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Preface 

Welcome to the First Singapore-Cybersecurity R&D Conference (SG-CRC 2016)! This 

inaugural conference brings together researchers from across the globe engaged in ad-

vancing the state of the art in the broad area of cyber security. The conference is spon-

sored by the National Research Foundation (NRF), Singapore, and organised jointly by 

the Singapore University of Technology and Design and the National University of 

Singapore. 

A total of 22 submissions were received in response to the call for papers. Each 

submission was reviewed by at least two members of an international programme 

committee. Based on the reviews, six papers were selected for presentation under the 

“Regular” paper category and seven in the short paper category. In addition to research 

paper presentations, leading researchers in cybersecurity have been invited to deliver 

a keynote address and make special presentations. The conference programme also 

includes industry tools presentations, panel discussions, and a poster session. 

The paper titled “Image Region Forgery Detection: A Deep Learning Approach” 

focuses on the detection of tempered images. The technique proposed is independent of 

image format, e.g., JPEG. The proposed technique uses a two-stage deep learning ap-

proach to learn complex features of the image, in a variety of formats format. For JPEG 

images 87.51% tampered region localisation accuracy was obtained while for TIFF 

images the localisation rate was 81.91%. 

Android malware is the focus of “Q-Floid: Android Malware detection with Quan-

titative Data Flow Graphs.” This paper moves beyond the conventional signature-based 

malware detection techniques by using a more quantitative data-flow based technique 

applied to system entities such as processes, files, and sockets. The proposed approach 

obtained a malware detection rate of 93% for variants of known malware and up to 

84% for new malware families. 

“Cyber and Physical Access Control in Legacy System Using Passwords” address-

es the issue of managing a large number of passwords by humans. A visual cryptog-

raphy technique is proposed that allows the storage of cipher texts of passwords on 

mobile phones and decrypt them on demand. The proposed approach allows a simple 

though effective solution to the problem of access control using passwords. 

“Data Driven Physical Modeling For Intrusion Detection In Cyber Physical Sys-

tems (CPS)” proposes a machine learning-based technique for intrusion detection.  The 

proposed technique quickly detects attacks at the physical process layer. The technique 

was applied on a replicated version of a modern water treatment facility and found to 

be fast, scalable, robust to noise, and exhibiting a low false positive (FP) rate with high 

precision and recall. 

A novel approach for detecting multi-point attacks in a CPS is proposed in “De-

tecting Multi-Point Attacks in a Water Treatment System Using Intermittent Control 

Actions.” The technique makes use of control actions that are not part of the standard 

control algorithms implemented in the controllers. Instead, these control actions are 

executed on selected components to monitor the system process. The strengths and 

limitations of the approach were assessed experimentally in an operational water treat-

ment plant. 

 v



 

Challenges in setting up Man-In-The-Middle attacks are the focus of “Attacking 

Fieldbus Communications in ICS: Applications to the SWaT Testbed.”  Attacks were 

successfully launched on fieldbus communications in a working water treatment plant. 

In such attacks, the attacker manipulates or replaces sensor data as reported from the 

field devices to the control components. The efficacy of the proposed framework for 

launching attacks is demonstrated experimentally where an adversary can intelligently 

design and launch attacks that remain undetected for a typical bad-data detection 

mechanism. 

Seven short papers focus on the following areas: Directed-Tree-Transitive Signa-

ture scheme, large scale collection of information based on Juice-filming attacks, so-

cial-engineering attacks based on telephones, privacy and data aggregation, simulation 

of cyber attacks, steganography in the context of ECG data, and file classification. A 

student paper explores the idea of identifying hardware via sensor fingerprinting in a 

CPS. An experiment to evaluate the proposed method for hardware tampering revealed 

high detection rate when applied to two water level sensors in an operational CPS. 

The conference also contains updates from seven projects funded by NRF under 

the National Cyber-security Research (NCR) program. These projects cover various 

themes such as software security, cyber-physical system security, mobile security and 

formal verification. 

The success of this conference is due to the participation and contribution of a 

large number of people. First, we thank the many researchers who spent time in writing 

and submitting to this inaugural SG-CRC. Thanks to members of the Steering and Pro-

gramme Committees for assisting and advising on the details of conference planning 

and completing on time the important task of paper reviews. Thanks to members of the 

organising committee who exhibited total dedication and commitment to make a suc-

cessful conference. Last, but not least, our sincere thanks and appreciation to NRF and 

the staff who originated the idea of SG-CRC and provided constant support at all stages 

of organising the conference. 

 

With best wishes for a successful conference, yours sincerely, 

Aditya Mathur, Conference Co-Chair 

Professor, Head of Pillar ISTD, and Centre Director iTrust 

Singapore University of Technology and Design 

Singapore  

 

Abhik Roychoudhury, Co-Chair 

Professor and Vice Dean, School of Computing 

National University of Singapore 

Singapore 
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Image Region Forgery Detection: A Deep

Learning Approach

Ying Zhang a,1, Jonathan Goh a, Lei Lei Win a and Vrizlynn Thing a

a Cyber Security & Intelligence Department,
Institute for Infocomm Research, Singapore

Abstract. In digital forensics, the detection of the presence of tampered images is

of significant importance. The problem with the existing literature is that major-

ity of them identify certain features in images tampered by a specific tampering

method (such as copy-move, splicing, etc). This means that the method does not

work reliably across various tampering methods. In addition, in terms of tampered

region localization, most of the work targets only JPEG images due to the exploita-

tion of double compression artifacts left during the re-compression of the manip-

ulated image. However, in reality, digital forensics tools should not be specific to

any image format and should also be able to localize the region of the image that

was modified.

In this paper, we propose a two stage deep learning approach to learn features

in order to detect tampered images in different image formats. For the first stage,

we utilize a Stacked Autoencoder model to learn the complex feature for each indi-

vidual patch. For the second stage, we integrate the contextual information of each

patch so that the detection can be conducted more accurately. In our experiments,

we were able to obtain an overall tampered region localization accuracy of 91.09%

over both JPEG and TIFF images from CASIA dataset, with a fall-out of 4.31% and

a precision of 57.67% respectively. The accuracy over the JPEG tampered images

is 87.51%, which outperforms the 40.84% and 79.72% obtained from two state of

the art tampering detection approaches.

Keywords. Image forgery detection, region localization, deep learning, feature

learning

1. Introduction

In the digital era, there are an enormous volume of forged images on social media plat-

forms such as Facebook or Flickr. The distribution of manipulated images can be shared

very easily and can be used to mislead viewers from the truth. This may result in very

serious consequences so the authenticity of digital images is urgently needed.

While there are a few solutions to automate image tampering detection, some of

these methods are specific only to the JPEG file format [5,14,6,4,24,20,23] where they

detect the tampered region based on artifacts left by multiple JPEG compressions. Other

solutions [1,12,7] also identify features based on a specific tampering method such as

1Corresponding Author: Ying Zhang, Cyber Security & Intelligence Department, Institute for Infocomm

Research, Singapore; E-mail: zhangy@i2r.a-star.edu.sg

Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016
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copy-move where objects in the image are copied and pasted to hide or insert object. In

these works, the duplicated parts of the image are discovered by invariant features.

There are a few techniques to automate image tampering detection. [10,19,11] deter-

mines the authenticity of the image where it is identified either as authentic or tampered

[10]. However, these techniques do not identify the tampered region. Hence, a more so-

phisticated approach to obtain the tampered regions is required as this removes the need

to manually identify suspicious regions. Currently, there are a few techniques to identify

tampered regions. [5,14,6,4,24,20,23] exploits the artefacts left by multiple JPEG com-

pressions to detect the tampered regions. However, these techniques are applicable only

to the JPEG formats. Camera based methods [2,17] have also been explored where the

detection is based on demosaicing regularity or sensor pattern noise where the irregu-

larities of the sensor patterns are extracted and compared for anomalies. However, these

methods are constricted to specific assumptions. For example, [16] works on the assump-

tion that the image comes from a camera with the presence of Color Filter Array while

[9] assumes that there is a presence of sensor patterns pre-obtained from specific camera

models. Other methods to detect tampered regions also includes local descriptors. These

methods [1,12,7] identify features that identify similar objects in the image which were

copied and pasted to hide or insert object. These works are not applicable to tampering

techniques such as splicing where objects are copied from one image and inserted into

another.

In this paper, we address the above problems by proposing a two stage hierarchy

feature learning approach for image tampered region detection. Deep learning provides

a novel approach to the identification of features for tampered regions, which inherently

represent characteristics of the tampered regions appearing in the dataset [18,21]. Such

learning is data-driven and can be applied to images from any category of tampering. It

greatly saves us time and energy to find new features from a set of images. In this work,

we show that a deep learning Stacked Autoencoder (SAE) model can be used for feature

learning for characterizing tampered regions. At the first stage, our experiments have

shown that features of tampered regions are not only more effectively represented but

it also results in a lower feature dimension. At the second stage, we provide contextual

information by including neighboring patches to further improve the detection results. To

the best of our knowledge, this work is the first work that utilises deep learning approach

for feature learning in the field of tampered region localization.

In the following, Section 2, we will introduce our proposed method. Experimental

results are shown in Section 3 and Section 4 concludes the paper.

2. Proposed Method

2.1. Basic Features Generation

As we are looking into tampered characteristics, we are unable to use pixels dependency

as per traditional deep learning object recognition models [13]. Hence, we have to de-

vise some basic features for the deep learning to learn and transform the initial features.

We first converted the image into a YCrCb color space as studies [22] have shown that

this color space is known to be more sensitive to tampering artifacts. We then segmented

the image into 32 by 32 patches. Finally, we applied a 3 Level 2D Daubechies Wavelet

Y. Zhang et al. / Image Region Forgery Detection: A Deep Learning Approach2



Figure 1. Stacked Autoencoder Architecture. The 1st, 2nd, 3rd hidden layers are for unsupervised learning with

the 4th layer being a supervised classification network for feature fine tuning.

decomposition to each YCrCb component of the patches. We then obtained the standard

deviation, mean, and the sum for each of the approximation, horizontal, vertical and di-

agonal coefficients to obtain 90 features. In addition, we applied Daubechies orthogonal

wavelets D2-D5 to obtain a total of 450 basic features.

2.2. Two Stage Training Hierarchy for Tampering Detection

Based on the above raw input, we derive a complex feature with better discriminative

ability to distinguish the tampered patch from the authentic ones. To achieve this, we

propose a two-stage training hierarchy as follows. For the first stage, we utilize a SAE

model to learn the complex feature for each individual patch. For the second stage, we

integrate the contextual information of each patch so that the detection can be conducted

more accurately.

2.2.1. 1st Stage: Stacked Autoencoders for Complex Feature Learning

At the 1st stage, we use a SAE for complex feature learning. A SAE is a neural network

that is built by stacking multiple layers of basic autoencoders together. The outputs of

each layer are treated as inputs to the successive layer. On top of the SAE, there usually

comes with an additional MLP layer to further tune its parameters. The overall structure

is shown as in Fig. 1 with three hidden layers plus a MLP layer. A SAE is known to be

able to learn features that can represent its input. Typically, at the 1st layer, it learns the

first order features. At the 2nd layer, it learns the second order feature which corresponds

to the patterns of the first order features and so forth . Consequently, high layers of

the SAE tends to learn higher-order features and have very good discriminative power.

Consider a SAE with parameters W l ,bl denoting the parameters for lth autoencoder.

Output of the lth layer is ae(l) with its input zl . Then the encoding of the input feature

vectors over stacked autoencoders is performed by the encoding of each layer forwards

as follows:

ae(l) = f (z(l)) (1)

z(l+1) = W (l)ae(l) +b(l) (2)

Y. Zhang et al. / Image Region Forgery Detection: A Deep Learning Approach 3



where f (·) is an activation function and a common choice is the sigma function:

f (x) =
1

(1+ exp(−x))
(3)

The decoding of SAE is performed in a reverse way, i.e., by an decoding of each layer

backwards:

ae(n+l) = f (z(n+l)) (4)

z(n+l+1) = W (n−l)ae(n+l) +b(n−l) (5)

In this aspect, if we have a SAE with n layers, then the transformed complex feature y is

encapsulated as the activation of the last layer:

y = ae(n) (6)

To obtain the parameters of the SAE, we use the greedy layer-wise training [3]. Specif-

ically, for the first layer, we use the raw input as introduced in Section 2.1 to obtain the

parameters W (1),b(1). Then the activation output is used as the input of the second layer

to obtain the parameters W (2),b(2). To obtain parameters more accurately, at the top of

the second layer, we additionally add a layer each two nodes indicating either tampering

or authentic and unroll and trained the whole architecture as a MLP [3]. So that for a new

incoming image patch, we can represent them using Eq. (6).

2.2.2. 2nd Stage: Context Learning for Tampered Regions

Since tampered regions usually span across a few patches and would consist of different

shapes and sizes, so the contextual information can additionally indicate if a patch is tam-

pered or authentic. Therefore, for each patch, we introduced another layer to integrate the

contextual information. To be specific, we firstly divide the image into non-overlapping

32 by 32 small patches. For each patch p, we determine its contextual neighborhood, say

N(p), and we assume that there should exist a consistent feature pattern among patches

within this neighborhood.

N(p) = [y0
p,y

1
p,y

2
p, ...,y

k
p] (7)

where y0
p is the complex feature learnt by the introduced SAE from the patch p. And

yi
p, i ≥ 1 is the feature of its ith neighboring patch. Through this representation, the rela-

tion among spatially-close patches is preserved. The final prediction label is determined

by an average value over its neighboring patches.

Prob(p) =

{
1 1

k+1 ∑yi
p∈N(p) MLP(yi

p)≥ α,

0, otherwise.
(8)

where MLP(·) is the probability value predicted by the MLP trained in the first stage and

α is an threshold to binarize the map. In this paper, α is taken as 0.5, a midpoint of the

maximal probability. For the neighborhood selection, we choose k = 3. That is to say,

for each patch, we include its right, bottom and bottom-right three patches, position of

each of which overlaps with the patch itself by half patch size horizontally, vertically and

both, respectively.

Y. Zhang et al. / Image Region Forgery Detection: A Deep Learning Approach4



3. Experimental Results

3.1. Data Setup

One of the major obstacles in image region localisation is the lack of an open source

database available for benchmarking. The Columbia Image Splicing Database [15] and

the CASIA database [8] are the only Image Forgery database available to date. However,

these databases only denote whether the images were tampered or not and do not provide

ground truths of the tampered regions. In order to overcome this obstacle, we manually

labelled 1000 images randomly selected from the CASIA 1 and 2 databases. For the

task of labelling the ground truth, we referred to their published instructions [8] on how

the images were tampered and labelled the ground truths accordingly. Fig. 2 shows an

example of the tampered image and the manually labelled ground truth respectively.

(a) Tampered image (b) Labelled ground truth

Figure 2. Example of tampered region and ground truth.

For training using the SAE strategy, we randomly selected 770 images for patch level

training. There are totally 36439 tampered patches and 63561 authentic patches. The

data is mildly imbalanced as the tampered regions are typically smaller than the rest of

the authentic regions. However, we show in our experimental results that the imbalanced

training data does not affect the final overall accuracy.

The remaining 230 unseen images (where there are 135 authentic images and 95

tampered images) were then used for validating our proposed method.

3.2. Training

Using the training architecture discussed in Section 2, in the first layer, we learnt our

features using a SAE with 3 hidden layers. Hence, the network’s input is 450 dimensions

and the number of neurons in the SAE’s remaining layers are 500-256-128-2. At the

second layer which integrates contextual features, the average of the MLP values of the

3 half-overlapped neighbouring patches are further used to calculate the final prediction

value.

The SAE training was performed using a Core i7 PC with 24GB RAM in a Matlab

environment. The total training time was 13 hours based on the amount of training data.

3.3. Evaluation

Utilising the proposed structure, we generated the detected tampered regions for each of

the 230 unseen images. As our model uses patches as inputs, we evaluated our proposed

method based on patches as well. Since the ground truth is labelled at pixel-level, so

Y. Zhang et al. / Image Region Forgery Detection: A Deep Learning Approach 5



the corresponding grids will be labelled with the same labels, based on which all the

afterwards evaluation are conducted. To be specific, the images are segmented into 32

by 32 grids, overlapped with the ground truth and labeled accordingly. Fig. 3 shows an

example, the left figure is the original pixel-based ground truth while the right one is the

patch-based ground truth. Based on this, there are 4 possible scenarios among the results:

Figure 3. An illustration of patch-wise ground truth.

1) if both the output and the ground truth are labelled as tampered (in white color), we

take the result as a True Positive (TP). 2) if the output grid is predicted as tampered

(in white color) but the ground truth grid is labeled as authentic (in black color), the

result is a False Positive (FP), 3) if the ground truth grid is authentic, but the output grid

is predicted as authentic, the result is a False Negative (FN), 4) if both the output and

ground truth label of a grid are authentic, the result is a True Negative (TN). Based on

the above, we evaluate the results using the following criteria:

Accuracy =
T P+T N

T P+FP+T N +FN
(9)

Fallout =
FP

FP+T N
(10)

Precison =
T P

T P+FP
(11)

For accuracy and Precison, the higher the values are, the better the classifier performs.

For the Fall-out, the lower the value is, the better the classifier is. The statistics of the

above criteria are summarized in Table 1. While our Fall-out is kept to a minimal of

4.31%, our precision is at 57.67%, which indicates that our proposed method can well

predict the label of individual patch. As our method is dependent on patches, the detected

tampered regions may not necessarily cover the exact parts of the ground truth grids and

this results in more false positives which may effect the value of precision. However, this

is can be solved by some image based post processing techniques. One possible solution

is to leverage image segmentation in which way the labels of the segments are propagated

from the corresponding patch labels. Therefore, we can effectively recover the tampered

object since the localized region have already been identified.

Since the CASIA dataset contains both JPEG and TIFF images, and our method does

not depend on specific image format, we further investigate the performance for each

of them. As there is no authentic image with TIFF format, we reported the results for

Y. Zhang et al. / Image Region Forgery Detection: A Deep Learning Approach6



Table 1. Performance Matrix for all test images.

Fall-out 4.31%

Precision 57.67%

Overall accuracy 91.09%

(a) Input TIFF image 1. (b) Ground truth of (a). (c) Detected results.

(d) Input TIFF image 2. (e) Ground truth of (d). (f) Detected results.

Figure 4. Detection results for TIFF image examples from CASIA 2 database.

tampered images only. Among the 95 tampered images, there are 51 JPEG and 44 TIFF,

with results shown in Table 2. From the data, we can see that the performance for JPEG

and TIFF are mostly similar, which indicates that our proposed method has the capability

to be applied to various format images. As illustrated in table 2, the overall accuracies are

consistent for each image format at 87.51% for JPEG and 81.91% for TIFF respectively.

In addition, the fall-outs are kept to a minimal of 7.09% and 4.39% for JPEG and TIFF,

separately.

Table 2. Performance Matrix between Tampered JPEG and TIFF images

JPEG TIFF

Fall-out 7.09% 4.39%

Precision 59.43% 80.65%

Overall accuracy 87.51% 81.91%

To visualize the results, we provided some examples in Fig. 4 and Fig. 5. Fig. 4 in-

cludes two examples of TIFF images while Fig. 5 illustrates two JPEG examples. Within

each figure, the first column is the tampered images, the second column is the ground

truth and the last column is our detection results. Note that for the detection results, we

plot them in a grayscale version instead of binary values just for better visualization pur-

pose. But all the statistics reported in the above table are based on binary label (i.e., either

tampered or authentic). As shown in the these examples, our proposed method is capable

of identifying the tampered regions accurately.
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(a) Input JPEG image 1. (b) Ground truth of (a). (c) Detected results.

(d) Input JPEG image 2. (e) Ground truth of (d). (f) Detected results.

Figure 5. JPEG images from CASIA 2 database

3.4. Comparison with existing work

The above provides a results overview of our proposed method. In this section, we eval-

uate our method against existing works. Since JPEG image is the most popular im-

age format today and majority of the work which localize tampered region such as

[20,14,6,4,24] are only applicable to JPEG images, we compare our work with two ex-

isting studies in JPEG domain. Both of these works exploit the double compression arte-

facts left after tampering. The first method is proposed by Thing et al. [20] which lever-

ages the double quantization effect among JPEG images for tampering detection. We

choose it as it claims to be robust in practical applications even with a relatively limited

or small training data set available. Additionally, this work is reported to perform well

for CASIA dataset, so we believe it to be a good baseline. The second one is proposed

by Bianchi et al. [4] based on an improved and unified statistical model characterizing

the artifacts that appear in the presence of both A-DJPG or NA-DJPG.

Table 3. Detection accuracy comparison with existing works among all JPEG images.

Author Accuracy

Bianchi et al. [4] 40.84%

Thing et al. [20] 79.72%

Proposed Method 87.51%

The experiments are conducted among the all JPEG images. For [4], we obtained

their codes from the authors website. As for [20], we contacted the authors to obtain their

codes for evaluation on our database. However, these existing methods are pixel based

as compared to our proposed method which is patch base. Hence, in order to have a fair

comparison, we took two average score from the corresponding patch in the existing

method. Using the same 32 by 32 patch wise evaluation, we obtain the accuracy as shown

in Table 3.
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From the results, we can see that our proposed method achieves the highest accuracy

at 87.51%, which outperform the second best by Thing et al. [20] by 7.79% and outper-

form the work by Bianchi et al.[4] by around 46.67%. In [4], the output of their algorithm

is a probability map corresponding to the probability of the region being double com-

pressed. Our results illustrate two main drawbacks on this method; firstly, the tampered

regions need to be manually identified since the authors did not provide a threshold for

detecting the regions. Secondly, the tampered regions are not accurately detected on our

test database.

(a) (b)

(c) (d) (e)

Figure 6. Comparison of detected tampering region, Example 1. (a) Input JPEG image, (b) Ground truth

(white region is tampered), (c) results by Thing et al. (d) results by Bianchi et al. (e) results of our method.

We visually compare the detected regions with the existing works [20,4] as illus-

trated in Figs. 6 and 7. From the figures we can see that our proposed methods can de-

tect the tampered region accurately. Furthermore, the method by [4] requires a threshold

to be set in order to automatically identify the tampered region. Based on the table, we

can observe that our proposed method obtained higher accuracy over existing works on

the same test set. Furthermore, the advantage of our proposed method is that it is also

applicable to both JPEG and TIFF image formats.

4. Conclusions

In this paper, we propose a deep learning approach for feature learning used to char-

acterize tampered regions across multi format images. Our experiment results demon-

strate that the proposed method detects tampered regions well with an overall accuracy

of 91.09%. As future work, we will include other image transforms such as DCT as the

base feature input. We will also investigate if other deep learning architectures such as

Deep Belief Networks will improve the performance of feature learning. In addition, we

will continue our efforts to manually label more ground truths from other datasets such

as the Columbia Image Splicing dataset [15] as it also includes BMP file formats. This

Y. Zhang et al. / Image Region Forgery Detection: A Deep Learning Approach 9



(a) (b)

(c) (d) (e)

Figure 7. Comparison of detected tampering region, Example 2. (a) Input JPEG image, (b) Ground truth

(white region is tampered), (c) results by Thing et al. (d) results by Bianchi et al. (e) results of our method.

will allow the deep learner to learn more characteristics of tampered regions and ensure

better accuracy for tampered region localization across different image file formats.
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Abstract. Due to the rapid proliferation of Android malware, conventional anti-

malware signature-based solutions face significant challenges to battle against cy-

bercrime. In this work, we propose to use quantitative data flow profiles between

system entities such as processes, files and sockets to detect malicious applications

on Android, an approach which has been shown to be promising for detecting Win-

dows malware. Our approach uses features based on graph-theoretical metrics as a

basis for the analysis. Those features are trained through multiple machine learning

algorithms obtaining malware detection rates of up to 93% for variants of known

(trained) families and detection of new families of up to 84%.

1. Introduction

The market penetration of the Android operating system for mobile devices (with a 78%

of the global market [16]), the amount of sensitive information stored in and processed

by mobile devices, and the lack of security awareness of users downloading mobile apps,

have attracted cyber-criminals to the Android platform, leading to an alarming prolifera-

tion of Android malware. Recent reports [24,17,12,27] coincide to estimate that the vast

majority (about 98%) of mobile malware is designed to compromise Android. Moreover,

a recent study [2] revealed that 97% of the top 100 paid Android Apps and the top 20

most popular free apps have been used to create trojans.

Application markets offer several mobile anti-virus solutions. Most of them operate

by performing static analysis on information such as the package name and the applica-

tion manifest. This type of anti-virus solutions faces limitations, such as the Android’s

sandboxing architecture, which does not allow apps installed by the user (including anti-

virus apps) to perform scanning of other apps during execution, preventing to detect ma-

licious components. Furthermore, they base their classification decision on static prop-

erties and thus by definition are not capable of anticipating changes of an app at run-

time, i.e. through run-time deferred loading of code [19]. The limitations of such static

detection techniques are emphasized by studies [11] which showed that by making small

changes to the code of a malicious app and its manifest file one can successfully bypass

the top 10 Android anti-virus.

The vast majority of malicious apps on mobile devices are trojans, which hijack a

legitimate app and implant malign code into them. Malign apps thus often have a dual
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behavior because apparently they are benign but internally they hide a malicious compo-

nent out of the user’s perception. Such dual behavior usually does not reflect in changes

to the manifest or other statically observable properties as it often is realized through

run-time loading of malign code. Traditional (static) anti-virus approaches are thus often

challenged by malware that hijacks benign apps.

A solution against such dual-behavior malware is dynamic behavior analysis, pro-

posed by the research community [11,4,1,9,28,21] as an alternative to static solutions.

The core idea of behavior-based detection is to discriminate malign from benign apps

based on information gathered from executing the samples. This way, such techniques

are more promising for coping with malware that changes its behavior at run-time.

In this work, we leverage dynamic analysis to capture the runtime behavior of an

app. In contrast to related work [11,4,1,9,28,21], we do not directly use this captured

behavior in terms of system or function calls, but abstract from it in form of so-called

quantitative data flow graphs (QDFGs, [29]). QDFGs model program behavior as (quan-

titative) data flows between system entities such as processes, files and sockets, where

nodes correspond to entities, and edges to the respective data transfers between them.

The goal of our approach is thus to define properties of QDFGs that are characteristic

for known malign or benign behavior and that can be used to correctly classify unknown

apps.

To this end, we compute a wide range of metrics on QDFGs of known malware

and goodware and use them as features for training supervised machine- learning classi-

fiers. We then used the obtained classifiers to evaluate unknown samples. A prototypical

implementation of our approach is evaluated from different perspectives (Section 4).

The core assumption behind the use of QDFG metrics for malware detection is that

there exists a significant difference between data flow behavior of malign and benign pro-

grams that can be leveraged for discrimination. While this assumption already has been

shown to hold for Windows malware [30,29], its validity has not yet been investigated

for Android systems.

In sum, we tackle the problem of efficiently and effectively detecting Android mal-

ware, in particular dual-behavior malware, from a behavioral perspective. The contribu-

tions of our research thus are: a) We are the first to explore the application of QDFG

analysis for detecting malware in Android; b) Our proposal achieves good results in

comparison to closely related work in terms of efficiency and detection rate c) We show

that, in contrast to similar experiments in Windows, achieving low false positive rates in

Android malware by using system-call based QDFG graphs is challenging and requires

further research.

2. Background

2.1. Android Architecture

The Android platform is organized in five different layers: applications, application

framework, runtime and libraries, and kernel [7]. The first layer is composed of prein-

stalled applications, such as the ones developed by Google and device manufacturers, as

well as applications installed by users.

The second layer offers support to developers performing common tasks, like ac-

cessing elements of the user interface and shared information, or providing message ex-
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change among application components. This layer enables interaction among elements

in the application layer and the runtime layer.

The runtime layer has core libraries and the Dalvik Virtual Machine (Dalvik VM).

This VM was specially developed to adjust to conditions in mobile and embedded envi-

ronments, like low memory and processing speed. Dalvik interacts with low-level native

code using the Java Native Interface (JNI). The process responsible of starting services

and applications on any Android device is Zygote; to do so, the Zygote creates a copy

of itself, including a new Dalvik VM with all the libraries used by the Android frame-

work. This element is of particular interest because the proposed system needs to learn

of any transfer of information among applications, and this may be done by monitoring

Zygote. Core services are those that form the underlying operating system environment

and native Android components. The libraries support low-level functions required by

the Android framework. Finally, the kernel layer is based on Linux.

2.2. Malware Analysis

Malware experts study malicious applications to determine the goals of these applica-

tions and their inner-workings. To this end, researchers use two types of techniques: static

and dynamic analysis. Static analysis techniques study source code or binary representa-

tions of code, without running it. Dynamic analysis techniques, on the other hand, study

the actual behavior of a sample while it is running in a controlled environment. Given

that this work falls in the dynamic analysis category, we briefly recap related work in the

area.

2.2.1. Dynamic analysis by monitoring function calls.

Functions and libraries encourage code reuse and help developers by freeing them from

some implementation details. They are important for code analysis too, because they

allow researchers to build an abstract representation of actions that may lead to a better

understanding of a program’s behavior.

In dynamic analysis, it is possible to track program behavior by monitoring system

calls that support program requirements, and system call interposition is one way of

achieving this. Traditional operating systems run programs in one of two modes: kernel

or user, but only programs running in kernel mode have access to protected resources

and the system. For example, a program running in user mode cannot create or open a

file by itself, operating systems provide a system call interface to support this kind of

requirements, and user-level programs must use this interface to request an operating

system to execute privileged operations.

Malware programs that run at user level also have to use the system call interface

to request privileged operations. Therefore, it is possible to use this interface to moni-

tor calls and study application behavior. System tools, like strace, allow monitors to

capture function calls from analyzed programs and record them in a log file for analysis.

Malware programs that run at the kernel level can therefore evade this type of monitoring.

The result of this type of monitoring is a trace of all function calls; i.e. a sequence of

functions that were invoked by the program that is being analyzed and the parameters of

the call. Related proposals in the literature use such traces to build a semantic representa-

tion of malware behavior. Christodorescu et al. [5] convert traces of functions in graphs

and compare them for classification purposes , Xu et al. [31] propose a method for identi-
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Figure 1. Overview of the classification mechanism.

fying polymorphic variations of known threats by comparing traces of function calls, and

Wuechner et al. [29] detect Windows malware based on data-flow graphs that represent

system calls. Some proposals have implemented similar techniques for Android [4], [10],

and for intrusion detection in other platforms [14,18].

3. Approach

Our approach extends previous work in dynamic analysis for Android [4], [10], [28] in

that we propose a different technique to identify malicious programs, i.e. classification

based on volumes of transferred data between system entities. This idea was already

successfully applied to Windows environments [29], [30] but has not been evaluated in

Android yet.

For our approach we leverage dynamic analysis to monitor and log data transfers

between entities, (processes, files, and sockets), in Android systems. Using the captured

behavior of several executed known benign and malign apps we then create the respec-

tive QDFGs, compute characteristic metrics on them, and use them as input for training

supervised machine learning classifiers to later classify unknown samples.

The intuition for the utility behind this proposal is that malware apps are likely to

have higher rates of intra-system data transfers than goodware, as a consequence of data

flow intensive malign behavior like messages or file transfers to leak user data to remote

servers, download malicious code, or listen to SMS messages.

3.1. Overview of the Proposal

Data transfers can be tracked at the kernel level, by monitoring requests involving data

exchange between processes, and to and from files and sockets. Android uses the Zygote

process to support access of the Dalvik virtual machine processes, including applications,

to system resources. Thus, capturing actions from the Zygote process, at kernel level,

also allows capturing and logging actions from applications.

The resulting log is later processed and cleaned to build the corresponding QDFGs.

These graphs are suitable to represent interactions between processes, files, and sockets,

as well as how much data they carry. The information of the QDFGs is then synthesized

in features (i.e. characteristics that allow separating malign from benign QDFGs).

Since the values of these features are different for different applications, it is not fea-

sible to manually define thresholds and useful features combinations to form an effective

classification model. To address this issue, we instead use supervised machine-learning
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Figure 2. QDFG for one process (P123) and its flows with other entities.

algorithms, trained on features extracted from QDFGs of known malign and benign apps.

Figure 1 describes the overall process.

3.2. Data Capture and QDFG generation

We used images of five different versions of Android (Froyo , Gingerbread, Honeycomb,

Ice Cream Sandwich and Jelly Bean MR1) from the Android-x86 project [15] to create

the data collection environment. A shell running strace monitors syscalls from the

Zygote process and logs them.

The relevant syscalls are those that induce a data transfer between system entities

like processes, files, or sockets. These include:

• Process creation and duplication syscalls: clone(), fork(), dup().

• Instance creation syscalls: open(), socket().

• Instance removal syscalls: close().

• Information transfer syscalls: read(), readv(), pread(), pread64(),

write(), writev(), recvmsg(), sendto(), recvfrom().

• Communication control system: pipe(), getsockname(), connect(),

listen(), accept(), execve().

The key idea behind the QDFG generation is to interpret intercepted calls as data

flows between system entities. Nodes in a QDFG represent system entities and flows

represent data transfers between nodes. Flows are reflected in the creation or update of

edges between nodes of a QDFG that model the respectively involved system entities.

As all system calls described above, directly or indirectly, imply a data flow between two

system entities (nodes), a QDFG evolves by creating edges between the respective nodes.

Weights of the QDFG are thus obtained by accumulating the data flows of the associated

monitored system calls. Figure 2 shows an example of a QDFG for one process and its

interaction with other system entities.

In our prototype we constructed QDFGs based on the initial 5 minutes of appli-

cation activity after starting up. In order to stimulate application activity, we also used

the UI/Application Exerciser Monkey 1, an application for developers that automatically

generates pseudo-random sequences of events (such as mouse clicks and touches) to

simulate user activity.

1http://developer.android.com/tools/help/monkey.html
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3.3. Feature extraction

After graph generation, we focused on identification of features, i.e. metrics, that capture

behavioral characteristics in terms of differences between QDFGs of known malign and

benign apps. In this section we discuss two sets of features. The first set is focused on

metrics that characterize how a process shares information with all other entities of a

system. The second takes a more simple viewpoint: it aims only at counting how many

files and sockets are read/write from/to a process and how much data is transferred in the

process.

3.3.1. Feature set 1: Process Analysis.

The first set of features is inspired by previous work on QDFG-based malware detection

for Windows [30]. This approach assumes that malware applications and benign applica-

tions behave differently; malware actively look for user data to send it to remote servers,

increasing the volume of data that flows between processes in a particular way. The fea-

tures on this set can be categorized into three groups: direct, global, and graph-relation.

Direct Features. Features in this group measure direct interactions of a process. The

extraction procedure analyzes processes as single entities, looking for actions over files

and sockets, and ignoring interactions with other processes. Figure 2 shows a graph that

represents direct interactions between a process and other entities in a system. This group

includes the following features:

Feature Description

DIRECT QDF Amount of data (Bytes) shared by the process

DIRECT FROMFILES QTY Quantity of input files

DIRECT FROMFILES QDF (%) Data read from files / Data shared by the process

DIRECT FROMSOCKETS QTY Number of input sockets

DIRECT FROMSOCKETS QDF (%) Data read from sockets / Data shared by the process

DIRECT TOFILES QTY Number of output files

DIRECT TOFILES QDF (%) Data written to files / Data shared by the process

DIRECT TOSOCKETS QTY Number of output sockets

DIRECT TOSOCKETS QDF (%) Data written to sockets / Data shared by the process

Global Features. Features in this group measure direct and indirect interactions of

a process, that means that activities of descendant processes are considered part of the

activities of a parent process. All features in this group include activities generated by a

parent and its descendants (p&d). They are:

Feature Description

CHILD PROCESSES QTY Number of descendant processes

GLOBAL QDF (Bytes) Data shared by the process and their descendants

GLOBAL FROMFILES QTY Number of input files (p&d)

GLOBAL FROMFILES QDF (%) Data read from files (p&d) / Shared Data (p&d)

DIRECT FROMSOCKETS QTY Number of input sockets (p&d)

DIRECT FROMSOCKETS QDF (%) Data read from sockets (p&d) / Shared Data (p&d)

DIRECT TOFILES QTY Number of output files (p&d)

DIRECT TOFILES QDF (%) Data written to files (p&d) / Shared Data (p&d)

J.H. Castellanos et al. / Q-Floid: Android Malware Detection with Quantitative Data Flow Graphs18



DIRECT TOSOCKETS QTY Number of output sockets (p&d)

DIRECTED TOSOCKETS QDF (%) Data written to sockets (p&d) / Shared Data p&d)

Graph-relation Features. Features in this group are inspired by metrics used for

social network analysis as proposed in [30] that we adjusted for our Android context.

Features in this group include:

• Closeness Centrality This feature measures how “close” a node is to other nodes

in a graph. For a node in a QDFG, this value represents interactions among pro-

cesses; a value closer to 1 represents more interactions. The expected value for

benign applications is high as they usually have multiple components that interact

to achieve a common goal, while the expected value for malicious application is

low as they usually have multiple independent components.

• Betweenness Centrality This feature measures the centrality of a node in a graph,

meaning that the node is often part of a shortest path between two any other nodes.

As before, this metric allows discriminating processes based on their behavior

with other system entities.

Dataset and Machine Learning Algorithm Selections. Given that different samples

spawn a variable number of child processes, the aforementioned analysis would generate

a non-constant number of features per sample. Although in general there are algorithms

able to cope with this, most of the supervised algorithms provided by Weka [26], require

a constant number of features for all samples.

Therefore, the goal is to have the same number of features per sample so they can be

used to train a machine-learning algorithm. To achieve this goal, several datasets were

generated. Figure 3 illustrates the context used to create different datasets; the first gener-

ation process corresponds to a Zygote (the starting process), second generation processes

are children of the first generation process, third generation processes are children of any

second generation process, etc.

Figure 3. Hierarchical order of processes.

The following datasets were considered: Features of the two more active second

generation processes, the three more active second generation processes, and the five

more active third generation processes. For these features, if the number of processes

was less than the maximum (2,3,5), the feature vector was artificially completed with 0s.
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3.3.2. Feature set 2: Files and Sockets Analysis.

Like the previous set, the approach to define this set assumes that malware applications
are more active than non-malware applications; they transfer more data and interact with
many entities in a system. This set has the following features:

Feature Description

FileCounter and SocketCounter Number of files and sockets handled by the sample

Proc2File and QDF Proc2File Number of processes writing data to files, and data (bytes)

Proc2Socket and QDF Proc2Socket Number of processes writing data to sockets and data (bytes)

File2Proc and QDF File2Proc Number of processes reading data from files and data (bytes)

Socket2Proc and QDF Socket2Proc Number of processes reading data from sockets and data (bytes)

4. Evaluation

For this work, we considered over 2500 mobile applications, including benign and ma-

licious programs, collected by the SIIS Laboratory from the Pennsylvania State Univer-

sity [25], the Genome Malware Project [32], the contagio minidump project 2 and the

Android Sandbox project 3. The applications that use techniques to detect virtualized en-

vironments were discarded from the evaluation group since they would generate trivial

QDFGs. This resulted in a set of samples composed of 2115 active Android applications,

of which roughly 50% were malware and 50% goodware. For the sample used, the pro-

cedure generated graphs with different sizes, ranging between 25-980 nodes and 30-1660

edges. In order to train the chosen machine-learning algorithm and to test the model, we

used the Weka Framework [26].

4.1. Choosing a classifier

These datasets were evaluated with several machine learning algorithms using 10x cross-

validation to determine the best dataset-machine learning algorithm combination (the

best one identifying malware) The evaluated algorithms include: Naive Bayes (NB),

Bayes Net (BN), Bayesian Logistic Regression (BLR), K-nearest Neighbors (KN), Lo-

cally Weighted (LW), J48, Random Forest (RF) and Decision Tree (DT).

Process related features. In the following we summarize the results for different com-

binations of datasets and algorithms. The best combination is a dataset with the three

more active second generation processes and the Random Forest algorithm.

File and sockets related features. These features were evaluated with the same algo-

rithms used for the proposal based on process analysis to determine the best dataset-

machine learning algorithm combination. In this case, since the features were not com-

puted per process but per sample, we only have one results row. The following table

summarizes the results for process and file-sockets related features tested with multiple

ML Algorithms. The Random Forest algorithm gave the best result and will be used in

the following to further evaluate results.

2http://contagiominidump.blogspot.sg/
3http://www.androidsandbox.net
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Algorithms

Dataset NB BN BLR KN LW J48 RF DT

2 2nd generation procs. 59,7 68,4 52,2 70,2 62,6 72,9 78,7 71,8

3 2nd generation procs. 61,7 68,9 55,1 69,1 62,3 73,5 80,7 71,6

5 3rd generation procs. 60,9 69,8 52,0 66,3 58,4 70,4 76,4 69,0

File-Sockets 66,7 70,8 47,1 75,7 63,7 77,4 83,6 75,4

Table . Process and File-Sockets features tested with multiple ML algorithms. Values are true positive rates

in percentage.

Combining feature sets. We combined the two feature sets in order to improve the

precision of the analysis, however we obtain some slightly better results. These are shown

on table .

4.2. Simulation of 0-day malware

In order to simulate a realistic application of our approach we performed the follow-

ing experiment. A training phase using the Random Forest algorithm was performed on

85% of the samples, including malware families like ADRD, AnserverBot, BaseBridge,

DroidKungFu, Geinimi, GoldDream and Pjapps. In a second phase we tested the gener-

ated model with the remaining samples in two different ways. One corresponds to de-

tection of known families (families used in training phase), and a second one evaluates

the detection capabilities when testing a set of unknown families or also called 0-days

samples. This experiment tries to emulate new malware since these families were not

used in the training phase. To make this experiment as realistic as possible, we biased the

test set to contain the most recent samples. The results are depicted in Table .

TPR FPR AUC

Known Families
Process Analysis 92,57% 49,47% 0,825

Files and Sockets Analysis 89,71% 24,21% 0,922

Both Features Analysis 90,85% 28,42% 0,895

0-day Families
Process Analysis 78,46% 43,44% 0,693

Files and Sockets Analysis 83,59% 36,06% 0,813

Both Features Analysis 75,90% 22,95% 0,809

Table . Detection results with known and 0-days families. TPR: True Positive Rate. FPR: False Positive

Rate. AUC: Area Under Curve. Index which represents how reliable a classifier is, 1 is ideal.

Preliminary discussion of results Although the detection capabilities of our approach

are acceptable for most experiments, the false positive rate is likely too high to be of

practical value. This contrasts with previous experiments of similar approaches on win-

dows malware [29,20,30], and has multiple possible explanations. On the one hand, by

only observing system calls at the kernel level, we are potentially ignoring discriminat-

ing inter-process communication happening at a higher abstraction level (such as the An-

droid VM). On the other hand, Android malware is typically based on existing goodware

(trojans), and therefore shares common behaviors with legitimate applications, which

confuses the classifier [23]. Similarly high false positive rates have for example been

observed in other malware classification approaches from the literature [1]. Finally, our

experiments did not use advanced stimulus/response techniques in order to collect more

behavioural data from applications, which is fundamental for our analysis.

1

2

2

2
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4.3. Performance

For the evaluation we used a machine equipped with an Intel Core2 Duo (2,2 GHz)

processor and 2 GB of RAM, running on Lubuntu 14.10. To extract data for each sample

we had the following running times.

• VM starting 20-45s.

• App installation and monitoring 301-318s.

• Graph generation from logs 1-18s.

• Process feature computation 1-275s (quadratic depending on number of edges).

• File-sockets feature computation 0,005 - 0,06 s.

• Sample classification 1,5 ms./sample.

In sum, our approach is lean and can be used for fast classification in case of iso-

lated applications, but potentially also for running applications in real-time (after enough

behavior has been collected).

5. Related Work

Malware analysis can be performed statically or dynamically. It is well known that static

analysis techniques have some advantages (they do not suffer from evasion techniques

such as detection of virtualized environments), but they also face disadvantages, such a

fragility against code obfuscation [13].

On the early android days (2010), researchers Shabtai et al. proposed Andromaly

[22], a framework that explores behavioural malware detection for android devices. An-

dromaly monitors multiple features such as CPU consumption, network traffic, memory

status and keyboard events. The collected data is used to train machine learning algo-

rithms. At that time malware in android was not as popular as now, so researchers had to

develop their own malware specimens in order to test Andromalys accuracy. Although

methodologically similar, our proposal differs from theirs basically in the kind of fea-

tures considered: Q-floid takes data transferred between system calls and represents it as

a Quantitative data flow graph. Later features (including graph-theoretical functions such

as centrality metrics) are extracted from these graphs and used to train different machine

learning algorithms. Also, our approach was evaluated against several hundred families

of malware developed between 2012 and 2015.

One of the first approaches that uses system call analysis for malware detection

in Android is Crowdroid [4]. This solution uses strace in real time to gather system

calls for user activity, through an ad-hoc designed Android App, and a central server

that processes information. The precision of the analysis is thus highly dependent on

the amount of users installing the application and sharing their usage profile. Our work

differs from theirs mainly in the profiling analysis (we build QDFGs, whereas they count

the number of syscalls issued by a process), and the fact that we are independent from

the number of monitored users, but rely on classified samples for training.

Park et al. [20] developed another approach for dynamic malware detection. They

build behavioral graphs similar to ours, but do not take size of data transfers between

entities into account. Their goal is to find a graph isomorphism between graphs that

describe known malign samples and graphs of unclassified samples. Our solution, in
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contrast, uses machine learning on a constant number of features, such that the execution

time of our detection procedure is independent of the number of malware samples used

in training.

Andrubis [28] is a web-based tool for analysis of Android applications developed by

the International Secure Systems Lab. This tool performs a hybrid analysis (static and dy-

namic) of user-supplied samples. First, Andrubis performs a static analysis on the man-

ifest file of the application under analysis and extracts information such as permission,

services, activities, package name and SDK version among others. Afterwards, it exe-

cutes the sample in a controlled environment, targeting interactions with SMS messages,

telephone calls and the file system. The focus of this proposal is however to aid manual

analysis of suspicious samples, rather than an automatic classification as our work.

CopperDroid [10] by Fattori et al. is a dynamic analysis platform for Android appli-

cations that focuses on IPC, RPC and object interaction. Similar to Andrubis, the main

goal of this approach is to aid human analysts to investigate suspicious samples. Copper-

droid supports a more advanced stimulus/response technology than our proposal, which

is based on annotations on the manifest file of the applications under analysis and the

monkeyrunner platform.

Amos et al. proposed the STREAM [1] platform to compare different machine-

learning detection approaches for Android. Different from ours, the results available on

STREAM are based on features such as battery consumption and memory and network

usage profiling. Although their dataset is partially similar to ours (they use the GENOMA

dataset, for instance), they analyzed the behavior of a slightly bigger number of samples

(1738). Our results are comparable in terms of false positive rates (22 % vs. 14,55%).

Recently, Dimjasevic et al. [6] have proposed a behavioral approach for Android

malware detection based on system calls. Their features rely on a system call dependency
graph that takes into account the order of system calls. Our approach is more abstract

(we aggregate system calls into weighted data flows between entities), and there exist

indications that this kind of abstraction is more resilient to advanced behavioural obfus-

cation than approaches relying on the order of system calls such as n-grams [30,3]. Al-

though their data set is bigger (ca. 12000), and thus not directly comparable, we obtain

comparable detection rates (theirs: up to 96%) and worse false positive rates (theirs: up

to 5%).

Closest to ours is the work of Wuechner et al. [29,30]. Similar to them, we use graph

theoretical metrics for training classifiers. However, we also considered novel features

(file-sockets) and different from them we analyze QDFGs for Android apps instead of

Windows apps. Due to the nature of Android Malware (majority of trojan horses), we

obtain a comparatively higher rate of false positives.

6. Discussion and Future Work

Q-Floid builds and analyzes QDFGs that represent the volume of exchanged data be-

tween system entities in order to detect Android malware. Similar to most dynamic anal-

yses, Q-Floid cannot detect malicious programs that evade monitoring or wait for specific

triggers [8,21]. Some malware families (e.g. BeanBot, DroidDreamLight among others)

have this behavior and thus were not included in the experiments.

We propose two sets of features to classify malware. Both sets have accuracy higher

than 90% for many families on their own, but on the negative side, implied a high number
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of false positives. However, in sum, the detection accuracy of Q-Floid is comparable

to that of the closest related work, while being by construction robust against advanced

behavioral obfuscation techniques (as preliminary indicated by experiments with QDFG

detection in Windows [30,3]).

To test the ability of new malware detection, some families in the sample were not

used during training, and were used later to mimic 0-day malware applications. A prelim-

inary evaluation showed that our approach detected up to 92,6% of malware not previ-

ously seen of known families, and up to 84% for unknown families. In sum, we success-

fully transferred the concept of QDFG-based malware detection to Android and showed

that quantitative data flow analysis has the potential to significantly improve the accuracy

of behavioral malware detection, however there are several points where this analysis can

be improved to obtain similar results as the ones in the literature for Windows malware.

As part of future work we plan to apply our methodology to a more comprehensive

malware and goodware data set to further validate our current promising results, and to

further test resilience against advanced behavioral obfuscation techniques with respect

to the closest related work. We also plan to explore inter-process communication and

advanced stimulus-response techniques to be able to enrich the observed behaviour, and

thus widen the application of our approach.

References

[1] B. Amos, H. Turner, and J. White. Applying machine learning classifiers to dynamic android malware

detection at scale. In IWCMC, 2013.

[2] Arxan. State of Mobile App Security. Apps Under Attack. Technical report, 2014.

[3] S. Banescu, T. Wüchner, A. Salem, M. Guggenmos, M. Ochoa, and A. Pretschner. A framework for

empirical evaluation of malware detection resilience against behavior obfuscation. Malcon, 2015.

[4] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: Behavior-Based Malware Detection Sys-

tem for Android. In SPSM, 2011.

[5] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious behavior. In ISEC, pages

5–14. ACM, 2008.
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Abstract. Passwords—secret combinations of symbols—play an important role in

physical world security (e.g. watchword to prevent unauthorized entry into military

forbidden area) from ancient times. With emergence and advance of digital com-

puters and computer network, passwords are also widely adopted in cyber world

security protection. In most applications, password protection stands on the fron-

tier of cyber/physical security defense. Compromise of passwords might render the

whole system insecure, and make thereafter sophisticated cryptography solution

ineffective. However, secure management of a large number of random passwords

is a great challenge to human brains. We propose a visual cryptography technique,

which allows users to store and manage ciphertexts of randomly chosen passwords

in mobile phone and decrypt them manually on demand. The stored passwords re-

main confidential, even if the mobile phone is infected by spyware (Assume the

spyware can capture phone screen, and monitor phone CPU and RAM). We also

analyze the security and feasibility of proposed method. Leveraging on this tech-

nique, we give a simple access control system based on passwords, which provides

a low cost alternative solution for legacy system besides smart card based solution.

Keywords. Password Management, Visual Cryptography, Mobile Device, Spyware,

Legacy System

1. Introduction

We are interested in finding a low cost (in term of money, training, deploy time and

service shutdown time) cyber and physical access control solution to protect cyber and

physical assets, for large legacy systems.

1This work was supported by the National Research Foundation (NRF), Prime Ministers Office, Singapore,
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1.1. Legacy System

Some legacy system with long history may still rely on traditional locks (e.g. padlock) to

protect each room and important device. For large legacy system, thousands or more lock

keys may be required. All management (e.g. distributing keys, labeling keys, searching

keys, counting keys, storing keys, backuping keys) of lock keys have to be done manu-

ally. More importantly, to revoke a lock key after a staff quits his/her job, the lock and

all matching keys have to be replaced by a new pair of lock and keys, which could be

expensive.

Modern design of physical door access control widely adopts smart card (e.g. con-

tactless card) based solution. Such smart card based solutions may require network con-

nection and consistent electricity power supply. It might be too expensive for some legacy

system to upgrade to modern smart card based solution, since computer network and/or

electricity power supply may not reach every corner of some legacy system with large

area. In addition, smart card based solution may not be very suitable to protect device or

equipment possibly due to network and electricity power requirement.

1.1.1. Access Control using Passwords

We provide a low cost alternative solution for such legacy system: Switch from keyed

locks to combination locks, and manage all combination keys, i.e. the passwords (pos-

sibly including computer passwords), using staff’s own phones, synchronized with a

trusted central server. As a result, revocation of a password can be done by a combination

lock password reset and a synchronization operation. We remark that, in this solution,

the server and user phones communicate via cell phone network (e.g 2G/3G/4G). In case

that cell phone network does not cover every inch of the area of legacy system, the user

phone can synchronize with the central server where signal is available and then can still

manage passwords locally without network connection at any place.

A natural question is that: Is it much easier to steal a password than a lock key?

We have to point out that, duplication of a physical lock key may not be essentially

more difficult than duplication of a password. One can duplicate a physical lock key

just via a photo [5,14], without physically contacting the lock key. With a good phone

camera which is widely available nowadays, attacker may even take a photo on a bunch

of keys remotely, which could be more serious than peeking passwords over shoulder.

Even worse, typically, people are educated to protect password privacy when typing it

during login process, but not educated to hide lock keys from others’ vision range.

1.2. Password Management

In most (if not all) cyber/physical security system, authentication is the first step, and

also one of the most important steps of security protection. Passwords, a secret combi-

nation of symbols, is widely adopted in cyber or physical authentication solution, for

a long history. Password authentication alone or with other authentication factors (e.g.

fingerprint, OTP token), is still the ubiquitous authentication method.

However, the one of most important step—password authentication— is also consid-

ered as the weakest link in security protection. It is well known [18] that: (1) a good pass-

word should be chosen randomly; (2) passwords should not be reused or shared across

different accounts. But, on the other side, (1) random passwords are hard to remember
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for human brains; (2) it is even hard, or impossible, to remember many random pass-

words. Consequently, many users tend to choose simple passwords [19,17], which have

a certain pattern and are thus easy to remember, and share the same passwords among

different accounts [12]. Unsurprisingly, simple passwords can be easily discovered by

brute-force attack with a well-defined dictionary of passwords (called dictionary attack);

shared password could be stolen from the account sever with the weakest security pro-

tection. Some Internet servers still store users’ passwords in plaintext, instead of salted

hash. It has witnessed that user password database of some of such servers have been

stolen [15,2] by inside or outside attackers. Even if some system mandatorily requires

user to setup a complex password, the user might write the complex password on a piece

of paper strip and attach the paper strip with his/her computer, where this paper strip is

not well-protected.

How to keep and manage multiple passwords securely and conveniently is an in-

teresting and important real-world problem. Due to ubiquitous usage of portable digital

device (e.g. smart phone, tablet, PDA) people have developed software (or mobile apps)

to manage passwords in digital device. Unfortunately, mobile devices (including An-

droid [4,1,16,3], jailbroken [9]/non-jailbroken [7] iOS [11] and other mobile operating

systems) are suffering from stringent threat of spyware, which could log each user input

(keystroke or touch points, etc) and even monitor the phone hardware (including screen,

RAM, CPU, etc). For an average user, it is hard to tell whether his/her mobile device has

been affected by spyware, even with anti-virus software 3.

Based on the above considerations, our goal is to design a simple method that allows

users to manage passwords securely and easily in a mobile device, where the mobile

device is assumed to be monitored by a spyware.

1.3. Our Contribution

Our main contributions in this work can be summarized below:

1. We propose a simple visual cryptography scheme, which allows users to decrypt

a ciphertext manually. We also analyze the security of the proposed scheme,

against adversary with unbounded computation power.

2. Based on the proposed visual cryptography scheme, we give a simple method to

manage passwords in a mobile phone, where the confidentiality of stored pass-

words retain, even if the phone screen is monitored by possible spyware. Further-

more, we give a method to manage passwords among a large organization and

implement access control to cyber or physical resource in large legacy system

using passwords.

2. Related Works

2.1. Mobile Password Management

Nowadays, with the wide spread adoption of mobile devices, there is an increasing trend

to manage passwords in mobile devices (e.g. smart phone) using a mobile app. Some

3Anti-virus’s capability is limited, especially for newly emerged malware. In addition, a spyware could

disguise itself as an anti-virus app in some loosely controlled app market.
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examples found in Google Play Store are: “Keeper Password & Data Vault” [8], “eWallet

Password Manager” [6], and “mSecure Password Manager” [13]. However, these pass-

word management apps are designed mainly focusing more on convenience than secu-

rity, and suffer from at least these security issues: (1) Users have to fully trust the pass-

word management app itself in privacy of their password: users have no way to prevent

the password management app from leaking their passwords to other apps installed in

the same device, or from sending their passwords to some server via Internet connection.

Even if the source code of password management app is available (i.e. open source pro-

gram), not every user will invest time or is capable to audit the source code. (2) Still suf-

fer from spyware, since the password will eventually display in the phone screen in some

form (e.g. in typed form or handwriting form or fuzzy picture form like CAPCHA 4),

when users want to retrieve the password from the password management app.

In addition, Bojinov et al. [24] proposed a method to protect password database on

a mobile device from attackers who may have physical access to the mobile device (e.g.

stolen phones). Florêncio, Herley and Oorschot studied [27] how to group accounts and

passwords for re-use, to achieve balance between security and convenience.

2.2. Visual Cryptography

Visual cryptography, which supports decryption using non-digital mechanical opera-

tion, was proposed by Naor and Shamir[29] in 1990’s, and after that many subsequent

works [26,20,23,28] appear. Most of these works exploit the secret sharing notion pro-

posed by Shamir [30].

3. Our Proposed Visual Cryptography Scheme

In this section, we propose a probabilistic visual encryption scheme (KEYGEN,

ENCRYPT, DECRYPT), which allows users to decrypt ciphertext manually. In addition,

we also propose an algorithm CIPHERTEXTGEN that generates a random ciphertext. We

will analyze the security of the proposed visual cryptography scheme.

3.1. Algorithms Description

In the basic scheme, a plaintext5 is a string of � symbols from alphabet Σ, a cipher-

text is a matrix of NRow number of rows and NCol number of columns, and an encryp-

tion/decryption key is a list of � tuples. All of NRow,NCol, and � are public system pa-

rameters. A typical setting could be NRow = 10,NCol = 8, � = 8. In real applications,

users could be allowed to choose values for these system parameters. Note that, unlike

system parameters NRow and NCol which are constant across different ciphertexts, choice

of alphabet to encrypt each password could be determined by authentication server (what

symbols are allowed to form passwords), and different ciphertexts may have different

alphabets.

4https://en.wikipedia.org/wiki/CAPTCHA
5Later in Section 4, we will discuss how to support plaintexts of different length.
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3.1.1. Key Generation

The probabilistic key generation algorithm takes the system parameter (NRow,NCol, �) as

input, and outputs an encryption/decryption key K, which is an ordered list of � randomly

generated tuples (xi,yi, fi). Here (xi,yi) is a coordinate within the grid [0, NRow− 1]×
[0, NCol−1], and fi ∈ {0,1} is a boolean flag. The detailed algorithm is as below.

1: procedure KEYGEN(NRow,NCol, �)

2: Randomly choose � distinct tuple (xi,yi)’s from [0, NCol−1]× [0, NCol−1]
3: for i from 1 upto � do
4: fi ←R {0,1}
5: return K := {(xi,yi, fi)}�−1

i=0

The generated encryption/decryption key K can be represented visually as in Fig-

ure 1(a) (on page ).

3.1.2. Encryption

The probabilistic encryption algorithm takes an encryption key K, an alphabet Σ, a plain-

text M ∈ Σ�, and system parameters (NRow,NCol, �) as input. The output (i.e. the cipher-

text) of the encryption algorithm is a matrix T of dimension NRow by NCol, where each

cell is filled with a symbol from the alphabet Σ.

1: procedure ENCRYPT(K,Σ,M,NRow,NCol, �)

2: Create an empty matrix T with dimension NRow by NCol

3: for i from 0 upto �−1 do
4: Parse K[i] as (xi,yi, fi)
5: mi ← M[i]
6: if fi equals 1 and mi is a letter then
7: mi ← toggleUpperLowerCase(mi)

8: T [xi][yi]← mi

9: q ← floor(NRow×NCol/|Σ|)
10: r ← NRow×NCol modulo |Σ|
11: Randomly choose a subset S of size r from Σ
12: for i from 1 upto q do
13: Σi ← Σ
14: Multiset W ← Σ1 ∪Σ2 ∪ . . .Σq ∪S
15: Initiate set Z ← /0

16: for each symbol a in M do
17: if a ∈W then
18: W ←W \{a} /* Remove a from multiset W */

19: else
20: Z ← Z ∪{a}
21: Randomly choose |Z| elements from W and replace them by Z
22: Fill all elements in multiset W to all empty cells of T
23: Randomly permutate all cells in T , excepted locations specified by key K
24: return T

In our application, the encryption algorithm runs in a digital computing device, e.g.

mobile phone. An example of ciphertext is visually represented in Figure 1(b).
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3.1.3. Decryption

The deterministic decryption algorithm takes a decryption key K, a ciphertext T , and

system parameters NRow,NCol, � as input. The output is a string of � symbols from the

alphabet Σ, where Σ is specified in encryption process.

1: procedure DECRYPT(K,T,NRow,NCol, �)

2: for i from 0 upto �−1 do
3: Parse K[i] as (xi,yi, fi)
4: mi ← T [xi][yi]
5: if fi equals 1 and mi is a letter then
6: mi ← toggleUpperLowerCase(mi)

7: return m0m1 . . .m�−1

This decryption process is just to locate cells in the ciphertext matrix specified by

decryption key, retrieve symbols in these cells, and flip the case of some letter symbol

if condition meets. Such a simple procedure can be done mechanically or even man-

ually, without any digital computing device. Figure 1(c) illustrate how to perform this

decryption operation manually.

3.1.4. Random Ciphertext Generation

In addition, we also propose an extra algorithm CIPHERTEXTGEN, which takes as input

an alphabet Σ and system parameters NRow,NCol, and outputs a random matrix T with

cells filled by symbols from alphabet Σ.

1: procedure CIPHERTEXTGEN(Σ,NRow,NCol)

2: q ← floor(NRow×NCol/|Σ|)
3: r ← NRow×NCol mod |Σ|
4: if q equals 0 then
5: Abort

6: Randomly choose a subset S of size r from Σ
7: for i from 1 upto q do
8: Σi ← Σ
9: Multiset W ← Σ1 ∪Σ2 ∪ . . .Σq ∪S

10: Create an empty matrix T with dimension NRow by NCol

11: Fill all elements of multiset W into cells of matrix T
12: Random permutate all cells of matrix T
13: return T

3.1.5. How to Save the Decryption Key

Users may make a physical decryption key token by DIY. Here we give two examples:

(1) Draw the key shown in Figure 1(a) on a piece of hard transparent plastic card. (2) Dig

square or circle holes according to the key on a piece of hard paper (e.g. a name card),

and draw a directed curve to connect all holes. To decrypt a ciphertext matrix displayed

in a phone screen, users just put the physical decryption key token over the phone screen

and align them well, then users can figure out the hidden password in mind quickly.

The unit cost of a key token is low, and can be further reduced if a lot of such

physical tokens are produced in factory. The advantage of such physical decryption key
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(a) Encryption/Decryption Key. (b) Ciphertext (c) Visual Decryption

Figure 1. Illustration of Visual Decryption: : Align the blue color right-angle at the left-top corner of the

decryption key in Figure 1(a) with the left-top corner of the ciphertext matrix in Figure 1(b), and read out

message “kTzXNUvP” in Figure 1(c), where the case of letters selected by square is toggled and unchanged if

selected by circle.

token is that users require to do a little mental effort. The drawback is that it could be

lost or stolen.

3.1.6. How to Memorize the Decryption Key

Alternatively, users could remember the decryption key in their brains. Here we provide

some suggestions to help users memorize the decryption keys. The advantage of this op-

tion is that no extra physical token is required and thus more convenient, but the entropy

of the decryption key (arguably) might reduce, and we should make sure the remaining

entropy will be still sufficient to protect passwords.

In order to easily remember the decryption key in human brain, one can choose the

decryption key with a certain pattern. Some examples are as below:

1. Encode key as numbers: Let NRow = 10, i.e. the number of rows in ciphertext

matrix is 10. We can encode a subclass of decryption keys with digits. Any � dig-

ital number x0,x1, . . . ,xi, . . . ,x�−1, each xi in the range [0,9], encode a decryption

key (0,x0),(1,x1), . . . ,(i mod NCol, xi,), . . ., (�−1 mod NCol, x�−1), ordered

from left to right, where all fi = 0. An example is showed in Figure 2.

2. Graphical Pattern: We may conceptually walk inside the ciphertext matrix ac-

cording to some graphical pattern. For example, Figure 3(a) shows shape of dig-

ital “5”; Figure 3(b) shows shape of a diamond; Figure 3(c) shows shape of a

flip version of digit “9”. Similarly, one can also walk in the ciphertext matrix ac-

cording to an English letter, or a character from any other language, or any shape

he/she likes. To remember such decryption key, the users need only remember

some anchor point positions. Note that in Figure 3, the key length may be very

large. Users may take a substring of the long key as the actual decryption key.

E.g. (1) substring of symbols at odd positions; (2)Deterministically derive a small
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(a) A Ciphertext (b) Visual representation of key encoded by digits

“73086023”

Figure 2. Example of decryption key that can encodes to numbers. The labels along X-axis and Y-axis will

help users to locate cells manually. Thick vertical lines in Figure 2(a) will mark columns obvious.

(a) 5 (b) Diamond (c) Flip 9

Figure 3. Example of Decryption Keys with Simple Graphic Pattern

integer v, say v ∈ [0,4], from the ciphertext label (or auxiliary) information, and

let the suffix starting at position v of the long key be the actual decryption key.

It is worthy to point out that, every time the user wants to retrieve any plaintext (e.g.

passwords), he/she should recall his/her decryption key mentally, in order to perform the

decryption operation manually. The more frequent exercises of such manual decryption,

the better that users could memorize the decryption key. Some previous works [25,21,22]

showed that it is possible to remember a high entropy secret by a human brain, with a
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certain method (e.g. rehearsing the passwords in proper time period).

3.2. Security Analysis of Proposed Visual Cryptography Scheme

Let H(·) denote Shannon’s entropy function, and H(·|·) denote the conditional entropy.

Let K,M,T denote the random variables for key, plaintext, and ciphertext, respectively.

In this subsection, if not otherwise specified, we assume the encryption/decryption key

K is chosen by probabilistic algorithm KEYGEN, the ciphertext T is chosen by prob-

abilistic algorithm CIPHERTEXTGEN, and the plaintext M is derived deterministically

from decryption key K and ciphertext T using deterministic algorithm DECRYPT. This

is very different from traditional security setting of encryption scheme, where plaintext

is chosen by user according to some distribution and ciphertext is (probabilistically) de-

rived from encryption key and plaintext. The root cause of the difference is that, our en-

cryption scheme will be applied to a special message — password, which is supposed to

be random without any semantics.

We will quantify the entropy of decryption key K in various attack mode. High

entropy decryption key K and random ciphertext T, will guarantee that the message M
(i.e. password to be protected) will have high entropy and thus secure.

Lemma 1. H(K)≥ � log�+ log
(
NRow×NCol

�

)
.

Lemma 2 (Ciphertext-Only Attack I). H(K | {Ti}i) = H(K).

Lemma 3 (Ciphertext-Only Attack II).
H(K, {Mi}n

i=1 | {Ti}n
i=1) = H(K), where Mi = DECRYPT(K,Ti,NRow,NCol, �)

Lemma 4 (Known-Plaintext Attack). Suppose NRow×NCol ≥ |Σ|×q for some integer
q. Suppose M ∈ Σ� consists of n j number of symbols s j ∈ Σ, j ∈ [0,v], where ∑v

j=0 n j = �

and all symbols s j’s are distinct. We have H(K | (T,M))≥ log
(

∏v
j=0

( q
n j

)×n j!
)

.

Particularly, if plaintext M consists of � distinct symbols, we have H(K | (T,M))≥
� logq. Additionally, if the plaintext M consists of � distinct English letters, then
H(K | (T,M))≥ � log2q.

If the decryption key is encoded as � numbers in [0,9] and NRow= 10, the number of

possible combinations for decryption keys is 10� , which could be sufficient (e.g. �≥ 8) to

defend brute force attack, if some delay mechanism is adopted in login process, although

it is smaller than the total number of all possible decryption keys. For graphical pattern

key, the key space could be even larger. Theoretical and empirical analysis of space size

of graphical pattern key can be found in existing works [31],[32].

In summary, if the plaintext is uniformly random distributed over its alphabet set,

and the adversary can only do a limited amount (e.g. smaller than 106) of brute force

search, then our proposed visual cryptography scheme is secure. We remark that if the

plaintext is not uniformly distributed, the proposed visual cryptography scheme could be

broken by frequency analysis, similar like traditional substitution cipher.
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4. Managing Passwords using Visual Cryptography

In previous section, we proposed a secure visual cryptography scheme for uniformly

random plaintexts. An ideal application of this scheme is to encrypt passwords: because

that (1) a secure password has to be randomly generated; (2) typically, adversary is not

allowed 6 to do a large number of brute force attack (e.g. passwords with 6 digits of

log106 bits entropy could be sufficiently secure for some authentication system).

Let Σ be the alphabet for passwords, and a password is a string of � symbols from Σ.

We generate an encryption/decryption key and apply the encryption algorithm ENCRYPT

described in previous section, to encrypt the password, and store the ciphertext in a mo-

bile phone or print it on a piece of paper. Alternatively, we could generate a random

ciphertext using algorithm CIPHERTEXTGEN and then obtain a password by decrypting

the ciphertext with decryption key using algorithm DECRYPT.

4.1. Visually Encrypt Passwords

4.1.1. Short Passwords

In case that the length of a password s is smaller than �, we can append a random padding

suffix (randomly chosen from Σ�−|s|) to the password, so that the resulting string has

length �. Then we can apply the above method to encrypt this padded password to obtain

a random matrix T as ciphertext. Meanwhile the length |s| of real password is recorded

in plaintext. During decryption, the user just ignore the last (�−|s|) symbols in the output

of DECRYPT algorithm.

4.1.2. Long Passwords

If the length of a password s is larger than �, we can divide it into blocks of length �,
where possibly the last (partial) block may be expanded to a full bock using random

padding. Then the user can encrypt each block of length � using the proposed visual

encryption scheme, to get a random matrix for each block. Similar as in previous case of

short password, the length |s| of actual password will be recorded in plaintext.

4.1.3. Multiple Passwords

We can encrypt all passwords separately using the same encryption key. Each ciphertext

will be labeled with the account information (e.g. room number, device id, or domain

name and id), to distinguish with each other. Figure 4 shows that one key encrypts three

passwords with different alphabets.

4.1.4. New Passwords Generation

To generate a new password from alphabet Σ with length �, we simply generate a random

ciphertext by revoking CIPHERTEXTGEN(Σ,NRow,NCol), and visually decrypt it using

the decryption algorithm DECRYPT and decryption key. The decrypted message will be

the password from space Σ�. Shorter or longer passwords can be generated using similar

ideas as above.

6Many authentication systems have mechanisms to essentially slow down online or even offline brute-force

attack on passwords.
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(a) “kTzXNUvP” (b) “6z23F2Sj” (c) “90474352”

Figure 4. Illustration of visual decryption with one key and three distinct ciphertexts, where in the first two

ciphertexts, the alphabet consists of English letters and digits, and in the third ciphertext, the alphabet consists

of only digits. Each sub-figure is labeled with the corresponding decrypted message.

In case that the authentication system has more restriction on passwords, e.g. every

password has to contain digits, upper case letters and lower case letters, we can keep

trying to generate new random passwords, until we find one that meets the requirement.

There are two approaches to generate and save a new password: (1) Generate a pass-

word using some other method and then encrypt it by running ENCRYPT algorithm using

a mobile phone app, then save the ciphertext. (2) Run CIPHERTEXTGEN algorithm to

generate a ciphertext using a mobile phone app, and then manually and mentally decrypt

the ciphertext to get the new password on the demand. The second method will be more

secure in the sense that the mobile phone app is fully ignorant to the new password, while

in the first method, the mobile app has full knowledge of the new password. Note that it

is not convenient to perform our encryption method manually.

4.2. Management Passwords on a Mobile Phone

We implement a mobile app in android phone, to execute our visual cryptography scheme

and manage passwords. Any user can manage his/her passwords in digital devices by

following the below steps:

1. User chooses and remembers a master password to lock the mobile app and all

ciphertexts (this master password can be replaced by fingerprint, if fingerprint

authentication is supported in the device. Such master password or fingerprint

will protect users’ stored passwords, in case that both the mobile device and the

physical decryption key token are stolen by attackers ).

2. User randomly chooses an encryption/decryption key and keeps it private.

3. For each account, User generates a new random password by running the CI-

PHERTEXTGEN algorithm with the mobile app and label the newly generated ci-

phertext with the account information. Then User re-sets password for this ac-

count in corresponding authentication system.

4. To retrieve a designated password for a particular account,
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(a) User unlocks the mobile app by providing the master password (or finger-

print);

(b) User searches the corresponding ciphertext in the digital device;

(c) Decrypt the ciphertext to get password manually.

(d) User manually types the password to the login interface on the login device,

where the login device is supposed to be different from the device that stores

and manages passwords.

About Step (c) and (d), we emphasize that, decrypting a ciphertext of password
and typing a password into the login device could be in parallel and in one
symbol by one symbol manner. That is, a user could manually decrypt the
first symbol of password and type this symbol into the login device, and then
proceed for the second symbol, and then for other symbols one by one.

5. Lock the mobile app and remove all unprotected version of ciphertexts from the

digital device memory.

We emphasize that, very different from Google’s Android graphical screen lock, in

our method, users are not supposed to touch symbols in the ciphertext matrix, which

is displayed in the phone screen.

4.2.1. Scope of Applications

We recommend that our method should be used in the following way:

• (Condition 1) the login device is different from the mobile device which man-

ages passwords using our method. E.g. passwords of bank ATM card, safe box,

combination lock, computer server root password, etc.

• (Condition 2) authentication servers of all passwords to be managed should have

a comparable level of security protection. For example, ordinary website (e.g.

some online forum, Facebook, twitter) has arguably weaker security protection

on users’ password than large bank corporation.

The reason behind condition 1 is that: If a mobile phone is affected by spyware, and our

method is used to manage passwords of website (e.g. Facebook), the password could be

captured by spyware, when a user types the password to the website login interface using

the same mobile phone, although storage of passwords is secure.

The reason behind condition 2 is that: Our method has a certain level (but still lim-

ited) resistance to known-plaintext attack, if multiple plaintext-ciphertext pairs are given.

Some websites may still store all users’ passwords in plaintext in server side for some

reason, and these passwords might be stolen by hackers and revealed in Internet. If the

spyware in mobile phone has access to such leaked password database, it might be able

to launch known-plaintext attack on our scheme. In physical world, no centralized au-

thentication server is required by combination lock, which is favorite to our scheme.

We recommend users to classify all passwords in categories, according to the se-

curity levels of authentication servers and value of assets protected by each password,

and protect each category of passwords using a separate visual cryptography key. For

example, choose a random visual cryptography key K0 to manage passwords of high

value, e.g. ATM passwords, safe-box passwords, computer server root passwords, using

our proposed method, and never use the master key K0 to protect passwords of normal

websites (e.g. Facebook, twitter, online forum).
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4.2.2. Comparison

It is easy to see that, our mobile password management solution based on our visual

cryptography method, is more secure than existing mobile password management apps

(e.g. [8,6,13] ), in the sense that, our solution can defeat spyware, and in other solutions,

spyware can obtain all protected passwords by monitoring the phone screen. In any other

security aspect, our solution is at least equally good as others.

4.3. Our Experiment

We implement our method in android phone and conduct survey with 7 subjects (teenage

students). With little training (time for briefing and training is within 5 minutes), it takes

45.3 seconds on average for these 7 subjects to successfully login to a randomly chosen

online account among a list of 100, using our mobile app, where decryption key of our

visual encryption scheme is remembered in subject’s brain. Here searching time, manual

decryption time and login time are all included. The shortest time record is 30 seconds

and the longest one is 64 seconds. In the future, we will also experiment on opening a

combination lock.

4.4. Alternative Visual Cryptography for Password Management

4.4.1. Off The Grid

Steve Gibson proposed a paper based system (called as “Off The Grid”) for encrypting7

a domain name into a random looking password using Latin Square [10], where the

resulting password can be used for this domain exclusively. More details of this method

are given in our full version [33].

4.4.2. Comparison with Our Method

In this “Off The Grid” method, the paper with printed Latin Square plays the role of se-

cret key and should be kept securely, the domain names (after possible substitution from

non-alphabet symbols to alphabet symbols) are plaintexts, and the resulting passwords

are ciphertexts. We compare this method with our method in Table 1

5. Access Control in Legacy System using Passwords

In cyber access control and authentication system, passwords are widely used to protect

each computer, server and online resource. Especially, legacy systems may rely more on

passwords for cyber access control, compared with newly designed system which may

prefer smart card and biometric authentication (e.g. fingerprint and iris). For physical

access control, some legacy system may still reply on keyed lock (e.g. padlock) to pro-

tect each room and important device. We suggest such legacy system to switch from

keyed lock to combination lock, and securely and conveniently manage all passwords, for

both cyber and physical access control, using our visual cryptography method in mobile

phones.

7The author describes it as “encryption”. But according to the algorithm, it is more like a hash instead of

encryption method, since decryption algorithm is not required, and not provided either.
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Table 1. Comparison between Our Scheme and Off The Grid Method

Our Scheme Off The Grid

Probabilistic encryption. The ciphertext is a matrix of

symbols.

Deterministic encryption (actually hash). The key (i.e.

Latin Square) is a matrix of symbols.

Users manually decrypt a ciphertext to obtain password Users manually encrypt/hash an input message to ob-

tain password

Account id is labeled with the ciphertext of password Account id is the input message to the encrypt/hash

method

Dimension is flexible (Suitable for both phone screen

or printed on paper)

26 by 26 Grid (Difficult to see if shown in phone screen

for manual encrypting/hashing)

Encryption key and alphabet are independent (Example

of one key, three ciphertexts and two distinct alphabets

is given in Figure 4)

Encryption key binds to a fixed alphabet. Additional

patches required to support digits and special sym-

bols in input and/or output . The resulting output is a

repeation of pattern “letter letter non-letter” (https:

//www.grc.com/otg/enhancements.htm)

Passwords remain secure if matrix of symbols is leaked All passwords revealed if Latin Square is leaked

5.1. Current access control in Legacy system

In some legacy system, keyed lock is widely adopted to protect access to rooms or impor-

tant devices. Some staff has to carry a lot of keys during work time, and find a correct one

to open a lock to a door or device. As a physical token, keys have some inherent disad-

vantages: (1) it is relatively expensive to revoke or update a key; (2) all management (e.g.

distributing/labeling/searching/storing/backuping keys) of keys are performed manually

and are thus troublesome; (3) it is troublesome for a staff to carry a lot of keys. Some

organization might share the same key for different rooms/devices, in order to reduce the

number of keys and simplify key management, at the cost of security. For a large legacy

system, the number of keys could be thousands or more.

5.2. Upgrade to Password based System

In newly designed modern systems, smart card (e.g. contactless card) based door solution

is widely adopted.

Smart card solution requires persistent electronic power supply and networks. This

could be the reason that it is only widely applied to protect rooms, instead of devices.

Some legacy system may spread in a large area, and their existing power supply grid and

computer network may not cover every room to be protected. Despite the great security

and convenience that smart card based door access solution offers, the upgrading cost

might be too high for such legacy system with the traditional keyed locks, considering

the overall cost including power grid and network construction.

For such legacy system, we propose an alternative mitigation solution: (1) switch

keyed-lock to password based combination lock (e.g. single dial combination lock); (2)

end users store and manage passwords on their own mobile phones using our visual

encryption method; (3) build a trusted central server, to distribute, synchronized, update,

revoke all passwords, among all users.

The trusted central server could communicate with users mobile phones in a secure

communication channel using cell phone network (e.g. 2G(SMS)/3G/4G), or wifi in a
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small area. When users move to location beyond the coverage of cell phone network of

wifi, users can manage passwords locally without network connection.

The total cost of our solution will be limited: (1) Optionally, users bring their own

phone to work, which means zero additional cost for end device; (2) In case that cell

phone network available, just pay the additional communication data usage and no ad-

ditional cost to construct the network facility; in case of wifi, the cost of wifi router is

cheap; (3) Setup a central server.

6. Conclusion

We proposed a visual cryptography scheme to encrypt random messages and applied it

to protect and manage passwords in digital devices. Our method protects confidentiality

of passwords even if in an extreme case that the digital device is monitored by spyware.

In other words, our method can protect the confidentiality of passwords, without trusting

the digital device and without trusting the password management app which implements

our method. Our method provides two alternative configurations: (1) higher security with

a dedicated non-digital physical token (e.g. made with a piece of paper or plastic card);

(2) sufficient security without any extra physical token. Our method protects the stor-

age confidentiality of passwords, and can increase the overall security level, if the lo-

gin device is different from the digital device that stores ciphertexts of passwords. Thus,

our method is very suitable to manage combination lock passwords, safe box passwords,

ATM passwords, computer login password, server root password, and so on. Further-

more, our method is easy to understand (so easy to audit security of our proposal) and

easy to use, and the deployment cost is cheap.

In future work, we may design more sophisticated physical decryption token (say

optical based) to provide a much larger key space.
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Abstract. Cyber physical systems are critical to the infrastructure of a country.

They are becoming more vulnerable to cyber attacks due to their use of off the

shelf servers and industrial network protocols. Availability on World Wide Web

for monitoring and reporting, has further aggravated their risk of being attacked.

Once an attacker breaches the network security, he can affect the operations of the

system which may even lead to a catastrophe. Mathematical and formal models try

to detect the departure of the system from its expected behaviour but are difficult

to build, and are sensitive to noise. Furthermore they take a lot of time to detect

the attack. We here propose a behaviour based machine learning intrusion detection

approach that quickly detects attacks at the physical process layer. We validate our

result on a complete replicate of the physical and control components of a real

modern water treatment facility. Our approach is fast, scalable, robust to noise, and

exhibits a low false positive (FP) rate with high precision and recall. The model can

be easily updated to match the changing behaviour of the system and environment.

Keywords. Cyber Physical Systems Security, Machine Learning, Intrusion Detection,

Fault Detection

1. Introduction

Cyber Physical Systems (CPSs) are geographically dispersed, large-scale, life-critical,

and expensive systems. Smart grids, water filtration and distribution, unmanned vehicles,

and pervasive health care systems are some of the examples of such systems. They com-

prise of physical components such as actuators, sensors, and cyber components such as

network components and commodity serves. These network can be wired or wireless,

and run off the shelf industrial network protocols. Furthermore they maybe available on

the World Wide Web for remote monitoring and reporting. Thus leaving them prone to

attacks from not only criminals, hacktivists, or disgruntled employees, but also from en-

emy states, such as the attack on Iran’s nuclear centrifuge [5]. A hacker in US infected a

water filtering plant with a software that could alter the plants water treatment operations
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[4]. A disgruntled ex-employee took control of Australia’s Maroochy Water Services and

released one million litres of untreated sewage into local parks and rivers for many days

[22]. Thus intrusion detection systems (IDS) are needed to secure these systems.

Traditional IDS systems try to detect intrusion in the network traffic layer only. They

do so by either a dictionary of known attacks or by modelling the normal behaviour of the

traffic through Machine Learning (ML) techniques. The former requires the cumbersome

task of keeping the dictionary of attacks upto date, and are totally blind to zero day

attacks. The later suffer from missed detections and high false alarms. Once the adversary

has breached the traffic layer, the system is completely at his mercy. An IDS system is

needed at the physical layer to serve as a last line of defence. Current systems tackle

this problem by deploying a mathematical or some formal model of the physical process

that simulates the system and classifies deviation from the expected output as an attack

or an abnormal behaviour. These techniques are referred to as behaviour-specification

approaches. They require intricate understanding of the physical process, physical laws

that govern this process, and the equipment specifications. They are costly to come up

with, are sensitive to noise, do not update to the change of the environment or the ageing

of the plant, and lastly the behaviour of the physical process may not exactly follow the

specification in operational manual.

Data driven (aka behaviour based) approaches do not suffer from these problems.

They do not look for something specific and nor do they require an expert to build a

formal model, instead they learn the behaviour of the system through historical data.

They are fast, easier to develop, and are robust to noise and can adapt to the drift in

the normal behaviour of the system with time and change in weather. However these

approaches are very rare in the literature because they suffer from the lack of availability

of training data under an attack scenario. So they depend on simulations to generate

their results. These results may not be valid on real operational systems. We on the hand

use the data from Secure Water Treatment (SWaT) testbed, a complete replicate of the

physical and control components of a real modern water treatment facility to learn our

model and validate results.

Since behaviour based approaches learn directly from the data, they are not blind to

the operational behaviour of the CPS that is sometimes different than the vendor spec-

ification. This peculiar behaviour is missed by the simulations and specification based

approaches. As an example, in SWaT, the closing and opening of a valve is not imme-

diate, as specified in the operational manual. Instead, the valve is in a transient state for

a dozen of seconds until it opens completely, followed by a similar delay in the water

inflow to reach its desired rate as specified in the manual. This rate of inflow at times can

be even greater than 11% as specified in the specification, operating under normal condi-

tions. These phenomenon are brushed under sensor noise tag in a behaviour-specification

approach. Sensor noise itself being a nuisance that needs separate modelling, as it even

sometime shows a flow of water even when the valve is closed. Behaviour based ap-

proaches do not need to model these artefacts separately. Furthermore they can fit a more

tighter bound around the operational behaviour of the system e.g. we observe that un-

der the normal behaviour the level of the tank does not go above a little over 900 litres,

whereas a behaviour-specification based approach would consider an upper bound of

1100 litres as stated in the specification and encoded into the PLC coding.

In this paper, in contrast to the dictionary, and behaviour-specification based ap-

proaches, we model the physical process of SWaT through a data driven approach to
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detect attacks at the physical layer. Contrary to their usual critique, we show that these

approaches do not suffer from a high FP rate, in fact, few of the best performing tech-

niques generate no or very few FP with high precision and recall. In particular, we eval-

uate and compare the performance of nine supervised machine learning (ML) classifiers

on data generated by SWaT injected with eighteen attacks of ten different types. We fur-

ther compare the time to detect an attack, type of attacks detected by each approach, and

time to build the model. We demonstrate that these ML approaches not only successfully

detect almost all the attacks, but also detect them earlier than the behaviour-specification

approaches.

The rest of the paper is organised as follows: Section 2 describes the SWaT testbed

and the process that we are trying to model, followed by related work in Section 3. We

describe the nine classifiers in Section 4. Dataset details and results are presented in

Section 5, followed by conclusion in Section 6.

2. SWaT Testbed

Figure 1. A View of The SWaT Testbed.

Secure Water Treatment (SWaT) is a testbed that is jointly setup by the Ministry of

Defence, National Research Foundation, Singapore and Singapore University of Tech-

nology and Design (SUTD). Its purpose is to enable experimentally validated research

in the design of secure and safe CPS. It replicates the physical and control components

of a real modern water treatment facility, see figure 1. SWaT consists of the following

six-stage filtration process:

P1 Supply and storage

P2 Pre-treatment

P3 Ultrafiltration and backwash

P4 De-Chlorination System
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P5 Reverse Osmosis (RO)

P6 RO Permeate Transfer, UF Backwash and Cleaning

The process begins by taking in raw water (P1), adding necessary chemicals to it

(P2), followed by filtration via an Ultra-filtration (UF) system (P3), de-chlorinating it us-

ing UV lamps (P4), and then feeding it to a Reverse Osmosis (RO) system (P5). A back-

wash process (P6) cleans the membranes in UF using the water produced by RO, and

transfers the clean water back to the raw water tank. All the process are interdependent,

with each process dependent on the previous one. The cyber portion of SWaT consists

of a layered communications network, Programmable Logic Controllers (PLCs), Hu-

man Machine Interfaces (HMIs), Supervisory Control and Data Acquisition (SCADA)

workstation, and a Historian. Data from sensors is available to the SCADA system and

recorded by the Historian for subsequent analysis. A separate PLC is dedicated for each

of the six processes. Each of these PLCs is provided with a redundant hot-standby PLC.

The communication in the SWaT takes place over multi-layer communication links,

consisting of different switches and routers. This communication can take place trough

either a WiFi, or an Ethernet link running various industrial communication protocols.

The sensor readings, and actuator commands are all communicated with the PLC over

these (wired or wireless) communication links. These protocols suffer from network at-

tacks. In our lab we have successfully injected Man In The Middle (MITM) attacks,

which can inject false sensor readings, and commands.

2.1. Pre-Treatment Process

Figure 2. Details of the first stage of SWaT.

SWaT is a complex system, with six different processes interacting with each other.

In this paper we try to model the intrusions in the process P1 only. Findings for this
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process will be extended to rest of the processes by either extending the current model to

incorporate one subsequent process at a time, or by learning a separate model for each

of the process.

Process control of the P1 is illustrated in figure 2. The water flows into the raw water

tank from two sources, city water supply system, and RO process (P6) after cleaning. The

water from the water supply system is controlled by motor valve MV-101. It is opened

when the water level goes below a predefined Low (L) threshold, and is closed when it

reaches a predefined High (H) threshold. If for some reason, the water level still keeps

on decreasing (or increasing) past the L (or H) threshold, then alarms are set off when

it reaches the Low Low (or High High) threshold, signalling an emergency situation in

which the system can be thought of as insecure. The rate of this inflow is measured by

the flow indicator FIT-101. The water inflow from the RO process can not be controlled

by P1, therefore at a given point in time water could be flowing into the tank from none,

one, or both of the sources. Pump P-101 is turned on when the water level drops below

L threshold in the UF tank (P3), and is turned off when water level rises above the

H threshold in the UF tank. It can also be turned off when the level in the raw water

tank drops below L, or the flow indicator FIT-201 (in process P2) drops below a certain

predefined threshold. Pump P-102 is only for back up, it only operates when P-101 fails

to do so.

Even though process P1 is not the most financially critical process of the testbed,

but all the later process depend on it. A false sensor value for LIT-101 can overflow the

tank, decrease the output of the plant, or burn out the pumps. In section 5 we define ten

different attacks that are injected into the system.

3. Related Work

In literature, IDS have been categorized into three categories; knowledge based,

behaviour-specification based, and behaviour based [14]. Knowledge based approaches

look for specific runtime patterns that match a pre-maintained dictionary of pattern of

known attack types [8]. These approaches are fast and have low FP rate, but require the

dictionary of attacks to be kept upto date. They are totally blind to zero day attacks.

Behaviour-specification approaches model the normal behaviour of the system by for-

mally defining the legitimate behaviour, and signal an attack when the system departs

from this model [15,10]. These approaches require a human expert to define this proper

system behaviour, which is very time consuming. Secondly the systems behaviour may

change because of environmental changes, or with ageing, thus departing from the be-

haviour that was previously thought as normal. Behaviour based approaches address

these issues but suffer from high FP rate, but our study shows otherwise. Some behaviour

based approaches use conventional statistics based techniques [25], they test if a sen-

sor reading or an actuator setting is within some number of standard deviations of a

mean. These approaches are parametric, not fully automatic, and difficult to come up for

large number of interdependent sensor and actuators. We therefore limit our focus to non

parametric approaches such as data mining and ML approaches.

Most of IDS model the network traffic [26,2]. Only few try to detect attacks at phys-

ical layer, and these approaches are behaviour-specification approaches [4]. Out of the

forty IDS systems reviewed, only twenty four were behaviour based. More than half of
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these IDS detect intrusions in non CPS systems, using internet and LAN traffic [24,11].

Other approaches try to detect attacks in the network traffic layers of CPS that use of the

shelf industrial network protocols such as MODBUS, DNP3, Ethernet/IP, etc. [13]. We

were not able to find an IDS that models only the physical process of a CPS using a ML

approach. The closest work that we could find was done on the water storage testbed of

Mississippi State University [16]. It is a simple testbed consisting a 2 litre water storage

tank, a level sensor, and a pump. [7] use NN to detect attacks on this testbed with ba-

sically one network traffic attribute and one physical process attribute, namely, number

of responses against a command, and water level. The only physical attacks that they

simulate are the change in water level. [17] uses the same testbed but adopts a one class

approach. They add network traffic features to increase the attribute set, thus rendering

their approach to mostly a network traffic IDS. Whereas we use a two class approach

due to the availability of attack data on SWaT, and we inject ten different attacks in the

physical process. Lastly, our testbed is much more complex and realistic which validates

our findings more.

4. Methodology

A data driven approach for CPS should be fast, scalable, and robust. It should be fast be-

cause the system operates in real time, it wouldn’t be beneficial to signal an attack after

it has happened. It should be scalable because CPS can be huge systems involving mul-

tiple readings per second from hundreds of sensors and actuators. It should be robust to

sensor noise, and to the effects of weather and ageing. Therefore we choose to model this

behaviour with the state of the art supervised Machine Learning (ML) techniques. Su-

pervised techniques require training data under both the normal operating circumstances,

and when under attack. It is rare to find the data when system is under attack, because

these expensive and infrastructure critical plants are not available to researchers to carry

out attacks. We on the other hand can generate the data under the attack scenario from

the testbed. Even then, IDS problem is a skewed class problem. In all, we injected ten

different types of attacks in the system. These attacks henceforth referred to as A1, A2,..,

A10 are described below:

A1 FIT-101 is attacked and its value is changed to zero.

A2 MV-101 is attacked and is turned off.

A3 P-102 is attacked and is opened.

A4 P-101 is attacked and is closed down.

A5 MV-101 and P601 are closed down.

A6 FIT-101 is attacked by showing it operating value above its normal operating range.

A7 LIT-101 is attacked by increasing its value above the normal maximum level.

A8 LIT-101 is attacked by decreasing its value below the normal minimum level.

A9 LIT-101 is attacked by increasing its value more than normal rate of change.

A10 LIT-101 is attacked by decreasing its value more than normal rate of change.

The nine state of the art ML classifiers that we choose are fast and scalable, but some

what sensitive to noise. We tackle this by reserving some part of the data for testing over

which we tune the parameters of the algorithms to find the best performance parameters.
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We choose three most widely used discriminative classifiers, namely, Support Vector

Machines (SVM), Neural Network (NN), and Logistic Regression (LR). Three classifiers

are decision tree based, namely, Random Forest (RF), J48, and Best First Tree. The

remaining three are statistical classifiers, namely, Naive Bayes (NB), Bayes Network

(BayesNet), and Bayes Logistic Regression (BayesLR). We briefly discuss each of these

classifiers below.

4.1. Discriminative Approaches

Support Vector Machines (SVM) are non-probabilistic binary linear classifiers. They

project the data in a higher dimensional feature space where a hyperplane is learned

to discriminate between the points of the two classes. The hyperplane is such that it

maximizes the margin between the closest points of the two classes, thus achieving a

better generalization over the unseen data. This has led SVM to exhibit high performance

on most of the real world classification problems including IDS [1].

Artificial Neural Networks (NNs) are a family of models inspired by biological neu-

ral networks and are used to approximate functions that can depend on a large number

of inputs. In addition to the input and output layer, they consist of one or more hidden

layer of neurons that try to learn non linear decision boundaries separating the classes.

Along with SVM’s, NN belongs to few of the most successful algorithms for intrusion

detection [2].

Logistic Regression (LR) is an alternative to linear discriminant analysis, and can

be seen as analogous to linear regression. However it is based on quite different assump-

tions. Firstly, the conditional distribution is a Bernoulli distribution rather than a Gaus-

sian distribution. Secondly, the predicted values are probabilities through a logistic func-

tion. It nicely measures the relationship between the categorical dependent variable and

one or more independent variables. It can outperform SVM and NN on problems with

large number of features, it has been less successful on intrusion detection problems

though [23].

4.2. Decision Tree Based Approaches

Decision tree have been a popular approach to ML since early nineties, mainly because

they can be translated to simple IF-ELSE, OR and AND rules which are intuitive and

easily understandable. They have been successfully applied to detect intrusion detection

in network traffic layer [20,11] in recent years. A decision tree can be visualized as a

tree structure that consist of nodes from root to leaf, in which each internal node denotes

a test on an attribute, each branch represents the outcome of a test, and each leaf node

represents a class label. A new record is traversed through the root node till the leaf,

where it is assigned the label of the leaf node. The selection of attributes is based on

some information theoretic measure. J48 uses Information Gain as the measure to select

attributes at each node of the tree [19]. The tree is pruned to avoid overfitting. Best First

Tree (BFTree) is similar to J48 [21], except that the best node is expanded first instead

of the depth-first order. This approach allows new ways to prune the tree which make it

less susceptible to overfitting.

Random forests (RF) are an ensemble approach proposed by [3]. They are based

on notion of bootstrapping and selection of random subset of features i.e. they operate
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by constructing a multitude of decision trees at training time on a random subset of the

training examples. At each candidate split in the learning process, a random subset of the

features is selected. The mode of the classes of the individual trees is the predicted class

label for a record. RF have been recently perform very well on many problems. RF have

been shown to be more robust to overfitting than other decision tree algorithms.

4.3. Bayesian Approaches

Bayesian classifiers are one of the most popular approaches in pattern recognition. They

are probabilistic classifiers that predict class by means of probabilities, such as the prob-

ability that a given sample belongs to a particular class or not. Bayesian Networks

(BayesNet) and Naive Bayes (NB) variants are the two most fundamental methods that

belong to these class of classifiers. They have been successfully used for intrusion de-

tection as well [12,24]. NB classifiers assume conditional independence given the value

of the class. i.e. the attributes do not influence each other given the value of the class

attribute. NB classifiers are highly scalable, requiring a number of parameters linear in

the number of features. They have been shown to perform nicely on large dimensional

problems, and in scenarios where part of the data is unobservable. They can be learned

through Maximum-likelihood method that does not require multiple iterations over the

training data. BayesNet are probabilistic graphical model that represents a set of random

variables and their conditional dependencies via a directed acyclic graph [6]. Unlike NB,

dependencies can be laid out between the variables by adding an edge between them.

Since attributes are not completely independent in the real world, they tend to outper-

form NB classifier when number of features are less. BayesLR is a Bayesian approach to

LR that uses a Laplace prior to avoid overfitting, and is shown to generate better results

than LR especially for large feature spaces [9]. Bayesian classifiers are commonly used

classification algorithms because of their simplicity, computational efficiency and good

performance for real-world problems.

4.4. Optimal Parameters

In this subsection we report the parameters for which the classifiers give the best perfor-

mance. For SVM, we tried out several parameters, including the kernel and the regular-

ization parameter C. Performance for linear kernel did not exceed 95% despite choos-

ing large values of C. SVM gave best performance using Radial Basis Function (RBF)

kernel with C = 8000. NN gave best results with seven hidden units in the hidden layer,

two units in the output layer, learning rate, momentum, and number of iterations equal

to 0.3, 0.2, and 1000, respectively. LR worked best for the default parameters. RF and

J48, gave the best performance for 200 trees, and confidence factor of 0.6, respectively.

BFTree worked best without pruning, and minimum number of objects set at 4. NB does

not have parameters, while BayesLR worked best for the default parameter values. For

BayesNet, we used Simple Estimator, and TAN as the search algorithm with Entropy as

the Score Type. Most of the algorithms have a few more parameters for which we tried

out different values, but we do not mention them here because their best value turned out

to be the default values.
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No. of Attacks Attack Normal Total
Training Data 18 1260 18900 20160

Test Data 18 580 8060 8640

Table 1. Details of the dataset.

5. Dataset and Results

5.1. Dataset

Each second, the state of the sensors and actuators is recorded into a Historian database.

For this study, we extracted eight hours of data from the database which totals around

28800 records. Since we are using supervised ML approaches, we divided this data into

two sets, training and test set. We learn the model on the training set and then evaluate

its performance on the test set. We tune the parameters of each algorithm on this test set

to obtain their best performance. The details of these sets are given in table 1.

Since the probability of attack in real life is small, so in order to simulate a real

scenario we have injected only few attacks into the system. We have injected 10 different

attacks based on the sensor and actuator values. The first eight attacks have two instances

each, while each of the last two attacks have one instance only. In the training set the

duration of the first and second attack is kept at 30 and 120 seconds, respectively. In

reality, the duration of attacks in the test set may be different from that of the training

data, therefore we also keep it different in test data. In test data, the first attack lasts 10

seconds while the second attack lasts only 30 seconds. This totals to 18 attacks in the

training and test set, corresponding to 1260 and 580 rows, respectively.

An important phenomenon observed in the data that is absent in the specification

is that the turning on and off of valves and pumps is not immediate. It can take upto a

dozen seconds for the valve to open, during which the state of the pump is neither open

nor closed, instead its in a transient state. Furthermore, the water inflow takes similar

amount of time to reach its normal or desired rate of flow. This makes the problem of

detecting the attacks more challenging because now the valve is not closed and yet water

is not pouring in. This problem is further aggravated by the sensor noise, e.g. the valve is

closed but the value of the water inflow is greater than zero. Similarly the output pump is

closed but the level of the tank still decreases. These issues can result in the degradation

of the performance of the IDS, but we choose not to model them explicitly. We do this

for two reasons, it would further complicate the model, and secondly since no modelling

is perfect, therefore it may add some new artefact in the model. Instead we try to tackle

these issues directly in the learning processing through regularization.

5.2. Metrics

Being a skewed class problem, accuracy is not a sufficient metric to measure the measure

the performance of the IDS. Precision and recall are more suitable measures for this

class of problems. Precision is basically a measure of how accurate the classifier is when

it says that it has detected an attack. A higher value corresponds to a lesser number of

false alarms (FP). Whereas, recall is basically how many of the attacks did the classifier

actually detect. Higher value of Recall corresponds to a lesser number of missed attacks

(FN). Ideally we want a classifier with high precision and recall because that corresponds
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to lower FP and FN. F-Measure helps us to combine both into a single metric. It is

the harmonic mean of precision and recall. It is a more conservative measure than the

arithmetic mean of the two. The three measures are mathematically defined below:

Precision =
T P

T P+FP

Recall =
T P

T P+FN

F −Measure =
2∗Precision∗Recall

Precision+Recall

where TP is the number of attacks correctly detected by the classifier. Fifth measure that

we use is the Area Under the Receiver Operating Characteristic (ROC) curve (AUC). It

is considered to be a more robust measure than F-Measure for highly skewed problems

[18]. ROC curve is true positive rate (TPR) plotted against false positive rate (FPR)

thresholded at various settings. This allows to select possibly optimal models by varying

this threshold.

5.3. Pre-Processing

We treat every attribute as a numeric attribute, even the states of valve and pumps. Reason

being that they are not a binary variables as they take on three values, where value 2

corresponds to the on state, 1 for the off state, and 0 for the transient state. We normalize

all the attributes in the interval between zero and one. This is very important for certain

algorithms e.g. normalization helped reduce SVM’s training time from hours to just a few

seconds, in some cases SVM also crashed on the un-normalize data. Lastly we introduced

a new attribute in the data set as change in tank level, hoping that it would help us detect

attacks that incur sudden changes in tank level. We will see in results that, it helps us to

detect the sudden increase in the tank level, but not the sudden decrease in tank level. We

calculate this attribute by subtracting the old reading from the current reading of the tank

level.

5.4. Results

The results demonstrate the effectiveness of ML based algorithms to detect attacks in the

physical process of a CPS. We performed various runs of each algorithm to find their pa-

rameters that would give their best performance on the test dataset. We summarize these

results in table 2. All the five performance measures are reported as percentage values.

The last column, Time To Build the Model (TTBM) is reported in seconds. The highest

value for each metric is highlighted in bold. The results carry a bit of a surprise. In this

particular problem when number of features is significantly smaller than the number of

training examples, LR, and SVM with linear kernel should perform best. To the con-

trary LR and SVM with a linear kernel are one of the worst performers. Instead SVM

with a RBF kernel takes the top spot in the accuracy section. NN on the other hand was

supposed to perform equally better as SVM.

Coming to the tree based algorithms, rarely used BFTree performance is quite high,

sharing the top spot with RF on three measures, and being second in the accuracy mea-
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Accurracy Precision Recall F-Measure AUC TTBM
SVM 99.83 99.65 97.76 98.69 98.38 6.78

NN 99.08 99.10 99.10 99.10 96.30 54.23

LR 94.52 93.90 94.50 93.10 90.00 0.38

RF 99.78 99.80 99.80 99.80 99.60 10.95

J48 98.91 99.00 98.90 98.90 98.50 0.8

BFTree 99.78 99.80 99.80 99.80 98.30 0.15

NB 94.13 94.50 94.10 91.90 84.70 0.03
BayesNet 99.07 99.10 99.10 99.10 99.70 0.09

BayesLR 94.09 94.40 94.10 91.90 56.00 0.38

Table 2. Performance of Classifiers. All values are in percentages, except TTBM which is in seconds.

sure. Nonetheless, its AUC is significantly lower than that of RF, which demonstrates the

befitting discriminative power of the RF.

Strikingly, BayesNet has the highest AUC. This means that its decision function can

be tweaked to achieve better performance than rest of the algorithms. Its training time is

also the lowest amongst the high performing classifiers.

It is interesting to note that in attack A7 to A10 the bounds are calculated using the

normal behaviour of the system and not from the specification manual of the system. This

is important, and allows us to fix more tighter bounds on the operation of the system,

e.g. the specifications state that the level of the tank cannot be more than 1100 litres, so

an alarm goes off if this so happens, but from the data we observe that the level of the

tank never goes above 903.04 litres because MV-101 is turned off when it reaches 900

litres. Using this insight our model learns a value little more than 903.04 as an abnormal

behaviour and signals it as an attack. Same is the case for the minimum level of the tank.

Deriving these upper and lower bounds from data enables us to detect an attack way

before it reaches the critical stage. On the contrary, for A6, the data helps us to loosen

the bound on operational range of FIT-101, which otherwise would have resulted into an

false alarm. Reason being that according to data, FIT-101 can operate at a 11% higher

value than that stated in the specification.

5.5. Fault Identification

We further drill down into the results, and analyse which classifier failed to detect which

type of attacks. Table 3 summarizes the type of attacks detected by each classifier, we

discard the classifier with accuracy lower than 95% from this analysis. None of the clas-

sifier has been successful in detecting all of the attacks. The most difficult to detect was

attack A10. RF and BFTree that seemed to perform exactly same also differ on detecting

A10. In A10 attacker significantly reduces the level of the tank but still within its upper

and lower bounds, hence being classified as normal behaviour by most of the classifiers.

A9 is quite similar to A10, the level is increased significantly as opposed to decreasing it

as in case of A10, rest of the conditions are same. A reason for its better detection could

be that the change in water level is negative in this case, still it needs further analysis.

Second most difficult to detect attack is A4, completely missed by NN, thus costing it

position in the top rankings.

In the test data, the attack lasts from 10 to 30 seconds, so it could be that an attack

is not detected for its whole duration but for a few seconds only. We therefore further
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
SVM 2 2 2 2 2 2 2 2 1 0

NN 2 2 2 0 2 2 2 2 1 1

RF 2 2 2 2 2 2 2 2 1 0

J48 2 1 2 2 2 2 2 2 1 0

BFTRee 2 2 2 2 2 2 2 2 1 1

BayesNet 2 2 2 1 2 2 2 2 0 1

Table 3. Number of Attacks Detected. Two instance of each attack upto A8. Only once instance for A9 and

A10.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
SVM 100 95.71 100 100 100 100 100 100 100 0

NN 100 100 100 0 100 100 100 100 100 10

RF 100 87.14 100 100 100 100 100 100 100 0

J48 100 85.71 100 100 100 100 100 100 100 0

BFTree 100 87.14 100 100 100 100 100 100 100 10

BayesNet 100 100 97.14 85.71 100 100 100 97.14 0 10

Table 4. Percentage of Records Detected For Each Attack.

analyse this by looking at the percentage of records detected by each classifier in table

4. This table shows a slightly different picture than 3. It shows that despite getting de-

tected, attack A2 has given almost all the classifiers a tough time. SVM, RF, BFTree, and

J48 miss some part of this attack. For attack A10, the three algorithms that eventually

detected it, were only able to detect only 10% of it.

This raises a question; how long does it take to detect an attack? Delay in detecting

an attack can lead to a catastrophe. We try to answer this question through table 5. A

value of 0 means that the attack was detected the first second that it started, whereas

∞ means that the attack went undetected. Most of the attacks get detected at the very

instant they start, or do not get detected at all. Only three attacks are detected at the fourth

second. This is a good feature of ML based approaches in contrast to the specification

based approaches where the model waits for the output of the system to deviate from the

normal behaviour to be able to detect them.

These results demonstrate the effectiveness of using ML algorithms for modelling of

the physical layer. An ensemble approach of complementing algorithms to detect all the

attacks can be used to further improve performance, a direction for future exploration.

5.6. Training Time

Attack detection should be in real time, so it is necessary to train the model and classify

the incoming examples as quick as possible. We report Time To Build the Model (TTBM)

in table 2. Given the number of training examples, most of the algorithms were quick

to learn the model. As expected, NN is the slowest, but it classifies new examples very

fast. So does SVM, it took less then half a second to classify all the testing examples.

TTBM should be taken with a grain of salt because it is affected by other processes

running on the system. The experiments were run on a 3 GHZ Core i7 laptop with 8 GB

RAM. The implementations were not parallelised, so the running times are for algorithms

running on a single core. Memory footprint for each of the algorithm was also quite
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A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

SVM
0 0 0 0 0 0 0 0 0 ∞
0 0 0 0 0 0 0 0

NN
0 0 0 ∞ 0 0 0 0 0 0

0 0 0 ∞ 0 0 0 0

RF
0 3 0 0 0 0 0 0 0 ∞
0 0 0 0 0 0 0 0

J48
0 ∞ 0 0 0 0 0 0 0 ∞
0 0 0 0 0 0 0 0

BFTree
0 3 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0

BayesNet
0 0 0 ∞ 0 0 0 0 ∞ 0

0 0 0 0 0 0 0 0

Table 5. Time (in seconds) to Detect an Attack.

small. Low memory footprint and low running time indicate that these approaches are

highly scalable, and would be appropriate for detecting intrusion in all of the six stages

of the SWaT testbed.

6. Conclusion

CPS are critical to the infrastructure and economy of a country. Securing them from cy-

ber attacks that may be carried out by criminals, hacktivists, disgruntled employees, and

enemy states is a high priority area for many governments. Even though many intrusion

detection system (IDS) exist for the network layer, no further defences exist ones it has

been breached. We therefore propose a behaviour based machine learning (ML) approach

for intrusion detection that models the physical process of the CPS to detect any anoma-

lous behaviour or attack that may try to change the behaviour of the CPS. We success-

fully demonstrate the effectiveness of such approaches by validating results of nine ML

approaches on Secure Water and Treatment (SWaT) testbed, a complete replicate of the

physical and control components of a real modern water treatment facility. We show that

ML approaches are not only fast, robust, but detect attacks very early while exhibiting no

or very little false positives. Furthermore our approach can be used in conjunction with

the existing network traffic IDS systems.
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Abstract.
A novel technique for detecting multi-point attacks on an Industrial
Control System (ICS) is described. The technique, referred to as Inter-
mittent Control Actions (ICA), sends control signals intermittently to
selected components to monitor the system using a process invariant.
ICA was assessed experimentally for its effectiveness in an operational
water treatment testbed. The experiments revealed (a) multi-point at-
tack scenarios where ICA succeeds or fails to detect an attack, (b) issues
in the design of key ICS components to ensure that the control actions
in ICA do not lead to undesirable process behavior, and (c) constraints
on the design of the physical system for safe use of ICA.

Keywords. Attack detection, multi-point cyber attacks, cyber security,
design parameters for resilience, Industrial Control Systems, Intermittent
Control Actions, Secure Water Treatment testbed.

1. Introduction

An experimental investigation was undertaken with the long term goal of design-
ing robust defense mechanisms for an Industrial Control System (ICS) to improve
its resiliency. An ICS includes several components including Programmable Logic
Controllers (PLCs), a Supervisory Control and Data Acquisition (SCADA) work-
station, a Historian, and several physical components. In the remainder of this
paper the experiments are referred to as IC-Exp. The objective in IC-Exp was to
understand how to detect specific cyber attacks against an ICS using correlations
(invariants) across data obtained locally by a Programmable Logic Controller

1This work was supported by research grant 9013102373 from the Ministry of Defense and
This work was supported by the National Research Foundation (NRF), Prime Minister’s Office,
Singapore, under its National Cybersecurity R&D Programme (Award No. NRF2014NCR-

NCR001-40) and administered by the National Cybersecurity R&D Directorate.. Corresponding

author: Sridhar Adepu.

Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016
A. Mathur and A. Roychoudhury (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-617-0-59

59



(PLC) and the use of intermittent control actions against a process actuator.
The experiments were performed to understand the effectiveness of the proposed
detection methods in an operational mini-water treatment testbed, referred to
as SWaT (Secure Water Treatment), that produces 5 gallons/minute of treated
water.

Cyber attack: In this work a “cyber attack” refers to an attempt at disturbing the
state of an ICS through its communication network. In the experiments reported,
cyber attacks were aimed at disturbing the state of SWaT with malicious intent,
i.e., degrading system productivity measured in gallons of treated water produced.

Process invariant: A “process invariant” is a mathematical relationship among
“physical” and/or “chemical” properties of the process controlled by the PLCs in
an ICS. Together, at a given time instant, a suitable set of such properties capture
the observable state of SWaT. The relationships include, for example, correlations
between the level of water in a tank and the flow rate of incoming and outgoing
water across this tank, and the relationship between water pH prior to and im-
mediately after the ultrafiltration unit. In SWaT, these properties are measured
using sensors during its operation and captured by the PLCs at predetermined
time instants–which is every 0.1-second. The measurements are also saved in a
historian for subsequent analysis. In this paper one invariant, derived from phys-
ical properties of water flow in stage 1 of SWaT (Section 2.1), is considered for
detecting cyber attacks.

Single and multi-point attacks: An ICS contains several points of entry into the
system that could be exploited by an attacker to realize an intent. For example,
each wireless link that connects a sensor to the Programmable Logic Controller
(PLC) is a potential entry point. Each PLC itself is a potential entry point when
vulnerabilities exist in its firmware. The SCADA workstation in an ICS is also
an entry point when vulnerabilities exist in the operating system it uses. A single
point attack exploits exactly one entry point to gain access to an ICS. A multi-
point attack, considered in this work, exploits more than one entry point , e.g.,
two or more communications links, to disturb the state of an ICS. Single-point
attacks on SWaT have been studied extensively [1]. In the experiment described
in this paper, the objective was to investigate how multi-point attacks can be
detected using process invariants while simultaneously using intermittent control
actions.

Research questions: RQ1: How effective is the use of ICA in detecting multi-
point attacks on a water treatment system? RQ2: What is the complexity and
scalability of the attack detection approach? RQ3: What are the impacts of using
ICA on the physical design of the water treatment system?

Related work: In a survey of attack detection techniques in Cyber Physical Systems
(CPS) [7], the detection techniques are classified as follows: misuse/signature-
based intrusion detection, anomaly-based intrusion detection, and statefull pro-
tocol analysis. The process invariants based approach proposed in this paper does
not fall in any of these three categories. Further, as implemented in the case
study described here, the proposed approach differs from those mentioned above
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in several ways including the fact that it does not use network-based anomaly
detection.

A common aspect of the techniques described in the survey [7] is that they
are employed in the network used for communications among the PLCs and the
SCADA workstation. The primary goal of these techniques is to detect any intru-
sion into the ICS by analyzing network traffic from different points of view. For
example, in [3] security specifications are defined for smart meters and a security
policy for the Advanced Metering Infrastructure (AMI). The authors then use a
formal specification of the C12.22 protocol for data exchange among meters and
other devices. A formal verification of the specifications and monitoring opera-
tions is conducted. The prototype described by the authors uses an emulation of
AMI and is based on an analysis of network traffic.

A process oriented, technique for the detection of cyber attacks in PLCs is
described in [6]. It is noted that this technique does not fall in any of the three
categories mentioned above. Data is collected from the PLCs via network moni-
toring, and an autoregressive method is used to model specific process variables.
Such a model is then used to detect whether the value of a process variable is
suspicious. Another technique uses the physics of the process controlled by the
ICS to detect cyber attacks [9]. Here the authors analyze Modbus [11] traffic fo-
cusing on “harmful” command streams. Physical constraints are integrated into
an intrusion detection framework. An example of a boiler is described where out
of bound values are checked against predefined constraints.

Significant work exists in detecting anomalies in network traffic in ICS across
PLCs, sensors, actuators and SCADA workstation. One such technique is based
on CUSUM used for change point detection [13]. This non-parametric method has
been applied to detect network intrusions [16]. Given as in [17] “....A key drawback
of the CUSUM algorithm is that the intensity of the anomaly needs to be known a
priori,..” parametric as well as spectral [2] methods have been developed to detect
network traffic anomalies.

Identification of sensor manipulation, and its impact, have been studied. In [8]
a simulated Tennessee Eastman Challenge process is used o study the effectiveness
of entropy-based technique for detection manipulated sensor values. The authors
use correlations across sensor reading to detect malicious readings;. In IC-Exp
sensor masking is used where multi-point sensor attacks mask the effects of an-
other compromised sensor. In IC-Exp, detection is based on physics-based invari-
ants and not noise. The Tennessee Eastman process is also used in [4] to study
multi-point attacks. A CUSUM-based technique was found effective. However,
when applied on a robot [15], the effectiveness of the CUSUM-based technique
was below that reported in [4]. While these techniques are found effective in the
environments in which they were assessed, in IC-Exp it was decided to instead
use only the process property based invariants to detect anomalies arising due to
a cyber attack. Doing so avoids making assumptions on probability distributions
of process data. Indeed, making use of invariants is perhaps appropriate when
a real or simulated process is available for experimentation, and not necessarily
when only data from such process is available as for example in [6,17]. A few key
advantages of invariant-based attack detection, implemented in a PLC, are as
follows.
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1. Implementation context: Detection method is implemented as a procedure
and integrated directly into the PLC. Thus, PLC-SCADA network traffic
is not disturbed.

2. Physical constraints: These are local to a PLC and based on the physics
of the sub-process, e.g., the chemical dosing process in a water treatment
plant, being controlled by a PLC.

3. Detection method: Detection is agnostic to the type of an attack; it checks
if the dynamics of the sub-process matches prediction based on its physics.

Contributions: (a) Invariant-based approach, combined with ICA, for attack de-
tection in a specific ICS. (b) Dependence of the attack detection approach on the
system state, and other design parameters, when an attack is launched. (c) Im-
pact of attack detection study on the design of the software and hardware of a
specific ICS.

Organization: The remainder of this paper follows the tradition IMRaD (Intro-
duction, Method, Results and Discussion) approach for structuring a scientific ar-
ticle. Section 2 describes the method used and the experiments conducted. A brief
introduction to SWaT is in this section. Results from the experiment appear in
Section 3. Discussion on various aspects of attack detection in an ICS and design
challenges, are in Section 4. Conclusions and plans for further experimentation
are in Section 5.

2. Method

2.1. Context: The SWaT testbed

SWaT is a fully operational scaled down water treatment plant for research in
the design of IC resilient to cyber attacks. In a small footprint producing 5 gal-
lons/minute of doubly filtered water, this testbed mimics large modern plants for
water treatment such as those found in cities. The testbed is available for investi-
gating the response to cyber-attacks and for conducting experiments with novel
designs of physics-based and other attack detection and defense mechanisms.

Water treatment process: The treatment process (Figure 1) in SWaT consists
of six distinct and cooperating sub-processes P1 through P6. Each sub-process,
referred to as a stage, is controlled by an independent PLC. Thus, six PLCs work
in concert to control the entire process. Control actions are based on the system
state estimated by the PLCs using data from sensors. Stage P1 controls the inflow
of water to be treated, by opening or closing a motorized valve that connects the
inlet pipe to the raw water tank. Water from the raw water tank is pumped via
a chemical dosing station (stage P2) to another UF (Ultra Filtration) feed water
tank in stage P3. A UF feed pump in P3 sends water via the UF unit to RO
(Reverse Osmosis) feed water tank in stage P4. Here an RO feed pump sends
water through an ultraviolet dechlorination unit controlled by a PLC in stage P4.
In stage P5, the dechlorinated water is passed through a 2-stage RO filtration
unit. The filtered water from the RO unit is stored in the permeate tank and the
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reject in the UF backwash tank. Stage P6 controls the cleaning of the membranes
in the UF unit by turning on or off the UF backwash pump.
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AITxxx: Analyzer Indicator/Transmitter. DPITxxx: Differential Pressure Indicator/Transmitter.  

FITxxx: Flow Indicator/Transmitter.  LITxxx: Level Indicator/Transmitter. MVxxx: Motorized valve. Pxxx: Pump.

MV201

Figure 1. Sub-processes in SWaT.

Communications: Each PLC obtains data from sensors associated with the cor-
responding stage, and controls pumps and valves at that stage Ultrasonic level
sensors in each tank inform the PLCs of water level in the corresponding tank.
Several other sensors are available to check the physical and chemical properties of
water flowing through the six stages. PLCs communicate with each other through
a separate network. Communications among sensors, actuators, and PLCs can be
via either wired or wireless links; manual switches allow switch between the wired
and wireless modes.

Attacking SWaT: The wireless network in SWaT connects PLCs to sensors, ac-
tuators, and to the SCADA server and an engineering workstation. Attacks that
exploit vulnerabilities in the protocol used, and in the PLC firmware, are feasi-
ble and could compromise the communications links between sensors and PLCs,
PLCs and actuators, among the PLCs, and between PLC and SCDA and the
historian. Having compromised one or more links, an attacker could use one of
several strategies to send fake state data to one or more PLCs, or simply do
reconnaissance for a possibly subsequent attack.

2.2. System state

Each PLC in SWaT controls one or more actuators, e.g., a pump. The local state
of SWaT is comprised of the respective observable states of components under
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direct control of a single PLC. An observable state of a component is one that can
be deduced from readings obtained via one or more sensors associated directly
with that component. readings. A collection of local observable states of all six
PLCs in SWaT constitutes its global state. It is important to note that only the
observable properties of the process and its components are included, and used for
attack detection, in the local and global states. In IC-Exp, only the local states of
PLC1 are used to detect cyber attacks. In IC-Exp only the local state in stage 1
of SWaT was used to detect cyber attacks. While it possible to use states from
other stages, an objective here was to assess the effectiveness of IC-Exp based on
state information obtained from only one stage.

2.3. Normal operation

SWaT is designed to operate continuously without any interruption. As shown
in Figure 1, water to be treated is passed from tank T101 to tank T301 for
ultrafiltration. Tank T101 is normally kept at or above level “L”. The motorized
valve MV101 is opened by PLC1 when T101 reaches level ”L”. Opening the valve
causes water to flow in to T101 from outside of SWaT. PLC1 keeps track of
the level in tank T301. It does so by obtaining the state of T301 from PLC3 .
Note that the state of T301 is available to PLC3 via LIT301. Whenever tank
T301 becomes low, i.e., reaches state “L”, pump P101 is turned ON to direct
water from T101 to T301. Thus, PLC1 ensures that T101 and T301 are always
in state that allows for the ultrafiltration process to operate continuously without
interruption. Stages 4, 5, and 6 also operate in a continuous manner; details of
these later stages are omitted here as the experiments reported do not involve
any sensors from these stages.

The normal operation of SWaT can be affected by a cyber attack. Numerous
such attacks are possible that may cause SWaT to either shut down, or continue
to operate while producing at a less than the normal production rate, or cause
a tank to overflow, or even damage some of the critical units such as the UF or
RO. Numerous such attacks have already been reported [1]. In the following, two
attack scenarios, not considered in earlier work, are considered and methods to
detect such attacks discussed and experimentally evaluated.

2.4. Attack scenarios

Two attack scenarios labeled A1 and A2 were considered. Figure 2 shows the
components of SWaT directly involved in these two scenarios. Table 1 lists the
state of SWaT when an attack is launched and the sensors used in detecting these.
To understand A1 and A2 and their potential impact, consider an attacker who
intends to launch a cyber attack on SWaT to significantly reduce its productivity
below the standard 5 gallons/minute. In A1, the attacker is able to compromise
links A, B, and C, marked in Figure 2. Thus, the attacker can open/close MV101
at will, report to PLC1 an incorrect flow rate and tank level of T101 which would
be given by, respectively, FIT101 and LIT101. It is assumed that attacker knows
the specifications of MV101 and the dimensions of T101. This knowledge allows
the attacker to compute, in real time, the output of LIT101 given those of FIT101
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and FIT102 and thus launch a replay attack. This computation is done to make
the PLC (incorrectly) believe that the state of MV101 is what i should be. This
attack could be based on pre-computed values of the sensors or values computed
in real time. Scenario A2 is similar to A1 except that in A2 the attacker also
compromises FIT201 marked as D in Figure 2. Following is a sequence of attacker-
PLC actions in A1 that would lead to a reduction in water production unless the
attack is detected sufficiently early.

P1

Pump

P101

Raw Water

Tank

LIT101

Raw Water

FITxxx: Flow Indicator/Transmitter.  LIT101: Level Indicator/Transmitter. 

MV101: Motorized valve. Pxxx: Pump.

X X
FIT101 FIT201

PLC1
Valve control 

command

Pump control 

command

Tank

Level

Outflow

rate
Inflow

rate

MV101

Motorized 

Valve

Pump

status

Valve

status

UF Feed

Tank

LIT301

UF

P3

UF Output

Tank

to remaining

 stages

Stage P2, chemical dosing, is not shown.

There is no water storage in stage P2.

A B C D
PLC3

Figure 2. SWaT components involved in the attack and detection scenario. Links com-
promised by the attacker are indicated by a darkened circle marked A, B, C, and D.
Pump P101 is used as a device to which intermittent control actions are applied for
detecting cyber attacks.

Table 1. Attack scenarios

Attack
Scenario

Components† State Description

A1 LIT101∗ L‡ T101 is low and needs to be filled.

MV101∗ Open Flow into T101

FIT101∗ Non-zero Indicates flow rate into T101

P101 OFF No outflow from T101

T301 H No inflow into T301

F201 0 No outflow from T101

A2 LIT301 H Indicates the state of T301. All sensors used

in detecting A1 are also used in detecting

A2. All components states in P1 and P3 are
as in A1.

FIT201∗ 0 No outflow from T101
† Sensors not listed are not used during attack detection. ∗ Sen-
sors and actuators compromised.‡Tank states: HH=1000mm,
H=800mm, L=500mm, LL=250mm.
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Figure 3. (a) Attack on MV101. (b) Intermittent control action on pump P101 to detect
the attack (see text in Section 2.7). In the experiments reported here, Cw = 30 seconds,
Ow = 2 minutes.

1. Initial state: (As in Table 1) Tank T101 level status is “L”; the Ultrafiltration
(UF) process is active and tank T301 is at “H”. This implies that
pump P101 is OFF and hence there is no outflow from tank T101;
FIT201=0.

2.PLC1: Open MV101 because T101 level reported by LIT101 is “L” (see
the upper portion of Figure 3). In a few seconds MV101 opens and
FIT101 shows non-zero flow rate.

3.Attacker: (a) After some time, denoted as Aw, close MV101 thereby causing
the correct reading of FIT101 to drop to 0 (see the lower portion
of Figure 3). However, as the attacker has compromised FIT101,
PLC1 continues to receive non-zero flow rate. (b) For each request
from PLC1, set LIT101 to L0+δ, where Lk is the water level in
T101 at the time instant k and δ is the increase in tank level due to
the inflow of water; the attacker computes δ using the specifications
of MV101 and T101.

4.PLC1: When the attack is launched, T301 is at “H” and hence P101 is
OFF. However, as the ultrafiltration process is active, after some
time T301 will be in state “L”. PLC1 checks the state of T301 on
a regular basis. When it reaches ”L” it turns ON pump P101 but
only if T101 is above “L”. In this case the actual level of T101 is
“L” but through LIT101 the attacker is indicating that it is above
“L” and hence P101 can be started. Note that MV101 is OFF
implying that no water is flowing into T101, and P101 is ON. After
some time there will be no water in T101 which will either cause
P101 to trip or to be damaged. This will lead to stoppage of water
flow into T301 and of the ultrafiltration process hereby leading to
a reduction in the net productivity of SWaT.

The steps involved in attack scenario A2 are similar to those described above
except that in this case FIT201 is also compromised. Hence, the attacker can
willfully send incorrect data to PLC3 by manipulating FIT201.
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2.5. Attack procedure

The following general procedure was used to launch cyber attacks in both scenar-
ios.

1. Identify the tags to be manipulated in the attack. A tag is a memory
location where a PLC saves the received sensor data.

2. Compromise the wireless link between the SCADA computer and PLC1;
this is the level 2 network in SWaT.

3. Manipulate the tags. Manipulation involves setting the tag to a value dif-
ferent from that received by the PLC. In the absence of any hardware
or attack detection logic in PLC1 code, PLC1 assumes the manipulated
value to represent the true state of the component that corresponds to the
sensor whose output is manipulated.

2.6. Invariant for attack detection

Let x denote property p of a component of the system under attack, and y its
measurement obtained from a sensor. y(k) denotes the sensor measurement for
x(k) at instant k. x̂(k) is an estimate of x(k). In the absence of sensor errors and
no cyber attacks, x̂(k) = x(k) = y(k). In ICA the water level in tank T101 was
considered as the property p. The level in T101 is measured by sensor LIT101
(Figure 1). Sensors FIT101 and FIT201 measure, respectively, water flow into and
out of T101. These flow rates are denoted as ui(k) for inflow, and uo(k) for outflow.
In SWaT, each PLC obtains sensor data at 0.1 second intervals. However, for
detecting an attack, data was sampled from LIT101, FIT101, and FIT201 every
second as smaller sampling intervals did not offer any benefit in attack detection
in trial runs. x̂(k + 1) was computed as follows,

x̂(0) =y(0)

x̂(k + 1) =y(k) + α(uin(k)− uout(k)), (1)

where the constant α is based on the dimensions, e.g., diameter and height, of
T101 to transform flow rates into an increase/decrease in water level. In the above,
the water level in tank T101 is estimated using sensor values.

At time instant k+1, the water level in T101 depends on the level at time in-
stant k and the inflow and outflow at time instant k. This relationship is captured
in the following idealized model of the tank,

x(k + 1)− x(k) = α(ui(k)− uo(k)), (2)

where (2) assumes sensor with no noise. Eqn.2 is an ideal invariant for the water
flow process in stage 1 of SWaT. To derive a practically usable invariant, SWaT
was run several times without any attacks to estimate the mean μd and the
standard deviation σd of d = (x̂(k) − y(k)) over several runs, i.e., the mean and
variance of the difference between the estimated tank level x̂(k) and its measured
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value (y(k)). In these runs x̂(k) was computed using Eqn. 1. Based on Eqn. 2,
the statistics obtained experimentally, and converting the true process state to
its estimate, the following conditions were derived to test whether or not sensor
LIT101 is under attack.

E =

∑n

i=1
(x̂(i)− y(i))

n
> ε, under attack, (3)

E ≤ ε, normal. (4)

Figure 4. Invariant to detect attacks on LIT101.

In Eqns. 3 and 4, the average E of the difference between the estimated and the
measured tank levels is tested against ε. Thus, a decision whether or not LIT101
is under attack is taken from n sensor readings. Selection of n ought to be done
carefully as it impacts the detection effectiveness. In ICA n, was set to 10. As
described earlier, based on trial runs of SWaT without attacks, ε was set to 0.55.

2.7. Experiments

Based on the invariant in Eqn.4, sample code to implement attack detection
was added to the control algorithm already built into PLC1. Table 2 lists four
experiments conducted to assess the effectiveness of the invariant in Eqn. 3 in
detecting attacks in scenarios A1 and A2.

Table 2. Experiments

Scenario Experiment Detection method

A1 1 Invariant

2 Invariant and intermittent control action

A2 3 Invariant

4 Invariant and intermittent control action

The intermittent control action was to switch P101 ON and OFF as indicated in
Figure 3(b). Cw denotes width of the pulse in the intermittent control action. Ow

is the time for which P101 is in the OFF state. Each experiment set consisted of
several individual experiments to understand the impact of n (Eqn 3), Aw, Cw,
and Ow on the attack detection effectiveness of the methods proposed. ICA was
coded (Figure 7) and the code added to PLC1 together with that to compute the
invariant E.

As ICA is applied to P101, Cw should be set based on the duty cycle of P101.
Pump P101 takes about 15 seconds to move from OFF to ON state and 10 seconds
from ON to OFF state. Thus, Cw was set to 1minute and Ow to 5minutes in
experiments 2 and 4. Selection of Cw and Ow must be done carefully as discussed
in Section 4.
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3. Results

To understand the effectiveness of the invariant and ICA, four experiments were
conducted as summarized in Table 2. Additional exploratory experiments were
conducted to understand the impact of Aw, Ow, and Cw on the attack detection
effectiveness and on the behavior of SWaT. Results from these experiments are
summarised in Table 3 and explained in detail in the following.

Table 3. Effectiveness of attack detection methods

Scenario Detection method Outcome

A1 Invariant Attack detected, though delayed; intent not real-
ized (Figure 5(a))

Invariant+ ICA Attack detected soon after P101 is started; intent
not realized (Figure 5(b)).

A2 Invariant Not detected; intent realized: T101 becomes
empty and water output falls below 5gal-
lons/minute (Figure 6(a)).

Invariant + ICA Not detected; intent realized: T101 becomes
empty and water output falls below 5gal-
lons/minute (Figure 6(b)).

RQ1: How effective is the use of ICA in detecting multi-point attacks on a water
treatment system?

Experiment 1: A1 with invariant detector: Error E is plotted against time in
Figure 5(a). As shown, the attack is launched at about 201 seconds from the
start of the experiment. For about next 100 seconds, E reduces significantly and
condition in Eqn. 4 is true and hence the attack remains undetected. However, at
around 301 seconds, pump P101 is started by PLC1 because tank T301 reaches
its “L” state. Thus, detection is delayed by as much as the time it takes for T301
to reach “L”. In this the attacker intent is not realized as P101 keeps T301 above
“L” and hence the UF unit continues to filter water. ’

(a)
(b)

Figure 5. Error E (Eqn. 3) against time. Detection of attack scenario A1 with (a) invariant
and (b) invariant and intermittent control action.

Experiment 2: A1 with invariant and ICA : This attack is detected soon after
P101 is started due to the control action initiated by PLC1, and the most recent
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value of E has been computed. Recall that computation of E requires n readings.
Thus, after P101 is started, the attack was detected in at most n seconds. It might
seem that the use of ICA is redundant as A1 is detected, as in experiment 1, by
using the invariant alone. This is not always true; note that attack detection is
delayed when using the invariant alone. The delay depends on the state of tank
T301. If T301 is at its top, i.e., state is “HH”, then the P101 will start only after
T301 reaches “L”. However, when the ICA is used, P101 is started regardless of
the state of T301 and hence the attack is detected almost immediately.

Experiment 3: A2 with invariant: Recall that in this scenario the attacker has
compromised sensors LIT101, FIT101 and FIT301. Hence, the attacker is essen-
tially controlling the computation of E in Eqn. 3. As can be seen in Figure 6(a),
the attack is not detected even after 400 seconds due to a very small value of E. In
this case pump P101 will never turn ON and hence eventually tank T301will get
to state “L”. Soon after T301 reaches state “L”, the UF unit will stop. This will
cause a cascading effect and will cause the RO unit to stop once T401 becomes
empty. Though the experiment was stopped at about 400 seconds after it started,
the entire SWaT will shut down sometime after the attack is launched. The exact
time of shutdown will depend on the state of all the intermediate tanks at the
time the attack is launched.

(a)
(b)

Figure 6. Error E (Eqn. 3) against time. Detection of attack scenario A2 with (a) invariant
and (b) invariant and intermittent control action.

Experiment 4: A2 with invariant and ICA : As shown in Figure 6(b), A2 is not
detected even when ICA is used. Again, this happens because the attacker is
controlling the computation of E. In the figure the value of E does increase when
P101 is started by PLC1. This happens because the attacker does not know that
P101 has been started and hence is not recomputing the value of LIT101 to match
with the net inflow and outflow of water in tank T101. Note that in fact an
attacker can find out the state of P101 simply by observing a change in the value
sent by F201. However, this aspect was not implemented in the experiment as the
attack was not detected anyway. There does exist a possibility that the attack is
detected when (a) the attacker does not recompute E accounting for the state
of P101 and (b) the outflow from P101 is high enough to force E such that the
invariant becomes false.
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Additional exploratory experiments were conducted to investigate the im-
pact of the parameters indicated in Figure 3. These parameters are: the delay
in launching the attack (Aw), duration of P101 in the ON state (Cw), and the
duration of P101 in the OFF state (Ow). The outcome of these experiments is
summarized next.

Impact of Cw: The duration for which P101 is kept in the ON state (Cw) does
affect the attack detection effectiveness of the ICA approach. Experiments show
that Cw should be computed as min(d, n), where d is the duty cycle of the pump,
and n the number of readings used in computing E. If Cw is less than the duty
cycle plus number of readings to find E, the attack can not detected. Larger Cw

may cause overflow the next stage water tank, T301 in the current study. Also,
lower values of Cw might have a negative impact on the actuator’s lifetime and
its reliability. In the experiments reported, Cw was set to 1minute. Additional
experimentation is needed to determine the optimal Cw against several attack
scenarios.

Impact of Aw: Aw does not affect the attack detection effectiveness. However, it
does affect the time to realize the attacker objective. In the case of the attack
scenarios considered in this work, it was observed that (a) smaller Aw leads to
quicker realization of the attacker objective when the attack is not detected, and
(b) larger Aw increases the time to realize the objective assuming the attack is
not detected.

Impact of Ow: Ow is time when P101 is OFF, unless turned on using normal
conditions, i.e., when T301 reaches state “L”. Ow affects the attack detection
effectiveness. Lower values of Ow lead to quicker detection but only if ICA is
effective, i,.e., in scenario A1. However, low values of Ow may reduce the actuator
life time just as low values of Cw may. Hence the system designer ought to select
Cw and Ow such that detect time is minimized without unduly affecting the
actuator reliability.

4. Discussion

RQ2: What is the complexity and scalability of the attack detection approach?

Scalability of ICA: Industrial strength water treatment systems produce millions
of gallons of water per day. The pumps used in such facilities are huge and often
require a protocol, sometimes including a human, to be followed before they can
be turned ON or OFF. In such situations it is impractical to apply ICA for attack
detection. However, in large water treatment plants one could design a separate
auxiliary system specially for applying ICA. Such an auxiliary system consists of a
small pump with appropriate sensors in addition to the large pump. ICA is applied
to the auxiliary system and not to the main pump. The pump, and Cw, should be
designed such that the intermittent control action can detect a change in the tank
level for attack detection. The use of auxiliary systems to detect cyber attacks
on ICS has also been proposed using the concept of Intelligent Checkers [14] and
in [19] using time variant systems.
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Design of invariants and complexity: As observed in the experiments, intermittent
control actions are unable to detect attack scenario A2. However, this should not
be considered as an inherent limitation of the approach itself. Instead, the design
of the invariant plays a significant role in the effectiveness of ICA. In experiments
3 and 4, it is feasible to detect scenario A2 if sensors in stage 3 are also used in the
invariant. Doing so offers more process data to the PLC and hence more chances
of detecting the attack. Using more information does increase the complexity of
the invariant while likely increasing its effectiveness in attack detection.

RQ3: What are the impacts of using ICA on the physical design of the water
treatment system?

Design constraints: In scenario A2 it is possible that tank T101 is empty while
PLC1 is sending a command to turn ON P101. P101 does not have a dry-run cut
off and hence after a few cycles the pump will likely get damaged. Thus, prior
to turning P101 ON, PLC1 must check, using an auxiliary mechanism, whether
there is water in T101. The obvious assumption is that the auxiliary mechanism
is secure.

Generalising the ICA approach: A combination of process invariant and intermit-
tent control actions for detecting cyber attacks appears applicable to ICS other
than water treatment systems. For example, in a smart grid, one could explore
the use of ICA to detect an attack on the emergency battery management system
by requesting energy for an emergency load. However, the choice of parameters,
such as Cw and Ow ought to be done with extreme care due to the short reaction
time of most power machinery.

Detection using patterns in invariant error E

A cursory examination of Figures 5 and 6 reveals an interesting pattern. First,
the error E reduces significantly from its high value of about 0.4 to 0.15. Second,
the entire pattern of E over the observed duration of about 200 seconds changes
significantly when the attack is launched. This happens because the attacker is not
accurately simulating the random variation in the sensor errors that are evident in
the pattern of E prior to the attack. Instead, the attacker is either sending to the
PLC pre-computed values of the compromised sensors, or computing them in real
time but without simulating the physical randomness in the sensors. This change
in error pattern is useful for machine learning algorithms to improve the attack
detection effects in both attack scenarios A1 and A2 [5,12]. Certainly, an attacker
could be more severe and replay the error pattern as in replay attacks [10,18].

5. Conclusions and future work

Two attack scenarios were considered in IC-Exp. Based on these two scenarios,
a single most important conclusion from the experiments reported here is that
the ICA approach, combined with local process invariant, has its limitations un-
less the invariant used is extended beyond the SWaT stage that has been compro-
mised. Both scenarios consider attacks that are limited to a single stage of SWaT.
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Additional case studies are needed to investigate the following. (a) How does an
invariant(s)-based approach, combined with ICA, perform when sensors across
multiple stages are compromised. (b) How best to design invariants to improve
their effectiveness. Note that when stage k in SWaT is compromised, a PLC in of
the uncompromized stages ( �= k) may be able to detect the attack. Certainly, in
any case, perhaps the effectiveness of the invariant based method, when combined
with ICA, reduces as the attacker manages to compromise an increasing number
of sensors across stages of SWaT.

(* ICA: Intermittent Control Action.*)
(* November 1, 2015. Programmed by Sridhar Adepu. *)

IF HMI PLANT.START OR HMI PLANT.STOP THEN
ICA STATE:=0; (* Initialize state of the ICA processor *)

END IF;
CASE ICA STATE OF

0: (* *)
for i:=1 to 60 do (* Wait for 60 seconds. *)

IF SEC P THEN (* Wait for 1 second after system start.*)
ENDIF

ICA STATE := 1; (* Next state of the ICA processor.*)

1: (* Cw=1 minute.*)
HMI P101.Auto := 0;
HMI P101.Status := HMI P101.Status XOR 1
for i:=1 to 60 do (* Cw: Pump ON for 60 seconds.*)

IF SEC P THEN (* Wait for 1 second*)
END IF;

ICA STATE:=2; (* Next state of the ICA processor.*)

2: (* Ow=5 minutes *)
HMI P101.Auto := 0;
HMI P101.Status := HMI P101.Status XOR 1;
for i:=1 to 300 do (* Pump OFF for 5 minutes. *)

IF SEC P THEN (* Ow: Wait for 1 second. *)
ENDIF

ICA STATE:=1; (* Set next state of ICA processor to 1. *)
ELSE (* If ICA STATE is not any of 0 through 2. *)

ICA STATE:=0;
END CASE;

Figure 7. Code included in PLC1 to detect an attack using intermittent control actions.
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Abstract The study of cyber-attacks in industrial control systems is of growing

interest among the research community. Nevertheless, restricted access to real in-

dustrial control systems that can be used to test attacks has limited the study of

their implementation and potential impact. In this work, we discuss practical attacks

applied to a room-sized water treatment testbed. The testbed includes a complete

physical process, industrial communication systems, and supervisory controls. We

implement scenarios in which the attacker manipulates or replaces sensor data as

reported from the field devices to the control components. As a result, the attacker

can change the system state vector as perceived by the controls, which will cause

incorrect control decisions and potential catastrophic failures. We discuss practical

challenges in setting up Man-In-The-Middle attacks on fieldbus communications in

the industrial EtherNet/IP protocol and topologies such as Ethernet rings using the

Device-Level-Ring protocol. We show how the attacker can overcome those chal-

lenges, and insert herself into the ring. Once established as a Man-in-the-Middle at-

tacker, we launched a range of attacks to modify sensor measurements and manip-

ulate actuators. We show the efficacy of the proposed methodology in two exper-

imental examples, where an adversary can intelligently design attacks that remain

undetected for a typical bad-data detection mechanism.

Keywords. ICS, Critical System, Cyber-attacks, Fieldbus

1. Introduction

In recent years, security threats to industrial control systems (ICS) have received an in-

creasing amount of attention [7,6,15,8,10]. One area that has received particular atten-

tion are attacks against the integrity of sensor and control data in the system, also known

as false data injection attacks [12,16,19,14]. If the attacker manipulates or replaces sen-

sor data reported from the field devices, the control algorithm will take actions based on

an incorrect perception of the world, which will cause incorrect control decisions and

potential catastrophic failures.

So far, most of the analysis on false data injection has focused on a wide range

of suspected theoretical attacks and simulation studies, and only limited work has been
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published on the practical challenges for launching such attacks as access to real-world

ICS is usually hard to obtain for security researchers.

In this work, we discuss practical attacks applied to a room-sized water treatment

testbed (the SWaT testbed). The Secure Water Treatment (SWaT) testbed includes a

complete physical process, the related industrial communication infrastructure, and a su-

pervisory control network. This paper is an extention of our previous work [9], where

we launched Man-in-the-Middle (MitM) attacks at the supervisory control layer of the

SWaT testbed. In that work, we attacked the physical system using Ettercap spoofing on

the Supervisory Control network level, which enabled us to modify the sensor informa-

tion. In addition, we noted that Ettercap-based spoofing can easily be detected by more

complex networking devices such as SDN-capable switches and their controllers.

In contrast to [9], our proposed methodology attacks fieldbus communications di-

rectly, which enables the adversary to have total control of the system operation, without

taking into account any command coming from the higher levels such as the Human-

Machine Interface (HMI). Such attacks on fieldbus communications are challenging due

to the ring topology and the device specific messages used in the fieldbus, requiring more

specific knowledge of the network operation. We discuss practical challenges in setting

up MitM attacks on a fieldbus communication network using the EtherNet/IP protocol

over an Ethernet ring (maintained with the Device-Level-Ring (DLR) protocol). Once

established as a MitM attacker, we are able to launch a range of sensor and actuator

attacks and demonstrate their efficacy.

We summarize our contributions as follows:

• We study fieldbus communications and implement a prototype Man-in-the-

Middle (MitM) attack.

• We show how a MitM attacker can obtain sensor readings from eavesdropped

packets, and craft her own spoofed sensor and actuator command traffic. We also

provide details on datatypes and conversions required (e.g., from 4-20mA signal

to physical measurements).

• We combine the MitM attack and detailed understanding of the EtherNet/IP pro-

tocol to demonstrate practical attacks on SWaT, and show their impact on the

physical process.

This work is structured as follows: in Section 2, we state the problem setting and

attacker model. In Section 3, we present our practical attacks and discuss them in detail.

We conclude the paper in Section 4.

2. Background and Problem Formulation

In this section, we introduce Industrial Control Systems (ICS), their fieldbus networks,

and the specific testbed we use for our experiments. Finally, we introduce our attacker

model.

2.1. The SWaT Physical Process

The SWaT testbed is a water treatment plant which consists of 6 main processes to purify

raw water. Each process possesses a PLC that receives the information from the sensors
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and compute the control actions to the actuators. SWaT is set up to have two different

communication channels for many links: either wired (over IEEE 802.3 Ethernet) or

wireless communications (using IEEE 802.11).

The main physical processes SWaT can be described as follows (see Figure 1):

P1 - RawRaw in P2 - Chemical Pretreatment

P3 - Ultra ltrationP4 - Dechlorination

P6a  UF Backwash

P5 - Reverse Osmosis
P6b - 
Permeate

Figure 1. SWaT physical process overview

Raw water (P1) In this process, raw water is stored. P1 acts as the main water buffer

supplying water to the water treatment system. It consists of one tank, an on/off

valve that controls the inlet water, and a pump that transfers the water to the Ultra

Filtration (UF) system’s tank.

Pre-treatment (P2) While the water from P1 is pumped to the UF system, water quality

properties are evaluated and pre-treated. Conductivity, pH, and ORP are measured

to determine the activation of chemical dosing to maintain the quality of the water

within desirable limits.

Ultra Filtration (P3) The ultra-filtration process is used to remove the bulk of the feed

water solids and colloidal material by using fine filtration membranes that only

allow the flow of small molecules. The accumulated contaminants are removed by

back-washing away the membrane surface depending on the measure of a differ-

ential pressure sensor located at the two ends of the UF.

Dechlorinization (P4) After the small residuals are removed by the UF system, the re-

maining chlorines are destroyed in the ultraviolet chlorine destruction unit and by

dosing a solution of sodium bisulphite.

Reverse Osmosis (P5) The RO system is designed to reduce inorganic impurities by

pumping the filtrated and dechlorinated water with a high pressure through

semipermeable membranes.

RO final product (P6) The last part of the water treatment process consists on storing

the RO product i.e., cleaned water ready to distribute. In the SWaT case, treated

water is transferred again to the raw water tank in order to reuse it.

The SWaT testbed features distributed controls among the different process stages.

Each stage is controlled by a PLC (with hot-redundant counterpart), and all PLCs and

the SCADA system are connected together through a common network (which we call

Level 1 (L1) network). In addition, the PLCs are connected to local sensors and actuators

through individual fieldbus rings called Level 0 (L0). We now give details of this network

architecture.
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2.2. Industrial Control Network

A modern industrial control system typically consists of several layers of networks. The

SWaT industrial control network is illustrated in Figure 2. The physical process is mea-

sured by distributed sensors, and manipulated by actuators. These sensors and actuators

in SWaT operate by receiving and sending analog signals (4mA). The analog signals are

converted into digital signals by Remote Input/Output (RIO) modules. The digital sig-

nals are then encapsulated over fieldbus communication protocols (EtherNet/IP in our

case over the L0 network Figure 2), and sent back and forth from PLCs. PLCs in turn

communicate with a centralized Supervisory Control and Data Acquisition (SCADA)

system with the L1 network in Figure 2. This central system contains the HMI and His-

torian. In this work, we want to show a systematic methodology to deploy cyber-attacks

on industrial control systems (ICS), with a focus on fieldbus communication networks.

The reliability of such fieldbus networks is of great concern to the plant operator. For

that reason, ring topologies are a popular choice to implement these topologies. The ring

topology can be seen in Figure 2 at the L0 network, where there is a ring between the RIO

and a primary and a backup PLC. In particular, rings can tolerate faults such as the loss

of a single ring segment, without losing connectivity between any of the participating

devices. If the communication uses Ethernet as medium, rings can be constructed using

the device-level-ring (DLR) protocol.

In the context of an attacker who tries to insert itself as MitM, such ring topologies

have interesting properties. In particular, if the attacker cuts the ring to insert her own

device, the ring will automatically stop transmitting data through the “lost” segment. As

a result, the attacker will not receive any traffic to eavesdrop on. In order to successfully

complete the attacker, the attacker must “close” the ring again. We discuss that further in

Section 3.2.2.

L1 Network

HMI

Switch

HMI

SCADA Historian

PLC1a PLC1b

PLCPLC

Process 1
PLCPLC

Process 2

Remote IO

PLCPLC

L0 Network

RIO

Process n...

Sensor

42.42

SensorsActuators
...

PLC2a PLC2b PLCna PLCnb

HMI

Remote IO

L0 Network

RIO
Sensor

42.42

SensorsActuators

Remote IO

L0 Network

RIO
Sensor

42.42

SensorsActuators

Figure 2. SWaT network architecture.

2.3. Fieldbus Communications

SWaT’s ring topology in the fieldbus network contains the following four main devices

(see Figure 3).
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Remote IO

secondary primary

PLCPLC

L0 Network

Sensor

42.42

Sensors

RIO

Actuators

Attacker

Figure 3. Example ring topology in SWaT, with an attacker inserted as Man-in-the-Middle. In this configura-

tion, the attacker can eavesdrop and manipulate all traffic between RIO and primary PLC.

Programmable Logic Controller (PLC) This is the control device which receives sen-

sors readings and emits control commands to the actuators. SWaT’s PLCs cor-

respond to a chassis conformed by 6 components: 1756-PA2 Control Logix AC

Power Supply Unit; 1756-L71 Control Logix 2MB Controller; 1756-EN2T Ether-

net I/P Module (for communications at the Supervisory Control Network level);

1756-EN2TR Dual Port Ethernet I/P Module (for fieldbus communications at the

ring level); 1756-RM2 Control Logix Redundancy Module; and a 1756-RMC1

Control Logix Redundancy Fiber Optic Cable. Each SWaT’s ring presents a redun-

dant PLC, and on power up the system selects one as Primary, actively controlling

the physical process, and other as Secondary, shadowing the memory state of the

Primary. From that moment on, the Primary is responsible for the monitoring and

control of the fieldbus communications and the relaying/receiving of data from the

SCADA network. If the Primary fails, the system automatically switches over the

control to the Secondary.

Remote I/O (RIO) This device is the responsible for the translation of 4-20 mA signals

to/from the actuators/sensors to a stream of bytes where each byte (or bit depend-

ing on the resolution of the I/O module) corresponds to an I/O signal of the sys-

tem. For the communications between the PLC and RIO, the stream is encapsu-

lated following the Common Packet Format of the EtherNet/IP specification [18]

and transported through a wired connection. The RIO is modular, and in SWaT

it consists of 4 components: 1794-AENTR Flex Dual Port Ethernet I/P Adapter

(for fieldbus communications at the ring level ); 1794-IB32 Flex 32 Points Digital

Input Module (1-bit resolution per signal); 1794-OB16 Flex 16 Points Digital Out-

puts Module (1-bit resolution per signal); and 1794-IE12 Flex 12 Points Analog

Input Module (16-bit 2’s complement per signal).

Wireless Remote I/O (WRIO) SWaT features a manual switch to turn parts of the sys-

tem into “wireless mode”. If the field communications at the ring level are set to

wireless mode, this WRIO takes over the responsibility of scanning the analog

sensors and sending updates to the PLC. Its is important to highlight that in SWaT

this wireless transmission contains exclusively the analog input signals and not

the digital I/O signals. The Digital input and output signals are always transmitted

through the wired ring network between the RIO and PLC.

Wireless Access Point (WAP) In wireless mode, the WRIO connects to a wireless ac-

cess point connect to the EtherNet/IP ring thought a 1783-ETAP 3-ports switch.
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2.4. Attacker Model

Objective. The objective of an attacker depends on how much damage she wants to cause

to the system. Our proposed methodology can be used to a) manipulate sensor readings

that are reported from the sensors to the PLCs, and b) to manipulate control messages

that are sent from the PLC to the actuators. Therefore, a wide number of attacks can be

deployed, starting with a simple eavesdropping to sophisticated integrity persistent and

stealthy attacks.

Resources. The attacker is assumed to either a) being able to physically access the net-

work connecting the PLCs, sensors, and actuators, or b) able to fully compromise one

of the devices attached to that network. In both cases, the attacker will have a device

attached to the network, and can program the device to transmit arbitrary messages to

the network, and to process any message it receives.

3. Attacking Fieldbus Communications in SWaT

Based on the details we provided on SWaT, its fieldbus topologies, and the EtherNet/IP

protocol, we now show results of practical MitM attacks. We start by introducing tools

we used, and among them our custom SWaT Assault tool.

3.1. Tools

We used several tools to launch attacks against the fieldbus communications at the SWaT

testbed:

SWaT Assault We developed a command-line interpreter (CLI) application which in-

cludes a library of attack modules capable of launching diverse spoofing and bad-

data-injection attacks against the sensor and actuator signals of the SWaT testbed.

The attack modules can be loaded, configured, and run independently of each

other, allowing the attack of sensors and actuators separately. Attack modules also

can be orchestrated and assembled in teams in order to force more complex behav-

iors over the physical process, while maintaining a normal operational profile on

the HMI. SWaT Assault consists of 439 lines of Python [3] 2.7 code and its only

external dependencies are Scapy and NetFilterQueue.
Scapy Making use of the Scapy[4] packet manipulation program we developed a new

protocol parser for the Rockwell Automation proprietary message protocol used

for signal communication between the RIO and the PLC, and for the EtherNet/IP

Common Packet Format wrapper that encapsulates it. This parser (which we chose

to call SWaT message parser) is specific for the SWaT’s deployment (the SWaT

Ring implementation makes use of User Datagram Protocol (UDP) for the trans-

port of EtherNet/IP I/O implicit messages among ring devices) and its implemen-

tation follows SWaT’s Control Panels and Electrical Drawings manual. Scapy was

also used to sniff sensor readings from the EtherNet/IP Ring and to inject manip-

ulated data on both, sensor readings and actuation commands. Our tool also au-

tomatically recomputes the data integrity checksums used by the Transport Layer

protocol to match the false-data injection attack values.
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NetFilterQueue In order to avoid duplication of packets and/or race conditions between

original and injected packets, we employed the NetFilterQueue [2] Python bind-

ings for libnetfilter queue to redirect all the EtherNet/IP I/O messages between

PLC and RIO to a handling queue defined on the mangle table of the Linux firewall

iptables. The queued packets are later modified using Scapy and the previously

mentioned SWaT message parser, and finally released to reach their original desti-

nation i.e. PLC or RIO. Likewise, this technique allowed us to avoid disruptions on

the sequence of EtherNet/IP counters, and injection of undesirable perturbations

in the EtherNet/IP connections established between ring devices.

The command we use to queue packets for modification is the following:

iptables -t mangle -A PREROUTING -p udp --dport <port> -j NFQUEUE

Wireshark We used Wireshark [5] to understand the nature of the communication be-

tween devices in the ring. We also used Wireshark together with the SWaT’s Con-

trol Panel and Electrical Drawings manual, to derive the exact structure of the

EtherNet/IP-wrapped messages used in SWaT.

Ettercap We used Ettercap [1], a Man-In-The-Middle attack suite, on our attempts to

launch wireless attacks.

3.1.1. Differences Between Parsing Supervisory Network Packets vs. Fieldbus Packets

Ethernet

IP

TCP / UDP

CIP SWaT Messages

Scada Network Fieldbus

Ethernet/IP
Encapsulation

EtherNet/IP
Common Packet Format

Figure 4. EtherNet/IP encapsulation for CIP and custom SWaT Messages for Supervisory Network and Field-

bus communications, respectively.

While the SWaT networks use EtherNet/IP at the supervisory as well as the field-

bus level, the encapsulated protocol is different at each level: the CIP protocol is used

as main data payload for device communications at the Supervisory Control Network

level, while a device-dependent I/O implicit message payload is employed at the Fieldbus

Communications level (see Figure 4).

Parsing and injection of manipulated data at the Supervisory Control level using CIP

messages or at the Fieldbus Communications level using EtherNet/IP device-dependent

I/O implicit messages introduce different challenges and requirements to the attacker.
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ControlNet
CTDMA

ControlNet

EtherNet/IP

Common Object Library

Physical Layer

Data Link Layer

Network Layer

Transport Layer
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Figure 5. Common Industrial Protocol stack and its different physical layers.

Common Industrial Protocol stack The Common Industrial Protocol (CIP) network

specification library was originally developed by Rockwell Automation and finally stan-

dardized and maintained by Open Device Vendors Association (ODVA) and ControlNet

International. It aims to fulfill the main three needs of ICS systems: control, configura-

tion, and collection of data [11]. It defines the CIP application layer protocol as a encap-

sulated object-oriented protocol for transmission of connected (I/O implicit) messages

between a data producer and one or more data consumer devices, and unconnected (ex-

plicit) messages between two devices in the control network. Transmissions associated

with a particular connection are assigned an unique connection ID. While being an appli-

cation layer protocol, CIP is independent of the underlying layers, and requires an encap-

sulation protocol which allows abstraction from different data link and physical layers. It

also includes a Common Object library defining commonly used objects, some of which

are specific for a particular encapsulation protocol, and allows for extension and defini-

tion of vendor specific objects. The CIP specification library includes the definition of 4

different CIP stacks depending of the physical layer in use (see Figure 5): EtherNet/IP

(over IEEE 802.3 Ethernet), CompoNet, DeviceNet, and ControlNet.

Therefore, CIP messages contain much more rich semantic information about the

information being exchanged in the network, which can facilitate the understanding of

the process by the attacker. CIP messages follow an object-oriented format, allowing for

the transmission of a variable number of data with distinct types, which translates into

highly structured packets of variable lengths (see Figure 6). The attacker must dissect

each particular packet to extract the CIP object attributes containing the sensor or actuator

data, which may be set at different offsets depending on the number and type of objects

targeted by the packet.

On the other hand at the fieldbus level of SWaT, EtherNet/IP device-dependent I/O

implicit messages follow non-standard formats of fixed lengths, partially defined by the

vendor and by the control system designer, and where the analog sensor signals are en-

coded using 4-20 mA measurements. The attacker therefore must have detailed knowl-

edge and understanding of the system design a priori and implementation decisions, i.e.

she must have access to the devices specifications, electrical drawings, and installation

layouts in order to understand the information exchanged and manipulate the sensor

readings and control commands.
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Figure 6. CIP Object-Oriented Packet Structure.

3.2. MitM of Fieldbus Communications

We attempt attacks on the wired and wireless mode fieldbus communications in SWaT.

We now present results for both cases.

3.2.1. Wireless MitM

On our first try to sniff the fieldbus communications in the SWaT testbed we attempted a

wireless MitM attack between the PLC and the WRIO. We set the fieldbus communica-

tions into wireless mode and use a laptop we connected to the WAP. Using Wireshark, we

realized that we could already see one multicast EtherNet/IP connection, stacking Ether-

Net/IP over UDP, with the WRIO’s IP as source. This multicast connection corresponded

to the analog input signal which, as by SWaT’s design, is the only signal transported in

wireless mode. After switching on and off the wireless mode multiple times, we verified

that the multicast address range corresponded to the Organizational Local Scope [13], as

expected. The assigned UDP destination port was 2222, also defined in SWaT’s design.

It is important to highlight that the attacks presented on section 3.4 could be achieved

with minimum technical requirements through a wireless MitM if the ICS’s design ac-

counts for a complete wireless transmission of digital and analog signals. Unfortunately,

the digital input and output are not reported via the wireless links, and thus cannot be

compromised using the wireless MitM attack. In order to cope with this characteristic of

SWaT’s design, we resorted to performing a wired MitM directly in the EtherNet/IP ring.

3.2.2. Wired MitM

We assume an attacker who is an insider or who is able to set a physical device at any

point of the EtherNet/IP ring, between the PLC and the RIO. In our experiments, for

the implementation of the wired MitM, we intercepted the fieldbus communications by

adding a laptop with two Ethernet ports in a segment of the EtherNet/IP ring.

DLR must be taken into consideration when attempting a MitM in the EtherNet/IP

ring. If the attacker uses a DLR-unaware device, as we did in our experiments, she must

disable MAC learning and Spanning Tree Protocol when bridging both Ethernet ports.

Failing in carefully addressing this requirement will result in the isolation of the Ether-

Net/IP ring segment, as the DLR supervisor will recognize it as broken, and ultimately,

in the inability to sniff and inject data into the ring messages.
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Our configuration for the Ethernet ports and bridge for launching the attacks is the

following:

auto eth0 # Port 0

iface eth0 inet manual

auto eth1 # Port 1

iface eth1 inet manual

# Bridge between Port 0 and Port 1

auto br0

iface br0 inet manual

bridge_ports eth0 eth1

bridge_stp off # Disabling STP

bridge_ageing 0 # Disabling MAC learning

3.3. Parsing and injection of manipulated data in EtherNet/IP ring packets
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Figure 7. RIO’s Analog Input Module 12 input signals (16-bits 2’s complement per analog signal)

In SWaT, we identify three different device-dependent I/O implicit messages: one

for each I/O module conforming the RIO. Figure 7 shows the I/O implicit message for

the analog input module. It consists of a stream of 24 bytes, corresponding to 12 analog

inputs channels of 16-bits. The spare channels are not in use by SWaT’s current deploy-

ment. The digital input and output modules emit and receive bit streams, 32 bits and 16

bits respectively, where each bit corresponds to one digital signal. See table 1 for details

on RIO modules.

Table 1. RIO I/O modules.

Module Signal size (bits) # signals Avg. Freq. (ms)

Digital Input 1 32 50

Digital Output 1 16 60

Analog Input 16 12 80

The I/O implicit messages representing the analog signals are sent by the RIO to the

PLC with an average frequency of 80 milliseconds. They transport the numeric represen-
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tation of the 4-20 mA signals measured by the analog sensors. In order to scale back and

forth the 4-20 mA signal to the real physical measurement we use Equation (1), which

is a typical linear transformation (scaling and bias shift) to change the analog signal (4-

20mA) into a physical meaningful quantity (e.g. the height of the water level in a tank

being 0.5m). The constant values (RawMin, RawMax, EUMax, EUMin) depend on the

deployment and the physical property being measured (we obtained the specific values

for each constant from the HMI software of the testbed). Figure 8 shows an example for

the scaling of the water flow in SWaT.

Out = (In−RawMin)∗ EUMax−EUMin
RawMax−RawMin

+EUMin (1)

FLOW
10.0

0.0

31208.0

-15.0

EUMax

EUMin

RawMax

RawMin

−RawMin) ∗ EUMax−EUMin
RawMax−RawMin + EUMin2.49 m3/h = ( 7790

Figure 8. Scaling from 4-20 mA signals to water flow. The 4-20mA signal is scaled by the RIO to another

value (7790 in this case) and this value sent over the network is the one we capture and convert to physical

observations using Equation (1) with the respective constants for each signal.

3.4. Example: Stealthy Sensor Attack

We illustrate the feasibility of our proposed methodology by deploying a stealthy sensor

attack in the first stage of the plant i.e., raw water storage. The raw water process consists

of a storage tank with its water level sensor h1, one valve that opens when h1 < 0.5 m
and closes when h1 > 0.8 m, and one pump whose action depends on the UF process.

As a safety mechanism, if the water level in tank 1 is below 0.25 m, the pump is im-

mediately Off. The attacker’s goal is to overflow the water without being detected by a

typical behavior-based detection mechanism using the “physics” of the system under to

control to identify anomalies. Using the methodology described above, we gain access

to the ring and we are able to modify the sensor and actuator information by constructing

appropriate packets.

3.4.1. Attacker Action

Figure 9 depicts how an attacker can gain access to the sensor measure hi(k) and ac-

tuator command unom
i (k) packets and modify them. In this example, the attack consists

on injecting false information to the level sensor in tank 1. In particular, data injected

is computed using ha
1(k) = h1(k)+ δ (k). As result of this attack, the level of the water

is decreasing all the time, i.e., δ (k)− δ (k− 1) = Δ < 0 is the rate at which the sensor

information is modified.
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3.4.2. Detection Mechanism

The detection mechanism also known as bad-data detection uses the residuals ri(k),
which consists on the difference between the sensor measure hi(k) and its estimated

ĥi(k), such that ri(k) = |hi(k)− ĥi(k)|. For a sensor attack occurring at a time instant k∗,

the residuals are then ri(k) = |ha
i (k)− ĥi(k)| for all k ≥ k∗. In our work, the estimated

states are obtained by obtaining a mathematical approximation of the system behavior

with a Luenberger observer (we refer to [16,17] for more details on system estimation

and the bad-data detection method, which are out of the scope of this paper). When

ri(k)> τi for τi > 0, an alarm is triggered indicating the presence of an attack. The main

property of this type of detection is that it is based on the physical properties of the sys-

tem and it can detect changes that violate those physical properties. For instance, Fig-

ure 10 depicts how the detection mechanism is able to trigger alarms for τ1 = 0.1 when

an attack induces a sudden change in the sensor measurements, ha
1(k

∗) = 0.1 m, which

yields to r1(k) > 0.1. However, an intelligent adversary can remain stealthy by causing

small changes in the sensor information.

Figure 9. Detection mechanism and man in the middle attack for SWaT. h(k)1 is the attacked water level mea-

sure, unom
1 (k),ua

1(k) are the real and attacked control command, respectively, for time instance k.
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Figure 10. Sensor attack in the water level h(1k). The attack is detected when r1(k)> 0.1.

Figure 11 illustrates the effect of the stealthy sensor attack. Before the attack is

launched, the valve was closed and the pump was ON, so the water level was decreasing.
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Figure 11. Effects of a stealthy sensor attack in the SWaT testbed. The PLC is connected to an intelligent

verifier that analyzes the sensor measure and detects attacks based on sudden changes in the physical behavior.

The attack was designed such that the bad-data detector with τ1 = 0.01 could not detect the attack.

As soon as the attack starts, the sensor measurement received keeps indicating that the

water level is always decreasing (a little bit faster because the pump is ON), such that

the valve opens when it reaches its minimum level ha
1(k) = 0.5 m. At that instant the

pump continues pumping water such that the real water level remains constant for some

time. When the pump stops (ha
1(k) < 0.25 m), the tank starts filling up with water (the

water level h(k) starts increasing) but the false sensor reading keeps indicating low water

levels. The valve never closes and eventually it will yield to an overflow. Due to the small

rate of change, the bad-data detection with a threshold τ1 = 0.01 never detects the attack.

Smaller thresholds can detect the attack but also increase the number of false alarms.

Besides, even if τ1 is smaller, the attack can be designed to remain stealthy for small Δ.

4. Conclusions

In this work, we discussed practical MitM attacks on ICS Fieldbus communications. In

particular, we provided details on the typical topologies (in particular, DLR) and proto-

cols used in such a setting (EtherNet/IP). We also discussed practical challenges in set-

ting up MitM attacks and how to overcome them, and demonstrated results of our prac-

tical attacks. We have shown that, although EtherNet/IP can be used as the overall en-

capsulation protocol, the protocol selection, and therefore, parsing and injection of ma-

nipulated data on the encapsulated message depends on the control system layer. SWaT
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presents CIP for Supervisory Control Network communications and a device-specific I/O

messages for Fieldbus communications.

The MitM of an EtherNet/IP ring also presents several challenges: The attacker must

verify that the attacking device incorporated into the ring does not break the ring per-

manently, as these events could potentially be monitored, i.e. the attacking device must

not interfere with the DLR protocol. An attacker who successfully deploys a MitM de-

vice into a EtherNet/IP ring established for Fieldbus communications must be assumed

to have access to all digital and analog signals. She could inject manipulated data in all

sensors and actuators monitored and controlled by the ring’s PLC at any time. Therefore,

the adversary could effectively isolate and manipulate the physical process disregarding

control actions sent by the control room or the PLCs. Using the proposed methodology

to launch attacks, different detection mechanisms can be tested and improved. In addi-

tion, more robust communication infrastructures can be designed in order to decrease an

attacker’s impact over the system.
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Abstract. In early 2000’s, Rivest [1,2] and Micali [2] introduced the notion of tran-
sitive signature, which allows a third party with public key to generate a valid sig-

nature for a composed edge (vi,vk), from the signatures for two edges (vi,v j) and

(v j,vk). Since then, a number of works, including [2,3,4,5,6], have been devoted

on transitive signatures. Most of them address the undirected transitive signature

problem, and the directed transitive signature is still an open problem. S. Hohen-

berger [4] even showed that a directed transitive signature implies a complex math-

ematical group, whose existence is still unknown. Recently, a few directed transi-

tive signature schemes [7,8] on directed trees are proposed. The drawbacks of these

schemes include: the size of composed signature increases linearly with the number

of nested applications of composition and the creating history of composed edge

is not hidden properly. This paper presents a RSA-Accumulator [9] based scheme

DTTS—a Directed-Tree-Transitive Signature scheme, to address these issues. Like

previous works [7,8], DTTS is designed only for directed trees, however, it features

with constant (composed) signature size and privacy-preserving property. We prove

that DTTS is transitively unforgeable under adaptive chosen message attack in the

standard model.

Keywords. Homomorphic Signature, Transitive Signature, Directed Transitive

Signature, Redactable Signature, Privacy-Preserving

1. Introduction

In 2000, Rivest [1] introduced the notion of homomorphic signatures (formalized in [10,

11] etc.) and proposed an open problem on the existence of directed transitive signatures.

Later, Micali and Rivest [2] proposed the first undirected transitive signature scheme, and

raised the directed transitive signature as open problem again and officially. A transitive

signature scheme aims to authenticate the transitive closure of a dynamically growing

graph [7]. The scheme works in this way: a signer has a pair of public/private signing key,

and is able to sign a new vertex or edge when it is generated at any time. Unlike standard

digital signature, the transitive signature scheme supports a transitive property. That is,

1A full version is available at Cryptology ePrint Archive https://eprint.iacr.org/2009/209
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A. Mathur and A. Roychoudhury (Eds.)
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given the signatures σi, j and σ j,k of edges (vi,v j) and (v j,vk) respectively, anyone can

produce a signature σi,k for composed edge (vi,vk) using the public key only, where vi,v j,

and vk are vertices, and (vi,v j),(v j,vk) are edges in a graph. If the graph is undirected,

such scheme is called undirected transitive signature scheme; if the graph is directed, it

is called directed transitive signature scheme. This paper attempts to attack the directed

transitive signature problem in a restricted but meaningful setting: (1) The graph is a

rooted directed tree (arborescence); (2) When composing two signatures of two adjacent

edges, the second signature must be provided by the original signer.

Since Rivest’s talk in 2000, a number of undirected transitive signature schemes [2,3,

5,6,12,13] have been proposed. However, the directed transitive signature is still an open

problem [4,8], although some plausible directed transitive signature schemes [14,7,8]

on restricted directed graphs, like directed tree, have been proposed. Y. Xun et al. [15]

pointed out that Kuwakado-Tanaka transitive signature scheme [14] on directed trees is

insecure under chosen message attack by proposing a forgery attack. Y. Xun [7] also

proposed a transitive signature scheme RSADTS on directed trees , but the (composed)

signature size is not constant. G. Neven [8] pointed out that it would be much easier to

construct a directed transitive signature scheme (on directed tree) if the signature size is

allowed to grow linearly, and gave a simple scheme as a demonstration. So far, to our

knowledge, there is no known transitive signature scheme on directed trees, which is

provably secure and has constant signature size. Table 1 and Table 2 compare various

transitive signature schemes appeared in literatures with DTTS proposed in this paper,

from different aspects.

Scheme Signing cost Verification cost Composi-tion
cost

Signature size Compos-ed
Signature
size

Supported
Graph

DLTS [2] 2 stand. sigs. 2 exp.

in G
2 stand. verifs 1

exp. in G
2 adds in Zq 2 stand. sigs 2

points in G 2 points

in Zq

constant undirected graph

RSATS-1 [2] 2 stand. sigs. 2

RSA encs

2 stand. verifs 1

RSA enc.

O(|n|2) ops 2 stand. sigs. 3

points in Z
∗
n

constant undirected graph

FactTS-1 [6] 2 stand. sigs

O(|n|2) ops

2 stand. verifs

O(|n|2) ops

O(|n|2) ops 2 stand. sigs 3

points in Z
∗
n

constant undirected graph

GapTS-1 [6] 2 stand. sigs 2 exp.

in Ĝ

2 stand. verifs 1

Sddh

O(|n|2) ops 2 stand. sigs. 3

points in Ĝ

constant undirected graph

RSADTS 2 stand. sigs 2 stand. verifs ≤ |M| ops 2 stand. sigs increase directed tree

[7] 1 exp. in 〈G 〉 1 exp. in 〈G 〉 2 points in 〈G 〉
1 label δi, j ≤ M

DTTS ≤ 2 stand. sigs 2 stand. verifs 1 exp. in Z
∗
n 2 stand. sigs. constant directed tree

(This paper) 2 exp. in Z
∗
n 2 exp. in Z

∗
n 3† points in Z

∗
n (Arborescence)

Table 1. Performance comparison among transitive signature schemes([6,7]). †: The left labels in a signature

can be reduced using a hash function (See our full version [16] ).

In RSADTS, each edge (i, j) is associated with a random number ri, j as the label.

Given two adjacent edges (i, j) and ( j,k) and their signatures, anyone with public key

can produce a signature for the composed edge (i,k), whose label is the integer product

ri, j × r j,k. If we apply the transitive property recursively, the length of the label of the

newly composed edge increases linearly with the depth of the recursion. Furthermore, the

integer multiplication reveals some information about the creating history of the newly

composed edge: if the original random numbers chosen by the signer are small, then

adversaries could factorize the integer product; otherwise the bit-length of the product

may reveal significant information about the number of multiplications, which implies

the length of the path used to create the composed edge.
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The directed transitive signature scheme DTTS on directed tree proposed in this

paper, is inspired by the relation between transitive signature and redactable signature

(Chang et al. [17]), and is different from previous schemes at least in these aspects: (1)

It is provably secure under adaptive chosen message attack; (2) The length of signature

of a composed edge is constant; (3) The creating history of a composed edge is hidden

properly; (4) The directed tree supported by DTTS is slightly more restricted (precisely,

every vertex has at most one incoming edge) than that of RSADTS (See Section 2); (5)

When the transitive property is applied repeatedly on a path, for example path i1 → i2 →
i3 → i4, the order of nested applications is predetermined. That is, compose a signature

Scheme Assumptions for Provable Security Privacy Preserving How to
grow?

Persis-tent
Vertex?

DLTS [2] Security of standard signature scheme; Hard-

ness of discrete logarithm in prime order

group

Perfect,Transparent Arbitrarily No

RSATS-1 [2] Security of standard signature scheme; RSA

is secure against one-more-inversion attack

Perfect,Transparent Arbitrarily No

FactTS-1 [6] Security of standard signature scheme; Hard-

ness of factoring

Perfect,Transparent Arbitrarily No

GapTS-1 [6] Security of standard signature scheme; One-

more gap Diffie-Hellman assumption

Perfect,Transparent Arbitrarily No

RSADTS [7] Security of standard signature scheme; RSA

Inversion Problem in a Cyclic Group is hard

No (due to integer multi-

plication)

From a single

source

No

DTTS (This

paper)

Security of standard signature scheme;

Strong RSA Problem is hard

Computational,Non-

Transparent

From a single

source

Yes

Table 2. All of these schemes are transitive unforgeable under adaptive chosen-message attack in standard

model [6].

for (i1, i3) first from signatures of edge (i1, i2) and edge (i2, i3), then compose a signature

for (i1, i4) from signatures of edge (i1, i3) and edge (i3, i4). This is because, in DTTS,

Comp requires the second edge is original, i.e. signed directly by the original signer.

Note that the last difference does not restrict the power of transitive property of DTTS.

Instead, this difference can be treated as a feature, and can be utilized to provide the

signer with control on composition (See our full version [16] for details).

1.1. Contributions of this paper

Directed transitive signature is a hard open problem. We attack this problem from a dif-

ferent angle in a simplified but meaningful setting: (1) The graph is a directed tree (ar-

borescence); (2) When composing two signatures of two adjacent edges, the second sig-

nature must not be a composed signature itself. The contributions of this paper include:

1. We present DTTS, a directed transitive signature scheme on directed trees with

constant signature size (Section 3.1).

2. We prove that DTTS is transitively unforgeable under adaptive chosen message

attack in standard model, and the creating history of composed signature is hid-

den properly (Section 3.2).

2. Definitions

Notations. Let N= {1,2,3,4,5, . . .} be the set of integers. The notation x ← a denotes

that x is assigned a value a, and x $←− S denotes that x is randomly selected from the set S.

Let Prime be the set of all odd prime numbers.
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Graph. Let G = (V,E) be a simple directed graph with a set V of nodes (or vertices)

vi’s and a set E of directed edges. In this paper, we focus on directed trees. Note that

there exist different definitions of directed tree in the literature: (1)A directed tree is a

directed graph that would be a (undirected) tree if ignoring the direction of edges; (2)A

directed tree (or Arborescence) is a directed graph, where edges are all directed away

from a particular vertex. The second definition is slightly more restricted than the first

one. In this paper, we adopt the second definition for directed tree and the term “directed

tree” refers to arborescence by default. Notice that Y. Xun [7] adopted the first definition

of directed tree and G. Neven [8] adopted the second definition.

A transitive closure of a directed graph G = (V,E), is a directed graph, denoted as

G̃ = (V, Ẽ), where (vi,v j) ∈ Ẽ if and only if there is a directed path from vertex vi to

vertex v j in graph G.

Directed Transitive Signature Scheme. A directed transitive signature scheme DTS =

(TKG,TSign,TVf,Comp) is specified by four polynomial-time algorithms, and the func-

tionality is as follows [6,7]:

• The randomized key generation algorithm TKG takes as input 1k, where k is the

security parameter, and returns a pair of keys (t pk, tsk), where t pk is the public

key and tsk is the private key.

• The signing algorithm TSign could be randomized or/and stateful. TSign takes

the private key tsk, two vertices vi and v j, and returns a value called an original
signature of the edge (vi,v j) relative to tsk. If stateful, it maintains a state which

it updates upon each invocation.

• The deterministic verification algorithm TVf, given t pk, two vertices vi,v j and

a candidate signature σ , returns either TRUE or FALSE. We say that σ is a valid
signature of edge (vi,v j) relative to tsk, if the output is TRUE.

• The deterministic composition algorithm Comp takes as input t pk, two directed

edges (vi,v j) and (v j,vk) and two signatures σi, j and σ j,k, and returns either a

composed signature σi,k of the composed edge (vi,vk), or ⊥ to indicate failure.

An edge e is called original edge if e∈E, or composed edge if e∈ Ẽ−E. All original

edges are signed by the signer using TSign and tsk, and all composed edges could be

indirectly signed by anyone using Comp and t pk.

Two different views of Transitive Signatures. Transitive signatures are originally de-

signed to authenticate a transitively closed graph in an economic way, i.e. sign as least as

possible number of vertices and edges to authenticate a transitively closed graph. Viewed

from another angle, transitive signatures are actually redactable signatures on growing

graph (Figure 1). The redaction operation can be implemented straightforwardly just us-

ing the composition operation Comp.

Correctness, Security and Privacy. We slightly modify the definitions of correctness

and security of (directed) transitive signature scheme in [6,7] to adapt for DTTS. We also

formalize the definition of privacy of transitive signatures when viewed as redactable

signatures. Due to space constraint, we will leave details of these definitions to our full

version [16].
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(a) Transitive Closure (b) Redaction

Figure 1. This graph illustrates the two different views of transitive property. In Subfigure (a), composed edges

represented by dashed lines are signed indirectly by applying composition operation Comp. In this graph of

10 vertices and 29 edges, 9 original edges are signed directly using TSign, and the signatures of the other 20

composed edges (dashed line) can be saved due to transitive property. In Subfigure (b), a vertex represented by

the dashed circle is redacted from the graph, and the edges connecting its parent and children are created and

signed by applying Comp.

3. DTTS: Transitive Signature on Directed Tree

3.1. The scheme

Let SDS = (SKG,SSign,SVf) be a standard signature scheme (For example, the signa-

ture scheme proposed by Goldwasser et al [18]). We define the directed transitive signa-

ture scheme DTTS = (TKG,TSign,TVf,Comp) as follows.

TKG(1k). The key generation algorithm TKG taking 1k as input, runs as follows:

1. Run SKG(1k) to generate a key pair (spk,ssk).
2. Choose a RSA modulus n = pq, such that p = 2p′+1,q = 2q′+1, p,q, p′ and q′

are all prime, and |p|= |q|. Let Carmichael function λ (n) = lcm(p−1,q−1).
3. Choose an element g from Z

∗
n, such that the multiplicative order of g modulo n is

p′. Let 〈g〉 denote the subgroup of Z∗
n generated by g. Let P denote the set of all

odd primes in Zp′ , i.e. P = Zp′ ∩Prime.

4. Output t pk = (spk,n) as the public key and tsk = (ssk,λ (n), p′,g) as the private

key.

TSigntsk(vi,v j). The signing algorithm TSign maintains a state (V,E,L,Π,Δ,Σ):

• V ⊂ {0,1}∗ is a set of queried nodes;

• E ⊂V ×V is a set of directed edges;

• The function L : V → P ×Z
∗
n assigns to each node v ∈ V a public label L(v),

which consists of a prime (called left label, denoted as LL (v)) from P and an

element (called right label, denoted as LR(v)) from Z
∗
n (L(v)≡ (LL (v),LR(v)));

• The set Π records all prime numbers chosen in the signing process;

• The function Δ : E → Z
∗
n assigns to each edge (vi,v j) ∈ E a label δi, j;

• The function Σ : V → {0,1}∗ assigns to each node v ∈ V a standard signature

Σ(v).

Initially, all of V , E and Π are empty sets. When invoked on input vi,v j (vi �= v j) and tsk,

the signing algorithm TSign runs as follows:

1. Case 1: vi,v j �∈V , i.e. neither vertex vi or vertex v j is signed.
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(a) Choose ri randomly from P −Π: ri
$←− P −Π. Update Π: Π ← Π∪{ri}.

(b) The left label LL (vi) of vi is: LL (vi) ← ri. The right label LR(vi) of vi is:

LR(vi)← gri mod n.

(c) Choose r j randomly from P −Π: r j
$←− P −Π. Update Π: Π ← Π∪{r j}.

(d) The left label LL (v j) of v j is: LL (v j)← r j. The right label LR(v j) of v j is:

LR(v j)← LR(vi)
r j mod n.

(e) Σ(vi)← SSignssk(vi,ri,LR(vi)); Σ(v j)← SSignssk(v j,r j,LR(v j)).
(f) The certificate of vi is: C(vi)← (vi,ri,LR(vi),Σ(vi)). The certificate of v j is:

C(v j)← (v j,r j,LR(v j),Σ(v j))
(g) The label of the edge (vi,v j) is: Δ(vi,v j)← g.

2. Case 2: vi ∈ V,v j �∈ V , i.e. vertex vi is signed already but vertex v j is not signed

yet.

(a) Let the certificate of vi be C(vi) = (vi,ri,LR(vi),Σ(vi)), where ri = LL (vi).

(b) Randomly choose r j from P −Π: r j
$←− P −Π. Update Π: Π ← Π∪{r j}.

(c) The left label LL (v j) of v j is: LL (v j)← r j. The right label of v j is LR(v j)←
LR(vi)

r j mod n.

(d) The certificate of vertex v j is C(v j)← (v j,r j,LR(v j),Σ(v j)), where Σ(v j)←
SSignssk(v j,r j,LR(v j)).

(e) The label of the edge (vi,v j) is: Δ(vi,v j)← LR(vi)
1
ri mod n.

3. Case 3: vi �∈ V,v j ∈ V , i.e. vertex v j is signed already but vertex vi is not signed

yet.

(a) Let the certificate of v j be C(v j) = (v j,r j,LR(v j),Σ(v j)), where r j = LL (v j).

(b) Randomly choose ri from P −Π: ri
$←− P −Π. Update Π: Π ← Π∪{ri}.

(c) The left label LL (vi) of vi is: LL (vi)← ri. The right label of vi is: LR(vi)←
LR(v j)

1
r j mod n.

(d) The certificate of vertex vi is: C(vi)← (vi,ri,LR(vi),Σ(vi)), where Σ(vi)←
SSignssk(vi,ri,LR(vi)).

(e) The label of the edge (vi,v j) is: Δ(vi,v j)← LR(vi)
1
ri mod n.

For all cases, update V and E: V ← V ∪ {vi,v j},E ← E ∪ {(vi,v j)}, and output

(C(vi),C(v j),Δ(vi,v j)) as the signature of (vi,v j).

TVft pk(vi,v j,σi, j). The verification algorithm TVf, when revoked on input t pk, nodes

vi,v j and a candidate signature σi, j on directed edge (vi,v j), runs as follows:

1. Parse σi, j as (Ci,Cj,δi, j). Parse Ci as (vi,ri,LR,i,σi)) and parse Cj as (v j,r j,LR, j,σ j).
2. If SVfspk((vi,ri,LR,i),σi) = FALSE or SVfspk((v j,r j,LR, j),σ j) = FALSE, then

reject.

3. Accept if δ rir j
i, j ≡ LR, j (mod n).

Compt pk(vi,v j,vk,σi, j,σ j,k). The composition algorithm Comp, when invoked on in-

put t pk, nodes vi,v j,vk, and two signatures σi, j and σ j,k, runs as follows:

1. Parse σi, j as (Ci,Cj,δi, j) and σ j,k as (C′
j,Ck,δ j,k).

2. If Cj and C′
j are different, output ⊥ and abort.
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Figure 2. This figure shows the left label LL (v) and right label LR(v) associated with every vertex v. Note

this graph grows from the vertex represented by the dark circle.

3. Parse Ci,Cj,Ck as (vi,ri,LR,i,σi),(v j,r j,LR, j,σ j) and (vk,rk,LR,k,σk) respec-

tively.

4. If SVfspk((vi,ri,LR,i),σi) = FALSE or SVfspk((v j,r j,LR, j),σ j) = FALSE or

SVfspk((vk,rk,LR,k),σk) = FALSE, output ⊥ and abort.

5. If LR(v j)
rk �≡ LR(vk) mod n, output ⊥ and abort2.

6. Compute δi,k ← δ r j
i, j mod n.

7. Output (Ci,Ck,δi,k) as the signature of edge (vi,vk).

Figure 2 shows the left and right labels associated with every vertex vi.

3.2. Security

Theorem 1. DTTS = (TKG,TSign,TVf,Comp) as defined in Section 3.1 is transitively
unforgeable under adaptive chosen message attack, assuming the standard signature
scheme SDS = (SKG,SSign,SVf) is unforgeable under adaptive chosen message attack
and the Strong RSA problem is difficult.

4. Conclusion

In this paper, we gave the first directed transitive signature scheme DTTS on directed

trees, which is inspired by the relationship between transitive signatures and redactable

signatures. Unlike previous schemes, DTTS features with constant signature size and

privacy preserving property. We proved that DTTS is transitively unforgeable and non-

transparently privacy-preserving under reasonable assumptions. In summary, we solved

the open problem of directed transitive signature in a relaxed setting, although in general

the directed transitive signature remains open problem.

2This means the Comp algorithm requires that the second edge (v j,vk) is an original edge, i.e. signed by the

signer, instead of edge generated by composing a path.
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A Framework for Large-Scale Collection

of Information from Smartphone Users

based on Juice Filming Attacks
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Abstract. Cyber security refers to protecting computers, networks, programs and

data from unauthorized access, change or destruction. With the wide adoption of

smartphones, a lot of sensitive information can be cleaned from users’ interaction

with their smartphones and tablets. In our previous effort, we have developed a type

of charging attacks called juice filming attacks, which can sniff smartphone users’

information when they are interacting with their phones during charging. With the

increasing number of public charging stations, we notice that this type of charging

attacks may become a big threat to compromise users’ privacy. In this work, we

propose a framework of collecting smartphone information in large-scale based on

juice filming attacks. Then, we show that such charging attacks work well not only

on Android phones, but also on the newly released iPhones. Our work points out

that the proposed framework is feasible to threaten users’ privacy in practice.

Keywords. Cyber Security, Smartphone Security, Charging Attacks,

1. Introduction

Cyber security research aims to protect networks, computers, programs and data from

attack, damage or unauthorized access. It includes applications security, information se-

curity, network security and so on. With the increasing adoption of smartphones, more

recent research has focused on mobile security and the data stored in these phones has

become a major target for hackers.

As an example, Xu et al. [13] investigated video-based vulnerabilities in 3G S-

martphones and designed a video-based spyware, called Stealthy Video Capturer (SVC),

which allows hackers to automatically activate the built-in camera on 3G Smartphones.

They then implemented the spyware and conducted experiments on real world 3G smart-

phones. The results showed that SVC spyware can capture private video information with

unremarkable power consumption, CPU and memory footprint. There are also several

surveys about smartphone malware such as [1,2,10].

However, we find that few studies in the literature give attention to charging attacks

that could steal information through charging facilities. In our previous research [9], we
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mengw@i2r.a-star.edu.sg.

Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016
A. Mathur and A. Roychoudhury (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-617-0-99

99



developed a new type of charging attacks called juice filming attacks on smartphones,

which can automatically video-capture screen information of smartphone users during

charging process. Based on the captured video, it is feasible to extract huge amounts of

sensitive information such as PIN code, emails accounts and various passwords. More-

over, our attack is scalable on both Android OS and iOS, distinguishing this type of

attacks from malware attacks.

Motivation. With the increasing demands, public charging stations are becoming

popular and widely available in our daily lives. For example, Singapore Power (SP)

promised to provide 200 free mobile charging stations for SG50 [12]. As it said, these

stations will be launched progressively in busy locations including hospitals, tertiary in-

stitutions, libraries and supermarkets, and will become available for one to two years.

More specifically, each station will be equipped with 10 individual slots, which contain

multiple charging connectors such as mini and micro USBs which will fit most mobile

phones and tablets. These charging facilitates can greatly benefit smartphone users, but

also open a hole for hackers. This work aims to emphasize that more attention should be

given to charging attacks.

Contributions. In this work, we focus on proposing a proof-of-concept framework to

show how to collect a large-scale smartphone users’ information based on juice filming
attacks, aiming to explain the potential impact of such attacks on smartphone users in

practice. The contributions of our work can be described as below:

• Firstly, we propose a framework to launch juice filming attacks in larger-scale,

which can greatly threaten smartphone users’ privacy in public places. In partic-

ular, we take Singapore MRT stations as an example and illustrate how to widely

collect users’ information with cloud computing. We point out that our framework

is feasible to deploy in practice and would be even more severe when utilized by

large agents or organizations.

• To illustrate the attack capability, we further verify juice filming attacks on re-

cently released Android and iOS devices. It is found that our attack works well

in these newly developed platforms. To mitigate it, we also discuss some coun-

termeasures. Our effort demonstrates that charging attacks may become a major

threat for cyber security and attempts to stimulate more attention to this area.

The remaining parts are organized as follows. Section 2 briefly introduce the prin-

ciples of juice filming attacks. We describe our framework and show how to implement

it through an example in Section 3. In Section 4, we validate the effect of juice filming
attacks on newly released mobile operating systems and phones. Then, we discuss some

countermeasures in Section 5. Finally, we conclude this work in Section 6.

2. Background of Juice Filming Attacks

In [9], juice filming attack was developed, which can refer users’ private information

through automatically video-capture smartphone screens when users are interacting with

their phones during charging. It does not need to install any additional apps or ask for

any permissions. Overall, it can provide six features as below:

• It is easy to implement but quite efficient.

• It is a kind of passive attack, which receives less user awareness.
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Figure 1. The high-level architecture of juice filming attacks.
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Figure 2. The real setup for juice filming attacks using VGA2USB.

• It does not need to install any additional apps or components on phones.

• It does not need to request any permissions.

• It will not be detected or notified by any current anti-malware software.

• It can be scalable and effective in both Android OS and iOS.

Threat model. The basic assumption is that most smartphone users would not treat

public chargers as highly sensitive or dangerous. This assumption is reasonable since it is

easy to see lots of smartphone users charge their phones in public places such as airports,

subways and so on.

Basic idea. We observe that presently, no permissions will be asked when plugging

iPhones or Android phones to a projector, while the projector can display the phone

screen. In addition, there are no compelling notifications on the screen when the device

is being plugged, or the indicators are very small and last only few seconds. Based on

these, juice filming attacks can automatically video-record users’ inputs during charging

by using a VGA/USB interface. This attack reveals that the display can be leaked through

a standard micro USB connector through the Mobile High-Definition Link (MHL) stan-

dard. For iPhones, the lighting connector is used.

The high-level architecture of such attacks is depicted in Figure 1. When users

charge their phones to juice filming charger facilities, their phone screens can be video-

captured by the malicious charger. These sensitive videos can be stored and processed in

the cloud to conserve compute and network resources.

Real setup. To implement juice filming attack, choosing an appropriate VGA/USB in-

terface is critical as there are many alternatives online. In the previous study [9], we em-

ploy a hardware interface called VGA2USB from Epiphan system Inc.2 The VGA2USB is

2http://www.epiphan.com/products/vga2usb/.
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Figure 3. A framework to conduct a large-scale juice filming attack using cloud.

particularly a full-featured VGA/RGB frame grabber, which can send a digitized video

signal from VGA to USB.

The real setup is shown in Figure 2. It can be seen that the connected iPhone’s screen

activity can be shown in the computer end. In this case, it is easy to imagine that all user

interaction on the device screen would be captured by our attack. It is worth noting that

the computer and other cables can be crampted into a portable charger, making the attack

mobile and even more transparent.

3. Our Proposed Framework

In [9], we have shown the feasibility and effectiveness of juice filming attacks in a local

charging station. In this section, we aim to illustrate that this type of attacks may become

a big threat for cyber security through connecting to a cloud environment.

In Figure 3, we present a framework to show how to conduct juice filming attacks in

large-scale. It is seen that the impact of such attacks can be magnified when deploying

malicious chargers to various public locations such as MRT stations, airports and so on.

The malicious chargers can upload recorded videos to a cloud environment and extract

sensitive information. It is worth noting that this framework is very effective if utilized

by a large organizations as large amount of video information can be collected through

various charging points. We point out that this attack can be a big threat to users’ privacy

with the increasing adoption of public charger stations. We summarize some features of

this framework as follows.

• Automatic recording. Our attack is able to automatically check whether phones

are charging to the station and decide when to start video-recording periodically.

The script of checking and video-capturing phone screens is shown in Figure 4.

• Sustainable capturing. Different from conducting juice filming attacks in local

stations, our framework make such attack sustainable in capturing videos. For

example, it is feasible to delete all videos after uploading them to a cloud, which

can save much space.
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Figure 4. Source code for automatically checking and video-capturing phone screens in period time.

Figure 5. A realization of our framework in Singapore MRT stations.

• Large impact. The framework employs a distributed deployment, which can col-

lect information in large-scale. The recorded videos can be processed in one cloud

or multiple clouds. Due to very large crowd in public places, our framework can

make a large impact on compromising users’ privacy.

Based on the above proposed framework, we take Singapore MRT as a hypothetical

example to show how to conduct a large-scale juice filming attack. As shown in Figure 5,

we deploy the juice filming charging stations to various MRT stations such as Clemen-

ti, City Hall, etc. All these malicious chargers are connected to a cloud (i.e., uploading

recorded videos) through Wi-Fi. In the cloud, all videos can be processed to extract sen-

sitive information including PIN, Android unlock patterns, account names, email con-

tent, chat history and so on. According to the surveys conducted in [9], most users (over

95%) have no idea about charging attacks so that they would pay no attention to charging

station security. Due to less user awareness, our framework can be feasible in practice

and make a large impact.

4. Verification on Newly Released Platforms

In this section, we validate the effect of juice filming attacks on various mobile platform-

s like Samsung Android phones, iPhone 6s and iPad, and recent operating system ver-

sions like Android OS 5.0.1 and iOS 9. Several mobile platforms are shown in Figure 6

including iPhone 6s, Samsung Note 4 and iPad.
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Figure 6. Several mobile facilities used in our evaluation including iPhone 6s, Samsung Note 4 and iPad.

4.1. iOS Validation

Apple launched the new iPhone 6s and 6s Plus at the time of writing this paper. This

motivates us to validate our attack on this newly released platform. The iPhone 6s we

obtained is also updated to the latest version of iOS 9. Several screenshots are shown in

Figure 7 and present that our attack works well on the iPhone 6s.

• Figure 7 (a) shows the screenshots for Facebook apps. It is easily seen that contact

names and relevant information can be captured. After processing the recorded

videos, it is feasible to infer private information of users and his or her friends.

• Figure 7 (b) shows that our attack can record the whole process of users’ passcode

input, so that we can know the actual passcode of that user. Similarly, our attack is

able to record various passwords since the video would record all typing actions

on the software keyboard.

4.2. Android Validation

For the Android platform, we employ Samsung Note 4 in this evaluation with Android

version 5.0.1. Two screenshots are shown in Figure 7.

• Figure 7 (c) shows the screenshots for message apps. It is visible that all messages

shown on the screens can be captured on video. After processing these videos, it

is feasible to extract private dialogue and sensitive information such as credit card

numbers.

• Figure 7 (d) shows that our attack can record Android unlock patterns. Similarly,

all input passwords during charging process can be recorded by our attack.

It is found that the newly released Android phones and iPhones did not pay much

attention to such type of charging attacks, which still opens a hole for conducting juice

filming attacks in large-scale.

5. Countermeasures

As described in [9], the root cause of our attack is that Android OS and iOS allow screen

mirroring without explicit permission at the discretion of the user. In this case, we point
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Figure 7. Examples of screenshots on iPhone 6s: (a) Facebook and (b) Passcode, and Samsung Note 4: (c)

Message app and (d) Android unlock patterns.

out that more attention should be given to such attacks, which may cause a huge threat

for cyber security. Also, it is very critical to protect users’ privacy by taking proper

countermeasures to defend against such attacks. We discuss several mitigation strategies

as follows.

• Making notifications. When connecting iPhones to a computer, iOS should

prompt a notification asking whether to trust the computer or not. Similarly, to

defend against our attack, the smartphone should also warn and make notifica-

tions before output of the display. This strategy can increase user awareness and

let users consider their actions carefully.

• Securing the charger interface. As described in [9], one potential solution to de-

fend against such charging attacks is to use a safe charger such as USB Con-

dom [11]. This USB can prevent accidental data exchange when the device is

plugged into another device with a USB cable, by cutting off the data pins in the

USB cable and allowing only the power pins to connect through.

• Employing biometrics. It is feasible to defend such attacks by combining other

techniques like biometrics. For example, behavioral biometrics can be added to

the process of inputting PIN code and unlock patterns (i.e., building a fingerprint-

based unlocking mechanism), then our attack cannot easily capture these secrets.

Several behavioral-based authentication can be referred to [3,5,6,8].

• Educating users. Until patches are issued by vendors, such charging attacks are

hard to control by filtration mechanisms [7], thus, user education should be a nec-

essary countermeasure to raise users’ attention on this threat. It is also a widely

used method for securing systems related to human factors such as spam detec-

tion [4] & phishing.
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6. Conclusion

Charging attacks are often ignored by the literature. In this paper, we proposed a frame-

work to largely collect smartphone users’ information by means of juice filming attacks.

This type of attacks can extract users’ private information through automatically video-

capture smartphone screens when users are interacting with their phones during charg-

ing. Based on such attacks, we show the feasibility of our framework in practice, which

would greatly threaten users’ privacy in collaboration with cloud environments, and val-

idate its effectiveness on recently released iPhones and Android phones. Our work aims

to stimulate related research in this area and raise user awareness of such attacks.
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Abstract. The objective of this study is to evaluate the effectiveness of an infor-

mation campaign to counter a social engineering attack via the telephone. Four dif-

ferent offenders phoned 48 employees and made them believe that their PC was

distributing spam emails. Targets were told that this situation could be solved by

downloading and executing software from a website (i.e. an untrusted one). A total

of 46.15 % of employees not exposed to the intervention followed the instructions

of the offender. This was significantly different to those exposed to an intervention

1 week prior to the attack (9.1 %); however there was no effect for those exposed

to an intervention 2 weeks prior to the attack (54.6 %). This research suggests that

scam awareness-raising campaigns reduce vulnerability only in the short term.

Keywords. Awareness, Decay, Scam, Social Engineering, Retention, Telephone,

Time, Training

1. Introduction

Since 2008 a scam has been carried out by employees claiming to belong to Microsoft’s

technical department [1]. A phone call is received unexpectedly at home; the caller intro-

duces himself and proceeds to inform the home owner that there is a virus on the PC or

that the PC is distributing spam emails. To verify the claim from the caller, the victim is

persuaded to open a remote desktop session to review some warnings in the system log

files. In order to resolve the problem, the caller advises the victim to buy a small software

tool to prevent loosing valuable data. The solution can be bought on their website and

payment is possible via either credit card or PayPal. When the victim next checks the

bank account, he/she discovers that the savings have disappeared. The victim thinks that

he/she is securing the system whilst in fact the opposite has taken place.

Since 2011, the Dutch Fraud Help Desk (an organisation that collects fraud data) has

received 4000 reports of this Microsoft technical support scam in The Netherlands. In

2014, there were 856 people who filed a complaint, and 88 (10.28 %) of them admitted

to have paid the scammers. From January until September 2015 there were already 1099

complaints filed, of which 154 (14 %) involved payment. This constitutes a significant

increase in both i) the number of filed complaints (z = 31.396, p = .000) and ii) the
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number of victims (z = 30.130, p = .000) for a short period of time. These numbers

indicate that people are vulnerable to social engineering via the telephone.

Information security has been treated as a technical problem for many years, result-

ing mainly in technical solutions [2] and overlooking the human aspect [3]. Since in-

formation technology becomes more integrated into our daily activities, security experts

propose that social engineering will be the greatest threat to any security system [2]. One

example of social engineering is the technical support scam [4].

This paper therefore explores: i) the extent to which people are susceptible to

telephone-based social engineering attacks when they are persuaded to go to a website

and download a software and, ii) the effectiveness of an intervention to reduce the effects

of social engineering over time.

1.1. Informing people to change behaviour

The Elaboration Likelihood Model (ELM) of Persuasion describes how information is

processed and can be tailored to the receivers [5]. According to the ELM, people pro-

cess information via either the peripheral or the central route. The peripheral route of

information processing is used when there is minimal attention to the message and can

involve superficial cues, such as the attractiveness of the message presented. One may

like the sound of a person’s voice, or that person might have gone to the same univer-

sity as one did. The central route, on the other hand, involves persuasion on the basis of

the message’s content, such as voting for the political party with the best arguments [6].

Consistent with the ELM theory, attitudes obtained via the central route last longer, are

less vulnerable to contra-argumentation and are better predictors of human behaviour.

Furthermore, the effect of persuasive communication increases if the message is relevant

to the audience and if surprises and repetitions are used [5].

Studies about leaflets have successfully increased the knowledge of the general pub-

lic [7], as well as more specific groups such as patients [8], parents [9], and customers

[10]. Experts argue that both training and education can help protect users against phish-

ing [11]. It is noted that the currently available intervention materials can be effective as

long as the user actually reads the material [11].

Gadgets can be used as subtle reminders of a campaign and are mentioned in the

theory of Situational Crime Prevention as elements that ‘remove excuses’ [12]. Although

the literature on reminder cues is limited, research suggests that these are effective [13].

In previous work we showed that exposing university personnel to both an information

leaflet and a subtle reminder contributes to a significant reduction in the success rate of

a social engineering attack [14].

1.2. Retention

In 1885 Herman Ebbinghaus demonstrated the existence of memory decay over time

[15]. In addition, he described the ‘forgetting curves’, which refer to the amount of new

information one is able to learn with each repetition of the same content. The amount of

new information learned after each repetition decreases less steeply, meaning that more

and more information stays in one’s memory [15]. Retention can relate to knowledge but

it can also relate to skill and is not limited to a single context as shown in the examples

below.
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Knowledge Ebbinghaus showed, using a list of 3 letter nonsense syllables (starting and

ending with a consonant and a resonant in the middle), that over time, more syllables are

forgotten [15]. Since the publication of this work, other research areas have looked into

this topic as well, such as in the fields of aeronautics and medicine.

The aeronautical knowledge of 60 pilots was tested with a multiple-choice test, with

items randomly selected from the Federal Aviation Administration (FAA) private pilot

item bank of questions. A negative correlation was found between test scores and number

of months since each pilot’s last flight review (r = -.44, d f = 18, t = 1.96, p < .05).

This means that pilots who recently completed their flight reviews were associated with

higher scores, compared to those with a longer time since the review [16].

In the field of medicine it was shown that the knowledge regarding Cardiopulmonary

Resuscitation (CPR) dropped significantly over a period of 10 weeks. In this test 19

health care professionals (i.e. nurses) were tested via a 26 open item CPR theoretical

questionnaire [17].

Skill The flight manoeuvres of a group of 192 pilots were tested in a full-motion flight

simulator 6 and 12 months after training. During the test the pilots had to perform 12

emergency manoeuvres and 25 normal manoeuvres. The results showed there was a sig-

nificant decay in performance between the 6 and 12 month group [18].

18 medical students were assessed on their CPR performance at three points in time:

a) a pre-test to establish the baseline score, b) a training phase, c) a post-test and d) a

re-test after 10 weeks. The test scores between the post- and re-test differed significantly,

confirming skill decay [19].

In the context of a phishing test, the skill retention of adult subjects was measured 7

days after an information campaign [11]. During the test, the subjects had to classify 6

emails (as phishing emails or not) at 3 points in time (i.e. pre-test, post-test and re-test).

This study did not find a significant decay of performance in classifying phishing emails.

This suggests that skill after training remains stable on the short term, but not on

the long term. A further question to be answered is: how do the effects of training decay

between 1 and 10 weeks?

1.3. Research Question

The objective of this research was to find out: “How susceptible are people to a technical
support scam?”. The following hypothesis was formulated: H1) “Time influences the

relation between compliance and intervention.”

2. Method

The sample consisted of 48 subjects of both sexes who worked in one particular building

on the campus of the University of Twente. All subjects were scientific personnel of 9

research groups. Only approached were those who i) had an office work space and ii)
were present to answer the telephone.

2.1. Subject Selection

Professors, secretaries, support and laboratory staff were excluded from the experiment

in order to minimize disruption of primary activities. The pool of subjects therefore con-
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sisted of PhD-candidates, Post-Doc researchers as well as Assistant and Associate pro-

fessors. The sample consisted of 34.29 % of all possible targets; the nationality distribu-

tion was comparable to the overall nationality distribution of the faculty, while those in

the experimental sample were slightly younger (38 vs. 41 years).

2.2. Researchers

The researchers (i.e. the “offenders”) consisted of 4 bachelor students (2 female and 2

male). The age of the researchers ranged between 21 and 24, the average age was 22.25

years (SD = 1.26). All researchers were Dutch nationals. There was no restriction with

regards to approaching subjects of the same gender.

Procedure One-third of the potential subjects was exposed to an information campaign

two weeks before the experiment whilst another one-third was exposed one week before.

The research departments were randomly selected and all their staff was exposed to the

intervention.

The intervention consisted of two parts: i) a leaflet informing staff about what con-

stitutes a scam and describing how scammers operate, how to detect them and what to do

and ii) a reminder in the form of a semi-transparent card holder with the university logo

on one side and the text “Beware of scams. Verify all requests. Report all incidents.” on

the other side.

The leaflets were designed using story telling to ensure that non experts could under-

stand it as well [20]. The leaflet represents the information medium and the card holder

represents a cue to remember the message. Departmental secretaries were responsible

for distributing the materials and they were unaware that this was part of an experiment.

The leaflet was distributed via email, whereas the card holder was distributed in person.

All subjects were approached via telephone between 0930h and 1700h, on an normal

Monday during term time.

The researchers were randomly assigned to a target, however if the researcher recog-

nised a target, this target person was randomly assigned to another researcher. Each re-

searcher approached the subject using the following script:

Hi this is [name]. We discovered that the PC you are using is distributing spam emails.

This is caused by a malicious program that is running in the background. Did you

notice that your PC was a bit slower lately? There is nothing to be ashamed of,

there are other people who have the same problem. I already helped 3 people to fix

this earlier this morning. Luckily this is easy and quick to solve. Do you have 2

or 3 minutes time, so that we can remove it together right away? Please click the

link that appears in the chat window. URL: http://removespam.utwente.info.

To proceed to the download, please enter the validation code; this is your complete

employee number. The complete number can be found on the back of your employee

card. Please save the file to your Desktop and execute it. After the program is finished,

could you read out the completion code?

All targets were subjected to the same script and request. After the target indicated

that the downloaded file was installed, the debriefing procedure was started. During the

debriefing procedure the target was told that this was an experiment, and asked some

demographic information, employment length, some computer characteristics and their

reasons for or against downloading and installing the software. Finally, the importance
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of not sharing any information about the experiment with colleagues was explained; all

subjects acknowledged this and agreed not to disclose any information. This was checked

during the debriefing and none of the subjects stated having had prior knowledge of the

experiment.

2.3. Variables and Analysis

The variables used in the analysis were: compliance, intervention, age, offender and sex.

The dependent variable compliance measured whether the subject complied with the re-

quest of the offender to download and install the software package. The dichotomous

variable was dummy coded as 0 = did not comply, 1 = did comply. The independent vari-

able intervention measured whether the subject was exposed to the intervention (0 = not

exposed to the intervention, 1 = exposed to the intervention 1 week before, 2 = exposed

to the intervention 2 weeks before). The independent continuous variable age measured

the age in whole years at the moment of the attack. The independent categorical vari-

able offender measured who performed the attack (1 = researcher1, . . . , 4 = researcher4).

The independent dichotomous variable sex was measured for both the subjects and the

researchers and was dummy coded (0 = female, 1 = male). The hypothesis was tested

using cross-tabulation and χ2.

3. Results

A total of 48 subjects were approached. No ‘target sex’ effect on compliance (χ2 = .470,

d f = 1, p = .493), ‘offender sex’ effect on compliance (χ2 = .176, d f = 1, p = .675),

‘offender’ effect on compliance (χ2 = 4.253, d f = 3, p = .354) and ‘target age’ effect on

compliance (OR = .997, p = .905) were found and therefore these issues are not further

mentioned.

The debriefing procedure was used to verify that the subjects were coded correctly

(i.e. had received an intervention or had not received an intervention). The subjects who

recalled receiving the intervention material were coded as intervention group whilst those

who could not recall having received any intervention material were coded as control

group.

3.1. H1: “Time influences the relation between compliance and intervention.”

The compliance for the control group was 46.15 % compared to 9.09 % for those ex-

posed to the information campaign 1 week prior to the measurement. The compliance

of those exposed to the campaign 1 week prior was 9.09 % compared to 54.55 % for

those exposed to the campaign 2 weeks prior to the measurement. The compliance for

the control group was 46.15 % compared to 54.55 % for those exposed to the campaign

2 weeks prior to the measurement. A difference was found between the control and the 1

week group, furthermore a difference was found between the 1 week and 2 week group.

However no difference was found between the control and the 2 week group. Hypothesis

1 is therefore accepted. Refer to Table 1 for descriptive statistics.
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Table 1. Number of observations and percentages per intervention condition over time

Intervention

No 1 week 2 weeks Total

Complied No 14 (53.85%) 10 (90.91%) 5 (45.45%) 29 (60.42%)

Yes 12 (46.15%) 1 (9.09%) 6 (54.55%) 19 (39.58%)

Total 26 (100%) 11 (100%) 11 (100%) 48 (100%)

Group control = 1 week (χ2 = 4.659, d f = 1, p = .031);

Group control = 2 week (χ2 = 0.218, d f = 1, p = .641;

Group 1 week = 2 week (χ2 = 5.238, d f = 1, p = .022);

4. Discussion

This study investigated whether an information campaign influences the compliance with

a telephone request to download and install software available on the internet, over time.

An information campaign consisting of i) informing employees about the dangers

of telephone scams and ii) distributing a card holder with a reminder text was effective

in the short term to reduce the vulnerabilty of employees to follow a stranger’s request

to perform actions on their PC.

In total 9.09 % of the employees exposed to an information campaign (1 week prior

to the attack) compared to 46.15 % in the control group complied with the request to

download and execute software available on the internet. Those not exposed to the cam-

paign (1 week prior) have 8.13 higher odds of complying with the offenders request.

These findings are in line with the results Bullée et al. [14] in which university personnel

was approached by strangers and asked to hand over their keys.

The employees exposed 2 weeks prior showed no difference to the control group.

The CPR studies of Madden [19] and Broomfield [17] both showed a significant decay

since the training, however they measured their decay over a period of 10 weeks time.

One explanation for the difference could be the modality of information that is trans-

ferred, (i.e. visual leaflet). The effect of different modalities on memory has been shown

in an experiment where the subjects had to remember and recall a list of words or au-

ditory representations. The results showed that the auditory representations had both a

significant better i) recall and ii) recall order of the presented stimuli [21]. Glenberg

showed that this auditory modality effect is also present in long term memory, this means

that auditory stimuli were better remembered in the long term compared to their visual

counterparts [22].

An second alternative explanation could be in the process of creating a memory.

There are 3 processes that constitute memory processing: i) Encoding, ii) Consolidation

and iii) Retrieval. Encoding is the process of forming mental representations of the ma-

terials one wants to put in memory. The process of encoding is enhanced by elaboration

(interpretation of the materials and connecting them to other materials) and trying to re-

peat it to oneself [23]. Attention is important as well; when attention is divided as en-

coding will be weaker and later attempts to remember are likely to fail [24, p. 202]. The

consolidation process modifies the mental representation in such a way that it becomes

stable in memory. Consolidation of the declarative memory (explicit memory contain-

ing experiences and information) can be affected by sleep [25], caffeine intake [26] and

age [27]. Finally, retrieval is important to access the knowledge in the brain via cues.

The context (e.g. physical surrounding) in which a memory is created is important for
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retrieval. The theory of optimistic bias states that people believe that positive events are

more likely to occur to them than to other people [28] and that negative events are more

likely to occur to other people than to themselves. In the context of the information cam-

paign, a possibility is that the subjects could not identify themselves with the material

because they thought that it was not applicable to them, since there are others who were

more vulnerable. In both cases the subjects will not have the appropriate attention to

properly encode the material to make it last in the memory.

A third explanation could be that the information campaign is too abstract and there-

fore an ambiguous memory cue is created for the material. Once the subject is ‘attacked’

there is no proper recollection of the cue to memory and he/she fails to recollect the

materials in the information campaign. This could explain the difference between the 1

and 2 week groups as the cues are simply forgotten over time. It would be too simple to

say that the subjects forgot about the information campaign since there were questions

to control for this, since the subjects stated they recalled having received and read the

materials.

Limitations This study has 2 limitations: i) The current study has a limited number of

observations, therefore only a limited number of variables could be tested. ii) All subjects

were from the same organisation, replication in other organisations would be needed.
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Abstract. There are several recent research studies on privacy-preserving aggrega-

tion of time series data, where an aggregator computes an aggregation of multiple

users’ data without learning each individual’s private input value. However, none

of the existing schemes allows the aggregation result to be verified for integrity. In

this paper, we present a new data aggregation scheme that protects user privacy as

well as integrity of the aggregation. Towards this end, we first propose an aggre-

gate signature scheme in a multi-user setting without using bilinear maps. We then

extend the aggregate signature scheme into a solution for privacy-preserving and

verifiable data aggregation. The solution allows multiple users to periodically send

encrypted data to an untrusted aggregator such that the latter is able to compute the

sum of the input data values and verify its integrity, without learning any other in-

formation. A formal security analysis shows that the solution is semantically secure

and unforgeable.

Keywords. data aggregation, data privacy, verifiable computation, aggregate

signature

1. Introduction

Data aggregation, in which an aggregator computes aggregated results over multiple

sources, has been widely used in real-world applications such as network coding, smart

grid, mobile sensing and cloud services. In order to prevent leakage of sensitive in-

formation, the aggregator should be able to perform aggregation operations such as

sum, average, variance on users’ data without learning their individual values. Symmet-

ric key homomorphic encryption schemes, which are normally based on one-time pad

encryption, could be applied to protect the confidentiality of user data [1]. However,

such schemes assume that the aggregator is fully trusted since each user shares a secret

key with the aggregator. Therefore, these schemes protect data confidentiality against

outsiders, but they do not protect users’ data privacy against the aggregator.

Recently, several research studies have addressed the privacy-preserving data aggre-

gation problem under the assumption of an untrusted aggregator [2,3]. Shi et al. proposed

a construction that allows the untrusted aggregator to compute the sum of time series data

[2]. However, the aggregator must use brute-force search or Pollard’s lambda method

[4] to decrypt the sum, which is not efficient for applications requiring a large plaintext

space. Li et al. [3] proposed an efficient aggregation scheme based on a novel key man-

agement technique, where only computation of key hashes is needed for encrypting data

by users and for decrypting the sum of data values by the aggregator.
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In many critical control and monitoring systems, ensuring the integrity of aggrega-

tion results is extremely important. In such systems, any invalid aggregation result due to

tampering by malicious attackers must be detected and rejected by the aggregator. There

are two generic mechanisms for verifying the integrity of aggregation results aggregate

message authentication codes (MACs) [5,6] and aggregate signatures [7,8,9,10,11,12].

The notion of aggregate MAC was first proposed by Katz et al. [5]. Agrawal et al. [13]

proposed a homomorphic MAC scheme, a generalization of aggregate MAC, that allows

a network node to compute a MAC of combined code words in networking coding. Ag-

gregate MAC and homomorphic MAC require shared secret keys between the data gen-

erators and aggregators. In contrast, aggregate signature schemes enable anyone with the

correct public keys to verify the integrity of aggregation results. However, most of the ex-

isting aggregate signature schemes [7,8,9,10,11,12] are constructed using bilinear maps

and are not suitable for resource-constrained system settings such as sensor networks.

Our Contribution. Our goal is to propose an efficient construction for privacy-

preserving and verifiable data aggregation. The main contributions of this paper are as

follows:

• We first introduce an aggregate signature scheme for public verification of the

integrity of aggregated data in a multi-user setting. In this scheme, each user sends

his data and a signature to an aggregator, where the signature is generated on the

data using the user’s secret key. The aggregator combines all the users’ data and

signatures into an aggregated result and an aggregated signature, respectively, and

checks the validity of the result using public system parameters.

• Extending the aggregate signature scheme, we further propose a privacy-

preserving and verifiable data aggregation (PVDA) scheme. PVDA allows multi-

ple users to periodically send encrypted data to an untrusted aggregator such that

the latter is able to compute the sum of the data values and verify its integrity

but not learn any other information. Our formal security analysis shows that the

solution is semantically secure and unforgeable.

2. Related Work

We survey prior work on privacy-preserving and verifiable data aggregation, aggregate

MAC and aggregate signature.

Privacy-Preserving Data Aggregation Many protocols have been proposed for privacy-

preserving data aggregation in wireless sensor network (WSN) or mobile sensing

[1,3,14,15,16,17], without considering the integrity of aggregation result. Shi et al. [2]

proposed a construction that allows a group of users to send encrypted data to an un-

trusted aggregator. The construction is not efficient for applications requiring a large

plaintext space because the aggregator must use brute-force search to decrypt a sum. Li

et al. [3] extended the construction in [2] using a new key management technique to

ensure that the aggregator could only obtain the sum of the users’ private data but not

the private data of each user. Our PVDA construction solution is motivated by [2,3], but

provide verifiable assurance in addition to data privacy.
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Aggregate MAC and Aggregate Signature Aggregate MACs [5,13] allow verification

of the integrity of aggregation data in private setting. Recently, Catalano and Fiore

[18] proposed homomorphic MAC schemes that support a set of functionalities (i.e.,

polynomially-bounded arithmetic circuits); however, in their construction, the verifier

possesses the user’s secret key and hence is able to access users’ private data. Aggregate

signatures [8,9,10,11,12] also allow verification of the integrity of aggregation data but

in public setting. Most of the existing aggregate signature (or more generally homomor-

phic signature) schemes are constructed on bilinear maps and unsuitable for resource-

constrained applications.

Verifiable and Privacy-Preserving Data Aggregation Lin et al. [19] proposed a multi-

dimensional privacy preserving data aggregation scheme for WSN. This scheme adapts

the super-increasing sequences and permutation techniques from [1] for data aggrega-

tion. However, the scheme assumes that the aggregator is fully trusted. Papadopoulos et

al. [20] presented a scheme that utilizes a combination of homomorphic encryption and

secret sharing. Although their scheme works efficiently on time series data, the data pri-

vacy of each node may be breached if the querier colludes with the aggregator, since the

querier has the secret key of every node.

3. A New Aggregate Signature Scheme

3.1. Overview

Our system model consists of three types of entities: a set of n users {u1, ...,un}, an ag-

gregator, and a key generation center. The key generation center creates a public param-

eter S , as well as a key pair ski and pki for every user ui. We assume that key pairs

(ski,pki) for all i = 1, ...,n are distributed to the corresponding users via a secure channel

at system initialization.

In each time period, each user ui generates a private datum mi ∈Zp where p is a large

prime number. The aggregator is a powerful base station that performs data aggregation

operations such as sum(M) = m1 + ...+mn, where M = (m1, ...,mn) is a vector of all the

users’ private data.

We assume that the aggregator is honest but curious. He is trusted to perform ag-

gregation operations, but may attempt to discover individual users’ private data. We also

assume that users follow the correct aggregation process, do not trust each other and are

curious as well. Some curious users may collude with the aggregator by revealing their

secret keys in order to deduce additional information about the remaining users.

3.2. Definition

An aggregate signature scheme is a tuple of three probabilistic polynomial-time (PPT)

algorithms (KeyGen, Sign, Verify) as follows:

• KeyGen(1λ ) algorithm is executed by the key generation center. It takes as input

a security parameter λ and outputs a pair of public key pki and secret key ski for

each user ui along with a set of random values S as public parameter.
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• Sign(ski,mi, t) algorithm is executed by each user ui. It takes as input a secret key

ski, datum mi and time period t, and outputs a signature τi ∈ Zp. User ui then

sends (mi,τi) to the aggregator.

• Verify(pk,S ,M,T, t) algorithm is executed by the aggregator. It takes as in-

put a vector of public keys pk = (pk1, ...,pkn), the set S , a vector of data

M = (m1, ...,mn), a vector of signatures T = (τ1, ...,τn) and a time period t. It

outputs ‘1’ (accept) or ‘0’ (reject).

Security. We allow the adversary to request a vector of signatures T for an arbitrary

vector of data M along with period time t of his choice. Note that set S is a public

parameter, hence anyone can compute and verify the integrity of an aggregation result.

The adversary breaks the aggregate signature scheme if he is able to output a valid triple

(M,T, t) where either period time t is new, or he has not previously requested signatures

on the vector of data M. We define the security of our scheme in terms of the following

game between a challenger and an adversary A .

Game 1 Let H = (KeyGen,Sign,Verify) denote an aggregate signature scheme.

• Setup: The challenger generates a set of random values S and n key pairs
{(ski,pki)}n

i=1, then sends S and pk= (pk1, ...,pkn) to the adversary.
• Queries: The adversary submits signature queries, each of the form (Mj, t j) where

Mj = (m1, j, ..., mn, j) ∈ Z
n
p and t j ∈ {0,1}∗. We require the time periods t j sub-

mitted by the adversary to be distinct. The challenger performs the following:
for all i = 1, ...,n do

τi, j ← Sign(ski,mi, j, t j)

send Tj = (τ1, j, ...,τn, j) to A

• Output: The adversary outputs a vector of data M∗, a vector of signatures
T ∗ and a time period t∗. The adversary wins the security game if 1 ←
Verify(pk,S ,M∗,T ∗, t∗), and one of the following conditions hold:

∗ Type 1 forgery: t∗ �= t j for all j.
∗ Type 2 forgery: t∗ = t j for some j, and M∗ �= Mj.

The advantage uf-adv[A ,H ] of adversary A with the aggregate signature scheme

H is defined as the probability that A wins Game 1.

Definition 1 The aggregate signature scheme H is existentially unforgeable under
an adaptive chosen-message attack if, for all PPT adversaries A , the advantage uf-
adv[A ,H ] is negligible.

3.3. Construction

Let G be a cyclic group of prime order p on which the discrete logarithm problem is

hard. Let M = (m1, ...,mn) ∈ Z
n
p denote a vector of n users’ data values, where mi < p

for i = 1, ...,n and ∑n
i=1 mi ≤ p. Let f : Zp ×{0,1}∗ → Zp be a pseudo-random function

(PRF). The three algorithms (KeyGen, Sign, Verify) are given as follows.

• KeyGen(1λ ): The key generation center chooses a random generator g ∈G, gen-

erates a set of nα random values S = (s1, ...,snα) ∈ Z
nα
p and divides them into
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n disjoint subsets Si such that each subset Si has α values, S =
⋃n

i=1 Si and

∀i �= j,Si
⋂

S j = /0. The key generation center assigns Si to user ui and S to

the aggregator. Each user ui then generates a random integer ai and computes

hi = gai . Each user ui has a secret key ski = 〈Si,ai〉 and a public key pki = 〈g,hi〉.
• Sign(ski,mi, t): Given secret key ski and datum mi for period time t, user ui com-

putes a signature τi = ai×mi+FSi(t) mod p, where FSi(t) = ∑s∈Si fs(t) mod p,

then sends (mi,τi) to the aggregator.

• Verify(pk,S ,M,T, t): For each time period t, the aggregator computes an ag-

gregate signature T = ∑n
i=1 τi = ∑n

i=1(ai × mi + FSi(t)) mod p. The aggrega-

tor then verifies the integrity of the aggregate signature T using public keys

pk= (pk1, ...,pkn) and S = {s1, ...,snα} as follows:

- Y = ∏n
i=1 hmi

i ∈G.

- If gT = g∑s∈S fs(t)×Y , output ‘1’ (accept); otherwise output ‘0’ (reject).

Security. Adversary A is able to succeed in a forgery attack and win the security Game

1 if he knows the secret key of any of the n users. However, his chance of guessing

any user’s secret key is negligible, as Lemma 1 shows. We prove security assuming F
is a secure PRF, and the discrete logarithm assumption holds in G. We refer to [4] for a

definition of the PRF and discrete logarithm security games. The proofs are given in the

full version of this paper.

Lemma 1 In our aggregate signature scheme, the probability of successfully discovering
any user’s private key through brute-force guessing is negligible.

Theorem 1 The aggregate signature scheme is existentially unforgeable under an adap-
tive chosen-message attack, assuming F is a secure PRF and the discrete logarithm prob-
lem is hard.

4. Privacy-Preserving and Verifiable Data Aggregation

The aggregate signature scheme introduced in the previous section does not maintain

confidentiality of users’ data. We now propose a privacy-preserving and verifiable data

aggregation (PVDA) scheme that extends the aggregate signature scheme.

4.1. Definition

PVDA comprises four algorithms (KeyGen, Enc, Sign, AggDec) as follows:

• KeyGen(1λ ) algorithm remains the same as in Section 3.2.

• Enc(ski,mi, t) algorithm is executed by each user ui. It takes as input secret key

ski, datum mi and time period t, and outputs a ciphertext ci ∈ Zp.

• Sign(ski,ci, t) algorithm is as in Section 3, except that mi is replaced by ciphertext

ci. Each user sends (ci,τi) to the aggregator where τi ← Sign(ski,ci, t).
• AggDec(pk,S ,C,T, t) algorithm is executed by the aggregator. It takes as input

public keys PK= (pk1, ...,pkn), the set S , a vector of ciphertexts C = (c1, ...,cn),
a vector of signatures T = (τ1, ...,τn) and time period t. It outputs an aggregation

result M = m1 + ...+mn if the Verify algorithm as in Section 4.2 outputs ‘1’;

otherwise it outputs error ⊥.
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Security. The security notion for PVDA includes semantic security and unforgeability.

Let P = (KeyGen, Enc, Sign, AggDec) denote the PVDA scheme.

Game 2 Semantic security of the PVDA scheme is defined by the following game be-
tween a challenger and an adversary A :

• Setup: The challenger generates a set S of nα random values and n key pairs
(ski,pki) for i = 1, ...,n. The challenger gives the public parameters 〈S ,pk =
(pk1, ...,pkn)〉 to the adversary. The former also initializes a list L= /0 for tracking
the queries from A .

• Queries: The adversary adaptively queries the challenger for encryption. Each
query states m ∈ Zp, index i of user ui and time period t. The query is rejected if
the tuple (i, t) exists in L; otherwise, the challenger computes c ← Enc(ski,m, t)
and τ ← Sign(ski,c, t), sends (c,τ) to A and inserts (i, t) into L.

• Challenge: The adversary A submits m0, m1 ∈ Zp along with index i∗ and time
period t∗ to the challenger; L must not already contain the tuple (i∗, t∗). The chal-
lenger computes c∗ ← Enc(ski∗ ,mb, t∗), τ∗ ← Sign(ski∗ ,c∗, t∗) under a random
bit b ∈ {0,1}, and sends (c∗,τ∗) to adversary A .

• Output: Adversary A outputs b′, representing his guess for b, and wins the game
if b′ = b.

The advantage ss-adv[A ,P] of adversary A with respect to P is defined as |Pr[b=
b′]− 1

2 |, where the probability is taken over the random bit used by the challenger and

the adversary A .

Definition 2 The PVDA scheme P is semantically secure if, for all PPT adversary A ,
the advantage ss-adv[A ,P] is negligible.

Game 3 Unforgeability of the PVDA scheme is defined by the following game between
a challenger and an adversary A :

• Setup: The challenger generates a set S of nα random values and n key pairs
(SKi,PKi) for i= 1, ...,n. The challenger gives public parameters 〈S ,PK1, ...,PKn〉
to the adversary.

• Queries: The adversary adaptively submits (Mj, t j) to the challenger as in Game
1. The challenger responds with (c1, j,τ1, j), ...,(cn, j,τn, j) for each query, where
ci, j is the ciphertext of mi, j , and τi, j is the signature of ci, j for i = 1, ...,n. We
require all the time periods t j’s in the queries to be distinct.

• Output: The adversary outputs the set of n pairs (c∗1,τ
∗
1 ) , ...,(c

∗
n,τ∗n ) for M∗ =

(m∗
1, ...,m

∗
n) and time period t∗ such that either t∗ is a new time period or M∗ has

not been queried before. The adversary wins the game if the AggDec algorithm
outputs M ∗ = ∑n

i=1 m∗
i .

The advantage uf-adv[A ,P] of adversary A with respect to P is defined as the proba-

bility that A wins Game 3.

Definition 3 Our PVDA scheme P is unforgeable if, for all PPT adversary A , the ad-
vantage uf-adv[A ,P] is negligible.
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4.2. Construction

In order to protect the privacy of users’ data while providing verifiability of aggregation

results, we use the technique of Li et al. [3] in encryption. However, PVDA is more

practical because Li et al.’s scheme does not provide verifiability. The four algorithms

(KeyGen, Enc, Sign, AggDec) in PVDA are given below.

• KeyGen(1λ ): The same as in the aggregate signature scheme.

• Enc(ski,mi, t): User ui generates encryption keys ki =FSi(t‖1) and k′i =FSi(t‖2),
where ‖ denotes concatenation. Next, the user encrypts his datum mi by comput-

ing a ciphertext ci = mi + ki mod p.

• Sign(ski,ci, t): User ui computes a signature τi on the output ci of the Enc al-

gorithm using his private value ai and encryption key k′i by computing τi =
ai × ci + k′i mod p. User ui then sends (ci,τi) to the aggregator.

• AggDec(pk,S ,C,T, t): In each time period t, the aggregator generates decryp-

tion keys k0 = FS (t‖1) and k′0 = FS (t‖2). Upon receiving C = (c1, ...,cn) and

T = (τ1, ...,τn) from all the n users, the aggregator computes:

T =
n

∑
i=1

τi mod p, X =
n

∑
i=1

ci mod p, Y =
n

∏
i=1

hci
i

The aggregation signature T is valid if and only if gT = gk′0 ×Y . The aggregator

outputs aggregation result M = ∑n
i=1 mi =X −k0 mod p if signature T is valid;

otherwise, it returns error ⊥.

Security. We now formally state and prove the semantic security and unforgeability

assurances of PVDA. We note that Lemma 1 applies to PVDA. The proofs of the security

theorems are given in the full version of this paper.

Theorem 2 The PVDA scheme P is semantically secure if, for all PPT adversaries A ,
the advantage ss-adv[A ,P] is negligible assuming F is a secure PRF.

Theorem 3 The PVDA scheme P is unforgeable if, for all PPT adversaries A , the
advantage uf-adv[A ,P] of adversary A is negligible assuming F is a secure PRF and
the discrete logarithm problem is hard.

5. Conclusions

In this paper, we presented an aggregate signature scheme that is suitable for data ag-

gregation in a multi-user setting. In the scheme, each user computes a signature on his

data using a secret key. An aggregator computes the sum of the users’ data and combines

their signatures into a single aggregate signature. Using public system parameters and

the aggregate signature, the aggregator is able to verify the integrity of the sum. To pro-

tect the users’ data privacy, we further extended the aggregate signature scheme into a

privacy-preserving and verifiable data aggregation (PVDA) scheme for time series data

in the same multi-user setting. We formally proved that the PVDA scheme is semanti-

cally secure and existentially unforgeable. Compared to existing alternatives in the liter-

ature, our PVDA scheme offers two key advantages in assuming an untrusted aggregator,

and being computationally efficient as no bilinear maps are used.
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Abstract. In this work, we discuss the use of EPANET to simulate the effects of

malicious cyber-physical attacks on water distribution systems. EPANET—a stan-

dard numerical modeling environment developed by the US Environmental Pro-

tection Agency—models hydraulic and water-quality behavior of pressurized pipe

networks. EPANET promises to be well suited to show the effects of direct attacks

on hydraulic actuators, such as pumps, or the effects of attacks on sensors. Using

the C-Town benchmark network, we show that EPANET has some limitations when

modeling these attacks, and we report the workarounds needed to overcome these

limitations. In particular, we describe attacks that change the control strategies of

pumps, and attacks that alter the tank water level reported by sensors.

Keywords. Water Distribution Systems, Cyber-Physical System Security, EPANET

1. Introduction

Water distribution systems (WDS) are used in all urban developments to connect potable

water sources (e.g., reservoirs or treatment plants) to the end users (e.g., housing and

industrial estates). Typical components of WDS are pipes, pumps, valves, and storage

tanks. Traditionally, these components were operated manually—or controlled locally—.

In the past few decades advanced control systems were introduced by relying on SCADA

systems, which allow automated collection of distributed sensor readings and centralized

control of actuators. Whilst these changes promise to improve the operating performance

of WDS, they are also expected to lead to novel security vulnerabilities [6]. In particular,

attacks on automated controls have been recently discussed [2, 8, 9, 18]. The US Depart-

ment of Homeland Security reported that 15 percent of the responses to cyber incidents

were in the water sector [12]. Countermeasures against such attacks can be implemented
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through additional security measures on the sensor, network, and SCADA layers, but the

fundamental problem remains: sensors readings rely on physical layer properties, which

are susceptible to manipulations of the physical layer. Furthermore, these infrastructures

are typically operated for extended periods of time, possibly decades. As such, there are

higher chances that one or multiple components be attacked during their life cycle.

We consider cyber-physical attacks, which include both physical and cyber attacks

that target the physical system (e.g. the Aurora attack [13]). The exact effect of such

cyber-physical attacks effect depends on the specific physical process being altered. For

WDS, both hydraulic (e.g. water spillage, tank overflow, pipe bursts, loss of pressure) and

water quality processes (pollution with chemical or metals, biological matter) should be

considered [1]. Complex process-based models are thus needed to assess the robustness,

resilience and vulnerability of WDS against cyber-physical attacks. This is a novel field

of research, and only few studies have tackled the problem of understanding the effect of

cyber attacks on complex water systems. The authors of [3,4], for example, have recently

studied the problem of detection and isolation of attacks on a water network comprised

of cascaded canal pools. In this work, we discuss the use of EPANET for modeling the

effects of malicious attacks on water distribution systems. EPANET simulates both hy-

draulic and water quality processes of pressurized pipe networks, so it is in principle well

suited for the tasks described above. In the remainder of the paper we introduce some

technical aspects of EPANET (Section 2), and then demonstrate its use for simulating

cyber-physical attacks (Section 3). In particular, we introduce attacks that manipulate the

control strategies of automated pumps and attacks that change the fill level reported by

sensors installed in water tanks. Concluding comments are given in Section 4.

2. EPANET

EPANET is a public-domain software developed by the US Environmental Protection

Agency to simulate hydraulic and water quality behavior within pressurized pipe net-

works [14, 15]. EPANET comes both as a self-contained application with a graphical

user interface, as well as an open-source development Toolkit (written in C) that can be

interfaced with other programming languages. The version used in this work, EPANET2,

is de facto the standard modeling tool for both practitioners and researchers in the field of

WDS. Typical applications of EPANET include long-term planning of WDS [5], design

of alternative management strategies [17], as well as water quality modeling or the as-

sessment of consumers exposure to contaminated water [10,11]. EPANET accurately re-

produces WDS dynamics by employing a sophisticated network model and two engines

for hydraulics and water-quality simulation.

2.1. Network Model

EPANET features physical components for designing the network topology, and non-
physical components to define its operations. Physical components are divided into nodes
and links, whereas non-physical components include curves, time patterns and controls.
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Table 1. Properties and output variables of EPANET physical components

Component Principal input properties Output variables
Junctions Coordinates and elevation Hydraulic head

Water demand Pressure

Initial water quality Water quality

Reservoirs Coordinates, Elevation None (network boundary)

Initial water quality

Tanks Coordinates and bottom elevation Hydraulic head

Diameter (or shape) Pressure

Initial, minimum and maximum level Water quality

Initial water quality and mixing model

Pipes Start and end nodes Flow rate, Velocity, headloss

Diameter, Length, Roughness Friction factor

Status Average reaction rate

Bulk/Wall reaction coefficient Average water quality

Pumps Start and end nodes Flow rate

Pump curve Head gain

Status, Speed Energy consumed

Valves Start and end nodes Flow rate

Diameter, Setting, Status headloss

2.1.1. Nodes

Nodes can be either reservoirs, junctions or tanks, and represent source, sink and storage

points of the WDS. Reservoirs are infinite external sources or sinks of water, e.g., lakes,

rivers, groundwater aquifers, and tie-ins to other systems. They are treated as boundary

points by the simulation engines. Junctions are points in the network where links join to-

gether, and where water enters or leaves the network. They are usually employed to rep-

resent the demand nodes in the network, but they can also model water-quality sources.

Tanks are modelled as nodes with a given maximum capacity, and whose storage varies

in time with the simulation.

EPANET allows the specification of several properties for each physical component,

so that the modelled network closely resembles the real one. Table 1 summarizes the

customizable input properties and available output variables for each component.

2.1.2. Links

The network nodes are connected by links, which are either pipes conveying water from

one point to another or actionable components of the WDS, i.e., pumps and valves. In

EPANET, all pipes are supposed to be full at all simulation time steps. The water in the

pipes flows from nodes with higher energy—i.e., higher hydraulic head—to those with

lower energy. When flowing, water experiences headloss due to friction with the pipe

walls. The hydraulic engine of EPANET computes the headloss between the start and

end node of a pipe using different empirical formulas, all expressing the headloss as a

function of flow rate, length of the pipe and its roughness coefficient. The software also

accounts for local headlosses due to turbulence occurring at pipes bends and fittings.

Pumps raise the hydraulic head of the water by imparting energy to it. They are

modeled using a pump curve defining all possible combinations of head and flow that

R. Taormina et al. / Simulation of Cyber-Physical Attacks on Water Distribution Systems 125



Table 2. Examples of simple controls in EPANET

Control statement Meaning
VALVE-2 CLOSED IF TANK-1 ABOVE 20 Close VALVE-2 if the level in TANK-1 exceeds 20 ft.

VALVE-2 OPEN IF NODE 130 BELOW 30 Open VALVE-2 if the pressure at Node 130 < 30 psi

PUMP-3 1.5 AT TIME 16 Set relative speed of PUMP-3 to 1.5 after 16 hours

PUMP-3 CLOSED AT CLOCKTIME 10 AM Shuts down PUMP-3 at 10 AM

a pump can produce, or as a device that supplies a constant amount of energy to the

fluid flowing through it. EPANET also features pumps with variable speed—the relative

velocity with respect to the original pump curve can be changed during the simulation.

A change of speed affects the position and shape of the pump curve.

Valves are links limiting the pressure or flow at a specific point in the network.

EPANET supports several types of valves, such as pressure reducing valves (PRV) and

flow control valves (FCV). General purpose valves (GPV) can also be employed to let the

user define particular components or conditions. Shutoff and check valves (CV), which

completely open or close pipes, are also featured in EPANET but as a property of the

pipe in which they are placed.

2.1.3. Controls

Controls are statements that determine how the network is operated over time. They

determine the functioning of selected links as a function of time or the value of some

nodal variables. There are two categories of controls in EPANET. Simple controls change

the status or setting of a link as a function of either 1) the water level in a tank, 2) the

pressure at a junction, 3) the time into the simulation, or 4) the time of the day. Some

examples are given in Table 2. Rule-based controls extend simple controls with logical

operators, thus allowing to command a link based on a combination of conditions.

2.2. EPANET Simulation Models

EPANET’s hydraulic engine is demand-driven—consumer demands are always satisfied

regardless of the pressures throughout the system. This entails that if nodal demands ex-

ceed the maximum flow, the software extrapolates the pump curves to meet the required

flow, even if this produces a negative head. Such cases are regarded as unrealistic and the

software returns a warning message. EPANET hydraulically balances the network for

heads and flows at a particular point in time by solving simultaneously the conservation

of flow equation for each junction and the headloss relationship across the links. This

process is carried out using the Gradient Algorithm [16].

3. Modeling Cyber-Physical Attacks with EPANET

3.1. Attacker Model

The goal of the attacker is the disruption of the network’s hydraulic behavior. The at-

tacker can achieve this through direct and indirect attacks. In a direct attack, the attacker

takes direct control of an actionable component, e.g., by physical manipulation, remote

compromise of the controller, or manipulation of the control messages. In an indirect
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attack, the attacker manipulates the reported reading of a nodal sensor (by either physical

manipulation, remote compromise of the sensor, or manipulation of the network traffic).

The manipulated sensor reading then leads to incorrect control action to be taken. Both

attacks are altering the normal operations of pumps and valves in the network.

3.2. Attack Impact Metric

To better characterize an attack, appropriate criteria should be defined to assess the level

of service disruption in the network. For instance, pressure-related criteria can be em-

ployed to check whether the pressure at the demand nodes is within an optimal function-

ing range. These measures may be evaluated on the whole network or on specific zones

affected by the attack. In case storage tanks are targeted, the amount of overflow wit-

nessed during the attack can be used to estimate its impact. Other measures may consider

economic costs, such as those deriving from damage to pumps and valves.

3.3. EPANET-based Implementation of Cyber-Physical Attacks

Since EPANET was not developed to study WDS behavior from a cyber-physical per-

spective, some workarounds are necessary to model attack scenarios. The degree of flex-

ibility needed for such implementation is achieved through the programming Toolkit. In

this study, threats are simulated by modifying the control statements commanding the

targeted components in the network. The attacks strike at a chosen time during the sim-

ulation and last for a given period, during which the control statements are altered con-

sistently. This procedure is carried out by running the hydraulic simulation in a step-by-

step fashion and interposing extra conditional constructs between consecutive steps of

the simulation.

3.3.1. The C-TOWN Network

The implementation of cyber-physical attacks in EPANET is illustrated with some ex-

amples for the C-Town benchmark network [7], which is depicted in Figure 1. C-Town

is based on a real-world medium-sized network with two main storage tanks (T1 and

T2), and a main pumping station (S1) consisting of three pumps (PU1, PU2 and PU3).

The operations of PU1 and PU2 are regulated by the water levels in T1, while PU3 is a

redundant pump—it is kept off during standard operating conditions. The remaining five

tanks are refilled by four secondary boosting stations that pump water from T1 and T2.

While T1 is directly connected to S1, the branch pertaining T2 is connected to the source

through a FCV (V1) controlled by the water level in T2.

The attack scenarios described in the following sections were generated for one

week-long simulations (168 hours), and performed with an hydraulic time step of 15

minutes. The demand was generated by 5 different week-long time patterns with a time

step of 1 hour. The attacks start 48 hours into the simulation and last for 2 whole days.

3.3.2. Example 1: Overflow of T1 via Attack on PU1 and PU2

The first example is an indirect attack on S1 aimed at producing an overflow of T1. This

scenario assumes that there is no additional overflow sensor in the tank or that it has been

deactivated by the attacker. In normal conditions, the pumps PU1 and PU2 activate and

deactivate according to the following controls written in the input file:
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Figure 1. Subset of the C-TOWN network. We focused on tanks T1 and T2, the pumping station S1, and the

main valve V1.

LINK PU1 OPEN IF NODE T1 BELOW 4

LINK PU1 CLOSED IF NODE T1 ABOVE 6.3

LINK PU2 OPEN IF NODE T1 BELOW 1

LINK PU2 CLOSED IF NODE T1 ABOVE 4.5

The attack consists in tampering the readings of the water level in T1 so that the

value transmitted to the controller is always below 4.5 meters. In this way, once started,

PU1 and PU2 keep pumping water to the system causing T1 to overflow when the level

rises above the maximum capacity of 6.5 meters. This attack is simulated by temporarily

changing the settings at the end of the second and fourth control statements to a value

above 6.5 meters, so that the pumps never switch to the CLOSED status when the at-

tack is in place. Since EPANET cannot directly model tank overflows, the original net-

work map is modified to amend for such shortcoming. This is done by 1) duplicating the

original pipe connecting the tank to the network, 2) connecting it to a dummy storage

tank, and 3) including controls that keep the link closed unless the level in the original

tank reaches the maximum capacity. NEWLINK represents this additional pipe, and the

additional control statements for modeling the overflow of T1 are written as:

LINK NEWLINK OPEN IF NODE T2 ABOVE 6.499999

LINK NEWLINK CLOSED IF NODE T2 BELOW 6.499999

The amount of overflow due to the attack is therefore equal to the amount of water

stored in the dummy tank at the end of the attack, or to the volume of water that flows

through NEWLINK during the attack. The results are illustrated in Figure 2, where the at-

tack scenario is compared against the time series expected for the same initial conditions

under normal operations. Due to the system inertia and prior state, it takes around 10

hours for the attack to drive the system outside its normal regime, while almost the entire

duration of the attack is needed to cause T1 to overflow.
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Figure 2. Trajectory of water flow in NEWLINK (left) and storage in T1 (right) during normal operations (black

line) and under attack (red line). Results show that, when the attack strikes, a large volume of water overflows

from T1.
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Figure 3. Trajectory of water flow in NEWLINK (left) and storage in T2 (right) during normal operations (black

line) and under attack (red line). Results show that the attack leads to large overflow at T2.

3.3.3. Example 2: Overflow of T2 via Attack on V1

Overflow in T2 occurs if the valve connecting it to the main line of the network is forced

to stay open for a sufficient amount of time. In this case, the attacker intercepts the

communication to the valve controller and tampers the real readings of the water level in

T2. Under normal conditions, the controller operates V1 as follows:

LINK V1 OPEN IF NODE T2 BELOW 0.5

LINK V1 CLOSED IF NODE T2 ABOVE 5.3

In this example, the valve is forced to stay in the OPEN status by substituting the set-

ting at the end of the second statement to a value above the maximum level of T2 (for

example, 5.9 meters). The effects of this attack are shown in Figure 3—under the same

assumptions as for the first example, with dummy tank connected to T2.

4. Conclusion

In this work we discuss the opportunities and challenges of simulating cyber-physical

attacks to WDS using EPANET—a numerical modeling environment commonly adopted

to simulate WDS behavior under standard operating conditions. We present two exam-

ples, related to the overflow of storage tanks due to the direct attack to pumps controls and

manipulation of valves settings. The examples show that some workarounds are neces-

sary to implement these attacks. A limit of EPANET that surely deserve further research

is the assumption that the consumers’ demand is always satisfied (regardless of the pres-

sure at the demand nodes). This implies that EPANET cannot simulate sudden shortfalls

of water supply as well as other pressure-related issues, such as pipe bursts. Adopting

pressure-driven numerical simulation environments seems to be a viable option; this is

subject of ongoing research.
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Abstract. ECG steganography hides patient data inside their ECG signal to ensure 
the protection of patient’s identity. In this work, an attempt has been made to 
evaluate ECG Steganography where Quantization Index Modulation (QIM) 
method is used to embed patient data into the Contourlet transform coefficients of 
ECG image. Tompkins QRS detection algorithm is used to construct ECG image 
and which is decomposed into a series of multiscale, local and directional image 
expansion using contour segments. QIM scheme is applied on the appropriate 
coefficients of the selected frequency sub-bands. QIM divides the selected 
frequency sub-bands into non overlapping blocks of matrix size 2×2. Two 
quantizers are used to embed binary watermark 0 and 1. The reverse Contourlet 
transform provides the watermarked ECG image from which 1D stego-ECG signal 
is re-ordered. The proposed scheme retrieves the watermark without the need of 
cover image. The deterioration due to the modified coefficients are reduced using 
adaptive selection of a coefficient to hide watermark bit. The efficiency of ECG 
steganography is measured using imperceptibility of watermark and Bit Error Rate 
of the retrieved watermark. Similarity metrics such as Peak Signal to Noise ratio, 
Percentage Residual Difference and Kullback-Leibler distance are used to estimate 
the imperceptibility of watermark on the stego-ECG signal. It is demonstrated that 
the proposed approach provides higher imperceptibility and less Bit Error Rate in 
the retrieved watermark, which is closed to zero. ECG signals obtained from MIT-
BIH normal sinus rhythm data base are used to evaluate the performance of the 
proposed ECG Steganography approach. 

Keywords. ECG steganography, ECG image, Quantization Index Modulation, 
Watermarking, Performance metrics  

1. Introduction 

Development of reliable wearable sensors and communication systems had lead to 
the increase of remote health monitoring systems. In this framework, the patient’s bio 
physiological signals are to be transmitted to the care giver. During such transmissions, 
the bio-physiological signals are usually tagged with the patient’s identity information 
and it is subject to unauthenticated access if not protected properly. There are different 
ways in which the patient data can be protected. One of the widely used data hiding 
technique in medical domain is steganography [1]. Patient data consists of attributes 
such as patient name, age and location which is referred to as watermark.  Bio-
physiological signals such as ECG [2] and EEG [3] are the cover signals. 
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Steganography leads to deterioration of signal and its performance is evaluated by its 
ability to minimally deteriorate the cover signal, thus preserving diagnosability and 
retrieval of the entire watermark. Usually, watermark is embedded into the transformed 
coefficients of biomedical signals. 

In this study, we use Contourlet transforms to identify the characteristic points of 
ECG signal and embed the watermark into the least significant components of ECG 
signal using Quantization Index Modulation (QIM) based watermarking scheme. 
Similarity metrics are used to estimate the performance of the current approach. The 
proposed method is demonstrated using 5 different ECG signals obtained from MIT-
BIH database [4] and it is observed that reliable patient information transfer is possible.  

2. Methodology 

The proposed method consists of ECG image conversion, watermarking and 
extraction. Binary formatted alphanumeric patient data is referred as watermark. Two 
major components of ECG steganography are cover image and watermark. Cover 
image is a 1D ECG signal arranged in 2D matrix format according to the fiducial points 
obtained using QRS complexes of ECG signal [5]. Contourlet transform decomposes 
the cover image into frequency sub bands. Watermark is embedded into the coefficients 
of the selected sub band using Quantization Index Modulation (QIM) scheme. The 
inverse Contourlet transform results in watermarked ECG image from which 1D stego-
ECG signal can be obtained. Efficiency of ECG steganography is measured using 
parameters such as imperceptibility of watermark and data loss due to steganography 
process. Similarity metrics such as PSNR, PRD and KL distance measures the 
imperceptibility of watermark in the stego-ECG signal and error bits in retrieved 
patient data is estimated using BER. Figure 1 shows the architecture of proposed 
Contourlet transform based ECG steganography. Hereafter, cover image and 
watermark are referred to 2D ECG image and binary formatted patient data 
respectively.  

2.1. 2D conversion of ECG signal 

In the current scheme, 1D ECG signal is arranged in 2D matrix using Tompkins QRS 
detection algorithm [5] and used as cover image. First, a recorded ECG signal passes 
through bandpass filter. Second, a filtered signal is subjected to differentiation, 
squaring and moving window integration in order, which provides QRS complex slope 
information. Identified peaks of R waves are referred as fiducial points. Since the 
sampling frequency is 128Hz, 64 samples on both sides of each fiducial points forms 
ECG cycles and aligned in a 2D matrix. There is negligible data loss in this conversion 
process.  
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Figure 1. Contourlet transform based ECG steganography architecture. 

2.2. Discrete Contourlet Transform Coefficients 

Contourlet transform provides multi scale and directional representation of an 
image using Pyramidal Directional Filter Bank (PDFB) that consists of Laplacian 
Pyramid (LP) filter and Directional Filter Bank (DFB) as shown in Figure 2. LP 
provides bandpass cover image that is the difference between cover image and the 
down sampled cover image. DFB captures the high frequency components of the cover 
image. The decomposition levels are predefined. The readers are referred to [6] for 
details on Contourlet transform. Characteristic points of ECG signal involved in 
diagnosis lies on low frequency components that need to be preserved. Therefore, high 
frequency sub band is the logical choice to embed the watermark which can be 
identified using Contourlet transform. 

2.3. Quantitative Index Modulation based adaptive watermarking method  

Watermark bits 0 and 1 are embedded into the Contourlet coefficients of chosen 
frequency sub-band using QIM method [7,8]. In order to achieve that the selected 
frequency band of matrix size 64�64 is divided into non-overlapping blocks of matrix 
size 2�2, its pictorial representation is depicted in Figure 3. The proposed scheme 
estimates the quantization step size of each block using Eq. (1) which is denoted as � . 
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Since the possible values are 0 and 1, two quantizers are preferred for watermarking 
and one bit is embedded into each block. 

 

(2,2)

...

Bandpass directional
sub-bands using DFB

ECG
image

Multi scale decomposition
using LP filter

 
Figure 2. Filter banks of Contourlet transform. 

 

Figure 3. Pictorial representation of blocks in selected frequency band 

� �max minC C l� � �        (1) 

where, Cmax and Cmin are the absolute highest and lowest coefficient of a block 
respectively. l is the length of the coefficients in each block (2×2) which is 4. The 
watermark bit 1 is hidden into a block using Eq. (2) where the coefficient with highest 
absolute magnitude is chosen to be modified in order to embed the watermark. 
Watermark bit zero is embedded into the coefficient with lowest absolute magnitude of 
a block using Eq. (3). The scaling factors 0.75 and 0.25 in Eq. (2) and (3) are obtained 
using experimental studies. 
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*
max max 0.75C C �� �        (2) 

*
min 0.25C ��        (3) 

where, *
maxC and *

minC are the modified highest and lowest coefficients respectively. 
However, the signs of coefficients remain unchanged. The indices of the modified 
coefficients and � values of each block are loaded into a scrambling matrix and 
provided for watermark extraction. 

2.4. Watermark extraction method 

Efficiency of ECG steganography is determined using the error in the extracted 
watermark bits from the steg-ECG signal. First, 1D steg-ECG signal is converted into 
2D ECG image. The authenticated user has the key of scrambling matrix which 
contains the location of watermarked coefficients and � values. Steg-ECG is subjected 
to Contourlet transform and the watermark bits are extracted using Eq. (4). Here, the 
inverse Contourlet transform alters the magnitudes of modified coefficients which 
affect the extraction of watermark from the steg-ECG signal. Therefore, experimental 
study is performed to extract the watermark with different	 values through which the 
appropriate value is set as 0.75.  

*
* 1,      

0,    
retif C

W
else

	�
�
� �


      (4) 

2.5. Performance metrics 

Efficiency of the proposed method is determined by the parameters such as 
imperceptibility of watermark and error in retrieved watermark. Similarity measures 
such as PSNR, PRD and Kullback-Leibler metrics quantifies imperceptibility of 
watermark. Data loss in the retrieved watermark due to ECG steganography is 
estimated using BER metrics. The performance of the proposed method is evaluated 
using these metrics. The readers are referred to [9] for detailed study of these metrics. 

3. Experiment 

3.1. Database 

The proposed method uses ECG signals obtained from MIT-BIH normal sinus rhythm 
database [4] to demonstrate ECG steganography. The database contains long-term ECG 
signals recorded for 18 subjects with no significant arrhythmias. The sampling 
frequency of the signals is 128Hz.     

3.2. ECG  image conversion  

The 2D ECG image of a 1D ECG signal (16420m) obtained using Tompkins QRS 
detection algorithm [5] as depicted in Figure 4. The cover image is decomposed into 
frequency sub-bands using Contourlet Transform.  
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Figure 4. 16420m (a) 1D ECG signal (b) ECG image. 

3.3 Frequency analysis of ECG image 

In the proposed scheme, decomposition of ECG image is performed using LP and DFB 
filters. LP is a low pass filter and four pyramidal levels are selected for decomposition. 
Four levels of DFB decomposition is performed in each pyramidal level. The cover 
image of matrix size 128�128 is decomposed to four pyramidal levels and frequency 
sub-bands obtained using DFB for the fourth pyramidal level are presented in Figure 5 
where each sub band of size 64�64 contains the coefficients of high frequency 
components and preferred to embed the watermark bits.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. 16420m (a) 1D ECG signal (b) ECG image. 
 
3.4 Performance of ECG steganography 

QIM based adaptive watermarking method embed the watermark bits into the selected 
frequency band using quantizers. The inverse Contourlet transform of modified 
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coefficients provides the stego-ECG image which is converted into 1D stego-ECG 
signal. Figure 6 shows a window of size 3000 ECG samples taken from the 1D cover 
(Xc) ECG signal 16420m (blue line) and its corresponding 1D stego-ECG signal (Xw) 
drawn on it (red color dashed line). It is observed that the cover and stego-signal are 
very similar. However, the efficiency of the proposed scheme is measured by 
quantifying the similarities between 1D cover and stego-ECG signals using PSNR, 
PRD and KL distance.  

 
Figure 6. Original and stego-ECG signals of 16420m 

The proposed method is demonstrated on 5 different signals. The watermark of size 
441 bits are embedded into one frequency sub-band at a time. The corresponding 
performance metrics are provided in Tables 1-4.  It can be readily observed that the 
metrics vary across the bands. However, in the fourth band, all signals allow for 0% 
BER. The other sub-bands allow negligible BER. It is also observed that the efficiency 
of the proposed scheme depends on the magnitude of the selected coefficients, size of 
watermark. Experimental study reveals that embedding of bit zero into the coefficient 
with higher magnitude and the reverse operation affects the data retrieval rate which 
increases the BER.  

Table 1. Performance metrics of ECG steganography for the first sub-band 

Signal PSNR (db) PRD KL distance BER 
16272m 56.62 0.01154 0.0011 0.45 
16420m 54.26 0.0145 0.0015 0.68 
16483m 52.22 0.014 0.02 0.68 
16539m 55.03 0.012 0.0003 0.45 
17052m 56.98 0.012 0.0012 0.22 

 
Table 2. Performance metrics of ECG steganography for the second sub-band 

Signal PSNR (db) PRD KL distance BER 
16272m 64.41 0.004 0.00002 0 
16420m 59.06 0.008 0.001 0.22 
16483m 57.57 0.0078 0.00006 0.45 
16539m 62.52 0.005 0.00009 0.68 
17052m 64.38 0.0053 0.013 0.22 

 
Table 3. Performance metrics of ECG steganography for the third sub-band 

Signal PSNR (db) PRD KL distance BER (%) 
16272m 59.66 0.008 0.00013 0.23 
16420m 58.06 0.009 0.003 0.22 
16483m 54.74 0.01 0.00005 0 
16539m 55.29 0.011 0.0027 0.45 
17052m 62.92 0.006 0.0004 0 
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Table 4. Performance metrics of ECG steganography for the fourth sub-band 

Signal PSNR (db) PRD KL distance BER 
16272m 55.78 0.012 0.00011 0 
16420m 57.91 0.009 0.0015 0 
16483m 52.54 0.014 0.00015 0 
16539m 55.65 0.011 0.0011 0 
17052m 59.88 0.009 0.00035 0 

4. Conclusions 

ECG steganography ensures the protection of patient identity during storage and 
transmission of medical records over the internet. In this study, an attempt has been 
made to achieve ECG steganography using Contourlet transform based QIM scheme. 
The major challenge of ECG steganography are signal deterioration and patient data 
loss due to watermarking. The proposed method identifies the characteristic points of 
ECG signal such as QRS complex, P and T waves using Contourlet transform and 
embed the watermark bits into their least significant frequency components to 
preserves the diagnosability. A blind QIM scheme reduced the changes in coefficient’s 
magnitude owing to watermarking that improves the imperceptibility of watermark in 
the stego-ECG signal which is demonstrated using the metric PSNR. In addition, the 
difference between cover and stego-ECG signals are estimated using PRD and KL 
distance. Zero BER is achieved for the watermark of size 441bits. Hence, the proposed 
method is feasible to perform ECG steganography in order to protect the patient’s 
identity.  
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Accurate in-network file-type classification
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Abstract. Accurate classification of file types carried by network traffic
aids in securing a network against various types of malicious activities
such as malware infection, data exfiltration, botnet communication, etc.
An important challenge here is to accurately classify files without slow-
ing down network traffic. Therefore, the cost of accurate file-type clas-

sification has to be known. In this work, we carry out a preliminary but

extensive investigation to evaluate different sets of features for file-type
classification. The objective is to detect not only file types under normal
scenario, but also files that are transferred with obfuscated headers. Our
experiments show that the feature vector consisting of unigram frequen-
cies leads to high accuracy; yet, combining this feature set with entropy
feature vector leads to improvement in accuracies.

Keywords. Classification, files, network, real-time, n-grams, entropy

1. Introduction

Network traffic is an important medium for security breaches, and therefore for
security analysis. Exfiltration of sensitive data from an enterprise, download of
malicious executables, covert communications, sharing of copyrighted software,
etc. happen over a network. In this work, we conduct preliminary research to
detect the types of contents or files carried by traffic flows. Real-time content
classification aids in securing a network, be it an enterprise network, an ISP
network or a government organization. For example, a financial enterprise often
blocks encrypted attachments in mails, so that the administration can monitor the
contents of email exchanges. ISPs are interested in blocking malware (which are
typically in binary format) before they reach end-users. Similarly, a government
organization engaging in tenders might want to scrutinize files before they leave
the network. Yet, another organization network, like that of a retail store, would
not expect any kind of binary executables or codes in their traffic. Identifying file
types is also required in forensic analysis, for example, to detect file fragments
and recover files from computers and mobile systems [1].

While accuracy of file-type classification is paramount to its utility, the effi-
ciency of classification cannot be ignored—such classification solutions are typi-
cally deployed at the perimeters of a network. Routers at the edges of a network
are connected using high capacity of links, and depending on the network load, a
router sees large numbers of flows and packets traversing through it. Given this
realistic scenario of deployment, it is necessary to consider the cost of classifying
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file types carried by network traffic. Cost is in terms of, both, the number of bytes
or packets that need to be buffered, and the computational runtime required for
feature extraction (and classification).

In [2], the authors study a number of features (and their combinations) such
as n-grams, distribution frequencies as well as Shannon’s entropy and Kolmogorov
complexity, for classifying file types. While the evaluation is done for 30 file types,
fragments of 512 bytes (for both training and testing) are extracted from a small
number of files—2,587. This naturally makes sampled fragments dependent, po-
tentially affecting results. Overall accuracy of 73.4% is reported, using a combina-
tion of unigram and bigram frequencies. But feature vector of bigram frequencies
has a dimension of 65,536, making it impractical for real-time classifications.

In a recent research work [3], block entropies (refer Section 2.3) are used for
classification of files in network traffic. The work compares results of classifica-
tion using the byte-streams of variable sizes from both the beginning of file and
random locations. We compare block entropies in our evaluations as well (using
the same feature vector as in [3]). From our experiments, we observe that block
entropies (which require higher computational time) are not required for accu-
rate classification of files using the beginning of the file; indeed unigram frequen-
cies feature vector alone gives high accuracy in this scenario. For streams ex-
tracted from random locations, a combination of feature vectors (including block
entropies) perform better than a feature vector consisting of only block entropies.

In this paper, we differentiate features based on the costs, and evaluate the
accuracy of classification using different feature sets and their combinations, while
varying the number of bytes required for classifying a flow. We describe the differ-
ent feature vectors used for classification in the following section. Subsequently,
we evaluate the goodness of different feature vectors in classifying file types, using
a database of around 60,000 files and nine file types.

2. Feature vectors for classifying file types

2.1. n-gram frequencies

Given a stream of bytes, a commonly used set of features is the n-gram frequen-
cies [2,4,5]. In case of unigram, the frequencies of bytes are stored in a vector
of dimension 256. The size of the feature vector increases exponentially with in-
creasing size n-grams (or n), and so does storage space required for computa-
tion of the feature vector. Besides, our experiments have shown that bigrams and
higher orders do not bring in additional value in comparison to unigram frequen-
cies for file-type classification. Therefore, we use a feature vector consisting of
only unigram frequencies in this work. The computation of unigram frequencies
is straight-forward—for a byte-stream of size m, a single pass over the m bytes
gives the frequencies of unigrams.

2.2. Moments of the probability distributions

The feature vector consists of mean, standard deviation, skewness and kurtosis.
Skewness for a stream of bytes is a measure of symmetry of distribution of bytes.
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For sample values, the skewness is calculated as, b1 = 1
m

∑m
i=1(xi−x̄)3

σ̄3 , with x̄ and
σ̄ being the mean and standard deviation, respectively, of the m samples.

The fourth measure is kurtosis, which characterises the peakedness of a dis-

tribution. The kurtosis of m samples, k = 1
m

∑m
i=1(xi−x̄)4

σ̄4 . While still capturing
the characteristics of the byte distribution in a given stream similar to unigram
frequenies, the feature vector here has a much small dimension of four.

2.3. Block entropy

Entropy a measure of randomness of a random variable. For a discrete random
variable X taking values in X , entropy is defined as: H(X) = −∑

x∈X p(x) log(x),
where p is the probability mass function. Following conventions, we take 0 log 0 =
0. We measure entropy in bits, i.e., the log is taken to the base 2.

For contents in a given file, X is the set of all values a byte takes. However,
the above computation of entropy can be generalized for byte-blocks as well.
For example, when we consider a block of byte one, |X 1| = 28. For blocks (or
equivalently, sequences) of two bytes, |X 2| = 28∗2. Hence, we can generalize the
entropy computation over a block of i bytes as: Hi(X) = −∑

x∈X i p(x) log(x).
Block entropies were used in [3] for file-type classification. The complexity of

computing block entropy is O(m2) for a stream of m blocks.

2.4. Entropy of data from Markov information source

When the data source has a Markovian property (present is dependent on the
past), as is the case with text documents, the probability of a byte in a sequence
is conditional on the probabilities of occurrences of the preceding i bytes. Here i
is referred to the order or the memory that needs to be recorded. For a Markov
information source of order i− 1, entropy is computed as follows;

HM
i =

∑
x1∈X

p(x1)
∑
x2∈X

p(x2|x1)...
∑
xi∈X

p(xi|x1x2...xi−1) log p(xi|x1x2...xi−1)

(1)

The runtime complexity of computing HM
i is O(mi) for order i − 1, where m is

the number of bytes in the stream.

3. Performance evaluation

This section presents results form the experiments conducted. Before proceeding,
we discuss on the data used for evaluation purposes, and the experiment settings.

3.1. Data

We collected around 60,000 files for training and testing purposes. The different
file types forming the data are: encrypted (enc), executables (exe), PDF (pdf),
JPG (jpg), PNG (png), zip (zip), gzip (gz), MP3 (mp3), plain text and HTML.
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Plain text and HTML are considered as a single class, called the transparent class
(trans). Most of these files are extracted from a Linux system. All documentations
were installed to extract a number of text, HTML and PDF files. A subset of PDF
files also came from personal research papers collected over the years. Image files
in different formats were extracted from the Linux system as well as downloaded
from the Internet. Executable files consist of Linux system commands. MP3 files
were downloaded from sites offering free and legal downloads of music.

The compressed files, archives and encrypted files where created by randomly
sampling files from the database (MP3 and executable files were excluded from
sampling). We performed sampling without replacement; therefore the total num-
ber of files used for training and test still remained the same. To obtain encrypted
files, we encrypted a file using one of the following ciphers with equal probability:
AES-256, CAST-128, Blowfish, Twofish, and Triple DES.

3.2. Settings

Unless otherwise specified, we use nine file types (classes) for our experiments—
enc, exe, gz, jpg, mp3, pdf, png, trans and zip. Depending on the size of the
byte stream being extracted, the number of files used for each class changes. For
example, for the scenario where 64-byte streams are extracted from the beginning
of a file, the number of files used for each class in the training phase was 5000.
The number of files used for testing varied across class; the minimum is 500 and
the maximum was 3700 for this particular scenario.

We use a 3:1 ratio for the number of files used for testing and training (the
actual number of files is dependent on the stream-size being extracted). As a rule,
we do not consider a file-type if the number of files available is less than 500 for
any of the two phases of training and testing; and this will be explicitly specified
below, as and when such cases arise.

We use Random Forests for classification, as it can efficiently handle large
number of features, over a dataset of considerable size. Unless otherwise spec-
ified, the four different feature vectors used in the scenarios below are i) Uni-
gram frequencies (Section 2.1), ii) Distribution moments (Section 2.2), iii) Block
entropies—feature vector being H1, H2, H3, H5, as in [3] (Section 2.3), and
iv) Markov entropies—feature vector being HM

1 , HM
2 , HM

3 (Section 2.4). Note
that the feature H1 and HM

1 are the same.

3.3. Metrics for evaluation

To evaluate the classifiers using different sets of features, we use two commonly
and widely adopted metrics in classification, namely overall accuracy and F1 score.
Overall accuracy, or simply accuracy, is the ratio of the sum of correctly predicted
files (across all file types) to the total number of files. For a file type, F1 score =
2× precision×recall

precision+recall , where precision = No. of True Positive
#(No. of True Positive + No. of False Positive) , and

recall = #No. of True Positive
#(No. of True Positive + No. of False Negative) .

3.4. Results

We evaluate classifications using the different sets of features, resulting in multiple
scenarios. The scenarios and the results are discussed below.
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Figure 1. Scenario 1: byte-streams extracted from the beginning of files

Scenario 1 - Feature extraction from the beginning of a file: When a stream of
contiguous bytes is extracted from the beginning of a file, naturally the ‘finger-
print’ (for example, header, magic number, specific strings, etc.) of the file is
involved in the phases of classification. Yet, classification using the features ex-
tracted from the beginning location is not equivalent to signature matching, which
requires an exact match of byte sequences.

Fig. 1(a) plots the accuracies obtained using the different feature vectors, for
stream-sizes of 8, 16, 32 and 64 bytes. We observe that feature vector formed of un-
igram frequencies gives the best results, achieving close to 100% accuracy. While
the feature vector of distribution characteristics has a small dimension of four,
the classification accuracy is high, and close to the best. Both Block Entropies
and Markov Entropies perform relatively worse (in comparison to unigram fre-
quencies and distribution characteristics). The performance obtained with Block
entropies is similar to that given in [3] (recall, our work and [3] use the same set
of Block entropies as feature vector). However with increasing stream-size, the
classification accuracies with these feature vectors are seen to increase.

Fig. 1(b) gives the accuracies obtained in classifying each file type, in terms of
the F1 score, when trained and classified using the four different feature vectors.
This figure corresponds to the accuracy results for 64 bytes in Fig. 1(a). Entropy
features perform worst in classifying gz files.

Scenario 2 - Feature extraction from a fixed location: In this scenario, we skip
the very beginning of the file that is highly likely to contain the fingerprints
specific to file types. Thus the obfuscation of files by swapping or modifying the
header part will not be able to beat the classification system.

Specifically, the feature extraction phase skips the first 100 bytes of a given
file, and extracts from the byte location following the 100th byte. Observe that
in this scenario, the location of the stream of consecutive bytes is fixed (for both
the training and the testing phases).

Fig. 2(a) plots the classification accuracies. We observe that the accuracies
for all the four feature vectors have come down significantly. The feature vector
using unigram frequencies gives the best accuracies, ranging from 73% to 76%.
The remaining three feature vectors lead to comparable accuracies. The accuracies
also increase with increasing stream size.

For the experiment using streams of 64 bytes, the correspond F1 score is
given in Fig. 2(b). Comparing the classification accuracies of gz, pdf and zip file
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Figure 2. Scenario 2: byte-streams extracted after skipping first 100 bytes of a file
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Figure 3. Scenario 3: byte-streams extracted from a random location in a file

types in figures 1(b) and 2(b), it is clear that the header significantly helps in
identifying these file types, as header removal brought down the classification
accuracy significantly for all feature vectors.

Scenario 3 - Feature extraction from a random location in a file: Here we extract
contiguous stream of bytes from a randomly chosen location. To ensure that
there is no bias towards the headers of file types, the first 100 bytes are skipped,
and a location in a file is selected uniformly randomly. We observed from the
experiments that stream sizes in 100s of bytes (from random locations) do not give
good accuracy in classifying file types. Therefore, here we provide the accuracies
for stream sizes in 1000s of bytes; more specifically, we extract streams of sizes
in multiples of a standard data packet size—1500 bytes. Thus the buffer space
required to store packets of a single flow (or connection) can be estimated in
number of packets.

As the numbers of files for types gz and png were less than the minimum
requirement, we do not consider these file types in this scenario, and the scenarios
following. In Fig. 3(a), we plot the accuracies for stream sizes corresponding to
one, two, three and four packets. Unigram frequencies still give the best classifi-
cation accuracy, and the accuracy increases with the number of contiguous bytes
used for classification. However, different from the previous scenarios, entropies
give better classification results than distribution characteristics in this scenario.
We need to keep in mind that the computational cost of entropies is higher than
the other features. From Fig. 3(b) (plotted for stream-sizes of 6000 bytes), we ob-
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Figure 4. Scenario 4: using combinations of feature vectors

serve that for all feature vectors, pdf and zip file types pose challenge in accurate
classification.

Scenario 4 - Combinations of feature vectors: In this section, we experiment
combinations of feature vectors. As unigram frequencies have given the highest
accuracies in all the previous scenarios, we combine feature vector of unigram
frequencies with other feature vectors. UF stands for unigram frequencies, DM for
distribution moments, BE for Block entropies, and ME for Markov entropies. We
also study the effectiveness of using all feature vectors in classification (denoted
by ’All’ in the corresponding figures).

Fig. 4(a) gives the accuracies. The highest accuracy, of ≈ 89%, is attained
for random streams of size 6000 bytes, for the combination of all the four feature
vectors (’All’ in the figure). In general, combining feature vector of entropies with
unigram frequencies is seen to increase the classification accuracy. While adding
feature vector of block entropies to the feature vector of unigram frequencies al-
ways increases the accuracies of classification of file types, this relative improve-
ment decreases with increasing stream size. Recall that the computational cost
of block entropies is a quadratic function of the number of bytes. Computing en-
tropies for larger size streams may potentially slow down the traffic, depending
on the capacity of the network and traffic characteristics (number of flows per
second, number of packets per second).

Fig. 4(b) gives the F1 score for stream sizes of 6000 bytes. We observe that,
in comparison to unigram frequencies, the combination UB+BE feature vectors
increases the accuracy of classification of encrypted files from 84% to 89%. The
combination of all feature vectors significantly increases the accuracy of zip file
classification from 50% to 66%. The combination also increases the classification
accuracy of PDF files from 71% to 78%.

3.5. Discussion

To check if similar performance in terms of accuracy can be achieved when all
computations are bounded within quadratic time in the number of bytes ex-
tracted, we performed one more experiment by removing the only feature that
takes more runtime complexity—HM

3 . This modified set of features, all of which
can be computed in linear or quadratic time, is equivalent to the features used
in ‘All’ (UF+DF+BE+ME), but with the third feature in the ME feature vector
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removed. The accuracy and F1 scores obtained were almost the same as those for
the ‘All’ set of features. From this, one can now decide the features (and their
combinations) as well as the stream-size to be used for classification depending
on the resource capabilities (computational power and buffer sizes) at one’s dis-
posal and the network load. One set of features requires only linear time—UF and
DF, and another set requires quadratic time—BE and ME (HM

1 , HM
2 ). Increasing

stream-size for classification results in increased accuracy, but at the cost of both
increased buffering and computational time (where, depending on the features,
the increase in computational time will be linear or quadratic).

4. Conclusions

In this paper, we conducted studies to determine the right set of features and
stream-size for accurately classifying file types in network traffic. Feature vector
consisting of unigram frequencies extracted from beginning of files, and which can
be computed in O(m) time, gives the best and close to 100% accuracy. As not
more than 64 bytes are required to achieve this performance, the features can be
computed in constant time.

As header of files alone cannot be used a reliable source for classification, we
also experimented on streams extracted from random locations (and excluding the
header part). Our experiments reveal that though unigram frequencies perform
good, combining all feature vectors together indeed performs the best. Depending
on the resources available at the point of deployment and the network load, (in
terms of link capacities, number of flows per second, number of packets per second,
etc.), the stream size and feature vectors to be computed may be varied.
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