony et al. / Parallel Performance Measurement and Analysis526



Figure 3. The figure on the left shows output from Lulesh 2.0.3, running with 8 ranks. Each
stacked bar represents the performance profile of each rank at the end of the 10th iteration. The
other two figures show simulation output from Lulesh 2.0.3 running with 64 MPI ranks, after
iteration 4264. The middle figure shows the energy value at the end of the simulation, the right
figure shows the relative time spent in the main computation loop of the simulation for each
process in the domain, where each process is assigned one of the 4x4x4 (distorted) subdomains.

the region with the largest energy level also spends the least amount of time in
the computation.

3.3. Performance Comparison

To further demonstrate the Ascent-TAU integration, we use an in situ algorithm
used for flow analysis and visualization. Lagrangian analysis is an in situ data
reduction operator used to capture the behavior of time-varying computational
fluid dynamics (CFD) simulations. Lagrangian analysis involves the placement
of particles and the calculation of particle trajectories across the entire spatial
domain. Particle trajectories are calculated using vector fields generated by the
simulation code.

In our study, we consider two Lagrangian analysis techniques which offer dif-
ferent workload characteristics. The first Lagrangian analysis technique, referred
to as LagrangianMPI , is communication-based and requires all processes to syn-
chronize every cycle. This method involves exchanging particles between nodes
as they cross spatial boundaries during the calculation of particle trajectories.
The second Lagrangian analysis technique, referred to as LagrangianBTO, is a
communication-free method. This algorithm chooses to discard particles that exit
the local node’s spatial domain.

Our experiments use a hydrodynamics proxy application Cloverleaf3D and
are run on Summit1 at Oak Ridge National Laboratory. In each test, we use 48
MPI tasks across 8 nodes, with each MPI task using a single GPU for particle
advection. LagrangianMPI uses MPI to exchange particles between ranks every
cycle. For each technique we considered two workloads for number of particles
used: 1.56M and 12.48M. The grid resolution of the Cloverleaf3D simulation is set
to 2323 and we execute 50 cycles each of 0.01 step size. In each case, we save the
particle trajectory locations after 10 cycles, i.e., 5 rounds of I/O over 50 cycles.

1For Summit technical specs, see https://www.olcf.ornl.gov/summit/
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Figure 4. Exclusive and Inclusive time comparisons between MPI and BTO methods. The anal-
ysis shows that the BTO method (red) is faster because it generates less synchronization at
MPI Barrier and is less computationally expensive in the pl1 0 vtkh lagrangian flow step in
analysis.

Lagrangian analysis uses particle advection capabilities from the VTK-m library
and is available for use via Ascent.

Figure 4 shows a performance comparison between the two methods when
simulating the larger number of particles used (12.48M). As can be seen in both
the exclusive (time not including sub-routines/-timers) and inclusive (time includ-
ing sub-routines/-timers) measurements, the LagrangianBTO method is less com-
putationally expensive, and therefore less time consuming. the LagrangianBTO

method is also less I/O intensive, and a majority of the difference is summarized
by the comparison of the time spent in the flow:pl1 0 vtkh lagrangian step of
the processing pipeline.

4. Related Work

Typically, performance data is visualized and represented in the physical and/or
logical context of the hardware and/or software resources used in the simulation.
Data is organized by processes and threads, and visualized with respect to nodes,
network topologies and CPU architectures. Scalasca is a powerful performance
system that has extended support in its Cube 3D analysis [13] to show how per-
formance data is distributed across a parallel execution using a computational
topology base on a cube topology. TAU provides similar capabilities by mapping
performance data to network coordinates captured as metadata [14]. Husain and
Gimenez’s work on Mitos [15] and MemAxes [16] use memory hierarchy and ar-
chitecture metadata to provide the context for performance measurements. Box-
Fish [17] also demonstrated the value of visualizing projections of performance
data from multi-dimensional coordinate systems, providing a hierarchical data
model for combining visualizations and interacting with data.

Huck et al. [18] integrated performance data with simulation output in or-
der to project the performance data into the scientific domain. However, that
technique required post-processing of both the performance and simulation data
and did not allow for in situ processing. Using the Scalable Observation Sys-
tem [19], performance data was aggregated over SOS and queries were executed
to extract performance data and generate VTK output files [20]. Using a similar
approach, fusion simulation performance data was aggregated and exported to
VTK files [21]. The authors of those papers were forced to re-define the physical
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domains in order to map the performance data and/or map the performance data
to physical and/or logical coordinates of the allocation. In contrast, the work
described in this paper has the ability to reuse the scientific domain defined for
visualizing the simulation data. Weber [22] has also visualized performance data
at runtime, albeit in a similar perspective to post-mortem trace visualization.
Sanderson [23] is the closest work related to this paper, in that they visualized
performance data at runtime in the scientific domain.

5. Conclusion and Future Work

In this paper, we have presented the integration between the Ascent in situ vi-
sualization and analysis library and the TAU Performance System. We instru-
mented the Ascent library with an instrumentation coupling library to under-
stand its performance characteristics with TAU, and used the Ascent library to
visualize TAU performance data during runtime of proxy applications. We used
the TAU instrumentation to compare two Lagrangian analysis implementations
on the Summit system. In terms of future work, we believe our approach is very
relevant to nascent cost modeling efforts in the scientific visualization community.
Among these are works to optimize algorithms [24,25], as well as fit in situ algo-
rithms within time and power budgets [26,27,28]. In each of these efforts, the re-
searchers studied performance a priori, and then used the findings to direct their
algorithms. This limits the relevance of their approaches to the cases where they
can perform performance studies, digest results, and calibrate their algorithms.
With performance measurements, this process could be automated, meaning that
researchers could develop algorithms that adapt during runtime and with no a
priori performance studies.
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Abstract. Video streaming applications have critical performance requirements for
dealing with fluctuating workloads and providing results in real-time. As a conse-
quence, the majority of these applications demand parallelism for delivering quality
of service to users. Although high-level and structured parallel programming aims
at facilitating parallelism exploitation, there are still several issues to be addressed
for increasing/improving existing parallel programming abstractions. In this paper,
we aim at employing self-adaptivity for stream processing in order to seamlessly
manage the application parallelism configurations at run-time, where a new strat-
egy alleviates from application programmers the need to set time-consuming and
error-prone parallelism parameters. The new strategy was implemented and vali-
dated on SPar. The results have shown that the proposed solution increases the level
of abstraction and achieved a competitive performance.

Keywords. Parallel Programming, Domain-Specific Language, Stream Processing,
Autonomic Computing, Self-adaptive Systems, Seamless Computing.

1. Introduction

A significant amount of applications/systems must gather and analyze data in real-
time [2]. Processing continuous stream sequences and responding fast enough requires
powerful machines and robust runtimes/languages. Performance optimization for stream
processing applications concerns parallelism, which is important because computer ar-
chitectures have multiple processing units per chip. Therefore, performance gains are
usually conditioned to parallel executions.

We have seen the emergence of parallel programming frameworks and libraries for
stream processing, such as Intel TBB [11], StreamIt [13] and, FastFlow [4,1]. However,
the programming abstractions provided by the parallel programming frameworks remain
arguably complex for application programmers2, which are more concerned with the de-
veloping of stream processing algorithms than implementing low-level techniques for

1Corresponding Author: adriano.vogel@edu.pucrs.br
2The separation of concerns covers the skills and aspects for different types of programmers. Application

programmers are software developers focused on the algorithm design and implementation while system pro-
grammers are focused on better using computational resources.
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exploiting the parallel architecture. Recently, SPar3 [6] was created for providing addi-
tional parallel programming abstractions on stream parallelism targeting multi-core ar-
chitectures.

Although FastFlow was supported with abstraction concerning parallelism and en-
ergy in [12,3], we believe that opportunities exist for novel higher and ready to use par-
allelism abstractions in the stream parallelism domain. In this work, we aim at providing
additional abstractions regarding the definition of the degree of parallelism. In the con-
text of stream processing, manually defining and statically using a degree of parallelism
throughout the execution is not suitable. Defining the degree of parallelism tends to be
a complicated and time-consuming task because the programmer has to run the same
program several times to decide which is the optimal configuration.

Moreover, a significant part of stream processing applications requires recurrent op-
timizations at run-time. Mainly because stream processing applications have load fluc-
tuations (e.g., performance, environment, or input rates). Consequently, static/unchange-
able executions can lead to inefficient resources usage (waste) or poor performance. One
way to respond to fluctuations is by adapting the degree of parallelism to improve the
performance and/or the efficiency of stream processing applications. Regarding adapta-
tion to load fluctuations, a conventional approach for handling it could be a proactive one,
attempting to predict the future load. The challenge is that it is very difficult to predict
performance peaks due to the combination of input temporal changes, irregular behavior,
and different workload patterns. In this scenario, reactive approaches that are effective
by reacting fast, accurately, and run with low computational complexity are a potential
solution for enabling suitable adaptations to runtimes.

Abstracting the definition of parallelism configurations is an opportunity for sim-
plifying the process of running parallel applications. In previous work, we presented a
new latency-aware self-adaptive strategy [15], where we demonstrated how the degree of
parallelism impacts in the latency of stream items. We also provided abstractions [8,14]
that enable users/programmers to express service-level objectives (SLO), such as energy
bounds, system utilization, and throughput. These implemented strategies require the
definition of a target performance or SLOs. Yet, this can be a usability challenge since
users/programmers may have no performance/system expertise. However, it is challeng-
ing for a completely abstracted strategy to make adaptation decisions without user hints.
For instance, approaches that require a definition of a target performance or service ob-
jective can decide by comparing such parameters to the actual system/application state.

In this paper, the main contributions can be summarized as the following: 1) We pro-
vide a new fully abstracted self-adaptive strategy for the autonomic management of the
parallelism in stream processing applications, this new strategy seamlessly manages the
parallelism by detecting workload fluctuations; 2) A characterization and comparison of
the decision making of the new strategy with respect to other solutions; 3) A validation of
the proposed solution with video stream processing applications in terms of performance
and resources consumption.

This paper is organized as follows. The background scenario is presented in Sec-
tion 2. The proposed solution is shown in Section 3. Then, Section 4 shows the experi-
mental results of this paper and Section 5 discusses aspects related to the proposed solu-
tion. Finally, the conclusion is presented in Section 6.

3SPar home page: https://gmap.pucrs.br/spar
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2. Context

The scenario of this study is related to extending SPar DSL features, SPar is briefly de-
scribed in Subsection 2.1. Moreover, Subsection 2.2 presents relevant related approaches.

2.1. SPar Overview

SPar [6] provides a standard C++ annotation interface, fully compatible with the host
language and compiler. In Spar, programmers are invited to simply add annotations on
their source code with C++ attributes that represent stream parallelism properties. Then,
the compiler interprets the annotations added and generates parallel code with source-to-
source transformations.

SPar provides five attributes to exploit key aspects of stream parallelism. The
ToStream attribute represents the beginning of a stream region, the code block between
the ToStream and the first Stage will run as the first processing stage. More Stages can be
created inside the ToStream. The Input attribute allows programmers to define the data to
be processed inside a stream region. In contrast, the Output attribute is used to define the
processing results produced. Replicate4 is the attribute used to define the degree of par-
allelism. In the code example shown in Listing 1, the data type is a “string” and the input
stream comes from a file (read in line 3). This code block is a loop with iterations and a
new stream item is read and computed (line 6) on each iteration. In line 5, the attribute
Replicate defines the degree of parallelism with 4 replicas, which is the static number of
replicas used during the entire execution. Finally, in line 8 an output is produced. Figure
1 represents the activity graph with 3 stages of the parallel execution implemented in the
runtime according to the annotations introduced in Listing 1.

1 [ [ spar : : ToStream ] ] whi le ( 1 ) {
2 s t d : : s t r i n g d a t a ;
3 r e a d i n ( d a t a ) ;
4 i f ( s t r e am i n . eo f ( ) ) break ;
5 [ [ spar : : Stage , spar : : Input ( d a t a ) , spar : :

Output ( d a t a ) , spar : : R e p l i c a t e ( 4 ) ] ]
6 { compute ( d a t a ) ; }
7 [ [ spar : : Stage , spar : : Input ( d a t a ) ] ]
8 { w r i t e o u t ( d a t a ) ; }
9 }

Listing 1 SPar code example. Figure 1. Parallel activity graph.

2.2. Related Approaches

In the related literature exist studies for adaptivity on stream processing. Noteworthy,
Sensi et al.[12] present a programming interface and runtime called NORNIR, which
aims at predicting performance and power consumption. NORNIR manages the system
for maintaining a given power consumption and/or a performance goal. The execution

4The term replicate refers to the degree of parallelism in SPar, here the number of replicas and degree of
parallelism are used interchangeably.
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is managed by adapting system configurations (e.g., number of cores, clock frequency)
at run-time. In addition, Matteis and Mencagli [10] presented elastic properties for data
stream processing, their goal was to improve performance and energy consumption. The
proposed model was implemented along with the FastFlow runtime using one controller
thread for monitoring the environment as well as for triggering changes.

Gedik et al. [5] and Heinze et al. [9] address distributed stream systems. Our ap-
proach in contrast targets parallelism abstraction for stream parallelism in multi-core sys-
tems. The algorithm implementations provided by related works arguably do not provide
sufficient abstractions for application programmers. Differently, our goal is to provide
new parallelism abstractions for parallel stream processing applications that is ready-to-
use. Our solution require no additional configuration nor drivers installation. Addition-
ally, we propose an improved evaluation of the overhead caused by the adaptivity as we
measured the performance and memory consumption. The solution is also compared to
the regular static executions.

3. Seamless Parallelism Management

Defining a performance goal is presumably easier for application programmers than
defining a low-level parameter of the runtime library. Therefore, in previous works [14,8]
we presented strategies that abstracted from users the need to set parallelism parame-
ters related to the number of replicas. The parallelism abstraction was achieved by mon-
itoring the actual application performance and responding to performance violation by
continuously adapting the number of replicas. In listing 2 is shown a SPar example with
the solution proposed in [14], where the difference compared to the Listing 1 is that the
definition of the number of replicas inside the Replicate attribute was no longer required.
Regarding the adaptation at run-time, in Figure 2 is shown the solution that creates a pool
of replicas and dynamically changes the status of the replicas (active, suspended).

1 [ [ spar : : ToStream ] ] whi le ( 1 ) {
2 s t d : : s t r i n g d a t a ;
3 r e a d i n ( d a t a ) ;
4 i f ( s t r e am i n . eo f ( ) ) break ;
5 [ [ spar : : Stage , spar : : Input ( d a t a ) , spar : :

Output ( d a t a ) , spar : : R e p l i c a t e ( ) ] ]
6 { compute ( d a t a ) ; }
7 [ [ spar : : Stage , spar : : Input ( d a t a ) ] ]
8 { w r i t e o u t ( d a t a ) ; }
9 }

Listing 2 SPar code example. Figure 2. Autonomous Parallelism.

The previous proposed strategies [14,8] require from users the input of performance
hints for adapting the number of replicas. However, low-level performance aspects tend
to be complex for application programmers. Additionally, stream processing applications
are usually long running and with significant load fluctuations, where temporal changes
could require different performance objectives. Consequently, we propose a new strategy
to manage the execution in an autonomous and seamless way. This new strategy abstracts
from users the parameters set. This solution enables a fully seamless execution, which is
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achieved by a new decision strategy that monitors the application, detects changes in the
workload and performs optimizations in the number of replicas used.

The new decision strategy workflow implements a sensor with a monitor running
inside the last stage, while the parallelism is adapted by the actuator running in the first
stage. The decision (D) whether the number of replicas should be adapted is performed
by the Analyze and Plan phases with the following steps: 1) stores data regarding the ap-
plication performance collected by the monitor; 2) After the execution starts, when it has
a minimum of three (a number defined from empirical tests for having a balance between
fast and accurate decisions) performance results from monitor iterations, compares this
previously collected data with the current performance; 3) If the current performance is
significantly lower than the previous one, a new replica (R) is activated (D1); 4) If the
current performance is significantly higher than previous results, an active replica is sus-
pended (D2); 5) After the monitor executed 10 iterations with performance results, the
regulator enters a new phase where it has more performance data for deciding, which
tends to improve the decisions accuracy. Then, for the sake of stability, the average of
the previous three throughput collected is compared to the average throughput from all
historical data.

Figure 3. Overview of the Analyze and Plan phases.

Figure 3 shows a high-level representation of decision phases and iterations per-
formed. It is important to note that in addition to decisions 1 and 2 (D1 and D2), there is
also the D3 that is performed when the decision is for maintaining the same number of
replicas. Moreover, the self-adaptive strategy runs continuously and decides if the num-
ber of replicas should be adapted. Although the strategy runs several times and changes
the configuration, the adaptations do not affect the regular computations of the appli-
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cation. In fact, while the application is running, the strategy periodically runs and then
sleeps for a time interval. In this study, we consider 1 second as the default sampling
time interval, which allows the strategy to achieve a suitable level of sensitivity to work-
load fluctuations. Too frequent adaptations can cause instability, while too high sampling
times can result in unresponsiveness to changes. Also, two is the minimum number of
replicas in a replicated stage, which is a value for minimum parallelism. The maximum
number of replicas is defined by the self-adaptive strategy by detecting the machine con-
figuration. The maximum number of replicas is set to at most one application thread per
hardware thread, also counting threads from other sequential stages (e.g., Read, write).

4. Evaluation

This section characterizes the new strategy comparing to other solution and to parallel
static executions. The new strategy is also evaluated in terms of performance and memory
utilization.

4.1. Methodology

The proposed solution was evaluated by implementing it to existing parallel stream pro-
cessing applications. In fact, real-world applicability was the key criterion used to select
the applications. We also selected them based on different characteristics and QoS re-
quirements. In this work, two applications were tested. The first is Lane Detection that
is an application used on autonomous vehicles to detect road lanes, which is using for
maintaining the car on the road. This is performed by reading a video feed from a cam-
era. The road lanes are detected through a sequence of operations where the parallel im-
plementation is like an assembly line composed of three stages, where the second stage
is stateless and therefore replicated [7].

Person Recognition is the other tested application that is used to recognize people
in video streams. It starts by receiving a video feed and detecting the faces. The faces
that are detected are then marked with a red circle and then compared with the training
set of faces. When the face detected matches the database one, the face is marked with
a green circle. Person recognition’s performance was evaluated with a MPEG-4 video
(1.36MB - 640x360 pixels) using a training set of 10 images with faces to be recognized
in the video [7].

4.2. Characterization

The new seamless strategy is characterized and compared to an existing one [14] that
requires a manual definition of a target performance, which was defined to a throughput
of 50. The experiments shown here and in the next section were carried out on a multi-
core machine equipped with 32 GB of memory, a dual-socket Intel Xeon CPU 2.40GHz
(12 cores- 24 threads). The operating system used was Ubuntu Server, G++ v. 5.4.0 with
the -O3 compilation flag. The parallel version used the on-demand scheduling policy
that is suitable for stream processing, which improves the load balancing by distributing
one item to each replica. Moreover, in order to avoid overhead, the emitter and collector
stages were placed on dedicated physical cores.

The seamless strategy behavior is characterized in Figure 4 using the Lane Detection
application and the input workload was a file of 260 MB [14]. The experiment demon-
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strates the throughput and the number of replicas used by each strategy in parallel exe-
cutions. Moreover, the self-adaptive strategies are compared to static executions running
with a fixed number of replicas. For the sake of visual clarity, we only show representa-
tive results of static executions with 10 and 20 replicas.
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Figure 4. Characterization - Parallel Executions.

In Figure 4, we can observe throughput fluctuations caused by the input work-
load [14]. The executions with a static number of replicas also presented throughput fluc-
tuations, which emphasizes that the oscillations were caused by input workload instead
of the self-adaptive strategies. Regarding the proposed seamless performance strategy, it
is important to note that after the first iterations, the throughput increased because of the
workload fluctuation. As a consequence, the parallelism actuator changed the number
of replicas from 12 to 11. Noteworthy, considering the workload fluctuations around the
middle of the execution, the actuator responded to this fluctuation by increasing the num-
ber of replicas between the seconds 21 and 36. Another event that highlights the correct
sensitivity of this strategy is that the number of replicas was reduced when the execution
entered a new phase that increased the throughput (near the second 70).

Comparing the strategies, it is possible to note a similar performance trend caused by
the input workload. The strategy based on a manual target performance presented a short
settling time, which is notable in the adaptation of the number of replicas after the sec-
ond 20. The seamless performance strategy required more time to respond to workload
fluctuations, which can impact negatively on those applications that demand very fast
adaptations. Moreover, it is possible to note in Figure 4 that the seamless performance
strategy had a slightly lower execution time, which occurred because this execution had
a higher throughput in the first seconds by using more parallel replicas.
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4.3. Performance and Overhead

A relevant evaluation of the proposed solution concerns the performance achieved and
the resources consumption. The static executions have a simpler runtime that does not
perform any adaptation. The advantage tends to be in theory a higher performance. On
the other hand, static executions are unresponsive to workload or resources changes.
In some cases, with a specific number of replicas, we have seen that static executions
achieved the highest performance. However, manually finding the best performing num-
ber of replicas configuration is a time-consuming and sometimes counter-productive task.
In this section, we present the performance of the adaptive solution compared to static
execution. The performance metric is the average throughput, which is a result consider-
ing the number of processed items divided by the total time taken in an entire execution.
Observe that this is different from the previous performance characterization, where the
throughput was collected during different time-steps.

In Table 1 is shown the throughput and memory usage of adaptive and static exe-
cutions in the Lane Detection application. It is notable that the throughput and memory
utilization increases with more replicas. The Seamless performance strategy achieved a
slightly higher throughput than the throughput strategy. Comparing to the static execu-
tions, the static using more than 16 replicas achieved a higher performance, but these ex-
ecutions also consumed more memory space. The performance of the Seamless strategy
is less than 5% lower than the best static execution.

Execution Average Throughput (FPS) Memory Usage (MBytes)

Static 10 Replicas 47 807

Static 12 Replicas 48.26 1368

Static 14 Replicas 49.14 1276

Static 16 Replicas 50.31 1648

Static 18 Replicas 50.89 1799

Static 20 Replicas 52.11 2228

Throughput Strategy (50) 48.57 1272

Seamless Strategy 49.67 1327
Table 1. Lane Detection Application

In Table 2 is presented the throughput and memory usage of the Person Recog-
nizer application. In this case, a different performance trend can be seen. The Through-
put strategy achieved higher performance, while the Seamless strategy again achieved
a throughput similar to the best static executions. Regarding memory usage, the self-
adaptive strategies used more memory space on the Person Recognizer application.

5. Discussion

When evaluating higher level abstractions, they often tend to present less performance.
However, the best static configuration varies from machines, applications, and work-
loads. Therefore, tuning all these parameters can be error-prone, time consuming, and
may become instantly suboptimal in phase changes or fluctuations. Consequently, a
seamless strategy that reacts to workload changes can be a suitable solution that achieves
a compromise between abstractions and performance.
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Execution Average Throughput (FPS) Memory Usage (MBytes)

Static 10 Replicas 12.64 193.6

Static 12 Replicas 12.72 212.60

Static 14 Replicas 12.96 222.10

Static 16 Replicas 12.94 232.10

Static 18 Replicas 13.29 262

Static 20 Replicas 13.22 293.8

Throughput Strategy (15) 13.78 487.7

Seamless Strategy 12.99 448.4
Table 2. Person Recognition Application

There may be overheads as seen in Section 3. A self-adaptive strategy has additional
monitoring and actuators entities. For instance, monitoring has a computational cost, but
it occurs concurrently while worker replicas are computing tasks. Thereby, the parallel
execution is not suspended for monitoring because the monitor runs inside the last stage,
which periodically and asynchronously collects statistics. For instance, considering the
machine used in the experiments, it took in average only 523 nanoseconds for the monitor
implemented in C++ to measure the application throughput. In this case, such a minor
amount of time is negligible. The design choices combined with effective mechanisms
implemented in the runtime library resulted in a low overhead regarding performance
without significantly consuming memory resources.

Moreover, adapting the parallelism of applications at run-time brings additional con-
cerns about safety, which relates to the state and ordering of stream processing applica-
tions. Safety is important to ensure that an application can be changed at run-time while
preserving its correctness. In SPar, stateless stages can be replicated by default, while
stateful executions would require synchronizing a shared internal state. If the ordering of
data items is required, the last stage orders the items in SPar. Consequently, self-adapting
the parallelism of a stateless stage easily maintains stream items ordered because the last
stage is still sequential. Moreover, another aspect of safety is that a worker replica is only
suspended after it finishes its computations.

6. Conclusion and Future Work

In this study, we have seen aspects related to the complexities of abstracting parallelism
and autonomously managing parallelism configurations at run-time. The new proposed
strategy that abstracts the need to set the parallelism and performance configuration
shown to be effective. However, the strategy that uses a target performance was able to
react faster by comparing the actual performance to the target one.

The alternative that required the definition of a target performance increases the flex-
ibility at the price of additional complexities. On the other hand, running an applica-
tion transparently increases the abstraction level, but tends to provide less flexibility and
lower performance. Some users/programmers may have performance expertise, in which
case they may customize their execution by setting system parameters and target per-
formance. However, the provided strategy for seamless execution is designed for user-
s/programmers with no performance and system expertise. Regarding the experimental
results, it is important to note that the performance slightly varied among the tested ap-
plications, but the trend was similar: the self-adaptive Seamless strategy achieved a com-
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petitive performance. Consequently, an implication from the experimental results is that
self-adaptivity is suitable for seamlessly managing parallelism configurations.

This study is also limited in some aspects, the implemented strategies control ap-
plications with only one replicated stage, use parallel applications with a more complex
structure is a future goal. Additionally, our proposed Seamless strategy was validated
only with video stream processing applications. Although the applications are represen-
tative of stream processing, a different performance trend may be seen under other appli-
cation characteristics. In the future, we aim at porting related solutions from the literature
to our context for comparing them to our strategies.
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Abstract. The combined exploitation of stream and data parallelism is demonstrat-
ing encouraging performance results in the literature for heterogeneous architec-
tures, which are present on every computer systems today. However, provide par-
allel software efficiently targeting those architectures requires significant program-
ming effort and expertise. The SPar domain-specific language already represents a
solution to this problem providing proven high-level programming abstractions for
multi-core architectures. In this paper, we enrich the SPar language adding support
for GPUs. New transformation rules are designed for generating parallel code us-
ing stream and data parallel patterns. Our experiments revealed that these transfor-
mations rules are able to improve performance while the high-level programming
abstractions are maintained.

Keywords. Parallel Programming, Domain-Specific Language, C++11 Attributes,
Parallel Patterns, Stream Processing, GPGPU, GPU Programming

1. Introduction

Stream processing applications are present in different domains and are receiving re-
newed attention in the last decade, mostly because of the importance of stream process-
ing in the core of big data and Internet of Things technologies [4]. In addition to that,
the ubiquitous presence of parallel hardware architectures [16] led researchers to develop
new tools focused on stream parallelism [22,2,9]. In recent studies [23,13,1,21,7], data
parallelism has been exploited via proper software extensions to take advantage of the
emerging massively parallel architectures such as GPUs (Graphics Processing Units),
which were intentionally designed for data parallelism.

Parallel programming libraries [1,21] offer good performance but lower-level pro-
gramming abstractions. To meet higher-level abstractions, some tools [23,13,7] prefer to
focus on compiler techniques to alleviate the parallel programming burden of GPUs. The
problem is that they still require code refactoring to properly exploit the parallelism in
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stream processing applications. Alternatively to these options, the SPar2 domain-specific
language [9] provides a productive parallel programming model without adding signif-
icant performance overheads for multi-cores [11]. Although that SPar is demonstrating
a good compromise between productivity and performance among different stream pro-
cessing applications for multi-core architectures [11,10,12], automatic code generation
for heterogeneous architectures composed of CPU and GPU is still not supported. Our
recent investigations using SPar to annotate stream parallelism for multi-cores with man-
ually programming data parallelism for GPUs have shown promising performance re-
sults [20]. In this paper, we present an extension to SPar language for supporting GPU
data parallelism. We also discuss the compiler transformation rules and evaluate them in
a set of experiments. Therefore, our contributions may be summarized as follows:

• we introduce new SPar attributes that enrich the expressiveness and semantics of
the language;

• we design new compiler transformation rules suitable to implement both stream
and data parallel patterns after proper source code annotations;

• we describe experiments aimed at assessing performance of our transformation
rules targeting code generation for heterogeneous parallel architectures.

This paper is organized as follows: Section 2 presents the related work. Section 3
presents two new attributes for the SPar language. Section 4 presents the definitions and
compiler transformation rules for the Map parallel pattern based on the new attributes.
In Section 5 we perform a performance evaluation of the transformation rules. Finally,
Section 6 present our conclusions and future work.

2. Related Work

Skeleton-based frameworks like FastFlow [2] and DSLs like StreamIt [22] provide dif-
ferent programming approaches and levels of abstraction to developers. Libraries like
Intel’s TBB (Threading Building Blocks) [18] also offer support to the parallel imple-
mentation of stream processing applications by instantiating the Pipeline parallel pattern.
Support for GPGPU in FastFlow [3,1] focus in Stencil parallel pattern but also allows
the implementation of Map, Reduce, and its combinations. Another C/C++ library based
on algorithm skeletons/parallel patterns is represented by SkelCL [21]. On SkelCL, user
defined kernels are passed as string to the parallel pattern classes likeMap, Zip (a special
case of gather [16]), Reduce, and Scan. These functions are combined with skeleton code
to generate the final OpenCL kernels.

StreamIt [22] is a new imperative programming language focused on stream pro-
cessing applications. There are only the works of [23] and [13] that extended StreamIt to
support CUDA code generation and so far is no longer updated. Sarek (Stream ARchitec-
ture using Extensible Kernels) [5] is a customized language for writing GPGPU kernels
in the OCaml language. There is also SkePU 2 [7], which provides a source-to-source
compiler tool and a parallel runtime. The source code can be compiled by any C++11
compiler to produce a sequential executable. SkePU 2 compiler generates all CUDA and
OpenCL kernel code.

2SPar home page: https://gmap.pucrs.br/spar
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SPar is unique in the stream parallelism domain regarding the level of abstraction
and code intrusion.While sharing similar streaming concepts with FastFlow and StreamIt
as well as a slightly similar approach as SkePU 2 (that uses C++11 attributes for some
advanced features), no other study aims to provide stream parallelism support without
requiring code refactoring and restructuring. There are only solutions that aim for se-
quential code maintainability for data parallelism like OpenMP [6] and OpenACC [17].

3. New Attributes for SPar

SPar offers five standard C++11 attributes that application programmers may use to an-
notate the source code [14]. Two of them are “identifiers” (ID): ToStream annotation
delimits the streaming region and Stage delimits each of the computation “phases” (or
stages). The other three are “auxiliary“ (AUX) attributes: Input and Output are used
to specify the stream items, while Replicate is used to specify the degree of paral-
lelism for a stage. Listing 1 demonstrates how these attributes are used to annotate se-
quential source code. This example is computing the Mandelbrot Streaming application.
ToStream marks where the stream parallelism region starts and also refers to the stream
generator stage. Inside the stream computation there are two Stages annotations identi-
fying the stream operators. The data stream dependencies are specified through the Input
and Output attributes. Replicate in line 5 indicates the degree of parallelism for that
specific stage, running the amount of replicas given as argument in the attribute. The last
Stage simply shows line by line the Mandelbrot image. It cannot be replicated because
ShowLine is a stateful operator.

The current SPar attributes are closely related to the stream parallelism domain.
Also, they do not express any semantics of the data parallelism properties. Therefore, we
created a novel attribute called Pure to be used along with the Stage attribute list or as
identifier inside Stage annotated regions. This attribute indicates that the annotated code
block is a pure function, “whose output depends only on its input, and does not modify
any other system state” [16]. In SPar, a Stage or code block will be considered a pure
function when it satisfies the following statements to guarantee correct use and correct
code generation:

1. The Pure region should not have any side effects (i.e., mutation on non-local
variables).

2. The Pure region should not have execution order dependency (i.e., depending on
the values modified by previous iterations).

3. The Pure region should not access any global variable that are not listed in the
Input attribute.

From the programmer perspective, the Pure attribute is just another attribute allow-
ing to identify data parallelism inside the Stage. On the other hand, the compiler trans-
formation rule identifies that this region/function can be computed in parallel over mul-
tiple data. It is up to the compiler decide which parallel architecture (GPU or multi-core)
generate the stream parallelism with data parallelism code. Section 4 will describe the
design of the compiler transformation rules to target data parallelism for GPUs.

In our previous work, we evaluated different parallel programming models when
implementing stream and data parallelism combined [19]. One lesson learned is that
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fine-grained stream processing may not generate enough workload to properly exploit
massively parallel architectures such as GPUs. Thus, some stream processing applica-
tions may not provide the expected performance scalability when using GPUs. For these
cases, we are providing the possibility to express stream batches in SPar through the
new auxiliary attribute for the ToStream, named Batch. The programmer can specify
as argument the size of the batch with literal or integer variable. In principle, this is the
amount of stream items to be computed at once by the subsequent stages, which can be
or not a Pure stage. In short, Batch will now allow programmers to define the stream
item granularity.

1 void mandel(int dim ,int niter ,double init_a ,double init_b ,double step) {
2 [[ spar::ToStream , spar::Batch(size), spar::Input(dim , niter , init_a ,

init_b , step)]]
3 for (int i=0; i<dim; i++) {
4 unsigned char *img = new unsigned char[dim];
5 [[ spar::Stage , spar::Pure , spar::Input(dim , niter , init_a , init_b ,

step , i, img), spar::Output(img), spar::Replicate(workers)]]
6 for (int j=0; j<dim; j++) {
7 double im = init_b + (step * i);
8 double cr;
9 double a = cr = init_a + step * j;
10 double b = im;
11 int k = 0;
12 for (k=0; k<niter; k++) {
13 double a2 = a * a;
14 double b2 = b * b;
15 if ((a2+b2) > 4.0) break;
16 b = 2 * a * b + im;
17 a = a2 - b2 + cr;
18 }
19 img[j] = (unsigned char) 255-((k*255/ niter));
20 }
21 [[ spar::Stage , spar::Input(img , dim , i)]] {
22 ShowLine(img , dim , i);
23 delete img;
24 }
25 }
26 }

Listing 1: Mandelbrot Streaming annotated with SPar using the new attributes.

Observe that none of these attributes are actually related to underlying parallel archi-
tecture. They were intentionally designed to express data parallelism properties such as
data granularity (Batch) and single instruction for multiple data (Pure). If we compare
to existing data parallel programming models such as OpenMP [6], Batch has a mean-
ing to OpenMP chunk and Pure has a meaning similar to OpenMP parallel for where
every computation inside the region can be performed in parallel and independently. For
this work, data parallelism will be purposely exploited in GPUs. However, these new
attributes are also open for further investigations and research on multi-core and clus-
ter parallel architectures. The central point is that the programmer is no longer obliged
to reason about the parallel architecture details when developing its application such as
required by CUDA or OpenCL. SPar’s compiler and transformation rules handle this
complexities in place of programmers through its high-level annotation-based language.
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Listing 1 exemplifies the use of our new attributes in the existing SPar annotations.
We are just adding the Pure attribute in the Stage annotation in line 5 of Listing 1 be-
cause the for loop in line 6 is a pure function. Moreover, we inserted the Batch at-
tribute in line 2, allowing the control of the stream granularity. It is worth point out that
the application latency and throughput are directly impacted by the use of this attribute.
However, the programmer may test and choose the best configuration (size of the batch)
that fits the performance requirements. Section 5 will discuss the performance impacts
of these attributes.

4. New Compiler Transformation Rules for SPar

In his PhD Thesis, Griebler [8,9] designed the original structure of the SPar language.
The SPar attributes are combined in annotation schemas, which trigger transformation
rules in the compiler. These transformation rules are based on previous definitions. We
present current SPar definitions and transformation rules for Pipeline and Farm parallel
patterns and built upon those to generate novel definitions and transformation rules for
the Map parallel pattern.

To express the definitions and transformation rules, Griebler created a particular no-
tation: ToStream and Stage attributes are represented by Tid and Sid , where id represents
a numeric identifier. Input, Output, and Replicate attributes are represented by Ii, Oi,
and Rn, respectively. Ii and Oi may contain a list of typed variables ai, and n denotes the
integer number of replicas for Replicate argument. To denote a code block with one or
more statements it is used �id . The scope of the sentence is denoted by {...}. The anno-
tations that contain one identifier attribute and optionally a list of auxiliary attributes, are
denoted using [[...]] [14].

The current definitions and transformation rules of SPar [9] are generating the stream
parallel patterns Pipeline and Farm. They are implemented in the SPar compiler for trans-
forming the annotated code into C++ code with calls to the FastFlow library, which pro-
vide classes and built-in functions for implementing these parallel patterns. Griebler uses
functional semantics to define the Farm and Pipeline patterns: f arm(E,W,C) has argu-
ments E (Emitter, the stream item scheduler), W (Worker, that compute stream items),
and C (Collector, which gather results/stream items from the workers), where E, C, and
W receive a �id as argument; and pipe(S1,S2, ...) has two or more stages, which can be
�id or f arm instances. The current SPar transformation rules can generate a combination
of these patterns based on the annotation schema.

In this paper, we focus in the combination of data stream and data parallel patterns.
First, we concentrate only in theMap pattern, as it is the simplest and widely used pattern
for data parallelism [16]. Using functional semantics, we defined this pattern as: data=
map(�p

id), where �p
id is the pure function or code wrapper that computes over multiple

data independently and transforms them into data. This data can be a list, vector, or an
array of data.

Before introducing our novel definitions and transformation rules, we extend the
previous SPar notation: Pi denotes a Pure attribute and ∀id(�id) denotes a for state-
ment [14] with a code block. The Batch attribute is not discussed in this section since it
only changes the data management and does not interferes in the pattern generation.

There are six definitions presented in [9] related to the transformation rules for gen-
erating Pipeline and Farm parallel patterns from SPar annotations. Table 1 presents our
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new definitions aimed at supporting the transformation rules with the Map pattern. The
changes with respect to the definitions from [9] are highlighted in blue color.

Table 1. Definitions for transformation rules adapted from [9].

D0 A generic stage ψ is a � annotated with S that contains in its attribute list Rn and Oi and therefore
requiring a further � gathering its results.

D1 A � may appear as a pipe stage, as an E or C stage in a f arm or as the map function if its
annotation list S does not contain the attribute Rn.

D2 A � where the first statement is a ∀id annotated with a S followed by P in its attribute list becomes
a map.

D3 A � with an annotation list S containing an Rn attribute may appear as aW stage in a f arm or as
the parameter of a map.

D4 When D1 and D2 applies on a �, a map is instantiated as a pipe stage.

D5 When D2 and D3 applies on a �, a map is instantiated inside theW stage of the f arm.

D6 A ∀(�) annotated with only P inside a S’s code block becomes a map nested into a pipe’s S or
f arm’sW .

D7 T is a map when a � has ∀0 as the first statement annotated with T , where right after this ∀0 there
is only a single � which is a ∀1 annotated with S and contains P in its attribute list.

D8 A T is a f arm when the first S annotation contains Rn in the attribute list of a maximum two S.

D9 A T is a pipe when the first S does not have Rn in the attribute list or when there are more than two
Ss.

D10 A f arm is a stage of pipe when D7 cannot be applied and � is annotated with S that contains Rn
in the attribute list.

From the original SPar transformation rules [9], we take the fourth transformation
rules as an example to demonstrate the combination of stream and data parallelism.
Adding Pi and considering a ∀(�) as the code block of the first S in the transformation
rule 4 from [9], we can apply D2 and D4 to obtain Rule 1. In this case, we combine the
Map and Pipeline patterns. Each stream item produced by the first pipe stage instantiate
the map to exploit data parallelism.

[[T0]]{�0, [[S0,Pi]]{∀(�1)}}⇒ pipe(�0, map(�1)) (1)

Similarly, if we take transformation rule 3 from [9], add Pi and consider a ∀(�) as
the code block of the first S, we can apply D2, D3, and D5 to obtain Rule 2. In this case,
a new parallel pattern is generated, combining Farm with workers instantiating the Map
pattern.

[[T0]]{�0, [[S0,Oi,Rn,Pi]]{∀0(�1)}, [[S1]]{�2}}
⇓

f arm(E(�0), W (map(�1)), C(�2))

(2)

Adding Pi in the fifth rule from [9], with ∀(�) as the code block, we can apply
D2, D3, and D5 and obtain Rule 3. This Rule combines three parallel patterns: Pipeline,
Farm, and Map. The pipe is generated based on D9. The f arm appears as a pipe stage
(based on D10) and the map pattern comprises the f arm’s worker stage (W ), according
to D5.
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[[T0]]{�0, [[S0]]{�1},[[S1,Rn,Pi]]{∀(�2)}}
⇓

pipe(�0, f arm(E(�1), W (map(�2))))

(3)

Definition D6 allows P to be employed as ID attribute, which provides more flexi-
bility to SPar application. If only part of the last Stage from Rule 3 is a pure function, Pi
could be applied in this specific code block, as demonstrated by Rule 4.

[[T0]]{�0, [[S0]]{�1}, [[S1,Rn]]{�2, [[Pi]]{∀(�3)}}}
⇓

pipe(�0, f arm(E(�1), W (�2,map(�3))))

(4)

Rule 5 applies D7 to generate a single map pattern from a T attribute. The presence
of the Pure attribute in this specific code structure simplifies the implementation and
allows the exploitation of a pure data parallelism.

[[T0]]{∀0([[S0,Pi]]{∀1(�0)})}⇒ map(�0) (5)

5. Performance Evaluation

To support data parallelism for GPUs in SPar, we decided to generate CUDA and
OpenCL code. Although we aim to offer multi-GPU support, we focused in a single GPU
in these experiments. The transformation rules were created to generate parallel patterns,
however, CUDA and OpenCL does not offer support for a structured parallel program-
ming approach. Therefore, we implemented the Map pattern by transforming the pure
function �

p
id into a GPU kernel, where each thread launched goes throughout this code

wrapper. Then, inside this GPU kernel each thread get its global index and computes
over a different data index. Consider N as the number of iterations of the annotated ∀ and
max threads the maximum number of threads per block available in the GPU. On the
absence of the Batch attribute, we launch N threads divided in N/max threads blocks.
When the Batch attribute is used, we launch N ∗batch size threads on each kernel call. In
this case, we modify the previous and next computation stages to generate and consume
stream items of size batch size. Prior to implementing the transformation rules in the
compiler, we evaluated them by generating the CUDA and OpenCL code manually when
our transformation rules were triggered. Therefore, this performance evaluation was car-
ried out by manually performing the work that would be done by the compiler. We want
to show that our transformation rules could work in a future compiler implementation.

To integrate stream parallelism on the multi-core and data parallelism with CUDA,
we added a cudaStream object on each stream item to properly define dependen-
cies between data transfer and kernel function calls. For the OpenCL runtime, we
added a cl kernel, a cl command queue, and a cl event object on each stream item.
The cl kernel are not thread-safe [15] and must be allocated for each thread. The
cl command queue allows overlapping kernel and memory copies between different

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs 549



stream items and the cl event is used to synchronize asynchronous calls between dif-
ferent pipeline stages.

The experiments ran in a server machine that has an Intel(R) Core(TM) I9-7900X
@ 3.3GHz (10 cores and 20 threads), 32GB of RAM memory and two Titan XP GPUs
(although we use only one of them in this experiments) with compute capability 6.1 and
each one has 12GB of memory. The system was running on Ubuntu OS (kernel 4.15.0-
43-generic). All programs were compiled using -O3 compiler flags. The software used
were G++ 9.1, NVCC 10.0.130, OpenCL 1.2, SPar, and FastFlow. We chose the best
degree of parallelism and batch sizes by empirical testing the applications under differ-
ent configurations. The SPar implementations ran with 20 worker replicas and versions
combining SPar with CUDA or OpenCL ran with 10 worker replicas in the annotated re-
gions with the Replicate attribute. Each version was executed five times and the average
execution time is plotted, while error-bars show the standard deviation.

We present experiments using two pseudo-applications: Mandelbrot Streaming and
Matrix Multiplication. We focused in traditional HPC metrics such as execution time and
speedup to observe the applications scalability and performance.

(a) Mandelbrot Streaming. (b) Matrix Multiplication.

Figure 1. Experiments Results.

We tested two workloads for the Mandelbrot Streaming application: generating
2000x2000 and 3000x3000 fractal images, both with a maximum of 100,000 iterations
per single pixel. This fractal image size represent 4,000,000 and 9,000,000 numbers be-
tween -2.125-1.5 and 0.875+1.5. The annotation schema presented in [8] (“SPar” in Fig-
ure 1a) shows 9.3× and 9.4× of speedup with respect to the sequential version for our
workloads. The simplest modification is to insert the Pure as auxiliary attribute in the
first Stage annotation. This annotation schema triggers Transformation Rule 2 and gen-
erates the Farm with Map pattern. This version shows 36× and 46× speedup for the
CUDA runtime (“SPar+CUDA v1” in Figure 1a), and 25× and 30× speedup for the
OpenCL runtime (“SPar+OpenCL v1”) with respect to the sequential times. These ver-
sions presented an unexpectedly high standard deviation, which is due to data transfer
between CPU and GPU.

As demonstrated by our previous study, a single Mandelbrot line does not generate
enough workload to fully utilize the GPU [19]. Therefore, we can add Batch attribute in
the ToStream annotation to achieve further performance improvements, as demonstrated
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in Listing 1. Using a batch size of 30 for this annotation schema yields 77× and 79×
speedup for the CUDA runtime (“SPar+CUDA v2” in Figure 1a), and 72× speedup in
both workloads for the OpenCL runtime (“SPar+OpenCL v2”). Each stream item of
these batch versions are calculating 30 lines of the Mandelbrot set in a single kernel call.
The performance improvement is explained by this batch of lines utilizing the massive
parallelism of the GPU.

We discuss here the matrix multiplication presented in [8] as an example of data-
parallel algorithms. We ran this experiment with matrices of 2000x2000, 5000x5000,
and 10000x10000 32-bit elements. The Pure attribute can be added to the Stage anno-
tation of [8] to trigger Transformation Rule 5. It generates a single Map pattern for this
annotation schema.

The SPar annotated version presented in [8] for multi-core architecture (“SPar” in
Figure 1b) achieved 5.6×, 5.2×, and 6.4× speedup with respect to the sequential ver-
sion in our tests. Adding the Pure attribute in the Stage annotation yields 36×, 72×,
and 160× speedup for the CUDA runtime (“SPar+CUDA”) in the three workloads. For
the OpenCL runtime (“SPar+OpenCL”) this modification yielded 20×, 66×, and 160×
speedup.

6. Conclusion

In this paper, we enriched the expressiveness of the SPar language to target data paral-
lelism for GPUs, which can in the future be extended to multi-core and cluster archi-
tectures. After, we created new compiler transformation rules for generating the Map
parallel pattern along with the existing stream parallel patterns. Lastly, we carried out a
performance evaluation using two pseudo-applications. The outcome is that the language
simplicity was maintained (Listing 1) while performance improvements were obtained
with respect to only generating parallel code to multi-core without data parallelism sup-
port (Figure 1). Using this work’s transformation rules, we obtained very similar perfor-
mance results with respect to our previous work [20], where these applications were fine
tuned and manually programmed.

We aim in the future add new definitions and transformation rules that can poten-
tially support more data parallel patterns. We also intend to implement these transforma-
tion rules in the SPar compiler to automatically generate GPU parallel code based on our
high-level annotations. Given the many challenges of GPU programming, we intend to
propose or use an intermediate library such as SkePU and SkelCL to support functional
data parallel patterns for GPUs in C++ that are fully compatible with stream parallelism
to alleviate the compiler work.
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Abstract. In this work we describe a method to measure the computing perfor-
mance and energy-efficiency to be expected of an FPGA device. The motivation of
this work is given by their possible usage as accelerators in the context of floating-
point intensive HPC workloads. In fact, FPGA devices in the past were not consid-
ered an efficient option to address floating-point intensive computations, but more
recently, with the advent of dedicated DSP units and the increased amount of re-
sources in each chip, the interest towards these devices raised. Another obstacle
to a wide adoption of FPGAs in the HPC field has been the low level hardware
knowledge commonly required to program them, using Hardware Description Lan-
guages (HDLs). Also this issue has been recently mitigated by the introduction of
higher level programming framework, adopting so called High Level Synthesis ap-
proaches, reducing the development time and shortening the gap between the skills
required to program FPGAs wrt the skills commonly owned by HPC software de-
velopers. In this work we apply the proposed method to estimate the maximum
floating-point performance and energy-efficiency of the FPGA embedded in a Xil-
inx Zynq Ultrascale+ MPSoC hosted on a Trenz board.

Keywords. HPC, Energy, EuroEXA, FPGA, Roofline

1. Introduction

Despite the relevant programming effort to program FPGAs using Hardware Descrip-
tion Languages (HDLs), these devices were already used in the past as accelerators, in
the context of physics simulations and scientific computing in general. Anyhow, FP-
GAs were used just for specific applications, where the performance benefit could be
of several order of magnitude, with respect to the use of ordinary general purpose pro-
cessors [1,2], or whenever strong timing constraint were required, in order to justify the
programming efforts.

In addition to the programming complexity, applications developed to use FPGAs,
once designed for a specific architecture, could not be trivially ported to different FP-
GAs and a complete re-implementation was commonly required to run on other kind of
processors, such as CPUs.

Thus, programming complexity and a weak code portability had been historically a
consistent barrier towards a wide adoption of FPGAs in the context of the HPC scien-
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tific community. Nowadays, thanks to the consolidation of higher level programming ap-
proaches, mainly thanks to better transcompilers and synthesis tools, FPGAs usage is be-
ing investigated also in a wider area of applications [3]. FPGAs, can now be programmed
using languages such as OpenCL [4] or High-Level Synthesis (HLS) paradigms, some-
times referred to as “C synthesis”, allowing for an algorithmic description of the pro-
grammer desired behavior, which can be interpreted and transcompiled by automatic
software tools into a Register-Transfer Level (RTL) design using an HDL. HDL can later
be synthesized to the gate level using a logic synthesis tool.

Clearly, such a higher level of abstraction, often translate to inefficiencies and a
waste of FPGA resources wrt a low level manual programming of the HDL code. Despite
of this, the highly reduced programming effort required, in conjunction with a faster
design space exploration, and a much higher software portability, make this approach
a very attractive one. In particular, for pre-existing applications developed for ordinary
CPUs and accelerators, the possibility to use directive based languages, allowing to just
annotate a plain C code with pragmas, is particularly appealing [5].

These new programming possibilities, in conjunction with the high intrinsic hard-
ware parallelism, and an increased amount of computing resources and DSPs for floating-
point operations [6,7], are increasing the interest towards their usage as accelerators in
HPC installations [6]. A great interest in FPGAs, in the HPC context, is also towards
their possible high energy-efficiency – thanks to their intrinsic parallelism and low clock
frequencies – wrt ordinary processors, and also GPUs for some applications [8].

Before embracing any code porting activity to target FPGA devices in the HPC con-
text, one would like to assess in advance which is the expected performance and energy-
efficiency of such devices. Theoretical estimations exist, but empirical benchmarks are
preferred, since actual codes rarely reach theoretical estimations, in particular when high
level languages are used. In this work we try to address this problem, looking for a
method to experimentally estimate the maximum achievable performance on an FPGA
device, programmed using an high level programming approach. The method we follow
is based on the theoretical foundations of the Roofline Model [9], but is strongly ex-
perimental and has been already adopted to study the obtainable performance on CPUs,
GPUs and many-core processors, such as the different Xeon Phi models [10]. In partic-
ular, we have implemented a synthetic benchmark, named FPGA Emprirical Roofline
(FER). Our tool is based on the same priciples of the Emprical Roofline Toolkit [10],
which empirically determines the peak memory bandwidth and peak computing perfor-
mance, that are needed to measure the machine characteristics for the Roofline Model.

FER has been developed using the OmpSs programming model [11], a high level
language based on directives, allowing the same code to target FPGAs as accelerators,
but also other devices, such as GPUs or multi-core CPUs [12]. This choice is due to the
will to estimate a realistic maximum performance for an actual HPC code, developed
using high level programming tools such the ones commonly used in the scientific HPC
community.

Moreover, in this work, we use FER also to assess the energy-efficiency of the tested
FPGA device, using an external power meter and thus obtaining also the maximum
reachable FLOP/Watt.
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1.1. The EuroEXA Project

This work has been performed in the context of the EuroEXA project Co-designed in-
novation and system for resilient exascale computing in Europe: from application to sil-
icon, which is a H2020 FET HPC project funded by the EU commission with a bud-
get of ≈ 20Me. The aim of the project is to develop a prototype of an exascale level
computing architecture suitable for both compute- and data-intensive applications, deliv-
ering world-leading energy-efficiency. To reach this goal this project proposes to adopt
a cost-efficient, modular integration approach enabled by: novel inter-die links; FPGAs
to leverage data-flow acceleration for compute, networking and storage; an intelligent
memory compression technology; a unique geographically-addressed switching inter-
connect and novel Arm based compute units. As main computing elements, multi-core
Arm processors combined with Xilinx UltraScale+ FPGAs are going to be adopted, to be
used both as compute accelerators and to implement a high bandwidth and low-latency
interconnect between computing elements.

Form the software platform point of view, EuroEXA provides five high-level pro-
gramming frameworks that enable FPGA-accelerated computing: Maxeler MaxCompil-
erMPT 2, OmpSs@FPGA [11], OpenStream [13], SDSoC or SDAccel 3 with OpenCL,
and Vivado High Level Syntesis 4. These frameworks are used to implement several key
HPC applications across climate/weather, physics/energy and life-science/bioinformatics
scientific domains. More details about the EuroEXA project can be obtained from its
website: https://euroexa.eu.

The aim of this paper is to develop a tool able to estimate the maximum computing
and energy-efficiency performance obtainable by FPGAs devices, in order to use such
performance upper bounds in the evaluation task of the EuroEXA project, in order to
assess the optimization level of applications ported to such architecture.

1.2. The OmpSs Programming Model

In this work we adopted the directive based language, named OmpSs [14], developed
by the Barcelona Supercomputing Center (BSC). OmpSs is very similar to the widely
known OpenMP, and in fact it can be considered a forerunner of OpenMP, where new
features get introduced and developed before getting pushed in the OpenMP standard.

One of such extensions is in fact the possibility to offload a function to an FPGA
device, using OmpSs@FPGA [11]. This is consequently one of the tools selected to be
used in the framework of the EuroEXA project to exploit the embedded FPGAs as ac-
celerators and allow to define task functions to be offloaded to such accelerators, provid-
ing the automatic generation of a wrapper code handling data copies and dependencies.
The code to be actually offloaded to the FPGA get transformed into a bitstream by the
VivadoHLS toolchain, allowing the programmer also to use HLS directives in the source
code.

Thanks to the OmpSs directives, simply changing the offload target (which directly
affect the final compiler to be used), the same source code can be compiled for several
architectures, possibly targeting different accelerators. This approach is very interesting

2https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
3https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html
4https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
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to allow HPC scientific software developers to target FPGA devices using a language
which is much more close to the common programming paradigms adopted in their com-
munities.

2. FPGA Empirical Roofline

Following the same approach used by the Empirical Roofline Toolkit (ERT) [10] devel-
oped at the Berkeley Lab, we have developed a tool named FPGA Empirical Roofline
(FER), using OmpSs@FPGA [11]. This custom benchmarking code is able to extract
most of the floating-point throughput from an FPGA, using its DSPs to perform floating-
point computations. FER has the capability of tuning the computational intensity (i.e.,
the FLOP/Byte ratio) of a kernel function to be run on the FPGA device, allowing to find
experimentally the maximum floating-point throughput and at the same time to measure
the maximum memory bandwidth, allowing to obtain all the characteristics required to
produce an empirical Roofline plot of such device.

This tool is meant to assess an FPGA maximum compute and bandwidth perfor-
mance, in order to use these figures as an experimental upper bound for the performance
obtainable by a generic floating-point intensive application.

We report in Listing 1 the main kernel of the FER tool. The compilation and bit-
stream synthesis processes are actually carried out in several steps, but from a high level
point of view, the two initial omp directives instruct OmpSs@FPGA to: generate an
FPGA bitstream containing a single instance of the kernel function, to be loaded into the
FPGA; avoid implicit data transfers, in order to allow to directly access the DRAM from
the FPGA; treat the kernel function, from the host side (i.e., the Arm CPU), as a task,
reading from the input array and writing to the output array.

In practice, during this code execution, one element of the input array is read for each
FPGA clock cycle and moved into the FPGA itself, where it is entered into a pipeline
computing a chain of dependent FMA operations. In particular FLOP ELEM / 2 Fused
Multiply Accumulate (FMA) operations are performed for each element, which accounts
for a computational intensity of FLOP ELEM / sizeof(element data type). Multiple ele-
ments can be concurrently into the pipeline accordingly to the pipeline depth. Once an
element exits the pipeline it is written back to the DRAM into the output array.

Therefore, once the pipeline is filled, for each FPGA clock cycle one element is read
from input, and one element is written to output, thus we can infer that at each clock
cycle the FPGA is performing FLOP ELEM/2 FMA, which translate to FLOP ELEM
FLOP, allowing us to compute the FLOP/s performance.

To find which is the maximum obtainable performance it is enough to increase the
FLOP ELEM value up to the point at which the FPGA resources are not enough to
synthesize a working bitstream. To additionally estimate the energy consumption, it is
enough to measure the average power drain while executing the FER tool and then divide
the FLOP/s by the average power drain to obtain the GFLOP/s per Watt metric.

3. Results

Running the FER benchmark, compiled and synthesized using OmpSs@FPGA v1.3.2
and Vivado 2017.3, we have been able to evaluate the maximum single- and double-
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Listing 1: The main kernel function of the FER tool annotated with OmpSs and HLS
directives in order to compute FLOP ELEM / 2 Fused Multiply Accumulate (FMA) op-
erations for each input array elements. This accounts for a computational intensity of
FLOP ELEM / sizeof(element data type).

#pragma omp target no_copy_deps num_instances (1) device(fpga)

#pragma omp task in([ C_DIM]input) out([ C_DIM]output)

void kernel( const data_t * input , data_t * output) {

size_t i;

for (i = 0; i < DIM; i++){

#pragma HLS pipeline II=1

const data_t alpha = 0.5;

const data_t elem = input[i];

data_t beta = 0.8;

#if (FLOP_ELEM & 2) == 2 // add 2 FLOPs

FMA(beta ,elem ,alpha);

#endif

#if (FLOP_ELEM & 4) == 4 // add 4 FLOPs

REP2(FMA(beta ,elem ,alpha));

#endif

...

output[i] = beta;

}

}

precision floating-point performance of the 16nm FinFET+ FPGA embedded in the Xil-
inx Zynq UltraScale+ XCZU9EG MPSoC hosted on a Trenz TE0808 board. Using the
same software tool we have measured also the maximum bandwidth between the FPGA
and the host DRAM, which is the main host system memory (i.e., the same memory used
by the Arm CPU).

Moreover, powering the XCZU9EG MPSoC using an external power supply and a
custom developed current monitoring tool, similar to the one used in [15], we have also
measured the computing module power drain, being able to estimate the floating-point
energy-efficiency of such device.
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Figure 1. Experimental Roofline plot of the FPGA embedded on a Xilinx Zynq UltraScale+ MPSoC clocked
at 200 MHz. The maximum performance has been reached using 99.4% of the available DSPs, computing 487
FMAs (i.e., 974 FLOP) per element, in single-precision.

3.1. Performance

Thanks to the measurements obtained with FER, we could produce the experimental
Roofline plots shown in Fig. 1 for single-precision elements and Fig. 2 for double-
precision elements.

As shown in Fig. 1, using 99.4% of the available DSPs on this FPGA, we have been
able to reach 172.6 GFLOP/s in single-precision, computing 487 FMA operations on
each element fed to the FPGA, processing one element per FPGA clock cycle. Concern-
ing the bandwidth, when using single-precision elements, for each FPGA clock cycle
we move one 32-bit element in and one 32-bit element out, reaching 1.4 GB/s of bi-
directional bandwidth between the DRAM and the FPGA. Anyhow, a wider bus is avail-
able [16] and in fact a factor 2 improvement in the bandwidth can be reached using 64-
bit elements, as demonstrated empirically using double-precision elements. This is the
reason why in Fig. 1 we plot the measured bandwidth using the single-precision version
of FER, but also the maximum measurable bandwidth, which is 2.8 GB/s. In an actual
code, to reach the maximum bandwidth, would be enough to pack elements in 64-bit
structures.

Concerning the double-precision run, as shown in Fig. 2, Using 96.6% of the avail-
able DSPs on this FPGA, we have been able to reach 63.5 GFLOP/s, computing 179
FMA operations on each element fed to the FPGA, processing one element per FPGA
clock cycle. From the bandwidth point of view, reading and writing a double-precision
element per FPGA clock cycle, this translate to a bandwidth of 2.8 GB/s.
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Figure 2. Experimental Roofline plot of the FPGA embedded on a Xilinx Zynq UltraScale+ MPSoC clocked
at 200 MHz. The maximum performance has been reached using 96.6% of the available DSPs, computing 179
FMAs (i.e., 358 FLOP) per element, in double-precision.

3.2. Energy

The Trenz TE0808 development board used in this work, does not embed usable power
meters, thus it is not possible to measure the power drain of just the hosted UltraScale+
MPSoC. Without hardware modifications, one may measure the whole board power
drain, but this would take into account a lot of ancillary electronics which is not actually
used to perform the computations required by the FER synthetic benchmark.

To measure only the compute module power drain, we have disabled the on-board
voltage regulators which provide to theMPSoC the required 3.3V power supply. Then we
provided this voltage from an external bench top power supply, monitoring the drained
current with a custom DAQ system, shown in Fig. 3 and sampling at 20KHz. Running the
FER benchmark for several iterations, while monitoring the current drain, we have been
able to compute the average power drain in Watt at a sustained GFLOP/s rate, allowing
us to compute the GFLOPs/Watt metric.

In particular, we measure 21.0 GFLOPs/Watt for single-precision floating-point op-
erations, and 4.7 GFLOPs/Watt for double-precision ones. This highlight the fact that
this hardware is not only more efficient from the performance point of view in comput-
ing single-precision operations (≈ 2.7× faster), but is also much more energy-efficient
in this condition (≈ 4.5× more energy-efficient). On the other side, the double-precision
performance is less attractive, probably due to the DSP design, which has been optimized
for 32-bit operations. Moreover, given the available DSPs, the implementation of double-
precision operations can be obtained in different ways [17,18], with different tradeoff

E. Calore and S.F. Schifano / Energy-Efficiency Evaluation of FPGAs 561



Figure 3. Schema of the custom current monitoring system used to measure the power drain of the MPSoC
compute module, without taking into account the whole development board power drain. The power supplying
lane from the development board to the compute module has been interrupted and an external power supply
is used to drive the required 3.3V. This external lane pass through an Hall effect current-voltage transducer,
which can be sampled at 20KHz by the ADC of an Arduino DUE board.

between resources, area and latency, thus a further investigation would be needed to un-
derstand if the default one is the optimal one form the energy-efficiency point of view.

4. Conclusions and future works

We can summarize in Tab. 1 all the information obtained running FER on an actual FPGA
hardware (i.e., the 16nm FinFET+ XCZU9EG MPSoC), including the energy-efficiency
metrics collected thank to the use of the custom DAQ system described in Sec. 3.2.

From these results, we can predict that adopting such FPGA as an accelerator, sci-
entific applications requiring single-precision floating-point computations, could reach a
reasonable performance, but more interestingly, a high energy-efficiency.

As a comparison, Intel Broadwell CPUs released in the same period, built around
14nm technology, can reach a theoretical double-precision peak performance of ≈
100−400 GFLOP/s, with a Thermal Design Power (TDP) of≈ 80−160Watt, according
to the models (number of cores and core frequency), using AVX2 vector instructions 5.
This translate to a performance in the same order of magnitude as the one empirically
reached with the tested FPGA, but requiring a power consumption of one order of mag-
nitude higher. Using FMA3 instructions Broadwell CPUs could actually reach a higher
theoretical performance, but the used synthesis tool do not produce any special handling

5https://www.microway.com/knowledge-center-articles/detailed-specifications-of-

the-intel-xeon-e5-2600v4-broadwell-ep-processors/
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Table 1. Results concerning the execution of the FER synthetic benchmark, compiled using OmpSs@FPGA
and Vivado 2017.3 and run on the FPGA embedded in the XCZU9EG MPSoC.

DSPs usage FLOP per Elem. Performance Avg Power Energy-efficiency
[%] [GFLOP/s] [Watt] [GFLOPs/W]

Single Precision 96.63 974 172.6 8.2 21.0
Double Precision 99.44 358 63.5 13.6 4.7

of FMAs 6. In the FPGA in fact each FMA is implemented as a multiplier plus an adder
and given the fact that actual applications do not perform just FMAs, it seems more fair
to compare to CPUs not using special FMA instructions.

Concerning scientific applications requiring double-precision floating-point compu-
tations, these would enjoy a lower energy-efficiency using such FPGA as a target ac-
celerator. This could be caused by the hardware architecture of the DSPs contained in
the FPGA, which were not optimized for double-precision operations, but may also be
related to a floating-point IP Core, used by the synthesis tools, which could be im-
proved [18].

As future works we plan to further investigate the performance and energy-efficiency
of this device, producing different empirical Roofline plots for different FPGA clock
frequencies. We will also try to increase the double-precision performance, initially try-
ing newer versions of the Xilinx Vivado tools, since the floating-point IP Core seems to
be improved in the last months and also specialized implementations for FMA opera-
tions seems now to be available 7. We also plan to experiment software techniques, such
as the use of extended-precision [19], evaluating its performance, energy-efficiency and
usability for actual HPC scientific applications, wrt regular double-precision.

Moreover, we will further investigate the performance and energy-efficiency of the
Arm cores [20] embedded in the same MPSoC, in order to have a full characterization
of this device, assessing the possibility to share the computations between the Arm CPU
and the FPGA. Eventually we plan also to provide a more comprehensive comparison
with other architectures commonly adopted in the HPC field.
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Abstract. In this work, a new algorithm was developed for calculating the four-
point water model TIP4P on graphics accelerators. It was designed as a part of the
flexible molecular dynamics modeling package LAMMPS in the library module
“GPU”. In this paper we describe two approaches to implement the TIP4P model
for GPU: 1) to divide the related computations between CPU and GPU; 2) to com-
pute the interaction fully on the GPU. We verify the program, benchmark and pro-
file it. The achieved speedup of interaction computation is about x7, acceleration
of the entire calculation of about 55%.

Keywords. TIP4P, LAMMPS, atomistic modeling, accelerator, empirical potential

1. Introduction

Molecular dynamics is an extremely powerful tool in modern science. It is used in a wide
variety of fields, including materials science, biology, theoretical physics, and many oth-
ers. Engaged in the multiscale approach, molecular dynamics is necessary for parame-
terization of next-order models.

In the development of the method, two main directions can now be distinguished.
First, the development of new physical models to expand the boundaries of the applica-
bility of the method or to obtain more accurate results. Modern MD packages already
include a huge number of implemented models and calculation methods, assembling
which, as a constructor, and correctly configuring, one can make discoveries in the sub-
ject area.

Secondly, this is the development of the computational capabilities of the already
described physical models. The fact is that molecular dynamics is an extremely resource-
intensive method that requires tremendous computing power to build complex and large
models. From the very first works, MD relies on the development of the computer indus-
try.

Nowadays, the period of extensive development of supercomputer technologies has
exhausted itself, and increasingly sophisticated technologies are applied to further in-
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Figure 1. Rigid four-point water model TIP4P. H - hydrogen, O - oxygen, b - bonds and Theta is the angle.
The particle “m” represents the virtual massless charge.

crease computing power, requiring efforts from software developers and users for the
most efficient use. In addition, an increase in the universality of solutions and the pos-
sibility of code reuse is in demand, since otherwise the frequent change of the most rel-
evant hardware inevitably leads to the need for routine support of an increasingly large
code base of scientific packages.

In this work, we implement the well-known TIP4P water model for use on GPU
accelerators as part of the popular LAMMPS package. The code can be compiled with
CUDA and OpenCL backends due to the use of library. This approach allows us to in-
crease the efficiency of use of computer resources because heterogeneous architectures
are ubiquitous on modern supercomputers. On the other hand, our code does not du-
plicate, but effectively uses the huge number of features of the LAMMPS package for
implementing molecular dynamics methods and their parallelization.

The further text will be organized as follows: in Section 2 we consider several related
works, some of which we rely on during the development of this project. In Section 3, we
describe two approaches that were created in the process of solving the problem posed
in the project. Section 4 includes verification and performance testing of the developed
code. The last Section 5 is the conclusion.

2. Related Work

It may seem that the most natural way to model water is to specify all or some of the
three atoms that make up the water molecule as van der Waals and Coulomb interac-
tion points [1]. In some cases, such a simple model is enough, but it is shown that the
use of the fourth virtual massless charge point on the bisector of the H-O-H angle (Fig-
ure 1) significantly improves the electrostatic properties of the model. With the correct
parameterization, such a model has wide applicability limits [2,3]. TIP4P water model
in LAMMPS can be used as a basis of centroid molecular dynamics (CMD) quantum
simulations to consider the effects of zero point energy and tunnelling [4].

There are GPU implementations of water models (TIP4P including) in GRO-
MACS [5] and OpenMM [6], but these software tools are focused on biomolecular and
soft matter models. The LAMMPS package has the greatest flexibility; it includes the
largest number of potentials and possibilities for combining and extending methods. It
includes the TIP4P water model for computing on the CPU in several versions — short
ranged “cut” version and long-ranged with KSPACE computation [7] (Particle-Particle
— Particle Mesh method). They are labeled as lj/cut/tip4p/cut and lj/cut/tip4p/long with
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Figure 2. Geryon library used in LAMMPS allows one to compile the same code with both CUDA or OpenCL
backends by preprocessing.

pppm/tip4p, respectively. The LAMMPS package implements an impressive set of po-
tentials with GPU acceleration [8,9,10], but TIP4P is not among them. Nevertheless, we
rely on the developments from the LAMMPS package on the implementation of accel-
erated potentials. Our project uses the Geryon library, which at the preprocessing level
allows you to compile single code for CUDA and OpenCL backends (Figure 2), and the
library includes the class hierarchy for molecular dynamics programming. Adapting the
algorithm to use the accelerators raises some issues critical to performance [11,12], such
as organizing data access [13]. Some of them are solved by the library.

We also rely on the KSPACE module for calculating long-ranged interaction [7].
This allows us to calculate only the short-range part of the Coulomb interaction, and to
get the full value running the PPPM/TIP4P solver from the model script.

3. Implementation

To determine the coordinates of the virtual charge, it is necessary at each step to know the
position of all three particles of the molecule. In this project, we relied on the source code
of the potential lj/cut/tip4p/long to implement a “suffix-accurate-compatible” accelerated
version. This code works by presume that in the input, the atoms that make up the water
molecules are ordered, and each oxygen is followed by two corresponding hydrogen:

O - H - H - O - H - H - ... - O - H - H

Such ordering is stored in particle identifiers, but during the program’s operation
this data is reordered in memory unpredictably, and another numbering is used when
traversing the local arrays in LAMMPS. To find information about all the particles that
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make up the molecule, a separate code is intended. This code essentially uses the internal
methods LAMMPS Atom->map and Domain->closest image to correctly compose
the molecular structure based on global particle identifiers. Porting these methods to the
GPU is not entirely natural, so the first idea was to keep for execution on the CPU part
of the code that accesses these functions.

Another feature of the lj/cut/tip4p/long is that it relies heavily on the use of Newtons
third law, i.e. when calculating the interaction between i and j particles, the calculation
result is saved for both participants in the interaction. It is unacceptable for GPU kernels,
since an arbitrary thread cannot change data related to any arbitrary particle without
expensive synchronization. It is necessary to organize the calculations so that only a
certain group of threads is working on calculation of the force acting on the i-th particle.
This requires a change in the algorithm and careful handling of some extreme cases.

3.1. Redundant Computation Approach

The information about the molecules is collected using the methods of the LAMMPS
classes Atom->map and Domain->closest image. It is possible to prepare molecular
structure on the CPU and transfer it to the GPU. The problem is that information on
virtual charges is needed not only for local, but also for j atoms. Therefore, the CPU has
to make not so few calculations. Data on the molecular structure is stored as follows:
atom numbers and a flag are stored in the hneingh array, extended to 4 number align-
ment if necessary. The coordinates of the virtual charge are calculated immediately and
transferred to the m array, although this part of the algorithm can also be separated and
transferred to the GPU.

hneigh[iO] = {iH1, iH2, 0, flag}

hneigh[iH1] = hneigh[iH2] = {iO, 0, 0, flag}

m[iO] = m[iH1] = m[iH2] = {x, y, z, flag}

When the data is prepared and transferred, the GPU kernel starts. Here we use the
Redundant Computation Approach (RCA) [10]. It is expected that in our case this is
not the fastest approach for naive implementation, but it is useful as a basis for further
complication. Each molecule contains a single virtual charge m, but the force acting on
it is distributed between all three real atoms [14]. Thus, in order to obtain the total sum of
forces without writing data to the memory of the j-th atoms, it is possible to calculate two
components of the electrostatic force for each ith atom: direct interaction and distributed
(Figure 3). Thus, the effect on the virtual charge m of each j-th atom have to be calculated
not once, but three times, but the purpose of this is that there will be no need for any
additional synchronization.

The code for this approach was not as simple as originally expected. The correct cal-
culation of interactions required introducing a rather large number of additional checks
and conditions into the kernel. Overall performance is not worth the effort of porting to
the GPU. But this code can be easily improved.

3.2. Reduced Redundant Computation Approach

It was decided to port all the calculations to the GPU and use additional memory order of
O(n) to reduce the number of redundant calculations. All particles and their neighbors
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Figure 3. We consider the electrostatic force of hydrogen j on hydrogen i as part of a water molecule in the
TIP4P model. It consists of two components: direct action, calculated as the usual Coulomb interaction, and
indirect, through a virtual charge. Indirect action is calculated as the Coulomb interaction of hydrogen j with a
virtual charge m, and then the distribution of this force.

are considered on the GPU. In the first step, the atoms that make up the molecule are
detected, and then the coordinate of the virtual charge is calculated and stored. These
procedures are carried out only once for each molecule, two other atoms read the infor-
mation that is already stored. Then the force calculation is made: for hydrogen, a direct
effect on it, and for oxygen, the effect on the displaced charge is calculated. For oxygen,
this value is stored in a separate array.

The final part of the calculation is placed in a separate GPU-kernel, since these cal-
culations should not begin before the first kernel is done for all particles and all molecular
structures and preliminary force values are determined. In this part of the code, the forces
acting on a displaced charge, calculated and stored in the first kernel, are distributed
between the three atoms of the molecule.

Special cases that require separate processing complicate the calculation. For some
local hydrogens, “ghost” oxygen may be related (Figure 4). So the contribution values
will not be naturally calculated and saved for the second kernel for them since the use
of Newtons third law is turned off in the GPU calculation and reverse synchronization
(especially between the steps of calculating pairwise interaction) is not possible. These
particles are processed according to the principle of redundant calculations, which was
described in the Section 3.1: in the first kernel, a molecular structure is compiled for
such hydrogens and the force acting on the displaced charge is calculated. It is necessary
to increase the radius of consideration of electrostatic interactions (the radius of cutting
of the force itself remains the same) to make it work correctly, and the effect of hydrogen
on the oxygen of its own molecule also requires accurate accounting.

4. Results

4.1. Verification

For verification, we used the tried approach based on three criteria [15]. Conservation of
full energy helps to find the first errors — it is a basic, but sensitive criterion. Since we
have a reference calculation based on LAMMPS, it is convenient to use the congruence
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Local atoms

Ghost atoms

Figure 4. Light-gray area outlines the domain where the local atoms are found. It includes the shadowed area
where oxygens can be found as “ghost atoms” for the corresponding hydrogens since they are not local. But
that area is a small fraction of the total for typical cases.

of potential energy (Figure 6) as the second criterion, which is a function of the coordi-
nates of all particles in the system and is also calculated simultaneously with forces in
our code. The third criterion comes from the stochastic properties of the MD calcula-
tion [16]. The average displacement of the coordinates and particle velocities (Figure 5)
in our simulation compared to the reference one should be equal to the machine accuracy
in the first steps, then an exponential increase of the error is observed, followed up to
reaching a plateau. Hopping coordinate differences on Figure 5 are likely to be artifacts
of processing periodic boundary conditions.

4.2. Performance

We used two platforms for testing:

1. 8 core Intel Xeon E5-2620v4 with GPU Nvidia GeForce GTX 1070 (Pascal)
2. 8 core AMD Epyc 7251 with GPU Nvidia Titan V (Volta)

The code for the GPU can be compiled in any of three modes: single, double and mixed
precision, while the calculations on the CPU are always performed in double precision.
We use mixed precision for the GTX 1070, as the Nvidia GeForce GPUs are significantly
slower with double-precision arithmetics [17]. Mixed precision is acceptable for many
molecular dynamics calculations. At the same time, on a newer or server-level GPUs
that fully supports double precision, our algorithm shows good acceleration in double
precision, as it can be seen in the example of the Titan V (Volta generation).

Figure 7 shows the time profile for different parts of the task when executing the
program on the CPU and on the GPU on our hardware. The number of atoms in the sim-
ulation is 32000. In the tests, all processor cores were loaded using MPI parallelization.
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Figure 5. The normalized averaged deviations of coordinates and velocities on two trajectories calculated
from identical initial conditions with LAMMPS lj/cut/tip4p/long and with our GPU-accelerated code. The
exponential dependence with a further saturation regime is in agreement with the stochastic theory of molecular
dynamics.
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Figure 6. The potential energy calculated by our GPU code is equal to the potential energy calculated by the
original LAMMPS lj/cut/tip4p/long at the beginning of the calculation, but the difference grows rapidly after
passing the time of dynamic memory of the system.

It can be clearly seen that the time for calculating pairwise interactions is significantly
reduced: almost seven times on the GTX 1070 and almost six times on the Titan V. It
worth noting, that when one turn on the GPU module in the program, Neigh (the time it
takes to build neighbor lists) approximately doubles. This is due to the disabling of the
use of Newtons third law - thus the neighbors lists are doubled in size, considering each
particle as i and as j, which explains the increase in time. The increased communication
time at the stand with Titan V using double precision remains unclear. We conducted a
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Figure 7. Time profile for 5 setups: 1) GPU algorithm in mixed precision on Nidia GTX 1070; 2) LAMMPS
CPU algorithm on 8 core CPU Intel Xeon E5-2620v4; 3) GPU algorithm in mixed precision on Nidia Titan V;
4) GPU algorithm in double precision on Nidia Titan V; 5) LAMMPS CPU algorithm on 8 core CPU AMD
Epyc 7251. Lower time is better. The code was implemented as “Pair” part of timestep breakdown. The number
of atoms is 32000.

smaller number of experiments with Titan V, and, perhaps, it’s work can be improved by
proper tuning for the new architecture. We expect that the use of GPUs leads to better
energy-efficiency [18]. Energy consumption is also affected by tuning.

5. Conclusion

An algorithm was developed and the corresponding code (available on GitHub [19])
was written for GPU-acceleration of the TIP4P water model as a part of the popular
LAMMPS package. In this work, two solutions to this problem are described: with the
execution of part of the algorithm on the CPU and the completely GPU-computed kernel.
Verification of calculations is performed with both CUDA and OpenCL backends, it
proves that we implemented the desired model with the machine precision. The second
approach shows the overall acceleration about 55% compared to a fully loaded server
processor, and the calculation of interactions is accelerated by almost six times. Future
plans include refinement of the code and comprehensive testing of the stability.

Acknowledgment

The study was funded by RFBR according to the research project No. 18-37-00487 and
supported within the framework of the Basic Research Program at the National Research
University Higher School of Economics (HSE) and within the framework of a subsidy by
the Russian Academic Excellence Project 5-100. Work has been partially supported by

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS572



the grant of the President of Russian Federation for support of leading scientific schools
grant NSh-5922.2018.8.

References

[1] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple
potential functions for simulating liquid water,” The Journal of Chemical Physics, vol. 79, no. 2, pp. 926–
935, 1983.

[2] J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: Tip4p/2005,”
The Journal of Chemical Physics, vol. 123, no. 23, p. 234505, 2005.

[3] J. L. F. Abascal, E. Sanz, R. Garca Fernndez, and C. Vega, “A potential model for the study of ices and
amorphous water: Tip4p/ice,” The Journal of Chemical Physics, vol. 122, no. 23, p. 234511, 2005.

[4] N. D. Kondratyuk, G. E. Norman, and V. V. Stegailov, “Quantum nuclear effects in water using centroid
molecular dynamics,” Journal of Physics: Conference Series, vol. 946, p. 012109, jan 2018.

[5] M. J. Abraham, T. Murtola, R. Schulz, S. Pll, J. C. Smith, B. Hess, and E. Lindahl, “GROMACS: High
performance molecular simulations through multi-level parallelism from laptops to supercomputers,”
SoftwareX, vol. 1-2, pp. 19 – 25, 2015.

[6] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C.
Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande, “OpenMM
7: Rapid development of high performance algorithms for molecular dynamics,” PLOS Computational
Biology, vol. 13, pp. 1–17, 07 2017.

[7] S. J. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh Ewald and rRESPA for parallel molecular
dynamics simulations,” in PPSC, 1997.

[8] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dynamics on
hybrid high performance computers short range forces,” Computer Physics Communications, vol. 182,
no. 4, pp. 898 – 911, 2011.

[9] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dynam-
ics on hybrid high performance computers particleparticle particle-mesh,” Computer Physics Commu-
nications, vol. 183, no. 3, pp. 449 – 459, 2012.

[10] W. M. Brown and M. Yamada, “Implementing molecular dynamics on hybrid high performance
computersthree-body potentials,” Computer Physics Communications, vol. 184, no. 12, pp. 2785 – 2793,
2013.

[11] K. Halbiniak, R. Wyrzykowski, L. Szustak, and T. Olas, “Assessment of offload-based programming en-
vironments for hybrid cpumic platforms in numerical modeling of solidification,” Simulation Modelling
Practice and Theory, vol. 87, pp. 48 – 72, 2018.

[12] B. Glinsky, I. Kulikov, I. Chernykh, D. Weins, A. Snytnikov, V. Nenashev, A. Andreev, V. Egunov, and
E. Kharkov, The Co-design of Astrophysical Code for Massively Parallel Supercomputers, pp. 342–353.
Cham: Springer International Publishing, 2016.

[13] K. Rojek and R. Wyrzykowski, “Performance modeling of 3D MPDATA simulations on GPU cluster,”
The Journal of Supercomputing, vol. 73, pp. 664–675, Feb 2017.

[14] K. A. Feenstra, B. Hess, and H. J. C. Berendsen, “Improving efficiency of large time-scale molecular
dynamics simulations of hydrogen-rich systems,” Journal of Computational Chemistry, vol. 20, no. 8,
pp. 786–798, 1999.

[15] V. Nikolskii and V. Stegailov, “Domain-decomposition parallelization for molecular dynamics algorithm
with short-ranged potentials on Epiphany architecture,” Lobachevskii Journal of Mathematics, vol. 39,
pp. 1228–1238, Nov 2018.

[16] G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,”
Mathematical Models and Computer Simulations, vol. 5, no. 4, pp. 305–333, 2013.

[17] V. P. Nikolskiy, V. V. Stegailov, and V. S. Vecher, “Efficiency of the Tegra K1 and X1 systems-on-chip
for classical molecular dynamics,” in 2016 International Conference on High Performance Computing
Simulation (HPCS), pp. 682–689, July 2016.

[18] F. Mantovani and E. Calore, “Performance and power analysis of hpc workloads on heterogeneous
multi-node clusters,” Journal of Low Power Electronics and Applications, vol. 8, no. 2, 2018.

[19] https://github.com/Vsevak/lammps

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS 573

https://github.com/Vsevak/lammps
https://github.com/Vsevak/lammps


Energy Consumption of MD Calculations
on Hybrid and CPU-Only Supercomputers

with Air and Immersion Cooling

Ekaterina DLINNOVA a,b,1, Sergey BIRYUKOV c and Vladimir STEGAILOV a,b

a National Research University Higher School of Economics, Moscow, Russia
b Joint Institute for High Temperatures of RAS, Moscow, Russia

c JSC NICEVT, Russia

Abstract. The article presents the energy consumption and efficiency analysis
based on the data from three small-size supercomputers installed in JIHT RAS. One
system is the air-cooled hybrid supercomputer Desmos with AMD FirePro GPUs
and two others are the air-cooled and liquid-cooled segments of the supercomputer
Fisher based on AMD Epyc Naples CPUs. To collect data, we implement the same
real-time analytics infrastructure on all three supercomputers. We consider clas-
sical molecular-dynamics problem as a benchmarking tool. Our results quantify
the energy savings that are provided by the GPU-based calculations in comparison
with CPU-only calculations and by liquid cooling in comparison with air-cooling.
During strong scaling benchmarks, we detect an interesting minimum of energy
consumption in the CPU-only case.

Keywords. supercomputers, monitoring systems, statistics analysis, energy profiles,
energy consumption

1. Introduction

The effective use of supercomputer resources is an extremely important task in the field
of high-performance computing [1]. However, currently there are no standard generally
accepted methods that allow to collect, to analyze and to evaluate the optimal use of su-
percomputer resources. Energy efficiency is becoming an increasingly decisive require-
ment for supercomputers, as race in industrial production involves the use of the next
generation of powerful computing systems. Technology has come a long way, but it is
clear that there are still some difficult but crucial work that industry needs to do in the
area of energy efficiency. Enlarging computing power without increasing energy con-
sumption will undoubtedly require a deep transformation that extends across all aspects
of HPC systems design.

Graphics processing units (GPUs) became widely used as accelerators for scientific
and HPC applications due to their energy efficiency and high memory bandwidth. And
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in this work we are giving real-life values for comparison of GPU-accelerated and CPU-
only computations.

Cooling technologe is another avenue for improving energy efficiency of HPC sys-
tems. And in this work we compare one systems based on a de facto standard air-cooling
with a similar system that uses immersion oil cooling technology.

2. Related works

In [2], the authors raise the problem that large-scale distributed systems consume a huge
amount of energy. To solve this problem, it is proposed to use job shutdown policies that
can dynamically adapt the amount of resources to the actual workload. The sheer amount
of energy consumed by large-scale computing and network systems, such as data cen-
ters and supercomputers, is causing serious concern in a society increasingly dependent
on information technology. Trying to solve this problem, the research community and
industry have proposed many methods to curb the energy consumed by IT systems.

The article [3] discusses methods and solutions aimed at improving the energy ef-
ficiency of computing and network resources. It discusses methods for estimating and
modeling the energy consumed by these resources, and describes methods that work at
the distributed system level, trying to improve aspects such as resource allocation, plan-
ning, and managing network traffic. This work is aimed at reviewing the state of tech-
nology in the field of energy efficiency in order to further facilitate research on the cre-
ation of networks and computing resources more efficient. Several indicators have been
suggested that are most commonly used for infrastructure, such as data centers.

In order to assess how optimally the supercomputer complex consumes electricity,
it is necessary to enter certain indicators and characteristics. For example, the authors
of [4] characterize the energy efficiency of the Cray XC30 supercomputer system in three
metrics: time to solution for a given workload; workload power consumption and energy
efficiency (PUE) of the data center where the system resides. The decision time and
energy consumption are closely related. For example, choosing a processor can reduce
your solution time by increasing power consumption.

In [5] and [6], new methods for distributing resources were presented that take into
account the topology of the machine, the patterns of interaction of tasks, and the charac-
teristics of the application to select the best node among those available on the platform.

The article [7] discusses the current state of energy-efficient methods of parallel
computing in order to achieve optimal resource consumption in conditions of limited
energy consumption. The authors of [7] believe that the power consumption of modern
high-performance computing systems should be reduced by at least one order of mag-
nitude before they can be increased to ExaFLOP performance. Although new hardware
technologies and architectures can be expected to contribute to this goal, software tech-
nology such as proactive and energy-efficient planning, resource allocation, and fault-
tolerant computing should also bring significant success.

The paper [8] presents the energy consumption model for a hybrid supercomputer
(which ranked first in Green500 in June 2013), which combines CPU, GPU, and MIC
technologies to achieve high levels of energy efficiency. This model takes into account
both the characteristics of the workload, the amount and location of resources that are
used by each task at a certain time, and it also calculates the predicted energy consump-
tion at the system level.
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Table 1. Specifications of supercomputers considered

Supercomputer Major components

Desmos 32 nodes Intel Xeon E5-1650v3, 6 cores, 3.5 GHz AMD FirePro S9150 GPU,

Angara interconnect (4D torus), Air cooling

Fisher Air segment 18 nodes 2 x AMD Epyc7301, 16 cores, 2.7 GHz (8 DIMMs per socket)

InfinibandFDR interconnect (switch) , Air cooling

Fisher Immersion segment 24 nodes 2 x AMD Epyc7301, 16 cores, 2.7 GHz (4 DIMMs per socket)

Angara interconnect (switch), Immersion oil cooling

Article [9] provides a detailed analysis of the problems and possibilities of super-
computer computing in various fields of human activity: in machine learning, astronomy,
medicine, materials science and energy efficiency. The authors discuss the scalability
problems of both technical equipment and software and algorithms. In this regard, the
discussion of the problems of efficiency from the point of view of the future of exascale-
computing and analysis of large data is extremely relevant and important.

3. Hardware

For this study, we analyze the statistics of three supercomputers, all of which were in-
stalled at the Joint Institute for High Temperatures of RAS.

The first supercomputer Desmos consists of 32 nodes with AMD FirePro S9150
graphics accelerators, interconnected with a low-latency high bandwidth Angara inter-
connect [10]. The supercomputer is aimed at carrying out calculations by the classical
molecular dynamics method, and can also effectively accelerate the calculations of the
electronic structure of materials.

The second supercomputer is the Fisher supercomputer that consists of air-cooled
and oil-cooled segments with AMD Epyc 7301 CPUs (see Table 1). The air-cooled seg-
ment consists of 18 dual-socket nodes connected by Infiniband FDR. The oil-cooled seg-
ment consists of 24 dual-socket nodes connected by Angara network (its switch-based
fat-tree variant). The immersion cooling system was designed by the Immers company.

4. Model used for benchmarks

We analyse the power consumption of the calculation for the same resource-intensive
scientific code, namely, the large-scale molecular dynamics problem in the LAMMPS
package, running on the three above-mentioned supercomputers. For the benchmarking,
we use a typical molecular-dynamics (MD) problem of 4 millions Lennard-Jones atoms.
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Figure 1. Real-time Desmos visualization in Grafana. We can see the dependence between energy consump-
tion and time on Desmos while LAMMPS is running on different number of nodes (1,2,4,8,16,32).

5. Monitoring system

To collect, analyze and visualize statistics on the use of supercomputers, we used a set
of applications:

• Telegraf is a utility for collecting time series measurements.
• InfluxDB is a clustered database specifically designed for storing time series.
• Grafana is a time series visualization tool. Web application for setting up charts

and dashboards.

Telegraf is an agent written in Go for collecting performance metrics from the sys-
tem it is running on and the services running on that system. Data aggregation infrastruc-
ture is based on InfluxDB. Grafana is an open source platform for visualizing, monitor-
ing and analyzing data. Grafana allows users to create dashboards with panels, each of
which displays certain indicators for a set period of time. Each dashboard is universal,
so it can be customized for a specific project or taking into account any needs. Grafana
builds visualization of the cluster state in real-time. For example, we can verify the en-
ergy consumption of the Desmos supercomputer (Figure 1).

Another possible option for building a cluster monitoring system is to use a software
stack consisting of Elasticsearch, Logstash, and Kibana (the so-called ELK stack). ELK
is specially designed to solve the problems of collecting, storing and processing system
logs.

However, the ELK stack is designed for highly loaded web-projects, which are based
on the products of companies that contain hundreds of servers of the same type. It is
advisable to use ELK if you intend to analyze hundreds of megabytes of logs every
day, hundreds of production servers on which you want to catch events, and also have
your own highly loaded application and it needs to be monitored. In addition, logstash
consumes server resources for each rule, since before processing data, it first processes
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Figure 2. Strong scaling of the LAMMPS test problem: the dependence between the time-to-solution and the
number of nodes for three supercomputers considered.

them. For the above reasons, we have decided that using the ELK stack is less suitable
for building an HPC monitoring system.

6. Possible levels of energy consumption analysis

To collect data, we implement the following three-tier infrastructure on all three super-
computers:

• Level 1: RAPL-like protocols for CPU/DIMM energy consumption,
• Level 2: IPMI protocol at the node level (with limitations for FirePro GPUs),
• Level 3: SNMP protocol for collecting data from UPS smart-cards.

Recent Intel processors support the Running Average Power Level (RAPL) inter-
face, which among other things provides estimated energy measurements for the CPUs,
integrated GPU, and DRAM. AMD Epyc CPUs have compatible interface 2. These mea-
surements are easily accessible by the user, and can be gathered by a variety of tools,
including the Linux event interface. This allows an easy access to energy information
when designing and optimizing an energy-aware code.

2This interface, however, demonstrates some problems, see https://community.amd.com/thread/243717
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Figure 3. The Fisher immersion segment energy profile. We can see the time profile of the consumed power
when LAMMPS is running on a different number of node. The blue line shows the data collected from the
power supply. The orange line shows the data collected using IPMI.

Figure 4. Comparison of the power consumption profiles (collected via IPMI) for the single node runs on the
air-cooled and immersion segments of the Fisher supercomputer.

While greatly useful, on most systems these RAPL measurements are estimated
values, generated on the fly by an on-chip energy model. The values are not documented
well, and the results (especially the DRAM results) have limited validation.

Through the Intelligent Platform Management Interface (IPMI), it is possible to con-
nect remotely to the server and manage its operation:
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Figure 5. The dependence between the energy-to-solution and the time-to-solution for the test LAMMPS runs
on three supercomputers considered.

• Monitor the physical condition of the equipment, for example, check the tempera-
ture of the individual components of the system, voltage levels, fan speed, energy
consumption.

• Restore the server in automatic or manual mode (remote system reboot, power on
/ off, loading ISO images and updating software).

• Manage peripheral devices.
• Keep an event log.
• Store information about the equipment used.

Using the Simple Network Management Protocol (SNMP) allows to monitor almost
any server, workstation or network equipment. SNMP monitoring is a standard way to
obtain the characteristics of network resource utilization by routers and other network
equipment. Many other parameters, such as disk space or CPU utilization, can also be
obtained from the target device via SNMP. In this paper we present the results gathered
at the second level only (via IPMI).

7. Benchmarking procedure and results

In this section the benchmarking procedure is described. First of all, we freeze the tasks
queue on three supercomputer considered, waite for all already started jobs finish and
start our measurements. We execute sequentially LAMMPS on different number of nodes
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on Desmos, Fisher Air and Fisher Immers. The energy consumption information is col-
lected using special Telegraf-exec plugin, after parsing it was inserted into InfluxDB
database. We analyze the real-time energy consumption visualization using Grafana and
its dashboards.

Figure 2 depicts the strong scaling results for three supercomputers. We can see in
the log-log scale the dependence between the time-to-solution and the number of nodes.

Figure 3 depicts the results of the benchmarks for the Fisher supercomputer segment
with immersion oil cooling. We see instantaneous values of energy consumption (W)
when we execute the LAMMPS code with different number of nodes.

Figure 4 depicts the profiles of power consumption for the single node runs on the
air-cooled and immersion-cooled segments of Fisher supercomputer.

To calculate total energy consumption during the running time period in kWh, we
used the InfluxDB function integral:

SELECT
FROM ” i p m i t o o l r a w ”
WHERE time >= ’2019−09−29T20 : 1 9 : 0 0 Z ’
AND time <= ’2019−09−29T20 : 2 5 : 0 0 Z ’
AND h o s t = ’ 1 0 . 2 . 1 . 1 0 1 ’

A subtle question is how to choose the start and finish time points. In this work we
choose them manually looking at the power profile in Grafana. Changing these times
even by a few seconds can result in significant changes of the integral value. So this
selection of time periods is very important, and in the future works we plan to use task
manager synchronisation to determine start and finis time points.

The benchmark results of three supercomputers are presented on Figure 5. We can
see the dependence between the total consumed energy-to-solution and the time-to-
solution. We see that hybrid computations are more energy efficient despite we compare
the novel CPUs (Zen microarchitecture uses 14 nm FinFET) and slightly old Haswell
CPUs (22 nm FinFET) and FirePro GPUs (28 nm CMOS). Immersion cooling does not
demonstrate evident benefits (despite the fact that at this stage we have not taken into ac-
count the energy consumption of the liquid transfer subsystem and the heat exchanger).
The immersion segment demonstrates longer values of time-to-solution due to the re-
duced memory bandwidth of its nodes (see Table 1), their lower power consumption does
not compensate this fact (see Figure 4) and the energy integrals is larger than for the
air-cooled segment.

The results for the air-cooled segment show an interesting feature: the energy con-
sumption decreases when we increase the number of nodes and there is a minimum en-
ergy consumption at 8 nodes. The origin of this effect is presumably connected with the
dynamic fan speed control in the nodes during the benchmarks and deserves a separate
study in the future.

8. Conclusions

We have implemented identical energy monitoring systems for real-time analytics of
power and energy consumption on three supercomputers: the hybrid air-cooled Desmos
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supercomputer and the air-cooled and the liquid-cooled CPU-only segments of the Fisher
supercomputer.

Benchmarking results based on a single MD model calculation example show the
following:

• The excess consumption of an air-cooled system compared to an immersion-
cooled system is on average 30% or 1.4 kW.

• The energy efficiency gain of a hybrid air-cooled system is 200 Wh (46%) for
1 node and decreases with an increase in the number of nodes used for the test
calculation.

• We detected a minimum of total energy consumption for the test problem on CPU-
only systems.
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Abstract.
The aim of this work is to quantitatively evaluate the impact of computation on

the energy consumption on ARM MPSoC platforms, exploiting CPUs, embedded
GPUs and FPGAs. One of them possibly represents the future of High Performance
Computing systems: a prototype of an Exascale supercomputer. Performance and
energy measurements are made using a state-of-the-art direct N-body code from
the astrophysical domain. We provide a comparison of the time-to-solution and
energy delay product metrics, for different software configurations. We have shown
that FPGA technologies can be used for application kernel acceleration and are
emerging as a promising alternative to “traditional” technologies for HPC, which
purely focus on peak-performance than on power-efficiency.

Keywords.
Astrophysics, HPC, N-body, ARM MPSoC, GPUs, FPGAs, exascale, energy-
delay-product

1. Introduction and motivation

Energy efficiency is one of the main problems for exascale computing systems, since
simply re-scaling the current petascale systems would require an unfeasible amount of
power consumption. A re-design of the underlying technologies (i.e., processors, inter-
connect, storage, and accelerators) is needed to reduce energy requirements by about one
order of magnitude [1]. To exploit the upcoming new architectures, software developers
are forced to face the challenge of re-designing algorithms.

Commodity single board platforms are an interesting case of heterogeneous systems
for performance and energy-efficiency studies (e.g. [2,3,4,5]). They are based on low-
power System-on-Chip (SoC) architectures with embedded CPUs, GPUs, FPGAs, mem-
ory, storage and general purpose I/O ports. Many companies are delivering single-board
computers equipped with different hardware components and utilize Multi-processing
System-on-Chip (MPSoC) where the energy efficiency is the main concern.
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This work arises in the framework of the ExaNeSt and EuroExa European funded
projects aiming at the design and development of a prototype of an exascale HPC facil-
ity based on ARM SoC and FPGA technology [9,13]. Our goal is to study the trade-off
between time-to-solution and energy-to-solution using real code, a direct N-body solver
for astrophysical simulations, instead of benchmarking these machines by means of stan-
dard suites (e.g. HPL [14], DGEMM, STREAM [15]). We assess the performance and
the associated power-efficiency across different platforms, namely, the MPSoC Firefly-
RK3399 produced by Rockchip, and the Zynq-7000 SoC and Zynq UltraScale+ MPSoCs
both produced by Xilinx. We further compare these results with a commodity architec-
ture based on an x86 Intel desktop equipped with a high-end gaming GPU.

To the best of our knowledge, this work provides the first comprehensive evaluation
of a real application, coming from the astrophysical domain, on low-cost and low-power
boards hosting ARM (64 bit) mobile-class cores, embedded GPUs and FPGAs.

The paper is organized as follows. In Section 2 we describe the code and discuss
strategies in order to optimize algorithms on heterogeneous platforms. In Section 3 we
present the computing platforms used in the test. Section 4 is devoted for the discussion
of the methodology adopted to make the performance and energy tests. In Section 5 we
present the performance measurements for all platforms along with the power consump-
tion. The last section is dedicated to the conclusions and future work.

2. N-body astrophysical code

In astrophysics, the N-body problem is the problem of predicting the individual motions
in a group of celestial objects interacting with each other gravitationally. The main draw-
back related to the direct N-body problem relies on the fact that the algorithm requires
O(N2) computations. Our application, called HY-NBODY, a modified version of a GPU
N-body code [6,7], is based on high order Hermite integration schema [8] and has been
developed in the framework of the ExaNeSt project [9]. HY-NBODY has been designed
to fully exploit the compute capabilities of heterogeneous platforms. Three versions of
the code are available: one written in Standard C, cache-aware designed for CPUs, one
that is implemented and optimized using OpenCL kernels, allowing us to exploit any
OpenCL-compliant device (e.g. GPUs), and one that is written also in Standard C using
Xilinx Vivado High Level Synthesis (HLS) tool and is implemented for FPGAs.

Code profiling shows that, during a single time step of the simulation, more than
90% of time is spent on a single kernel with an arithmetic intensity I ' 104 [FLOPs/byte]
(ratio of FLOPs to the memory traffic), using 323 particles. In the following, time and
energy measurements on a given device refer to this compute-bound kernel.

2.1. Floating point arithmetic considerations

The Hermite 6th order integration schema requires double precision (DP) floating-point
arithmetic in the evaluation of inter-particle distance and acceleration in order to mini-
mize the round-off error, so as to preserve the total energy and the angular momentum of
the N-body system during the simulation.

Full IEEE-compliant DP floating-point arithmetic is efficient in contemporary
CPUs, but it is still extremely resource-eager and performance-poor in other accelerators
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like gaming or embedded GPUs. As an alternative, the extended-precision (EX) (or emu-
lated double precision) numeric type [11] can represent a trade-off in porting HY-NBODY

on devices not specifically designed for scientific calculations. An EX-number provides
approximately 48 bits of mantissa at single-precision exponent ranges.

3. Computing platforms

In this section we describe the four computing platforms used in our tests. Table 1 lists
the devices present in each computing platform, and we highlight in bold the devices
used in our tests. The platforms are:

• Firefly-RK3399 board: it is equipped with the ARM big.LITTLE architecture,
four Cortex-A53 cores with 32KB L1 cache and 512KB L2 cache, and a cluster
of two Cortex-A72 high performance cores with 32KB L1 cache and 1MB L2
cache. Each cluster operates at independent frequencies, ranging from 200MHz
up to 1.4GHz for the LITTLE, and up to 1.8GHz for the big. The board contains
4GB DDR3 - 1333MHz RAM. The board contains also the OpenCL-compliant
Mali-T864 embedded GPU;

• x86 desktop: it is equipped with four Intel i7-3770 cores running at 3.4 GHz with
32KB L1 cache, 256KB L2 cache and 8192KB L3 cache. The board contains
16GB DDR3 - 1866 MHz RAM and the NVIDIA GeForce-GTX-1080 GPU in the
PCI Express (16X) bus;

• ZedBoard: it is equipped with the Xilinx Zynq 7000 MPSoC, with dual-core ARM
Cortex-A9 processors integrated with 28nm Artix-7 based programmable logic
(FPGA). The board contains 512 MB DDR3 RAM;

• QFDB: the Quad-FPGA DaughterBoard (QFDB) is the compute-unit of the pro-
totype developed within the framework of the ExaNeSt project [9,10]. The com-
pute board, whose block diagram is shown in Figure 1, contains four Xilinx Zynq
UltraScale+ MPSoC devices (ZU9EG), each featuring four Cortex-A53 and two
Cortex-R5 cores, along with a rich set of hard IPs and Reconfigurable Logic. A
16GB DDR4 RAM is connected to each Zynq device. The maximum sustained
power of the board is 120 Watts. Targeting a compact design, the dimension of the
board is 120-130mm while no component on top or below the printed circuit board
(PCB) is taller than 10mm. The PCB stackup consists of 16 layers, with Megtron-
6 dielectric. Within the board, multiple high-speed serial links (HSSLs) connect
the four Zynq devices, each operating at a line rate of 16.375Gbps. One of the
Zynq devices is connected to the outside world through 10 high-speed serial links
(HSSLs) using GTH transceivers. On each QFDB, the measurement of the power
consumption is accomplished by using a set of TI INA226 current/power sensor,
coupled with high-power shunt resistors. The INA226 sensor’s minimal capture
time is 140µs. However, the Linux INA drivers (and the power-on set-up) set the
capture time to 1.1ms by default. The Linux driver also enables averaging from
16 samples and captures both the shunt and the bus voltages. To collect data from
the sensors, each board includes 15 I2C power sensors, which allow measuring the
power consumption of the primary sub-systems of the board.
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Table 2 shows the clock, the theoretical peak performance in FP64/FP32 and the
achieved performance of the devices using DP/EX arithmetic. Since FPGAs do not have
a fixed architecture, a generic way to calculate their peak performance does not exist for
the following reasons:

(i) each type of calculation needs a different amount of resources to be implemented;
(ii) a single type of calculation can be implemented in various ways;

(iii) the FPGA can operate with various clock frequencies;
(iv) usually an accelerator takes a part of the FPGA and not the entire FPGA (even a

design of 90% utilization is very difficult to be placed and routed and it becomes
even more difficult in higher clock frequencies).

Thus, in Table 2, regarding the FPGAs, we present the theoretical performance of
the implemented kernels versus the actual performance obtained including the latency of
the memory I/O and the time needed to handle the kernels from the software application.

Table 1. The platforms and the associated devices. The devices exploited in the test are highlighted in bold.

Platform CPU GPU FPGA

Firefly-RK3399 ARM A53x4 + A72x2 ARM Mali-T864 None

Desktop Intel i7-3770x4 NVIDIA GeForce-GTX-1080 None

ZedBoard ARM A9x2 None Zynq-7000

QFDB 4x(ARM A53x4 + R5x2) 4x(ARM Mali-400) 4x(Zynq-US+)

Table 2. The clock, the theoretical peak performance and the achieved performance of the devices tested in
this work. The actual performance has been obtained using 65536 particles.

Device i7x4 A53x4 A72x2 GTX-1080 T864 Z-7000 Z-US+

Clock (GHz) 3.40 1.42 1.80 1.733 0.800 0.100 0.300

Peak FP64/FP32 (GFLOPS) 108/217 11.36/45.44 7.2/28.8 277.3/8873 32/109 8.5/39.1 102/351.9

Actual DP/EX (GFLOPS) 8.0/4.1 2.6/2.6 3.0/2.6 55.2/4984 1.5/14.4 1.2/4.9 95.3/333.1

4. Methodology

In this section we discuss how power measurements were made. On the first three plat-
forms, namely, the Firefly-RK3399, the desktop and the ZedBoard, the electric power
draw is measured by means of a power meter (Yokogawa WT310E), while on the QFDB
it relies on the on-board sensors.

After booting up the platform, we measure the watt-hours consumed in idle during
a period of three minutes (∆T3), giving us the Ebaseline of the system. Then, Edevice

baseline is
the electric power drawn by the system running a given code implementation using a
particular device (CPU, GPU or FPGA) over ∆T3.

The energy-to-solution of the specific device is:
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Figure 1. The Quad-FPGA daughterboard block diagram and interconnects.

Edevice
impl =

(
Edevice

baseline−Ebaseline

)
·
(

T device/∆T3

)
, (1)

where T device is the kernel running time (time-to-solution averaged over ten runs). We
point out that the benchmark runs have been done taking into account the output to the
main memory, as happens in real production runs.

We also estimate the total energy impact of the application in terms of Energy Delay
Product (EDP), as suggested by Cameron [16], and defined as:

EDP = Edevice
baseline ·

(
T device/∆T3

)w
, (2)

where w is a parameter to weight performance versus power (usually w = 1,2,3). The
EDP is a “fused” metric to evaluate the trade-off between time-to-solution and energy-
to-solution.

5. Computational performances and energy consumption

First we investigate the time-to-solution running the code varying the number of par-
ticles. In the case of CPUs, we exploit all the available cores by means of OpenMP
threads. On the Firefly-RK3399 board equipped with the big.LITTLE ARM architecture,
we pinned the processes first to the four cores of the Cortex-A53 and then to the two
cores of the Cortex-A72. Kernel execution times on GPUs, both Nvidia-GeForce-GTX-
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Figure 2. Time-to-solution in seconds for different devices as a function of the number of particles for dou-
ble-precision arithmetic.

1080 and ARM Mali-T864, have been obtained using the OpenCL’s built-in profiling
functionality, which allows the host to collect runtime information, while in the case of
QFDB the kernel was executed only on a single FPGA out of the four it comprises.

In Figure 2, we compare the time-to-solution for the devices reported on Table 1
for DP arithmetic. From a pure performance point of view, regarding the DP arithmetic,
the Zynq UltraScale+ FPGA and the Nvidia GPU are the most powerful devices, while
the FireFly MPSoC and the Zynq-7000 FPGA performances are almost two orders of
magnitude lower.

To better study the effect of the extended-precision arithmetic, in Figure 3 we show
the ratio of time-to-solution between DP and EX arithmetic. The performance improve-
ment is a factor of∼ 2 for the Mali-T864 GPU and∼ 20 for the GTX-1080, while CPUs
suffer a significant performance degradation. Regarding the QFDB, the EX kernel shows
a 32% degradation in performance compared to the DP implementation. Although single
precision arithmetic requires less FPGA resources overall, the extra calculations (in par-
ticular accumulations) needed to minimize the roundoff and overflow errors in the inter-
mediate results of EX precision introduce an additional overhead which impacts the size
of the kernel that can be implemented inside the FPGA. Thus, although the EX kernel
was designed to execute on ∼ 25% less particles per cycle, because of these extra calcu-
lations it occupies 10% and 8% more in terms of DSPs and LUTs accordingly compared
to the DP implementation.

Figure 4 shows the total energy-to-solution (Edevice) for all devices and for both DP
and EX arithmetic using 65536 particles. For CPUs and GPUs, the instantaneous power
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Figure 3. The ratio of the time-to-solution between DP arithmetic and EX arithmetic as a function of the
number of particles for different devices.

consumption is pretty much the same running the DP or EX kernel implementation,
however using EX arithmetic on GPUs leads to better energy-efficiency because of the
reduced time-to-solution. Our findings show that the Zynq UltraScale+ FPGA is more
energy-efficient than the GTX-1080 by a factor of 15 when using DP arithmetic.

Moreover, we obtain EDP, for w = 1,3, when running the application using 65536
particles and with the methodology discussed in Section 4. In Figure 5 we plot the EDP
comparing the devices (top panel for w = 1, and bottom panel for w = 3). When perfor-
mances are highly valued (i.e. w = 3), the GTX-1080 is the device with the best trade-off
between time-to-solution and energy-to-solution using EX arithmetic, while the Zynq
UltraScale+ FPGA is favorable in terms of energy and execution time when DP floating-
point arithmetic is used.

6. Conclusions and future work

The energy footprint of scientific applications will become one of the main concerns
in the HPC sector. In this work we employ a real scientific application, coming from
Astrophysical domain, to explore the impact of software design on time-to-solution and
energy-to-solution using low-cost MPSoC-based platforms and FPGA-based technolo-
gies that can be potentially used in future HPC systems.

Due to the computational intensive nature of our application, accelerators, like GPU
and FPGA, outperform CPU peak performance, as expected. In particular, the introduc-
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Figure 4. The energy-to-solution of the specific device is shown.

tion of the emulated-double precision improves the application performance on SoCs
with embedded GPUs, like the ARM Mali, opening the path for successful and cost-
effective use of such devices in HPC.

The crucial findings of this work are the achieved performances, both in terms of
time-to-solution and energy-to-solution, exploiting the Zynq UltraScale+ FPGA on the
ExaNeSt QFDB prototype. Kernel development for FPGAs is slightly different than tra-
ditional GPU development in that the hardware is created for the specific functions be-
ing implemented. Understanding the difference between SIMD parallelism and pipeline
parallelism employed on FPGAs, and taking advantage of FPGA features, such as het-
erogeneous memory support, channels, loop pipelining and unrolling, are key factors to
unlock high performance-per-watt solutions.

In conclusion, we have shown that SoC technology is emerging as a promising alter-
native to “traditional” technologies for HPC, which purely focus on peak-performance
rather than power-efficiency. The main drawback is that programmers of scientific ap-
plications will have to re-engineer their code in order to fully exploit new computing
facilities based on heterogeneous hardware.

Our future plan is to assess the energy footprint of the HY-NBODY application on
a cluster of MPSoCs, hosting CPUs, GPUs and FPGAs, and to compare it with HPC
resources, where multi-node communication becomes an important aspect of the appli-
cation.
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Figure 5. EDP for DP arithmetic and for EX arithmetic varying the device. Top panel for w = 1, and bottom
panel for w = 3.
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Abstract. In this work, we examine the performance and energy efficiency when
using Python for developing HPC codes running on the GPU. We investigate the
portability of performance and energy efficiency between CUDA and OpenCL; be-
tween GPU generations; and between low-end, mid-range and high-end GPUs. Our
findings show that for some combinations of GPU and GPU code, there is a sig-
nificant speedup for CUDA over OpenCL, but that this does not hold in general.
Our experiments show that performance in general varies more between different
GPUs, than between using CUDA and OpenCL. Finally, we show that tuning for
performance is a good way of tuning for energy efficiency.

Keywords. GPU Computing, CUDA, OpenCL, High Performance Computing,
Shallow-Water Simulation, Power Efficiency

1. Introduction

GPU computing was introduced in the early 2000s, and has since become a popular con-
cept. The first examples were acceleration of simple algorithms such as matrix-matrix
multiplication by rephrasing the algorithm as operations on graphical primitives (see
e.g., [1]). This was cumbersome and there existed no development tools for general-
purpose computing. However, many algorithms were implemented on the GPU as proof-
of-concepts, showing large speedups over the CPU [2]. Today, the development environ-
ment for GPU computing has evolved tremendously and is both mature and stable: Ad-
vanced debuggers and profilers are available, making debugging, profile-driven develop-
ment, and performance optimization easier than ever.

The GPU has traditionally been accessed using compiled languages such as C/C++
or Fortran for the CPU code, and a specialized programming language for the GPU.
The rationale is often that performance is paramount, and that compiled languages are
therefore required. However, for many GPU codes, most of the time is spent in the nu-
merical code running on the GPU. In these cases, we can possibly use a higher-level
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language such as Python for the program flow without significantly affecting the per-
formance.2 The benefit is that using higher-level languages can significantly increase
productivity [3].

We study PyCUDA and PyOpenCL [4] in this work, which offer access to CUDA
and OpenCL from Python. They have become mature and popular packages since their
initial release nearly ten years ago. We compare the performance and energy efficiency
of PyCUDA and PyOpenCL for three different explicit numerical stencils for simulating
shallow-water flow. This represents a class of problems that are particularly well suited
for GPU computing [5,6]. We demonstrate how profile-driven development in Python is
essential for increasing performance (up to 5 times) for GPU code, and show that the
energy efficiency increases proportionally with performance tuning. Finally, we investi-
gate the portability of the improvements and power efficiency both between CUDA and
OpenCL and between different GPUs.

2. Related work

There are several high-level programming languages and libraries that offer access to the
GPU for certain sets of problems and algorithms. OpenACC [7] is one example which is
pragma-based and offers a set of directives to execute code in parallel on the GPU. How-
ever, such high-level abstractions are typically only efficient for certain classes of prob-
lems and are often unsuitable for non-trivial parallelization or data movement. CUDA [8]
and OpenCL [9] are two programming languages that offer full access to the GPU hard-
ware, including the whole memory subsystem. This is an especially important point,
since memory movement and data transfers are often key bottlenecks in today’s numeri-
cal algorithms [10] and therefore have significant impact on energy consumption.

The performance of GPUs has been reported extensively [11], and several authors
have previously shown that GPUs are efficient in terms of energy-to-solution. Huang et
al. [12] demonstrated early on that GPUs could not only speed up computational per-
formance, but also increase power efficiency dramatically using Nvidia CUDA. Qi et
al. [13] show how OpenCL on a mobile GPU can increase performance of the discrete
Fourier transform by 1.4 times and decrease the energy by 37%. Dong et al. [14] analyze
the energy efficiency of GPU BLAST which simulates compressible hydrodynamics us-
ing finite elements with CUDA and report a 2.5 times speedup and a 42% increase in en-
ergy efficiency. Klôh [15] report that there is a wide spread in terms of energy efficiency
and performance when comparing 3D wave propagation and full waveform inversion on
two different architectures. They compare an Intel Xeon coupled with an ARM-based
Nvidia Jetson TX2 GPU module, and find that the Xeon platform performs best in terms
of computational speed, whilst the Jetson platform is most energy efficient. Memeti et
al. [16] compare the programming productivity, performance, and energy use of CUDA,
OpenACC, OpenCL and OpenMP for programming a system consisting of a CPU and
GPU or a CPU and an Intel Xeon Phi coprocessor. They report that CUDA, OpenCL and
OpenMP have similar performance and energy consumption in one benchmark, and that
OpenCL performs better than OpenACC for another benchmark. In terms of productiv-
ity, the actual person writing the code is important, but OpenACC and OpenMP require

2Kernel launch overhead is on the same order of magnitude as in C++ in our experiments.
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less effort than CUDA and OpenCL, and CUDA can require significantly less effort than
OpenCL.

Previous studies have also shown that CUDA and OpenCL can compete in terms
of performance as long as the comparison is fair [17,18,19,20] and there have also been
proposed automatic source to source compilers that report similar results [21,22].

3. GPU Computing in Python

In this work we focus on using Python to access the GPU through CUDA and OpenCL.
These two GPU programming models are conceptually very similar, and both offer the
same kind of parallelism primitives. The main idea is that the computational domain is
partitioned into equally sized subdomains that are executed independently and in parallel.
Even though the programming models are similar, their terminology differs slightly, and
in this paper we will use that of CUDA. A full review is outside the scope of this work,
but can be found in [23,24]. The following sections give an overview of important parts
of CUDA and OpenCL, and discuss their respective Python wrappers.

3.1. CUDA

CUDA [8] (Compute Unified Device Architecture) was first released in 2007, and is
available on all Nvidia GPUs as Nvidia’s proprietary GPU computing platform. It in-
cludes third-party libraries and integrations, the directive-based OpenACC [7] compiler,
and the CUDA C/C++ programming language. Today, five of the ten fastest supercom-
puters (including number one) use Nvidia GPUs, as well as nine out of the ten most
energy-efficient [25].

CUDA is implemented in the Nvidia device driver, but the compiler (nvcc) and
libraries are packaged in the CUDA toolkit and SDK.3 The toolkit and SDK contain
a plethora of examples and libraries. In addition, the toolkit contains Nvidia Nsight,
which is an extension for Microsoft Visual Studio (Windows) and Eclipse (Linux) for
interactive GPU debugging and profiling. Nsight offers code highlighting, unified CPU
and GPU trace of the application, and automatic identification of GPU bottlenecks. The
Nvidia Visual Profiler is a stand-alone cross-platform application for profiling of CUDA
programs, and CUDA versions for debugging (cuda-gdb) and memory checking (cuda-
memcheck) also exist.

3.2. OpenCL

OpenCL [9] (Open Compute Language) is a free and open heterogeneous computing
platform that was initiated by Apple in 2009, and today the OpenCL standard is main-
tained and developed by the Khronos group. Whilst CUDA is made specifically for
Nvidia GPUs, OpenCL can run on a number of heterogeneous computing architectures
including GPUs, CPUs, FPGAs, and DSPs. Contrary to CUDA, there is no official toolkit
for OpenCL, but there are several third-party libraries.

3Available at https://developer.nvidia.com/cuda-zone.
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Profiling an OpenCL application can be challenging, and the available tools vary
depending on your operating system and hardware vendor.4 It is possible to get tim-
ing information on kernel and memory transfer operations by adding counters and en-
abling event profiling information explicitly in your source code. This requires extra
work and makes the code more complex. Visual Studio can measure the amount of run
time spent on the GPU, and CodeXL [26] can be used to get more information on AMD
GPUs. CodeXL is a successor to gDebugger which offers features similar to those found
in Nsight in addition to power profiling, and is available both as a stand-alone cross-
platform application and as a Visual Studio extension. While it is possible to use Visual
Profiler for OpenCL, this requires the use of the command-line profiling functionality in
the Nvidia driver, which needs to be enabled through environment variables and a con-
figuration file. After running the program with the profiling functionality in effect, the
profiling data can be imported into Visual Profiler.

One disadvantage of OpenCL is that there are large differences between the OpenCL
implementations from different vendors, and good performance might rely on vendor-
specific extensions. One example is that OpenCL 2.2 is required for using C++ templates
in the GPU code, but vendors such as Nvidia only support OpenCL version 1.2. It should
also be mentioned that OpenCL has been deprecated in favour of Metal [27] by Apple in
their most recent versions of Mac OS X.

3.3. GPU computing from Python

Researchers spend a large portion of their time writing computer programs [28], and
compiled languages such as C/C++ and Fortran have been the de facto standard within
scientific computing for decades. These languages are well established, well docu-
mented, and give access to a plethora of native and third-party libraries. C++ is the stan-
dard way of accessing CUDA and OpenCL today, but developing code with these lan-
guages is time consuming and requires great care. Using higher-level languages such as
Python can significantly increase development productivity [3,29]. However, it should
be mentioned that the OpenCL and CUDA kernels themselves are not necessarily made
neither simpler nor shorter by using Python: The productivity gain comes instead from
Python’s less verbose code style for the CPU part of the code. This influences every part
of the host code, from boilerplate initialization code and data pre-processing, to CUD-
A/OpenCL API calls, post-processing, and visualization of results.

PyCUDA and PyOpenCL [4] are Python packages that offer access to CUDA and
OpenCL, respectively. Both libraries expose the API of the underlying programming
models, and try to minimize the performance impact. The GPU kernels, which are crucial
for the inner loop performance, are written in native low-level CUDA or OpenCL, and
memory transfers and kernel launches are made explicit through Python functions. The
result is an environment suitable for rapid prototyping of high-performing GPU code in
a Python environment.

4An extensive list of OpenCL debugging and profiling tools can be found at https://www.khronos.org/
opengl/wiki/Debugging_Tools.
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Table 1. A list of the GPUs used in this work. The profile-driven development was carried out on the 840M
and GTX780, and all three GPUs were used to benchmark computational performance and power efficiency.
Note that the performance in gigaFLOPS is for single precision.

Model Class Architecture

(year)

Memory GigaFLOPS Bandwidth Power device

GeForce
840M

Laptop Maxwell
(2014)

4 GiB 790 16 GB/s Watt meter

GeForce
GTX780

Desktop Kepler
(2013)

3 GiB 3977 288 GB/s Watt meter

Tesla V100 Server Volta (2017) 16 GiB 14899 900 GB/s nvidia-smi

4. Benchmarking performance and power efficiency

Throughout this section, we consider simulation of the shallow-water equations using
three different numerical schemes:

• a linear finite difference scheme,
• a nonlinear finite difference scheme, and
• a high-resolution finite volume scheme.

We benchmark different versions for each of the three codes with respect to computa-
tional performance and power efficiency on three different GPUs. The schemes are used
for simulating real-world ocean currents, and two of them have been used operationally.
All three schemes are essentially stencil operations with an increasing level of complex-
ity, and their details are summarized in Holm et al. [30].

4.1. Profile-driven optimization and porting

Our starting point is OpenCL implementations of the three numerical schemes [30,31],
and even though the code is algorithmically well suited for the GPU, little effort has been
made to thoroughly optimize its performance on a specific GPU. It is well known in the
GPU computing community that performance is not portable between GPUs, neither for
CUDA nor OpenCL, and automatically generating good kernel configurations is an ac-
tive research area (see e.g., [32,33,34]). Using the available profiling tools for CUDA, we
perform profile-driven optimization. This is an iterative process that starts by profiling
the code to identify the main performance bottleneck. The next step is then to optimize
this bottleneck, before running tests that ensure that the optimization did not introduce
bugs to the code. Thereafter the code is analysed in the profiler again in search for a new
bottleneck [35]. The profiling and tuning is carried out mainly on a laptop with a dedi-
cated GeForce 840M GPU, representing the low-end part of the GPU performance scale,
and some final tuning was performed on a desktop with a GeForce GTX780 GPU, repre-
senting a typical mid-range GPU. We compare the performance of the original and opti-
mized implementations with PyCUDA and PyOpenCL using these two GPUs, as well as
on a recent high-end Tesla V100 GPU commonly found in servers and super computers.
Information on these three GPUs is listed in Table 1. Together they represent the differ-
ent types of GPUs a typical researcher might have access to in a research environment:
a laptop and/or a desktop with local access and an expensive powerful server GPU in a
remote location.
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Figure 1. Heat map of performance as a function of block width and block height for selected sizes for the
high-resolution scheme on three different GPUs. Notice that even though the performance patterns have sim-
ilarities, the performance on the V100 would be suboptimal if the optimal configuration from the GTX780 is
used. The performance increase is 2−5× for all three GPUs from the slowest to the fastest block size.

An important performance parameter for GPUs is the domain decomposition de-
termined by the block size. CUDA decomposes the work into a grid with equally sized
blocks, and all blocks are executed independently. At runtime, the GPU takes the set of
blocks and schedules them to the different cores within the GPU. Using a too small block
size will under-utilize the GPU, and using a too large block size will similarly exhaust
the GPU’s resources. Figure 1 shows how the block size has a major impact on perfor-
mance, and also illustrates that finding the best block size can be difficult. Because of
this, we experimentally obtain the optimal configuration for each scheme before starting
profiling, and again after the code has been optimized.

The porting process between PyOpenCL and PyCUDA requires changes in both the
kernel code that runs on the GPU, and the API calls in the CPU code. Most of the changes
in the kernels are straight-forward and consist of changing keywords due to different
terminologies [21,22]. The CPU APIs are however quite different between OpenCL and
CUDA, but their Python wrappers reduce the differences somewhat. It still requires cor-
rect handling of devices, contexts and streams, compiling and linking kernels, setting
kernel arguments, grid and block dimensions, and memory transfers. Furthermore, there
is also a large difference in availability of native and third-party libraries, built-in and
specialized functions, and data types that need to be handled.

In our case, the linear and nonlinear schemes were found to be very memory-bound.
Both schemes were originally implemented with three separate kernels (one for each
of the three variables in the shallow-water equations), with a large overlap in the data
dependency. The first tuning step consisted of fusing the three kernels into one, and thus
reduced the overall memory bandwidth requirement of both schemes.

Profiling the high-resolution scheme revealed that the occupancy was very low due
to excessive use of shared memory. The optimizations consisted of largely reducing the
amount of shared memory used, and instead relying more on re-computations. When
shared memory usage was no longer the performance bottleneck, we reduced the number
of registers used per thread. All three schemes were further optimized through the use of
compiler flags.
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Figure 2. Performance of original, ported, and optimized codes measured in megacells per second, normal-
ized with respect to performance of the original OpenCL implementation. Notice that there is relatively little
difference between CUDA and OpenCL, except for the nonlinear scheme on the 840M and V100, whilst there
is a significant difference in how effective the tuning is for the different architectures. Furthermore, there is a
significant loss of performance when porting from OpenCL to CUDA in our original approach for the high-res-
olution scheme. From our experience, this relates to how the two languages optimize mathematical expressions
with and without the fast-math compilation flags.

4.2. Comparing performance

The overall performance gain of our optimization is shown in Figure 2, where all results
are given in megacells per second normalized with respect to the original PyOpenCL
implementation. The original porting from PyOpenCL to PyCUDA gave a noticeable
reduction in performance for the high-resolution scheme on all GPUs. After careful ex-
amination, we attribute this to different default compilation flags in PyCUDA and Py-
OpenCL: In PyCUDA, the fast-math flag was shown to double the performance for the
high-resolution scheme, while we found that it gave less than 5% performance gain with
PyOpenCL. Note that this affects the linear and nonlinear schemes to less extent, as these
schemes contain fewer complex mathematical operations, and we instead observe a vary-
ing effect on performance of porting the original OpenCL code to CUDA. When exam-
ining the numerical schemes one by one, we see that the optimizations performed for the
high-resolution scheme appears to be highly portable when back-ported to PyOpenCL
for all GPUs. For the tuned nonlinear scheme, however, we see that the 840M and V100
GPUs give significantly higher performance using CUDA than OpenCL, but similar per-
formance on the GTX780. Finally, for the linear scheme, the tuning gives a similar in-
crease in performance both on CUDA and OpenCL, relative to the original versions. In
total, we see that certain scheme and GPU combinations result in a significant speedup
for CUDA over OpenCL, but we cannot conclude whether this is caused by differences
in driver versions or from other factors. We are therefore not able to claim that CUDA
performs better than OpenCL in general.

4.3. Measuring power consumption

Wemeasure power consumption in two ways. The first method is by using the nvidia-smi
application, which can be used to monitor GPU state parameters such as utilization, tem-
perature, power draw, etc. By programmatically running nvidia-smi in the background
during benchmark experiments, we can obtain a log containing a high-resolution power
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draw profile for the runtime of the benchmark. The downside of using nvidia-smi is
that information about power draw is only supported on recent high-performance GPUs.
From our selection of GPUs, this applies only to the Tesla V100 GPU. Further, nvidia-
smi monitors the energy consumption of the GPU only, meaning that we do not have
any information about energy consumed by the CPU. For each experiment, nvidia-smi
is started in the background exactly 3 s before the benchmark, and is configured to log
the power draw every 20 ms. This background process is stopped again exactly 3 s after
the end of the simulation. This approach allows us to measure the energy consumption
of the idle GPU both before and after each benchmark, and we ignore the idle sections
when computing the mean and total power consumption for each experiment. All results
presented here are with the idle load subtracted from the experimental results.

The second method is to measure the total amount of energy used by the entire
computer through a watt meter. The use of the watt meter requires physical access to the
computer, and we are therefore restricted to do measurements on the laptop and desktop,
containing the GeForce 840M and GeForce GTX780 GPUs, respectively. The watt meter
offers no automatic logging or reading, but displays the total power used with an accuracy
of 1 Wh. To get sufficiently accurate readings we need to run each benchmark long
enough to keep the GPU busy for approximately one hour, after which we read the total
and mean power consumption for each experiment. Before and after each benchmark,
we also record the background power of the idle system, and the maximum recorded
power during the experiment, to monitor whether the operating system is putting any
non-related background load on the computer. It should also be noted that the battery
was removed from the laptop during these experiments. Similarly to the first method,
we subtract the idle loads from the result of each experiment, but we will here have the
increased power load on the CPU also included.

4.4. Comparing power consumption

Figure 3 shows the results from the power efficiency experiments using the watt meter
on the laptop (840M) and desktop (GTX780). The top row repeats the results for compu-
tational performance also shown in Figure 2 for the relevant GPUs, whereas the second
row show the normalized mean power consumption with respect to the original OpenCL
versions. The first thing we notice is that CUDA seems to require less power on the 840M
compared to OpenCL for all versions of the three schemes. On the GTX780, however,
there are no differences between the two programming models for equivalent versions. In
fact, only the tuned high-resolution scheme seems to be different from the others (using
about 30% more power), and this behavior can also be seen on the 840M. The power ef-
ficiency of the three schemes is shown in the bottom row in Figure 3, and we see that on
the 840M the tuned CUDA versions are the most power efficient. This is because CUDA
is both more efficient and uses less power on this system. On the GTX780, CUDA and
OpenCL have equivalent power efficiency for all tuned schemes.

The results for the Tesla V100 are shown in Figure 4. The top row shows the com-
putational performance in megacells per second, repeating the results from Figure 2. The
second row shows the mean power used by each version of the three schemes. Note here
that both CUDA versions for the nonlinear scheme use 60-90% more power than the
OpenCL versions, which is the opposite result compared to the 840M results. For both
the linear and high-resolution schemes, the results do not differ significantly in favor of
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Figure 3. Comparison of original, ported and optimized codes measured in megacells per second (top row),
mean power usage (mid row), and megacells per joule (bottom row), normalized with respect to the original
OpenCL implementation, for the laptop (840M) and desktop (GTX780) GPUs. The power is measured through
a watt meter, and represents the power consumed by the entire computer. Note that the CUDA versions re-
quires less power than the OpenCL versions on the 840M, whereas there are no differences between equivalent
versions on the GTX780. In terms of power efficiency, CUDA is more efficient than OpenCL on the M840,
whereas the GTX780 gives the same power efficiency.

either CUDA or OpenCL, but the tuned OpenCL version uses slightly more power for
the high-resolution scheme. When we consider the power efficiency in the bottom row,
we see that the tuned CUDA versions are the best versions for all schemes. In particular
for the nonlinear scheme, this is mostly due to the large difference in computational effi-
ciency between CUDA and OpenCL for this particular scheme on this particular GPU.

In general, we observe that all experiments show a mean power usage within about
30% of the original OpenCL versions, with the exception of the nonlinear scheme on
the V100. On the other side, the computational performance increases up to 5 times (the
high-resolution scheme on the GTX780). This shows that the most important factor for
improving power efficiency is to increase computational performance.
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Figure 4. Comparison of original, ported and optimized codes measured in megacells per second (top row),
mean power usage (mid row), and megacells per joule (bottom row), normalized with respect to the original
OpenCL implementation, for the Tesla V100 GPU. The power is measured through nvidia-smi, and represents
the power consumed by the GPU only. There are only minor differences in mean power consumption between
different versions of the linear and high-resolution scheme, but CUDA uses more power than OpenCL for the
nonlinear scheme. CUDA is however more power efficient than OpenCL for all three tuned schemes.

5. Summary

In this work, we have benchmarked three different OpenCL codes, our ported code in
CUDA, our optimized CUDA code, and finally our OpenCL code with optimizations
found using the CUDA tools. Our results are shown for three different GPUs, thus repre-
senting many of the GPU architectures in use today. Finally, we have looked at the power
consumption for all versions of the code.

The original motivation for using OpenCL was to support GPUs and similar archi-
tectures from multiple vendors. Our motivation for changing from OpenCL to CUDA
was because of the better software ecosystem for CUDA, and we have been very happy
with our choice. CUDA appears to be a much more stable and mature development
ecosystem with better tools for development, debugging and profiling for our hardware.
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We found it interesting that our initial port from OpenCL to CUDA imposed a per-
formance penalty, due to different default compiler optimizations. Even though some au-
thors have reported OpenCL to be slower than CUDA, we find no conclusive results that
support this in general. The performance gain varied much more with the GPU being
used than whether we used CUDA or OpenCL. However, we do observe that for certain
combinations of scheme and GPU, we get a significant speedup for CUDA over OpenCL.
Additionally, we found that the performance gain of tuning the numerical schemes have
vastly different effects on the run time for different GPUs. Even though we profiled and
optimized mainly using a laptop GPU, the highest relative performance gain was for a
server class and a desktop class GPU.

There does not seem to be any clear relations between the power consumption
when comparing different schemes, optimization levels, GPUs, and programming mod-
els. When we look at power efficiency, we see that CUDA performs better than OpenCL
for all tuned schemes on the Tesla V100 and GeForce 840M GPUs, whereas there are
no differences on the GeForce GTX780. When we examine the impact of performance
tuning on power efficiency, there appears to be a systematic and clear relationship: A fast
code is a power efficient code.
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Abstract. In this paper we report results of the analysis of computational perfor-
mances and energy efficiency of a Lattice Boltzmann method (LBM) based appli-
cation on the Intel KNL family of processors. In particular we analyse the impact
of the main memory (DRAM) while using optimised memory access patterns to
accessing data on the on-chip memory (MCDRAM) configured as cache for the
DRAM, even when the size of the data of the simulation fits the capacity of the
on-chip memory available on socket.

Keywords. Lattice Boltzmann method, KNL, Cache mode, Flat mode, energy
efficiency, computational performances

1. Introduction

The LBM [1] is widely used in computational fluid-dynamics to study the behaviour
of fluid flows. Computational fluid-dynamics studies requires a huge amount of compu-
tational resources when simulating 3-dimensional systems at high-resolution. To study
the behaviour of multicomponent emulsions, an amount of 40 millions core-hours was
allocated, for a year, on the KNL partition of the MARCONI Tier-0 system, hosted at
CINECA, within the PRACE 17th call, project named “TurEmu - The physics of (tur-
bulent) emulsions”. To successfully complete the project and perform the simulations
on a large number of KNL processors, we developed a LBM based application which
delivers good scaling performances on distributed systems while optimising the memory
access through a data organisation that enables high computing efficiency. The overall
code optimisation, as well as the optimised data layouts were introduced in [2], including
a performance analysis in terms of both computing and energy consumption on the KNL
processor. Other similar analysis were also previously studied on different computer ar-
chitectures [3,4,5].
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In this paper we present a new analysis of computational performances and energy
efficiency of our code on the Intel KNL family processors when using the on-chip mem-
ory as cache for the main memory even when the size of the data of the simulation fits
the capacity of the on-chip memory available per socket. We show how optimized mem-
ory access patterns are efficient in using the on-chip memory. Indeed, accessing only the
faster on-chip memory with generic data layouts, does not bring any benefit over using
it as an additional cache level between the cores and the DRAM. On the other hand, we
demonstrate that optimized data layouts allow our LBM application to fully exploit the
on-chip memory, obtaining an higher performance and making it more efficient to use
this memroy exlcusively, without involving the DRAM.

The rest of the paper is composed as follow: in section 2 we describe the main tech-
nical aspects of the KNL processor relevant to our analysis, in section 3 we introduce
the scientific context we have been working on underlining the relevance of the perfor-
mance analysis, in section 5 we present the performance results of the code on the KNL
processors while, in section 6, an analysis on energy efficiency is reported.

2. The Marconi Tier-0 System and The KNL Processor

The KNL processor is equipped with 6 Double Data Rate fourth-generation (DDR4)
channels at support of up to 384 GB, depending on the size of the memory modules, of
synchronous Dynamic Random-Access Memory (DRAM) with a peak raw bandwidth
of 115.2 GB/s. The processor also includes four high-speed memory banks based on the
Multi-Channel DRAM (MCDRAM) that provides 16 GB of memory, capable to deliver
an aggregate bandwidth of more than 450 GB/s when accessing the on-package high-
bandwidth memory. Therefore, maximize the usage of the MCDRAM is a key aspect
to achieve great performance for memory bounded applications. MCDRAM on a KNL
can be configured at boot time in Flat, Cache or Hybrid mode. The Flat mode defines
the whole MCDRAM as addressable memory allowing explicit data allocation, whereas
Cache mode uses the MCDRAM as a last-level cache.

The Marconi KNL (A2 partition) was deployed at the end of 2016 and consists
of 3600 Intel server nodes integrated by Lenovo. Each node contains 1 Intel Knights
Landing processor with 68 cores. The entire system is connected via the Intel OmniPath
network. CINECA provides to PRACE users, as well as to all other users the KNL nodes
configured in Cache mode. Probably this is mainly due to the fact that performances of
common applications are comparable on the KNL configured either in Cache mode or
Flat mode when the size of the data of the application fits the 16 GB capacity of the
MCDRAM, and the on-chip memory is used as cache of the DRAM memory. Indeed, as
we show in this work, this is also confirmed by our analysis on LBM based applications
when using common data layouts. On the other hand the Cache mode configuration is
more flexible giving users applications the opportunity to exploit an higher capacity of
memory per socket while relying on the MCDRAM as cache to maximise the memory
throughput.

As we want to measure the impact of the DRAM when the KNL is configured in
Cache mode and the dataset fits the memory available on the MCDRAM, we perform
the performance analysis as well as the measures of energy efficiency on a 64-core Intel
Xeon Phi CPU 7230 processor installed in our laboratory. The authors consider the sys-
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tem equivalent to the one installed on Marconi as far as the present analysis is concerned.
However, using a stand alone processor gives us the flexibility to make a number of tests
by rapidly switching the configuration of the processor between Cache and Flat mode
along with the opportunity to use the processor with root privileges that are required for
measurements of energy efficiency. We only consider the Quadrant cluster configuration
in which the 64-cores available are divided in four quadrants, each directly connected
to one MCDRAM bank. The same configuration is used on Marconi for the PRACE
projects production.

In this work, we used Intel library for Message Passing Interface (MPI) to com-
pile the LBE3D application. Compiler auto-vectorization is activated at compile time
using the -xMIC-AVX512 Intel compiler option. Multi-thread version of LBE3D is im-
plemented using OpenMP and enabled at compile time. Threads affinity at run time is
obtained with “KMP AFFINITY=compact” and “I MPI PIN DOMAIN=socket” envi-
ronment variables. Memory allocation for all results related to the KNL configured in
Flat mode is made by using the “numactl -m 1 mpirun ./lbe3d” command.

3. The Lattice Boltzmann Method

Multi-component fluids are extremely common in industrial as well as natural processes.
In particular, multi-component fluids emulsions are an important ingredient of many
foods and cosmetics, and at the same time fascinating systems from the point of view
of fundamental science, due to the rich fluid dynamic phenomenology. To explore the
physics of complex fluid emulsions we employ high-resolution and high-statistics simu-
lations, via optimised computational codes based on the multicomponent LBM.

We implemented a largely-scalable and highly-optimised LBM based code to study
high-resolution stabilised emulsions on a 3-dimensional domain. In particular the objec-
tive is to explore the physics of complex fluid emulsions using disjoining pressure at the
surface between the two components [6]: from their production, via turbulent stirring, to
their (statistical) behaviour under flowing, as well as, under resting jammed conditions
(figure 1). We are interested in collecting a large statistics aimed at providing a detailed
analysis of the emulsion morphology (e.g. droplet size distribution) of the various inves-
tigated systems by varying the turbulent forcing, the resolution, as well as the volume
fraction of the two components.

LBM, recently emerged as a popular numerical method for computational fluid dy-
namics applications, aims to solve a discretized version of the Boltzmann Equation. Due
to its ability to fulfil both symmetry and conservation constraints needed to reproduce
hydrodynamics in the continuum limit, LB could be viewed as a kinetic solver for the
Navier-Stokes equations. From an algorithmic point of view, the method is based on a
splitting approach: a free flow streaming step (propagate) is followed by a collision
step (collide). During the streaming step, the discrete probability distribution functions
(frequently named as populations), arranged to form a lattice at each grid site, propagate
along a predetermined number of molecular trajectories and with an assigned speed so
that at each time step they can only move to next-nearest neighbor grid sites. The colli-
sion step, instead, features a relaxation process towards equilibrium determined accord-
ing to the local flow properties. Such splitting approach guarantees clear advantages in
practical implementations as a relevant number of parallelisms can be identified. This
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(a) 2563 (b) 5123 (c) 10243

(d) 2563 (e) 5123 (f) 10243

Figure 1. Via turbulence stirring we could produce emulsions at different numerical resolutions, from top to
bottom, 2563, 5123 and 10243. As it can be observed we obtain stretched droplets when turbulence is turned
on (a-c) and jammed compositions of spherical droplets (d-f), with a volume fraction of approximately 40% of
the droplets phase, in absence of turbulence.

makes LBM an ideal tool to investigate performances of modern high-performance com-
puting systems [7,8,9]. In particular we use these two kernels to measure peak perfor-
mance and memory bandwidth. Indeed, the propagate kernel is characterised by a data
movement in memory with no floating point operations while the collide kernel in-
cludes high number of floating point operations. By counting the floating points oper-
ation used to implement the (collide) kernel we can estimate the peak performance
at runtime. However, the measurement presented in this paper is only a reference for a
generic LBM based application as the number of floating point operations implemented
within the collide kernel changes accordingly to the physics of the numerical model.
We adopt the D3Q19 LBM stencil, a 3-dimensional model with a set of 19 population
elements corresponding to (pseudo)-particles moving one lattice point away along all 19
directions. Therefore, due to the complexity of the model and the number of simulations
we plan to investigate the physical (statistical) behaviour of the system by varying the
initial configuration on a parameter space as well as the resolutions, we are strongly mo-
tivated to optimise and analyse in details the performance of the main kernel of our 3d-
dimensional implementation of the LBM. Indeed, this requires a large amount of compu-
tational resources, especially considering the two lattices needed to describe multicom-
ponent emulsions.
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4. Code Optimisations

Legacy data structure such as Array of Structures (AoS) or Structure of Arrays (SoA)
are commonly used to implement stencil based applications, including LBM. In [2] we
have described two additional data structure that can be used for LBM based application
but delivering better performances if compared with canonical AoS or SoA data layouts.
The two new layouts called CSoA and CAoSoA are seen as an extension of the SoA
where V L lattice-site data at distance L/V L (L dimension of major order store) are clus-
tered in consecutive elements for each population array, with V L equal to the number of
double precision elements that can be stored in the vector register available on the given
architecture. The newly designed layouts for high-performance LBM based codes allow
to store data properly aligned in memory and aiding the compiler in the process of auto-
vectorization of the steps required to compute the LBM main loop. The CAoSoA struc-
ture is a mix between CSoA and AoS, and allows to exploit the benefit of the V L clus-
terization of lattice sites element as introduced by the CSoA schema but with the benefit
of higher locality in regards to the populations. In [2] we have also described the optimi-
sation implemented in our LBM code by fusing the collide and propagate kernels,
avoiding to store intermediate hydrodynamic quantities when not needed. In the follow-
ing analysis we refer with CF to the classical schema implemented in high-performance
LBM based applications where the propagate and the collide kernel are separated
and the density stored on a separate structure, and with FF the fully fused version where
the two kernels are compact and the density only temporary computed.
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Figure 2. Strong and weak scaling of the LBE3D code using the CSoA data layout on the KNL partition of
Marconi. The strong scaling chart shows the scaling achieved on a 5123 dataset by increasing the number of
nodes with a reference initial point of 4 KNL nodes. The weak scaling chart reports how the code scales in
function on the number of node by fixing the amount of work per process. In this case a 2563 lattice is for the
benchmark on 2 nodes, a 5123 lattice on 16 nodes and a 10243 lattice on 128 nodes

5. Performance Measurements

In [2] we have been reporting performance measurements mainly related to the KNL
when configured in flat mode and analysing the scaling as function of the number of
thread used per SMT core. As that work demonstrated how the best configuration was
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Figure 3. For the KNL processor configured in both FLAT mode and CACHE mode, we report in the upper
chart the measured peak performance for the collide kernel while in the bottom chart the measured memory
bandwidth for the propagate kernel. The performance measurement is reported using a single MPI process
and 64-threads, one per each SMT KNL core. The performance measurement is performed on a lattice size of
2563 which represent a real workload but at the same time fits the 16 GB capacity of the MCDRAM available
on a single KNL socket.

achieved when using a single thread per SMT core, in this new analysis we only refer to
configuration where the used number of thread is equivalent to the number of available
cores on socket. Only a brief reference to the cache mode configuration was reported to
show the performance impact when considering larger data-set that would not fit the 16
GB capacity of the MCDRAM memory. In other words, we were considering the KNL
configured in cache mode only as the unique alternative when having to deal with dataset
larger than 16 GB. However, as the Marconi KNL partition is configured in cache mode
and we were allocated a significant amount of computer resources on the system for
the PRACE project production we analysed performances also when using smaller data
structures. Indeed, the LBE3D code demonstrated to efficiently scale on a large number
of nodes and while scaling up we can reduce the amount of data per single compute node
up to the point that we can always fit the 16 GB capacity of the MCDRAM memory,
figure 2.

The first analysis was performed to measure the performance of the memory band-
width using the propagate kernel in both configurations while using the same data-set
and varying the presented data layouts. In figure 3 the result are reported. It is interesting
to see how, only when using highly optimised data layouts such as CSoA and CAoSoA,
there is a significant boost in terms of memory bandwidth moving from the Cache mode
to the Flat mode. In particular for the CSoA data layout we could achieve a 50% of per-
formance improvement in memory bandwidth for the same data set and the same code,
simply switching the KNL configuration. Much lower impact is instead measured if con-
sidering the peak performance (FLOP/s) as reported for the collide kernel in figure
3. In this case we still register a significant boost of the highly-optimised data layouts
if compared with the more common layouts but there is not the same performance lost
when comparing the KNL processor configured in Flat or in Cache mode. In this case
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and lattice size as for figure 3 is used also here.

only a performance benefit of about 10% is registered if comparing the two configura-
tions.

Other than comparing the single kernels of propagate and collide we have also
compared the performance gap between two configuration while considering the entire
LB loop which includes boundary exchange and other minor kernels, figure 4. Again the
results confirm the trend reported by measuring the single kernels. First it is possible to
notice how the common layout AoS and SoA do not show any performance difference
between the two KNL configurations. On the other hand, as reported in the inset of figure
4 the highly-optimized layouts provide a performance benefit between 15% to 23% when
considering the KNL configured in Flat mode rather then in Cache mode.

6. Energy Efficiency

We now consider energy efficiency for the LBE3D across the multiple data layouts pre-
sented in both the CF and the FF version of the code. Again we want to analyse the
energy consumption in both Flat and Cache mode using a data-set that fits the on-chip
memory capacity and try to understand what is the impact of the DRAM memory util-
isation. We use data from the Running Average Power Limit (RAPL) register counters
available in the KNL read through the custom library developed in [10]. In Figure 5, we
show the measured values of energy consumption (million Joule) for the LBE3D appli-
cation, respectively, for the processor and for the off-chip DRAM memory. The DRAM
energy consumption is generally lower as the KNL is configured in Flat mode and during
the simulation data are all stored into the MCDRAM. Indeed, energy measurements for
the DRAM memory takes into account just the idle consumption, while the MCDRAM
energy consumption is accounted in the CPU Package value, since MCDRAM is an on-
package memory, such as caches.
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Figure 5. Measure of energy consumption for the LB main loop for all considered data layout in the fused
fashion. Data are reported for KNL configured in cache mode as wall as in flat mode. The inset reports the
ration between the fused versions in term of both CPU and DRAM. The same setting and lattice size as for
figure 3 is used also here.

It is relevant to notice that, despite the CSoA and CAoSoA data layouts are expected
to stress the CPU system more than the AoS and SoA (higher utilisation of the VPU), we
can assume that the absorbed power remains approximately constant when considering
different data layouts. Indeed, it is evident how the energy consumption remains mostly
proportional to the time to solution, figure 4. On the other end it is impressive to see how
we measure a much higher energy consumption as far as the DRAM is concerned. Our
analysis reports that when using the highly optimized data layouts on the KNL configured
in Cache mode, more energy is required due to DRAM if compared to the Flat mode.

7. Conclusions

Our LBM based application implements highly optimised data structures capable to de-
liver high-performance on modern many-cores processors systems such as the Intel KNL
processor. In this work we have demonstrated that the introduced data layouts CSoA
and CAoSoA are also extremely efficient in exploiting memory on-chip such as the MC-
DRAM. Indeed, while canonical structure such as AoS and SoA do not show any benefit
when switching from Flat mode to Cache mode, the clustered data structure are much
more efficient in Flat mode than in Cache mode. Highly scalable optimised code based
on LBM can enable computer simulations at the frontier of science by reducing amount
of memory required per core up to the capacity of the on-chip memory and excluding
completely the main memory (DRAM). While this effort would be useless if consider-
ing common data layouts for stencil codes, our analysis shows that, when the clustered
data layouts are used, a benefit between 15% to 25% is achieved by excluding the main
memory DRAM. Moreover, results have confirmed the efficiency of highly-optimized
data layouts also in term of energy consumption. The unnecessary access to the DRAM,
in case the size of the data of the simulation fits the on-chip memory, translates in a
significant overhead in energy consumption when considering the clustered data layouts.
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Abstract. In this paper, we evaluate the performance, power consumption and its
variation and also thermal behavior of the DGX-2 server from Nvidia. We present
a development of specialized synthetic benchmarks to measure raw performance
of GPUs for single, double, half precision and also Tensor Core units. With these
benchmarks, we were able to reach peak performance and verify the specifica-
tion provided by Nvidia. We achieved 130.79 TFLOPS peak performance in half-
precision on Tensor Cores. We also measured the thermal stability of the DGX-2
system. It can hold its peak performance when all 16 GPUs are fully loaded except
Tensor Core workload, when thermal throttling occurred with with up to 1% per-
formance penalty. During single-precision workload we observed 23% variation
of the power consummation of individual GPUs installed in the system. Finally,
we have evaluated the behavior of the Tesla V100-SXM3 chip under the DVFS
tuning. Running at optimal frequency, the compute bound workload can save up
to 39% energy while the run-time increases by 51%. More importantly, memory
bound workload can save up to 31% with 2% throughput penalty and during the
communication over NVLink one can save up to 26% energy with no penalty.

Keywords. DGX-2, tensor core, performance analysis, energy efficiency, dynamic
voltage and frequency scaling (DVFS)

1. Introduction

In this paper, we evaluate the performance of the Nvidia DGX-2 system using a new
synthetic benchmark, designed to achieve and measure the peak performance of both
CPUs as well as Nvidia GPUs. For this paper, we have developed a new version of this
benchmark with support for Tensor Cores [1]. With our benchmark, we were able to
match V100-SXM3’s peak performance stated by Nvidia. In adition, we measured GPU
memory and NVLink throughput.

Research in related work is focused on different aspects of DGX-2 system. For
instance, Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking [2] is
more focused on the V100 GPU architecture. This work explores deeply the whole V100
memory hierarchy, including throughput and latencymeasurements. It also inspects native
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Volta instructions with issue latency measurements. Furthermore, Evaluating Modern
GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch andGPUDirect [3] focuses onGPU
communication technologies. It analyses aspects like throughput, latency and topology of
different GPU interconnects that are used on several GPU servers, including the DGX-2.

The goal of this paper is to evaluate the thermal stability and GPU power consump-
tion. Moreover we performed dynamic frequency and voltage scaling (DVFS) for com-
pute bound, memory bound and communication workloads and stated the most efficient
configuration for these workload types. In the end we also evaluate power consumption
of the whole node.

1.1. DGX-2 platform description

The main focus of the DGX-2 server is to accelerate tasks in artificial intelligence.
However, it is well-suited to run any GPU or multi-GPU application. It contains 16 Tesla
V100-SXM3 GPUs interconnected with high speed NVLink interconnect [4]. It also
features a pair of Intel Xeon Platinum 8168 CPUs, 1.5 TB of memory and 30 TB of fast
NVMe SSD storage. The server can be equipped with either eight EDR Infiniband or
100GbEthernet network cards. [5] TheGPUs are spread across two trays, each containing
8 GPUs in two rows. Cooling fans are located at the start of the tray as shown in Figure 1.

Figure 1. Physical GPU layout of the DGX-2 server.

The V100-SXM3 GPU is equipped with 80 streaming multiprocessors (SMs) and
32GB of HBM2 memory. Each SM consists of these processing units: 64 FP32 (float),
64 INT32 (32 bit integer), 32 FP64 (double precision) and 8 Tensor Cores (16 bit floating
point – half precision). [4]. The basic operation with 16 bit floating point data type – half
is performed on floating point units. It can also perform half2 vector operations and reach
double the performance of float.

GPUs on DGX-2 system are interconnected with hi-speed bus called NVLink in
version 2. Single NVLink-V2 link can provide 25GBps throughput in single direction and
50GBps in both directions. The system is also equipped with 12 NVSwitches. Each GPU
is connected to six of these switches with single NVLink-V2 link, providing 300GBps
bidirectional peer-to-peer (P2P) throughput. [3]

The Volta architecture introduce Tensor Cores – processing units designed to per-
form fused multiply-add operation with 16× 16 half precision matrices. The result ac-
cumulation can be done either in half-precision or in single-precision. The programmer
can access mma sync() function which performs a warp level operation: every thread of
warp is participating in the matrix multiplication. [1]
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2. Measurement Methodology Description

2.1. Benchmarks

The Mandelbrot benchmark is designed to measure pure floating point performance of
the processor at very high arithmetic intensity. It executes the Mandelbrot iterations
zk+1,i = z2ki+ci where z0i = 0 and the constants ci are from theMandelbrot set of complex
numbers. The Mandelbrot iterations may be repeated indefinitely and remain bounded.
For simplicity and efficiency, we select the constants ci only from the numbers on the real
axis. The benchmark is implemented in CUDA PTX assembly code [6]. Each thread on
the GPU device is initialized with eight unique constants ci. We use 32 threads per block
and 12 blocks per streaming multiprocessor. After the initialization, all computation runs
in the registers only, avoiding any references to memory. The loop over k updates all
values of zki using FMA instructions. Further, the loop is unrolled 100 times, counting
800 consecutive fused mulitply-add instructions, in order to out-weight the loop overhead
of three instructions. The loop counter runs one million times to vastly outrun the clock
granularity and provide reliable performance measurements. The measurement may be
repeated number of times. The arithmetic intensity of the benchmark is 12.5×106 FLOP
per byte in double precision and up to quadruple of that in single and half precision.

The Mandelbrot benchmark may be naturally extended to matrix domain. In matrix
form, the square matrix Z is updated as Zk+1 = Zk ∗Zk+C, where the ∗ refers to matrix-
matrix multiplication, the matrix Z0 = 0 and the square matrix C has eigenvalues from
the Mandelbrot set. Such matrix iterations may be repeated indefinitely and the matrix
Z will remain bounded. It would be natural to use the matrix Mandelbrot iterations as a
load to benchmark the Tensor Cores. However the WMMA interface does not allow to
insert the output of the WMMA instruction as an input into the next WMMA instruction
directly due to the fact that the matrix fragments held by individual thread registers are
not identical for input and output matrices. Reusing the output registers as input registers
into the WMMA instruction introduces permutations into the matrix, in addition some
matrix elements are repeated and some are lost. Nevertheless, the l2 norm of the matrices
created in this way remains approximately correct. Recognizing that the reuse of the
output registers as input registers to WMMA instructions approximately conserves the l2
norm and using the property of sub-additivity and sub-multiplicativity of the l2 norm, we
are able to select theC as real valued, random matrices, taken such that their eigenvalues
lie well within the bounds of theMandelbrot set and the matrix iterations remain bounded
indefinitely. Utilizing this result, we have implemented the matrixMandelbrot benchmark
for the Tensor Cores, using the PTX WMMA instructions API [6]. The data are kept in
the registers only, the Z and C being 16 bit floating point 16× 16 matrices. Each block
is initialized to unique C matrix. The C matrices are pre-computed off the benchmark
code, by shifting and scaling a randomly generated square matrices. The block count,
loop unrolling and loop count remains the same as for the scalar version. The arithmetic
intensity exceeds millions of floating point operations per byte. The arithmetic intensity
of the matrix benchmark for the Tensor Cores is 1.6×109 FLOP per byte. [7]

The throughput of the memory subsystem was measured by STREAM [8] bench-
mark, modified for GPUs, also available at the GIT repository [7]. All functions of the
STREAMbenchmarkweremeasured: copy, scale, add, triadd. The throughput of NVLink
interconnect was measured by performing peer-to-peer (P2P) data transfer between two
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GPUs with cudaMemcpyPeerAsync() call. [9] The throughput was measured in single
direction as well as bidirectionally.

2.2. Frequency Scaling and Energy Measurement

To simulate compute bound workload, we took our Mandelbrot benchmark. On the other
hand, memory bound workload is represented by the STREAM benchmark. Furthermore,
measurement of P2P data transfer over NVLinkwas also performed. Energymeasurement
and frequency scaling was performed using tools provided by Nvidia. To measure energy
consumption, theNvidiaManagement Library – NVMLwas used. For the frequency scaling
and taking samples with power, temperature and frequency the nvidia-smi utility was
used. In this paper, we use the same methodology to measure energy efficiency as
described in the Green500 tutorial [10] with the exception that we use our Mandelbrot
benchmark to determine peak performance instead of Linpack benchmark.
NVML provides C-based programmatic interface for monitoring and managing Nvidia

GPUs. It is intended to be a platform for building third party applications. During the ex-
periments, NVMLwas used to access a total energy consumption counter for the GPU. This
counter can be accessed with nvmlDeviceGetTotalEnergyConsumption() function
call [11]. To measure energy consumed by certain workload the value of this counter was
read two times: right before launch and right after it finishes. Subtracting these values
yield energy consumed by the workload in mJ. Application initialization and cleanup is
not included in this measurement, only the main loop with the measured workload.

The Nvidia System Management Interface: nvidia-smi was used to collect power,
temperature and frequency samples to analyze power and thermal properties. These
samples were captured at approximately 100Hz sampling rate. Furthermore this utility
was used to change frequency of GPUs. The frequency was decreased from 1597MHz
to 675MHz in approximately 7MHz predefined steps. HBM2 memory frequency cannot
be tuned, thus staying at 958MHz even when the card is idle.

3. Results

3.1. Performance

We have not found any peak performance numbers published for V100-SXM3 GPU used
in DGX-2 server. However, we were able to retrieve these numbers from Nvidia Profiler.
The performance of Tensor Cores is not stated for this version of V100GPU. V100-SXM2
revision has Tensor Core peak performance of 125 TFLOPS in the half-precision, running
at 1530MHz [4]. If we scale up this number to match SXM3’s 1597MHz, we should
be getting 130.484 TFLOPS in half-precision. Global memory bandwidth is according to
Nvidia Profiler 980.992GBps. NVLink’s unidirectional P2P throughput is 150GBps and
300GBps in both directions. Results of Mandelbrot benchmark, STREAM benchmark
and NVLink P2P transfer benchmark are shown in Table 1.

3.2. Power and Thermal Properties

The physical layout of the DGX-2 server causes that cold air is not distributed equally
among all the GPUs. The GPUs are placed in two trays, where each tray contains 8GPUs
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Mandelbrot benchmark

Specification
[TFLOPS]

Measurement
[TFLOPS]

double 8.177 8.1765
float 16.353 16.3530
half2 32.707 32.7038
tensor 130.484 130.7928

STREAM benchmark

Throughput
[GBps]

copy 825.473
scale 826.518
add 873.631
triadd 872.368

NVLink P2P transfer

latency 2.45 us
unidirectional 145.16GBps
bidirectional 266.46GBps

Table 1. Table on the left compares performance measured by Mandelbrot benchmark to the performance
specified by Nvidia. Table in the middle shows memory throughput measured by STREAM benchmark. Table
on the right shows the result of P2P data transfer over NVLink interconnect.

in two rows. High-RPM cooling fans are located at the beginning of these trays. GPUs
placed in the first row are facing these fans directly and receive cold air, while GPUs in
the second row receive air that has been already heated by the GPUs in the first row.

In general, this causes that GPUs in the second row run at higher temperature than
the ones in the first row. This also means that they can reach their TDP of 350W when
they are under the full load and thermal throttling must be performed, which results in
performance imbalance among the GPUs. Figure 2 shows how GPUs in the first row
influence GPUs in the second row by running Mandelbrot benchmark on Tensor Cores
for 4 minutes on all 16 GPUs one by one.

Figure 2. Temperature of all GPUs when fully loaded with Tensor core benchmark one by one. Each GPU was
loaded for approximately 4 minutes. GPU in the first row (0, 1, 4, 6, 8, 9, 12, 13) increases also temperature of
the GPU located directly behind it in the second row (2, 3, 5, 7, 10, 11, 14, 15).

When running Tensor Core Mandelbrot benchmark on all 16 GPUs at once, GPUs
in the front row reach a maximum temperature of 57 ◦C while GPUs in the second
row peak is 72 ◦C. During this benchmark, certain GPUs from the second row tend to
throttle down their frequencies to as low as 1575MHz (from the maximum 1597MHz)
causing approximately 1% performance loss, see Figure 3. It shows that running the
same Mandelbrot benchmark on all the GPUs results in significant variation in power
consumption of individual GPUs, reaching up to 23% for single precision version. This
is caused by both their location in the server as well as their manufacturing variations.
We can also observe that for single precision, double precision and Tensor Core version,
when some GPUs reach the TDP, they under-clock their frequencies.
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Figure 3. Power consumption variation of all the GPUs in the DGX-2 when under full load using compute
bound workload with four different data-types. The variation for the single-precision workload is up to 23%.

3.3. Frequency Scaling

To determine whether we can get better energy efficiency of the Tesla V100-SXM3, we
have performed the DVFS tuning test for compute bound, memory bound and NVLink
workloads. The first frequency scaling test was performed for all the data types of the
Mandelbrot benchmark (float, double, half2, tensor). Benchmark in each data type per-
formed the same amount of the floating-point operations: 81920× 109. The frequency
was scaled from 1597MHz to 675MHz in approximately 7MHz steps. Each frequency
step was measured 6 times and average value is reported. Heat up runs were performed
before the actual measurement.

Figure 4 shows the result of the frequency scaling. The two bottom plots display the
same data in logarithmic scale as the top two plots in linear scale. Table 2 compares runs
at base frequency 1597MHz with the runs at the most energy efficient frequency for each
workload type.

In general, the most efficient frequency for Mandelbrot benchmark is 1057MHz.
Running at this frequency we can save up to 39% of the energy while the run-time
will increase by 51%. Interesting number to point out is the energy efficiency of double
data type. Running at base frequency it achieves 24.8GFLOPS/W whereas running at
1050MHz the efficiency reaches 40.67GFLOPS/W. This efficiency number is getting
close to 50GFLOPS/W, which is the limit for building exascale system with 20MW
power consumption [12]. On the other hand, the peak performance at this frequency is
only 5.37 TFLOPS which is 66% of the original 8.17 TFLOPS.

The second frequency scaling test was done using the STREAM benchmark. During
this experiment each workload transferred the same amount of data: 7.924 TB. Each fre-
quency step was measured 6 times and average value is reported. Before the measurement
started heat up runs were performed.

The results of the frequency scaling of the STREAM benchmark are shown in the
Figure 5. The peak throughput achieved during this experiment is lower than in the
subsection 3.1, because we were measuring the average throughput and not the best case
like the original STREAM does. Furthermore, the Figure 5 also shows a staircase shape
when the frequency is lower than 1GHz. This is probably caused by the GPU having
certain memory operation modes. These modes do not match the granularity of which the
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Figure 4. Frequency scaling of Mandelbrot benchmark. Plot in the top left corner shows consumed energy and
run-time of workload. Plot in the top right corner shows energy efficiency. The two plots at the bottom display
the same data in logarithmic scale.

Frequency
[MHz]

Time
[s]

Time
difference

Energy
[J]

Energy
savings

Performance
[TFLOPS]

Energy efficiency
[GFLOPS/W]

double
1597 10.02 3303 8.17 24.80
1050 15.25 152.16% 2015 39.01% 5.37 40.67

float
1597 5.01 1596 16.34 51.33
1057 7.57 150.99% 982 38.50% 10.82 83.46

half2
1597 2.51 870 32.69 94.18
1057 3.78 151.05% 531 38.97% 21.64 154.30

tensor
1597 0.63 219 130.65 374.90
1057 0.95 151.04% 132 39.58% 86.50 620.51

Table 2. Mandelbrot benchmark running at base frequency compared to the most efficient frequency for each
workload.

streaming multiprocessor can change its frequency. The result of the energy consumption
for base frequency and the most efficient frequency is shown in Table 3. On average, up
to 31% of the energy can be saved by scaling down to 1005MHz. By doing that, the
transfer time increased by 2% which is almost identical in compare to the data transfer
at the base frequency.

The last frequency scaling experiment was done for unidirectional P2P data transfer
over NVLink. The amount of transferred data was 859GB. One frequency step was
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Figure 5. Frequency scaling of the STREAM benchmark. Plot on the left shows consumed energy and
throughput. Plot on the right shows the energy efficiency.

Frequency
[MHz]

Time
[s]

Time
difference

Energy
[J]

Energy
savings

Throughput
[GBps]

Energy efficiency
[GBps/W]

copy
1597 10.17 1561 779.12 5.08
1012 10.35 101.78% 1074 31.18% 765.47 7.38

scale
1597 10.10 1566 784.43 5.06
1005 10.30 101.99% 1064 32.02% 769.14 7.45

add
1597 9.30 1503 852.27 5.27
1005 9.67 104.02% 1044 30.49% 819.31 7.59

triadd
1597 9.52 1487 832.54 5.33
1005 9.71 101.98% 1021 31.36% 816.40 7.76

Table 3. STREAM benchmark running at base frequency compared to the most efficient frequency for each
workload.

measured 10 times. Figure 6 shows the result of this experiment. Running at 1140MHz
can save up to 26% energy without any throughput penalty. The throughput starts to drop
when the frequency decreases from 1140MHz. In addition, the staircase shape similar to
Figure 5 can be seen. Table 4 shows the most efficient frequency for source and receive
device and compares it to the base frequency.

Frequency
[MHz]

Time
[s]

Time
difference

Energy
[J]

Energy
savings

Throughput
[GBps]

Energy efficiency
[GBps/W]

SRC DEV
1597 5.93 563 144.90 1.51
1110 6.19 104.34% 421 25.22% 138.88 2.04

RCV DEV
1597 5.93 569 144.90 1.53
1140 5.94 100.15% 417 26.71% 144.69 2.08

Table 4. NVLink P2P transfer benchmark running at base frequency compared to the most efficient frequency
for source device and receive device.
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Figure 6. Frequency scaling of the NVLink P2P transfer benchmark. Plot on the left shows consumed energy
and throughput. Plot on the right shows the energy efficiency.

3.4. Overall power consumption of DGX-2 server

To supplement the overall picture of DGX-2 efficiency, we also need to look at the energy
consumption of the server as a whole. Unfortunately, we measured these numbers only
with one power sample because the administrative privileges are needed to retrieve them.
Nevertheless, they can give some idea about the efficiency and power consumption of the
whole node including all peripherals and cooling. These power consumption numbers
were retrieved using ipmitool utility.

When idle, the DGX-2 consumes 2340W, GPUs altogether consumes 768W. When
loaded with Tensor Core Mandelbrot benchmark at 1597MHz, the consumption rises to
7254W whereas GPUs alone consume 5340W. When running the same benchmark at
1057MHz, the whole node consumption drops to 4056W and GPUs consume 2248W.

When running double precision Mandelbrot benchmark at base frequency GPUs
consume 4936W and the whole node 6708W. At this frequency the server reaches
130.8 TFLOPS, meaning the performance per watt reaches 19.52GFLOPS/W. When we
scale down the frequency to 1057MHz, GPUs alone consume 2116W. Consumption
of the whole node drops to 3666W. As a result, the DGX-2 can achieve efficiency of
23.60GFLOPS/W at this frequency but the performance drops to 86.4 TFLOPS.

4. Conclusion

We have developed a set of benchmarks to determine the raw performance of GPUs in
the Nvidia DGX-2 server. We verified that performance numbers of V100-SXM3 GPU
are according to specification. We were able to reach 130.79 TFLOPS in half precision
using Tensor Cores on a single GPU. When running full load on all 16 GPUs at the
same time, some of the GPUs may thermal throttle by 1% due to an uneven cooling
solution and manufacturing variations. We observed 23% variation in power consump-
tion fo GPUs when running float Mandelbrot benchmark. To get the best performance
per watt out of V100-SXM3 GPU, it makes sense to scale down the frequency. For
compute bound workload the most efficient frequency is 1057MHz making 39% en-
ergy savings while run-time is increased by 51%. The energy efficiency achievable for
double precision workload is 40.67GFLOPS/W whereas running at base frequency is
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only 24.8GFLOPS/W. Memory bound workload has its sweet spot at 1005MHz. At
this frequency, the throughput penalty is only 2% while energy savings can reach 31%.
Peer-to-peer transfer achieves the best energy efficiency at 1140MHz frequency, being
able to save 26% energy without any throughput penalty. The whole DGX-2 node in
the idle mode consumes 2.3 kW of power. When all 16 GPUs are loaded with double
precision workload, the consumption increases to 6.7 kW with 19.52GFLOPS/W energy
efficiency. However, running the sameworkload at 1057MHz it consumes 3.6 kW, having
the energy efficiency 23.60GFLOPS/W.
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Abstract. The Sparse Matrix-Vector Multiplication kernel (SpMV) has been one
of the most popular kernels in high-performance computing, as the building block
of many iterative solvers. At the same time, it has been one of the most notori-
ous kernels, due to its low flop per byte ratio, which leads to under-utilization of
modern processing system resources and a huge gap between the peak system per-
formance and the observed performance of the kernel. However, moving forward
to exascale, performance by itself is no longer the holy grail; the requirement for
energy efficient high-performance computing systems is driving a trend towards
processing units with better performance per watt ratios. Following this trend, FP-
GAs have emerged as an alternative, low-power accelerator for high-end systems.
In this paper, we implement the SpMV kernel on FPGAs, towards an accelerated
library for sparse matrix computations, for single-precision floating point values.
Our implementation focuses on optimizing access to the data for the SpMV kernel
and applies common optimizations to improve the parallelism and the performance
of the SpMV kernel on FPGAs. We evaluate the performance and energy efficiency
of our implementation, in comparison to modern CPUs and GPUs, for a diverse set
of sparse matrices and demonstrate that FPGAs can be an energy-efficient solution
for the SpMV kernel.

Keywords. sparse matrix vector multiplication, FPGA, performance, energy
efficiency

1. Introduction

Sparse matrices appear in multiple scientific problems, putting sparse linear algebra at the
core of high-performance scientific computing. The Sparse Matrix-Vector Multiplication
kernel (SpMV ) has been one of the most popular kernels of this category, as the building
block of many iterative solvers. At the same time, it has been one of the most notorious
kernels, due to its low flop per byte ratio, which leads to under-utilization of modern
processing system resources and a huge gap between the peak system performance and
the observed performance of the kernel. A plethora of sparse matrix formats [1] and
a variety of optimizations for multi-core processors [2], many-core processors [3] and
GPUs [4] have been proposed and applied, to improve the performance of the SpMV
kernel.
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However, moving forward to exascale, performance by itself is no longer the holy
grail; the requirement for energy efficient high-performance computing systems is driv-
ing a trend towards processing units with better performance per watt ratios. Following
this trend, FPGAs have emerged as an alternative, low-power accelerator for high-end
systems. This trend has been further supported by the development of high-level synthe-
sis tools, which significantly reduce the programming effort required to port applications
to FPGAs. FPGAs are already used as accelerators in production in datacenters, and sev-
eral efforts focus on bringing FPGAs to the HPC world. Such an effort is EuroEXA [5],
the EU-funded project that aims to implement and prototype a petascale-level system,
embracing FPGA acceleration.

In this paper, in the context of the EuroEXA project, we implement the SpMV kernel
on FPGAs, towards an accelerated library for sparse matrix computations, for single-
precision floating point values. Our implementation focuses on optimizing access to the
data for the SpMV kernel and applies common optimizations to improve the parallelism
and the performance of the SpMV kernel on FPGAs. We evaluate the performance and
energy efficiency of our implementation, in comparison to modern CPUs and GPUs, for
a diverse set of sparse matrices, and demonstrate that FPGAs can be an energy-efficient
solution for the SpMV kernel.

2. An efficient implementation of SpMV on FPGAs

2.1. Experimental platform

Our experimental platform is a Xilinx Zynq UltraScale+ MPSoC ZCU102 board. The
MPSoC of the board consists of a quad-core ARM Cortex A53 processor, operating at
(up to) 1.5 GHz and a Zynq UltraScale ZU9EG FPGA. The FPGA contains around 600K
logic cells, 32 Mbs of BlockRAM and about 2500 DSP slices. The MPSoC contains 4GB
of DDR4 DRAM (referred to as main memory from now on), which is accessible from
both the ARM processor and the FPGA. We use the Xilinx SDSoC environment (version
2018.1) which utilizes the Xilinx Vivado-HLS compiler and Vivado Design Suite tools
to compile synthesizable C/C++ functions into programmable logic.

void SpMV( i n t nnz , i n t nrows , f l o a t ∗ va lue s , f l o a t ∗ c o l i n d ,
f l o a t ∗ r ow p t r , f l o a t ∗x , f l o a t ∗y )

{
f o r ( i n t i = 0 ; i < nrows ; i ++)

f o r ( i n t j = r ow p t r [ i ] ; j < r ow p t r [ i +1] ; j ++)
y [ i ] += v a l u e s [ j ] ∗ x [ c o l i n d [ i ] ] ;

re turn ;
}

Algorithm 1. The CSR-SpMV kernel
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2.2. CSR-SpMV: Properties and challenges

The Compressed Sparse Row (CSR) representation is the most commonly used sparse
matrix representation, since it is generic, agnostic to the sparsity pattern and leads to fair
performance on CPUs with no preprocessing cost. In the CSR format, a sparse matrix
is represented with three vectors: the values vector contains the values of all non-zero
elements of the matrix, the col ind vector contains the column index for each non-zero
element and the row ptr vector stores the row pointers. The y = A× x CSR-SpMV ker-
nel, for the sparse matrix A with nrows rows and nnz non-zero elements is presented in
Algorithm 1.

There are two key observations regarding CSR-SpMV; first, the x vector is accessed
randomly, and second, there is no reuse for the elements of the A matrix, i.e., the ker-
nel is memory-bound. This is particularly important for our FPGA implementation: ac-
cessing data on the main memory of the MPSoC is costly, due to the limited memory
bandwidth, and it is preferable to move data to the FPGA BRAM. However, BRAM ca-
pacity is limited. Thus, an efficient implementation requires careful data movement and
placement.

Another challenge for the FPGA implementation of CSR-SpMV using HLS tools is
that the boundaries of the inner loop are unknown at compile time. This impedes efficient
loop unrolling by the compiler and limits the parallelism of the implementation.

2.3. pCSR: A packed, CSR-based representation format for sparse matrices

Using our key observations about the CSR-SpMV code, we opt for an implementation
where the sparse matrix A is efficiently streamed from the main memory to the FPGA.
The x vector is stored locally on the FPGA BRAM, to ensure fast access. The y vector is
accessed sequentially, therefore we stream it from the FPGA back to the main memory,
and do not store it locally on the BRAM. To efficiently stream the sparse matrix to the
FPGA, we need to exploit the four available High Performance (HP) memory ports of
our MPSoC. These ports allow for the highest throughput of data transfer from the main
memory to the FPGA. Extending the MCSR representation proposed in [6], we first
transform the row ptr vector to a row length vector, where each element refers to the
number of non-zero values per row. We then pack the row length, col ind and values
vector into a single stream of data, as following: for a single row of the sparse matrix, we
use a zero element to denote a new line, followed by the number of non-zero elements in
this row. For every non-zero element in the row, the col ind and the value of the element
follow in pairs. In order to fully exploit the available bandwidth of HP ports, the stream is
then split into 128-bit wide parts. We also use the hls::stream objects, which are FIFO
queues, to stream the data to the FPGA through each available port. We note that, in our
SpMV implementation, the x vector is copied and stored locally on the FPGA BRAM,
to ensure fast access. Therefore, the largest problem size that we can solve on our FPGA
depends on the number of columns of the sparse matrix, i.e. the length of the x vector.
On the other hand, the length of the y vector does not constrain our design: since the y
vector is accessed sequentially, it is streamed from the FPGA back to main memory.
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2.4. Optimizations

2.4.1. Increasing parallelism with vectorization

To increase the parallelism of our design, we implement SIMD parallelism by partially
unrolling the inner loop of the SpMV code, by a factor of II. We note that, in order to
implement vectorization, zero-padding is required, so that the elements of each row are
a multiple of the vectorization factor. We test our design with vectorization factors of 2,
4 and 8.

2.4.2. Increasing parallelism with 1D-blocking

To further increase parallelism in our design, as well as the resource utilization of the
FPGA, we employ multiple compute units (CU). The multiple compute units implement
multiple instances of the SpMV kernel. This is equivalent to row-wise partitioning or 1D-
blocking: each compute unit works on a contiguous subset of rows of the sparse matrix.
We test our design with 2, 4 and 8 compute units. We note that using more than four
compute units leads to full utilization of the available HP ports. However, compute units
cannot share data and therefore, each compute unit requires a separate copy of the vector
x. Therefore, increasing the number of compute units limits the maximum size of the x
vector that can fit in the FPGA BRAM.

2.4.3. Increasing problem size with 2D-blocking

To overcome the limitation of the limited BRAM capacity that arises when using mul-
tiple compute units, we employ 2D-blocking, i.e. row-wise and column-wise partition-
ing, of the sparse matrix. In this way, each compute unit only needs to store part of the
x vector, i.e. the part that is used by the columns of the 2D-block. Intermediate results
are stored in y partial vectors, which are then accumulated on the host side. Blocking
on this second dimension allows us to split the matrix to as many blocks needed to fit
the multiple copies of the partial x vectors on the FPGA BRAM. However, to imple-
ment 2D-blocking, alongside vectorization, the number of elements of each row of each
block needs to be a multiple of the vectorization factor, which results to additional zero
padding. Compression of the zero-padded elements can be employed to alleviate the
memory overhead that occurs in this case.

2.4.4. Load balancing

Depending on the sparsity pattern of the matrix, 1D-blocking, i.e. row-wise partition-
ing, commonly produces load imbalance among the multiple compute units. We easily
mitigate this problem by equally distributing non-zero elements across compute units. In
this case, each compute unit solves the SpMV kernel on variable numbers of contiguous
rows, but with better load distribution.

2.5. Increasing performance with clock frequency configuration

The FPGA of our experimental platform can be configured to operate under clock fre-
quencies ranging from 100 to 600 MHz. Our implementation meets the timing require-
ments for frequencies up to 300 MHz. Figure 1 shows how execution time and power
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Figure 1. Comparison of execution time and power consumption of FPGA-SpMV for different clock frequen-
cies. Each line represents a different sparse matrix.

consumption vary while we increase the clock frequency. Connected points represent
measurements for the same matrix under different clock frequencies. As expected, higher
clock frequency leads to higher power consumption. For all the matrices, execution time
decreases as we increase the clock frequency up to 200MHz. The decrease is more sig-
nificant for the larger matrices. However, when the frequency is set at 300MHz, the syn-
thesized bitstream consumes more of the BRAM resources, limiting the available BRAM
to store the x vector. This causes large size matrices to be split in more blocks, hence we
observe an increase in execution time. Due to the algorithmic nature of SpMV, increas-
ing the clock frequency of the FPGA does not proportionally improve the performance
of our implementation. Therefore, we conclude that the optimal frequency, considering
both performance and power consumption, is 150 MHz.

3. Evaluation

To evaluate our FPGA implementation, we use a diverse set of 19 sparse matrices from
the University of Florida Sparse Matrix Collection [7], with a variety of sparsity patterns
and sizes. The number of floating point operations per non-zero element is 2 (multipli-
cation and addition). For the pCSR representation,we use 64 bits to store each row of the
matrix, and 64 bits for each non-zero element of the matrix (value and col ind index).
Therefore, the flops:byte ratio is calculated by the formula nnz/(4∗nrows+4∗nnz). We
compare the performance and energy efficiency of SpMV on our FPGA against CSR-
SpMV using the Intel MKL library on an Intel Xeon E5-2630V4 (Broadwell) CPU with
10 cores, 25MB LLC and 256GB of memory, and against CSR-SpMV using the cuS-
PARSE library on an NVIDIA Tesla K40 GPU, with 2880 cores and 12GB GDDR5
memory. We use RAPL performance counters to measure energy on the CPU. For the
FPGA, we modified the power monitoring application proposed in [8], in order to exe-
cute it on our board. For the GPU, we use the GPU power sensors and compute energy
according to the runtime.
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Table 1. Matrix suite used for experimental evaluation

Matrix Dimension Non-zeros Size(MB) f:b ratio

human gene1 22283 12345963 94.2772 0.2495
nd24k 72000 14393817 110.091 0.2488
JP 87616 13734559 105.121 0.2484
consph 83334 3046907 23.564 0.2433
poisson3Db 85623 2374949 18.4461 0.2413
barrier2-12 115625 3897557 30.1771 0.2428
FEM 3D thermal2 147900 3489300 27.1854 0.2398
SiO2 155331 5719417 44.2282 0.2434
degme 185501 8127528 62.7158 0.2444
offshore 259789 2251231 18.1666 0.2241
Ga41As41H72 268096 9378286 72.5734 0.2431
parabolic fem 525825 2100225 18.0293 0.1999
rajat30 643994 6175377 49.5711 0.2264
ASIC 680k 682862 3871773 32.1442 0.2125
Hardesty2 929901 4020731 34.2231 0.203
boneS10 914898 28191660 218.575 0.2421
audikw 1 943695 39297771 303.418 0.2441
webbase-1M 1000005 3105536 27.5081 0.1891
thermal2 1228045 4904179 42.1006 0.1999

Table 2. Hardware platforms

Device Operating Frequency Memory Memory Bandwidth

Intel Xeon E5-2630V4 2.2 GHz 256 GB 40 GB/s
NVIDIA Tesla K40 745 MHz 12 GB 6 GB/s
Xilinx MPSoC ZCU102 150 MHz 4 GB 9.6 GB/s

Figure 2 shows the execution time for SpMV on the 19 matrices, for the CPU, the
GPU and the FPGA. For our FPGA implementation, we showcase the results for a vec-
torization factor of 4, and 4 compute units. In addition, the frequency of the FPGA is
set to 150MHz. We note that the execution time for the FPGA implementation includes
transfers from the main memory to the FPGA and vice versa. For a fair comparison
against the GPU, we compare against the performance with and without transfers over
the PCIe (6GB/s). In comparison to the CPU, our FPGA implementation is slower from
7 to 62 times, with an average slowdown of 26x. We consider this performance gap to be
reasonable, given the 15x difference in frequency and the 2.5x difference in cores (com-
pute units), between the CPU and the FPGA. GPU performance is close to that of the
CPU, apart from three matrices in our suite (ASIC 680K, rajat30, degme), which suffer
from imbalance [3]. However, if we include the transfers from the host to the GPU, the
average slowdown for SpMV on the FPGA is 3x.

Figure 3 shows the energy consumption for SpMV, for the CPU, the GPU and the
FPGA. Despite the large difference in execution times, the CPU consumes up to 5 times
more energy than the FPGA for the SpMV kernel, with the exception of the largest
matrices in our dataset (webbase 1M, thermal2). The GPU consumes about the same
energy with the FPGA for the computational part of the SpMV kernel, with the exception
of the three imbalanced matrices. However, if we take into account the data transfers
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Figure 2. Comparison of performance of the CSR-SpMV kernel among different architectures.
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Figure 3. Comparison of the energy consumption (in Joules) of the CSR-SpMV kernel among different archi-
tectures. The y axis is in logarithmic scale.

from the host to the GPU, the GPU becomes the least energy-efficient option among the
three architectures.

Another metric that can be used to measure the energy efficiency of each architec-
ture is the performance per Watt, i.e. FLOPs per Watt [9]. In SpMV, two floating-point
operations occur for each non-zero element; multiplication with the respective element
of the x vector and accumulation of the result in the y vector. Thus, SpMV FLOPs are
calculated by dividing the doubled number of non-zeros of the matrix with the execu-
tion time. Figure 4 shows how each architecture performs in GFLOPs/W. For smaller
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Figure 4. Comparison of the energy efficiency (in GFLOPs/W) of the CSR-SpMV kernel among the different
architectures.

matrices (leftmost part of the figure), the FPGA significantly outperforms the other ar-
chitectures in terms of energy efficiency. For larger matrices, although the performance
of our FPGA implementation is degraded due to extensive zero-padding, the FPGA still
performs well in the GFLOPs/W metric, being a viable, energy-efficient option for the
SpMV kernel.

4. Related work

Multiple works present implementations of the SpMV kernel on FPGAs, using hardware
design tools. Zhuo et al. [10] provide an efficient design for CSR SpMV on FPGAs, using
a number of subtrees of multipliers and a specialized reduction unit. Their implementa-
tion also stores the x vector on the FPGA. Sun et al. [11] describe a design using multiple
processing elements which include a deep pipeline with a multiplier, an accumulation
circuit and FIFO queues. Their implementation uses both CSR and Row Blocked CSR.
Kestur et al. [12] design a library for SpMV and propose the CVBV format, to reduce
memory capacity requirements and memory bandwidth requirements. Dorrance et al.
[13] implement the SpMV kernel using CSC, to make memory accesses to the x vector,
stored in the main memory, sequential, reducing memory bandwidth requirements. Grig-
oras et al. [14] propose a dictionary-based compression format to improve the effective
memory bandwidth of SpMV designs. Their implementation uses Maxeler tools. Several
implementations of SpMV with OpenCL appear in recent work [15,9,16]. Our work ex-
tends the implementation of CSR SpMV proposed by Hosseinabady et al. in [6], which
uses HLS tools to synthesize SpMV as a streaming dataflow engine.

In addition, a number of works examine the performance and energy efficiency of
various algorithms on CPUs, GPUs and FPGAs. Vestias et al. [17] explore general trends
in peak performance and power for CPUs, GPUs and FPGAs. Betkaoui et al. [18] com-
pare the performance and energy efficiency of GPUs and FPGAs for four commonly used
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benchmarks. Fowers et al. [19] focus their analysis of performance and energy efficiency
on sliding-window applications. Rucci et al. [20] focus on state-of-the-art implementa-
tions of the Smith-Waterman protein database search, on CPUs, co-processors, GPUs
and FPGAs. Finally, Giefers et al. [9] perform a performance and energy-efficiency anal-
ysis for sparse matrix-vector and sparse matrix-matrix multiplication on co-processors,
GPUs and FPGAs.

5. Conclusions

In this work, we examine the performance and energy efficiency of the sparse matrix-
vector multiplication on FPGAs. We design and optimize the CSR-SpMV kernel for a
Xilinx Zynq UltraScale+ board with a ZU9EG FPGA, using HLS tools. We evaluate the
performance and energy efficiency of this kernel with the equivalent CSR-SpMV imple-
mentations on an Intel Broadwell CPU and an NVIDIA Tesla K40 GPU. Our experimen-
tal results show that the CPU and GPU outperform the FPGA in terms of performance
for the SpMV kernel, however, the energy consumption of the FPGA is lower for most of
the matrices in our dataset. In addition, comparing the achieved FLOPs/W for the three
platforms, the FPGA is a particularly energy-efficient option for the SpMV kernel, and
a further optimized design can bring in additional gains for energy consumption and en-
ergy efficiency. Future directions of this work focus on solving the SpMV on FPGAs and
include further optimizations of the CSR-SpMV kernel for the FPGA, the exploration of
alternative storage formats for the sparse matrices and their impact on performance and
energy efficiency, as well as the evaluation of our CSR-SpMV kernel on FPGAs with
higher BRAM capacity, higher bandwidth and more DSP units.
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Abstract. In this paper we present an evaluation of the Intel Xeon Broadwell plat-
form in the CINECA Galileo supercomputer when DVFS and UnCore Frequency
(UCF) tuning is performed under the active power capping using RAPL powercap
registers. This work is an extension of our previous work done under the H2020
READEX project which focused on a dynamic tuning of DVFS and UCF for com-
plex HPC applications, but with no powercap limit enforced. Power capping is an
essential technique that allows system administrators to maintain the power budget
of an entire system or data center using either out-of-band management system or
runtime systems such as GEOPM.

In this paper we use two boundary workloads, Compute BoundWorkload (CBW)
and Memory Bound Workload (MBW) to show the behavior of the platform under
power capping and potential for both energy and runtime savings when compared to
the default CPU behavior. We show that DVFS and UCF tuning behave differently
under the limited power budget. Our results show that if CPU has a limited power
budget the proper tuning can provide both improved energy consumption as well
as reduced runtime and that it is important to tune both DVFS and UCF.

For MBW we can save up 22% for both runtime and energy when compared
to default behavior under powercap. For CBW we can improve both performance,
up to 9.4%, and energy consumption, up to 14.9%.

1. Introduction

Energy and power consumption become limiting parameters of new peta- and exa-scale
HPC clusters. Due to that accelerators are more common hardware used to provide the
performance of the system [1]. Nevertheless it is not only hardware but also software and
runtime systems that must be improved to reduce energy and power clusters’ hungriness
to stay below the 20MW limit that is being considered as a peak power for an HPC
system [2,3].

Energy savings given by software tuning come from better utilization of the hard-
ware resources. It is up to the developers to improve performance of their application,
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or apply one of many approaches that limit the resources to the level, that the applica-
tion does not waste the resources. Typically CPU core frequency is being reduced (also
known as Dynamic Voltage and Frequency Scaling, DVFS) for this purpose. In several
researches the DVFS is usually set to one specific frequency. Fraternali et al. [4] study the
impact of DVFS and HW/SW variability in heterogeneous workloads. Bonati et al. [5]
focuses on evaluation this trade-off in a multi-node multi-accelerator context. Calore et
al. [6] also evaluate the effect of DVFS on modern HPC processors and accelerators.
This approach is efficient in case of single-purpose kernels, however it does not work
well when a complex application is tuned.

This work is an extension of our previous effort done under the H2020 READEX
project [7,8] which was focused not only on a tuning of CPU core frequency but also
its uncore frequency. CPU uncore frequency (UCF) refers to frequency of subsystems in
the physical processor package that are shared by multiple processor cores e.g., L3 cache
or on-chip ring interconnect. READEX has developed an open-source runtime system
called READEX Runtime Library (RRL) that performs dynamic tuning of hardware pa-
rameters during a complex parallel applications run, based on Score-P [9] regions in-
strumentation. RRL uses a configuration file created during the analysis of an applica-
tion and applies the optimal settings for different parts of the code. RRL supports both
DVFS and UCF tuning and also a concurrency throttling, however with no power cap
limit enforced.

Power capping is an essential technique that allows system administrators to main-
tain the power budget of an entire system or data center using either out-of-band manage-
ment system or runtime systems such as GEOPM [10]. This runtime system in addition
to capping CPU’s package power consumption also may tune the CPU’s core frequen-
cies, but it does not control uncore frequency of the chip. This paper shows that adding
a support for UCF tuning will have significant impact on both performance and energy
consumption. In [11] Zhang et.al. presents an approach for maximizing the performance
under powercap by tuning the DVFS, number of cores, hyper-threads and potentially
number of sockets, however also in this research the UCF tuning is not presented.

The proposed method is implemented into our open-source library MERIC [12], that
has been also developed under the READEX project.

2. Methodology

2.1. Experiments description

We have conducted a set of experiments that is defined in Table 1. This set covers all
the possibilities: (1) pure CPU firmware automatic tuning of all parameters - EXP0; (2)
combination of user and firmware tuning - EXP1 to EXP6 and (3) pure user tuning of all
three parameters - EXP7. The goal is to find out in which cases user tuning can help and
when it can harm the performance or energy consumption.

For each of the experiments we have run a compute bound workload (CBW) and
memory bound workload (MBW) to evaluate the behavior of the Intel RAPL power
capping system [13] in two situations. When high core frequency is more important
the uncore frequency can be reduced without major performance penalty, which is the
case of the CBW. The exactly opposite situation is for the MBW. As a compute bound
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Experiment
number

Powercapping

DVFS
(core
freq.
tuning)

Uncore
freq.
tuning

Description

0 - - - default CPU behavior (powersave scaling governor)

1 x - - default CPU behavior under powercap

2 - x - default CPU behavior under DVFS tuning

3 - - x default CPU behavior under uncore freq. tuning

4 - x x READEX tuning approach - DVFS & uncore freq.

5 x x - DVFS tuning under powercap; uncore freq. unset

6 x - x uncore freq. under powercap; DVFS unset

7 x x x DVFS and uncore freq. tuning under powercap

Table 1. A set of experiments performed on the platform to determine its behavior.

region we have selected a loop of tangents (TAN) operation and memory bound region
is represented by a loop with a matrix vector multiplication (DGEMV).

2.2. Hardware Platform Description and Measurement Setup

The evaluation was done on the Broadwell partition of the Galileo supercomputer in-
stalled in CINECA [14]. The servers in this partition are dual socket machines equipped
with two 18-core Intel Xeon E5-2697v4 processor [15] running at 2.3GHz nominal fre-
quency. The turbo frequency when all 18 cores are utilized is 2.7GHz. This was verified
by our measurements. The TDP of the processor is 145W. Further details are shown in
Table 2 including the ranges of all tunable parameters and their granularity.

nominal value minimal value maximal value minimal step

CPU core frequency (DVFS) 2.3GHz 1.2GHz 2.8GHz turbo 100MHz

CPU uncore frequency - 1.2GHz 2.8GHz 100MHz

Power capping 145W2 33W 145W 0.125W
Table 2. Key tunable parameters of the 18-core Intel Xeon E5-2697v4 processor and their respective ranges
and steps.

All test were performed in a way that the workload was executed on socket 1, while
socket 0 was not utilized. This way we were able significantly reduce the effect of the
system noise on the measurements. Also all measurements were repeated ten times and
outliers were eliminated using interquartile range rule3.

3. Results

3.1. DVFS and UCF Tuning without Powercap

It this section we will evaluate the behavior of the platform without enforcing the power
cap.

2TDP value of the E5-2697v4 processor.
3see: https://www.mathwords.com/o/outlier.htm
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The key behavior of the platform when running CBW is: the DVFS has key impact
on performance/runtime; the uncore frequency has no effect on performance/runtime, it
can only affect the power and therefore energy consumption.

On the other hand the key behavior of the MBW is: the uncore frequency has ma-
jor impact on performance/runtime; the CPU core frequency has no effect on perfor-
mance/runtime. It can only affect the power and therefore energy consumption.

The Figure 1 presents runtime and energy consumption for both CBW and MBW in
EXP2 and EXP4 configuration. The key observations for the compute bound workload
are:

• The energy consumption (full red line) significantly increases from 305 J to 358 J
(by 17.4%) when core frequency increases from 2.2GHz to 2.3GHz (the nominal
frequency) while runtime decreases by only 4.2%.

• At this point the CPU switches to the highest available uncore frequency, which
is confirmed by the test that runs at maximum uncore frequency (red dashed line).

• One can further reduce the energy consumption by reducing the UCF to minimum
value, see the red doted line. In this case the energy consumption is reduced from
358 J to 284 J (by 26%) for nominal frequency (2.3GHz).

• The same behavior remains when CPU runs at turbo frequency (2.7GHz), in this
case the energy consumption is reduced from 354 J to 299 J (by 18.4%) when
UCF is set minimum. For CBW this is the optimal point from both energy and
performance point of view.

The key observations from Figure 1 for memory bound workload are:

• By default CPU runs at high uncore frequency in the entire range of CPU core
frequencies.

• Reducing the uncore frequency to low values increases both runtime and energy
consumption.
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Figure 1. The behavior of the platform for the DVFS tuning for compute bound and memory bound workloads.
The solid lines show default behavior without UCF tuning, the dashed lines show the behavior for maximum
UCF and the doted lines show the behavior for minimum UCF.
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Figure 2. The behavior of the platform under the uncore frequency tuning for compute bound and memory
bound workload.

Figure 2 shows the behavior of the platform for UCF tuning, the EXP3. We can see
that, as expected, for CBW the uncore frequency has no effect on performance (runtime
remains the same in the entire range, while energy consumption grows with higher UCF.

On the other hand, for the MBW the optimal performance requires high UCF. From
energy point of view the optimal frequency is 2.3GHz. If one increase the UCF to
2.8GHz the gain is only 2.1% higher performance at a cost of additional 14.6% of
energy.

3.2. DVFS and UCF Tuning under Powercap for Memory Bound Workload

Figure 3 shows the behavior of the platform when running memory bound workload
under three different power cap levels: 100W, 80W and 60W.

The default behavior of the CPU without powercap is represented by the EXP0
results: 1.88 sec runtime; 197 J energy consumption. In terms of runtime, this represents
the maximum achievable performance.

For all three powercap levels EXP1 results presents the default behavior of the CPU
under the powercap. These values are the baselines for all further experiments and are as
follows: for 100W it is 1.88 sec and 188.2 J; for 80W it is 1.92 sec and 153.2 J; and for
60W it is 2.47 sec and 147.8 J.

In the previous section where no power limit was set we have observed that for
memory bound workload, tuning the DVFS does not affect the performance, but has a
significant impact on energy consumption. The results of EXP5 for 100W powercap
level still hold this behavior. The runtime remains 1.88 sec while energy consumption
is reduced from 188.2 J to 148.6 J when CPU core frequency is reduced from turbo fre-
quency (2.7GHz) to its minimal value 1.2GHz. However, the expected behavior is no
longer true for the 80W powercap level. In this case the energy consumption remains
similar and it is only slightly reduced from 153.2 J to 146.0 J. The runtime is also only
slightly reduced from 1.92 sec to 1.89 sec. The most visible effect on both performance
and energy consumption has the DVFS tuning under the 60W powercap. In this case
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Figure 3. The behavior of the platform running memory bound workload (GEMV) for (EXP1) default CPU
behavior under powercap, (EXP5) DVFS tuning under powercap, (EXP6) UCF tuning under powercap and
(EXP7) DVFS and UCF tuning under powercap. All tests are done for 60, 80 and 100W powercap levels.

both runtime and energy are reduced by 22.2% when core frequency is set to its mini-
mal value (1.2GHz). We explain this behavior as follows: by limiting the performance
and as a consequence the power consumption of CPU cores, the uncore part of the chip
responsible for communication with memory gets higher power budget and it can run on
higher frequency and achieve higher performance. Therefore CPU executes the MBW
more efficiently. Under such very limited power budget (60W) this makes the significant
difference against the default CPU behavior.

Results of EXP6 shows that tuning the UCF has a significant impact on performance
and it should be kept as high as possible. In terms of energy consumption the optimal
setting is 2.2GHz (it is the most visible in EXP6 results for 100W powercap). However
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the key observation is that tuning ONLY the UCF for MBW has small impact as by
default CPU keeps it high enough.

Finally, the results of EXP7 show that adding the UCF tuning to DVFS tuning has
a significant impact on energy consumption for higher power cap (100W and 80W).
For 100W powercap CPU saves up to 38.7% of energy while increases the runtime by
3.6% only. For 80W powercap CPU saves 21.6% of energy with the same time penalty
(3.6%). For 60W powercap both energy consumption and runtime are almost identical
to the DVFS tuning only (EXP5).

3.3. DVFS and UCF Tuning under Powercap for Compute Bound Workload

Figure 4 shows the behavior of the platform when running CBW under three different
power cap levels: 100W, 80W and 60W. The default behavior of the CPU without pow-
ercap is represented by the EXP0 results: 3.27 sec runtime; 363.4 J energy consumption.
In terms of runtime, this represents the maximum achievable performance.

For all three powercap levels EXP1 results presents the default behavior of the CPU
under the powercap. These values are the baselines for all further experiments and are as
follows: for 100W it is 3.45 sec and 344.4 J; for 80W it is 3.90 sec and 311.8 J; and for
60W it is 4.94 sec and 296,0 J.

When compared to MBW results we can see that CPU requires more power to exe-
cute CBW. By reducing the powercap from 140W (TDP level) to 100W the performance
is reduced by 5.2%. The 80W powercap reduces performance by 16.2% and the 60W
power reduce performance by 33.8%.

For a compute bound workload DVFS tuning is a key knob to control the perfor-
mance for all powercap levels. Any energy savings gained by the DVFS tuning are paid
by significant performance penalty. However if energy savings are needed this knob has
the highest impact for higher power budgets. If power budget gets lower the UCF tuning
gains on importance.

The key findings comes from EXP6 for tuning the UCF frequency. For 100W pow-
ercap level by reducing the UCF to 2.2GHz or bellow we improve the performance by
4.5% over the default level, from 3.45 s to 3.29 s. If one further reduces the the UCF to
its minimum value, 1.2GHz the performance remains the same but energy consumption
is improved by 14.9% against the default powercap behavior (EXP1). For 80W power-
cap level since the CPU is already struggling with the limited power budget the perfor-
mance increase is visible in the entire range of UCF going from max. to min. value. The
same holds for energy consumption. Both the best performance and the lowest energy
consumption is achieved at 1.2GHz (minimal) UCF frequency. In this case the perfor-
mance is improved by 8.4% and energy consumption by 8.5% against the default be-
havior under powercap (EXP1). Also, the performance is only 8.6% lower against non
powercapped CPU (EXP0), without UCF tuning this penalty was 16.2%. For 60W pow-
ercap the CPU behavior is similar to 80W powercap. The best performance is achieved
at minimal uncore frequency, and for this case the performance is increased by 9.4%
and energy consumption is reduced by 9.1%. Against the default CPU behavior without
powercap (EXP0) the performance penalty is reduced from 33.8% to 27.0%.

Finally, the results of EXP7 show again that adding the UCF tuning to DVFS tuning
has a significant impact on energy consumption. It is the most visible for the 100W and
80W powercap experiments. But under all powercap levels the minimum energy con-
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Figure 4. The behavior of the platform running compute bound workload (TAN) for (EXP1) default CPU
behavior under powercap, (EXP5) DVFS tuning under powercap, (EXP6) UCF tuning under powercap and
(EXP7) DVFS and UCF tuning under powercap. All tests are done for 60, 80 and 100W powercap levels.

sumption, within a very small margin, approximately 271 J is achieved. This is achieved
for minimal uncore frequency and 2.1GHz core frequency.

However it is important to note, that by tuning both core and uncore CPU frequencies
the performance gained by tuning the UCF only was not met. For 100WUCF only tuning
is 3.8% faster, for 80W it is 2.0% faster, and for 60W it is 1.9% faster.

To summarize the numbers for EXP7: for 100W by DVFS we can save 21.3%
energy at 21.1% runtime penalty; for 80W by DVFS we can save 12.9% energy at
10.9% runtime penalty; and for 60W by DVFS we can save 8.6% and at 7.7% runtime
penalty. All against the default CPU behavior under the same level of powercap (EXP1).
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4. Conclusion - Summary of Observations and Best Practises

The Intel RAPL power capping system guarantees that the CPU keeps its energy con-
sumption in a specified time window under a power boundary. We present how the sys-
tem reduces both CPU core and uncore frequencies to reach this constraint. Since the
system does not identify the kind of the workload running on the chip, it leads to the
situation that core frequency is reduced while uncore frequency is still inefficiently too
high for the given workload running or vice versa. Manually forcing a CPU configura-
tion, DVFS or UCF, does not mean that the configuration will be applied if it infringes
the power cap limit given to RAPL. However, manual reduction of one of the frequen-
cies opens the availability to tune the other one to higher frequencies as it enables power
bugdet shifting from one part of chip to the other one.

We have identified the optimal configuration of the CPU frequencies to reach the
minimal energy consumption of the two workloads. When the powercap is applied, the
CPU frequencies are reduced accordingly but not efficiently, due to that our manual
frequency tuning leads to both time and energy savings.

To conclude, the results show that for MBW the proposed tuning can achieve:

• Under the power budget lower that 80W settings the DVFS to minimum value
boost the performance of the uncore part by 22%.

• In addition to DVFS tuning the uncore frequency has low effect on the perfor-
mance but a major one on energy consumption (between 21% to 38%).

The results show that for CBW the proposed tuning can achieve:

• To achieve the best possible performance it is key to reduce the UCF to minimum
level. This way BOTH performance (up to 9.4%) and energy consumption (up to
14.9%) are improved.

• If further energy savings are required (up to 21%) it can be achieved by DVFS
tuning by lowering the core frequency. This comes at penalty in runtime (up to
21%). This effect is more visible for higher powercap levels.

In the future work we would like to extend our measurements with benchmark, that
can set vary arithmetic intensity on a fine grain (instruction) level and evaluate new CPU
architectures code-named Skylake and Cascade Lake.
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Abstract. For symmetric (hermitian) (dense or banded) matrices the
computation of eigenvalues and eigenvectors Ax = λBx is an impor-
tant task, e.g. in electronic structure calculations. If a larger number
of eigenvectors are needed, often direct solvers are applied. On parallel
architectures the ELPA implementation has proven to be very efficient,
also compared to other parallel solvers like EigenExa or MAGMA. The
main improvement that allows better parallel efficiency in ELPA is the
two-step transformation of dense to band to tridiagonal form. This was
the achievement of the ELPA project. The continuation of this project
has been targeting at additional improvements like allowing monitor-
ing and autotuning of the ELPA code, optimizing the code for differ-
ent architectures, developing curtailed algorithms for banded A and B,
and applying the improved code to solve typical examples in electronic
structure calculations. In this paper we will present the outcome of this
project.

Keywords. ELPA-AEO, eigensolver, parallel, electronic structure calculations

1. Introduction

The ELPA-AEO project is a continuation of the ELPA project [1,2] where
mathematicians, computer scientists, and users collaborate in order to develop
parallel software for the Generalized Symmetric Eigenvalue Problem (GSEP)
AX = BXΛ. The project partners are the Max-Planck Computing and Data facil-
ity in Garching, the University of Wuppertal, the Departments of Computer Sci-
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ence and of Chemistry of the Technical University of Munich, and the Fritz Haber
Institute in Berlin. The former ELPA project developed a basic parallel GSEP
solver and provided the software library https://elpa.mpcdf.mpg.de/about.
Objective of the follow-up ELPA-AEO project is to include useful tools like mon-
itoring and automatic performance tuning, to optimize the software for certain
architectures, and to develop a special solver for banded GSEP.

The ELPA GSEP solver works in the following way:

• compute the Cholesky factorization B = UHU and the related standard
eigenvalue problem (SEP) ÃX̃ = X̃Λ with Ã = U−HAU−1;

• reduce the SEP in Ã directly (ELPA1) or with an intermediate banded
matrix (ELPA2) to tridiagonal form;

• apply a divide-and-conquer solver to the tridiagonal SEP;
• transform the derived eigenvectors back to the original GSEP according to
the previous steps.

In electronic structure computations a whole sequence of eigenproblems has to be
solved with changing A.

In the following sections we will present the performance improvements in-
cluded in ELPA-AEO, namely

• monitoring, autotuning, and optimization;
• improved matrix multiplication in the transformations via Cannon’s algo-
rithm;

• taking advantage of banded structure in A and B via Crawford’s method;
• solving huge important GSEPs in electronic structure computations.

2. Optimization, Monitoring, and Autotuning

Clearly the most obvious change in the recent ELPA releases from the user per-
spective is the complete redesign of the library API. The new API requires the
user to first create the ELPA object, then allows various manipulations with it in
order to influence the library performance and finally to call one of the solution
routines. Examples (shortened) of a program using ELPA in Fortran and C can
be seen in Figures 1 and 2, respectively. The new API brought many benefits for
the library users, whilst keeping the user-code changes on very reasonable level.
Not only are the calling commands more elegant, but many new options and func-
tionalities have been implemented. One of the most important is the introduction
of autotuning. An example code, showing a possible use of this functionality is
shown in Figure 3.

The autotuning works as follows. First of all, a set of parameters that should
be tuned is selected (either by choosing the level of autotuning or manually). Each
of the parameters can attain a limited number of values (e.g. all the different
kernel implementations, or different values of certain block sizes, etc.). To alleviate
the user from the need to wait too long and to avoid the necessity of wasting the
valuable computer time, the autotuning can be performed during the production
run with repeating calls (e.g. during the SCF cycle) to the solution routine, each
time with one of the possible parameter combinations with the possibility to
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1 use e lpa
2 c l a s s ( e l p a t ) , p o i n t e r : : e
3 i n t e g e r : : s u c c e s s
4 e => e l p a a l l o c a t e ( su c c e s s )
5 i f ( su c c e s s \= ELPA OK) . . . ! hand l e e r r o r
6 ! s e t the matr ix s i z e
7 c a l l e%se t ( ”na” , na , su c c e s s )
8 i f ( su c c e s s \= ELPA OK) . . . ! c h e ck s f u r t h e r omi t t ed
9 ! s e t i n the same way a l l the r e qu i r e d parameter s

10 ! d e s c r i b i n g the matr ix and i t s MPI d i s t r i b u t i o n .
11 c a l l e%se t ( ”nev” , nev , su c c e s s )
12 c a l l e%se t ( ” l o ca l n r ows ” , na rows , su c c e s s )
13 c a l l e%se t ( ” l o c a l n c o l s ” , na co l s , s u c c e s s )
14 c a l l e%se t ( ”nblk ” , nblk , s u c c e s s )
15 c a l l e%se t ( ”mpi comm parent” , mpi comm world , s u c c e s s )
16 c a l l e%se t ( ” proces s row ” , my prow , su c c e s s )
17 c a l l e%se t ( ” p r o c e s s c o l ” , my pcol , s u c c e s s )
18 su c c e s s = e%setup ( )
19 ! i f d e s i r e d , s e t o the r run−t ime o p t i o n s
20 c a l l e%se t ( ” s o l v e r ” , e l p a s o l v e r 2 s t a g e , s u c c e s s )
21 ! v a l u e s o f parameter s can be r e t r i e v e d
22 c a l l e%get ( ” s t r i p ew i d t h r e a l ” , s t r ipewidth , su c c e s s )
23 ! c a l l one o f the s o l u t i o n methods
24 ! the data type s o f a , ev , and z determine whether
25 ! i t i s s i n g l e / doub le p r e c i s i o n and r e a l / complex
26 c a l l e%e i g env e c t o r s ( a , ev , z , s u c c e s s )
27 ! or , i n the c a s e o f g e n e r a l i z e d EVP
28 c a l l e%g en e r a l i z e d e i g e n v e c t o r s ( a , b , ev , z , ...

i s a l ready decomposed , su c c e s s )
29 ! c l e anup
30 c a l l e l p a d e a l l o c a t e ( e )
31 c a l l e l p a un i n i t ( )

Figure 1. Example use of the ELPA object. In the old API, all parameters were passed in one
function call, which, with increasing number of customization parameters and options, became
too inflexible and error prone since the signature of the function became too long and each newly
introduced parameter would change the library API. With the new API, arbitrary large number
of parameters can be added in the future. A new API for generalized EVP has been added,
allowing the user to specify, whether he or she has already called the function with the same
matrix B (using the is already decomposed parameter) and wants to re-use its factorizations,
which is useful during the SCF cycle.

interrupt and resume the process and finally to store the optimal setting for future
use, as it is suggested in Figure 3.

Apart from the previously mentioned changes, a lot of effort has been put into
classical HPC optimizations of the code with respect to different architectures.
This includes optimizations for the new CPU architectures, GPUs and intercon-
nects. One of the recent HPC architectures, where ELPA has been successfully de-
ployed is the supercomputer cobra at MPCDF, which comprises of skylake-based
compute nodes, partially equipped with NVIDIA Volta V100 GPUs and the Om-
niPath interconnect. The performed optimizations included writing hand-tuned
AVX-512 kernels (using compiler intrinsics), addressing MPI performance issues
(finally solved by using Intel MPI 2019.3 or higher) and various GPU-related
optimizations.
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1 #i n c l u d e <e lpa / e lpa . h>
2 e l p a t handle ;
3 handle = e l p a a l l o c a t e (& e r r o r ) ;
4 e l p a s e t ( handle , ”na” , na , &e r r o r ) ;
5 e l p a g e t ( handle , ” s o l v e r ” , &value , &e r r o r ) ;
6 p r i n t f ( ” So lve r i s s e t to %d \n” , va lue ) ;
7 e l p a e i g e nv e c t o r s ( handle , a , ev , z , &e r r o r ) ;
8 e l p a d e a l l o c a t e ( handle ) ;
9 e l p a un i n i t ( ) ;

Figure 2. Example use of the C interface. The object-oriented approach is implemented using the
handle pointer. Apart from this, the library use is very similar as through the Fortran interface
(as presented in Figure 1), and the C example is thus kept very short for brevity.

As ELPA originated as a replacement for the ScaLAPACK routines P?SYEVR
and P?SYEVD, it is natural to compare its performance with the best available
implementation of this widely used and de-facto standard library for a given ar-
chitecture, as it has been done in the past ([1], [3]) on Intel-based machines and
also recently by independent authors in [4] using the Cray system. Such compar-
ison can be seen in Figure 4, comparing the performance of the ELPA library
with Intel MKL 2019.5 for a matrix of the size 20000. Scaling curves for larger
matrices including a cross-island run can be seen in Figure 5. It is obvious, that
the performance of the ELPA library, especially its implementation of the two-
stage algorithm, exceeds the performance of the MKL routines significantly, as it
is consistent with other reports.

A lot of effort has been put into GPU related optimizations of ELPA, since the
number of GPU-equipped HPC systems is on the rise. We have already reported
this effort and the obtained results in the previous papers [5] and [3], so let us
here only present a typical performance output (see Table 1) and reiterate some
conclusions:

• ELPA 1-stage can run significantly faster using GPUs, which is not the case
for ELPA 2-stage, where the speed-up is moderate to none at the moment.

• In order to benefit from the GPUs, there has to be enough data to saturate
them. It is thus beneficial to use them for setups, where there are large
local matrices (possibly up to the memory limits), thus for large matrices
and/or moderate number of GPU equipped nodes.

• To fully utilize both the CPUs and GPUs, ELPA is run as a purely MPI
application with one MPI rank per core and the efficient use of the GPU
cards is achieved through the NVIDIA MPS daemon.

We can thus conclude (see Table 1), that the GPU implementation of ELPA 1-
stage is utilizing the GPUs well and given a suitable problem setup, it can be
very efficiently used to reduce the total application runtime.

3. Reduction of Full Generalized Eigenvalue Problems

The solution of a GSEP AX = BXΛ with A hermitian and B hermitian positive
definite typically proceeds in four steps.
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1 use e lpa
2 c l a s s ( e l p a t ) , p o i n t e r : : e
3 c l a s s ( e l pa au to tune t ) , p o i n t e r : : t un e s t a t e
4 e => e l p a a l l o c a t e ( )
5 ! s e t a l l the r e qu i r e d f i e l d s , om i t t i n g o t h e r s
6 c a l l e%se t ( ”na” , na , e r r o r )
7 ! a l t e r n a t i v e l y ex c l ud e some parameter s from au t o tun i ng by ...

s e t t i n g them
8 c a l l e%se t ( ”gpu” , 0)
9 ! s e t up the ELPA ob j e c t and c r e a t e the au t o tun i n g o b j e c t

10 su c c e s s = e%setup ( )
11 t une s t a t e => e%autotune setup ( l e v e l , domain , e r r o r )
12
13 i f ( done with autotuning ) then
14 c a l l e%l o ad a l l p a r ame t e r s ( ” autotuned pars . txt ” )
15 e l s e i f ( au t o tun i ng i n p r og r e s s ) then
16 c a l l e%auto tune l o ad s t a t e ( tune s ta t e , ” atch . txt ” )
17 e n d i f
18 i t e r=0
19 ! a p p l i c a t i o n− s p e c i f i c c y c l e , where mu l t i p l e s i m i l a r
20 ! EVP prob lems are so l v ed , e . g . the SCF c y c l e
21 do wh i l e ( c o n t i n u e c a l c u l a t i o n )
22 i f ( . not . done with autotuning ) &
23 f i n i s h e d = . not . e%autotune s tep ( tune s t a t e )
24 i f ( f i n i s h e d ) then
25 ! s e t and p r i n t the autotuned−s e t t i n g s
26 c a l l e%au to tune s e t b e s t ( t une s t a t e )
27 ! the cu r r en t v a l u e s o f the parameter s can be saved
28 c a l l e%sav e a l l p a r ame t e r s ( ” autotuned pars . txt ” )
29 done with autotuning = . t ru e .
30 e n d i f
31 ! do the a c t u a l c a l c u l a t i o n
32 c a l l e%e i g env e c t o r s ( a , ev , z , e r r o r )
33 ! do whatever needed with the r e s u l t
34 end do
35 i f ( . not . done with autotuning ) then
36 ! the s t a t u s o f the au t o tun i n g can be saved
37 c a l l e%auto tune save s t a t e ( tune s ta t e , ” atch . txt ” )
38 e n d i f
39 ! de−a l l o c a t e auto tune o b j e c t
40 c a l l e l p a au t o tun e d ea l l o c a t e ( tun e s t a t e )

Figure 3. A sketch of a code, which performs autotuning during a production run of a program
which calls the ELPA library repeatedly. It also shows how to split the autotuning process into
multiple calls of the program by saving the autotuning state into a checkpoint file atch.txt. Each
actual library call is performed with slightly different settings. After all combinations have been
exhausted, the optimal settings are saved to the autotuned pars.txt file, the autotuning is not
performed any more and the optimal setting is used ever since.

i) Compute Cholesky decomposition B = UHU .
ii) Reduce the GSEP to an equivalent SEP ÃX̃ = X̃Λ, where Ã =

U−HAU−1.
iii) Solve the SEP.
iv) Back-transform the eigenvectors via X = U−1X̃.

Since one key application of ELPA is electronic structure theory, where often a
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Figure 4. Scaling results from the most recent skylake-based supercomputer at MPCDF using
real double precision matrix of the size 20000. Compared is the performance of the two relevant
MKL 2019.5 routines and ELPA one and two stage. Where possible, also results for 10% and
50% of eigenvectors are shown. The MKL routines offer comparable or superior performance to
the ELPA one-stage algorithm for small and moderate number of cores, but do not scale for
larger core counts. ELPA scaling is generally much better in the investigated region. For the
very large core counts and thus very small local matrices, the speed-up with growing number
of cores is slowing down, but the performance is not deteriorating, which can be very beneficial
when coupled with a well scaling application. The ELPA two-stage solver clearly outperforms
all the other routines in this setup.

sequence of GSEPs A(k)X(k) = BX(k)Λ(k) with the same matrix B have to be
solved during a self consistent field (SCF) cycle, ELPA’s approach for the above
step ii) is to explicitly compute B−1 and then to do (triangular) matrix multi-
plications to obtain Ã. Alternative approaches use the inverse only implicitly; cf.
the routines PDSYNGST and TwoSidedTrsm in the ScaLAPACK [6] and ELEMEN-
TAL [7] libraries, resp.

With the inverse U−1 available explicitly (again upper triangular, denoted as
Û in the following), a computationally efficient way to implement the above step
ii), Ã = ÛHAÛ , is as follows [8].

ii.a) Compute the upper triangle Mu of M := AÛ .
ii.b) Transpose Mu to obtain the lower triangle Ml of M

H = ÛHAH = ÛHA.
ii.c) Compute the lower triangle of Ã = MlÛ .
ii.d) If the whole matrix Ã is needed then reflect its lower triangle along the

diagonal.

During the ELPA-AEO project, new algorithms have been developed for the mul-
tiplications in steps ii.a) (Multiplication 1 : compute upper triangle of “hermi-
tian × upper triangular”) and ii.c) (Multiplication 2 : compute lower triangle of
“lower triangular × upper triangular”). Compared to these multiplications, the
transpositions in steps ii.b) and d) are inexpensive [9].
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Figure 5. Strong scaling graphs for ELPA 2-stage computing all eigenvectors with different
matrix sizes n. The line for n=20k corresponds to the line of the same color from Figure 4. The
results shown in both figures were obtained on the supercomputer cobra at MPCDF, comprising
of compute nodes containing two Intel Xeon Gold 6148 processors (Skylake with 20 cores (each)
at 2.4 GHz) connected through a 100 Gb/s OmniPath interconnect. Most of the calculations
shown were performed within a single island with a non-blocking, full fat tree network topology.
The blocking factor among islands is 1:8. The only cross-island run is for the largest matrix
n=524k and 40960 cores showing reasonable performance despite the weaker network between
the islands.

Table 1. ELPA runtimes (s) on a full Skylake node (40 cores in total) equipped with two NVIDIA
Volta V100 GPUs. As it is usually the case, ELPA is running as purely MPI application (thus
using 40 MPI ranks). In the GPU case, each of the MPI ranks is offloading compute intensive
kernels to one of the GPUs (through the NVIDIA MPS for efficiency). As it can be seen from the
results, even using one particular architecture, it is not possible to determine the generally best
option. In this particular case, ELPA 1-stage CPU is the best option for very small matrices,
ELPA 2-stage CPU for larger and ELPA 1-stage GPU for the largest. The ELPA 2-stage GPU
is not listed, since its performance is almost never the best possible and is thus currently not
recommended.

CPU GPU

matrix size ELPA 1 ELPA 2 ELPA 1

1024 0.11 0.13 0.93

8192 10.7 5.57 8.45

20000 110 52.7 37.0

65536 5795 2551 733

Our algorithms are based on Cannon’s method [10]; they exploit the trian-
gular structure to save on arithmetic operations and communication, and they
have been extended to work on non-square pr × pc grids with integer aspect ratio
pc : pr. In this case, they take pr phases, which improves over the pc phases of
the approach described in [11] for full matrices.

Here we only point out the main ideas for Multiplication 1. Assume that
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Figure 6. Distribution of the matrices for Multiplication 1 after the initial skewing and the
sharing of A blocks. The numbers next to the arrows indicate the distance of the skewing shifts
within rows/columns of the process grid. See the main text for a description.

A ∈ C
n×n and Û ∈ C

n×n have been partitioned into N × N blocks Ai,j (Ûi,j ,
resp.) of size nb × nb, where N = �n/nb�, and that they are distributed over the
process grid in a block torus wrapped manner, i.e., process Pk,� holds exactly those

blocks Ai,j and Ûi,j such that i ≡ k mod pr and j ≡ � mod pc. This is also
the default distribution in ScaLAPACK and ELPA. Considering the case N = 6,
pr = 3, pc = 6 as an example (cf. also Figure 6), process P1,5 would hold the

blocks A1,5, A4,5, Û1,5, and Û4,5. Next we do a Cannon-type initial skewing : In
row k of the process grid, k = 0, . . . , pr − 1, the local portions of A are shifted
by k positions to the left, and in column �, � = 0, . . . , pc − 1, the local portions
of Û are shifted by � mod pr positions upwards (with cyclic connections along
rows and columns). Therefore, P1,5 now has P1,5+1 ≡ P1,0’s original blocks from

A (i.e., A1,0 and A4,0) and P1+2,5 ≡ P0,5’s original blocks from Û (i.e., Û0,5 and

Û3,5). Finally, groups of pc/pr processes that are pr positions apart in the same
row, share their portion of A. In our example, P1,5 shares the A blocks with P1,2,
such that both hold the same blocks A1,0, A4,0, A1,3, A4,3 from A, but different

blocks from Û , cf. Figure 6. Note that the blocks Ûi,j in the strict lower triangle

of Û are zero and therefore need not be stored and sent; they bear a light color
in Figure 6.

After these preparations, the computation proceeds in pr phases. In each
phase, every process multiplies its current local A with the current local Û . In our
example, taking into account the structure of Û and the fact that we compute
only the lower triangle of the product M = AÛ , in the first phase P1,5 would

update

[
M1,5

M4,5

]
=

[
M1,5

M4,5

]
+

[
A1,0 A1,3

A4,0 A4,3

]
·
[
Û0,5

Û3,5

]
, whereas the update in P1,3 reads[

M1,3

M4,3

]
=

[
M1,3

M4,3

]
+

[
A1,1

A4,1

]
· Û1,3, and P1,1 performs no computation at all in this

phase. At the end of each phase, the local A blocks are shifted by one position
to the left in the process grid, and the Û blocks are shifted by one position up.
It is not hard to verify that, after pr such phases, P1,5 has computed “its” blocks
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“invert and multiply” approach (multiplication routines from ELPA or the new Cannon-based
implementations). n = 30,000, nb = 64, 16 single-threaded processes per node.

M1,5 and M4,5 of the block torus wrapped-distributed product M , and similarly
for the other Pk,�.

For a description of Multiplication 2 and a discussion of possible savings from
combining the two multiplications in one function and buffering some data the
reader is referred to [12].

In Figure 7 we present timings obtained on the HYDRA system at the Max
Planck Computing and Data Facility in Garching. Each HYDRA node contains
two 10-core Intel Ivy Bridge processors running at 2.8 GHz. All matrices were
double precision real of size n = 30,000, and the block size was nb = 64. We
observe that explicit inversion, combined with our Cannon-based matrix multipli-
cations, can be highly competitive even for solving a single generalized eigenprob-
lem (red curve, including the time for inverting U). For sequences of GSEPs with
the same B, where the inversion can be skipped in most cases, the new reduction
according to steps ii.a) to d) is significantly faster (green curve).

In [12] we have considered only MPI parallelization, using p processes for
utilizing a total of p cores. Alternatively, one can reduce the number of processes
and enable multithreaded execution. This may or may not be beneficial, depend-
ing on several factors. In particular, while multithreading reduces the size of the
process grid and therefore leads to savings in communication, it also can cause
a loss of computational performance if running a process’ computations with ϕ
threads does not speed them up by a factor of ϕ.

In the left picture of Figure 8 we see that using multiple threads per process
may extend the range of scalability. More details are exposed in the right picture,
which shows the relative timings for the same runs. We see that for numbers of
cores p that are not squares and therefore would lead to a non-square grid when
using single-threaded processes, using 2 threads per process (leading to a square
process grid) reduced the time for multiplication 1 by roughly 10%, whereas it
increased the time for those p that are square and not very large. This indicates
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relative to the baseline of 16 single-threaded processes per node.

a slight preference of that routine for square process grids. If the number of cores

is large enough that communication contributes significantly to overall time then

multithreading pays independently of the grid’s shape because it leads to a smaller

process grid and therefore reduces communication.

The effect of multithreading also differs between the routines in the ELPA

library; see Table 2. Some of them contain explicit OpenMP directives or pragmas

for controlling thread parallelism. Others rely exclusively on multithreaded BLAS,

and the efficiency of the latter depends on the size and shape of the involved

matrices, which may be rather different; this is the case, e.g., with the GEMM calls

in Multiplication 1 vs. Multiplication 2 [12].

A detailed discussion of these issues is not within the scope of this work,

but note that even the decision whether to use multithreading for the complete

solution of an eigenproblem (considering all routines involved) may depend on

whether it is part of a whole sequence of eigenproblems, as common in SCF cycles,

or just a single eigenproblem; cf. the last two lines in Table 2. See Section 2 on

support in ELPA for taking such decisions in a partially or fully automated way.

Table 2. Timings (in seconds) on HYDRA for n = 30,000, nb = 64, with different setups of 4096
cores (256 nodes with 16 cores each): 16 single-threaded processes per node, 8 processes with 2
threads, and 4 processes with 4 threads.

16× 1 8× 2 4× 4

Cholesky decomposition 1.804 1.078 0.878

Invert 0.885 0.804 0.781

New transformation 0.759 0.709 0.705

Solution of standard eigenproblem 8.189 8.668 8.758

Back-transformation 33% 0.247 0.235 0.203

Overall without Chol. & Invert 9.195 9.612 9.665

Overall including Chol. & Invert 11.883 11.494 11.324
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4. Eigenvalue Solver for Banded Matrices

If, additionally, the two matrices A, B = UHU in the GSEP AX = BXΛ are
banded, the procedure described in Section 3 is not optimal as it leads to a full
matrix Ã (the Cholesky factor of B is still banded, but the inverse of the Cholesky
factor is in general a full matrix and hence Ã becomes a full matrix).
The two-stage solver in ELPA however, first transfers a full matrix C of a SEP
CY = Y Λ to a banded matrix Ĉ and then further transforms it to a tridiagonal
matrix C̄ which is solved for the eigenvalues and eigenvectors. Subsequently, the
eigenvectors undergo two backtransformation steps to obtain the eigenvectors of
the SEP. In this framework, by maintaining the band while transforming the
GSEP to a SEP, the first step (transformation of the full matrix to the banded
matrix) can be omitted as well as the second step of the backtransformation.

Crawford proposed an algorithm for maintaining the band in [13]. His algo-
rithm stepwise applies the Cholesky factorization of B and removes the occurring
fill-in outside the band by a series of QR factorizations. Lang extended the algo-
rithm in [14]. His version offers more flexibility for blocksizes and bandwidth and
utilizes a twisted factorization for B instead of a standard Cholesky factorization.
The latter allows to reduce computational work when removing the occurring fill-
in drastically. In the following we will briefly describe our parallel implementation
of Lang’s algorithm including the backtransformation of the eigenvectors. A more
detailed description can be found in [15].

For the parallel implementation we use a unified blocksize nb = max(bA, bB)
(as in the original Crawford algorithm) to get an efficient pipelining algorithm.
The matrices A and B can therefore be subdivided into N × N blocks with
N = � n

nb
�. The case when n is not a multiple of nb can be covered by adding an

incomplete block at the end.
The matrix U originates from the twisted factorization of B with twist posi-

tion p and twist block P (the twist position p is chosen such that it is the end of
a block; this block is referred to as twist block). U can itself be factorized as

U = UP · UP−1 · · ·U1 · UP+1 · · ·UN−1 · UN .

Each of the factors Ui has the shape of an identity matrix besides one block row
between the rows (i − 1)nb + 1 and inb. These rows contain the same values as
in the matrix U at the same place. Figure 9 gives an illustration of the matrix
shapes and the block structure.
The transformation Ã = U−HAU−1 can therefore be reformulated to the stepwise
application

Ã = U−H
P · U−H

P−1 · · ·U−H
1 · U−H

P+1 · · ·U−H
N−1 · U−H

N ·
A · U−1N · U−1N−1 · · ·U−1P+1 · U−11 · · ·U−1P−1 · U−1P .

As it can be seen from Figure 9 every Ui consists of one block row that differs
from the identity matrix. In this block row, we will denote the diagonal block as
Ui,i and the other non-zero block as Ui,i−1 or Ui,i+1, depending on the position
in the lower or upper matrix half. When inspecting the inverse of the matrix,
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Figure 9. Block structure of the matrices A and B (left), the twisted factorization of B, U with
its twist block P (middle), and one of its factors, U4 (right).

U−1i , it can be seen that it has the same structure as Ui. The diagonal block of
the inverse matrix turns out to be the inverse of the diagonal block of Ui. In the
further text we use Di := U−1i,i as abbreviation for this block. The other block of
the inverse matrix is denoted as Ei and can be described by Ei := −DiUi,i−1 in
the lower matrix half or Ei := −DiUi,i+1 in the upper matrix half, respectively.

Applying one factorization step Ui in the lower matrix half hence takes the
i-th block column of A, multiplies it from the right with Ei and adds it to block
column i− 1 (upper matrix half: block column i+ 1). Afterwards, block column
i is multiplied from the right with Di. The same procedure is rolled out for the
multiplication from the left with U−H

i . Block row i times EH
i is added to block

row i − 1 (upper matrix half: block row i + 1) and subsequently block row i is
multiplied by DH

i .
Figure 10 shows in the left picture the application of a factorization step in

the lower matrix half and the occurring fill-in (left two block columns). The fill-in
is created in the blocks Ai,i−1, Ai+1,i−1 and Ai+1,i. Due to symmetry we restrict
the description to the lower triangle of the matrix A. On the blocks Ai,i−1 and
Ai+1,i−1 a QR decomposition is computed and the block rows i and i + 1 are
multiplied with the obtained Q from the left as well as the block columns i and
i+1 from the right. The symmetric application of Q shifts the fill-in by one block
row and one block column towards the lower end. By repeating the QR step, the
fill-in can be completely evicted from the matrix and the next factorization step
can be applied. The procedure for the upper matrix half is the same, only the
QR factorization is replaced by a QL factorization and the fill-in moves stepwise
towards the top left of the matrix.

Denoting the Qs following the application of Ui with Q
(k)
i , the series

Ui, Q
(1)
i , Q

(2)
i , . . . , Q

(νi)
i applies one step of the factorization and restores the band.

Hence, using

Ũ−1 = U−1N ·Q(1)
N · · ·Q(νN )

N · · ·U−1P+1 ·Q(1)
P+1 · · ·

Q
(νP+1)
P+1 · U−11 ·Q(1)

1 · · ·Q(ν1)
1 · · ·U−1P ·Q(1)

P · · ·Q(νP )
P ,

the overall transformation with restoring the band can be described as Â =
Ũ−HAŨ−1.

The eigenvalues of the SEP ÂX̂ = X̂Λ are the same as the eigenvalues of the
GSEP AX = BXΛ, but for the eigenvectors a backtransformation step has to be
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Figure 10. The two steps of the algorithm (in the lower matrix half, upper matrix half similar
but mirrored): 1. (left) Applying the factorization (Di, Ei) and performing the right sided
update of the two-sided Q-application. Since operating on different block columns, Q of different
factorization steps can be applied in parallel. Red indicates the bulge of newly created non-zeros
outside the band (in green). 2. (right) Eliminating the fill-in by generating the QR decomposition
and applying it from the left to the matrix. Since operating on different block rows, the QR
decomposition and the left sided application of Q of different factorization steps can be applied
in parallel.

applied. These eigenvectors of the GSEP can be found by applying Ũ−1 to the
eigenvectors of the SEP: X = Ũ−1X̂.

Contrary to the computation of Â the eigenvectors are multiplied from the left
with Ũ−1 and not with the hermitian of it. Therefore the order of the operations

is reverse: Q
(νi)
i , . . . , Q

(2)
i , Q

(1)
i , Ui. Figure 11 gives an illustration of the updating

scheme. In the lower matrix half the applications of Q
(k)
i update the block rows

i + k − 1 and i + k. After having applied the Qs, Di multiplies the block row i
from the left and to this block row the i− 1st block row multiplied from the left
with Ei is added. The block rows to update in the upper matrix half are slightly

different. Q
(k)
i update the block rows i−k+1 and i−k and instead of multiplying

the i−1st block row with Ei, the i+1st block row is added to block row i (which
has been multiplied by Di).

Having a closer look on the application of the factorization and the generation
and application of the Q, it can be seen that by splitting the two-sided application

of Q and by interchanging the order of the Q
(k)
i a pipelining structure can be

obtained. It is based on the fact that a left sided update with Q
(k)
i updates only

two consecutive block rows and a right sided update and the application of the
factorization only update two consecutive block columns. The order of execution

has to be kept within a factorization step, meaning Q
(k)
i has to be executed before

Q
(k+1)
i , but Q

(k)
i can be executed at the same time as Q

(k+1)
i+1 . Details on the
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Figure 11. Three consecutive steps in the backtransformation: The applications of different Q
can be done in parallel in the same way the Q have been created (see Figure 10, right picture).
Finally, the Di and Ei are applied.

interchangeability can be found in [15]. Figure 10 shows the pipelining structure
in the lower matrix half in the computation of Â.

A similar pipelining scheme can be obtained for the backtransformation step:

All Q
(k+j)
i+j can be applied to the eigenvectors simultaneously. Additionally, the

application of Di and Ei can be decoupled from the application of the Q
(k)
i and

can be executed afterwards. Figure 11 shows the application of different Q
(k)
i

which can be executed concurrently.
Besides the pipelining scheme, Ũ−1 offers another parallelization layer which

comes by the twisted factorization. The operations in Ũ−1 first process the lower
matrix half and afterwards the upper matrix half. These operations, however,
do not overlap besides the twist block P that is updated by the upper and the
lower matrix half of the factorization. Therefore they can be run in parallel with
a synchronization point at the twist block. Concluding, the algorithm provides
three parallelization layers: parallel execution of the upper and lower matrix half,
parallel execution of the independent steps in the pipeline and parallelization of
the operations in the single blocks. Additionally, the use of a threaded BLAS
library can provide a fourth layer of parallelization.

The process setup is hence chosen in a way to exploit the parallelization lay-
ers. The available processes are separated in processes for the upper and the lower
matrix half. Processes of a matrix half are further subdivided into groups which
compute the operations of a block. These groups are ordered in a grid and if not
enough groups are available to fill all blocks, repeated cyclically. All operations
involve communication between the processes of two groups. Due to the constant
neighbourhood, local communicators are used to perform these operations effi-
ciently. In the backtransformation step the process setup is used in the same way,
exploiting to have the Householder vectors already in place.

Figures 12 and 13 show the strong scaling behaviour of the algorithm for
matrix sizes of 51200 and 204800. The overall runtime as well as the two main
steps are plotted: the backtransformation of the eigenvectors and the application
of Ũ−1. The bandwidth of the matrices was in both cases 1% of the matrix size.
Both matrix sizes show good scaling for a selected number of processes per group.
If all groups only hold one block further speedup can be achieved by using more
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Figure 12. Strong scaling for a matrix of size 51200. The bandwidth (and hence the blocksize) is
512, the twist index is at 25600. The backtransformation is done for 12800 eigenvectors (25%).
Per group 2 × 2 and 4 × 2 processes have been used. The runs have been carried out on the
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2k 4k 6k 8k

150

100

50

25 Ideal speedup

processes

t
in

s

Overall 5 × 4
Eigenvectors 5 × 4
Appl fact. 5 × 4
Overall 8 × 5

Eigenvectors 8 × 5
Appl fact. 8 × 5

Figure 13. Strong scaling for a matrix of size 204800. The bandwidth (and hence the blocksize)
is 2048, the twist index is at 102400. The backtransformation is done for 25600 eigenvectors
(12.5%). Per group 5 × 4 and 8 × 5 processes have been used. The runs have been carried out
on the Cobra Supercomputer.

processes per group. Using more processes per group, however, comes along with a
loss in performance compared to the same number of processes with less processes
per group. Not shown here is the additional bandreduction step which is necessary
for bandwidth of size 512 or 2048. The savings compared to computing the dense
eigenvalue problem however, will still be significant.

For solving generalized eigenvalue problems with banded matrices this proce-
dure allows to compute eigenpairs at matrix sizes where the standard procedure
with factorizing B, applying B to A and using a standard dense solver for the
full resulting matrix C would consume to much memory or result in way more
computation. When considering sparse eigenvalue solvers, the computation of
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higher percentages of the eigenpairs becomes expensive. This approach, however,
provides the possibility to overcome this issue.

5. Applications

First-principles simulations in computational chemistry, solid state physics, and
materials science typically involve to determine the interactions between the
M nuclei described by 3M nuclear positions {�R}. Being able to compute the

total energy of the system E0({�R}), i.e., the high dimensional potential energy

surface (PES), as a function of {�R} and, ideally, its derivatives such as the forces

acting on the nuclei �FI({�R}) = −∇�RI
E0({�R}), allows to investigate the prop-

erties of molecules and materials. For instance, one can systematically map out
the PES E0({�R}) to search for (stable) minima and saddle points between them
or explore it dynamically via molecular dynamics (MD) or statistical (e.g. Monte
Carlo) sampling. Accordingly, a typical computational study often requires to

determine E0({�R}) for thousands of nuclear configurations {�R}.
Computing E0({�R}) requires to solve the quantum-mechanical electronic-

structure problem. In density-functional theory (DFT) [16], the most wide-spread
electronic-structure formalism, this requires to identify the electronic density n(�r)
that minimizes the convex total-energy functional E0 = minE[n(�r)]) for a given
number of electrons N =

∫
d�rn(�r). In Kohn-Sham (KS) DFT [17], this variational

problem is mapped onto a series of eigenvalue problems (EVP), the so called
self-consistent field (SCF) formalism. In each step of the SCF cycle, the EVP

H [n(�r)] Ψ(�r) = εΨ(�r) with n(�r) =

N∑
s=1

|Ψs(�r)|2 (1)

is solved to determine the eigenstates Ψs. The N eigenstates Ψs with the
lowest eigenvalues εs allow to compute an updated and improved n(�r), for
which Equation (1) is then solved again. This procedure is repeated until “self-
consistency” is achieved at the end of the so called SCF cycle, i.e., until a sta-
tionary solution with minimal E[n(�r)] is found. In practice, a basis set expan-
sion Ψs =

∑
i xsiϕi(�r), e.g., in terms of Gaussians, plane waves, numerical func-

tions, etc., is used to algebraize and solve Equation (1). By this means, one obtains
the generalized EVP

A [n(�r)]x = λBx , (2)

the size of which is determined by the number of basis functions ϕi(�r) employed
in the expansion. Here, the Hamiltonian A and the overlap matrix B are given
as:

Aij [n(�r)] =

∫
d�rϕ∗i (�r)H [n(�r)] ϕj(�r) , Bij =

∫
d�rϕ∗i (�r)ϕj(�r) .
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5.1. Autotuning: The Case of GPU Offloading

Due to the cubic scaling with system size, the generalized EVP (2) quickly be-
comes the numerical bottleneck in practical DFT calculations. It is thus more than
desirable to use optimal ELPA settings (ELPA1 vs. ELPA2, architecture-specific
kernels, etc.) to utilize the computational resources in the most efficient way so to
obtain the optimal time-to-solution. As discussed above, this is of particular im-
portance in first-principles simulations, which require solving many similar eigen-
value problems, e.g., the 10–100 individual SCF steps in one SCF cycle or the
thousands if not millions of SCF steps performed in an iterative exploration of
the PES E0({�R}). ELPA’s autotuning feature allows to determine these optimal
settings, which depend upon both the inspected physical problem and the used
architecture, in an automated way [3].

This is particularly important for new and upcoming architectures featur-
ing GPUs: This is exemplified in Figure 14, which shows calculations performed
with the FHI-aims code [18] using ELSI [19] as interface to ELPA and the PBE
exchange-correlation functional [20] for periodic Caesium Chloride crystals as
function of the number of basis functions used. For this purpose, calculations with
different system sizes, i.e., number of atoms, were performed. Since FHI-aims uses
local atomic orbitals [18], the number of basis functions increases with the num-
ber of atoms: For example, the smallest investigated system contains 16 atoms
and thus uses 496 basis functions, while the largest system contains 3,456 atoms
and 107,136 basis functions. For all system sizes, we benchmarked ELPA1 and
ELPA2 separately; in both cases, CPU only calculations as well as calculations
using CPUs and full GPU acceleration (for the tridiagonalization, the solution
of the eigenvalue problem, and the back transformation) were performed on four
Intel Skylake (Xeon Gold 6138) + nVidia Tesla V100 nodes with two CPUs and
GPUs each (20 cores/CPU @ 2.0 GHz).

As Figure 14 shows, the use of GPU acceleration offers a sizeable performance
increase for large systems with respect to CPU-only calculations for both ELPA1
and ELPA2, whereby the gains are more pronounced for ELPA1. The threshold
number of basis functions for which GPUs indeed accelerate the calculation is
essentially determined by the workload on each CPU and GPU. For too small
systems, the time spent transferring the data to the GPU is larger than the
actual computational gains due to the GPU. In this particular case, GPUs are
thus beneficial for ELPA1 for more than 10,000 basis functions and for ELPA2
for more than 20,000 basis functions. Overall, CPU-only ELPA1 is the fastest
solver up to 4,000 basis functions, CPU-only ELPA2 for system between 4,000 up
to roughly 20,000 basis functions, and CPU+GPU ELPA1 for all systems with
even larger number of basis functions. Note that this might be quite surprising
even for well-experienced ELPA users, given that ELPA2 is typically superior to
ELPA1 for large system sizes in the CPU only case, as also shown in Figure 14. In
practice, switching from CPU-only ELPA2 to CPU+GPU ELPA1 can thus lead
to significant savings in computational time around 30%, as it is the case for a
system size with 107,136 basis functions.

As shown above, optimal performance can only be achieved if different com-
binations of ELPA1 and ELPA2 with and without GPU acceleration are chosen
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Figure 14. Computational time per SCF step (in seconds) as function of the numbers of basis
functions employed. Solid lines denote ELPA1, dashed lines ELPA2 calculations. CPU-only and
CPUs+GPU calculations were performed. The shaded areas denote which setup is fastest for
different system sizes. The inlet shows the timings for system sizes at which CPU+GPU ELPA1
becomes the fastest solver (border between blue and red marked areas).

depending on the system size. Moreover, the actual threshold at which GPU ac-
celeration becomes beneficial strongly depends on the number of nodes employed
in the calculation: For smaller number of nodes, the workload on the individual
nodes increases and GPU acceleration becomes beneficial earlier, i.e., for smaller
system sizes. Eventually, let us note that for the calculations shown in Figure 14
the GPU acceleration was used for the tridiagonalization, the solution of the
eigenvalue problem, and the back transformation. In practice, it can be beneficial
to exploit GPUs only for a subset of these steps, as shown below. This particu-
lar application thus showcases the importance of ELPA’s autotuning functional-
ity, which saves the user from performing tedious benchmark calculations for all
different settings and prevents him from choosing sub-optimal settings, e.g., by
choosing ELPA2 for large systems based on previous CPU-only experience.

We have explicitly verified this by running calculations with autotuning en-
abled for two different system sizes with 13,392 and 31,744 basis functions, re-
spectively. As shown in Table 3, the autotuning procedure is able to identify an
optimal solution for both cases. In the smaller system with 13,392 basis functions,
CPU-only ELPA2 is the optimal solution. Note that in this case the CPU kernel
has been fixed to the AVX512-one in all calculations, otherwise also this param-
eter would have been optimized by the autotuning procedure [3]. For the larger
system with 31,744 basis functions, ELPA1 with GPU acceleration is identified
as the optimal setup. Compared to the earlier calculations shown in Figure 14,
the autotuning procedure found out that it is beneficial to use GPU acceleration
only for the tridiagonalization and the back transformation, whereas the solution
of the eigenvalue problem is better performed only on the CPUs. The additional
gain in computational saving of roughly 1% compared to the next-best solution
is not earth-shattering in this case, but still noticeable, given that in actual simu-
lations this 1% can be exploited for thousands if not millions of eigenvalue prob-
lems. As already discussed in [3], the cost of the autotuning procedure is well
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Table 3. Computational time required for solving the KS equations in seconds for ELPA1 and
ELPA2 (CPU-only and CPU+GPU calculations) as well as for the optimal settings found by
ELPA’s autotuning functionality.

Number of ELPA1 ELPA1 ELPA2 ELPA2 Optimal

basis functions CPU-only CPU+GPU CPU-only CPU+GPU

13,392 16.03s 13.29s 10.38s 12.05s 10.38s

31,744 211.40s 89.38s 110.90s 99.72s 88.73s

worth the gains in practical calculations. Although some sub-optimal setups such
as CPU+GPU ELPA1 and CPU-only ELPA1 are tested during the autotuning
for the small and large system, respectively, the benefits outrun these costs in the
long term.

5.2. Performance Benefits by Reduced Precision

In DFT simulations, the individual SCF iterations leading up to self-consistency
are of no particular interest. Only the final results of the converged SCF cycle have
any physical relevance at all. Hence, it is worthwhile to study how a reduction in
precision of the SCF procedure from double (DP) to single precision (SP) might
accelerate the generalized EVP as the numerical bottleneck of DFT simulations,
as long as the final converged result is not altered up to the precision required
by the problem at hand. In this section, the precision is independently controlled
for the following individual eigensolver steps: the Cholesky decomposition (i),
the matrix multiplication in (ii) and (iv), and the solution of the eigenproblem
via tridiagonalization (iii) (see Section 3). Since SP in the matrix inversion step
U → U−1 destroys the convergence entirely [3], the inversion of U is always
conducted in DP.

To demonstrate the gain in computational performance by both the algorith-
mic improvements and the readily available SP routines in the new version of
ELPA, we have performed DFT calculations with FHI-aims [18] using ELSI [19]
as interface to different ELPA versions. The model system chosen for performance
comparisons is selected from a class of novel, self-organizing materials, called
metal-organic frameworks (MOF). Their electric conductivity can be manipulated
and tuned by doping with different metal ions [21]. Due to the low concentration
of doping atoms, the theoretical description is challenging and requires the simu-
lation of extensive supercells with a large number of atoms and hence basis func-
tions. Therefore, the iron triazolate MOF doped with a single copper atom [22]
is an ideal benchmark system to quantify the speed-up achieved by different pre-
cisions by evaluating five SCF cycles and the atomic forces for supercells ranging
from 2,405 to 19,343 atoms and 30,167 to 244,529 basis functions, respectively.
The calculations were conducted on Intel Xeon ’Skylake’ (40 cores @ 2.4 GHz)
and compared to the FHI-aims internal ELPA 2013 (only DP available).

As shown in Figure 15, replacing the FHI-aims internal ELPA 2013 by
ELPA2018.11 (DP) provides a speed-up of about 1.6 for the solution of the Kohn-
Sham eigenvalue problem. For high-level parallelization, where ELPA 2013 does
not scale very well, speed-up factors over 2.0 can be achieved. The total computa-
tional time is reduced by an average speed-up factor of 1.3, which can go up to 1.7
for large runs. This speed-up comprises all improvements and developments in the
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Figure 15. Computational time for solving the Kohn-Sham equation in five SCF iterations (in
seconds) as function of the number of CPUs. Calculations conducted with the FHI-aims internal
ELPA 2013 are denoted in orange. Application of ELPA2018.11 with DP and SP in steps (i) to
(iv) are depicted in dark and light blue, respectively. The different line styles show the timings
for different system sizes from 30,167 (dotted) via 72,104 (dash-dotted) and 141,824 (solid) to
244,529 (dashed) basis functions (b.f.).

ELPA library since the FHI-aims internal ELPA 2013 version, such as AVX-512
kernel optimization, autotuning etc. (see Section 2) but without the application
of GPUs.

Table 4 summarizes the speed-up factors broken down into the individual
steps of the GSEP. The Cholesky decomposition (i) is only conducted in the first
SCF iteration of each SCF cycle, i.e., only once in each benchmark calculation.
The gain by reduction to SP in the Cholesky step (i) is minimal with a speed-up
factor of about 1.1. Whereas for strong-scaling situations with high parallelization
(< 20 basis functions / cpu), SP in the Cholesky decomposition can effectively
increase the computational time of this step. In contrast, SP in the matrix mul-
tiplication of step (ii) and (iv) efficiently reduces the cpu time to 50% of the DP
computational time (speed-up factor 2.0). Similarly, SP in the eigensolver (iii)
achieves a speed-up of factor 1.9 for the computational time of step (iii). The
combination of SP in steps (i), (ii), (iii), and (iv) provides a speed-up of about
1.7 for the solution of the Kohn-Sham eigenvalue problem and of about 1.3 for
the total computational time, unless parallelization is high (< 20 basis functions
/ cpu).

6. Conclusions

We have presented the recent advances in the ELPA eigenvalue solver project.
Due to the API changes the autotuning functionality is now available for users. It
allows also non-experts to find the best parameter setups for their runs. Especially
in the setting of electronic structure theory where many similar eigenvalue prob-
lems have to be solved, autotuning is a very powerful instrument. Additional gain
in computational time was demonstrated by a mixed-precision approach where
certain steps to solve a generalized eigenvalue problem are done in single instead
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Table 4. Speed-up factors for SP versus DP (ELPA2018.11) for five SCF iterations and increas-
ing number of basis functions (b.f.) decomposed into each step of the GSEP solver: Cholesky
decomposition (i), transformation of GSEP to SEP (ii), solution of the eigenproblem via tridiag-
onalization (iii), and back-transformation of the eigenvectors (iv). The last two columns summa-
rize the speed-up factors for the computational time required for the solution of the Kohn-Sham
equation and for the total computational time.

No. b.f. (i) (ii) (iii) (iv) KS total

30,167 0.9 1.8 1.4 1.7 1.3 1.1

72,104 1.0 1.9 1.7 1.9 1.5 1.2

141,824 1.1 2.0 1.8 2.0 1.6 1.3

244,529 1.2 2.3 2.1 2.2 1.8 1.4

of double precision. The computational kernels and routines have been further

optimized and been ported for the newest GPU and CPU Hardware. This al-

lows to accelerate the computation of eigenvalues and eigenvectors and compute

even larger matrices. The new algorithmic developments improve the solution of

the generalized eigenvalue problems. For the banded and the dense matrix case

remarkable savings in computation time have been shown.
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Abstract. Graphs are a powerful tool for data representation in a wide range of
domains like social, biological, informational, etc. But their extremely large sizes
often makes it computationally infeasible to study the entire graphs. Graph sam-
pling provides a solution by generating smaller subgraphs which are computation-
ally feasible to analyze and can be used to infer the properties of the entire graph. In
this work, we develop a high throughput parallel implementation of Totally Induced
Edge Sampling (TIES) algorithm on FPGA. Prior research has shown that TIES
performs better than other sampling techniques in terms of preserving the topolog-
ical properties of the original graph, and thus generates better quality subgraphs.
The algorithm randomly samples the edges and inserts the corresponding vertices
into the sampled vertex set until the desired number of vertices are sampled. Then,
the edges connecting the sampled vertices are included in the sampled subgraph.
We use multiple parallel pipelines to achieve high throughput and faster graph sam-
pling. The parallel pipelines need to access a global dynamic data structure which
contains the vertices sampled thus far. To support this, we develop a novel dynamic
hash table data structure which supports parallel accesses in each clock cycle. We
vary the number of pipelines, the size of the sampled subgraph and analyze the per-
formance of the design in terms of on-chip FPGA resource utilization, throughput
and total execution time. Our design achieves a throughput as high as 2471 Mil-
lion Edges Per Second (MEPS) and performs 3.6x better than the state-of-the-art
multi-core design.

Keywords. Parallel Graph Sampling, Totally Induced Edge Sampling, FPGA,
Dynamic Data Structure

1. Introduction

Graphs are being used to represent data in a wide range of applications including World
Wide Web, social media, genomics, and machine learning [17,9]. Graph analysis is a key
computational technology in such applications to understand, codify and derive hidden
information. However, the large size of real world graphs prevents efficient processing
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even with the help of distributed graph databases and highly optimized processing plat-
forms [3,4,5]. Analyzing multiple smaller representative subgraphs is a possible solution
as the results of their analyses can be used to infer the properties of the original graph
[1,12,16]. In many data repositories, graphs are stored in form of subgraphs to make their
analysis computationally feasible [7,6,8]. Graph sampling algorithms are widely used to
generate such representative subgraphs from large graphs.

A popular graph sampling algorithm is Totally Induced Edge Sampling (TIES). It
randomly samples edges and thus mitigates the downward degree bias of vertex sam-
pling. Total induction over the sampled vertices selects all the edges between them, which
further improves the connectivity in the sampled subgraph. According to [2], Induced
Edge Sampling performs better than many sophisticated state-of-the-art node sampling
and topology based algorithms, such as forest fire or snowball sampling in terms of pre-
serving graph structure and thus has been our choice for hardware implementation in this
work. Sequential sampling of very large graphs can be unacceptably slow, and thus we
target high throughput parallel implementation of TIES on FPGA. Most significant chal-
lenge in a parallel implementation of TIES is to perform fast parallel access and updates
to a data structure storing the sampled vertices.

In this work, we focus on sampling a small subgraph (thousands or tens of thousands
of vertices) from a large graph. The sampled subgraph can then be used for downstream
applications such as GCN [16]. Specifically, given a large graph G = (V, E) in external
memory, we need to generate a subgraph Gs = (Vs, Es) and store it on the FPGA on-chip
memory. Our design consists of multiple parallel pipelines which randomly select edges
from E until a desired number |Vs| ≈ Ns distinct vertices in V have been sampled. This
is followed by total induction phase that iterates over all the edges corresponding to the
sampled vertices in E for induction in Vs. The major contributions of this work are as
follows:

1. We develop a high throughput parallel implementation of the Totally Induced Edge
Sampling (TIES) algorithm on FPGA. To the best of our knowledge, this is the
first parallel FPGA implementation of the algorithm.

2. We design a novel parallel on-chip dynamic hash table data structure that enables
multiple pipelines to read and insert data concurrently without stalling.

3. Our design achieves a throughput as high as 2471 Million Edges Per Second
(MEPS) using 8 pipelines.

The rest of the paper is organized as follows: Section 2 presents the related work; Section
3 gives a brief overview of the algorithm; Section 4 discusses the architecture design for
algorithm implementation and Section 5 reports the experimental results.

2. Related Work

In [2], the authors propose Induced Edge Sampling (or Totally Induced Edge Sampling),
and discuss its merits as compared to other sampling techniques. According to [2], TIES
offsets the downward degree bias of node sampling. It improves connectivity of the sub-
graph, and thus better preserves the topological properties of the input graph than many
other sampling algorithms. In [7], the authors present a parallel implementation of the
TIES algorithm on multi-core platform which samples a graph of size 1442M edges in<
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Figure 1. Overall Architecture Model

2.5 seconds. The implementation involves atomic operations to prevent concurrent up-
dates by distinct threads. This synchronization steps introduces inefficiencies. Authors
in [11] develop an FPGA implementation of a reduction based sampling algorithm which
generates a subgraph by removing nodes and edges. This is highly inefficient for sam-
pling small subgraphs from very large graphs. To the best of our knowledge, the work
done in [11] is the only prior FPGA graph sampling implementation.

3. Overview of the TIES Algorithm

A detailed description of the TIES algorithm can be found in [2]. A brief description is
as follows: The algorithm takes two inputs: 1) The graph to be sampled i.e. G = (V, E)
and 2) The number of vertices to be sampled Ns. The algorithm outputs a subgraph Gs =
(Vs, Es) from a graph G = (V, E) such that |Vs| ≈ Ns.

There are two major steps or phases of the algorithm which are described as follow-
ing [2]:

1. Phase-1

(a) Randomly select an edge ei, j = (i, j) from the set E.
(b) Sample the vertices i and j into set Vs, if not already sampled.
(c) Repeat (a) and (b) until |Vs| = Ns. This completes the set Vs.

2. Phase-2
For each edge ei, j in set E, include it in set Es if i and j ∈ Vs. This completes the
set Es

The sets Vs and Es represent the sampled subgraph Gs = (Vs, Es).

4. Parallel Graph Sampling Architecture on FPGA

4.1. Architecture Model

Fig. 1 shows the high level view of the proposed architecture. The external memory stores
the graph to be sampled. The FPGA design consists of multiple parallel pipelines which
access the external memory containing the inputs graph through the memory controller.
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The graph is sampled by the pipelines and is stored on the on-chip memory. Each pipeline
is identical and operates independent of other pipelines.

We assume that each access to the external memory incurs a latency of l clock cycles.
The value of l is typically 10-50 clock cycles. Memory latency does not impact our
design since all the pipelines operate without stalling i.e. after an initial latency, the
data is continuously streamed from the external memory without any delay. The external
memory has a peak bandwidth bw. To achieve high throughput we increase the number
of pipelines and saturate bw.

Phase-1 implementation consists of p pipelines which sample p
2 edges i.e. p ver-

tices in parallel. Phase-2 implementation consists of p pipelines and operate on p ver-
tices simultaneously. The design also consists of a dynamic hash table data structure that
supports p inserts/searches in parallel.

Algorithm 1 Phase-1
rand() −→ random number generator; hash() −→ hash function
for pipe= 0,1, ..., p−1 in parallel do

while |localVs[pipe]| ≤ Ns/p do

if pipe % 2 = 0 then

addr← rand()
(i, j)← edge list(addr)
v[pipe]← i
v[pipe+1]← j

end if

v[pipe].hash value= hash(v[pipe])
if v[pipe] �= hash table[pipe](v[pipe].hash value) then

hash table[pipe](v[pipe].hash value) = v[pipe]
localVs← localVs∪ v[pipe]

end if

end while

end for

Algorithm 2 Phase-2
mv−→ 0; n−→ 0
for pipe= 0,1, ...,2p−1 in parallel do

while mv≤ Ns do

i← localVs[pipe].(mv)
while n≤ |i.edges| do

j← i.edges(n)
j.hash value= hash( j)
if j = hash table[pipe]( j.hash value) then

localEs[pipe]← localEs[pipe]∪ (i, j)
end if

end while

end while

end for
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Figure 2. Pipeline Stages: Phase-1

4.2. Pipeline Design: Phase-1

The objective of Phase-1 is to sample Ns unique vertices. Phase-1 consists of p parallel
pipelines. The various pipeline stages are shown in Fig. 2. These stages are − Random
Number Generation, Edge Read, Vertex Search and Vertex Store. Each pipeline continues
to operate in Phase-1 until it samples Ns/p unique vertices. Some pipelines may take
more iterations than others because edges sampled by themmight have common vertices.
The various stages of each pipeline are described below:

1. Random Number Generation: Since each edge is represented by two vertices, the
number of edges required to be sampled to generate p vertices simultaneously are
p/2. Therefore, in every clock cycle, only p/2 pipelines generate random numbers
which serve as indices to read edges from the external memory. Thus, a total of
p/2 edge indices are given as input to the external memory in every clock cycle.

2. Edge Read: The architecture assumes that the graph is stored in the external mem-
ory in the form of a simple data structure where each edge is represented by its two
end vertices. We assume the latency associated with fetching information from the
external memory to be l clock cycles. The memory controller is given an input
of p/2 memory addresses in each clock cycle. Thus after an initial delay of l, the
memory outputs p/2 edges every clock cycle with each edge represented by its two
vertices.

3. Vertex Search: Each pipeline is associated with an individual hash table and Lo-
cal Vertex register. The details of the hash table design are discussed in Sec-
tion 4.4. The vertices fetched by the pipelines in ‘Edge Read’ stage are searched
in the corresponding hash table to check if they have already been sampled or not.
Since each pipeline is associated with a separate hash table, therefore all p vertices
fetched in previous stage are searched in O(1) time. The search returns whether
the vertex is stored in the table or not.

4. Vertex Store: In this stage, each pipeline stores the fetched vertex if the vertex
search stage returns negative value. The vertex is inserted in both the hash table and
Local Vertex register of the corresponding pipeline. Thus, in a given clock cycle, a
maximum of p vertices are inserted collectively by all the pipelines. Concatenation
of all Local Vertex registers at the end of Phase-1 gives the sampled vertex set Vs.

4.3. Pipeline Design: Phase-2

Phase-2 consists of p parallel, identical five stage pipelines as shown in Fig. 3. These
stages are − Vertex Read, Edge-Index Generation, Edge Read, Vertex Search, Edge
Store. During Phase-2, all the edges either incident to or from the sampled vertices are
checked for induction in Es. If the number of edges corresponding to their sampled ver-
tices are less, some pipelines might finish Phase-2 before others. Each pipeline has a Lo-
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Figure 3. Pipeline Stages: Phase-2

Figure 4. Input Graph Representation: Phase-2

cal Edge register made up of the on-chip memory to store the edges induced by it. The
various stages of a pipeline are described below:

1. Vertex Read: The architecture assumes that the graph is stored in external memory
in form of a CSR matrix as shown in the Fig. 4. To read an edge, we require
two indices-one for reading the vertex and the other for reading the edge. Each
pipeline reads a sampled vertex from its Local Vertex register and iterates over its
edges. For each edge, the corresponding edge index is generated in the Edge Index
Generation stage. Once all the edges of a vertex are processed, the next sampled
vertex in the Local Vertex register is read.

2. Edge Index Generation: All the edges associated with a vertex are stored consec-
utively and a pointer points to the first edge of this set as shown in Fig. 4. Each
pipeline inputs the vertex index (generated in previous stage) to the external mem-
ory, and fetches the edge index for the first edge of the vertex’s edge set. The edge
index fetched is incremented by log2m bits (assuming |E| =m) in every subsequent
clock cycle to read the next edge until the edge index given by the next vertex
of CSR matrix is reached. Each pipeline generates an edge index for the external
memory and therefore a total of p edge indices are generated per clock cycle.

3. Edge Read: Each pipeline inputs the edge index generated in the previous stage
to the external memory, and fetches the edge corresponding to it. Each fetched
edge is represented by one of its vertex (other one being the vertex selected in
Phase-1 itself). We assume the latency associated with fetching information from
the external memory to be l clock cycles. Since for each edge we need two external
memory accesses, thus after an initial delay of 2*l clock cycles, at the end of each
clock cycle the memory gives a total of p edges for all pipelines.

4. Vertex Search: Each pipeline searches the vertex fetched in the previous stage in
its corresponding hash table to check if it belongs to Vs or not. Since each pipeline
has its separate hash table (Section 4.4), therefore all pipelines operate in parallel.
The edges whose vertices belong to Vs are included in the subgraph in the next
stage.

5. Edge Store: Each pipeline consists of a Local Edge register made up of on-chip
memory. If in the previous stage, it is indicated that the edge vertex belongs to Vs,
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Figure 5. Overall hash table Architecture

then that edge is induced and stored in the corresponding pipeline’s Local Edge
register in form of its two end vertices. Concatenation of all Local Edge registers
at the end of Phase-2 gives the sampled edge set Es.

Note that we assume different formats for both the phases. However, these formats
can be generated just once in an offline manner and used to generate multiple subgraphs.
Therefore, we do not consider format conversion time in our design and its evaluation.

4.4. Hash Table Architecture

In Phase-1, a vertex is inserted into the sampled vertex set only if it has not been already
inserted before. Similarly, in Phase-2, an edge is inserted into the sampled edge set if
both its vertices are sampled. As our design consists of p pipelines, we require a data
structure that performs p parallel lookups of vertices without stalling. Thus, we propose
a hash table to store the sampled vertices for quick parallel lookup. The hash table is
implemented using on-chip FPGA RAMs (BRAM or URAM [14]). As a BRAM/URAM
block supports a single read/write operation per clock cycle, implementing a hash table
which supports p queries per cycle is challenging.

To address this challenge, we implement an on-chip hash table that can process
p parallel queries in each clock cycle (in a pipelined manner) as shown in Figure 5.
The hash table consists of p2 hash blocks each of size Ns

p vertices. Each hash block is
implemented as two level hash tables. For insertion queries, pipeline pl , 0≤ l≤ p inserts
the same value in each hash block along the row l. For search queries, each pipeline pl
reads all the hash blocks along the column l. Thus, the value inserted by a pipeline pl
will be available to a pipeline pl′ via hash block ll′ i.e. the block at the intersection of
lth row and l′th column. Assuming it takes k cycles to insert into the pipeline, our design
ensures that a vertex inserted by a pipeline is stored in at least one hash block of all the
pipelines with a delay of k cycles.
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5. Experiments and Results

5.1. Experimental Setup

The experiments were conducted using the Xilinx Alveo U200 Accelerator Card [13].
The target FPGA device has 1,182,240 LUTs, 591,840 LUTRAMs, 2,364,480 Flip-flops,
and 35MB of on-chip SRAMs. We assume the external memory in the form of one
DDR4 SDRAM chip, which has a peak data transfer rate of 19.2 GB/s. We synthesize,
place-and-route, and simulate our designs using Xilinx Vivado Design Suite 2018.2 [15].
We evaluate the performance of our design using the the soclj dataset [10] which is a
LiveJournal friendship social network. The dataset has 4.85 Million vertices and 68.46
Million edges. The vertices have an average degree of 14.1.

5.2. Evaluation Methodology and Performance Parameters

We analyze the performance of our design by varying the number of pipelines from 2
to 8, and varying the number of vertices to be sampled from 1,000 to 20,000. We target
our design at 300 MHz FPGA frequency. Each design case is evaluated on the following
performance parameters:

1. Execution time: The sum of execution times of Phase-1 and Phase-2, i.e. the total
time taken to generate the subgraph from the input graph.

2. Throughput: Throughput of the design in terms of million edges sampled per sec-
ond (MEPS). MEPS is calculated by dividing the number of edges in the sampled
subgraph with total execution time.

3. Resource Consumption:Utilization of FPGA resources in terms of percent usage
of LUTs, flip-flops, and on-chip RAMs (BRAM and URAM).

5.2.1. Results

Resource utilization of the design is reported in Figure 6. Figure 6 (a) shows the resource
utilization by fixing the number of sampled vertices at 10,000, and changing the number
of pipelines from 2 to 8. The Vivado tool chooses to use URAM as the default resource
for large on-chip storage, however, in the event this leads to failure in meeting the target
clock frequency, it falls back to using BRAM. We observe this behaviour for the cases of
number of pipelines equal to 2 and 8. For the case of 2 pipelines, the large size of each
hash block leads to this behaviour, while for the case of 8 pipelines the interconnection
complexity of connecting each pipeline with all the hash blocks in its row/column leads
to this behaviour. Therefore, the BRAM utilization is relatively higher in these two de-
sign points. Figure 6 (b) shows the resource utilization by fixing the number of pipelines
to 8 and varying the size of sampled subgraph to 1000, 5000, 10000, and 50000 vertices.
The URAM utilization increases almost linearly with the subgraph size, because the edge
registers are mapped to URAM. We report the execution time and throughput perfor-
mance in Table 1. The results clearly verify the scalability of our design with the number
of pipelines, with each case supporting a maximum clock frequency of 300 MHz.
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Table 1. Execution Time and Throughput

# Pipelines Execution Time (μs) Throughput (MEPS)

2 457.24 614.05

4 227.16 1236.01

6 151.49 1853.40

8 113.62 2471.14

Figure 6. Resource Utilization and Estimated Power

5.3. Comparison with State-of-the-art Multi-core Design

We compare the performance of our 8 pipelines design with the highly optimized multi-
core design of the same algorithm. In [7], the authors implement their design on a 16-core
machine with 2 x 2.6GHz 8-core Intel Xeon E5-2650 processors (256KB L2 and 20MB
L3 cache) and 128GBmain memory with 2-way hyperthreading. We compare the perfor-
mance in terms of throughput i.e. Million edges sampled per second (MEPS). As shown
in Table 2, our design achieves a 3.63x improvement over the multi-core implementation.
The majority of the speedup comes from the efficient and effective architecture of our
design, as cost of the global synchronization, which is required on a multi-core design,
is significantly reduced by the dynamic hash table. It is important to note that the design
in [7] is tailored for sampling large size subgraphs (hundreds of thousands of vertices)
unlike our design which is tailored for small size subgraphs.

Table 2. Comparison with multi-core design

Parameter Multi-core Design This Design (pipelines = 8) Improvement

Throughput (MEPS) 680.87 2471.14 3.63

6. Conclusion

In this work, we presented an FPGA accelerated Totally Induced Edge Sampling (TIES)
algorithm. We proposed a novel parallel hash table data structure that supports multiple
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concurrent read and write requests. Our design achieves a high throughput of 2471MEPS
which is 3.6x times better than the state-of-the-art design. Our design consists of multiple
pipelines operating in parallel without stalling. The design is scalable with number of
pipelines and number of sampled vertices with a sustained clock frequency of 300 MHz.
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Abstract. Non-Local means (NL-means) algorithm is a robust image denoising al-
gorithm. Its computational complexity is, however, higher than other algorithms,
and its availability is limited. In this paper, we propose an implementation method
of the NL-means algorithm on FPGA. In the NL-means, the cross correlations be-
tween the small windows are repeatedly calculated, and a large number of interme-
diate data have to be held temporarily to reduce the amount of its computation. In
our approach, the scan direction of the image is changed in the zigzag way. This
zigzag scan increases the computation time because of the recalculation on the scan
borders, but the required memory size can be drastically reduced. We have imple-
mented the circuit on a Xilinx FPGA, and showed that with a small size FPGA, its
real-time processing is possible.

1. Introduction

Noise reduction is the process of removing noise from an image. Non-Local means (NL-
means) algorithm is one of the powerful and robust noise reduction algorithms[1]. A
higher noise reduction ratio can be expected than Gaussian filter, Bilateral filter and so
on, and it is supported in a major library[2]. However, its computational complexity is
much higher than other denoising algorithms.

In NL-means algorithm, a search window is defined centered at the target pixel, and
for each pixel in the search window, a template window is considered. Then, using the
template windows, the cross-correlations between the target pixel and all pixels in the
search window are calculated. These cross-correlations are used to improve the value
of the target pixel. These cross-correlations can be efficiently calculated based on the
calculation method of the box filter, and high performance can be easily achieved on
FPGAs. However, for this efficient calculation method, large size memory is required,
which means a large FPGA with large on-chip memory is required, though only a small
amount of its logic cells are used.

We have proposed a memory efficient computation method of box filters[3]. This
work demonstrated that the cross-correlation of the windows in two images (left and
right images in the stereo vision) can be efficiently calculated with much less memory by
changing the scan direction. In this approach, the image is scanned in zigzag, not from
top-left to bottom-right. In [3], the processing speed was almost half of the top-left to
bottom-right scan (it can be controlled by changing the required memory size), but it was
still fast enough for real-time processing.
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In this paper, we show that this approach works well for the calculation of the cross-
correlations in one image using NL-means algorithm as an example. In the NL-means
algorithm, the cross-correlations of the pixels in the square search window are calculated,
though in the stereo vision, those of the pixels on a line segment along the x axis are
calculated. This difference requires more line buffers, and more memory to store the
temporary data. However, as shown in this paper, our approach works well also in this
case, and the required memory can be reduced to 14% when the processing speed is half
of the top-left to bottom-right scan.

2. Non-Local Means Algorithm

In the Non-Local means algorithm, given an image I, the denoised image Idn is given as
follow.

pdn = ∑
q∈WS(p)

w(p,q) ·q (1)

Here, p is a pixel in the image I, and pdn is the denoised pixel of p. WS(p) is a window
centered at p, called a search window of p, and q is a pixel in WS(p).

LetWT (p) be a window centered at p, called a template window of p. Then, d(p,q),
the difference between the two template windows, WT (p) and WT (q), is defined as fol-
lows.

d(p,q) = ||WT (p)−WT (q)||2 (2)

Using d(p,q), w(p,q) is given as

w(p,q) =
1

N(p)
exp(−d(p,q)

σ2 ) (3)

where σ is a constant, and

N(p) = ∑
r∈WS(p)

exp(−d(p,r)
σ2 ) (4)

N(p) is used to normalize w(p,q).
Let p= I(x,y), q= I(u,v), the size of the search window (2ws+1)2, and that of the

template window (2wt +1)2. Then, equation (2) can be rewritten as follows.

d(I(x,y), I(u,v)) =
wt

∑
dx=−wt

wt

∑
dy=−wt

||I(x+dx,y+dy)− I(u+dx,v+dy)||2 (5)

And, equation (1) can also be rewritten as

Idn(x,y) =
ws

∑
dx=−ws

ws

∑
dy=−ws

w(I(x,y), I(x+dx,y+dy)) · I(x+dx,y+dy) (6)

Fig.1 shows the relation of the search window and the template window. In Fig.1,
p, the target pixel, is the center of the search window, and for each pixel q in the search
window, d(p,q) is calculated using the pixels in their template windows.

The computational complexity of non-local means algorithm is given as follows.
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1. The number of the pixels in the image is W ×H, where W and H are the width
and height of the image.

2. For each pixel in the image, equation (6) is calculated. This means that equation
(5) is calculated (2ws+1)2 times.

3. In each calculation of equation (5), (2wt +1)2 distances are calculated.

Thus, the computational complexity of this algorithm becomes W ×H × (2ws + 1)2 ×
(2wt +1)2, which becomes very large for high resolution images.

3. Scan direction and the Performance

In this section, we compare the processing speed and the required memory size by the
top-left to bottom-right scan and the zigzag scan[3]. Fig.2 shows how many pixels are
necessary for calculating pdn for pixel p. In Fig.2, the black pixel is the target pixel p,
and the four gray pixels are the corner pixels of the search window. For calculating d()
for all pixels in the search window, (2ws+2wt +1)2 pixels are required.

To simplify the discussion, we consider the calculation of only one d(I(x,y), I(u,v))

though it is calculated for (2ws+1)2 pixels in the search window in the NL-means algo-
rithm.

3.1. Top-left to bottom-right Scan

First, we describe an efficient calculation method of the NL-means algorithm when the
image is scanned from top-left to bottom-right. This calculation method is widely used
as the one for the box filter.

Suppose that Idn
(x−1,y) was calculated, and now Idn

(x,y) is going to be calculated. Here,

we focus on the calculation of d(I(x,y), I(u,v)) shown in Fig.3. In the calculation of

Idn
(x−1,y), d(I(x−1,y), I(u−1,v)) was calculated (Fig.3 (A) and (a)), and d(I(x,y), I(u,v)) is

going to be calculated for Idn
(x,y) (Fig.3 (B) and (b)). The differences of the gray pixels in

(A) and (B) in Fig.3 can be shared in these calculations. Therefore, d(I(x,y), I(u,v)) can
be calculated from d(I(x−1,y), I(u−1,v)) as follows.

d(I(x,y), I(u,v)) =d(I(x−1,y), I(u−1,v))+

dY (I(x+wt ,y), I(u+wt ,v))−dY (I(x−wt−1,y), I(u−wt−1,v)) (7)
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where

dY (I(x,y), I(u,v)) =
wt

∑
dy=−wt

||I(x,y+dy)− I(u,v+dy)||2 (8)

Fig.4 illustrates this equation. By adding column A to d(I(x−1,y), I(u−1,v)), and subtract-
ing column B, d(I(x,y), I(u,v)) can be obtained as shown in Fig.4-left. Column B was
already calculated as column A of d(I(x−2wt−1,y), I(u−2wt−1,v)), and by keeping it for
2wt + 1 steps (blue arrow in Fig.4-left, because the image is scanned from top-left to
bottom-right), it can be reused as column B.

In the same way, dY (I(x,y), I(u,v)) can be calculated using the difference

dY (I(x,y), I(u,v)) =dY (I(x,y−1), I(u,v−1))+

||I(x,y+wt)
− I(u,v+wt)

||2 −||I(x,y−wt−1)− I(u,v−wt−1)||2 (9)

Fig.4-right illustrates this calculation. By adding
a= ||I(x,y+wt)

− I(u,v+wt)
||2,

to dY (I(x,y−1), I(u,v−1)), and subtracting

b= ||I(x,y−wt−1)− I(u,v−wt−1)||2
dY (I(x,y), I(u,v)) can be obtained. Here, b was already calculated as a of dY (I(x,y−2wt−1),

I(u,v−2wt−1)), and by keeping it for (2wt+1)×W steps, it is can be reused as b as shown
in Fig.5-left. In Fig.5-left, a (the red one) was calculated for dY (I(x,y−2wt−1), I(u,v−2wt−1)),
and by waiting (2wt + 1)×W steps, the focused pixel comes to (x,y+wt) by the top-
left to bottom-right scan (the blue dotted arrows), and the a can be reused as b of
d(I(x,y), I(u,v)). In this calculation method, dY (I(x,y−1), I(u,v−1)) (A in Fig.4) has to be
also kept for W steps as shown in Fig.5-right.

With this calculation method, d(I(x,y), I(u,v)) can be obtained by calculating only a
in Fig.4-right, if we can keep the following three values in the memory:

1. dY (I(x+wt ,y), I(u+wt ,v)) for 2wt +1 steps.

2. b= ||I(x,y−2wt−1)− I(u,v−2wt−1)||2 for (2wt +1)×W steps, and
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3. dY (I(x,y−1), I(u,v−1)) for W steps.

In case of NL-means algorithm, these three values have to be kept for all pixels in the
search window. Here, we ignore the first one, because its size is much smaller than the
last two. The required memory size to keep these values becomes

(2ws+1)2 × ((2wt +1)+1)×W. (10)

In addition to this, 2ws line buffers are necessary to supply (2ws+1)2 pixels in parallel.
The size of these memory is proportional to the image widthW , and larger search window
(ws) and template window (wt ) are required for higher resolution images. Therefore,
this approach is not feasible for high resolution images, though it gives the minimum
computational cost.

This computation method is widely used in many FPGA implementations, and has
achieved very high performance, but it is difficult to process high resolution images even
with the current largest FPGAs.

3.2. Zigzag scan

Fig.6 shows the outline of our zigzag scan. As shown in Fig.6, the image is divided
vertically into blocks ((1),(2),(3) and (4) in Fig.6), the height of each is r. These blocks
are processed sequentially from top to bottom. Each block is scanned in zigzag as shown
in Fig.6 (in Fig.6, block (2) is being processed). The height of each block is r, but the scan
width is r+2ws+2wt . This is to include all pixels that are necessary for the calculation
of all template windows of the top and bottom pixels in the block (two black pixels in
Fig.6).

This approach has one advantage, and two disadvantages. First, we describe the two
disadvantages. As shown in Fig.6, the scan width for each block is r+ 2ws + 2wt , but
by this scan, d() for only r pixels can be calculated. Thus, the computational efficiency
becomes

r
r+2ws+2wt

(11)

which is apparently less than 1. Another disadvantage is the large memory size required
for the line buffers as shown in Fig.6. To allow the zigzag scan of width = r+2ws+2wt ,
r+ 2ws+ 2wt line buffers are required. In addition to this, r line buffers are necessary
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to buffer the data that are necessary for the next block while processing the pixels in the
current block. The total number of line buffers becomes 2r+2ws+2wt .

The advantage of our approach is less memory size to hold the temporary data. In
this scan method, dY (I(x,y), I(u,v)) can also be calculated as shown in equation (9), but in
this case, the pixels are scanned vertically, and b in Fig.4-right can be obtained by holding
a only for 2wt +1 steps as shown in Fig.7-left, though it has to be held for (2wt +1)×W
steps in case of the top-left to bottom-right scan. To the contrary, for the computation of
equation (7) shown in Fig.4-left, A has to be held for (r+ 2ws+ 2wt)× (2wt + 1) steps
as shown in Fig.7-right, though it has to be held only 2wt +1 steps in case of the top-left
to bottom-right scan. The main memory usage in this zigzag scan is given by (ignoring
the ones used for dY (I(x,y), I(u,v)))

(2ws+1)2 × (r+2ws+2wt)× (2wt +1). (12)

This size is not proportional to W , which means that we can control the memory size by
changing r, though the processing speed is also changed.

3.3. Comparison of the Processing Speed and Memory Size

The computational efficiently of the zigzag scan is given by equation (11). Its value can
be controlled by changing r, though it also affect the required memory size. However, it
is easy to keep this value larger than 0.5.

The ratio of the required memory size is given as follows.
(2ws+1)2 · (r+2ws+2wt) · (2wt +1)+(2r+2ws+2ws) ·W

(2ws+1)2 · ((2wt +1)+1) ·W +2ws ·W
The numerator is the one for the zigzag scan; equation (12) and the line buffers, and

denominator is the one for the top-left to bottom-right scan shown in equation (10) and
its line buffers.

In our current implementation, W = 640, wt = 1, ws = 3, and r = 8. With these
values of the parameters, the processing speed of our approach is 0.5 of the top-left to
bottom-right scan, and the memory size ratio is 0.14. For larger W , consequently larger
ws and wt , the processing speed is kept constant, but the memory size ratio becomes
smaller, if r is c×ws (c is a constant).

Table 1 compares the required memory size and the processing speed of the zigzag
scan to those of the top-left to bottom-right scan when r is changed under the parameters
given above. As shown in this table, by changing r, the required memory size can be
changed in wide range. This makes it possible to choose the minimum size FPGA for the
required processing speed, and also to achieve the maximum performance on the given
FPGA by choosing proper r. To the contrary, in the top-left to bottom-right scan, the
memory size cannot be reduced for any processing speed.

In both scan methods, by processing n pixels sequentially on the same unit, the logic
cells can be reduced to 1/n. With this sequential approach, the processing speed is also
decreased to 1/n, but the memory size cannot be reduced in both scan methods. However,
in the zigzag scan, the required memory size is much smaller, and distributed RAMs
can also be used, though only block RAMs can be used in the top-left to bottom-right
scan because the memory depth must be W . This flexibility enables to achieve better
performance on wide range of FPGAs.
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Table 1. Memory usage and computational efficiency

r 4 8 16 32 64

memory size 0.09 0.14 0.23 0.40 0.75

processing speed 0.33 0.50 0.67 0.80 0.80
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4. An Implementation on FPGA

In the NL-means algorithm, equation (5) is calculated for all (ws+1)2 pixels in the search
window. The processing speed can be controlled by changing the number of pixels that
are processed in parallel. By processing all pixels in parallel, the maximum performance
can be achieved. In our implementation, ws+1 pixels are processed in parallel, and ws+1
clock cycles are used to process (ws+ 1)2 pixels. This approach is taken to reduce the
circuit size as much as possible while keeping the processing of 640×480 pixel images
faster than 30 fps.

4.1. Block Diagram

Fig.8 shows a block diagram of our system. First, the data are sent from the host com-
puter, and they are once stored in the line buffers for the zigzag scan. Then, the data
in the line buffers are read onto the register array through selectors. The equations de-
scribed in Section 3 are calculated using the values on the register array, and those from
the memory banks. In the memory banks, the values discussed in Section 3.2 are stored.

4.2. Line buffers and Register Array

Fig.9 shows the usage of the line buffers in our approach. In Fig.9(1), ws+wt + r+ws+
t+wt line buffers from the top are used for the current zigzag scan, and for the pixels in
r lines, NL-means algorithm is applied. This phase takes more than W × r clock cycles
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even if all pixels in the search window are calculated in parallel. During this period, the
pixels of the next r lines are read into the line buffers rnew for the next zigzag scan. Then,
the next ws+wt + r+ws+ t+wt line buffers are used for the next zigzag scan as shown
in Fig.9(2), and the next r lines are read into the next line buffers rnew . In our current
implementation, r = 8, ws = 3 and wt = 1. Therefore, as shown in Fig.9, by repeating
three phases ((1),(2) and (3)), all lines in the image can be processed.

Fig.10 shows the register array. The data in the line buffers are fetched onto the
register array through selectors. As described above, only three phases are necessary for
the assignment of the line buffers, which means that only 3-to-1 selectors are required.
The register array consists of (r+2wt +2ws)× (2wt +1) registers. In Fig.10, the black
pixel is the center of the search window. Then, the pixel r, the bottom-right corner pixel
of its template window, is compared with (2ws+1)2 pixels, the gray ones in the figure.
As shown in Fig.10, only the values on gray registers are used for the calculations, and
other registers are used only for keeping the data. The registers in the right-most column
are used to get the data from the line buffers, and to give them to the register array.

4.3. Memory Banks

As described in Section 3.2, two kinds of memory banks are required. The first one is
to store a in Fig.7, and the another is to store A. The required depth for the first one is
2wt +1. In our current implementation, wt = 1. Thus, a is held on the registers not in the
memory.

The required memory size for the second one is (2ws + 1)2 × (r+ 2ws + 2wt)×
(2wt + 1). As described above, in our current implementation, (2ws+ 1)2 pixels in the
search window are processed in 2ws + 1 clock cycles by processing 2ws + 1 pixels in
parallel. Thus, the required number of memory banks is 2ws+ 1. In this case, for each
bank, the temporary data for 2ws+ 1 pixel can be stored. This means that the depth of
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the memory banks is (2ws+ 1)× (r+2ws+2wt)× (2wt + 1). This depth becomes 336
under the current parameters. Block RAMs configured as 512× 72 can be used as this
memory.

4.4. Calculation Units

In our implementation, 2ws + 1 units are used, and each unit processes 2ws + 1 pixels
sequentially using 2ws+ 1 clock cycles. Fig.11 shows a block diagram of one unit for
processing one of 2ws + 1 pixels. First, I(x+1,y+1) and I(u+1,v+1) are given (wt = 1),
and their distance is calculated. In Fig.11, the circuit only for one channel is shown,
though three channels for R, G and B are processed. Then, it is delayed for 2ws + 1
clock cycles twice (distributed RAMs are used), and three values are added to calculate
dY . In the discussion in Section 3, dY is calculated using the difference as shown in
equation (9), but in the current implementation, 2wt + 1 = 3, and the three values are
directly added. It is sent to the memory banks (as A in Fig.7), and another one is read
back from the memory banks (B in Fig.7). Their difference is added to the register that
holds d() to obtain its new value following equation (7). Then, one of the tables that hold

exp(−dx2 +dy2

σ2
d

) · exp(−d()
σ2 ) is looked up using d() (σd is a constant). The first term is a

weight considering the distance from the center of the search window. This weight is not
shown in equitation (3), but used in our current implementation. 7 = 2ws+ 1 tables are
packed into one block RAM, and one of them is accessed according to the distance from
the center pixel. The size of each table is 256, which is large enough to obtain our target
PSNR. The output, and the product of the output and I(u,v) are accumulated respectively.
Then, those values from 2ws+1 units are added. The reciprocal of the sum of the output
is obtained by table look-up, and the final output obtained by multiplying them.

5. Experimental Results

We have implemented the circuit on Xilinx FPGA Kintex-7 XC7K160T. For this
implementation, 24.6K LUTs (24.3%), 63 block RAMs (19.4%) and 87 DSP slices
(14.5%) were used. The size of this circuit is small enough. Its operational frequency is
335.4MHz, and its processing speed is 78.0 fps for 640× 480 pixel images. This pro-
cessing speed is 408X of the software on Core i7-860 2.8GHz.

Fig.12 shows the input image, the image in which noise is added, the output by
the original NL-means algorithm, and that by our system. The PSNR by the original
algorithm is 31.7dB, and that by our system is 28.0 dB. The PSNR by ours is a bit worse,
but it is higher than 25dB, and as reported in [6][7], visually, it is difficult to find the
difference. The operation data width is reduced to keep the PSNR higher than 25.0dB,
not to achieve the PSNR of the original algorithm. This is to reduce the circuit size as
much as possible while keeping the enough quality for human recognition.

6. Conclusions

We have implemented a circuit for Non-Local means algorithm on FPGA. To reduce the
memory size, the image is scanned in zigzag. With this scan method, the memory size
can be reduced to 14% of the top-left to bottom-right scan. Its processing speed becomes
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half of the top-left to bottom-right scan, but it is still 78 fps for 640× 480pixel images,
which is fast enough for real-time processing.

The design based on this zigzag scan requires more effort than that for the top-left
to bottom-right scan. To develop a library to make it easier is one of main future work.
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Abstract.

Convolutional Neural Networks (CNNs) currently dominate the fields of artifi-
cial intelligence and machine learning due to their high accuracy. However, their
computational and memory needs intensify with the complexity of the problems
they are deployed to address, frequently requiring highly parallel and/or accelerated
solutions. Recent advances in machine learning showcased the potential of CNNs
with reduced precision, by relying on binarized weights and activations, thereby
leading to Binarized Neural Networks (BNNs). Due to the embarassingly parallel
and discrete arithmetic nature of the required operations, BNNs fit well to FPGA
technology, thus allowing to considerably scale up problem complexity. However,
the fixed amount of resources per chip introduces an upper bound on the dimensions
of the problems that FPGA-accelerated BNNs can solve. To this end, we explore
the potential of remote FPGAs operating in tandem within a disaggregated com-
puting environment to accelerate BNN computations, and exploit dynamic partial
reconfiguration (DPR) to boost aggregate system performance. We find that DPR
alone boosts throughput performance of a fixed set of BNN accelerators deployed
on a remote FPGA by up to 3x in comparison with a static design that deploys the
same accelerator cores on a software-programmable FPGA locally. In addition, per-
formance increases linearly with the number of remote devices when inter-FPGA
communication is reduced. To exploit DPR on remote FPGAs and reduce commu-
nication, we adopt a versatile remote-accelerator deployment framework for disag-
gregated datacenters, thereby boosting BNN performance with negligible develop-
ment effort.

Keywords. Binarized Neural Network, FPGA accelerator, Dynamic Partial Reconfiguration

1. Introduction

Considerable improvements in the development of high-performance systems for neu-
ral networks using multi-core technology have been proposed in recent years [1]. How-
ever, various challenges in power, cost, and performance scaling remain, due to the ever
increasing model sizes (e.g., 50MB for GoogLeNet [2], 200MB for ResNet-101 [3],
250MB for AlexNet [4], or 500MB for VGG-Net [5]) that inevitably introduce pro-
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hibitively high computational costs, steadily raising the need for accelerated solutions.
The need for models with low memory and compute requirements is imperative.

Several works have been introduced to address the aforementioned challenges, and
reduce the resource utilization requirements of CNNs, e.g., by exploiting the sparsity of
the network connections [6], or by narrowing the data width [7, 8]. Another promising
method is binarization, which relies on a considerably more compact data representation
for the network weights and the neuron values than the one employed by regular CNNs.
The underlying idea is to constrain each value to be either +1 or -1. Consequently, this re-
duces storage and memory bandwidth requirements and allows to replace floating-point
operations with binary operations, thereby paving the way for efficient deep learning
using FPGA technology.

Binarized Convolutional Neural Networks (BNNs) were first presented by Cour-
bariaux et al. [9], who introduced a method to train BNNs with the permutation invariant
MNIST, CIFAR-10, and SVHN [10] datasets, achieving state-of-art accuracy. Rastegari
et al. [11] successfully trained a BNN with ImageNet models, reportedly improving ac-
curacy, boosting performance, and reducing the model size, when compared with a full-
precision AlexNet [4] implementation. Existing implementations of CNNs on FPGAs
face several challenges due to their prohibitively high requirements for storage, memory
bandwidth, and compute capacity. This problem exacerbates with more complex state-
of-art models, such as the VGG model [7] that has 16 layers and 138×106 weights.

In this work, we investigate the potential of Dynamic Partial Reconfiguration (DPR)
on modern FPGA-based multiprocessor system-on-chip (MPSoC) devices when de-
ployed within a disaggregated-computing environment to boost BNN performance. Re-
source disaggregation addresses the problem of fixed resource proportionality in data-
centers by creating and managing pools of different resource types, e.g., compute, mem-
ory, and accelerators. The immense parallel nature of BNNs suggests the eminent need
for a disaggregated accelerator solution.

Devising a FPGA-based MPSoC disaggregated accelerator solution that exploits
DPR beneficially to the performance of BNNs introduces additional challenges: 1. DPR
brings flexibility in accelerator deployment, yet the high DPR overhead may diminish
the expected performance gains. Thus, a beneficial computation-to-PR ratio is needed
in order to justify the DPR overhead and improve performance, 2. The limited on-board
memory resources set an upper bound on the maximum size of images that can be pro-
cessed on a single node, and 3. The evident need for low-latency communication and
synchronization in accelerator-rich environments becomes significantly more imperative
in disaggregated computing platforms, where communication between remote nodes in-
terconnected over a network is required [12, 13]. To address these challenges, we make
the following contributions:

• We map BNN computations to ReFiRe [22], a remote-accelerator deployment
framework for disaggregated computing. This allows to transparently exploit inter-
FPGA parallelism and overcome the physical resource boundary per device for
BNN computations by relying on the framework to stir computation to multiple
disaggregated FPGA-based accelerator nodes. We find that throughput improves
linearly with the number of accelerator devices, without requiring additional effort
for communication or synchronization, neither on the host nor on the accelerator
sides.
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• We boost overall BNN throughput performance of a fixed set of three accelera-
tor cores [14] per remote FPGA by transparently exploiting DPR and intra-layer
parallelism through dedicated features of the employed accelerator deployment
framework. We find that throughput improves up to 3x using DPR on a remote
device than deploying the same set of accelerators locally through a software-
programmable design flow [15]. Importantly, the proposed approach is highly
generic and versatile, thus allowing to boost performance of existing CNN and/or
BNN accelerators using DPR and parallelism, with negligible development effort.

2. Background

2.1. Convolutional Neural Networks

A typical CNN classifier consists of a parameterized pipelined multi-layer architecture.
Layers require configuration of their parameters, often called weights, which must be
determined by training the CNN offline on pre-classified data. Once the parameters are
determined, the CNN can be deployed for the classification of new data points. The
first layer takes as input a multi-channel input image and outputs a set of feature maps
(fmaps). Each of the following layers read the fmaps, performs some computation on
them, and produces a new set of fmaps to be fed into the next layer. Finally, a classifier
produces the probability of that image belonging to each output class. The layer types
are the following:

Convolutional layers realize a filter-like process, convolving the input fmaps with a
K×K weight kernel. The results are summed, added with a bias, and passed through a
non-linearity function to produce a single output fmap. This process is given in Eq. 1:

yn = f (
M

∑
m=1

xm ∗wn,m +bn). (1)

Pooling layers map each input fmap to an output fmap where every pixel is the
max/mean of a K×K window of input pixels. They are inserted through a CNN to reduce
the size of the intermediate fmaps.

Fully-Connected layers apply a linear transformation on the input 1-D vectors with
a weight matrix. A bias is applied on the result, which is then passed through a non-
linearity function to produce a single 1×1 output. This process is given in Eq. 2:

yn = f (
M

∑
m=1

xm ∗wn,m +bn). (2)

2.2. Binarized Convolutional Neural Networks

A BNN is essentially an extremely quantized, reduced-precision CNN model where
weights and fmap pixels are binarized using the sign function. Positive weights are
mapped to +1 and negative weights to -1, using a compact single-bit representation.
Therefore, BNNs require significantly less storage than standard CNNs. The binarization
of the neural networks can either be partial or full. In order to be considered full, it has
to encompass the following aspects: binary input activations, binary synapse weights,
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and binary output activations. Due to the quantization effect, there is no need for biasing
since it does not compromise accuracy. However, in order to improve accuracy and scale
down the error, a new layer type has to be introduced:

The Batch normalization [16] layer reduces the quantization error of the binariza-
tion by linearly shifting and scaling the input distribution to have zero mean and unit
variance. The transformation is given in Eq. 3:

y=
x−μ√
σ2+ ε

γ+β . (3)

2.3. CIFAR-10 BNN Model

The CIFAR-10 dataset [17] contains sixty thousand 32×32 3-channel images consisting
of photos taken of real world vehicles and animals. For the experiments, out of the 60,000
images, 50,000 images were chosen for training and 10,000 images for testing. Training
of the CIFAR-10 BNN model was done using open-source Python code provided by
Courbariaux et al. [9], which uses the Theano and Lasagne deep learning frameworks.

3. Related work

Multiple studies have explored the potential of FPGAs for implementing Artificial Neu-
ral Networks (ANNs). Zhang et al. [18] proposed an analytical CNN design scheme
that is based on the roofline model [19] to explore various optimizations, such as loop
tiling and transformation, to reduce resource underutilization and match the computa-
tion throughput to the available memory bandwidth on FPGAs. The study reports 61.62
GFLOPS peak performance at 100 MHz on a VC707 FPGA board.

Qiu et al. [7] presented a dynamic-precision data quantization method, as well as a
convolver design for embedded FPGAs that performs well for all CNN layer types. The
authors observed accuracy loss due to data quantization of as low as 0.4%, while the
average performance of the convolutional layers and the full CNN is 187.8 GOP/s and
137.0 GOP/s at 150 MHz, respectively, when mapped to a Xilinx Zynq ZC706 board.

In 2015, Courbariaux et al. [9] introduced the idea of constraining weights to only
two possible values, e.g., -1 and 1, in order to improve hardware performance of CNNs,
since multiply-accumulate operations can be replaced by simple accumulations. Since
then, multiple studies have presented FPGA-based accelerator architectures for BNNs.
Umuroglu et al. [20] presented FINN, a framework to design efficient FPGA accelerators
for BNNs by tailoring per-layer compute resources to user-provided throughput require-
ments. Employing a ZC706 board, the authors report up to 21,906 image classifications
per second on the CIFAR-10 and SVHN datasets. Liang et al. [21] presented a BNN
FPGA architecture that relies on bit-level XNOR and shifting operations, as well as data
quantization and on-chip storage to achieve high performance. The authors report up to
9396.41 GOP/s for the CIFAR-10 dataset at 150MHz on a Stratix-V platform.

Zhao et al. [14] presented a novel design of a BNN accelerator for FPGAs, which is
synthesized from a high-level language (C++) to Verilog using the Xilinx SDSoC [15]
design flow. The overall accelerator, which operates at 143MHz and achieves 200 GOP/s
for the CIFAR-10 dataset, consists of three computational cores, namely FP-Conv (first
convolutional layer), Bin-Conv (binary convolutional layers), and Bin-FC (binary fully
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Figure 1. ReFiRe-based BNN accelerator architecture.

connected layers). Our work builds upon the work by Zhao et al. [14] and demon-
strates how the proposed BNN accelerator can be mapped to the ReFiRe [22] remote-
accelerator deployment framework, which allows to boost BNN performance without the
need to redesign the aforementioned computational cores. ReFiRe [22] reduces commu-
nication and synchronization requirements between remote accelerator nodes (FPGA-
based MPSoCs) in disaggregated datacenters by shifting control flow and partial recon-
figuration decisions to the remote side through arbitrarily long instructions that encap-
sulate complex sequences of operations and their respective synchronization require-
ments. The framework abstracts away all the complexity of performing DPR on re-
mote/disaggregated FPGAs, and allows to transparently exploit intra-FPGA parallelism
per BNN layer, as well as inter-FPGA parallelism at image granularity. Note that, al-
though DPR has been previously explored to boost CNN performance [23], this is the
first work, to the best of the author’s knowledge, that explores dynamic partial reconfig-
uration on disaggregated FPGAs to improve BNN performance.

4. Disaggregated Acceleration Framework

The ReFiRe [22] framework allows to efficiently deploy remote/disaggregated acceler-
ators by improving the computation-to-communication ratio between a host processor
and an arbitrary number of accelerator devices. This is achieved by relying on complex
instructions of variable length, henceforth referred to as Advanced Coprocessor Instruc-
tions (ACIs), which describe partial reconfiguration events and the required flow of data
among a set of remote partially reconfigurable accelerator cores.

4.1. Hardware architecture

The hardware architecture of the remote accelerator is illustrated in Figure 1. There are
four accelerator slots (AS), with each AS being a partially reconfigurable region (PRR).
Each AS has a private Parameter file (PF) to facilitate accelerator configuration. Further-
more, four Direct Memory Access (DMA) engines are responsible for transferring data
between external memory and each AS. Depending on the BNN layer processed at each
point in time, input data to each AS can arrive either from on-chip storage (output data
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Figure 3. Binarized Neural Network architecture.

of a previous layer) or from external memory (input data of the very first layer). The ACI
memory holds the active ACI at each juncture, and directs computation and PR events
on each AS.

4.2. ACI architecture

The ACI memory consists of three main parts, namely SYNC, COMPUTE, and PARAM.
The SYNC area facilitates host-accelerator synchronization. The PARAM area facili-
tates the parameter-based configuration of each accelerator per AS. The COMPUTE area
holds a sequence of instructions that correspond to an application-specific execution sce-
nario. There are five ACI instruction types, organized into a hierarchy of classes: WIN-
DOW, PARSEC, THREAD, LOOP and TASK, as illustrated in Figure 2.

The TASK class contains information related to the input and output data per AS
for a given operation. The multiplexer and the PF per AS are configured and initialized,
respectively, based on data extracted from each TASK class. The LOOP class is a con-
tainer class for TASK objects, which allows to reduce host-accelerator synchronization
requirements by providing the required number of iterations per accelerator operation in
an AS, as well as the desired stride for both the input and the output data. The THREAD
class dictates an order of operations that are performed sequentially, whereas the PAR-
SEC class indicates a parallel section with a number of THREAD classes that execute in
parallel on different AS. Finally, the WINDOW class dictates PR requirements, as each
WINDOW starts with one or more requests for partial reconfiguration.

4.3. Mapping the BNN to an ACI

The architecture of the BNN consists of nine layers, with the first six being convolutional
layers while the next three are fully connected layers, as illustrated in Figure 3. The first
layer (L0 in Fig. 3) receives fixed-point input data and binary weights, whereas the rest of
the layers (L1 through L8 in Fig. 3) operate only on binary data. The convolutional layers
rely on 3× 3 filtering and edge padding, while the fully connected layers apply batch
normalization prior to pooling, and binarization before writing data out to the buffers.
The accelerator system presented by Zhao et al. [14] designed three accelerators, which
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Figure 4. Illustration of the ACI format for the Static Architecture and the PR Architecture for FPGA-based
BNN acceleration.

we employ as-is in our disaggregated accelerator systems. The FP CONV core imple-
ments the L0 layer of the BNN. The BIN CONV core is employed for the following five
binary-only convolution layers (L1 through L5). Finally, the BIN FC core accelerates
the last three BNN layers (L6 through L8).

To map the required BNN computations to an ACI, we place each accelerator call
in a dedicated TASK class, which also contains the respective core’s configuration pa-
rameters and input/output address and sizes. The number of images that are processed
in-between PR events is defined as the number of iterations of a LOOP class, with the
stride being the image size. The THREAD and PARSEC classes allow to expose paral-
lelism per layer by partitioning processing over multiple AS that host the same accelera-
tor core. Finally, the WINDOW class performs one PR event per AS to deploy a different
accelerator core to serve the needs of the next BNN layer. Due to the fact that there are
three accelerator cores, the final ACI that implements the BNN consists of three WIN-
DOW classes, one per accelerator core. Figure 4 illustrates alternative execution sce-
narios based on different ACI structures for the BNN. The Static Architecture is identi-
cal to the reference execution scenario that is implemented on a software-programmable
FPGA by Zhao et al. [14]. Due to the fact that ReFiRe is a native partially reconfigurable
architecture, the Static Architecture involves the initial deployment of the three acceler-
ators in three AS. This is achieved by placing all nine TASK classes (one per BNN layer)
in the same WINDOW class. The PR Architecture exploits PR at run time and exposes
intra-layer parallelism through the PARSEC/THREAD classes. Therefore, three WIN-
DOW classes are required, one per accelerator core, and multiple ACI-based iterations
are performed.

5. Implementation and Evaluation

To evaluate performance on disaggregated FPGAs, we employ two ZCU102 boards, each
containing a Zynq UltraScale+ MPSoC, interconnected over a Small Form-factor Plug-
gable (SFP) 10-Gbps link. Each MPSoC hosts an ARM Cortex-A53 64-bit quad-core
processor running at 1.2 GHz. One board serves as the host processor, whereas the sec-
ond is the accelerator platform. The host board runs Ubuntu 16.04 on its Application
Processing Unit (APU), while all communication is established through the SFP link. All
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three accelerator cores deployed in ReFiRe are retrieved from https://github.com/cornell-
zhang/bnn-fpga. Table 1 provides resource utilization per accelerator on the ZCU102
evaluation platform, hosting a Zynq Ultrascale+ MPSoC. We evaluate two alternative
execution scenarios, the Static Architecture and PR Architecture (illustrated in Fig. 4)
using the CIFAR-10 dataset.

Table 1. Resource utilization for the three BNN accelerator cores on the Zynq Ultrascale+ MPSoC

ACCEL. LUTs FFs BRAMs DSPs Power (W)

FP CONV 11609 13802 16 0 0.112

BIN CONV 13208 5849 86 2 0.050

BIN FC 4432 6148 20 2 0.086

5.1. Static Architecture

We initially reproduce, using ReFiRe, the same static execution scenario that was eval-
uated by Zhao et al. [14] using SDSoC. Thus, we first deploy the accelerator cores
FP CONV , BIN CONV , and BIN FC through an initial configurationWINDOW. In this
scenario, all 10,000 images we used for evaluation are processed sequentially, directing
the layers output to the next, as dictated by the BNN architecture. This approach required
128 sec to complete. As a reference, we note that the SDSoC-based approach [14] using
the exact same accelerators and number of images required 103.1 sec. The observed de-
lay is due to data exchanges between remote FPGAs for ACI transfers and synchroniza-
tion.

5.2. PR Architecture

Next, we evaluate the DPR-based execution scenario by populating all AS with the same
accelerator core and rely on the PARSEC and THREAD classes to invoke them in par-
allel per layer. The DPR overhead per AS (using ICAP [26]) is 7 ms (2.5 MB bitstream
sizes). Note that, Zhao et al. [14] report 5.7 ms per image without using DPR. Thus, to
yield a beneficial computation-to-PR ratio to exploit DPR using ReFiRe, we organize
processing in batches. Figure 5 illustrates how performance improves with the batch size.
As can be observed in the figure, DPR allows to outperform the fully static architecture
when the batch size exceeds 25 images/batch. Evidently, processing a single image in-
between DPR events yields the worst-case performance, requiring 917 seconds in total
for the 10,000 images, when the static design with 1 instance per accelerator finishes in
128 seconds. When the batch size exceeds 300 images, DPR allows up to 3.1x faster ex-
ecution, due to the four accelerator instances per layer. Note that, aggregate system per-
formance increases almost linearly with the number of disaggregated FPGAs used, due
to the beneficial computation-to-synchronization ratio that the ACI offers. The overhead
to create and transfer an ACI to a remote FPGA is as low as 1.33 sec.

5.3. Comparison with other works

A comparison with previous FPGA accelerator designs for CNN and BNN models is
provided in Table 2. Suda et al.[24] and Qui et al.[7] reported 117 GOPS/s and 136
GOPS/s, respectively, significantly lower than the performance attained through ReFiRe.
Li et al.[25] achieved 594 GOPS/s, with 22.5 GOP/s/W efficiency, due to the increased
power consumption of the design. Our work outperforms the reference approach pro-
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posed by Zhao et al. [14], achieving about 3.1 times higher performance and efficiency
for the exact same set of accelerators. Umuroglou et al. [20] and Liang et al. [21] report
considerably higher performance than all other approaches. Therefore, we intend to em-
ploy ReFiRe to further improve the performance of these accelerators by transparently
introducing DPR and deploying disaggregated FPGAs.

Table 2. Performance comparison with other FPGA-based CNN/BNN accelerators. The presented accelerator
system employs the same set of accelerator cores as Zhao et al. [14].

Zhao et al.[14] This work Suda et al.[24] Qiu et al.[7] Li et al.[25] Umuroglu et al.[20] Liang et al.[21]

Platform Zynq ZynqMP Stratix-V Zynq Virtex-7 Zynq Stratix-V
XC7Z020 XCZU9EG 5SGSD8 XC7Z045 VX690T XC7Z045 5SGSD8

Clock(MHz) 143 150 120 150 156 200 150
Precision(bit) Input: 8 Input: 8 8-16 16 16 Input: 8 Input: 8

Weight: 1 Weight: 1 Weight: 1 Weight: 1
Model size (OPs) 1.24 G 1.24 G 30.9 G 30.76 G 1.45 G 112.5 M 1.23 G

Performance (GOP/s) 207.8 667 117 136 565.94 2465.5 9396.41
Power(W) 4.7 5.97 25.8 9.63 30.2 11.7 26.2

Efficiency (GOP/s/W) 44.2 111.73 4.57 14.22 22.15 210.72 358.64

6. Conclusions

Binarized Convolutional Neural Networks (BNNs) offer significant accuracy, perfor-
mance and model compression over standard full-precision Convolutional Neural Net-
works (CNNs). This paper proposed a hardware accelerator architecture for BNNs on
modern FPGA-based MPSoC devices deployed within a disaggregated-computing en-
vironment. We explored the trade-offs in exploiting Dynamic Partial Reconfiguration
(DPR) to meet the performance, communication, and latency requirements. We find that
throughput performance improves linearly with the number of accelerator devices, with-
out requiring additional effort for communication or synchronization, neither on the host
nor on the accelerator sides. We explored, a generic acceleration framework that im-
proves performance of remote, fine-grained accelerators by encapsulating complex se-
quences of operations in arbitrarily long instructions called ACIs. We compared these
accelerator instances against other FPGA-based BNN implementations in the literature.
Our evaluation results show that disaggregation offers an attractive solution, which al-
lows to expose near-peak accelerator performance at the application level, despite per-
forming computations on remote nodes. Future work will focus on architectural im-
provements, exploring a low-precision network for a much larger and more complicated
dataset like ImageNet and AlexNet.
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Abstract. Reconfigurable computing, exploiting Field Programmable Gate Arrays
(FPGA), has become of great interest for both academia and industry research
thanks to the possibility to greatly accelerate a variety of applications. The interest
has been further boosted by recent developments of FPGA programming frame-
works which allows to design applications at a higher-level of abstraction, for ex-
ample using directive based approaches.

In this work we describe our first experiences in porting to FPGAs an HPC ap-
plication, used to simulate Rayleigh-Taylor instability of fluids with different den-
sity and temperature using Lattice Boltzmann Methods. This activity is done in the
context of the FET HPC H2020 EuroEXA project which is developing an energy-
efficient HPC system, at exa-scale level, based on Arm processors and FPGAs. In
this work we use theOmpSs directive based programming model, one of the models
available within the EuroEXA project. OmpSs is developed by the Barcelona Su-
percomputing Center (BSC) and allows to target FPGA devices as accelerators, but
also commodity CPUs and GPUs, enabling code portability across different archi-
tectures. In particular, we describe the initial porting of this application, evaluating
the programming efforts required, and assessing the preliminary performances on
a Trenz development board hosting a Xilinx Zynq UltraScale+ MPSoC embedding
a 16nm FinFET+ programmable logic and a multi-core Arm CPU.
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1. Introduction

Reconfigurable computing using Field Programmable Gate Arrays (FPGA) is attracting
lot of attention from the scientific community for its potential to accelerate a large vari-
ety of applications with interesting performance-energy ratios. However, the complexity
of programming such devices has been one of the major issues preventing FPGAs to
become widely adopted in scientific software communities. In fact, FPGAs have been
commonly programmed using Hardware Description Language (HDL) such as VHDL
and Verilog, which allow to describe arbitrary circuitry at Register Transfer Level (RTL).
This approach is too low level for many application programmers, and has restricted the
use of FPGA mainly to electronic engineering experts.
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Despite of this, FPGAs have been successfully used in the past to boost the comput-
ing performance of several scientific applications. As an example: COPACOBANA [1]
for code breaking; RIVYERA [2] for bioinformatics applications; EXTOLL [3] for com-
munications and Janus [4,5] for spin-glasses simulations. These are all relevant projects
using FPGAs as processing elements for HPC and scientific applications in general [6].
However, they required strong customization of applications, using data structures and
implementations, very far from that used on commodity CPUs.

Recently, the resources available on FPGA chips have increased a lot, integrating
high-end interfaces (e.g., PCIe, DDR3, GbitE, etc. . . ) large static memories, large num-
ber of DSPs and also CPUs cores. The last feature in particular has raised the interest
of many researchers for enabling FPGA-accelerated computing. A CPU is integrated on
the device together with the programmable logic, and is able to run a full operating sys-
tem, commonly based on GNU/Linux, allowing to start applications on the CPU to later
offload specific functions on the FPGA.

In the last years, also the programming environments have been extensively devel-
oped. Languages such as OpenCL and High-Level Synthesis (HLS) frameworks based
on pragmas directives are now available for different FPGAs, allowing to describe ap-
plications at algorithmic level [7]. This can be then interpreted and transcompiled by
automatic software tools into a Register-Transfer Level (RTL) and finally synthesized to
the gate level. In particular, for applications already developed for ordinary CPUs and
accelerators, directive approaches allow to just annotate legacy C and Fortran codes with
pragmas that guide the compilers in the synthesis process. Clearly, this approach is more
abstract compared to a low level manual programming of the HDL code, and can re-
sults in less optimized designs in terms of timing and FPGA resources usage. Despite
of this, the reduced programming effort required, combined with a faster design space
exploration and a much higher software portability, make this approach very attractive
and usable by larger application developers communities.

All of these factors contributed to the possibility of using FPGAs as computing ac-
celerators, and many projects are now following this path. One of this is the EuroEXA
project 2, a H2020 project funded by the EU, that following an hardware/software co-
design approach, aims to port a rich mix of applications to its architecture. One of these
applications consist in the simulation of fluids using Lattice Boltzmann Methods (LBM).
The increasing popularity of LBM comes from its flexibility, allowing to study com-
plex geometries and different types of boundary conditions, and from being particularly
suitable for highly scalable implementations on massively parallel architectures [8].

In the EuroEXA project Xilinx FPGAs are adopted. Xilinx provides the VivadoHLS
Design Suite to annotate C codes with proprietary HLS directives, allowing to offload a
specific function to an FPGAs, automatically managing the host code compilation and the
synthesis of the function to be offloaded. Anyhow, in this work we include a further level
of programming abstraction over VivadoHLS and in particular we use the OmpSs di-
rective based programming model in conjunction with its OmpSs@FPGA extension [9].
OmpSs allows to annotate the application code with directives to compile and offload a
kernel on FPGAs, enabling accelerated computing, but given the same source code, it is
also able to target other devices, such as GPUs or multi-core CPUs, easily enabling code
portability [10].

2https://euroexa.eu/
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The remainder of this contribution is organized as follows: in the next Section we
introduce the EuroEXA project, in Sec. 3 we describe our LBM application, and in Sec. 4
we briefly overview OmpSs@FPGA. Sec. 5 describes our code porting to FPGA, Sec. 6
reports our results, and finally Sec. 7 highlights some concluding remarks.

2. The EuroEXA Project

The Co-designed innovation and system for resilient exascale computing in Europe: from
application to silicon (EuroEXA) is a H2020 FET HPC project funded by the EU com-
mission with a budget of≈ 20Me. The aim of the project is to develop a prototype of an
exascale level computing architecture suitable for both compute- and data-intensive ap-
plications, delivering world-leading energy-efficiency. To reach this goal this project pro-
poses to adopt a cost-efficient, modular integration approach enabled by: novel iner-die
links; FPGAs to leverage data-flow acceleration for compute, networking and storage; an
intelligent memory compression technology; a unique geographically-addressed switch-
ing interconnect and novel Arm based compute units. As main computing elements are
going to be adopted multi-core Arm processors combined with Xilinx UltraScale+ FP-
GAs, to be used both as compute accelerators and to implement an high bandwidth and
low-latency interconnect between computing elements.

Form the software platform point of view, EuroEXA provides five high-level pro-
gramming frameworks that enable FPGA-accelerated computing: Maxeler MaxCompil-
erMPT 3, OmpSs@FPGA [9], OpenStream [11], SDSoC or SDAccel 4 with OpenCL,
and Vivado High Level Syntesis 5. These frameworks are used to implement several key
HPC applications across climate/weather, physics/energy and life-science/bioinformatics
scientific domains. More details about the EuroEXA project can be obtained from its
website: https://euroexa.eu.

In this work we describe our early steps towards the porting of our application within
the EuroEXA Project using the OmpSs programming model. In preparation for the Eu-
roEXA prototype, we are working on a Trenz TE8080 development board where we have
developed our early implementations and performed preliminary performance measure-
ments.

3. The Lattice Boltzmann Application

In this contribution we address CFD simulation applications based on the Lattice Boltz-
mann Method (LBM), a class of CFD solvers able to describe efficiently the physics
of complex fluid flows, through a mesoscopic approach. LBM are stencil-based algo-
rithms, discrete in space, time and momenta, operating on regular lattice grid. A set of
synthetic pseudo-particles called populations are sitting at the edges of the lattice, and
evolved for several time steps. At each time step, populations propagate from lattice-
site to lattice-site, and then collide among each other updating their physical parameters.
These two steps are the most compute intensive parts of actual LBM codes. In both rou-

3https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
4https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html
5https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs 703

https://euroexa.eu
https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://euroexa.eu
https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html


tines, there are no data dependencies between different lattice points, so they can exe-
cute in parallel on as many lattice sites as possible and according to the most convenient
schedule. Boundary conditions, specific to each particular problem could be applied but
have a truly minor computational impact on simulation time. A model labeled as DxQy
describes a fluid in x dimensions using y populations per lattice point.

The specific model used in this work, the D2Q37, has been extensively used for con-
vective turbulence studies [12], but has been also deeply optimized and used as a bench-
marking application for several programming models and HPC hardware architectures.
In the D2Q37 model the propagate function gather at each lattice site populations values
from neighbors at distance up to 3 in the grid, generating a large number of sparse mem-
ory accesses and resulting to be strongly memory-intensive. The collide kernel performs
≈ 6600 double precision floating-point operations on data local to each lattice site, and
is strongly compute-intensive with an arithmetic intensity greater than 10 [13]. Different
implementations of this code have been designed and implemented, adopting several di-
rective based languages to address both multi-core CPUs [14] and accelerators [8], such
as GPUs [15] and also many-core devices [16].

4. The OmpSs Programming Model

In this work we have implemented our application using the OmpSs directives based
programming model, developed at the BSC, and its OmpSs@FPGA extension [9].

OmpSs is very similar to the widely known OpenMP, and in fact it is a forerunner
of OpenMP, where new features are introduced and developed before possibly getting
pushed in the OpenMP standard. OmpSs is one of the tools selected to be used in the
framework of the EuroEXA project to exploit FPGAs as accelerators, and allows to de-
fine task functions to be offloaded to such devices. It provides an automatic generation
of a wrapper code handling data copies to and from the FPGA device, and manages
flow dependencies and synchronizations. These data dependencies can be specified by
the programmer using directives, as shown in Listing 1, where an example function is
decorated with pragmas in order to be offloaded to an FPGA. Different buffers are set as
input and outputs, giving also their sizes, in order to be copied in and out as needed. The
function body to be actually offloaded onto FPGA, once processed by the OmpSs source
to source toolchain, gets transformed into a bitstream by the VivadoHLS synthesis tool,
allowing the programmer to add also proprietary HLS directives in the source code.

Thanks to the OmpSs directives, simply changing the offload target (which directly
affect the final compiler to be used), the same source code can be compiled for several
architectures, possibly targeting different accelerators. Interestingly enough, the use of
OmpSs allows us also to exploit a wider set of tools developed at BSC, meant for per-
formance analysis. In particular, we used Extrae [17], a tracing tool allowing to collect
information during the execution of an application, such as: hardware counters; calls to
MPI, OpenMP and OmpSs libraries; etc. To later utilize the acquired traces, we used also
Paraver [18], a performance analysis tool which loading traces generated by Extrae pro-
vides a visual interface to analyze them. The traces can be displayed as timelines of the
execution, as shown later, but can also be used to perform much more complex statistical
analyses [19,20].
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Listing 1: Example of a function performing the dot product operation, decorated with
OmpSs directives, in order to be offloaded on a FPGA accelerator.

#pragma omp target device(fpga)

#pragma omp task in([ BSIZE]v1, [BSIZE]v2) inout ([1] result)

void dotProduct(float *v1, float *v2, float *result) {

int resultLocal = result [0];

for (size_t i = 0; i < BSIZE; ++i) {

resultLocal += v1[i]*v2[i];

}

result [0] = resultLocal;

}

5. Implementation

Our application, when exploiting accelerators, is commonly implemented allocating the
whole data domain into the device memory once for all, at the beginning of the simula-
tion, and then performing several iterations of the algorithm following a double buffering
approach [8]. Despite of this, when using FPGAs, the on-board memory is quite limited
(although faster) with respect to other accelerators, thus we developed a blocking im-
plementation, allowing to move slices of the whole lattice, to the FPGA device, in or-
der to compute one slice at a time. To slice the lattice, gather and scatter operations are
required in order to move just contiguous memory buffers, in and out from the FPGA
BRAMs. The host part of this implementation is shown in Listing 2. Here we can see
an outer loop over the iterations and an inner loop over different blocks of the lattice.
Once the gather operation is completed on the host side, the lbmBlocking task function
is called, which automatically handles the copy in and out of buffer arguments thanks to
the OmpSs directives shown in Listing 3.

As described in Sec. 3, for each iteration, two different functions are commonly
implemented: propagate and collide. In a first ported version, we directly implemented
these two as inline functions, calling one after the other inside the lbmBlocking one. This
requires a temporary intermediate buffer allocated in the FPGA’s BRAMs which could
be easily removed by merging the two function in a single one, saving about one third of
the BRAM required.

Using proprietary VivadoHLS directives, as the ones shown in Listing 3, we have
also optimized the placement of arrays in the BRAMs (using HLS array partition direc-
tive), allowing for the concurrent access of multiple data items. Using HLS pipeline and
HLS unroll directives we have been able also to achieve pipelining or unrolling of the
loops performing the collide operation, increasing the performance as reported in Sec. 6.

On other parallel accelerators, such as GPUs, this application is commonly paral-
lelized computing several lattice sites at the same time, exploiting the independence be-
tween the loops over the lattice sites [8]. On an FPGA this would translate to the un-
rolling and replication of the whole function body, which is not possible with the avail-
able resources on our development board. On the other side, to achieve a certain level of
resources reuse, one may pipeline the execution over the lattice sites, allowing to start
the computation of a new lattice site every few clock cycles. Unfortunately, at this stage,
the resources of our target FPGA should be enough to pipeline the execution over the
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Listing 2: Core of the LBM application showing the call to the function to be offloaded
on the FPGA and computing one iteration on one block of the lattice.

for (i=0; i<NITER; i++) {

for ( ix = HX; ix < HX+LX ; ix+=BCOL ) {

// Gathering

Bprv [...] = f1_soa [...];

lbmBlocking( Bnxt , Bprv , param );

#pragma omp taskwait

// Scattering

f2_soa [...] = Bnxt [...];

} // Block loop

} // Iter loop

lattice sites, but the high routing congestion, due to the collide operation complexity, did
not allowed us to produce a working bitstream.

From the portability point of view, interestingly enough, when compiling the appli-
cation for architectures not using VivadoHLS, these directives are just ignored. In partic-
ular we compiled exactly the same code to run on the Arm cores of the Cortex A53 pro-
cessor available in the same Trenz development board. Other directives could be added
in the future, exploiting other directive based languages, to target other architectures.

6. Results

From the portability point of view, a first result is that we now have a single implemen-
tation able to be compiled for a multi-core CPU, just selecting smp as device target, or to
offload the most time consuming part of our LBM application to FPGAs, selecting fpga
as target device.

In this work, to test the application exploiting the FPGA offload on an actual hard-
ware device, we have used a Trenz TE8080 development board 6, which hosts a Xilinx
UltraScale+ ZU9 MPSoC. The FPGA in our Trenz board is much smaller, both in terms
of resources and capabilities, wrt the one that will be used in the EuroEXA project, nev-
ertheless, it is supported by OmpSs and it allows us to test and run our preliminary ported
code and measure initial results. From the performance point of view, in fact, results are
still very preliminary and even on this testbed a wide range of further optimization could
be still explored. We report in Tab. 1 results measured with different implementations
of our code showing the percentage of the ZU9 FPGA resources utilized, and the corre-
sponding overall execution time divided by the lattice size (set to 256×256), giving the
execution time required for each lattice site. We underline this is one of the handiness
of using high level synthesis tools, which allow to easily test different implementations,
possibly changing just pragma directives.

6https://shop.trenz-electronic.de/en/TE0808-04-9BE21-AS-TE0808-04-9BE21-AS-Starter-Kit
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Listing 3: Sketch of the kernel function to be offloaded onto the FPGA, with OmpSs and
HLS directives, corresponding to the last column implementation in Tab. 1.

#pragma omp target num_instances (1) device(fpga)

#pragma omp task out([BS]Bnxt) in([BH]Bprv , [PS]param)

void lbmBlocking(data_t Bnxt[BS],data_t Bprv[BH],data_t param[PS]) {

#pragma HLS array_partition variable=param block factor =37

for ( ix = 0; ix < BCOL; ix++) {

for ( iy = HY; iy < (HY+LY); iy++) {

#pragma HLS pipeline II=32

#pragma HLS loop_flatten

#pragma HLS expression_balance

#pragma HLS dependence variable=Bnxt inter false

data_t localPop[NPOP];

#pragma HLS array_partition variable=localPop complete

// PROPAGATE

localPop [0] = Bprv[ idxh - 3*NY + 1];

localPop [1] = Bprv[ 1* popoffh + idxh - 3*NY ];

...

localPop [36] = Bprv[ 36* popoffh + idxh + 3*NY - 1];

// COLLIDE

for (p = 0; p < NPOP; p++) { Ops on localPop [] and param [] };

...

for (p = 0; p < NPOP; p++) { Ops on localPop [] and param [] };

Bnxt[] = ...;

}

}

The first version, on the leftmost column, refers to the original code annotated just
with OmpSs directives, giving an execution time per site of ≈ 61μsec. In the second ver-
sion, we have added also HLS directives, pipelining or unrolling the inner loops involved
in the collide operator, increasing the performance by a factor ≈ 5×, and reducing the
time per lattice-site to ≈ 12.6μsec In a third version we attempted to optimize for re-
sources, merging the propagate and collide functions, and applying just the pipelining of
the loops in the collide region. Moreover we also partitioned an array of constant param-
eters, splitting its content across different BRAMs, to allow to access different data items
during the same clock cycle. As shown in Tab. 1, this results in a reduction of resources
usage, especially for DSPs and BRAMs, without a negative impact on the time per site,
which is even slightly better. In the last version we attempted to pipeline over the lattice
sites (i.e., the outer loops). In this case, as reported by Vivado, the computing resources
of the ZU9 FPGA should be enough to fit the design, if the Initiation Interval (II) –
corresponding to the number of clock cycles to wait before filling in the pipeline a new
lattice site – is kept greater or equal to 32, as shown in Listing 3. Anyhow, unfortunately,
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Table 1. FPGA resources utilization and achieved overall execution time per lattice site at 200MHz, for dif-
ferent implementations of the offloaded function.

First version
Pipeline/Unroll Merged Funcs Pipeline

Collide loops and Partition over sites

DSP48E 2.8% 16.9% 4.8% 20.83%
BRAM 18K 29.2% 35.7% 11.4% 31.74%
LUT 9.1% 34.7% 38.28% 68.17%
FF 5.5% 15.1% 12.44% 58.66%

Exec. Time 60.62μs 12.65μs 12.4μs ≈ 0.16μs
per lattice site (Estimated)

the high amount of computing resources involved and the code complexity, result in high
routing congestion levels and consequently in a failure of the final bitstream synthesis.
Further increasing the II value allows to reduce the computing resources usage, but the
routing congestion still impairs the synthesis, unless using II values in the same order
of the pipeline depth. Neglecting routing issues, taking into account the FPGA clock fre-
quency – set to 200MHz – and the minimum II value that allows to fit FPGA computing
resources, we can estimate an execution time of ≈ 0.16μsec per lattice site. This corre-
sponds to a performance speed-up of about one order of magnitude. This is relevant in
prospective, giving us an estimation of what we could expect to obtain e.g. on the larger
Xilinx VU9 UltraScale+ FPGA, which could be adopted by the EuroEXA project.

To make a point of reference, we can compare the results achieved with the ones
measured on a processor with a similar power envelop. In particular, running the same
code on the Arm Cortex A53 embedded in the same MPSoC, we measure a value of
9.26μs per lattice site. This result is very close to the one measured on the ZU9 FPGA,
but as already highlighted, using the larger FPGA available in the EuroEXA computing
nodes, we expect to significantly increase this performance value.

Another interesting result is that OmpSs can be combined with a set of performance
profiling tools, such as Extrae and Paraver. Extrae allows to collect execution traces that
can be then visualize using Paraver. In Fig. 1 we show the execution traces of several
launches of our code, corresponding to the different slices (or blocks) of the lattice.
running on the Trenz board. We clearly see 5 different timelines, one for each core of the
Arm CPU and one for the FPGA. The threads (in green) spawns the tasks (in red) which
offload the lbmBlocking kernel that is executed on FPGA (in blue).

7. Conclusion and future works

Using OmpSs programming model and OmpSs@FPGA extension, after the initial setup
of a working tool-chain involving OmpSs, Xilinx VivadoHLS SDK and Xilinx Petalinux
(to generate bootable images for the Trenz board), we have been able, with minimal code
modifications, to allow an actual HPC Lattice Boltzmann application to exploit a Xilinx
FPGA as an accelerator. Interestingly, the same code can be compiled targeting different
architectures, such as x86 and Arm multi-core CPUs.

Adding proprietary HLS directives, we have been able to increase the performance
by 5× wrt the initial version, without introducing major changes to the actual C code,
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Figure 1. Paraver view of the execution timeline. The 4 top rows represent the 4 Arm cores performing the
lattice initialization and the gather/scatter operations (Green) and managing the function offload to the FPGA
(Red). In the bottom row is represented the execution timeline in the FPGA, each Blue box represent the fused
Propagate-Collide computation on one lattice block.

starting from the original implementation of the two main functions of the LBM algo-
rithm. With some modifications (i.e., merging propagate and collide) we were able to
save some BRAM memory, allowing to increase the lattice slice we could process. On
the Xilinx ZU9 FPGA we have used in this work the result achieved is similar to that
measured running the code on the Arm cores of the same MPSoC; however we have
estimated that using a larger FPGA, e.g the Xilinx VU9, we can speed-up the execution
time by at least one order of magnitude. In particular, on the VU9 we expect to be able
to pipeline over the lattice sites, thanks to the increased routing resources, and to reduce
the minimum II, thanks to the higher amount of computing resources.

As future works, we plan to re-organize the loops involved in the collide kernel,
to help to parallelize reduction operations involved in the inner loops. On the host side
we aim to avoid gathering and scattering operations and succeed to overlap data trans-
fers with computations. In particular, we aim to develop a multi-FPGA implementation,
keeping one slice of lattice stored on each FPGA (e.g., in the VU9 on-board UltraRAM
will be available), and moving back and forth from the host-DRAM only the lattice-slice
halos for communications with neighbours. We also expect to work soon on a Xilinx
VU9 in order to verify our estimations.
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Abstract. Cellular automata are a massively parallel programming model that are 
capable to solve many algorithmic problems efficiently. The complexity of defining 

a suitable cell rule for a concrete problem can be overcome by the use of the 

extended model of global cellular automata in conjunction with specialized 
compilers, to translate a high-level imperative programming language to cellular 

automata. Obviously, the execution on universal multicore processors does not 
make use of the full parallel potential of cellular automata and the workflow for 

direct hardware implementations is slow and hard to debug. In this paper, we 

propose a novel processor architecture that can execute a global cellular automaton 
as software and can still compete with other software or hardware implementations. 

Keywords. FPGA, Cellular Automata, Processor Architecture, Parallel Processing, 

Dataflow 

1. Introduction 

Cellular automata (CA) are a massively parallel model that can easily be implemented in 

hardware [1]. There exist several application fields for cellular automata, e.g. image 

processing, machine learning, fluid dynamic or traffic simulation [2]. On the other side, 

writing a program for a cellular automaton that can solve a given problem is extremely 

challenging, as a cell has a strict and homogenous neighborhood and there is only one 

rule for all cells. Mortensen [3] presented a method to compile a high-level imperative 

programming language to the cellular automata model, so developers can write their 

algorithms in the usual way they do, and although benefit from the parallel execution. 

Unfortunately, the resulting automaton is somehow inefficient as information has to be 

passed from one cell to another over long distances, which is done by a message passing 

protocol. 

To overcome the restrictions of a cellular automaton, the so-called global cellular 

automata (GCA) have been introduced [4] [5]. 

Definition. For a given natural number k, a global cellular automaton (GCA) is a 4-

tuple  consisting of 

� the set of cells , 

� the neighborhood function , 

� the set of cell states , 

� the state transition function . 
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In contrast to a cellular automaton, the neighborhood of a cell does not only depend 

on the cell itself, but also of its current state. Thus, a cell might have a totally different 

neighborhood from one generation to another. The number of neighbors is denoted with 

k and might be constant or variable as well. Furthermore, the definition of the state 

transition function  allows the use of individual rules for each cell. While it is easier to 

implement algorithms in software, an implementation in hardware is more complex 

because of the varying neighborhood. Several approaches have been presented in [6] [7] 

[8]. Common to all, there is always a compromise between generality and runtime. 

Specialized approaches are fast, but running a different algorithm is a complex process. 

In contrast, more general approaches have a great overhead in space and time. 

Drieseberg et al. [9] use global cellular automata and combine them with the 

approach of Mortensen. They presented a compiler for a subset of the C programming 

language. It generates a GCA that can be run on a multicore CPU, a GPU or an FPGA. 

Experimental results show, that a speedup could be achieved compared to a program that 

was compiled with a standard C compiler and executed on an ordinary CPU. This was 

especially true for the implementation on an FPGA, which could achieve the highest 

speedup factor compared to the runtime of the same algorithm on a CPU. However, the 

development cycle includes the synthesis and place & route process of the hardware 

description and is very time-consuming. Additionally, the presented compiler creates a 

huge number of cells, already for small algorithms with a few lines of code. This results 

in a very slow or even impossible routing [10]. 

In this paper, we present a hardware architecture that executes global cellular 

automata written as software. The architecture is generalized and can execute a high 

number of cells. Nevertheless, it aims to reach high speedup factors compared to the 

execution of cellular automata on universal hardware. We also propose a mapping 

process of standard syntax elements of imperative programming languages (such as 

operators, if and while) to our cellular processor architecture, which results in much 

fewer cells than the approach of Drieseberg. 

2. Hardware Architecture for Execution of Global Cellular Automata 

In this section, we present a hardware architecture for a processor that is able to calculate 

a global cellular automaton  where 

�  is a finite subset of the natural numbers (called the cell IDs), 

�  is the neighborhood function with  or  depending on the local cell 

state, 

�  is the set of all possible cell states, 

�  is the state transition function (called the rules). 

An element of Q is a 4-tuple where is the program counter,  is the accumulator, 

 the cell value and  the local cell state. The set  is composed of the subset 

of invalid states , containing the states Busy, LikelyTrue, LikelyFalse and Reset, and of 

the subset of valid states , containing the states Ready, True, False and LoopReset. 
In a global cellular automaton, the neighborhood of a cell depends not only of the 

cell ID, but also of its state. More precisely, it depends on the value of the program 

counter, which might change in every new generation. The definition of the GCA above 
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implies that a cell has either one neighbor cell at a given time or no neighbor at all. We 

agree that if a cell has a neighboring cell, it might use its cell value  or its local cell state 

, but not its program counter and accumulator to calculate the cell’s new cell state in . 

The number of cells in  and the state transition function  highly depends on the 

function the cellular automaton computes. For a hardware architecture, we have to limit 

the number of cells and to define a set of general rules the designer of the function can 

choose from. 

2.1. Ruleset 

The ruleset can be divided into four categories: initialization, arithmetic/logic, 

comparison and control. Every rule may be annotated with a valid flag that has two 

effects when the rule actually changes the cell’s program counter. First, the new value of 

the accumulator is copied to the cell’s value . Second, if the cells local state  is in , it 

is changed to a corresponding state in  according to Table 1. The local states Reset and 

LoopReset have a special meaning and are not affected by the valid flag. 

Table 1. Local cell state changes when valid flag is set in a rule 

Old State New State 
Busy, Ready Ready 

LikelyTrue, True True 
LikelyFalse, False False 

Initialization rules are used to set a definite value in the cell’s accumulator. This 

value might be a constant (set rule) or the cell value of a neighboring cell if its local 

state  is valid (read rule). There are also variants of the set and read rules which only 

set the accumulator when the condition  is met (init rule), or increase the cells 

program counter by two instead of one (skip rule). A complete list of the initialization 

rules and their impacts is shown in Table 2. They do not change the cell value or the local 

cell state if the rule is not annotated with a valid flag. 

Table 2. List of initialization rules 

Rule Program Counter Accumulator 
Set   

Set and Skip   

Set Init  
 

Read 
  

Read and Skip 
  

Read Init 
  

Arithmetic/logic rules implement unary operators (denoted with ) such as 

negation or binary operators (denoted with ) such as addition or subtraction. The first 

operand is always the accumulator of the cell, the second is either a constant or the 

value of a neighboring cell. Like initialization rules, they have no impact on the cell 

value or the local cell state if a valid flag is not present, but all the other effects are 

presented in Table 3. 
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Table 3. List of arithmetic/logic rules 

Rule Program Counter Accumulator 
Unary operator    

Binary operator 

(constant) 
  

Binary operator 
(neighbor cell) 

  

Comparison rules compare the accumulator with a constant or the value of another 

cell, and write the result into the accumulator as stated in Table 4. Afterwards, they also 

change the local cell state as defined in Eq. 1. 

    (1) 

Table 4. List of Comparison rules 

Rule Program Counter Accumulator 
Comparison with 
constant 

 
 

Comparison with 

neighbor 
 

 

Control rules do not change the cells accumulator, but the program counter as well 

as the local cell state. The available rules are listed in Table 5 and can be divided into 

three groups: 

� Rules that wait for a neighboring cell to take over a specific local state  

(wait rule) 

� Rules that increase the program counter by two instead of one when the own 

local state or the local cell state of a neighbor is True (skip rule) 

� Rules for halting or resetting a cell 

Table 5. List of control rules 

Rule Program Counter Local Cell State 
Wait rule 

 
No change 

Skip rule 

(local) 
 

No change 

Skip rule 

(neighbor)  

No change 

Reset rule 

(local) 
  

Reset rule 
(neighbor) 

 
 

Loop (reset) rule 
  

Halt rule No change No change 
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2.2. Processor Architecture 

The processor is built of several so-called cell compute units (CCUs) and an on-chip-

network for interconnection, as presented in Figure 1. There is also a control unit (CU) 

connected to the network that has access to an external main memory. The CU is 

responsible for loading the individual cell rules from main memory into the CCUs before 

the automaton can be run. It also monitors the state of the automaton and signals the 

completion of work when all cells become inactive, thus there are no more state changes 

from one generation to another. 

A cell compute unit is designed for minimal hardware consumption. It uses a 

1-operand-machine architecture, as presented in Figure 2, which is sufficient to execute 

a cell rule, because a rule has at most one operand that might be a constant (also: 

immediate) value or the value of a neighboring cell. Each CCU has four registers to store 

 

Figure 2. CCU architecture in details 

 

Figure 1. Overall processor architecture 
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the value of the cell’s state tuple . The program counter addresses a small 

memory belonging to the cell which is capable to hold a couple of rules and their 

operands. If a cell has a neighbor in the current generation, the ID of the neighbor is 

routed to the network-on-chip to request its local state and value. The cell’s own local 

state and value are always provided to the network as well. A decoder unit decodes the 

rule and generates following control signals: 

� an opcode for an arithmetic/logical unit (ALU) 

� a signal to select the correct operand (imm) 

� a signal to take over the ALU result as new cell value (valid flag) 

� the next program counter 

� the new local cell state 

2.3. Mapping imperative programming languages to GCA ruleset 

As already mentioned, writing a program for a cellular automaton is different than 

writing it in a programming language like C. Therefore, it is desirable to have a mapping 

algorithm from an imperative programming language to the ruleset of the presented 

hardware architecture. Based on the ideas of Drieseberg and Mortensen we propose the 

following procedure: 

1. Transform the imperative program into static single assignment (SSA) form (as 

described in [11]) 

2. Build a dataflow graph of the transformed program (see example in Figure 3) 

3. Replace each node in the dataflow graph with a cell and create the rules for each 

created cell 

4. Optimize the resulting cell graph to reduce the number of cells 

 

Figure 3. Example of a dataflow graph and the corresponding program in pseudocode 

FUNCTION(a, b) 
    IF a < 0 THEN 
        c = -b 
    ELSE 
        c = 0 
        WHILE a > 0 DO 
            c = c + b 
            a = a - 1 
        END 
    END 
    RETURN c 
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Step 1 includes several sub-procedures, like parsing the source code or building the 

control flow graph and (abstract) syntax trees, before the SSA form can be generated. 

Step 2 is very simple once the program is in SSA form. Additional optimizations (for 

instance removing unused variables, balancing expressions, etc.) could take place before. 

An example dataflow graph is presented in Figure 3. It consists of nine types of nodes 

that are generated from the keywords and literals in the original program code. The edges 

of the graph show the actual flow of data, beginning from the input nodes (IN) to the 

output nodes (OUT). They are annotated with additional information, so that the target 

node can handle the incoming data correctly. For example, a binary operator node needs 

to know the order of its operand, whereat LHS (left-hand side) denotes the left operand 

and RHS (right-hand side) the right one. Yet another example is the phi-nodes that belong 

to the while-node: they require the loop condition (COND) to decide if they have to 

choose the initial value, that is valid before the loop body is executed (INIT), or the value 

computed in the loop body (BODY). In step 3, the nodes of the dataflow graph are 

replaced with cells according to Figure 4. Every generated cell is assigned an ID that is 

used by other cells in their cell rules to access the cell’s state. The cell rules are 

abbreviated with a self-explanatory mnemonic. Mnemonics written in bold font have the 

 

Figure 4. Translation of dataflow graph nodes to cells 
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valid flag set. Input and output cells have a special @i-operand that denotes to the i-th 

argument or return value, respectively. Numbers with a leading # symbol denote a literal 

value; without it they represent the ID of another cell. In some situations, an additional 

wait-rule must be prepended to a cell. This is when it wants to read from a phi-cell of a 

while loop outside of the loop body. Because the value of such a phi-cell is always valid 

during the execution of the loop, the cell outside must wait for the loop condition to be 

false (see Figure 5). Step 4 tries to eliminate cells by inserting their rules into another 

one. For example, literal nodes are easy to integrate into another cell, just by replacing a 

read access with a literal value. In Figure 5, the optimization process has been executed 

for the illustrated algorithm. 

 

Figure 5. Optimized cell graph for an algorithm 

3. Results 

The presented processor architecture has been implemented in VHDL and synthesized 

with the Xilinx Vivado toolchain. A single cell compute unit with a 32-bit word size, 

including a multiplier unit using DSP slices, occupies around 480 lookup tables and 100 

flip-flops. In a high-end 7-series Virtex FPGA with 2 million logic cells (type 

XC7V2000T) this corresponds to only 0.04% of logic consumed, so hundreds of CCUs 

can be integrated into a single FPGA. The local cell memory is implemented as LUT-

RAM and uses 40 of the total 480 lookup tables (32 for the operand and 8 for the encoded 

rule). Depending on the FPGA technology, the possible number of rules per CCU varies. 

For a 6-input LUT this means 64 rules per cell. 

For our experiments, we used a crossbar as network-on-chip. Although this network 

architecture uses a lot of FPGA logic (large multiplexer structures are needed for each 

single data bit), it has a low latency and is easy to implement. There exist lots more 

network architectures that might be suitable for the processor architecture (a good survey 

can be found in [12]), especially the so-called Benes-network is an appropriate candidate 

[13], as it is collision-free and resource-efficient. The complex routing algorithm can 

also be implemented in hardware [14]. 

FUNCTION(a) 
    b = 0 
    WHILE a > 0 DO 
        a = a - 1 
        b = b + 5 
    END 
    RETURN b 
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The first algorithm we analyzed consist of a matrix multiplication of two 3x3 

matrices. This operation has a high degree of parallelism as all 9 elements of the resulting 

matrix can be computed concurrently. Even the three multiplications needed to compute 

an element can run in parallel. The corresponding global cellular automaton has a total 

of 38 cells and was executed on a system with a maximum of 63 cells. Simulation shows 

that it took only five generations to compute the result, as illustrated in Figure 6. Cells 

highlighted with a red border did change their state in the current generation, and yellow 

cells are in a valid local state.  

 

Figure 6. Execution of a matrix multiplication 

Another algorithm we implemented was Stein’s algorithm [15], the binary version 

of the greatest common divisor (GCD), and compared the results with the FPGA 

implementation of Drieseberg et al. Their GCD global cellular automaton consists of 258 

cells, whereas our optimized automaton consists of only 24 cells, which is less than 10%. 

We simulated the execution of the algorithm with the two input values 3528 and 3780. 

It took 217 generations to calculate the result of 252. This is also less, and only a third, 

of the number of generations compared to Drieseberg et al. It must be pointed out, that 

the number of generations is only an indicator to the actual execution time, as our 

simulation does not consider any hardware properties. Thus, the achievable clock 

frequency of the proposed processor architecture might be much slower due to 

propagation delays. Further research has to be done here. If a generation needs one clock 

cycle to compute and we assume a clock frequency of only 50 MHz, our automaton 

would need around 4 ms to calculate the GCD. Indeed, this is much slower than the 

FPGA implementation of Drieseberg et al. but still faster than the CPU and GPU variants. 

4. Conclusion 

In this paper, we presented a new processor architecture that is able to execute global 

cellular automata with a specialized ruleset as a software program. The ruleset is 
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designed in such a way that algorithms written in an imperative programming language 

can easily be mapped to a global cellular automaton with a low number of cells needed. 

The automation of this process is one of our next steps. In first experiments, we 

confirmed that the presented architecture can achieve faster execution times than a 

software implementation on a universal processor. This advantage outweighs even more, 

if the executed algorithm has a high degree of parallelism. Nevertheless, further research 

has to be done with real-world applications to fully prove the advantages of the 

architecture. Furthermore, the processor has to be implemented and evaluated on an 

FPGA to analyze the scalability of the architecture and to obtain actual execution times. 
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Abstract. In this paper, we propose a network crossbar implementation using par-
tial reconfiguration of an FPGA in a multi-FPGA cluster computing system. With a
proposed framework, inter-FPGA network routing can be changed by reconfiguring
the crossbar module by a partial reconfiguration mechanism. The purpose of this
paper is to compare ordinary crossbar circuits and partial reconfiguration crossbar
circuits, in terms of resource usage and the maximum operating frequency. As a
result, by using partial reconfiguration, the maximum operating frequency is im-
proved by 1.6 times while reducing required ALM resources by 13%, a proper bus
sizes for a crossbar are selected.
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1. Introduction

Field Programmable Gate Arrays (FPGAs) have been attracting attention as a platform
of a power-efficient custom computing because FPGAs can construct optimal data paths
according to each application. Especially in recent years, with the improvement of the
integration degree, FPGAs have been equipped with floating-point arithmetic cores and
have devised wiring architecture to improve the operating frequency. Expectations are
rising for applications in the high performance computing field [1][2].

Stencil calculation, which repeatedly applies arithmetic processing with data refer-
ences of the same shape to data arranged in a grid, is a common design pattern used
in various scientific calculations, and it is known that an FPGA-based system able to
work efficiently in a streamwise framework [3][4][5]. Also, by connecting the operation
pipelines in series and increasing the number of operations per memory access, it is able
to improve the operation performance without increasing memory bandwidth required
for DRAM[6]. Therefore, even in constructing a parallel system in which multiple FP-
GAs are interconnected, it is promising because the performance can be scaled without
being restricted by the connection bandwidth between the FPGAs [7].

In order to build a multi-FPGA computing system, a communication mechanism is
needed to exchange data between FPGAs. Many research projects have been carried out
to extend the switch mechanism for network on chip (NoC) used for inter-module com-
munication inside the chip, and to connect FPGAs [8] [9] [10] [11] [12]. These NoC-
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derived switch mechanisms are mainly based on packet-based routing and have excellent
flexibility. On the other hand, in multi-FPGA cluster computing systems that perform
stream-based processing, depending on the application, it is not always necessarily re-
quired to route input packets to different destinations in a short time, as shown in the
left figure of Figure 1. As shown in the right figure, it just needs to support routing as a
stream for some amount of data.

cross
bar

123

1

2

3

cross
bar

123

123

packet-based stream-based

Figure 1. Comparison of routing

Since a general-purpose crossbar that can route any packets to any destinations is
implemented in FPGAs as a set of multiplexers, it is thought that implementation effi-
ciency decreases in terms of resource usage and frequency as the number of input / output
bits increases. However, it is inflexible that only fixed routing can be performed for each
application. That is, there is a trade-off between flexibility and performance / efficiency
in crossbars for multi-FPGA systems, and there can be various design options.

In this paper, we propose a stream-based network crossbar that uses partial reconfig-
uration technology of FPGAs for path switching. Partial reconfiguration is a technology
to change a specific circuit of FPGAs while other circuits in operation. Crossbars that use
partial reconfiguration are expected to reduce resource usage and improve the maximum
operating frequency, although their dynamic flexibility is limited compared to conven-
tional general-purpose crossbars. In order to clarify these trade-off relationships and to
evaluate the effect of partial reconfiguration for the crossbar, the conventional crossbar
circuit is compared with the partial-reconfiguration-based crossbar in terms of resource
usage and the maximum operating frequency, and the reconfiguration time required for
partial reconfiguration is also evaluated. In this paper, assuming a multi-FPGA system
with a two-dimensional torus as shown in Figure 2, we evaluate and verify a crossbar
with a total of 5 inputs including 4 external inputs, and 1 internal input and 5 outputs as
shown in Figure 3.

2. Partial Reconfiguration under Intel Environment

In this work, Partial Reconfiguration (PR) is performed with Intel FPGA Arria 10. In the
experiment, JTAG is used to transfer configuration data and partial reconfiguration data.
We use Intel’s Quartus Prime Version 18.1 Pro Edition as a development environment.

2.1. Design procedure for partial reconfiguration design

The design procedure of the partial reconfiguration circuit in the Intel FPGA is as follows
[13].
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Figure 2. 2D torus consisting of FPGA
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Figure 3. Example of stream connection

1. Circuit design and description
2. Creating Design Partition and LogicLock region
3. Allocating Placement region and Routing region
4. Adding the Partial Reconfiguration Controller IP Core
5. Creating Revisions
6. Compiling the Base Revision
7. Generating a qdb file
8. Compiling each persona

Details of the above procedures are described in the following.

2.1.1. Creating Design Partition and LogicLock region

Design Partition is created from partially reconfigured modules. From the created Design
Partition, Quartus’s LogicLock function [14] is used to fix the placement of the partially
reconfigured modules. This fixed area is called LogicLock region. Since the designated
modules are placed and routed only at the designated locations, the degree of freedom of
placement and routing is reduced in the partial reconfiguration module, so the maximum
operating frequency may be reduced compared to the case where the placement is not
fixed. In this paper, we create LogicLock region and fix the crossbar module. And this
design is compared with the ordinarily designed circuit and the partial reconfiguration
circuit.

2.1.2. Allocating Placement region and Routing region

The LogicLock region has Placement region and Routing region. So we fix the location
and size of the Placement region and the Routing region. The Placement region is a
region for modules to be partially reconfigured, and the Routing region is a region for
arranging paths connecting to the Placement region.

2.1.3. Adding the Partial Reconfiguration Controller IP Core

PR control mechanism creates and uses IP Core in Quartus. When performing partial
reconfiguration, only one PR Controller IP is required on the FPGA [15]. The interface
of PR Controller IP is shown in Figure 4.

In Figure 4 nreset is the asynchronous reset signal input for the PR Controller IP
Core. clk is a clock for PR Controller IP Core, supporting up to 100 MHz. It begins a
partial reconfiguration event when the pr start signal changes from 0 to 1. It receives the
next pr start signal only when the freeze signal is low (0). It inputs configuration data
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for partial reconfiguration to the data port. Data width can be selected from 1, 8, 16,
and 32 bits. data valid indicates that valid data has been input to the data port. freeze
outputs a high (1) signal during partial reconfiguration. data ready indicates that the data
port is ready to receive data. status is a 3-bit error output indicating the status of partial
reconfiguration event. When performs partial reconfiguration via the JTAG interface, the
PR Controller IP exchanges signals with the JTAG interface, so insertion of clk, pr start,
data, data valid, and data ready values into these is ignored.

2.1.4. Compiling Revisions and Personas

In the partial reconfiguration design flow, Quartus uses project revision format. There
are two versions, Base and Persona Implementation. The Base revision is designed for
the entire circuit, and the Persona Implementation revision is designed for the partially
reconfigured module. Usually there are only one Base revision and multiple Persona Im-
plementation revisions. The Base revision is compiled first. This compilation operation
includes logic synthesis, placement and routing, timing analysis, configuration data gen-
eration, etc. The compiled base revision is written out into a qdb database file. The func-
tional module to be partially reconfigured is called persona. Partial reconfiguration data
using the qdb file created in the previous step is generated.

3. Evaluated Implementation

In this paper, in addition to the usual design, the LogicLock (hereinafter LL) circuit with
fixed area for crossbar module and Partial Reconfiguration (hereinafter PR) circuit which
partially reconfigures the crossbar module were created, as shown in Figure 5.

SrcRAM DstRAM

CtrRAM

Crossbar

SrcRAM DstRAM

CtrRAM

Crossbar

LL region
SrcRAM DstRAM

Persona

PR region

normal LL PR

Figure 5. Outline of each circuit

In the FPGA design created this time, stream data is generated from SrcRAM, which
is M20K Embedded Memory, and stream data is stored in DstRAM through the crossbar.
Also, the crossbar is controlled from CtrRAM.
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All crossbar modules other than PR circuit mount full crossbars. The bit widths for
stream data of 8 bits, 32 bits, 64 bits, 256 bits, 1024 bits and 4096 bits are evaluated.

3.1. Implementation of full crossbar

The implementation of the full crossbar is shown in Figure 6. It has 5 inputs and 5
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Figure 6. Implementation of full crossbar

outputs, and connection of the inputs and outputs is changed by the 8 bit selection line.
The upper 3 bits select 1 output from the leftmost crossbar, and the other outputs are
connected to the crossbar on the right without changing the order. In this way, 8-bit
connection lines are divided into 3 bits, 2 bits, 2 bits and 1 bit, used as selection lines for
each crossbar. In this structure, multiple inputs cannot be connected to a same output.

3.2. persona

Three personas (ST, RT, and X) shown in Figure 7 are evaluated. Since the PR crossbar
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Figure 7. Implemented personas

circuit changes the routing by exchanging the persona, the selection line for crossbar
control is not necessary. Therefore, the selection line is not implemented in the PR circuit.

In persona ST, inputs and outputs are connected in the same order. Applying this
persona in all FPGAs will make each FPGA independent. In persona RT, the inputs are
connected to the output next to that in persona ST. The bottom input is connected to the
top output. Considering Figure 2, a system as shown in Figure 8 can be configured. In
persona X, the inputs and outputs are connected in reverse order.
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3.3. Embedded Memory

We used M20K to store bit stream data. By using M20K as single port RAM, In-System
Memory Content Editor can be used to read from / write to the RAM. In the evaluation
experiments, the circuit operation was verified by writing data to SrcRAM and reading
data from DstRAM via In-System Memory Content Editor. The number of words is set
to 8 for all the crossbar designs.

3.4. Reconfiguration area

In the evaluation, the LL circuit and PR circuit with the same bus bits were implemented
in the same area position, with setting the same area size. The LogicLock region and
the partial reconfiguration area were set as shown in Table 1. The area size was set to

Table 1. Comparison of each area

Width Height Origin

8bit LL circuit 10 10 X88 Y8

8bit PR circuit 10 10 X88 Y8

32bit LL circuit 10 10 X88 Y8

32bit PR circuit 10 10 X88 Y8

64bit LL circuit 10 10 X88 Y8

64bit PR circuit 10 10 X88 Y8

256bit LL circuit 10 30 X88 Y8

256bit PR circuit 10 30 X88 Y8

1024bit LL circuit 10 110 X88 Y8

1024bit PR circuit 10 110 X88 Y8

4096bit LL circuit 28 210 X35 Y11

4096bit PR circuit 28 210 X35 Y11

10×10 for circuits up to 64 bits. For 256 bits and 1024 bits, since it was not possible to
implement in 10×10 area, the area was expanded in the Y direction. For 4096 bits, the
area was expanded in both X and Y directions, and the position of the reference point
(Origin) was also changed so that the area could be set.
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4. Evaluation and Consideration

We evaluate and discuss the above mentioned circuits. The 1024 bit RT, 4096 bit RT
and 4096 bit X can not be implemented because they can not be placed and routed. The
evaluation environment is shown below.

• FPGA : Intel Arria10 10AX115N2F45E1SG FPGA
• CPU : Intel Core(TM) i7-8700K
• MEM : DDR4 16GB
• OS : CentOS 7.5.

4.1. Maximum operating frequency

Figure 9 and Table 2 show the maximum operating frequency of the circuit evaluated
this time.

Figure 9. Maximum operating frequency comparison

Table 2. Maximum operating frequency (MHz)

bus size (bits) 8 32 64 256 1024 4096

normal circuit 326.26 324.04 292.65 268.89 204.79 98.12
LL circuit 252.91 239.41 233.05 196.89 151.01 62.25

PR circuit ST 525.49 467.63 400.48 251.95 150.26 98.73
PR circuit RT 436.30 472.59 423.19 191.86 - -
PR circuit X 420.17 464.68 428.27 196.00 150.99 -

For 64 bits or less, the crossbar implemented by PR results in a higher maximum
operating frequency than the normal circuit. On the other hand, for 256 bits or more,
the frequency is slower than the normal circuit. The LL circuits are slower than the nor-
mal circuit for all the bits. A different PR circuit persona achieves a different maximum
operating frequency, the order of the achieved frequency is also different depending on
bit numbers. This is because a sufficient area can be allocated to the PR region for the
designs up to 64 bits PR, and a high degree of freedom for routing is kept. For larger size
designs, the freedom for routing is limited and thus the maximum frequency is degraded.
Moreover, since the place where the data streams can access to the RAM, is fixed, the
design without RAM can result in higher maximum operating frequency.
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4.2. Amount of resource used

A comparison of the ALM usage of the crossbar modules evaluated this time is shown
in Figure 10 and Table 3. Figure 10 plots the relative usage which is normalized to the

Figure 10. Comparison of ALM useage

Table 3. Resource usage of crossbar module (ALMs)

bus size(bits) 8 32 64 256 1024 4096

normal circuit 101 276 514 1911 6511 26686
LL circuit 150 450 858 2729 10300 51421

PR circuit ST 45 164 321 1386 5122 23168
PR circuit RT 45 160 321 1386 - -
PR circuit X 45 160 320 1386 5605 -

amount of ALMs used in the normal circuit. The PR circuit was smaller than the normal
circuit for all bit numbers, and the LL circuit was larger than the normal circuit. In the
ALM usage for the PR crossbar module is about 45% of that for the normal circuit when
the bus size is 8 bits. This ratio becomes higher as the bus size increases, and reaches
approximately 87% at 4096 bits. On the other hand, differences in ALM usages due to
change of personas for PR circuits are relative low, since there is only a difference in
connection between inputs and outputs in the PR circuit.

Table 4 shows the amount of resources used for the entire FPGA design for evaluated
designs. Even though the PR circuit includes a PR controller IP circuit in addition to

Table 4. Amount to Total resource use

ALM Register RAM

32bit normal circuit 1138 1138 21
32bit LL circuit 1307 1149 21
32bit PR circuit ST 988 1109 20

4096bit normal circuit 47950 42961 2051
4096bit LL circuit 73038 42361 2051
4096bit PR circuit ST 41706 42912 2050

the normal circuit, the PR circuit is smaller than the normal circuit in terms of every
resource. The usage of ALM is about 87% of the normal circuit when the bus size is 32
bits and 4096 bits.
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4.3. Generated file size

Table 5 compares bit stream file sizes fort the evaluated designs. The sof (sram object

Table 5. File size (MB) and reconfiguration time (sec)

sof rbf : ST rbf : RT rbf : X Configuration PR :ST PR : RT PR : X
8bit normal circuit 36 - - - 21.24 - - -
8bit LL circuit 36 - - - 21.02 - - -
8bit PR circuit 36 5.9 5.9 5.9 21.12 7.68 7.69 7.62

32bit normal circuit 36 - - - 20.99 - - -
32bit LL circuit 36 - - - 21.08 - - -
32bit PR circuit 36 6.1 6.1 6.1 21.12 7.93 8.23 7.70

64bit normal circuit 36 - - - 21.05 - - -
64bit LL circuit 36 - - - 21.21 - - -
64bit PR circuit 36 6.1 6.1 6.1 21.30 7.95 7.86 7.84

256bit normal circuit 36 - - - 21.18 - - -
256bit LL circuit 36 - - - 21.28 - - -
256bit PR circuit 36 17 16 17 21.26 18.20 19.00 19.06

1024bit normal circuit 36 - - - 21.25 - - -
1024bit LL circuit 36 - - - 21.28 - - -
1024bit PR circuit 36 54 - 54 21.37 56.65 - 56.46

4096bit normal circuit 36 - - - 21.36 - - -
4096bit LL circuit 36 - - - 21.36 - - -
4096bit PR circuit 36 114 - - 21.36 163.34 - -

file) is used for entire configuration, and the rbf (raw binary file) is used for partial re-
configuration. Therefore, rbf is not generated for normal circuits and LL circuits. The rbf
file sizes for designs of 256 bits or more are larger than those for the designs up to 64
bits, probably due to a larger PR region. Even with the same area, the file size is larger
for 32 bits and 64 bits compared to the design with 8 bits. Moreover, difference in rbf
file size was shown due to change of personas even for the same bus size. On the other
hand, all designs have the same size of sof. This evaluation results mean that crossbars
with a wide bus size require a large area and large on-chip memory capacity to store the
bit stream data.

4.4. Reconfiguration time

A comparison of the reconfiguration time via JTAG interface is shown in Table 5. The
data in the table were obtained as an average of 5 measurement results. The measured
values include not only circuit reconfiguration time but also a startup overhead of the
Quartust tool. There is no significant difference in the configuration time as well as sof
size. On the other hand, in partial reconfiguration, the increase in the reconfiguration
time was observed after 256 bits, where the rbf size is large. When the bus size is 64
bits, the partial reconfiguration time is about 37% of the normal configuration time, and
it increases to 86%, 265%, and 765% when it is 256 bits, 1024 bits, and 4096 bits,
respectively.

Faster partial reconfiguration is possible by using internal memory. If partial recon-
figuration is performed at 3.2 Gbps, which is the theoretical maximum performance of
PR controller IP, it can be estimated that the time required to change a 5.9 MB of an 8-
bit crossbar module persona is about 15 milliseconds. In addition, the 4096-bit crossbar
persona, which requires the largest rbf size of 115 MB among the evaluated designs in
this time, can be theoretically reconfigured in about 285 milliseconds.
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5. Conclusion

In this paper, we described a crossbar for stream data using partial reconfiguration. The
number of required ALMs can be reduced by 13% when the bus size is 32 bits and 4096
bits, compared to a usual full crossbar. This means that partial reconfiguration is effective
for reducing the resources used in crossbar design. So it can be said that it is effective
when you want to reduce the resources used in the design. The partial reconfiguration
also improves the maximum operating frequency when a sufficient partial reconfigura-
tion area is allocated for routing. For example, the maximum operating frequency is im-
proved by 1.6 times for an 8-bit crossbar design. However, for wider bus size such as 256
bits, the maximum operating frequency degraded compared to the normal circuit. Partial
reconfiguration with JTAG interface took several seconds in this experiment. Therefore,
this approach is not suitable for applications that frequently change the routing. One of
our important future work is to verify high-speed partial reconfiguration from internal
memory.
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Abstract. Unreproducibility stemming from a loss of data integrity can be pre-
vented with hash functions, secure sketches, and Benford’s Law when combined
with the historical practice of a Pli Cacheté where scientific discoveries were
archived with a 3rd party to later prove the date of discovery. Including the distinct
systems of preregistation and data provenance tracking becomes the starting point
for the creation of a complete ontology of scientific documentation. The ultimate
goals in such a system–ideally mandated–would rule out several forms of dishon-
esty, catch computational and database errors, catch honest mistakes, and allow for
automated data audits of large collaborative open science projects.

Keywords. reproducibility, hash function, secure sketch, fuzzy extractor, data
fraud, library science, open science, applied ontology, publication bias, plagiarism,
data provenance, preregistration, Benford’s Law

1. Introduction

When integrity breaks down in a scientific setting, the mess can involve legal action,
investigations, accusations, and negative media coverage. To prevent that, a systematic
and unbiased way to prevent fraud or inadvertent corruption of the data or the results
is proposed. The European Code of Conduct for Research Integrity defines integrity as
“Reliability in ensuring the quality of research, reflected in the design, the method-
ology, the analysis and the use of resources. Honesty in developing, undertaking, re-
viewing, reporting and communicating research in a transparent, fair, full and unbiased
way. Respect for colleagues, research participants, society, ecosystems, cultural heritage
and the environment. Accountability for the research from idea to publication, for its
management and organisation, for training, supervision and mentoring, and for its wider
impacts”[1]. Except for respect, training and mentoring, a loss of integrity can lead to un-
reproducible science. Within that subset of integrity issues, the hardest part is finding the
resultant hidden changes. Thus the practical manifestation of integrity in data-driven sci-
ence is: no unintentional changes, no secret changes. That is, every significant change
in content is intentional and tracked over time and space; data provenance expands to
include provenance for the application of the scientific method.
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Fraud includes any human misconduct that changes the science (most often for data
but not necessarily), including plagiarism, manipulation, or fabrication. For this paper,
corruption always refers to the sort with data, not political corruption which is simply a
motivation or qualitative description of the machinations of an act of fraud. In a broad-
form definition for what most people call plagiarism, The Council of Science Editors
(CSE) defines piracy as “the unauthorized reproduction or use of ideas, data, or methods
from others without adequate permission or acknowledgment,” even by secretly repur-
posing one’s own work. A similarly broad definition was described in the 13th century
by Persian Poet Shams-e-Qays with a useful categorization of plagiarism: 1) Verbatim
(Intihal): exact copy; 2) “Flayed” (Salkh): changing the order, re-arranging; 3) Concep-
tual (Elmam): “approaching” the exact copy in concept; and 4) Domain Transfer (Naql):
unattributed reuse in a new domain [2]. The CSE’s technical definition of plagiarism only
encompasses verbatim and flayed plagiarism, the others fall under piracy [3]. Is there
sufficient evidence of fraud to justify all of this work? In Chemistry of Materials, a 2019
study of chemistry articles published from 2017-2018 found that 42% of 331 retracted
chemistry papers were retracted because of plagiarism and another 16% were retracted
due to falsified data. Only 16% were due to honest errors [4] [5].

2. Hashing from the Start

A hash function maps a digital object to a finite uniform string called a checksum or a
hash with no discernible relationship to the original object, acting as a secret identifi-
cation code. Two objects that are exactly the same will always produce the same hash.
Two identical hashes are likely to come from the same object, but not necessarily (be-
cause an infinite list of potential objects mapped to a finite set of strings will some-
times produce a collision). One change to an object will produce a completely different
hash. Hashes allow for rapid checks of changes in content[6]. Hashing prevents Shams-
e-Qays’s verbatim-type plagiarism.

For version control such as Git and data management, hashing is already essential
[7]. In a recent overview of reproducibility systems, The Whole Tale Project [8] men-
tioned “an optional checksum” of data. In this model, integrity checks within a system
(like Git) are standard, but integrity checks between different research components are
optional. If a mandatory automatic checksum is standard elsewhere, why should it be op-
tional for science? Moreover these are internal integrity checks, but scientific integrity
would be better ensured by including external 3rd party checks. After publication or at
the completion of the scientific process, data and other artifacts might go to a repository,
many of which create a checksum at this point to ensure the integrity of the data as it is
stored long-term or moved around for other uses. CoreTrustSeal requires checksums in
their certification of scientific repositories [9]. Dryad, Zenodo, 3TU.Datacentrum (4TU),
and OSF all use checksums. Dryad is notable for including an audit before final accep-
tance into the database [11]. Libraries often include checksums in their Data Manage-
ment Policies (DMPs) [11]. The Open Science Chain is designed to handle provenance
and integrity after publication where data reuse is very complicated [12]. The advantages
of using a simple hash algorithm (or collection of simple ones) is that they are: portable,
found on every modern operating system, unlikely to become obsolete, and fast.

T.L. Collins / Cryptographic Methods with a Pli Cacheté734



3. Pli Cacheté: Caching all the Hashing

A checksum is only a snapshot certification of content, not timing. Unimpeachable cer-
tification of existence in time requires physical possession by a 3rd party. Thomas Erren
makes a compelling case to create a modern version of a 3rd party system called a Pli Ca-
cheté (French for a sealed envelope) first brought to prominence by the French Academie
des Sciences in the 1700s which accepted draft deposits of scientific work. Erren sug-
gests reviving the Pli Cacheté so that researchers have “the opportunity to claim priority
of sealed scientific rationale and data which may not be substantiated enough and might
mislead when published too early or even erroneously” [13]. Notice that it helps the sci-
entist by preventing a politically charged debate over the primacy of scientific discovery
(accurate recognition of which is a type of integrity), but also, it encourages systematic,
careful research; “reliable” in the sense of the European Code of Conduct.

Expand this concept to each stage of the scientific process including each day of
data collection, where a simple checksum from the hash function is given to a library
(rather than an academic journal as suggested by Erren) or other 3rd party such as an open
repository. Instead of simply collecting the various components needed to reproduce a
scientific result, an academic publisher (or peer reviewer) can hash the received contents
and audit their checksum against the 3rd party checksums. Hashing a step and sending it
to a library takes less time than reading this article; easy to do, but easy to forget (this is
the great implementation challenge).

The full power of a cryptographic hash comes when used as a mandatory audit at
every stage of the scientific stack:

1. Hashing the hypothesis prevents post-hoc storytelling or changing the hypothesis
to fit the data;

2. Hashing the text of the domain-specific data collection methods (e.g. lab tech-
niques) certifies that methods to be reproduced do not suffer from differences in
memory; or have not changed significantly during the study;

3. Hashing the data as soon as it is recorded prevents manipulating the data or
changing the outlier policy;

4. Hashing additional stages (such as noise reduction) further adds to the difficulty
of fabrication and falsification;

5. Hashing the conclusions and results preserves the patent rights and scientific
credit; and prevents errors of publishing too soon or without sufficient evidence.

The North American Scientific Integrity Consortium highlights a primary problem:
“there are impediments and disadvantages of open science that must be acknowledged,
including concerns with intellectual property, matters of national security, and the po-
tential loss of confidentiality of research participants in human clinical trials” [14]. The
Pli Cacheté system maintains privacy even as hashes of the data can ensure integrity
of private or secret data. In support of this approach, an editorial in the Journal Nature
includes “better record-keeping” in their proposed solutions [15]

4. Similar Systems Found in Law

The Paris Convention for the Protection of Industrial Property (1883) includes a
provision–still in force–that an inventor has 6-12 months to file, if desired, in the other
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“Contracting States,” retaining the original filing date as the date of discovery. But be-
cause the clock on the monopoly period in the US does not start until the US patent appli-
cation is filed, inventors can file in Europe first, then just under 12 months later in the US,
granting the inventor an extra year of patent protection [17]. In 1995, US law changed
to “give U.S. applicants parity with foreign applicants under the GATT Uruguay Round
Agreements.” Since then, US applicants can file a provisional patent in a sealed enve-
lope for up to a year, providing the same year-long grace period to filers of US patents
[16]. The provisional application is not opened till the full application is filed, just like
the traditional Pli Cacheté.

Second, common law and many other legal systems have rules for the immediate ac-
ceptance of documentary evidence (self-authenticating (USA), self-proving (Scotland),
public instruments (British Common Law), and authentic instruments (EU)) [18]. Third,
carbon copies create exact copies at the time of creation for the rapid authentication of
business documents. A Pli Cacheté, broadened to be like self-authenticating documents
can help avoid or ease the resolution of litigation, bureaucratic adjudication, and messy
public battles. These similar systems are summarized in Table 1.

Table 1: Summary of Similar Systems
Pli Cacheté Patents Carbon Copies Self-Authenticated

Domain science technology business law
Purpose integrity monopoly rights disputes litagation
3rd Party library patent office (varies) government

5. In the Classroom

A 1994 study found that “Eighty-nine percent of students surveyed admitted they had
cheated” [19]. Without evidence, Canada’s York University has a Teaching Policy which
states “Academic dishonesty is a serious problem in undergraduate labs. This is partly
because the culture of lab courses sometimes fosters plagiarism.” Their solution is sim-
ilar to the Pli Cacheté but uses Teaching Assistants as a 3rd party: “students obtain the
TAs signature on all pages of their original lab notes and data, and submit those notes
with their lab report” or else a “carbon copy may then be ripped out and handed to
the TA before the student leaves the class” [20]. Thus, academia is already using self-
authentication to solve integrity problems. Lab classes might also require submission of
a pre-lab beforehand, where a pre-lab mirrors preregistration.

6. Comparison to Preregistration and Data Provenance

Preregistration (also called registered reports) is a reaction to the nonpublication of
negative science, also called publication bias [21] or the file drawer effect. The Open
Science Framework has guidelines for open science that state “preregistration of stud-
ies is a means of making research more discoverable even if it does not get published.
Preregistration of Analysis Plans certifies the distinction between confirmatory and ex-
ploratory research” [22]. This preregistration of analysis overlaps with the caching of a
study plan, but the holder of the deposit is a journal (2nd party relationship. Preregistra-
tion, at a minimum, acknowledges the existence of negative results. At its best, it comes
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with a commitment to publish regardless of the result. A call-to-action from the 2019
Hong Kong Conference for Research Integrity states “Value the reporting of all research,
regardless of the results” [23]. In the event of a conflict of interest with the journal, a 3rd

party Pli Cacheté preserves integrity.
One subtle integrity problem, suggested by Klein et al, is that “while embargoes

on preregistrations can mitigate the fear of being scooped, flexibility in the release of
pre-registered documents limits transparency. For example, researchers may strategically
release only those documents that fit the narrative they wish to convey once the results
are in. It is therefore preferable to encourage transparency from the outset” [21]. But a
hash of the preregistered documents would still allow reviewers and the public to verify
the completeness of an embargoed preregistration.

Data provenance is “the derivation history of a data product starting from its orig-
inal sources” as well as the information needed to process, identify, and distinguish a
dataset [24]. Both provenance and Pli Cacheté indicate the time and place of the origin
of a data product; Pli Cacheté authenticates the time, while provenance describes the
details of the journey (helpful to an auditor for investigating fraud). Pli Cacheté hashes
the contents while provenance describes the contents. Data provenance within a project
might be handled by Git; data provenance after a project might be handled by a sepa-
rate metadata file or a scientific data blockchain such as Open Science Chain (OSC)[12].
Currently, Git is for tracking the creation of something while OSC is for tracking reuse
and modification after creation. But a Pli Cacheté would use universally-available hash
already designed for rapid match checks, allowing an integrity check in any other system.

Are all three systems necessary? Consider the standard questions in Table 2 used
by journalists to ensure an accurate report: who, what, where, why, and how. Outside of
that standard list is the question of corroboration: does an independent source, a second
reporter, or some other previously unknown document corroborate the answers to the
standard list? Compare the coverage of these questions by the three systems:

Table 2: The Three Ps of Scientific Documentation
Question Pli Cachete Preregistration Provenance
who x x x
what x x x
where x
when x x
why x
how x
corroboration x
mid-stream x x
ownership 3rd party 2nd party 1st party

Each system’s information is held by a different party during the scientific process,
with every question answered somewhere. The goal is to use this completeness to solve
reproducibility problems and aid integrity investigations.

7. Tackling the File Drawer Effect

Scargle defines publication bias and the file drawer effect to be when the probability
of being published “depends on the statistical significance of its results” [25]. In effect,
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amalgamated research (including metaresearch and multi-grid systems) become biased
by an unrepresentative sample. Clinical studies often require preregistration by law (with
no guarantee of publication). In Selective Publication of Antidepressant Trials and its
Influence on Apparent Efficacy [26], not only is the existence and statistical effect of
publication bias demonstrated, but also acknowledged is the switching of domains after
a secondary effect shows positive results. Whether or not an amalgamated study using
secondary results is biased is up to others to evaluate, but data provenance and prereg-
istration give researchers the investigative information they need. If by fraud, a study is
changed (or fabricated) to be positive, this moves a study from negative to positive. In
Table 3, the three integrity systems illuminate how to prevent the three file drawer effects.

Table 3: The Filedrawer Effect
published not published domain change fraud

relationship to claim positive negative positive positive
solution – preregistrtion provenance pli cachete

8. Conflict Resolution Amongst Scientists

A dispute can occur within a scientific group during the scientific process or even much
later, including during a retraction process when editors decide which scientists to blame.
The Bullied Into Bad By Science Campaign was started in 2017 by “postdocs and a
reader in the humanities and sciences at the University of Cambridge” who were con-
cerned about the desperate need for publishing reform to increase transparency, re-
producibility, timeliness, and academic rigour of the production and dissemination of
scholarly outputs [31] Because, they say (and cite evidence) that early career researchers
(ECRs) “are often pressured into publishing against their ethics through threats that
we would not get a job/grant unless we publish in particular journals”. Their petition
has a amendment added by Anne Schell (not necessarily endorsed by the initial sign-
ers) that specifically addresses integrity: “Stop pressuring ECRs into conducting/writing
up underpowered, non-preregistered, p-hacked, HARKed studies. In other words: stop
teaching/advising/pressuring people to mutilate data into a ‘publishable’ form when that
distances it from actual science.” Preregistration can indeed prevent a lot of this pres-
sure. Pressure can come after preregistration, where data could manipulated to conform
with the preregistered hypothesis. This highlights the need to hash data as it is created.
Researchers can unilaterally post (OSF, github, or a library) hashes of their data without
jeopardizing the privacy of the scientific group. Later, if asked to manipulate data, this
scientist could point to the 3rd party hashes and explain how easily they would be caught:
legal and cryptographic checkmate.

In the summer of 2019 at the University of Florida, Computer Architecture PhD
candidate Huixiang Chen committed suicide–according to the suicide note posted by
his friends and academic colleagues–because he saw no way out of a dispute over the
integrity of data [28]. Despite the extra attention this action has elicited, this is not a
good way to resolve an academic dispute; this is also precisely the type of situation
an integrity system should try to prevent. In no way does the mention of this tragedy
imply the guilt or innocence of the people involved. Chen claimed that a joint paper
that had been accepted included experiments that had never been conducted, so he was
tasked “to make up for the missing experiments” [28]. If journals, funders, departments,
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or universities required that experiments be hashed and cashed with a 3rd party when
they are created; and the peer reviewers checked the Pli Cacheté before acceptance for
publication; then disputes of this nature would be resolved easily or never happen at all.
As the International Journal of Medical Journal Editors states, “Perceptions of conflict
of interest are as important as actual conflicts of interest,” [29] similarly, perceptions of
misconduct are almost as important as actual misconduct. Openness and authenticated
documentation protects everyone from accusations and perceptions of misconduct.

In North America, the Scientific Integrity Consortium aims to form a comprehensive
approach to integrity in science, focusing on the best practices for the bureaucracies that
manage scientists. A Pli Cacheté can complement their work because they identify an
“urgent need to refocus the scientific communitys efforts on policing itself” [14]. Anyone
can choose to use a unilateral Pli Cacheté, a form of policing oneself that prevents in-
vestigations altogether. While requiring it would be a bureaucratic solution, it minimizes
the need for bureaucratic monitoring and control.

9. Cryptographic Techniques

Consider the backwards problem to evaluate integrity solely on the basis of the data
and hypotheses revealed just when an article is published. Potential integrity problems
include: 1) computational bugs or errors introduced during data storage, processing or
analysis; 2) intentional changing of the data points to affect the final result; and 3) data
plagiarism (possibly with data owned by the scientist but dishonestly reused).

9.1. Secure Sketches and FIBE

To easily defeat a hash check for plagiarism, change any one thing, then the checksums
will be different. Shams-e-Qays might have called this type of plagiarism “flayed” data.
One solution is to borrow a method from biometric passwords called Fuzzy Identity
Based Encryption (FIBE). Typical passwords and hashes must be exact to gain access.
But a fingerprint scan, for example, is a huge data file with an error deviating from the
“true” fingerprint[30]. Instead, one FIBE method creates a secure sketch for the older
data set with a chosen tolerance for deviation. If both both data sets can unlock the secure
sketch, then they are indeed very close and candidates for investigation[30].

These techniques “apply not just to biometric information, but to any keying mate-
rial that, unlike traditional cryptographic keys, is (1) not reproducible precisely and (2)
not distributed uniformly.” Thus FIBE can also be used to honestly evaluate data that
contain slight variations when reproduced. The secure sketch is a ciphertext which “pro-
duces public information about its input w that does not reveal w, and yet allows exact re-
covery of w given another value that is close to w.” A fuzzy extractor is a similar (near)
uniform length ciphertext. Fuzzy cryptographic methods incorporate metric spaces and
distance functions where the distance between w and w′ is a parameter chosen at encryp-
tion time[30]. An enticing idea is a fuzzy data auditing system (prototyped in Li et al
[31]) for use in a large multi-grid system [32] but with tolerance for error because “ap-
parently routine data manipulation workflows become rife with mundane complexities
as researchers struggle to assemble large, complex datasets.” [33].
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9.2. Benford’s Law

Benford’s Law is an empirical observation (mathematical proofs of which are hotly de-
bated) where 1 is the most common first digit, 2 is the 2nd most common, descend-
ing monotonically to 9. An unadulterated data set will often demonstrate an exponen-
tially descending Benford Curve. Manual adjustments to data can substantially change
the distribution of numeral frequency, serving as an indicator for potential fraud. Two
data sets which have exactly the same deviation from the Benford Curve would be an-
other indicator. Benford’s Law is particularly useful for detection fraud in data sets for
regression[34]. Storing copies of Benford Curves in a Pli Cacheté would serve as an ad-
ditional integrity check, one that–in the long term–would not depend on having a repro-
ducible hash function.

In the detection of plagiarism, Benford’s Law and secure sketches have a powerful
synergy. While merely one change defeats a plagiarism audit with a checksum, a secure
sketch would require many more changes. But with more manufactured changes, the
Benford Curve would likely be more erratic–and therefore possibly fraudulent. Defeat a
Secure Sketch, get caught by a Benford Curve.

9.3. Resampling Detection

A method to detect stretching and rescaling is the Expectation-Maximization algorithm
which “is applied to estimate the interpolation kernel parameters, and a probability map
(called p-map) that is achieved for each pixel provides its probability to be correlated to
neighbouring pixels. The presence of interpolated pixels results in the periodicity of the
map, clearly visible in the frequency domain” [35]. This is an argument for the caching
of raw data. Bowman and Keene advocate for the preservation of raw data in general
because it “will allow the researchers to view the entire spectrum of what was done rather
than simply what was reported” [36].

9.4. Auditing Amalgamated Research

A four step plagiarism audit process emerges: 1) Does the checksum match another
dataset?; 2)Does the secure sketch match another dataset?; 3) Is the Benford curve er-
ratic?; 4) Is there evidence of resampling if the data is raw? This is a check of a proposed
dataset against previously adopted datasets. Passing this, a new hash of the proposed
dataset should be checked against the original hash stored with in a Pli Cacheté (hope-
fully from the date of its creation). Failing this check leads to an investigation: 1) If the
secure sketch still matches, then the changes are minor; and 2) Are the Benford Curves
consistent with a random change, erratic change, or remain a consistent Benford Curve?

10. Conclusions

While a Pli Cacheté can be immediately and unilaterally, some promising directions for
future research include:

1. Establish an effective and universal secure sketch or fuzzy extractor (like SHA);
2. Find or create a resampling test suitable for scientific data audits;
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3. Create an open repository of fraudulent and corrupted data for testing;
4. Audit an already constructed amalgamated research database; and
5. Create a standardized ontology of reproducible science.

The biggest barrier to implementation is the social challenge of convincing a scientific
community to adopt any mandatory methods. Herein lies the importance of the back-
wards problem: as investigations reveal fraud or unintentional errors, then the case for
the forward problem of preventing the loss of integrity becomes more compelling.
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Replicating Machine Learning
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Abstract. Transparency and reproducibility are important aspects of validation for
Machine Learning (ML) models that are not fully understood and applies indepen-
dently of the application domain. We offer a case study of reproducibility that high-
lights the challenges encountered when attempting to reproduce analyzes obtained
with Machine Learning methods in materials informatics. Our study explores pre-
diction results obtained with ML models and issues in training data serving as in-
put. We discuss challenges related to theory-driven and numerical errors in training
data, lack of reproducibility across platforms and versions, and effects of random-
ness when varying hyperparameters. In addition to model accuracy, a main metric
of interest in the ML community, our results show that model sensitivity may be
equally important for applying ML in domain applications such a materials science.

Keywords. reproducibility, machine learning, materials science, materials informatics

1. Introduction

The design of new materials depends upon the ability to combine precursor materials to
make samples and test them using expensive characterization techniques to reconstruct
molecular and atomic structures and deduce interesting properties. Discovery through
empirical process is slow and largely depends for its success on the intuition of individ-
ual scientists. Materials informatics, seeking to elucidate structure-property relationships
using complex, multi-scale information in a physically meaningful, statistically robust
manner, is becoming more data-intensive due to the advent of high throughput detectors
and more complex models [1], [2]. In this context, accelerating discovery requires re-
ducing the combinatorial explosion of the number of potential candidates in the search
space for making samples of interest. Machine Learning (ML) methods are increasingly
used to predict the relationship between structures and properties and provide guidance
to experimentalists for suggesting potentially useful combinations [3]–[5]. Neural Net-
works have witnessed a revival in the ML community thanks to new methods prevent-
ing overfitting, new training methods and the use of computer hardware with GPUs, so
that their predictive power has superseded that of other methods, for instance in drug
discovery [6], [7]. In order to harness the benefits of new generation ML algorithms in
materials informatics and broaden the path of accelerated discovery it is necessary to un-
derstand their limits and establish transparency in how results are obtained. Better ways
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of explaining results obtained with ML methods will lead towards better reproducibility
of results in materials science, and thus better confidence in the ability of ML methods
to predict new candidates for experimentation.

Transparency and reproducibility are important aspects of validation for Machine
Learning models that are not fully understood and applies across the board independently
of the application domain. The National Academy of Science defines reproducibility
as obtaining consistent computational results using the same input data, computational
steps, methods, code and conditions of analysis [8]. Replicability implies consistent re-
sults across studies aimed at answering the same scientific questions. Reproducibility
and replicability of scientific results improve when researchers provide access to their
codes, methods, data, and execution environments. A survey points to the fact that, of
400 Artificial Intelligence papers recently presented at major AI conferences, only 6%
share their algorithms codes, and a third share their data [9].

Understanding the limits of computational reproducibility when dealing with com-
plex mathematical models such as ML models goes beyond making accessible scien-
tific code, training data, and hyperparameters. ML methods present specific challenges
in reproducibility related to the building of models, the effects of random seeds, and
the choice of platforms and execution environments [10]. ML models that are inherently
non-deterministic also pose a problem for the validation of results. If the training sets
are divided for cross-fold validation and testing, the partitioning of the sets will affect
reproducibility. In materials science, the lack of open access and the heterogeneity of
experimental data that describe only few aspects of a material have led to the use of
computational structures calculated from physics first principles (ab initio) for the train-
ing of models. Experimental data can provide the ground truth to evaluate the accuracy
of algorithms but these data are typically small, hard to come by, and not necessarily
representative of the problem at hand.

In addition, there is another factor limiting the reproducibility of ML models in
materials informatics. Data used as input, especially when they come from atomic and
molecular structures computed from theory, can introduce biases due to theoretical ap-
proximations. These biases may or may not influence the outcomes for the ML models
depending on where the sensitivity of these models lies. In diverse teams, the scientists
who build the models are not the ones developing the scientific simulation codes that pro-
duce input data. They may not be aware of the presence of these biases and their potential
for skewing models, as this requires in-depth knowledge of the parameters, theoretical
methods and implementations used for calculating the input data. On the one hand the
theoretical approximations made when calculating computational structures are known
to those producing these structures, but not available to others. On the other, scientists
who build ML models are presumably aware of the sensitivity of their models but not
of the theoretical approximations in their input data. The disconnect introduced at the
interface of these two groups of actors may result in poor performance prediction that
remains unexplained by scrutinizing the ML models alone.

In this paper, we offer a case study of reproducibility that highlights the challenges
encountered when attempting to reproduce analyzes and results obtained with Machine
Learning methods in materials informatics. Section 2 presents the rationale for using
these methods in materials discovery and highlights issues of reproducibility in the train-
ing data used by ML models. Section 3 presents several experiments reproducing results.
The first experiment uses QM9, a publicly available dataset of computed small organic
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Figure 1. An illustration of a MLP structure.
Figure 2. An illustration of a GBT structure.

molecules. It illustrates the fact that, even when data and methods are known, repro-
ducibility is still a challenge, due to hidden theoretical assumptions and lack of trans-
parency. The second set of experiments uses regression-based analysis, including a neu-
ral network (MLP) and a Gradient Boasted Tree (GBT), where computational structures
are used for training models, and experimental structures for validation (Figures 1 and
2). Section 4 discusses the results and Section 5 concludes with some pointers to future
work.

In this paper we make the following contributions:

• an inventory of issues related to reproducility challenges in the use of ML in
materials informatics

• an exploration of theoretical assumptions and uncertainties linked to training data
• several experiments reproducing results obtained with ML methods and compu-

tational data in materials informatics
• a comparison of results obtained with several commonML platforms (Tensorflow,

PyTorch, lightGBM)
• an exploration of the information required for understanding discrepencies in re-

sults
• a discussion of reproducibility challenges when using ML in materials discovery

2. The use of ML in materials science

2.1. Motivation

Many technological advances depend on materials with properties of particular interest.
Materials science is a field of research that takes the properties of interest and looks
for or designs new materials and characterizes them in the pursuit of those with the
desired properties. From a theoretical perspective it is understood that the structure of a
material determines its properties. The structure of a material is given by the chemical
composition and the positions of atoms as well as the length scales of material features
(such as grain sizes, fiber thickness, surface roughness, etc.). At present, there are roughly
two approaches to studying materials, an experimental approach, and a computational
one. Use of ML algorithms represents a new third approach (Figure 3).

In experimental materials science the general workflow consists of making a sample
of a candidate material and experimentally assess its properties (Figure 3a). There are a
broad range of properties that might be of interest and an equally broad range of exper-
iments to assess them. Examples are catalytic activity which may be measured in a flow
cell, charging characteristics that may be measured in a battery cell, the color charac-
teristics of LEDs, the thermopower of thermoelectric materials, critical temperature and
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critical current in superconductors, etc. The measured properties have to be understood
in terms of the structure of the sample to be able to propose other candidate materials
that may better match the set of desired properties. An additional set of experiments
particularly targets the structure elucidation but in some cases, e.g. X-ray spectroscopy,
experiments alone may not be sufficient to determine the structure.

Figure 3.Discovering the structure-property relation-
ship in materials informatics.

In computational ma-
terials science theoretical
models provide a way to
compute properties of in-
terest from a given mate-
rial structure (Figure 3b).
In particular ab-initio mod-
els based on Schrödinger’s
equation provide a path to
calculating a broad range of
properties. Resulting struc-
tures are validated against
experimental results. A
caveat is that these models
are typically computation-
ally very intensive and non-
trivial approximations are
needed to compute results
with reasonable compute re-
sources. Nevertheless, these computational models can be used to calculate materials
properties. Comparison of the computationally obtained results with the measured prop-
erties can help determine the structure of the material sample from which the measure-
ments were obtained.

However, the problem that remains is that Schrödinger’s equations only provides
a path to compute the properties from structures. In practical materials science prob-
lems the measured properties are given and the material structure needs to be solved.
Schrödinger’s equation does not provide a convenient formalism to solve such inverse
problems. By contrast, machine learning can be used to train a model that correlates in-
put data to output data (Figure 3c). In principle, machine learning does not care about the
direction of the relationship. It can be used with material structure as inputs and proper-
ties as outputs, but it can also learn the inverse model with the properties as inputs and
the structure as outputs. Based on this realization machine learning can be used in essen-
tially two modes. First, it can used as an alternative to ab-initio calculations to predict
materials properties from structures, but at a much lower computational cost. Second, it
can be used to build models for inverse relationships for which there are few, if any, alter-
native models available. Both kinds of applications could prove very valuable to moving
materials science forward.

2.2. Theory reproducibility and artifacts in training data

In the previous section the importance of machine learning to help solve materials sci-
ence problems was explained. For machine learning to be successful a key ingredient is
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the availability of diverse sets of accurate training data. The accuracy of the training data
is particularly important as ML models typically have no way of knowing the underlying
physics they aim to "learn". Instead, the training data is supposed to be a representation
of that physics in the form of a large number of individual examples. Systematic errors
in the training data will lead to these errors becoming ingrained in the ML model. The
availability of mature simulation codes, significant compute resources as well as soft-
ware for automatically running and analyzing simulations make it possible to generate
such data sets automatically. This is the approach taken in a few research projects already
[11]–[14]. The outstanding problem then is to ensure that the data obtained in this way is
sufficiently accurate. Solving Schrödinger’s equation is only practical after making some
approximations. These approximations lead to artifacts in the computed results and these
artifacts have non-trivial relationships to the underlying approximations. For example,
Density-Functional Theory (DFT) has been claimed to be in principle exact. But when
using the currently available density functionals, the models of electron structure suffer
from unphysical self-interaction errors and strong correlation effects that are poorly de-
scribed. In another example, configuration interaction (CI) methods with fixed excitation
levels, such as singles-doubles (SDCI), produce electron correlation energies that scale
incorrectly with the number of electrons.

In fact one may state that the important expertise of practitioners in the field is related
to these artifacts and therefore to knowing in which cases and how the results are affected
by them. In cases where preferred methods leave doubt about the results it is common to
try more advanced methods to reduce uncertainty. This expertise is only available to the
ML experts who design models in well-functioning inter-disciplinary teams that share
expertise and knowledge. When data obtained by such computations is made publicly
available for re-use, the lack of transparency may lead to inaccurate predictions in ML
results.

3. Study: Re-running ML models

We designed several experiments in reproducibility to illustrate the issues encountered
when using Machine Learning. The first experiment illustrates the lack of transparency
when calculating the computational structures and properties of small organic molecules
that can be used as training data (section 3.1). The second experiment tests common
platforms for training models under various versions of each platform (section 3.2). The
third experiment tests the models themselves under various conditions (section 3.3).

3.1. QM9 experiment on the accuracy of training data

Small organic molecules are used in de novo drug design and a number of studies with
large sets of computational molecules have been published [15] that can be used for
training data or benchmarking existing codes. QM9, one of these data sets, was built
using DFT methods that are supported by a wide range of quantum chemistry codes. The
QM9 data set contains the subset of C7H10O2 isomers consisting of 6,095 molecules.
This subset of molecules is small enough in numbers and the molecules are small enough
in size that calculations on this set can be repeated with relatively modest resources.
In their paper [16], [17] the authors document two important issues that may affect the
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results of simulations performed to obtain computational structures for training data.
Here these issues are accepted and the work focuses on reproducing the calculations
within the reported limits:

• that the reliability and accuracy of DFT depends on the chemical composition and
atomistic configurations in molecules and materials,

• and that most reported calculations are done on small molecules implying the
existence of a selection bias.

The structures published in QM9were obtained by translating SMILES strings into struc-
tures, and performing subsequent geometry optimization. The final part of the geometry
optimization was done with DFT using the Gaussian 09 code [18] but similar capabilities
are available in most Gaussian basis set quantum chemistry codes. We used NWChem,
an open source package that implements this capability [19]. As these codes have been
stable for some time, and the final structures are minimal energy structures it should be
straightforward to test the following hypothesis: a geometry optimization started at the
published structure should converge at the first point with the same total energy if the
same energy expression and basis set (input data) are used.

The basis sets are specifically formatted for the code itself and some codes make his-
torically developed basis sets available with the codes. This is the case for Gaussian09,
where the 6-31G(2df,p) basis set used in this experiment was historically developed by
Pople and his collaborators on the Gaussian project [20]–[23]. The basis set made avail-
able in NWChem comes from the Basis Set Exchange [24]–[26], a community project
collecting basis sets and making them publicly available in formats allowable for their
respective codes. This project relies on publicly accessible data for the specification of
the basis set. Some basis sets have been revisited and refined over time and so discrepan-
cies between a built-in version of a basis set in one code versus that of another code are
possible.

Inspite of well documented sources of uncertainty in DFT calculations, for atoms
that are spherically symmetric, such as the ones we tested here, highly accurate results are
generally achievable. However, our results were significantly different from the results
published by the authors of the QM9 data set.

The difference between the two sets of results can largely be attributed to a technical
detail related to the way the handling of the angular momentum of the basis functions
may be chosen in different codes. Most codes allow one to choose between either Carte-
sian or spherical harmonic basis functions. Gaussian09 is different in that it allows one
to choose between Cartesian and spherical harmonic basis functions independently for
d-functions and other angular momentum functions. For example, in Gaussian one can
choose to use Cartesian d-functions together with spherical harmonic functions for all
higher angular momentum functions. The authors know of no other code that allows this
kind of flexibility.

The basis set chosen for calculating the QM9 data set is one that exploits this partic-
ular Gaussian feature. It uses Cartesian d-functions and spherical harmonic f-functions.
This means that the calculations reported for the QM9 data set can only be reproduced
with the Gaussian code and no other code. As Gaussian09 is proprietary code, the au-
thors of the QM9 paper are not at liberty to publish their implementation nor the input
data made available with the code. This lack of transparency can affect the re-use of their
data sets as training data for ML that may amplify the uncertainties.
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3.2. Training models

In a previous experiment by co-author Lin, ML models were used to predict Coordi-
nation Numbers (CN) known to characterize size and 3D shape of nanoparticles [27],
[28] (Figure 4). Training sets are built using computational data produced from ab ini-
tio methods. The model can then be used on experimental spectra to help determine
the properties of experimental particles. In the experimental process, XANES spectra, a
type of properties, are measured (4a). Coordination Numbers (CN) are calculated (not
shown). The computational approach calculates XANES spectra and Coordination Num-
bers from computational structures (4b). After validation, computational XANES spec-
tra and CNs are used to train the model. Predicted CN (box on the right) are compared to
Calculated CN to validate the model. In the ML approach, the trained model can be used
with large amounts of experimental spectra pouring out of high throughput detectors to
predict expected CN (4c).

Figure 4.Application of ML for guiding high
throughput experiments

Specifically, the ma-
chine learning models are
defined as a nonlinear func-
tion which maps the spec-
tra vector to the coordina-
tion number vector. It is
a typical regression task.
In this work, we evalu-
ated three major power-
ful and widely used regres-
sion models, (1) Gradient
Boosted Trees (GBT), an
efficient machine learning
model that ensembles a set
of decision trees; (2) mul-
tilayer perceptron (MLP), a
classic fully connected neural network; and (3) the most popular type of neural network,
(one-dimensional) convolutional neural networks (1D-CNN). For the reproducibility ex-
periment, we focus on GBT and MLP with a relatively deep structure of 5 layers with
400, 400, 200, 200, and 100 nodes respectively ([28].

3.3. Reproducibility across several different platforms

We first evaluate the reproducibility of different machine learning platforms and their
versions, and the results are shown in Table 1. Here we test platforms used for the MLP
(with Tensorflow and PyTorch) and GBT (with lightGBM) models. Specifically we keep
the same random seed for each model to avoid the randomness in model training, and
only use different platforms (Tensorflow, PyTorch and lightGBM) with their different
versions. We train models on the same training dataset. In Table 1 we define models as
reproducible if predictions on the same testing dataset are exactly the same. Our exper-
iment shows that different platforms cannot reproduce exactly the same model, while
different versions of the same platform show good reproducibility for TensorFlow and
PyTorch.
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Tensorflow PyTorch lightGBM

1.9.0 1.14.0 1.2.0 1.13.0 2.2.0 2.2.1 2.3.0

Tensorflow
1.9.0 Y Y N N - - -
1.14.0 Y Y N N - - -

PyTorch
1.2.0 N N Y Y - - -
1.3.0 N N Y Y - - -

lightGBM
2.2.0 - - - - Y Y N
2.2.1 - - - - Y Y N
2.3.0 - - - - N N Y

Table 1. The reproducibility across different deep learning platforms and versions.

3.4. Influence of some random factors in machine learning training

In this section, we investigate the influence of two random factors in two machine learn-
ing models that we applied to our Coordination Number prediction task, the multilayer
perceptron (MLP) and gradient boosted trees (GBT). We measure the influence of one
random factor at a time by fixing all the hyperparameters and other random factors (with
the appropriate random seeds), and let free the factor under consideration. We train the
model N (i ∈ {1, ...N}) times, and with each trained model, we obtain an accuracy xi on
the test data. If accuracy numbers xiN1 are close to each other, we say the random factor
has a small influence, in other words, the model is robust in terms of the random factor.
Specifically, the metrics we used to measure the dispersion of accuracy numbers are: 1)
the Coefficient of Variation (CV), also known as Relative Standard Deviation (RSD). CV
is defined as standard deviation divided by mean; and 2) the Mean Absolute Difference
(MAD), defined as 1

N(N−1)ΣN
i=1ΣN

j=1|xi− x j|. In this work, we set N = 5.

3.4.1. Influence of random factors in MLP

In this section, we investigate the influence of two random factors in MLP, i.e., data order
and weight initialization.

Influence of different data orders Most modern machine learning models use
stochastic (or mini-batch) gradient descent (SGD) to iteratively optimize the loss func-
tion. As a result, data is fed into the model in a random order for training, and this data
order adds randomness to the models. Theoretically, in gradients of different orders of
(mini-batch) samples, the optimizer uses different paths to get local minimums, and those
are usually different. To see how the orders affect the accuracy of the trained model, we
keep all the other factors fixed and only leave the freedom for the data order. The results
are: the CV of five models is 0.0933, and the MAD is 0.0464.

Influence of different weight initializations The optimizer of the modern machine
learning models usually uses a random start point (weights initialization) to start the
optimization process which also results in different local minimums. To see how the
weight initialization affects the accuracy of the trained model, we keep all the other
factors and only leave the freedom for weight initialization. In this task, as we did in last
section, we also trained the model five times, and apply the mean of absolute z scores to
measure the deviation of all five trained models. The results are: the CV of five models
is 0.0349, and the MAD is 0.0171.
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Model MLP GBT

Random factor Data order Weight init. Feature selection Data selection

CV 0.0933 0.0349 0.0035 0.0063
MAD 0.0464 0.0171 0.0023 0.0043

Table 2. The influence of the random factors in model training.

3.4.2. Influence of random factors in GBT

In this section, we investigate the influence of two random factors in GBT, i.e., the feature
random selections and data random selections.

Influence of random feature selections In each iteration (tree) of the training, GBT
may only use a fraction of the randomly selected features to speed up the learning process
while reducing overfitting. We set the features fraction at 0.5, i.e., the half of the features
are randomly selected to trained in each iteration. The results are: the CV of five models
is 0.0035, and the MAD is 0.0023.

Influence of random data selections In each iteration (tree) of the training, GBT
may only also use a fraction of the randomly selected data to speed up the learning
process. We set the data fraction is 0.5, i.e., half of the data are randomly selected to
trained in each iteration. The results are: the CV of five models is 0.0063, and the MAD
is 0.0043.

4. Discussion of challenges

There are many reproducibility issues in materials informatics workflows that can affect
the accuracy of results when using ML algorithms. We discuss them below in sequential
order:

• Theory-driven errors in the calculation of computational structures
• Numerical errors due to scalability
• Lack of reproducibility across platforms and versions
• Effects of randomness related to training the model itself
• Effects of randomness caused by domain shift when experimental results are used

in the test set of a model trained on computational structures.

In cases where the fundamental approximations are not expected to be problematic
it is critical to realize that important conclusions are drawn from comparisons of dif-
ferent results. If these results are obtained from calculations that are based on the same
approximations then the comparison is likely to benefit from partial cancellations of er-
rors. Therefore it is important to understand what errors are made in a given method and
design the calculations to carefully control these errors. This in turn requires consistent
choices of input data such as basis sets, energy expressions, convergence criteria, cutoffs,
etc. In addition it may require comparisons of results between different codes, as well as
validation of the results against more advanced methods.

In computational modeling progress in validating methods has been made through
the design and development of a number of test sets. In practice the test sets are typically
small (on the order of a hundred atomistic systems) but they usually include typical as
well as known difficult systems for a particular property. Based on this diversity it is often
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assumed that methods that do well on these sets will work well in general. In practice
this assumption has to be somewhat qualified. In order for these tests to be readily usable
the test cases have to be reasonably small, so that the tests can be run quickly with
many different methods, codes and parameter choices. However, with increasingly large
atomistic systems can come increasingly severe numerical issues. Hence the performance
of a method on a small system may not be indicative for the performance on a large
system. These numerical problems are mainly discovered during applications that reach
beyond the scale of prior applications, simply for the reason that it is too expensive to
systematically test methods on large problems.

Training models is much less computationally expensive than calculating theoreti-
cal properties, thus making it an attractive solution. Once built, models can be used to
parse "on-the-fly" large amounts of experimental spectra. This is advantageous during
the course of an experiment at the beamline, where scientists typically only spend a few
four-hour sessions. Models can enable them to guide the course of their experiments and
correct it if needed by comparing their new data out of the detector with the predicted re-
sults. When this guidance becomes automated, and computationally driven methods steer
the course of experiments, the experiment itself is on the way to become autonomous,
a long-term goal of the materials science community. However, this will only become
possible when criteria for defining and evaluating reproducibility in ML results are well
established.

It is common knowledge that training a machine learning model multiple times, even
with the same data set, does not usually produce the same model, as different training
and testing errors are produced with each run. Several factors influence the randomness
introduced at training as seen in the previous section. Model hyperparameters, such as
network structure, layer number, neuron number, optimizer, learning rate, batch size,
epoch number, activation function, can be treated as a configuration file and easily written
into the trained model or an external file. Some platforms can now store hyperparameters
and models [29] but a common data model enabling reproducibility does not exist in
materials informatics.

In Table 1, we found that TensorFlow and PyTorch cannot reproduce exactly the
same model, while different versions of the same platform showed good reproducibility.
For lightGBM platform, different versions may or may not reproduce exactly the same
model. We would like to emphasize that our evaluations are only based on the specific
platforms and versions we test in this paper. Reproducibility across different platform
versions really depends on implementation updates of related functions for specific ver-
sions, such as optimizers and I/O. In other words, the fact that specific version pairs can
or cannot produce the same results may just be due to our accidental choice of version
pairs using the same or different implementations of related functions.

We also evaluated the reproducibility of the MLP and GBT based on some random
factors. Table 2 showed that GBT has better robustness than MLP, i.e., with certain ran-
domness, the accuracy of GBT is more consistent than MLP. It suggests that the per-
formance of GBT may be more stable than MLP in practice. Although this is generally
agreed upon in the ML community, no theoretical proof for it exists. In addition, the
best results in terms of accuracy are usually the ones reported, regardless of their robust-
ness to randomness. When ML results are re-used for additional conclusions or guiding
experiments, decisions based on both robustness and accuracy will be needed.
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With ML models, there are two general classes of errors. The first one that we inves-
tigated here concerns how the models perform when trained on the same training dataset
with the same hyper parameters. The second one (domain shift) refers to transfer learn-
ing or domain adaption and typically draws more attention from ML researchers [30].
Researchers study how models use a training dataset not necessarily representative of the
custom data to which models are applied. In our case, models trained on computational
structures are used to make predictions about experimental data. Our experiment shows
that the first class of errors should not be ignored by practitioners interested in applying
these models in their domain science.

5. Future work

In addition to evaluate the influence of the random factors of models in high level, it is
also interesting to explore the randomness in low level implementations, such cuDNN
deterministic factor. In addition, and independently of the model itself, system level con-
figurations, such as operation system, GPU drivers/library version, eg. CUDA, cuDNN
versions also influence the reproducibility of results. The provenance of model execution
needs to be extracted and made available.
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Abstract. Establishing the reproducibility of an experiment often requires repeat-
ing the experiment in its native computing environment. Containerization tools
provide declarative interfaces for documenting native computing environments.
Declarative documentation, however, may not precisely recreate the native comput-
ing environment because of human errors or dependency conflicts. An alternative
is to trace the native computing environment during application execution. Tracing,
however, does not generate declarative documentation.

In this paper, we preserve the native computing environment via tracing and
and automatically generate declarative documentation using trace logs. Our method
distinguishes between inputs, outputs, user and system dependencies for a variety
of programming languages. It then maps traced dependencies to standard package
names and their versions via querying of standard package repositories. We use
standard package names to generate comprehensive declarative documentation of
the container. We verify the efficacy of this approach by preserving the native com-
puting environments of several scientific projects submitted on Zenodo and GitHub,
and generating their declarative documentation. We measure precision and recall
by comparing with author-provided documentation. Our approach highlights over-
and under-documentation in scientific experiments.

1. Introduction

Experiments in computational research are vital for establishing and validating an idea. A
computational experiment typically has three components: goals, means, and claims [1].
While goals and claims are typically text-based, the means of an experiment, includ-
ing experimental environment, procedures, and execution, are primarily computational.
Sharing the means of an experiment is increasingly being recognized as critical toward
establishing the reproducibility of results [2]. Previously sharing the means of an ex-
periment implied sharing code and data relating to an experiment. There is increasing
consensus that to establish reproducibility of results, authors must also share a descrip-
tion of computing environments, such as the documentation of used system libraries,
configuration files, and parameters. Other users can use documentation about computing
environments to build and extend environments.
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Documenting computing environments, however, can be challenging. Typically, a
user determines primary applications within an experiment’s scope. The applications of-
ten depend upon complex software packages, which internally depend upon other pack-
ages. Documenting a computing environment often requires a user to know all packages
and their dependencies including specific release versions. This can be too onerous for
users who have not installed or built the application in different computing environments.

Recently, two prominent methods have emerged that document computing environ-
ments:
• The container method is a declarative method to describe application dependencies

using a set of known packages. The known packages are determined either from doc-
umentation or from having a general familiarity of the application. If part of an appli-
cation does not belong to any known package, the user documents this part manually.

• In the tracing method, a system observes the execution of an application and tracks
direct or indirect references to binaries, input data files, and dependencies. The auto-
matically tracked files comprises of all accessed package dependencies in a computing
environment.

The container method is coarse-grained and is useful for documenting computing en-
vironments of standard applications, such as database servers, web servers, compilers,
where an application builds from well-known packages. Systems such as Docker [3] and
Singularity [4] adopt this approach. The tracing method is more fine-grained and is more
useful for ad hoc, user-compiled applications where the user has either never built the
application from source or does not recollect the complete dependency toolchain. Sys-
tems such as Sciunit [5,6], ReproZip [7], and CARE [8] adopt the latter approach for
documenting dependencies.

While both methods document computing environments, using the documentation
for establishing reproducibility of experiments is a challenge. Container methods rarely
specify version numbers of binaries or packages; neither do the container engines (such
as Docker) verify if the built container environment is the same as the experiment’s na-
tive environment. Tracing methods are too fine-grained—at the granularity of each file in
the package—and thus lose package-level semantics. Thus, while tracing methods guar-
antee exact native computing environments, without an accompanying documentation it
is difficult to change or extend such environments.

In this paper, we define a reproducible experiment as a shared experiment that is
repeated for verification and modified for establishing reproducibility. To repeat an ex-
periment, we preserve its native computing environment via tracing. We document this
environment in terms of declarative container-specific instructions. To generate such in-
structions, we first distinguish between inputs, outputs, user and system dependencies in
a trace log for a variety of programming languages. We then map traced dependencies to
standard package names and their versions via querying of standard package repositories
to generate container-compatible documentation.

The advantage of this approach is that it repeats computational experiments exactly;
The container contains only the necessary traced files, and its contents are declaratively
documented for extensions and reproducibility of the experiment. We verify the efficacy
of this approach by tracing the computing environments of several scientific projects sub-
mitted on Zenodo and GitHub. We compare their generated documentation with author-
provided documentation and also if the container execution provides similar output. Re-
sults show instances of over- and under-documentation in scientific experiments.
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We organize the rest of this paper as follows. We describe container and tracing
methods to document computing environments in Section 2. We describe our process
for generating declarative documentation in Section 3. We present our experiments in
Section 4, and conclude in Section 5.

2. Documenting Computing Environments

In this section we describe the container and tracing methods for documenting computing
environments. We use Docker [3] and Sciunit [5,6] as representative methods to describe
the documentation.

2.1. Containers and Docker

Containers are an OS-level virtualization technique in which the virtual environment
shares the OS kernel of the host environment. A container virtual environment isolates
processes and files using namespaces, chroot, and cgroups. Docker is a container engine
that allows users to create and maintain containers.

A dockerfile is a text-based file with declarative instructions defining the contents of
a Docker container. The sequential instructions specify the order of execution for creat-
ing a desired image. Users typically build an image using a Dockerfile as an argument to
the Docker build command. We summarize available instructions that help to document
the native computing environment of an application. A Docker container can inherit in-
frastructure definitions from another container (FROM instruction). This can either be an
operating system container, such as Ubuntu, but also any other existing container (e.g.,
with a pre-installed JDK installation). For maintenance, a dockerfile should provide the
name and email of an active maintainer (MAINTAINER instruction). The ENV instruction
sets environment variables. ADD and COPY instruction allow to place files into the con-
tainer. A user may document a file as a URL, relative to the current path or as a zip file,
which unpacks the archive within a container. RUN allows to execute any shell command
within the container, and is often used to retrieve dependencies, and install and compile
software. A container’s main running process is the ENTRYPOINT and/or CMD at the end
of the Dockerfile, which may subsequently fork other processes. Each instruction results
in a layer in the Docker image. Thus a well documented dockerfile is a programmatic
specification of the dependencies of an application.

2.2. Tracing and Sciunit

Application virtualization creates a sandbox in which it copies all files and environment
variables referenced by an application. Similar to a container, a sandbox shares the host’s
kernel but unlike a container processes are not isolated—only files are. The sandbox
engine monitors the running application process using strace and then copies each ref-
erenced file within a sandboxed directory. Strace internally attaches itself to the main
application process using the ptrace system call, which monitors all the system calls of
the running process [5]. Ptrace intercepts each system call to determine the running state
of the process. The sandbox engine uses the arguments to file-system specific system
calls to copy accessed files. Sciunit is an engine for creating and maintaining sandboxed
applications.
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The sandboxed creates a log of the traced system calls, which is a file-level doc-
umentation of the native computing environment. The log begins with a special “root
path” which is where the application directory resides in the host system. The log con-
tains all the dependencies identified during the reference execution audit. The sandbox
engine locates the dependencies at the same path within the special root path as it iden-
tifies them in the original system. The trace log also contains interactions between pro-
cesses if they fork or exec other processes and between processes and files when files are
read and written. The log also stores the logical range of times that processes interacted
with other processes or with files. Figure 1 shows a sample trace log of an high-energy
physics application available on Zenodo [9]. Semantically the log comprises binaries,
system libraries, configuration files, input data files, or temporary cache files, which must
be distinguished into packages, sub-packages, and inputs to generate declarative docu-
mentation.

Figure 1. Description of trace logs in column order: (i) timestamp, (ii) process identifier, (iii) type of system
call traced, and (iv) accessed file path name

3. Using Trace Logs to Generate Documentation

We describe how to automatically generate a Dockerfile from a trace log.

3.1. Generating Dockerfile Instructions

The workflow to generate a Dockerfile from trace logs is first encapsulating a computa-
tional artifact into a sciunit, and then using the trace log to distinguish between various
entities namely inputs, outputs, processes, and system/user dependencies. Our method
uses a representation of the trace log in terms of lineage graph to determine these enti-
ties and, once distinguished, maps them to declarative commands in the Dockerfile. We

J. Chuah et al. / Documenting Computing Environments for Reproducible Experiments 759



Figure 2. Workflow to generate Dockerfile declarative instructions from trace logs

manually compare generated documentation with author-supplied documentation and by
building and executing the container. Figure 2 shows the workflow.

A trace logs maps to lineage graph via logged READ/WRITE/EXECVE calls. In partic-
ular, files represent entities and processes represent activities. Each READ/WRITE/EXECVE
represent a data dependency. Given a lineage graph it can be used simply to determine
inputs as nodes with no in-going edges, outputs as nodes with no out-going edges, and
processes as nodes with process-to-process edges. The log is noisy in that it also contains
information about temporary files, outputs, and process memory execution. We filter
such files as this is execution-specific information and not relevant for documentation.

Distinguished files are converted to declarative instructions. Since each Dockerfile
must begin with a FROM command, and the log provides OS information in its header as
part of @machine command, our method instantiates an @machine specific base image.
Identified input datasets and binaries are documented as ADD statements; Environment
specific information is documented using the ENV command.

A bulk of the trace log consists of references to dependencies, which are either part
of standard system packages or are user-defined. Distinguishing between system and
user dependencies is crucial as the system documents them using different declarations.
In particular, user dependencies are copied via the COPY command, and system depen-
dencies are documented using the RUN command. One may perhaps copy system depen-
dencies too using the COPY command. However, if all system dependencies are docu-
mented similar to user dependencies it leads to only one layer of the docker image. A
one-command Dockerfile provides poor indication about the complexity of the software
or the quality of the Dockerfile [10]. Knowing the documentation precisely is helpful if
the user wishes to extend the experiment. In such cases a more verbose documentation
can indicate if extended dependencies will conflict with the container contents.

Unlike a user dependency which is mentioned directly as part of a COPY command,
a system dependency cannot be directly mapped to a RUN command. We must iden-
tify the corresponding package that maps to this dependency. Packages contain more
than one dependency and for all identified dependencies only the corresponding pack-
age need to be stated in the RUN command. For instance, if the trace log specifies a
path to libcrypto.so.1.1, then the corresponding RUN command is to invoke the package
manager to install libssl as in RUN apt-get install libssl1.1. libssl also maps to
libssl.so.1.1 and libpthread.so.0.

To generate the above RUN instruction, we need to map between a dependency and
its package name. For this we use programming language-specific package managers.
Our method currently works for C/C++, Python and R languages. For instance C/C++
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libraries are searched using apt-get and yum package managers, and Python libraries
are searched through pip. Package managers provide a search interface to determine a
package name from a dependency file2. Sometimes the search returns multiple packages,
and our current policy is to document the first package obtained as part of the search
result. Querying language-specific repository for each package is costly (˜1 min for each
package query). For this we create a local database to curate all queries packages and
known sub-packages to avoid repeated querying.

The process of mapping between a dependency and its package depends on how the
language maintains the packages in the file system. While the most common paths where
libraries are installed are /usr/lib and /lib, depending upon the language packages may
be found under sub-directories site-packages, dist-packages or site-library (Python and
R) or under architecture specific directories (C/C++). Typically a package name follows
these paths along with the version information.

Figure 3. A automaticaly generated Dockerfile for Davix

Detecting packages using path information may result in false positives. In particu-
lar, Python and R interpreters check for the existence of several packages during loading.
The container log is not able to distinguish between paths in which a package is checked
for its existence and a path in which the the content of the package is used (e.g. when
libraries are indeed imported into source code). This distinction is possible by tracing the
logs at a finer granularity and determining if content was indeed read, but that increases
the overhead of tracing. Since the paths of checked packaged is same as the path of a
used package, we distinguish them by identifying patterns of usage. For instance, if a
package is simply checked then there is an entry in specific paths such as dist-info, egg-
info for Python and R, but no sub-package path or file path within a package is present.
Such false positives do not arise with respect to C/C++.

2For R, the CRAN repository only provides a GUI-based search interface which required web-scraping to
build a local database.
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Finally, the sciunit contents are copied into a Docker container but the instructions
for creating path directories are not documented as it does not provide any information
about the native computing environment. Instead we provide as comments the location
of directories which are of relevance to the user. We also use comments to document
versions of packages when package managers do not install specific versions of pack-
ages. Figure 3 shows an example of a generated Dockerfile from the trace log shown in
Figure 1. We would like to highlight that in case of Python applications it is sufficient
to use trace logs to generate a setup file instead of a Dockerfile, and the Dockerfile can
simply reference to executing the setup file. Such optimizations are outside the current
scope.

4. Experiments

We collected scientific computational artifacts from GitHub and Zenodo. GitHub and
Zenodo [9] artifacts are not shared using any virtualization. Our experimental setup con-
sists of the following steps: (i) download and manually install a project; (ii) determine
if they execute successfully in a new environment, possibly generating an output; (iii)
execute the application to containerize under Sciunit; (iv) use the Sciunit log file to gen-
erate a Dockerfile that builds a Docker container consisting of necessary dependencies,
data, and source code; and finally (v) execute the Docker and Sciunit containers to de-
termine is same output is produced. Since our setup depended on generating a valid re-
sult, we downloaded, in total, about 100 repositories from GitHub and Zenodo. How-
ever, we could build and successfully execute only 29 repositories. Out of these, 19 are
Zenodo repositories and 10 are GitHub repositories. The other repositories reported an
error which we did not try to fix. The successful repositories consisted of 19 Python ap-
plications, 10 C/C++ applications, and 1 R application. The first three columns of the
Table 1 shows the information. We would like to re-emphasize that since we are not orig-
inal authors of these applications, we assumed the container result as the correct one if it
matched with the execution.

Language Source
# of
repositories

# of
Dockerfile built

# of
Sciunit executed

# of
Docker execution

C/C++ Zenodo 10 10 10 7

Python
Zenodo
& GitHub

18 18 18 14

R GitHub 1 1 1 1
Table 1. Repository Description

We measure two kinds of experiments: (i) if the generated Dockerfile generates the
same output, and (ii) if the author provided documentation corresponds to the Dockerfile
documentation. The former is determined by first building the Dockerfile and then by
manually comparing the contents of the output in the container with the native execution.
Table 1 shows that we are able to build Dockerfiles for all projects. However some of
the C/C++ and R projects did not produce the same output. In our dataset, most C/C++
projects that did not generate a correct output had a networking component which we
believe was not sufficiently documented. Currently the trace log does not audit network
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events. The single R project that did not run was due to poor mapping of the dependency
to a package name. This owes to the poor search interface of the R package manager.
Python projects were the most stable in terms of result comparison.

To measure if the author provided documentation corresponds to the Dockerfile doc-
umentation. we measure the quality of documentation in terms of precision and recall.
Precision is defined as the ratio of the number of user-listed packages identified in the
trace log to all that our method can potentially identify, and recall is defined as the ratio of
the number of user-listed packages to all those that our method identified. In other words,
precision computes the number of application-specific packages identified amongst all
identified packages, and recall computes the number of packages identified by our sys-
tem which are also listed by the author in the documentation. Equations (1) and (2) state
them formally.

Precision=
Identi f ied Packages

Total Identi f ied Packages
(1)

Recall =
Identi f ied Packages
User Listed Packages

(2)

We show how these measure compare with listed dependencies in two scientific
projects in Python and R, respectively. pySUMMA is a wrapper for the SUMMA [11,12]
computational hydrology model in which authors list seven packages and their versions
as were found compatible in their environment. Figure 4 shows the listed dependencies.
As available on the GitHub repository [13], pySUMMA is not encapsulated in a con-
tainer. We downloaded pySUMMA in a virtual environment and installed it with all its
dependencies and their versions as specified. Figure 4 shows the five packages and their
corresponding versions that were identified as application dependencies. In particular,
the model does not identify seaborn and jupyterthemes: the file paths from the log show
that seaborn is a sub-package of matplotlib, and so it is not a package that the author
must explicitly install. jupyterthemes on the other hand appeared as a dist-info path. So
even though jupyterthemes was listed it was not actually used. Several other packages
are listed in the log, such as NetCDF41.4.2 and geopandas0.4.0/ These packages were
identified within the logs and subsequently added by the authors in the setup.py file.
Several other packages internal to the Python interpreter are listed as ‘Python Built-in
Packages‘. These identified packages come bundled with standard Python environment.
In Figure 4, precision is 0.083 as out of 60 packages identified, the author only listed 7.
Recall is 0.714 as out of 7 that the author listed on the provided README file, only 5
were identified.

Our approach works similarly for documenting an R application. Food Inspection
Evaluation (FIE) is an R application in Table 3 and includes user-defined, standard and
commercial packages. However, in this case, the GitHub repository (not actively main-
tained) [14] does not list any R packages. It lists only a few C libraries. By download-
ing and creating a sciunit, we identified all R user-defined and standard packages and C
dependencies. For lack of space, we omit the result, and direct the user to our Github
repository of analyzed packages.

Table 2 shows the precision and recall for C/C++ and Python Zenodo applications
respectively. Tables 3 shows the precision and recall results for some of the Python and
R GitHub applications. Most of GitHub applications are poorly documented. For these
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Figure 4. Listed Vs Identified Packages in pySUMMA. 2 of the Author-listed packages were not identified as
they are not used by the program. We also identified 31 other packages that the author does not list.

GiHub/Zenodo Object Name Precision Recall

cpp-atlas 0.222 0.66
hdt-CPP 0.4 0.4

simple-web-server 0.33 0.5
research-ocr 0.024 1
c-blockchain 1 1

scram 0.25 0.66
activia 1 1
Dgtal 0 0
Davix 0.28 1

causaltrail 0 0

Zenodo Object Name Precision Recall

clam 0.12 0.5
informers 0.208 0.714

pydov: v0.3.0 0.12 0.75
lmfit-py 0.9.14 0.167 0.8
jungleweather 0.02 1.0
pianoplayer 0.069 1
GraSPy 0.1 0.12 1

fbpic 0.156 1
pyBathySfM v4.0 0.208 1

Table 2. Precision/Recall of C/C++ Zenodo applications (left) Precision/Recall of Python Zenodo applications
(right)

applications, recall is assumed to be 1 as we consider our manual virtual machine in-
stallation as the total number of author-listed packages. All Zenodo applications were
documented in that authors do list install requirements. For applications on both reposi-
tories, precision value is low since we constantly report many sub-packages that are not
reported by the author. However, our recall value is on the high end as we identify most
of the author-listed or required packages for the application to run.
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GitHub Object Name Precision Recall
zagats 0.12 0.5
snake 0.208 0.714

gooselife 0.12 0.75
pySUMMA 0.167 0.8
newmeric 0.02 1.0
asplos 0.069 1
craps 0.12 1

imdb-deeplearn 0.156 1
FIE 0.208 1

Image morphing 0.208 1
Table 3. Precision/Recall of Python & R GitHub applications

5. Conclusions

In this paper we developed a model to interpret container logs and document depen-
dencies of applications. Although precision is low, high recall shows that necessary de-
pendencies captured during tracing can be used to build a comprehensive and verbose
dockerfile. We believe this mapping from a trace provides low-overhead for users to
create and maintain containers, which is increasingly important for conducting repro-
ducible research. For full documentation of our experiments and artifacts please visit:
https://tanum@bitbucket.org/geotrust/trace-descriptions.git
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Abstract.

Whole Tale http://wholetale.org is a web-based, open-source platform for
reproducible research supporting the creation, sharing, execution, and verification
of “Tales” for the scientific research community. Tales are executable research ob-
jects that capture the code, data, and environment along with narrative and work-
flow information needed to re-create computational results from scientific studies.
Creating reproducible research objects that enable reproducibility, transparency,
and re-execution for computational experiments requiring significant compute re-
sources or utilizing massive data is an especially challenging open problem. We
describe opportunities, challenges, and solutions to facilitating reproducibility for
data-and compute-intensive research, that we call “Tales at Scale,” using the Whole
Tale computing platform.We highlight challenges and solutions in frontend respon-
siveness needs, gaps in current middleware design and implementation, network re-
strictions, containerization, and data access. Finally, we discuss challenges in pack-
aging computational experiment implementations for portable data-intensive Tales
and outline future work.

Keywords. reproducible research, scalability, science as a service, platform
as a service, scientific computing, computational science, scientific workflows,
replicability, reproducibility, big data, data provenance, cyberinfrastructure, transparency

1. Introduction

In this work we explore barriers and opportunities for extending the Whole Tale in-
frastructure [1] to facilitate reproducible data-intensive research at scale. Creating re-
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producible research objects that capture artifacts such as data, software, and sufficient
details from a computational experiment to enable reproducibility, transparency, and
re-execution is a challenge the research community is addressing in a variety of ways
[2,3,4,5,6,7,8,9,10]. However reproducing results that require significant compute re-
sources, rely on specialized hardware, or utilize massive data, is an especially challeng-
ing open problem. We start by describing the Renaissance Simulations [11] to provide a
concrete motivating scenario for this work. We then present the current implementation
of the Whole Tale reproducible research platform, and define the notion of a “Tale” as a
reproducible research object published by the Whole Tale system [12,13]. We enumerate
possible execution models for data-intensive computational experiments that rely on sig-
nificant compute resources, specialized hardware, and/or massive data. We discuss chal-
lenges and solutions inherent in extending the Whole Tale platform this way, including
frontend responsiveness needs, gaps in middleware design and implementation, network
restrictions, containerization, and data access. We close with a discussion of the role of
computational reproducibility in the search for scientific correctness.

We acknowledge the following contributions to this work, following the CAS-
RAI CRediT (Contributor Roles Taxonomy) convention (see https://casrai.org/

credit/). Conceptualization: Chard, Gaffney, Hategan, Kowalik, Willis; Funding ac-
quisition: Ludäscher, Stodden, Turk, Chard, Nabrzyski, Gaffney; Project management:
Kowalik, Willis; Software: Hategan, McPhillips, Kowalik, Taylor, Thelen, Willis; Super-
vision: Chard, Gaffney, Kowalik, Ludäscher, Nabrzyski, Stodden, Turk, Willis; Visual-
ization: Hategan; Writing (original draft): Hategan, Stodden; Writing (review & editing):
Chard, Ludäscher, Hategan, Stodden, Kowalik, Willis.

2. Motivating Scenario: Renaissance Simulations Laboratory

To motivate the discussion, we describe a real-world scenario based on the Renaissance
Simulations. The Renaissance Simulations (RS) are some of the largest and most de-
tailed simulations of the formation and evolution of the first galaxies. Created after three
years using more than 100 million core hours, the resulting simulations enable the ex-
ploration of a variety of research questions concerning structure formation and chemical
evolution in the early universe. However, the complexity, depth, and size of these simu-
lations require researchers to have access to specialized resources for analysis. The Re-
naissance Simulations Laboratory (RSL) is a virtual laboratory devoted to providing ac-
cess to over 70 TB of raw data and derived data products including halo catalogs, merger
trees, and mock observations. RSL exposes data available on systems at the San Diego
Supercomputing Center (SDSC) via Jupyter web-based interactive environments and, in
a later phase of the project, enable launching jobs on SDSC Comet and other XSEDE
resources [15]. Analyses conducted via RSL are intended to be shared and published to
foster a collaborative research community in keeping with the long history of openness
and transparency of computational research artifacts in computational astronomy.

This scenario illustrates three key challenges related to our vision of “Tales at Scale,”
which we define as executable research objects that capture the code, data, and environ-
ment along with narrative and workflow information needed to re-create computational
results from data- and compute-intensive scientific studies. Creating such reproducible
research objects to enable reproducibility, transparency, and re-execution for computa-
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tional experiments requiring significant compute resources or utilizing massive data is
an especially challenging open problem. We describe opportunities, challenges, and so-
lutions to facilitating reproducibility for data-and compute-intensive research using the
Whole Tale computing platform. First, the RS data are very large, impractical to transfer,
and requires large-scale resources to analyze. Second, the research community leverages
interactive Jupyter environments for both exploratory and primary analytical work with
some analysis requiring batch compute resources. Third, the community is interested in
sharing resulting research artifacts (e.g. code, derived data) for both re-execution and
re-use. There are many research communities that would benefit from general-purpose
infrastructure, like RSL, that enables researchers to 1) perform exploratory work via
large-scale interactive environments, 2) publish reproducible research artifacts based on
experiments that require HPC workloads, and 3) do both in an environment that does not
require transferring data to new systems. RSL and the Whole Tale project share com-
mon platform components and Whole Tale is using the RSL as a driver for the design
and implementation of solutions to common problems of computational reproducibility
at scale.

3. The Whole Tale Project: Goals, Infrastructure, and Tales

In related work we have presented the Whole Tale project: a web-based and open source
cyberinfrastructure platform that enables the generation and publishing of reproducible
research artifacts, which we call “Tales,” objects encapsulating code, data, and computa-
tional environment information [12,13]. The goal of the Whole Tale project is to enable
reproducibility for computation- and data-enabled research. The approach is to trans-
form the discovery process by uniting data products, computational pipelines, and re-
search articles into an integrated whole. Whole Tale supports research experiments in
situ, through popular analysis environments such as Jupyter and RStudio interfaces, and
captures information including the code, data, provenance, and execution environment
used to produce research findings. This information is then packaged by Whole Tale into
an archival format called a Tale which defines a standard for executable and reproducible
research objects [14]. The Tale stores explicit references to data and code used in compu-
tational experiments, both for reproducibility purposes and to permit the citation of the
specific versions used in any subsequent research. A Tale can be submitted or published
to an external research repository and assigned a persistent identifier by the repository.
The Whole Tale platform allows users to interactively create and edit Tales and to re-run
a Tale to reproduce and verify results as obtained by the original Tale creator.

The Whole Tale platform itself consists of a set of services, collectively termed the
Whole Tale Services, which serve the main web interface and implement the backend
services needed to support the functionality of the web interface. Whole Tale is devel-
oped as an open source project and can be deployed by third parties. TheWhole Tale Ser-
vices at https:\\wholetale.orgare currently deployed on persistent resources that
take the form of a number of virtual machines supporting the underlying databases, ser-
vice containers, and other components. Currently, research in the Whole Tale environ-
ment is supported by a Docker swarm cluster on Jetstream virtual machines [16,17], re-
ferred to at the “Whole Tale cluster.” TheWhole Tale Services are responsible for launch-
ing and managing Tales. Tale “Frontends,” such as a Jupyter or RStudio notebook, run
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on Tale Frontend Resources, which may be co-located with Whole Tale resources. Tales
that require heavy computational or data resources, the focus of this article, are consid-
ered to contain HPC Workloads, which typically consists of CPU-intensive serial or par-
allel (e.g., MPI) code, or code meant to be run on GPU hardware. The lifecycle man-
agement of Tale frontends and eventually High Performance Computing (HPC) work-
loads is handled by specialized middleware, discussed from the perspective of “Tales at
Scale” will be presented in Section 5.2. The Whole Tale platform today focuses on in-
teractive environments as Tale Frontends for both exploratory work and re-execution of
published artifacts. Through this, system users are able to work in environments that they
are comfortable with while gaining the benefits of the Whole Tale platform to package
the results of their work. These interactive environments also provide the opportunity to
instrument parts of the research process, such as software dependency identification and
computational provenance. As discussed below, the focus on interactivity can be at odds
with support for HPC resources where the primary interactive environment is typically a
secure shell such as SSH.

4. Possible Execution Models Allowing Access to External Resources

A visual representation of the conceptual architecture described in the previous section is
shown in Figure 1. In the current Whole Tale implementation, the three types of resources
shown in Figure 1 are only logically distinct and currently consist of Docker containers.
The middleware connecting the core services with the Tale frontends is a wrapper around
Docker API calls. Tales, in turn, can launch applications that are pre-built into the Tale
images using standard system calls, thereby running them inside the same container as
the Tale. However, CPU-intensive applications are, in principle, still limited to being run
inside the Tale containers. This limitation can be worked around by connecting to exter-
nal resources and launch custom HPC workloads. Such a solution, however, hinders the
ability of a Tale to capture the entirety of the environment in which it was created, neg-
atively impacting reproducibility. This issue will be discussed in more detail in Section
5.

The architecture presented in the previous section is general in that it does not spec-
ify the precise meaning of the resources involved. The Whole Tale platform only dictates
that the core services be deployed on some persistent resources. We can distinguish a
number of models that refine this general architecture by assigning concrete resources to
the logical ones, enumerated below. We briefly list some of their benefits and downsides,
with a more detailed analysis following in Section 5. We discuss six possible approaches
in turn.

The first model deploys the Tale frontend and HPC workloads on the Whole Tale
cluster (Figure 2). The frontend runs on resources that are part of the Whole Tale deploy-
ment and users can launch local HPC jobs using standard system calls, jobs which would
run inside the same container as the Tale. The resources available for the HPC jobs are
limited to what is provided by default through the Whole Tale deployment cluster.

The second possible model deploys the Tale frontend on an HPC compute node
(Figure 3). This option involves running the Tale frontend e.g. a Jupyter notebook or
R-studio IDE, on compute nodes in an HPC cluster. The notebooks would then be able
to launch independent HPC jobs using standard system calls. As in the previous model,
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Figure 1. Conceptual high level Whole Tale architecture for executing Tales on HPC resources.

Figure 2. Tale Frontend on Whole Tale Deployment Cluster. The middleware used by the core Whole Tale
services to manage Tales is named “gwvolman.”

Figure 3. Tale Frontend on single HPC Compute Node.

HPC jobs would be local to Tale frontends, but can now benefit from the HPC hardware
on which the frontends run.

Our third model deploys the Tale frontend on an HPC compute node with local LRM
(cluster queuing system) access (Figure 4). This is a similar scenario to that shown in
Figure 3, but would allow submission of HPC jobs to the queuing system of the cluster.
This would enable scaling of the HPC jobs beyond what is provided by the compute
resources available to the Tale frontend.

We can extend the third model to deploy the Tale frontend on HPC compute nodes
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Figure 4. Tale Frontend on HPC Compute Node with Local LRM (cluster queuing system) Access.

Figure 5. Tale Frontend on HPC Compute Nodes with MPI.

Figure 6. Tale Frontend on Whole Tale Cluster with Remote LRM Access.

with MPI (Figure 5). This involves launching the Tale frontend as anMPI job. The cluster
LRM (queuing system) would allocate the number of nodes requested at the submission
of the Tale frontend job and set the appropriate MPI environment. The Tale frontend
would run on the lead node allocated to the MPI job by the LRM and would be able to,
using “mpirun” or other cluster specific tools, launch MPI subjobs on the nodes allocated
to the MPI job.

Our penutimate model deploys the Tale frontend on the Whole Tale cluster with
remote LRM access (Figure 6). In this scenario, Tale frontends continue to run alongside
Whole Tale core services, but HPC jobs can be submitted to remote clusters via the
middleware.

The final model is a decoupled Tale frontend with LRM Remote Access. In this
model, Tale frontends are allowed to run on various resources, including the Whole Tale
cluster, a cloud provider, or an HPC cluster. HPC jobs, in turn, can run on any resources
supported by the middleware. This model would be useful in allowing users to bypass
the limitations present in the default resources provided by the Whole Tale infrastructure.
A user with cloud access could request that a Tale be run on cloud resources under the
user’s account. Furthermore, users with access to HPC clusters could schedule HPC jobs
on those resources.
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5. Infrastructure Challenges for Implementing “Tales at Scale” on Whole Tale

In this section we consider challenges to consider when implementing the “Tales at
Scale,” model including frontend responsiveness, HPC network restrictions, and con-
tainerization.

5.1. Maintaining Responsiveness of Tale Frontends

From a usability perspective, Tale frontends need to be launched relatively quickly and
predictably. When running Tale frontends on the Whole Tale cluster, Tale frontends be-
come available in a matter of seconds. The process of building the Tale image and launch-
ing the container is not instant, but roughly equal to the amount of time it takes docker
to load the Tale image from a local registry. However, if the Tale frontend is launched
on a typical HPC resource, the process involves the additional step of submitting a job
to the LRM and waiting for the LRM to schedule the job on compute nodes. The na-
ture of HPC workloads (often long-running processes) means that LRMs are rarely opti-
mized for quickly scheduling jobs. In addition, the scheduling time is also affected by the
number and size of jobs belonging to other users that are already queued by the LRMs.
HPC resources may also cycle through scheduled maintenance making them intermit-
tently unavailable. These factors can make the Tale launching time on HPC resources
unpredictable, and measured very rarely in seconds.

Strategies to mitigate Frontend launch responsiveness include advanced reservations
and pilot jobs. Advanced reservations must be negotiated with HPC resource owners
ahead of time. While it may be possible to negotiate long term advanced reservations,
this cannot usually be done in an automatic fashion and is repeated whenever a new HPC
resource is used. By contrast, an approach based on pilot jobs would involve maintaining
a dynamic pool of placeholder HPC workloads that are already scheduled on HPC re-
sources and can pick up actual HPC workloads instantly. From the responsiveness stand-
point, solutions which place Tale frontends on the Whole Tale cluster are, therefore, pre-
ferred.

5.2. Scalability and Longevity of Middleware

Middleware that supports the “Tales at Scale” idea described in this article will allow the
Whole Tale core services to launch Tales, and users to launch HPC jobs from Tales. Some
examples of middleware include the Globus Toolkit [18], “Simple API for Grid Appli-
cations” (SAGA) [19], DRMAA (see Global Grid Forum http://www.gridforum.

org/), and Agave (see The Agave Platform http://developer.agaveapi.co/).
Most current middleware provides some level of abstraction over individual HPC re-
sources. That is, to the programmer using the middleware, different resources are ex-
posed through a unified API which abstracts away details such as the type of LRM that
a specific HPC resource employs. The nature of the application using the middleware as
well as the HPC resources will impose certain constraints on middleware implementa-
tion. There are two important issues to consider in our Tales at Scale case: middleware
scalability and longevity.

A problem arises from the fact that scalability may not have been explicitly consid-
ered as an integral part of remote HPC submission library design. Such libraries may be
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designed and tested with the idea of a user submitting and monitoring a relatively low
number of jobs at a time. When used by a high throughput system however, such as a
portal or a workflow system, problems can arise. For example middleware that wraps
LRM command line tools to monitor jobs, such as “qstat,” may only periodically do so,
even when an invocation occurs for every job handled by the middleware, if the number
of jobs is small. When the number of jobs is large however, the repeated invocation of
“qstat” can overwhelm the LRM.

An additional issue preventing middleware from scaling is the management of se-
cure connections. Establishing secure network connections requires a number of cryp-
tographic steps which tend to be CPU-bound. If each job operation (submission, status
query) requires the establishment of a secure connection and many such operators are
performed on a single CPU, such as a single middleware client used by a portal or a
service deployed on an HPC resource, the rate at which the operations can be performed
can be limited. Addressing this issue requires aggregating operations under connections
that are kept alive for some time. This is only useful however if the same middleware
client/service instance are used. Associating a different client with each Tale instance can
potentially reduce the benefits that would come from the sharing of secure connections,
but may be necessary for different authentication credentials.

Finally, the lifetime of a remote job as seen from the client side is fundamentally
asynchronous. The process involves doing some work until the job information is trans-
mitted to the remote side, followed by waiting until the job completes or fails. It is con-
venient in many cases to treat such remote jobs as a synchronous process since it leads
to simpler code. However, this approach can be wasteful since it involves allocating a
thread for each job, a thread which spends most of its lifetime doing nothing while tying
up resources. It may be important to note that both the middleware API and the imple-
mentation must be asynchronous in order to derive a scalability benefit. For example, the
Python implementation of the SAGA provides an asynchronous API layer implemented
as a wrapper around a thread based, synchronous core, which is unsatisfactory.

A second important feature of middleware is longevity. By longevity we mean the
ability of middleware to continue to perform its intended purpose. From a reproducibility
perspective, we must be particularly sensitive to this. Middleware typically used to access
HPC resources can lack long term support and funding. Additionally, the incentives re-
quired to support stable software produced in a research environment do not always align
with the needs of long term executability and reproducibility. A corollary is that “*-as-a-
service” solutions tend to be insufficient since not only does the client side, including for
example Whole Tale, lack long term support, but so does the service side. Even assuming
open source and that the possibility of maintaining the client side component of the mid-
dleware exists, the service side may still pose challenges, in particular when deployment
is on resources that are not under the control of either Whole Tale or users. For example,
TeraGrid, the precursor to XSEDE, allowed HPC job submission to resources using spe-
cialized services which are not used by XSEDE. As a consequence, software written to
work on TeraGrid using the corresponding client libraries would be unable to function
today on XSEDE due to a lack of corresponding services. However, preservation of Tales
can enable transparency for HPC workflows, even when re-executability is not possible.

Longevity is a difficult problem but solutions are possible. The Whole Tale project
could develop a “middleware insulation service” which would allow Tales to program
against an API that is fixed in time. The Whole Tale team would then maintain working
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bindings from the insulation service to current HPC middleware. This requires that the
Whole Tale project itself is sufficiently supported in the future, which is not a certainty.
Alternatively, HPC middleware could be based on protocols that are well known and
likely to endure the test of time. Specifically, SSH is nearly universally available on HPC
clusters and if the list of LRM implementations is relatively small with stable interfaces,
middleware that uses SSH to connect to HPC resources and invokes the relevant LRM
commands would be usable even if the core Whole Tale services were unavailable. With
the ability to save Tales in a format that allows them to be downloaded from repositories
independently of the existence of a working Whole Tale deployment, a feature which
we presently support, there is a potential path toward the long term utility of “Tales at
Scale.” To increase the potential long term utility of “Tales at Scale” HPC runs could be
made increasingly transparent through provenance capture via the Whole Tale platform,
even when re-executability may not be possible.

5.3. Managing HPC Network Restrictions

Many HPC clusters restrict incoming network connections to compute nodes from out-
side the cluster. Tale frontends however require incoming network connections in order
to expose their user interface. Consequently, a general solution involving Tale frontends
on compute nodes requires some form of proxying of connections from the Whole Tale
cluster to HPC cluster compute nodes. Restrictions on incoming network connections
may likely be a result of local security policies and therefore proxying, even if authenti-
cated, may be seen as an unwelcome circumvention of such policies potentially requiring
engagement with HPC resource managers. Many computing centers are now deploying
Jupyter environments which opens the possibility of leveraging these resources directly.

5.4. Containerization and HPC Workloads

For the purpose of containerization, we can divide HPC workloads into unoptimized
applications, optimized applications, and mixed applications. Unoptimized applications
refer to various tools that use general CPU instructions and can be compiled (or are
interpreted) and run on most types of hardware. Optimized applications are designed to
benefit from specialized CPU instructions, such as Streaming SIMD Extensions (SSE)
instructions or GPU hardware. Mixed applications consist of unoptimized driving code
with optimized cores provided by specialized libraries.

From the standpoint of computational reproducibility, optimization poses a funda-
mental problem, since it benefits from specialization for particular hardware, whereas
the ability to re-run code at different points in time and on different hardware requires
abstraction. For mixed and unoptimized applications, containerization can capture the
environment and dependencies of the unoptimized parts. On the other hand, when deal-
ing with optimized applications or libraries, recording such code in optimized form leads
to a dependence on specific hardware which can affect the ability for the code to be re-
run if the specific hardware becomes unavailable. Even without that issue, typical opti-
mized HPC applications are compiled for specific hardware and statically linked against
libraries specific to that hardware to improve performance, rendering containers unnec-
essary. Unfortunately providing only precompiled executables in a Tale introduces opac-
ity in the computation that underlies the research, implying that the relevant source code
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should always be included in a Tale to enables transparency as well as reproducibility,
regardless of whether otherwise reproducible binary code is included or not. In addition
to including the source code in a published Tale, several possible choices regarding the
inclusion of optimized binary code exist:

1. Package generic, pre-compiled, statically linked executables with Tales. These
Tales will therefore be tied to a specific architecture (e.g. AMD64) and may per-
form suboptimally on specific HPC resources that share the architecture but not
necessarily the fine details of custom instruction sets.

2. Package multiple versions of pre-compiled, statically linked executables with
Tales, one for each target HPC resource. This provides performance optimality,
but is tied to a specific set of resources.

3. Package source code and generic libraries required to compile the source code,
which may perform suboptimally on specific HPC resources, but is not necessar-
ily tied to a specific architecture.

4. Provide as much ancillary infrastructure to allow on-demand compilation against
custom HPC libraries when a Tale is run. This may include compilation on
target HPC resources or cross-compilation including possibly copies of li-
braries/compilers optimized for target HPC resources.

Each of these choices involves tradeoffs between reproducibility/portability and Tale
size and complexity. For example, GCC on BlueGene/Q machines produces unoptimized
code that, three years ago, was significantly slower than code produced by the IBM XL
compiler which used specialized PPC vector instructions. However, the XL compiler is
proprietary and, even if available for free, the license of proprietary tools may or may not
permit redistribution in a form suitable for direct inclusion in Tales.

In addition, an instance of an experiment must decide on a concrete set of dependen-
cies. This can lead to an overspecification, for example including irrelevant constraints
on the dependencies, such as specific versions of libraries. This can be problematic if
repeatability is affected when such constraints are relaxed. To give a fabricated by not
atypical example, imagine an experiment uses a linear algebra library to multiply matri-
ces and specifies that version 1.0.2 of the library should be used. When the experiment
is re-run with version 1.0.2 of the library, the same results are obtained. However, when
version 1.0.3 is used, the results differ. This example shows how altering dependencies
can change scientific results obtained at the application level.

5.5. Data access and Data Quasi-locality

The current implementation of Whole Tale uses a cache (internally called the Data Man-
agement System, or DMS) which brings data from external collections to Whole Tale
resources. It does the relevant transfer when users attempt to open the corresponding
files from inside a Tale. However, different strategies are available and initiating transfers
when a Tale is created is possible. This would result in a quasi locality of data since,
after the initial transfer, the data is local. There are limitations to this type of solution.
One is that data repositories may contain significantly more data than would be feasible
to transfer and store on Whole Tale resources. On the other hand, for many applications
only a small subset of the data in external repositories would be actively used at any
given time. Data access and usage patterns remain an open question which could inform
the viability of particular solutions.
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In the event that Tale frontends and/or HPC workloads run on HPC resources on
which copies of data are already available, the current Whole Tale implementation would
be inefficient, since each file would be transferred once to Whole Tale resources and once
for each Tale frontend instance that accesses the file. Bypassing this mechanism requires
that we develop an alternative solution to the current DMS. The precise details depend
on how such data are exposed on HPC resources. There are two main options. The first
occurs when data are accessible on HPC resources from a POSIX file system. In this
case, the solution consists simply of instructing the container system, if one is used, to
mount the relevant files/directories inside the Tale container. The second option is that
data are available on HPC resources through a non-POSIX interface. In this scenario,
Tale initialization (or HPC task initialization) must invoke the relevant tools to transfer
the files to a locally accessible location on the HPC resource.

6. Conclusions and Future Work

We have attempted to describe the challenges inherent in extending the Whole Tale plat-
form to enable reproducible data-intensive research at scale including frontend respon-
siveness needs, gaps in current middleware design and implementation, network restric-
tions, containerization, and data access. We have provided several examples outlining
possible steps forward for the Whole Tale system in advancing reproducibility for data-
and compute-intensive scientific applications, related to work on the adoption of com-
mon workflow systems and the capture of detailed experiment provenance information
for reproducibility [20,21,22,23,24,25].

The “Tale” specification [14], mentioned at the outset, is designed to capture and
communicate information needed to reproduce the scientific results it contains (at least
contemporaneously), and includes all code, data, libraries, and environment information
(collectively, dependencies) necessary for an experiment to be re-run. However, regener-
ating identical computational results when an experiment is repeated does not necessar-
ily indicate scientific correctness. Rerunning faulty experiments can produce the same
faulty results. The task of relaxing dependencies to a necessary minimum is complicated
by the fact that non-trivial software may require overspecified dependencies due to rea-
sons that are not relevant to the experiment. For example, libraries may themselves have
more or less strict constraints on their dependencies, which are due to code paths that are
not exercised by a particular experiment. It is perhaps important to recognize that the role
of projects like Whole Tale is primarily one of accurate recorders that remove the guess-
work from the task of understanding the context in which the original experimenters
obtained their results. By contrast, the task of ensuring scientific correctness is mainly
left to the scientific community at large. This suggests that, faced with many technical
challenges in supporting the re-executability of complex HPC workloads, a more practi-
cal short term goal might be to focus on enabling the systematic capture of provenance
information, recording the conditions under which experiments were performed. This
instrumentation process would still benefit from access to the interactive environment in
which the experiment is run.

Through its creation of “Tales,” the Whole Tale platform embraces reproducibility
as a form of packaging for transparency. Today, the Whole Tale system can be used to
package data- and compute-intensive research artifacts and provide an interactive en-
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vironment for exploration. The Whole Tale platform could also be extended to enable
researchers to launch interactive environments during the exploratory phase of their re-
search as well which may require providing access to specialized compute resources or
data. Whole Tale can achieve this goal today in the context of running on a single node.
We have also described the more challenging case of capturing information regarding
code, data, and the computational environment via the interactive environment provided
by Whole Tale, including provenance information [25], with the goal of enabling re-
execution for data-intensive workloads at scale.
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[14] Chard K, Gaffney N, Jones MB, Kowalik K, Ludäscher B, Nabrzyski J, et al. Implementing Computa-
tional Reproducibility in the Whole Tale Environment. In: Proceedings of the 2Nd International Work-
shop on Practical Reproducible Evaluation of Computer Systems. P-RECS ’19. New York, NY, USA:
ACM; 2019. p. 17–22. Available from: http://doi.acm.org/10.1145/3322790.3330594.

[15] Kluyver T, Ragan-Kelley B, Pacrez F, Granger B, Bussonnier M, Frederic J, et al. In: Jupyter Notebooks
– a publishing format for reproducible computational workflows; 2016. p. 87–90.

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research 777



[16] Stewart, C.A., Cockerill, T.M., Foster, I., Hancock, D., Merchant, N., Skidmore, E., Stanzione, D., Tay-
lor, J., Tuecke, S., Turner, G., Vaughn, M., and Gaffney, N.I. Jetstream: a self-provisioned, scalable
science and engineering cloud environment. 2015, In Proceedings of the 2015 XSEDE Conference: Sci-
entific Advancements Enabled by Enhanced Cyberinfrastructure. St. Louis, Missouri. ACM: 2792774.
p. 1-8. doi:10.1145/2792745.2792774.

[17] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw, Victor Ha-
zlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, Nancy Wilkins-
Diehr XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering, vol.16, no. 5,
pp. 62-74, Sept.-Oct. 2014. doi:10.1109/MCSE.2014.80

[18] Foster IT. Globus Toolkit Version 4: Software for Service-Oriented Systems. J Comput Sci Technol.
2006;21(4):513–520. doi:10.1007/s11390-006-0513-y.

[19] Garreau M, Faurot W. Redux in Action. 1st ed. Greenwich, CT, USA: Manning Publications Co.; 2018.
[20] Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al. The Galaxy platform for
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