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The Special Issue “Advances in SAR: Sensors, Methodologies, and Applications” aims to give
an overview of recent advancements in Synthetic Aperture Radar (SAR) remote sensing. SAR remote
sensing is a wide field including sensor technologies—the hardware—as well as algorithms and
methods—the software. The sensors and algorithms are, however, just a means to an end, with that
end being the applications.

In recent years, SAR remote sensing technology has made huge steps forward. With the increase
in available sensors and the tremendous growth of available SAR data, access has become easier and
SAR has become more relevant. With this increase in data, we have seen recent advancements in SAR,
especially regarding sensors and methodologies, but also in terms of newly developed applications.

The articles in this Special Issue focus on these advancements, while also covering different
aspects of SAR remote sensing. The Special Issue starts with a paper from Giudici et al. [1] describing
the pre-flight experiments during the outdoor performance assessment campaign for the upcoming
SAOCOM-1A SAR mission. Corner reflectors are important for various applications in a SAR sensor’s
lifecycle. Consequently, Garthwaite discusses design considerations for corner reflectors used for
deformation monitoring [2]. In an interesting piece on interferences, Monti-Guarnieri et al. [3] present
their work on the radio frequency interferences in C-band based on an analysis of the first 8–10 echo
measurements per burst to provide a first radio frequency interference map over Europe.

Another important topic is SAR signal processing. Zhang et al. [4] describe a new accelerated
back-projection algorithm. A multiple-input, multiple-output (MIMO) video SAR signal processing
approach is presented by Kim et al. [5]. Park et al. [6] demonstrate an efficient correction of ground
moving targets from SAR SLC images. Bu et al. [7] present a unified algorithm for the calibration of
single-pass multi-baseline TomoSAR systems.

SAR interferometry is one of the most important applications in SAR remote sensing. Furthermore,
it is the topic of several papers in this Special Issue. Even and Schulz [8] present a detailed review on the
deformation analysis with distributed scatterers. Their review offers an excellent starting point to learn
more about recent advancements in distributed scatterer (DS) InSAR. Tian et al. [9] present a method
for an improved orbital error modeling relevant to various interferometric applications. Besides orbital
errors, atmospheric and ionospheric effects are important error sources. To reduce the ionosphere
error, Wang et al. [10] present a method based on the Faraday rotation with polarimetric SAR data.
Precise DEM generation is one of the main applications of interferometric SAR. Dong et al. [11]
demonstrate a multi-baseline InSAR approach using Maximum Likelihood Estimation.

Infrastructure stability surveillance is an important application, especially for high-resolution SAR
sensors. Bridges are especially important in this context. The possibility to measure deformation is

Remote Sens. 2018, 10, 1233; doi:10.3390/rs10081233 www.mdpi.com/journal/remotesensing1
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shown by a case study of the Lupu bridge in Shanghai [12]. Another case study by Neelmeijer et al. [13]
shows the deformation around the Toktogul Reservoir in Kyrgyzstan based on ASAR and Sentinel-1
data over two periods from 2004–2009 and 2014–2016.

As an alternative to differential interferometry, surface motion estimation with SAR pixel-tracking
can provide precise motion measurements in the range and azimuth directions. Sun et al. [14]
demonstrate this by surveying landslides in the Three Gorges Region. Shi et al. [15] take another look
at landslides in the Three Gorges Region with Split-Bandwidth Interferometry. On the other hand,
Libert et al. [16] use Split-Band Interferometry to assist in phase unwrapping.

Feature detection from SAR images is another major topic in Microwave Remote Sensing.
Ghafouri et al. [17] present a method to better estimate IEM (Integral Equation Model) input parameters
for multi-frequency SAR data. Di Martino et al. [18] describe the role of resolution for the estimation of
fractal dimension maps. Deng et al. [19] give an overview over different methods for the statistical
modeling of polarimetric SAR data. Segmenting polarimetric SAR data is important in understanding
and classifying SAR data. For high-resolution PolSAR data, Chen et al. [20] demonstrate a multi-feature
segmentation technique based on fractal net evolution approach. Tao et al. [21] show a land cover
classification method with polarimetric SAR data based on roll-invariant and selected hidden features
in the polarimetric rotation domain.

SAR data can be a very good data source for change detection analysis. Braun and Hochschild [22]
use this for detecting landscape changes in the African Savannas. Behnamian et al. [23] report the
development of a semi-automated surface water detection technique especially suitable for wetlands.
Washaya et al. [24] use coherence change detection to identify and monitor damages caused by
natural and anthropogenic disasters, including hurricane, forest fire, and earthquake damage detection,
in addition to providing an extensive overview of the damages caused by the Syrian War in Aleppo,
Raqqa, and Damascus.

Zhai et al. [25] present a multi-layer model for SAR images that is based on multi-scale and
multi-feature fusion. Last but not least, Molan et al. [26] introduce a new temporal decorrelation model
for L-band data over Alaska, taking the amplitude and snow depth into account.

Funding: This work was supported by the Natural Science Foundation of China under the
Grant 61331016.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In the present paper, we describe the design, execution, and the results of an outdoor
experimental campaign involving the Engineering Model of the first of the two Argentinean
L-band Synthetic Aperture Radars (SARs) of the Satélite Argentino de Observación con Microondas
(SAOCOM) mission, SAOCOM-1A. The experiment’s main objectives were to test the end-to-end SAR
operation and to assess the instrument amplitude and phase stability as well as the far-field antenna
pattern, through the illumination of a moving target placed several kilometers away from the SAR. The
campaign was carried out in Bariloche, Argentina, during June 2016. The experiment was successful,
demonstrating an end-to-end readiness of the SAOCOM-SAR functionality in realistic conditions.
The results showed an excellent SAR signal quality in terms of amplitude and phase stability.
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1. Introduction

The forthcoming Argentinean mission Satélite Argentino de Observación con Microondas
(SAOCOM) [1] is constituted by two identical Low-Earth-Orbit (LEO) satellites, SAOCOM-1A and -1B,
carrying as the main payload an L-band Synthetic Aperture Radar (SAR). The SAOCOM-SAR has an
active array antenna with elevation and azimuth steering capability for frequent-revisit, wide-swath,
and medium resolution Earth observation.

The mission’s target applications [2] require a tight overall amplitude and phase stability
performance, which is imposed to a large extent by the instrument critical elements, such as the
chirp generator, the distribution network, the Transmit-Receive Modules (TRMs), the clock, and the
antenna. The pre-launch assessment and verification of the phase and amplitude performance is
paramount in order to limit the calibration and verification efforts to be done in-flight (e.g., during the
commissioning phase).

Typically, the instrument elements can be tested on a singular basis, and the antenna far-field
radiation pattern can be reconstructed from planar-near-field-scanner (PNFS) measurements of the
near field radiation patterns of the elements of the antenna by means of an accurate antenna model [3].
In the latter case, extreme care is needed in the measurement setup to avoid biases in the measurements.
The far-field pattern is not available on-ground and the antenna model can be verified only in-flight,
exploiting e.g., homogeneous targets for the elevation case and recording transponders for the azimuth.
A typical example is the acquisition over the Amazonian rainforest. However, the in-flight data
intensity profile depends on a list of other factors (e.g., pointing, time-variant instrument gains,
processor gains), also to be calibrated or verified, so that it might be difficult to isolate the antenna
contribution from the others, as reported for the case of Sentinel-1 in References [4,5]. Furthermore,

Remote Sens. 2017, 9, 729; doi:10.3390/rs9070729 www.mdpi.com/journal/remotesensing4



Remote Sens. 2017, 9, 729

the in-flight verification allows a limited verification of the elevation antenna pattern, within the
angular range used by the imaging swath.

One way to check the mid- and long-term stability of the system, say from seconds to minutes,
is an outdoor experiment where SAR acquisitions are carried out with the full antenna (or a part of it,
e.g., one tile) pointed to targets of opportunity or man-made calibrators in the far-field. In addition,
the collected power measures for different antenna pointing can be correlated to the theoretical
antenna model to obtain a first far-field verification, complementary to what could be obtained with
PNFS measurements.

2. Outdoor Experiment Concept, Design, and Simulations

The well-known far field condition on the distance R for an antenna with size L operating at
central wavelength λ, is:

λ

L
R >> L (1)

In the case of the SAOCOM-1A SAR instrument, we refer to the SAR antenna, a planar array
with the total size along azimuth L equal to 9.94 m. The antenna is made by seven tiles with the size
of 1.42 m × 3.48 m (azimuth × elevation), and the center frequency is 1.275 GHz (λ = c

f is equal to
23.53 cm). The far field distance results are in the order of 40 m. Moreover, the SAR instrument cannot
receive echoes returning to the antenna while the chirp transmission is still active. Considering a
minimum chirp length of 10 μs, and another 10 μs of guard time between the end of transmission and
the start of echo reception, the minimum distance of a “visible” target is 3.3 km.

Compared to the SAR acquisition in space, here the antenna is not moving along an orbit, so there
is no synthetic aperture. The area illuminated by the antenna is limited by the range resolution ρg and
by the real antenna aperture in azimuth λ

La
R. Considering a homogeneous reflective scenario (e.g., bare

soil or short vegetation) in front of the radar, with reflectivity equal to σ0
T , the radar cross-section (RCS)

of each resolution cell is computed as:

σc =
ρgλR

La
σ0

T (2)

Considering the bandwidth range equal to 50 MHz and one tile of the antenna with a length equal
to 1.42 m, the resolution cell at the SAOCOM central frequency is as large as 1600 m2. Assuming a
reflectivity of −15 dB, the obtained RCS is 17 dBsm. (We indicate with dBsm the ratio of the area with
respect to 1 m2, expressed in logarithmic scale).

This large backscattered power can be considered either as a signal—if stable—or as a noise—if
unstable. Water and leaves are highly unstable; however, their contribution is effectively reduced if
averaged for seconds. Slower-moving targets could provide long-term noise contributions that affect
the measure. We then decided that the observed scenario might not be stable enough for an accurate
measurement, so we inserted a trihedral corner reflector in the scene.

Figure 1 shows the schematic representation of the overall concept of the SAOCOM outdoor test
(ODT): the SAOCOM SAR antenna points towards a known point target (trihedral corner reflector),
moving along the line of sight, with a linear motion, thanks to a linear actuator. The acquired data are
downloaded and processed to extract signal characteristics and to assess the phase and gain stability
of the instrument.
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Figure 1. SAOCOM outdoor test (ODT) concept overall view. In the figure, P represents the moving
target to be acquired and ϑ the inclination of the Radar Line of Sight with respect to the local normal to
the terrain.

The reason for target motion is to effectively limit the size of the corner reflector to reasonable
values. The target, moving with controlled and known motion, can be separated from the background
and other moving targets provided that the motion is significant with respect to half the wavelength.

The RCS of the trihedral corner reflector with length d can be modeled as:

σ2
x =

4
3π

d4

λ2 (3)

In order to distinguish it from the background and to have sufficient accuracy in the phase and

amplitude measurement, we ask for a signal to clutter ratio σ2
x

σ2
c

of at least 30 dB. With the computed
RCS of the clutter as above, this would lead to a target with a size greater than 8 m.

Let us then assume that the corner reflector is mounted on a rail, and moves with time, say of
an extent much less than a range resolution cell. The return from successive echoes measured at the
target range can be modeled as a mono-dimensional time-variant signal, given by the superposition of
the distributed target (or clutter), the signal from the trihedral target, and the noise w, due to thermal
and quantization:

y(τ) =
∫
ρa

acejφAPS(ξ,τ)dξ + asejφAPS(ξ0,τ)+φr(τ) + w(τ) (4)

where the first integral is extended to the unfocused azimuth aperture, the resolution ρa. In the
equation above, τ represents the time and ξ the spatial coordinate. The phase noise term φAPS accounts
for the propagation within the troposphere and it is discussed later on in the text. The two terms ac

and as are the returns, respectively, from the distributed target and the trihedral. The second term is
the signal related to the target. The phase term φr accounts for the motion of the target and represents
an equivalent of the “phase history” of the target, to be compensated for (“focused”).

In the case of linear motion along the line of sight with velocity v, the phase history corresponds
to a linear phase ramp:

φr(τ) = −4π

λ
R(τ) = −4π

λ
(R0 + v · τ) (5)
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And hence the observed data sequence at the target range R0 is a sampled sinusoid with frequency:

f = − 2
λ

v (6)

The term f is the Doppler Frequency created by the target motion. Unlike a spaceborne SAR,
in which every target in the scene has its own Doppler, here all the fixed targets appear at Doppler
zero except for the one of interest.

Assuming a very good knowledge of the phase φr, the “focused” target response is
retrieved by compensation of the phase on the signal y(τ), performing what in SAR focusing is
called “backprojection”:

yF =
1
N ∑

i
y(τi) · e−jφr (7)

In the following, we study the content of y(τ), making different hypotheses on the disturbing
phase noise φAPS and on the clutter statistics.

The impact of propagation (the phase noise term φAPS), accounts for the additional delay
introduced by the non-free space propagation within the troposphere. If the monochromatic
approximation holds (a small bandwidth compared to the carrier frequency), the phase term φAPS
is linearly related to the delay, which in turn depends on the integral of the refraction index along
the path.

φAPS =
4π

λ
dATM =

4π

λ

∫
Lp

N(r(
→
l ))dl (8)

where N is the space- and time-variant refractivity index of the atmosphere, a function of the space r
and the time of acquisition. The statistics of the atmosphere have been widely studied in the past [6].
Limiting the temporal scope to one day (far longer than one SAR acquisition), we can well consider
the Kolmogorov turbulence statistical model of the delay, represented by the power law:

E[d(t + Δt)− d(t)] =
(

Δt
τ

)α

ad (9)

where τ is a temporal constant depending on the local atmospheric conditions (typical values are in
the order of hours). The exponent α is also defined as slope, as the function is a line in a log-log space,
assuming values experimentally determined to be close to 2/3. The applicability of the model was
verified with experimental ground-based radar measurements in Reference [6]. Numerical simulations
were carried out to investigate the impact on the obtained signal-to-clutter ratio due to the atmospheric
delay spatial and temporal variation.

We now analyze the clutter contribution (the first term in Equation (4)), assuming sufficient
stability of the atmosphere in the time interval of one acquisition. This assumption was verified
by analyzing the Doppler spectrum of the acquired clutter echoes (see Section 4). The result of the
focusing operation in (7) is a stochastic process with variance depending on the clutter spatial and
temporal covariance matrix. This will depend on the scenario (e.g., rocks or vegetation) and on its
stability (e.g., due to wind).

To show the principle of the outdoor test, we analytically derive the case of clutter perfectly
correlated in time (frozen scene). In this case, the clutter ac is a constant along time, so its contribution
to the focused signal yF is given by:

σ2
c,F = σ2

c sinc2
(

2
λ

L
)

(10)

where L is the total length of the target motion. The relation above shows that the contribution of
the clutter to the focused moving target is a cardinal sinc, which depends only on the total motion
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extent L. With a motion extent multiple of λ
2 , the clutter power is (ideally) completely cancelled, as the

total signal-to-noise ratio is only thermal-noise limited. In this ideal case, the velocity of the target is
completely irrelevant (provided that the radar Pulse repetition Frequency (PRF) is sufficient to sample
the sinusoid at f = 2

λ v, which, for typical PRFs in the order of KHz, is practically always true).

3. SAOCOM Outdoor Experiment Setup

The SAOCOM-1A outdoor test (ODT) took place in the Investigación Aplicada (INVAP) facility
close to the Bariloche Airport, Patagonia, Argentina. The facility consisted of a radome hosting
one tile of the SAOCOM antenna and the SAOCOM electronics, connected to a control and
data-processing room.

The moving target was hosted in a radome placed at a distance of 3755 m in the plane in front of
the facility.

Figure 2 shows the setup on Google Earth (a) and an aerial view of the area (b). The picture was
taken standing on a small hill of approximately 50 m altitude above the large plane. In the foreground,
there is the area hosting the shelter with the guard and the power generator, connected to the small
radome hosting the moving target. The fixed target was placed on the right, approximately 20 m away
from the radome. Far beyond, the facility hosting the SAOCOM with the large radome can be seen.

(a) (b)

Figure 2. SAOCOM-1A outdoor test setup. (a) View on map; (b) aerial photo.

Three trihedral corner reflectors were available during the ODT campaign:

• 75 cm
• 100 cm (visible in Figure 3b)
• 150 cm

The first two corner reflectors could be mounted on the moving actuator, while the large one was
placed to be kept immobile at approximately 20 m from the moving target radome.

The Advanced Remote Sensing Systems (ARESYS) corners are trihedral-shaped aluminum
reflectors with modular faces that were assembled on-site.

Table 1 below reports the RCS in dB square meters (dBsm) of the corner reflectors at the SAOCOM
center wavelength (0.2353 m).

Table 1. Radar Cross Section (RCS) of the corner reflectors.

75 cm Corner RCS 100 cm Corner RCS 150 cm Corner RCS

13.79 dBsm 18.79 dBsm 25.83 dBsm
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(a) (b)

Figure 3. (a) Radome hosting the SAOCOM antenna tile; (b) Radome hosting the moving target.

The accurate pointing of the corner reflectors mounted on the moving rail was ensured by the
alignment of the rail itself with the line of sight, which was carried out by Comisión Nacional de
Actividades Espaciales (CONAE) with the use of a differential Global Positioning System (GPS).

The pointing of the large corner reflector was instead performed with the use of a compass and
an inclinometer (resulting thus in a coarser pointing). This method was employed because the large
corner reflector was thought to have sufficient RCS so as to be left movable around the scene, in order
to ease the execution of preliminary visibility tests.

The SAOCOM antenna was one single tile of the total antenna. One tile is composed of 20 elements
in the elevation direction and one element in the azimuth direction, with a total size of 3.48 m in
elevation and 1.424 m in azimuth. Each TRM was transmitting 50 W with an efficiency of 75%. The
excitation coefficients were set according to a Taylor (amplitude only) tapering, in order to shape the
side-lobes. The pointing in elevation and azimuth was possible thanks to the mechanical support
equipment which could be steered with steps of approximately 1 degree and the knowledge of the
pointing was of approximately 0.1 degree. The link budget, accounting for all the gains and losses from
the transmitter, through the medium, and to the receiver, and the corresponding signal-to-noise-ratio
(SNR) computation, are reported in Table 2 below. The noise figure NF term is used to define the
equivalent noise temperature of the receiver and to then compute the thermal noise power with the
classical equation:

PNoise,Thermal = KBTeqB = KBNFTaB (11)

where KB is the Boltzmann constant, B is the signal bandwidth, and Ta is the ambient temperature
(290 K).

The acquisition parameters were set in order to ease the execution of the outdoor test by putting:

• a short chirp to allow close range
• the maximum bandwidth to reduce the resolution
• a reduced sampling window length to avoid unnecessarily large datasets

The main SAOCOM settings are described in Table 3 below.
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Table 2. Link budget computation and Signal to Noise Ratio (SNR) computation (ideal propagation media).

Parameter Value (Linear) Value (Log-Scale)

Peak power 750.0 W 28.75 dBW
Antenna area transmit (TX) 4.87 m2 6.88 dBsm

Instrument and antenna TX losses 1.17 0.70 dB
TX path loss (R = 3755 m) 5.64 × 10−9 −82.48 dB

RCS corner (1-m corner case) 75.66 m2 18.79 dBsm
Receive (RX) path loss 5.64 × 10−9 −82.48 dB

Instrument and antenna RX losses 1.17 0.70 dB
Received power 6.4 × 10−12 W −111.94 dBW

Noise figure 2.14 3.3 dB
Noise power at receiver 4.28 × 10−13 W −123.69 dBW

SNR raw 14.96 11.75 dB
Number of focused steps 1000 30 dB

SNR focused 14,962 41.75 dB

Table 3. SAOCOM 1A acquisition parameters for outdoor test.

Parameter Value

Acquisition mode Stripmap/TOPSAR
Center frequency 1,274,140,000 Hz

Bandwidth 50 MHz
Sampling window start time 23 μs

Chirp duration 11 μs
Sampling window length 20 μs

Acquisition duration variable 1 min–10 min
Polarization Quad Pol

Pulse Repetition Frequency (PRF) 4545 Hz
Chirp Down

In addition to the moving target, a sampling equipment was placed to measure the transmitted
chirp and to check the PRF.

4. SAOCOM Outdoor Experiment Results

The raw data, provided by a dedicated implementation of the CONAE User Segment Service
(CUSS), called mini-CUSS, were non-Block-Adaptive-Quantizer (BAQ) compressed and modulated
(at 30 MHz) data. The processing software had then to perform the following steps:

• digital down conversion
• range compression
• azimuth compression

The digital down conversion step performs the demodulation of the signal to baseband. In the
employed software, it also allowed the sub-sampling of the input dataset in order to speed up the
processing for a fast analysis of the input data. In fact, the PRF of the SAOCOM is quite high compared
to the Doppler content of the illuminated scene. The real input samples are also converted into complex
samples during this step.

The range compression performs the matched filter either with an ideal chirp (synthetically
generated by the routine itself, or with the chirp replica coming from internal calibration.

It is noted that the chirp replica is close to the ideal chirp, except for an amplitude tapering
in the upper part of the chirp (Figure 4a). The effect of the imperfect flatness in frequency is seen
in the impulse-response-function (IRF) side-lobes level, which are lower than the ideal level of the
perfectly rectangular spectrum of the ideal chirp (Figure 4b). The effect on resolution is of about 4%
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resolution loss (see Table 4), which is almost completely recovered when the replica is focused with
the ideal chirp.
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Figure 4. (a) Comparison between the ideal chirp and the chirp extracted from internal calibration;
(b) Range-compressed Impulse Response Function (IRF) comparison.

Table 4. Range IRF analysis results.

IRF Parameter Replica-Replica Case Ideal-Ideal Case Replica-Ideal Case

Resolution 2.77 m 2.66 m 2.68 m
Peak-to-Side-Lobe ratio −16.2 dB −13.3 dB −14.98 dB

The range power profile of one acquisition is shown in the following figure, for the
VV polarization.

The high backscatter from the small hill and three main peaks can be recognized, corresponding
to the fixed corner reflector (closest), a small heap of dirt (mid), and the moving target inside the
radome (at 3755 m).

The signal to clutter ratio of the latter is approximately 13 dB. Considering the 100-cm corner RCS
as in Table 1, we can estimate a clutter RCS in the resolution cell in the order of 5 dBsm. This value is
12 dB lower than the assumption made during the design phase (clutter RCS of 17 dBsm) and reported
in Section 2. We can then refine the clutter signal level to −27 dB. The analysis in the Doppler domain
(Figure 5b) of the clutter shows a very low impact of the wind, with an estimated stable to time-variant
components ratio (also called DC/AC ratio) of 40 dB.

(a) (b) 

Figure 5. (a) Range-compressed data intensity profile and interpretation; (b) Doppler analysis of
the clutter.
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The effect of the target motion is clearly seen in the range-Doppler map, showing the Doppler
spectrum for each range. The two “targets” are the focused responses of the moving target. The bright
stripe at the higher range is the backscatter of moving people inside the control shelter.

The azimuth impulse response function of the system can be extracted as a horizontal cut of
the range-Doppler map and is shown in Figure 6. The importance of the result below is to have the
possibility to analyze in advance the impulse response of the Synthetic Aperture Radar, normally
obtained only once the instrument is flying and the data are properly processed on ground.
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Figure 6. (a) Range-Doppler map with the focused moving target clearly visible; (b) Azimuth IRF.

Concentrating now on the moving target range bin, we can assess the end-to-end overall
amplitude and phase stability, which will be a combination of the instrument and of the propagation
medium stability.

Figure 7 shows, on the left, the reconstructed phase of the signal corresponding to the moving
target bin. The expected sawtooth trend can be seen, corresponding to the movement of the corner
reflector back and forth during the acquisition. The image in the center shows the corresponding
time-variant concentration of the signal energy in the azimuth frequency domain, moving from positive
to negative frequencies depending on the direction of motion. The location of the peaks in frequency
allows one to estimate with high precision the actual motion velocity and to synthesize an ideal linear
motion and the corresponding phase trend. The rightmost plot shows instead the residual phase after
linear motion compensation.

By collecting the phase of all the peaks from the acquired 10 min of long data, the amplitude and
phase stability results reported in Table 5 were obtained.

Table 5. Amplitude and phase stability results over 10 min.

Parameter Value (VV) Value (HH)

Amplitude stability better than 0.1 dB better than 0.1 dB
Phase stability 3.9 deg 3.4 deg

Amplitude drift <0.1 dB/min <0.1 dB/min
Phase drift 0.19 deg/min 0.35 deg/min

The correctness of the antenna excitation setting and the validation against the theoretical antenna
pattern calculation was carried out by repeating the data acquisition with different antenna pointing in
elevation thanks to the mechanical steering of the antenna.

Figure 8 below shows an example of the obtained results, where each dot on the plot represents
the average power at the moving target range, estimated on one data acquisition, either VV or HH.
The dots are superimposed over the theoretical antenna pattern shape, corresponding to the applied
tapering on the antenna (Taylor tapering). The good agreement of the measures with the expected
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pattern can be seen up to the second side-lobe. The agreement is better for positive angles than for
negative angles. This can be explained considering the known interaction of the antenna with the
ground, introducing a ripple on the whole pattern.
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Figure 7. Analysis of the moving target signal. (a) Phase versus time; (b) Doppler frequency versus time
(colorscale in dB, normalized to the maximum); (c) Residual phase after linear motion compensation.
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Figure 8. Far-field elevation antenna pattern validation against the theoretical model.

5. Discussion

The execution of the ODT and the processing of the collected data provides an important set
of results that give the first significant insights on the overall system performance. First of all,
the transmitted signal, after its replica were provided by internal calibration and their similarity to an
ideal chirp were checked, showed an almost ideal IRF in range. The compensation of the known phase
function, corresponding to the target motion, allowed us to check the phase stability of the system over
a long time interval spanning up to 10 min. The analysis over datasets acquired with different azimuth
and elevation pointing of the SAOCOM antenna tile allowed the successful validation of the antenna
pattern pointing and shape over a large interval including the first and second side-lobes. The main
limitations remain the single antenna tile used, thus allowing us to test only the beamforming in the
elevation direction, and the target used, which responded only with the co-pol channels. Nevertheless,
the collected results allow us to state that the key functionalities of the SAR system are verified, even
with the limitations that an on-ground setup unavoidably brings.

6. Conclusions

The SAOCOM-1A outdoor test took place in Bariloche, Patagonia, Argentina, during June 2016.
The main objective of the outdoor test (ODT) was to provide an end-to-end validation of the

SAOCOM-SAR functionality, in a realistic condition, where the SAR pulses are radiated by the antenna,
reflected by a target, and then received by the antenna and recorded as SAR data. The test setup was
made up of two main elements: the SAOCOM SAR engineering model, including one of the seven
antenna tiles, and the moving target. It was proven to work as expected throughout the full duration
of the tests. Several datasets were successfully acquired through the setup and processed to L0B data.

Overall, the ODT objectives were met and the SAOCOM-1A proved to show an excellent
signal quality, both from radiometric and interferometric points of view. The ODT provided the
unique occasion to obtain a set of pre-flight far-field measurements. The results can be considered
representative for SAOCOM-1A and for SAOCOM-1B as well, so no additional experiments are
foreseen. The conclusive and formal verification of the SAOCOM performance is left to the laboratory
pre-flight tests and to the commissioning phase.
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Abstract: Trihedral corner reflectors are being increasingly used as point targets in deformation
monitoring studies using interferometric synthetic aperture radar (InSAR) techniques. The frequency
and size dependence of the corner reflector Radar Cross Section (RCS) means that no single design can
perform equally in all the possible imaging modes and radar frequencies available on the currently
orbiting Synthetic Aperture Radar (SAR) satellites. Therefore, either a corner reflector design tailored
to a specific data type or a compromise design for multiple data types is required. In this paper,
I outline the practical and theoretical considerations that need to be made when designing appropriate
radar targets, with a focus on supporting multi-frequency SAR data. These considerations are tested
by performing field experiments on targets of different size using SAR images from TerraSAR-X,
COSMO-SkyMed and RADARSAT-2. Phase noise behaviour in SAR images can be estimated by
measuring the Signal-to-Clutter ratio (SCR) in individual SAR images. The measured SCR of a
point target is dependent on its RCS performance and the influence of clutter near to the deployed
target. The SCR is used as a metric to estimate the expected InSAR displacement error incurred by
the design of each target and to validate these observations against theoretical expectations. I find
that triangular trihedral corner reflectors as small as 1 m in dimension can achieve a displacement
error magnitude of a tenth of a millimetre or less in medium-resolution X-band data. Much larger
corner reflectors (2.5 m or greater) are required to achieve the same displacement error magnitude
in medium-resolution C-band data. Compromise designs should aim to satisfy the requirements
of the lowest SAR frequency to be used, providing that these targets will not saturate the sensor of
the highest frequency to be used. Finally, accurate boresight alignment of the corner reflector can
be critical to the overall target performance. Alignment accuracies better than 4◦ in azimuth and
elevation will incur a minimal impact on the displacement error in X and C-band data.

Keywords: InSAR; persistent scatterers; geodesy; corner reflector; point target; interferometry;
Synthetic Aperture Radar; calibration and validation

1. Introduction

The Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique [1–5] has
become a popular remote sensing method for monitoring ground or infrastructure displacements
induced by wide-ranging natural and anthropogenic phenomena. The technique uses a stack of SAR
interferograms and determines the motion history for pixels that are identified to have temporal phase
stability (i.e., pixels whose overall response is dominated by a strong back-scatterer). The distribution
of these “persistent scatterers” (PS) can be quite dense in urban areas (e.g., several hundred PS/km2),
where there are many man-made angular structures and corners to reflect incident radar energy back
to the observing SAR sensor. However, in non-urban areas the distribution of PS may be much sparser,
or even non-existent. Consequently, artificial targets are increasingly being deployed in the field to
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introduce coherent point targets in regions where naturally occurring PS are sparse or non-existent
(e.g., [6–14]).

The exact position of naturally occurring PS is generally not known and it is therefore useful
to have targets with known position distributed throughout the area of interest that can be used to
validate PSInSAR with other geodetic observations. Indeed, there is a growing trend for artificial targets
to be considered for permanent deployment in national geodetic reference networks to complement
and enable inter-comparison of PSInSAR observations with ground-based geodetic measurements
(e.g., from the GNSS, levelling, VLBI, and SLR techniques). Previous validation experiments using
artificial targets have found that the accuracy of displacement estimates from PSInSAR analysis is at the
millimetre level [15,16]. Recent advances have also seen the development of algorithms for absolute
positioning of SAR scatterers using stereo SAR images of targets acquired using multiple imaging
geometries [17,18]. Common to all these applications is the need for an artificial target with a geodetically
known position that has been designed to have a bright and stable response in SAR imagery.

Despite the increasing and widespread use of artificial targets, the comparison of different target
designs and the implications for performance has not been undertaken before in the context of geodetic
or geophysical monitoring. The aim of this study is to determine:

• what size of target is suitable for use with the commonly employed SAR frequencies,
• to what extent one size of target can be effectively used across all SAR frequencies, and
• what considerations should be made with respect to manufacturing and long-term or permanent

installation of artificial targets.

To answer these questions, I first outline the theoretical considerations around the brightness of
targets required to satisfy a certain geodetic tolerance on displacement error. I then discuss aspects
of the design of artificial targets and the physical size requirements to meet the required brightness,
including some general practical recommendations on target design and installation. Finally, I describe
field experiments undertaken to determine the radar response from different target sizes and validate
those against the theoretical considerations.

2. Theoretical Considerations

In this section I outline the technical issues that should be considered when designing suitable
targets for deformation monitoring with different frequencies and resolutions of SAR data. Firstly, I
review the relevant theory around making amplitude and phase measurements from SAR data. I then
show how the pixel brightness for a particular SAR frequency and imaging resolution can be derived
and used to identify a performance criterion. Following this I discuss how the performance criterion
can be distilled into the design of a suitable target.

2.1. Amplitude Measurements

The Radar Cross Section (RCS) of an imaged target is a measure of the size of that target as seen
by the imaging radar. The conventional measure of brightness of a distributed target within a SAR
image, the backscattering coefficient “Sigma Nought”, is equivalent to the RCS (in dBm2) normalised
by the area A of the illuminated resolution cell [19]:

σ0 =
< σn >

A
, (1)

where σn is the nth RCS value and angle brackets indicate an ensemble average. The illuminated area
projected on the ground is:

A =
pr pa

sin θ
, (2)

where θ is the local incidence angle with respect to the normal to the scattering surface and pa and pr

are the azimuth and slant range pixel resolutions, respectively. Using these relations, the approximate
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RCS of any point target in a SAR image can be estimated. To be of use as a stable phase target, the
point target must be visible in the SAR image above the background backscattering level (referred to
as the “clutter”). The typically used measure of target visibility in a SAR image is the Signal-to-Clutter
Ratio (SCR) [19]:

SCR =
σT

< σC >
=

σT

< σ0 > A
, (3)

where σT is the point target RCS and < σC > is the ensemble average of clutter RCS near to the point
target. It is generally understood that to be of use in radiometric calibration, the SCR of an artificial
target should be at least 30 dB whilst not being so bright that it saturates the receiving antenna [19,20].

The magnitude of clutter depends on many factors including: terrain type, vegetation density, soil
moisture, radar wavelength, incidence angle, polarisation and SAR image resolution. It is therefore
important to consider carefully the clutter characteristics near to potential target deployment sites prior
to installation. This can be done by a priori analysis of SAR imagery over the area of interest to identify
regions with relatively low radar backscatter. Generally, flat cultivated terrain with low vegetation
density is ideal. Typical backscatter levels for this type of land cover when considering a range of radar
incidence angles is likely to be within the range of −10 dB to −14 dB at C-band [21]. Backscatter levels
at C- and X-bands should be broadly similar because the small difference in frequency means that
attenuation rates in vegetation will be similar. L-band backscatter measurements of tussocky grassland
from an airborne SAR at VV polarisation vary between about −15 dB to −20 dB, with bare soil at the
lower end of this range [22].

2.2. Phase Measurements

The complex radar observation at each pixel is the coherent sum of the response from many
distributed scatterers located within that pixel. Deformation studies using differential InSAR techniques
exploit the phase component of the complex radar signal. The phase for pixels containing distributed
scatterers (i.e., those that are un-correlated and where no single scatterer dominates) is unlikely to
remain correlated for long periods of time. The PSInSAR technique only exploits those pixels within
which there is a dominant scatterer, the so called “PS”, exhibiting long-term stable phase characteristics.
The phase component from the PS depends on the range (distance) from the target to the SAR sensor
whereas the phase due to the other distributed scatterers within the pixel is essentially random
(Figure 1).

Figure 1. The backscattered signal from a pixel is a complex sum of each scatterer within the pixel,
represented here by the vector z. A PS within the pixel is represented by the vector S = σT and the
complex sum of the background clutter by the vector C = < σC >. The angle ϕerr subtended by z and
S is the phase error due to the superposition of the clutter. Redrawn from [23,24].
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A simulation of the phase response for a single SAR image pixel comprising many uncorrelated
distributed scatterers under the assumption of a complex circular Gaussian statistical model is
presented in Figure 2. Under these conditions the amplitude and phase probabilities are approximated
by Rayleigh and uniform distributions, respectively [6]. The simulation is repeated twice with the
presence of a single PS replacing a distributed scatterer within the pixel. The PS has an amplitude
response of about four and eight times the background amplitude in the two further simulations
(i.e., an SCR of about 16 and 64, respectively) and a defined phase. What can be seen is that with
no PS the phase is uniformly distributed between ±π. The effect of adding the PS is to reduce the
level of phase variability in proportion with the amplitude of the PS. As can be seen in Figure 2e, the
normal distribution is only a crude approximation to the phase statistics. An important observation
is that the phase standard deviation (derived from the best-fitting normal distribution to the phase
observations) decreases as the SCR increases (Figure 2f). Below an SCR of about 10 (i.e., ~10 dB), the
phase can no longer be adequately approximated by a normal distribution [23]. This is demonstrated in
Figure 2f, where below an SCR of 10 the phase standard deviation stagnates, indicating that a uniform
distribution of phase values prevails.

Figure 2. Simulation results of phase response within a pixel. (a) Visualisation of a pixel containing
100 distributed scatterers of similar amplitude; (b) visualisation of a pixel as before but containing one
dominant PS; (c) complex observations for 1000 simulations for the situation with no PS (blue), a PS
with an SCR of 16 and a phase of −1 radian (green) and a PS with an SCR of 64 and a phase of one
radian (red). (d) Phase observations for the simulations in (c); (e) histograms of the phase for the two
PS simulations with the best fitting normal distribution for each; (f) the relationship between the SCR
and the standard deviation of the phase observations estimated by fitting a normal distribution to the
results of 1000 PS simulations.
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The effective phase error in radians has been estimated as [7,23,24]:

ϕerr =
1√

2·SCR
. (4)

Using this simple analytical expression, the estimated phase error can be directly derived from
the measured point target SCR in any single SAR image. Furthermore, the SCR and phase error
is dependent only on the image resolution and the radar frequency. It is therefore useful as an a
priori metric during network design when a large number of SAR images may not yet be available
for a particular area of interest and therefore direct interferometric measurements are not feasible.
The estimated phase error can be converted to a displacement error in the line of sight (LOS) using the
radar wavelength λ:

derr =
ϕerr·λ

4π
. (5)

The relationship between the SCR and LOS displacement error is plotted in Figure 3 for the radar
bands generally used on current SAR missions.

Figure 3. LOS displacement error as a function of SCR for the radar frequencies of interest.

2.3. Target RCS Requirements

By considering the expected background pixel RCS for the SAR imaging mode to be used, an
RCS requirement for deployed targets can be derived based on an acceptable level of displacement
error (due to random phase error alone). The RCS of a pixel is equal to the product of the illuminated
ground range resolution area and the clutter intensity. The required RCS for the target is then found
by multiplying the derived pixel RCS with the SCR (in the linear domain; cf. Equation (3)). As an
example, I derive approximate values for the RCS of artificial targets that would achieve a nominal LOS
displacement error not greater than a tenth of a millimetre in different imaging modes of the currently
orbiting SAR sensors (Table 1). A 0.1 mm magnitude of error would require an SCR exceeding 25 dB,
30 dB and 43 dB at X, C, and L-bands, respectively (Figure 3).

For the purpose of classification in this paper, “high-resolution” image modes are those with
a ground range resolution area less than 5 m2, “medium-resolution” are those between 5 m2 and
100 m2, and “low-resolution” are those above 100 m2. Based on the pixel RCS values calculated in
Table 1 and the identified SCR requirements, the artificial target must have an RCS up to 31 dBm2

for medium-resolution X-band SAR imagery, 37 dBm2 for medium-resolution C-band SAR imagery,
41 dBm2 for low-resolution C-band SAR imagery (excluding Sentinel-1’s Extra Wide Swath mode),
and 47 dBm2 for medium-resolution L-band SAR imagery.
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2.4. Target Design

A radar reflector is a passive device that reflects incoming electromagnetic energy directly back
to the source of that energy. There are many different types of reflectors, including: spheres, cylinders,
dihedrals, trihedrals, flat plates, top hats and bruderhedrals. A trihedral radar reflector (often known as a
“corner reflector”) facilitates a triple-bounce of the incident radar energy from three mutually orthogonal
plates [25]. The RCS pattern of a trihedral has a 3 dB beam-width of approximately 40◦ [20,26]. This means
that a trihedral design is much more forgiving of field alignment errors when compared to other reflector
designs. Consequently, trihedral corner reflectors have been used for many years as targets suitable
for calibration of SAR images (e.g., [19,27–29]) and they are also the most common target type being
deployed for use in PSInSAR analysis of ground deformation.

The shape of the reflecting plates impacts on the RCS magnitude of a trihedral corner reflector.
The most commonly used plate shape is the triangle, but square and quarter-circle shaped plates
have also been used [10,30]. Of these shapes, the triangle has the lowest RCS for a given size, but has
the advantage of being structurally rigid and easy to manufacture. Sarabandi and Tsen-Chieh [31]
described ‘optimum’ corner reflectors with pentagonal-shaped plates, created by trimming the
ineffective part of a triangular plate that does not contribute to the RCS pattern. However, this
trimming complicates the manufacture process and reduces the overall rigidity of the corner reflector.
For these reasons, the focus of this paper is on the triangular trihedral corner reflector, hereafter
abbreviated TCR. The theoretical peak RCS value (σT) of a TCR (expressed in m2) is given by [32]:

σT =
4πa4

3λ2 , (6)

where λ is the radar wavelength and a is the length of the non-hypotenuse sides of the right-angled
isosceles triangular plate (the inner-leg dimension). Using this relation, the equivalent size of TCR
required to meet the RCS requirement of the design tolerance (0.1 mm LOS displacement error) is given
in Table 1. Due to the frequency dependence of the RCS response, the design requirement results in
non-overlapping size specifications for TCR (Figure 4). At X-band, TCR with an inner-leg dimension of
0.7 m should theoretically be able to achieve the displacement error tolerance for all medium-resolution
image modes. At C-band, medium and low-resolution modes require a TCR dimension of between
0.8 m and 1.7 m. At L-band medium-resolution modes require a dimension of 5 m or greater.

It is therefore necessary to make a compromise if more than one SAR frequency is to be exploited
using the same target. The compromise should be made at the higher frequency, since it is better for a
target to be too bright but still visible rather than too dark and not visible. Due care and consideration
should be taken to ensure that the target design will not saturate the signal, particularly at higher
frequencies. As an indication of ‘safe’ target sizes, the German Aerospace Center (DLR) report usage
of 3.0 m TCR for calibrating the TerraSAR-X sensor without saturation [28]. Furthermore, DLR have
designed a C-band transponder with an RCS of 60.8 dBm2 for calibration of Sentinel-1 and tested
using RADARSAT-2 [33]. This is equivalent to a TCR with an inner-leg dimension of approximately
5.5 m. If a 5.5 m TCR were used at L-band (for example, with ALOS-2 Stripmap Fine data) a 0.1 mm
LOS displacement error could be achieved. It is therefore possible to obtain a sub-millimetre LOS
displacement error at L-band without saturating the signal at X- or C-band. However, the large size of
TCR required to achieve sub-millimetre LOS displacement error at L-band could be impractical for
widespread use in geodetic networks.
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Figure 4. Contour plot of peak theoretical RCS (in units of dBm2) for TCR at microwave frequencies
between L and X-band. Plotted symbols represent the required RCS estimates for the SAR sensors and
imaging modes given in Table 1 based on a design tolerance of 0.1 mm LOS displacement error. Red
dashed lines indicate the size of TCR manufactured and tested in this study.

3. Manufacturing and Design Considerations

3.1. Losses Due to Manufacturing

There are several factors that can introduce a loss of RCS for a TCR compared to the theoretical
values given by Equation (6), including inter-plate orthogonality, plate curvature and surface
irregularities. To achieve an RCS accuracy of better than 1 dB with respect to theoretical values, DLR
specify the following tolerances on their TCR manufacture process: Inter-plate orthogonality ≤ 0.2◦;
Plate curvature ≤ 0.75 mm; Surface irregularities ≤0.5 mm [28]. These tolerances apply to X-band,
with less stringent tolerances applying to lower frequencies.

The inter-plate orthogonality is the extent to which the three plates form 90◦ angles at their
intersections. Robertson [34] conducted a series of physical experiments to measure the RCS profile
of trihedral reflectors when the inter-plate angles are varied from 90◦. When only the angle between
the two vertical plates is varied, the azimuth profile flattens. Furthermore, the peak RCS is less, with
the loss being more severe when the inter-plate angle is less than 90◦. Robertson [34] also found that
the RCS loss effect of inter-plate angle variation is more severe as the size of corner reflector increases
(cf.) [35] and the radar wavelength decreases. Sarabandi and Tsen-Chieh [31] found that for distorted
triangular, square and pentagonal plated corner reflectors the relative loss of RCS is between 0.2 dB and
1 dB for an angular deviation of ±1◦ and between 1.3 dB and 2.8 dB for ±2◦. Again, the losses are more
severe when the inter-plate angle is acute rather than obtuse. These results indicate the importance of
ensuring 90◦ angular relations between the intersecting plates of a corner reflector during manufacture
but also through transportation and installation.

Plate curvature is the deformation of the plate from a perfectly flat plane along its entire length,
such as a gradual warp across the plate. In general, RCS loss due to plate curvature is inversely
proportional to the radar wavelength and the target size. An RCS loss exceeding 10 dB can result from
a 5 mm plate curvature in a 1.0 m trihedral corner reflector at X-band [35].
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Plate surface irregularities are the presence of any small-scale feature that causes a deviation from
perfect flatness at any given location across the plate. Usage of fasteners such as pop rivets or retaining
bolts on any of the plates reflecting surfaces could affect the RCS performance of the target. The RCS
loss is proportional to the surface deviation across the plate and inversely proportional to the radar
wavelength. A surface feature of only 1 mm deviation could introduce a 1 dB loss at the X-band [35].

3.2. Other Design Features

The material and finish to be used to manufacture the corner reflector plates also needs
consideration. Aluminium is commonly used for the construction of plates. Aluminium is generally
more costly than steel, but it does not suffer as badly from corrosion and is relatively lightweight. A plain
metallic finish should achieve the best radar reflection properties. A thin thermoplastic powder-coat
layer may assist in ensuring the longevity of the corner reflector when deployed by resisting oxidation
and degradation of the metal but it will introduce RCS losses. Another design feature worth considering
is whether to use pre-fabricated mesh sheeting or adding perforations to solid metal sheet. Introducing
a large number of holes in the plates has the benefit of allowing quick drainage during heavy rainfall,
relieving some of the force applied to the structure by wind, reducing overall weight and promoting
self-cleaning of dust and other wind-blown deposits. The addition of holes to the plates will reduce
the RCS, with the hole size and spacing both having an impact. To keep RCS losses below 1 dB, the
hole diameter must be less than about one-sixth of the radar wavelength (Cheng Anderson, Defence
Science and Technology Organisation (DSTO), Pers. Comm. 2012). For utility at X-band, the maximum
size of perforation should therefore not exceed 5 mm. Measurements made by DSTO indicate an RCS
loss of 0.2 dB and 1.2 dB for mesh samples with 5 mm diameter holes and a ~20% open (non-metallic)
area for C and X-band, respectively [36]. Note that using a physical punch to add holes to sheet metal
could affect the plate curvature and/or introduce surface irregularities.

Even if mesh or perforations will not be used, it is recommended that several holes are introduced
close to the trihedral apex to allow precipitation to drain. Flooding of the corner reflector will introduce
an RCS loss at least an order of magnitude greater than that caused by the presence of holes in the
plate due to the breakdown of the triple bounce reflection mechanism within the TCR aperture. For
example, during the field experiment described in this paper a build-up of dirt blocked the single
drainage hole in one TCR prototype, which subsequently caused that TCR to fill with water following
a heavy rainfall event. The resulting drop in RCS measured in two X-band COSMO-SkyMed images
spanning the rainfall event was 13.2 dBm2 (±0.69 2-sigma).

3.3. Target Characterisation

As a prelude to the experiments reported here, Geoscience Australia [36] described X and C-band
RCS characterisation measurements made at a ground radar reflection range on 12 TCR prototypes
of four different designs: 1.0 m solid metal sheet; 1.5 m solid metal sheet, 1.5 m powder-coated
solid sheet; 1.5 m with perforated plates (15.7% open area and 5 mm diameter holes). The same
twelve TCR prototypes were used in the field experiments reported in this paper, and the different
designs correspond to the “type groups” A, B, C and D reported in Table 2. Three of each design were
manufactured and characterised to test the consistency of the manufacturing process. The results of
these measurements (Figure 5) show that there is good consistency between individual TCR regardless
of plate finish, particularly at C-band where 1.5 m TCR have an RCS of 2.0 ± 0.3 dBm2 less than theory
and 1.0 m TCR are around 1.6 +0.6/−0.3 dBm2 less than theory. At the X-band the RCS of individual TCR
is more variable, ranging between 5.0 +1.5/−1.0 dBm2 less than theory for 1.5 m TCR and 3.2 ± 1.0 dBm2

less than theory for 1.0 m TCR. Since several distortions of the tested TCR have been documented [36],
these results confirm that departures of the TCR from perfect inter-plate orthogonality and plate
flatness are less tolerated at shorter radar wavelengths and, in the case of plate curvature, is more
severe for smaller targets.
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Figure 5. Mean RCS difference (theoretical minus measured) for TCR prototype designs measured at
the ground radar reflection range. The mean for each frequency is calculated from four independent
measurement combinations (HH/VV polarisation and azimuth/elevation sweep) with error bars
indicating the standard 1-sigma error of these measurements. Grey polygons delineate the different
type groups of corner reflector design indicated in Table 2. Modified from [36].

Table 2. Details of the 18 TCRs of six type groups deployed at Gunning. Misalignments of the TCR
from the optimum boresight orientation for each SAR sensor were only applied for certain image
acquisitions (see Table 3) during a secondary experiment described in the text.

TCR Type Group TCR Size (m) Plate Finish Perforations TCR Number
Misalignment (Degrees)

Azimuth Elevation

A 1.0 Metallic �
1 20 0
2 0 20
3 0 0

B 1.5 Metallic �
4 0 −20
5 0 0
6 0 20

C 1.5 Powder-coat �
7 0 −10
8 20 0
9 20 20

D 1.5 Metallic
10 10 10
11 0 10
12 10 0

E 2.0 Metallic �
13 0 0
14 0 20
15 20 0

F 2.5 Metallic �
16 0 0
17 20 0
18 0 20

25



Remote Sens. 2017, 9, 648

Table 3. SAR acquisitions of the Gunning TCR array.

Acquisition # Date (UTC) Time (UTC) SAR Sensor TCR Alignment Notes Stable Clutter Period

1 15 November 2013 19:27:59 TSX Before TCR deployment �
2 7 December 2013 19:27:59 TSX Average; only 1.0 m and 1.5 m reflectors �
3 11 December 2013 7:14:35 CSK-1 Average; only 1.0 m and 1.5 m reflectors �
4 14 December 2013 19:18:48 RSAT-2 Average alignment
5 27 December 2013 7:14:31 CSK-1 Average alignment
6 29 December 2013 19:27:58 TSX Average alignment
7 7 January 2014 19:18:47 RSAT-2 Average alignment
8 9 January 2014 19:27:57 TSX Average alignment
9 12 January 2014 7:14:23 CSK-1 Average alignment

10 20 January 2014 19:27:58 TSX TSX
11 28 January 2014 7:14:18 CSK-1 CSK
12 31 January 2014 19:27:57 TSX RSAT-2
13 31 January 2014 19:18:49 RSAT-2 RSAT-2
15 11 February 2014 19:27:56 TSX TSX
16 13 February 2014 7:14:12 CSK-1 CSK
17 22 February 2014 19:27:56 TSX TSX but with misalignment �
18 24 February 2014 19:18:44 RSAT-2 RSAT-2 but with misalignment �
20 5 March 2014 19:27:57 TSX RISAT-1 * �
21 25 March 2014 7:14:00 CSK-2 CSK but with misalignment �
22 10 April 2014 7:13:59 CSK-2 CSK but with misalignment �
23 14 April 2014 7:13:57 CSK-4 CSK but with misalignment �
24 18 April 2014 7:13:57 CSK-1 CSK but with misalignment �
* Several acquisitions were made by the Indian Space Research Organisation for the purpose of calibration and
validation of RISAT-1.

4. Field Experiments

In this section I describe field experiments that were conducted using prototype TCR with
inner-leg dimensions of 1.0, 1.5, 2.0, and 2.5 m to test whether the theoretically-derived performance
(defined by RCS, SCR and LOS displacement error) is achievable in a typical deployment environment
in Australia. As indicated in Figure 4, the range of TCR sizes manufactured for this experiment spans
the requirements of medium- and low-resolution X- and C-band SAR imaging modes. At the time of
this experiment L-band SAR data was not readily available from any sensor (the Japanese ALOS-2
satellite was launched after the conclusion of the field experiment). Correspondingly, L-band is not
discussed any further in this paper.

4.1. Test Site

Eighteen TCR prototypes (including the twelve TCR tested at the ground radar reflection range,
see Figure 5) were deployed in a temporary array on a grazing property near Gunning, New South
Wales, for a period of five months between December 2013 and May 2014 (Figure 6; Table 2). Several
factors were considered when choosing installation sites for each TCR, including the flatness of the
site and immediate surrounds, the perceived sources of clutter near to the site and the distance from
metallic boundary fences. The TCR were also carefully positioned in such a way that the impulse
response in the SAR imagery would not overlap with or intersect the response from adjacent TCR sites.
The baselines between all TCR deployment sites were 186 m or greater.
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Figure 6. (a) Map showing the 18 TCR deployment sites at the Gunning test site coloured by type group
(Table 2). The background image is a Landsat-8 RGB-composite optical image acquired on 15 January
2014 with 30 m pixel resolution. Red polygons outline the boundaries of the property available for the
experiment. (b) Overview map showing the location of the Gunning test site (red polygons) in relation
to Canberra, Australia; (c) photo of TCR number 7 as deployed at the Gunning test site.

4.2. Target Alignment

The TCR boresight is the vector of the maximum RCS response emanating from the internal
intersection of the reflector plates (the apex). From physical optics, the boresight vector for any trihedral
target is oriented 45◦ from the two vertical plates, and elevated Ψ = tan−1

(
1√
2

)
= 35.26◦ from the

baseplate [26]. Misalignment of the TCR boresight with respect to the SAR sensor boresight will incur
a loss of RCS. In the field, the TCR must be aligned in azimuth and elevation so that the boresight
vector is oriented toward the LOS of the orbiting SAR platform of interest, including consideration
of any squint angle of the SAR sensor. The required orientations can be calculated using published
orbital information for the SAR platforms of interest, and the deployment position of the target [36].
For a particular orbital pass direction (ascending or descending), the azimuth alignments for the SAR
sensors in Table 1 only vary by ~1◦, whereas the elevation may vary by much more depending on the
incidence angle of the swath and image mode chosen. Typically, the imaging modes have incidence
angle ranges of at least 25◦. An incidence angle range of 20–45◦ results in a pixel RCS variation of
3.2 dBm2 across this range, independent of imaging resolution. Therefore, if the choice of imaging
sub-swaths to be used is carefully considered, one target alignment can be used for multiple SAR
sensors with only marginal difference in RCS between sensors because of imaging geometry.

Alignments were calculated for the viewing geometry of each SAR sensor, and an average of
these three geometries. The boresight of each TCR was re-oriented to these alignments prior to each
satellite overpass according to the notes in Table 3.

4.3. SAR Imagery

Twenty-two SAR image acquisitions at X and C-bands were made using the TerraSAR-X (TSX),
COSMO-SkyMed (CSK) and RADARSAT-2 (RSAT-2) SAR systems (Table 3). All SAR images used in the
analysis are HH polarised and were acquired on descending passes. In total, nine TSX Stripmap mode
“SSC” images, nine CSK HIMAGE mode “SCS_B” images and four RSAT-2 Fine mode “SLC” images
were acquired for the field experiment (Table 3). The beam modes used (9, 5 and 21, respectively)
resulted in average local incidence angles at the TCR deployment sites of 35.22◦, 33.31◦ and 34.90◦ for
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TSX, CSK and RSAT-2, respectively. TSX products were ordered with a −10 dB gain attenuation and
RSAT-2 products were ordered with the Calibration-2 look-up table to ensure the dynamic range of
the SAR data could accommodate the impulse response of even the largest 2.5 m TCR present in the
imaged area. An example of the impulse response from each size of TCR in a TSX image is shown in
Figure 7.

Figure 7. (a) Extract of a TSX image acquired on 20140120. The impulse responses for four numbered
TCR of different sizes are labelled and highlighted by the cyan circles. (b) Zoomed view of the impulse
response for TCR 9. The red polygon indicates the ‘target window’ and the yellow polygons indicate the
four ‘clutter regions’ used in the point target analysis of each TCR. The part of the ‘target window’ not
intersected by the ‘clutter regions’ defines a cross region that encompasses the main lobe and side lobe
response of the TCR in range and azimuth directions. TSX data is ©DLR.

4.4. Image Processing Methodology

I used the GAMMA software [37] to process the received Single Look Complex (SLC) imagery for
each SAR sensor before applying the integral method [38] to compute the RCS of each TCR in each
image. The integral method is commonly used to determine the absolute calibration factor for SAR
imagery by measuring the radar response of targets of known RCS. Since the received SAR imagery is
already externally calibrated, the procedure is simply reversed in order to determine the RCS of the
TCR. The procedure used is as follows:

1. Read the SLC imagery and convert to Sigma Nought. For TSX and CSK this involves applying the
annotated product calibration factor and then scaling the image by sin(θ) to get Sigma Nought.
For RSAT-2 this involves applying the provided Sigma Nought look-up table.

2. For each SAR sensor, coregister all SLC images to a single master image (chosen to be the earliest
acquisition). Verify the co-registration of each image and determine the range (column) and
azimuth (row) coordinates of each TCR in the co-registered images.

3. Define a ‘target window’ that encompasses the impulse response of the target and four ‘clutter
regions’ in the quadrants surrounding the side lobe response of the target (Figure 7b).

4. Determine the mean signal clutter in the four ‘clutter regions’. By computing the clutter level as
the mean of all pixel values falling within standard-sized windows, a representative view of the
actual reflector RCS and SCR is obtained that removes any bias associated with the common
practice of manually choosing the location of windows to sample only the lowest clutter in the
general surrounds of the target.

5. Calculate the integrated point target energy:

ECR = En −
(

NCR
Nclt

)
∗ Eclt, (7)

where En is the integrated (summed) energy in the ‘target window’, Eclt is the total integrated
energy in the four ‘clutter regions’, Nclt is the number of samples contained within the four ‘clutter
regions’ and NCR is the number of samples in the ‘target window’.
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6. Compute the RCS of the point target by multiplying the integrated point target energy by the
area of the ground range resolution cell:

σT = ECR·A. (8)

7. Compute the SCR; the ratio between the point target energy corrected for clutter and the average
clutter level per pixel:

SCR =
ECR

(Eclt/Nclt)
. (9)

8. Compute the phase error (Equation (4)) and convert to LOS displacement error (Equation (5)).

5. Results

In this section I will describe the results of the TCR field experiments in terms of the radar clutter,
RCS, SCR and derived LOS displacement errors detected at the deployment sites.

5.1. Clutter Intensity

In general, the average clutter levels at Gunning were between −11 dB and −16 dB for both X-
and C-band (Figure 8). The clutter level is roughly the same for both X- and C-bands, consistent with
the expectations discussed previously. There is a larger variation in clutter values between TCR sites in
the RSAT-2 imagery, which may be because of the coarser pixel resolution resulting in greater speckle
variation compared with the higher resolution X-band imagery.

 

Figure 8. Time series of clutter intensity averaged over the 18 TCR sites in imagery from each SAR
sensor. Error bars plot the 2-sigma standard error of the 18 observations for each image. Also plotted in
the lower bar chart is the daily rainfall record for Gunning town centre, approximately 3 km away from
the TCR array (data obtained from Australian Bureau of Meteorology). The grey polygon indicates a
period of relatively stable radar clutter characteristics at Gunning prior to the advent of heavier rainfall
events. Image acquisitions falling within this polygon (and indicated in Table 3) are further analysed in
terms of RCS, SCR and LOS displacement error in the following sub-sections.

There is a strong correlation between rainfall and trends in clutter intensity for all SAR sensors
(Figure 8). Significant rainfall occurred in early November 2013, prior to the installation of TCRs
at Gunning. Following this time, a period of mainly dry conditions ensued until February 2014,
interspersed by sporadic rainfall events of 1 day duration and around 10 mm or less. During this time,
ground conditions at the Gunning test site were observed to become drier, whilst vegetation dried
out and the overall volume of biomass reduced. Between 14 to 17 February 2014, ~60 mm of rain fell
during a four-day period. Corresponding increases in soil moisture resulted in an increased clutter
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intensity in imagery from all three SAR sensors. The total increase in clutter following the February
rainfall event was about 2–3 dB for TSX with a similar increase inferred for CSK and RSAT-2.

Prior to March 2014, all CSK acquisitions were made using satellite #1 of the constellation.
In March and April 2014, four further CSK acquisitions were made using a combination of satellites
#1, #2 and #4. Average clutter intensity had a range of ~1.5 dB between these four acquisitions. It is
difficult to draw objective conclusions about an inter-constellation comparison from this observation
due to the significant amounts of rainfall that fell between adjacent acquisitions that could majorly
impact the backscattered signal.

5.2. Radar Cross Section

Figure 9 shows the RCS measured in SAR images for each deployed TCR and a comparison with
theoretical RCS values for each size of target. Between mid-December 2013 and mid-February 2014,
the background clutter at X and C-bands is consistently low (−16 to −14 dB; Figure 8). Therefore,
only images acquired within this time period with relatively stable background clutter were used to
calculate a mean RCS (and measurement standard error) for each TCR (see Table 3). The estimated
RCS values for many TCR in RSAT-2 images turn out to be greater than theory. This situation is not a
possibility, and it highlights that the calibration of RSAT-2, and indeed any SAR system, is performed
using different methods and software. It is therefore not likely that equivalency is being compared
between the signals from RSAT-2, CSK and TSX. When considering the measured RCS values of these
three systems, it appears that CSK is performing the worst because it is the most different to the
theoretical RCS values. The relative differences between the three SAR systems are consistent across
all TCRs. There is a mean difference of 1.32 dBm2 (±0.08 2-sigma) between TSX and CSK.

 

Figure 9. RCS measurements for each TCR at Gunning. RCS estimates are derived by averaging the
values measured in 5 TSX images, 4 CSK images and 3 RSAT-2 images occurring during the period
of relatively stable clutter (Figure 8). Error bars are the 2-sigma standard errors of these observations.
Theoretical RCS values (Equation (6)) for each TCR size are plotted as dashed lines (X-band) and dotted
lines (C-band). Background grey polygons are plotted to aid delineation of the different type groups of
TCR design described in Table 2.

There are no consistent differences in RCS that can be attributed to the differences in plate finish
of the 1.5 m TCRs. Since variations in RCS within each TCR type-group is correlated across different
SAR sensors (particularly TSX and CSK) it appears that site-specific conditions are having a larger
impact on measured RCS. Variability of RCS within type-groups is again more pronounced at X-band
as was the case in the ground radar reflection range measurements (Figure 5).
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Generally, the RCS difference between observations and theory reduces in proportion with the
TCR size. This is more apparent at X-band; for TSX the difference between smaller and large TCR
is on the order of 1.0 to 1.5 dBm2 and for CSK is on the order of 0.6 to 1.1 dBm2. The trend is not as
obvious in C-band (RSAT-2) RCS estimates. This could be reflective of the fact that departures from
inter-plate orthogonality and plate flatness are tolerated less at shorter radar wavelengths. It could
also be indicative that for the larger TCR, the ‘target window’ used to sample the impulse response is
not fully capturing the full extent of side lobes, which are much broader for the 2.0 m and 2.5 m TCR
(e.g., Figure 7). Consequently, the RCS measurements for the larger TCR could be adversely biased to
be less than the true RCS because of the sampling choice.

5.3. Impact of Misalignment

In a secondary experiment, certain TCR were purposefully misaligned from the optimum
calculated boresight for at least one acquisition of each sensor (see Table 2) to measure the RCS
loss as a result of these misalignments in consecutive images from each SAR sensor (Figure 10).
To ensure consistent inter-constellation signal level, images from the CSK-1 satellite were used. Four
TCR, one of each size, were used as ‘control’ and were not misaligned and so theoretically should
exhibit a zero RCS loss. In practice, the difference is not zero due to temporal clutter changes occurring
between the two acquisitions. To partially account for this, the standard error of the difference in RCS
measurements for these four control TCRs (numbers 3, 5, 13 and 16) were used to derive error bars for
the other RCS loss measurements.

 

Figure 10. RCS loss due to misalignment of the TCR from the optimum boresight orientation for
each SAR sensor. Misalignments for each TCR are given in Table 2. Each RCS loss is calculated by
subtracting the image with misalignment from a previous image without misalignment. The RCS of
four ‘control’ TCR (numbers 3, 5, 13 and 16) with no misalignment are used to derive the standard
errors for each SAR sensor, which are plotted here as 2-sigma error bars. The CSK measurement for
TCR number 5 is discarded from this analysis due to flooding of the TCR as described previously in
the text. Background grey polygons are plotted to aid delineation of the different type groups of TCR
design described in Table 2.

It is clear from these results that RCS loss is mainly dependent on alignment error rather than
TCR size. For instance, all the TCR with an elevation misalignment of 20◦ (TCR numbers 2, 4, 6, 9,
14 and 18) suffer an RCS loss of 3–4 dBm2 regardless of size. The level of RCS loss is comparable
(within measurement error) in TSX, CSK and RSAT-2 images for all TCR sites, and therefore is not
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dependent on radar frequency. The other notable observation is that RCS loss is more severe for
elevation misalignments than equivalent azimuth misalignments. Furthermore, the greatest RCS loss
is seen for TCR 9 which has the worst misalignment (20◦ in both elevation and azimuth). Figure 11
summarises the impact of these azimuth and elevation misalignments from the optimum boresight
direction. In general, the observations at X- and C-band imply that if azimuth and elevation alignment
accuracies of 10◦ are adhered to, the resulting RCS will be within 1 dB of the peak value. Furthermore,
a realistic alignment accuracy of a few degrees [36] would result in an RCS loss of less than about
0.2 dB.

 

Figure 11. Contour map of RCS loss as a function of azimuth and elevation misalignments. A minimum
curvature surface is fitted to the 7 RCS loss measurements from Gunning SAR imagery for the 1.5 m
TCR with positive-valued misalignments. The positions in parameter space of the observed data are
plotted as red stars. Observed data is taken as the mean of the TSX, CSK and RSAT-2 values. Contour
interval is 0.1 dBm2 with every 0.5 dBm2 bold and annotated.

5.4. Displacement Error

Figure 12 shows the LOS displacement errors derived directly from measurements of the SCR
from SAR imagery at Gunning. As for RCS measurements, only images acquired within the time
period with relatively stable background clutter were used to calculate a mean LOS displacement
error (and measurement standard error) for each TCR (see Table 3). Generally, we see that the LOS
displacement error decreases with TCR size as expected since SCR is proportional to TCR size for
a fixed clutter magnitude. The LOS displacement error is also frequency dependent, with C-band
having greater displacement errors than X-band for the same TCR. At X-band, all TCR larger than
1.0 m meet the nominal design LOS displacement error criteria of 0.1 mm. The 1.0 m TCRs also meet
this criterion in TSX imagery, but not in CSK. In fact, all TCRs have an SCR consistently about 4 dB
less in CSK imagery than in TSX imagery. At C-band only the 2.5 m TCRs come close to the design
criteria of 0.1 mm, although all TCR larger than 1.0 m have a LOS displacement error less than 0.5 mm.
According to the theoretical calculations in Table 1, the 2.5 m TCR should exceed the 0.1 mm LOS
displacement error. The fact that it does not highlights that in general the TCR prototypes are not
performing as well in real data as in our expectations.
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Figure 12. LOS displacement error derived from the SCR measurement for each TCR at Gunning.
Each error estimate is derived by averaging the values measured in the five TSX images, four CSK
images and three RSAT-2 images highlighted in Figure 8 that correspond to relatively stable clutter
characteristics. Error bars are the 2-sigma standard errors of these observations. Background grey
polygons are plotted to aid delineation of the different type groups of TCR design described in Table 2.

The magnitude of the 2-sigma standard errors on the LOS displacement error estimates are
plotted against TCR size in Figure 13. There is a clear relationship between TCR size and variability
of displacement error (and implicitly SCR) with a consistent exponential trend between sensors.
This confirms the theoretical phase noise behaviour demonstrated previously in the PS phase simulation
(Figure 2) whereby the phase noise becomes less variable as the SCR increases in concert with an increase
in target size.

 
Figure 13. Magnitude of 2-sigma standard errors on the estimated LOS displacement errors (plotted as
error bars in Figure 12) grouped according to TCR size.
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Figure 14 shows the ratio of the theoretical SCR against observed SCR values derived using
Equation (9) for the TCR deployed at Gunning. Theoretical SCR is calculated using the average
observed clutter at each TCR in those images highlighted in Figure 8 and Table 3 (corresponding to
relatively stable clutter characteristics) and the ground range resolution area derived from the pixel
resolution. With an average ratio close to 1, the TCRs are performing close to expectations in TSX
images. In CSK this ratio is marginally worse at ~1.2. In RSAT-2 the ratio is much worse at ~2.2.
Interestingly the ratio between SCR observations and theory is consistent across all TCRs for TSX and
CSK, though in RSAT-2 the ratio is variable, with larger TCR performing better. This indicates that
TCR between 1 m and 2.5 m size are adequate for use with TSX Stripmap and CSK HIMAGE imagery
if the goal is to achieve a phase noise error equivalent to a tenth of a millimetre displacement in the
line of sight. Only the larger TCR are close to achieving that criterion in RSAT-2 Fine imagery.

Figure 14. Ratio of theoretical SCR to observed SCR for all TCR deployed at Gunning. Background
grey polygons are plotted to aid delineation of the different type groups of TCR design described in
Table 2.

6. Discussion

TCR performance is clearly limited by the choice of deployment site. For instance, TCR number
3, a 1.0 m target, was situated in a position relatively close to distributed metallic debris and farm
buildings. The impact of this background clutter at the deployment site on SCR performance is
self-evident in Figures 12 and 14. Furthermore, the effect of the increased background clutter was
compounded in this case by the relatively small size of the target deployed at this site. This highlights
the importance of choosing clutter-free sites for deployment of targets to be used as geodetic targets
whenever feasibly possible.

The results presented here show that there are differences between the backscattered signal
measured by CSK and TSX. The fact that TSX has higher RCS than CSK is consistent with previous
work where a mean backscattering difference of 3.15 dB between TSX Stripmap and CSK HIMAGE
images was identified [39]. While these inconsistencies may be attributed to the absolute radiometric
calibration of the two systems, there are other reasons for at least some component of the observed
differences. As reported previously, the average local incidence angle across all the TCRs in all the
images is 35.22◦ in TSX and 33.31◦ in CSK. This 2.1◦ difference in incidence angle results in a backscatter
difference of 0.2 dB purely due to differences in the viewing geometry, though taking into consideration
the difference in spatial resolution of TSX Stripmap and CSK HIMAGE images the deviation could be
as much as 1.7 dB. The standard deviation of the local incidence angles infers that the satellite orbital
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path varies more for CSK (or RSAT-2) in comparison to TSX. The standard deviations across all images
used in this experiment are 0.051◦ for CSK, 0.008◦ for TSX and 0.044◦ for RSAT-2.

Another possible explanation for observed discrepancies between SAR sensors is the different
processing applied to the raw SAR data during SLC production by the data providers. Interestingly,
the extent of side-lobe ringing from TCRs deployed at Gunning is visually more pervasive in CSK
images when compared to TSX images. For the purpose of a ‘fair test’, a fixed ‘target window’ size
was used to determine the RCS of TCRs across all sensors. As a consequence, it is certainly possible
that not all the reflected energy pertaining to the TCR is sampled. This would give rise to a bias in
the measured signal, which in the case of CSK data (with the larger side lobes), could manifest as a
reduced RCS and SCR measurement.

The ground radar reflection range measurements of twelve of the TCR prototypes deployed
at Gunning indicate RCS performance in the −2 to −5 dBm2 with respect to theoretical values (see
Figure 5). It is interesting that the measured performance in the satellite SAR data is better (Figure 9).
Several compromises that were made during the ground measurement procedure (documented in [36])
are the likely reason for these discrepancies.

Using the SCR as an a priori proxy for phase error, and therefore LOS displacement error, should
be treated with some caution. Ketelaar et al. [23] conducted a validation experiment with five corner
reflectors, comparing heights derived from ERS and ENVISAT InSAR analyses with repeated levelling
surveys. From this experiment, they found that the SCR-derived phase error is under-estimated by
up to four times compared to the levelling measurements. An alternative method for estimating the
phase error, commonly used during candidate PS selection in the PSInSAR workflow, is the amplitude
dispersion method [1]. Through a simulation exercise, [24] find that the SCR is a more effective
estimator of phase error than the amplitude dispersion when the SCR is greater than 9 dB. Below
this threshold, both methods are optimistically biased, with the amplitude dispersion being more so.
When using the amplitude dispersion method to select candidate PS pixels during PSInSAR analysis,
generally at least 20 SAR images are required to achieve an unbiased estimate of the phase error [24].
Therefore, the small number of SAR images acquired with each sensor during the Gunning field
experiment precludes conducting a robust interferometric analysis using this data. However, I consider
the estimated LOS displacement error as a suitable quantity with which to relatively assess different
TCR designs.

Compact, active transponders (as described by [13]) are an alternative type of artificial target to
corner reflectors that can be deployed readily in geodetic networks and utilised with C-band sensors
such as Sentinel-1 and RSAT-2. The clear advantage of these transponders over passive corner reflectors
is that they are consistently compact and therefore less obtrusive in the environment and more easily
coupled (due to their small size) to other geodetic monumentation for cross-validation of signals.
The RCS of these transponders is restricted to a narrow band of a few hundred MHz since they are
designed to target specific SAR sensors. Therefore, the existing transponder designs cannot be used as
a single point of reference across multiple frequency bands in the same way as a corner reflector. One
other consideration is that transponders are active transmitting devices and therefore require a power
supply for long term deployment and an appropriate radio transmission licence to be operated. These
may be difficult and expensive to obtain in some jurisdictions.

The Sentinel-1 SAR constellation mission [40] has brought about a new era for SAR remote sensing
in which open access to data acquired with blanket global coverage at frequent and regular revisits is
becoming a reality. To some extent SAR missions like Sentinel-1 removes the need for radar targets to
perform adequately at multiple frequencies, and in this situation it is much easier to design a target
towards a specific level of displacement error without the need to make compromises for different
SAR frequencies. Generally, this will enable the designed target to be as small as possible. However, in
many situations it may still be desirable to use the same set of targets across multiple SAR datasets,
for instance to combine high and low-resolution data over a particular area of interest or to validate
InSAR measurements derived from data acquired at different frequencies. As shown in this study with
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respect to TSX and CSK, SAR sensors operating at the same frequency may still perform differently.
Using this strategy, Geoscience Australia recently installed a regional geodetic monitoring network in
Queensland, Australia that included co-located geodetic survey marks and radar corner reflectors [41].
The triangular trihedral corner reflectors deployed in that network were at least 1.5 m in size in order
to be visible across the SAR frequency spectrum (X-, C-, and L-band) and enable the cross-validation
of all SAR data being actively acquired over that area of interest.

7. Conclusions

As a result of this experiment, I find that triangular trihedral corner reflectors as small as 1 m
inner-leg dimension can achieve a displacement error derived from observations of the signal to clutter
ratio below a tenth of a millimetre or less in medium-resolution X-band data (Figure 12). Much larger
corner reflectors (2.5 m or greater) are required to achieve the same magnitude of displacement error in
medium-resolution C-band data, though displacement errors of less than a millimetre are achievable
for corner reflectors of 1.5 m or larger.

I find that the theoretically-derived performance of triangular trihedral corner reflectors between
1 m and 2.5 m inner-leg dimension are broadly achievable in X-band SAR data, though in C-band
data all sizes underperform by a factor of at least 2 (Figure 14). Despite the relative high quality of the
manufactured corner reflectors used in this study, the expected performance of the targets derived
from theoretical considerations, is only fully achieved in TSX data.

Although it is not possible to achieve the same level of displacement error across all SAR frequency
bands with a single corner reflector size, it is feasible to use a single design to act as a common reference
point across sensors and frequency bands providing that the user recognises that phase noise will
increase as the radar frequency decreases. Compromise designs aimed at multiple frequencies should
aim to satisfy the requirements of the lowest SAR frequency to be used, providing that these targets
will not saturate the sensor of the highest frequency to be used. The choice of target design and
size for a particular project will ultimately come down to the choice of an ‘acceptable’ displacement
error. I arbitrarily chose an ‘acceptable’ displacement error of 0.1 mm herein, as a small fraction of an
expected geophysical signal of interest. Relaxing this criterion will enable a smaller target to be used
for a given radar frequency.

The most important considerations when manufacturing trihedral corner reflectors are the quality
of the materials and the manufacturing processes used. Generally, improved performance can be
achieved through better engineering at increased cost. Attention should be made to ensure flatness of
the reflector plates and that orthogonality between the three plates is maintained. Corner reflectors
must be appropriately designed so that precipitation and debris does not accumulate in the corner
reflector aperture. Flooding of the aperture can have a catastrophic impact on the performance of
the target.

Deployment sites should be chosen to limit the influence of background clutter wherever feasibly
possible. The influence of clutter on the performance is greater as the target gets smaller. Accurate
alignment of the target boresight with respect to the SAR sensors of interest should also be carefully
considered. Generally, trihedral corner reflectors are lenient to alignment inaccuracies when compared
to other target types. A field alignment methodology that makes use of a magnetic sighting compass for
azimuth measurement and a digital level for elevation measurement can achieve absolute alignment
accuracy of better than 3◦ [36]. This alignment accuracy should yield an RCS loss of 0.2 dBm2 or less
(Figure 11), which will have a minimal impact on the displacement error at X- and C-bands.
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Abstract: We propose the use of Sentinel-1 Synthetic Aperture Radar (SAR) to provide a continuous
and global monitoring of Radio Frequency Interferences (RFI) in C-band. We take advantage of the
first 8–10 echo measures at the beginning of each burst, a 50–70 MHz wide bandwidth and a ground
beam coverage of ~25 km (azimuth) by 70 km (range). Such observations can be repeated with
a frequency better than three days, by considering two satellites and both ascending and descending
passes. These measures can be used to qualify the same Sentinel-1 (S1) dataset as well as to monitor
the availability and the use of radio frequency spectrum for present and future spaceborne imagers
and for policy makers. In the paper we investigate the feasibility and the limits of this approach,
and we provide a first Radio Frequency Interference (RFI) map with continental coverage over Europe.

Keywords: SAR; Radio Frequency Interferences; Synthetic Aperture Radar; Geosynchronous SAR

1. Introduction

The availability of radio frequency spectrum is maybe the most critical resource for present and
future satellite remote sensing, like microwave passive radiometers or active Earth Exploration Satellite
Services (scatterometers, altimeters, wind profilers and SAR [1]). Monitoring the actual spectrum use
is currently addressed in L-band [2] and constantly updated using SMOS data [3,4]. An L-band RFI
map covering the USA has been made with ALOS data [5,6], while a cube-sat mission for monitoring
the whole 6–40 GHz spectrum has been proposed by NASA [7]. In C-band, examples of some RFI
monitoring were done by ASCAT scatterometers [8], Envisat and RadarSAT in a dedicated workshop
cited in [1], where it was pointed out that the increased exploitation of C-band spectrum for Radio
LAN (RLAN) is indeed a major issue for present and future SAR missions.

S1 SAR with its two TOPSAR acquisition modes, the Interferometric Wide Swath (IW) and the
Extra Wide Swath (EW), is quite valuable for a frequent and ubiquitous monitoring of C-band RFI for
several reasons. The constellation of two satellites [9] is continuously acquiring data over landmasses
with a revisit of 1–3 days, thanks to the IW mode wide swath of 250 km with a bandwidth that
covers 40–60% of the overall C-band spectrum not open to RLAN (5350–5470 MHz) [1]. Moreover,
the burst-mode TOPSAR acquisition, shown in Figure 1 ensures the presence of 8–10 received echoes,
in both H and V polarizations, that are unaffected by background scattering, as it will be shown in
Section 2, and that can be extracted from S1 raw data. In Section 3 we discuss the method to detect RFI
from S1 data, while in Section 4, we show examples of results achieved by processing an entire set of
ascending and descending products, covering almost the entire Europe.

Remote Sens. 2017, 9, 1183; doi:10.3390/rs9111183 www.mdpi.com/journal/remotesensing39
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Figure 1. Sketch of TOPSAR acquisition mode, here represented as the three swaths Sentinel-1 IW.

2. Sentinel-1 Acquisition Timeline

We address here Sentinel-1 IW-mode, the default acquisition mode at low and mid latitudes (up to
60◦) over still landmasses. At the beginning of each burst, as shown in Figure 1, the antenna beam
is pointed backward of −0.6◦. During the acquisition it sweeps forward up to +0.6◦ at the burst end.
The system starts acquiring since the transmission of the very first pulse, although no backscatter is
foreseen, at least for the two-way sensor-Earth travel-time, which corresponds to 8–10 pulses, that we
define “rank” pulses, and are here exploited for RFI monitoring.

The S1 acquisition timeline is made of a fixed pattern of three distinct component. The first part
is the preamble, including a number of warmup echoes for instrument stabilization and noise and
internal calibration measurements. The central part is the “actual” SAR acquisition and can be several
minutes long. For IW mode the adopted timeline is listed in Table 1, the base scheme (duration about
5.4 s) is repeated an integer number of time according to the mission planning. The final part of the
data-take is the postamble and includes again internal calibration and noise pulses.

Table 1. IW timeline, cyclically repeated.

Type
Pulse

(s)
Rank PRF (Hz) Notes

IW1 1409 9 1717.1
TxCal 12 1717.1 Same pol. of data
TxCal
ISO 8 1717.1 H pol

IW2 1548 8 1451.6
RxCal 20 N/A No TX
IW3 1410 10 1685.8

EpdnCal 20 N/A No TX
IW1 1409 9 1717.1

TACal 20 N/A No TX
IW2 1548 8 1451.6

ApdnCal 20 N/A No TX
IW3 1410 10 1685.8

ApdnCal 20 N/A No TX

The IW data-takes are split into slices of 25 s to ease processing and data dissemination. The slicing
procedure is not data driven and the data “cuts” can occur at every time instant within the scheme
described in Table 1. At the end of each burst a few calibration pulses are acquired to monitor
instrument status during the data-take. Most of the calibration pulses do not foresee any transmission
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and hence the “rank” echoes (belonging to IW1 and IW3) acquired after such pulses should contain
only noise and RFI coming from the Earth, if any. On the other hand, for the second sub-swath, IW2,
the case is slightly different, since the calibration pulses, named “TxCal ISO” in Table 1, are effectively
transmitted, but only one cycle over two (as shown in the table) and with antenna beam pointing
boresight (approximately 30◦ with respect to Nadir) and no electronical steering. This means that
there could be some potential ground backscatter echo in the first rank pulses of IW2, but only every
odd cycle.

The quality of the rank echoes is fundamental for the RFI assessment: we expect that S1 is
behaving like a receive-only C-band radiometer. Figure 2 shows the rank echoes power gathered
over a very long strip of 730 s, covering from North Africa to arctic. The return power from each
of the 20,000 pulses is plotted on the right for both V and H polarizations. It is the superposition of
a smooth trend, fast ripples, within 1 dB, and sporadic big spikes, due to RFI. The smooth trend is
a good representation of thermal noise, and one can appreciate the sudden changes in the land-sea
and see-land transitions, due to the different albedo, like in Crete Island, at 7 s, and the Baltic Sea,
at 400 s. A zoom of the ripple pattern has been plotted on the right panel in the same figure: one can
observe the saw-tooth behavior with a periodicity of two cycles that matches the timeline listed in
Table 1. The shape and the periodicity let then think to transients in the receiver gain after calibration.
The ±0.5 dB is well acceptable for sensitive RFI monitoring.

Figure 2. A 730-s long data-take, upper panel, has been used to validate the measure of noise power
from rank echoes, mid panel. Notice the changes in the mean power occurring near see/land transitions,
as expected from the change in the albedo. A zoom of the power profile, lower panel, shows a saw-tooth
behavior with two cycle’s periodicity, following the calibration in Table 1.

There is no evidence of a backscatter, not even in the cross-pol echoes in IW2 each two cycles.
This result, that comes from the combination of the antenna backward squint (due to TOPSAR),
boresight steering, is the key element to enable measures of noise and RFI.
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3. RFI Detection and Estimation

The estimation of RFI is carried out according to the method summarized in Figure 3. It comprises
a calibration step (on the left in the figure), that runs once in the long term, by exploiting a large
amount of data, and an estimation step, on the right, performed on each single data-take.

Figure 3. Schematic block diagram for the identification of RFI.

The aim of calibration is the identification of spurious tones and the precise receiver power
spectrum profile. In principle, all the combinations of swaths, polarizations, sensors (S1A and S1B)
and modes (IW and EW) should be calibrated. In the present study, we focused to IW mode and S1A
sensor: the power spectra for the three sub-swaths and the two polarizations are plotted in Figure 4,
after averaging over 10,000 bursts in each of the two polarizations, acquired all over the world from
November 2016, up to April 2017. S1 demonstrated very good stability in gain, ripples and spurious
locations, and this suggest the use of noise data to speed up calibration. A total of 100–200 spectral
samples of the whole ~20,000, were found affected by spurious tones, which can be easily detected by
a median filter. Once removed, the spectral profiles are estimated and stored.

Figure 4. Mean power spectrum density, dB, measured from the “rank” pulses at beginning of each
swaths in V (a,c,e) and H (b,d,f) polarizations, for sub-swaths IW1 (a,b), IW2 (c,d) and IW3 (e,f),
averaged on 10,000 bursts. Notice the spurious tones and the ripples.
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In the processing step, first the data spectrogram H(f,t) is estimated as the squared amplitude of the
Fourier Transform of each echo. The frequencies corresponding to the spurious previously identified
are nulled. Ripples are then removed in both frequency and time by modelling the expectation of the
spectrogram as:

E[H( f )] = H0( f )× G(t), (1)

where H0(f) is the mean power spectrum estimated by the calibration step, and G(t) is the along track
ripple pattern, in time domain, as the one shown in Figure 2 on the bottom panel. This second term
is not stable in time, as it appears in Figure 2 on the middle panel, and it needs to be estimated from
the data. The estimate is carried out by first compensating the range spectra, by the inverse profile
1/H0(f), and then computing the spectral median for each time. The median is robust respect to the RFI
that can be in the dataset, however, for further improving RFI rejection, a second order polynomial
Savitzky-Golay filter [10] is applied to the along-track profile to derive the estimate of G(t).

An example of a data spectrogram prior and after compensating for the frequency and
time-domain ripples is shown in Figure 5. The spectrogram has already been averaged in frequency by
a multi-look factor of 100, to reduce noise fluctuation, then enhancing the detection of the slightest RFI.

Figure 5. Example of a spectrogram of noise data before (a) and after (b) compensation for the ripples
in frequency and time. The residual along-track ripple is less than 0.1 dB.

Detection is performed by a combination of the one tailed Fisher’s Z test [6]:

Z =
Hf − E

[
Hf

]
VAR

[
Hf

] , (2)

Hf being the power spectrum, and the use Kullback–Leibler (KL) divergence [11], proposed here:

K =
∫

p
(

Hf

)
log

⎛⎝ p
(

Hf

)
p f it

(
Hf

)
⎞⎠dHf (3)

The first detector, (2), finds those extremal peaks, say isolated RFI with powers much stronger
than noise one. The KL based detector, in (3), measures the mean distance between the logarithms of
the actual power spectrum density distribution, p(Hf), and the Normal one, pfit. This corresponds to
the maximum-likelihood hypothesis testing for non-Normal distributed data [12], and is sensitive to
maybe many RFI samples of very low power, that is the case of RLAN [13], distributed RFI, or other
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factors affecting the raw data quality. An example of identification of low power RFI is shown in
Figure 6. The V and H power spectra for the 12 short strips, each formed by the nine rank pulses at the
beginning of each burst are shown in a linear scale, normalized with respect to S1 thermal noise floor.

Figure 6. Example of detection of low-power RFI. Top and middle panels on the left: spectrograms
for V and H polarizations. Each vertical strip corresponds to the 9 pulses at the beginning of a bursts,
all coming from the same sub-swath (IW1). The strongest RFI are encircled. Lower left panel: plot
of KL divergence for each burst (x-axis define the burst number, and it has been aligned with the
spectrograms above). Right panels: histograms, in log scale, and fitting normal PDF, for the bursts with
K > 0.025 and K < 0.025.

The multi-looked, whitened spectra are quite homogeneous, and slight deviations may be
appreciated, like those encircled. The availability of multiple pulses-per-burst allow to distinguish
between pulsed and continuous RFI. As for the detection, the two sets of histograms show that KL
divergence was capable to detect those affected by RFI (upper plot) by the others.

4. Sensitivity

The Effective Isotropic Radiated Power (EIRP) of the transmitter causing the RFI contributes to S1
receiver with a power:

PR =
PEIRP · AS · η

4πR2 , (4)

where As is the S1 antenna area, η the total losses and R the range. The sensitivity is the RFI power
that cause the same contribution as noise at S1 receiver:

Pn = KB · TS · BRFI , (5)

KB being Boltzmann constant, BRFI the RFI bandwidth, TS is S1 equivalent noise temperature. We can
then define the minimal power PEIRPZ of the RFI that gives the same contribution as thermal noise, by
equating (4) and (5):

PEIRPZ =
KB · TS · BRFI · 4πR2

AS · η
. (6)
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We can achieve the same result by assuming that S1 is illuminating a homogenous target with
backscatter σNESZ (where NESZ stands for Noise Equivalent Sigma Zero), by a means of a mean power
that is the product between S1 peak power and the duty cycle, and contributing to the RFI bandwidth BRFI:

PEIRPZ = PS · dc · σNESZ · BRFI
BS

(7)

The evaluation of the sensitivity from (7) is straightforward, given the S1 peak power, Ps = 5.2 kW,
the duty cycle, dc = 9%, the bandwidth, Bs = 50–70 MHz (depending on the swath, see Figure 4)
and the σNESZ as from [14,15]. If we assume S1 requirement σNESZ < −22 dB, and a ratio BRFI/Bs
of 100 looks over the 20,000 spectral samples in range, we get from (7) PEIRPZ = 15 mW for a single
tone RFI. This sensitivity becomes as small as 8 mW if the actual figure for S1 σNESZ = −25 dB is
assumed [14,15]. In that case, the equivalent noise temperature from (6) and (7):

Ts =
PS · dc · σNESZ · AS · η

KB · BRF · 4πR2 (8)

results in roughly 800 K, by assuming an equivalent antenna area AS = 9.6 m2, total losses η = −4.5 dB
and R = 840 km [14,15].

The sensitivity here computed refers to a single tone RFI, and does not allow to detect such slight
RFI in the raw data in time domain. However, for the strongest RFI power exceeds by far that value,
say over a factor 20,000/100 = 20, a time domain identification is possible, like the case shown in
Figure 7, that refers to the strongest RFI found. The peak power spectrum is 32 dB above the thermal
noise level, and the bandwidth is about 5 MHz, that, from (7) evaluated for IW3, gives PEIRP = 250 W.
Such a high power is still in the dynamic range of S1, from the level of −3 dB to σNESZ+39 dB, say with
10 dB margin.

Figure 7. Example of high-power RFI in the spectrogram (top); and in the time-along track domain
(bottom). Color scales are in dB. Horizontal axis is in number of rank pulses that is 10 for IW3.

The method here proposed has been used for estimating RFI all over Europe, in different times—by
exploiting ascending and descending passes, and different periods: from November to December 2016
and from February to March 2017. A total of 960 products were considered, spanning 32,000 bursts.
In the analysis, we aimed to a very high sensitivity, therefore we discarded the first one-two pulses
at the beginning of each burst, since there were still affected by some residual ripples, as shown in
Figure 5.

45



Remote Sens. 2017, 9, 1183

In order to compare the two detectors, we have implemented the Z test in (2) with a very
conservative threshold of 4σ, which was tuned to the data to exclude false alarms, then we integrated
the probability of tails exceeding the threshold:

Z =
∫ ∞

μ+4σ
p
(

Hf

)
dHf (9)

A comparison between the factor Z and the KL divergence, K, is provided in the bidimensional
histogram in Figure 8a, whereas the two values sorted for all the bursts are shown in Figure 8b. In both
cases it is possible to notice a two-class behavior, where the thresholds separating the data most likely
to be RFI from the good one have been found experimentally from the marginal PDF, plotted on the
right, as log10(Zth) = −3 and log10(Kth) = −1.6.

Figure 8. (a) Bidimensional histogram, counting the power spectra as function of Kullback-Leibler
divergence (K), horizontal, and Fisher figure of merit, (Z), vertical, both in log scale. The two classes,
marked as noise and RFI, can be separated better in the 2D than by a single figure of merit, either Z,
or K; (b) Marginal histograms representing the RFI pdf with respect to Fisher and KL divergence.

In order to appreciate the complementarity between Z and K test, we have plotted a set of
histograms exceeding the threshold for K, but not for Z (Figure 9a), and vice versa (Figure 9b). In the
total of 32,000 bursts, 3800 were classified RFI according to K, then 12% and 4300 according to Z, 14%,
whereas the union of K and Z classified 17% of the bursts.

Figure 9. Example of histograms where RFI can be identified only by KL divergence (a); and of RFI
that can be identified by Fisher Z test (b).
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This confirm the quality of Z test, however, suggests the use of both (at practically the same cost)
if searching for very small RFI, like to RLAN [13].

A map of RFI power has been computed by averaging over the rank echoes and over successive
passes, both ascending and descending. The map, shown in Figure 10, reports the highest values
measured in the whole spectrum. Detection has been made by assuming a very low threshold in order
to visualize the slightest RFI, which would include many false alarms. However, one can appreciate
that there is a nearly homogeneous background floor below 0 dBm. The power seems loosely correlated
with urban areas, therefore not due to RLAN, whereas there are few occurrences co-located with Radar
installations, placed as pinpoints in the map, from those listed in [16].

Figure 10. Map of RFI power, averaged in approximately 6 ms. The label superposed marks a part of
weather Radar listed in [16].

That power map does not reproduce the spectral occurrence of the RFI. Therefore, we represented
in Figure 11, the cumulated histograms of detected RFI power, normalized with respect to S1 noise
power, for each frequency bin. The histograms have been normalized so that the figure shows, for each
frequency bin, the probability that a certain power level is exceeded. One can notice that, in the
majority of the cases, when they are present, the RFI contribute as an additional noise factor less than
a figure five, that corresponds to an equivalent temperature of ~4000 K.
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Figure 11. Cumulated histograms of RFI power distributions with frequency, normalized to S1 noise
power, estimated by processing data from all-Europe. Vertical scale is probability in log10.

5. Discussion

The main innovation of the proposed method is both in the use of rank-pulses S1 data and in the
joint exploitation of two different detectors: Fisher Z test, for the strongest RFI, and KL divergence,
sensitive to diffused RFI with low power, like RLAN, that are becoming more and more diffused.
The along track squinting of the antenna beam, is a necessary requirement, since it provides rejection
to previous transmitted pulses by exploiting the 2D antenna pattern. The method is insofar limited to
TOPSAR, and then to S1 (the sole system presently using that mode). Furthermore, the measure is
not spanning the whole C-band spectrum, but only up to 40% (in IW1), and it leaves gaps along track,
since each swath is sampled for 4 km each 25 km, though near swaths will still be influenced by RFI.

The analysis assumed IW mode data, that exclude RFI detection over polar regions, that are
systematically imaged EW mode. Indeed, it could be extended to the EW mode, but the bandwidth
would be quite limited, to <20 MHz.

The detection of RFI, carried out with 4σ threshold, would ensure ideally a false alarm rate in
the order of ~10−5. However, this applies with respect to thermal noise, whereas the analysis of rank
pulses it has shown time-varying behavior due to internal instrument instability. It is expected that
detections above threshold are not to be attributed just to RFI, but also to some internal spurious
or transients. Nonetheless, the geo-political correlation of the RFI power maps let think that values
starting from RFI of 5 dBm are more likely to be attributed to on-ground sources than to the instrument.
This seems to be a reliable sensitivity of the system.

6. Conclusions

The paper proposed the use of the first “rank” pulses per burst to derive a very sensitive RFI
monitoring from Sentionel-1 SAR. In fact that, thanks to TOPSAR varying squint, those pulses are
ideally unaffected by clutter. This has been demonstrated by a careful analysis of S1 acquisition scheme,
and checked by processing hundreds of scenes. The achievement of a high sensitivity, in the order
of 8 mW of minimal detectable ground power, requires a careful calibration to remove ripples and
spurious tones, and frequency domain multi-looking to suppress random fluctuation of noise power.

Detection of RFI has been then approached by exploiting both Fisher Z test, for the strongest
RFI, and Kullback-Leibler divergence, sensitive to diffused RFI with low power, like RLAN. The best
results have been found by jointly exploiting the two figures of merit.
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The power estimation has been applied to a repeat coverage of Europe comprising ascending and
descending passes for a total of 32,000 bursts (each of ~20 km along track and 100 km across track),
and producing the first map of C-band RFI power. The analysis evidenced many low power sources,
spread over the whole bandwidth, and just a few very high power ones, that are active for only part of
the time, and on very precise frequency bands.

The force of this approach is the ubiquitous time and space coverage of S1 constellation, which
would ensure the capability of producing and updating a world-wide RFI map.

This map could be exploited by policy makers to understand how important is the RFI issues,
and to drive the evolution of the RLAN regulation for WIFI.

The production of these map could be done at a negligible computational cost, and in very short
time, if rank pulses are made available apart form the whole raw-datasets (that are totally useless for
such goal). This upgrade in S1 products is expected for early 2018.
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Abstract: The backprojection (BP) algorithm has been applied to every SAR mode due to its great
focusing quality and adaptability. However, the BP algorithm suffers from immense computational
complexity. To improve the efficiency of the conventional BP algorithm, several fast BP (FBP)
algorithms, such as the fast factorization BP (FFBP) and Block_FFBP, have been developed in
recent studies. In the derivation of Block_FFBP, range data are divided into blocks, and the
upsampling process is performed using an interpolation kernel instead of a fast Fourier transform
(FFT), which reduces the processing efficiency. To circumvent these limitations, an accelerated BP
algorithm based on Block_FFBP is proposed. In this algorithm, a fixed number of pivots rather than
the beam centers is applied to construct the relationship of the propagation time delay between the
“new” and “old” subapertures. Partition in the range dimension is avoided, and the range data are
processed as a bulk. This accelerated BP algorithm benefits from the integrated range processing
scheme and is extended to bistatic SAR processing. In this sense, the proposed algorithm can be
referred to simply as MoBulk_FFBP for the monostatic SAR case and BiBulk_FFBP for the bistatic SAR
case. Furthermore, for monostatic and azimuth-invariant bistatic SAR cases where the platform runs
along a straight trajectory, the slant range mapping can be expressed in a continuous and analytical
form. Real data from the spaceborne/stationary bistatic SAR experiment with TerraSAR-X operating
in the staring spotlight mode and from the airborne spotlight SAR experiment acquired in 2016 are
used to validate the performances of BiBulk_FFBP and MoBulk_FFBP, respectively.

Keywords: accelerated backprojection algorithm; bistatic SAR; monostatic SAR; bulk processing

1. Introduction

With ongoing technological progress, synthetic aperture radar (SAR) systems, including
multi-mode monostatic SAR and bistatic SAR, are becoming increasingly sophisticated. For monostatic
SAR, many effective processing algorithms have been developed [1]. Because of the high efficiency,
frequency domain imaging algorithms, such as the Range Doppler [2], chirp scaling [3] and ωK [4]
algorithms are widely-applied methods for stripmap SAR data focusing. Their modified versions
can focus data from other imaging geometries, such as the SPECAN algorithm presented in [5] for
ScanSAR data processing and the extended chirp scaling algorithm proposed in [6] for spotlight
SAR. For bistatic SAR, both advantages and disadvantages exist because of the spatial separation
between the transmitter and the receiver. On the one hand, this transmitter-receiver separation
increases the system design flexibility and makes bistatic SAR a more promising technology for global
remote sensing mission applications. On the other hand, it generates increased complexity in the
system operation and data processing. Before the general-purpose graphics processing unit (GPGPU)
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was applied, frequency domain algorithms were developed by researchers for the bistatic SAR data
focusing requirement. Due to the diversity of bistatic SAR geometries, the analytical two-dimensional
spectrum is difficult to obtain, and the existing frequency domain methods are applicable only to
certain environments. Algorithms based on Loffeld’s bistatic formula [7], such as the 2D inverse
scaled FFT algorithm [8] and the bistatic chirp scaling algorithm [9], can focus the data acquired in
azimuth-invariant bistatic geometry where the transmitter and receiver run along different trajectories
with identical velocity vectors. The range Doppler algorithm based on the series reversion [10],
equivalent velocity approximation and NuSAR[11] can focus data from azimuth-variant bistatic SAR
mode where the transmitter and receiver run with different velocity vectors. Nonlinear chirp scaling
algorithms [12–14] and the wavenumber-domain algorithm proposed in [15] can focus bistatic SAR
data from a hybrid bistatic configuration where the transmitter and receiver are mounted on two very
different platforms, such as the spaceborne/stationary bistatic SAR mode.

As a correlation algorithm in the time domain, the backprojection (BP) algorithm can be applied to
almost every SAR configuration [16]. However, the immense time cost limits its application. To improve
the computational efficiency, two mainstream approaches have been explored. First, parallel computing
platforms with incredible computing power, e.g., GPGPUs, have been used to accelerate the progress
of the BP algorithm [17]. Second, incremental modifications have been applied to the conventional
BP algorithm; the typical products are the fast BP [18] and fast factorized backprojection (FFBP)
algorithms [19]. Inspired by the FBP algorithm developed for monostatic SAR data, several bistatic
FBP algorithms have been proposed [20–25]. For example, a BiSAR_FBP algorithm was proposed
in [23] to focus ultra-wideband-ultra-wide-beam bistatic SAR data. Bistatic FBP algorithms for general
bistatic SAR configurations and for one-stationary geometry were proposed in [24,25], respectively.

In [19], the FFBP algorithm was developed based on the theory that the bandwidth is much lower
than the sampling rate in an angular coordinate system. However, processing in a polar coordinate
system may be cumbersome. To simplify the algorithm process, raw data are partitioned into several
blocks in the range direction. This algorithm is hereafter referred to as Block_FFBP. The center of each
block is taken as the reference point, and the slant range of other points can be calculated by adding
an offset value according to the range of the reference point. Nevertheless, due to the partitioning
of range data, the interpolation process of each data block in subaperture summation can only be
conducted using an interpolation kernel, which decreases the efficiency. Thus, an accelerated BP
algorithm based on uniform rather than partitioned range processing is proposed in this paper. In this
algorithm, partitioning of the range data is not needed, and a fixed number of pivots is applied
to calculate the slant range of a grid point under both the current aperture and the synthesized
one. The range domain data are processed as a bulk, and interpolation can be performed with an
FFT, which improves the efficiency of subaperture summation. The derivation of this accelerated
BP algorithm in the Cartesian coordinate system is provided for monostatic SAR (MoBulk_FFBP)
and bistatic SAR (BiBulk_FFBP). However, although the slant range computation is taken in the
Cartesian coordinate system, this approach only simplifies the computation and does not disrupt the
sampling theory in the angular frequency domain. Two datasets are used to validate the performance
of the proposed algorithms. The first one is from the spaceborne/stationary bistatic SAR system with
TerraSAR-X as the transmitter operated in the staring spotlight mode. The second one is from the
spotlight experiment with an airborne X-band SAR system operating at a bandwidth of 1200 MHz.

This paper is arranged as follows. Section 2 briefly describes the basic principle of the FBP and
describes its disadvantages. In Section 3, derivations of MoBulk_FFBP and BiBulk_FFBP are described
in detail. In Section 4, detailed performance analysis of the proposed algorithm, including the error
analysis of residual phase, the parallelization consideration, the computational complexity and pivot
selection issue, is discussed. In Section 5, monostatic and bistatic images are shown to demonstrate
the validity of the algorithm. A comparison of the efficiency between Block_FFBP and the proposed
algorithm is also given here. Finally, the conclusion is drawn in Section 6.
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2. Description of the Fast BP Algorithm

2.1. Fundamental Concept

In the polar format algorithm [4] where two-dimensional matched filtering is implemented in
the phase history domain, the azimuth extension is a reciprocal of the sample spacing in the azimuth
frequency domain. Similarly, sample spacing in the azimuth time domain and the azimuth frequency
span follow the same principle. According to this time-frequency mapping attribute, the computational
complexity can be reduced by data segmentation, which is adopted by the FBP algorithm. If the scene
extension is divided into two sub-planes in the azimuth dimension, the corresponding frequency
sampling space is consequently extended, which corresponds to azimuth de-sampling. After the
aforementioned azimuth partitioning, the new datasets can also be divided until a proper data size
is obtained, which is the basic concept of the FFBP algorithm [19]. In general, the computational
complexity is O

(
mN2logmN

)
when the factor of the factorization of aperture N is m. After data

partitioning, azimuth de-sampling arises, which could cause azimuth spectrum aliasing and ambiguity
in the final image. For its sake, subaperture processing is introduced in the FBP algorithm.

2.2. Subaperture Processing

Following the azimuth de-sampling mentioned above, the pulse repetition frequency (PRF) is
also decreased. To avoid aliasing, PRF should be larger than the azimuth bandwidth during each stage
of factorization. Subaperture summation is performed in this sense, as shown in a schematic diagram
in Figure 1. The left image in Figure 1 shows the data synthesis using the full aperture, while the
right image illustrates the subaperture processing. Through the summation of two subapertures,
two beams pointing in different directions are obtained. Meanwhile, the beamwidth is halved, and the
decreased PRF still satisfies the Nyquist sampling constraint. Subaperture processing is used in many
FBP algorithms, such as [19,25].

p

0x
0xx
x

Figure 1. Subaperture summation progress. In the left panel, ‘triangle’ denotes the location where the
platform transmits the signal. In the right panel, �x1 and �x2 denote two subapertures and �x0 denote the
new synthesized aperture.

Suppose that the factorization factor is m and that the beam center of a synthesized aperture on
an imaging plane is�p. Then, the summation of m subapertures can be written as:

s (�x,�p; τ) =
m

∑
i=1

s (�xi,�p; τ − Δτi) exp {−j2π f0Δτi}, (1)

where τ is the fast time, Δτi is the time difference of signal propagating from subaperture�x to�p and
from�xi to�p,

Δτi = 2
(|�x −�p|2 − |�xi −�p|2)

c
. (2)

where f0 is the carrier frequency, �xi is the location of the original aperture, �x is the location of the
synthesized aperture and s (�xi,�p) is the echo signal at�xi.
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In this derivation, the summation of subapertures is precise only for the beam center point,
for which there is no residual error of slant range. When the scene extends beyond a certain scope,
the residual range error will increase, and the summation will deteriorate. To control the maximum
error, a partition of the range data according to the multiple beam centers is adopted in Block_FFBP at
each stage of subaperture summation. Figure 2 presents an example of the subaperture summation
and range data partition in each processing stage. Initially, the number of subapertures is eight. In each
stage, the number of subapertures is reduced by a factor of two.

Figure 2. Schematic illustration of the FFBP with eight apertures and three factorization stages. In each
processing stage, a common factorization factor of two is used. Narrower “new” beams are formed
based on wider “old” beams formed in the previous stage. In the first stage, each of two adjacent
subapertures forms a new beam, and 2 × 2 beams are obtained. In the second stage, repeat the
summation operation of Stage 1, and 4 × 4 beams are obtained.

At each stage of subaperture summation in the conventional FBP algorithm, the steering angle
and radius are calculated within the local polar coordinate system where the origin is the new aperture.
Then, the coordinate of the target and the slant range to the final aperture are determined using
subaperture summation. Meanwhile, in the Block_FFBP, the position of the beam center and the
corresponding slant range, as well as the differential range are determined for each range block.
The slant range of the other points can then be obtained through linear extrapolation using the range
and differential range.

The main limitation of Block_FFBP is that the range data are partitioned according to the beam
centers; therefore, in the subaperture summation process, the synthesized data in each block can only
be obtained through interpolation. If the range dimension partition could be avoided, range data
from the identical beam are maintained as a bulk, and the interpolation can be replaced by an FFT.
Furthermore, to ensure the interpolation quality of a margin point for a selected interpolation kernel,
a fixed backup allowance of the beam data length should be retained. With an increase in the number
of factorization stages, the proportion of the interpolation kernel length throughout the entirety of the
beam data increases, which indicates that additional memory space is required.

3. Accelerated BP Algorithm

3.1. Fundamental Concept

In this accelerated BP algorithm, a fixed number of pivots, rather than beam centers whose
number is variant in each subaperture factorization and summation stage, are applied. Like the general
interpolation process, values at sample points are provided, and the interpolated values at specific
query points can be obtained using an interpolation method. Pivots are analogous to the sample points.
The correspondence relationship of the propagation time delay from these pivots to current and to
synthesized subapertures can be constructed. Afterward, the slant range of the other imaging points
can be determined using a conventional interpolation method.

Due to oversampling in the angular coordinate system, the slant range calculations are transferred
from the polar coordinate system to the Cartesian coordinate system so that the range calculations are
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simplified. Therefore, this accelerated BP algorithm can be applied in both bistatic and monostatic
SAR configurations.

3.2. Monostatic SAR Case

The left image in Figure 3 shows an example of subaperture summation where the factorization
factor is two. The platform runs along the y-axis; the x-axis is the range direction; and the z-axis
denotes the height dimension. The new subaperture at �A0 (x′, y′, z′) is the summation of subapertures
at �A1

(
x′1, y′1, z′1

)
and �A2 (x′2, y′2, z′2). The number of pivots along the range dimension is n, and a pivot

can be denoted as�pi (xi, yi, zi). In this accelerated BP algorithm, the number of pivots is fixed during
the focusing process, which is different from Block_FFBP, wherein the number of reference points
grows with an increase in the number of factorization stages.

Figure 3. Monostatic SAR case: (a) diagram of subaperture summation; (b) diagram of error analysis.

In the left panel of Figure 3, the slant ranges Ri1, Ri2 and Ri are the distances between
pivot �pi (xi, yi, zi) and the apertures �A1

(
x′1, y′1, z′1

)
, �A2 (x′2, y′2, z′2) and �A0 (x′, y′, z′), respectively.

The corresponding time delay can be expressed as:

τim = 2

∣∣∣�Am −�pi

∣∣∣
2

c
, (m = 1, 2) ; τi = 2

∣∣∣�A0 −�pi

∣∣∣
2

c
(3)

where c is the speed of light. The range-compressed signals belonging to the “old” subapertures
�A1

(
x′1, y′1, z′1

)
and �A2 (x′2, y′2, z′2) are s1 (τ) and s2 (τ), respectively. Afterward, according to the

subaperture summation stage illustrated in Section 2.2, the “new” synthesized subaperture data
s (τ) can be written as:

s (τi) =
2

∑
m=1

sm (τim) e−j2π f0(τim−τi), i = 1, ..., n. (4)

To construct the mapping relationship between the echo delay of the “new” and “old”
subapertures, an interpolation function gm (τi) can be used for the delay time pair (τi, τim), which can
be expressed as:

gm (τi) = τim; i = 1, 2, ..., n; m = 1, 2, (5)

where gm (τi) can be a spline interpolation kernel or a sinc kernel. The subaperture summation can be
updated by substituting this interpolation function into Equation (4). The new expression of s (τ) is

s (τ) =
2

∑
m=1

s (gm (τ)) e−j2π f0(gm(τ)−τ). (6)

Equation (6) is a continuous expression of the subaperture summation process. Hence, partitioning
of the range data is favorably avoided, and the complete range data can be processed in bulk. Therefore,
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the interpolation operation for subaperture data, which is denoted as sm (·), can be performed with
an FFT to improve the overall efficiency [26].

Equation (3) is a general expression for the monostatic two-way propagation delay, and some
simplifications can be made to get a more functional version. If the height of the imaging plane is const
z0 and the height of platform is zh, then zi = z = z0; z′m = z′ = zh, m = 1, 2. Equation (3) becomes:

τim =
2
√
(x′m − xi)

2 + (y′m − yi)
2 + (zh − z0)

2

c
, (7a)

τi =
2
√
(x′ − xi)

2 + (y′ − yi)
2 + (zh − z0)

2

c
, (7b)

In Equation (7b), the range offset x′ − xi, between “new” subaperture �A0 and�pi, is:

Δxi(τi) = −
√(τi · c

2

)2 − (y′ − yi)
2 − (zh − z0)

2. (8)

Substituting Equation (7b) into Equation (7a), a new expression for the time delay can be obtained,

τim =
2
√
(x′m − x′ + Δxi(τi))

2 + (y′m − yi)
2 + (zh − z0)

2

c
. (9)

Furthermore, when the platform runs along a straight trajectory (i.e., x′m = x′), Equation (9) can
be simplified as:

τim =

√
τ2

i +
4
c2

[
(y′m − yi)

2 − (y′ − yi)
2
]
. (10)

Equation (10) is an analytical expression that can determine the relationship between the two
propagation delays of the “new” and “old” subapertures. Let Δε = 4

[
(y′m − yi)

2 − (y′ − yi)
2
]

/c2;
the subaperture summation can be expressed in a continuous form as:

s (τ) =
2

∑
m=1

s
(√

τ2 + Δε
)

e−j2π f0(
√

τ2+Δε−τ). (11)

Equation (11) represents a case in which the factorization factor is two, and it can be naturally
extended to cases with other factorization factors. It is a more simple and practical subaperture
summation approach without pivots that facilitates the computational operation. In Equation (10),
the locations of “new” and “old” subapertures are only required to be known, and the pivots are no
longer required. In this sense, this functional version of Equation (10) is known as range determination.
This makes a further simplification of the process. In practice, with the use of fine motion compensation,
an equivalent straight line can be obtained, and MoBulk_FFBP can be applied without pivots.

3.3. Bistatic SAR Case

According to the basic principle of the proposed accelerated BP algorithm, this algorithm can
also be applied in the bistatic SAR mode. In this section, the accelerated BP algorithm is provided
for two bistatic SAR geometries: the one-stationary bistatic SAR mode and the tandem mode. In the
former case (including the spaceborne/stationary and the airborne/stationary cases), only the moving
platform contributes to the azimuth modulation, whereas the stationary platform introduces a range
offset to the range migration trajectories of targets at the same range [14,27]. Therefore, the subaperture
summation can be conducted for the moving platform.

Figure 4 shows the subaperture summation for one-stationary bistatic SAR mode where the
factorization factor is set to two. The transmitter runs along the y-axis, and the receiver is fixed.
Rit1, Rit2 and Rit are the ranges between�pi (xi, yi, zi) and the transmitter subapertures �A1

(
x′1, y′1, z′1

)
,
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�A2 (x′2, y′2, z′2), �A0 (x′, y′, z′), respectively; while, Rir is the range between the receiver and �pi. Thus,
the echo delay for each subaperture can be written as:

τim =
Ritm + Rir

c
, (m = 1, 2), (12)

τi =
Rit + Rir

c
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Figure 4. Bistatic SAR cases: (a) one-stationary bistatic mode; (b) azimuth-invariant bistatic mode.

The data of “new” subaperture �A0 can also be obtained using Equation (6). For a given range line
in the focus plane parallel to the transmitter trajectory, the range to the receiver is different for each
grid point. Therefore, it is difficult to obtain an analytical expression for the subaperture summation
without deriving a relationship for the location of the pivots.

However, in the azimuth-invariant bistatic SAR mode, this situation may be different [11,28].
The delay times for the “old” and “new” subapertures are:

τim =
Ritm + Rirm

c
, m = 1, 2

τi =
Rit + Rir

c
(13)

For this mode, let the “new” subapertures of a transmitter and receiver be �A0 (x1, y1, z1) and
�A0 (x2, y2, z2), respectively. Let Ri = τi · c,

Rit =

√
(x1 − xi)

2 + (y1 − yi)
2 + (z1 − zi)

2

Rir =

√
(x2 − xi)

2 + (y2 − yi)
2 + (z2 − zi)

2 (14)

For convenience, let c1 = (y1 − yi)
2 + (z1 − zi)

2, c2 = (y2 − yi)
2 + (z2 − zi)

2 and c3 = x1 − x2;
thus, xi (τi) can be solved as

xi (τi) =
−b +

√
b2 − a · d

2a
(15)

where:

a = c2
3 − (c · τi)

2,

b = c3 [c1 − c2 + a] , (16)

d = c2
1 + c2

2 + a2 − 2c1 (c2 − a)− 2c2

[
c2

3 + (c · τi)
2
]

.

Therefore, τim (τi) can be obtained by substituting (15) into τim in Equation (13). Similar to
Equation (11), the subaperture summation can also be expressed in a continuous form:

s (τ) =
2

∑
m=1

s (τm (τ)) e−j2π f0(τm(τ)−τ) (17)
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3.4. Summary of the Algorithm

Figure 5 presents the flowchart of proposed algorithm. The green and cyan blocks represent
processing with and without pivots, respectively. Range compression is conducted in the first stage.
The number of factorization stages and the factorization factor in each stage are set. For the general
case, pivots are required. According to Equation (5), an interpolation function is used to calculate the
delay time of the “new” subapertures, which corresponds to the propagation time delay reconstruction
in Figure 5. Specifically, when the platform runs along a straight track, pivots are not required, and in
the factorization stage, delay time is determined according to Equation (10). After the propagation
time delay relationship is established, range data interpolation is performed using an FFT followed by
the subaperture summation. When the factorization is done, a conventional BP algorithm is applied to
focus the new synthetic data, and a final focused image is obtained.

Figure 5. Flowchart of the proposed algorithm. In this flowchart, the MoBulk_FFBP and BiBulk_FFBP
are integrated together. Mo, monostatic; Bi, bistatic; FFBP, fast factorization BP.

4. Performance Analysis

4.1. Error Analysis

This section provides the phase error caused by an incorrect slant range when the back-projected
data are accumulated during a subaperture summation. Since the proposed algorithm is derived
from Block_FFBP and extended to the bistatic SAR case, the error analysis will be conducted through
a comparison with Block_FFBP using a numerical method. Moreover, as Block_FFBP was developed
for the monostatic SAR case, the error analysis is mainly performed for this case.

In Block_FFBP, the slant range error between the “old” and ”new” subapertures causes a phase
error, which can affect the focusing. For a certain imaging block, like the right panel in Figure 3,
only the delay time of the beam center point�pi is correct during the subaperture summation. Assume
that �Am is the “old” subaperture and �A is the “new” one. Point �n is one grid point in the block.
The slant ranges from�pi to �Am and to �A are Rmp and Rp, respectively. Likewise, for point�n, the slant
ranges are Rmn and Rn, respectively. In Block_FFBP, the slant range of “new” aperture �A should be
mapped to the “old” aperture to perform the subaperture summation. For any point�n, the obtained
range is R′

mn = Rn + Rmp − Rp, and the two-way delay time error caused by this operation is:

Δτerror =
2
c
· (Rmn − R′

mn
)
=

2
c
· (Rmn − Rn −

(
Rmp − Rp

))
. (18)
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Thus, the residual phase error can be written as:

Δφ1 = 2π f0 · Δτerror. (19)

In MoBulk_FFBP, the beam center point�p in the right panel of Figure 3 can also be taken as a pivot.
When the subaperture summation is performed using Equation (6), the residual phase error of point�n
can be written as:

Δφ2 = 2π f0 ·
[

gm

(
2Rn

c

)
− 2Rmn

c

]
, (20)

where gm(·) is the interpolation kernel defined by Equation (5). Moreover, when the platform runs
along a straight trajectory, pivots are not required, and points that have the same azimuth coordinates
as�p have no phase error. The residual phase error can be expressed as:

Δφ3 = 2π f0 ·
⎡⎣√(

2Rn

c

)2
+ Δε − 2Rmn

c

⎤⎦ . (21)

Here, a numerical simulation is conducted to intuitively compare these phase errors. An airborne
geometry with a straight trajectory, a platform height of 8 km, an off-nadir angle of 40◦ and a carrier
frequency of 9.6 GHz are investigated. The offset range between the “new” and “old” subapertures
|AAm| varies from 1 m–1000 m, and the squint angle varies from 0◦–24◦. For a certain offset and squint
angle, the scene size is set according to the principle that the maximum residual phase error of an
imaging point in the scene is π/8. In each such scene, a 200 × 200 point array is set. Through statistics,
the maximum Δφ2 or Δφ3 of these points is obtained. To compare these with Δφ1, the maximum
residual phase error is normalized by π/8. The final result is shown in Figure 6.
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Figure 6. Comparative analysis of the residual phase error in Block_FFBP and MoBulk_FFBP. The top
yellow plane indicates the residual phase error of Block_FFBP, which is equal to π

8 (for a specific offset
and squint angel pair, the scene size changes to ensure that the maximum residual phase error is no
more than π

8 ). The offset axis is the range between the “new” and “old” aperture.

The top yellow plane in Figure 6 is the residual phase error of Block_FFBP, which is normalized
by π/8. A larger offset range between the “new” and “old” subapertures and a smaller residual phase
error for the proposed MoBulk_FFBP can be observed. Moreover, under this simulation configuration,
the residual phase error decreases with the squint angle, which varies from 0◦ to 18◦. Although the
phase error increases from 18◦–25◦ in this experiment, the overall phase error is lower than that of
Block_FFBP, which could validate the accuracy of the proposed algorithm.
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4.2. Parallelization

As is shown in Figure 5, the factorization is operated sequentially. However, the range data
are processed as a bulk set, and the upsampling of this is performed using an FFT in each stage of
subaperture summation. In this sense, each stage of the factorization can be executed in parallel.
Moreover, after factorization, the conventional BP algorithm can also be executed in parallel, such as
with a GPU [29,30] or a multi-thread technical CPU. This will further accelerate the proposed algorithm.

4.3. Computational Complexity

A detailed theoretical derivation of the computational complexity of the proposed algorithm is
provided here. Suppose that the aperture length is L and the data size is N(Az)× M(Rg). “Az” and
“Rg” denote the azimuth and range dimension, respectively. In the processing, a factorization of L into
K integer factors, corresponding to K processing stages, is established. The reduction in the number of
apertures is defined as li, (i = 1, 2, . . . , K), and L can be expressed as:

L = l1 × l2 × l3 × · · · × lK. (22)

For simplicity, a common factorization throughout all of the stages is used (li = n for all i);
then, L = nK, and K = logn N. The number of pivots is set to Q and is fixed at each stage. The aperture
length is equal to the azimuth data length such that L = N.

In the first stage, the original aperture is split into N/n subapertures, each of which has a length n.
To construct the mapping relationship between the echo delays of the “new” and “old” subapertures,
an efficient cubic spline interpolation scheme [31] is used. As demonstrated in [31], this spline
interpolation is very efficient: O(Q) is used to generate the spline, and O(log Q) is used to evaluate
the spline at a single point, where Q is the number of input data points. Thus, the interpolation
computational burden is N

n × n (Q + M log Q). Next, the interpolation of range data is implemented
using upsampling with an FFT, and the overall computational complexity for the FFT and inverse FFT
is N

n × n (M log M + αM log αM), where α is the upsampling rate. At this stage, the number of beams
is n, and the computational burden required to form the beams is:

N
n
(subapertures)× n (subaperture points)× (nM) (beams samples) . (23)

Equation (23) can be written as nMN for simplicity. Based on the first factorization stage,
the second processing stage forms N/n2 new beams. Because of the common number of pivots
and the unchanged number of range data, the operations for interpolation and upsampling are the
same as those in the first stage. The number of operations required to form new beams becomes
N
n2 × n × (

n2M
)
= nMN. Therefore, each processing stage has the same number of operations, and the

total computational complexity can be written as:

[N (Q + M log Q + M log M + αM log αM) + nMN]× logn N. (24)

4.4. Pivot Selection Issue

During the factorization and subaperture summation process, the accuracy of signal propagation
time between the “new” and “old” subapertures could affect the final image quality. In Block_FFBP,
the slant range computation error changes across the data block. In the proposed algorithm,
the accuracy of slant range can be ensured by the interpolation, which is described in Equation (5).
To evaluate the influence of the chosen number of pivots, slant range computation errors between
“new” and “old” subapertures are calculated in the condition of different swaths and different number
of pivots. Assume that the platform height is 8 km, the look angle is 40◦ and the subaperture offset is
400 m. The interpolation scheme is a spline function.
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In this simulation, the number of pivots changes from 4–64, and pivots are distributed along
the range dimension at the same intervals. First, 3000 points are located along the range direction
with different range extensions. The average slant computation error is shown in Figure 7a. Second,
3000 points are located along the azimuth dimension with different azimuth extensions. The average
slant computation error is shown in Figure 7b.

Figure 7. Simulation of slant range error caused by different numbers of pivots and (a) range swaths
and (b) azimuth swath.

It can be seen that due to the high accuracy of spline interpolation, the slant range computation
is very accurate. The influence of different chosen numbers of pivots is ignorable and varies slightly.
In this sense, the choice of pivots is flexible. Please note that in the experiment, the smallest number of
pivots is four; this is because the spline interpolation method requires at least four sampling points.

5. Simulation and Real Data Results

In this section, the accuracy and efficiency of the proposed algorithm are validated using
point target simulation and real data. The time cost for each stage of the factorization is also taken
into consideration. Due to the parallelizability of the processing scheme, a horizontal comparison
between different parallel processing strategies is given. For the azimuth-invariant bistatic SAR
case, synthesized SAR data are utilized to confirm the performance of the algorithm. Meanwhile,
for the spaceborne/stationary bistatic SAR configuration, real data acquired on 31 January, 2015, using
TerraSAR-X as an illuminator in the staring spotlight mode, are used for validation.

5.1. Monostatic SAR Case

Airborne monostatic SAR data in spotlight mode with a straight trajectory are investigated here.
The simulation parameters are given in Table 1. In this scene, a 5 × 5 point array is established, and the
spacing between each point is 1000 m. The simulated echo signal is focused using the proposed
MoBulk_FFBP (both with and without pivots), FFBP and Block_FFBP. All algorithms have four
processing stages with a common factorization factor of four for each stage. In MoBulk_FFBP with
pivots, the number of pivots is 32, and the interpolation kernel used in this experiment is a spline
kernel. In the simulation, the focusing results of the two versions of MoBulk_FFBP are almost identical.
The results are shown in Figure 8.
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Figure 8. Point array simulation results: (a) processed by FFBP; (b) processed by Block_FFBP;
(c) processed by MoBulk_FFBP. A 4 km × 4 km scene containing a 5 × 5 point array is shown.

Table 1. Simulation parameters of the monostatic SAR case. PRF, pulse repetition frequency.

Parameter Values

Carrier frequency (GHz) 9.6
Bandwidth (MHz) 400

PRF (Hz) 160
Platform height (km) 10

Look angle (◦) 4
Velocity (m/s) 120

Azimuth steering angle (◦) ±1.62

Figure 8c indicates that the focusing quality of MoBulk_FFBP is adequate. A close look at the
upper right target is shown intuitively in Figure 9. By examining the acquired range and azimuth
profiles through the peak of the focused target, the impulse-response width (IRW), peak sidelobe ratio
(PSLR), integrated sidelobe ratio (ISLR) and signal-to-noise (SNR) are evaluated and summarized in
Table 2. According to the system parameters, the theoretical IRWs in the range and azimuth directions
are 0.525 and 0.276 m, respectively. The measured range and azimuth IRWs agree well with the
theoretical values. The deviations of PSLRs in each profile are within 0.2 dB of the theoretical values of
−13.26 dB. Meanwhile, in Figure 9b, the focusing quality in the azimuth direction is decent, while the
amplitude of third sidelobe in the range direction indicated by the red arrow is higher than the standard
level, which causes the ISLR to deviate from the theoretical value, and the SNR decreases. This ringing
effect of pulse response in the range direction is introduced by the data partition. As explained above,
the upsampling operation can only be performed through interpolation rather than with an FFT due
to the effects of data partitioning. The ringing effect of the interpolation can become increasingly
stronger after each stage of the factorization. In the proposed algorithm, range data are processed in
bulk rather than in blocks; according to the measured SNRs, it can be seen that the ‘focusing depth’ of
MoBulk_FFBP is higher.

Table 2. Accuracy measurements. IRW, impulse-response width; PSLR, peak sidelobe ratio; ISLR,
integrated sidelobe ratio; Az, azimuth; Rg, range.

IRW (dB) PSLR (dB) ISLR (dB) SNR (dB)

FFBP (Rg)0.53/(Az)0.28 (Rg)-12.35/(Az)-13.04 (Rg)-9.82/(Az)-9.7 52.61
Block_FFBP (Rg)0.53/(Az)0.28 (Rg)-12.36/(Az)-13.11 (Rg)-6.9254/(Az)-10.1 50.25

MoBulk_FFBP (Rg)0.53/(Az)0.28 (Rg)-12.33/(Az)-12.99 (Rg)-10.93/(Az)-9.58 53.39

62



Remote Sens. 2018, 10, 140

Figure 9. Magnified image of a point target in the focused results. (a) Processing result with FFBP;
(b) processing result with Block_FFBP. The two red arrows note that the third sidelobe of the point
processed using Block_FFBP are incorrect. (c) Processing result with MoBulk_FFBP.

To compare the efficiency, the raw data of these points are focused by Block_FFBP and
MoBulk_FFBP independently with different factorization stages. Since it has been demonstrated
in [19] that Block_FFBP is much more computationally efficient than FFBP, thus the comparison
of computation complexity with FFBP is not conducted here. The programs are executed in
a single-threaded environment, and the factorization factor is four in each processing stage.
The hardware configuration is listed in Table 3. Let K be the number of factorization stages.
In Figure 10a, the smaller processing time cost indicates that the processing efficiency of MoBulk_FFBP
is generally higher than that of Block_FFBP. This is because the required memory of Block_FFBP at each
stage is unstable, which increases the time cost for the factorization and reduces the overall efficiency.
The trend shown in Figure 10a indicates that the time cost diminishes as K rises. However, in this
experiment, the required processing time increases when K is larger than five. The entire processing
scheme incorporates the factorization and BP focusing of the accumulated data. Figure 10b shows the
time costs for these two steps for MoBulk_FFBP and Block_FFBP, respectively. First, the time cost for the
factorization stage rises as K rises; on the contrary, the time cost decreases for increasing K values for
the following residual BP step. Moreover, the time cost for the factorization of MoBulk_FFBP is larger
than that of Block_FFBP when K is less than five. This is due to the fact that the interpolation kernel is
short and the interpolation computation speed is low for the subaperture summation. When K becomes
larger, the time cost for the factorization of Block_FFBP increases dramatically. Then, the time cost for
the subsequent BP operation of MoBulk_FFBP is much less than that of Block_FFBP, which benefits
from upsampling with an FFT instead of interpolation.

(a) (b)

Figure 10. Comparative analysis of the execution times of Block_FBP and MoBulk_FBP. (a) The total
processing time when K = {1, 2, 3, 4, 5, 6}. (b) Time costs of the factorization and residual BP.
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Table 3. Hardware configuration for simulation.

Items Values

CPU Xeon E5620
Clock speed 2.4 GHz

Memory 192 GB

After the point target simulation, the raw data of synthesized distributed scene containing land
and water are generated. Figure 11a–d shows the focusing results, which are processed using BP,
MoBulk_FFBP, FFBP and Block_FFBP, respectively. In the red rectangle in each figure, the focusing
quality of Block_FFBP is not as good as the others due to the residual phase error induced by
the changing range error. The water area in the green rectangle is used for SNR comparison.
From Figure 11a–d, the measured SNR is 22.83 dB, 22.78 dB, 22.46 dB and 22.61 dB. although the
SNR of each result are similar, the SNR of MoBulk_FFBP is a little better. However, the focusing
performance can be validated by the area in the red rectangle.

Figure 11. Focusing results of the synthesized distributed scene. Processing result with (a) BP,
(b) MoBulk_FFBP, (c) FFBP, (d) Block_FFBP and (e) BiBulk_FFBP for azimuth-invariant bistatic SAR
geometry. The red rectangle is used for focusing performance comparison, and the green rectangle is
used for SNR comparison. The five sub-images at bottom-right are the red rectangle areas in (a–e).

Here, the MoBulk_FFBP will be validated using real airborne data, which were acquired in
a spotlight SAR experiment taken in Zunhua, China, on June 2016. The radar data were acquired
with an airborne wideband SAR operating at a 1200 MHz bandwidth. The carrier frequency was
9.6 GHz, and the PRF was 2000 Hz. The flight altitude was approximately 7500 m, and the track
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was measured using both a GPS and an INS. The local incidence angle of the scene center is 66◦.
To apply MoBulk_FFBP, a procedure is designed to focus the data. First, the equivalent velocity
is computed using the Doppler centroid frequency, which is calculated using the azimuth cross
correlation. Then, motion compensation [32,33] is performed using the platform velocity in the
east, north and up directions provided by the INS. After motion compensation, the equivalent
velocity is corrected and updated. With the location information provided by the GPS and the
obtained equivalent velocity, a straight flight track is fitted. The focusing plane is set equal with
the average scene height. Then, the MoBulk_FFBP with or without pivots can be applied to focus
the data. The focused monostatic spotlight SAR image is shown in Figure 12. The result indicates
that MoBulk_FFBP exhibits a satisfactory processing performance. According to the aforementioned
subaperture summation principle, the MoBulk_FFBP was established with an aperture block size of
256, i.e., the 24,576 aperture positions in the echo data were divided into 96 blocks. Four aperture
positions are summed in each processing stage until the entire block is processed during the four
stages. In this sense, all of the processing stages correspond to an aperture factorization according
to 24,576 = 44 × 96. The subaperture summation is conducted using Equation (8), and the range data
upsampling operation is performed in bulk with an FFT.

Figure 12. Monostatic spotlight image processed using MoBulk_FBP. (a) The monostatic spotlight
image; (b) the optical image of the imaging area from Google Earth.

5.2. Bistatic SAR Case

To demonstrate the focusing ability of the proposed algorithm for the bistatic SAR case,
an azimuth-invariant bistatic spotlight configuration is initially investigated. The transmitter and
receiver run along straight trajectories that are separated by 5 m. The system parameters are the same
as the point target simulation in the monostatic SAR case. The focused master and slave SAR images
are shown in Figure 11b,e, and the result indicates that BiBulk_FFBP can also perform well. Due to
the relatively short baseline, the results are very similar, but they demonstrate a slight difference in
the marked zone. The factorization factor of BiBulk_FFBP is four, which means that four aperture
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positions are summed in each processing stage until the entire block is processed, thereby requiring
four stages.

Spaceborne/stationary bistatic SAR also use a bistatic SAR configuration that is easily
implemented using orbital sensors as coherent transmitters of opportunity with fixed-location receivers.
Here, the fast back projection for focusing the one-stationary bistatic SAR data proposed in [25] is
used for accuracy comparison. It can handle the synchronization problem and focus the data more
efficiently than the BP algorithm, which makes it very appropriate for spaceborne/stationary bistatic
SAR processing. A point target simulation based on a spaceborne/stationary bistatic configuration is
conducted, and the parameters are given in Table 4.

Table 4. Spaceborne/stationary bistatic SAR simulation parameters.

Parameter Values

Carrier frequency (GHz) 9.6
Bandwidth (MHz) 150

Sampling rate (MHz) 180
Pulse repetition frequency (Hz) 8000

Synthetic aperture time (s) 1.27
Transmitter center position (km) (0, 400, 692.8203)

Synchronization channel position (m) (0, 0, 533)
Echo channel position (m) (0, 0, 533)
Target for evaluation (m) (−320, −9216, 0)

The results processed by the FBP in [25] and the proposed BiBulk_FFBP are shown in Figure 13.
To evaluate the IRW, PSLR and ISLR, the contours of the point at left-up corner are enlarged and shown
in Figure 14.

Figure 13. Focusing result of point targets. The result is processed with (a) BiBulk_FFBP and (b) FBP in [25].

(a) (b)

Figure 14. Extended target contours. The result is processed with (a) BiBulk_FFBP and (b) FBP in [25].

In Figure 14, it can be intuitively found that the focusing quality of BiBulk_FFBP is better that
of the FBP in [25]. This is because the series of sub-images is focused at fixed grids, and the nearest
interpolation method is used in the sub-images fusion process. Therefore, the imaging quality of the
final image is nonuniform. The measured SNR of Figure 13a,b is 58.83 dB and 58.79 dB. From the

66



Remote Sens. 2018, 10, 140

two-dimensional profiles, it can be seen that two versions of fast BP algorithm have similar performance.
However, from the perspective of computational complexity, BiBulk_FFBP is more computational
efficient. Equation (24) can be approximated as nN2lognN. Comparing with the computational
complexity of FBP in [25], N2.5, the computational cost of BiBulk_FFBP is lower.

On 31 January 2015, a spaceborne/stationary bistatic SAR (SS-BiSAR) experiment with the
transmitter, TerraSAR-X, operating in ST mode was conducted by the Institute of Electronics,
Chinese Academy of Sciences (IECAS). More details about the system configuration and the
preprocessing of the raw data are provided in [34]. In this experiment, the direct signal was used as
the matched filter to perform the range compression. With this method, the time synchronization error,
phase synchronization error and tropospheric delay error are eliminated. Ignoring the two-dimensional
envelop function, the compressed and synchronized signal in the range frequency domain is:

Scom (τ, f ; r̃) = e−j2π f RTR(τ;r̃)−RD(τ)
c (25)

where τ is the azimuth time, f is the range frequency, RD (τ) is the direct signal path and RTR (τ; r̃)

denotes the signal propagation range for a target located at r̃. According to the information given in the
TerraSAR-X product file, an XML file, the direct pulse phase history compensation can be performed
in the SS-BiSAR coordinate system, after which the range-compressed signal becomes:

Scom (τ, f ; r̃) = e−j2π f RT (τ;r̃)+RR(r̃)
c (26)

After performing the direct pulse phase history compensation and an inverse Fourier
transformation, the range-compressed signal can be focused using the BiBulk_FFBP. In this experiment,
the factorization factor is four, and the four subapertures in each of the four stages are summed into
a new one. The focused result is shown in Figure 15. The magnified Areas A and B are also shown
in the right panel. Area A is located in the near range of the receiver, from which a high SNR is
consequently obtained. Because of the large incidence angle of the receiver, the tree canopies are clearly
identified, and the track of an athletic field is easily recognized. Area B has some buildings that were
still in construction at the time of data acquisition, and two tower slewing cranes are clearly focused.
These details validate the focusing ability of the proposed BiBulk_FFBP.

Figure 15. The SS-BiSAR image processed by the proposed algorithm. Area A and B are used for
demonstrating the focusing performance. Area A contains an athletic field and some trees. Area B
contains some buildings.
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As previously discussed, each stage of factorization can be executed in parallel, which further
accelerates the processing scheme. To show the acceleration with a multi-thread operation,
the factorization and subsequent BP are executed in a single-threaded (ST) and a multi-threaded
(MT) environment, respectively. The results are shown in Figure 16. The hardware configuration is
shown in Table 3. The computation time of the raw radar data containing 1536 MSampleson an image
grid of 144 MPointsis 203.6 min, 306 min and 400.405 min for MT-MT, ST-MT and MT-ST processing
pairs, respectively. Therefore, the parallelization of the processing scheme provides a large increase in
computational speed compared to the conventional BP algorithm. Moreover, when the program is
executed within a GPU platform, the computation speed is even faster.

Figure 16. Time cost of BiBulk_FFBP in different executing environments. Stages 1–4 represent the
factorization step, and Stage 5 is the subsequent focusing with BP. (MT: multi-thread; ST: single-thread).

6. Conclusions

In this paper, an accelerated BP algorithm is proposed to focus monostatic and bistatic SAR
data. In this algorithm, the range data are processed in bulk rather than through block partitions.
This unified range data processing scheme improves the computational efficiency and simplifies the
procedure. A fixed number of pivots rather than beam centers is applied to construct the relationship
of the propagation time delay between the “new” and “old” subapertures. Moreover, when the
trajectory is a straight line, the pivots are not required, and the analytical expression of the subaperture
summation can be derived for the monostatic and azimuth-invariant bistatic SAR case. Error analysis
shows that the accuracy of the proposed algorithm is verifiable. Since the algorithm is an improved
version of Block_FFBP, it satisfies numerical performance standards and retains the processing ability
of Block_FFBP. Moreover, it can also focus the bistatic SAR data acquired from the tandem mode and
the one-stationary bistatic SAR mode. Simulation data and real radar data validate the performance of
the algorithm.
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Abstract: In this paper, we present a novel signal processing method for video synthetic aperture
radar (ViSAR) systems, which are suitable for operation in unmanned aerial vehicle (UAV)
environments. The technique improves aspects of the system’s performance, such as the frame
rate and image size of the synthetic aperture radar (SAR) video. The new ViSAR system is
based on a frequency-modulated continuous wave (FMCW) SAR structure that is combined
with multiple-input multiple-output (MIMO) technology, and multi-channel azimuth processing
techniques. FMCW technology is advantageous for use in low cost, small size, and lightweight
systems, like small UAVs. MIMO technology is utilized for increasing the equivalent number of
receiving channels in the azimuthal direction, and reducing aperture size. This effective increase is
achieved using a co-array concept by means of beat frequency division (BFD) FMCW. A multi-channel
azimuth processing technique is used for improving the frame rate and image size of SAR video,
by suppressing the azimuth ambiguities in the receiving channels. This paper also provides analyses
of the frame rate and image size of SAR video of ViSAR systems. The performance of the proposed
system is evaluated using an exemplary system. The results of analyses are presented, and their
validity is verified using numerical simulations.

Keywords: video synthetic aperture radar; multiple-input multiple-output; multi-channel
azimuth processing; frequency-modulated continuous waveform; beat frequency division;
polar format algorithm

1. Introduction

Synthetic aperture radar (SAR) technology is an active microwave remote sensing technique,
capable of day/night, all-weather operation, used to detect and acquire electromagnetic information
about objects without physical contact [1–3]. The enormous potential of SAR—invented by Carl
Wiley in 1951—has been evident since the first demonstration of the concept. This potential has
facilitated extensive research into SAR technology [4], including avenues for improving its operation.
For instance, in the case of conventional single aperture SAR, it is difficult to obtain a high-resolution
wide swath image, due to the trade-off between resolution and image size [5]. This problem was
solved by adopting multi-channel processing techniques to create a high-resolution wide swath
(HRWS) SAR system [6–10]. By adding multiple transmit antennas to the HRWS SAR system using
multiple-input multiple-output (MIMO) technology, it is possible to operate a single SAR system
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in multiple modes, such as HRWS, interferometric SAR (InSAR), and polarimetric SAR (PolSAR).
These modes can be operated simultaneously, without performance degradation [11,12]. By applying
MIMO and multi-channel azimuth processing techniques to video synthetic aperture radar (ViSAR),
improvements to the frame rate and image size of SAR video can be achieved, without compromising
other aspects of the system’s performance.

ViSAR is a SAR imaging mode which has recently gained increased research interest. In this mode,
images can be generated at a much higher rate than in conventional SAR; thus, they can be viewed
continuously, just like watching a video [13–15]. Since ViSAR systems can provide high resolution
SAR images at a high frame rate regardless of adverse weather conditions, they can be utilized
in many day/night, all-weather military and civilian applications, including fire control support [16],
as a replacement for electro-optical (EO)/infrared (IR) sensors, which can be only operated in clear
weather, land and maritime traffic monitoring, and surveillance [17].

There are two kinds of SAR video synthesis methods associated with ViSAR, full aperture
synthesis, which uses a circular SAR mode [13,15], and sub-aperture synthesis, which uses a spotlight
SAR mode [14,16]. In the full aperture synthesis mode, an overlapped processing method is typically
used between SAR video frame updates to obtain high frame rates, since the synthetic aperture time
is very long at relatively low frequencies. Due to its parallel nature and ease of motion compensation,
the backprojection algorithm (BPA) is suitable for use with full aperture synthesis. The frame rate
in this case can be adjusted easily by changing the overlapping ratio between SAR video frames.
Due to the large amount of computation power required, the BPA uses sub-images generated from
sub-apertures, which are partial sections of the full aperture. In the sub-aperture synthesis mode,
the frame rate can be improved by increasing the transmitted frequency and the radar velocity at
a given resolution. When operated as a partial measurement, circular SAR is the same as spotlight SAR.
Therefore, on a circular path, SAR video can be generated from the sub-aperture data, using the polar
format algorithm (PFA) in spotlight SAR mode. However, as the radar velocity increases, the Doppler
bandwidth of the antenna beamwidth increases, thus, azimuth ambiguities occur. These azimuth
ambiguities can be suppressed effectively, using multi-channel azimuth processing techniques.

The X band video SAR system (XWEAR) [13], generates SAR video using the BPA on a circular
path. The NanoSAR, operating in the X band, and the MiniSAR, operating in the Ku band, can also
perform the video SAR function using a circular path. The Defense Advanced Research Projects
Agency (DARPA) is currently developing a ViSAR system capable of achieving a high frame rate at
an extremely high frequency (233 GHz), to replace EO/IR sensors used for fire control on maneuvering
ground targets [15,16]. The Agency for Defense Development (ADD)—a defense research center
in the Republic of Korea—is currently in the process of developing a 94-GHz airborne MIMO video
SAR system, as a possible concept for surveillance sensors in unmanned aerial vehicles (UAVs).

Frequency-modulated continuous wave (FMCW) technology is suitable for small size, lightweight
and low cost systems. Various technologies and algorithms related to FMCW-based SAR systems have
been studied in [11,18,19]. Several FMCW SAR systems have historically been used successfully in ice
measurement, environment monitoring, and three-dimensional applications [20]. The combination
of FMCW technology and ViSAR mode gives birth to a light-weight, cost-effective, high-resolution,
active microwave remote sensing instrument, which is suitable for small platforms such as UAVs [20].

In 1994, Paulraj and Kailath patented the use of multiple antennas for both transmission and
reception in wireless communications, in order to increase channel capacity [21]. This invention has
shown important potential for deployment in various wireless communication applications, as well as
for radar sensor technology. The potential applications of this technology have promoted extensive
research on the use of multiple antennas. The MIMO radar, the combination of multiple antennas
with radar sensors, is currently one of the most interesting topics in radar communities [22]. In this
case, the MIMO function is implemented using a coding technique to apply a pseudo-orthogonal
waveform. This solution is not suitable for SAR operation, because, unlike the point target case,
the received signal consists of distributed targets from large swaths, in the time-frequency domain [23].
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Orthogonal frequency division multiplexing (OFDM) chirp [24,25], short-term shift orthogonal (STSO)
waveforms [26], and OFDM chirp diverse waveforms [27] have been studied with pulsed MIMO SAR.

MIMO technology can be combined with ViSAR systems using orthogonal waveforms for
FMCW radars such as the beat frequency division (BFD) waveform [28], the chirp rate division
waveform [28], and the OFDM (or interleaved OFDM, I-OFDM) chirp waveform [29]. This MIMO
technology can be used for various objectives, for example, the virtual array can be used to increase
the equivalent number of phase centers or receiving channels, for the reduction of the aperture
size. When reconfigurable transmitting (Tx) antennas are employed, MIMO technology can also
be used for multi-mode operation within a single system [12,25], such as along-track interferometry,
ground moving target indication (GMTI), and polarimetric SAR. In this paper, we use MIMO
technology to increase the equivalent number of receive channels of a virtual array, and to reduce
aperture size, by combining it with a ViSAR system. The stop-and-go approximation used in pulsed
SAR is not valid for FMCW SAR. Since an FMCW SAR has a long sweep duration, the motion of
the target object within the sweep must be considered [11]. Doppler shift is more sensitive in OFDM
chirp waveforms [24,25], than in linear frequency modulation (LFM) [29]. It is therefore difficult
to apply Doppler compensation techniques when the sweep duration is long, as in FMCW SAR.
This problem can be solved by applying the BFD FMCW, and then compensating the Doppler shift.
As such, the proposed MIMO ViSAR system is based on this orthogonal FMCW.

A multi-channel azimuth processing technique is utilized for improving the frame rate and
image size of SAR video by suppressing the azimuth ambiguities in the receiving channels.
Applying the multi-channel reconstruction algorithm (MCRA) to the ViSAR system allows SAR
image formation without Doppler ambiguities, which are due to the simultaneous increase of the
Doppler bandwidth and the radar velocity [6–9]. As a result, the frame rate and image size of the SAR
video can be increased. There exist several different HRWS algorithms and MCRAs for reconstructing
a stationary scene. These include the matrix inversion method [6–9], the orthogonal projection
method [9], the maximum signal method [9], the maximum signal-to-ambiguity-plus-noise ratio
(SANR) method [9], the minimum mean-square error (MMSE) method [30], and the improved digital
beamforming (IDBF) method [10]. In addition, in [17], the GMTI function is implemented by extending
the MCRA to the case of imaging moving targets. A method for simultaneously imaging moving and
stationary targets is presented in [31]. This paper focuses on the imaging of stationary targets.

When ViSAR is operated on a circular path, the azimuth and the elevation beamwidth are selected
to be of similar magnitudes for efficient observation of targets [23]. In this case, the beamwidths can
be widened, depending on the requirements of the specific scenario. In the case of a wide beam,
it is difficult to apply the PFA, due to the scene size limitation associated with this algorithm. The BPA
is advantageous for generating SAR image frames at high frame rates in an overlapping fashion due
to its parallel nature. Therefore, the BPA is often applied to ViSAR. However, this algorithm is not
suitable for synthesizing SAR images in real time, on small platforms such as UAV, due to its huge
computational burden and large memory usage. Conversely, the PFA can be applied when using
a narrow beam. In this case, a SAR video can be generated by continuously forming the SAR images
from a sub-aperture that is a part of the full circular aperture that has been selected to satisfy the scene
size limitation of the PFA.

The PFA, which was developed by Walker [32], is the classical algorithm proposed for raw data
processing of spotlight SAR [2]. Although the PFA is significantly faster than the BPA, it approximates
a matched filter response, thereby causing image errors in large scenes. Due to these errors, the PFA
has a scene size limitation. Since the PFA can be implemented easily for a circular and a linear path,
it is possible to operate the SAR system more flexibly. Therefore, video from the proposed MIMO
ViSAR system is formed using the PFA.

In this paper, we derive a signal model based on the MIMO radar signal model, and propose
a novel signal processing method for ViSAR systems suitable for UAV environment operation,
which improves aspects of the system performance, such as frame rate, and image size of the SAR
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video. The proposed ViSAR system focuses on a sub-aperture synthesis method. The new ViSAR
system is based on a FMCW SAR structure that is combined with MIMO and multi-channel azimuth
processing techniques, to make use of the characteristics listed above. MIMO technology is utilized
for increasing the equivalent number of receiving channels in the azimuthal direction, and reducing
the aperture size using a co-array concept with a BFD FMCW. A multi-channel azimuth processing
technique is utilized for improving the frame rate and image size of the SAR video, by suppressing
the azimuth ambiguities in the receiving channels. This paper also provides analyses of the frame rate
and image size of SAR video. The performance of the proposed system is evaluated using an exemplary
system comprised of two Tx and two receiving (Rx) channels. The results of analyses are presented,
and their validity is verified using numerical simulations.

This paper consists of five sections and is organized as follows. We start with an overview of
ViSAR systems and analysis of the frame rate and image size in Section 2. In Section 3, we describe
the MIMO signal model and MIMO video SAR processing steps. In Section 4, an exemplary system
is designed and the numerical simulation results and performance estimation are given. Finally,
conclusions and future opportunities are presented in Section 5.

2. Theory of Video SAR

To gain a better understanding of its operation, the basic concept, the frame rate, and the image
size of the ViSAR system are described in detail in this section.

2.1. Overview

ViSAR is a SAR imaging technique in which the radar is operated in spotlight mode on a circular
flight path, as shown in Figure 1. Radar data is collected on a region of interest, and images
are generated at high frame rates. The ViSAR system can generate electromagnetic SAR images
at frame rates similar to conventional video formats, which are typically 2 ∼ 5 Hz or more.

Figure 1. The collection geometry of video SAR on a circular path. SAR: synthetic aperture radar.

Figure 1 shows the ViSAR geometry when it is operated on a circular path. There are two kinds
of image formation methods used in ViSAR with circular antenna motion: full synthetic aperture
methods [13,15] and sub-aperture methods [14,16]. As the name suggests, in the full synthetic aperture
method, SAR images are generated from the full aperture, which corresponds to the complete circular
path. In this case, an ultimate resolution of λ

4 can be obtained. Another advantage of this method
is that images are acquired over 360 degrees. If a full aperture image is synthesized every time data
is obtained, the frame rate becomes very small. Also, as the BPA is typically used in forming a full
aperture image, the computation power required is very large. Therefore, a fast-factorized BPA is used
in order to increase the frame rate and reduce the computation load, by factorizing the full synthetic
aperture into sub-apertures, and updating the SAR image every time sub-aperture data is obtained.
A higher frame rate can be obtained because the SAR image is updated in a sliding window fashion;
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the update is performed every time sub-aperture data is modified instead of waiting for a full aperture
data update. Conventional ViSAR systems often use this method [13]. Since fast-factorized BPA
updates the image using the sliding window method, it has the disadvantage that an afterimage
is retained in the SAR image. This is also seen with circular SAR when there is a large amount of
overlap between input data. The fast-factorized BPA can achieve a high frame rate, even at relatively
low frequencies [15,16].

The sub-aperture method for circular antenna motion is a method for synthesizing SAR
images that uses only data obtained from the sub-aperture, which is a fraction of the full aperture.
This is the same as operation in spotlight SAR mode, with partial measurement of a circular path.
In this case, it is possible to update the SAR image at a high frame rate without an afterimage. However,
since the SAR image must be synthesized using only sub-aperture data, the synthetic aperture time
must be short to achieve a high frame rate. Therefore, at a given resolution, the transmitted frequency
or the speed of the radar should be high. In addition, as only sub-aperture data is used, this technique
is less restricted by the flight path than the full aperture method. Therefore, it is suitable for applications
such as weapon assignment [15,16]. In this paper, we will focus mainly on the sub-aperture method.

When ViSAR is operated in spotlight SAR mode on a circular path, the direction of the image
changes according to the aspect angle of the SAR image. Because of this, stationary targets appear to
rotate in the SAR video. In this case, it would be convenient to interpret the SAR images as if they
were taken from an optical camera at a fixed point. To do this, a reference angle is defined. SAR images
obtained at different aspect angles are subsequently rotated and aligned to this reference. This reference
angle is called the cardinal direction up (CDU), as shown in Figure 2. θas denotes the aspect angle with
respect to the cardinal direction.

Figure 2. The collection geometry of video SAR on a circular path: top view. CDU: cardinal direction up.

2.2. Frame Rate

The frame rate is one of the most important parameters in the ViSAR system. In ViSAR, the frame
rate is proportional to the inverse of the SAR video frame time, which is a fraction of the synthetic
aperture time (SAT) and therefore can be expressed as:

fv =
1

Tf
(1)
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where Tf is the SAR video frame time, which is defined as:

Tf = FoTa (2)

where Ta is the SAT and Fo is the overlap ratio between SAR video frames. Note that Fo = 1 describes
the non-overlap processing condition, which will be applied throughout this paper.

For spotlight SAR mode (or partial measurement of circular SAR) on a circular path, the synthetic
aperture time for spotlight SAR can be expressed as [2] Equation (2.21)):

Ta =
L
v
=

λRaKa

v · 2ρa sin (αdc)
(3)

where L is the synthetic aperture length, λ is the wavelength at the transmitted frequency,
Ra is the distance from the antenna phase center (APC) to the scene center, Ka is the beam
broadening factor, v is the sensor velocity, ρa is the cross-range resolution, and αdc is the antenna
cone angle, which is the antenna squint angle and is assumed to be 90 degrees throughout this paper.
For the rest of this paper, it is convenient to assume that, in general, the radar is in a broadside condition.
This assumption simplifies the subsequent mathematics. Therefore, the frame rate in the spotlight SAR
mode can be represented as:

fv =
1
Ta

=
v · 2ρasin (αdc)

λRaKa
=

v · 2ρasin (αdc)

cRaKa
fc (4)

where fc is the transmitted frequency, and c is the speed of light. From the above equation,
when the resolution and the distance to the observation point are fixed, the radar velocity or transmitted
frequency should be increased in order to increase the frame rate of the SAR video. However, the radar
velocity is limited by the Doppler bandwidth, which is constrained to avoid azimuth ambiguity.

Figure 3a,b shows an example of the frame rate of the ViSAR system, which is calculated using
Equation (4) at Ra = 1000 m and Ka = 1 with various resolutions and platform velocities. As shown
in Figure 3a, the frame rate is 1.003 Hz at 94 GHz in the W band, which is 9.4 times as high as it is
in the X band—which includes systems such as Global Hawk or NanoSAR—where the frame rate is
0.107 Hz at 10 GHz, according to Equation (4). Therefore, the frame rate can be increased significantly,
by increasing the transmitted frequency. Additionally, a higher radar velocity leads to higher frame
rate. For example, two times higher frame rates can be achieved by increasing the platform velocity
from 20 m/s to 40 m/s; i.e., frame rates are increased from 1.003 Hz to 2.005 Hz, at 94 GHz. However,
in conventional SARs, the radar velocity is limited, to prevent Doppler ambiguities from occurring.
At this time, if the MCRA is applied and the number of receiving channels is increased, Doppler
ambiguities can be eliminated, even if the Doppler bandwidth increases due to the increase in the
radar velocity. Therefore, the radar platform velocity can be increased without increasing Doppler
ambiguities, by increasing the number of receiving channels using the MCRA.

In summary, according to Equation (4), the frame rate in the circular path can be increased
by increasing the transmitted frequency or the platform velocity while maintaining the azimuth
resolution. Pulse repetition frequency (PRF) is proportional to the frame rate, since this is proportional
to the platform velocity. As the platform velocity increases, the increased Doppler bandwidth requires
an increased PRF. Unfortunately, the increased PRF in FMCW SAR systems causes the transmission
time to decrease, which leads to a reduction in detection distance. However, by using a multi-channel
reconstruction algorithm, the image rate can be increased without increasing the PRF at a given
azimuth resolution, by increasing the platform velocity.
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(a)

(b)

Figure 3. Frame rate of video SAR on a circular path: (a) varying resolution at v = 20 m/s; (b) varying
platform velocity at ρa = 0.08 m.

By using the spotlight SAR mode for the proposed MIMO ViSAR system, it is possible to generate
a SAR video with a high frame rate in the circular path. In the system proposed in this paper, in order
to increase the frame rate in the spotlight mode, the transmitted frequency and the radar velocity
are increased using the frame rate relation shown in Equation (4). In this case, a high frame rate
SAR video can be obtained without using the full aperture synthesis method (BPA), which has very
high computational complexity. In particular, the Doppler bandwidth is increased due to the increase
in the radar velocity, and the MCRA algorithm is used to suppress Doppler ambiguities.

2.3. Image Size

This section describes the image size of ViSAR. The image size is limited by the Doppler bandwidth
of the antenna beamwidth. With spotlight SAR, the image size is determined by the beamwidth.
On the other hand, in the case of stripmap SAR, image size is determined by the pulse repetition
interval (PRI) in pulsed SAR operation, or by the bandwidth of the dechirp signal in FMCW SAR
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operation. In the case of a ViSAR mode that is operated using spotlight SAR on a circular path,
the received signal is the dechirped azimuth signal. The Doppler bandwidth is limited by scene size or
antenna beamwidth as follows ([2], p. 44):

Ba ≈ 2vWa sin αdc
λRa

(5)

where θa ≈ Wa
Ra

approximately corresponds to the antenna beamwidth in azimuth and Wa is the azimuth
size of the scene area. The Doppler bandwidth is therefore proportional to both the radar velocity
and the image size in the azimuth. According to the Nyquist theorem, the PRF of conventional
SAR should be greater than the Doppler bandwidth. Figure 4 shows an example of the relationship
between the image size and the Doppler bandwidth described by Equation (5), with v = 20 m/s, and
Ra = 1000 m. Note that, for example, the Doppler frequency of a scatterer located at the radius of 30 m
is 376 (=752/2) Hz in this case. In order to maximize the effective image area, the antenna beamwidths
in the azimuth and elevation directions should be of the same order [23].

Figure 4. Doppler bandwidth limited by scene size.

When the SAR image is synthesized using the PFA, the image size is limited by wave front
curvature, since the algorithm uses the plane-wave approximation. Therefore, these characteristics
should be taken into consideration in the design process. The maximum image size can be increased
by using wave front curvature compensation methods, as in [33–35]. In PFA, the scene size is limited
by range curvature, and residual video phase ([2], Equation (3.130), [36], Equation (B.23)).

(a) Scene size (diameter) is limited by range curvature as follows:

S < 2ρa

√
2Ra

λ
(6)

(b) Scene size is limited by residual video phase (RVP) ([36] (Equation (B.26)), when the chirp rate
is very high, as follows:

S < 2ρa
fc√

kr
π

(7)

where kr is the chirp rate in range.

Figure 5 illustrates an example of the scene sizes generated using the PFA, with Ra = 1000 m and
fc = 94 GHz, constrained by wave front curvature according to Equation (6). Therefore, the antenna
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beamwidth should be determined prior to operation so that it corresponds to the required image size.
The scene size can be converted to beamwidth limit.

Figure 5. Scene size limitation of polar format algorithm (PFA).

3. Signal Processing

This section describes the signal model and signal processing procedure of the proposed MIMO
ViSAR system.

3.1. Geometric Models

The collection geometry of a ViSAR system operating on a circular flight path is shown in Figure 6.
The radar moves along a circular flight path at a constant speed, v. Rb is the radius of the flight path,
Ra is the slant range between the radar and the scene center, Rz denotes the altitude of the aircraft,
θa is the azimuth beamwidth of the antenna, θg is the grazing angle between the antenna beam axis
and the ground plane, and Rt = S/2 is the radius of the scene area.

Figure 6. Collection geometry of video SAR on a circular path.

Figure 7 illustrates the antenna geometry of the proposed MIMO ViSAR system. We suppose that
there are M Tx antennas and N Rx antennas. We assume in this paper that, in general, the virtual array
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formed by the MIMO antenna is a uniform linear array in the azimuth. Therefore, a large co-array can
be realized using the MIMO concept. Also, it is advantageous to increase the number of phase centers
if M and N are greater than two, since M Tx antennas and N Rx antennas give MN antenna elements
in the virtual array.

(a)

(b)

Figure 7. Antenna geometry: (a) The actual array; (b) The equivalent virtual array. Tx: transmitting;
Rx: receiving.

3.2. Signal Model

Two types of signal models are formulated in two different domains: the fast time–slow time
domain and the fast time–azimuth angle domain. First, we derive the signal model in the fast
time–slow time domain. We then translate this model into the fast time-azimuth angle domain. As the
fast time–azimuth angle domain is based on the MIMO radar signal model, it can be used more
conveniently in subsequent signal processing steps.

Figure 8 shows the generic MIMO video SAR model [25]:

Figure 8. Signal model of the generic multiple-input multiple-output (MIMO) video SAR.

In the system model, a broadside, uniform spatial sampling condition is assumed. Therefore,
the PRF is selected such that the following relationship is satisfied [6]:

fp =
v

MN · Δx
(8)

where fp is the sweep repetition frequency, and Δx is the distance between antenna elements of
the virtual array.
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• Signal model in the fast time–slow time domain.

In this sub-section, we define the transmitted waveform of the proposed MIMO ViSAR, and derive
the received signal, the reference signal for dechirping in fast time, and the dechirped signal in the fast
time–slow time domain.

The transmitted waveform vector of the proposed MIMO ViSAR system can be expressed in vector
form as [3]:

sT (t, ta) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ss0 (t, ta)
...

ssm (t, ta)
...

ssM−1 (t, ta)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where the transmitted signal of the m-th Tx antenna, ssm (t, ta), is the BFD FMCW waveform [28] and
can be written in complex form as follows:

ssm (t, ta) = rect
(

t − ta

Td

)
exp

[
j2π ( fc + mΔ fb) (t − ta) + jπkr (t − ta)

2
]

(10)

where ta = nsTd is slow time, ns is the sweep number, t is the time variable, Br and Td are the bandwidth
and sweep duration of the BFD FMCW waveform, respectively, and kr =

Br
Td

, which is the chirp rate of
the waveform.

The beat frequency division offset, which means the frequency offset between the transmitted
signals, should be decided such that the orthogonality within the range swath is maintained as follows:

Δ fb >
Br

(MN − 1)Td

2Rsw

c
(11)

where Rsw is the range swath and c is the speed of light.
In the proposed MIMO ViSAR system, the signal from an ideal point scatterer, received at the th Rx

antenna, is a delayed version of the transmitted signal and can be derived using convolution as [25],

rrn (t, ta) = ∑M−1
m=0 ssm (t, ta) ∗ hnm (t, ta)= ∑M−1

m=0 anmssm (t − τnm (xt, yt, zt) , ta)

= ∑M−1
m=0 anmrect

(
t−ta−τnm(xt ,yt ,zt)

Td

)
· exp

[
j2π ( fc + mΔ fb) (t − τnm (xt, yt, zt)) + jπkr (t − ta − τnm (xt, yt, zt))

2
] (12)

where, anm denotes the complex coefficient representing the scattering and the path loss, hnm (t, ta)

is the ideal channel impulse response between the n-th Rx antenna and the m-th Tx antenna,
and τnm (xt, yt, zt) is the round trip time delay from the m-th Tx antenna to the point target at position
(xt, yt, zt) and from the point target to the n-th Rx antenna.

The reference signal for dechirping in fast time, which is a replica of the transmitted waveform
delayed by the time to the center of the swath, can be written as,

ssre f (t, ta)

= s sm

(
t − τre f , ta

)∣∣∣
m=0

= rect
( t−ta−τre f

Td,re f

)
exp

[
j2π fc

(
t − ta − τre f

)
+ jπkr

(
t − ta − τre f

)2
] (13)

where, τre f is the reference delay time to the center of the swath, and Td,re f is the sweep duration of
the reference signal.
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The dechirp-on-receive technique is widely used with FMCW systems. The dechirped signal that
results from mixing the received signal in Equation (12) with the reference signal in Equation (13) is:

rrn,dc (t, ta) = rrn (t, ta) ss∗re f (t, ta)

= ∑M−1
m=0 anmrect

(
t−ta−τnm

Td

)
· rect

( t−ta−τre f
Td,re f

)
· exp

[
j2π

(
mΔ fb − kr

(
τnm − τre f

))
(t − ta − τnm)

]
· exp

[
−jπkr

(
τnm − τre f

)2
]

· exp
[
−j2π fc

(
τnm − τre f

)] (14)

The round-trip range from the m-th Tx antenna to a point scatterer and to the n-th Rx antenna,
can be expanded and approximated using Taylor series expansion as,

rn,m (t; r0) = c τnm
2 = r0

√
1 +

(
vt − Δxtx,m

r0

)2
+ r0

√
1 +

(
vt − Δxrx,n

r0

)2

≈ r0

√
1 +

(
vta − Δxtx,m

r0

)2
+ r0

√
1 +

(
vta − Δxrx,n

r0

)2

≈ r0

(
1 +

1
2

(
vta − Δxtx,m

r0

)2
)
+ r0

(
1 +

1
2

(
vta − Δxrx,n

r0

)2
)

= 2r0 +
v2

(
ta−

Δxtx,m + Δxrx,n

2v

)2

r0
+

(Δxtx,m − Δxrx,n)
2

4r0

(15)

where, r0 is the closest distance between the antenna and the scatterer, Δxtx,m is the distance between
the reference Tx antenna and the m-th Tx antenna, and Δxrx,n is the distance between the reference
Rx antenna and the n-th Rx antenna. The range can be interpreted as a phase given by:

2π
λ rn,m (t; r0)

=
2π

λ

⎡⎢⎢⎣2r0 +
v2

(
ta−

Δxtx,m + Δxrx,n

2v

)2

r0
+

(Δxtx,m − Δxrx,n)
2

4r0

⎤⎥⎥⎦

= 4π
λ r0 +

2π

λ

v2
(

ta − Δxtx,m + Δxrx,n

2v

)2

r0
+

π (Δxtx,m − Δxrx,n)
2

2λr0

(16)

where λ is the wave length.
After substituting Equation (15) or (16) into Equation (14), the dechirped signal at the n-th Rx

channel can be rewritten as,

rrn,dc (tr, ta)

≈ ∑M−1
m=0 anmrect

(
tr − τnm

Td

)
· rect

(
tr − τre f

Td,re f

)
· exp [j2πmΔ fb (tr − τ0)]

· exp
[
−j2πkr (tr − τ0)

(
τ0 − τre f

)
− jπkr

(
τ0 − τre f

)2
]

· exp

⎡⎢⎢⎢⎣−j
4π

λ
r0 − j

2π

λ

v2
(

ta − Δxtx,m + Δxrx,n

2v

)2

r0
− j

π (Δxtx,m − Δxrx,n)
2

2λr0

⎤⎥⎥⎥⎦
· exp (j2π fdtr) · exp

(
j2π fcτre f

)

(17)
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where, tr = t − ta is fast time, τ0 is the time delay corresponding to r0, and fd is the Doppler
frequency shift within the transmission of one sweep. fd results from the continuous antenna
motion of the platform, since the traditional stop-and-go approximation is not valid for FMCW
SAR [11]. In Equation (17), the first exponential term is the frequency and phase shift due to the BFD
offset. The second exponential term represents the range signal including the RVP component,
which is the second term in the square brackets. The third exponential term is the azimuth phase
history of the proposed MIMO ViSAR. The fourth exponential term represents the Doppler shift
due to continuous antenna motion within one sweep. The fifth exponential term is the phase delay
corresponding to the time delay to the scene center.

Therefore, the vector of a dechirped received signal in the proposed MIMO ViSAR system can
be expressed as:

rR (tr, ta) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

rr0,dc (tr, ta)
...

rrn,dc (tr, ta)
...

rrN−1,dc (tr, ta)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(18)

• Signal model in the fast time–azimuth angle domain.

This model is convenient for understanding the subsequent signal processing steps of the MCRA,
as it is implemented in the fast time–azimuth frequency domain. The model has a close relationship
with the digital beamforming technique mentioned in [7]. The received signal can be expressed using
a steering vector in the azimuth angle domain. This signal model explicitly shows the relationship
between the digital beamforming techniques used for Tx and Rx in the proposed MIMO ViSAR system.

The relationship between the azimuth frequency domain, fa, and the azimuth angle domain, θ,
is as follows [7]:

fa =
2v
λ

sin θ (19)

The azimuth time delay term in Equation (17) can be expressed in the azimuth frequency domain,
using the Fourier transform property as:

bn ( fa) am ( fa) = 2π fa
Δxtx,m + Δxrx,n

2v
(20)

which can be written in the azimuth angle domain using Equation (19) as:

bn (θ) am (θ)

= 2π fa
Δxtx,m + Δxrx,n

2v
= 2π

(
2v
λ

sin θ

)
Δxtx,m + Δxrx,n

2v

=
2π (Δxtx,m + Δxrx,n)

λ
sin θ

(21)

where am (θ) are individual elements of the Tx steering vector, a (θ), and are given by:

am (θ) =
2πΔxtx,m

λ
sin θ (22)

and bn (θ) are individual elements of the Rx steering vector, b (θ), and are given by:

bn (θ) =
2πΔxrx,n

λ
sin θ (23)
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The Tx steering vector, a (θ), can be expressed as an M × 1 vector [3]:

a (θ) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2π
λ Δxtx,0 sin θ

...
2π
λ Δxtx,m sin θ

...
2π
λ Δxtx,M−1 sin θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(24)

and the Rx steering vector, b (θ), can be expressed as an N × 1 vector:

b (θ) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2π
λ Δxrx,0 sin θ

...
2π
λ Δxrx,n sin θ

...
2π
λ Δxrx,N−1 sin θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(25)

Therefore, after applying the Fourier transform in the azimuth frequency domain to Equation (17),
the dechirped signal can be written as:

rRn,dc (tr, fa)

= Fa [rrn,dc (tr, ta)]

= bn ( fa)∑M−1
m=0 anmrect

(
tr − τnm

Td

)
· rect

(
tr − τre f

Td,re f

)
· exp [j2πmΔ fb (tr − τ0)]

· exp
[
−j2πkr (tr − τ0)

(
τ0 − τre f

)
− jπkr

(
τ0 − τre f

)2
]

· exp

[
−j

4π

λ
r0 − j

π (Δxtx,m − Δxrx,n)
2

2λr0

]
· exp (j2π fdtr) · exp

(
j2π fcτre f

)
·am ( fa) · Raz ( fa)

(26)

where Fa [·] is the Fourier transform operator with respect to slow time, and Raz ( fa) is calculated
as follows:

Raz ( fa) = Tasinc (πTa ( fa + kaΔta)) (27)

which is the Fourier transform of the following azimuth time function, which is given by:

raz (ta) = exp [−j2πkaΔtata] (28)

where ka = 2v2

λr0
is the chirp rate in azimuth and Δta is the differential azimuth time between

the scatterer and the scene center. Note that Raz ( fa) represents the result of the azimuth dechirping,
which is implemented by geometrical steering on the circular path.

After substituting Equations (19)–(21) into Equation (26) and changing the notation, we can obtain
the dechirped signal at the n-th Rx channel in the fast time–azimuth angle domain as follows:
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rRn,dc (tr, θ)

≈ bn (θ)∑M−1
m=0 anmrect

(
tr−τnm

Td

)
· rect

(
tr − τre f

Td,re f

)
· exp [j2πmΔ fb (tr − τ0)]

· exp
[
−j2πkr (tr − τ0)

(
τ0 − τre f

)
− jπkr

(
τ0 − τre f

)2
]

· exp
[
−j

4π

λ
r0

]
· exp (j2π fdtr) · exp

(
j2π fcτre f

)
·am (θ) · Raz (θ)

≡ bn (θ)∑M−1
m=0 rRm,dc (tr, θ) · am (θ)

(29)

where rRm,dc (tr, θ) is defined as a function of fast time and azimuth angle at the m-th Tx channel.
Therefore, in the fast time–azimuth angle domain, the dechirped signal in the N Rx channels

of the proposed MIMO ViSAR system, described by Equation (29), can be compactly expressed as
an N × 1 vector using Equations (24) and (25) as follows [3]:

rRR,dc (tr, θ) = b (θ) a (θ)T rRT,dc (tr, θ) (30)

where the dechirped signal from the M Tx channels, described in Equation (30), can be defined
in the fast time–azimuth angle domain as an M × 1 vector:

rRT,dc (tr, θ) =

⎡⎢⎣ rR0,dc (tr, θ)
...

rRM−1,dc (tr, θ)

⎤⎥⎦ =

⎡⎢⎣ r0 (tr)
...

rM−1 (tr)

⎤⎥⎦ Raz (θ) (31)

where rm (tr) is defined as a function of fast time as follows:

rm (tr)

= anmrect
(

tr − τnm

Td

)
· rect

(
tr − τre f

Td,re f

)
· exp [j2πmΔ fb (tr − τ0)]

· exp
[
−j2πkr (tr − τ0)

(
τ0 − τre f

)
− jπkr

(
τ0 − τre f

)2
]

· exp
[
−j 4π

λ r0

]
· exp (j2π fdtr) · exp

(
j2π fcτre f

)
(32)

and Raz (θ) is calculated in the azimuth angle domain from Raz ( fa) using Equation (27). Note that
the N × M MIMO channel matrix is defined as follows [3]:

A (θ) = b (θ) a (θ)T (33)

In the case of orthogonal waveforms, the MIMO steering vector for angle θ is g (θ) ≡ Vec {A (θ)},
where Vec {·} denotes the vectorization operator.

3.3. Signal Processing Procedure

Signal processing for the proposed MIMO ViSAR system proceeds in the following parts:
BFD FMCW demodulation, including Doppler shift compensation, azimuth ambiguity suppression
using the MCRA, and video frame formation, with image rotation to the CDU using the PFA.
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The RVP terms in the dechirped signal described in Equation (32) can be ignored or compensated
using the RVP correction method (“range deskew”) described in [2] as follows:

rm,DRVP (tr)

= anmrect
(

tr−τnm
Td

)
· rect

( tr−τre f
Td,re f

)
· exp [j2πmΔ fb (tr − τ0)]

· exp
[
−j2πkr (tr − τ0)

(
τ0 − τre f

)]
· exp

[
−j 4π

λ r0

]
· exp (j2π fdtr) · exp

(
j2π fcτre f

)
(34)

where the fourth exponential term represents the Doppler shift due to continuous antenna motion
within one sweep, as mentioned earlier.

The continuous antenna motion at the n-th Rx channel is compensated by multiplying
Equation (34) with the Doppler frequency correction factor giving the following expression:

rm,DDOP (tr)

= rm,DRVP (tr) · exp (−j2π fdtr)

= anmrect
(

tr−τnm
Td

)
· rect

( tr−τre f
Td,re f

)
· exp [j2πmΔ fb (tr − τ0)]

· exp
[
−j2πkr (tr − τ0)

(
τ0 − τre f

)]
· exp

[
−j 4π

λ r0

]
· exp

(
j2π fcτre f

)
(35)

where the first exponential term represents the frequency and phase offset due to BFD
FMCW modulation.

Next, BFD FMCW demodulation is carried out at the n-th Rx channel in two processing steps:
frequency shift and phase shift compensation. The frequency shift, which results from the beat
frequency division offset, is compensated by multiplying Equation (35) with the correction factor,
giving the following expression:

rm,BFD1 (tr)

= exp (−j2πmΔ fbtr) · rm,DDOP (tr)

= exp (−j2πmΔ fbtr) exp
[

j2π
{

mΔ fb − kr

(
τ0 − τre f

)}
(tr − τ0)

]
· exp

[
−j 4π

λ r0

]
· exp

(
j2π fcτre f

)
= exp

[
−j2πkr

(
τ0 − τre f

)
(tr − τ0)

]
· exp (−j2πmΔ fbτ0)

· exp
[
−j 4π

λ r0

]
· exp

(
j2π fcτre f

)
(36)

where the second exponential term represents the phase offset due to BFD FMCW modulation.
The phase shift is then compensated by multiplying Equation (36) with the correction factor,

giving the following:

rm,BFD2 (tr)

= rm,BFD1 (tr) · exp (j2πmΔ fbτ0)

= exp
[
−j2πkr

(
τ0 − τre f

)
(tr − τ0)

]
· exp

[
−j 4π

λ r0

]
· exp

(
j2π fcτre f

) (37)

Therefore, using Equation (37), after BFD FMCW waveform demodulation, the signal from
Equation (30) can be expressed as:

rRBFD (tr, θ) = b (θ) a (θ)T MBFD (tr, θ) (38)
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where the BFD FMCW waveform demodulation matrix can be defined using Equations (27) and (37)
as the following M × M diagonal matrix:

MBFD (tr, θ)

≡

⎡⎢⎣ rR0,BFD2 (tr, θ) 0 0

0
. . . 0

0 0 rRM−1,BFD2 (tr, θ)

⎤⎥⎦
=

⎡⎢⎣ r0,BFD2 (tr) 0 0

0
. . . 0

0 0 rM−1,BFD2 (tr)

⎤⎥⎦ Raz (θ)

(39)

Note that each element of the matrix, rRBFD (tr, θ), represents the signal after BFD FMCW
demodulation of the corresponding elements of the virtual array.

Following a range Fourier transform of Equation (38), the N × M range compression output
matrix can be obtained as follows:

RRRC ( fr, θ) =
∫ ∞

−∞
rRBFD (tr, θ) e−j2π fr tr dtr (40)

where the nm-th element of this matrix is the Fourier transform of the dechirped transmitted signal
vector, with respect to fast time, as shown in Equation (38) as follows:

RRRC,nm ( fr, θ)

= Fr [rRm,BFD2 (tr, θ) bn (θ) am (θ)]

= Fr

[
exp

[
−j2πkr

(
τ0 − τre f

)
(tr − τ0)

]]
· exp

[
−j 4π

λ r0

]
· exp

(
j2π f0τre f

)
· Raz (θ) · bn (θ) am (θ)

= Tdsinc
(

πTd

(
fr + kr

(
τ0 − τre f

)))
· exp (−j2πτ0 fr)

· exp
[
−j 4π

λ r0

]
· exp

(
j2π fcτre f

)
· Raz (θ) · bn (θ) am (θ)

(41)

where Fr [·] is the Fourier transform operator with respect to fast time. Using the fast time relationship,
tr = Td

Br
fr, and the range relationship, r = cTd

2Br
fr, we can define the point spread function in range

as follows:
δr (r) ≡ Tdsinc (πTd fr)| fr=

2Br
cTd

r (42)

It is also assumed that all targets exist only within the range swath. The MN × 1 range
compression vector, which is output from the virtual array, is given from Equation (40) as [3],

w ( fr, θ)

≡ Vec {RRRC ( fr, θ)}

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w0 ( fr, θ)
...

wl ( fr, θ)
...

wMN−1 ( fr, θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(43)
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Using Equations (19), (41) and (42), this equation is represented in the range-azimuth frequency
domain, (r, fa), as:

w (r, fa)

= δr (r − (r0 − Ra)) · exp
(
−j2π 4Brr0

c2Td
r
)

· exp
[
−j 4π

λ (r0 − Ra)
]
· Raz ( fa) · g ( fa)

(44)

This equation represents MN channel data of the virtual array formed by BFD
FMCW demodulation described above, without taking into account the azimuth ambiguities.
When the azimuth ambiguities are considered, the signal from the MN virtual elements can
be expressed as an MN × 1 vector, using Equation (44), as follows [9]:

c (r, fa) =
{

∑MN−1
l=0 δr (r − (r0 − Ra)) · exp

(
−j2π 4Brr0

c2Td
r
)
· exp

[
−j 4π

λ (r0 − Ra)
]

·Raz
(

fa + l fp
) · Φ

(
fa + l fp

)} · 1MN
(45)

where l = 0, · · · , MN − 1 is the ambiguity number, and 1MN =
[

1 1 · · · 1
]T

is the vector of
MN ones. The MN × MN channel phase delay matrix is a diagonal matrix whose elements can
be defined as, (Φ ( fa))k,k = gk ( fa), where gk ( fa) is k-th element of the MIMO steering vector, g ( fa).
In Equation (45), we assume ideal and identical patterns for all antennas. This equation is included
here for completeness of the signal processing procedure. The measured MN × 1 multi-channel signal
vector is equal to:

z (r, fa) = c (r, fa) + n (r, fa) (46)

where n (r, fa) is the noise vector. As mentioned in the introduction, there are many reconstruction
algorithms. In the following, the matrix inversion method [9] is described due to the simplicity of its
implementation. The reconstruction filters can be calculated through minimization as [9]:

FM = min
μp( fd)

∥∥zorg (r, ta)− zrec (r, ta)
∥∥ (47)

where ‖·‖ denotes the L2 norm and zorg (r, ta) is the original signal, sampled at a frequency of MN · fp.
The reconstructed signal is obtained as:

zrec
(
r, fa + l fp

)
= μp ( fa) z (r, fa) (48)

where z (r, fa) is the multi-channel data given by:

z (r, fa) =
[

z0 (r, fa) z1 (r, fa) · · · zMN−1 (r, fa)
]T

(49)

and the reconstruction filter can be written as:

μl ( fa) = HH
inv · 1l

MN (50)

where the superscript, H , denotes the Hermitian transpose, and 1l
MN =

[
0 0 · · · 1 · · · 0

]T

is an MN × 1 vector of zeros except for the l + 1th position which contains a one, and,

Hinv ( fa) = H ( fa)
−1 (51)

H ( fa) =
[

g0 ( fa) g1 ( fa) · · · gMN−1 ( fa)
]

(52)

gl ( fa) = Vec
{

A
(

fa + l fp
)}

(53)
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Note that, as mentioned in [7], in the case of a single-platform system or collocated antennas,
the columns of the channel matrix, H ( fa), consist of the steering vectors, gl ( fa).

After reconstruction, SAR video frames are formed by the PFA, with zrec
(
r, fa + l fp

)
as input data.

In the circular path case, image rotation is implemented in the frequency domain using Equation (54),
so that the image is in a fixed orientation. This orientation is called the cardinal direction. Image rotation
is performed in the frequency domain to reduce distortion. Rotation proceeds as follows:

kCDU = R · kFRU (54)

where kCDU is the spatial frequency vector in the cardinal direction up (CDU) coordinate system
(global coordinate), kFRU is the spatial frequency vector in the far range up (FRU) coordinate system
(local coordinate), and the rotation matrix is defined as follows:

R =

[
cos θas sin θas

− sin θas cos θas

]
(55)

where θas is the aspect angle with respect to the cardinal direction, as shown in Figure 2.
A block diagram of signal processing procedures in the proposed ViSAR system is shown

in Figure 9. The first part of signal processing is BFD waveform demodulation, which includes
Doppler compensation. In the second part, the MCRA [6–9] is implemented. In the third part, the PFA
is used for SAR video frame formation, including image rotation in the 2D spatial frequency domain.

Figure 9. Signal processing block diagram for MIMO video SAR with a beat frequency division
FMCW waveform. FMCW: frequency-modulated continuous wave; BFD: beat frequency division.

4. Simulation Results

In this section, we design an exemplary MIMO video SAR system based on BFD FMCW.
The performance of the proposed system is evaluated in terms of peak sidelobe ratio (PSLR), resolution,
image size, and frame rate, using numerical simulations. As well as antenna parameters, other system
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and geometric parameters are chosen according to traditional rules, such as the radar equation, or to
mirror parameters of existing systems.

4.1. System Parameters

The transmitted frequency is selected to get a higher frame rate as dictated by Equation (4).
When considering commercial availability of RF components, 94 GHz is an acceptable frequency
for small UAVs. A one-millisecond sweep duration corresponds to a PRF of 1 kHz. According to
the Nyquist theorem, the PRF of conventional FMCW SAR systems should be greater than the Doppler
bandwidth. However, the PRF of the proposed system can be chosen to be 4000/4 Hz, using four
virtual array channels consisting of two Tx and two Rx channels (M = 2, N = 2). To ensure a slant range
resolution of 0.15 m, a chirp bandwidth of 1 GHz is necessary. The beat frequency offset is selected
to be 2 MHz for an 80-m range swath width or scene size, based on calculations using Equation (11).
The sampling frequency for analog-to-digital conversion (ADC) of the proposed system and a reference
single channel ViSAR system are, 4 MHz, and 2 MHz, respectively.

To achieve the required resolution in the azimuth, the integration angle of the synthetic aperture
should be greater than 1.14°. The integration angle in this simulation is 1.17°. To observe the required
scene size, the transmitting and receiving antenna beamwidth can be chosen to 4°. The distance
between Tx antennas is 0.04 m. The distance between Rx antennas is 0.02 m. System parameters
are selected such that uniform spatial sampling is applied, as defined by Equation (8). The distance
between the phase centers in the virtual array is 0.02 m. In the single channel ViSAR system, the
receiving antenna is identical to the transmit antenna. In the MIMO ViSAR system, the transmitting
and receiving antennas are placed in the azimuth. Table 1 lists technical and geometric parameters of
both systems investigated. The operation velocities of 20 m/s and 40 m/s are selected considering
those of commercial or military UAVs such as NEO S-300 by Swiss UAV [37] and RQ-7 Shadow 200 by
AAI [38]. As mentioned in Section 2.2, two times higher operation velocity of the proposed system is
applied to increase the frame rate due to its proportionality to the platform velocity.

Table 1. System parameters. ViSAR: video synthetic aperture radar.

Parameters MIMO ViSAR Single Channel ViSAR

Transmitted frequency 94 GHz 94 GHz
Bandwidth 1 GHz 1 GHz

Slant range to scene center 1000 m 1000 m
Operation velocity 40 m/s 20 m/s

Scene size 80 m 40 m
Resolution 0.15 × 0.08 m 0.15 × 0.08 m

Radar losses 10 dB 10 dB
Number of transmit apertures 2 1
Number of receive apertures 2 1

Transmit antenna gain 15 dB 15 dB
Receive antenna gain 15 dB 15 dB

Sweep duration 1 msec 1 msec
Sampling frequency 4 MHz 2 MHz

Figure 10 shows an illustration of the block diagram for the proposed MIMO video SAR system,
with two Tx and two Rx channels. As described in Section 3, there are four channels in the equivalent
virtual array in this case.
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Figure 10. System block diagram for MIMO video SAR with beat frequency division FMCW waveform
in the case of two Tx channels and two Rx channels (M = 2, N = 2). DDS: direct digital synthesis;
LO: local oscillator; IF: intermediate frequency (IF); Tx: transmit; ADC: analog-to-digital conversion.

4.2. Point Target Simulation

In this sub-section, a single point target simulation, developed in MATLAB with the system
parameters listed in Table 1, is used to verify the performance of the proposed MIMO ViSAR system
under ideal sensor motion conditions. Figure 11 illustrates the collection geometry, including the target
location, for a circular path simulation. Ideal patterns are assumed for all antennas.

Figure 11. Collection geometry.

The transmitted waveforms are generated using Equation (9) and (10), with Δ fb = 2 MHz,
Br = 1 GHz, and Td = 1 ms. The reference signal for dechirping in fast time was simulated as the delayed
version of the transmitted signal at Tx channel 1 using Equation (13). τre f was set to 6.67 μs in this
simulation, which corresponds to the time delay to the scene center. The signal processing procedures
presented in Section 3.3 are simulated using the scene geometry and the parameters of the MIMO
ViSAR system listed in Table 1.

RVP terms can be ignored for the parameters used in this simulation. The continuous antenna
motion effect for FMCW is compensated using Equation (35).
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BFD FMCW demodulation is shown in Figure 12. Figure 12a,b shows the signal in range-frequency
domain before and after BFD FMCW demodulation, respectively. Note that in Figure 12a, the responses
to different transmitters are separated by the beat frequency division offset, 2 MHz. Due to this
spectral separation, transmitted waveforms from each Tx antenna can be distinguished. BFD FMCW
demodulation is implemented using the frequency shift compensation detailed by Equation (36), and
the phase compensation detailed by Equation (37), as described in Section 3.3.

(a) (b)

Figure 12. Results of BFD FMCW waveform demodulation: (a) before demodulation; (b) after
demodulation.

Since two Tx and two Rx channels are used, there are four channels in the virtual array formed by
MIMO technology after demodulation, as shown in Figure 12. The distance between the phase centers
in the virtual array is 0.02 m. The distance between Tx antennas is 0.04 m, and the distance between Rx
antennas is 0.02 m. In this case, uniform spatial sampling is applied according to Equation (8).

Azimuth spectrum reconstruction is shown in Figures 13 and 14. Figure 13a,b show the azimuth
aliasing spectrum of the first channel (l = 0) in the proposed MIMO ViSAR system before the
reconstruction filters.

(a) (b)

Figure 13. Azimuth spectrum before MCRA: (a) three-dimensional plot; (b) two-dimensional plot at
target. MCRA: multi-channel reconstruction algorithm.
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The azimuth spectrum is completely reconstructed, after applying the reconstruction filters
of the MCRA, μ0 ( fa), μ1 ( fa), μ2 ( fa) and μ3 ( fa), as shown in Equation (50), to the data received
by the four MIMO channels, respectively, and stitching all four output signals together, as shown
in Figure 14. Note that the azimuth frequency axis is expanded to four times its magnitude before
applying the MCRA. The MCRA coherently combines the four channel signals in the azimuth and
reconstructs a 4 kHz Doppler spectrum, which is four times wider than the single channel signal.

(a) (b)

Figure 14. Azimuth spectrum after MCRA: (a) three-dimensional plot; (b) two-dimensional plot
at target.

Figure 15 plots the simulated 2D SAR image (video frame) of the impulse response function of
a point target. Figure 15b shows the contour plot at −3, −6, −9, −30 dB from the peak level.

(a) (b)

Figure 15. SAR image: (a) two-dimensional plot; (b) contour plot (zoomed).

The results of impulse response analysis in the down-range and cross-range are shown
in Figure 16a,b respectively. The resolutions at −3.9 dB from the peak level are 0.149 m in the
down-range, and 0.081 m in the cross-range. The PSLRs are −13.42 dB in the down-range, and
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−13.41 dB in the cross-range. No windows are applied for sidelobe reduction, which means Ka = 1 at
−3.9 dB.

(a) (b)

Figure 16. Impulse response analysis (a) in down-range; (b) in cross-range. PSLR: peak sidelobe ratio

A simulation with multiple synthetic point targets is used to verify the improvements in the frame
rate and the image size achieved by the proposed MIMO ViSAR system, by suppressing azimuth
ambiguities using MCRA. The five targets are located within a maximum of 30 m from the scene center,
as shown in Figure 17.

As shown in Figure 5, the maximum scene size of the PFA, which, according to Equation (6),
is limited by wave front curvature, is 126.7 m, when Ra = 1000 m and fc = 94 GHz. As shown in
Figure 4, the Doppler bandwidth is proportional to the image size. The Doppler bandwidths for
2°-wide azimuth beamwidths are 437 Hz, and 1750 Hz for v = 20 m/s, and 80 m/s, respectively.
The Doppler bandwidths for 4°-wide azimuth beamwidths are 874 Hz, and 1750 Hz for v = 20 m/s,
and 40 m/s, respectively. Therefore, a wider image size requires a wider Doppler bandwidth, which
results in the need for a higher PRF in the FMCW SAR system. According to Equation (5), when the
frame rate and the image size are increased by a factor of two, the Doppler bandwidth is four times
wider. Thus, a four-times-higher PRF is required, which is 4 kHz for the system under investigation.
In this case, increases to both the frame rate and image size can be achieved through the suppression of
Doppler ambiguities in the azimuth spectrum, with the application of the MCRA, while maintaining
the same PRF, which is 1 kHz.

The dechirped azimuth signal, gotten after BFD FMCW demodulation is performed in this
multiple point target simulation, is shown in Figure 18. The SAR signal on the circular path is azimuth
dechirped as described in Section 3.2. Scatterers farther from the scene center have a higher Doppler
frequency, which is proportional to the scene size, according to Equation (27). We observe three
azimuth ambiguities for each target in Figure 18 (l = 1, 2, 3). Due to these azimuth ambiguities,
the ambiguous azimuth frequency of Scatterer E is measured as 248.3 Hz, as shown in Figure 18c.
As a result of these errors, the image size of the single channel ViSAR system is limited to 40 m.

After applying the MCRA, azimuth ambiguities are suppressed, as shown in Figure 19.
The unambiguous azimuth frequency of Scatterer E, which is measured as 751.3 Hz, is reconstructed
correctly by the MCRA, as shown in Figure 19c. The other peaks in Figure 19c include the sidelobe
of scatterer A, the sidelobe of scatterer C, and residual azimuth ambiguities due to mismatch
of the azimuth reconstruction model. No windows are applied for sidelobe reduction for clear
visualization the sidelobes.
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Figure 17. Collection geometry and scene geometry.

(a) (b)

(c)

Figure 18. Simulation results before MCRA: (a) three-dimensional plot; (b) two-dimensional plot;
(c) azimuth frequency cut at Scatterer E.
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(a) (b)

(c)

Figure 19. Simulation results after MCRA: (a) three-dimensional plot; (b) two-dimensional plot;
(c) azimuth frequency cut at Scatterer E.

The SAR video frame is shown in Figure 20. The video frame is 80 m in the down-range and
cross-range, which is two times wider than the single channel system. As both the frame rate and
image size are doubled, the azimuth frequency bandwidth is four times bigger than in the single
channel case, as suggested by Equation (5).

Figures 21 and 22 show the SAR video frames before and after image rotation from 20° to 70°, with
a 10° step in aspect angle, in order to recognize the difference between the SAR video frames. Only the
values above −60 dB from the peak level are plotted. As shown in Figure 21, stationary targets appear
to rotate, since the aspect angle changes continuously while the radar moves on a circular path.

Image rotation is implemented using Equation (55). As shown in Figure 22, when viewed
successively, stationary targets appear fixed after image rotation to CDU, even though the aspect angle
changes continuously.
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Figure 20. SAR video frame at aspect angle 0°.

(a) (b) (c)

(d) (e) (f)

Figure 21. SAR video frames before image rotation at aspect angle: (a) 20°; (b) 30°; (c) 40°; (d) 50°;
(e) 60°; (f) 70°.

In this case, the frame rate of the SAR video is calculated from Equation (4) as 2.005 Hz when
v = 40 m/s, ρa = 0.08 m, Ra = 1000 m, and fc = 94 GHz. This frame rate is two times higher than
the single channel system, with v = 20 m/s. Note that the platform velocity in the single channel
system is limited to 20 m/s, due to the maximum Doppler frequency limitation dictated by Equation (5).
In summary, the simulations show improved performance of the proposed MIMO ViSAR system
measured by the frame rate and image size of the SAR video, which are two times higher than observed
with a single channel system.
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(a) (b) (c)

(d) (e) (f)

Figure 22. SAR video frames after image rotation at aspect angle: (a) 20°; (b) 30°; (c) 40°; (d) 50°;
(e) 60°; (f) 70°.

5. Conclusions

A novel MIMO ViSAR system and signal processing method were presented. This paper described
theoretical aspects of ViSAR in terms of two important parameters: frame rate and image size. A MIMO
signal model was selected for the proposed system, assuming broadside antenna beam orientation,
and a collocated antenna configuration. The signal processing procedures for generating SAR video
were then proposed.

The proposed system was able to overcome frame rate and image size limitations caused by
azimuth ambiguities, using two notable advanced techniques: the MCRA, which is a multi-channel
azimuth processing technique, and MIMO technology. The MCRA is used to increase the Doppler
bandwidth by suppressing the azimuth ambiguities in multiple azimuth channels. MIMO technology
was used to increase the equivalent number of receiving channels, by forming a virtual array using
BFD FMCW as the orthogonal waveform.

The signal model and the signal processing method took into consideration Doppler compensation,
required for mitigating effects caused by continuous antenna motion in FMCW-based SAR systems.
Since the model used is based on a MIMO signal, it is easy to understand the relationship between
beamsteering techniques for Tx and Rx, and multi-channel azimuth processing techniques.

Simulation results showed that the proposed MIMO ViSAR system and signal processing
method improved performance, as measured by the frame rate and image size of the SAR video.
Further research can be easily extended to multi-mode operation of ViSAR systems with MIMO
technology, for example, InSAR and PolSAR.
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2014; pp. 1–5, doi:10.1109/IRS.2014.6869262.

24. Kim, J.H.; Younis, M.; Moreira, A.; Wiesbeck, W. A novel OFDM chirp waveform scheme for use of multiple
transmitters in SAR. IEEE Geosci. Remote Sens. Lett. 2013, 10, 568–572, doi:10.1109/LGRS.2012.2213577.

25. Kim, J.H. Multipe-Input Multiple-Output Synthetic Aperture Radar for Multimodal Operation. Ph.D. Thesis,
Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2011.

26. Krieger, G. MIMO-SAR: Opportunities and pitfalls. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2628–2645,
doi:10.1109/TGRS.2013.2263934.

27. Wang, W.Q. Multi-Antenna Synthetic Aperture Radar; CRC Press: Nottingham, UK, 2013, ISBN:978-1-
4665-1051-7.

28. De Wit, J.; Van Rossum, W.; De Jong, A. Orthogonal waveforms for FMCW MIMO radar. In Proceedings
of the 2011 IEEE Radar Conference (RADAR), Kansas City, MO, USA, 23–27 May 2011; pp. 686–691,
doi:10.1109/RADAR.2011.5960625.

29. Cheng, P.; Wang, Z.; Xin, Q.; He, M. Imaging of FMCW MIMO radar with interleaved OFDM waveform.
In Proceedings of the 2014 IEEE 12th International Conference on Signal Processing (ICSP), Hangzhou, China,
19–23 October 2014; pp. 1944–1948, doi:10.1109/ICOSP.2014.7015332.

30. Sikaneta, I.; Gierull, C.H.; Cerutti-Maori, D. Optimum signal processing for multichannel SAR:
With application to high-resolution wide-swath imaging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6095–6109,
doi:10.1109/TGRS.2013.2294940.

31. Li, X.; Xing, M.; Xia, X.G.; Sun, G.C.; Liang, Y.; Bao, Z. Simultaneous stationary scene imaging and ground
moving target indication for high-resolution wide-swath SAR system. IEEE Trans. Geosci. Remote Sens. 2016,
54, 4224–4239, doi:10.1109/TGRS.2016.2538564.

32. Walker, J.L. Range-Doppler imaging of rotating objects. IEEE Trans. Aerosp. Electron. Syst. 1980, 16, 23–52,
doi:10.1109/TAES.1980.308875.

33. Doren, N.; Jakowatz, C.; Wahl, D.E.; Thompson, P.A. General formulation for wavefront curvature correction
in polar-formatted spotlight-mode SAR images using space-variant post-filtering. In Proceedings of the
IEEE International Conference on Image Processing, Santa Barbara, CA, USA, 26–29 October 1997; Volume 1,
pp. 861–864, doi:10.1109/ICIP.1997.648102.

34. Jakowatz, C.V., Jr.; Wahl, D.E.; Thompson, P.A.; Doren, N.E. Space-variant filtering for correction of
wavefront curvature effects in spotlight-mode SAR imagery formed via polar formatting. In Proceedings of
the International Society for Optics and Photonics (AeroSense’97), Orlando, FL, USA, 21 July 1997; pp. 33–42,
doi:10.1117/12.281576.

35. Doren, N.E. Space-Variant Post-Filtering for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode
SAR Imagery; Technical Report; Sandia National Labs.: Albuquerque, NM, USA; Livermore, CA, USA, 1999.

36. Jakowatz, C.V.; Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Thompson, P.A. Spotlight-Mode Synthetic Aperture
Radar: A Signal Processing Approach: A Signal Processing Approach; Springer Science & Business Media:
Berlin, Germany, 2012, ISBN:978-0-7923-9677-2.

37. Johannes, W.; Essen, H.; Stanko, S.; Sommer, R.; Wahlen, A.; Wilcke, J.; Wagner, C.; Schlechtweg, M.;
Tessmann, A. Miniaturized high resolution Synthetic Aperture Radar at 94 GHz for microlite aircraft or
UAV. In Proceedings of the 2011 IEEE Sensors, Limerick, Ireland, 28–31 October 2011; pp. 2022–2025,
doi:10.1109/ICSENS.2011.6127301.

38. Cheng, S.W. Rapid deployment UAV. In Proceedings of the 2008 IEEE Aerospace Conference,
Big Sky, MT, USA, 1–8 March 2008; pp. 1–8, doi:10.1109/AERO.2008.4526564.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

100



remote sensing 

Article

Fast and Efficient Correction of Ground Moving
Targets in a Synthetic Aperture Radar, Single-Look
Complex Image

Jeong-Won Park 1, Jae Hun Kim 2 and Joong-Sun Won 2,*

1 Nansen Environmental and Remote Sensing Center, 5006 Bergen, Norway; jeong-won.park@nersc.no
2 Department of Earth System Sciences, Yonsei University, Seoul 03722, South Korea; jhkim90@yonsei.ac.kr
* Correspondence: jswon@yonsei.ac.kr; Tel.: +82-2-2123-2673

Received: 1 August 2017; Accepted: 28 August 2017; Published: 6 September 2017

Abstract: Ground moving targets distort normally-focused synthetic aperture radar (SAR) images.
Since most high-resolution SAR data providers only offer single-look complex (SLC) data rather
than raw signals to general users, they need to apply a simple and efficient residual SAR focusing
to SLC data containing moving targets. This paper presents an efficient and effective SAR residual
focusing method that is practically applicable to SLC data. The residual Doppler spectrum of the
moving target is derived from a general SAR configuration and normal SAR focusing. The processing
steps are simple and straightforward, with a limited size of the processing window, e.g., 64 × 64.
Application results using simulation data and actual TerraSAR-X SLC data with a speed-controlled
vehicle demonstrate the effectiveness of the method, which particularly improves the −3 dB width,
integrated sidelobe ratio, and symmetry of the reconstructed signals. In particular, the azimuthal
symmetry becomes seriously distorted when the target speed is higher than 8 m/s (or 28.8 km/h),
and the symmetry is well recovered by the proposed method.

Keywords: SAR; ground moving target; single-look complex data; Doppler spectrum; residual focusing

1. Introduction

The imaging characteristics of ground moving targets using synthetic aperture radar (SAR) have
been well known since the early stages of SAR development [1,2]. Ground moving objects in SAR
single-look complex (SLC) images are typically characterized by three features: target displacement in
the azimuth dimension and range walking according to the range component of the ground target
velocity, azimuth image blurring (mainly due to the azimuth component of velocity and the range
component of acceleration), and residual Doppler centroid. While these features distort SAR images,
they have been exploited as ground moving target indicators (GMTIs) to retrieve the target’s velocity [3].
Thus, the main concerns related to ground moving objects are twofold: the detection of a moving target
within an SAR image, and the estimation of physical parameters such as velocity or original location.
Numerous algorithms have been proposed for GMTI, and most of them are based on sensing the
difference in Doppler parameters between the moving object [4–8] and the fixed clutter or on detection
by focusing [9–16]. For more efficient detection of ground moving targets, the theory and systems for
the along-track interferometry (ATI) also have been extensively researched [13,17–25]. Bistatic ATI
SAR systems have recently gained growing popularity [26–28].

While the SAR imaging characteristics are exploited for the GMTI, precise focusing remains an
important issue, especially as the resolution of SAR images becomes ever higher. Various focusing
methods for SAR have previously been developed, but most of them are based on raw signal
processing [9,12], and recently, many have involved the keystone transformation [29–31]. Although
several SAR focusing algorithms have been developed for ground moving targets, raw signals rather
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than single-look complex (SLC) data are required in most cases. However, it is not practical for general
users to process raw signals because the raw signal data acquired by most current high-resolution
SAR systems are not provided to users, mainly because of their complexity. Thus, it is necessary
for general users to apply a residual focusing to SLC data rather than the raw signals. This study
proposes a simple and straightforward method of residual focusing for ground moving targets that is
practically applicable to SLC data by general users. Generally, there are two types of ground moving
targets: targets moving in groups such as ocean currents and waves, and isolated small but fast-moving
targets such as moving ships or cars. The proposed method is particularly applicable for the latter
type, based on the point-target spectrum in the 2D frequency domain. The residual Doppler phase in
the normally-focused SLC data is to be elaborately formulated and discussed. This paper presents
formulae related to the residual Doppler spectrum caused by ground moving targets after azimuth
and range compression, and proposes a simple and straightforward method for residual focusing
of SLC images based on the derived formulae. The derived residual Doppler spectrum accounts for
target distortion by the asymmetry of the compressed signals as well as image blurring. For evaluation
and demonstration of the performance, the algorithm is applied to simulated data and TerraSAR-X
SLC data in which a speed-controlled vehicle is imaged.

The advantages of the proposed method are twofold. First, the residual focusing is based on
the derived formulae of the Doppler spectrum after image formation, which implies that targets can
be precisely reconstructed in terms of main-to-sidelobe ratio and symmetry. Second, the method is
simple and practical because only SLC data of high-resolution SAR systems (rather than raw signal
data) are normally provided to general users. A processing window for each ground moving target
is relatively small (few tens of pixels) because the image is already focused. This maximizes the
computational efficiency and minimizes the distortion of neighboring stationary objects. In this paper,
Sections 2 and 3 describe the derivation of the residual Doppler spectrum after azimuth and range
compression and the processing tactics. Section 4 presents the application results that demonstrate the
efficiency and effectiveness of the residual focusing in terms of the −3 dB width, integrated sidelobe
ratio, and symmetry of the focused signals. Finally, the discussion and conclusions follow in Sections 5
and 6, respectively.

2. Correction Formula for SAR SLC data

2.1. Phase Effects of a Moving Target in 2D Frequency Domain

The received signal from a ground point target in a monostatic SAR configuration after
demodulation is as follows [32]:

sr(t, τ) = rect
(

τ

Ta

)
· st

(
t − 2R(τ)

c

)
· exp

{
−i2π f0

2R(τ)
c

}
(1)

where st( ) is the transmitted signal, R( ) is the slant range distance, f0 is the carrier frequency, c is
the speed of light, Ta is the length of full aperture time, and t and τ are the range time (or fast-time)
and azimuth time (or slow-time), respectively. In general the amplitude modulation is described by
two-way antenna pattern; however, since our interest here is the phase component of the returned
signal, the amplitude component in Equation (1) is neglected without losing generality. The point-target
spectrum of a stationary ground object in the 2D frequency domain is as follows [32,33]:

Sr,ST( f , fτ) ≈ St( f ) · rect
(

fτ

Ba

)
· exp

{
−i2π

2R0

c

√
( f + f0)

2 − c2

4V2 f 2
τ

}
(2)

where St( ) is the Fourier transform of st( ), R0 is the range distance at the closest approach, V is the
effective antenna velocity along the azimuth direction, Ba is the full aperture bandwidth, and f and fτ

are the range frequency and azimuth (or Doppler) frequency, respectively.
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Let us consider a ground moving object now. Figure 1 shows an imaging geometry of SAR to a
ground object with a Cartesian coordinate (x, y, z). x, y, and z axes are with the azimuth direction, the
zero-Doppler ground range direction, and the normal to the earth at the antenna position, respectively.
For a space-borne imaging scenario, the use of earth ellipsoid model is more appropriate. However
for describing the time-varying distance of a moving object during short observation time (less than
1 second for the stripmap mode), the real imaging geometry can be approximated by plane-earth
geometry. The time-varying distance, R(τ), from a ground target located in (0, y0, 0) at τ = 0 to the
antenna, changing with a velocity of v0 =

(
vx, vy, 0

)
and an acceleration of a0 =

(
ax, ay, 0

)
, is given

as follows:

R(τ; R0) =

√
H2 +

(
Vτ − vxτ − ax

2 τ2
)2

+
(

y0 + vyτ +
ay
2 τ2

)2

≈
√

R2
0 +

(
1 − 2 vx

V +
ay
2

y0
V2

)
V2τ2 + vy

y0
R0

τ

≡ Rm(t, τ)− λ
2 ατ

(3)

where Rm(τ; R0) =
√

R2
0 + V2

mτ2, V2
m = V2

(
1 − 2 vx

V +
ayy0
2V2

)
, α = −2 vy

λ
y0
R0

, λ is the wavelength, H is

the altitude of antenna, and R0 =
√

H2 + y2
0 in the given imaging geometry. Thus, the returned signal

from a ground moving target in signal space is

sr,MT(t, τ) ≈ rect
(

τ

Ta

)
· st

(
t −

(
2Rm(τ)

c
− α

f0
τ

))
· exp

{
−2π f0

2Rm(τ)

c

}
· exp{+i2πατ} (4)

The point target spectrum in the range frequency-azimuth time domain is given by

Sr,MT( f , τ) ≈ St( f ) · rect
(

τ

Ta

)
· exp

{
−i2π

2Rm(τ)

c
( f0 + f )

}
· exp

{
+i2π

α

f0
( f + f0)τ

}
(5)

The range walk due to the moving target is expressed by the last phase component in Equation (5)
and a modification of the relative antenna velocity, V → Vm , in Rm(τ) of the first phase component,
which in turn affects the Doppler slope. Then, the moving target in the 2D frequency domain can be
obtained from Equation (2) by replacing the Doppler frequency, fτ , with [ fτ − α(1 + f / f0)] and the
effective velocity, V, with Vm:

Sr,MT( f , fτ) ≈ St( f ) · rect
(

fτ − α(1 + f / f0)

Ba

)
· exp{−i2πΦ( f , fτ)} (6)

where

Φ( f , fτ) = 2R0
c

√
( f + f0)

2 − c2

4V2
m

[
fτ − α

(
1 + f

f0

)]2

= 2R0
λ

√(
1 + f

f0

)2 − λ2

4V2
m

[
fτ − α

(
1 + f

f0

)]2
(7)

Applying Taylor expansion of Φ( f , fτ) by f
f0

up to second order results in a simplified form
as follows:

Φ( f , fτ) ≈ 2R0
λ

{
am( fτ ; α) + 1

am( fτ ;α)
f
f0
− 1

2
1

a3
m( fτ ;α)

(
λ2

4V2
m

)
f 2
τ

(
f
f0

)2
}

+ 2R0
λ

{
α·( fτ−α)
am( fτ ;α)

(
λ2

4V2
m

)
f
f0

} (8)

where am( fτ ; α) =
√

1 − λ2

4V2
m
( fτ − α)2. Compared with the stationary target case in Equation (2), the

terms with α and Vm that are involved distort the point target spectrum of a ground moving target. It is
necessary to compensate these terms when fine-tuning the SAR image of each ground moving target.
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Figure 1. A stripmap synthetic aperture radar (SAR) observation geometry for a ground moving object.

2.2. The Residual Phase Removal in the SAR SLC Image

Since the SAR SLC image, rather than raw signals, is usually provided to general users, it is
practical to consider phase compensation in SLC data. The SAR SLC data is formed by a series of
processing steps, including range-curvature-migration correction (RCMC), azimuth compression, and
the secondary range compression. These three processing steps for a point target can be modeled as
multiplication by the complex conjugate of the following function [33]:

H( f , fτ) = exp

{
−i2π

2R0

λ

(
a( fτ) +

1
a( fτ)

(
f
f0

)
− 1

2
1

a3( fτ)

(
λ2

4V2

)
f 2
τ

(
f
f0

)2
)}

(9)

where a( fτ) =
√

1 − λ2

4V2 f 2
τ . The first term represents the transfer function of the azimuth chirp, the

second that of the RCMC, and the last that of the secondary range compression [33,34]. Then, the
compressed point target spectrum after compensating Equation (9) from Equation (6) in the 2D point
target spectrum is given by

C1( f , fτ) = Sr,MT( f , fτ) · H∗( f , fτ)

= rect
(

f
Br

)
· rect

(
fτ−α(1+ f / f 0)

Ba

)
· exp{−i2πΦres( f , fτ)} (10)

where

Φres( f , fτ) =
2R0

λ

(
λ2

4V2
m

)
α ·
(

fτ − α

(
1 +

f
f0

))
+ Φ1( fτ) + Φ2( f , fτ) + Φ3( f , fτ) (11)

when the high-order terms are neglected. The first residual phase, Φ1( fτ), stands for the residual
azimuth chirp,

Φ1( fτ) = − 2R0
λ

(
vx
Vm

− ay
4

y0
V2

m

)
f 2
τ

≈ − 2R0
λ

(
vx
V − ay

4
y0
V2

)
f 2
τ

(12)

The second residual phase, Φ2( f , fτ), is for the range shift and a coupling between the two
frequencies, fτ and f ,

Φ2( f , fτ) =
2R0

λ

{(
1

am( fτ ; α)
− 1

a( fτ)

)
+

1
am( fτ ; α)

(
λ2

4V2
m

)
α fτ

}
·
(

f
f0

)
(13)
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Finally, the third residual phase, Φ3( f , fτ), is for the residual range compression that is usually
very small unless the target’s velocity is very high:

Φ3( f , fτ) = −2R0

λ

1
2

{
1

a3
m( fτ ; α)

(
λ2

4V2
m

)
α2
}
·
(

f
f0

)2
(14)

Among the three residual phases in Equations (12)–(14), the second term, Φ2( f , fτ), is the most
complicated and has not been well reviewed while the first term, Φ1( fτ), has the biggest effect.
Φ2( f , fτ) in Equation (13) is composed of two terms: a slight range-time shift due to Vm as in
Equation (3) and a coupling term between Doppler frequency, fτ , and range frequency, f .

The effect of the latter is particularly significant. The coupling between the two frequencies in
Equation (13) projects the azimuth-compressed signals on a slanted line rather than a horizontal line in
the range frequency-azimuth time domain, as shown in Figure 2.

 

Figure 2. Schematic of the effect of residual phase Φ2( f , fτ) in the range frequency-azimuth time
domain. The coupling between the range and azimuth frequencies projects the azimuth-compressed
signals on a slanted line rather than a horizontal line in the range frequency-azimuth time domain.
The slope largely depends on α (or vy ); consequently, the ground object with large range speed suffers
a significant distortion.

The inverse Fourier transform along the horizontal range frequency results in asymmetric
compressed signals in both the azimuth and range dimensions, as well as dispersion of the signal
power to some extent. The steeper the slope is, the more serious the distortion of the compressed
signal is. The slope largely depends on α (or vy); consequently, the ground object with large range
speed suffers a significant distortion. After removal of the three residual phases, the refocused 2D
point target spectrum in Equation (10) becomes as follows:

C2( f , fτ) = C1( f , fτ) · exp{+i2πΦres( f , fτ)}
= rect

[
f

Br

]
· rect

[
fτ−α(1+ f / f0)

Ba

]
· exp

{
−i2π α

Ka

[
f − α

(
1 + f

f0

)]} (15)

where Ka = 2R0
λ

(
λ2

4V2
m

)
≈ λR0

2V2 , which is called the Doppler slope. The point target spectrum in the
range frequency-azimuth time domain after inverse Fourier transformation of the Doppler frequency
is given by

C2( f , τ) = rect
[

f
Br

]
· sin c

[
Ba ·

(
τ − α

Ka

)]
· exp

(
+i2πα

(
1 +

f
f0

)
· τ

)
(16)
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It is necessary to remove the last term in the range frequency-azimuth time domain by multiplying
with the complex conjugate of following term:

K( f , τ) =

{
exp

[
+i2πα ·

(
f
f0

)
· τ

]}
(17)

This process can also be achieved by applying the Keystone transform [35–37]. This transform
is very effective if applied to raw or range-compressed signals [29–31,38], but this process is not a
computationally efficient method. Instead of raw signals, here we consider the SLC data with which
both azimuth and range compression are already performed, and unlike the rectangular function in
Equation (1), the extension of the sinc function in the azimuth dimension in Equation (16) is very
limited. Thus, the simple multiplication of Equation (17) would be sufficient to remove the coupling of
the azimuth and range frequencies in the SLC data. After inverse-Fourier transformation (F−1) of the
range frequency, the fine-tuned SLC image finally becomes as follows:

c3(t, τ) = F−1(C2( f , τ) · K∗( f , τ))

= sin c[Brt] · sin c
[

Ba ·
(

τ − α
Ka

)]
· exp{+i2πατ} (18)

Now, the resulting effect of a ground moving target is an azimuthal shift by α/Ka and a linear
phase of α in the fine-tuned SLC image. Recall that α = −2 vy

λ
y0
R0

is a function of the range velocity of
the target, the incidence angle, and the wavelength.

3. Residual Focusing of SAR SLC Data

A fine-tuning of the not fully focused ground moving targets in an SLC image can be achieved by
removing the three phases in Equations (12)–(14) in the 2D frequency domain, followed by applying
Equation (17) in the range frequency-azimuth time domain. Since the detection of moving targets
is beyond the scope of this paper, detection tactics are not discussed herein. To apply the residual
focusing, it is necessary to estimate the velocity and acceleration components of an individual target.
To retrieve velocity and acceleration components for isolated fast moving targets in SLC data, it is
necessary to estimate Doppler parameters from a single range bin, or at most, a few range bins. There
are already a wide variety of detection and Doppler parameter estimation techniques, and therefore a
short review of prevalent techniques is presented.

Classical approaches assume that the Doppler shift of a moving target is directly observable in
the returned SAR signals [1]. Space-borne SAR configuration needs to consider additional factors
including Earth curvature and rotation [39]. For SAR data from the single-channel system, Doppler
filtering must be used first to reduce contributions from clutter [40]. A Doppler-filtering method
that requires a pulse-repetition frequency (PRF) four times larger than the clutter bandwidth was
proposed [10]. The amplitude and phase modulations of the returned signal in the Fourier domain
can be utilized to detect and resolve multiple moving targets, and the skew of the received signal in
the 2D frequency domain was also discussed to resolve an aliased range velocity component [5].
Exploiting the image-blurring effect caused by the along-track velocity component, a Doppler
rate detector was proposed and its performance was compared with that of the two-channel ATI
and the DCPA method in [7]. Among the various approaches, the joint time-frequency analysis
(JTFA) has been popularly applied to measure object motion directly from a chirp signal and was
successful in retrieving the velocity by estimating the Doppler frequency rate of a moving object in the
time-frequency domain [40–42]. The JTFA demonstrated the potential to extract a time sequence of
motion parameters [43,44]. It is possible to measure the velocity of a ground moving vehicle with an
error of less than 5% for a velocity higher than 3 m/s [45]. When the target contains prominent high
backscatters, an iterative approach for searching maximum image contrast can be used [46,47].

In addition to the problem of a low signal-to-clutter ratio, the fundamental limitation of
single-channel SAR is that the Doppler shift must be greater than the clutter Doppler spectrum
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width, which can be achieved using a high pulse-repetition frequency (PRF) [11]. To overcome the
shortcomings of single-channel SAR systems, multi-channel SAR systems using two or more antenna
displaced in the along-track direction have become popular. In multi-channel approaches, moving
target detection and motion parameter estimation can be achieved by adopting so-called clutter
cancellation techniques. The main classes include the displaced phase center antenna (DPCA) [48–50],
the ATI method [48,49,51], and raw data-based methods such as space-time adaptive processing
(STAP) [50,52,53]. The DPCA algorithm directly subtracts the complex signals received at two
different phase centers, while the ATI computes the phase difference of the two channels by exploiting
interferometric techniques. In both approaches, clutter signals are cancelled out to remain signals
contributed by moving objects. In STAP, instead of subtracting two signals on each range-azimuth pixel
dimension, statistical approaches are used in order to suppress the clutter and noise. In general, STAP
is the superior scheme when raw data are available, since it has additional processing gain (maximizing
SNR) over optimized SAR processing. The acceleration component can also cause significant bias on
the estimation of along-track velocity [54], including acceleration as an additional unknown parameter,
leading to insufficient degrees of freedom to solve for the other parameters in a two-channel SAR
system. However, its influence in the case of a space-borne SAR geometry is usually very small when
compared with the case of an airborne SAR geometry, such that the target’s motion is assumed to be
constant in most cases of the SAR-GMTI problem.

In summary, there is a wide variety of approaches for Doppler parameter estimation. Since the
efficiency of each method largely depends on the system parameters and configuration, one should
carefully examine the properties of a given system and data. Once the Doppler parameters and
velocity are retrieved from a given SAR SLC data, the next step is to apply the residual focusing.
As described in the previous section, the proposed algorithm consists of two phase-multiplications in
two different domains. Figure 3 shows the entire operations in the proposed correction scheme. Note
that the residual phase, Φres( f , fτ), and the range-azimuth frequency coupling, K( f , τ), in Figure 3
correspond to the Equations (11) and (17), respectively. Since the data has already been azimuth and
range compressed, and the signal bandwidth of the moving target remains unchanged after taking
a subset in the time domain, it would be sufficient to use a limited window size for the processing.
From various tests, a sub-window of 64 × 64 is large enough for high-resolution, X-band SLC data
from space-borne SAR such as TerraSAR-X and COSMO-SkyMed.

 

Figure 3. The operations in the proposed correction algorithm, which consists of two phase-multiplications
in two different domains.
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4. Simulation and Application Results

4.1. Simulation Results

Simulation tests have been carried out as follows using the system parameters of the TerraSAR-X
stripmap mode (Table 1). First, SAR raw signals were simulated with a point target which moved
at 45◦ oblique to the azimuth and range directions with various velocities ranging from −30 m/s
to +30 m/s with 1 m/s interval. The motion of the point target was assumed to be constant, i.e.,
without acceleration for simplicity, as the effect of acceleration is often insignificant in the case of the
space-born SAR stripmap mode, which has a relatively short azimuth integration time (for instance,
less than 0.6 s for TerraSAR-X). The simulated raw signals were then focused into standard SLC
images using a chirp-scaling algorithm [32]. After detection and Doppler parameter estimation of
each moving target, a sub window of 64 × 64 centered on the moving target was extracted and
then corrected by applying the proposed method. To evaluate the performance of the method, we
substituted the exact motion parameters into the fine-tuning filter, which means that there was no error
in the detection and Doppler parameter estimation scheme. Finally, various quality parameters were
measured from both the original and fine-tuned SLC images in order to evaluate the improvement
achieved by the proposed refocusing method. Three parameters are typically used for SAR point target
quality assessment: −3 dB width, integrated sidelobe ratio (ISLR), and symmetry. The −3 dB width
is commonly used for spatial resolution estimation. Since the reconstructed signal from a moving
point target is asymmetrical and the side lobe is difficult to determine, ISLR is used instead of the peak
sidelobe ratio (PSLR). Figure 4a,b show −3 dB widths of both directions with varying moving speeds
for the point target. Before applying the fine-tuning, the spatial resolution in the azimuth direction
degrades rapidly as the target speed increases, while that in the range direction shows no significant
changes. After applying the fine-tuning process, the spatial resolution in the azimuth direction is
significantly improved. There is a small amount of residual broadening in the azimuth direction, which
is proportional to the target speed. The ISLR in Figure 4c,d display the ISLR in both the azimuth and
range directions. The azimuth ISLR increases steeply as the target speed increases up to −3 dB, while
the range ISLR is almost unaffected by the target’s motion. The improvement in the azimuth direction
is significant particularly up to about 8 m/s (or 28.8 km/h).

Table 1. Summary of sensor model parameters used for simulation

Parameter Value

Chirp length 47.17 μm
Range sampling rate 109.88 MHz

Chirp bandwidth 100 MHz
Carrier frequency 9.65 GHz
Antenna length 4.8 m

Effective velocity 7371.1 m/s
Pulse repetition frequency 3815.49 Hz
Slant range to scene center 650.79 km

Indicence angle at scene center 39.24◦
Doppler centroid 0 Hz

Sensor height 513.08 km

Symmetry is a measure of the energy balance of the compressed signal. In order to measure this
quantity, we decomposed the power of the compressed signal P(x) = c3(x) · c∗3(x) into symmetric and
antisymmetric parts as follows:

P(x) =
1
2
[P(x) + P(−x)] +

1
2
[P(x)− P(−x)]

= P+(x) + P−(x)
(19)
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where x is a cell number along range or azimuth, axis centered at 0, which ranges between −N/2 and
N/2 where N is the size of fine-tuning filter. Note that P+(x) and P−(x) are essentially symmetric and
anti-symmetric, respectively. Then, the symmetry can be measured from vector norms (‖ ‖) as follows:

ψ =
‖P+(x)‖

‖P+(x)‖+ ‖P−(x)‖ (20)

which ranges from 0 (fully anti-symmetric) to 1 (fully symmetric). Figure 5 displays the changes
of symmetry in both azimuth and range. As expected, the symmetry also becomes worse as the
target’s speed increases. Unlike the former two measures, the symmetry relies on range velocity.
The simulation with varying speed only in the azimuth component showed no changes in symmetry.
This is based on the fact that the range migration of a scatterer moving in the range direction is
asymmetrical to the closest range distance, while that of a scatterer moving in the azimuth direction
is fully symmetric in a zero-Doppler geometry. It may be of interest to note that all three parameters
change abruptly when the target moves at around 8 m/s. This is nearly coincident with the moment
when the peak power of a focused range cell migrates into the next range cell. This range walk effect is
abrupt and discrete. Since we set the range center of the fine-tuning window to where we observe the
maximum energy of the blurred target in units of integer number, the change in range cell number
leads to inaccurate selection of the range distance, which is required for generating a proper filter.
Consequently, the apparent performance of the algorithm, based on the quality parameters, seems to
be gradually reduced; however, the overall achievement by the fine-tuning filter is sufficiently high to
retrieve the target’s true nature. The maximum error of post-correction in our simulation in the 30 m/s
case was comparable to that of pre-correction at 3 m/s or less.

Figure 4. Simulation results of the −3 dB width and the integrated sidelobe ratio (ISLR) in the
(a,c) azimuth and (b,d) range directions, respectively. The simulation was carried out using system
parameters of the TerraSAR-X stripmap mode (see Table 1). The improvement in the azimuth direction
is significant particularly up to about 8 m/s (or 28.8 km/h).
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Figure 5. Simulation results of (a) azimuth and (b) range symmetry of the reconstructed signals.
While the range symmetry was not seriously affected by the target’s moving speed, the azimuthal
symmetry deteriorated when the moving speed was higher than 8 m/s. The azimuthal symmetry is
well recovered by the proposed method as in (a).

Although the quantitative performance evaluation was carried out using a point target simulation,
a visual interpretation of the correction result for an extended target helps to convey how the image
is restored. Figure 6 shows a simulated aircraft taxiing on the ground. The upper panels show
the normally focused images, and the lower panels show the corresponding fine-tuned images.
The correction results are not only well focused but also shifted a bit in the range direction because of
the correction for the range walk.

 

Figure 6. Simulation results of an extended target with varying velocities. The upper panels are for the
single-look complex (SLC) sub-images processed by a standard synthetic aperture radar (SAR) focusing,
and the lower panels for the fine-tuned images processed by the proposed algorithm. The fine-tuned
images are not only well focused but also shifted a bit in the range direction because of the correction
for the range walk.

4.2. Example of Application to TerraSAR-X Data

Test data were obtained by TerraSAR-X from a speed-controlled vehicle moving on the road
with velocities of −6.6 and −13.8 m/s (or −23.8 and −49.6 km/h, respectively) in the azimuth and
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range directions, respectively. The speed of the vehicle was precisely measured by GPS as well
as speedometer, and was retrieved from the TerrSAR-X data itself by Doppler frequency analysis.
The details of the data used in the test and velocity retrieval process are given in [45]. The application
result is shown in Figures 7 and 8, which demonstrate the effectiveness of the proposed fine-tuning
tactics for high-resolution SAR SLC data.

As seen in Figures 7 and 8, the target movement caused significant energy dispersion (or image
blurring) in the azimuth and range directions, losing the symmetry of the typical sinc function, and
causing a slight shift of peak locations along both the azimuth and range. Image blurring in the azimuth
(see Figures 7a and 9a) has been previously well known, and the improvement of the peak sidelobe
ratio is about 4 dB in this example. In addition to image blurring, asymmetry of the compressed signal
in the azimuth direction is significant, as in Figure 8a. The symmetry value of 0.92 in the azimuth of
the original SLC data is improved to 0.94 after fine-tuning. Also, this resulted in distortion removal of
the target shape. Slight shifts in the peak locations by about 1.1 samples (or 2.13 m) and 0.3 samples
(or 0.65 m) in the azimuth and ground range directions are also noted. The residual range compression
by Equation (14) is, however, not significant in this example because the value of Φ3( f , fτ) is relatively
small compared with those of Φ1( fτ) and Φ2( f , fτ).

Figure 7. Sub-window image and power distribution of (a) the original SLC data and (b) the data after
removing the residual phase. (c) The test was carried out using a speed-controlled vehicle moved
with velocities of −6.6 and −13.8 m/s (or −23.8 and −49.6 km/h, respectively) in the azimuth and
range directions, respectively [45]. Note the improvement of symmetry around the target as well as
improvement of the compression ratio and peak sidelobe ratio by about 4 dB.
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Figure 8. Power profiles crossing the center of the ground moving vehicle along the (a) azimuth and
(b) range directions in Figure 7. Note the improvement in the peak sidelobe ratio by about 4 dB and
that in the symmetry from 0.92 to 0.94 in the azimuth dimension, as in (a). In addition, the refocused
object shifted by about 1.1 and 0.3 samples in azimuth and range direction, respectively.

Besides the speed-controlled target, there were several other moving objects in the same test image.
As an example of the extended target, Figure 9 shows a large ship moving along an oblique to the
azimuth and range direction. Although an in-situ measurement for the movement was not available,
the joint time-frequency analysis [45] was used for the velocity estimation. The estimated velocity
was −5.6 and −5.1 m/s (or −20.1 and 18.4 km/h) in the azimuth and range directions, respectively.
Although the simulation results showed in the previous section indicates that the distortion would
not be serious compared to the case with velocities higher than 8 m/s, the original image and the
corresponding fine-tuned image in Figure 9a,b have notable differences.

Unlike the small object in Figure 7, this target is extended to few tens of pixels, and the radar
reflectivities along the ship orientation look not much changing in the scaled image in Figure 9c.
However, the fine-tuned image in Figure 9d indicates that the ship body actually has a structure with
countable prominent points.

 

Figure 9. A moving ship observed in (a) the original SLC data and (b) the data after removing the
residual phase. The original image size here is 64 by 64 pixels, however, the image was interpolated by
a factor of two in order to show the details. The estimated velocity by using the joint time-frequency
analysis [45] was −5.6 and −5.1 m/s (or −20.1 and −18.4 km/h, respectively) in the azimuth and range
directions, respectively. Although the target speed is low considering the image distortion rapidly
increases with speed higher than 8 m/s as noted in the simulation test, the scaled images, (c,d) show
clear improvement in image focusing.

112



Remote Sens. 2017, 9, 926

5. Discussion

Both simulation and TerraSAR-X results demonstrated the capability of the proposed method
to improve the signal compression of ground moving objects. The improvement is a function of the
target speed and monotonically is increased with the target speed up to 20 m/s. When the target speed
was 7 m/s, the simulated signal in the azimuth direction was improved by 134% and 196% in −3 dB
width and ISLR, respectively. The application to the TerraSAR-X also showed similar results with
an improvement of 193% in −3 dB width for the vehicle whose speed was controlled at an azimuth
velocity of 6.6 m/s. It should also be noted that the improvement of the compression ratio and peak
sidelobe ratio was by about 4 dB. The refocused object was also shifted to the true position by about 1.1
and 0.3 samples in the azimuth and range direction, respectively. Symmetry of the compressed signal
is also important to characterize the target, and the proposed method improved the symmetry by up
to 0.94. Various SAR focusing methods have derived from raw radar signals [9,12], but they are neither
computationally efficient nor practically applicable because of the data distribution policy of most high
resolution SAR data. Among recent publications, the methods in [46,47] deal with a similar topic of
ground moving target imaging. The method in [46] adopted the Stolt interpolation in the 2D frequency
domain. Although the compression ratio of the method was very competitive, the asymmetric sidelobes
were not fully suppressed [47]. A symmetry of 0.94 achieved from the TerraSAR-X results of this study
in Figure 8 showed the superior performance of the proposed method. An improved method was also
proposed by [47], which exploits the parameter sparse representation method and iteration. Image
entropy and symmetry of compressed signals were significantly improved by the method in [47].
As far as the performance of refocusing is concerned, the method in [47] is superior to [46] at the cost of
computational efficiency. The method in [47] reached the state of convergence after about one hundred
iterations which significantly increased computation time.

As discussed before, the main advantages of the proposed method are twofold. First, the proposed
residual focusing is based on the derived formulae of the Doppler spectrum after conventional image
formation. Second, the method is simple and practically applicable to SLC data of high-resolution SAR
systems. Although the proposed method demonstrated the competitive ability of residual focusing, it
does have some limitations. First, the correction formulae in Equations (12)–(14) are approximated
to the second-order terms, and consequently the effects of high-order terms remain to be further
accounted. Second, the final quality of the residual focused SAR image depends on the accuracy of
the Doppler parameters used for processing. The Doppler parameters can be obtained by parameter
estimation from SLC data, which is beyond the scope of this paper. A number of approaches for
Doppler parameter estimation have been developed and typical examples are referred to in [43–45].
One should carefully examine the properties of a given system and data before Doppler parameter
estimation because the efficiency of each method largely depends on the system parameters and
configuration. Third, the coupling of the azimuth and range frequencies in the SLC data described
in Equation (16) and Figure 2 is sensitive to the slope α which is a function of the range velocity of
the target, the incidence angle, and the wavelength. A more sophisticated approach than the simple
phase compensation by Equation (17) might be necessary if a further refinement in range dimension is
required. For this purpose, raw SAR signals rather than SLC data should be involved in the processing.

6. Conclusions

Theoretical formulae were derived for the fine-tuning of ground moving targets in SAR SLC
data and processing tactics were proposed. The proposed fine-tuning significantly improved the
image quality in three aspects: residual compression, the symmetry of the compressed signal in both
the azimuth and range directions, and the slight shift of the peak positions. While various focusing
methods for SAR raw signals have been developed previously, a general approach for SAR SLC data
has not been well investigated. The proposed method is practical for post-processing of SAR SLC data
by general users. The importance of the method lies in the fact that most SAR data provided to general
users are SLC data rather than raw signals. The residual focusing is simple and straightforward,
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based on an elaborately derived residual Doppler spectrum with a relatively small processing window.
Simulation results support that the target’s motion deteriorates image quality particularly in azimuth
in terms of the −3 dB width, ISLR, and asymmetry, and the proposed fine-tuning efficiently restores the
image quality. It may be of interest to note that all three parameters (−3 dB width, ISLR and asymmetry)
change abruptly when the target moves faster than 8 m/s. The application results using TerraSAR-X
and a speed-controlled ground moving vehicle demonstrate the effectiveness of the method without a
heavy computational burden. The residual focusing ideally reconstructs ground moving targets with
particular improvements of the compression ratio and symmetry.
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Abstract: The multi-baseline synthetic aperture radar (SAR) tomography (TomoSAR) system is
employed in such applications as disaster remote sensing, urban 3-D reconstruction, and forest
carbon storage estimation. This is because of its 3-D imaging capability in a single-pass platform.
However, a high 3-D resolution of TomoSAR is based on the premise that the channel imbalance and
antenna phase center (APC) position are precisely known. If this is not the case, the 3-D resolution
performance will be seriously degraded. In this paper, a unified algorithm for channel imbalance and
APC position calibration of a single-pass multi-baseline TomoSAR system is proposed. Based on the
maximum likelihood method, as well as the least squares and the damped Newton method, we can
calibrate the channel imbalance and APC position. The algorithm is suitable for near-field conditions,
and no phase unwrapping operation is required. The effectiveness of the proposed algorithm has
been verified by simulation and experimental results.

Keywords: TomoSAR; multi-baseline SAR; unified algorithm; channel imbalance; APC position

1. Introduction

In recent years, synthetic aperture radar (SAR) tomography (TomoSAR) has become a popular
research topic due to its 3-D imaging capability [1–6]. TomoSAR has been successfully applied in
many application contexts, such as forestry [7,8], 3D urban reconstruction [9,10], and glaciers [11].
The single-pass multi-baseline TomoSAR system has 3D resolution including the height resolving
ability in a single-pass platform because there are multiple channels in the cross-track direction.
However, the Rayleigh resolution in the height direction is very limited due to the limitation of the
baseline length in a single-pass platform. As shown in Equation (25), the Rayleigh resolution of a
TomoSAR system is about 35 m. If super-resolution performance is desired in the height direction, at a
resolution of, say, 5 m, then a super-resolution algorithm must be introduced in that direction so as to
distinguish multiple targets in small intervals within the Rayleigh resolution. Tebaldini [11] concludes
that even a subwavelength accuracy of the antenna phase center (APC) position will hinder the focusing
result in the height direction. The authors of [12] conclude that, when one wants to distinguish multiple
point-like targets with different heights within a slant range-azimuth resolution cell, the requirements
for phase stability or phase calibration accuracy are higher than those for traditional InSAR. Therefore,
if we hope to obtain a super-resolution performance in the height direction, high requirements for the
channel imbalance (also known as amplitude and phase inconsistency) and APC position calibration
are required in a single-pass multi-baseline TomoSAR system.
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Several calibration algorithms have been proposed in recent years. Pardini [13] calibrated the
phase error due to APC position by an algorithm based on a minimum entropy criterion. In [14], Gocho
compensates for the phase screen caused by APC position errors using eigenvalue decomposition
and phase interpolation/extrapolation. However, these two methods cannot obtain the exact APC
position, and they fail to take channel imbalance into account. A phase center double localization
algorithm is proposed by Tebaldini [11,15] to obtain the APC position. However, this method loses
its effectiveness when there is channel imbalance. A different method has been proposed in [16],
which estimates the APC position based on raw data. Such processing seems infeasible for users with
single-look complex (SLC) images only. Regarding the correction of amplitude and phase errors in
multi-channel array systems, Kuoye Han [17] proposes a calibrator-based approach. On the basis
of [17], Xiaolin Yang takes into account both channel imbalance and APC position in [18], but they
failed to decouple the phase errors caused by the channel itself and the APC position. In general,
these calibration algorithms above either do not consider both the channel imbalance and the APC
position or are unable to decouple channel imbalance and the APC position error. In addition, a plane
wave model is used in most of these algorithms. However, even in the far-field condition, the plane
wave model will bring some non-negligible phase error when the ratio of the baseline length to
line-of-sight distance is not sufficiently close to zero [19]. As an example, Figure 6 will show that the
plane wave model brings a non-negligible phase error even in the far-field condition, where b = 0.6 m
and r = 1625 m. Therefore, we use the Fresnel approximation, which assumes that spherical waves can
be approximated by quadratic waves in our signal model.

In this paper, we propose a unified algorithm for the channel imbalance and APC position calibration
of a single-pass multi-baseline TomoSAR system, which can not only calibrate channel imbalance but
can also calibrate the APC position. Features of this algorithm are as follows: (1) the channel imbalance
and APC position can be calibrated individually rather than confusing the phase error caused by the
APC position error with the phase error of the channel itself; (2) the Fresnel approximation is used in the
calibration signal model, which heightens the accuracy of the calibration signal model; and (3) there is no
need for phase unwrapping.

This paper is structured as follows. Section 2 is devoted to establishing a signal model. The proposed
calibration algorithm is described in Section 3. The effectiveness of the calibration algorithm is
validated in Section 4 with a real data set acquired by the array InSAR system [20,21] developed
by the Institute of Electronics, Chinese Academy of Sciences (IECAS). The discussion and conclusions
follow in Sections 5 and 6, respectively.

2. A Signal Model

Supposing that the TomoSAR system is working in side-looking mode, the TomoSAR acquisition
geometry is depicted in Figure 1. Assuming that the number of the APC is N, axes x, y, and z are the
cross-track, azimuth, and height directions, respectively. APC is supposed in the zero Doppler plane
(see Figure 2), where s is the cross-range direction. Let (xn, zn) denote the position of the nth APC;
without loss of generality, we assume that APC1 is at the origin of the coordinate system, that is, APC1
is the reference APC and (x1, z1) = (0, 0). Applying a classical imaging algorithm to the raw SAR
data collected in each channel, we obtain N 2-D SAR images, usually referred to as SLC images. After
some sub-pixel accuracy coregistration to the reference channel, and under the Born weak-scattering
approximation, the focused complex value of an azimuth-range pixel (y0, r0) of the nth channel is [1]:

�
γn(y0, r0) =

�
dydr f (y0 − y, r0 − r)

∫
ds γ(y, r, s) exp

[
−j

4π

λ
Rn(r, s)

]
(1)

where λ is the wavelength, f (y0 − y, r0 − r) is the 2-D point spread function (PSF), γ(y, r, s) is the
function that models the 3-D scene scattering properties, and Rn(r, s) represents the slant range between
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point targets located at r and s coordinates, and the nth APC. Under the Fresnel approximation, Rn(r, s)
can be written as

Rn(r, s) =
√
(r − b//n)

2 + (b⊥n − s)2 ≈ |r − b//n|+ (b⊥n − s)2

2|r − b//n| (2)

where b//n is the nth horizontal baseline, b⊥n is the nth orthogonal baseline, the relation between the
baseline and APC position is shown as follows:{

b⊥n = xn cos θ + zn sin θ

b//n = xn sin θ − zn cos θ
(3)

where θ is the off-nadir angle.

P(xp,yp,zp)

Height (z)

APC1
APC2

APCN

APCn(xn,yn,zn)

Figure 1. TomoSAR acquisition geometry.

b n

Rn(r,s)

Height (z)

Cross-track (x)

b n

Figure 2. Geometry in the zero Doppler plane.

Based on the assumption of the point target, f (y0 − y, r0 − r) can be regarded as the 2-D Dirac
function. Following this, Equation (1) can be written as

�
γn(y0, r0) =

∫
ds γ(y0, r0, s) exp

[
−j

4π

λ
Rn(r0, s)

]
. (4)
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In the calibration processing, the ground control point (GCP) is usually placed in the non-layover
area (e.g., the bare ground). That is, there is only one target in the s direction within a slant
range-azimuth cell corresponding to the GCP. Therefore, Equation (4) can be rewritten as

�
γn(y0, r0) = exp

[
−j

4π

λ
Rn(r0)

]
γ(y0, r0) (5)

where

Rn(r0) = |r0 − b//n|+ b⊥n
2

2|r0 − b//n| . (6)

For notational convenience, the target position coordinates r0 and y0 in each symbol are omitted,
and the focused complex value acquired by the nth channel is denoted as gn. Considering that

r0 >> b//n, we have Rn = r0 − b//n +
b⊥n

2

2r0
; therefore, Equation (5) can be rewritten as

gn = exp
(
−j

4π

λ
Rn

)
γ. (7)

By combining the exponential term of the reference channel into the backscatter coefficient, and
by taking into account channel imbalance, the calibration signal model of the multi-baseline TomoSAR
system would be of the form:

g = Cαγ′ + E (8)

where g = [g1, g2, ..., gN ]
T is the N × 1 observation vector, the calibration matrix

C = diag
{

ρ1ejϕ1 , ..., ρnejϕn , ..., ρNejϕN
}

, where ρn and ϕn are the amplitude and phase of the nth
channel (note that, if all channels are exactly the same, then C = I), represents the channel imbalance,

α =
[
1, e−j 4π

λ (R2−R1), ..., e−j 4π
λ (RN−R1)

]T
, and γ′ = γ exp

(
−j 4π

λ R1

)
, which is related to the backscatter

coefficient of GCP.

3. The Calibration Algorithm

Let θm (m = 1, 2, ..., M) be the off-nadir angle of the mth GCP, and rm be the slant range. Then,

g = Cα(ψ, θm)γm + n (9)

where g = [g1, g2, ..., gN ]
Tis an observation vector of the mth GCP, γm is the backscatter coefficient,

α(ψ, θm) is an array manifold, and ψ = [x1, x2, ..., xN , z1, z2, ..., zN ]
T is a vector of the unknown APC

position. By executing an eigenvalue decomposition of the covariance matrix E
[
ggT], and normalizing

the first element of the eigenvector corresponding to the largest eigenvalue to 1, we obtain the array
manifold estimation αmea(θm), and

αmea(θm) = Cα(ψ, θm) + nm (10)

where nm ∈ CN×1 is a random vector of additive noise. We shall assume that nm has a zero- mean
Gaussian distribution with a covariance ζ2.

Considering all M GCPs, the probability density function of the set of estimated array manifold is

p
(
αmea(θ1),αmea(θ2), ...,αmea(θM)

∣∣C,ψ, ζ2)
=
(
πζ2)−MN exp

{
− 1

ζ2

M
∑

m=1
‖αmea(θm)− Cα(ψ, θm)‖2

}
. (11)
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It can be easily shown that the maximum likelihood estimates of C and ψ are the corresponding
values that minimize the following cost function:

min
C,ψ

‖CA(ψ)− Am‖2
F (12)

where ‖ · ‖F denotes the Frobenius norm, Am � [αmea(θ1),αmea(θ2), ...,αmea(θM)], and
A(ψ) � [α(ψ, θ1),α(ψ, θ2), ...,α(ψ, θM)]. Since the calibration matrix C and the APC position contain
2N2 and 2N real unknowns, respectively, and since the M sources can provide 2MN independent
measurements, M ≥ N + 1 is a necessary condition. This condition can also be found in [22].
According to this condition, at least 9 GCPs are needed to meet the requirement for our 8-channel
array InSAR system.

Assuming that A(ψ) is of full rank N, the cost equation, Equation (12), is a separable nonlinear
least-squares optimization problem. When we keep ψ fixed, the least-square estimation of the
calibration matrix C is

C = AmAH(ψ)
(

A(ψ)AH(ψ)
)−1

. (13)

Substituting Equation (13) into Equation (12), we obtain the maximum likelihood estimation for
the APC position:

ψ̂ML = argmin Tr
(

P⊥
AH(ψ)A

H
mAm

)
= argmin f (ψ) (14)

where P⊥
AH(ψ)

= I − AH(ψ)
(
A(ψ)AH(ψ)

)−1
A(ψ), and the minimization objective function

f (ψ) � Tr
(

P⊥
AH(ψ)

AH
mAm

)
.

The estimation problem is now decoupled into two steps. The APC position estimation ψ̂ML
is obtained at first by solving the optimization problem Equation (14) before the estimation of the
calibration matrix C is derived by substituting ψ̂ML estimated in the first step of Equation (13). We can
then obtain the channel imbalance estimation by extracting the diagonal elements of the calibration
matrix C.

3.1. Step 1: APC Position Calibration

In this step, the APC position estimation ψ̂ML is obtained by solving the optimization problem
(Equation (14)). The minimization objective function f (ψ) may have many local minimums. However,
when the nominal values of the APC position ψ0 are close enough to the true values, we can rewrite
the minimization objective function as

f (ψ0 + p) ≈ f (ψ0) + gt(ψ0)p +
1
2

ptH(ψ0)p (15)

where g and H are the gradient and Hessian of f (ψ), respectively. p is the search direction that
minimizes the right hand of Equation (15).

In order to solve this optimization problem, the damped Newton method can be applied.
The nominal values were set as the initial APC position ψ0, and the search direction pk+1 =

ψ̂k+1 − ψ̂k = −μkH−1
k gk, where Hk � H|ψ=ψ̂k

and gk � g|ψ=ψ̂k
. The step length μk = (0.5)l ,

where l is the smallest nonnegative integer that satisfies f
(
ψ̂k+1

)
< f

(
ψ̂k

)
. Then the estimation

of APC position is obtained when the damped Newton method converges or reaches the maximum
number of iterations.

The solution is re-derived in the Appendix A, and the required g and H are shown directly to be

g = −2Re

⎧⎨⎩ vecd
(

AxP⊥
AH(ψ)

AH
mAmAH(ψ)

(
A(ψ)AH(ψ)

)−1
)

vecd
(

AzP⊥
AH(ψ)

AH
mAmAH(ψ)

(
A(ψ)AH(ψ)

)−1
) ⎫⎬⎭ (16)
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H = 2Re
{

DP⊥
AH(ψ)D

H � (12×2 ⊗ E)T
}

(17)

where

Ax = j
4π

λ
A(ψ)Λsin − j

4π

λ
A(ψ)�

⎡⎢⎢⎢⎢⎣
x1, z1

x2, z2
...

...
xN , zN

⎤⎥⎥⎥⎥⎦
[

cos2 θ1
r1

, cos2 θ2
r2

, ..., cos2 θM
rM

sin θ1 cos θ1
r1

, sin θ2 cos θ2
r2

, ..., sin θM cos θM
rM

]
(18)

Az = −j
4π

λ
A(ψ)Λcos − j

4π

λ
A(ψ)�

⎡⎢⎢⎢⎢⎣
x1, z1

x2, z2
...

...
xN , zN

⎤⎥⎥⎥⎥⎦
[ sin θ1 cos θ1

r1
, sin θ2 cos θ2

r2
, ..., sin θM cos θM

rM
sin2 θ1

r1
, sin2 θ2

r2
, ..., sin2 θM

rM

]
(19)

Λsin = diag{[sin θ1, sin θ2, ..., sin θM]} (20)

Λcos = diag{[cos θ1, cos θ2, ..., cos θM]} (21)

D =
[
AT

x , AT
z

]T
(22)

E =
(

A(ψ)AH(ψ)
)−1

AH(ψ)AH
mAmAH(ψ)

(
A(ψ)AH(ψ)

)−1
(23)

where vecd(V) represents a vector formed from the diagonal elements of the matrix V, the symbol �
represents the matrix multiplication of the elements, ⊗ represents the Kronecker product, and 1p×q

represents the p × q matrix with all entries equal to one.

3.2. Step 2: Channel Imbalance Calibration

After solving the APC position calibration problem, Equation (13) is solved in order to retrieve
the channel imbalance. The diagonal element of the calibration matrix is the estimation of the channel
imbalance. Non-diagonal elements are actually mutual coupling factors. In general, the mutual
coupling factor is relatively small if the channels are spaced out far enough. In particular, the correction
matrix will have some characteristics when the multi-channels array has some regular geometry.
For example, the calibration matrix of the equidistant line array is the Toeplitz matrix.

3.3. Validation with Simulation Data

The simulation data is necessary since it makes it possible to directly compare the true channel
imbalance and the APC position with those yielded by the calibration algorithm. This test would
be quite hard to implement using real data, for which the true channel imbalance and APC position
are, in general, not known with sufficient precision. The simulation data set consists of 8-channel 2-D
focused SAR SLC images. Eight APCs corresponding to the eight-channel were distributed in the
cross-track direction, and the longest baseline is 0.6 m. In this section, we will begin by showing a
special case of the simulation data set in order to illustrate the effectiveness of the proposed algorithm.
A Monte Carlo simulation is then carried out to assess the performance of the proposed algorithm in a
statistical framework.

In the special case, eight APC trajectories—equally spaced out in the cross-track direction—are
shown in Figure 3. Amplitude and phase inconsistency are set as AmpErr = [1, 1, 1, 1, 1, 1, 1, 1] and
PhaseErr = [0, 0.3, 0.1, −0.2, 0.3, 0.1, 1, 0.4] rad. Other relevant system parameters are summarized in
Table 1.
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Figure 3. Antenna phase center (APC) trajectories.

Table 1. System parameters used in the simulation data set.

Simulation Data Parameters

Frequency 15 GHz (Ku-Band)
Bandwidth 500 MHz

PRF 2000 Hz
Airplane altitude 1000 m
Airplane Velocity 60 m/s

Azimuth beam width 2◦
Depression angle 25◦–41◦

The observation scene includes 3 × 11 non-layover GCPs, and four pairs of layover GCPs spaced
out with super-resolution factors of 0.5, 1, 2, and 8, respectively. The super-resolution factor [4] is
defined as the ratio of the Rayleigh resolution and layover scatters’ interval. The observation scene’s
2-D SAR image of the simulation data set is depicted in Figure 4. When taking a look at the 2-D SAR
image in Figure 4, one can see that all non-layover GCPs are included in the imaging area and are well
focused, and that four pairs of layover GCPs in red circles are appropriate superpositions, as expected.

Figure 4. Single-look complex (SLC) image of Channel 1, four pairs of layover ground control points
(GCPs) are shown in the red circles.

After being coregistered to Channel 1 (the reference channel) with sub-pixel accuracy,
the calibration algorithm proposed in this paper was carried out by utilizing all 33 non-layover GCPs.
After calibration, we obtained the calibration values of the channel imbalance and APC position
(see Figure 5). The true values of the channel imbalance and APC position are compared with the
calibration values in order to verify the validity of the calibration algorithm. In Figure 5, the true
values and calibration values are drawn in red and blue lines, respectively. Graphs in the left panel
show the true and calibration values in contrast, while the differences (estimation errors) between

123



Remote Sens. 2018, 10, 456

them are plotted in the right panel. One can immediately note that the APC position estimation results
are very accurate. The maximum and standard deviation are 0.16 mm and 0.105 mm, respectively.
The maximum error of amplitude is only −30 dB. The maximum and standard deviation of the phase
error are 0.12 rad and 0.06 rad, respectively. This seems a little disappointing because the maximum
phase error is not as highly accurate as expected. An additional step, which can be helpful for improving
the phase calibration accuracy, involves checking the same GCP in all channels or averaging the results
of multiple GCPs, because we have obtained the exact APC position after the previous calibration.

In order to examine the effectiveness of this calibration values, a comparison experiment was
performed on four pairs of layover GCPs. The true values and the estimation results of the target
number and height are listed in Table 2.

Table 2. Height resolution experiment on four pairs of layover GCPs.

Layover
GCPs

Number of Targets Height of Targets (m)

True
Value

Before
Calibration

After
Calibration

True
Value

Before
Calibration

After
Calibration

1st pair 2 3 2 0, 56.9 9.7, 138.2, 166.9 0, 56.9
2nd pair 2 3 2 0, 32.7 0, 34, 143 0, 32.7
3rd pair 2 3 2 0, 12.4 8.4, 34.9, 78.1 0, 12.4
4th pair 2 4 2 0, 4.5 36, 126, 173.5, 176 0, 5.0

As shown in Table 2, each pair of layover GCPs is correctly identified as being two targets within
the slant range-azimuth resolution cell after calibration. After calibration, the height of each target is
also accurately estimated. Prior to calibration, however, the situation is disappointing, since not only
the height estimation but even the estimate of the target number is wrong.

A precise performance assessment of the proposed algorithm has been carried out by means of
Monte Carlo simulations. The systems parameters are the same as those in Table 1. The true APC
positions, amplitude inconsistency, and phase inconsistency are modeled as follows:

Amplitude inconsistency (dB) ∼ N(0, 1)
Phase inconsistency (rad) ∼ U(−0.5, 0.5)

APC position (m) : x = [0, 1, 2, 3, 4, 5, 6, 7]× 0.6/7 + Δx,
where Δx = [Δx1, Δx2, ..., Δxn, ..., Δx8] and Δxn ∼ N

(
0, 5 × 10−3)

z = [z1, z2, ..., zn, ..., z8], where zn ∼ N
(
0, 10 × 10−3)

. (24)

One hundred trials were carried out. For each trial, the mean and standard deviation of the
calibration errors (amplitude and phase) are calculated. Then, results of the different trials are
averaged. The mean and standard deviation of calibration errors are shown in Table 3. The calibration
error of amplitude is below −30 dB in nearly all trials. As for the calibration error of the phase,
the standard deviation is less than 0.06 rad. Regarding the calibration error of APC position, it is

computed via averaging the RMSE of all trials, where RMSEi =

√[
8
∑

n=1
(Δxn,i)

2 + (Δzn,i)
2
]

/8, and

Δxn,i and Δzn,i represent the calibration errors of the APC position in the cross-track and height
directions, respectively, in the ith trial. The simulation result shows that the calibration error of the
APC position is less than 0.127 mm. Based on these simulation results, it can be concluded that the
proposed algorithm performs well.

Table 3. Calibration errors.

Mean μ Standard Deviation σ

Amplitude (dB) −35.10 4.15
Phase (rad) −0.0054 0.0577
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Calibration results of the simulation SAR data set. (a) The true and calibration values of axis
x (cross-track direction); (b) The error between the true and calibration values of axis x; (c) The true
and calibration values of axis z (height direction); (d) The error between the true and calibration values
of axis z; (e) The true and calibration values of the amplitude; (f) The error between the true and
calibration values of the amplitude; (g) The true and calibration values of the phase; (h) The error
between the true and calibration values of the phase.
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4. Experimental Results

4.1. Data Acquisition

In this section, we will validate the effectiveness of the calibration algorithm by using a real data
set acquired by the array InSAR system. The array InSAR system was developed by IECAS in 2014,
usually installed onboard a Y-12 aircraft. The radar system operates at 15 GHz (Ku-band), and has
eight channels in the cross-track direction. Other system parameters are the same as those in Table 1.
As a multi-baseline system, the array InSAR system can obtain 3-D images of the observed scene in a
single-pass platform. The Rayleigh resolution [5] in the height direction of the array InSAR system can
be derived approximately as

ρh =
λR sin(θ)

Bn
� 35 m (25)

where λ represents the wavelength, the slant range R is 1625 m, and the off-nadir angle θ is 38◦.
Super-resolution techniques must be used since many targets are under 35 m in height; if not, TomoSAR
would be meaningless, especially in urban monitoring and mountain mapping tasks. The utilization
of a super-resolution technique can achieve high resolution in the height direction, but it is based on
the premise that the channel imbalance and APC position are precisely known. Therefore, calibration
is particularly important.

It is clear in Figure 6 that, under the system parameters described above, the quadratic wave
model is more accurate than the plane wave model, and that is why we use the Fresnel approximation
in our signal model.

Figure 6. Phase errors of the plane wave model and quadratic wave model.

The real SAR data set used in this section was acquired by the array InSAR system in April 2015.
The calibration site is located in Yuncheng county in the province of Shanxi; its SLC image of Channel
1 is shown in Figure 7. In this single-pass airborne TomoSAR campaign, images of nine GCPs and
layover scenes, such as urban buildings, have been acquired. This provides valuable data for our
subsequent calibration and validation experiments.
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Figure 7. SLC image of Channel 1; this image, zoomed in on in Figure 8, contains GCPs and a
flat ground.

 

(a) (b)

 

(c) (d)

Figure 8. The SLC images and corresponding optical images. (a) SLC image of GCPs and the flat
ground; (b) Optical image of one GCP; (c) SLC image of the layover building (the red block is the area
corresponding to Figure 12); (d) Optical image of the building in (c).

4.2. Validation Data Description

Three special scenes, including a flat ground, non-layover GCP, and layover building, were
selected to verify the effectiveness of the unified calibration algorithm. The chosen flat ground is
located at the calibration site with an altitude of about 550 m. The 3-D image of this flat ground
should be like a horizontal plane. The selected GCPs are trihedral corner reflectors with a leg length
of 20 cm, which are placed at a non-layover area; there should be only one target in the height
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slice for each non-layover GCP. As for the chosen building, serious layover phenomena appear due
to the SAR side view principle. Note that there are a maximum of three layover points in a slant
range-azimuth resolution cell of the chosen building. Figure 8 shows SLC images of the chosen scenes
and corresponding optical images.

4.3. Calibration Algorithm Validation

The calibration processing of the channel imbalance and APC position was carried out as discussed
in Section 3. Nine GCPs were used in the calibration site. The results shown in Figure 9 are the channel
imbalance and APC position calibration results (blue line) of the array InSAR system campaign from
April 2015. The nominal values of the APC position are depicted by a red line. Figure 9a,b show the
nominal values and the calibration values of the APC position. The difference between the nominal
values and calibration values may be due to the fact that the nominal values are obtained by rough
measurement, which is not guaranteed to perfectly correspond to the electromagnetic phase center
of the antenna. Figure 9c shows the amplitude difference between different channels. Channel 2
appears slightly smaller than the other channels. We found that the estimate amplitude consistency
of each channel is similar to the amplitude calibration results in Figure 9c when the power of the
same GCP is extracted in different channels. As the true phase inconsistency and APC position cannot
be exactly known, special scenes were chosen to verify the effectiveness of the calibration results in
Figure 9. As we shall see later, the 3D imaging results in Figures 10–12 show the correctness of the
calibration results.

 
(a) (b)

 
(c) (d)

Figure 9. Calibration results of the real SAR data set. (a) The nominal and calibration values of axis
x (cross-track direction); (b) The nominal and calibration values of axis z (height direction); (c) The
calibration values of the amplitude; (d) The calibration values of the phase.
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In order to verify whether the calibration values are correct, TomoSAR focusing experiments
were carried out for two non-layover GCPs, for flat ground and for a layover building; they are
described above. In these experiments, a compressive sensing ()-based TomoSAR spectral estimation
algorithm—SL1MMER [4]—was used in the imaging of the height direction. Note that SL1MMER
can only achieve the best super-resolution power if the parameters are precisely known. Therefore,
the more accurate the parameter calibration is, the better the imaging and resolving power in the
height direction will be.

• GCP Results

Figure 10 shows the TomoSAR focusing results in the height slice of GCPs. The APC calibration
only means that we only compute the estimation values of the APC position by means of a phase
center double localization (PCDL) algorithm [11]. The channel imbalance calibration only means that
we only compute the estimation results of the channel imbalance by means of the algorithm proposed
in [18]. It is apparent that the TomoSAR focusing results of the unified calibration are more accurate
in the target number and position estimation and have less disturbance points than the results of the
APC calibration only or the results of the channel imbalance calibration only. The heights of the two
chosen GCPs are 550.93 m and 552.79 m, respectively. The reconstructed heights obtained by utilizing
the unified algorithm proposed in this paper are 551.06 m and 552.75 m, which is very close to the
true heights. However, the results of the other methods are not satisfactory. This is not difficult to
understand, as the phase error caused by the channel imbalance and APC position error would result
in disturbance points and the target position offset.

• Flat Ground Validation

Figure 11 shows the 3D imaging results of the selected flat ground. The 3D imaging results of the
unified calibration algorithm (see Figure 11c,f) are almost clustered on a plane, but the results of the
APC calibration only and channel imbalance only are scattered, which is inconsistent with the actual
flat terrain. It can therefore be said that the 3D imaging quality is improved by utilizing the system
parameters calibrated by the proposed unified algorithm.

• Layover Building Validation

In this partition, the 3D imaging results of the layover building are shown in Figure 12. Figure 12a
shows the building observation geometry. In this situation, Points A, B, and C with the slant range
r1 will be superimposed within the same slant range-azimuth resolution cell in the 2D SAR image.
The same is true for Points D and E. If the channel imbalance and APC position are calibrated
precisely, these layover points will be perfectly reconstructed in the right height position utilizing a
super-resolution algorithm. On the contrary, these layover points will not be properly reconstructed,
such as the occurrence of disturbance points, location shifts, or even defocusing.

When the channel imbalance and APC position have been calibrated by the proposed algorithm,
the 3D imaging result is shown in Figure 12b. In this figure, we see that Points A, B, and C are resolved
and reconstructed in the corresponding position. This is similar to the other points (i.e., Points D
and E) of this layover building. For comparison, the 3D imaging results of the APC calibration only
and the channel imbalance calibration only are shown in Figure 12c,d, respectively. Compared with
Figure 12c,d, there are fewer disturbance points in Figure 12b, especially in the area near the bottom of
the building. This is because the imaging results of these areas are more sensitive to system parameters
due to the very small difference in height between the building and the ground. It is therefore safe to
say that the imaging results of Figure 12b is better and shows the validity of the unified calibration
algorithm proposed in this paper.

To qualitatively exhibit the validity of the calibration algorithm we propose in this paper, the 3D
focusing result of a residential area after channel imbalance and APC position calibration is shown
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below. The SAR 3D focusing result can be approached as follows. Applying a classical imaging
algorithm to the raw SAR data collected by each channel, we obtain N 2D SLC images. After some
sub-pixel accuracy coregistration to the reference channel and a unified calibration for the channel
imbalance and APC position, a super-resolution algorithm, such as compressed sensing [3] or the
direction of arrivals [12], is applied to each slant range-azimuth resolution cell. Following this, the 3D
imaging result is obtained. The Google Earth image, SLC image, and 3D image of the residential area
are shown in Figure 13. As shown in the SLC image, in the 2D SAR image, we cannot even correctly
estimate the number of buildings owing to the serious layover phenomenon. When 3D imaging was
carried out after precise calibration of the array parameters, the building footprints and the texture of
the roof and façade were all clearly visible.
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Figure 10. TomoSAR height slices of GCPs. (a,b) TomoSAR height slices of GCP1 and GCP2, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 11. 3D imaging results of the selected flat ground. (a–c) 3D imaging results of the flat ground
obtained by utilizing APC calibration only, channel imbalance calibration only, and a unified calibration
algorithm, respectively; (d–f) The surface fitting results of (a–c), respectively.
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(a) (b)

(c) (d)

Figure 12. 3D imaging results of the layover building. (a) The building observation geometry;
(b–d) 3D imaging results of the layover building utilizing the proposed unified calibration algorithm,
APC calibration only, and channel imbalance calibration only, respectively.

(a) (b) (c)

Figure 13. 3D imaging results of a residential area. (a,b) Google Earth and SLC images of the building,
respectively; (c) The reconstruction result of the building after calibration and focusing processing.

5. Discussion

Both the simulation and array InSAR system results demonstrated the effectiveness of the
proposed unified calibration algorithm. The simulation results showed that the calibration
accuracy of the phase inconsistency and APC position went up to 0.06 rad and 0.105 mm,
respectively. The application to the array InSAR system, a single-pass multi-baseline TomoSAR
system, demonstrated the effectiveness of the unified calibration algorithm. Both the point-like targets
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(e.g., GCPs) and distributed target (e.g., flat ground) presented more reliable 3D imaging results after
calibration. In the simulation, the calibration accuracy mentioned above provided the super-resolution
ability to distinguish two targets with a 4.5 m height interval (e.g., the 4th pair layover GCPs in Table 2)
despite the system’s Rayleigh resolution of only 35 m. The resolution results in the height direction of
the array InSAR system showed a similar super-resolution performance with a better separation of the
building façade and ground (e.g., Figure 12b).

As discussed before, our proposed algorithm calibrated not only the channel imbalance but
also the APC position. This is of great importance since both the channel imbalance (especially the
phase inconsistency) and the APC position are the key parameters of the super-resolution algorithm.
This proposed algorithm makes it possible to obtain a super-resolution performance in the height
direction where the Rayleigh resolution is usually about 10–50 times below that in range or azimuth.
In addition, the signal model uses the Fresnel approximation, which increases the accuracy of the
calibration signal model. Although the proposed algorithm is of great accuracy, other tasks lie ahead:
First, the question of how to choose GCPs for calibration, including the choice of size and position,
needs to be studied, since the quality of GCPs will directly affect calibration results. In addition,
the derivation of Cramer-Rao lower bound (CRLB) [23,24] and the quantitative assessment method
require further study.

6. Conclusions

The multi-baseline TomoSAR system-like array InSAR system, whose antennas are placed in the
cross-track direction, can obtain 3-D reconstruction images of the observation area in a single-pass
flight campaign. In particular, when using the super-resolution algorithm in height focusing, we
can obtain a high height resolution close to the azimuth and ground range resolutions. However,
the high resolution in the height direction is based on the condition that the channel imbalance and
APC position are precisely known. This is almost impossible, even though high-precision laboratory
measurements have been carried out, since there are many factors that may lead to parameters
changing in a flight campaign, such as installation error and the difference between the mechanical
position and electromagnetic phase center. When a system error occurs, the 3-D resolution performance
will be seriously degraded. In order to ensure the 3-D resolution performance of the TomoSAR system,
especially the super-resolution performance in the height direction, the calibration processing of the
channel imbalance and APC position is therefore necessary.

In our signal model, the Fresnel approximation is used. It is of great significance since the
quadratic wave model is more accurate than the plane wave model, and most small aircraft platforms
and UAVs work in relatively low flight height conditions. The importance of the proposed algorithm
also lies in the fact that both the channel imbalance and APC position are accurately calibrated,
which provides the basis for super-resolution in the height direction. This conclusion is supported by
experiments based on a simulation data set and real data set acquired by the array InSAR system.
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Appendix A

The required g and H are given in [22] under the plane wave model. Due to the use of the
quadratic wave model in this article, the required g and H should be re-derived.

Under the quadratic wave model, the slant range between the point targets located at r and s
coordinates and the nth APC is given in Equation (6), considering that the GCP is in the reference
plane where s = 0; therefore, Equation (6) can be rewritten as

Rn(rm) = rm − b‖n +
b⊥n

2

2rm
. (A1)

Meanwhile, the slant range under the plane wave model could be written in the following form:

Rn(rm) ≈
∣∣∣rm − b‖n

∣∣∣ (A2)

where rm represents the distance between the reference channel and the mth GCP.
The slant range difference between Equations (A1) and (A2) is the root cause that leads to the

re-derivation. This difference would result in a different form of A(ψ), P⊥
AH(ψ)

, Ax, and Az. A(ψ) and

P⊥
AH(ψ)

have been given in Section 3; we will deduce Ax and Az below.
As with [22], the n-m th element of matrix Ax is defined as

anm =
∂A(ψ)nm

∂xn
=

∂e−j 4π
λ (Rn(rm)−R1(rm))

∂xn
. (A3)

Substituting Equation (A1) into Equation (A3), we obtain

Rn(rm)− R1(rm) = −b‖n +
b⊥n

2

2rm

= −(xn sin θm − yn cos θm) +
(xn cos θm+yn sin θm)2

2rm

. (A4)

Therefore,

anm = e−j 4π
λ (Rn(rm)−R1(rm)) j

4π

λ

(
sin θm − (xn cos θm + zn sin θm) cos θm

rm

)
. (A5)

Then, Ax can be easily written as in Equation (18). The derivation process of Az is similar to that
of Ax and is not described here.
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Abstract: Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing technique
able to measure deformation of the earth’s surface over large areas. InSAR deformation analysis
uses two main categories of backscatter: Persistent Scatterers (PS) and Distributed Scatterers (DS).
While PS are characterized by a high signal-to-noise ratio and predominantly occur as single pixels,
DS possess a medium or low signal-to-noise ratio and can only be exploited if they form homogeneous
groups of pixels that are large enough to allow for statistical analysis. Although DS have been used
by InSAR since its beginnings for different purposes, new methods developed during the last decade
have advanced the field significantly. Preprocessing of DS with spatio-temporal filtering allows today
the use of DS in PS algorithms as if they were PS, thereby enlarging spatial coverage and stabilizing
algorithms. This review explores the relations between different lines of research and discusses open
questions regarding DS preprocessing for deformation analysis. The review is complemented with an
experiment that demonstrates that significantly improved results can be achieved for preprocessed
DS during parameter estimation if their statistical properties are used.

Keywords: InSAR; Persistent Scatterer; Distributed Scatterer; preprocessing; adaptive neighborhood;
covariance; coherence; deformation

1. Introduction

The subject of this review will be multitemporal deformation analysis with spaceborne (Synthetic
Aperture Radar) SAR interferometry. More precisely, the methods that have been developed pertaining
to preprocessing of Distributed Scatterers (DS) for use in Persistent Scatterers (PS) algorithms will be
discussed with a focus on progress in the last decade.

Interferometric Synthetic Aperture Radar (InSAR) is a technique that has its origin in the late
1970s, when spaceborne imaging radars began to play an important role in remote sensing [1–4].
It became popular when, after the launch of the European Space Agency (ESA) satellite ERS-1 in
1991, an enormous amount of suitable SAR data became available. Since that time, its importance has
increased steadily and today about one and a half dozen SAR satellites are orbiting the earth that are
continuously acquiring data for scientific, governmental, and commercial purposes (e.g., Sentinel 1,
TerraSAR-X, TanDEM-X, CosmoSkymed, RADARSAT-2, ALOS II, SAOCOM, PAZ). Data are used to
gather information over land, ice, and sea. They allow mapping and change detection for a multitude
of purposes. Applications comprise, for example, land cover classification, mapping of ocean currents,
intelligence, or situational awareness in case of natural catastrophes, e.g., mapping of flooded or
destroyed areas. However, the unique capability of spaceborne SAR is the acquisition of large area
interferometric data. Devoted missions (SRTM, TanDEM-X) have provided Digital Elevation Models
(DEMs) of the whole surface of the earth, allowing for glaciologists to study extent, flow, and mass
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balance of glaciers and ice sheets, for climatologists to estimate the biomass of the world’s forests,
and for geologists to use SAR data to study phenomena like earthquakes, volcanoes, and tectonic
processes. For other geoscientists and for governmental and economic stakeholders, it is of high
importance to monitor movements of the earth’s surface that go along with tunneling, mining, gas,
water, and oil withdrawal.

Deformation analysis with InSAR is based on the following idea that will be given for the moment
largely simplified, ignoring varying positions of the sensor, atmospheric delay, phase ambiguity,
presence of complex scattering mechanisms, physical changes in the illuminated scene, and other
complications [1–4]: The SAR data processing gives a complex valued image, where the amplitude of
a pixel is conceived as the magnitude of the signal scattered back from a resolution cell on the ground
and where the argument is interpreted as the phase shift between emitted and received signal (instead
of phase shifts, one simply speaks of phases). If a movement of the earth’s surface occurs between
acquisitions, the signal travels a different distance and the phases change accordingly. By integrating
spatially and temporally these changes of phases, the deformation is obtained. The changes of phase
are found in the name giving interferograms, which are formed by multiplying the pixel values of
the one acquisition with the complex conjugated pixel values of the other acquisition. However,
processing of real data cannot ignore the mentioned complications and requires solutions. The basis
for developing corresponding algorithms is usually a decomposition of the interferogram phase as in
the following formula (observe that phases are only known modulo 2π):

ϕm − ϕs = ϕsynth − 4π

λ

(
B⊥
rm

· Δh
tan(θ)

+ Δr
)
+ αm − αs + ν (1)

where ϕm and ϕs are the phases of acquisitions m and s. ϕsynth is the synthetic phase corresponding
to geometric path lengths calculated based on orbit information and a DEM, λ is the wavelength,
B⊥ is the perpendicular baseline, rm is the distance corresponding to the pixel center, θ is the looking
angle, Δh is the DEM error, Δr is the displacement in line of sight of the sensor, αm and αs account
for atmospheric delay and other spatially correlated errors (e.g., caused by imprecise orbits)—in
the sequel named atmospheric phase screen (APS)—and ν is everything else, usually called noise.
The relevant contribution for deformation analysis is the displacement, and the question is under what
circumstances it can be extracted. In general, the phase model tells us that the deformation signal can
be accurately determined if the other terms can either be compensated or are insignificant (e.g., DEM
and orbit data are precise or atmosphere over an arid region might be stable). Of particular interest here
is the miscellaneous term ν. It accounts for sensor noise and processing errors, which can be assumed
to be small. However, it comprises also decorrelation effects and changes in reflectivity that might
make estimation infeasible. Deformation analysis is feasible mainly for two categories of scattering
mechanisms. The first are Persistent Scatterers (PS), the case where ν is small. This corresponds most
often to one dominant scatterer in the resolution cell, e.g., a trihedral manmade structure, a pole,
or a single rock. There have been several papers that investigated the physical origin of PS, e.g., [5],
where six main types of PS are described. The second are Distributed Scatterers (DS), which is the case
where a sufficiently large group of adjacent pixels shares the same scattering mechanism and ν can
be mitigated by statistical methods. Usually, these are pixels with many small scatterers of similar
size. If the resolution is some 10 meters, this is true for most natural scatterers (forest, agricultural
fields, bare soil, rock surfaces). If the resolution is some meters, DS are mostly found in arid areas
with low vegetation and debris, but even rough asphalt or plaster can constitute a DS. There are also
exploitable pixels, where a small number (e.g., two or three) of pointlike scatterers are contained.
The corresponding field of research is SAR tomography (cp. e.g., [6,7]) and will be left aside as DS are
the focus of this review.

The history of InSAR deformation analysis exploiting DS commenced with Differential InSAR
(DInSAR), for the first time described in [8] for L-band data from Seasat (a comprehensive overview
on DInSAR is given in [2]). The initial approach consisted of using three images that were used
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to form interferograms and a DEM. The DEM served to calculate and remove the synthetic phase.
Furthermore, phase unwrapping was applied to generate the DEM and to obtain the deformation
field. An algorithm for phase unwrapping was developed somewhat earlier for DEM generation from
InSAR data in [9]. During the following years, techniques for most of the basic challenges of InSAR
were developed. Early work on phase statistics and the phenomenon of decorrelation can be found
in [10–15]. Enhancement of signal quality by filtering was considered, e.g., in [16,17]. Investigations,
where stacking of interferograms is used to mitigate atmospheric delay, are discussed in [18–20].
Theory and algorithms were based on DS until the existence of PS was observed in the late 1990s
by Ferretti while working on DEM reconstruction from a stack of SAR images [21]. In the sequel,
they developed the first Persistent Scatterer Interferometry (PSI) algorithm [22,23], which extended the
applicability of InSAR to scenes where enough PS are found but large parts are strongly decorrelated
and hence unwrapping on the full interferograms cannot succeed. For several years from this time on,
DInSAR and PSI developed in parallel. The next big step for DInSAR was the small-baseline subset
(SBAS) technique [24]. By considering a redundant graph of small baseline interferograms, the effects
of decorrelation could be mitigated and the redundancy enhanced robustness of estimation. In this first
version, only DS were considered (using boxcar multilooking), but the next step [25] was to include
processing of PS: coherent targets in the full resolution interferograms were recognized as having
small residuals relative to the spatially filtered interferograms. In the same year, a new approach [26]
for processing PS was proposed that later became the Stanford Method for PS (StaMPS; [27,28]).
It aims at exploiting low amplitude PS on volcanoes and other natural terrains and likewise detects
these PS as pixels that have small phase differences to the filtered interferograms. A peculiarity of
StaMPS is the application of an extensive iterative spatiotemporal filtering. This might be seen as an
example from a third line of development beside PS and SBAS techniques, where SAR image filters
progress from boxcar filtering to ever more sophisticated approaches. Later, the ideas from SBAS were
included in StaMPS, allowing joint processing of PS and DS [29]. At that time, several research groups
worked towards integrated processing of DS and PS with the goal of increasing the spatial coverage
with measurements. Also, at Milano progress was made. An important step was the first estimator
making use of the full covariance matrix for estimating the parameters of a deterministic phase model
(linear deformation rate and height error) of a DS relative to a reference PS [30,31]. The effect is that,
during estimation, phases are weighted in an optimal way; under assumption of Gaussianity, it is the
maximum likelihood estimator (MLE). To prevent APS from deteriorating results, it is necessary that
DS are added to the result of a PS analysis. This allows for extension of the APS estimated for the PS to
DS positions and removal it before the MLE is applied. This way, DS are not used to bridge gaps in the
PS net, which would make results more robust. DS are added in a postprocessing step. Transforming
DS in a preprocessing step in such a way that they can be used like PS in any PS algorithm was the
next stage of development. De Zan [31] describes an experiment where he observes that the phases of
the eigenvector of the covariance matrix to the largest eigenvalue correspond to deformation, DEM
error, and APS averaged over the DS pixel. [32,33] derived an MLE (likewise under assumption of
Gaussianity) for the phase history of DS that approximates the phases of the complex covariance matrix
by triangular phases, assuming that all pixels in the neighborhood corresponding to a DS are affected
by the same deformation, DEM error, and APS. The original phases of the DS are then replaced by the
estimated phase history. At Fringe 2009, the power of this idea was demonstrated when SqueeSAR
was presented, a framework for the preprocessing of DS [34]. In [35], this approach was explained in
more detail, adding suggestions for adaptive neighborhood (AN) forming (DeSpecKS) and DS quality
assessment. Shortly afterwards, AN forming and phase triangulation were integrated in the SBAS
framework in [36]. For SBAS, this opened the applicability of spatiotemporal unwrapping [37–40],
which is not possible directly from independently spatially unwrapped interferograms because phases
are not triangular (cp. [41] for phase triangulation without consideration of statistics).

Here, this historical survey ends. It has been intended to show on a very coarse scale how the
processing of DS and PS evolved over time and how they fused a decade ago with spatiotemporal
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filtering techniques together in approaches that can be described as preprocessing of DS for the use in
PSI algorithms. Preprocessing of DS for the use in PSI algorithms is the main subject of this review.
It has seen tremendous further progress since that time, which is visible, e.g., in a number of excellent
doctoral theses related to the subject [42–46]. Although in each of them the state of the art has been
discussed, not all aspects are covered, partly because of new developments that resulted since their
publication, partly because they necessarily concentrated on a certain issue. The present review is
intended to give a broad view of the subject, with a focus on giving a survey on methods and ideas and
presenting phase triangulation as a unifying concept that allows extraction of DS signals in a general
manner from weighted filtered interferograms. Furthermore, a complement was included in the review.
Although preprocessing of DS is often simplistically depicted as transforming DS into PS, preprocessed
DS are statistically not equivalent to PS. An experiment demonstrates that parameter estimation from
preprocessed DS gives significantly better results if statistical information is considered.

In Section 2, statistical modeling of DS is surveyed. Section 3 is the core of the review.
It commences with an estimation of DS signals because of the pivotal role we assign to this element.
Then filtering of interferograms and coherence estimation are treated. Points to be addressed are
nonstationary phases, grouping of statistically homogeneous neighborhoods resp. of adaptive
neighborhoods, nonlocal methods, bias correction and regularization, and quality numbers for DS.
In Section 4, phase model parameter estimation for preprocessed DS is discussed and the announced
experiment presented. In Section 5, a short discussion of what has been achieved is given and
interesting possibilities for future research are indicated. Conclusions and a brief synopsis in Section 6
complete the review.

2. Statistics for Distributed Scatterers

A DS pixel is supposed to originate from many small scatterers of comparable size in a resolution
cell. If the SAR image contains a larger area with such a scattering mechanism, a so-called speckle
pattern is visible that can be stochastically modeled. This does not contradict the fact that the scattering
process is deterministic, and if the acquisition is repeated from precisely the same position and with
no changes having affected the terrain, the same pattern would result again. One should rather think
of a repeated random experiment, where a random number of scatterers is randomly distributed in
each resolution cell and the range positions are uniformly distributed. In case the range extension
of the pixel is much larger than the wavelength, the latter has the consequence that phases can be
described with good precision by a uniform distribution. This concept allows for successfully dealing
with a situation where the detailed information is missing that would be necessary for a deterministic
treatment. To derive a specific statistical model, traditionally several assumptions are made [47,48]:

1. the backscatter from a resolution cell is the superposition of the backscatter of stochastically
independent elementary scatterers;

2. their number is large;
3. amplitude and phase are independent random variables;
4. the phase is uniformly distributed;
5. no individual scatterer dominates the resolution cell;
6. the resolution cell is large compared to the single scatterer.

From the generalized central limit theorem, it can be concluded that the real and imaginary
parts of backscatter are approximately α-stable distributed (0 < α ≤ 2). The α-stable distributions
form a four-parameter family: location, scale, stability, and skewness parameter (note: skewness
requiring the third central moment is not defined). The particular case α = 2 occurs if standard
deviations of the elementary random variables are bounded and the central limit theorem can be
applied. The limiting distribution is then consequentially normal. While Goodman [49] assumed
bounded standard deviations and obtained a complex circular (i.e., z ∼ eiδ·z independent of angle
δ) normal distribution in the limit, other authors favor the more general framework of symmetric
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α-stable distributions [47,50] to be able to account for impulsive behavior of the signal, e.g., found in
high-resolution SAR images of urban areas (or of the sea surface).

Symmetric α-stable random vectors belong to the larger class of complex elliptically symmetric
(CES) distributed random vectors [51–53]. CES distributions comprise, e.g., complex normal, complex
t-, complex K-, generalized Gaussian, and inverse Gaussian distributions that are used to model
radar clutter. They provide alternative statistic models for DS in cases where the assumption of
complex normal distribution does not hold, e.g., because of high-resolution SAR data or, more
importantly, because deviating scattering mechanisms are wrongly included in the DS neighborhood.
A comprehensive theory of robust estimation has been developed for CES distributions that will be
discussed at the end of the section. A survey on statistical modeling of SAR images was given by [54].

Usually for DS, Goodmann’s model is adopted, i.e., that they can modeled as circular complex
normally distributed random vectors, and it will also be the basis for most of the work presented
here. A circular complex normally distributed random vector y ∼ CN(0, C, 0), C = E[yyH ] is complex
normally distributed with mean and relation matrix equal to zero [55]. For the entries of the covariance
matrix C, let cmn = |cmn|·exp(i·φmn), and σm =

√
cmm is the square root of the backscatter coefficient

in acquisition m. Then, the complex correlation or coherence is

γmn = |γmn|·eiφmn =
cmn

σm·σn
. (2)

Because of its importance for InSAR, this correlation has been investigated by many authors.
Zebker and Villasenor [12] studied the causes for loss of correlation between two images in
basic situations:

1. presence of thermal noise (thermal decorrelation);
2. effect of different viewing geometry (spatial baseline and rotation decorrelation);
3. small random movements of the scatterers (temporal decorrelation).

They derived a formula presenting the total correlation as the product of the basic correlations.
In [56] the formula for the total correlation of [12] is modified by thresholding with a bias term
dependent on the number of independent looks and replacing the critical baseline by an effective
baseline that is intended to account for volumetric effects. In [57], the authors investigate the
development of a temporal correlation for sensors in L-, C- and X-band and different revisit times over
drained peat soils in the Netherlands. To this end, a model for correlation is formulated that contains
a long-term coherence and its parameters are estimated (e.g., about 10 days for C-band in summer).
The finding is that, “it is the combination of longer wavelengths, shorter repeat interval, and higher
spatial resolution that increases the likelihood to obtain a coherent signal” [57]. Because of the large
decorrelation rate, it is difficult to perform deformation estimations on this terrain. Afterwards, they
succeeded estimating deformation via a multisatellite approach presented in [58]. Models considering
a periodic factor are given in [46] and later in Section 4.2.

An observation that is of importance for the stochastic model for DS that will be introduced
next is that γmn ∈ R≥0 holds for the complex correlation coefficients in the formula of [12]. Likewise,
this is the case for temporal correlation as modeled in [59] or [31]. If a common phase history
φ = (φ1, · · · , φN)

t is superposed that accounts for deformation, atmospheric delay and large area
DEM errors cmn = |cmn|·exp(i·(φm − φn)) are obtained. This is equivalent to saying that phase
triangularity is given, i.e., φmn = φml − φln, for all l, m, and n. In many situations, this is a plausible
model for the shape of the covariance matrix of a DS, but not always. For certain scattering phenomena
connected with soil moisture changes or thawing permafrost, it is known that phase triangularity
might be corrupted [60–62].

In [33], the following stochastic model for a DS is given that consists of a neighborhood Ω of pixels:
The complex vectors of N image values are realizations of random vectors yk = (yk1, · · · , ykN)

t ∼
CN(0, C, 0) (k ∈ Ω) that result from independent identically circular complex normal distributed
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random vectors. (For the sake of simple notation, it is not distinguished between the random vectors
and their realizations in the following.) C ∈ CN×N denotes the covariance matrix. It is assumed
that the shape of the covariance matrix is as discussed above. All pixels in Ω have a common phase
history φ = (φ1, · · · , φN)

t that accounts for deformation, atmospheric delay, large area DEM errors,
and other contributions that do not vary spatially. In the hypothetical case that there were no such
contributions and φ were equal zero, cmn ∈ R≥0 for all entries of C can be assumed. The consequence
is the assumption that, in general, cmn = |cmn|·exp(i·(φm − φn)) holds. All yk are collected in one
random vector with covariance matrix CΩ = CΩ(φ) ∈ CKN×KN , where K = #Ω:

y =

⎛⎜⎝ y1
...

yK

⎞⎟⎠ ∼ CN(0, CΩ, 0). (3)

Then the following holds

(CΩ)kmln = E
[
ykmyln

H
]
= δkl ·|cmn|·exp(i·(φm − φn)). (4)

Furthermore, the pdf (probability density function) for a given φ is

p(y|φ) = const.·exp
(
−yHCΩ

−1y
)

. (5)

Note that the constant is not dependent on φ. A short calculation leads to

yHCΩ
−1y = · · · = K·ξH ·

(
|C|−1 ◦ Ĉ

)
·ξ (6)

where Ĉ is the sample covariance matrix (SaCM). Ĉ is the MLE for the covariance matrix of circular
complex normally distributed random vectors and its probability density function is the complex
Wishart distribution [63]. This last equation is the basis for the MLE for the phase history of a DS
discussed later. From Ĉ = (ĉmn), the coherence matrix is obtained:

Γ̂ =

⎛⎜⎝
√

ĉ11 0
. . .

0
√

ĉNN

⎞⎟⎠
−1

·Ĉ·

⎛⎜⎝
√

ĉ11 0
. . .

0
√

ĉNN

⎞⎟⎠
−1

. (7)

Its entries are the sample complex coherences for each interferogram:

γ̂mn = |γ̂mn|·eiφ̂mn =
Σk∈Ωykmy∗kn√

Σk∈Ω|ykm|2·Σk∈Ω|ykn|2
(8)

where |γ̂mn| is a measure of the variation of phase inside Ω and the MLE for coherence magnitude [64]
(p. 581). φ̂mn is the MLE for the joint interferogram phase under circular complex normal distribution
(stochastic model and proof in [14], already stated in [11]). Note that in [14], the MLE of the coherence
magnitude was derived under the assumption that the variance in both acquisitions is the same.
Its expectation is always smaller than that of the magnitude of the sample coherence [14]. |γ̂mn|
is known [65–67] to be biased towards larger values but is asymptotically unbiased (with growing
number of looks). The bias for a given number of looks is worst for a small magnitude of coherence.
In [68], a refined speckle noise model was given and used to derive a bias corrected estimator for
coherence magnitude. Formulas for pdf, mean, and moments of |γ̂mn| have been given [66,67]. To use
|γ̂mn| as a reliable indicator of phase quality, no phase ramp must be present [69], as quality is otherwise
underestimated. The pdf for φ̂mn can be found, e.g., in [65,66,70]. Its standard deviation drops with

140



Remote Sens. 2018, 10, 744

increasing coherence and with an increasing number of looks. For a more detailed discussion of errors
in coherence estimation, see [44]. As a reliable estimation of γ̂mn is paramount, the following crucial
issues will be discussed in Section 3.2 in more detail:

1. removal of residual fringes;
2. grouping of a statistically homogeneous neighborhood Ω;
3. bias reduction.

Still under the assumption that the statistics of a DS in two repeat-pass SAR images can be
described as a complex circular normal random vector, formulas for several related random variables
were derived: joint pdf of magnitude and phase of the interferogram [70,71], pdf of interferometric
phase [15,70], pdf of interferogram magnitude [70], pdf, and expectation and standard deviation of
the multilooked interferometric phase [64]. Inspection of the joint pdf of magnitude and phase shows
that samples with a phase close to the mean phase more likely have a high amplitude, while larger
phase deviations more often correspond to small amplitudes. Although the simplified exposition
in the introduction might have given the impression that only phases matter, amplitudes are also
relevant as they reflect the quality of the phase, and it often makes sense to use the complex signal for
processing. A trivial example is the use for estimation of the SaCM. Further examples can be found in
Equations (26) and (27) of the subsection on estimation of model parameters.

For the case of symmetric α-stable distributions, a modified estimator for coherence based
on fractional lower order statistics was given in [72]. Their examples of coherence estimation
with the proposed estimator show less artifacts near strong scatterers. DS are supposed to be
statistically homogeneous, so assuming a distribution made to account for strong heterogeneous
scattering would improve DS-processing means that pixels that do not belong to the DS may be
contained in the neighborhood and hence, at least for high resolution data, grouping was suboptimal.
Jiang [44] reports that neighborhoods generated with his adaptive neighborhood (AN) selection
algorithm are approximately Gaussian distributed and therefore no advantage can be expected from
an estimator modified for symmetric α-stable distributions. Nevertheless, if there is reason to think
that neighborhoods are less homogeneous than necessary, it can make sense to invest the additional
computational effort and use a robust M-estimator of scatter [52]. Scatter means the scatter matrix,
one of the defining parameters of a CES distribution. It is a positive constant times the covariance
matrix and hence provides the same useful information as the covariance matrix. Compared to
amplitude-based outlier rejection, M-estimators of scatter have the advantage of being sensitive versus
phase when weighting down outlying pixels. As they use the Mahalanobis length and therefore
weight down all values of a pixel, it still makes sense to detect outliers beforehand and discard
them before estimating the scatter matrix. They are not recommended for small neighborhoods as
they involve inversion of the estimated covariance matrix. In this case, regularized M-estimators
perform better [53]. Robust M-estimators of scatter matrix are robust in the sense that they have a
bounded influence function. This means that small contaminations may not have an arbitrarily large
effect on the estimation result, e.g., the SaCM is an M-estimator of scatter but not robust. Robust
examples are the Huber estimator, the MLE for the complex t-distribution, or the S-estimator with
Rocke’s weight function according (for implementing S-estimators, see [73]). The latter M-estimators
of scatter lend themselves for MLE of phase history, as has been derived in [74]. There is a trade-off
between robustness and precision of estimation that can be measured via the asymptotic relative
efficiency [52,75]. While the MLE might be sensitive to outliers, a very robust estimator might have a
too strongly varying asymptotic distribution, and a better solution is found in the middle between
those extremes. Finally, under reasonable conditions, M-estimators of scatter for CES distributions are
asymptotically normal and the limiting covariance matrix can be calculated based on the parameters
of the underlying CES distribution [52]. This could be a starting point to develop new quality numbers
for the scatter matrix.
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3. Estimation of Distributed Scatterer Signals for Preprocessing of Multitemporal InSAR Data

In this section, the estimation of DS signals from the wrapped interferogram phases is discussed.
The estimated DS signal constitutes a filtered version of the original data and can be used afterwards
for any InSAR application which might benefit from a filtered input. Good DS can be used like PS
in any PSI algorithm. This latter conception is from our point of view a key idea of SqueeSAR [35].
In [35] and other approaches, it is realized via the following steps for estimation of DS signals:

1. Grouping of a neighborhood Ω;
2. Estimation of the covariance matrix;
3. Phase triangulation or more generally estimation of the DS signal;
4. Calculation of a quality number for the DS.

For grouping of a neighborhood for a pixel, a search window is centered on it. In case of DespecKS,
a method suggested in [35], the amplitudes of all other pixels in the search window are compared
with those of the center pixel via the KS two-sample test. Those pixels accepted to have the same
distribution of amplitudes form the neighborhood. Often, the connectedness of the neighborhood is
enforced with the argument that pixels then are more likely to belong to the same physical structure.
For the pixels in the neighborhood, the SaCM is calculated. A phase history is estimated that optimally
fits to the phases of the SaCM. As a quality number for goodness of fit, the phase triangulation
coherence is calculated. These steps and also the scheme itself can be modified in various ways.
An important further example is the SBAS approach. It has been demonstrated that it gives improved
results if boxcar multilooking is replaced with more refined techniques, and if due to triangular
phases, 3D-unwrapping algorithms are applicable [36,40,76]. A difference here is that not all possible
interferograms are calculated but only those with small baselines. There are also other algorithms that
do not exactly fit this scheme. This section is devoted to discussing the different solutions found in the
literature. As the unifying ingredient common to all preprocessing schemes discussed in this work is
phase triangulation, the exposition does not follow the succession of the above steps but starts with
explaining estimators of DS signal. This facilitates the discussion in the sequel.

3.1. Estimators of Distributed Scatterer Signal

In this section, estimators of the DS signal are presented. In some cases, amplitudes are neglected
and only the phase history of the DS is provided. They allow to preprocess the data stack and to
replace the noisy original signal with the estimated signal. If the estimation is successful, then these
pixels can be used like PS. Some of these estimators can also be used to determine the parameters of a
phase model. This will be the subject of Section 4.

The first estimator of phase history for multitemporal InSAR was introduced and investigated
in [32,33]. It is the maximum likelihood estimator (ML), which is asymptotically optimal and close to
the Cramér–Rao lower bound:

φ̂ = arg max
φ

exp
(
−yHCΩ

−1y
)
= arg min

φ
ξH ·(|C|−1 ◦ Ĉ)·ξ (9)

where C is the covariance matrix, Ĉ is the sample covariance matrix, and

ξ =

⎛⎜⎝ eiφ1

...
eiφN

⎞⎟⎠ (10)

contains the sought phase history φ1, . . . , φN . Please observe that in [33], it was assumed that all
variances are one, and therefore, the coherence matrix replaces the covariance matrix in their formulas.
An historical side note: this estimator has an early predecessor that was developed at the end of the
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1990s to retrieve heights from data of an airborne three-antenna SAR system, cp. e.g., [77]. To make
the result unique, the master phase φm is assumed to be zero. The ML estimator is not available for
real data, as it requires the unknown covariance matrix. In [33], a test case is presented, where no
deformation was expected and a replacement for C was calculated from acquisition geometry and a
SRTM DEM under the assumption that only spatial decorrelation matters. If the covariance matrix
is replaced by an estimation Ĉ of the covariance matrix and if |Ĉ|−1 exists, an applicable estimator is
obtained, which is different from the ML estimator and that could be named a pseudo ML estimator:

φ̂ = arg min
φ

ξH ·
(
|Ĉ|−1 ◦ Ĉ

)
·ξ = arg min

φ
∑
m,n

ζ̂mn·|ĉmn|·exp(i·(ϕ̂mn − (φm − φn))). (11)

Here, |Ĉ|−1
= (ζ̂mn), Ĉ = (ĉmn), and ĉmn = |ĉmn|·exp(i·ϕ̂mn). In cases where |Ĉ|−1 does not

exist, some regularization has to be applied or the pseudoinverse can be taken. If a PSI algorithm is
applied that is able to benefit from a DS signal comprising phases and amplitudes, a natural choice
for amplitudes would be the square roots of the diagonal entries of Ĉ. We will refer to this type of
estimator, which consists of estimation of covariance or coherence matrix plus execution of the phase
linking algorithm also as phase linking (PhL), although the authors of [33] introduced the notion of
phase linking for the iterative determination of the minimum with the following formula:

φ
(k)
p = �

⎧⎨⎩− ∑
n( �=p)

ζ̂pn·ĉpn·exp(i·φ(k−1)
p )

⎫⎬⎭. (12)

The minimization can also be solved by more advanced algorithms, e.g., the Broyden–
Fletcher–Goldfarb–Shanno algorithm [78], but probably less effectively. As |Ĉ|−1 ◦ Ĉ = |Γ̂|−1 ◦ Γ̂
holds, PhL can also be stated using the coherence matrix. However, for other estimators of DS
signal, the choice between Ĉ and Γ̂ might result in different estimators. [32,33] provide also the
hybrid Cramér–Rao bound for PhL. We give a slightly modified formulation. Let φ(ϑ) = Θ·ϑ + Ĩ·ω,
Θ = Ĩ·Θ̃ with Θ̃ ∈ R(N−1)×p, so that Ĩ ∈ RN×(N−1) is obtained by the identity matrix by removing the
master column, ϑ contains the sought model parameters (PhL corresponds to the case where Θ̃ is the
identity matrix), and ω denotes interferogram atmosphere. Furthermore, assume that atmosphere
α can be modelled as a Gaussian iid signal with standard deviation σa. ωn = αn − αmaster has then
covariance matrix V ∈ R(N−1)×(N−1) with entries vmn = σa

2·(1 + δmn). The Fisher information matrix
is X = 2L·(|Γ|−1 ◦ |Γ| − I), where L is the number of looks. From a theorem of Fiedler, it follows that
it is positive semidefinite [79]. Define X̃ := Ĩ

t·X ·̃I. Assume Θt·X·Θ is invertible. Then, the following
inequality is obtained:

Ey,ω

[
(ϑ̂ − ϑ)(ϑ̂ − ϑ)

t
]
≥
(

Θ̃
t·
(

X̃ − X̃V
1
2

(
V

1
2 X̃V

1
2 + I

)−1
V

1
2 X̃
)
·Θ̃
)−1

(13)

and the inverse matrices on the right-hand side exist (here A ≥ B means A-B is positive semidefinite).
Although this formulation looks on first sight more complicated than the one given in [32,33], it has
the advantage of avoiding a limit process and allows for setting V = 0 in case ω is negligible
without further thinking. In case V = 0, the equation simplifies to the standard Cramér–Rao bound.
Furthermore, it is still easily verified that the matrix is symmetric.

SAR polarimetry inspired a second way of estimating DS signals [31,80,81]. The method can be
applied either to Ĉ or Γ̂ and is derived from the dyadic decomposition

Γ̂ =
N

∑
n=1

λn·unuH
n (14)
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with eigenvalues λn and orthonormal eigenvectors un. Here, the eigenvector to the largest eigenvalue
is taken as an estimator of DS signal (abbreviation for the method: EVG). If there is more than one
significant eigenvalue in analogy to polarimetry, this often is interpreted as the superposition of several
scattering mechanisms. In such a case, this approach is supposed to capture the dominant scattering
mechanism, while the other estimators of phase history give degraded results. The presence of more
than one scattering mechanism can be detected with the help of entropy.

A third possibility to estimate DS signals from Ĉ or from Γ̂ = (γ̂mn) is phase triangulation
coherence maximization (PTCM), as described in [82]:

φ̂ = arg max
φ

Σm,n|γ̂mn|α·exp(i·(ϕ̂mn − (φm − φn))). (15)

Here, α is a positive real number, e.g., 1 or 2. Analogous to PhL, the maximum can be found
iteratively with the help of the following formula:

φ
(k)
p = �

⎧⎨⎩ ∑
n( �=p)

|γ̂pn|α−1·γ̂pn·exp(i·φ(k−1)
p )

⎫⎬⎭. (16)

A related approach can be found in [83]. Although they do estimate the parameters of a model with
linear deformation and DEM error and not the phase history, they also perform PTCM. An interesting
difference is that they consider a more general situation, where the summation does not necessarily
take over the full set of all possible interferograms, but over graphs that are for each target individually
optimized. They state that, “the links of a complete graph are not necessarily all informative” and
argue that different decorrelation mechanisms require different graphs. For example, in the same
scene, one DS might be mostly sensitive to perpendicular baselines (debris), while another is afflicted
strongly by temporal decorrelation (sparse vegetation). A third might display a seasonal dependence
(changes in vegetation or occasional snow cover). As a rule, to construct such a graph, they suggest
commencing with a spanning tree with edges of maximal coherence and to complement it with all
edges having coherence larger than a threshold. A similar idea was presented by [40], who, under
the designation improved EMCF-SBAS processing, also applied PTCM over an optimized graph to
estimate phase history. Starting from a reduced Delaunay triangulation in the baseline plane, they
optimized their triangulation with the help of a simulated annealing approach. Other than suggested
by [83], the same SBAS graph was taken for all points. A very noteworthy observation of [40] is that
results achieved with this optimized graph were significantly improved compared to the use of the
full covariance matrix. For algorithms that apply PTCM with the full covariance or coherence matrix,
these ideas can easily be adopted by simply setting the coherences to zero for interferograms that are
not used. For PhL or EVG, there is no obvious way of doing this. Finally, it is an advantage that EVG
and PTCM are still valid in case the coherence matrix approaches the coherence matrix of an ideal
quasi-PS: Γ −→ ξξH (see Section 4.1 for more on this). On the other hand, PhL is prone to diverge in
this transition.

As a fourth method, an estimator using a weighted integer least squares (ILS) approach has been
introduced [46,84] that solves for the integer ambiguities to unwrap the phase. It searches a solution
for the following problem:

E[ϕ̂mn] =

⎧⎪⎪⎨⎪⎪⎩
φm n = master

−φn m = master

φm − φn + 2π·amn otherwise

(17)
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where amn ∈ {−1, 0, 1} is an integer. This can be reformulated for suitable arrangement of ϕ̂ = (ϕ̂mn),
a = (amn) and φ = (φn) and with appropriate matrices A and B as

[â, φ̂] = arg min
a,φ

||ϕ̂ − 2π·A·a − B·φ||2W (18)

where the constraints φn ∈ [−π, π), φmaster = 0 and amn ∈ {−1, 0, 1} have to be obeyed. W is a weight
matrix. In case of normally distributed data, the inverse of the covariance matrix would be a natural
choice for W. However, as phases are far from being normally distributed, other options might provide
better estimators. Nevertheless, Samiei-Esfahany [46] derives an approximation to the covariance
matrix Qϕ of interferometric phases of a DS pixel:

(
Qϕ

)
ij,kl = cov

[
ϕij, ϕkl

] ≈ |γik||γjl | − |γij||γkl |
2L|γij||γkl | . (19)

For this formula, he demonstrates, with the help of Monte Carlo simulation, that it provides a
good approximation if the number of looks L is >50 and a better approximation than a formula derived
earlier based on simpler assumptions [59,60]. Beside the inverse of the approximated covariance matrix,
he considers for W the diagonal matrices with coherences γ̂mn respectively with the Fisher information
index 2Lγ̂2

mn·(1 − γ̂2
mn)

−1 as entries. His experiments with simulated data for an exponential decay and
a seasonal decay scenario show best results for the Fisher information index. For these two scenarios,
he also performs comparisons between PhL, EVG, PTCM, and ILS. Best results were achieved for
PTCM and ILS. PhL performed distinctly worse than the other estimators. This is due to the small
5 × 5 search window, which leads to an imprecise estimation of |Γ̂| and corresponding problems with
its inversion. Furthermore, for both scenarios, experiments with ILS plus Fisher info are performed
with true and estimated coherences as well as the complete graph and a small baseline graph. For the
complete graph, standard deviations double for estimated compared to true coherences, while those
for the small baseline graph are very similar. In the exponential decay scenario, the results for the
small baseline graph are distinctly better than for the complete graph, and for the seasonal scenario,
it is vice versa. In an experiment with real data, ILS outperforms StaMPS. ILS performs very well but
has the drawback of high computation time. Finally, a big advantage of ILS is that it provides quality
control via the covariance matrix for the estimated phase history:

Qφ̂ =
(

BtWB
)−1BtWQϕWB

(
BtWB

)−1. (20)

In [85], the authors introduce their concept of Joint-Scatterer InSAR (JSInSAR). They estimate a
covariance matrix from blocks of pixels, that is of dimension PN × PN, where P is the size of a patch
in the spatial domain. By requiring that the signal and the noise space obtained from the covariance
matrix are orthogonal, they derive an expression that must be a minimized analog of that occurring
during PhL to find the phase history.

An independent approach with the name Multi-Link SAR has been developed in [86]. The idea is
to improve multilooked interferograms. For two acquisitions in the interferogram graph, the paths
connecting them are integrated and weighted. The result of the integration is an estimation of the
phase for the interferogram between these two acquisitions obtained by adding up the multilooked
phases of the consecutive interferograms. It is demonstrated that in case all these phases are reliable,
e.g., because they have a short baseline, this wrapped sum of phases is for problematic interferograms
a significantly better estimate than the original multilooked phase. The weighted sum of these integrals
serves to replace the original wrapped phase. The weights reflect the reliability of the integrated phases
and are obtained based on the quality criterion colinearity introduced by the authors. Results from
simulated data demonstrate that colinearity measures phase errors significantly more reliably than
coherence [87] for a 3 × 3 estimation window on multilooked data.
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As already noted by [46], the estimators for DS signal PhL, EVG, PTCM, and JSInSAR explained
and discussed in this subsection can be interpreted as special cases of the following general
estimation approach:

φ̂ = arg max
φ

Σm,nwmn·exp(i·(ϕ̂mn − (φm − φn))). (21)

W ∈ RN×N is a symmetric weight matrix (depending on the DS). If phases ϕ̂mn are only available for
certain interferograms, as in SBAS approaches, the corresponding weights are set to zero. Indications
that this can be advantageous have been reported. The estimators named before weights will be
nonnegative, with the exemption of PhL, where negative weights might occur. The merit of this
formulation, and this is likewise true for ILS, is that it is obvious that anyhow filtered wrapped
interferogram phases can be triangulated, while weights are a steering quality. Notwithstanding
this very general formulation, in all the cases discussed here, weights can be calculated from the
scatter matrix Ĉ. Consequentially, the next section will review (phase) filtering of interferograms and
coherence estimation with regard to the purpose of preprocessing DS.

3.2. Filtering of Interferograms and Coherence Estimation

In the preceding subsection, different possibilities for estimating a DS signal for preprocessing of
InSAR data stacks were presented. The required input to all these estimators consisted in interferogram
phases and weights, where phases were filtered and weights were derived from coherence, or more
generally, from the scatter matrix. In the current subsection, it will be studied how these can be
obtained from techniques that either are applied separately to each interferogram or work on the stack.
Some basic facts were already addressed in the section on DS statistics: estimators of scatter matrix,
sample coherence, and the MLE of [14]. Furthermore, it was reported on intrinsic biases of estimators,
the consequences of heterogeneous data and biases caused by nonstationary phases. Now, methods
will be discussed that have been developed to deal with these issues and to get the best out of the data.

3.2.1. Nonstationary Phases

In this section, approaches will be addressed for dealing with the presence of nonstationary
phases during preprocessing of an InSAR data stack. We assume that the synthetic phase has already
been removed [8]. There are approaches that implicitly handle nonstationarity and such that estimate
the interferogram phase explicitly for correcting the bias in coherence estimation. Examples for
implicit approaches will be given in the section on nonlocal methods (e.g., InSAR-BM3D). The explicit
approach occurs in several variants. Either it is applied separately for each DS or it is realized on the
interferogram or stack level and passes through the following steps:

1. denoising of the phases and correction of interferograms;
2. estimation of covariance or coherence from the corrected interferograms;
3. adding back denoised phases to covariances;
4. DS signal estimation.

This approach is compatible with most of the methods developed for interferogram filtering by
the InSAR community during the last 20 years. Examples are [16] (several suggestions, e.g., MUSIC;
applied in [88]), Goldstein, et al. [17] that works in the frequency domain, Davidson, et al. [89] an
adaptive multiresolution defringe algorithmus (e.g., applied in [90]), a modification of the filter of
Goldstein and Werner that reduces overfiltering by adapting the parameters to coherence [91], [62]
was mentioned before, a combination of the filter of Goldstein and Werner with a narrow low-pass
filter iteratively applied in StaMPS [28], or [92] that is devised for frequency estimation on adaptive
neighborhoods (cp. IDAN in the section on grouping of statistically homogeneous neighborhoods).

An approach for InSAR stacks that works DS-wise and is based on a model describing the totality
of local phase ramps at the DS position in all interferograms caused by DEM errors was given in [93].
Slopes in range and azimuth are estimated from a sum of periodograms over the interferograms.
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Each periodogram is calculated on the pixels of the adaptive neighborhood corresponding to the DS.
This approach was extended to gradients in the deformation field in [94] monitoring. They point to
the importance of including periodograms calculated for interferograms with large baselines for the
precision of this approach.

In [44], likewise, local phase ramps at the DS position are estimated, but in each interferogram
separately. The fringe frequency is obtained as the position of the peak after FFT with optimal window
size. The optimal window size is defined to result in minimal mean phase standard deviation.

3.2.2. Grouping of Statistically Homogeneous Neighborhoods

Heterogeneous data are the rule. The use of all pixels in a rectangular window entails the
dilemma of either using a small window and hoping that homogeneity is thus achieved or taking
a larger window, which would lead to precise estimation if the statistical assumptions remained
valid but often spoils the result by including unsuitable pixels. Therefore, it is an important question
how to build up effectively so-called adaptive neighborhoods (AN) that have variable shape but
are statistically homogeneous. ANs seem to have been used for the first time for speckle filtering
of multitemporal InSAR imagery in [95]. The authors report to be inspired by the use of ANs in
other fields of image exploitation [96]. It is also noteworthy that they already sought for a proper
3D-neighborhood, by which is meant that although a pixel is included in the neighborhood, some of
its values corresponding to certain channels (polarimetry) or points in time (multitemporal InSAR)
may be excluded. From Lee‘s sigma filter [97], they borrowed the idea of checking if the amplitudes
of neighbors of the pixel to be processed have less than two standard deviations difference from the
processed pixels amplitude. As the speckle effect in SAR imagery behaves like multiplicative noise,
some modifications to this approach developed for additive noise have been introduced. In particular,
a region growing in two steps proved to be seminal. The idea is to apply first a stricter criterion
(confidence interval for amplitudes at level 50%) in order that the region does not grow into statistically
unsuitable areas. Furthermore, this neighborhood provides a larger sample that allows for a more
precise re-estimation of mean and standard deviation, which are used to define the confidence interval
used during the second step. Here, pixels in gaps and at the rim of the region of the first step are
added to the region if their amplitudes fulfill a weaker criterion (amplitudes are contained in a larger
confidence interval at level 95%). This approach was adopted also from other researchers. For the
intensity-driven AN (IDAN) technique, [98] also let the region grow in two steps. However, they do not
compare the value of a pixel corresponding to a channel or to a point in time with another but compare
the vectors assigned to the two pixels. This might have been an inspiration for the authors of [35],
where the application of two-sample tests for the amplitudes of the pixels is advocated. In particular,
they introduce DeSpecKS, where the Kolmogorov–Smirnov two-sample test (KS) is used. As a second
example, they name the Anderson–Darling two sample test (AD). They do not build up a region in
two steps but test every pixel in a search window versus the center pixel. The accepted pixels form
the AN. Finally, pixels not belonging to the connected component of the center pixel are discarded
in order “to increase the probability that nearby pixels belong to the same radar target and share the
same geophysical parameters”. In [99], four two-sample tests are compared: generalized likelihood
ratio test (GLRT) for the scale parameter of the Rayleigh distribution, AD, KS, and Kullback–Leibler.
The best detection rates in different simulation scenarios were achieved for GLRT and AD. In particular,
GLRT performed best when Rayleigh-distributed amplitudes or different scale parameters for the
K-distribution were simulated but was third when the shape parameter of the K-distribution was
varied. KS was somewhat inferior to AD. Kullback–Leibler performed always worst. The subjective
impression from results of filtering real data with GLRT and AD is that GLRT has a more confetti like
appearance. These results have convinced several authors [42,58,90] that AD is the better test to be
used for forming an AN. Its superiority over KS is explained with the higher sensitivity towards big
amplitudes. However, findings of [100] show that this advantage is lost in case an outlier removal was
performed before the tests. Furthermore, as outlier removal is highly recommended and KS is faster,
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there is a little advantage for KS. Another small advantage of KS is that critical values can be precisely
calculated by a simple recursion that also works for samples of different sizes [101] (Section 6.3),
while for AD, usually an approximation described in [102] is used. On the other hand, critical values
for KS come in discrete steps, which for small sample size and high significance level restricts the
possible choices. [103] again grew a region requiring the relaxed criterion and then applied k-means
clustering to separate the homogeneous neighborhood of the center pixel from unsuitable pixels.
In [104], a new approach was taken for preventing running into unsuitable areas. The idea is to replace
the noisy stack of SAR amplitudes by a denoised extract of its information. To this purpose, a new
image is generated. The vector of amplitudes is projected to the main principal component of the
covariance matrix for amplitudes calculated by averaging over all pixels. The result is an image that
gets denoised in a further step. The denoised image is now the basis for determining the neighborhood
of a center pixel by thresholding on the square of the difference of image value of the center pixel and
the other pixels inside a search window. The advantage is faster processing.

In [105], the authors introduced a criterion for similarity that also makes use of phase information.
In a small neighborhood of the center pixel, the covariance matrix gets estimated with the MLT.
This allows for checking the other pixels in the search window. A pixel is accepted if a certain
threshold on the probability density corresponding to the estimated covariance matrix is exceeded.
All these approaches continue from here the same way. The four- or eight-connected component of the
neighborhood containing the center pixel is taken to estimate the SaCM. This step is carried out in
order to enhance the probability that all pixels of the adaptively chosen neighborhood actually belong
to a homogeneous area. An analysis of results in [105] demonstrates that the probabilistic method
performs best for small stacks up to 16 images when compared with boxcar multilooking, DeSpecKS,
or PCA-TV (the method of [104]). DeSpecKS proves even inferior to boxcar multilooking in this study.
If applied to a single interferogram, its results are comparable to the NL-InSAR filter of Deledalle [106],
discussed in the section on nonlocal methods.

In [44], the author proposes two different algorithms for forming an AN, introducing important
new ideas. A third is suggested in [107], which aims at fast processing. The first proposed algorithm
starts with a classification of pixels based on their amplitudes. A boxplot approach is used to detect
and remove outliers and afterwards determine the skewness and tailweight of the pixels. These
characteristics are decisive for an adaptive two-sample test (ADT). They serve to select the appropriate
test that decides over the statistical similarity of the two pixels compared. The pixels statistically
similar to the center pixel and in its connected component form the AN. The ADT scheme has been
developed starting from a set of candidate tests with the help of simulated data in order to compile an
optimal configuration. Regarding the power of the test, it is demonstrated that the ADT significantly
outperforms nonadaptive tests (KS, AD, Wilcoxon–Mann–Whitney) for several scenarios. The second
proposed algorithm provides a solution for the problem of low test power for small data stacks. To this
purpose, the number of available samples is enlarged by considering all amplitudes of all pixels in
a little neighborhood of each of the two pixels to be compared. The little neighborhood is chosen
among 8 directed windows containing 15 pixels each (as suggested in [108,109]) to be the one with
the smallest coefficient of variance of amplitudes. For the chosen directed window, amplitudes that
lie outside a relaxed confidence interval are discarded. The remaining samples are compared with a
differently set up ADT adapted to more strongly varying sample sizes. The third proposed algorithm
makes use of the observation that the mean of amplitudes of a pixel (in a multilook image) over time is
approximately normally distributed according to the central limit theorem for sufficiently big stacks
(e.g., N ≥ 10). For the mean amplitude image, an AN is grown with the help of a two-step procedure
like the one described above. The definition of confidence intervals uses an estimation of the equivalent
number of looks from the data cleaned from outliers with help of the adjusted boxplot [110].

In this section, different possibilities of forming neighborhoods have been discussed that serve for
phase estimation (usually via the argument of the complex coherence). Most approaches proceed in
two steps: first, a conservative estimation in order to prepare a more precise second one. The shape of
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the neighborhood developed from boxcar to ANs to 3D-ANs. Grouping criteria were applied to values
adjacent, either in space or time, to pixels or to blocks of pixels. They were based only on amplitudes
or also considering phase. Region growing was applied or all blocks inside a search window were
included that are similar to the center block. Then, several years ago, the next level of generality has
been entered. Approaches were introduced, where patches (in case of a single interferogram) or blocks
(in case of stacks of interferograms) are not used for grouping but rather for weighting. The use for
InSAR of the so-called nonlocal methods will be the subject of the next section.

3.2.3. Nonlocal (NL) Methods

The origin of nonlocal (NL) methods for image denoising is the NL means algorithm for optical
data introduced in [111]. The name-giving basic idea is to obtain the denoised pixel value as a
weighted sum over all pixel values in the image (or in a not too small search window). The weights are
computed from the distance between the vectors of the pixel values in a small patch around the pixel to
be denoised and the vector of pixel values of the patch shifted to the pixel to be weighted. [111] argues
that under the assumption of additive white Gaussian noise, the weighted Euclidean distance has
desirable statistical properties. Their approach already comprises the three basic steps characteristic of
the NL methods discussed in this section:

1. for each pixel to be estimated, a patch is shifted around and a similarity measure (based on the
statistical characteristics of the data) is calculated for every position; for multichannel data, it can
be a 3D block instead of a patch;

2. weights are computed from the calculated similarity measure;
3. a weighted mean or a weighted MLE provides the result.

The weighted mean is generalized to a weighted maximum likelihood approach in [112], where
weights are defined via probability of patch similarity given a noise model (probabilistic patch-based
(PPB) filter). In particular, they derive weights applicable for speckle noise in SAR images based on the
Nakagami–Rayleigh distribution. Furthermore, an iterative application of PPB is suggested using the
result of the previous iteration as a prior. The same authors extend their approach in [106] to InSAR
data (named the NL-InSAR estimator), obtaining estimations of reflectivity, phase, and coherence.
Weights are now defined under assumption of zero-mean circular Gaussian distribution, with patch
similarity making use of amplitudes as well as phases. Comparisons of simulated data with the
boxcar, the refined Lee [108,109], the IDAN, and the noniterative NL-InSAR estimator demonstrate
a better bias-variance trade-off and better signal-to-noise ratio of the iterative NL-InSAR estimator.
Likewise, the subjective impression from comparisons on simulated and on real data of the same
estimators indicates a superior performance of the iterative NL-InSAR estimator. Similarity criteria for
patches were studied systematically for different types of noise in different types of imagery, including
InSAR data, but also X-ray, in [113]. The finding was that the generalized likelihood ratio test is
the best basis for defining patch similarity criteria among the numerous investigated alternatives.
Building on this, a survey is given in [114] on patch-based nonlocal filtering of SAR imagery (speckle
filtering, InSAR, PolSAR, PolInSAR), e.g., estimation of covariance matrices for multitemporal InSAR
is discussed. Finally, a framework for nonlocal filtering of SAR imagery (NL-SAR) is presented in [115]
that displays several new features. It is adaptive to scale and contrast of local structures by trying
multiple parameter settings and automatically choosing locally the best suited one. With the help of
the empirical cumulative distribution function of the dissimilarities determined on a homogeneous
region selected by the user, the weights are defined in a way such that they are independent of choice
of patch size, scale of averaging, number of looks, and number of channels. Following the strategy
of the local linear minimum mean square estimator (LLMMSE), the weighted mean of SaCM and
the NL estimate of the covariance is calculated to debias the covariance matrix. The criterion for
automatic selection of parameters is the maximum equivalent number of looks calculated in a way that
respects the debiasing step. Comparisons among IDAN, refined Lee filter, and NL-InSAR for several
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data sets demonstrate the superiority of NL-SAR. Examples prove that each of the newly introduced
improvements is necessary to achieve this success. In particular, the occurrence of the “rare patch”
effect can be avoided by adaptive parameter settings. It consists of large local variation, where, for a
unique structure, only few similar partner patches are found. If the patch size is optimized to find
many partners, it is chosen in such a way that the unique structure is not contained if possible. Thus,
the surroundings of the unique structure are smoothed and show no artefacts. Also, for filtering of
speckle and PolSAR data, NL-SAR obtains better results than the techniques used for comparison.
Open source code for NL-SAR is available (see [115]).

The potential of NL filtering for SBAS processing was investigated in [76]. To limit the
computational effort, the algorithm was kept simple. Amplitudes were despeckled. For these three
variants were tested: not despeckled, boxcar, and SAR-Block Matching 3D (SAR-BM3D, cp. [116]).
The similarity measure was calculated for pairs of pixels based on their vectors of despeckled
amplitudes and the filtered stack was obtained as a weighted mean. Among the studied similarity
measures were KS and a probabilistic distance based on the assumption of multiplicative noise. The
latter, unlike KS, depends on the succession of values over time. The clear winner of the comparison
on synthetic and real data was the combination SAR-BM3D plus probabilistic distance.

InSAR-BM3D is introduced in [117] (remark: block is here synonymous to patch). Processing
runs through two passes. In the first pass, a basic estimate is obtained that serves to steer the filtering
during the second pass. Both passes consist of three steps: During grouping, similar patches are
collected to a stack. This stack is filtered considering intra- and inter-patch dependencies (collaborative
filtering). Each pixel in the image is now contained in multiple filtered patches from different stacks.
During the aggregation step, the final value for the pixel is calculated as the weighted average over
all these patches. During the first pass, collaborative filtering involves a hard threshold that during
the second pass is replaced by Wiener filtering based on the statistics of the result from the first pass.
As adaptations for InSAR data, the real and imaginary part of the interferogram are transformed
to decorrelate their noise. The transforms are filtered and the result is transformed back. Together
with the phase, an estimate of coherence is obtained. The coherence is calculated such that identical
phase patterns in the reference and the partner patch cancel out, thereby preventing bias caused by
phase gradients. Comparisons among boxcar, some version of Lee filter, Goldstein–Werner, NL-InSAR,
and NL-SAR are performed on several simulated and real data sets. InSAR-BM3D proves superior
on simulated data and shows good results on real data. On real data, the method noise seems almost
white, while for NL-InSAR and NL-SAR, artifacts are visible. Subjectively, the Goldstein–Werner
filter gives the best results on real data but was inferior on simulated data at higher noise levels
to InSAR-BM3D. NL-InSAR and NL-SAR have problems in recovering the simulated phase fields,
while Goldstein–Werner and InSAR-BM3D perform this task much better. The executable code and
simulated data are available (see [117]).

An interesting new option is proposed in [118] under the name multichannel logarithm with
Gaussian denoising (MuLoG). It transforms the field of sample covariance matrices of a stack of
multichannel SAR data in such a way that denoising algorithms for additive white noise are applicable.
After the transform of the denoised data backwards, filtered covariance matrices for the SAR data
are available. Comparisons of this approach with two transforms, different Gaussian denoisers,
and NL-SAR demonstrate that NL-SAR better preserves details and contrast but is a bit less smooth
in homogeneous areas. The Gaussian denoiser TV distinctly displays artefacts. The combinations of
MuLoG or homomorphic and DDID or BM3D give results of similar quality, while the homomorphic
approach tends to oversmooth bright targets and MuLoG gives slightly better values of SSIM. DDID
and BM3D show small oscillatory artefacts. The open source code for MuLoG is available (see [118]).

The NL methods discussed in this section count as state of the art in image filtering. Its success is
often explained by the use of more intelligent prediction. The assumption of “local” methods was that
similar pixels belong to the same radar target and therefore are found nearby. Often, they enforced
the connectedness of the DS neighborhood to make this sure. NL methods do explicitly check for
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similarity and invest in its reliability by using a patch. They can search on a larger area for suitable
partners and do not require connectedness, which in a richly structured area may prevent growing
sufficiently large neighborhoods even though suitable pixels are available. Furthermore, weighting
appears to be more efficient than deciding over membership in a neighborhood (this is a feature shared
with robust estimators of scatter). Hence, more pixels contribute to the result and make it more reliable.
Nevertheless, it still seems miraculous that enough similar patches are found and that averaging with
them improves results even if they cannot be ascribed to the same physical phenomenon. However,
the success of these approaches indicates that this requirement is often fulfilled.

3.2.4. Bias Correction and Regularization

As mentioned in the section on DS statistics, |γ̂mn| is a biased but asymptotically unbiased
estimator for coherence magnitude. Also, as coherence approaches one, the bias tends versus zero.
For small coherences and a small number of looks, values are overestimated. Correcting for this bias
is an important task because the quality of many InSAR applications depends on precise values of
coherence. For estimation of DS signal, it has for all DS with a small to medium number of pixels an
adverse effect as soon as large baselines occur in the stack.

In [67], several methods of coherence estimation with bias correction were investigated. The first
step is estimation of the complex coherence |γ̂mn|, e.g., as sample coherence or as mean over a sample
from a coherence map estimated for a certain number of looks (e.g., L = 20). The latter is a nearly
unbiased estimator. The second step makes use of the analytic expression for the expectation value of
|γ̂mn| in dependence of the number of looks and true coherence. The unbiased estimation is that value
of true coherence which has the expectation value |γ̂mn|. Unfortunately, the standard deviation of this
estimator is significant for small number of looks, a situation where debiasing is most needed. [31]
(p. 42) comments on the difficulty of obtaining a positive definite covariance matrix from this approach.
In [119], several methods for bias correction were compared. For simulated Gaussian data, bias
corrections with log-sample coherence (cp. [120]) and double bootstrapping were able to mitigate
bias, while double bootstrapping was more effective. For simulated contaminated Gaussian data
with true coherences in the range 0.5–1.0, bias corrections with double bootstrapping were very
effective, although the bias was now towards lower values. The bias correction of the second method
of [67], as explained before, decreases coherence, further making things even worse. Furthermore, an
experiment was performed with ASAR and TSX data sets of a scene where large homogeneous areas of
different types were contained, having a different parameter α. Again, double bootstrapping mitigated
bias more effectively than the method of [120]. Moreover, the performance of double bootstrapping
proved less dependent on α. In conclusion, double bootstrapping proved the most accurate among
the investigated estimators. Unfortunately, it is computationally quite expensive. Because of that,
the jackknife was investigated as an alternative [121]. It proved to be approximately 30 times faster.
An experiment with simulated data and true coherence values 0.2 and 0.6 demonstrated almost perfect
debiasing for sample sizes bigger than 20. Furthermore, ADT plus jackknife lead to a distinctly better
signal-to-noise ratio than ADT alone or DeSpecKS. A coherence image from real data generated with
DeSpecKS seems blurred compared to ADT plus jackknife.

Another strategy in case of a small sample size is not to debias each |γ̂mn| separately but to
improve on the estimated coherence matrix. In [108], the local linear minimum mean square estimator
was given for multiplicative noise. For each pixel, coefficients for a convex combination of mean signal
and signal of the pixel are determined that minimize the mean square error of estimation of the noise
free signal. These coefficients are also used to obtain the estimation of the covariance matrix as a convex
combination of SaCM and a dyad of the pixel signal, thus constituting a shrinkage estimator. This idea
is used until today, e.g., in IDAN, SAR-BM3D, NL-SAR, and in a wide sense, also in InSAR-BM3D.
Similar to the approach of [108], the same starting point was taken by [122], where the well-known
Ledoit–Wolf estimator has been introduced. No specific assumption on the probability distribution
is required, only that fourth order moments are finite. They also give several interpretations of the
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minimum mean square approach, e.g., as a trade-off between bias and variance. An extension of
shrinkage estimators of the SaCM (also termed general linear estimation estimators) were developed
in [53] as an alternative for regularized M-estimators of the scatter matrix in situations with insufficient
sample support. That is where the inverse of the SaCM cannot be computed or is poorly conditioned
and hence robust estimators of the scatter matrix cannot be applied. Regularized M-estimators of
scatter share with M-estimators of scatter the disadvantage of a computationally expensive iterative
calculation involving the repeated inversion of the scatter matrix.

3.3. Quality Numbers for Distributed Scatterers for Preprocessing

A prerequisite for the successful use of preprocessed DS is to be able to assess the quality of
the estimated signal. Remember that the phase standard deviation is a function of the coherence
magnitude and the number of looks [1]. In [35], phase triangulation coherence was introduced as a
measure of successful phase triangulation:

γPTA =
1

N(N − 1) ∑
m

∑
n( �=m)

ei·(ϕ̂mn−(φ̂m−φ̂n)). (22)

Although this is a measure of goodness of fit, it is rather improbable that a very high γPTA
corresponds to a meaningless signal. It should be used in combination with other criteria, e.g.,
requiring a minimum number of samples. In [46], this approach was taken. He required in one
experiment γPTA ≥ 0.7 and a number of samples ≥ 50, a and in a second γPTA ≥ 0.4 and a number of
samples ≥ 25 for DS candidates. γPTA can be sharpened by weighting the phasors with the coherence
magnitudes (cp. Equation (20) in [33]):

γPTAw =
ΣmΣn( �=m)|γ̂mn|·ei·(ϕ̂mn−(φ̂m−φ̂n))

ΣmΣn( �=m)|γ̂mn| . (23)

In [123], those signals are accepted as DS that have a mean coherence magnitude larger than 0.25
(4 × 20 looks). This measure is also used in [76].

In [124], those are accepted that have coherence magnitude larger than 0.15 in at least 60% of the
interferograms (64 looks).

In [42,125], a minimum average coherence and minimum number of samples were used (e.g., 0.3
or 0.4 and 20).

In the context of multitemporal polarimetric InSAR, [126] suggest establishing a common quality
criterion for DS and PS measuring phase standard deviation. In both cases, it can be approximately
calculated: In the case of PS for small values, the phase standard deviation is approximately equal to
the amplitude dispersion [23]. For DS, they use an approximation depending on coherence magnitude
and the number of looks. Coherence magnitude is replaced by the average coherence magnitude and
number of looks is calculated as the number of DS pixels divided by the oversampling factors in range
and azimuth.

In [58], a low coherence situation is given. Therefore, the authors calculate from the formulas for
expectation and standard deviation of coherence magnitude the corresponding values for coherence
magnitude zero. The sum serves as threshold for DS selection.

One should be aware that thresholds suited for an SBAS framework might have to be adopted if
all interferograms are used.

3.4. Algorithmic Approaches to Reduce Run Time

Preprocessing of DS is computationally very expensive. Therefore, it is necessary to optimize
algorithms for better utilization of computing resources. Besides basic improvements like
parallelization, there is also the possibility to modify the formulation of the task. The crucial property
of a DS that can be used to achieve some time savings is its spatial extension. Given a coarse mask,
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either derived from the data themselves or from GIS, areas where no DS can be expected are annotated
and do not have to be processed (water, forest, shadow, layover, etc.). While a PS consisting of a
single pixel can hide in the forest, a DS necessarily consists of a larger group of pixels and cannot.
Likewise, not every pixel belonging to the neighborhood determined for a DS must be processed on
its own. An approach that uses a raster, where each cell at most contains one DS, was given in [93].
Later, this algorithm was completed by fitting a smooth deformation field to estimations [94]. Also,
NL methods could be adapted for the use of DS processing. If the reference patch is recognized as
inhomogeneous, it needs not be processed.

Sentinel-1 and the future missions NISAR and Tandem-L with wide swaths and short revisit
times will provide huge data volumes. In addition, near real-time monitoring has been defined as a
future objective, e.g., for use in early warning systems. To answer to this challenge, the Sequential
Estimator [127] has been developed. Long time series are subdivided in ministacks that are sequentially
processed. A compression method allows for representation of the information of each ministack
needed for further processing in artificial interferograms. This results in an impressive reduction
of computing operations without significant loss of quality and even displays a more balanced
performance than conventional estimators in two scenarios (fast exponentially decaying and long-term
coherence) with simulated data.

4. Phase Model Parameter Estimation for Distributed Scatterers

This section is devoted to an experiment that proves that parameter estimation from preprocessed
DS provides significantly improved results if statistical information available for the DS is used.
The modeled phase accounts for linear deformation rates and DEM errors.

4.1. Estimators of Model Parameters

A big advantage of estimation of DS signals is that a start net can be built up containing DS
as well as PS. This allows bridging gaps between PS by DS. Phase histories of DS can be used as
if DS has been transformed to PS. Nevertheless, DS are not PS and have other statistical properties
that still matter after preprocessing is finished. The experiments with simulated data described in
this section show that using the additional information (covariances, amplitudes) available for DS
allows to obtain better estimates of model parameters, here, linear deformation rates and DEM errors,
for DS–PS pairs and DS–DS pairs. To formulate the new approach, some notation is needed. It is
assumed that the signal of the PS can be written as p = c·ξ, c ∈ R>0. By abuse of terminology, we
write in the case of a PS Ĉ = p·pH and Γ̂ = ξ·ξH to achieve a uniform notation for PS and DS. This is
close to what [31] (p. 52) named quasi-PS, only that the noise is omitted. The trick here is that a zero
mean Gaussian random vector with nonzero variance and covariance matrix of rank 1 is the same
as a one-dimensional zero mean Gaussian random variable times the (nonrandom) eigenvector of
the covariance matrix with an eigenvalue greater than zero. With M as the model matrix, ϑ as the
parameter vector, and φ(ϑ) = M·ϑ ∈ RN :

η =

⎛⎜⎝ eiφ1(ϑ)

...
eiφN(ϑ)

⎞⎟⎠. (24)

Given a pixel pair with matrices Γ̂1 and Γ̂2, the model increments can now be estimated by

ϑ̂ = max
ϑ

ηH ·
(

Γ̂1 ◦ Γ̂2

)
·η. (25)
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In the case of two PS, the estimate is the same as with the periodogram. This estimator will be
denoted as pair-PTCM (pPTCM). Another estimator of model parameters that is of interest is

ϑ̂ = min
ϑ

(z1 ◦ z2 ◦ η)H ·
∣∣∣Ĉ1 ◦ Ĉ2

∣∣∣−1·(z1 ◦ z2 ◦ η) (26)

where z1 and z2 are the complex signals of the two pixels of the pair as estimated during preprocessing.
It can be considered a |Ĉ|−1-weighted periodogram (wPdg). In the case of DS, it is supposed that
the signal z has been estimated during preprocessing with some estimator of the DS signal, e.g.,
the eigenvector ẑ to the largest eigenvalue of the covariance matrix Ĉ. For a PS–DS pair, this corresponds
to the estimator introduced in [30] for a single pixel, only that the authors did use the original signal
from the center pixel of the DS and not an estimated signal. In case the true covariance matrix is used,
the latter is the ML estimator:

ϑ̂ = min
ϑ

(z ◦ η)H ·|C|−1·(z ◦ η). (27)

The use of the original pixel phase by [30] is a crucial difference to the other estimators explained
here. In [31] (p. 77), it was remarked that this prevents compromising the resolution. An opposed
view is that all pixels of the DS neighborhood share the same phase history (plus re-added fringes if
necessary). Any adverse effects caused by wrongly grouped pixels or because of imprecise estimation
of fringes are estimation errors but do not pertain to resolution. A further development that retained
the use of the original pixel phase is the RIO estimator of [45,128]. It has the interesting feature of
providing a robust estimation of |C| also for nonstationary data without needing a prior estimation
and subtraction of residual fringes.

4.2. Results of Investigations on Simulated Data for Parameter Estimation from Pixel Pairs

In this section some tests with simulated data are described that were run with the goal to
compare performance of some of the estimators introduced before, in particular regarding estimation
of parameters from pixel pairs. First, the simulated data are described. Afterwards, tests and their
results are presented and discussed.

The data are simulated based on acquisition parameters of a stack of 26 TSX high-resolution
spotlight-mode images from the town of Lüneburg in Germany that is available to the scientific
community via ISPRS. The basic model used for the coherence matrix is the following (cp. [12,56]):

ckl = γ0·exp
(
−|tk − tl |

τ

)
·max

{
0, 1 − |Bk − Bl |

Bcrit

}
(28)

where γ0 accounts for noise and processing artefacts, tk are the acquisition times, τ is a parameter
describing temporal deccorelation, Bk are the perpendicular baselines, and Bcrit is the critical baseline.
In some of the simulations, the covariance matrix was modified by the introduction of one or two snow
days, i.e., for the corresponding acquisition dates, all nondiagonal coherences were multiplied by 0.25.
Furthermore, we defined a seasonal model to complement the basic model:

ckl = γseason
kl ·exp

(
−|tk − tl |

τ

)
·max

{
0, 1 − |Bk − Bl |

Bcrit

}
(29)

where for given γ0 = (A + B)2 and γmin = (A − B)2

γseason
kl =

(
A + B cos

(
2πtk
365

))
·
(

A + B cos
(

2πtl
365

))
. (30)

Note that the coherence matrix remains positive definite after introduction of γseason
kl . The seasonal

model is intended to capture a situation where a good DS is periodically deteriorated by correlation,
e.g., debris or enduring parts of low vegetation partly covered by grass or leaves in the growth phase.
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In all simulations, complex circular normally distributed data with a given covariance matrix were
generated and superposed with a phase history corresponding to some linear deformation and some
DEM error. Additionally, in several cases, the data were contaminated by replacing a certain percentage
of values by complex circular normally independently distributed numbers of twice the standard
deviation as the original data. A list of the simulation settings used for the generation of the test data
can be found in Table 1. For each setting, 1000 DS were simulated.

Table 1. Settings for simulations.

γ0 τ (Days) Modifications

0.9 30, 45, 60, 90, 720, 1440 -
0.9 90 One snow date
0.9 60 Two snow dates
0.95 720 Seasonal model γmin = 0.05
0.9 60, 720 Contaminated with 10% or 20% outliers

For tests of the PS–DS pairs, the PS signal was assumed to be constant over time. As DS in these
pairs, all simulated data sets described in Table 1 were considered. For DS–DS pairs, 19 representative
combinations between data sets described in Table 1 were investigated.

The first comparison that will be discussed is between two types of estimation strategies for
PS–DS pairs. The older one was introduced by [30] and uses an estimate of the covariance matrix Ĉ
for a |Ĉ|−1-weighted periodogram estimation. What is characteristic for this strategy is that it takes
the unmodified signal of the DS center pixel as the input to the estimator. A more refined version of
this strategy that is not included in the present comparison is the RIO estimator of [128]. The newer
strategy originates in the SqueeSAR paper of 2011 [35]. Its characteristic is that during preprocessing,
the signal of the DS is estimated by one of the estimators introduced earlier and replaces the original
signal of the center pixel henceforth, in particular for model parameter estimation. The finding is that
the first strategy as suggested by the De Zan performed distinctly worse in all tests than the second.
As illustration Figure 1 displays, the histograms of error of deformation velocity estimation for three
estimator combinations and for different search window sizes obtained for the data simulated for the
basic covariance matrix model with γ0 = 0.9 and γ0 = 60 days. The second strategy is represented by
the result of PhL combined with the periodogram (Pdg). As a benchmark, the combination of the two
ML estimators is added.

   
(a) (b) (c) 

Figure 1. Histograms of error of deformation velocity estimation for three estimator combinations and
for different search window sizes obtained for the data simulated for the basic covariance matrix model
with γ0 = 0.9 and τ = 60 days. The search window sizes are (a) 25 pixels, (b) 49 pixels and, (c) 441 pixels.

The second comparison is between estimators following the second strategy. Figure 2 displays
results for the given search window size for all datasets of PS–DS and DS–DS pairs as described above.
The combination of marker and color identifies the combination of estimators. For each test case,
the marker is plotted at the position corresponding to the medians of absolute values of estimation
errors for the parameters velocity and height. Best results are achieved with the benchmark ML + ML.
From the estimators applicable for real data, pPTCM performs best, followed by EV + Pdg and PTCM
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+ Pdg. For a larger search window size, PhL + Pdg and PhL + |Ĉ|−1-weighted Pdg estimation are of
comparable quality, but they fail for small window sizes. Using the 90% percentiles instead of the
median confirms this assessment.

  
(a) (b) 

  
(c) (d) 

Figure 2. Comparison between estimators for all data sets of PS–DS and DS–DS pairs for two search
window sizes. (a) Search window size 25 pixels, (b) legend, (c) search window size 25 pixels (zoom)
and, (d) search window size 77 pixels. The combination of marker and color identifies the combination
of estimators. For each test case, the marker is plotted at the position corresponding to the medians of
absolute values of estimation errors for the parameters velocity and height.

The observation that estimators making use of an inverse of the covariance or coherence matrix
give for small search window sizes worse results is easily brought into connection with their bad
condition. However, plotting the condition number or its logarithm versus the absolute estimation
error does not clearly confirm this expectation. What happens seems to be more indirectly caused
by the indeed bad condition of the covariance matrices. For PhL, the coherence matrix is weighted,
allowing negative numbers, with |Γ̂|−1. The bad condition entails that sometimes these weights are
very adversely distributed. To capture this in a number, the ratio of the sum of the absolute values
of the entries of |Γ̂|−1 in diagonals of higher order divided by the sum of the absolute values of all
entries has been calculated. In Figure 3, evidence for this hypothesis is given by showing the plots
of the absolute values of errors in height estimation versus these weight ratios for two examples (the
main diagonal and the first secondary diagonal were spared).
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(a) (b) 

Figure 3. Absolute error in height estimation plotted versus weight ratio for different search window
sizes obtained for the data simulated for the basic covariance matrix model with γ0 = 0.9 and τ = 60
days. The search window sizes are (a) 25 pixels and, (b) 49 pixels.

5. Discussion

In this review, preprocessing of DS for use in PS algorithms was explored. The extraction of
DS signals from weighted interferograms, which then can be used like PS in further processing, was
identified as a key concept. Because of this concept’s general nature, elements from a large variety of
different approaches can be combined to realize a preprocessing algorithm. Naturally, this poses the
question: what would a preprocessing algorithm look like that provides optimal quality of results?
For the moment, a concluding answer seems out of scope given the large number of techniques and
the relative low number of comparative studies. Nevertheless, some very promising approaches have
been suggested that give indications of what should be part of the solution. For the choice of the
estimator of DS signal, one could make the answer dependent on circumstances:

1. large #Ω, entropy close to 0: PhL;
2. small #Ω, entropy close to 0: PTCM;
3. entropy not close to 0: EVG.

If time is not critical, ILS could be used, having the advantage of providing quality control.
To estimate the DS signal, it is necessary to determine the coherence matrix or more generally phases
and weights. A feasible way would be to follow [44]: use the ADT to find a 3D AN; defringe;
estimate the SaCM; and debias with double bootstrapping or jackknife. However, there are many other
options, e.g., for removal of fringes, there are algorithms with more evidence for good performance.
InSAR-BM3D has been run on a representative selection of test cases with superior results in phase
restoration. This could be the basis for an alternative. However, this approach has just been published
and nothing is known about its use for deformation analysis. Moreover, although the concept of DS
preprocessing via interferogram filtering plus phase triangulation allows many possible combinations
of algorithms, to our knowledge, there are only a few publications concerning such an approach
(cp. [36,40,76,83]). In all of these examples, presumably better results could be achieved with advanced
filtering taking into account:

1. use of a proper 3D neighborhood in the sense that, although a pixel is included in the
neighborhood, some of its values corresponding to certain points in time may be excluded;
alternatively, a NL analog of this might be taken;

2. robust and effective treatment of fringes;
3. some bias correction or regularization.

Furthermore, NL-SAR provides coherence matrices ready to use with phase triangulation.
It would be interesting to see comparisons of deformation maps generated with all these different
approaches. The techniques presented in this review use various methods and it is not obvious
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which are to be preferred. This demands systematic comparisons with the goal of identifying best
practices. A suggestion would be to define a set of standardized test cases for interferogram filtering
available to everyone that allows for the assessment and comparison of the performance of algorithms
in the most relevant typical situations. Steps in this direction have already been taken by the authors
of [115,117,118] by providing downloadable code for their algorithms and by [117] by also providing
part of their test data.

Another aspect is that for most algorithms, no theoretical framework is known that would
provide quality indicators like standard deviation or covariance matrices together with the estimations.
Exceptions are, e.g., PhL and ILS (see Equation (13) or (20)). It would be advantageous to have this
available at least for the basic estimators.

Finally, an issue that we ignored so far in this discussion is that today’s best performing algorithms
with respect to precision are often not applicable to very large datasets because of enormous computing
times or costly investment in computing facilities. Of course, further progress also in this direction
is required.

6. Conclusions

During the last decade, different lines of development in InSAR research have converged.
Today, it is common that algorithms have some capability of jointly processing DS and PS, that
advanced filtering algorithms are applied, and estimators of DS signal provide triangular phases.
Jointly processing DS and PS allows for more stable algorithms and increases coverage with the
desired information. Triangular phases enable 3D unwrapping, which is superior to 2D unwrapping.
Consequentially, one main focus of this review has been the preprocessing of DS, which enables their
use in PS software without the need of further adaptation of the algorithms. In this regard, relevant
work on estimation of DS signals has been discussed. It has been pointed out that this is the key that
makes available the whole variety of InSAR filtering algorithms for DS preprocessing. Referring to this
matter, recently developed new techniques for filtering of interferograms and coherence estimation
have been presented and been put into context. Interesting possibilities for future research have been
highlighted (cp. Discussion).

As second leg of this work, this review on DS preprocessing has been complemented by
preliminary experiments demonstrating that statistical information on DS is still valuable for
post-preprocessing. A heuristically motivated method was described for parameter estimation for
DS–PS and DS–DS pairs that makes use of the coherence matrices extracted for DS during preprocessing.
It was demonstrated that significantly more precise results for transformed DS can be obtained this
way than are achieved when treating them as PS. A solid theoretical underpinning is lacking for the
moment, but its possibilities are sure worth to be further explored.

Finally, it can be stated that the progress and success of InSAR is an ongoing story. There are
many important applications in geoscience, the economy, and governance that are reflected in the
investments in today’s and scheduled future systems, with their tight orbit tubes, short repeat cycles,
high resolution, and large swaths ensuring good conditions for exploitation of DS. Research and
improvement of algorithms to make optimal use of data is of high importance also in the future.
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Abstract: Synthetic Aperture Radar Interferometry (SAR, InSAR) is increasingly being used for
deformation monitoring. Uncertainty in satellite state vectors is considered to be one of the main
sources of errors in applications such as this. In this paper, we present frequency and spatial domain
based algorithms to model orbital errors in InSAR interferograms. The main advantage of this method,
when applied to the spatial domain, is that the order of the polynomial coefficient is automatically
determined according to the features of the orbital errors, using K-cross validation. In the frequency
domain, a maximum likelihood fringe rate estimate is deployed to resolve linear orbital patterns in
strong noise interferograms, where spatial-domain-based algorithms are unworkable. Both methods
were tested and compared with synthetic data and applied to historical Environmental Satellite
Advanced Synthetic Aperture Radar (ENVISAT ASAR) sensor and modern instruments such as
Gaofen-3 (GF-3) and Sentinel-1. The validation from the simulation demonstrated that an accuracy
of ~1mm can be obtained under optimal conditions. Using an independent GPS measurement that
is discontinuous from the InSAR measurement over the Tohoku-Oki area, we found a 31.45% and
73.22% reduction in uncertainty after applying our method for ASAR tracks 347 and 74, respectively.

Keywords: InSAR; orbital error; deformation monitoring; fringe rate estimation; K-cross validation

1. Introduction

The precise orbiting position information of space-borne Synthetic Aperture Radar (SAR) systems
is of great significance in many Interferometric Synthetic Aperture Radar (InSAR) applications,
especially in the case of ground motion monitoring [1–3]. The InSAR technique uses two sensors,
carried on satellites, with slightly different incidence angles, to measure a displacement along the
radar line-of-sight (LOS) between two SAR acquisitions. The theoretical accuracy can be as high as a
centimeter to as low as a millimeter. This technique has been widely used to identify many geophysical
processes that usually cause long-wavelength crustal deformation, including strain accumulation
along locked continental faults, coseismic deformation caused by the occurrence of faulting in the
lithosphere, and postseismic deformation caused by afterslip and viscoelastic relaxation [4–6].

The radar, the ground, and the intervening medium create a compound observing system; within
this, there are several potential sources of errors that have a detrimental impact on the accuracy of
InSAR measurements. In particular, satellite orbital errors [7], temporal and spatial decorrelation
effects [8,9], atmospheric screens [10], and high-deformation gradients are the main limitations [11].
As far as orbital errors are concerned, they cause long-wavelength phase contributions to interferogram
and are often referred to as ‘the phase ramp’. The pattern of the phase ramp usually depends on the
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satellite–state–vector error, especially on the radial and cross-track components of the orbital error [7].
The influence of orbital errors on the final accuracy of deformation products is largely contingent on
the SAR instruments, i.e., the trajectory of the satellite orbit, the radar frequency, and the degree of
overlap between the phase ramp and the deformation signals.

Several efforts have been made during the last two decades to mitigate the orbital error, and most
of them start with spatial domain analyses of InSAR interferograms. A simple but very effective
solution is de-ramping from the InSAR interferogram using a linear or quadratic surface fitting [3,12].
The phase ramp is either subtracted from the original phase or used to refine the spatial baseline to
infer a revised interferogram [13,14]. Given a wrapped-phase pattern, the unwrapping operation is
always required before fitting. The accuracy of the estimated coefficients in the polynomial model relies
on the quality of the observations to be fitted. Error propagation in the unwrapping procedure over
fast decorrelation areas with low coherence may distort the signal and, therefore, contribute to surface
artifacts. To solve this problem, pixel offsets between bi-temporal-SAR data can be estimated using
the cross-correlation algorithm; the baseline is then re-estimated to compensate for the residual phase
in the interferogram [15]. Despite many efforts, the accuracy of the estimated offsets, from meter to
decimeter, restricts the correction of the baseline components. Kohlhase et al. (2003) suggest counting
the fringes caused by orbital errors according to phase gradients in differential interferograms and to
adjust the trajectories of satellite orbits [16]. This does not work for coseismic scenes, where a stronger
deformation causes dense fringes [7].

Advances related to orbital error correction refer to the time-series-SAR dataset. One such
suggestion is to independently estimate the phase ramp on each interferogram using least squares
scheme. To ensure consistency in the interferometric network, the polynomial coefficients are
refined in a network sense by time-series inversions [17,18]. Considering the inseparability of
phase ramp and long-wavelength deformation signals in the spatial dimension, the alternative is
to estimate both deformation and orbital errors by exploiting spatio-temporal characteristics of both
quantities [17,19]. However, resolving large, linear systems of algebraic equations, error propagation,
and underdetermined problems have become the main challenges associated with these methods.

One promising alternative to separating long-wavelength displacement signals and orbit errors
is to employ external data, for example, GPS measurement [20–22]. GPS displacements located in
the SAR scene are projected onto the line-of-sight direction according to the incidence angle and
the heading of the SAR geometry. The phase ramp is then estimated by minimizing the residuals
between the InSAR interferogram and the phase inverted by the GPS. The final accuracy of the InSAR
deformation product depends on the accuracy of the GPS measurements, the number of GPS stations
and their spatial distribution.

In summary, the current problems of orbital error removal are two-fold. The first problem
originates from the fact that all long-wavelength signals are treated as orbital errors during the
correction without ancillary data. Although a few studies try to use wavelet-multiresolution analysis
to classify the different components in the unwrapped interferogram automatically [23], the method is
still empirical, as the number of levels of wavelet decomposition must be specified manually according
to the features of the interferogram. The second problem involves robust regression. As stated in
Reference [24], the model selection is subjective and relies on the distribution and the density of the
targets showing high coherence, while errors in unwrapping are likely to mislead surface fitting. In fact,
the method of estimating the phase ramp in the frequency domain may avoid the unwrapping error.
However, few studies discuss using this method for orbital error correction. In the following section,
we focus our analyses on the individual interferogram, as it is essential for time-series inversion and
many geophysical applications.

The remainder of the paper is organized as follows: In Section 2, we introduce the frequency
and spatial domain based methods, respectively, from the image-processing viewpoint. In Section 3,
the results and quantitative comparisons are presented using synthetic and real data. In Section 4,
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the feasibility of these methods, including their merits and faults, are investigated. In Section 5,
conclusions are given.

2. Methods

2.1. Modeling Orbital Error in Frequency Domain

The fringe rate of long-wavelength signals in interferogram can be estimated by means of
maximum likelihood (ML) frequency algorithms [25–27]. The idea is that the orbital error has a
dominant term in its Fourier expansion. Assuming original interferogram I can be expressed as:

I = ei(φde f +φtopo+φorbit+φother) = D · eiφtopo (1)

where φde f , φtopo, φorbit, φother denote deformation phase, topographic phase, orbital ramp, and other
phase components related to the atmosphere and decorrelation, respectively. D is the differential
interferogram. After atmospheric correction and/or phase filtering, we rewrite D as a sinusoidal
model:

D = eiφorbit · eiφde f = ei2π fx x · ei2π fyy · eiρ · eiφde f (2)

where x and y denote the pixel index in radar coordinate, fx and fy are true fringe frequencies along
range and azimuth direction, respectively, and ρ is the residual phase.

F = f f t(D) (3)

The Fourier filter can be used to obtain the ML estimate of the average stripe rate in Equation (2).
The peak location obtained by maximizing the 2D discrete Fourier transform (DFT) corresponds to
the estimated frequencies f̂x and f̂y, respectively, and the phase ρ̂ at the DFT peak is approximate to
ρ. To better identify the exact frequencies, we increase the DFT frequency sampling by padding the
signal in the window with enough zeros. The size of the padded zeros in both directions, nx and ny,
can be determined by the Cramer-Rao bound of the variance of estimated frequency [26]:⎧⎨⎩ ( 1

Nx+nx
)

2 ≤ 6
SNR·Nx ·Ny ·(N2

x−1)

( 1
Ny+ny

)
2 ≤ 6

SNR·Nx ·Ny ·(N2
y−1)

(4)

where SNR represents the signal-to-noise ratio, Nx and Ny are equivalent to each of the image
sizes. The de-ramped interferogram can be obtained from the cross multiplication of the differential
interferogram and the estimated phase ramp under the assumption f̂x ≈ fx, f̂y ≈ fy and ρ̂ ≈ ρ.

The significant advantage of this method is its simple computation without the need for phase
unwrapping and higher reliability over low-coherence areas (see Section 3.1). However, this method
can only estimate the linear terms of orbital error. For non-linear fringe patterns, which are usually
present in long-strip images, polynomial fitting in the spatial domain is recommended.

2.2. Modeling Orbital Error in Spatial Domain

The most popular method used in orbital-error correction is surface fitting with linear or quadratic
models, using unwrapped phase observations. Its general form can be defined as [23]:

z = P1x + P2y + P3 (5)

where z is the polynomial model, x and y indicate the pixel index in radar coordinates. To solve the
equation for the unknown coefficients P1, P2 and P3, the least squares scheme is used. The solution can
be written as:

P = (AT A)
−1

ATZ (6)
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where PT = [P̂1, P̂2, P̂3] is the estimated vector in which the elements correspond to the coefficients in
Equation (5). Z is the observations with size N, and A is the N × 3 matrix containing the coordinates
x and y. However, there are several drawbacks to using this method. Firstly, Equation (6) is not
robust to abnormal values, such as unwrapping errors. In addition, the observations contribute to
the equivalent weight without the consideration of the interferogram qualities. Secondly, the local
deformation will contribute to the polynomial coefficients with the increase of the dimension in PT .
Finally, the determination of the order of the polynomial model is not clear yet and is usually empirical.
A more sophisticated method is therefore needed.

2.2.1. Preprocess: Multi-Looking and Manually Masking

An increase in looks can enhance the quality of long-wavelength signals and simultaneously
mitigate the effect of the short-wavelength signals during the regression. On the other hand,
the decreased dimension can reduce the computational burden for unwrapping and the iterative
least squares scheme. For those regional deformation signals, manual masking should be undertaken.
Although this step is simpler than wavelet decomposition [23], it is still effective without expert
knowledge and computational complexity. In addition, masking is important for areas with a high
phase gradient, where phase aliasing causes unexpected unwrapping errors [11].

2.2.2. Polynomial Model

For long-strip InSAR interferograms, it is difficult to use the linear or quadric models to
incorporate orbit errors. A more general form is needed:

z = XMYT (7)

where X = [1 x x2 x3 . . .]1×(n+1) and YT = [1 y y2 y3 . . .]1×(m+1) is the vector with the length n + 1 and
m + 1 respectively, M is (n + 1)× (m + 1) coefficient matrix.

M =

⎡⎢⎢⎢⎢⎢⎢⎣
P1,1 P1,2 . . . P1,m P1,m+1

P2,1 P2,2 · · · P2,m
...

...
Pn,1 Pn,2

Pn+1,1 0

⎤⎥⎥⎥⎥⎥⎥⎦
The parameters n and m should be carefully determined to prevent overfitting in terms of the

spatial distribution of observations.

2.2.3. Iteratively Reweighted Least Squares Fitting

The main disadvantage of ordinary least squares is that there is a constant deviation in the
errors. For observations with different coherence magnitudes, the method of weighted least squares
should be used. Moreover, iterative behavior can be employed to reduce the influence of outliers on
regression. We designed an iterative version for the least-squares solution according to the phase
standard deviation (STD) and robust Bi-square weight. The modification of the parameter estimate P
in Equation (6) can be rewritten as:

P = (ATWA)
−1

ATWz (8)

In this paper, we define weight W in two steps. The prior weight V = {v1, v2, . . . , vN}, defined by
interferometric phase STD, can be simply written as [27]:
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vi =
1
σi

=

√
2Lγi√

1 − γ2
i

L ≥ 4 (9)

where L is the looks and γi is the coherence observations. Compared with the coherence, phase STD σi
is a more appropriate weight, as it takes looks into account. The function model Equation (9) is a close
approximation to the complicated stochastic model when looks are greater than four [27]. After initial
regression, the robust Bi-square weight B = {b1, b2, . . . , bN}, which minimizes a weighted sum of
squares, is used during the iteration [28]:

ui =
ri

cs
√

1−hi

bi =

{ (
1 − u2

i
)2 |ui| < 1

0 |ui| ≥ 1

(10)

where ri is least-squares residual for each observation from the previous iteration, c is a tuning constant
(4.685), and s is the robust variance given by MAD/0.6745, where MAD is the absolute deviation of
the residuals from their median; hi is leverage that adjust the residuals. The total weight function W,
therefore, is:

W =

{
V l = 0

V · B(l) l > 0
(11)

where l denotes the number of iterations. The iterations will stop if the fit converges (minimum change
in coefficients <10−5), or the maximum number of iterations allowed for fitting is reached (400).

2.2.4. Model Selection

The presence of the unwanted terms in Equation (7) and the overfitting lead to an unexpected
bias or variance in interferograms. A trade-off should be made by taking advantage of K-cross
validation, which has been widely used in machine learning [29]. Specifically, we obtained some test
data from the same distribution and picked appropriate m and n in Equation (7) to minimize the same
sum-of-squares difference that we used for fitting to the training data. This can be achieved by making
several different splits in data Z. Each subsample is used once for testing, and the rest is used for
training. The arrangement of this method is described as follows.

1. Split data Z into K subsamples with equivalent size N.
2. For k = 1, 2, . . . , K, set validation data Ztest to be the kth subsample, and training data Ztrain to be

the other K − 1 subsamples.
3. Fit each model to Ztrain and evaluate its performance on Ztest through weighted root-mean-square

error (WRMSE).
4. Pick m and n that leads to minimum WRMSE by averaging K results.

Uniform sampling without replacement is used to separate data Z, and K = 10 is set throughout
this paper. Considering the different qualities of the validation data, we define WRMSE as:

WRMSE =

√√√√√√√√
N
∑

i=1
vi(zi − Ztest,i)

2

N
∑

i=1
vi

(12)
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3. Results

3.1. Synthetic Data

In this section, the performance of the orbital-error corrections are evaluated and compared using
a simulation. For notional convenience, we refer to the method in Equations (3) and (4) as DFT, and the
method developed in Section 2.2 as adaptive ADP-Poly.

Three phase components, including deformation, random noise, and orbital errors were simulated
according to the ENVISAT ASAR geometry. The surface deformation caused by a finite rectangular
source was first simulated by the Okada 85 model [30] and then inverted to an interferometric phase
(Figure 1b). To add phase noise, the coherence map was simulated under three principle sources of
error, i.e., the Doppler, spatial, and temporal decorrelations [25,31], in which the temporal decorrelation
was created using an isotropic-2D-fractal surface with a power law spectrum [32]. On the basis of the
simulated coherence map under different looks (Figure 1a), the phase-STD map was obtained using
the stochastic model (4.2.24) and (4.2.26) in [31]. The phase-noise map was finally generated using
pointwise multiplication of the phase-STD map and the standard normal distributed random numbers.
The linear and non-linear phase ramps were added to the orbital errors (Figure 1c,d). The combination
of all components in synthetic interferograms is given in Figure 2.

Figure 1. Simulated InSAR parameters (a) coherence map; (b) noise-free differential interferogram.
The black frame denotes the masked area for surface fitting in spatial domain; (c) linear orbital error
and (d) nonlinear orbital error with non-uniform phase gradient.

To test the methods over fast decorrelation areas, we adjusted the coherence magnitude to an
average value of γ = 0.2 under single look, and then added the phase-noise to the interferogram in
Figure 2a. Likewise, we set γ = 0.4 under 2-looks to test the capability of both methods on moderate
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noise scenes, as shown in Figure 2f. For the frequency–domain-based method, the DFT is applied
to noisy interferograms directly, while adaptive Goldstein filtering driven by phase STD [33] and
minimum cost–flow unwrapping [34] were used before ADP-Poly surface fitting.

Visually, ADP-Poly could not detect the phase ramp in very noisy scenes and left phase residuals in
Figure 2c. By contrast, DFT accurately captured the linear phase ramp. The residual between the truth
and estimate confirms the potential of using DFT without phase unwrapping (Figure 2d). When the
quality of interferogram became better (Figure 2f), ADP-Poly showed its superior performance at
detecting nonlinear features (Figure 2h), while DFT could not completely remove the error and left
nonlinear residuals in the interferogram (Figure 2g).

To make the results more statistically significant, we performed 500 simulations for each case and
evaluated the phase residuals using root-mean-square error (RMSE). It can be seen from Figure 3 that
DFT works well in linear orbital error correction over low coherence areas, and the averaged RMSE
is up to 0.16 rad (4.99 rad for ADP-Poly). For nonlinear orbital features, ADP-Poly obtained RMSE
of 0.10 rad (2.77 rad for DFT), which is equivalent to ~1 mm in deformation monitoring for C-band
InSAR measurements.

Figure 2. Simulated linear and nonlinear orbit errors in InSAR interferograms. (a) noise added
interferogram with averaged coherence γ = 0.2 and single look; (b) orbit-corrected interferogram using
DFT; (c) orbit-corrected interferogram using ADP-Poly; the difference between truth and phase ramp
estimated from DFT (d) and ADP-Poly (e); (f) noise added interferogram with averaged coherence γ = 0.4
and 2-looks; (g) orbit-corrected interferogram using DFT; (h) orbit-corrected interferogram using ADP-Poly;
the difference between truth and phase ramp estimated from DFT (i) and ADP-Poly (j).
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Figure 3. Accuracy assessment for DFT and ADP-Poly under different noise degree and phase
ramp patterns.

3.2. Real Data

Four SAR datasets, covering the Datong and Tohoku-Oki areas, were used to validate the methods
of orbital error correction, respectively. The information for the interferogram is summarized in
Table 1. The pre-processing includes the co-registration to subpixel accuracy with cross correlation
algorithm, multi-looking (3 × 15 looks for ASAR data set along range and azimuth, 4 × 4 looks for GF-3
with stripmap model, 9 × 3 looks for Sentinel-1 with TOPSAR mode), the topography–component
removal using the 90-m Shuttle Radar Topography Mission v. 4.1 digital elevation model, and the
adaptive Goldstein filtering. The atmospheric delay is not considered any further due to the lack of the
external data. For this paper, we assume that this component, together with orbital error, comprises
the linear/nonlinear phase ramps.

Table 1. ENVISAT ASAR acquisitions over Datong and Tohoku-Oki areas.*

Location Sensor Track
Master

(yyyy-mm-dd)
Slave

(yyyy-mm-dd)
B⊥ (m) Pass Char. Def.

Datong GF-3 - 2017-04-01 2017-06-27 536 D local
Datong Sentinel-1 40 2015-10-15 2015-10-27 87 A local

Tohoku-Oki ASAR 347 2011-02-19 2011-03-21 163 D global
Tohoku-Oki ASAR 74 2011-03-02 2011-04-01 −121 D global

* Columns show location, satellite platform, track number, acquisition dates, perpendicular baseline, satellite
direction (ascending or descending) and characteristics of deformations. “-” denotes unknown track number
(Orbit number: 003387/004641).

3.2.1. Datong Area

The deformation feature in the GF-3 interferogram is locally distributed because of the dynamics
of land subsidence caused by underground mining activities over the Datong area, China. Errors in
the GF-3 satellite state vectors can be observed in the differential interferogram (Figure 4c) and cause
a linear phase ramp along the azimuth direction. Because of the relatively low coherence over the
area (Figure 4b), we employed DFT to remove the long-wavelength signals (Figure 4d) without the
phase unwrapping. The results in the amplified sub-regions (1–3) show that mining-related surface
deformation could be monitored after removal of orbital errors. The multi-looking GF-3 SAR image is
shown in Figure 4a.
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Figure 4. Orbital error correction for GF-3 sensor over Datong area: (a) SAR intensity acquired on
1 April 2017; (b) corresponding coherence map; (c) original interferogram with linear phase ramp;
(d) de-ramping interferogram estimated from DFT. The sub-image 1–3 corresponds to frames shown in
Figure 4d.

In contrast to GF-3, the better orbital qualities of Sentinel-1 instruments mitigate the phase ramp
in the interferogram (Figure 5c). After burst and sub-swath merging, a nonlinear phase ramp with a
relatively large spatial coverage can be observed in the upper right part of image. To remove the phase
ramp, ADP-Poly is motivated by the high coherence magnitude (Figure 5b). A ten-fold cross validation
was performed to select the optimal order of polynomial model. It can be seen from Figure 6a that
the overfitting causes a larger bias for regression with the increase in order in polynomial, while the
polynomial coefficient with n = 3 and m = 3 reaches the minimum WRMSE (2.15 rad, corresponding to
~9 mm). The final de-ramping interferogram is shown in Figure 5d, where the spatially distributed
subsidence bowls can be clearly seen. The multi-looking sentinel-1 SAR image is shown in Figure 5a.

Figure 5. Orbital error correction for Sentinel-1 sensor over Datong area: (a) SAR intensity acquired on
15 October 2015; (b) corresponding coherence map; (c) original interferogram with nonlinear phase
ramp; (d) de-ramping interferogram estimated from ADP-Poly. The sub-image 1–2 corresponds to
frames shown in Figure 5d.
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Figure 6. Adaptive model selection of ADP-Poly for (a) track 40 (Sentinel-1); (b) track 347 (ASAR) and
(c) track 74 (ASAR).

3.2.2. Tohoku-Oki Area

For long-wavelength displacement signals covering the whole image, external GPS measurements
should be used to correct the displacement before phase-ramp estimation. To this end, GPS observations,
including total 120 stations, were collected from the Advanced Rapid Imaging and Analysis (ARIA) team
at Jet Propulsion Laboratory (JPL) and Caltech [20]. During the process, the GPS observations were first
projected into the LOS direction using the central unit vector for east, north and vertical directions in
descending ASAR (Table 2). Then, all GPS locations were transformed into radar coordinates. The nearest
SAR neighbors, with respect to each GPS measurement, were averaged using 3 × 3 boxcar windows,
and the weights were determined by means of averaged phase STD with a factor of 1/3. When the phase
ramp fitted using ADP-Poly, 90% of the GPS observations located in each SAR track were used to correct
the deformation in unwrapped InSAR interferogram, and the remaining 10% were used to evaluate the
discrepancies between the GPS observations and the orbit-corrected InSAR coseismic measurements.
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Table 2. Deformation validation and RMSE before and after orbital error correction over
Tohoku-Oki area.

Sensor Track
Unit Vector of

LOS
[East North Up]

Number of
GPS Station

RMSE before
Correction

(cm)

RMSE after
Correction

(cm)

RMSE
Reduction

(%)

ASAR 347 [0.64 0.11 0.75] 97 35.55 9.52 73.22
ASAR 74 [0.65 0.11 0.75] 23 12.24 8.39 31.45

We present the results of before and after ADP-Poly orbital error correction in Figures 6 and 7
and Table 2. It can be seen that ADP-Poly suggests a quadratic model to fit the ramps for both tracks
(Figure 6b,c). The RMSE values, before and after the orbital error correction, are 35.55 cm and 9.52 cm
for track 347, and 12.24 cm and 8.39 cm for track 74, respectively, demonstrating the usefulness of
the ADP-poly method developed by the authors. After removal of phase ramp, the displacement
caused by earthquakes is rewrapped to 11.8 cm for each fringe, as shown in Figure 7. As stated in
previous studies [17,20,35], the discontinuity between GPS measurements and InSAR displacement can
be attributed to unwrapping errors over very low coherence area and the aftershock and postseismic
deformation that were not covered by the GPS observation period.

Figure 7. Coseismic deformation interferograms generated using data from ASAR descending tracks
347 and 74, before (a) and after (b) orbital error correction. The locations of the cities (khaki square) and
GPS stations (green triangle) that are used to remove the orbital errors. The arrows indicate the biases
in the InSAR results as calculated from the GPS observations. Each color cycle represents 11.8 cm of
LOS displacement toward or away from the satellite. The epicenters of the magnitude 9.0 main shock
and a magnitude 7.4 aftershock are marked as red stars.
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4. Discussion

Two methods of modeling orbital error in InSAR interferograms that deploy DFT and the
polynomial model with adaptive order determination were presented. DFT is a robust estimator
of linear components of the long-wavelength signals, even in strong noise environment. It transfers
spatial phase ramps into the frequency spectrum and finds the fringe rate at the peak location of
the Fourier transformation. The interpolation of the DFT of the interferogram can better identify the
exact fringe rate. A significant advantage of this method is that phase wrapping is not required, and,
therefore, the errors caused by the poor quality of the interferograms are avoided. For nonlinear fringe
patterns, the polynomial model (ADP-Poly) can compensate for nonlinear components that cannot
be estimated with DFT. The development of adaptive order determination for the polynomial model
using K-cross validation ensures the model can follow the features of orbital errors more accurately.
This step is missed in previous studies, which usually determine the order empirically.

Two problems in orbital error correction should be further pointed out. Firstly, the approach has
no capacity to distinguish between orbital errors and long-wavelength atmospheric delays. To our
knowledge, this is a common problem in most related studies [12–14,20,23]. We therefore made the
assumption that the long-wavelength signal only represents the orbital error, implying that part of the
tropospheric delay will also be removed from the interferogram. A good alternative is to remove the
atmospheric delays prior to orbital error correction, for example, by using the Generic Atmospheric
Correction Online Service, applying the Iterative Tropospheric Decomposition model [34].

Secondly, manual masking is used to remove local deformation signals, leading to gaps in
the local region, and so, no observation will yield contributions during de-ramping. To solve this
problem, a deformation free interferogram can be inverted using a source geophysical model,
e.g., Mogi’s formulation for an infinitesimal spherical source in an elastic half-space, by finding
the global minimum in the misfit space using a simulated annealing algorithm [36]. To do this, General
Inversion of Phase Technique, which estimates parameters in a quantitative model directly from the
wrapped-phase data, can be employed [36].

5. Conclusions

This paper has explored orbital error correction in InSAR interferogram using frequency (DFT)
and spatial domain (ADP-Poly) based methods. The results reveal that the modeling of orbital error
should follow the features of fringe patterns and the quality of the interferogram. To detect linear
features of orbital error, the method based on maximum likelihood fringe rate estimation should be
deployed. The main advantage of this technique is that it is workable over fast decorrelation areas
without the need of unwrapping. However, only linear components can be estimated using this
method. For nonlinear features, ADP-Poly, which determines the order of polynomial automatically
using K-cross validation, should be used. We evaluated both methods using historical and modern
sensors, including ENVISAT ASAR, GF-3 and Sentinel-1. The experiments show that both historical
and modern systems can benefit from our method to varying degrees, leading to clearer ground
deformation signals, both locally and globally.
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Abstract: It is well known that the Faraday rotation (FR) is obviously embedded in spaceborne
polarimetric synthetic aperture radar (PolSAR) data at L-band and lower frequencies. By model
inversion, some widely used FR angle estimators have been proposed for compensation and provide
a new field in high-resolution ionospheric soundings. However, as an integrated product of electron
density and the parallel component of the magnetic field, FR angle measurements/observations
demonstrate the ability to characterize horizontal ionosphere. In order to make a general study of
ionospheric structure, this paper reconstructs the electron density distribution based on a modified
two-dimensional computerized ionospheric tomography (CIT) technique, where the FR angles, rather
than the total electron content (TEC), are regarded as the input. By using the full-pol (full polarimetric)
data of Phase Array L-band Synthetic Aperture Radar (PALSAR) on board Advanced Land Observing
Satellite (ALOS), International Reference Ionosphere (IRI) and International Geomagnetic Reference
Field (IGRF) models, numerical simulations corresponding to different FR estimators and SAR
scenes are made to validate the proposed technique. In simulations, the imaging of kilometer-scale
ionospheric disturbances, a spatial scale that is rarely detectable by CIT using GPS, is presented.
In addition, the ionospheric reconstruction using SAR polarimetric information does not require
strong point targets within a SAR scene, which is necessary for CIT using SAR imaging information.
Finally, the effects of system errors including noise, channel imbalance and crosstalk on the
reconstruction results are also analyzed to show the applicability of CIT based on spaceborne full-pol
SAR data.

Keywords: Faraday rotation; polarimetric synthetic aperture radar; Phase Array L-band Synthetic
Aperture Radar; computerized ionospheric tomography; International Reference Ionosphere;
International Geomagnetic Reference Field

1. Introduction

Due to the dispersive nature of ionosphere and the existence of Earth’s magnetic field,
the polarization rotation of a linearly polarized wave will occur after traveling through the ionosphere.
This phenomenon is known as Faraday rotation (FR) and depends on the frequency, the electron density,
the Earth’s magnetic field, and the geometry of observation [1]. For spaceborne polarimetric synthetic
aperture radar (PolSAR) systems at L-band and lower frequencies, FR will distort the scattering matrix
(i.e., complex backscattering coefficients in the four channels of PolSAR) and become a significant error
source [2]. Thus for a space-borne PolSAR system, some mitigation techniques are required.
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It is known that the key in mitigation techniques is retrieval of the accurate FR angle by measuring
the polluted scattering matrix. On the other hand, the FR retrieval from space using PolSAR is
also a new capability of high-resolution ionospheric sounding, and various FR estimators have
been proposed. After the transformation from Cartesian linear polarization to circular polarization,
Bickel and Bates [3] propose a widely used FR estimator. The scattering matrix can be converted
to the covariance matrix. By measuring the covariance matrix, one FR estimator is proposed by
Freeman [2]. Chen and Quegan [4] propose six further FR estimators based on the off-diagonal terms
of covariance matrix. It is important to note that none of above estimators is insensitive to all system
errors (i.e., system noise, channel phase/amplitude imbalance, and crosstalk) and scattering types
in SAR scenes. For example, the Chen and Quegan’s third estimator is the preferred one to channel
amplitude imbalance but worse than Bickel and Bates estimator when the channel phase imbalance
is the dominant error [4]. As discussed by Rogers and Quegan [5], the performance of Chen and
Quegan’s third estimator is scattering dependent. Thus, in order to obtain the accurate FR angle,
the choice of FR estimator should depend on the domain error and scattering types.

Assume the magnetic field along the path is approximately equal to a median value; the vertical
TEC (i.e., the integration of electron density) distribution with kilometer-scale in terms of latitude and
longitude can further be obtained, which is clearly beneficial to the studies of small-scale ionospheric
features [6–11]. However, the information of TEC distribution is still limited to the detection of
ionospheric horizontal structure. Compared with TEC, the spatial distribution of electron density
can give a better study of ionospheric inhomogeneity or irregularity caused by the magnetic storms,
earthquakes, etc. [12–15]. Thus, the electron density reconstruction based on the computerized
ionospheric tomography (CIT) technique is required. By setting a series of ground-based GPS (Global
Positioning System) receivers, the CIT technique was proposed to reconstruct the electron density
distribution [16,17]. The TEC values for different look angles can be retrieved from GPS signals and
regarded as the input of CIT. However, it is only suitable for hundred kilometers scale electron density
monitoring [13–15]. In order to improve the resolution, previous studies have considered the CIT
based on the information of spaceborne SAR imaging [18–20]. After the signal has passed twice through
the ionosphere, its linear frequency modulated (FM) rate will be changed [21]. An autofocus algorithm
is applied here to iteratively search the change of FM rate, which can further be used to derive the TEC
value [22]. Although it can provide a high resolution reconstruction, the autofocus algorithm is insensitivity
to TEC because of the limitation of small bandwidth for current low-frequency spaceborne SAR systems,
e.g., the ALOS Phase Array L-band Synthetic Aperture Radar (PALSAR) [23,24]. In addition, it also requires
strong point targets with high signal-to-clutter (SCR) ratio in a SAR scene [22,25].

In contrast to the TEC retrieval based on SAR imaging information, the TEC derived from FR
using polarimetric information is independent of above limitations [10,26,27]. Recently, we have
reconstructed the ionosphere by using the TEC values derived from FR [28]. However, as discussed
above, the TEC derived from FR will introduce the error that the magnetic field must be approximated
by a fixed value. Thus, in order to avoid it, the CIT reconstruction based on spaceborne PolSAR will be
a promising direction where the FR angles are directly regarded as the input. FR can be defined as
the integration of electron density weighted by the magnetic field along the ray path. Since in most
cases, the magnetic field distribution is known with high precision from the International Geomagnetic
Reference Field (IGRF) model, this information can be used to realize the final reconstruction of
electron density after modifying the traditional CIT technique. In addition, this paper also focuses on
the systems errors on the proposed CIT reconstruction. We start with a brief review of the main FR
estimators from the full-pol data in Section 2. By using the PALSAR full-pol data sets, International
Reference Ionosphere (IRI) and IGRF models, a modified two-dimensional CIT technique based on the
spaceborne PolSAR system is analyzed in Section 3. The effects of system errors on the reconstructions
are analyzed in Section 4. In addition, the results based on different FR estimators are also compared.
Last, our conclusions are presented in Section 5.
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2. Review of FR Estimators Based on the Spaceborne PolSAR Data

Due to the existence of Earth’s magnetic field in the ionosphere, a linearly polarized wave will
split into ordinary and extraordinary waves with different phase velocities. The linearly polarized
wave is therefore rotated by an angle called FR after traveling through the ionosphere, and can be
derived by the half integration of the phase difference along the ray path [1,29]

Ω =
2.365 × 104�

path Ne(s)|B(s)| cos θB(s)ds

f 2
0

(1)

where θB is the angle between signal propagation direction and magnetic field, |B| is the magnitude
of magnetic field, Ne is the electron density (unit is electrons·m−3), and f0 is the frequency. We can
see that Ω is inversely proportional to the square of the frequency and depends on the θB, |B| and Ne
along the path. For a full-pol SAR system at L-band or lower, all the linearly polarized waves in each
channel will encounter the ionospheric effects. The measured scattering matrix can then be written as
Rogers and Quegan [5]:

[
Mhh Mvh
Mhv Mvv

]
=

[
1 δ2

δ1 f1

]
×
[

cos Ω sin Ω
− sin Ω cos Ω

]
×
[
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]
×
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− sin Ω cos Ω

]
×
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1 δ3
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]
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Nhh Nvh
Nhv Nvv

]
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Here, Nhh, Nvh, Nhv and Nvv are the independent complex Gaussian noise in each measurement,
Shh, Svh, Shv and Svv are the true scattering matrix, f1 and f2 denote the channel imbalance on receive
and transmit, respectively δ1 and δ2 are the crosstalk on receive, and δ3 and δ4 are the crosstalk on
transmit. In an ideal system, the noise and crosstalk are zero, and the channel imbalance is equal to 1,
the covariance matrix can then be derived as follow as Freeman [2]⎡⎢⎢⎢⎣

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Mhh M∗

hh Mhh M∗
vh Mhh M∗

hv Mhh M∗
vv

Mvh M∗
hh Mvh M∗

vh Mvh M∗
hv Mvh M∗

vv
Mhv M∗

hh Mhv M∗
vh Mhv M∗

hv Mhv M∗
vv

Mvv M∗
hh Mvv M∗

vh Mvv M∗
hv Mvv M∗

vv

⎤⎥⎥⎥⎦ (3)

where • and ( )∗ represent averaging and conjugate, respectively. By assuming reflection symmetry,
Freeman [2] has proposed one FR estimator formulated as

ΩF = ±1
2

tan−1

(√
C22 + C33 − 2�(C23)

C11 + C44 + 2�(C14)

)
(4)

where
C22 + C33 − 2�(C23)

C11 + C44 + 2�(C14)
=

sin2 2Ω
cos2 2Ω

(5)

and �(•) denotes the real part. According to the off-diagonal terms of Equation (3), Chen and Quegan [4]
proposed six further FR estimators, where the third one performs the best. This estimator can be written as

ΩC =
1
2

arg
(
�(C14) + i�

(
C13 + C34 − C12 − C24

2

))
(6)

where
�(C14) = �(ShhS∗

vv) cos 2Ω
�(C13 + C34 − C12 − C24) = 2�(ShhS∗

vv) sin 2Ω
(7)
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and �(•) denotes the imaginary part. Bickel and Bates [3] note that, in the absence of system errors
and assuming reciprocity, the scattering of Equation (2) can be transformed into a circular polarization
basis, that is,[

Z11 Z12

Z21 Z22

]
=

[
1 i
i 1

]
×
[

Mhh Mvh
Mhv Mvv

]
×
[

1 i
i 1

]
=

[
Shh − Svv + 2iShv (Shh + Svv) exp

(
i π

2 − i2Ω
)

(Shh + Svv) exp
(
i π

2 + i2Ω
)

Svv − Shh + 2iShv

]
(8)

Thus, the FR estimated from Equation (8) can be written as

ΩB&B = −1
4

arg
(
Z12 × Z∗

21
)

(9)

3. Principle of the Proposed CIT Using FR Angles

For the traditional CIT reconstruction, the TEC value is first retrieved and regarded as the input
parameter. The well-known multiplicative algebraic reconstruction technique (MART) using iterative
scheme is then applied to reconstruct the true electron density distribution [16,17,30]. In the iterative
scheme of MART, the electron density distribution obtained from IRI model is used as the initial value.
However, for the proposed CIT based on the spaceborne PolSAR data, the FR angle, rather than TEC value,
is first retrieved and regarded as the input. Correspondingly, the spatial distribution of the product of
electron density and the magnitude of magnetic field are used as the initial value in iteration.

The map of the proposed two-dimensional CIT technique is shown in Figure 1, where the
annotations in red denote the main differences from traditional CIT due to the consideration of
magnetic field [28]. The magnetic field varies in altitude and azimuth directions. The whole ionosphere
region of interest is subdivided into H grids, where the product of electron density and magnetic
field, rather than only electron density for traditional CIT, are constant in each grid. It is assumed
that the whole synthetic aperture of PolSAR is divided into L sub-apertures and corresponding
sampling position is located at the center of each sub-aperture. For traditional CIT simulations based
on GPS [14–17], a set of ground-based receiver stations are required. At each sampling position of
GPS, different TEC values corresponding to different receiver stations can then be obtained. From
Figure 1, the explored ground scene is divided into K subimages, which is similar to the ground-based
receiver. At one sub-aperture, by applying averaging within each subimage, the distorted scattering
matrix can be measured and corresponding K FR angles values, which are assumed as the integration
of the product of electron density and magnetic field from the sampling position to the center of
each subimage, can be retrieved. That means there are K · L FR angle values in one CIT simulation.
According to Equation (1) and Figure 1, each FR value can then be estimated with a discrete sum, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 2
0 Ω1

2.365·104 = a11 cos θB11Ne1|B|1 + · · ·+ a1q cos θB1qNeq|B|q + · · · a1H cos θB1H NeH |B|H
...

f 2
0 Ωp

2.365·104 = ap1 cos θBp1Ne1|B|1 + · · ·+ apq cos θBpqNeq|B|q + · · · apH cos θBpH NeH |B|H
...

f 2
0 ΩK·L

2.365·104 = aK·L·1 cos θBK·L·1Ne1|B|1 + · · ·+ aK·L·q cos θBK·L·qNeq|B|q + · · · aK·L·H cos θBK·L·H NeL|B|H

(10)

here, Ωp denotes the pth FR angles, Neq and |B|q are the electron density and magnitude of magnetic
field in grid point q, respectively. apq and θBpq are the projection length and angle between the pth ray
path and magnetic field in grid point q, respectively. It should be noted that θBpq is not considered in
traditional CIT. Figure 1 shows that both Neq and |B|q are constants in each grid point, and both apq
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and θBpq are relative to the geometry of ray path. Thus, Neq and |B|q as well as apq and θBpq can be
regarded as a whole. The iterative equation is then written as

(Ne|B|)(l+1)
q = (Ne|B|)(l)q

⎛⎝ f 2
0 Ωp

2.365 × 104
〈
(a cos θB)

T
p , (Ne|B|)(l)

〉
⎞⎠λk(a cos θB)pq/‖(a cos θB)p‖

(11)

PolSAR

ray p
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de

Azimuth

Subimages

2 2
eN B ...

...

... L1

cospq B pqa θ

q q
Ne B eH H

N B

1 • K• • •

1 1
Ne B

Ground

M
agnetic Field

R
an

ge

Figure 1. Map of two-dimensional CIT using FR angles.

Equation (11) means the (l + 1)th iterative result of Ne|B| in grid q. 〈•〉, ‖•‖, and (•)T denotes the
inner product, norm, and transposition, respectively. λk is the relaxation factor and is set to 0.5, and
f0 = 1.27 GHz. The initial distribution of electron density and the magnetic field are derived from
IRI and IGRF models, respectively. When the values of all grids satisfy the terminating threshold after
several iterations, i.e., the root-mean-square (RMS) of the difference of two adjacent iterations is smaller
than a specified value Δξ = 1 × 108 electrons · m−3, the final spatial distribution (Ne|B|)q_ f inal will be
reconstructed. It should be noted that the true magnetic field can be accurately obtained from the IGRF
model. That means during the process of iteration, |B|q is always unchanged and equal to the initial
values. Thus, the final spatial distribution of Neq_ f inal can further be obtained by removing the |B|q in
(Ne|B|)q_ f inal. Above processes of the proposed CIT technique are also shown in the flowchart in Figure 2.

pΩ

( )
initial

Ne B

( )( ) ( )1l l

q q
RMS Ne B Ne B ξ+

− ≤ Δ

( )
q_ final

Ne B

q_ finalNe

Figure 2. The flowchart of the proposed CIT technique.
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4. Error Analysis of the Proposed CIT Technique

In order to analyze the effects of system errors (system noise, channel phase/amplitude imbalance,
and crosstalk) on the proposed CIT individually, the semi-physical simulations using synthetic data of
calibrated PALSAR full-pol data, IRI and IGRF models are required. In numerical simulations, two
calibrated PALSAR full-pol data sets with different scattering types are used, namely, one from an area
near Changbai Mountain (42.17◦N, 128.0◦E) acquired on 3 December 2007 and one from a seaside area
of Qingdao (35.83◦N, 120.75◦E) acquired on 29 March 2011. Figure 3 shows the corresponding Pauli
false-color images [31], and both data sets are composed of 1200 × 8000 pixels in range (x-axis) and
azimuth directions (y-axis). N denotes geographical North. The resolutions are about 9.369 m and
3.557 m in range and azimuth directions, respectively.

(a) (b) 

Figure 3. The PALSAR polarimetric images in two areas. (a) Changbai Mountain (42.17◦N, 128.0◦E)
acquired on 3 December 2007 and (b) Qingdao (35.83◦N, 120.75◦E) acquired on 29 March 2011.

According to the operations in Figure 1, we assume that during one CIT simulation, the whole
orbiting length of PolSAR along the azimuth direction is about 120 km and has 75 sampling positions
(N = 75). The reconstructed area of the ionosphere is set to 80 km long and 204–400 km along
azimuth and altitude directions, respectively. Correspondingly, each grid spacing is set to 5 km
and 2.5 km along altitude and azimuth directions, respectively. For the distribution of the electron
density, two small-scale artificial disturbances are then embedded. This new distribution Neq_true

with ionospheric disturbances is regarded as the “true distribution” to be reconstructed and used for
comparison, as shown in Figure 4. On the ground, the imaging scene will be divided into 16 parts along
azimuth direction, where each subimage is composed of 1200 × 500 pixels. Thus, according to the
position of azimuth sampling, vectors of ray path and magnetic field, the apq cos θB pq can be calculated.
By combining apq cos θB pq, Neq_true and |B|q into Equation (10), the true Ωp_true corresponding to each
ray path can further be determined. The scattering matrix measured for each ray path is then corrupted
by the system errors and Ωp_true.

Based on the proposed CIT method without system errors, Figures 5a and 6a show the
two-dimensional CIT reconstructions in Changbai and Qingdao, respectively. Figures 5b and 6b
show the corresponding two-dimensional absolute deviations between the true (i.e., Figure 4a,b)
and reconstructed distributions (i.e., Figures 5a and 6a), and the RMS over the whole images are
1.96 × 109 electrons · m−3 and 2.21 × 109 electrons · m−3, respectively. Similar, Figures 5c and 6c are
the two-dimensional CIT reconstructions based on the traditional CIT method [28], where TEC is
regarded as the input and first derived from FR when the magnetic field is approximated by a fix
value of 300 km. The corresponding absolute deviations are shown in Figures 5d and 6d. The RMS
of Figures 5d and 6d are 2.92 × 109 electrons · m−3 and 4.29 × 109 electrons · m−3, respectively. We
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can see that due to the errors caused by the approximation of magnetic field, obvious errors occur
for traditional CIT. Thus, compared with traditional CIT, the proposed CIT method can avoid the
approximate error of magnetic field.
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Figure 4. The true distributions of electron density in areas of (a) Changbai and (b) Qingdao. The unit
of the electron density is electrons · m−3.
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Figure 5. Two-dimensional CIT reconstructions without system errors in Changbai. (a,c) are the
reconstructed results based on proposed and traditional CIT methods, respectively. (b,d) are the
corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons · m−3.
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Figure 6. Two-dimensional CIT reconstructions without system errors in Qingdao. (a,c) are the
reconstructed results based on proposed and traditional CIT methods, respectively. (b,d) are the
corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons · m−3.

4.1. CIT Reconstructions Under the Condition of System Noise

Assume the system noise and FR are the only errors, and the noise power in each channel is the

same (i.e., |Nhh|2 = |Nhv|2 = |Nvh|2 = |Nvv|2), the scattering matrix of Equation (2) can be written as
(see Appendix A)

Mhh_n = Shh cos2 Ω − Svv sin2 Ω + Nhh
Mvh_n = Svh + (Shh + Svv) sin Ω cos Ω + Nvh
Mhv_n = Shv − (Shh + Svv) sin Ω cos Ω + Nhv
Mvv_n = Svv cos2 Ω − Shh sin2 Ω + Nvv

(12)

According to the process of CIT discussed above, we first evaluate the performances of the FR
estimators, as shown in Tables 1–3. The RMS error, bias and standard deviation (SD) are defined as

σRMS =

√
100

K×L

K·L
∑

p=1

(
Ωp_re−Ωp_true

Ωp_true

)2

σbias =
100

K×L

K·L
∑

p=1

(
Ωp_re−Ωp_true

Ωp_true

)
σsd =

√
1

K×L

K·L
∑

p=1

(
100 ·

(
Ωp_re−Ωp_true

Ωp_true

)
− σbias

)2

(13)
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where Ωp_re (ΩBB, ΩF or ΩC) is the retrieved FR value corresponding to each ray path. The units
of σRMS, σbias and σsd are %. In addition, the signal-to-noise ratio (SNR) can be defined by
Chen and Quegan [4]

SNR =
|Shh|2 + |Shv|2 + |Svh|2 + |Svv|2

4|Nhh|2
(14)

Table 1. RMS error (σRMS) under the condition of system noise.

SNR (dB)

RMS Error (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

5 19.1023 866.7750 3.1956 10.6599 457.1695 14.1860
10 9.2369 475.1484 1.4204 4.0307 237.6931 7.8032
15 3.4335 239.2308 0.8279 1.3728 109.9127 4.0608
20 1.5564 109.0368 0.3182 0.5284 44.7311 1.9436
25 0.9041 44.1177 0.2153 0.2032 16.1787 1.4127
30 0.3327 15.9300 0.0991 0.1384 5.4124 0.5717

Table 2. Bias (σbias) under the condition of system noise.

SNR (dB)

Bias (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

5 18.6803 −858.3574 1.1071 7.8405 −452.2203 7.8584
10 8.0336 −469.8182 −0.9973 3.2375 −234.7492 3.3109
15 3.1830 −235.7411 0.2154 1.2264 −108.1120 1.3629
20 1.1940 −107.1453 −0.1585 0.5594 −43.7774 0.6791
25 0.3286 −43.1128 −0.0424 0.0342 −15.7346 0.2223
30 0.1523 −15.4490 0.0385 −0.0017 −5.2271 0.0380

Table 3. SD (σSD) under the condition of system noise.

SNR (dB)

SD (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

5 8.0833 121.1693 2.9652 1.2226 65.3801 17.1186
10 5.3539 70.6254 1.5441 0.8802 37.3999 7.5438
15 2.1559 39.2181 0.7358 0.4353 19.7724 4.6861
20 1.0907 20.4720 0.3469 0.2412 9.2965 1.7415
25 0.5715 9.5487 0.1984 0.1454 3.7366 1.1294
30 0.2959 3.8175 0.1311 0.1013 1.3163 0.5045

From Tables 1–3, we can see that ΩC performs the best in Changbai while ΩBB is the preferred
one in Qingdao. Thus, under the condition of noise, the choice of FR estimators in CIT depends on
the scattering type. For ΩF, large errors are occurred in both SAR scenes. This is because the mean
FR values Ωp_true in areas of Changbai and Qingdao are about 0.8◦ and 1.45◦, respectively, and the
Freeman’s estimator is sensitivity to noise near Ωp_true = 0

◦
[5].

Based on the results of Tables 1–3, the final CIT reconstructions in Changbai (ΩC is applied) and
Qingdao (ΩBB is applied) are shown in Figures 7 and 8, respectively. Figures 7a and 8a are the reconstructed
results when SNR = 5 dB. Figures 7b and 8b show the corresponding two-dimensional absolute
deviations between the true and reconstructed distributions, and the RMS over the whole images are
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8.46× 109 electrons ·m−3 and 14.66× 109 electrons ·m−3, respectively. It can be seen that severe distortions
are yielded when SNR is as low as 5 dB, and the two small-scale disturbances are barely identified.
Figures 7c and 8c are the reconstructed results when SNR = 20 dB, a typical condition for radar systems [4],
and corresponding absolute deviations are shown in Figures 7d and 8d. We can see that the performance
of reconstructions is significantly improved and the two small-scale disturbances are clear. The RMS of
Figures 7d and 8d are 2.05× 109 electrons ·m−3 and 2.43× 109 electrons ·m−3, respectively.
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Figure 7. Two-dimensional CIT reconstructions under the condition of system noise in Changbai (ΩC is
used). (a,c) are the reconstructed results with SNR = 5 dB and SNR = 20 dB, respectively. (b,d) are the
corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons ·m−3.
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Figure 8. Two-dimensional CIT reconstructions under the condition of system noise in Qingdao (ΩBB is
used). (a,c) are the reconstructed results with SNR = 5 dB and SNR = 20 dB, respectively. (b,d) are the
corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons ·m−3.
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4.2. CIT Reconstructions Under the Condition of Channel Imbalance

When the FR and channel phase/amplitude imbalance are considered, the scattering matrix can
be written as (see Appendix B)

Mhh_ f = Shh cos2 Ω − Svv sin2 Ω
Mvh_ f = f (Shv − Shh sin Ω cos Ω − Svv sin Ω cos Ω)

Mhv_ f = f (Shv + Shh sin Ω cos Ω + Svv sin Ω cos Ω)

Mvv_ f = f 2(Svv cos2 Ω − Shh sin2 Ω
) (15)

where the channel imbalances in the receiver and transmitter are assumed to be identical (i.e.,
f1 = f2 = f ) to simplify the analysis [2,4,32]. The effects of channel phase imbalance, i.e.,
f = 1 × exp(iφ), on the FR estimators are first evaluated under typical values [2,5]. By using the
full-pol data sets of Changbai and Qingdao, the results are shown in Tables 4–6. We can see that when
the phase imbalance is the dominant error, ΩBB can perform the smallest RMS error and SD while ΩF
has the smallest biases. Thus, in order to make a comparison, ΩBB and ΩF are respectively regarded as
the input of CIT simulations.

Table 4. RMS error (σRMS) under the condition of channel phase imbalance.

Channel Phase
Imbalance (◦)

RMS Error (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

5 1.5075 1.5863 5.0152 0.4340 0.4644 5.7890
10 3.6991 3.9594 9.2409 1.5537 1.6645 7.4793
15 6.6352 7.2038 13.9008 3.3994 3.6423 9.8274
20 10.4286 11.4409 19.5022 6.0230 6.4697 13.0879

Table 5. Bias (σbias) under the condition of channel phase imbalance.

Channel Phase
Imbalance (◦)

Bias (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

5 −1.4987 −1.5859 −4.8996 −0.4337 −0.4643 −5.7350
10 −3.6691 −3.9582 −9.0977 −1.5528 −1.6643 −7.4330
15 −6.6716 −7.2012 −13.7565 −3.3974 −3.6420 −9.7901
20 −10.3174 −11.4362 −19.3646 −6.0199 −6.4692 −13.0582

Table 6. SD (σSD) under the condition of channel phase imbalance.

Channel Phase
Imbalance (◦)

SD (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

5 0.1620 0.0371 1.0709 0.0180 0.0096 0.7895
10 0.4708 0.0983 1.6208 0.0523 0.0251 0.8311
15 0.9164 0.1910 1.9986 0.1175 0.0482 0.8558
20 1.5199 0.3261 2.3139 0.1954 0.0809 0.8814

When φ = 5
◦
, Figures 9 and 10 are the final CIT reconstructions in Changbai and Qingdao,

respectively. In Changbai, the RMS of corresponding absolute deviations based on ΩF and ΩBB
(i.e., Figure 9b,d are 2.24 × 109 electrons · m−3 and 2.22 × 109 electrons · m−3, respectively. Similar,
the RMS based on ΩF and ΩBB in Qingdao (i.e., Figure 10b,d) are 2.56 × 109 electrons · m−3 and
2.54 × 109 electrons · m−3, respectively. We can see that both two FR estimators can maintain good
performance and the two disturbances are clearly visible. However, the CIT errors become obvious
when the phase imbalance is as large as 20◦, as shown in Figures 11 and 12. Here, the RMS based on ΩF
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and ΩBB in Changbai (i.e., Figure 11b,d) are 6.78 × 109 electrons · m−3 and 6.25 × 109 electrons · m−3,
respectively. Similar, the RMS in Figure 12b,d are 9.09 × 109 electrons · m−3 and 8.56 × 109 electrons ·
m−3, respectively. Thus, it can be see that for all conditions, the results based on ΩBB are better than
that based on ΩF, especially for large phase imbalance.
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Figure 9. Two-dimensional CIT reconstructions under the condition of channel phase imbalance (5
◦
)

in Changbai. (a,c) are the reconstructed results based on ΩF and ΩBB, respectively. (b,d) are the
corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons · m−3.
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Figure 10. Two-dimensional CIT reconstructions under the condition of channel phase imbalance
(5

◦
) in Qingdao. (a,c) are the reconstructed results based on ΩF and ΩBB, respectively. (b,d) are the

corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons · m−3.
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Figure 11. Two-dimensional CIT reconstructions under the condition of channel phase imbalance
(20

◦
) in Changbai. (a,c) are the reconstructed results based on ΩF and ΩBB, respectively. (b,d) are the

corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons · m−3.
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Figure 12. Two-dimensional CIT reconstructions under the condition of channel phase imbalance
(20

◦
) in Qingdao. (a,c) are the reconstructed results based on ΩF and ΩBB, respectively. (b,d) are the

corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons · m−3.

Similarly, the effects of amplitude imbalance on the performances of FR estimators are shown
in Tables 7–9, where the magnitude | f | is less than 0.5 dB. We can see that under the conditions of
amplitude imbalance, ΩC is the preferred estimator in CIT reconstructions. In addition, the statistical
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characters of ΩC are almost unchanged both in Changbai and Qingdao. This is because according to
Equation (6) and Equation (15), ΩC becomes (see Appendix C)

ΩC =
1
2

arg
(
�(ShhS∗

vv)
(
| f |2 cos 2Ω + i0.5

(
| f |+ | f |3

)
sin 2Ω

))
(16)

thus, ΩC only depends on | f |.

Table 7. RMS error (σRMS) under the condition of channel amplitude imbalance.

Channel Amplitude
Imbalance (dB)

RMS Error (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

0.1 0.1525 0.2570 0.0066 0.0688 0.0659 0.0066
0.2 0.2958 0.5045 0.0266 0.1233 0.1187 0.0266
0.3 0.4270 0.7358 0.0594 0.1632 0.1570 0.0594
0.4 0.5509 0.9570 0.1060 0.1890 0.1820 0.1060
0.5 0.6630 1.1639 0.1654 0.1982 0.1933 0.1652

Table 8. Bias (σbias) under the condition of channel amplitude imbalance.

Channel Amplitude
Imbalance (dB)

Bias (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

0.1 −0.1198 −0.2539 −0.0066 −0.0684 −0.0655 −0.0066
0.2 −0.2281 −0.4980 −0.0266 −0.1225 −0.1178 −0.0266
0.3 −0.3215 −0.7257 −0.0594 −0.1617 −0.1555 −0.0594
0.4 −0.4041 −0.9430 −0.1060 −0.1868 −0.1796 −0.1058
0.5 −0.4738 −1.1459 −0.1654 −0.1949 0.1897 −0.1652

Table 9. SD (σSD) under the condition of channel amplitude imbalance.

Channel Amplitude
Imbalance (dB)

SD (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

0.1 0.0945 0.0401 0.00001 0.0072 0.0074 0.00001
0.2 0.1884 0.0811 0.00001 0.0142 0.0149 0.00001
0.3 0.2811 0.1216 0.00002 0.0222 0.0222 0.00002
0.4 0.3745 0.1629 0.00002 0.0281 0.0296 0.00003
0.5 0.4639 0.2042 0.00002 0.0356 0.0370 0.00005

Figures 13 and 14 show the final reconstructions in Changbai and Qingdao, respectively.
In simulations of Figures 13a and 14a, the | f | is set to 0.1 dB. The RMS of corresponding absolute
deviations in Figures 13b and 14b are 2.07 × 109 electrons · m−3 and 2.42 × 109 electrons · m−3,
respectively. For Figures 13c and 14c, the | f | is set to 0.5 dB and the RMS in Figures 13d and 14d are
2.11 × 109 electrons · m−3 and 2.45 × 109 electrons · m−3, respectively. From the results, we can see
that the CIT reconstructions still performs well even if the | f | is as high as 0.5 dB. Thus, it can be
concluded that compared with noise and phase imbalance, amplitude imbalance is not a problem for
CIT reconstruction.
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Figure 13. Two-dimensional CIT reconstructions under the condition of channel amplitude imbalance
in Changbai (ΩC is used). (a,c) are the reconstructed results with 0.1 dB and 0.5 dB, respectively.
(b,d) are the corresponding absolute deviations between the true and reconstructed results. The unit of
the electron density is electrons · m−3.

 
(a) (b) 

 
(c) (d)

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0.5

1

1.5

2

x 10
11

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0

2

4

6

8

10
x 10

9

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0.5

1

1.5

2

x 10
11

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0

2

4

6

8

10
x 10

9

Figure 14. Two-dimensional CIT reconstructions under the condition of channel amplitude imbalance
in Qingdao (ΩC is used). (a,c) are the reconstructed results with 0.1 dB and 0.5 dB, respectively. (b,d) are
the corresponding absolute deviations between the true and reconstructed results. The unit of the
electron density is electrons · m−3.
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4.3. CIT Reconstructions Under the Condition of Crosstalk

The last system error that should be considered is the crosstalk. Assuming δ1 = δ2 = δ3 = δ4 = δ

for convenience [2,4,32], the scattering matrix of Equation (2) can be written as (see Appendix D)

Mhh_δ = Shh
(
cos2 Ω − δ2 sin2 Ω

)
+ 2δShv + Svv

(
δ2 cos2 Ω − sin2 Ω

)
Mvh_δ = (Shh + Svv)

[
δ cos 2Ω + 0.5

(
δ2 − 1

)
sin 2Ω

]
+ Shv

(
1 + δ2)

Mhv_n = (Shh + Svv)
[
δ cos 2Ω + 0.5

(
1 − δ2) sin 2Ω

]
+ Shv

(
1 + δ2)

Mvv_n = Shh
(
δ2 cos2 Ω − sin2 Ω

)
+ 2δShv + Svv

(
cos2 Ω − δ2 sin2 Ω

) (17)

Tables 10–12 show the performances of FR estimators under the typical values of crosstalk ranging
from −15 dB to −35 dB [2,5]. We can see that in area of Changbai, ΩF performs the best and can be
applied in CIT reconstructions. However, by using the full-pol data of Qingdao, the error of ΩC is
smaller than that of ΩF when the crosstalk is higher than −20 dB. Thus, if the crosstalk is the domain
error, the choice of FR estimator in CIT depends on the scattering type and magnitude of crosstalk.
The ΩC should be applied in our CIT simulations of Qingdao when the crosstalk is equal to −15 dB
and −20 dB, otherwise ΩF is the preferred estimator.

Table 10. RMS error (σRMS) under the condition of crosstalk.

Crosstalk (dB)

RMS Error (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

−15 8.8421 7.6382 7.7358 6.2014 6.0407 2.5106
−20 3.7897 2.8994 2.9776 1.9464 1.8950 1.1415
−25 1.7467 1.1683 1.2207 0.5906 0.5700 0.9784
−30 0.8633 0.5115 0.5437 0.1698 0.1623 0.6808
−35 0.4496 0.2430 0.2621 0.0437 0.0413 0.4264

Table 11. Bias (σbias) under the condition of crosstalk.

Crosstalk (dB)

Bias (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

−15 8.6232 7.5837 7.6724 5.4012 5.4406 −1.8124
−20 3.5849 2.8467 2.9162 1.6463 1.6949 −1.5488
−25 1.5885 1.1245 1.1700 0.5925 0.5669 −0.8016
−30 0.7551 0.4788 0.5064 0.1684 0.1612 −0.6044
−35 0.3811 0.2207 0.2369 0.0426 0.0416 −0.3885

Table 12. SD (σSD) under the condition of crosstalk.

Crosstalk (dB)

SD (%)

Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

−15 1.9561 0.9114 0.9888 1.1464 1.1382 1.0981
−20 1.2295 0.5506 0.6017 0.8232 0.8218 0.7813
−25 0.7268 0.3172 0.3481 0.1390 0.1224 0.5612
−30 0.4186 0.1800 0.1980 0.0832 0.0681 0.3135
−35 0.2387 0.1017 0.1120 0.0393 0.0385 0.1757

When the crosstalk is set to −15 dB, Figures 15a and 16a show the CIT reconstructions in Changbai
and Qingdao, respectively. The RMS of corresponding absolute deviations in Figures 15b and 16b
are 5.96 × 109 electrons · m−3 and 4.98 × 109 electrons · m−3, respectively. It can be seen that the
small-scale distributions are difficult to be recognized in both areas when the crosstalk is as high as
−15 dB, an extreme value. It should be noted that from the evaluations in Table 4, the RMS error rapidly
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decreases with the decrease of crosstalk, which further improves the accurate of CIT reconstructions.
Thus, the effect of crosstalk on the CIT is not serious in most conditions. Figures 15c and 16c show the
CIT reconstructions when the crosstalk is set to −35 dB. We can see that significant improvements are
demonstrated to clearly show the small-scale distributions. The deviations in Figures 15d and 16d are
2.06 × 109 electrons · m−3 and 2.39 × 109 electrons · m−3, respectively.
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Figure 15. Two-dimensional CIT reconstructions under the condition of crosstalk in Changbai (ΩF

is used). (a,c) are the reconstructed results with −15 dB and −35 dB, respectively. (b,d) are the
corresponding absolute deviations between the true and reconstructed results. The unit of the electron
density is electrons · m−3.

 
(a) (b) 

 
(c) (d)

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0.5

1

1.5

2

x 10
11

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0

2

4

6

8

10
x 10

9

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0.5

1

1.5

2

x 10
11

Azimuth Direction/km

A
lti

tu
de

/k
m

 

 

0 20 40 60 80

220

240

260

280

300

320

340

360

380

400

0

2

4

6

8

10
x 10

9

Figure 16. Two-dimensional CIT reconstructions under the condition of crosstalk in Qingdao. (a) (ΩC

is used) and (c) (ΩF is used) are the reconstructed results with −15 dB and −35 dB, respectively. (b,d)
are the corresponding absolute deviations between the true and reconstructed results. The unit of the
electron density is electrons · m−3.
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4.4. CIT Reconstructions Under the Combination of System Errors

For a realistic situations of the PALSAR system, these calibration errors will appear together.
Thus, in order to make a practical value for our CIT technique, the system errors (i.e., noise, channel
imbalance and crosstalk) are all considered in this subsection. According to the calibration accuracy of
the PALSAR system [32], in simulations, we assume SNR = 15 dB , channel phase imbalance φ is 2◦,
channel amplitude imbalance | f | is 0.5 dB, and crosstalk δ is −35 dB. Table 13 shows the performances
of FR estimators under the condition of joint errors, we can see that for the area of Changbai, ΩC will
be the preferred estimator while ΩBB performs the best for the area of Qingdao.

Table 13. The performances of FR estimators under the condition of joint errors.

Performances
Changbai Qingdao

ΩBB ΩF ΩC ΩBB ΩF ΩC

RMS error (%) 3.6572 262.1338 1.8965 1.4348 120.5995 6.6420
Bias (%) 3.5491 −258.7012 −1.7362 1.3959 −118.7056 −5.5683
SD (%) 2.9604 42.3003 0.8634 0.5181 21.2925 4.9092

Figure 17a,c shows the CIT reconstructions in Changbai (ΩC is used) and Qingdao (ΩBB is
used), respectively. We can see that when the all system errors are considered, the true ionospehric
distribution can still be accurately reconstructed based on the proposed CIT technique, and the two
small-scale disturbances are clearly visible. The RMS of corresponding absolute deviations shown in
Figure 17b,d are 2.32 × 109 electrons · m−3 and 2.69 × 109 electrons · m−3, respectively. Thus, we can
see that after calibration of the PALSAR systems, the proposed CIT technique can give an accurate
ionospheric reconstruction in consideration of the residual errors.
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Figure 17. Two-dimensional CIT reconstructions under the condition of joint errors. (a) (ΩC is used)
and (c) (ΩBB is used) are the reconstructed results in areas of Changbai and Qingdao, respectively.
(b,d) are the corresponding absolute deviations between the true and reconstructed results. The unit of
the electron density is electrons · m−3.
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5. Conclusions

The distribution of ionospheric electron density is an important part of solar-terrestrial space
environment, which can demonstrate the solar and earth activities (magnetic storms, plasma bubbles,
midlatitude troughs, ionospheric anomalies caused by earthquakes [8,15], etc.). Monitoring the
ionospheric behaviors, especially small-scale ionospheric anomaly, based on the CIT technique is
therefore beneficial to these studies. In order to obtain the electron density distribution with high
resolution, a modified CIT technique based on the spaceborne PolSAR data is proposed in this paper,
where the FR, rather than TEC, is regarded as the input. From the results in Section 4, small-scale
distributions can be reconstructed by this proposed CIT technique due to the high spatial resolution of
spaceborne SAR, which is inaccessible by conventionally used data source. However, the accuracy of
FR retrieval will affect the final CIT reconstructions. The evaluations of three typical FR estimators
considering different system errors and scattering types were made. Some conclusions are as follow:

(1) The effect of system noise on FR retrieval depends on both the scattering types and SNR.
According to the evaluations, ΩC and ΩBB are the optimal estimators of CIT in areas of Changbai
and Qingdao, respectively. The performances of CIT in both areas are improved with the increase
of SNR. The small-scale distributions are visible in reconstructions when SNR = −20 dB, a typical
configuration for the PALSAR sensors.

(2) For considering the effects of channel phase imbalance, ΩBB can give the smallest error both in
areas of Changbai and Qingdao. From the simulation results, it can be seen that the CIT errors
are sensitive to phase imbalance. For amplitude imbalance, ΩC should be applied. However,
in contrast to phase imbalance and noise, the effects of amplitude imbalance on CIT is small.

(3) The choice of FR estimator considering the crosstalk depends on both scattering types and
magnitude of the crosstalk. When the crosstalk is as high as −15 dB, serious CIT reconstructions
are shown. However, with the decrease of the crosstalk, the error of FR retrieval is sharply
decreased. The effects of crosstalk on the CIT are limited when the crosstalk is equal to −35 dB.

In general, the main system effects on CIT are the noise and channel phase imbalance while
channel amplitude imbalance and crosstalk can be ignored for most cases. According to the calibration
accuracy of the PALSAR system, we evaluate the reconstructions when all the system errors are
considered. Accurate results can still be obtained by the proposed CIT technique. It should be noted
that we have analyzed other full-pol SAR scenes, and the same results are obtained. In addition, there
are other factors that can affect the CIT reconstructions. For example, the lack of horizontal ray paths
and the choice of initial distribution in iteration also degrade the accuracy of CIT [14,15]. Combining
of the PolSAR and occultation or ground-based ionosonde data can reduce these problems and will be
done in our future work.
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Appendix A

When the system noise and FR are the only errors, the scattering matrix of Equation (2) can be
written as[

Mhh Mvh
Mhv Mvv

]
=

[
cos Ω sin Ω
− sin Ω cos Ω

]
×
[

Shh Svh
Shv Svv

]
×
[

cos Ω sin Ω
− sin Ω cos Ω

]
+

[
Nhh Nvh
Nhv Nvv

]
(A1)
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Thus, each factor of M matrix can be written as

Mhh_n = Shh cos2 Ω − Svv sin2 Ω + Nhh
Mvh_n = Svh + (Shh + Svv) sin Ω cos Ω + Nvh
Mhv_n = Shv − (Shh + Svv) sin Ω cos Ω + Nhv
Mvv_n = Svv cos2 Ω − Shh sin2 Ω + Nvv

(A2)

Appendix B

Similarly, if the FR and channel phase/amplitude imbalance are considered, and the channel
imbalances in the receiver and transmitter are assumed to be identical (i.e., f1 = f2 = f ), the scattering
matrix of Equation (2) can be written as[

Mhh Mvh
Mhv Mvv

]
=

[
1 0
0 f

]
×
[

cos Ω sin Ω
− sin Ω cos Ω

]
×
[

Shh Svh
Shv Svv

]
×
[

cos Ω sin Ω
− sin Ω cos Ω

]
×
[

1 0
0 f

]
(A3)

Thus, each factor of M matrix is derived as

Mhh_ f = Shh cos2 Ω − Svv sin2 Ω
Mvh_ f = f (Shv − Shh sin Ω cos Ω − Svv sin Ω cos Ω)

Mhv_ f = f (Shv + Shh sin Ω cos Ω + Svv sin Ω cos Ω)

Mvv_ f = f 2(Svv cos2 Ω − Shh sin2 Ω
) (A4)

Appendix C

When we only consider the amplitude imbalance (| f |) in (A4), each factor of ΩC (Equations (6) and (7)) is

�(C14) = �
(

Mhh_ f × M∗
vv_ f

)
= | f |2�((Shh cos2 Ω − Svv sin2 Ω

)× (
S∗

vv cos2 Ω − S∗
hh sin2 Ω

))
= | f |2�(ShhS∗

vv) cos(2Ω)

(A5)

�(C34 − C24) = �
(

M∗
vv_ f

(
Mhv_ f − Mvh_ f

))
= �

(
| f |3(S∗

vv cos2 Ω − S∗
hh sin2 Ω

)× (Shh + Svv) sin(2Ω)
)

= | f |3�(ShhS∗
vv) sin(2Ω)

(A6)

�(C13 − C12) = �
(

Mhh_ f

(
M∗

hv_ f − M∗
vh_ f

))
= �((Shh cos2 Ω − Svv sin2 Ω

)× | f |(S∗
hh + S∗

vv
)

sin(2Ω)
)

= | f |�(ShhS∗
vv) sin(2Ω)

(A7)

Then,
ΩC = 1

2 arg
(
�(C14) + i�

(
C13+C34−C12−C24

2

))
= 1

2 arg
(
�(ShhS∗

vv)
(
| f |2 cos 2Ω + i0.5

(
| f |+ | f |3

)
sin 2Ω

)) (A8)

Appendix D

If the crosstalk is considered and δ1 = δ2 = δ3 = δ4 = δ is assumed, the scattering matrix of
Equation (2) becomes[

Mhh Mvh
Mhv Mvv

]
=

[
1 δ

δ 1

]
×
[

cos Ω sin Ω
− sin Ω cos Ω

]
×
[

Shh Svh
Shv Svv

]
×
[

cos Ω sin Ω
− sin Ω cos Ω

]
×
[

1 δ

δ 1

]
(A9)
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Thus, each factor of the M matrix is

Mhh_δ = Shh
(
cos2 Ω − δ2 sin2 Ω

)
+ 2δShv + Svv

(
δ2 cos2 Ω − sin2 Ω

)
Mvh_δ = (Shh + Svv)

[
δ cos 2Ω + 0.5

(
δ2 − 1

)
sin 2Ω

]
+ Shv

(
1 + δ2)

Mhv_n = (Shh + Svv)
[
δ cos 2Ω + 0.5

(
1 − δ2) sin 2Ω

]
+ Shv

(
1 + δ2)

Mvv_n = Shh
(
δ2 cos2 Ω − sin2 Ω

)
+ 2δShv + Svv

(
cos2 Ω − δ2 sin2 Ω

) (A10)
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Abstract: For InSAR topographic mapping, multi-baseline InSAR height estimation is known to be
an effective way to facilitate phase unwrapping by significantly increasing the ambiguity intervals
and maintaining good height measurement sensitivity, especially in mountainous areas. In this
paper, an efficient multi-baseline SAR interferometry approach based on maximum likelihood
estimation is developed for refined topographic mapping in mountainous areas. In the algorithm,
maximum likelihood (ML) height estimation is used to measure the topographic details and avoid
the complicated phase unwrapping process. In order to be well-adapted to the mountainous
terrain conditions, the prior height probability is re-defined to take the local terrain conditions
and neighboring height constraint into consideration in the algorithm. In addition, three strategies are
used to optimize the maximum likelihood height estimation process to obtain higher computational
efficiency, so that this method is more suitable for spaceborne InSAR data. The strategies include
substituting a rational function model into the complicated conversion process from candidate height
to interferometric phase, discretizing the continuous height likelihood probability, and searching
for the maximum likelihood height with a flexible step length. The experiment with simulated data
is designed to verify the improvement of the ML height estimation accuracy with the re-defined
prior height distribution. Then the optimized processing procedure is tested with the multi-baseline
L-band ALOS/PALSAR data covering the Mount Tai area in China. The height accuracy of the
generated multi-baseline InSAR DEM can meet both standards of American DTED-2 and Chinese
national 1:50,000 DEM (mountain) Level 2.

Keywords: multi-baseline InSAR; maximum likelihood (ML); DEM; L-band; ALOS/PALSAR

1. Introduction

SAR interferometry (InSAR) is an effective tool for large-area topographic mapping due to its
all-weather imaging and high sensitivity to terrain relief [1,2]. The InSAR height measurement accuracy
is greatly influenced by the phase unwrapping accuracy and the length of normal baselines [3,4].
Longer normal baselines allow more accurate height estimation but also generate higher frequency
of the interferometric fringes, which increases the complexity of phase unwrapping. On the other
hand, shorter normal baselines reduce the complexity of phase unwrapping but suffer from poorer
phase-to-height sensitivity [5,6]. Therefore, the contradiction between the sensitivity of height
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measurement and the reliability of phase unwrapping caused by the length of normal baseline over
rough terrain is inevitable for single-baseline InSAR.

To combine the advantages of large and short baselines in topographic mapping, a multi-baseline
InSAR principle has been proposed to estimate terrain height by joint analysis of multiple
interferometric pairs with diverse normal baselines [7,8]. Researchers have proposed a variety
of methods for multi-baseline InSAR processing. The standard method to increase the accuracy
of interferometric DEMs is to stack multiple geocoded layers, weighted with the individual error
estimates [9–11]. However, all DEM stacking approaches assume correctly unwrapped interferograms.
Moreover, it is difficult to co-register different geocoded DEM layers accurately and the horizontal
displacements can introduce height errors. Other multi-baseline estimation methods have been
published to facilitate the phase unwrapping process by taking advantage of baseline diversity,
such as the Least Square estimation method [5], the iterative multi-baseline method [12], the Chinese
Remainder Theorem (CRT) method [13,14], and so on. These multi-baseline phase unwrapping
methods can significantly increase the ambiguity intervals of interferometric phases and keep the
topographic details as well; however, these methods still have to solve the phase unwrapping
problem correctly.

In order to avoid the phase unwrapping process and determine the target height directly,
the statistical method using the criterion of maximum likelihood [9,15–18] is exploited to combine
the multi-baseline information for target height estimation. However, in actual data processing,
atmospheric effects, orbital errors, and decorrelation will introduce phase noise that cannot be ignored.
Therefore, the maximum likelihood estimation method is not robust enough to search for the target
height within all elevation values. In order to realize more robust and reliable height estimation, the
prior height information from the reference DEM is incorporated into the ML estimation to restrict the
height searching range [18], but the problem is that the local terrain conditions and the neighboring
height constraint are not considered in the prior height distribution. The maximum a posteriori
(MAP) estimation tries to introduce the neighboring height constraints by using Markov random
fields to model the prior distribution of the unknown images [19,20]. This method allows recovering
topographic profiles affected by strong height discontinuities and performing efficient noise rejections.
However, the MAP methods also have limits concerning the computational time and the optimization
step because there is no guarantee of finding the global optimum.

In this article, we apply the maximum likelihood estimation for multi-baseline InSAR DEM
generation. The prior height probability is re-defined to take the local terrain conditions and
neighboring height constraint into consideration. An experiment with simulated data is designed
to verify the improvement of the ML height estimation accuracy with the well-defined prior height
distribution. Furthermore, to make the maximum likelihood estimation method well adapted to
spaceborne SAR data, the processing flow is optimized for higher computational efficiency with
the following innovative points: (1) Replacing the rigorous height-to-phase conversion with the
rational function model (RFM); (2) substituting the complicated height likelihood probability function
with two-dimension lookup table; (3) searching for the maximum likelihood height with flexible
search step length instead of fixed search step length. This processing flow is testified with the L-band
ALOS/PALSAR data, which can be less influenced by the temporal and volume decorrelation and have
a longer critical baseline than InSAR data with a shorter wavelength (such as X band or C band) [21].
Since the ALOS/PALSAR data were acquired in the repeat-pass mode, the above processing flow
integrates atmospheric effect correction to improve the reliability of multi-baseline estimation. The rest
of this article is structured as follows: Section 2 introduces the principle of ML estimation with prior
DEM; Section 3 presents the improved proposed processing flow for spaceborne datasets; detailed
descriptions of the experiments and results are given in Section 4; Section 5 is a discussion of the
experimental results; finally, the conclusions are drawn.
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2. Maximum Likelihood Height Estimation Assisted by Prior DEM

2.1. Basic Principle

The maximum likelihood (ML) height estimation method of multi-baseline InSAR considers the
target height h as a parameter of the probability distribution of the interferometric phase φ, denoted
as pd f (φ|h) , and combines the probability distributions of all the interferometric phase observations
to estimate the target height with the maximum likelihood criterion [22]. Aiming at reducing the
undesired variation in the maximum likelihood height estimation caused by non-negligible phase
noise, the prior height distribution from a reference DEM is integrated into the maximum likelihood
estimation, which not only greatly improves the estimation reliability but also narrows the search
range and increases the computational efficiency. Therefore, the maximum likelihood height estimation
assisted by the reference DEM is shown in Equation (1):

ĤML = arg max
h∈F

{[
K

∏
i=1

pd f (φi|h)
]

pd f (h)

}
, (1)

where pd f (h) is the a priori distribution function of height provided by the reference DEM. pd f (φi|h)
is the height likelihood function for the ith interferogram. According to [23], pd f (φ|h) can be estimated
as the edge probability density function (PDF) of the interferometric phase φ, as shown in Equation (2):

pd f (φ|h) = pd f (φ|φ0 = Fh2φ(h)) =
(1−|ρ|2)L

2π

{
(2L−2)!

[(L−1)!]222(L−1)

×
[

(2L−1)β

(1−β2)
L+1/2

(
π
2 + arcsinβ

)
+ 1

(1−β2)
L

]
+ 1

2(L−1)

L−2
∑

r=0

Γ(L−1/2)
Γ(L−1/2−r)

Γ(L−1−r)
Γ(L−1)

1+(2r+1)β2

(1−β2)
r+2

} , (2)

where β =|ρ|cos(φ − φ0) ; φ0 is the mathematical expectation of interferometric phase; ρ is the complex
coherence coefficient; and L is the effective number of looks (ENL). φ0 can be represented by the target
height h through height-to-phase conversion function Fh2φ(h). When φ0 is set as zero, pd f (φ|0, ρ, L)
describes the probability distribution of the interferometric phase noise. Hence the standard deviation
of phase noise σφ can be derived by Equation (3). Given L, σφ is determined by the coherence
coefficient ρ:

σφ = sqrt
{∫ +π

−π
f 2 pd f ( f

∣∣∣0, ρ, L)d f
}

. (3)

The standard deviation of the height errors σh can be approximated as:

σh = −λR sin θ

4πB⊥
σφ, (4)

where λ is the wavelength; R is the slant range; θ is the incidence angle; and B⊥ is the normal baseline.

2.2. Definition of the Prior Height Probability

Suppose the height acquired from the prior DEM corresponding to a resolution unit of the
interferogram is hprior. Generally, we think that the system error of the prior DEM has been corrected.
Then the height error is the accidental error and obeys Gaussian distribution. The standard deviation of
the height errors for each cell in the interferogram is σh. Hence, the prior height probability distribution
for each cell can be defined as in Equation (5) [18]:

pd f (h) =
1√

2πσ2
h

exp

{
−(h − hprior)

2

2σ2
h

}
. (5)
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In this article, the SRTM DEM is used as the reference DEM with standard deviation of the height
errors σSRTM . The σSRTM of the SRTM DEM in the Eurasian continent is 3.8 m [24]. For each cell
of the interferogram, if we suppose that σh = σSRTM directly, Equation (5) defines the prior height
probability distribution over all the geographic coverage of SRTM DEM, which can be much larger
than the SAR image coverage, causing the following problems: (1) the local terrain conditions such
as plains or mountains, are not taken into account, while σh under different terrain conditions is
not consistent; (2) the neighboring height constraints are not considered that the height probability
distribution defined by Equation (5) is only related to the height of the resolution unit itself. Aimed at
these two problems, Equation (5) is modified to take the local terrain conditions in the neighborhood
into consideration. The prior height probability distribution is re-defined as in Equation (6):

pd f (h) = 1√
2πσ2

h

exp
{

1
T ∑

i∈N
−(h−hDEM,i)

2

2σ2
h

}

σh =

{
σlocal, σlocal > σDEM

σDEM, σlocal ≤ σDEM

, (6)

where N is composed of the resolution units and its adjacent units, which are usually four-neighbor,
eight-neighbor, or 24-neighbor. hSRTM,i, i ∈ N represent the heights of the resolution units, T represents
the number of the pixels in the neighborhood, and σlocal is the standard deviation of height errors
in the neighborhood. Both hSRTM and σlocal are obtained from the SRTM DEM. It can be seen from
Equation (6) that when σlocal is larger than σSRTM, σh is set to σlocal . Under this condition, σh is no
longer a constant. In the undulating terrain areas, σh depends on the local terrain conditions, while in
the flat areas it is still conservatively set as σSRTM.

The size of neighborhood used to define the prior height distribution probability is determined
based on the spatial resolution of the prior DEM and the coherence level of the interferogram. When
the spatial resolution of the prior DEM is much lower than that of the interferogram and the coherence
level of the interferogram is high, a smaller neighborhood such as four-neighbor is preferred to reduce
the influence of the prior height and neighboring heights in the height probability distribution so that
the resulting DEM will not be too smooth. Otherwise, when the spatial resolution of the prior DEM
is close to that of the interferogram or the coherence level of the interferogram is not high, a larger
neighborhood such as eight-neighbor or even 24-neighbor is selected to enhance the constraints of the
prior height and neighboring heights on the height probability distribution so that the impact of the
phase noise is suppressed and the height estimate is more robust.

In this article, SRTM DEM with a cell size of 30 m is used as the prior DEM and the interferogram
has a comparable cell size, about 22 m after 3 × 7 multi-look processing. The mean coherence of the
interferogram is about 0.5, which is a moderate coherence level. Therefore, eight-neighbor is chosen in
the experiment.

The correspondence between SRTM DEM and the resolution cell of the interferogram needs to be
established by radar coding. The height error introduced by the radar coding procedure will increase
the value of σSRTM, hence, in practical calculations, σSRTM will be adjusted empirically to make the
height distribution curve more reasonable.

3. Optimized Processing Flow for Spaceborne Multi-Baseline InSAR Datasets

When applying the multi-baseline InSAR height estimation with maximum likelihood criterion in
spaceborne InSAR datasets, the processing flow can be divided into three major stages. First is the
interferometric processing including interferometric pairs combination and differential interferogram
generation, as in Section 3.1. Second is the maximum likelihood height estimation process based on
the principle introduced in Section 2. In order to make the ML estimation method well adapted to
the spaceborne data, the processing flow is optimized for higher computational efficiency with the
following new points: (1) Replacing the rigorous height-to-phase conversion with the rational function
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model (RFM), as in Section 3.2.1; (2) substituting the complicated height likelihood probability function
with two-dimension lookup table, as in Section 3.2.2; (3) searching for the maximum likelihood height
with flexible search step length instead of the fixed search step length, as in Section 3.2.3. Thirdly,
the estimated height map in SAR image coordinate can be geocoded into the geographic coordinate
system or the universal transverse mercator (UTM) system, as in Section 3.3. The flowchart of this
approach is outlined in Figure 1. A brief description and rationale for each step are given as follows.

Figure 1. Flowchart for spaceborne multi-baseline InSAR DEM generation.

3.1. Interferometric Processing

For the repeat-pass interferometry, we first need to select the suitable SAR images in the
given dataset to constitute interferometric pairs and then choose the master interferogram for other
interferograms to register with, while for single-pass interferometry we merely need to choose the
master interferogram. To keep good coherence, the interferometric pairs should have temporal
baselines as short as possible under the premise that the normal baseline is shorter than the critical
normal baseline. In order to select the proper master interferogram, the principle is to select a master
interferogram at around the center of the time axis among all the interferograms to make it easier for
the other interferograms to register to it.

Next is the interferometric processing step for each interferometric pair, which is the
basic processing unit for the maximum likelihood height estimation, including complex image
co-registration, interferogram generation, flattening, and filtering. The SRTM DEM is projected
into the azimuth and slant-range coordinate system of the master SAR image in the interferometric
pair. Then the interferometric phase is flattened by the radar-coded DEM, i.e., major 2π phase jumps
due to topography are removed. For repeat-pass interferometry, the atmospheric phase screen (APS)
introduces non-negligible height error into the InSAR height [25]. The APS consists of a vertically
stratified component and a turbulent mixing one [6]. Based on spatial pattern analyses of these two
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APS components, a SRTM elevation-to-phase regression model and a low-pass plus adaptive combined
filter are employed to estimate and remove them from the differential interferogram sequentially [25].

After interferometric processing, the differential interferograms are registered to the image space
of the chosen master interferogram. The phase shift between the interferograms is a constant. In the
repeat-pass interferometry mode, the phase shift can be removed through the combined filter used
for the APS correction [25], while in the single-pass interferometry mode it can be obtained through
statistical average value of the differential phase maps.

3.2. Maximum Likelihood Height Estimation with the Prior DEM

3.2.1. Rational Function Model (RFM) for Height-to-Phase Conversion

The candidate height must be converted to the interferometric phase to calculate the corresponding
height likelihood probability as in Equation (2). This height-to-phase conversion starts from a pixel in
the master image with the image coordinates (iM, jM), and its slant range RM can be determined
with the orbital information. The candidate height for pixel (iM, jM) is represented by hDEM.
The Range-Doppler (RD) model can be iteratively solved to calculate the geographic coordinates
for pixel (iM, jM), which is the direct positioning process. With the calculated geographic coordinates
and orbital information of the slave image, the RD model can be iteratively solved again to calculate its
image coordinates (iS, jS) in the slave image, which is the indirect positioning process. The slant range
for the pixel (iS, jS) can be determined for the slave image as RS. The corresponding interferometric
phase for the chosen pixel with the candidate height hDEM can be determined through Equation (7),
where λ is the wavelength. For repeat-pass interferometry, k = 2 and for single-pass interferometry,
k = 1.

φ = −2πk
λ

(RM − RS) (7)

As we can see, this height-to-phase conversion process requires iteratively solving the RD model
twice for every candidate height in the height search range; this process has to be performed for every
pixel in the SAR image, which is extremely time-consuming.

In order to improve the efficiency of height-to-phase conversion, we try to no longer care about
the specific analytical form of height-to-phase conversion functions, but rather write them directly as a
rational function of the image coordinates (L_a,P_r), the height h, as shown in Equation (8):

φ = Fh2φ(h) =
Numh(L−a, P−r, h)
Denh(L−a, P−r, h)

=

3
∑

i=0

3−i
∑

j=0

3−i−j
∑

n=0
ai,j,n · L−ai · P−rj · hn

3
∑

i=0

3−i
∑

j=0

3−i−j
∑

n=0
bi,j,n · L−ai · P−rj · hn

. (8)

They are called the rational function model of the height-to-phase conversion function Fh2φ(h).
ai,j,n, bi,j,n are the unknown parameters to be solved. The value of b0,0,0 is set to 1. The way to solve the
unknown parameters is the same as in [26].

The rational function model for the height-to-phase conversion has been established in this
article with the spaceborne InSAR data and tested to see whether it can replace the rigorous method.
The number of the control points is 50 × 50 × 10, that is, there are 50 × 50 regular grid points in the
plane and 10 layers in the height range. The height interval is between −500 m and 10,000 m. We
randomly generate 10,000 checkpoints at which the rational function model and the rigorous method
are used for the height-to-phase conversion, respectively. The conversion error of the rational function
model is calculated using the results of the rigorous method as a reference. Table 1 lists the conversion
error for different spaceborne SAR data, indicating that the conversion error for the rational function
model is completely negligible in practical applications. Therefore, the rational function model can
replace the rigorous method for height-to-phase conversion at each resolution unit.
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Table 1. Height-to-phase conversion errors of rational function model.

Spaceborne InSAR Data Height Ambiguity
Height-To-Phase

Max. Error RMSE

ALOS/PALSAR 82 m 1.97 × 10−3◦ 2.14 × 10−4◦
COSMO-SkyMed 164 m −4.08 × 10−4◦ 6.78 × 10−5◦

TerraSAR-X 59 m −1.81 × 10−3◦ 2.15 × 10−4◦

3.2.2. Height Likelihood Probability Lookup Table

Equation (2) is used to calculate the height likelihood probability, which is a very complicated
expression. In order to improve the computational efficiency, we propose using the two-dimensional
look-up table as a substitution of Equation (2) to calculate the height likelihood probability. It is a
regular sampling of the continuous likelihood probability that is to replace the continuous function
surface with a discrete numerical table. The height likelihood probability is related to the phase,
coherence, and effective number of looks. For a multi-baseline InSAR dataset, the effective number of
looks of each interferogram is the same and hence the look-up table to be established is indexed by
phase and coherence. The value range of the phase is [−π, π], and the sampling interval is π/180 rad.
The value range of the coherence coefficient is [0,1], and the sampling interval is 1/100. Figure 2a shows
a three-dimensional view of the look-up table with an effective number of looks (16) and Figure 2b
shows the profile perpendicular to the coherence axis.

Figure 2. (a) The fitted surface by the look-up table with ENL L = 16 and (b) the profile perpendicular
to the coherence axis with ρ = 0.3, 0.6, 0.9.

3.2.3. ML Height Estimation with Flexible Search Step Length

From Section 3.1, the ML height satisfying Equation (1) can be estimated by searching the
candidate height range. The search step length determines the accuracy of the ML height and the
amount of computation time. Instead of the fixed step length, we propose using a flexible search step
length to ensure the efficiency and accuracy of the ML height searching.

First, larger steps are used to narrow the candidate height range. Then a smaller step is applied
to search for the ML height. Repeat the process until the target height changes less than the given
threshold. The specific implementation flow is as follows:
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(1) Obtain the initial height value h0 from the prior DEM, which is radar-coded to the SAR
image coordinates;

(2) Set the height search range to [h0 − ΔHi, h0 + ΔHi] and the search step to Δhi. ΔHi can be set to
an integral multiple of σh. The optimal height obtained by the maximum likelihood estimation
is hi;

(3) The height search range becomes [hi − ΔHi+1, hi + ΔHi+1], ΔHi+1 = ΔHi/2 and the search step
is Δhi+1 = Δhi/2. The optimal height obtained by the maximum likelihood estimation is hi+1;

(4) Test whether (hi+1 − hi) is less than the given threshold. If yes, then stop the search and return
hi+1 as the optimal height. If no, then repeat Step (3).

It should be noted that the step length Δh must be less than half of the minimum height ambiguity
to satisfy the Nyquist sampling law and ensure that the correct position of the height likelihood
probability peak can be detected.

3.3. Geocoding

The geographic coordinates of each cell with estimated height are calculated through the Range
Doppler (RD) model with the World Geodetic System 1984 (WGS84) as the reference spheroid.
Afterward, the multi-baseline InSAR DEM could be geo-referenced and gridded in the geographic
coordinate system (latitude and longitude) or in the projection coordinates such as the universal
transverse mercator (UTM) system with regular spacing in the East and North dimensions [11].

4. Experiments and Results

The purpose of the simulated experiment in Section 4.1 is to testify the improvement of the ML
height accuracy with the re-defined prior height probability distribution by comparing the height
accuracy of ML height with or without the prior DEM. Then, the proposed processing flow was applied
in the L-band ALOS/PALSAR data covering the Mount Tai area of China, as in Section 4.2.

4.1. Simulated Experiment

4.1.1. Simulation of SAR Interferograms

An American NED DEM of 10 m resolution is used to simulate three SAR interferograms with
different normal baselines and evaluate height accuracy of the generated DEMs. The wavelength
of the simulated radar system is 0.031 m (X band). The orbit height is about 600 km. The incidence
angle is 35◦. The effective number of looks (ENL) of the interferogram is 16. For the three simulated
interferograms, their respective normal baseline, height ambiguity (Hamb), coherence coefficient,
and standard deviation (Std.) of phase noise are shown in Table 2.

Table 2. The simulation parameters of the interferograms.

Interferogram I Interferogram II Interferogram III

Normal baseline 47 m 83 m 178 m
Height ambiguity 139.54 m 79.02 m 36.84 m

Coherence coefficient 0.60 0.57 0.51
Std. of phase noise 0.254 rad 0.277 rad 0.333 rad

The geometric decorrelation caused by terrain changes is not considered and the temporal
decorrelation for the three interferograms is assumed to be the same. Therefore, the coherence
differences among the three interferograms are induced only by the normal baseline differences.
The standard deviation of the phase noise induced by decorrelation is calculated by Equation (3).
Figure 3a shows the hillshade of NED DEM and Figure 3b is obtained by 15 × 15 smoothing filtering
of the NED DEM, which is used for calculating the prior height probabilities and lots of detailed
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topographic information is lost, as in Figure 3c. Figure 3d–f represents the simulated interferograms
I, II, and II, which are calculated from W{2πh/Hamb}, (W{·} is the wrapping operator) and h is the
height value acquired from the NED DEM (Figure 3a). Figure 3g–i shows atmospheric turbulence
phase generated by statistical simulation. Figure 3j–l is the simulated interferogram I, II, and III
superimposed by the atmospheric phase (g–i), respectively.

Figure 3. (a) Hillshade of 10 m NED DEM; (b) hillshade of 15 × 15 smoothing filtered NED DEM;
(c) NED DEM (upper) and smoothing filtered NED DEM (lower); (d–f) are the simulated interferograms
I, II, and III, respectively, and the phase noise introduced by decorrelation is superimposed; (g–i) are
the simulated atmospheric phase for interferograms I, II, and III, respectively; (j–l) are the simulated
interferograms I, II, and III superimposed by the atmospheric phase (g–i), respectively.

4.1.2. Test of the Impact of the Prior Height on ML Estimation

The simulated interferograms superimposed by the phase noise (Figure 3d–f) are used to generate
a multi-baseline InSAR DEM with ML estimation method with or without the prior DEM. The height
search range is set to between 500 m and 2000 m and the search step is 1 m. For ML estimation without
the prior DEM, the prior height probability is evenly distributed within this range, while for ML
estimation with the prior DEM it is calculated through Equation (6). The standard deviation of the
prior DEM height error σDEM is calculated from the height error map generated by differentiating the
NED DEM (Figure 3a) and the smoothed NED DEM (Figure 3b). σDEM is 4.7 m by calculation and
empirically enlarged to 6 m.
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Figure 4 shows the generated DEMs and their error maps for ML estimation with the prior DEM,
(Figure 4a,b) and without the prior DEM (Figure 4c,d). We can see the topographic information is
almost all covered by the noise value in Figure 4a and the height error map in Figure 4b ranges between
−960 m and 960 m. Compare Figure 4b to Figure 3d–f, it can be seen that the spatial distribution of the
height errors is still related to the wrapped terrain phase, and hence the ML estimation without the
prior DEM does not solve the height ambiguity problem and is very sensitive to phase noise. The DEM
obtained with ML estimation with the prior DEM depicts the terrain condition well in Figure 4c.
The height error map ranges between −8 m and 8 m and is almost randomly spatially distributed
except that it is slightly larger in the fluctuating area. From all the above comparisons, it is obvious
that the height estimation accuracy and anti-noise ability of ML estimation with the prior DEM are
much better than those of ML estimation without the prior DEM.

Figure 4. Multi-baseline InSAR DEMs (without atmospheric effects) and height error maps, without
the prior DEM (a,b) and with the prior DEM (c–e) is the hillshade of (c) with the enlarged topographic
details of a small area.

The statistical values of the height errors in the simulation experiment are calculated as shown in
Table 3. The theoretical error of the single-baseline interferogram is caused by the decorrelation phase
noise without the phase unwrapping error. From Table 3, the Std. of the height errors are up to 408.8 m
for ML estimated height without the prior DEM while shrink to 1.6 m for ML estimated height with
the prior DEM. The height accuracy of ML estimation with the prior DEM is better than that of the
single-baseline InSAR DEMs in terms of the standard deviation of height errors.

Table 3. Statistical values of height errors without atmospheric effects.

Mean Std.

Prior DEM 0.007 m 4.7 m
Interferogram I (Figure 3d) 0.002 m 5.6 m
Interferogram II (Figure 3e) −0.010 m 3.5 m
Interferogram III (Figure 3f) −0.001 m 2.0 m

ML without prior DEM 70.072 m 408.8 m
ML with prior DEM −0.003 m 1.6 m
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In Figure 3b, a small area in the black rectangle is selected and enlarged as shown in Figure 3c.
The upper part of Figure 3c is the hillshade of the 10 m NED DEM and the lower part of Figure 3c is
the hillshade of the 15 × 15 smoothing filtered NED DEM. Most of the terrain details are lost in the
15 × 15 smoothing filtered NED DEM. The same area of the ML-estimated InSAR DEM is also selected
and enlarged in Figure 4e. By comparative analysis of Figures 3c and 4e, it can be seen that although
there is high-frequency random noise (caused by decorrelation noise) in the ML-estimated DEM in
Figure 4e, the ML-estimated DEM well reconstructs the topographic details lost in the prior DEM as in
the lower part of Figure 3c and obviously improves the spatial resolution of the prior DEM. The Std.
of height error of ML estimation with a prior DEM (1.6 m) is less than that of prior DEM (4.7 m) in
Table 3.

4.1.3. Test of the Impact of the Atmospheric Effects on ML Estimation

Figure 5 shows the multi-baseline InSAR DEM generated from interferograms with the
atmospheric effects shown in Figure 3j–l and the corresponding height error map. Comparing the
height error map Figure 5b to Figure 4d, it can be seen that there is a trend towards height error in
Figure 5b, caused by the atmospheric effects.

Figure 5. (a) Multi-baseline InSAR DEM with prior DEM (with atmospheric effects); (b) height error
map; (c) is the hillshade map of (a).

Furthermore, Table 4 shows the statistical values of height errors of the single and multi-baseline
InSAR DEMs generated from interferograms with the atmospheric effects in Figure 3j–l. For both
single-baseline interferometry and multi-baseline InSAR height estimation, the atmospheric effects
can evidently increase the height errors according to Table 4. The multi-baseline InSAR DEM has
better height accuracy than the single-baseline InSAR DEMs, indicating that the ML estimation with
prior DEM can effectively suppress the atmospheric effects to some extent. However, comparing
Table 3 with Table 4, it can be seen the standard height error of the ML estimation with prior DEM has
increased from 1.6 m to 4.1 m, revealing that the atmospheric effects can cause non-negligible height
errors and should be removed from each interferogram.

Table 4. Statistical values of height errors with atmospheric effects.

Mean Std.

Interferogram I (Figure 3j) −2.5 m 16.2 m
Interferogram II (Figure 3k) 2.5 m 8.7 m
Interferogram III (Figure 3l) −0.6 m 4.6 m

ML with prior DEM −0.006 m 4.1 m
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4.2. ALOS/PALSAR Data Experiment

4.2.1. Experimental Area

The experimental area covers the central and southern parts of Mount Tai (including its main peak,
Yuhuangding), and the the central plains and hills (including Taian city at the southern foot of Mount
Tai) of Shandong Province. A large portion of this area is covered by vegetation. From the optical image
acquired from Google Earth in Figure 6a, we can see that the northern part of the experimental area,
including Mount Tai and hills, and Mount Culai in the southeast corner, are basically covered by woods.
Moreover, there is a large amount of farmland in the central and southern parts of the experimental
area, which is covered by crops. In this vegetation-covered area, the L-band ALOS/PALSAR data can
maintain better temporal coherence and penetrate the vegetation cover to some extent. The terrain
types of the experimental area are diverse, including plains, hills, and mountains. The height varies
greatly such that the height of the plains is about 100 m above the sea level while the height of Mount
Tai peak is about 1533 m. Therefore, we can say it is a suitable experimental area for multi-baseline
InSAR DEM generation experiment.

Figure 6. (a) The coverage of ALOS/PALSAR images marked by the blue rectangle and 1:25,000 DEM
marked by the green rectangle shown in Google Earth; (b) the amplitude image of ALOS/PALSAR
data (acquisition time: 6 February 2008).

4.2.2. ALOS/PALSAR Data

The SAR interferometric data used in this experiment are ALOS/PALSAR data obtained in the
FBS mode and have a total of six images. Table 5 lists the detailed image parameters. The amplitude
image shown in Figure 6b is acquired on 6 February 2008 and has been through multi-look processing
with a ratio of 7:3 (azimuth:range). Since the data are acquired from ascending orbital direction with
right-looking imaging, the amplitude image in Figure 6b is flipped over vertically compared with the
image coverage in Figure 6a.

Table 5. Image parameters for ALOS/PLASAR data.

Acquisition Time
22 December 2007/6 February 2008/23 March 2008/
27 December 2009/11 February 2010/29 March 2010

Orbit direction Ascending
Imaging mode Stripmap

Polarization HH
Central incidence angle 38.7◦

Sampling space of azimuth/range direction 3.18 m/4.68 m
Band width of azimuth/range direction 1522 Hz/28 MHz
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The ALOS/PALSAR multi-baseline dataset used in the experiment has six images and Figure 7
shows the spatial–temporal baseline distribution of the interferometric dataset. We selected four
interferometric pairs based on the criteria given in Section 3.1, connected by the blue lines as shown
in Figure 7. It can be seen that the temporal baselines of interferometric pairs are all about 46 d. For
interferometric pairs 1–2 and 2–3, image 2 is chosen as the master image and for interferometric pairs
4–5 and 5–6, image 5 is chosen as the master image. Then we register interferograms 4–5 and 5–6 to
the image space of image 2, as shown by the red line in Figure 7.

Figure 7. The temporal and spatial baseline distribution of ALOS/PALSAR interferometric pairs.
The images connected by the blue line constitute interferometric pairs and the interferograms connected
by the red line are co-registered to the same image space.

Table 6 shows the parameters of the four interferograms; the distribution of the normal baselines
ranges from −784 m to 185 m and the corresponding height ambiguity ranges from 82 m to 833 m.
These are the suitable normal baseline combinations for multi-baseline InSAR processing. In order to
improve the signal-to-noise ratio, we perform 7 × 3 multi-look processing of the SAR images in the
azimuth and range direction, and then the spatial resolution of the interferogram is about 22 m × 22 m.

Table 6. Parameters for ALOS/PALSAR interferometric pairs.

Interferogram I Interferogram II Interferogram III Interferogram IV

Acquisition time of the Master image 6 February 2008 6 February 2008 11 February 2010 11 February 2010
Acquisition time of the Slave image 22 December 2007 23 March 2008 27 December 2009 29 March 2010

Temporal baseline 46 days 46 days 46 days 46 days
Normal baseline B⊥ −784 m 77 m −561 m 185 m

Height ambiguity h2π 82 m 833 m 115 m 347 m
Central Doppler frequency 74/75 Hz 74/80 Hz 68/57 Hz 68/46 Hz
Mean coherence coefficient 0.52 0.53 0.58 0.50

4.2.3. Elevation Datasets

In the experiment, the SRTM DEM with a spatial resolution of 90 m × 90 m is used as the prior
DEM and the standard deviation of the global height error of SRTM DEM is about 5 m [21]. In order to
validate the accuracy of the single/multi-baseline InSAR DEMs, the 1:25,000 aerial photogrammetric
DEM provided by the Shandong Provincial Land and Surveying and Mapping Institute is used as the
reference DEM with the root mean square error (RMSE) less than 4 m [27]. The spatial resolution of
1:25,000 DEM is 10 m × 10 m. The area of the 1:25,000 DEM coverage is about 12 km × 14 km marked
as the green rectangle in Figure 6a, including the southern part of Mount Tai and Tai’an City.

213



Remote Sens. 2018, 10, 454

4.2.4. Experimental Results

Figure 8 shows the flattened interferograms of the ALOS/PALSAR data. The interferometric
fringes are sparse in the interferogram with short baseline in Figure 8b,d, and become very dense in
the interferogram with long baseline in Figure 8a,c. The interferograms are clearly visible even in the
mountainous and vegetation-covered areas, indicating that the L-band SAR data have good capability
of keeping geometric and temporal coherence.

Figure 8. Flattened interferograms of the ALOS/PALSAR data. (a) Interferogram I, B⊥ = −784 m;
(b) Interferogram II, B⊥ = 77 m; (c) Interferogram III, B⊥ = −561 m; (d) Interferogram IV, B⊥ = 185 m.

In the calculation of the prior height probability, σSRTM is empirically set to 20 m (considering the
spatial resolution difference and the interpolation error of the radar coding) with the neighborhood
system N = 8. When calculating the height likelihood probability, the initial height value is obtained
from the radar-coded SRTM DEM and the initial search height range and the step size are set at ±300 m
and 20 m, respectively.

Figure 9 shows the hillshades of the single-/multi-baseline DEMs and SRTM DEM corresponding
to the black rectangle in Figure 8a. Besides the multi-baseline InSAR DEM (Figure 8a), the radar-coded
SRTM DEM (Figure 8b) and single-baseline InSAR DEMs (Figure 8c–f) of the same area are also
presented as comparisons.

As to quantitatively evaluate the height accuracy with the reference 1:25,000 DEM, all the InSAR
DEMs and are geocoded into the geographic coordinate system and then projected into the UTM
coordinate system with spatial resolution of 20 m. Since the spatial resolution of 1:25,000 DEM is
about 10 m, it needs to be down-resampled to 20 m when calculating the height error map. Moreover,
in order to verify the height accuracy improvement of the multi-baseline estimation, the SRTM DEM
and single-baseline InSAR DEMs are also evaluated as comparison. Figure 10 shows the hillshade
of the generated multi-baseline InSAR DEM with height ranging between 20 m and 1535 m, which
clearly shows the topographic conditions of Mount Tai, Mount Culai (located at the southeast corner)
and a large number of hills.
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Figure 9. Hillshades of single/multi-baseline DEMs and SRTM DEM corresponding to the black
rectangle in Figure 8a. (a) Multi-baseline InSAR DEM; (b) radar-coded SRTM DEM; (c) Interferogram I
DEM, h2π = 82 m; (d) Interferogram II DEM, h2π = 833 m; (e) Interferogram III DEM, h2π = 115 m;
(f) Interferogram IV DEM, h2π = 347 m.

Figure 10. Hillshade of multi-baseline InSAR DEM. The black rectangle marks the coverage of the
1:25,000 DEM used for accuracy validation.

Figure 11 shows the height error maps of single/multi-baseline InSAR DEMs and SRTM DEM,
which directly reflect the distribution and amount of the height error for different DEMs. Table 7 shows
the statistical values of the height error maps of the corresponding InSAR DEMs and SRTM DEM shown
in Figure 10, which can clearly reflect the statistical characteristics of the height error distribution.
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Figure 11. The height error map of InSAR DEMs, (a) the DEM generated by ML estimation with prior
DEM; (b) SRTM DEM; (c–f) are the DEMs generated by single-baseline interferograms I, II, III, and IV.

Table 7. Statistical values of height errors of single/multi-baseline InSAR DEMs and SRTM DEM.

Mean Std. Absolute Value ≤ 10 m

SRTM DEM 4.9 m 15.4 m 58.9%
Interferogram I DEM 1.9 m 11.3 m 81.4%
Interferogram II DEM −4.4 m 43.0 m 32.8%
Interferogram III DEM 2.3 m 10.6 m 83.0%
Interferogram IV DEM −0.3 m 27.7 m 51.8%
multi-baseline DEM 1.7 m 8.6 m 86.3%

5. Discussion

5.1. Comparative Analysis of the Single- and Multi-Baseline InSAR DEMs

For the single-baseline InSAR, the interferograms in Figure 7 with longer normal baselines
(Figure 7a,c) have denser fringes than the interferograms with shorter normal baselines (Figure 7b,d).
After the phase unwrapping and phase-to-height conversion, the single-baseline InSAR DEMs with
longer normal baselines (Figure 8c,e) have more topographic detail than InSAR DEMs with shorter
normal baselines (Figure 8d,f). Quantitatively, the height error of single-baseline InSAR DEMs with
longer normal baselines (Figure 10c,e) is evidently smaller than the InSAR DEMs with shorter normal
baselines (Figure 10d,f), which can also be reflected in Table 6—the interferograms I, III with longer
normal baselines a have smaller standard deviation of height errors and a larger percentage of the
absolute height error less than 10 m than the interferograms II and IV with shorter normal baselines.
Then, can it be concluded that the longer the normal baseline, the better height measurement accuracy
for single-baseline InSAR? The answer is obviously no. Interferogram I (Figure 7a) has a longer
normal baseline than interferogram III (Figure 7c); however, the height accuracy of the InSAR DEM
generated by interferogram II, as in Figures 8e and 10e, is better than that of the InSAR DEM generated
by interferogram I, as in Figures 8c and 10c. According to Equation (4), the height accuracy of
single-baseline InSAR is determined by both the length of the normal baseline and the phase noise,
while too long a normal baseline can also introduce non-negligible phase noise during the delicate
phase unwrapping.

In this article, this contradiction is solved by a multi-baseline InSAR with maximum likelihood
estimation criterion. In the ALOS/PALSAR data experiment, the multi-baseline InSAR DEM (Figure 9a)
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have more topographic detail than the single-baseline InSAR DEMs (Figure 9c–f). The height error of
the single-baseline InSAR DEMs (Figure 10c–f) is larger than that of the multi-baseline InSAR DEM
(Figure 10a). In Table 6, the standard deviation of height error of the multi-baseline InSAR DEM is the
smallest and the percentage of the absolute height error less than 10 m of the multi-baseline InSAR
DEM is the largest among all the DEMs. Therefore, the height accuracy of the multi-baseline DEM
is better than that of the single-baseline DEMs on the whole, indicating that the proposed method
is effective.

5.2. Comparative Analysis of the Prior Height’s Impact on ML Estimation

From the simulated data experiment in Section 4.1.2, the ML estimated DEM with the prior height
probability distribution in Figure 4c,d has higher height accuracy than the ML estimated DEM without
the prior height probability distribution in Figure 4a,b. Here, we analyze the influence of the prior
height on ML estimation. A resolution unit in the simulated interferogram with true height of 1320.4 m
is used as an example. Figure 12 shows the height probability distribution of the chosen resolution unit.
Figure 12a shows the joint height probability distribution of three simulated interferograms without
phase noise; when h is 1320 m, the joint probability density function (PDF) reaches its peak. Figure 12b
shows the joint PDF with the decorrelation noise and, although there is a local peak at h = 1320 m,
the highest peak is located at h = 1469 m with height error up to 149 m. Figure 12c shows the prior
height probability distribution, with the highest peak located at h = 1332 m. Figure 12d shows the
joint height PDF by multiplying the height PDF in Figure 12b and the prior height distribution in
Figure 12c. There is only one peak in Figure 12d, located at h = 1320 m, very close to the true height of
h = 1320.4 m. Therefore, we can say that the prior DEM forms an external height constraint on the
multi-baseline InSAR observations and can effectively remove the erroneous estimate and solve the
height ambiguity problem.

Figure 12. The height probability distribution of a cell in the simulated interferogram with a true
height of h = 1320.4 m. (a,b) The joint height probability distribution with and without decorrelation
phase noise, respectively; (c) the prior height probability distribution acquired from the prior DEM;
(d) the joint height probability distribution with the prior height probability distribution, obtained by
multiplying the two probability distributions in (b,c).
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5.3. Comparative Analysis of the Multi-Baseline InSAR DEM and SRTM DEM

The height accuracy of the multi-baseline DEM and SRTM DEM is comparatively evaluated.
The multi-baseline InSAR DEM (Figure 8a) has more topographic details than the radar-coded SRTM
DEM (Figure 8b). In Figure 10, the height error of multi-baseline InSAR DEM (Figure 10a) is obviously
smaller than that of SRTM DEM (Figure 10b), especially in the mountainous areas. From the statistical
values of height errors in Table 6, it can also be seen that the multi-baseline has better height accuracy
than SRTM DEM. The spatial resolution of the generated multi-baseline InSAR DEM is 20 m, while
the SRTM DEM used for the prior DEM in the experiment is at 90 m resolution. The generation of
the multi-baseline DEM with the SRTM DEM as the prior DEM can be viewed as a topographical
information update of the SRTM DEM in terms of height accuracy and resolution.

According to the Digital Terrain Elevation Data (DTED) Standard defined by the American
National Geospatial Intelligence Agency (NGA) [28], the multi-baseline InSAR DEM generated in
this article meets the DTED-2 standard for spatial resolution and height accuracy based on the height
error statistical values in Table 6. Similarly, with reference to the Chinese National 1:50,000 DEM
Standard released by the National Administration of Surveying, Mapping and Geoinformation of
China, the height accuracy of the multi-baseline InSAR DEM in mountainous areas reaches 1:50,000
DEM (mountain) Level 2.

Since high-resolution spaceborne InSAR data acquired by TerraSAR-X/TanDEM-X,
COSMO-SkeMed, ALOS2/PALSAR-2 and so on are increasingly available, how can the optimized
multi-baseline InSAR DEM generation with maximum likelihood estimation be applicable with these
data? Two factors have to be considered. First, the cell size of the reference DEM, e.g., SRTM DEM,
is much larger than that of the interferogram. The reference DEM should be oversampled and then
radar-coded into the SAR image space. The height error introduced by the oversampling and radar
coding processing will increase the value of σSRTM to make it even larger than in the condition when
the prior DEM has a cell size comparable to that of the interferogram. Hence, in the actual calculation,
σSRTM should be adjusted accordingly. Second, the size of the neighborhood should also be adjusted.
Since the high spatial resolution spaceborne images have a much smaller cell size than the SRTM DEM
and, moreover, these InSAR images usually have high coherence, a smaller neighborhood such as
four-neighbor is preferred.

6. Conclusions

Multi-baseline InSAR height estimation can combine the advantages of both short and long
normal baselines and generate DEMs with higher height accuracy than single-baseline InSAR DEMs.
In this article, a multi-baseline InSAR with maximum likelihood criterion is used to generate DEM in
mountainous areas. The prior height probability distribution is incorporated to suppress the phase
noise and re-defined to take the local terrain conditions and neighboring height constraints into
consideration. Furthermore, the processing flow is optimized for better computational efficiency.
Simulation data and ALOS/PALSAR data experiments are performed to test the effectiveness of the
proposed method. Our major findings in this article are as follows:

(1) The height accuracy of the ML estimation with re-defined prior height probability distribution
is much better than that of the ML estimation without prior height probability, indicating
that well-defined height probability can suppress phase noise and help solve the height
ambiguity problem.

(2) The processing strategy proposed in this article, including (1) replacing the rigorous
height-to-phase conversion with the rational function model (RFM); (2) substituting the
complicated height likelihood probability function with a two-dimensional lookup table;
(3) searching for the maximum likelihood height with flexible search step length instead of
the fixed search step length, is effective, making the proposed processing flow applicable to
spaceborne datasets.
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(3) Compared with SRTM DEM, the multi-baseline InSAR DEM has obvious advantages in terms
of resolution and precision. Hence the multi-baseline InSAR estimation can be viewed as a
topographical information update of the historical low-resolution DEMs.

(4) The multi-baseline InSAR DEM generated from ALOS/PALSAR datasets meets the American
DTED-2 standard and Chinese 1:50,000 DEM (mountain) Level 2 in the case of spatial resolution
and height accuracy.

In the future, the proposed multi-baseline InSAR topographic mapping flow can be tested and
improved further with more spaceborne datasets. The maximum likelihood height estimation method
with the prior DEM provides a promising solution for DEM mass production in mountainous areas.
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Abstract: Monitoring, assessing, and understanding the structural health of large infrastructures,
such as buildings, bridges, dams, tunnels, and highways, is important for urban development and
management, as the gradual deterioration of such structures may result in catastrophic structural
failure leading to high personal and economic losses. With a higher spatial resolution and a
shorter revisit period, interferometric synthetic aperture radar (InSAR) plays an increasing role
in the deformation monitoring and height extraction of structures. As a focal point of the InSAR
data processing chain, phase unwrapping has a direct impact on the accuracy of the results.
In complex urban areas, large elevation differences between the top and bottom parts of a large
structure combined with a long interferometric baseline can result in a serious phase-wrapping
problem. Here, with no accurate digital surface model (DSM) available, we handle the large
phase gradients of arcs in multitemporal InSAR processing using a long–short baseline iteration
method. Specifically, groups of interferometric pairs with short baselines are processed to obtain
the rough initial elevation estimations of the persistent scatterers (PSs). The baseline threshold
is then loosened in subsequent iterations to improve the accuracy of the elevation estimates step
by step. The LLL lattice reduction algorithm (by Lenstra, Lenstra, and Lovász) is applied in the
InSAR phase unwrapping process to rapidly reduce the search radius, compress the search space,
and improve the success rate in resolving the phase ambiguities. Once the elevations of the selected
PSs are determined, they are used in the following two-dimensional phase regression involving
both elevations and deformations. A case study of Lupu Bridge in Shanghai is carried out for the
algorithm’s verification. The estimated PS elevations agree well (within 1 m) with the official Lupu
Bridge model data, while the PS deformation time series confirms that the bridge exhibits some
symmetric progressive deformation, at 4–7 mm per year on both arches and 4–9 mm per year on the
bridge deck during the SAR image acquisition period.

Keywords: deformation monitoring; elevation extraction; InSAR; LLL lattice reduction; long–short
baseline iteration; Lupu Bridge

1. Introduction

Space borne interferometric synthetic aperture radar (InSAR) technology makes use of
interferometric image pairs of the same ground area obtained from repeating satellite orbits.
Interferometric phases from the image pairs can be used to determine elevation and deformation in
the radar line of sight (LOS) direction [1,2]. With a high spatial resolution and a short revisit period,
InSAR can be used for large-scale deformation monitoring and elevation extraction and has great
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application potential in areas such as health monitoring of large structures [3–9]. As interferograms
are produced by the complex multiplication of coherent synthetic aperture radar (SAR) images, phase
unwrapping is required to determine the number of whole phase cycles for arcs of interferometric phase
observables in multitemporal InSAR data processing. Phase unwrapping is a core of InSAR technology.
Many methods have been developed for phase unwrapping, including, e.g., the two-dimensional
branch-cut method [10], the quality map guidance algorithm [11], the region-growing algorithm [12],
the network flow method [13,14], three-dimensional phase unwrapping [15], and some others [16–18].
Each of the methods has its advantages and limitations.

In mathematics, phase unwrapping can be seen as the closest lattice vector problem; the lattice
reduction algorithm is designed to find the shortest vector in a two-dimensional grid. In 1982, Lenstra,
Lenstra, and Lovász proposed the LLL lattice reduction algorithm [19] to extend the search space to an
n-dimensional space. Since the lattice reduction method can rapidly reduce the search radius, compress
the search space, and improve the successful rate of ambiguity resolution, it has been widely used in
integer programming [20], cryptography [21,22], number theory [23], and other fields. For example,
it was applied by Liu to resolve Global Navigation Satellite System (GNSS) phase ambiguity [24].
We propose in this paper to use the LLL lattice reduction algorithm for InSAR phase unwrapping.

The classical permanent scatterer interferometry (PSI) model estimates linear deformation rate
and elevation error simultaneously [1]. However, because the interferometric fringes are relatively
dense in the case of a long baseline, a non-continuous steep slope phase corresponding to a large
elevation gap may bring various challenges to a permanent scatterer (PS) arc’s solution. For example,
the mean/sigma ratio of an arc may exceed the threshold value, so that some PSs may be eliminated.
The obtained ambiguity may not be accurate, or the phase may be no longer continuous. Long-baseline
interferometric pairs correspond to a smaller elevation ambiguity (namely, more accurate elevation);
however, a long baseline also increases the difficulty of phase unwrapping. Conversely, short-baseline
interferometric pairs correspond to a large elevation ambiguity (namely, less accurate elevation),
but the interferometric fringes are relatively smooth and much easier to unwrap. In view of this,
this paper makes use of the long–short baseline iteration method [25–28] for multitemporal InSAR
data processing, which first selects short baseline interferometric pairs for a one-dimensional elevation
solution, and then gradually enlarges the spatial baseline threshold and reduces the phase gradient
with the elevation components calculated from the previous iteration. Once the elevations of the
selected PSs are obtained with suitable accuracy, they are used in the following two-dimensional
phase regression involving both the elevations and deformations. Finally, the linear and seasonal
deformations are extracted from the multitemporal InSAR time series.

The paper demonstrates a method suitable for the high-phase-gradient phase unwrapping
problem with no digital surface model (DSM) available in multitemporal InSAR processing.
The long–short baseline iteration method is adopted to deal with the problem of the large phase
gradients of the arcs, while the LLL lattice reduction algorithm is applied to rapidly resolve phase
ambiguity. A case study of Lupu Bridge validates the usefulness of the proposed method.

2. Research Area, Data and Methods

2.1. Research Area and Data

The research area is the Lupu Bridge (Figure 1) in Shanghai, China. This bridge has been in
operation since 2003. The bridge is about 750 m long and 100 m tall. As the first arch bridge on the
Huangpu River and the world’s second longest span all-steel arch bridge at that time, the Lupu Bridge
soon became a famous scenic spot in Shanghai. The bridge’s axis is almost perpendicular to the radar
line of sight (LOS) direction. Since the bridge structure is rather large, and the PS points of the bridge
are sparse, it is quite difficult to form a connected PS network and resolve the arcs by the traditional
PSI method.
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Thirty-five (35) ascending X-band Cosmo-SkyMed SAR images are used. The key parameters of
the images are shown in Table 1.

Figure 1. Lupu Bridge: (a) side view; (b) top view (red circle surrounding the bridge) (Cr. Baidu).

Table 1. Parameters of the ascending Cosmo-SkyMed images.

Time Range
Number
of Scenes

Azimuth Lines Range Columns
Incident
Angle (◦)

Heading (◦)
Azimuth

Resolution (m)
Range

Resolution (m)

10 December 2008–
6 November 2010 35 400 250 40 −10.34 2.25 1.25

2.2. Data Processing Chain

2.2.1. Long–Short Baseline Iteration PSInSAR Method

Figure 2 shows the workflow of the proposed method. As there is no accurate DSM data
available, it is difficult to perform traditional two-dimensional phase unwrapping as the initial
elevation value contributes considerably to the convergence of the algorithm. Therefore, the long–short
baseline iteration PSInSAR method is applied for one-dimensional, accurate elevation extraction.
Only interferometric pairs with a short temporal baseline are selected assuming no deformation exists.
The thresholds of the interferometric perpendicular baseline in each iteration are loosened gradually as
shown in Table 2 to improve the elevation accuracy. Note that the elevation ambiguity Δh is calculated
from the perpendicular baseline,

Δh =
λ× γ× sin θ

2b
(1)

where Δh is the elevation ambiguity, i.e., the elevation change when the phase varies by 2π; λ is the
radar wavelength; γ is the range between the satellite and the illuminating scene; θ is the incident
angle; and b is the perpendicular baseline.

Table 2. Interferometric perpendicular baseline thresholds in a long–short baseline permanent scatterer
interferometric synthetic aperture radar (PSInSAR) iteration.

Iteration
Round

Temporal
Baseline (Day)

Perpendicular
Baseline (m)

Number of
Interferometric Pairs

Number of Arcs
Used in the Net

Elevation
Ambiguity (m)

1 <65 <50 8 1320 150.0
2 <65 <200 38 1271 37.6
3 <65 <360 58 1395 20.9
4 <65 <600 77 1233 12.5
5 <65 <1000 119 1237 7.5
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Figure 2. Workflow of the proposed InSAR processing method.

The selection of PSs is conducted in GAMMA software using criteria such as the mean/standard
deviation ratio, the minimum intensity, and coherence. In general, the PSs on the bridge are distributed
along both the arches and the pavement of the bridge deck. Based on the PSs, an initial Delaunay
triangular network is formed with 1700 arcs. As the large elevation differences between the arches and
the deck are likely to result in the transmission and accumulation of elevation errors in the network
adjustment, long arcs or those with poor coherence are screened out. Subsequently, phase unwrapping
and network adjustment are carried out. In each iteration, the elevation of the PS on the deck with
minimum azimuth is set as the reference. This value is 53.6 m, based on the bridge model offered by
the official Lupu Bridge maintenance company. After five iterations, with a perpendicular baseline
threshold condition of 1000 m, the PSs elevation corrections become very small; therefore, the elevation
values obtained in the fifth iteration are considered the final solution.
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2.2.2. The LLL Lattice Reduction Algorithm

InSAR phase unwrapping can be considered as a mixed integer least squares problem. The LLL
lattice reduction algorithm separates the unknowns into an integer part and a real part, solving the
integer part first and then the real part. In this way, the LLL algorithm provides a fast and numerically
reliable routine to the mixed integer least squares problem.

y = Ax + Bz + δ (2)

where x is a real unknown vector with k elements, x ∈ Rk∗1; z is an integer unknown vector with
n elements, z ∈ Zn∗1; A ∈ Rm∗k and B ∈ Rm∗n are known coefficient matrices with full column rank;
m is the number of observations; and y ∈ Rm∗1 is the vector of observations. Z represents the set of
integers; R represents the set of real numbers; δ is the noise vector. The aim is to solve for the unknowns
x and z based on the known matrices A, B, and observations y. The solutions should minimize the
2-norm of vector y − Ax − Bz:

min
x∈Rk,z∈Zn

‖y − Ax − Bz‖2
2 (3)

If matrix A has QR factorization (A decomposition of a matrix A into a product A = QR of an
orthogonal matrix Q and an upper triangular matrix R),

A =
[

QA QA

][ RA

0

]
(4)

where
[

QA QA

]
∈ Rm∗m is orthogonal, and RA ∈ Rk∗k is a nonsingular upper triangular

matrix. Then

‖y − Ax − Bz‖2
2 =

∥∥∥∥∥
[

QT
A

QT
A

]
y −

[
RA

0

]
x −

[
QT

AB

QT
AB

]
z

∥∥∥∥∥
2

2

= ‖QT
Ay − RAx − QT

ABz‖2
2 + ‖QT

Ay − QT
ABz‖2

2

(5)

If z is fixed, there must be an appropriate x ∈ Rk∗1 that ensures that the first term (‖QT
Ay −

RAx − QT
ABz‖2

2 ≥ 0) in Equation (5) is 0 so as to satisfy the minimization requirement of Equation (3).
Therefore, the problem can be decomposed into the following two problems,

1. An ordinary integer least squares problem to calculate ẑ

min
z∈Zn

‖QT
Ay − QT

ABz‖2
2 (6)

Specifically, a reduction algorithm and a search algorithm are presented to obtain the integer z
which satisfies Equation (6).

2. With z known, Equation (3) becomes a least squares problem. With ẑ brought back into
Equation (5) and setting the first term into 0, x̂ can be obtained from

RAx = QT
Ay − QT

ABẑ (7)

For simplicity, the above problem 1 is noted as:

min
z∈Zn

‖y − Bz‖2
2 (8)

where y is a known vector; z is the least squares solution required; and Bz is a vector in the grid.
Thus, seeking a solution for Equation (8) can be interpreted as searching for the grid vector that
is nearest to y. This is a closest vector problem (CVP), which has been proven to be an NP-hard
(non-deterministic polynomial hard) problem. To make the search process simple and efficient, many
reduction methods have been proposed. In this study, we use the LLL method, which has two steps,

225



Remote Sens. 2017, 9, 897

• Reduction

First, using a minimum main-element method, the QR decomposition of matrix B is carried out to
transform it into an upper triangular matrix R and an orthogonal matrix Q. Second, the non-diagonal
elements in R are reduced using an integer Gaussian transform to remove any correlation and enable
efficient searching. Third, the columns are rearranged using the minimum-column pivoting strategy to
meet the LLL reduction criterion.

• Search

After reduction, we need to search for the optimal integer solution z ∈ Zn to satisfy min
z∈Zn

‖y−Rz‖2
2.

Given a threshold β, we assume that the optimal integer solution z satisfies

f(z) � ‖y − Rz‖2
2 < β (9)

This corresponds to searching for the optimal solution within an ellipsoid.
R is then decomposed into the first (n − 1)-order submatrix and the last line, and y is decomposed

into the (n − 1)-dimensional sub-vector and the last element. Thus,

‖y − Rz‖2
2 =

∥∥∥∥∥
(

y1
yn

)
−
(

R1 r1:n−1,n

0 rnn

)(
z1

zn

)∥∥∥∥∥
2

2

= ‖(y1 − znr1:n−1,n)− R1z1‖2
2 + (yn − rnnzn)

2

(10)

To satisfy Equation (9), the following conditions need to be met,

(yn − rnnzn)
2 < β (11)

and
‖(y1 − znr1:n−1,n)− R1z1‖2

2 < β− (yn − rnnzn)
2 (12)

Equation (12) is an (n − 1)-dimensional integer least squares problem, and the corresponding

search radius is ρ =
√
(β− (yn − rnnzn)

2). The integer solution to Equation (11) falls within
[(yn − β)/rnn, (yn + β)/rnn]. Using this algorithm recursively, we can solve the upper triangular
integer least squares problem.

Once the p optimal integer solutions ẑ are obtained, we can use the following upper triangular
matrix to solve for the corresponding p real solutions: RAx̂ = QT

A
(
yeT − Bẑ

)
, where e = [1, · · · , 1]TεRp.

2.2.3. LLL Lattice Reduction Algorithm Used for PSInSAR

When applying the above LLL lattice reduction algorithm to PSInSAR data processing, by contrast,
the phase ambiguities correspond to the integer unknowns, while the elevation error and the linear
deformation rates correspond to the real unknowns, and the interferometric phases correspond to the
observations in Section 2.2.2.

Assume that there are m + 1 SAR images of the same area, obtained at time t1, . . . , tm+1,
respectively. One of the images is chosen as the master image and the other m images are the slave
images, to form m interferograms. The unwrapped phase between pixel i and pixel j in interferogram
p is expressed as

Δ∅p
ij = αp × vij + βp × hij + 2π× z + δ (13)

where vij and hij are the relative displacement rate and relative elevation error between the two
pixels, respectively. βp changes with the perpendicular baseline, and αp changes with the temporal
baseline. z is the unknown number of whole phase cycles, and δ is the noise resulting possibly from
decorrelation error, nonlinear deformation, thermal noise, and so on. Note that the atmospheric phase
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is considered to be correlated in space and can be significantly reduced by differencing interferometric
phases between adjacent PSs to form an arc observation.

As an arc in an interferogram contains one-integer ambiguity, together with real unknowns
vij and hij, there are m + 2 unknowns in the m interferograms corresponding to the arc. As there are
only m observations, the observation equations formed according to Equation (13) have rank defects.
To solve this problem, the initial values of two unknown parameters are assumed to be equal to 0, i.e.,{

hij = 0
vij = 0

(14)

and will be updated iteratively. The new observation equations can be expressed as follows:

y =

(
A1
A2

)
x +

(
B1
B2

)
z + δ (15)

where A1 has m rows, and its two columns are
[
α1, . . . ,αm]T and

[
β1, . . . ,βm

]T
, respectively. A2 is a

2 × 2 identity matrix. The real unknowns x include vij and hij. B1 is an m × m identity matrix times
2π. B2 is a 2 × m zero matrix. If the signal-to-noise ratio of the observations is high, the solution can
be found with a few iterations.

3. Results and Discussion

3.1. Bridge Elevation Extraction

At first, only interferometric pairs with a short temporal baseline are selected assuming no
deformation exists, and only the relative elevation errors are considered as the real unknowns
in the one-dimensional elevation extraction step with LLL. The thresholds of the interferometric
perpendicular baseline length in each iteration are loosened gradually, as shown in Table 2, to improve
the elevation estimation accuracy obtained.

Figure 3 shows the side views of the PS elevations on the bridge obtained in iterations
1 (B⊥ < 50 m), 3 (B⊥ < 360 m), and 5 (B⊥ < 1000 m), respectively. In iteration 1, it is obvious that the
elevation variations are relatively larger and the elevations on the arch are discontinuous, even with
some obvious errors. However, with the loosening of the spatial baseline threshold and the increase of
iterations, the elevations become smoother. The elevations obtained in iteration 5 are accepted as the
final solution.

 
Figure 3. Estimated permanent scatterer (PS) elevations on the bridge obtained in iterations 1 (B⊥ < 50 m)
(a); 3 (B⊥ < 360 m) (b); and 5 (B⊥ < 1000 m) (c), respectively (Azimuth-Elevation plane).

Figure 4 shows the elevations of PSs on the bridge obtained in iteration 5 after geocoding
(three-dimensional (3D) view). The results clearly show the bridge arches and the deck. In order to
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further evaluate the accuracy of the obtained elevations, two external bridge datasets are used for
comparison. One is the official bridge model obtained from the Shanghai Lupu Bridge Investment
Development Co., Ltd. (No. 449, Yaohua Road, Shanghai, China). Three key parameters of the
bridge structure (namely, maximum arch elevation, minimum deck elevation, and maximum deck
elevation) obtained in iterations 1, 3, and 5 are compared with the official bridge model dataset (Table 3).
The accuracy of the estimated elevations improves with the number of iterations; the final estimated
elevations from iteration 5 are in good agreement with the bridge model. Note that Table 3 only
presents a rough comparison, as it is difficult to match the PSs with their exact location in the bridge
model, and therefore the elevation differences between the InSAR solution and the model do not
necessarily represent the accuracy of the proposed method. The second external bridge dataset is
downloaded from Google 3D Warehouse. The 3D PSs are transformed to the model coordinates for
visualization in the Meshlab software. As shown in Figure 5, the arch shape and the location of the PSs
are in excellent agreement.

Figure 4. Elevations of PSs on the bridge from iteration 5 (three-dimensional (3D) view).

 
(a) (b)

Figure 5. PSs (white dots) superimposed on the bridge model in Meshlab: (a) side view; (b) top view.
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Table 3. Key parameters of the estimated bridge structure from iterations 1, 3, and 5 compared with
the bridge model data (only direct measurements are listed).

Iteration 1 Iteration 3 Iteration 5 Official Model

Maximum arch elevation (m) 109.1 106.0 109.6 109.35
Minimum deck elevation (m) 41.1 47.3 50.1
Maximum deck elevation (m) 59.1 54.2 53.2

Mean deck elevation (m) 53.60

3.2. Bridge Deformation Extraction

As shown in [29], the Lupu Bridge is an all-welded steel arch bridge connected by a set of
components with a misalignment error of less than 1 mm. Moreover, even with nearly 20 arch ribs and
a span of more than 500 m connecting Puxi and Pudong, the axial deviation of the central arch joints is
less than 5 mm.

In fact, it is challenging to interpret InSAR-derived deformation results of man-made structures,
particularly bridges, because it can be difficult to separate the major components of the InSAR phase,
such as the linear deformation rates, seasonal deformation, elevation of structures, and atmosphere
phase screen (APS). For example, the elevation-related atmospheric phase and the temperature-related
deformation tend to have the same pattern. The elevation errors leak easily to deformation solutions.
A few InSAR time series studies have investigated the thermal expansion of bridges and other
structures [30–35]; however, many technical details are yet to be resolved.

In the Lupu Bridge case, once the elevations of the PSs are resolved with suitable accuracy, they are
then used in a two-dimensional phase regression involving both elevation and linear deformation,
and to obtain the linear deformation map as in Figure 6. By the way, PS No. 175 on the riverside is
chosen as the reference point. As the research area is relatively small, the APS is neglected.

Figure 6. Linear deformation rates (in the line of sight (LOS) direction) of PSs. The labeled numbers
are the IDs of chosen PSs. Red stars and the inverted triangle indicate the monitoring PSs (No. 693, 932,
and 1457) and the reference PS (No. 175), respectively.

As shown in Figure 6, the linear deformation rates of the main part of the bridge are uniform,
indicating that the bridge is stable as a whole. The LOS deformation rates compared to the reference
point No. 175 vary from 4 to 7 mm per year during the SAR image acquisition period. Note that
a positive value represents motion away from the satellite along the LOS, while a negative value
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indicates motion towards the satellite along the LOS. Progressive deformation appears on the two
bridge arches and bridge deck. The largest deformation rates occur at the central part of the arches
(7 mm per year) and the bridge deck (9 mm per year).

The thermal expansion of metallic or reinforced concrete structures can significantly affect the
interferometric phase signature [36]. Typically, thermal dilation provides progressive patterns due
to its accumulation over the structure’s length. This is in agreement with our result. To further
study thermal expansion effects on the deformation results, we collected temperature records of
Shanghai during the SAR image acquisition period. Unfortunately, only some scattered monthly
averaged temperature records can be found on the internet for the period, i.e., from December 2008 to
November 2010. The SAR sensor passed over Shanghai at about 06:00 Beijing time. However, if we
calculate the average temperature on the date of the data acquisition two, three, and four years later
(T2010–2012, T2011–2013, T2012–2014 in Figure 7a) and extrapolate the monthly temperature during
2008 to 2010 (T2008–2010 in Figure 7a), the trends of variation of the temperature are almost the same.
Thus, the interpolated temperature (T2008–2010) is used for the seasonal deformation analysis.

 

Figure 7. (a) Temporal variations of temperature (T2008–2010: interpolated averaged daily temperature
records on SAR data acquisition dates. T2010–2012, T2011–2013, T2012–2014: averaged daily
temperature records on acquisition dates two, three, and four years later); (b–d): Unwrapped
deformation phase time series (red dots) and residual time series (green crosses) of PS points 693, 932,
and 1457 whose locations are shown in Figure 6.
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Three PSs (No. 693, 932, and 1457), whose locations are shown in Figure 6, are chosen for a more
detailed seasonal deformation analysis. In the two-dimensional phase regression as shown in the
last line of the bottom box in Figure 2, the unwrapped deformation phase time series (red dots) and
the residual time series (green crosses) of these three points are shown in Figure 7b–d. Note that the
unwrapped deformation phase time series are calculated by removing the elevation phase from the
unwrapped interferometric phase, while the residual unwrapped phase is obtained by removing both
the linear deformation and elevation phase from the unwrapped phase.

Both the unwrapped deformation phase time series and residual time series of the three points
are used to calculate the correlation coefficients with the interpolated temperature (T2008–2010) and
the results are listed in Table 4. In Table 4, the residual unwrapped phase time series corresponding to
the three PSs have a strong negative correlation with the temperature. The correlation coefficients of
all the three target points are larger than 0.9. When the phases of the linear deformation and the minor
elevation correction are added back, the unwrapped phase time series have a much weaker negative
correlation with the temperature, with the correlation coefficients ranging from 0.2526 to 0.646, with
0.646 corresponding to the PS at the center of the bridge arches, indicating that this PS was affected
much more by the temperature than the other two PSs.

As expected, the central parts of the bridge arches and the bridge deck were experiencing the
largest deformation.

Table 4. Coefficients between the residual unwrapped phase/unwrapped deformation phase and
temperature variations.

PS Point Number Location
Correlation Coefficient

(Residual Unwrapped Phase
vs. Temperature)

Correlation Coefficient
(Unwrapped Deformation Phase

vs. Temperature)

693 Southern end of arch −0.9225 −0.2526
932 Center −0.9163 −0.6460
1457 Northern end of arch −0.9240 −0.3421

4. Conclusions and Outlook

We use a long–short baseline iteration method for elevation extraction in PSInSAR data processing
to overcome the high-phase-gradient problem in a case where no DSM is available, so as to improve
the accuracy of the estimated deformation rates. The LLL lattice reduction algorithm is used to
rapidly reduce the search radius, compress the search space, and improve the success rate of resolving
the ambiguities in phase unwrapping. To validate the method, elevations of 577 PSs on the Lupu
Bridge have been obtained and compared with elevation data of the bridge model. The results
are in excellent agreement. Besides, the linear deformation rates and seasonal deformation of the
PSs have been extracted from InSAR deformation time series, which indicates that the bridge is
stable in general, although symmetric progressive deformation has been found on the bridge arches
and the bridge deck. The results agree with the Lupu Bridge design, where the arch joints would
absorb most of the thermal deformation to mitigate the thermal dilation of the bridge as much as
possible. Compared to the traditional PSInSAR approach, our method obtained more accurate elevation
estimations. Consequently, the deformation estimation results are also more reliable.

As a whole, multitemporal InSAR is a useful tool for elevation reconstruction and the health
monitoring of large infrastructures, such as bridges, dams, and high-rise buildings. Future work
should be focused on interpreting the deformation; for example, linking individual PSs with the local
structural elements and evaluating the results. It should also be interesting to consider to model the
temperature-related deformation in the InSAR observation equation and to carry out close comparison
of the results with in-situ measurements.
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Abstract: We present ground deformations in response to water level variations at the Toktogul
Reservoir, located in Kyrgyzstan, Central Asia. Ground deformations were measured by Envisat
Advanced Synthetic Aperture Radar (ASAR) and Sentinel-1 Differential Interferometric Synthetic
Aperture Radar (DInSAR) imagery covering the time periods 2004–2009 and 2014–2016, respectively.
The net reservoir water level, as measured by satellite radar altimetry, decreased approximately 60 m
(∼13.5 km3) from 2004–2009, whereas, for 2014–2016, the net water level increased by approximately
51 m (∼11.2 km3). The individual Small BAseline Subset (SBAS) interferograms were heavily
influenced by atmospheric effects that needed to be minimized prior to the time-series analysis.
We tested several approaches including corrections based on global numerical weather model data,
such as the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast
data, the ERA-5 reanalysis, and the ERA-Interim reanalysis, as well as phase-based methods, such
as calculating a simple linear dependency on the elevation or the more sophisticated power-law
approach. Our findings suggest that, for the high-mountain Toktogul area, the power-law correction
performs the best. Envisat descending time series for the period of water recession reveal mean
line-of-sight (LOS) uplift rates of 7.8 mm/yr on the northern shore of the Toktogul Reservoir
close to the Toktogul city area. For the same area, Sentinel-1 ascending and descending time
series consistently show a subsidence behaviour due to the replenishing of the water reservoir,
which includes intra-annual LOS variations on the order of 30 mm. A decomposition of the LOS
deformation rates of both Sentinel-1 orbits revealed mean vertical subsidence rates of 25 mm/yr for
the common time period of March 2015–November 2016, which is in very good agreement with the
results derived from elastic modelling based on the TEA12 Earth model.

Keywords: DInSAR; SBAS; ground deformation; atmosphere correction; elastic modelling;
reservoir monitoring; Toktogul Reservoir

1. Introduction

The water levels of large artificial water reservoirs constructed for hydroelectric power generation
and irrigation are prone to significant changes over the course of a year. This periodic loading of
the crust causes ground deformations of the surrounding area, alters pore pressure and changes
stress on underlying faults and fractures, which may ultimately induce seismicity [1]. The amount
of ground deformations of a reservoir’s surrounding can either be measured on individual points
with levelling [2] or Global Navigation Satellite System (GNSS) measurements [3,4] or measured
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in a spatially continuous manner by means of Differential Synthetic Aperture Radar Interferometry
(DInSAR). Thus far, in studies that are based on SAR data, either ERS-1/2 [5,6], Envisat Advanced
Synthetic Aperture Radar (ASAR) [7] or a combination of those sensors [8,9] were used to quantify the
regional deformation around a lake. Recently, ground deformations due to the water level changes in
the Tehri Reservoir in the Himalaya region was investigated with ALOS PALSAR data [10].

Our aim in this study is to measure ground deformations induced by water level changes in the
Toktogul Reservoir, which is located at N 41.8° E 72.9° in the northwest of Kyrgyzstan, Central Asia
(Figure 1). This reservoir is fed by the Naryn River, which originates from glacial melt water of the Tien
Shan mountain range. The lake is located at an elevation of approximately 870 m, and surrounding
mountains reach elevations of 4300 m. It has existed since 1975, when the construction of the 214 m
high and 293 m wide Toktogul Dam was completed [11,12]. At high water (Figure 2c), the reservoir
has a length of 65 km, a width of 12 km, a surface area of 284 km2, and a maximum depth of 200 m [12].
As the water level decreases, the eastern elongated part, where the Naryn River enters the lake, goes dry
(Figure 2b). Toktogul is the largest artificial water reservoir in the Syr Darya Basin, with a maximum
capacity of 19.5 km3 [13]. Its main purposes are power generation for the Kyrgyz population in
winter time and irrigation of agricultural areas located downstream in Uzbekistan and Kazakhstan in
summer time [13,14]. These activities lead to a trans-boundary water policy conflict, which resulted in
an exaggerated use of water in some years that could not be compensated by the incoming amount of
water until the beginning of the following winter season (Figure 2).
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Figure 1. Location of the Toktogul Reservoir, city and dam with the outlines of the cut SAR data frames
that are used for the final analysis. The alignment of the Talas-Fergana Fault is based on vector data
from the Kyrgyzstan Disaster Risk Data Platform [15]. The dashed outline denotes the estimated area
of the main deformation. The inset shows the location of the area within Kyrgyzstan.
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Figure 2. (a) Toktogul water level change between 2002 and 2016 obtained from satellite radar altimetry.
Red, purple and green highlighted periods correspond to Envisat and Sentinel-1 ascending (S1a) and
Sentinel-1 descending (S1d) acquisition times, respectively. The corresponding regression lines denote
the average water increase per year for each of the three SAR time series (note that differences between
S1a and S1d are due to different covered time periods). The red asterisks correspond to the reservoir
extents at low and high water levels, which are shown by Landsat-8 images from (b) 11.04.2015 and
(c) 07.11.2016, respectively.

The southwestern edge of the reservoir coincides at a length of 20 km with the Talas-Fergana
Fault, an area with moderate-to-high seismicity. Larger earthquakes of magnitude M 7.6 have been
reported for the Chatkal Range in 1946, 65 km west of the Toktogul Reservoir [11], and of magnitude
MS 7.3 for the Suusamyr Valley in 1992, 70 km northeast of the Toktogul Reservoir [16]. No major
events have been recorded in the direct lake area since the construction of the dam. Seismic activity is
still constantly monitored at the power station with seismometers [17], but no ground-based geodetic
observations are available to assess the deformation of the surrounding area.

Consequently, we measure the ground deformations of this particular region by interferometrically
analysing a time series of Envisat ASAR data for the time period 2004–2009, in which the net water
level decreased by approximately 60 m (∼13.5 km3), and a time series of Sentinel-1 data for the time
period 2014–2016, in which the net water level increased by approximately 51 m (∼11.2 km3) (Figure 2).
We expect that these large load changes on the ground lead to an uplift of the surrounding area in the
case of water recession and to a subsidence response in the case of water replenishing.

Sentinel-1 is the latest generation of the European Space Agency’s (ESA) SAR missions and
consists of two satellites, Sentinel-1A and Sentinel-1B, that were launched in April 2014 and April 2016,
respectively. Together, these C-band-based SAR satellites are able to cover most regions of the world
with the interferometric wide (IW) swath mode (swath width: 250 km; spatial resolution: 5 × 20 m
in range and azimuth, respectively) from the same relative orbit every twelve days, whereas Europe
and some selected areas are even monitored with a temporal resolution of six days. Compared to
the Envisat ASAR C-band sensor, which only acquired data every 35 days with a swath width of
56–100 km (image mode single-look complex (IMS); spatial resolution: 8 × 4 m in range and azimuth,
respectively), this mission is predestined for monitoring not only persistent linear deformations,
but also intra-annual deformation changes on a large spatial scale.

Atmospheric effects in the SAR data caused by vertical stratification and turbulent water vapour
variations play an important role in time-series investigations [6,18–20]. We therefore apply various
correction approaches based on either global numerical weather models (in particular, the European
Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast analysis, the ERA-5
reanalysis and the ERA-Interim (ERA-I) reanalysis) or empirical models that rely on the dependency
of the phase on the elevation of the terrain (in particular, the linear dependency and the power-law
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approach of Bekaert et al. [21]). The time series with the best working atmospheric correction approach
is then used for a comparison to the reservoir’s water level variations that are extracted from satellite
altimetry data. The measured ground deformation rates are further compared to the results obtained
from elastic modelling of the surface deformations.

2. Materials and Methods

2.1. Lake Altimetry

At present, radar altimetry (RA) is widely used not only for monitoring global sea level
changes, but increasingly also for measuring the water levels of rivers and lakes for hydrology
applications [22–24]. Since the early 1990s, a series of RA missions has provided continuous
measurements of water surface heights with 10- and 35-day repeat intervals. Novel processing
technologies, such as retracking, allow the extraction of the water levels of smaller inland water bodies
and reservoirs [23]. The accuracies of the derived water levels are slightly worse compared to open
ocean applications but can still reach 5 cm. For hydrological applications, the water levels can be
converted into volume changes using supplementary information such as hypsometry or lake extents
extracted from remote sensing data.

The water level of the Toktogul Reservoir has been measured with RA since 1995—in particular,
mostly every 35 days by the European ERS-2, Envisat and later by the Indo-French AltiKa missions.
Some data are also available from the US-French Jason-1 and Jason-2 and the European CryoSat-2
missions. Using all available RA data, applying up-to-date environmental correction models and
cross-checking for and applying inter-mission biases, a homogeneous time series of reservoir heights
and reservoir volumes is constructed (Figure 2a). The internal accuracy is estimated from all high-rate
measurements of one reservoir crossing (e.g., ∼50 measurements for AltiKa) and is mostly within the
expected 5 cm root mean square error (RMSE) range with slightly higher values for the earlier missions.

In the case of the Toktogul Reservoir, sparse historical monthly volume information of the total
volume is available for the full range of water levels from CA WATER Info [25] between 1984 and
2000, and some more recent information is made available by the reservoir operator [26]. This allows
the construction of a polynomial transfer function (R2 = 0.9998), which can be used for converting all
water height levels into reservoir volumes. These data can then be used to verify the accuracy of the
RA-derived water heights, which is approximately ±0.3 m [24].

2.2. DInSAR Processing of Envisat ASAR and Sentinel-1 Data

We use Envisat ASAR IMS and Sentinel-1 IW SAR data to monitor deformations around the
Toktogul Reservoir area. The Envisat data, only available in the descending orbit, were acquired
between December 2003 and July 2009 and cover a time of decreasing annual water level,
whereas Sentinel-1 ascending (S1a) and descending (S1d) acquisitions analysed for the time period
of October 2014 until December 2016 correspond to an increasing annual water level. In the Envisat
acquisition period, the highest water level measured with RA (referenced to the EIGEN-6C3 static
gravity field [27]) was 900.5 m on 10 May 2004, and the lowest was 840.4 m on 22 April 2008. In the
Sentinel-1 acquisition period, the lowest measured water level was 842.2 m on 24 April 2015, and the
highest was 892.9 m on 29 October 2016 (Figure 2).

Data preprocessing is performed with the GAMMA software [28] as follows. First, for both sensors,
single-look complex images are imported taking into account precise orbit ephemerides; in the case of
Sentinel-1 data only, bursts covering the area of interest are concatenated. Second, images of each SAR
time series are individually coregistered and cropped to the desired area of interest. Because Sentinel-1
data require a precise coregistration accuracy of a few thousands of a pixel in azimuth to prevent
contamination with phase variations due to along-track differences in the Doppler centroids [29,30],
we rely on the spectral diversity method for coregistration [31,32]. The outlines of the cropped SAR
data frames are shown in Figure 1.
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The single-look, coregistered SAR images are used to construct a network of interferograms by
applying the Small BAseline Subset (SBAS) technique [33] implemented in StaMPS/MTI, the Stanford
Method for Persistent Scatterers and Multi-Temporal InSAR [34]. The main objective of this approach
is to generate interferograms from pixels that decorrelate only slightly over short time intervals.
To identify such pixels, interferograms are built from SAR acquisitions that match the criteria
of having small perpendicular, temporal and Doppler baselines, but with the restriction that all
selected interferograms should be connected; thus, no isolated cluster is allowed in the network [35].
We constrain the Envisat network by a maximum spatial baseline of 500 m and a maximum temporal
baseline of 2000 days, whereas, at the same time, the overall coherence between two interferograms
should be at least 0.4. In the Sentinel-1 case, we use constraint values of 200 m, 365 days and 0.5. In the
following, the selected interferograms are treated with topography removal and geocoding, for which
we rely on the 1-arc resolution Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM). The results are visually inspected, and decorrelated interferograms are discarded from the
network. Unwrapping of the remaining interferograms is achieved by using a three-dimensional phase
unwrapping approach [36]. Displacement values in line-of-sight (LOS) are subsequently retrieved
by least-squares inversion of the unwrapped interferograms with respect to a reference area selected
outside of the main deformation region (N 41.6930◦ E 73.1660◦, radius: 2 km).

By carefully investigating the residuals of the unwrapped phase of the SBAS interferograms and
the inverted interferograms, we neglect scenes that introduce errors to the time series. The main
error source is thus the snow coverage in winter time. After some problematic scenes are removed,
we iteratively repeat the process of unwrapping, inverting and discarding until all remaining
interferograms could be reliably unwrapped. A summary of the amounts of the used scenes and
interferograms along with the corresponding SAR sensor specifications is presented in Table 1. The final
network for all three SAR time series is shown in Figure 3.

Table 1. SAR data specifications and summary of the amount of images used in the final networks.
The covered time period that could be reliably unwrapped is as follows for the individual time series:
Envisat: 24.10.2004–05.07.2009, Sentinel-1, descending (desc.): 23.03.2015–12.11.2016, ascending (asc.):
24.10.2014–18.11.2016.

Satellite Orbit Path
Acquisition Mean Angle Heading Amount Amount of
Time (UTC) of Incidence Angle of Scenes Interferograms

Envisat desc. 277 05:23 23.4° −167.8° 22 53
Sentinel 1 desc. 5 01:13 39.7° −170.1° 20 49
Sentinel 1 asc. 100 13:06 43.3° 9.4° 28 96
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Figure 3. Small BAseline Subset (SBAS) networks after offending interferograms are removed for
(a) Envisat descending; (b) Sentinel-1 descending and (c) Sentinel-1 ascending time series. Red dots
denote the time of the image acquisitions, and black lines show the interferograms.
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All interferograms remaining in the network are further treated by removing (1) individual phase
ramps; (2) the overall topography error; (3) estimated atmospheric influences; and (4) the phase
oscillator drift (Envisat data only) [37]. From all these aspects, the most influential and simultaneously
most challenging error aspect to remove is the effect of the atmosphere. Multiple approaches dealing
with this issue are discussed in the following section.

2.3. Atmospheric Correction

Because the Toktogul Reservoir is located in a high-mountain area, atmospheric disturbances
in the data are inevitable and must be corrected to avoid a misinterpretation as a loading signal.
The success of atmospheric correction methods is highly dependent on the characteristics of the area of
interest in terms of topography and its dominance either in stratified tropospheric delay or dynamical
local weather and turbulence [38]. To reduce the impact of atmospheric artifacts in the Toktogul
SAR data, we apply a range of tropospheric correction methods implemented in the MATLAB-based
Toolbox for Reducing Atmospheric InSAR Noise (TRAIN, version 2beta) from Bekaert et al. [38].

The applied techniques can be divided into two main categories: (1) global numerical
weather-model-based and (2) phase-based correction methods. In theory, weather-model-based
approaches should be more effective because they should be able to compensate not only for
vertical stratification, but also for turbulent water vapour variations in the lower troposphere.
However, previous studies have shown that the success of the exact representation of stratification and
turbulence is highly dependent on the area of interest [39] and that global models, such as ERA-I, also
suffer from coarse temporal and spatial resolutions [40]. This disadvantage is now compensated for
by newer available weather model data such as the ERA-5 reanalysis that are shipped with increased
spatial and temporal resolutions. However, note that this type of data is not always easy to access and
that it is currently only available for a limited range of time.

For comparison, we further apply phase-based corrections. These corrections have the advantage
that the required external data are readily available but the disadvantage that they can only be used
to treat vertical stratification, not turbulence mixtures. However, as Bekaert et al. [38] noted in his
study, in regions where tropospheric delay is mainly correlated to topography, phase-based methods
potentially outperform weather-based approaches.

We neglect spectrometer-related correction methods based on the Medium Resolution Imaging
Spectrometer (MERIS) or the Moderate Resolution Imaging Spectroradiometer (MODIS) for the
following reasons: MERIS data are available for Envisat data only and MODIS data are acquired
between approximately 5:00 a.m. and 7:30 a.m. UTC. This differs by more than an hour from
Sentinel-1 acquisition times (Table 1); thus, changes in atmospheric water vapour conditions may
introduce more errors rather than correcting for turbulence. Furthermore, correction with spectrometer
data requires daytime acquisitions under cloud-free conditions [41], which is often not the case in
high-mountain areas.

Finally, we determine the best atmospheric correction by evaluating the RMSE values of
deformation in time. To avoid an influence of loading-induced deformation on the analysis,
we excluded for the RMSE calculation the area of main deformation (cf. Figure 1) from the overall
atmosphere-corrected interferograms. For comparison, we also calculate the RMSE for unwrapped
results that are only corrected for the DEM error and orbital plane but not for atmosphere. The derived
RMSE values are an indicator of the best-performing atmosphere removal algorithm, but note that the
absolute values of different SAR frames cannot be compared because the extents of the frames differ.
The Sentinel-1 ascending image, for example, covers much more high-mountain areas compared to the
Sentinel-1 descending images; thus, higher error values can be expected. Furthermore, the amount
and location of the SBAS-derived points within the SAR frames also vary.
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2.3.1. Tropospheric Delays from Numerical Weather Models

Temperature, relative humidity and pressure information from numerical weather models can
be used to compute the hydrostatic and wet tropospheric delay [38,39,42]. For the Toktogul case,
we apply three global models based on ECMWF data: first, the ECMWF operational forecast analysis
(opECMWF); second, the ERA-5 global atmospheric reanalysis; and third, the ERA-I global atmospheric
reanalysis. From these models, only the ERA-I solution is currently freely accessible at a reduced
spatial resolution.

The opECMWF data are expected to be the most accurate of the three models because these data
are used for routine short-term predictions. These data are distributed with a temporal resolution of
6 h, a spatial resolution of 0.1° and 25° pressure levels. Since July 2017, the new ERA-5 reanalysis has
been available for the time period 2010–2016. Similar to opECMWF, ERA-5 comes with a high spatial
resolution of 0.1° but has an increased temporal resolution of 1 h. Upper-air information is delivered
at 37 pressure levels. The available ERA-5 data currently do not cover the Envisat acquisition time
period. We therefore also consider the former ERA-I reanalysis that is available for the time period
from 1979 to present. This reanalysis is also delivered with a temporal resolution of 6 h and contains
37 pressure levels, but it has a coarse spatial resolution of 0.75° [43].

To compare the influence of the temporal resolution, we apply two versions of the ERA-5 data:
the hourly reanalysis and an artificially reduced version with a 6 h temporal resolution, similar to the
ERA-I data. An overview of the model specifications is presented in Table 2.

Table 2. Parameters of the applied numerical weather-model-based atmosphere corrections.

Model Spatial Resolution Temporal Resolution Pressure Levels

opECMWF 0.1° 6 h 25
ERA5 1 h 0.1° 1 h 37
ERA5 6 h 0.1° 6 h 37

ERA-I 0.75° 6 h 37

2.3.2. Phase-Based Tropospheric Delays

The Toktogul Reservoir is surrounded by high-mountain ranges, which influence the moisture
content of the troposphere, which consequently has an impact on the phase delay of the radar
signal. It is therefore straightforward to apply correction methods such as the power-law and linear
tropospheric approaches that use the correlation of the phase signal with the topography.

The linear tropospheric correction assumes a uniform troposphere that is directly correlated to
the elevation of the terrain. In principle, a linear relationship between phase delay and terrain height
is estimated and subtracted from the entire interferogram. To prevent real tectonic signals from being
taken into account during the linear dependency analysis, we exclude the estimated deformation area
around the Toktogul Reservoir from the calculation (cf. Figure 1).

The power-law correction technique [21] is more sophisticated than the linear approach, as it
considers a spatially varying troposphere within an interferogram. The method assumes a non-varying
delay at the relative top of the troposphere and then applies a power-law function on the phase delay
variations depending on elevation. It thus considers phase delays mainly due to hydrostatic and wet
components of the refractivity. Delays due to the liquid component and the influence of the ionosphere
on C-band SAR data are neglected because their influence is assumed to be small [21].

First approximations of the tropospheric delays that are used as coefficients for the power-law
method can be calculated from balloon sounding data as distributed by the University of
Wyoming [21]. We extract data for the Envisat and Sentinel-1 acquisition periods from the Taraz
station (station no. 38341 at N 42.85° E 71.38°), which is located approximately 170 km northwest of
Toktogul. We constrain the upper troposphere height to 10 km and extract a corresponding mean

240



Remote Sens. 2018, 10, 462

power-law decay coefficient of 1.51± 0.01 from the sounding data, which we use for all three InSAR
time series.

The estimation of the spatially varying relation between topography and tropospheric phase is
based on the assumption that the tropospheric signal is present in all wavelength scales. Tropospheric
effects should thus be removed from the interferogram by band-filtering the signal, choosing a band
for filtering that is insensitive to other signals such as turbulent troposphere, orbital errors and
deformation. Furthermore, spatial variability of the phase delay is provided by dividing the area into
multiple smaller windows, in which the coefficient describing the relation between topography and
tropospheric phase is calculated locally [21,38].

In the Toktogul case, we have a pronounced topography around the reservoir, allowing us to
set the window size to be comparatively small. Empirical tests show that, for the SAR time series,
the following window sizes work best (window overlap: 50%): Sentinel-1, descending: 77 × 59 km;
Sentinel-1, ascending: 68 × 78 km; and Envisat: 60 × 62 km. The relationship between topography and
phase delay is computed for the following filtering band ranges: 2–4, 2–8, 2–16, 4–8, 4–16, 4–32, 8–16,
8–32, 8–64, 16–32, 16–64, 32–64, 32–128, and 64–128 km.

2.4. Deformation Decomposition of Sentinel-1 Data

Because Sentinel-1 data are available from two different orbits, it is possible to decompose
the deformation into a vertical part and a horizontal part. However, because there are only two
observations available, we cannot directly compute the 3D vector components. We thus neglect
potential displacements in the north–south direction, for which LOS measurements are the least
sensitive in any case due to the near polar orbit of the spacecraft.

The average S1d and S1a LOS displacement points are interpolated to 200 × 200 m grids, which are
used as input for the deformation decomposition. Furthermore, we ensure that only results covering
the same time period (March 2015–November 2016) are considered for the decomposition. The mean
LOS displacements of the ascending (da) and descending (dd) orbits are then used to discriminate
between vertical dv and east-west de displacements by solving the following equation [44,45]:(

da

dd

)
=

(
cos θa − cos αa sin θa

cos θd − cos αd sin θd

)(
dv

de

)
, (1)

where θa and θd represent the incidence angles and αa and αd are the heading angles of Sentinel-1’s
ascending and descending orbits, respectively.

2.5. Modelling of Elastic Surface Deformations

Considering surface deformations induced by short periodic mass variations, such as intra-annual
water level changes, the purely elastic, instantaneous response of the Earth is an adequate
approximation. In a spherical harmonic representation, the coefficients of the vertical and horizontal
deformations and the geoid changes can be related linearly to the surface mass load through
degree-dependent load Love numbers. Farrell [46] outlines the calculation of properly weighted
sums of the load Love numbers for a given Earth model to form Green’s functions that provide the
distance-dependent elastic response of the Earth model due to a unit point mass. Assigning the
point mass response to any extended mass distribution by means of a convolution integral over the
loaded region leads to the global displacement field. Because the convolution occurs in the spatial
domain, the Green’s function approach is particularly useful if the spherical harmonic representation
of the surface mass load is dominated by high-degree coefficients, such as in our case of the highly
heterogeneous distribution of non-loaded and loaded regions around the Toktogul lake.

Rather than using one globally defined Green’s function for a customary idealization of the Earth
by a model composed of spherically symmetric layers, we calculated geographically dependent local
Green’s functions [47] that are valid especially for the crustal structure beneath the Toktogul region.
For small-scale heterogeneous mass loads, the geological structure of the shallow crust becomes the
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most important; thus, we replaced the outermost 71 km of the 1D PREM Earth model [48] by the lateral
variability given in the crustal model TEA12 provided by Tesauro et al. [49]. The deformation response
depends mainly on the lithology of the upper and lower crystalline crustal layers (granite, mafic granite,
diabase, diorite, and olivine), their thicknesses, and the varying thickness of the overlaying sediments.
The changes in the crustal properties from PREM to TEA12 affect the near-field values of the local
Green’s functions for distances to the load lower than 100 km.

To simulate elastic Earth surface deformations, the local Green’s function model was applied to
the water storage variations composed from the Toktogul lake level changes as observed by satellite
RA (Figure 2a), in combination with the changes of the lake surface area given by Landsat-8 images
(Figure 2b,c). Finally, the trend in the modelled surface deformation was calculated for the same period
as for the Sentinel-1 descending acquisition time S1d.

3. Results

A first general result of our study is that Sentinel-1 products are superior to Envisat results in the
following aspects: (1) the wide swath of the Sentinel-1 sensor allows more freedom in cutting the scenes
to the desired area of interest; hence, we capture the western region of the reservoir better with the
Sentinel-1 time series than with the Envisat ones; (2) due to the higher temporal acquisition sampling,
Sentinel-1 interferograms are affected less by decorrelation, which leads to a higher point density than
in the Envisat time series. This again results in a better area coverage that can be taken into account for
the deformation analysis; (3) since the orbital tube of Sentinel-1 is very narrow, the length of the spatial
baseline between two images is a no critical rejection criterion, which ultimately leads again to a denser
network of interferograms. In the following, we will provide more details regarding the improvement
of the results due to different atmospheric corrections and then regarding the ground deformation
correlated to water level changes. Furthermore, we provide a comparison of Sentinel-1-derived vertical
ground deformation to elastic modelling results.

3.1. Atmospheric Corrections

First, we analyse the RMSE values of the individual power-law results, where we had applied
different filter bands. It appears that, in the Toktogul case, small- to medium-scale bands generally
perform better than longer ones (Table 3), but the results are not consistent among the three different
SAR time series, which may again be explained by the different SAR frame extents. In the case of
the Envisat descending time series, the lowest RMSE value of 8.0 mm is achieved with the 8–64 km
filter band; in the case of S1d, the lowest RMSE value is 7.0 mm, derived by applying filter bands for a
range of 4–32 km and 8–64 km; and, in the case of S1a, the lowest RMSE of 10.6 mm is found for filter
bands of 2–8 km and 4-8 km range. In the following sections, whenever the results of the power-law
correction method are mentioned, we are referring to the results from the best-performing filter band.

Table 3. Root mean square errors for different power-law filtering bands. The best results are
highlighted in bold. The area of main deformation (cf. Figure 1) is excluded from this estimation.

Band [km]: 2–4 2–8 2–16 4–8 4–16 4–32 8–16 8–32 8–64 16–32 16–64 32–64 32–128 64–128

Envisat RMSE [mm]: 8.5 8.2 8.1 8.3 8.1 8.2 8.2 8.1 8.0 9.0 8.1 8.2 8.2 9.3
S1d RMSE [mm]: 7.1 7.3 7.3 7.2 7.2 7.0 7.5 7.1 7.0 7.5 7.3 7.6 7.2 7.6
S1a RMSE [mm]: 10.7 10.6 10.8 10.6 10.8 10.8 10.9 10.9 11.1 11.1 11.2 11.4 11.2 11.6

We now compare the RMSE values of the different correction techniques to determine the best
atmospheric correction solution. The results show that, although phase-based methods are not able to
represent turbulence mixtures, their correction performance is superior to the weather-model-based
methods for all three SAR time series, which in all cases yield even higher RMSE values compared to
the non-atmosphere-corrected time series (Table 4). This is also true for the ERA-5 1h solution with
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the highest temporal and spatial resolutions, which surprisingly does not lead to any improvement
compared to the other numerical weather-based approaches.

Table 4. Root mean square errors for different atmospheric correction techniques. ERA-5 data cover
only the Sentinel-1 acquisition period and thus cannot be used for improving the Envisat time series.
The best results are highlighted in bold. The area of main deformation (cf. Figure 1) is excluded from
this estimation.

Atmospheric Correction: None Best Power-Law Linear opECMWF ERA-I ERA-5 1 h ERA-5 6 h

Envisat RMSE [mm]: 8.8 8.0 8.0 13.1 11.5 - -
S1d RMSE [mm]: 9.9 7.0 7.5 10.1 10.7 12.0 11.3
S1a RMSE [mm]: 12.6 10.6 11.0 12.9 13.4 13.8 14.0
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Figure 4. Mean line-of-sight (LOS) deformation values for various atmospheric corrections of the (1) Envisat
descending; (2) Sentinel-1 descending and (3) Sentinel-1 ascending time series. (a) no atmospheric correction
applied; (b) best results of the power-law technique; (c) linear dependency on the topography; (d) correction
with the operational weather model (opECMWF) analysis; (e) ERA-I weather model correction; (f) the
ERA-5 1 h temporal resolution solution and (g) the ERA-5 6 h temporal resolution solution. The black
asterisks show the location of the reference point.
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Among the phase-based corrections, the power-law method performs better than the linear one,
although differences are small or (in the case of Envisat) even non-existent (Figure 4). This behaviour
is expected because the power-law method is able to adapt to the variation of the vertical stratification
and calculates individual corrections for windows smaller than the entire interferogram, whereas linear
correction works on the entire image only. At the end, the best filter bands of the power-law technique
improve the RMSE of Envisat by 9% from 8.8 mm to 8.0 mm, of S1d by 29% from 9.9 mm to 7.0 mm
and of S1a by 16% from 12.6 mm to 10.6 mm.

Analysing the performance of different atmospheric correction methods in time (Figure 5)
reveals that most variances appear in summer time and that winter acquisitions are much less
affected. Furthermore, in the S1a time series, ground deformation variations due to different applied
atmospheric correction approaches are significantly higher than in S1d or Envisat time series.
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Figure 5. Variances of the LOS deformation in time for all applied atmospheric corrections. The location
of the exemplary point P1 is shown in Figure 6. For better visualization, deformation markers have
been connected with lines, although this does not imply that we expect linear deformation in between.

3.2. Ground Deformation

The ground deformation pattern is discussed on the basis of the average Envisat, S1d and S1a
power-law-corrected deformation maps (Figure 6—note that the red triangle area at the southeastern
corner of the S1d time series shows an unwrapping artifact that we did not correct for because it is
located far from the reservoir area and thus did not hamper our analysis). We additionally show the
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correlation of the water level data to the corresponding deformation data for four selected points
(Figure 7). For these examples, the water level amplitudes are fitted to the power-law-corrected SAR
time series to highlight the amount of their correlation. Note that we do not correct for any potential
time lag between water level change and deformation during this fit and that differences between the
overall ascending and descending Sentinel-1 LOS deformations are mainly due to the different time
period coverages.
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Figure 6. Power-law-corrected mean LOS deformation maps for (a) Envisat; (b) S1d and (c) S1a SAR
time series. Points 1-4 show the locations of the deformation time series shown in Figure 7, and the
black asterisk denotes the reference point used in the time series. The red triangle area in the southeast
corner of the S1d time series shows an unwrapping artifact that we did not correct for.
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From the spatial perspective, all three mean deformation maps reveal a significant LOS
deformation of the bedrock areas around the entire Toktogul Reservoir, whereas the strongest
deformations are found north of the lake close to the Toktogul city area (point P1). In the time of
water recession (Envisat time series), we observe for P1 LOS uplift rates of 7.8 mm/yr, which converts
to 0.78 mm per one metre of water level loss. The reverse behaviour of subsidence is monitored
for the time of water filling (Sentinel-1 time series). Here, the mean LOS values are on the order of
−19.8 mm/yr (−0.82 mm per 1 m water level increase) and −11 mm/yr (−0.62 mm per 1 m water level
increase) in the case of S1d and S1a, respectively. The intra-annual time series (Figure 7) for point P1
shows that the correlation between LOS deformation and water fit are higher for the Envisat (R2 = 0.85)
and S1d (R2 = 0.88) time series compared to the S1a (R2 = 0.62) time series. From the Sentinel-1 data,
it is clear that intra-annual LOS deformation changes appear simultaneously with the water level
changes, which indicates an elastic response of the surface. At location P1, these intra-annual LOS
deformation variations are on the order of 30 mm and more.
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Figure 7. (a) Envisat; (b) S1d and (c) S1a power-law-corrected LOS deformation in time (black triangles)
for points 1-4 as in Figure 6. The red lines indicate the annual mean LOS deformation for the investigated
time period. The blue lines in the bottom diagrams show the true Toktogul water level change, whereas the
blue lines in the point figures represent the best fit of this water level to the shown deformation.
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The same deformation process but with decreased rates and lower correlation rates are found west
of the Talas-Fergana Fault (point P2). LOS values (and water level fit correlation rates) are on the order
of 3.8 mm/yr (R2 = 0.52), −10.4 mm/yr (R2 = 0.51), and −9.7 mm/yr (R2 = 0.54) for Envisat, S1d and
S1a, respectively, which convert to 0.38 mm, −0.43 mm and −0.54 mm per 1 m water level change.

Very intriguing are the results of a small area close to the reservoir (point P3) that do not show
a distinct correlation to any water level changes. In all three SAR data time series, we find no significant
deformation rates (LOS values are on the order of 0.1 mm/yr, −0.5 mm/yr and −0.1 mm/yr for Envisat,
S1d and S1a, respectively), and intra-annual water level fit correlation rates (R2) are consistently below 0.2.
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Figure 8. (a) vertical and (b) horizontal (east/west) components of the decomposed Sentinel-1
ascending and descending LOS deformations for the time period March 2015–November 2016.
Input data for the decomposition are the power-law-corrected mean LOS deformation maps;
(c) vertical deformation from elastic modelling with the TEA12 Earth model; and (d) residuals from
Sentinel-1 minus modelled vertical deformation. Negative values in the vertical case refer to subsidence,
and blue values refer to uplift. In the horizontal case, positive values denote a motion towards the east,
and negative values denote a motion towards the west. The black asterisk shows the location of the
reference point. Measured and modelled vertical deformation rates for profiles AA′ and BB′ are given
in (e, f), respectively.

In the eastern region, at the entrance of the Naryn River (point P4), we observe contradictory but
clearly intra-annual correlated deformation rates compared to points P1 and P2. Here, we find mean
LOS subsidence rates of −2.8 mm/yr (−0.28 mm per 1 m water level change and R2 = 0.47) during the
water recession phase captured by Envisat data and mean LOS uplift rates of 6.9 mm/yr (0.29 mm per
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1 m water level change and R2 = 0.67) in the S1d time series that cover a water replenishing phase.
Compared to S1d, S1a LOS deformation is less explicit and also only yields a low water level fit
correlation value of R2 = 0.1.

The availability of ascending and descending data in the Sentinel-1 case allows a decomposition
of the mean deformation data in the vertical and east–west directions (Figure 8) that can be compared
to vertical deformation rates obtained from elastic modelling. For the purpose of decomposition,
we truncated the ascending SAR time series to fit the time period of the descending SAR time series.
Overall, the long-wave spatial pattern of the Sentinel-1-derived vertical deformation around the
reservoir correlates very well with the trend in the vertical displacement for the same time interval as
calculated by the elastic response of the Earth model due to water load changes (Figure 8a,c,d). In the
case of the horizontal deformation, S1 measurements yield only noise but no definite deformation in
one direction or the other (Figure 8b).

Two perpendicular profiles further illustrate how well the measured and modelled data fit
together and up to which distance the area is deforming. The 2 km closest to the reservoir are affected
the most by subsidence rates of approximately −25 mm/yr (−1.07 mm per 1 m water level increase)
(Figure 8e). The Toktogul city area is affected less by approximately −10 mm/yr (−0.41 mm per 1 m
per 1 m water level increase). Non-affected areas are only found at a distance of approximately 15 km
away from the reservoir shoreline. The comparison to modelled data also clearly outlines the anomaly
of the measured uplift signal at point P4 (Figure 8f).

4. Discussion

Our study shows that DInSAR remote-sensing-derived displacements that were properly corrected
for atmospheric effects can explain loading-induced ground deformations at the Toktogul Reservoir. The
very good agreement of Sentinel-1 decomposed results to predictions of an elastic surface deformation
model based on TEA12 proves that the derived LOS deformations can be mainly attributed to vertical
displacements. In the following, we will discuss the artifacts remaining after atmospheric corrections
and provide reasons for the observed variances of the ground deformations.

4.1. Atmospheric Corrections

It is often argued that the occurrence of atmospheric turbulences is random and thus cancel each
other out when calculating the average LOS deformation [18–20]. However, we observe that artifacts
remaining after the atmospheric correction that we mainly attribute to non-corrected turbulence
do have an influence on the averaged LOS deformations in our case (Figure 4). Doin et al. [39]
argue that the sign and amplitude of stratified tropospheric delay in high-mountain areas do not
appear randomized. It is thus likely that non-corrected vertical stratification leaks into the results,
leading to the observed differences and also to significant alterations in the LOS time series (Figure 5).
These alterations appear mainly in the summer months, which can be related to increased water vapour
content in the atmosphere compared to winter time. Furthermore, in summer, high evaporation rates
originating from the lake surface also contribute to SAR signal delays.

The low performance of the weather-model-driven corrections may be explained by several
reasons. First, the Toktogul Reservoir is located in a valley that is surrounded by high mountains,
which leads to micro-climate artifacts that are not well captured by global numerical models.
Second, within the region of Central Asia, in situ weather stations used to constrain the models
are sparse; thus, the accuracy of the model predictions might not be comparable to a region such as
Europe, where significantly more in situ data are available [50]. Third, especially in high-mountain
areas, weather conditions are prone to rapid changes; hence, even a 1-h temporal resolution of
a weather model might not be sufficient to represent the atmospheric conditions at the SAR acquisition
time. Fourth, an increase in RMSE values after weather-model-based corrections was also found by
Bekaert et al. [38], who attributed this to the incorrect estimation of the location of turbulence in the
weather models.
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4.2. Ground Deformation

The area with the highest deformation rates is north of the lake at P1, which is reasonable because
it is located closest to the lake centre and its shoreline is rather flat (Figure 9a). Here, the two short
time series of Sentinel-1 show a clear intra-annual correlation to the water level changes. Although the
R2 is also high in the Envisat case, intra-annual variations are less obvious due to the much lower
temporal sampling. The area in the west (P2), close to the Talas-Fergana Fault, is also prone to the
same intra-annual deformation, but at lower rates. Here, the slopes of the high mountains are much
steeper than at P1 and even reach the shoreline (Figure 9b).

Toktogul City area

alluvial fans

(a) (b)

< -25 > 25 mm/yr

N

N

(c) (d)

N

N

Kambarata 2 Dam

Toktogul Dam

Naryn River

Figure 9. Vertical deformation extracted from Sentinel-1 decomposition around (a) point P1 and the
Toktogul city area; (b) point P2; (c) alluvial fans at point P3 and (d) the Naryn River entrance area
at point P4. For the locations of the points (refer to Figure 6). Background imagery provided by
Google ® Earth.

Anomalies in the overall deformation pattern are found at P3 and P4. As these are stringent in all
time series, it is straightforward to assume that they are induced by local characteristics of the ground
and not due to remaining atmospheric effects, artificial changes of landcover such as construction
work or the influence of the Kambarata-2 hydropower plant, which is located east of the Naryn River
entrance (Figure 9d) and only started operating in 2010 [51].

For P3, where no deformation could be measured, an overlay on DEM and optical remote sensing
data reveals that this area is characterized by alluvial fans that are rather flat and consist of fluvial
sediments (Figure 9c). The inverse deformation at P4 is also located in a rather flat and sedimentary
area at the entrance of the Naryn River (Figure 9d). We believe that, in both areas, the height change in
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ground water level is the main source for the observed deformation pattern. At times of high reservoir
water level, the ground water level in the sedimentary areas at P3 and P4 will also be higher compared
to times at low reservoir water level. The increased amount of ground water and soil moisture prevents
the SAR signal from penetrating as deep into the ground as in the case of dry material. This effect leads
to a measured “uplift” signal at P4 in the Sentinel-1 time series, although the area is rather subsiding
(cf. the model results in Figure 8c). However, because the area at P4 is very shallow and thus affected
by only a small amount of load change, the reduced signal penetration into the ground is dominating.
Conversely, we observe a “subsidence” signal in the Envisat time series because the ground water
level is becoming lower here. In the case of P3, however, the area is located much more closely to the
lake centre; thus, it is likely here that both effects, loading/unloading and radar penetration changes,
are compensating each other, leading to the observed “non-deformation”. The hypothesis that the
same process is affecting the deformation measurements at both locations is further underlined by
the fact that residuals between measured and modelled deformations are on the same order at P3 and
P4 (Figure 8d).

Another process that has the same contradictory effect is the compaction of the sediments at times
of lower ground water levels and soil swelling at times of higher ground water levels. The related
deformation might also contribute to the observed signals, but presumably at a much lower rate.

Compared to Envisat and S1d, a significantly lower correlation between LOS deformation and
water level fit is found for the S1a time series. This result indicates that the atmospheric correction was
rather poor for the S1a data. We relate this to increased lake evaporation rates that locally increase the
moisture content in the low-level atmosphere since S1a data were acquired during local evening hours
(UTC+6 h). In comparison, Envisat and S1d images were captured at noon and during morning hours,
respectively. The relation to evaporation is further indicated by the fact that LOS deformation rates
with the highest offsets from the water level fit can be found in summer time (Figure 7c). We view this
mismatch of atmospheric correction also as the main driver for why we do not observe a clear uplift
signal at P4 in the S1a time series. In principle, this can be overcome by an extension of the time series,
although here it is not likely that the water level will increase much in the upcoming year because the
reservoir is already at full capacity.

5. Conclusions

We have investigated the suitability of Sentinel-1 and Envisat SAR data for capturing surface
loading effects due to water level changes in the Toktogul Reservoir. Since the study area is situated in
a high-mountain terrain, the SAR acquisitions are severely affected by atmospheric noise that had to
be removed prior to the deformation analysis. In our study, we have tested a global numerical weather
model and phase-based removal approaches and found that, for the Toktogul area, the power-law
method of Bekaert et al. [21] performed the best. However, the S1a evening acquisitions in summer
time were significantly influenced by remaining atmospheric effects that we relate to non-corrected lake
evaporation. We thus recommend for similar studies to either focus on morning or noon acquisitions
or to make an effort to reduce the impact of such remaining effects.

Although only two years of Sentinel-1 data (2014–2016) were used, we found a strong correlation
between the increase in the water level and the subsidence of the surrounding region. Areas north of
the lake and within a range of 2 km to the shore were affected the most (25 mm/yr, which corresponds
to a deformation rate of –1.07 mm per 1 m water level change), but measurable deformations occurred
as far as 15 km away from the shore. Due to the dense acquisition interval, we were also able to retrieve
intra-annual LOS deformation variations on the order of 30 mm. The analysis of intra-annual time
series and water level change further revealed that ground deformations occurred simultaneously
with water level changes, which indicated an elastic deformation response. We therefore estimated
ground deformation rates with an elastic forward model that was based on the TEA12 Earth model.
The results showed that the modelled ground deformation rates fit very well with our Sentinel-1
measured vertical deformations.
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The SAR time series from Envisat was considerably longer (2004–2009). This time period was
characterized by an overall release of the Toktogul Reservoir water; hence, we retrieved a corresponding
inter-annual uplift deformation of the area. However, clearly correlated intra-annual changes were not
extracted, which was related to the less temporal density of SAR acquisitions.

In terms of the Toktogul case study, our estimations of the dimension and spatial extent of
deformation can contribute to seismic hazard prediction maps as presented by Abdrakhmatov et al. [52]
or Bindi et al. [53]. The Talas-Fergana Fault to the southwest of the reservoir is a potential trigger for
earthquakes. Such an event is especially dangerous if it induces a landslide as in the MS 7.3 Suusamyr
earthquake in 1992. If such a landslide collapses into the reservoir, it may induce a tsunami, which poses
a severe threat to the dam [12].

We see several avenues for further research in the study area that would benefit from continuous
intra-annual monitoring with Sentinel-1 data: (1) for areas such as the city of Toktogul, it is important to
assess the potential consequences of the identified deformations and their implications on the stability
of the buildings; (2) In combination with the observed Toktogul water level changes, the effects of
varying water levels at the Kambarata 2 dam should be investigated. Focus should therefore be
on the connections of the corresponding ground deformations to those of the Toktogul Reservoir;
(3) Continuous SAR monitoring of the mountain slopes facing towards the lake can help in the
early detection of instabilities such as slope failures that may eventually collapse into the lake [12];
and (4) via the elastic modelling, the deformations estimated from remote sensing in combination
with the directly observed water mass loads allow constraining the specific Earth structure in the
Toktogul region.
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Abstract: Sub-pixel offset tracking has been used in various applications, including measurements of
glacier movement, earthquakes, landslides, etc., as a complementary method to time series InSAR.
In this work, we explore the use of a small baseline subset (SBAS) Offset Tracking approach to
monitor very slow landslides with centimetre-level annual displacement rate, and in challenging
areas characterized by high humidity, dense vegetation cover, and steep slopes. This approach, herein
referred to as SBAS Offset Tracking, is used to minimize temporal and spatial de-correlation in offset
pairs, in order to achieve high density of reliable measurements. This approach is applied to a case
study of the Tanjiahe landslide in the Three Gorges Region. Using the TerraSAR-X Staring Spotlight
(TSX-ST) data, with sufficient density of observations, we estimate the precision of the SBAS offset
tracking approach to be 2–3 cm on average. The results demonstrated accord well with corresponding
GPS measurements.

Keywords: sub-pixel offset tracking; small baseline subset (SBAS); TerraSAR-X Staring Spotlight
(TSX-ST); very slow landslide; Three Gorges Region (TGR)

1. Introduction

As a major natural hazard, landslides cause enormous direct and indirect damage worldwide
every year. Remote sensing has become the most convenient and feasible tool widely applied in
deformation mapping, including in the monitoring of landslides. In the study area, due to the often
limited access to Global Positioning System (GPS) measurements, and the high costs of skilled labour
and instrumentation, it is difficult to collect sufficient geodetic measurements. Due to the high humidity
caused by the monsoon climate of this region, optical sensors are often limited in obtaining an effective
time series of measurements. Thus, microwave remote sensing using Synthetic Aperture Radar (SAR)
imagery has been recognized as an effective tool for landslide monitoring. It is able to work both day
and night during all weather conditions, and repeatedly acquires time series of images over large areas.

DInSAR techniques have been conventionally used for mapping of landslide activities. However,
several difficulties arise when attempting to apply DInSAR in areas with steep slopes and rugged
topography, high humidity, and dense vegetation cover. In addition to these difficulties, in previous
studies [1–3], it is shown that the maximum detectable displacement gradient (DDG) of DInSAR can
be exceeded in some case of very slow landslides (16 mm·year−1–1.6 m·year−1, as defined in Cruden
and Varnes [4], Hungr et al. [5]) even when using high resolution SAR imagery.

As an alternative method, Offset Tracking (sometimes also referred to as intensity tracking) can be
used to address some of the technical limitations of DInSAR, particularly the limitation of maximum
detectable displacement gradient (DDG) and low coherence due to vegetation changes [6–9]. Offset
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Tracking allows the measurement of two-dimensional (2D) ground surface displacement with sub-pixel
accuracy, by analysing the 2D offsets of the master and slave images based on cross-correlation of SAR
intensity and amplitude.

Sub-pixel correlation of optically sensed imagery from spaceborne or airborne platforms has been
proven as a very useful technique for investigation of landslides [10–15]. A more recent study proposed
a multiple pairwise image correlation (MPIC) technique based on a sub-pixel correlation analysis of
optical data [16]. This method was tested with time series Pléiades monoscopic and stereoscopic images
to investigate a landslide-prone landscape in the South French Alps. It demonstrated the capability
of this method to improve detection accuracy, benefiting from averaging redundant measurements
from multiple pair combinations. However, in some areas, such as the Three Gorges Region where
our case study is located, due to the frequent cloud cover throughout the year, it is difficult to obtain
multi-temporal optical satellite images for time series analysis.

For time series offset tracking of SAR imagery, the commonly adopted approach is to use a
single master image, usually the first acquisition. This simple strategy is suitable when no significant
dependence is found between the number of reliable measurements and the temporal or spatial
baseline. Under such a scenario, connecting offset pairs by a small baseline network has limited
benefits and leads to much higher time consumption.

However, in many cases, due to a larger dynamic range of spatial baseline or temporal
de-correlation effects, the number of reliable measurements decreases significantly with the increase in
temporal or spatial baseline. As indicated in Yonezawa and Takeuchi [17], Offset Tracking requires
similar speckle patterns between the master and slave images to obtain a sharp correlation peak.
Long baseline distances will result in significant speckle geometrical de-correlation. The correlation
coefficient between offset pairs decreases with the increase of spatial baseline, which leads to a higher
standard deviation (STD) error in cross-correlation [18]. In addition, in densely vegetated areas, the
temporal de-correlation effects are significant. Higher accuracy is required to measure very slow
landslides, which again leads to lower density of final measurements. In particular, in rural areas with
dense vegetation cover, there are few high-contrast surface features (e.g., artificial corner reflectors,
houses, bare rocks, etc.), but a number of natural scatterers can maintain a medium correlation within
a certain time period rather than over the whole time series. Thus, constructing a small baseline
network based on proper thresholds of temporal and spatial baseline can help to minimize temporal
and speckle geometric de-correlation effects, and take advantage of the scatterers with temporary
medium correlation, so as to increase the density of measurements.

Small baseline approaches have previously been combined with offset tracking to measure
large deformation magnitudes. Casu et al. proposed a PO-SBAS (pixel-offset small baseline
subset) approach applied to medium resolution ENVISAT SAR data to measure large displacements
(several metres) occurring in the inner part of the Sierra Negra caldera due to the October 2005
eruption [19]. The measured deformation reached one to several metres in both azimuth and range
directions. Manconi et al. produced post-event deformation maps for emergency evaluation of a
large, rapidly-moving (10–20 m) landslide [20]. The PO-SBAS approach was applied to ascending and
descending pairs of COSMO-SkyMed images to retrieve three-dimensional (3D) deformation of the
Montescaglioso landslide (Italy), of which the main movement occurred in 15–20 min at an average
velocity of 0.5–1 m per minute.

For measurements of large displacement, the topographic component of offsets is not significant
with regard to the deformation magnitude. Topographic distortions are usually modeled using a
reference DEM and orbital data, and removed from offset results [19–22]. In the case study presented
in Raucoules et al. [23], considering the selected small baselines (ranging from 1 to 200 m) with
regard to the large deformation magnitude, the topographic component was neglected. In addition,
co-registration errors (about 1/10 pixel size) are not significant either, in the case of large deformation.

However, in the case of much smaller displacement rates (several to dozens of centimetres per
year), the residual offsets in both range and azimuth directions due to co-registration errors and orbit
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inaccuracies in topographic distortion removal can even obscure the real displacement, and thus
are non-negligible.

This research, to the best of our knowledge, is the first to explore the use of SBAS offset tracking
technique to monitor very slow landslides, in which scenario the removal of residual offsets becomes a
crucial step to derive correct displacement rates even using sub-metre resolution SAR data. A step of 2D
polynomial fitting is applied to both range and azimuth offset measurements to estimate and remove
the residual offsets before the inversion step. Furthermore, the study area, the Tanjiahe landslide in the
Three Gorges Region, China, is characterized by high humidity and dense vegetation cover on steep
slopes, posing more difficulties on the application of time series InSAR and offset tracking. In our
preliminary study, time series InSAR analysis of the landslide did not obtain satisfactory results. Rapid
loss of phase coherence combined with topographical phase residuals lead to very low redundancy
of connections (less than three per acquisition) in the SBAS InSAR network. The dense vegetation
cover in this area lead to a very low density of Persistent Scatter (PS) candidates. For this reason, time
series InSAR cannot provide reliable measurements. Similarly, for offset tracking, there are very few
high-contrast surface features (e.g., artificial corner reflectors, houses, bare rocks, etc.) in the study area.
This means this area lacks strong scatterers with constantly high correlation coefficient throughout the
time series. An experiment using conventional offset tracking approach using a single master image
yielded rather sparse coverage, because the number of reliable measurements decreases significantly
with the temporal baseline, due to the lack of strong scatterers. Hence, SBAS offset tracking is applied
to make use of scatterers showing medium correlation within a certain time period, to increase the
density of reliable measurements. An assessment is then made on the potential and limitations of
SBAS offset tracking in the challenging conditions.

This paper is organized as follows: Section 2 describes the study area, employed data, and
proposed method; Section 3 presents the application results of this method to the Tanjiahe landslide
area, followed by discussions in Section 4. Finally, some concluding remarks are reported in Section 5.

2. Materials and Methods

2.1. Study Area

The case study is carried out in the Tanjiahe landslide area in the Three Gorges Region of China.
The Three Gorges Region, situated on the middle Yangtze River from Chongqing to Yichang, covers
an area of 58,000 km2 [24]. The terrain is composed of a succession of limestone gorges and ridges,
and inter-gorge valleys. Frequent and wide distributed landslides in the Three Gorges Region have
caused a lot of wasted resources, damage to properties and public facilities, and even loss of human
lives. They also pose great threats to the normal operation of the Three Gorges Dam. The land cover
within this region is dominated by cultivated land and mixed deciduous forest. The terrain is featured
by steep slopes and dense vegetation cover [25].

The Tanjiahe landslide area is representative of the hillsides of the Three Gorges Region, sparsely
populated by small villages filled with single-story buildings amongst dense orange trees. The Tanjiahe
landslide area is an ancient landslide, located on the southern bank of Yangtze River with centre
coordinates of 31.030◦N, 110.509◦E, about 56 km upstream from the Three Gorges Dam. The landslide
body is underlain by mudstone, sandstone, and siltstone. The trailing edge is 432 m high. The front
edge extends into the Yangtze River at an altitude of 135 m. The landslide body is about 400 m wide
and 1000 m long, with a slope ranging from 10◦ to 25◦ and a volume of 9 × 107 m3. The sliding
direction is 340◦ clockwise counting from the North, predominantly towards the Yangtze River. As
shown in Figure 1, the boundary of the Tanjiahe landslide looks like a boot [26,27].
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Figure 1. (a) Location of Tanjiahe landslide area shown in SRTM DEM. (b) Tanjiahe landslide area
shown in Google Earth with landslide body highlighted in red. Map data: Google Earth, Image@ 2017
CNES/Airbus.

The Tanjiahe landslide has not been well studied especially in the English-language literature, but
some historical measurements from GPS monitoring stations can be found in a few Chinese articles.
The monitoring was started in October 2006. Notable deformation development of Tanjiahe landslide
was observed in 2007 [28]. By December 2009, the accumulated deformation measured from one of the
GPS points (ZG289) reached 757.9 mm [26], predominantly towards the Yangtze River. By December
2015, the accumulative displacements rise up to 1800–1900 mm [29]. From 2006 to 2015, seasonal
accelerations can be observed from the deformation time series plot, which is suspectedly linked to
hydrological factors, such as the local rainfall and water level changes of Three Gorges Reservoir.

2.2. Data

A stack of TSX Staring Spotlight (TSX-ST) images is employed in this research supplied under
data grant GEO2630 of the German Aerospace Centre (DLR), acquired in a right-looking orientation on
a descending orbit over the Tanjiahe landslide area mostly at 11-day intervals. The data stack spans a
time period of one year, from February 2015 to February 2016. The metadata of this annual time series
of TSX-ST data is listed in Table 1. The estimated perpendicular baselines of all subsequent images
with regard to the first acquisition are listed in Table 2.
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Table 1. Metadata of the data stack of TSX Staring Spotlight (TSX-ST) data using the parameters from
the first image. These values remain very close for all subsequent acquisitions.

TerraSAR-X Staring Spotlight Data

First acquisition 8 February 2015
Last acquisition 28 February 2016

Satellite orbit heading (◦) 189.555
Wavelength (m) 0.031

Incidence angle (◦) 44.303
Polarization HH

Range pixel spacing (m) 0.455
Azimuth pixel spacing (m) 0.169

Range resolution (m) 0.84
Azimuth resolution (m) 0.23

Maximum DDG 0.0059 (Range looks = 2)

Table 2. Perpendicular baseline of each slave image with regard to the first acquisition.

Common Master Slave

Acquisition Date
Perpendicular
Baseline (m)

Acquisition Date
Perpendicular
Baseline (m)

8 February 2015

19 February 2015 391.3 27 September 2015 46.2
2 March 2015 80.8 8 October 2015 119.4
4 April 2015 46.8 19 October 2015 199.0

15 April 2015 192.4 30 October 2015 12.2
18 May 2015 42.0 10 November 2015 37.7
20 June 2015 60.2 21 November 2015 128.9
1 July 2015 19.4 2 December 2015 53.4

12 July 2015 28.6 24 December 2015 28.6
23 July 2015 147.7 4 January 2016 49.5

3 August 2015 123.1 15 January 2016 140.0
25 August 2015 3.5 26 January 2016 121.3

5 September 2015 77.0 17 February 2016 252.8
16 September 2015 122.0 28 February 2016 11.8

2.3. Method: SBAS Offset Tracking

We briefly summarize the SBAS offset tracking algorithm based on the work reported by
Berardino et al. [30] and Casu et al. [19]. Similar to the SBAS InSAR approach proposed by Berardino
et al. [30], we here consider the scenario in the amplitude domain. We assume that there is a stack
of co-registered full resolution SAR data consisting of N + 1 images φ0, φ1, φ2, · · · , φN . Based on
selected thresholds of spatial and temporal baseline, small baseline subsets are formed by M data
pair connections.

The 2D offset measurements of the M connected pairs are represented by δφT =

[δφ1, δφ2, · · · , δφM], where δφj = φISj − φIEj ∀j = 1, 2, · · · , M , φISj is the slave image and φIEj is
the master image of a generic offset pair. Assuming that:

φISj − φIEj =

ISj

∑
k=IEj+1

(tk − tk−1)
φk − φk−1
tk − tk−1

=

ISj

∑
k=IEj+1

(tk − tk−1)vk (1)

where vk is the mean azimuth or range displacement velocity between time-adjacent acquisitions of a
connected pair. Thus, a vector vT consist of a time series displacement velocity and can be expressed as:

vT =

[
v1 =

φ1 − φ0

t1 − t0
, v2 =

φ2 − φ1

t2 − t1
, · · · , vN =

φN − φN−1

tN − tN−1

]
. (2)
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Set B as a matrix recording all connections in the small baseline network,

B(j, k) =

{
tk − tk−1, IEj + 1 ≤ k ≤ ISj, ∀j = 1, 2, · · · , M

0, elsewhere
. (3)

So, the following relationship holds
Bv = δφ. (4)

In the vast majority of cases that B exhibits a rank deficiency, the velocity vector v can be retrieved
by solving the over-determined equations in Equation (4) using Singular Value Decomposition
(SVD), as:

[U, S, V] = SVD(B). (5)

Then the displacement velocity vector can be derived by

v = VS+UTδφ (6)

where
S = diag(σ1, σ2, · · · , σN−L+1, 0, · · · , 0)

S+ = diag(1/σ1, 1/σ2, · · · , 1/σN−L+1, 0, · · · , 0)
(7)

σi represent the singular values; L is the number of different subsets; N is the number of images
in the data stack; the rank of matrix B is N − L + 1.

The step-by-step processing strategy is described as follows:

(1) Co-registered images are cropped to cover the landslide body and the surrounding stable area.
Each data pair is processed by sub-pixel offset tracking.

(a) Topographic distortions are modeled using a reference DEM (SRTM 1 arc-second global
DEM) with orbital parameters and subtracted.

(b) The azimuth and range offsets are derived using cross-correlation. As described in Sun
and Muller [3] and recalled herein, the Normalized Cross Correlation (NCC) is applied to
the amplitudes of the master and slave images, to derive two-dimensional (2D) offsets.
The offsets of a point in any dimension are determined by its different positions in the
master and slave images. The corresponding position is determined by a measure of
similarity calculated between the point-centred window in the master image and a sliding
window of same pixel size in the slave image. The similarity, which is defined as the
correlation coefficient, is computed as follows:

NCC =

Nx
∑

m=1

Ny

∑
n=1

[(
i1(m, n)− i1

) · (i2(m, n)− i2
)]

√
Nx
∑

m=1

Ny

∑
n=1

(
i1(m, n)− i1

)2

√
Nx
∑

m=1

Ny

∑
n=1

(
i2(m, n)− i2

)2

(8)

where i1 and i2 denote pre-event and post-event images with a two-dimensional offset
(a, b), which can be described as i2(x, y) = i1(x − a, y − b). Nx × Ny is the correlation
window size which can be modified by the application requirements. i1 and i2 are the
mathematical expectation values of the cross-event image pair:

i1 =
1

Nx × Ny

Nx

∑
m=1

Ny

∑
n=1

i1(m, n) (9)
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i2 =
1

Nx × Ny

Nx

∑
m=1

Ny

∑
n=1

i2(m, n). (10)

The NCC method searches for maximum correlation (i.e., maximum similarity) between
window pairs formed by the master and slave images. Those window pairs for which a
maximum correlation detected is considered as corresponding pairs. After locating the
corresponding pixels in the master and slave images, the 2D offsets of the slave image with
regard to the master image can be obtained. To achieve a sub-pixel accuracy of correlation,
image amplitudes are oversampled prior to cross-correlation. Positive values of range
displacement correspond to an increase of sensor to target distance. Positive values of
azimuth offsets refer to an increase of along-track displacement.

(c) Residuals offsets due to orbit inaccuracies and co-registration errors are estimated by 2D
polynomial fitting of selected reference points in the stable area, and reconstructed for the
whole subset, including both the landslide body and stable area.

(2) After correction of residual offsets, Singular Value Decomposition (SVD) is applied to invert the
range and azimuth offset measurements of all connected offset pairs, to derive displacements at
each acquisition time.

(3) To discard unreliable measurements, a mask is built based on the root mean square error (RMSE)
of the time series range and azimuth offset measurements, calculated pixel by pixel. For the
stable area, RMSE is calculated against zero offset measurements. For the landslide area, a
polynomial function is used to fit the displacement time series. RMSE is estimated between the
offset measurements and the fitted polynomial. The degree of the polynomial function is selected
by multiple fitting tests to obtain best goodness of fit. For the case study of Tanjiahe landslide, a
third order polynomial function is used.

(4) Time series azimuth and range offset maps can be produced to reflect the temporal evolution and
spatial distribution of the landslide; time series analysis is carried out on displacement rates of
selected pixels in the landslide area.

3. Results

3.1. Small Baseline Network Construction

To determine the spatial and temporal baseline thresholds to create a small baseline network, we
made an experiment using the conventional offset tracking method, i.e., computing the 2D offsets
of 26 offset pairs, using the first acquisition on 8 February 2015 as the common master image and
neglecting any constraint of spatial baseline. All images in the data stack are cropped to the sub-area
covering the landslide body and the surrounding stable ground, as shown in Figure 2. Orbital data
and a reference DEM (~30 m resolution SRTM DEM) are used to model and correct the topographic
components of offsets. A correlation window of 32 × 128 pixels is exploited, corresponding to a
27 m × 29 m resolution grid on the ground. The images are oversampled by a factor of 16 before
the cross-correlation.
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Figure 2. Boundary of the stable area surrounding Tanjiahe landslide, marked in blue polygon on
the geocoded Synthetic Aperture Radar (SAR) amplitude. Data source: TerraSAR-X Staring Spotlight
© DLR <2015>. All “stable area” mentioned and used in this study refer to this area inside the blue
boundary. Apart from the Tanjiahe landslide body, the rest of area adjacent to the blue boundary
belongs to another landslide active zone, therefore is excluded from the stable area.

The reliability of offset measurements is assessed by their noise level on the stable ground
(Figure 2), which in this case is the local variances of azimuth and range offset measurements in
the stable area. This is calculated in the spatial domain using a window of 33 × 33 pixels centred
by each pixel for each acquisition, each corresponding to a temporal and spatial baseline value.
A proper threshold of the variances is used to select pixels of reliable measurements. Constraints of
the temporal–spatial baseline are then determined based on the relationship observed between the
number of reliable measurements (in pixels) and the perpendicular baseline and temporal baseline, as
displayed in Figure 3.

Figure 3. (a) Number of reliable measurements in the stable area plotted in relation to the
temporal baseline; (b) Number of reliable measurements in the stable area plotted in relation to
the perpendicular baseline.
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In Figure 3a, we can see that the number of valid pixels decreases with the temporal baseline,
following an approximate exponential trend. In Figure 3b, the same perpendicular baseline corresponds
to varied number of reliable measurements, and no significant dependence of the number of pixels
is found upon the perpendicular baseline. This suggests that the key factor affecting the number of
reliable measurements is the time interval of offset pairs.

A temporal baseline of 99 days and a perpendicular baseline of 400 m are selected as constraints
to construct a small baseline network. In total, 157 offset pairs are connected, with a mean connection
redundancy of 5.6 per acquisition. The resulting small baseline network is shown in Figure 4, with
the relative position (perpendicular baseline with respect to the first acquisition on 8 February 2015)
plotted versus the temporal baseline.

Figure 4. Time–Position plot of the small baseline connection network.

3.2. Removal of Residual Offsets

Sub-pixel offset tracking is applied to each offset pair connected by the small baseline network,
using the same procedure and parameters described in Section 3.1. Removal of residual offsets is
carried out before inversion of the 157 offset pairs. The standard deviations over time are respectively
estimated for the azimuth and range offsets measured from the stable area. By imposing a proper
threshold to the standard deviations of 2D measurements, a number of pixels on the stable ground are
selected as reference points for correction of residual offsets. A 2D first order polynomial function is
then fitted to the range and azimuth offsets measured from these points. Using the fitted parameters,
the overall residual offsets are reconstructed for the whole area, including both the landslide body and
the stable area. After correction, the mean of the azimuth and range offset measurements derived from
the reference points on the stable ground are estimated in the spatial domain for each offset pair, as
displayed in Figure 5.

In Figure 5, we can see the mean offset measurements on the stable ground are extremely close to
zero. This suggests the correction is successful.

3.3. Two Dimensional Displacement Measured by SBAS Offset Tracking

After correction of residual offsets, all 157 pairs of offset measurements are inverted by SVD
decomposition, to derive the azimuth and range displacement at each acquisition time. Noise-dominant
pixels are discarded by a RMSE mask using the method described in Section 2.3. Displacement maps
are produced to show the temporal evolution and spatial distribution of the landslide, as displayed in
Figures 6 and 7.
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Figure 5. Mean errors of the range and azimuth offsets measured from the stable area of all 157 pairs
after residual removal.

Figure 6. Accumulated azimuth displacement of the Tanjiahe landslide on different acquisition dates
derived by the small baseline subset (SBAS) offset tracking approach, superimposed on TSX-ST
amplitude, with landslide boundary plotted in white line, and Global Positioning System (GPS)
stations marked in white squares. Data source: TerraSAR-X Staring Spotlight © DLR <2015>.
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Figure 7. Accumulated range displacement of the Tanjiahe landslide on different acquisition dates
derived by the SBAS offset tracking approach, superimposed on TSX-ST amplitude, with landslide
boundary plotted in white line, and GPS stations marked in white squares. Data source: TerraSAR-X
Staring Spotlight © DLR <2015>.

From both the azimuth and range offset maps shown in Figures 6 and 7, the whole landslide
body shows consistent pattern of temporal evolution, i.e., the slope experienced biggest displacement
rate in April–August and tend to be stable in the following months. The spatial distribution of the
landslide is also clear. The upper part of the slope shows bigger deformation magnitude, whilst smaller
displacement rate is observed in the lower part of the landslide.

Three pixels on the landslide body are selected for time series analysis, with their locations
displayed in Figure 8 and corresponding offset measurements plotted in Figure 9.
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Figure 8. Location of the three pixels ‘P1’, ‘P2’, and ‘P3’ selected for time series analysis. The three
pixels marked by green triangles and the landslide boundary in red are superimposed on the SAR
amplitude image over the Tanjiahe landslide site. Data source: TerraSAR-X Staring Spotlight © DLR
<2015>.

Figure 9. Time series offset measurements of selected pixels in the Tanjiahe landslide area. (a)
Accumulated azimuth displacement on each acquisition date; (b) accumulated range displacement on
each acquisition date.

In Figure 9, we can see that the four pixels show quite similar magnitudes of deformation, with
maximum azimuth displacement around −0.15 m, and slant range displacement ranging from 0.1 m
to 0.15 m. As all these data were acquired with right-looking SAR in a descending orbit, the negative
magnitude of azimuth displacement corresponds to the reverse along-track direction (predominantly
to the North) and the positive magnitude of range displacement represents the movement away from
the sensor. In the time series analysis, the Tanjiahe landslide shows a seasonal pattern with a big
increase in the displacement rate in April–August, which slows down in the remainder of the year.

3.4. Precision Assessment and Comparison with GPS Measurements

The precision of offset measurements is assessed as follows: as the accumulated 2D displacements
on each acquisition date have been retrieved, for each valid pixel in the stable area, the standard
deviation errors over time of accumulated azimuth and range offset measurements are calculated
respectively. The overall error level is estimated by spatially analysed statistics in terms of ‘mean ±
STD’, as shown in Table 3.
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Table 3. Overall precision assessment based on the standard deviation errors of the azimuth and range
offset measurements derived from the stable ground, calculated along the temporal baseline.

Azimuth Offset (m) Range Offset (m)

Standard deviation errors 0.025 ± 0.011 0.027 ± 0.009

Due to the absence of direct geodetic measurements of the landslide, we compare the deformation
magnitudes of the selected pixels derived by the offset tracking approach with GPS measurements
found in literature. Four GPS stations were installed along the longitudinal section of the Tanjiahe slope
(ZG287, ZG288, ZG289, and ZG290) and surveyed monthly [29]. The paper presented a schematic
view of the GPS stations, a table showing annual displacement magnitudes from 2007 to 2015, as well
as a plot of GPS displacement curves. The displacement time series of the four GPS stations show a
very consistent pattern of accumulated displacement. Smaller deformation magnitude is observed
from the ZG290 station located at the lower part of the slope, whist higher displacement rate is found
on the three GPS stations installed on the upper part of the slope (i.e., ZG287, ZG288, ZG289). This
distribution is identical to the spatial distribution revealed by the offset maps in Figures 6 and 7.

We have no access to the coordinates and actual measurements of the GPS time series used in the
abovementioned publication [29] (the plot in Zhang et al. [29] does not give the digit corresponding to
each point of the GPS time series). Nevertheless, we manually aligned the schematic view of the GPS
locations to the geocoded SAR amplitude over the Tanjiahe landslide area, using the river shoreline as
the matching features. In this way, the sketch maps of GPS stations are coarsely co-registered with the
offset tacking results. Then the pixels in the same area of GPS stations are extracted for a comparison.
The GPS time series plot was taken from the publication [29] and digitized, in order to obtain the GPS
measurements corresponding to the curves in the plot. The GPS measurements span the time period
from December 2014 to December 2015, overlapping 10 months in time with the offset measurements
(February 2015–February 2016).

Prior to the comparison, the GPS time series measurements are projected onto the azimuth
and slant range directions, based on the knowledge of the main sliding direction of the landslide
(340 degrees clock-wise from the North), and slope degrees of each position derived from the reference
SRTM DEM. The projected GPS monthly measurements are interpolated to the acquisition dates of
each image in the TSX data stack, in order to make the time series comparison on a one-to-one basis.

The time series of pixels located in the same area of the GPS stations are plotted against the
annual displacements of individual GPS stations, as shown in Figure 10. As ZG290 and ZG287 are
located out of the mask of valid pixels, the other two stations, ZG288 and ZG289, are used in the
following analysis.

In Figure 10, we can see the time series offsets measured from pixels located on the positions
of ZG288 and ZG289 closely follow the corresponding GPS measurements; the differences between
the offsets and GPS time series are estimated by RMSE, and summarized in Table 4. Considering the
precision of SBAS offset tracking (as estimated in Table 3) of 2.5 ± 1.1 cm in the azimuth direction and
2.7 ± 0.9 cm in the range direction, the RMSE between the offset time series and GPS data are not
statistically significant.

Table 4. The root mean square error (RMSE) between the time series displacements measured by SBAS
offset tracking and GPS stations.

ZG288 ZG289

Azimuth RMSE (cm) 1.89 1.20
Range RMSE (cm) 3.38 1.80
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Figure 10. Time series azimuth and range displacement (marked in blue diamonds) measured from
pixels located in the same area of the GPS stations, plotted versus the GPS time series over the time
period from 19 February 2015 to 2 December 2015. (a) Comparison with the GPS time series measured
from ZG288 station. (b) Comparison with the GPS time series measured from ZG289 station. The x
axis represents the days counted from 19 February 2015 (red lines). As some TSX images supposed
to be acquired in a 11-day repeat cycle are absent in the original data stack, the offset time series
measurements in this figure are not evenly spaced in the x axis.

4. Discussion

4.1. The Relationship between the Landslide and Water Level Variations of the Three Gorges Reservoir

The construction of the Three Gorges Dam was started in 2003 and completed in 2009. The
reservoir level rose from 66 m to 135 m in 2003, then to 156 m in 2006, and finally to 175 m above sea
level after three impoundments. After reaching the designed maximum height of 175 m in 2010, the
water level experiences 30 m of fluctuation between 145–175 m every year. A drawdown-filling cycle
is repeated every year at almost exactly the same time.

As is well known [31,32], the ground water table or pore-water pressure within the soil layers
of the landslide body are affected by the reservoir surface fluctuation and local precipitation, which
decreases the effective normal stress leading to a decrease in shear strength of the soils. In previous
studies, the fluctuation of the reservoir water level and seasonal rainfall are found as the two main
triggering factors for landslides along the Yangtze River banks [31,33–36]. Two studies of the Tanjiahe
landslide show controversial results on whether the local rainfall is the key driving factor of the
slope movements in this area [29,37]. However, previous studies of the Ivancich landslide in central
Italy point out there is a lack of correlation between the rainfall and the extremely slow landslide
displacement (<16 mm·year−1) [38–40]. Thus, in this section, the landslide displacement is respectively
compared with reservoir water level measurements and daily rainfall data. The rainfall data was
measured from a gauge station in Badong County, 16 km upstream from the Tanjiahe landslide site.

It should be noted that the time series measurements of azimuth and range offset are not evenly
spaced in the time domain, as some acquisition dates are missing. Thus, prior to the analysis, a cubic
spline interpolation is used to interpolate across the missing dates for the every-11-day measurements.
The interpolated displacements of the three selected pixels ‘P1’, ‘P2’, and ‘P3’are displayed in Figure 11
as follows.

As we can see from Figure 11, the measurements from all three pixels show a consistent pattern
of displacements in both the azimuth and range directions. The azimuth offset measurements of ‘P1’
are then selected for subsequent analysis in Section 4.1.
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Figure 11. Interpolated time series measurements of (a) azimuth and (b) range displacements of the
Tanjiahe landslide derived by SBAS offset tracking.

The every-11-day offset measurements with a corresponding trend line are plotted against the
water level measurements (Figure 12) and local rainfall data (Figure 13).

Figure 12. Interpolated time series azimuth displacement of P1 vs. water level measurements of the
Three Gorges Reservoir in the period from 8 February 2015 to 28 February 2016.

Figure 13. Interpolated time series azimuth displacement of P1 vs. local rainfall data in the period
from 8 February 2015 to 28 February 2016.
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In Figure 12, a significant and abrupt increase in deformation magnitude can be observed,
synchronized with the sharp reservoir drawdown in April–July 2015, and non-significant displacement
(with regard to the 2–3 cm precision of azimuth offset measurements) over the following months. It is
evident that the active landslide period coincides with the fast drawdown of the reservoir water level.
No noticeable correlation is found between the dramatic raising of water level in September–October
and the landslide displacement.

In Figure 13, heavy and intense rainfall is observed from March to October, covering the period of
the greatest displacement rate (April–July 2015). However, in the period of July–October 2015 with
intensity of rainfall second only to the previous months, no noticeable deformation can be observed.

The above results suggest that rainfall does not play a key role in triggering the landslide in the
observation year, but we cannot rule out the possibly that rainfall has combining effects with the water
level variations due to the overlapped period of reservoir fast drawdown and heavy rainfall. Reservoir
drawdown is the key driving factor of the landslide. It appears that the slope stability decreases with
the fast drawdown of the reservoir water level and increases with the big rise of water level.

4.2. Potential and Limitations of the SBAS Offset Tracking Approach in Comparison with InSAR

Sub-pixel offset tracking techniques only utilize intensity bands of the satellite imagery to retrieve
2D ground deformation. It is less sensitive to low coherence and does not require phase-unwrapping,
which leads to most of the failures in time series InSAR due to the low density of valid pixels. As a
method free of phase-unwrapping, offset tracking has no limitation in the maximum detectable
displacement gradient (DDG). Thus, offset tracking techniques potentially have the capability
and advantage to measure slope movements with the speed exceeding the maximum detectable
displacement of DInSAR or map deformation in challenging areas such as densely vegetated and
steeply sloped terrain.

For a single pair of SAR images, the accuracy of offset tracking is jointly determined by the
deformation rates in the area of interest, image resolution, and the correlation coefficient of scatterers
in the target area [41]. The presence of high-contrast surface features does help to improve the
accuracy. With the availability of high-resolution SAR imagery, offset tracking is able to monitor
very slow-moving landslides (16 mm·year−1–1.6 m·year−1 as defined in Cruden and Varnes [4],
Hungr et al. [5]) and complement the applications of DInSAR. This has been demonstrated in our
previous study of the Shuping landslide [3].

Given an area of interest and the same dataset, the accuracy of offset tracking is mainly determined
by the correlation coefficient. Low correlation leads to a large uncertainty in cross-correlation and
eventually low accuracy of measurements. For this reason, temporal and spatial baseline screening
is necessary prior to analysis. If there is a significant dependence between the number of reliable
measurements and the temporal–spatial baseline, it is beneficial to create a small baseline network of
offset pairs, in order to increase the density and coverage of observation.

The proposed SBAS offset tracking approach is demonstrated of being capable of measuring
centimetre-level landslide rates in densely vegetated terrain. Instead of only measuring the deformation
of only a few sparsely distributed strong scatterers, the proposed approach provides a synoptic
overview of the landslide by constructing a small baseline network and time series inversion of
redundant connection of offset pairs. According to the results of our preliminary experiment in
conventional offset tracking, to achieve the same precision, the number of reliable measurements
derived by SBAS offset tracking is more than 15 times the conventional offset tracking method.

Offset tracking has the advantage of obtaining 2D measurements using data from a single
orbit. It should be noted that the azimuth and range offsets only measure the projection of the
real displacement on the slant range plane due to the radar geometry. The displacement component
perpendicular to the slant range plane, if there was any, would not be detected. To measure 3D
displacement, images from at least two different orbits are needed to solve the least squares functions.
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Data from descending and ascending orbits are preferred to improve the robustness of the estimation,
which should be considered when selecting new data in future studies.

East-West (E-W)-oriented landslides provide a better geometry for line-of-sight (LOS)
measurement from sun-synchronous SAR imaging instruments, as the E-W and downward component
of the sliding vector can both be captured by satellite LOS measurements. For North-South
(N-S)-oriented landslides, as most of the landslides on the banks of Yangtze River appear to be, Offset
Tracking is of great importance to provide measurements in the azimuth direction (approximately
N-W) when repeat data are only available from a single orbit.

InSAR techniques have been widely used for displacement monitoring in many areas including the
Three Gorges Region, with success demonstrated through measurements of much smaller displacement
rates in urban areas using time series InSAR approaches [42,43]. This case study, shows results of
so-called ‘very slow-moving’ landslide (16 mm·year−1 to 1.6 m·year−1 as defined in Cruden and
Varnes [4]) with annual displacement rates up to 20 cm. As calculated in Table 2 using a multi-looking
factor of 2, the upper limit of measurable displacement in one repeat cycle (11 days), is 0.59 cm, over a
ground distance of 1 m. For the Tanjiahe landslide showing a dramatic increase in deformation over a
short period, there is a high probability of underestimation by InSAR based techniques, especially on
the landslide boundary.

In addition to the limitation of maximum detectable displacement gradient (DDG), the rapid loss
of phase coherence is a major issue in densely vegetated areas. In our preliminary work, using the
TerraSAR-X Staring Spotlight data with an 11-day repeat cycle and 0.23 m × 0.84 m resolution, the
coherence loss is still a problem, resulting in too low a redundancy of data connections to apply time
series InSAR. Satellite data with a shorter re-visit cycle and high resolution (1–3 m at least) is expected
can help to address this issue, which should be exploited in future work. A shorter repeat interval is
much-needed by DInSAR in this kind of study area. The improvement of the re-visit time will also
increase the maximum measurable displacement of DInSAR.

Geometric distortion is also a key factor affecting the quality of interferograms, especially in an
area characterised by many steep slopes. DEM products often exhibit higher height errors in areas
with rugged topography due to geometric distortions. Low resolution, inaccuracies, or both in the
reference DEM can lead to large residual errors of topographic phase, which further decrease the
quality of interferograms.

Theoretically, time series InSAR has higher accuracy (millimetre-level) compared with Offset
Tracking (centimetre-level). In other types of terrain (e.g., with more man-made structures, less
vegetation, or lower slopes), the use of InSAR techniques may have more advantages for displacement
monitoring, especially for slower displacement.

For slow-moving landslides, the use of offset tracking is recommended to assess if the assumption
of maximum displacement gradient of InSAR can be fulfilled. Offset Tracking is less sensitive to low
coherence and is able to derive 2D displacement using data from a single orbit, whilst time series
InSAR can help to detect the smaller magnitude of deformation (e.g., during a less active period of the
landslide). Thus, the two techniques are complementary to each other and there appears to be hope of
more improvements with the availability of satellite data of shorter revisit cycle and higher resolution.

5. Conclusions

This work demonstrates the capability of the SBAS Offset Tracking approach to monitor
centimetre-level landslide displacement in a challenging area characterised by dense vegetation
cover and steep slopes. In the case study of the Tanjiahe landslide, as significance is found between
the number of reliable measurements and the temporal baseline, a small baseline network of offset
pairs is created to minimize temporal decorrelation, and increase the density and coverage of the
offset measurements at the end. Considering the centimetre-level displacement rate, an extra step is
taken to remove the residual offsets due to co-registration errors and orbit inaccuracies before the SVD
inversion of all offset pairs. Taking advantage of the sub-metre resolution of the TSX Staring Spotlight
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data, the proposed SBAS offset tracking approach has been shown of being capable of measuring
centimetre-level landslide rates with an average precision of 2–3 cm, with point density more than
15 times of the conventional offset tracking approach. The offset results have been validated of good
agreement with published GPS measurements. This approach is of particular interests for deformation
monitoring in many rural areas lack of high contrast surface features, especially over densely vegetated
and steep terrain.

In the case study, the relationship between the landslide and local rainfall, as well as the water level
changes of the Three Gorges Reservoir has been assessed. The reservoir fast drawdown is identified as
a major triggering factor of the landslide, and rainfall does not appear to be a key triggering factor in
the observation period.
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Appendix A

In this section, we firstly provide the details on parameter selection for cross-correlation, followed
by an example showing 2D image of the cross-correlation for a case with good correlation and another
with bad results.

The general performance of sub-pixel cross-correlation is assessed through cumulative histograms
of the azimuth and range deformation fields [44] derived from the stable area (Figure 2) surrounding
the landslide body. Bigger discrepancies from the centre of the Cumulative Distribution Function
(CDF) suggest higher error level in the stable area, indicating lower accuracy of cross-correlation. CDF
of azimuth and range displacements are plotted for different correlation window sizes using the same
oversampling factor of 16, as displayed in Figure A1. The time consumption of different parameter
settings is summarised in Table A1.

Figure A1. (a) Cumulative histograms of azimuth offsets derived from the stable area surrounding the
landslide body; (b) Cumulative histograms of range offsets derived from the stable area surrounding the
landslide body. This is plotted for different correlation window sizes of 16 × 64 pixels, 32 × 128 pixels,
and 64 × 256 pixels.
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Table A1. Processing time corresponding to different window sizes of cross-correlation, taking into
account the time consumption of image co-registration.

Correlation Window Size (in Pixels) Elapsed Time

16 × 64 1 h 25 min
32 × 128 5 h 40 min
64 × 256 25 h 41 min

From Figure A1 and Table A1, we can see that a larger window size improves the accuracy but
dramatically increases the processing time. In experiments, we also found that larger window sizes
increase artifacts and reduce the resolution of the output deformation fields. In the case study, the
window size of 32 × 128 pixels was selected for cross-correlation, as a trade-off between the correlation
accuracy, time consumption, and output resolution. Using the window size of 32 × 128 pixels, over
80% of pixels in the azimuth CDF are characterised by offsets around zero and within ±0.2 m. About
90% of pixels in the range CDF are centred on zero and within ±0.2 m of offsets. For the case study, we
found that this performance is good enough as the correlation output of individual offset pairs.

In Figure A2, we present a comparison of a case with good correlation from high-contrast features
and another of bad correlation from vegetated surface.

Figure A2. (a) Correlation peaks of high-contrast surface features; (b) correlation peaks of pixels on
the vegetated surface. The correlation peaks in (a,b) are both plotted from the 8 Feburary 2015 and 28
Feburary 2016 image pair by extracting a window of 64 × 64 pixels centred by the targeted pixel. The
colour bar represents the correlation coefficient ranging from 0 to 1. In (a) there is a square bar in the
middle instead of a single peak. This is because the cross-correlation used a step size of 2 pixels in range
direction and 8 pixels in azimuth directions with regard to 32 × 128 pixels of correlation window size.
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Abstract: Landslides constitute a major threat to people’s lives and property in mountainous regions
such, as in the Three Gorges area in China. Synthetic Aperture Radar Interferometry (InSAR) with
its wide coverage and unprecedented displacement measuring capabilities has been widely used in
landslide monitoring. However, it is difficult to apply traditional InSAR techniques to investigate
landslides having large deformation gradients or moving primarily in north-south direction. In this
study, we propose a time series split-bandwidth interferometry (SBI) procedure to measure two
dimensional (azimuth and range) displacements of the Shuping landslide in the Three Gorges area
with 36 TerraSAR-X high resolution spotlight (HS) images acquired from February 2009 to April 2010.
Since the phase based SBI procedure is sensitive to noise, we focused on extracting displacements
of corner reflectors (CRs) installed on or surrounding the Shuping landslide. Our results agreed
well with measurements obtained by the point-like targets offset tracking (PTOT) technique and
in-situ GPS stations. Centimeter level accuracy could be achieved with SBI on CRs which shows great
potential in futures studies on fast moving geohazards.

Keywords: landslide; the Three Gorges; corner reflector; split-bandwidth interferometry

1. Introduction

A landslide refers to the movement of rock, earth, and debris downward upon a slope which may
be caused by natural factors or human activities [1]. As a prevalent geohazard in mountainous areas,
it poses a serious danger to local residents. Thus, continuous monitoring of landslide activity in these
areas is essential to ensure public safety.

According to investigations, the Three Gorges area is frequently affected by landslide hazards,
and there have been more than 3800 reported landslides [2]. Serving the largest hydro-power station
in China, the Three Gorges Dam began construction in 1994 and it was completed in 2006. Presently,
the water level varies between 145 m and 175 m according to the dam’s operation scheme. The annual
water level fluctuation contributed much to the destabilization of bank slopes along the Yangtze River
which can inevitably aggravate geohazards such as landslides and rock falls.

SAR interferometry (InSAR) can be used as an earth displacement monitoring tool, having the
advantages of wide area coverage and high accuracy; it has been widely used in previous landslide
monitoring [3–7] studies. The dense vegetation in the Three Gorges area causes serious decorrelation
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which is unfavorable for InSAR analysis [8]. To overcome this problem, several corner reflectors (CRs)
were installed on a few well-known landslides to improve the performance of differential InSAR [8,9].
Incidentally, it should be noted that the applicability of differential InSAR are seriously limited for
landslides without CRs installed. Thus, advanced InSAR methods such as persistent scatters SAR
interferometry (PSI) [1,10–12], Quasi Permanent Scatterers (QPS) InSAR [13] and Small baselines subset
(SBAS) InSAR [3,14] which mainly make use of point-like scatterers have also been applied to identify
and monitor active landslides in this area. Generally, if displacement between neighboring pixels
exceed 1/4 of the wavelength, an unavoidable phase unwrapping error will cause underestimation [6],
especially in densely vegetated areas, and this error should be mitigated.

In the Three Gorges area, there are many active landslides with annual displacement rates of
meter-level [15]. Thus, the effectiveness of the InSAR method when applied to monitoring these
landslides with large deformation gradients will be significantly reduced. In such cases, one solution
is to employ the pixel offset tracking method to track the displacements that have occurred in the
azimuth and range directions using amplitude information of the SAR images. This technique has
been successfully applied to monitor the Shuping landslide [16–19] and the Kaziwan landslide [19]
in the Three Gorges area. Meanwhile, the split-bandwidth interferometry (SBI), which is also known
as multi-aperture interferometry (MAI), can also measure large azimuth displacements by analyzing
forward and backward single look complex SAR images with centimeter-level accuracy [20–22].
Usually, this method is applied to obtain the displacements in the azimuthal direction. However, SBI
can also be used in the range direction although this is comparatively rare because of the low sensitivity
to displacements compared with standard InSAR methods, as well as a high sensitivity to pixel’s signal
to cluster ratio (SCR) [23]. Nevertheless, phase unwrapping errors will occur with standard InSAR
methods, especially when measuring rapid movements on sparse points. In contrast, the characteristic
of having low sensitivity to displacements for SBI becomes an advantage when measuring landslide
deformations of large gradient [23]. As a result, unwrapping errors in the traditional InSAR method
might be greatly suppressed.

In this study, using high resolution TerraSAR-X SAR images, split-bandwidth interferometry in
the azimuth and range directions were applied to retrieve two-dimensional time series displacements
of CRs installed on the Shuping landslide, located in the Three Gorges area. The effectiveness of our
method was validated against results obtained from point-like targets offset tracking in a previous
study [16] and Global Positioning System (GPS) measurements. This study is organized as follows:
Section 2 describes our study area and datasets, and the principles of our method are elaborated in
Section 3. Our results were given and evaluated in Section 4, followed by study conclusions.

2. Study Areas and Datasets

2.1. The Shuping Landslide

The first impoundment of the Three Gorges dam in 2003 activated many ancient landslides such
as the Qianjiangping landslide [24], the Shuping landslide [25] etc. The Shuping landslide is located at
the south bank of Yangtze River as shown in Figure 1a. The possible catastrophic failure of the Shuping
landslide may pose great threats to the safety of local marine transportation and infrastructure. Thus,
the movement status of the slope has drawn significant concern. GPS stations were promptly installed
on the Shuping landslide for ongoing monitoring of the slope evolution [25]. InSAR methods have
also been employed to monitor the displacement of the Shuping landslide [26]. As we can see from
Figure 1b, the Shuping landslide is covered by dense vegetation. This results in a significant loss of
coherence hindering the application of InSAR. Thus, triangular trihedral corner reflectors (CRs) with
edges of 1 meter were installed on the Shuping landslide to assist InSAR-based landslide displacement
monitoring [8,9]. Readers may refer to [8] for detailed design specifications of the CRs in the Three
Gorges area. Generally, the radar cross section of the CR can reach more than 20 dB, which can be
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easily identified in vegetated areas [8]. The locations of CRs installed on or surrounding the Shuping
landslide are marked with red dots in Figure 1b.

Previous studies with standard InSAR failed because of the rapid displacement of the Shuping
landslide [3]. As an alternative method, SAR pixel offset tracking analysis has been successfully
employed to obtain the displacements of the Shuping landslide using high resolution TerraSAR-X
datasets [16,17]. Here, we explored the feasibility of phase based SBI for monitoring rapid movements
in azimuth and range directions.

 
(a) 

 
(b) 

Figure 1. (a) Location of the Shuping landslide; (b) Location of corner reflectors and GPS stations
installed on the Shuping landslide overlaid on ZY-3 satellite multispectral optical image.

2.2. Datasets

There were 36 TerraSAR-X High resolution Spotlight (HS) images from February 2009 to April 2010
that were acquired to monitor the movement of shuping landslide. Basic parameters of the dataset
are summarized in Table 1. According to our previous study, very minor displacements of Shuping
landslide occurred during winter when the water level of the Three Gorges Reservoir remained
relatively stable and precipitation was low [16]. Thus, the image acquired in 12 November 2009
during this period with maximum correlation with other SAR images was selected as a common
master for time series analysis. The temporal and perpendicular baseline distributions are given in
Figure 2. A SRTM DEM with approximately 30 m resolution was used for DEM assisted registration
and geocoding. Horizontal displacements measured by 4 GPS stations, namely SP-1, SP-2, ZG85 and
ZG87, are collected for validation. The locations of these GPS stations are marked by green triangles
in Figure 1b.
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Table 1. Basic information for high resolution spotlight TerraSAR-X datasets.

Parameters Values

Orbit direction Descending
Look angle (◦) 39

Heading (◦) 189.6
Polarization HH

Azimuth spacing (m) 0.87
Range spacing (m) 0.45

Range Bandwidth (MHz) 300
Azimuth Bandwidth (Hz) 7277

Figure 2. Temporal and perpendicular baseline distributions.

3. Time Series Displacement Retrieval Methods

3.1. Split-Bandwidth Interferometry

Split-bandwidth interferometry estimates pixel shifts between two single-look complex (SLC)
SAR images by measuring phase differences of two interferograms formed by using lower and upper
portions of imaging spectrum separately. Since the impulse response of a SAR system has a linear phase
variation within its main lobe depending on the signal’s center frequency fc, a pixel offset Δt in seconds
will lead to an additional phase term 2πfcΔt in standard InSAR, mixed with interferometric phases
containing topography, atmospheric delay, and displacement [27]. The pixel shift can be extracted by
performing a phase differential operation between two interferograms from the same image pair with
different azimuth or range center frequencies but identical interferometric phases.

In this study, we implement SBI as follows: a pair of TerraSAR-X HS images m and s are split into
four low-resolution sublook images ml, mu, sl, and su by filtering out the lower and upper bands in the
frequency domain. Then, by combining the sublook images with common spectra, two interferograms
are formed and their phase difference φsplit is derived from (mu · s∗u)(ml · s∗l )

∗, where ∗ indicates
conjugate multiplication. Finally, the pixel shift Δt in units of time can be retrieved from the phase
difference φsplit, given the spectral separation Δfc between the two sublook images [27]:

Δt =
φsplit

2πΔ fc
(1)

In the case of range SBI, the phase difference φsplit contains a component corresponding to the
range offsets produced by topography and the InSAR baseline. This component should be removed by
using the DEM-assisted co-registration [28,29]. DEM and orbit ephemerides are used in conjunction to
calculate the topographic offsets. In the azimuth case, little topographic information remains in φsplit
because the azimuth offsets are insensitive to the cross-track baseline.
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For the TerraSAR-X HS image, a larger spectral separation of sublooks can be achieved compared
to the image acquired in Stripmap Mode (SM), dramatically improving the sensitivity and accuracy
of SBI. According to Equation (1), the sensitivities to ground displacements for one cycle of φsplit are
~0.75 m and ~1.46 m for range and azimuth split-bandwidth interferometry respectively. Because of
the finer bandwidth increment, the sensitivity of using TerraSAR-X HS image is approximately 3 times
that of the SM image.

SBI is equivalent to coherent cross correlation (CCC), the maximum likelihood estimator for the
pixel offset between distributed Gaussian targets. Since the requirement of removing interferometric
phase complicates the implementation of CCC, SBI is often used as a replacement in practice. In theory,
the standard deviation in displacement estimation from the SBI is given by [30]:

σ =
1

2πΔ fc

1√
N

√
B
b

√
1 − γ2

γ

pspa

Δts
(2)

where Δfc = B − b, B is the processed bandwidth of a single target, b is the sublook bandwidth which is
often selected as one third of the bandwidth [30,31], N is the number of independent samples averaged,
γ is the interferometric coherence, Δts is the image sampling in seconds, and pspa is the pixel spacing.
In order to improve the reliability of SBI measurements, pixels exhibiting the same point-like behaviors
as the center pixel were selected first using a two-sample KS test within an estimation window of
64 pixels in azimuth and 32 pixels in range. Then, adaptive multi-looking was carried out on these
pixels. In our case, it is easy to find more than 10 point-like behaved pixels since the side lobe is very
obvious for such high resolution TerraSAR-X HS images. For a TerraSAR-X HS image, B is 300 MHz in
range and 7277 Hz in azimuth. Assuming γ = 0.95 on CRs, then N = 10 and b = B/3, σ is ~2.1 cm and
~3.8 cm in range and azimuth directions respectively.

The workflow of our process is shown in Figure 3. Split-bandwidth interferograms were first
generated with the method described above. After pairwise azimuth and range SBI were performed,
the corresponding phases of the CRs can then be extracted. As mentioned before, the phase components
from topography and baseline have been removed. Thus, three dimensional phase unwrapping [32]
can be carried out directly to retrieve the time series displacements.

 

Figure 3. Diagram of Split-Bandwidth Interferometry process.

3.2. Point-Like Targets Offset Tracking

Rapidly moving ground targets might lead to loss of coherence or phase unwrapping problems
which greatly affect the applicability of standard InSAR. In such situations, a pixel offset tracking
method can also be used to extract azimuth and range displacement from the amplitude information
using high resolution SAR images. In our study, point-like targets offset tracking (PTOT) making use
of pixels with high amplitude values are employed to track the movements of the CRs. PTOT mainly
makes use of pixels with high amplitude values. Usually, high SCRs will be maintained on these pixels
to ensure greater accuracy of our measurements. Readers can find a detailed workflow of PTOT in
our previous study [16]. Here, the PTOT results are used for cross validation with SBI. The theoretical
accuracy of amplitude pixel offset tracking on point-like targets can be expressed as [30,33]:
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σ =

√
3

π

1√
SCR

pspa (3)

where SCR is the signal to cluster ratio of output correlation for point-like targets and pspa is the pixel
spacing. In our case, the typical value of SCR for CRs are more than 150 (corresponding to 21 dB).
Thus, the achievable accuracy can be better than 0.045 pixels corresponding to ~2 cm and ~4 cm in the
range and azimuth directions separately for high resolution TerraSAR-X spotlight datasets, which is
very close to the theoretical accuracy of SBI, as we discussed above.

4. Results and Discussions

4.1. Comparsion of Time Series Displacements from SBI and PTOT

As shown in Figure 1b, there were four CRs installed surrounding Shuping landslide. In order to
mitigate systematic biases, CR12 was selected as a reference to calibrate the measurements of other
CRs. Time series displacements measured by the SBI and PTOT methods in both azimuth and range
directions for the other three CRs, namely CR8, CR17 and CR18, are given in Figure 4. Corresponding
statistics of these three CRs are given in Table 2. Overall, good agreement was achieved for the
measurements from both methods. As expected, all three of these CRs were stable during the period
of more than one year.

Since CRs are ideal point-like targets, very high SCRs can be maintained over a long period.
As mentioned in Section 3, the theoretical achievable accuracy from the PTOT method is almost
the same as that from the SBI method in both azimuth and range directions on CRs. As expected,
the statistics in Table 2 suggest that comparable accuracy was achieved by the SBI and PTOT in
both azimuth and range direction. Statistics on these data indicate that the achievable accuracy can
reach centimeter-level on point-like targets. At the same time, the mean and standard deviation of
measurements in the range direction are lower than in the azimuth direction for both methods. This can
be explained by the fact that the pixel spacing in the range direction are much higher than that in
the azimuth direction. The standard deviations from SBI measurements are relatively higher than
that from PTOT measurements, which means the consistency of PTOT measurements are relatively
better than that of SBI measurements. This could be attributed to the higher sensitivity of noise for SBI.
In our case, noise induced by vegetation or geometrical distortions in the mountainous setting can be
very serious.

Furthermore, we notice that the differences between SBI and PTOT measurements on a few
CRs, e.g., CR18 in Figure 4 and CR7, CR11 in Figures 5 and 6, are higher than other CRs. Signals
from the target’s surroundings such as vegetation in the resolution cell, e.g., CR18 lying in layover
areas, might affect the accuracy of SBI measurements. Multi-looking of the SBI process also plays
an important role in the measurement accuracy. Since CRs are ideal point-like targets, it is difficult
to find enough point-like targets for adaptive multi-looking. Time series displacements of 14 CRs
installed on Shuping landslide measured with SBI and PTOT in azimuth and range directions were
shown in Figures 5 and 6, respectively. As expected, very good agreements were achieved at all CRs
in both azimuth and range directions with only minor disparities between SBI measurements and
PTOT measurements identified. Due to the higher sensitivity in the range direction compared with the
azimuth direction for both methods, a higher consistency of time series measurements in the range
direction was achieved. Similar displacement patterns with different magnitudes were identified on
CRs which is mainly caused by the decline of water level in the Three Gorges area [16]. The most
significant displacements in azimuth direction and range direction reached nearly 0.9 m on CR11 and
nearly 0.7 m on CR14, respectively, during a period of over one year. Both CRs are located on the top
of the Shuping landslide. The large displacements are mainly concentrated in the eastern and central
part of Shuping landslide. Very small displacements detected on the western part of Shuping landslide
where CR1, CR5 and CR9 are located indicate that this part might be stable.
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Figure 4. Comparison of displacement measurements at stable Corner reflectors (CRs) by Split-bandwidth
interferometry (SBI) and point-like targets offset tracking (PTOT) in azimuth and range directions.

Table 2. Basic statistics of stable CRs outside Shuping landslide (unit: cm).

CR

SBI PTOT

Azimuth Range Azimuth Range

Mean STD Mean STD Mean STD Mean STD

CR8 −0.4 4.1 −0.1 1.4 −1.9 3.3 −0.8 0.7
CR17 0.5 2.3 0.6 0.8 −1.5 2.1 −0.4 0.6
CR18 2.5 5.0 0.0 1.2 0.2 3.8 −0.8 0.9

4.2. Valadation with GPS Measurments

To further validate our results, comparisons between GPS observations and SAR measurements
from SBI and PTOT were also carried out. As mentioned in Section 2, only the easting and northing
components of GPS measurements are available. Thus, GPS measurements were converted into SAR
azimuth geometry which is not considered sensitive to displacements in the vertical direction for the
simplicity of validation.

DAZ = DN cos α + DE sin α (4)

where DAZ, DN and DE are displacements in SAR azimuth direction, northing and easting directions
respectively. α is the heading angle of the satellite at the target point. All the measurements from 4
GPS stations were initially calibrated with respect to the measurement obtained at 10 November 2009
that is closest to the master image of TerraSAR-X dataset.

The locations of CRs and GPS stations are not identical, as shown in Figure 1b. According to the
first law of geography, the variation of displacement magnitude will be generally limited within a small
area. Thus, validations between measurements from GPS stations and nearby CRs were carried out.
Comparisons of CR and GPS pairs CR3 and SP-1, CR3 and ZG85, CR6 and SP2, CR10 and SP-2 as well
as CR16 and ZG87 were given in Figure 7. The length of error bar for the GPS measurements is 10 cm.
The displacement pattern of the GPS and CR time series measurements are shown to be similar. Specific
magnitude of time series displacements for CR3 and SP-1, CR3 and ZG85 as well as CR6 and SP-2
agreed quite well. All the measurements from SBI and PTOT method are distributed within the error
bars. However, disparities between GPS stations and SAR measurements were more apparent with
the increased distance as shown for CR10 and SP-2, CR16 and ZG87. These disparities are unavoidable
for the Shuping landslide with non-uniform displacements. Nevertheless, we can conclude that both
the SBI and PTOT methods can achieve centimeter-level accuracy on point-like targets.
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Figure 7. Comparison of measured displacements from SBI, PTOT and adjacent GPS stations in the
azimuth direction. The length of the error bar is 10 cm.

5. Conclusions

This study successfully employed the azimuth and range split-bandwidth interferometry to
derive the two-dimensional time series displacements of CRs installed on or surrounding the Shuping
landslide in the Three Gorges area. The results of our method was first validated with point-like
targets offset tracking (PTOT) results from our previous study [16]. Then, comparisons with GPS
measurements were carried out to evaluate the effectiveness of both the SBI and PTOT methodologies.
Both methods can achieve centimeter-level accuracy on corner reflectors. Our study indicates that
it is promising to employ both an azimuth and range SBI method to monitor rapid movement of
ground targets. Meanwhile, the phase unwrapping problem for standard InSAR methodologies can
also be significantly reduced. It is also worth noting that the multi-look process should be carried out
for natural targets, such as exposed rocks, to improve the performance of SBI. Thus, the theoretical
achievable accuracy for the SBI method can demonstrate a better performance than the pixel offset
tracking method on natural targets [21]. This method can be employed to monitor fast moving
landslides with sparse vegetation coverage, such as the Guobu slope in Qinghai Province, China [34].
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Abstract: Split-Band Interferometry (SBInSAR) exploits the large range bandwidth of the new
generation of synthetic aperture radar (SAR) sensors to process images at subrange bandwidth.
Its application to an interferometric pair leads to several lower resolution interferograms of the same
scene with slightly shifted central frequencies. When SBInSAR is applied to frequency-persistent
scatterers, the linear trend of the phase through the stack of interferograms can be used to perform
absolute and spatially independent phase unwrapping. While the height computation has been
the main concern of studies on SBInSAR so far, we propose instead to use it to assist conventional
phase unwrapping. During phase unwrapping, phase ambiguities are introduced when parts of the
interferogram are separately unwrapped. The proposed method reduces the phase ambiguities so
that the phase can be connected between separately unwrapped regions. The approach is tested on a
pair of TerraSAR-X spotlight images of Copahue volcano, Argentina. In this framework, we propose
two new criteria for the frequency-persistent scatterers detection, based respectively on the standard
deviation of the slope of the linear regression and on the phase variance stability, and we compare
them to the multifrequency phase error. Both new criteria appear to be more suited to our approach
than the multifrequency phase error. We validate the SBInSAR-assisted phase unwrapping method by
artificially splitting a continuous phase region into disconnected subzones. Despite the decorrelation
and the steep topography affecting the volcanic test region, the expected phase ambiguities are
successfully recovered whatever the chosen criterion to detect the frequency-persistent scatterers.
Comparing the aspect ratio of the distributions of the computed phase ambiguities, the analysis
shows that the phase variance stability is the most efficient criterion to select stable targets and the
slope standard deviation gives satisfactory results.

Keywords: synthetic aperture radar; interferometry; phase unwrapping; split-band;
multichromatic analysis

1. Introduction

Over the years, performances of Synthetic Aperture Radar (SAR) sensors have been improved
to finally reach the metric resolution by combining the synthetic aperture principle in the azimuth
direction with an increase of the radar signal bandwidth in the range direction. Using such data,
the well-known SAR Interferometry (InSAR) solves the relationship between the phase and the
optical path difference to retrieve the topography. However, the spectral information of the range
component is rarely exploited. Split-Band Interferometry (SBInSAR), also known as Multichromatic
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Analysis, exploits the information contained in the frequency domain to put an added value to SAR
Interferometry. It applies InSAR to subrange images obtained by splitting the large available range
bandwidth of recent sensors and explores the phase trend through the partial interferograms in order to
provide pointwise absolute phase measurements. This process is equivalent to an absolute and spatially
independent phase unwrapping, as long as it is performed on scatterers with a stable behaviour across
the spectral domain. Such targets are called frequency-persistent scatterers (PSf) [1]. The theoretical
applicability of Split-Band Interferometry and its performance regarding the spectral decomposition
parameters are discussed in [2]. This work showed that the quality of the split-band phase is the
result of a trade-off between increasing the number of subbands of the spectral decomposition and
preserving a sufficient resolution for the subrange images [2]. The practical feasibility of topographic
measurements has been reported in [3] for airborne data in X-band with a total bandwidth of 400 MHz.
The study in [1] applied the technique to spaceborne TerraSAR-X data in spotlight mode (300 MHz) over
the Uluru monolith in Australia. The same test site has been considered by [4] using Cosmo-SkyMed
images with a total bandwidth of 325 MHz. Another study [5] also demonstrated the potential of
SBInSAR for height retrieval using a TanDEM-X bistatic pair of images of 100 MHz bandwidth over
Nyiragongo volcano, but stressed the need for a larger value of the initial range bandwidth. So far,
the frequency-persistent scatterers have been selected using the multifrequency phase error [6] that is
an estimator of the coherence from one spectral subband to another and that quantifies the quality
of the phase measurements. In [7], the scattering properties of the frequency-persistent scatterers
and "temporally" coherent scatterers (PS) from the Permanent Scatterers Interferometry (PSI) [8] are
investigated. Among the potential applications of SBInSAR, let us mention absolute height retrieval,
change detection [9], ionospheric correction [10,11] and urban monitoring. The spectral diversity of
the range bandwidth can also be used to improve coregistration as discussed in [12] or to estimate
high-gradient surface displacements, such as earthquake ruptures [13].

Most InSAR phase unwrapping algorithms are aimed to perform relative measurements and
determine the phase of a pixel with respect to the phase of its neighbours, rather than the absolute
phase. It is a real issue in practice because noncoherent patches due to geometrical distortions
(layover, shadowing) or time changes can isolate coherent regions from each other and cause a separate
phase unwrapping from one region of the interferogram to another. This introduces unknown phase
ambiguities and prevents from comparing the phase between two separated regions. Because SBInSAR
provides absolute phase measurements, it can potentially solve these phase ambiguities and reconnect
the phase of distinct regions. Since we only need to know the integer number of cycles that must be
added to the wrapped phase to solve the phase ambiguities, the accuracy requirements regarding the
split-band phase are less demanding than in the case of height retrieval.

In this study, we propose an approach based on SBInSAR to complement the InSAR phase
unwrapping that estimates and corrects the phase ambiguities, and we demonstrate its efficiency.
In Section 2, we set the basic notions and equations of Split-Band Interferometry and we present
the method for the phase ambiguities correction. We also propose new methods to select robust PSf.
In Section 3, the SBInSAR-assisted phase unwrapping is tested on spotlight images acquired over
Copahue volcano. The test site is described, as well as the data set and the processing. An indirect
validation procedure is also presented, along with an indicator to compare the precision of the results.

2. Methods

Split-Band Interferometry is a three-step process derived from classical SAR Interferometry.
It takes advantage of the large range bandwidth of recent SAR sensors to work the absolute
interferometric phase out. The splitting of the range bandwidth of a SAR scene into several narrower
subbands produces lower resolution images of this scene, each one with a frequency slightly shifted
with respect to the initial one. During the first step of the SBInSAR process, the same spectral
decomposition is applied to the already coregistered master and slave images of a given interferometric
pair. In a second step, interferometry is performed on each pair of master and slave subimages. It yields
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a set of interferograms where the pointwise phase evolves linearly across the spectral domain. The slope
of the final pixel-by-pixel linear regression of the phase is proportional to the absolute optical path, and
it therefore enables performing absolute phase measurements on the points considered as spectrally
stable targets.

The operating and rationale of the SBInSAR processor have already been presented in [5].
In this section, we will first outline the basic principles of Split-Band Interferometry and the
corresponding equations. We will then define the estimators for the characterization and detection
of frequency-persistent scatterers. Finally, we will present our approach for the phase-offset
determination.

2.1. Rationale of Split-Band Interferometry

Let us consider an interferometric pair of coregistered images with a bandwidth B and a carrier
frequency ν0. They are spectrally decomposed into N subbands of partial bandwidth BN centered
at frequencies νi (i = 1, 2, . . . N), N being odd. Frequencies of adjacent subbands are shifted of Δν.
As stated in [5], the interferometric phase of the coregistered and spectrally decomposed images in the
ith partial interferogram is expressed by:

Δφi =
4π

c
(rs − rm − ec) ν0 +

4π

c
ec νi, (1)

where rm and rs are the range coordinates in master and slave images, respectively, ec is the
coregistration error and the dependence on the coordinates of the pixel is implicit for the sake of clarity.
The phase behavior of a point across the N partial interferograms is fitted by a simple linear function:

p (νi) = s νi + u, (2)

where s and u are the fit parameters. The slope of this linear regression is given by:

s =
∂(Δφi)

∂νi
=

4π

c
ec. (3)

In this case, the absolute optical path difference is the sum of the registration Δr applied on the range
coordinate and the coregistration error ec. The phase issued by the split-band process, called the
split-band phase, is therefore computed as:

Δϕ = Δϕreg + Δϕec

=
4π

c
ν0 Δr +

4π

c
ν0 ec. (4)

Nevertheless, the split-band phase measurement can only be considered as absolute if it is known with
a sufficient accuracy. Since the second term of Equation (4) is obtained by multiplying the slope of the
linear regression by the initial carrier frequency, the accuracy of the split-band phase is directly related
to the accuracy of slope through:

σΔϕ = ν0 σs, (5)

with σΔϕ being the standard deviation of the split-band phase and σs the standard deviation of the
slope coefficient s of the linear regression. Considering the chi-square fitting of a straight line, the latter
can be expressed as follows:
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σs =
1

Δν

√√√√√√√√
N
∑

i=1

1
σ2

φi

N
∑

i=1

1
σ2

φi

N
∑

i=1

x2
i

σ2
φi

−
(

N
∑

i=1

xi
σ2

φi

)2 , (6)

where xi is the subband index ranging from −N−1
2 to N−1

2 and σ2
φi

is the phase variance in the ith partial
interferogram. This expression holds for independent data points, i.e., nonoverlapping subbands.

2.2. Detection of Frequency-Persistent Scatterers

The linearity of the phase assumed in Equation (1) holds only for targets with a coherent behavior
across the spectral domain, i.e., for frequency-persistent scatterers. The consequence is that the stable
nature of a frequency-persistent scatterer insures the accuracy of the split-band phase measurement,
and it is therefore fundamental to correctly detect PSf.

In the following, we define the multifrequency phase error that is the commonly used criterion
to detect spectrally stable targets, and we propose two new detection criteria: the slope standard
deviation and the phase variance stability. These new criteria are meant to improve the selection of
the PSf population and their efficiency will be compared to the one of the multifrequency phase error
when applied to the test case.

2.2.1. Multifrequency Phase Error

So far, most studies have exploited the multifrequency phase error σν to detect stable targets. This
estimator of the split-band phase quality is basically the a posteriori uncertainty of the phase value in
the partial interferograms, and it is mathematically defined as:

σν =

√√√√ 1
N − 2

N

∑
i=1

(Δφi − p (νi))
2. (7)

2.2.2. Slope Standard Deviation

In the framework of the phase ambiguities retrieval, the split-band phase must be measured with
accuracy better than a cycle, and we use this one-cycle accuracy to characterize frequency-persistent
scatterers. Setting a threshold of 2π in Equation (5) leads us to a first criterion of selection based on the
standard deviation of the slope of the linear regression:

σs <
2π

ν0
. (8)

This criterion only depends on the initial carrier frequency. In X-band, the upper limit of the phase
slope standard deviation has a typical value of 0.65 rad/GHz.

2.2.3. Phase Variance Stability

In order to establish the second criterion, which will be referred to as the phase variance stability,
let us assume that the spectral decomposition is symmetrical with respect to ν0 and that the phase
variance σ2

φi
does not vary much from one subband to another. In this case, the squared sum in

Equation (6) can be neglected and we can introduce an upper bound σ2
φ,max on the partial phase

variance:
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σs =
1

Δν

√√√√√ 1
N
∑

i=1

x2
i

σ2
φi

≤ σφ,max

Δν

√√√√√ 1
N
∑

i=1
x2

i

. (9)

Given the symmetry of the xi values, the remaining sum in Equation (9) can be developed as the
double sum of the N−1

2 first squared integers. Inserting the relation (9) into Equation (5) and setting
once again a 2π threshold on σΔϕ, we finally obtain:

σ2
φ,max <

(
2π

Δν

ν0

)2 N(N + 1)(N − 1)
12

. (10)

For a given pixel in the stack, if the value of the phase variance is lower than this limit in every partial
interferogram, i.e.,:

σ2
φi
< σ2

φ,max ∀i = 1, 2, . . . N, (11)

then the required accuracy should be insured and the point is considered as being a PSf. In practice,
the spectral decomposition is always symmetrical with respect to the central carrier frequency. For the
second assumption, we consider it as verified when the value of σΔϕ varies of less than 5% when the
squared sum is neglected.

Let us note that the upper bound given by Equation (10) increases as N3. This can be interpreted
in the following way: for a large number of bands, the partial phase variance can be important as long
as its value from one band to another remains consistent. In this case, the split-band phase will be
measured accurately anyway. However, increasing the number of subbands reduces the resolution.
The key point of the spectral decomposition will be to determine the number of subbands so as to find
a trade-off between accuracy and resolution.

It is important to note that the phase variance stability criterion for the selection of
frequency-persistent scatterers is quite stringent: due to the assumption that must be satisfied, the
number of selected points will be low. Some valid PSf may even be missed during the selection.
However, the accuracy for the selected points is guaranteed, as we will demonstrate with the test case.

2.3. SBInSAR-Assisted Phase Unwrapping

In a conventional InSAR process, phase unwrapping algorithms generally provide relative
measurements of the phase. However, due to decorrelation, they frequently fail to unwrap the
interferogram as a whole and parts of the image are separately processed, introducing phase
ambiguities that prevent from comparing the phase from one region to another.

We present here an approach based on Split-Band Interferometry to determine and correct the
local phase ambiguities of the unwrapped phase. We consider the general case where the phase
ambiguity is an unknown number of cycles 2πn, with n being an integer. The phase ambiguity has
the same value for all the points through a given region of continuously unwrapped phase. In theory,
the presence of a single stable target per independent area is sufficient to solve the phase ambiguities.
In practice, however, we have to deal with the phase noise and the uncertainties, and it is not possible
to determine which scatterer is the most stable. For this reason, we adopt a statistical analysis of the
PSf to derive this integer number of cycles. Let us specify that the phase-offset, or phase ambiguity,
denotes the 2πn-discrepancy. However, we will largely use these terms in the following sections to
refer to the number of cycles n alone.
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Let us note Δφ the unwrapped phase obtained with the classical phase unwrapping process.
For a given PSf at pixel’s coordinates (k, l) in the image, neglecting the noise and the phase unwrapping
errors, the unknown number of cycles can be computed as:

n(k, l) =
Δϕ(k, l)− Δφ(k, l)

2π
. (12)

The SBInSAR-assisted phase unwrapping will consider one region of the phase unwrapping
at a time. In a first time, it will select the PSf of this region based on one of the criteria presented
in the previous section. It will then estimate the phase ambiguities using Equation (12) for all the
selected pixels and round each of these values to the nearest integer. The rounded value with the
largest number of occurrences, i.e., the mode of the distribution, is assumed to be the phase ambiguity
we are looking for. Finally, this value is multiplied by 2π and added to the unwrapped phase of all
the pixels of the region in order to correct the phase ambiguity. This procedure is repeated for each
region separately unwrapped. When the distribution of the rounded phase ambiguities has multiple
modes, no correction is applied. Regions with a population below 10 PSf are not corrected either, since
they frequently show multiple modes. The algorithm steps are presented in Figure 1. In the end of
the process, an image of the leveled unwrapped phase is provided, showing only the shifted areas.
Let us stress that, despite the loss of resolution in the subproducts, this final unwrapped phase image
preserves the initial range resolution.

Start 

Select PSf in the ith region 

Sufficient 
number of 

PSf ? 

Compute 
 

    
for all selected PSf 

Round values of n and 
build histogram 

Select the mode of the 
histogram 

Apply correction 

i = number 
of regions ? 

End 

no 

no 

yes 

yes 

Figure 1. Flow chart of the Split-Band Interferometry-assisted phase unwrapping algorithm.
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The routine supports topographic and deformation modes. For both modes, the selection of the
stable targets population will be identical, but, in deformation mode, the DEM contribution will be
removed from both the unwrapped phase and the split-band phase. Since the offset estimation is
based on the difference between these two phases, no difference of performance is expected between
topographic and deformation modes, except due to the quality of the unwrapped phase. In the
following, we will only consider the topographic mode and no subtraction of the DEM will be made.

Besides, in practice, the rounding of the phase ambiguities to the nearest integer mitigates
the influence of the noise and the phase unwrapping error. Although infinitely accurate phase
measurements would be necessary in theory, we will show that the one-cycle accuracy assumed for
PSf is enough to determine the phase-offset.

3. Copahue Test Case

3.1. Test Site

Copahue is an active strato-volcano located in the northwest of the Argentinean province of
Neuquén in the Andes, at the border between Argentina and Chile (Figure 2a). This volcano has an
elongated elliptical shape (22 km × 8 km) oriented in the SW–NE direction and reaches a maximum
elevation of 2997 m. It has nine craters clustered along the N 60◦ E direction, but only the eastern-most
one is active. The active crater is about 300 m deep and contains an acid lake created by abundant
precipitations and ice melting [14]. Recent eruptions have been reported in 2000, 2012 and 2014 and
the last eruption was accompanied by a degassing unrest [15]. Deformations observed over Copahue
volcano using InSAR are discussed in [16,17].

A Google Earth™ (Copahue, Neuquén, Argentina) optical view of the area is given in Figure 2b.
The area of interest shows steep topography as well as moderate slopes, little vegetation and a snow
cover that can vary over the year. Change in snow cover and frequent precipitations can cause local
loss of coherence in InSAR products. Variety of topography, of slope orientations and of geometrical
distortions, along with the presence of natural scatterers make Copahue volcano an interesting site to
apply SBInSAR-assisted phase unwrapping.

(a) (b)

Figure 2. (a) Location of Copahue volcano (red triangle) on the border between Chile and Argentina.
(b) Google Earth™ image of Copahue volcano in 2017. The footprint of the InSAR pair is drawn in red.
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3.2. Data Set and Processing

The data set used to test the SBInSAR-assisted phase unwrapping method consists in two spotlight
images acquired on ascending orbits by TerraSAR-X on 15 and 26 December 2014. Each image
is the master image of a pair acquired in pursuit monostatic mode, and the ensemble of both
constitutes therefore a standard spotlight interferometric pair. They are acquired in VV-polarization
with a look angle ranging from approximately 32.8◦ to 33.8◦ and a range bandwidth of 300 MHz.
The interferometric pair has a perpendicular baseline of about 32 m that corresponds to a height
of ambiguity of 163 m, and a temporal baseline of 11 days, which minimizes the effects of
temporal decorrelation.

Studying the deformations over Copahue volcano is outside the scope of the present study, as we
wish to make a methodological demonstration only. Therefore, no DEM is used to remove topographic
information of the phase during the InSAR processing. Hence, the analyzed signal contains the
topography but also possible deformations or artefacts from atmospheric origin.

A multilooking of 5 pixels × 5 pixels is applied to the images and a coherence threshold of 0.5
is chosen, above which the phase is considered for unwrapping. A branch-cut algorithm is used
to unwrap the phase [18]. The coherence map and the corresponding unwrapped InSAR phase are
presented in Figure 3. In the coherence map shown in Figure 3a, large decorrelated areas are present in
regions corresponding mainly to the snow cover. In Figure 3b, we observe a smooth phase gradient on
the main part of the interferogram and numerous smaller regions phase-shifted with respect to the
main area.
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Figure 3. (a) coherence image of the test pair over the Copahue volcano. (b) fully connected unwrapped
phase. Color chart values are given in radians.
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The SBInSAR processing is applied with a spectral decomposition into five subbands of 60 MHz.
Given the 300 MHz initial range bandwidth, the subbands do not overlap and the rationale presented
in Section 2 is valid. Moreover, this large partial bandwidth mitigates the resolution loss and therefore
insures the quality of the split-band measurements. In the split-band phase image (Figure 4), we observe
large patches of noisy phase corresponding mainly to noncoherent areas in the InSAR phase. These noisy
patches with high dispersion of values illustrate clearly that all the scatterers are not stable regarding the
SBInSAR processing and that the adequate pixels must be selected somehow.
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Figure 4. Phase measured with Split-Band Interferometry over Copahue volcano. Color chart values
are given in radians.

3.3. Validation Procedure

In order to demonstrate the applicability of the SBInSAR-assisted phase unwrapping without
additional measurements, we propose an indirect validation strategy. It consists of disconnecting
some regions of the interferogram by introducing artificial cuts during the phase unwrapping process,
which is based on a branch-cut method. Knowing the unwrapped phase Δφc of the "fully connected"
version of the interferogram and the unwrapped phase Δφd of the "artificially disconnected" version,
and knowing that their values only differ by an entire number of cycles 2πm with m integer, one can
obviously state:

m(k, l) =
Δφc(k, l)− Δφd(k, l)

2π
. (13)

This phase-offset will not necessarily be the same as the correction n computed with the
SBInSAR-assisted phase unwrapping, but the phase-offset difference between two pixels of coordinates
(k1, l1) and (k2, l2) should be the same for both m and n:

n(k1, l1)− n(k2, l2) = m(k1, l1)− m(k2, l2). (14)

If we focus on pixels in two separate regions, then the relative offset values can be used to validate
the results, as illustrated in Figure 5. The artificially disconnected regions of the test pair are shown in
Figure 6a. We cut three areas from the main coherent area. The corresponding unwrapped phase is
given in Figure 6b. It is obvious from this figure that a phase shift has been introduced for region 2.
The relative phase shifts between these regions are listed in Table 1. This will be used in the next
section to validate our results.
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(a)

(b)

(c)

Figure 5. Diagrams of the validation procedure for a one-dimensional simplified interferogram. (a) If
the connected InSAR phase Δφc is subtracted from the split-band phase Δϕ, the difference gives
an offset 2πn. (b) If a region of the one-dimensional interferogram is disconnected, an offset 2πm
is introduced between the connected phase Δφc and the disconnected InSAR phase Δφd. (c) If the
disconnected InSAR phase is subtracted from the split-band phase, the relative offset 2πm between the
disconnected regions remains the same as in case (b).

Table 1. Relative phase-offset values of artificially disconnected regions.

Relative Phase-Offset Cycles

m1 − m2 -1

m1 − m3 0

m1 − m4 -1

m2 − m3 1

m2 − m4 0

m3 − m4 -1
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Figure 6. (a) map of the disconnected regions. The main coherent region from which areas have been
artificially cut is represented in blue. We refer to the blue region, the red rectangle, the green ellipse and
the yellow area, respectively, as the regions 1, 2, 3 and 4. Regions in black are regions with coherence
lower than the threshold applied during phase unwrapping. White areas are naturally disconnected
parts of the unwrapped phase and they are not considered for the validation of the SBInSAR-assisted
phase unwrapping. (b) artificially disconnected version of the unwrapped phase over Copahue volcano.
Color chart values are given in radians.

3.4. Indicator of Quality

In the proposed approach for the SBInSAR-assisted phase unwrapping, the phase ambiguity is
chosen as the mode of the phase-offsets distribution. The statistical nature of the method makes two
requirements necessary in order to have confidence in the correction: first, the probability associated
to the mode value must be high; second, the dispersion of the distribution must be low. These two
conditions are summarized by a low W/H ratio, W and H being, respectively, the width and the height
of the normalized distribution. The normalized distribution of the rounded phase-offsets can be fitted
by a normal law:

f (n) =
1

σ
√

2π
exp

(
−1

2

(
n − μ

σ

)2
)

(15)

with the expectation value μ and the standard deviation σ being the parameters of the fit. The height
of the distribution is defined as the maximum of the fitted normal law and the width is characterized
by the half width at half maximum. The ratio is then given by:
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W
H

=
σ
√

2 ln(2)
f (μ).

(16)

The aspect ratio of the distribution is an indication regarding the precision of the measurement,
not its accuracy. It will therefore allow to compare the precision of two different estimations, but it will
not assess if the measurement is correct or not.

4. Results and Discussion

In a first time, the SBInSAR-assisted phase unwrapping is applied on the four artificially
disconnected areas of the Copahue test case in order to validate the approach for the phase ambiguities
correction and determine which detection criterion is the best. Four situations are considered from
the PSf selection point of view: in the initial situation, we do not discriminate the PSf and keep all
the pixels. In the other cases, the PSf are selected using either the multifrequency phase error σν, the
threshold on standard deviation of the slope σs of the linear regression or the stability of the phase
variance σ2

φi
. We set a threshold of 0.5 on the multifrequency phase error. The number of selected

pixels according to the region and the detection criterion is shown in Figure 7. Since the first region is
noticeably larger than the three others, it shows therefore a larger population of selected pixels for any
detection criterion. The number of detected pixels is much higher in the case of the multifrequency
phase error than for the other two criteria. The phase variance stability classifies approximately 2–3%
of the initial population as PSf while the proportion is about ten times higher for the standard deviation
of the slope.

Figure 7. Number of selected PSf for regions 1 to 4 using the different detection criteria. The y-axis is
on a logarithmic scale.

All four of the selection methods provide the same phase ambiguities corrections of the
disconnected regions. These corrections are listed in Table 2. As indicated before, the expected
relative phase-offsets are given in Table 1. Based on the validation strategy proposed in the previous
section, we verify that our results are consistent with these values. Even though the four situations
give similar measurements, the precision of the result is not the same. Looking at the histogram of
the normalized distribution of the phase-offset estimates in region 3 (Figure 8), we observe that the
dispersion of the distribution varies from one criterion to the other, but the modes of the distributions
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are indeed the same. When no selection of PSf is applied, the distribution is spread over a large range
of values with a low probability for the mode bin. This behavior is similar for histograms over all the
other regions. The quality of the results without selection criterion applied is quantified by a W/H
ratio of about 45–50 for most regions, with the highest value of 85 for region 4 (see Table 3). The larger
dispersion in region 4 is probably due to the large uncorrelated patch present in the split-band phase.
Those targets are most probably unstable and they are not discriminated in this case. The W/H aspect
ratio is lowered when the multifrequency phase error criterion is applied to select stable pixels. In this
case, the contrast between the dispersion in region 4 and the three others is significantly reduced.

Table 2. Phase-offset corrections for artificially disconnected regions.

Computed Phase-Offset Cycles

n1 -3

n2 -2

n3 -3

n4 -2

Figure 8. Normalized histograms of the estimated phase-offset values n for region 3. The gray line
histogram represents the case where no selection of PSf is applied. For other cases, the PSf population is
selected using three different criteria. The vertical dashed line indicates the expected phase ambiguity.
Similar figures are obtained for the three other regions.

Table 3. Ratio W/H of the phase-offsets distributions of artificially disconnected regions.

PSf Selector
Region 1 Region 2 Region 3 Region 4

W/H W/H W/H W/H

None 54 43 43 85

σν 25 26 25 30

σs 12 14 12 13

σ2
φi

8 9 8 9
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Let us now consider our two new selection criteria: with the standard deviation of the slope, the
aspect ratio is still improved by a factor 2. The best ratio is, however, obtained by using the phase
variance stability criteria. Similar results are found for the other areas. The W/H ratio seems to be
correlated with the population of frequency-persistent scatterers: the smallest the number of selected
pixels, the lowest the aspect ratio. Among the PSf selection criteria considered in this study, the phase
variance stability appears to be the most efficient. However, when applied to a less favorable case, e.g.,
to images with a smaller bandwidth or small disconnected areas, this criterion can be too restrictive
and the population of selected PSf will be too limited to estimate the phase ambiguity reliably. In such
cases, the standard devation of the slope is a satisfactory alternative.

After validation of the procedure, the SBInSAR-assisted phase unwrapping is applied to the
ensemble of the naturally and artificially disconnected regions of the unwrapped phase. Using the
phase variance stability to detect stable targets, 33 regions out of 1796 are corrected while, using the
standard deviation of the slope, we reach an amount of 74 regions. Let us remind that a region will
be corrected if it holds at least 10 PSf and if the phase-offset mode is unique. During the test on the
artificially disconnected areas, we observed that the phase variance stability selected fewer targets than
the standard deviation of the slope in a given region. We reach a similar conclusion for the naturally
disconnected areas (Figure 9). It is interesting to note that the majority of the pixels identified by the
phase variance stability are also identified by the standard deviation of the slope. Less than 1% of the
PSf population is selected by the phase variance stability only.

For regions with a PSf population larger than 30 pixels, we observe in Figure 10 that the mode of
the phase-offset distribution represents approximately 20–30% of the detected PSf for the standard
deviation of the slope and a slightly higher value of 25–35% for the phase variance stability. Regions
with smaller population of stable targets can exhibit even larger values. The regions with an occurrence
of the mode below 20% of the PSff population are an exception, whatever the detection criterion.

Figure 9. PSf population as a function of the size of the area, for both artificially and naturally
disconnected areas. Regions with no PSf are not represented. Axes are in logarithmic scale.

301



Remote Sens. 2017, 9, 879

Figure 10. Probability of the mode of the phase-offset distribution as a function of the amount of
selected PSf in a given region, for both artificially and naturally disconnected areas. Regions with
multiple modes are not represented. The x-axis is on the logarithmic scale.

As it can be seen in Figure 9, whose axes are in logarithmic scale, there seems to be no relationship
between the size of a patch and the PSf population. The stable nature of a target is probably related
to its intrinsic characteristics and/or the geometry of observation, which causes a heterogeneous
distribution of the targets across the scene. Since the population of stable targets is the key point to
determine the phase ambiguity, and it cannot be related to the initial population of a given region, it is
not possible to define the minimum size of an area where the SBInSAR-assisted phase unwrapping
can be applied. However, we observe that when the standard deviation of the slope is considered,
the largest region with no PSf at all is made of less than 400 pixels. For the phase variance stability
criterion, the largest region has a size of 3665 pixels, but most of them contain less than 500 pixels.

5. Conclusions

This study has presented a probabilistic approach based on Split-Band Interferometry to
correct the local phase ambiguities introduced during phase unwrapping of classical InSAR process.
The applicability and potential of the proposed approach have been demonstrated on a TerraSAR-X
pair of images over Copahue volcano, showing steep topography and local loss of coherence.
The corrections have been computed for artificially disconnected areas, allowing an indirect validation
of the results. We have shown that the SBInSAR-assisted phase unwrapping is efficient for X-band
images with a large range bandwidth like spotlight images.

We suggested two new criteria to select frequency-persistent scatterers, one based on the phase
variance stability and the other on the slope standard deviation. Both were tested and compared to
the multifrequency phase error based on the aspect ratio of the offsets distribution. With each one
of the three selectors, the expected corrections were retrieved. However, the phase variance stability
showed more precise estimates, though the standard deviation of the slope gave satisfactory results.
Both appeared to be more efficient than the multifrequency phase error.

When we applied the SBInSAR-assisted phase unwrapping to naturally disconnected regions as
well, without validation of the phase-offset correction, we noted a factor larger than two between the
amount of regions corrected using the stability of the phase variance and using the standard deviation
of the slope. The phase variance stability appears to be too demanding for hlsmall regions. So far, no
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correlation has been observed between the size of a patch and the number of stable targets detected in
this patch. As a consequence, the minimum size of a corrigible region could not be determined.

Conventional phase unwrapping algorithms, such as SNAPHU [19–21], propose deformation
mode to handle abrupt deformations or normalization options to level the phase of close areas. In this
case, the consequence may be that the phase ambiguity is not an integer number of cycles anymore
and an a priori estimation of the deformation gradient might be necessary. With the SBInSAR-assisted
phase unwrapping, disconnected regions are reconnected by correcting an offset that is an integer
number of cycles, preserving thus phase information integrity. Moreover, this leveling of the phase is
done by exploiting only the spectral information of SAR images and does not require additional data,
like on-ground measurements (e.g., GPS). The drawback of this approach is that it will not reconnect
small regions because of the need for a sufficient population of stable targets. Additionally, spectral
decomposition is demanding regarding memory and computing time. However, this technique keeps
all its interest for practical cases with steep topography, local coherence losses, geometrical distortions
or high-gradient deformations leading to phase unwrapping issues.

Future work will focus on the applicability of the method to images with smaller bandwidth and
the definition of the best selector of PSf in a standard case. Decreasing the bandwidth to 100–150 MHz,
we expect a reduced population of PSf due to the loss of resolution but still reasonable results. In
addition, the method has been validated on disconnected areas with an important initial population
(>105 pixels) and consequently with a higher probability to include stable targets. The next step will
be to apply and validate it for smaller regions. Finally, due to the dependency of the split-band phase
accuracy on the frequency, we expect better results with C-band or L-band data. In the future, the
SBInSAR-assisted phase unwrapping will be tested on Sentinel-1 data.
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Abstract: Microwave remote sensing can measure surface geometry. Via the processing of the
Synthetic Aperture Radar (SAR) data, the earth surface geometric parameters can be provided for
geoscientific studies, especially in geological mapping. For this purpose, it is necessary to model the
surface roughness against microwave signal backscattering. Of the available models, the Integral
Equation Model (IEM) for co-polarized data has been the most frequently used model. Therefore, by
the processing of the SAR data using this model, the surface geometry can be studied. In the IEM, the
surface roughness geometry is calculable via the height statistical parameter, the rms-height. However,
this parameter is not capable enough to represent surface morphology, since it only measures the
surface roughness in the vertical direction, while the roughness dispersion on the surface is not
included. In this paper, using the random fractal geometry capability, via the implementation of the
power-law roughness spectrum, the precision and correctness of the surface roughness estimation has
been improved by up to 10%. Therefore, the random fractal geometry is implemented through the
calculation of the input geometric parameters of the IEM using the power-law surface spectrum and
the spectral slope. In this paper, the in situ roughness measurement data, as well as SAR images at
frequencies of L, C, and X, have been used to implement and evaluate the proposed method. Surface
roughness, according to the operational frequencies, exhibits a fractal or a diffractal behavior.

Keywords: Synthetic Aperture Radar (SAR); Integral Equation Model (IEM); random fractal geometry

1. Introduction

Studying the surface roughness geometry, especially studying the natural surfaces, requires
appropriate satellite data and processing methodologies [1–3]. The Synthetic Aperture Radar (SAR)
data acquired by the airborne and space-borne sensors has made it possible to examine the surface
roughness, which provides useful information for geoscientists and geologists. The backscattered
signal in all polarizations is affected by surface roughness, and contains the surface geometry
information [4–6]. To measure the surface geometry using the SAR data, the surface geometric
parameter(s) must be modeled against the backscattering coefficient on each polarization. Generally
speaking, to describe and differentiate the patterns and the geometric surface texture, it is indispensable
to model the interaction between the backscattered signals and the surface properties. The radar signal
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is sensitive to certain surface roughness measures, which is determined by the operating radar signal
frequency [7–9].

Of the available models, the standard theoretical models of backscattering include: (1) the
Kirchhoff Approximation (KA), which encompasses Geometric Optics (GO) and Physical Optics (PO);
and (2) the Small Perturbation Model (SPM) [7,10].

The Geometric Optics model for very rough surfaces, the Physical Optics model for moderate
roughness, and the Small Perturbation Model for approximately smooth surfaces, have been
used. Fung et al. (1992) have developed the Integral Equation Model (IEM) as a physically-based
electromagnetic transfer model which combines the Kirchhoff models and the SPM, and which
constructs a more applicable model that can theoretically tolerate a really wide range of roughness
dimensions. It is of note that the IEM is not restricted to any special frequency range or roughness
measures [11].

The IEM exploits the rms-height parameter to characterize the surface geometry [12]. In this paper,
the statistical rms-height and the Gaussian auto-correlation function (ACF) have been implemented as
the conventional IEM. In the conventional method, the surface roughness geometry is only considered
in the vertical direction, and only the Euclidean geometry is applied.

However, using the so called fractal IEM, which considers roughness in the horizontal direction
and its dispersion on the surface, it can be possible to improve the surface morphology estimation and
soar the precision of the microwave discrimination by means of the power-law surface spectrum and
the spectral slope parameter [13].

In this paper, as depicted in Figure 1, to provide the surface geometric characteristics for the
IEM computation, the in situ surface roughness measurement has been performed by the field
surveying operation. The dielectric constants have been extracted from the tables produced by
Martinez et al. (2000) [14]. Furthermore, the SAR satellite data of ALOS PALSAR, Sentinel-C, and
TerraSAR, respectively, in the bands L, C, and X, have been used to compute the surface roughness,
i.e., the geological morphology.

Backscattering Comparison

with SAR measurement

Surface Roughness 
(Morphology)

in situ measurement
Conventional Inputs
Using and

statistical

Fractal Inputs
Using spectral exponent 

for ACF and

Roughness Comparison

with Field measurement

  

EvaluationInputs

Dielectric Constants 
Extraction from References

L-band : ALOS PALSAR
Backscattering Coefficient ( )

Calculation using
SAR Satellite measurements

C-band : Sentinel-1A/SAR-C

X-band : TerrsaSAR-X

} EvaluationInputs
(a)

(b)

+

Figure 1. Flowchart of the study and results evaluation. (a) Direct model evaluation: computation of
backscattering using the in situ measured data; (b) inverse model evaluation: calculation of surface
roughness using the backscattering coefficient.

In this paper, the IEM geometric input parameters have been calculated using three different
methods for two types of surface assumptions; two conventional geometry methods (stationary surface
assumption) and the random fractal geometry (for power-law surface assumption). After running
the model with each of the inputs, the backscattering coefficient at each point corresponding to each
pixel of the SAR measurement data is computed (Figure 1a). In addition, through the IEM inversion
method, the surface parameters are calculated, corresponding to the in situ measurements (Figure 1b).
The IEM computation results, as well as the inverse IEM compared with the measurements, can show
the model’s level of efficacy.
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The IEM calculated and the SAR measured backscattering coefficients are mutually compared to
evaluate the methodology (Figure 1a). Additionally, comparing the in situ rms-height with the inverse
IEM results, the level of efficacy when using the power-law inputs versus the conventional ones can be
cleared [12,15] (Figure 1b).

In Section 2, the IEM backscattering model with the conventional inputs will be addressed.
The methodology of random fractal geometry will be developed in Section 3, in order to determine
the power-law surface parameters as the input of the IEM. Finally, the implementation and validation
of the fractal IEM will be discussed in Section 4 for the multi-frequency SAR data. Section 5 presents
the conclusion.

2. The IEM Backscattering Model

Backscattering is the amount of the scattered signal per surface unit in the scattering angle from 0
to 180 degrees [16]. The calculation of the backscattering coefficient (σ

◦
) process depends on the satellite

antenna specifications. As defined by Fung et al. (1992) and explained by themselves (1994), the IEM
model describes the relation of the backscattering coefficient to the surface roughness parameters, as
well as the dielectric constant and the incidence angle. The IEM is characterized for the co-polarized
and cross-polarized backscattering calculations [8,17]. Yet, in this paper, just the co-polarized equation
is implemented. The co-polarized backscattering coefficient equation according to Fung et al. (2004),
which is termed I2EM by Ulaby (2014), is as follows [7,8,10,11,16]:

σ
◦
pp =

k2

4π
e−2k2s2cos2θ

+∞

∑
n=1

∣∣∣In
pp

∣∣∣2 W(n)(2ksinθ, 0)
n!

(1)

where:
In
pp = (2k s cosθ) fppexp

(
−k2s2cos2θ

)
+ (k s cosθ)nFpp (2)

and pp is either the hh or vv polarizations; k stands for the radar wavenumber (k = 2π
λ , λ wavelength);

s is the rms-height; θ denotes the incidence angle; and W(n) is the Fourier transform of nth power of
the ACF. fhh, fvv, Fhh, and Fvv are approximated by the following equations [10,16]:

fhh =
−2Rh
cosθ

(3a)

fvv =
2Rv

cosθ
(3b)

Fhh = 2
sin2θ

cosθ

[
4Rh −

(
1 − 1

ε

)
(1 + Rh)

2
]

(3c)

Fvv = 2
sin2θ

cosθ

[(
1 − ε cos2θ

ε − sin2θ

)
(1 − Rv)

2 −
(

1 − 1
ε

)
(1 + Rv)

2
]

(3d)

where the horizontally and vertically polarized Fresnel reflection coefficients, Rh and Rv, are given by
the following:

Rh =
cosθ −√

ε − sin2θ

cosθ +
√

ε − sin2θ
(4a)

Rv =
ε cosθ −√

ε − sin2θ

ε cosθ +
√

ε − sin2θ
(4b)

where ε is the ground relative dielectric constant; a complex number concerns the storage and
dissipation of electricity.

In the IEM, s and the surface ACF are the two geometric elements whose calculations are the main
issue considered in this paper.
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Due to the nonlinearity of (1), the model inversion, i.e., solving the IEM for its parameters
analytically, is almost impossible. There are a few arithmetic methods which can be employed
to calculate the surface parameters knowing the backscattering coefficient and the imaging
parameters [12]. In spite of the development of intelligent computation methods such as neural
networks and the Bayesian method, one of the best and most direct methods in this respect is the
Look-up table (LUT) [18,19]. In the LUT method, the backscattering coefficient values for different
values of the surface roughness parameters and dielectric constant are calculated using (1), and
then, the surface parameters corresponding to the backscattering coefficients can be calculated by
interpolation and reversed matching.

Section 2.1 describes the validity range and Section 2.2 exhibits the conventional input parameters
calculation of this model.

2.1. The IEM Validity Region

The IEM is applicable on a wide range of surfaces, from smooth to rough. The IEM’s validity
range, given by Fung et al. (1994), is:

ks < 3 (5a)

(kl)(ks) < μ
√
|ε| (5b)

cos2θ
(ks)2

√
0.46kl

exp
[
−
√

2 × 0.46 kl (1 − sinθ)

]
� 1 (5c)

where μ is a constant and its Gaussian value, and the exponential ACFs are 1.6 and 1.2,
respectively [10,20].

Dierking (1999) has also estimated the validity range of the IEM for different frequencies, similar
to the ones specified by Fung et al. [21]. Furthermore, different studies have concerned the real validity
range of this model and it is mostly shown that the applicable validity domain of this model is more
limited [18,22,23].

2.2. Conventional Inputs for IEM

The rms-height is calculated using the following formula (6):

s =

√√√√ 1
N

[(
N

∑
i=1

z2
i

)
− Nz2

]
∀ z =

1
N

N

∑
i=1

zi (6)

Moreover, W(n) is another geometric term in the IEM, i.e., the Fourier transform of the nth power
of the surface ACF, A(x), either its exponential, or Gaussian regression [24,25] (i.e., respectively (7)–(9)):

A(x) =
∑

N−j
i=1 zizi+j

∑N
i=1 z2

i
(7)

A(x) = e
−|x|

l (8)

A(x) = e
−x2

l2 (9)

where l is the correlation length. Because of its dependence on the profile length, as well as the
rms-height, the calculation of the correlation length has been considered as a difficult problem [9,26].
In this paper, both exponential and Gaussian ACFs are used for conventional implementation, which
have presented a better estimation and have been frequently recommended [3,12,15]. In the calculation
of the ACFs, the correlation length is considered as one third of the semivariogram range [27].
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3. Power-Law Inputs for the IEM

Functions, like y, proportional to some power of the input x (i.e., y = xp), are power-law functions.
Power-law surfaces have the spectrum in the form of S( f ) = c/ f α (α: spectral slope). In natural surface
modeling, unlike the conventional geometry, the random fractal geometry provides better results. The
term “fractal”, in many cases, is considered as the same as “self-similar”. Natural phenomena are
statistically self-similar; i.e., every part of their structure has statistical properties (the mean and the
standard deviation) similar to those of the whole structure [28].

The surfaces with a power-law roughness spectrum over the interval 0 ≤ f ≤ ∞ are ideal random
fractals. For such surfaces, the rms-height s, the correlation length l, and the ACF do not exist [21,29]
Thus, the surface modeling must be realized within the limits of the spatial frequencies (i.e., sampling
rates) fmin ≤ f ≤ fmax. This is a semi-self-affine surface [13,30]. In other words, using the fractal
geometry, natural surfaces can be modeled through the power-law form within fmin and fmax.

Yordanov et al. (2002) present a general expression for the ACF valid for the arbitrary topological
dimension [31]. Since after the roughness measurement of the study sites, the geometric parameters
are considered to be calculated on some arbitrary linear profiles, the ACF for a linear profile of the
samples can be realised in the form of [32]:

A(x) = 2πD−1
∫ kmax

kmin

kD−1−α cos(kx)dk (10)

where k is the wavenumber and α has a limited amount; D < α < D + 2, D is the topological
dimension, and for the linear profile, it is considered one (D = 1) [29,33], representing the slope of the
linear best-fit of the power spectral density (PSD) on a logarithmic scale [29,32].

It is noted that this linear best-fit must be applied to the trendless profile. In other words, the
spectral slope (α) might not include the trend part of the PSD, the early part of the PSD [29].

According to Dierking (1999), in addition to the ACF, two other regular geometric surface
parameters, the power-law rms-height and the correlation length for a linear profile, can also be
calculated using the spectral slope parameter [21]:

s =
√

cLα−1/(α − 1) (11)

l =
(α − 1)2L
2(2α − 1)

(12)

where L is the profile length, and c is the spectral constant or the spectral offset [21].
Hence, in order to evaluate the role of the random fractals for improving the IEM results, having

ascertained the surface morphology, using (8) and (9), the ACF for conventional-1 and conventional-2
methods, respectively, is achieved. The rms-height (s) can be calculated using (6) for these two
conventional methods.

For the power-law calculation of the input parameters, the welch method is applied to the in situ
measured data to calculate the spectral slope, α. Having obtained α and using (11), the rms-height (s)
is computed. Using (10), the ACF is computed.

4. Implementation and Evaluation

Three different methods for the calculation of the input parameters of the IEM are implemented
for the in situ field measurement to apply the methodology of the flowchart (Figure 1a). Afterward,
following the second flowchart (Figure 1b), the LUT can be formed to determine the surface roughness
of the terrestrial points corresponding to each measured SAR backscattering (on L, C, and X-bands)
pixels. The case study is located in western Iran, between the cities of Ilam and Dehloran. From the
view point of geology, this region is known as the “Anaran” anticline, located in the Zagros fold-thrust
belt. Figure 2 depicts the geographic location of the case study and the 10 measurement sites. Figure 2b
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depicts the main geological formations of the region; however, the morphology of two of them (Gurpi
Fm and Quaternary Sediments) is not considered to have been studied in this paper.

The field measurement is planned in the form of a mesh of points; thus, the geometric parameters
for any arbitrary profiles on the surface can be calculated. The in situ surface roughness measurement
is performed on ten different sites with different morphologies using the programmable surveying
Total Station (Trimble™5600). This instrument is used to measure a 25 × 25 mesh with a 50 cm interval
on each measurement site. The measurement instrument has a better than one centimeter precision.
Being measured as a mesh of points allows for the calculation of roughness parameters along any
arbitrary profile and certainly increases the precision of the parameters estimation. Generally, there
are three formations belonging to different geological periods. Table 1 shows the details of these
geological formations.

 

Figure 2. (a) The case study location on a map of Iran; (b) Surface roughness measurement sites
position on the geological map (As, Asmari Fm; Gs, Gachsaran Fm; Pd, Pubdeh Fm; Gu, Gurpi Fm; Qu,
Quaternary Sediments); (c) Measurement sites position on the X-Band SAR backscattering image; the
color-bar of the values of backscattering is beside the image in db.

Table 1. Geological age and general specification of the morphology of the study area formations.

Geological Formation Geological Period General Morphology Appearance

Asmari (As) Oligocene to Lower Miocene Rough
Gachsaran (Gs) early Miocene Moderate

Pabdeh (Pd) Paleocene to early Miocene Smooth

Furthermore, the SAR measured data are described in Table 2. Three SAR measurement data are
used in three microwave bands. The acquisition modes are also specified.

Table 2. Specifications of the SAR measurement data in three different frequencies for the study.

Satellite/Antenna Acquisition Mode Band Freq. (GHz)
Incidence

Angle/Pass/Look

ALOS–Palsar-2 Spot-light L 1.200 32.3◦/Ascending/Left
Sentinel-1A Strip Map Mode C 5.405 38.1◦/Ascending/Right
TerraSAR-X Staring Spot-Light X 9.650 22.7◦/Descending/Left

The earth surface roughness of a single study area in each of the radar bands is seen differently,
due to the difference in the operational frequency (or wavelength). Figure 3 depicts the face of
the formations surface and shows the extent to which they are affected by weathering and erosion.
Obviously, this variety of roughness must not be seen as the same in different wavelengths. The
smoother surfaces are more susceptible to erosion, whereas the rougher ones are more resistant against
weathering. The level to which a lithology gets eroded is dependent on its material and its age.
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 (a) (b) (c)

Figure 3. The geological formations surface. (a) Asmari (As) fm., Oligocene to Lower Miocene;
(b) Gachsaran (Gs) fm., early Miocene; (c) Pabdeh (Pd) fm., Paleocene to early Miocene. The extent to
which they are affected by weathering and erosion can be seen. The photos are taken from ~1 m above
the surface.

It must be considered that prior to any backscattering processing, as well as results assessment,
the SAR imagery data introduced in Table 2, which are contaminated by the speckle noise, were
subjected to a pre-processing stage, i.e., despeckling using the wavelet transform method [34].

Figure 4 illustrates how the roughness of the formations appears in the SAR images of different
frequencies. The backscattering in the images is shown in the equalized black and white images, but
the side color bars show the pixel values in db. The whiter the images, the rougher the face because
of double, triple, and in general, multi-scattering signals. The blacker pixel values are because of the
smoothness of the surface.
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Figure 4. Backscattering on the SAR measurement, as equalized black and white images; (a) the L-Band
SAR data, the ALOS-PALSAR satellite; (b) the C-Band SAR data, the Sentinel-1A satellite; (c) the X-Band
SAR data, the TerraSAR-X satellite; the value of backscattering is depicted beside each image on the
color-bar in db. Lower values, i.e., dark pixels, show smoothness and large db values are because of
the surface roughness.

The numerical geometric characteristics on each site surface are tabulated in Table 3. The
rms-height and the correlation length are calculated using the conventional geometry; the α and
the fractal dimension using the power-law geometry.

Since there was a considerably dry climatic condition when the satellite data was being acquired,
and the field measurement was performed in the same seasonal conditions, it was obviously perceived
that the moisture until 5 cm below the surface was absolutely 0%; that is why the dielectric constant
values were used from the references who presented these values for the dry climate [14]. The values
for the three geological formations of the study area, i.e., Asmari, Gachsaran, and Pabdeh, are 3.6, 4.0,
and 4.1, respectively.

Figure 5 illustrates how the spectral slope (α) is calculated using the in situ measurements of
the PSD of the 10 selected study sites. The PSDs are estimated using the Welch’s power spectral
density [35,36]. According to the previous section, the data trend or the result of large topography
must not be considered in the measurement of the spectral slope (α). For this aim, the red line
(i.e., a linear regression) in the plots of Figure 3 is drawn on a polynomial regression of the PSD,
notwithstanding the general trend part of the PSD. The experimental analysis obviously shows that
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the regression of the PSD for frequencies between 0.85 and 3.15 (Hz) results in the best values for the
spectral slope. This empirically decided frequency range is somehow equal for different sites.

Table 3. Morphological and surface geometric characteristics of the study sites based on the site
visit and the in situ measurement. The roughness parameters are calculated using the equations
and methods presented in Section 3. Figure 5 shows how α is estimated for each site surface. The
Rms-height and the correlation length are the conventional ones and the average of the multiple
arbitrary profiles on each of the site surfaces.

Site No.
Dominant Geological

Formation
rms-Height (cm) Corr. Length (cm) α

Site 1 As 6.02 81.07 1.5345
Site 2 Gs 2.2 45.3 1.7112
Site 3 As-Gs 4.64 54.07 1.6865
Site 4 Pd 1.11 14.9 1.7923
Site 5 Pd 1.21 18.03 1.8825
Site 6 Gs 1.98 40.71 1.8817
Site 7 As 4.97 74.38 1.5349
Site 8 Gs 1.66 19.31 1.7501
Site 9 Gs 2.86 50.9 1.7709
Site 10 Qu 1.76 31.31 1.7472

Table 4 shows the capability of each radar frequency for the discrimination of each formation. The
conformity in this table is determined according to the contents of Tables 2 and 3.

Table 4. The status of the validity of the IEM based on (5a,b,c) for each geological formation on each of
the study bands, based on Fung et al. (1994) [10]. Check marks show the conformity of the formation
roughness parameters (on Table 3) to the IEM constraints at each microwave band and the X marks
show the non-conformity.

Geological Formation
L-Band C-Band X-Band

(5a) (5b) (5c) (5a) (5b) (5c) (5a) (5b) (5c)

Asmari Fm.
√ √ √ √ √ √ × × ×

Gachsaran Fm.
√ × √ √ √ √ √ × √

Pabdeh Fm.
√ × √ √ √ √ √ √ √

In this table, it becomes clear which of the three constraints determined by Fung et al. (1994) via
(5a,b,c) are approved or rejected in order to morphologically differentiate the formations. In this table,
the approbation (

√
) of an equation indicates the validity of the constraint for the relevant band and

the rejection (×) of the equation means the invalidity of the constraint.

4.1. Geometric Parameters Analysis

The microwave signal, depending on the radar frequency, is sensitive to a limited range of the
roughness spectrum; thus, a surface seen as being rough in one frequency measurement may be seen
as completely smooth in another. Figure 6 represents the backscattering of the incident radar signal in
the radar bands L, C, and X on hh, vv, and hv polarizations for the earth surface of the main geological
formations present in the field measured sites. As the frequency or the local incident angle increases,
the smaller roughness scale becomes significant. The graphs confirm the different capability of the
operational frequencies for the surfaces discrimination, presented in Table 4.
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Figure 5. Calculation of the spectral slope (α) via the linear regression of a polynomial regression of the
PSD, calculated from the in situ measurements of the 10 selected study sites using the Welch’s method.
Experimentally, the trend of the data is between 0 and 0.85 Hz, which has not been considered in the
calculation of the spectral slope.
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Figure 6. Backscattering (σ
◦
) for three bands L, C, and X on hh, vv, and hv polarizations for the main

geological formations of the study area.

4.2. Evaluation of Backscattering and Surface Roughness Simulation

What is needed to discriminate geological formations according to their morphology is the surface
roughness [25]. In this section, the results of the IEM implementation to simulate the backscattering
coefficient (σ

◦
) using the surface data and a comparison with the SAR measured ones in the radar

bands L, C, and X for the surface roughness computation is described (Figure 1a). Via inverse IEM
using the LUT, having ascertained the SAR measurements, the rms-height of the surface is simulated.
An evaluation of the simulated surface roughness can be performed using the rms-height of the field
measurements (Figure 1b).

Having obtained the surface geometric characteristics for a 25 × 25 points mesh and then, taking
arbitrary profiles according to geological maps and the site visit, a matrix 25 × 25 of σ

◦
is computed

for each site. Moreover, using the IEM inversion, by the values of σ
◦

on a 25 × 25 pixels SAR image, a
25 × 25 matrix of the rms-height can be calculated for each of the sites.

The statistical rms-height, as well as the ACF, are calculated beside the extracted dielectric constant
of each site from the published measured values to compute the conventional IEM backscattering
coefficient, i.e., the values of σ

◦
hh and σ

◦
vv. The power-law IEM is computed using the ACF and the

rms-height is calculated using the spectral slope parameter.
Figures 7–9, respectively, for the bands L, C, and X, present the comparisons between the

backscattering coefficients calculated through the three methods of calculation of the IEM input
parameters, namely two “Conventional” methods (exponential and Gaussian ACFs) and a “Power-law”
method, in comparison with the measured SAR backscattering coefficient, referred to as an “SAR
Measurement”. This comparison is performed on 30 randomly selected pixels for 10 measured sites.
Precisely being a point on the diagonal line of each graph indicates that the IEM simulated value on
the corresponding pixel is exactly equal to the measured backscattering on that pixel. Therefore, in
these graphs, the farness of the diagonal line shows the simulation error [25,37].
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Figure 7. Backscattering simulation accuracy via the IEM for the geological formations on the L-band,
(a) using the conventional geometry and the exponential ACF; (b) using the conventional geometry and
the Gaussian ACF; (c) using the Power-Law geometry for the calculation of the IEM input parameters.
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Figure 8. Backscattering simulation accuracy via the IEM for the geological formations on the C-band,
(a) using the conventional geometry and the exponential ACF; (b) using the conventional geometry and
the Gaussian ACF; (c) using the Power-Law geometry for the calculation of the IEM input parameters.
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Figure 9. Backscattering simulation accuracy via the IEM for the geological formations on the X-band,
(a) using the conventional geometry and the exponential ACF; (b) using the conventional geometry and
the Gaussian ACF; (c) using the Power-Law geometry for the calculation of the IEM input parameters.

For an assessment of the aforementioned calculation methods, it is necessary to compare the
simulated surface roughness parameter (rms-height) resulting from the inverse IEM (i.e., extracted
from Look-up table) with the in situ measured parameter for the ten sites. For this comparison, the
point graphs of Figures 10–12 depict the comparison of the computed rms-height of 30 selected pixels
on bands L, C, and X, and the measured values on their corresponding field points.

Precisely being a point on the diagonal line of each graph indicates that the simulated rms-height
using the inverse IEM on the corresponding pixel is exactly equal to the field measured rms-height.
Evidently, the proximity of the points to the diagonal line announces the simulation correctness [37].
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Figure 10. The Rms-height simulation accuracy via the inverse IEM for the geological formations on
the L-band, (a) Using the conventional geometry and the exponential ACF; (b) using the conventional
geometry and the Gaussian ACF; (c) using the Power-Law geometry for the calculation of the IEM
input parameters.
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Figure 11. The Rms-height simulation accuracy via the inverse IEM for the geological formations on
the C-band, (a) Using the conventional geometry and the exponential ACF; (b) using the conventional
geometry and the Gaussian ACF; (c) using the Power-Law geometry for the calculation of the IEM
input parameters.
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Figure 12. The Rms-height simulation accuracy via the inverse IEM for the geological formations on
the X-band, (a) using the conventional geometry and the exponential ACF; (b) using the conventional
geometry and the Gaussian ACF; (c) using the Power-Law geometry for the calculation of the IEM
input parameters.

In Table 5, the standard deviation of the calculated rms-height in the methods of IEM
implementation are tabulated. Therefore, the statistical dispersion of the calculated results on each
site for each polarization versus the field measured values are comparable, in order to evaluate
the efficiency of the proposed power-law calculation of the inputs instead of the conventional one.
Evidently, the smaller the standard deviation, the higher the accuracy of the simulated data.
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Table 5. The standard deviation of the rms-height, calculated using the inverse IEM for the geological
formations on bands L, C, and X, using three methods of inputs calculation, two conventional (1: The
exponential ACF; 2: The Gaussian ACF) and the power-law geometry. The bold values show a decrease
of the standard deviation of using the power-law inputs versus both the conventional ones.

Geological Formation
L-Band C-Band X-Band

As. Gs. Pd. As. Gs. Pd. As. Gs. Pd.

Inputs using the Conventional Geometry1 1.049 0.919 0.873 0.352 0.378 0.505 0.207 0.239 0.341
Inputs using the Conventional Geometry2 0.985 0.799 0.834 0.375 0.309 0.506 0.232 0.283 0.355

Inputs using the Power-law Geometry 0.839 0.721 0.970 0.326 0.370 0.512 0.224 0.240 0.285

Comparing the values of the standard deviation in Table 5 shows that the use of random fractals
geometry has improved the results by more than 10% on average, i.e., dividing the largest standard
deviation values of the two conventional methods by the standard deviation of the Power-law method
can give such a value. The bold numbers are used to indicate that the Power-law geometry overcomes
both of the conventional methods. For both co-polarizations, the same improvement is achieved.

Figure 13 illustrates the standard deviation values on the bar-charts to easily compare the different
frequencies, as well as the different formations.
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Figure 13. The Standard Deviation of the calculated rms-height values using the IEM Look-up table
calculated via three methods of inputs calculation, conventional-1: using the exponential ACF, the
conventional-2: using the Gaussian ACF, and the power-law geometry for the geological formations of
the study sites, using the backscattering coefficient on (a) L-band; (b) C-band; and (c) X-band.

5. Discussion

In this paper, the Integral Equation Model (IEM) backscattering model, as well as its inverse (using
the Look-up table method), are implemented to measure the geometry of the earth surface roughness
or morphology. For such implementation, the input parameters are calculated using three different
methods: two conventional geometries (the exponential and the Gaussian correlation functions, the
ACFs) and one power-law method. The implementation of the fractal geometry in this paper is
performed through the spectral slope parameter (α), which shows the coincidence of the power-law
ACF with the earth surface. The IEM results (i.e., σ◦, backscattering coefficients) are compared with
the Synthetic Aperture Radar (SAR) measurement (i.e., TerraSAR-X) and the inverse IEM results (i.e.,
rms-height) were compared with the in situ measurement.

The fractal nature of the roughness causes a higher efficiency of the power-law geometry versus
the conventional geometry when modeling the surface; Figures 7–12 show better results for the fractal
modeling and eliminate more uncertainties, affirming [21,38] studies. Comparing the two conventional
geometry implementations, apart from the C-band as the moderate wavelength, the Gaussian ACF
causes less deviation for higher wavelengths, and the exponential ACF results are better for lower
wavelengths; this supports the deductions presented in [12,37,39]. The values of the standard deviation
in Table 5 show a general improvement, but when considering the behavior of different geological
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surfaces with various levels of roughness on each of the SAR frequency image, we deduce that for lower
frequencies (e.g., L-band), the rougher surfaces are in the fractal regime, confirming the conclusions
presented in [21,40]; and for the higher frequencies (e.g., X-band), the smoother ones are in accordance
with [6]. Therefore, the rougher surfaces in high frequencies and the smoother ones in low frequencies
display an obvious diffractal behavior. In general, having the in situ measurements, applying the
most famous backscattering model, and completing an evaluation with the SAR measured data, the
results of significant studies such as [17,38,41,42] are somehow endorsed with comparable numerical
results, showing the efficiency of applying the power-law methods for IEM implementation for the
SAR backscattering studies.

6. Conclusions

Using the random fractal geometry via the implementation of the power-law model in the
backscattering modeling offers results which are up to 10% better for the calculation of the surface
geometry. This methodology can improve the results of the spectral processings in the morphological
mapping of the formations. Additionally, using the achieved information of morphology, we improved
the scale of the geological maps.

For each radar frequency, the specific size of the surface roughness can be measured via signal
backscattering. Using the three SAR bands L, C, and X for the earth surface of three known-geological
surfaces shows the capability of this technology in geological morphology mapping.

The selection of the sites in this paper was undertaken considering that no large-scale topography
has been inside the sampling mesh. Moreover, for the calculation of the spectral slope parameter (α),
the trend part of the Power Spectral Density (PSD) graph has been ignored, and the spectral slope line
was drawn on a polynomial regression of the PSD, which experimentally offered more accurate results.

A proper estimation of the surface roughness spatial frequency and consequently the spectral
slope α, using the power-law ACF, offered appropriate IEM input parameters computation; therefore,
after running the model, a more precise backscattering coefficient which exhibited a lower standard
deviation was achieved. Also, using the random fractal geometry, the model inversion with the
Look-up table method offered better roughness approximation. However, the geometric behavior
of the surface roughness against the SAR frequencies is not constant, i.e., as the micro-topography
decreases, the fractal regim exists in higher frequencies, and vice versa.
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Abstract: This work is aimed at investigating the role of resolution in fractal dimension map
estimation, analyzing the role of the different surface spatial scales involved in the considered
estimation process. The study is performed using a data set of actual Cosmo/SkyMed Synthetic
Aperture Radar (SAR) images relevant to two different areas, the region of Bidi in Burkina Faso and
the city of Naples in Italy, acquired in stripmap and enhanced spotlight modes. The behavior of
fractal dimension maps in the presence of areas with distinctive characteristics from the viewpoint
of land-cover and surface features is discussed. Significant differences among the estimated maps
are obtained in the presence of fine textural details, which significantly affect the fractal dimension
estimation for the higher resolution spotlight images. The obtained results show that if we are
interested in obtaining a reliable estimate of the fractal dimension of the observed natural scene,
stripmap images should be chosen in view of both economic and computational considerations.
In turn, the combination of fractal dimension maps obtained from stripmap and spotlight images can
be used to identify areas on the scene presenting non-fractal behavior (e.g., urban areas). Along this
guideline, a simple example of stripmap-spotlight data fusion is also presented.

Keywords: synthetic aperture radar; rough surfaces; fractals

1. Introduction

Cosmo/SkyMed synthetic aperture radar (SAR) multi-operational capabilities allow the
observation of a scene at different spatial scales, i.e., with different levels of detail. Usually, the choice
of the operational mode better fitting a specific application is dictated by a trade-off between resolution
and coverage. In particular, in the case of Cosmo/SkyMed the range of attainable resolutions spans
from about 1 m in enhanced spotlight mode, with a coverage of 10 km, to about 100 m in scansar huge
region mode, with a coverage of about 200 km, whereas the stripmap mode achieves a resolution of
3 m, with a coverage of 40 km. In this context, stripmap images, or even better, scansar images, are well
suited for large-scale applications, whereas spotlight products can be fruitfully used for local-scale
analyses, able to provide more detailed information on the observed scene. The combined use of
multi-operational data, therefore, can be set in the framework of a multi-scale approach, in which
coarse resolution images can provide the necessary regional-scale survey of the area of interest,
while high resolution images can be used to refine the analysis on a local scale. Regarding the analysis
of natural surfaces, the mentioned multi-scale approach can be used to gain the required information
investigating different spatial scales. In fact, the physical and geometrical information regarding
the scene under survey can present strong variations, which cannot be fully appreciated through
low-resolution SAR data, which, in turn, allow only the estimation of somehow averaged quantities.
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When the focus is on surface roughness, fractal models represent the best way to model the
behavior of natural surfaces [1–12]. The fractal dimension is a concise and meaningful entity,
bearing meaningful physical information regarding the geometrical and geophysical characterization
of a natural surface [5–9]. In particular, geologists usually use the fractal dimension to model the
roughness of natural surfaces, because it is not dependent on the size of the observed surface. In fact,
a typical problem of classical statistical roughness descriptors, such as the height standard deviation
and correlation length, lies in their dependence on the observation scale and on the extension of the
surface from which they are estimated [5–9].

The use of fractal concepts in the remote-sensing community is a long-standing topic, testified by
applications regarding image analysis [13], and, in particular, SAR image segmentation [14,15] and
feature detection [16,17]. However, all the mentioned works are based on the estimation of fractal
parameters of image texture, leaving aside the problem of investigating how the fractal dimension
of the observed surfaces is related to the amplitude values of image pixels. This kind of analysis
was first considered in Pentland [18], and Kube and Pentland [19] for the case of optical images of
Lambertian natural surfaces; this pioneering work was extended to non-Lambertian fractal surfaces in
Korvin [20]. More recently this analysis has been performed for the case of SAR imaging: in particular,
in Di Martino et al. [21,22] the authors introduced appropriate models and algorithms, allowing for
the estimation of the fractal dimension of an observed surface from a SAR amplitude image. Therefore,
while works [14–17] were based on the introduction of convenient fractal-based parameters to perform
image processing tasks, without entering the problem of associating to them a clear physical meaning,
the estimation framework of Di Martino et al. [21,22] provides estimates of the fractal dimension of
the observed surface, i.e., a parameter with a clear physical meaning that can be easily managed by
physicists and geologists for the characterization of natural phenomena. Moreover, works [21,22]
forerun (and partly stimulated) the development of SAR processing techniques based on the use of
fractal dimension: indeed, recently fractal dimension has been fruitfully used in SAR interferometry,
to support coregistration [23], regularization [24], and phase unwrapping [25], and in SAR speckle
filtering [26,27]. All these techniques benefit from the availability of accurate estimates of the surface
fractal dimension.

In more detail, in Di Martino et al. [21,22] the estimation of the surface fractal dimension from
a SAR amplitude image is performed exploiting a sliding window scouring the whole image, thus
allowing the generation, as output, of a new value-added SAR product, the fractal dimension map,
i.e., a point-by-point map of the estimated fractal dimension of the imaged surface, accounting for
local variations of the surface fractal dimension. Some properties of the technique we propose are
remarkable [28]. The fractal dimension clearly depends on a single feature of the observed scene,
namely its roughness. From this viewpoint, the fractal dimension is one of the few parameters
retrievable from SAR data that allows the separation of the influence of a single physical parameter
(in particular, the roughness) from the others involved in SAR image formation. Actually, in many
practical situations, the post-processing of SAR images provides products showing a significant
dependence on the acquisition geometry of the employed SAR image, and this is the major
disadvantage from the end-user viewpoint. For instance, the severe dependence on the SAR
acquisition geometry leads to classification maps that are not easily comparable and cannot be
straightforwardly managed by non-expert SAR users, whenever they are obtained from SAR images
acquired from different satellite tracks. Conversely, the estimation of the fractal dimension maps is
almost independent of the acquisition geometry. In fact, in Di Martino et al. [28] we analyzed a wide set
of multi-angle SAR images of the same area and verified that the estimated fractal dimension maps are
dependent neither on the sensor look angle nor on the local incidence angle, at least in the hypothesis
of validity of the theoretical model (i.e., on natural surfaces). Furthermore, in Di Martino et al. [29] we
demonstrated that the maps are not dependent on polarization, at least when co-polarized channels
are considered.
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Due to the above-mentioned properties, the fractal dimension maps are value-added SAR products
that can have a significant impact on the end users’ community. For this reason, in the present paper
we investigate the role of resolution, in order to unveil possible dependencies on the surface spatial
scales involved in the estimation. For purely fractal surfaces, the fractal dimension keeps constant over
all the spatial scales; however, it must be noted that, since the fractional Brownian motion (fBm) surface
root mean square (rms) slope decreases as the observation scale increases, at larger observation scales
the small-slope hypothesis is more easily satisfied: from this viewpoint, stripmap images are more
convenient than spotlight images. In conclusion, we expect that in natural, homogeneous (at the scale
of window size) areas the estimated fractal dimension is the same on spotlight and stripmap images,
except in the uncommon cases in which the small-slope assumption is satisfied for the stripmap image
and not satisfied for the spotlight image. It must be also noted that, sometimes, actual natural surfaces
present multifractal behavior, i.e., their fractal dimension changes according to the spatial scale [5,8,9].
This may be another source of difference between the fractal dimension maps obtained from spotlight
and stripmap images. Finally, in areas containing man-made objects the employed fractal model does
not hold, and since such objects are usually strongly scale-dependent, we expect that the estimated
fractal dimension obtained from stripmap and spotlight images can be different.

For the analysis, we use two sets of COSMO-SkyMed stripmap and enhanced spotlight SAR
images relevant to the areas of Bidi in Burkina Faso and Naples in Italy. All the images were acquired
with similar look angles, between 31◦ and 33◦. Two subsets were cropped from each image as
representative of different kind of land-cover and texture properties: they span from a homogeneous
bare-soil scenario to a very heterogeneous urban scenario. In this way, we are able to investigate the
behavior of the algorithm according to different regimes of validity of the theoretical model. In fact,
the theoretical model was originally developed for bare-soil natural surfaces, which can be conveniently
modeled through fractals. For such natural surfaces, we expect that the estimated fractal dimension
maps do not significantly depend on the employed resolution, due to the scale-invariance property of
fractal objects. Accordingly, the same results should be obtained from stripmap and spotlight images.
This is the first property that we want to verify in this paper. However, in the presence of man-made
objects, or other non-fractal objects, even if the theoretical model does not hold and the algorithm
does not provide a true fractal dimension, the estimated meta-parameter can provide meaningful
information, which can be used for the characterization of the area of interest [30]. In this case we
cannot a priori expect that the estimated fractal dimension does not depend on resolution, and it is of
interest to verify the behavior of the obtained results at different resolutions. The analysis is performed
within a statistical framework, along the same guidelines of Di Martino et al. [28]. However, we also
present results regarding the joint use (on a pixel basis) of the fractal dimension maps obtained from
the stripmap and the spotlight images, where we try to identify fine textural details related to specific
land-cover classes.

The paper is organized as follows. In Section 2 the theoretical and methodological background
is summarized and the remarkable properties presented by the fractal dimension maps are detailed.
In Section 3 we present the experimental setup and the statistical analysis of the obtained maps, along
with an example of stripmap–spotlight data fusion. Finally, conclusions and relevant suggestions are
reported in Section 4.

2. Materials and Methods

In the present section, we summarize the main theoretical and implementation aspects regarding
the generation of the fractal dimension map from a single SAR image relevant to a natural surface.

2.1. Basic Theory

With regard to the surface model, we consider here the fractional Brownian motion (fBm) model,
which is an everywhere continuous, nowhere differentiable process. It can be conveniently described
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in terms of its increment probability density function (pdf) [2–4]; in particular, a stochastic process
z(x,y) is an (isotropic) fBm surface if, for every x, x′, y, y′ it satisfies the following relation:

Pr{z(x, y)− z
(
x′, y′

)
< ξ} =

1√
2πsτH

ξ∫
−∞

exp
(
− ξ2

2s2τ2H

)
dξ (1)

where Pr{·} stands for “probability”, τ is the distance between the points (x,y) and (x′,y′), s [m1−H]
is the incremental standard deviation, i.e., the standard deviation of the surface increments at unitary
distance, and H is the Hurst coefficient (0 < H < 1), related to the fractal dimension D through the
relationship D = 3 − H. In the frequency domain, the power spectral density (PSD) of the isotropic
two-dimensional fBm process exhibits an appropriate power-law behavior [1–4]:

S(k) = S0k−α (2)

where in S0 and α are the fBm spectral parameters, related to the previously introduced spatial
parameters by the following relationships [2]:

S0 = 2H+1Γ2(1 + H) sin(πH)s2 (3)

α = 2 + 2H = 8 − 2D (4)

Γ(·) being the Euler Gamma function.
In Di Martino et al. [22] the authors presented a forward model linking the stochastic

characterization of an SAR image to the fractal parameters of the observed surface. In particular,
the authors demonstrated that—in the hypothesis of a small slope regime for the surface
roughness—the modulus of the reflectivity function |γ(x, y)| (where x and y represent azimuth and
ground-range, respectively) depends, to the first order, on the partial derivative p(x,y) of the surface
height in the range direction. Hence, in a first order approximation, |γ(x, y)| does not depend on the
partial derivative of surface height in the azimuth direction q(x,y) [22]:

|γ(x, y)| = a0 + a1 p(x, y) + o(p, q) (5)

where a0 and a1 are the coefficients of the Mc Laurin series expansion, depending on the considered
scattering model, and o(·) indicates terms that are infinitesimal of an order higher than one.
The coefficients a0 and a1, and, in turn, the validity limits of the proposed model, depend on the
considered look-angle, the fractal parameters of the observed surface, the scattering model, and the
considered resolution.

In Di Martino et al. [22], a closed form expression for the PSD of the azimuth and range
cuts of the derivative process p(x,y) has been evaluated via appropriate Fourier transforms of their
autocorrelations. The expression obtained for the PSD of the range cuts is

Sp
(
ky; Δy

)
= 2s2Δy−1+2HΓ(1 + 2H) sin(πH)

[
1 − cos

(∣∣ky
∣∣Δy

)] 1(∣∣ky
∣∣Δy

)1+2H (6)

where ky is the spatial wavenumber associated with the range direction and Δy is the ground range
resolution of the image [21,22]. Moreover, it was demonstrated that for small wavenumbers the
range cut PSD holds a linear behavior in a log-log plane, while the azimuth-cut PSD does not present
this remarkable property [22]. In particular, when kyΔy → 0 we obtain the following asymptotic
expression for the range-cut PSD, S̃p

(
ky
)
:

S̃p
(
ky
)
= s2Γ(1 + 2H) sin(πH)

1∣∣ky
∣∣2H−1 (7)
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Hence, taking into account the relation between the reflectivity and the derivative process p
reported in Equation (5), and the band-limiting effect of the SAR impulse response [22], we obtain for
Si the following expression:

Si
(
ky; Δy

)
= a2

1Sp
(
ky; Δy

)
Rect[

Δysin2ϑ0 ky

π
] (8)

where Rect[·] stands for the rectangular function and, in a wide range of small wavenumbers,
the asymptotic expression in Equation (7) can be assumed for Sp.

2.2. Estimation Method

Actually, the asymptotic spectrum reported in Equation (7) exhibits linear behavior in a log-log
plane: in particular, looking at Equation (7), we can conclude that its slope is equal to 1 − 2H.
Therefore, a straightforward way to estimate the value of the fractal dimension of an observed
scene directly from its corresponding SAR image can be based on the use of linear regression
techniques. Based on this observation, an algorithm has been developed allowing the retrieval
of the point-by-point fractal dimension map of a natural surface starting from its single look amplitude
SAR image [22]. The algorithm evaluates the fractal dimension D associated with each pixel using the
information relevant to neighboring pixels enclosed in a sliding window which, spanning the whole
image, generates the fractal dimension map. The estimation of the PSD of the range cuts enclosed
in each processing window is performed using the Capon estimator [22,31,32]. This requires the
preliminary estimation of the autocorrelation matrix, which we perform using the modified covariance
method [18,19]. Then, a linear regression step on the obtained PSD allows the evaluation of the fractal
dimension D. The Capon estimator has been chosen because it overcomes the leakage and high variance
problems arising when facing the estimation of power-law spectra, as detailed in [10,31,32]. In Figure 1
we report a flow chart of the processing steps performed in each instance of the sliding window.

Figure 1. Flow chart of the processing used for the estimation of the fractal dimension within the
sliding window.

The key parameter to be set for the elaboration is the size of the sliding window. Its choice results
from a trade-off between the accuracy and resolution of the output map [22]. It was verified that a
good choice in most cases is a window size of about 50 × 50 pixels [22]. Moreover, the size of the
sliding window also dictates the maximum spatial scale involved in the estimation. In fact, the spatial
scales involved in the estimation are dictated on the one hand by the resolution, which is related to
the minimum spatial scale, and on the other hand by the size of the sliding window, which is related
to the maximum scale. Therefore, if we analyze the behavior of the algorithm on images presenting
different resolutions using the same window size (in order to obtain a comparable estimation accuracy
for the two maps), different spatial scales will be involved in the estimation. This fact, in principle,
can lead to different values of the fractal dimension on the two maps, for the reasons discussed in the
Introduction and experimentally explored in Section 3.

3. Results and Discussion

The data set used in the experimental framework consists of Cosmo/SkyMed images acquired in
two different areas, which present very different characteristics with respect to climate, geology and
land-cover. In particular, we consider images obtained in stripmap and enhanced spotlight operational
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modes, so that the area covered by the spotlight images is a subset of the area imaged in stripmap
mode. The data set consists of:

• A first couple of images relevant to the area of Bidi in the Yatenga district of Burkina Faso: the
stripmap image was acquired on 18 August 2011 and the enhanced spotlight image on 22 August
2011. The data are in Single look Complex Slant Balanced (SCS_B format and acquired in
Horizontal-Horizontal (HH) polarization with a look angle of about 33◦. The guaranteed
resolution of the stripmap image is 3 × 3 m2 in the azimuth-ground range, while for the enhanced
spotlight it is 1 × 1 m2; the pixel spacing is 1.9 × 2.1 m2 for the stripmap and 0.7 × 0.6 m2 for the
enhanced spotlight.

• A second couple of images relevant to the city of Naples in Italy: in this case, the stripmap image
was acquired on 1 August 2011 and the enhanced spotlight image on 29 August 2011. The images
are in Single look Complex Slant Unbalanced (SCS_U) data format (i.e., unbalanced data with
no weighting applied to the processed bandwidth), with a look angle of about 31◦ and HH
polarization. The guaranteed resolution is 2.5 × 2.5 m2 in azimuth-ground range for the stripmap
case and 0.85 × 0.85 m2 for the enhanced spotlight one; the pixel spacing is 2.1 × 2.1 m2 for the
stripmap and 0.7 × 0.6 m2 for the enhanced spotlight.

For each couple of images, we selected two subsets presenting different characteristics from the
viewpoint of land-cover and scene distribution. To each subset, we applied the estimation algorithm
described in the previous section: we set the elaboration window size at 51 × 51 pixels for all the
examined cases. In this way, we obtained fractal estimates presenting similar accuracies and, hence,
the values of the fractal dimension maps obtained from the stripmap and spotlight data will be
comparable for homogeneous areas. This corresponds to about 102 × 107 m2 in the stripmap case
and 36 × 31 m2 in the spotlight case. The images and the maps were geocoded using a standard
technique based on the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM)
of the area of interest and were interpolated in order to obtain a pixel spacing of 5 × 5 m2. Actually,
the geocoding step is necessary to allow an effective comparison of data acquired with very different
acquisition parameters; furthermore, the use of geocoded products is of fundamental importance for
the applicative community (e.g., geologists, geophysicists), which usually works with geo-referenced
data, rather than with data in SAR native reference systems [28]. However, with regard to the fractal
dimension maps, the geocoding step cannot be applied to SAR images prior to the fractal dimension
estimation step, since it significantly degrades the fractal characteristics present in the image [28]:
therefore, we first evaluated the fractal dimension maps on non-geocoded images and then applied
the geocoding directly to the obtained maps.

Once the geocoded fractal dimension maps are available, we can analyze their statistical behavior.
The proposed statistical analysis is based on the evaluation of the first order statistics of the fractal
dimension maps of the subsets. This kind of statistical analysis is also justified by the fact that
the proposed product is devoted to the applicative community, which is typically interested in the
geophysical characteristics of homogeneous areas, rather than in the punctual characteristics related to
the statistical behavior of single image pixels. Note that we did not need to implement any calibration
steps, because the fractal dimension maps are not dependent on the absolute image calibration [28].
In the following subsections, we discuss in detail the results obtained for each processed subset.

3.1. Burkina 1

In Figure 2a we show a Google Earth image of the first area of interest, 2.8 × 2.4 km2. The available
optical Satellites Pour l’Observation de la Terre (SPOT) image was acquired on 5 May 2013, i.e., during
the Burkina Faso dry season. In fact, the area of interest is located in the Sahelian zone of Burkina Faso,
where the climate is characterized by two main seasons, a long dry season from October to May and
an extremely rainy season from June to September. Due to these extreme climate conditions, strong
inter-seasonal variability occurs in the land-cover of the area, which at the end of the dry season is
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almost free of vegetation: this is the case in the reported Google Earth image. A detailed knowledge of
the characteristics of this area has been gained in the frame of several projects regarding the use of
SAR data for monitoring the environment [33,34].

In Figure 2b,c we present the geocoded stripmap SAR image and the corresponding fractal
dimension map respectively, while in Figure 2d,e the enhanced spotlight SAR image and the
corresponding fractal dimension map are respectively shown. Since the geocoded images were
interpolated to the same pixel spacing of 5 × 5 m2, the difference between the stripmap and the
spotlight acquisitions can be mainly appreciated noting the presence of a stronger speckle reduction
on the spotlight image. In fact, before the geocoding step, we applied a 3 × 3 spatial multilook on the
spotlight image, thus obtaining almost the same pixel spacing of the single-look stripmap image. It
is worth noting that the fractal maps shown in Figure 2c,e have been evaluated starting respectively
from the stripmap and the enhanced spotlight single look SAR images, without performing any type
of transformation that could alter the fractal dimension estimation. This also explains the evident
different resolutions of the two fractal dimension maps. The spatial multilook operation was carried
out on the spotlight image only for a better visual comparison with the stripmap one.

Looking at the images in Figure 2a,b,d, we can note that the area of interest consists essentially of
bare soil, with the presence of a small village in the upper part of the scene. Actually, the images in
Figure 2b,d were acquired during the rainy season and witness a larger presence of vegetation with
respect to the Google image; moreover, some small water basins, which during the dry season are
completely empty and cannot be located on the optical image, are present close to the village. The dark
spots on the images in Figure 2b,d are due to the presence of eroded soil, which is unable to keep a
water-content sufficient to allow the growth of even small vegetation [33,34]. We chose this kind of
scene because it represents a natural almost-canonical case, where the linear imaging model should be
valid over almost the entire scene. Actually, the soil is bare almost everywhere, with minor presence of
vegetation, and no significant geophysical features can be appreciated on the scene. In this situation,
we expect the fractal dimension estimation to be almost independent of the considered spatial scales.

In Figure 3 we show the histograms of the fractal dimension maps shown in Figure 2c,e. The values
of the mean and the standard deviation of the fractal dimension maps are reported in Table 1. From the
histograms in Figure 3 and the statistics in Table 1, it is evident that the fractal dimension maps
estimated on the stripmap and spotlight images share very similar behavior, presenting a difference
in the average estimated values of the fractal dimension of 0.02, i.e., significantly smaller than the
standard deviations of both the maps. The slightly lower mean value obtained in the spotlight case
can be ascribed to the fine-scale details present over the spotlight image. In fact, in the presence of
strong point-like scatterers and, more in general, of discontinuities (i.e., resolution-scale features or
man-made objects) the employed fractal model does not hold, and the algorithm provides an estimate
of the fractal dimension that may be not enclosed in the range of allowed fractal values [30], implying
the presence of dark square spots whose size is related to the used processing window size. It is
well known that in enhanced spotlight mode the number of bright points can be much larger with
respect to the stripmap one, because, due to the higher resolution, small objects can also easily act as
corner reflectors.
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Table 1. Statistics of the subsets.

Subset Mode Dmean Dstdev

Burkina 1
Strip 2.17 0.07
Spot 2.15 0.08

Burkina 2
Strip 2.21 0.06
Spot 2.15 0.08

Naples 1 Strip 2.17 0.05
Spot 2.18 0.06

Naples 2 Strip 2.14 0.09
Spot 2.08 0.11

 
(a) 

  
(b) (c) 

Figure 2. Cont.
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(d) (e) 

Figure 2. (a) Google Earth view of the subset Burkina 1, with the footprint of the imaged area of interest
marked in red; (b) geocoded stripmap acquisition; (c) fractal dimension map corresponding to (b);
(d) geocoded enhanced spotlight image; (e) fractal dimension map corresponding to (d).

Until now we have not mentioned the presence of speckle. Indeed, as discussed in Section 2.2,
the considered estimation technique is based on the Capon estimator, which performs an intrinsic
filtering of speckle, discarding the high-wavenumber region of the image spectrum, i.e., the part
mostly affected by speckle [22]. However, in addition to the comparison between single-look stripmap
and spotlight images sharing similar speckle levels, a multilook can be applied to the high-resolution
spotlight image, so that an image with approximately the same resolution of the stripmap one,
but with significantly lower levels of speckle, can be obtained. In Figure 4 we show a comparison of
the histograms obtained on the stripmap (i.e., the same as in Figure 3) and on the spotlight image after
a multilook of 3 × 3 pixels was applied. The average fractal dimension obtained for the multilook
spotlight image was 2.1, with a standard deviation of 0.1: significant differences between the histograms
can now be observed. The value of the average fractal dimension decreased. This is coherent with
the obtained reduction of speckle power: indeed, the effect of speckle is to flatten the high-frequency
portion of the spectrum, thus reducing the spectral slope and increasing the retrieved fractal dimension.
However, the decrease of the fractal dimension is associated with an increase in the standard deviation
and, more importantly, with a significantly larger number of pixels presenting values of the fractal
dimension lower than two, i.e., outside the fractal range. This is probably related to the fact that
the application of speckle filtering on areas where a texture due to topography is present results in
texture distortion [35]. Regarding the estimation of fractal dimension maps, this issue was analyzed in
Di Martino et al. [36], where the applied despeckling filters significantly impaired fractal dimension
estimation. In conclusion, the role of speckle and speckle filtering in fractal dimension estimation
remains an open issue: however, a comprehensive discussion of this topic is beyond the scope of
this paper.
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Figure 3. Histogram of the fractal dimension maps of Figure 2c,e: solid line for the stripmap and
dashed line for the enhanced spotlight.

Figure 4. Histogram of the fractal dimension map of Figure 2c compared to that of the fractal dimension
map obtained from enhanced spotlight 3 × 3 multilook data: solid line for the stripmap and dashed
line for the multilook enhanced spotlight.

In summary, the land-cover in the examined case can be considered substantially homogeneous,
and the fractal dimension maps estimated from the stripmap and enhanced spotlight images share
very similar mean values. Therefore, when we are interested in the evaluation of the fractal dimension
of natural surfaces not presenting relevant fine-scale details, the use of the less expensive stripmap
data does not imply any information loss and is, therefore, advisable. Moreover, due to the lower
number of samples for equally-sized areas, the estimation of the fractal dimension from stripmap
images is also more convenient from a computational viewpoint.

3.2. Burkina 2

In Figure 5a a Google Earth image of the area of interest is shown (2.3 × 2.3 km2). Also in this case,
the optical SPOT image was acquired at the end of Burkina Faso dry season. In Figure 5b,c we present
the geocoded stripmap SAR image and the corresponding fractal dimension map, respectively, while in
Figure 5d,e the enhanced spotlight SAR image and the corresponding fractal dimension map are shown.
Note that, as in the previous case, we applied the geocoding and multilooking procedure described
above to the SAR images, and we estimated the fractal maps from the single look SAR images. The same
considerations on seasonal variability and on the comparison between the Google Earth and the SAR
image hold in this case.

With respect to the images discussed in the previous case, here we can appreciate an increase
in vegetated areas and, more in general, the presence of more resolution-scale details. In addition,
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the image is characterized by the juxtaposition of homogeneous areas of different types (e.g., vegetated
and eroded-soil areas), which are responsible for the presence of many edges, i.e., regions of separation
between the different areas. The presence of edges allows the testing of the algorithm in the presence
of discontinuities, which are one of the critical features for the model validity: in particular, local fractal
dimension estimation algorithms behave as edge detectors [17,30], due to the presence within the
estimation window of a non-homogeneous texture. Comparing the fractal dimension maps in
Figure 5c,e, we can note that the impact of this kind of texture on the map estimated from the
spotlight image is significant and it is witnessed by the presence of large areas presenting low values of
the fractal dimension (see Figure 5e). This is confirmed by the histograms of the maps in Figure 6 and
by the statistics reported in Table 1. In fact, the difference in the average value of the fractal dimension
is equal to 0.06, thus being comparable to the standard deviations of both fractal dimension maps.

Very interestingly, the discussed behavior can also be observed on a pixel basis, investigating the
joint behavior of the two maps via a feature-based data-fusion technique [37]. In particular, we consider
the image obtained by taking the difference of the two geocoded fractal dimension maps, namely the
spotlight-based map minus the stripmap-based one. In order to highlight the areas where the two
maps present significantly different behavior, in Figure 5f we show a classification map obtained by
thresholding the difference image with two thresholds (±0.25): the areas with a difference lower than
−0.25 are highlighted in green, while those with a difference greater than 0.25 are red. The areas with
a difference in the range [−0.25,0.25] are represented in black. Remembering that very low values
of the fractal dimension are obtained in areas close to bright spots, whose presence influences the
estimates obtained in an area comparable to the estimation window [30]; we can identify two different
mechanisms responsible for the appearance of the two classes. First, the presence of bright spots due
to strong trihedral scatterers that are observable on both spot and strip images imply a low fractal
dimension on both maps. However, due to the fact that the elaboration windows used to estimate the
two maps present the same number of pixels and, hence, a different size in meters, the extension of
the low-fractal-dimension area is different in the two maps. This can be observed looking at the red
areas in Figure 5f: they usually frame a black area, which is the area interested by the presence of the
bright spot, where the fractal dimension is almost the same on the two images. Conversely, the green
areas are related to the presence of fine textural details, which are only observable on spotlight images.
In particular, in the scene of interest these details are related to the presence of isolated trees.

In summary, as discussed above, the effect of fine-scale (non-fractal) details is more significant
on the fractal dimension map obtained from the spotlight image than on the one estimated from the
stripmap image and, in this case, this difference emerges in a more evident way.

 
(a) 

Figure 5. Cont.
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(d) (e) 

 
(f) 

Figure 5. (a) Google Earth view of the subset Burkina 2, with the footprint of the imaged area of interest
marked in red; (b) geocoded stripmap acquisition; (c) fractal dimension map corresponding to (b);
(d) geocoded enhanced spotlight image; (e) fractal dimension map corresponding to (d); (f) thresholded
difference map.
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Figure 6. Histogram of the fractal dimension maps of Figure 4c,e: solid line for the stripmap and
dashed line for the enhanced spotlight.

3.3. Naples 1

The area of interest in this case is the Bosco di Capodimonte, an urban wood area in the city of
Naples, Italy. The Google Earth optical image of the area (2 × 2.7 km2) is shown in Figure 7a. After the
application of the same processing used in the previous cases, we obtained the stripmap geocoded
image and its corresponding fractal dimension presented in Figures 7b and 7c, respectively, and the
enhanced spotlight geocoded image and its associated fractal dimension map shown in Figure 7d,e.
Forested areas are frequently used as calibration sites in SAR processing, since they provide very
stable values of the reflectivity [38]. We chose this area to test the algorithm behavior over a very
homogeneous natural area consisting of closely spaced tall vegetation, rather than of bare soil. Since we
are dealing with X-band images, the penetration of the transmitted field under the forest upper-level
structure will be very low and the algorithm is supposed to estimate the fractal dimension of the
envelope of the treetops.

Looking at the fractal dimension maps in Figure 7c,e, it is evident that the estimated fractal
dimension is uniform (i.e., spatially homogeneous) over the forested area, while it presents significant
spatial variations in its surroundings. This is due to the presence of man-made objects, whose effect on
the estimation algorithm [30] will be better highlighted in the last case study. To avoid the influence
of these objects, a subset of the images was considered in the statistical analysis: the considered area
is marked in red in Figure 7b–e. In Figure 8 we show the histograms of the fractal dimension maps,
while their statistics are reported in Table 1. Actually, the statistical behavior of the two maps is very
similar: in particular, the difference in the average values of the fractal dimension is very low with
respect to the map’s standard deviations. Therefore, we can conclude that in this case the estimated
fractal dimension maps bear essentially the same information.

This can be observed also on the thresholded fractal dimension difference map in Figure 7f
(obtained along the same guidelines of the one presented in Figure 4f), where the only relevant
differences can be appreciated in the urban areas present on the image. In particular, no significant
difference is present on the forested area enclosed in the red box.

333



Remote Sens. 2018, 10, 9

 
(a) 

  
(b) (c) 

  
(d) (e) 

 
(f) 

Figure 7. (a) Google Earth view of the subset Naples 1, with the footprint of the imaged area of interest
marked in red; (b) geocoded stripmap acquisition; (c) fractal dimension map corresponding to (b);
(d) geocoded enhanced spotlight image; (e) fractal dimension map corresponding to (d); (f) thresholded
difference map.
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Figure 8. Histogram of the fractal dimension maps of Figure 7c,e: solid line for the stripmap and
dashed line for the enhanced spotlight.

3.4. Naples 2

For the last case study, we selected an image of the city of Naples, Italy, covering an area of
2.7 × 2.7 km2 close to the business district and the central station. The Google Earth image of the
area is reported in Figure 9a, while in Figure 9b–e the geocoded stripmap and spotlight images and
their corresponding fractal dimension maps are shown. In this case, we are interested in studying
the behavior of the algorithm over a non-natural area, consisting essentially of buildings and other
man-made objects. In this kind of scenario, the fractal models do not hold and the obtained fractal
dimension maps present quite large spatial variations.

This situation can be considered as a reference for the assessment of similarity of the fractal
dimension maps obtained in the previous case studies. In fact, in this case the spotlight acquisition
detects much more details than the stripmap, as can be appreciated looking at the high density of dark
spots present on the fractal dimension map shown in Figure 9e with respect to the one in Figure 9c. This
is also confirmed by the histograms presented in Figure 10 and by the statistics of the maps reported
in Table 1. With respect to the previous cases, the standard deviations of the maps are significantly
higher and the difference in the average values of the fractal dimension is almost comparable with the
standard deviation. In this situation, the thresholded difference mask is not statistically significant, and
bears no useful information. Obviously, when applied to man-made areas, that cannot be described
through fractal models, the algorithm does not provide values that can be treated as a true fractal
dimension of the imaged area. Anyway, these values, though not bearing a precise physical meaning,
could provide a valuable support for the identification and characterization of urban areas [30].

 
(a) 

Figure 9. Cont.
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(b) (c) 

  
(d) (e) 

Figure 9. (a) Google Earth view of the subset Naples 2, with the footprint of the imaged area of interest
marked in red; (b) geocoded stripmap acquisition; (c) fractal dimension map corresponding to (b);
(d) geocoded enhanced spotlight image; (e) fractal dimension map corresponding to (d).

Figure 10. Histogram of the fractal dimension maps of Figure 9c,e: solid line for the stripmap and
dashed line for the enhanced spotlight.

4. Conclusions

In this paper we analyzed the behavior of the fractal dimension maps estimated from SAR data
acquired using different operational modes. The fractal dimension maps represent the point-by-point
fractal dimension of a surface and are estimated from SAR amplitude images. The used data set
consists of stripmap and enhanced spotlight Cosmo/SkyMed images collected in the area of Bidi in
the North of Burkina Faso and Naples in Italy.
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The objective of the work was to highlight potential dependencies of the estimation method on
the resolution of the input SAR data. The results of our analysis show that for natural homogeneous
areas (e.g., on scarcely vegetated areas and woods) the fractal dimensions estimated from enhanced
spotlight and stripmap images are substantially the same; however, estimations from spotlight images
are more sensitive to the presence of small objects and sharp edges, which may impair the retrieval
of the fractal dimensions performed over areas that include them. Accordingly, when evaluating the
fractal dimension of the topography of natural areas is of exclusive interest, it may be more convenient
to use stripmap SAR data.

Conversely, in areas containing man-made objects or, more in general, many resolution-scale
features (e.g., urban areas), fractal dimension estimates evaluated starting from enhanced spotlight
and stripmap images may significantly differ, and, this time, the higher sensitivity to small objects and
to man-made typical structures (i.e., buildings, streets, etc.) of fractal dimension maps estimated
from spotlight acquisitions is a convenient feature to distinguish and identify such structures.
This discussion was also confirmed from the pixel-wise analysis of the image obtained from the
difference of the two maps. In this case, we implemented a feature-based data fusion, showing how it
is possible to identify meaningful land-cover classes (e.g., trees).

The presented results provide a new basis for the development of further data fusion techniques
based on the combined use of multi-operational data. In fact, the combination of fractal dimension
values obtained from stripmap and spotlight data is not trivial, and should be based not simply on the
classical trade-off between coverage and resolution, but also on the specific application. In general,
if we are interested in obtaining a reliable estimate of the fractal dimension of the observed natural
scene, stripmap images should be chosen in view of economic and computational considerations
(stripmap data are significantly less expensive than spotlight data and the number of samples for equal
sized areas is lower). In turn, the combination of fractal dimension maps obtained from stripmap
and spotlight images can be used to identify areas on the scene presenting non-fractal behavior (e.g.,
urban areas).
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Abstract: Knowledge of the exact statistical properties of the signal plays an important role in the
applications of Polarimetric Synthetic Aperture Radar (PolSAR) data. In the last three decades,
a considerable research effort has been devoted to finding accurate statistical models for PolSAR data,
and a number of distributions have been proposed. In order to see the differences of various models
and to make a comparison among them, a survey is provided in this paper. Texture models, which
could capture the non-Gaussian behavior observed in high resolution data, and yet keep a compact
mathematical form, are mainly explained. Probability density functions for the single look data and
the multilook data are reviewed, as well as the advantages and applicable context of those models.
As a summary, challenges in the area of statistical analysis of PolSAR data are also discussed.

Keywords: statistical modeling; polarimetric SAR; texture models; finite mixture models; copulas

1. Introduction

Synthetic Aperture Radar (SAR) and Polarimetric SAR (PolSAR) are widely used for observation
of natural scenes. In most SAR or PolSAR systems, the size of a resolution cell is much larger than the
wavelength. The measured signal is then a coherent addition of the echoes from all individual targets
within that cell. Depending on the relative phases of each scattered wave, the coherent addition may
be constructive or destructive, and it produces a salt-and-pepper appearance known as speckle over
SAR images [1]. The target information, therefore, should be extracted through statistical analysis of
the data. Hence, an accurate statistical model to describe the data becomes very important for the
extraction of ground target properties [2–6].

Gaussian statistics for the radar returns have been frequently assumed when the spatial resolution
of PolSAR images is moderate and the speckle is fully developed [1,7,8]. Actually, the number of targets
in a resolution cell of low or medium resolution data is large. According to the Central Limit Theorem
(CLT), Gaussian statistics could give a proper approximation to the data distribution. The Gaussian
distribution is both mathematically tractable and efficient, making it very useful in specific applications.
For SAR or PolSAR data, the mean value of the complex echo is generally assumed to be zero, and all
the statistical properties are determined by the covariance matrix (or the coherency matrix) under the
Gaussian assumption.

As the image resolution increases, analysis of real PolSAR data, however, reveals that
non-Gaussian models give a more accurate representation of the data. The change of the observing
surface could also give rise to non-Gaussian distributed data. Applications based on such models
have better performance [2,4,9,10]. A common way to introduce non-Gaussianity is to divide the
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randomness of the radar images into two unrelated factors, texture and speckle. The texture models
the natural spatial variation of the radar cross section, whereas the speckle, following a Gaussian
distribution, conveys the polarimetric information. The texture and the speckle are incorporated with
a product operation which leads to a doubly stochastic model called product model [11]. In the last
two decades, a considerable research effort has been dedicated to investigate accurate product models
for PolSAR data [12–16].

Another way to model the non-Gaussian behavior of PolSAR data is the so called finite mixture
model [17–19], which assumes the data under analysis is a discrete mixture of different targets.
This makes sense in certain scenes such as urban areas, which usually consist of coherent targets like
houses and roads, as well as distributed targets like trees and grass. The backscattering from the urban
area is a combination of different scattering mechanisms. It has been shown that for complex regions
with irregular histograms, multimodal or spiky for example, the finite mixture model is more accurate
than a single distribution [17].

As summarized in [20], there are many non-Gaussian distributions, including the Weibull
distribution, the lognormal distribution, and the α-stable distribution, suggested for the
one-dimensional SAR data. However, these distributions are difficult to generalize to the
multidimensional PolSAR data. A possible solution to this problem is to consider the idea of
copulas [21]. First, we can use various non-Gaussian distributions to model the data of each
polarimetric channel separately (called marginal distribution), and then introduce some common
multivariate distributions to model the dependence of these marginal distributions. With the copulas,
different marginal distributions and simple correlation structure can make up complex distributions
for the PolSAR data [22,23].

As we can see, there are many statistical models proposed for the PolSAR data from different
aspects. In this paper, a survey of these models is provided. PDFs for the single look data and the
multilook data are mainly reviewed, as well as the advantages of those models. Analysis of real
PolSAR data are performed using different statistical methods to evaluate the models.

The remainder of this paper is organized as follows. First, a few basic concepts of the polarimetric
SAR are introduced, especially the notation employed in this paper. Then, statistics of the fully
developed speckle will be discussed. Properties of the single look data and the multilook data are
studied under the Gaussian assumption. The introduction of texture is followed, along with the widely
studied texture models, including both the scalar texture models and the multi-texture models. Finally,
finite mixture models as well as copula based models are detailed. Several experiments to validate
applicability of different models are also given. Challenges in statistical modeling is summarized at
the end.

2. Polarimetric SAR

PolSAR systems measure the properties of a distant target by detecting the change of the
polarization state that the target induces to the incident wave. Let the polarized incident wave
Ei and scattered wave Es be expressed as the Jones Vectors [24]

Ei =

[
Ei

h
Ei

v

]
Es =

[
Es

h
Es

v

]
(1)

where h represents the horizontal polarization state and v the vertical polarization state. It is possible
to relate the incident and the scattered waves by means of a 2 × 2 complex matrix [24][

Es
h

Es
v

]
=

e−jkz

z

[
Shh Shv
Svh Svv

] [
Ei

h
Ei

v

]
(2)

where z is the distance between the target and the receiving antenna, and k is the wave number of
the illuminating wave. The 2 × 2 transformation matrix is generally referred to as scattering matrix
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and denoted by S. It characterizes the target under observation with four complex-valued scattering
coefficients. The diagonal elements of the scattering matrix receive the name “co-pol”, since they relate
the same polarization for the incident and the scattered waves. The off-diagonal elements are known
as “cross-pol” terms as they relate orthogonal polarization states [24].

The definition of S depends on the coordinate systems. There are two principal conventions
concerning the coordinate systems where the polarimetric scattering process can be considered:
Forward Scattering Alignment (FSA) and Back Scattering Alignment (BSA) [24]. The difference lies
in the way the coordinate system is selected to describe the polarization state of the scattered wave.
The FSA is usually used when the transmitter and the receiver are not placed at the same spatial
location, for example, for bistatic radar measurements. In contrast, the BSA is often adopted in
monostatic radar measurements, in which the transmitting and receiving antennas are collocated in
space. In this paper, we assume that the BSA convention is employed.

The interaction between the electromagnetic waves with a reciprocal medium follows the vector
reciprocity theorem, which states that if we transmit a polarization state PA from position A, then the
component polarized in the PB direction at position B is equal to the PA component of the scattered
radiation when we illuminate the same object from B with polarization PB [25]. The reciprocity theorem
applies to ground targets generally [25]. In the BSA coordinate system, the reciprocity theorem says
that the cross-pol channels of the scattering matrix are equal, that is Shv = Svh. Therefore, there are
only three independent complex coefficients required to characterize the scatterer under observation.

In many cases, it is more flexible to represent the scattering matrix S as a vector which is known
as scattering vector. The vectorization can be performed through [26]

k =
1
2

Tr(SΨ) (3)

where Tr(·) is the matrix trace and Ψ is a 2 × 2 complex matrix from a basis set which are constructed
as an orthonormal set under the Hermitian inner product. The lexicographic basis and the Pauli basis
are the most common ones in the context of radar polarimetry. The selection of the basis to vectorize
the scattering matrix depends on the final purpose of the vectorization itself. When studying the
statistical behavior of the PolSAR data, the lexicographic basis is more convenient due to its simplicity.
The lexicographic basis set consists of the straightforward lexicographic ordering of the elements of
the scattering matrix. For a reciprocal target, the scattering vector in this case can be expressed as

k =

⎡⎢⎣ Shh√
2Shv
Svv

⎤⎥⎦ (4)

Targets under observation are commonly situated in a dynamically changing environment and
are subjected to spatial and temporal variations. Despite the radar system transmits a perfectly
polarized wave, the wave scattered by the target is partially polarized [25]. Such scatterers are called
distributed targets. The analysis of this type of targets can not be performed exactly by one target but
a population of targets. More precisely, they are analyzed by introducing the concept of space and
time varying stochastic processes, where the targets are described by the second order moments such
as the polarimetric coherency or covariance matrices.

The covariance matrix is defined as the expectation of the outer product of the target vector with
its transpose conjugate

Σ = E{kk†} =

⎡⎢⎣ E{ShhS∗
hh}

√
2 E{ShhS∗

hv} E{ShhS∗
vv}√

2 E{ShvS∗
hh} 2 E{ShvS∗

hv}
√

2 E{ShvS∗
vv}

E{SvvS∗
hh}

√
2 E{SvvS∗

hv} E{SvvS∗
vv}

⎤⎥⎦ (5)
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where (·)† and (·)∗ denote the transpose conjugate and conjugate, respectively. In practice, the number
of scattering vectors used to calculate the expectation is limited. Let L denote the number of pixels to
compute the average, the PolSAR data are then represented by the so-called sample covariance matrix

CL =
1
L

L

∑
i=1

kik
†
i (6)

where ki is the ith scattering vector. The averaging is also called multilook processing which can be
employed to reduce the speckle of PolSAR data, with L referring to the number of looks.

3. Gaussian Statistics

Under the assumption that the speckle is fully developed, it has been experimentally verified that
the Gaussian statistics generally provide a good fit to SAR data, especially in homogeneous natural
areas [7,27–30]. The multivariate Gaussian distribution, which is both mathematically tractable and
efficient, is proper to model the scattering vectors when the surface roughness is relatively low, the
spatial resolution is moderate, and a large number of scatterers are present [1,24]. The Gaussian
assumption indicates that the statistical properties of the data are determined by the covariance matrix.
The sample covariance matrix in this case follows a complex Wishart distribution, which is widely
used in the applications of PolSAR data. There exist also some variations of the Wishart distribution
that are shown to be more accurate in certain circumstances.

3.1. Gaussian Distribution

When a radar illuminates an area of a random surface containing many elementary scatterers, the
scattering vector, z, can be modeled as having a d-dimensional complex Gaussian distribution with
zero mean. The Probability Density Function (PDF) is given by [31]

p(z; Σ) =
1

πd|Σ| exp(−z†Σ−1z) (7)

where | · | is the determinant operation. The complex Gaussian distribution is denoted by z ∼ CN (0, Σ)

for brevity. The real and imaginary parts of any complex element of z are assumed to follow a circular
Gaussian distribution. Consider the ith element zi = xi + jyi for example, the joint PDF of the real and
the imaginary parts can be written as

p(xi, yi; σi) =
1

πσ2
i

exp

(
− x2

i + y2
i

σ2
i

)
(8)

where σ2
i = Σii. Let ri be the amplitude and θi be the phase of a complex value, then the real part of zi

can be written as xi = ri cos θi, and the imaginary part as yi = ri sin θi. The Jacobian determinant of
the transform from (xi, yi) to (ri, θi) is given by

J =

∣∣∣∣∣cos θi −ri sin θi
sin θi ri cos θi

∣∣∣∣∣ = ri (9)

Subsequently, the joint PDF of the amplitude and the phase can be obtained from (8) after changing
variables, giving

p(ri, θi; σi) =
ri

πσ2
i

exp

(
− r2

i
σ2

i

)
(10)
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The circular Gaussian assumption implies that the phase θi is uniformly distributed over (−π, π],
and independent from the amplitude. Averaging over the phase, therefore, gives the PDF of
the amplitude

p(ri; σi) =
2ri

σ2
i

exp

(
− r2

i
σ2

i

)
(11)

Equation (11) is known as the Rayleigh distribution, with mean value σi
√

π/2. The intensity of
the ith channel, Ii = x2

i + y2
i = r2

i , can be easily proved to have a negative exponential distribution

p(Ii; σi) =
1
σ2

i
exp

(
− Ii

σ2
i

)
(12)

with mean value E{Ii} = σ2
i and variance Var{Ii} = σ4

i . This distribution shows that the useful
information is described by a single degree of freedom, corresponding to the mean intensity.

Besides the intensity, the joint properties of two different polarimetric channels are of great interest.
Considering two polarimetric channels zi = xi + jyi and zk = xk + jyk, the complex correlation
coefficient is determined by

ρejϕ =
Σik√
ΣiiΣkk

(13)

where ρ and ϕ are, respectively, the amplitude and the phase of the complex correlation coefficient.
The joint PDF of the real part and the imaginary part can be derived from (7), which is given as
follows [30,32,33]

p(xi, yi, xk, yk) =
1

π2ψ2(1 − ρ2)
exp

(
−σ2

k (x2
i + y2

i ) + σ2
i (x2

k + y2
k)

ψ2(1 − ρ2)

+
2ψρ[(xixk + yiyk) cos ϕ + (xkyi − xiyk) sin ϕ]

ψ2(1 − ρ2)

) (14)

where σ2
i = Σii, σ2

k = Σkk and ψ = σiσk. Write the complex values in the polar form, i.e.,
riejθi = xi + jyi and rkejθk = xk + jyk, by changing variables from (xi, yi, xk, yk) to (ri, θi, rk, θk), the
previous distribution becomes

p(ri, θi, rk, θk) =
rirk

π2ψ2(1 − ρ2)
exp

(
−σ2

k r2
i + σ2

i r2
k − 2ψrirkρ cos(θi − θk − ϕ)

ψ2(1 − ρ2)

)
(15)

We are interested in the distributions of the product of the two amplitudes z = rirk, and the phase
difference φ = θi − θk, since their values reflect the correlation between different polarimetric channels.
It can be shown that the Jacobian determinant of the transform from (ri, rk, θi, θk) to (ri, z, θi, φ) is −1/ri.
Thus the following distribution can be obtained after changing variables

p(ri, z, θi, φ) =
z

π2ψ2(1 − ρ2)

1
ri

exp
(
−

σ2
k r2

i +
σ2

i z2

r2
i

− 2ψρz cos(φ − ϕ)

ψ2(1 − ρ2)

)
(16)

from which the joint PDF of z and φ can be further derived by integrating over θi and ri and employing
the equality (A1)

p(z, φ) =
2z

πψ2(1 − ρ2)
exp

(
2ρz cos(φ − ϕ)

ψ(1 − ρ2)

)
K0

(
2z

ψ(1 − ρ2)

)
(17)
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Here Kv is the modified Bessel function of the second kind of order v [34]. The marginal
distribution of the product of the amplitudes, subsequently, is found to be

p(z) =
4z

ψ2(1 − ρ2)
I0

(
2ρz

ψ(1 − ρ2)

)
K0

(
2z

ψ(1 − ρ2)

)
(18)

where I0(z) is the modified Bessel function of the first kind [34] resulting from the integral identity (A2).
Similarly, integrating (17) over the amplitudes and following the identity (A3) gives the marginal
distribution of the phase difference

p(φ) =
1 − ρ2

2π(1 − β2)

{
β√

β2 − 1
ln(−β +

√
β2 − 1) + 1

}
(19)

with β = ρ cos(φ − ϕ). Note that −β +
√

β2 − 1 is a complex number since β is less than 1.
Therefore, it can be represented in the polar form, e.g., −β +

√
β2 − 1 = exp(j(π − arccos β)), and as

a result, (19) becomes

p(φ) =
1 − ρ2

2π(1 − β2)

{
β(π − arccos β)√

1 − β2
+ 1

}
(20)

The PDFs shown in (18) and (20) can be also found in [32,33]. The Gaussian assumption implies
that the statistics of the PolSAR data is completely determined by the covariance matrix. The properties
described by the multivariate distribution (7) can be analyzed separately by the intensity (12), the
product of amplitudes (18) and the phase difference (20).

3.2. Wishart Distribution

SAR data are frequently multilook processed for speckle reduction. Under the Gaussian
assumption, the sample covariance matrix CL follows a complex Wishart distribution, CL ∼ CW(L, Σ),
with PDF given by [31]

p(CL; L, Σ) =
LLd|CL|L−d exp(−L Tr(Σ−1CL))

Γd(L)|Σ|L (21)

where the normalization factor Γd(L) is defined as

Γd(L) = π
d(d−1)

2

d

∏
i=1

Γ(L − i + 1) (22)

with Γ(·) referring to the gamma function. The Wishart distribution is valid only if L ≥ d. The random
variables of this distribution are the diagonal terms of CL as well as the real and imaginary parts of the
upper (or lower) off-diagonal terms. For a d-dimensional radar signal, the total number of independent
variables is d2.

Considering only one polarimetric channel, from (21), we have the distribution of the intensity as

p(Ii; L, σi) =
1

Γ(L)

(
L
σ2

i

)L

IL−1
i exp

(
− L

σ2
i

Ii

)
(23)

It is known as the gamma distribution with mean value E{Ii} = σ2
i and variance

Var{Ii} = σ4
i /L [35]. The number of looks can be estimated using the mean and the variance of

the intensity

L̂ =
E2{Ii}
Var{Ii} . (24)
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When L is equal to 1, the gamma distribution reduces to the exponential distribution (12).
The variances of the two different distributions show that the multilook process reduces the speckle by
scaling down the fluctuation magnitude with a factor 1/L.

For two polarimetric channels, saying channel i and channel k, the sample covariance matrix can
be written as

CL =

[
Ii Rik + jIik

Rik − jIik Ik

]
. (25)

Let ρejϕ represent the complex correlation coefficient, the joint distribution of Ii, Ik, Rik and Iik can
be derived from (21), giving

p(Ii, Ik, Rik, Iik) =
L2L(Ii Ik − R2

ik − I2
ik)

L−2

πΓ(L)Γ(L − 1)ψ2L(1 − ρ2)L ×

exp

(
−L

σ2
i Ik + σ2

k Ii − 2ρψ(Rik cos ϕ − jIik sin ϕ)

ψ2(1 − ρ2)

) (26)

where σ2
i = Σii, σ2

k = Σkk, and ψ = σiσk. Write the off-diagonal element in the polar form,
zejφ = Rik + jIik, by changing variables from (Ii, Ik, Rik, Iik) to (Ii, Ik, z, φ), the following result can
be obtained

p(Ii, Ik, z, φ) =
zL2L(Ii Ik − z2)L−2

πΓ(L)Γ(L − 1)ψ2L(1 − ρ2)L exp

(
−L

σ2
i Ik + σ2

k Ii − 2zρψ cos(φ − ϕ)

ψ2(1 − ρ2)

)
(27)

The determinant of CL must be greater than 0, therefore, we have Ii Ik − z2 > 0. Integrating Ii
over (z2/Ik, ∞) using (A4) and then Ik over (0, ∞) using (A1) gives

p(z, φ) =
2LL+1zL

πΓ(L)ψL+1(1 − ρ2)
exp

(
2Lzρ cos(φ − ϕ)

ψ(1 − ρ2)

)
KL−1

(
2Lz

ψ(1 − ρ2)

)
(28)

Subsequently, the marginal distribution of the amplitude can be obtained following the integral
identity (A2)

p(z) =
4LL+1zL

Γ(L)ψL+1(1 − ρ2)
I0

(
2Lzρ

ψ(1 − ρ2)

)
KL−1

(
2Lz

ψ(1 − ρ2)

)
(29)

and the distribution of the phase difference by identity (A5)

p(φ) =
(1 − ρ2)L

2
√

π(1 − β)2L
Γ(2L)

Γ(L)Γ(L + 3
2 )

2F1

(
2L, L − 1

2
, L +

3
2

,
β + 1
β − 1

)
. (30)

where β = ρ cos(φ − ϕ), and 2F1(a, b; c; z) is the Gauss hypergeometric function [34]. Again, the
statistical properties of the multilook data can be analyzed separately using (23), (29) and (30).
The Wishart distribution is widely used in the modeling of PolSAR data [7,36–38], and there are
several variations that make the model more accurate or efficient.

3.2.1. Relaxed Wishart Model

Compared with the multivariate complex Gaussian distribution, the Wishart distribution depends
on an additional parameter, L, the number of looks. Assume that the multilook processing has different
contributions to different types of targets, Anfinsen et al. proposed a refined model called relaxed
Wishart distribution [39], in which the number of looks L is treated as a variable shape parameter.
In other words, the number of looks is assumed to be distinct in different areas. It is observed that
varying L gives a better representation of the data than using a constant L over all regions [39].
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3.2.2. Wishart-Kotz Distribution

Another variation of the Wishart distribution is the Wishart-Kotz model [40,41], which exhibits
the heavy tails needed to fit the data found in high resolution PolSAR images. In this model, there are
no special mathematical functions involved that limit the usefulness by inflicting high computational
cost and numerical instability. The sample covariance matrix in the Wishart-Kotz model is assumed to
follow a Wishart-Kotz type I distribution with PDF defined as [40]

p(CL; L, Σ, ρ, β) =
c|CL|L−d

|Σ|L (Tr(Σ−1CL))
β−1 exp(−[L Tr(Σ−1CL)]

ρ) (31)

with additional parameters ρ and β, and a normalization constant factor c

c =
ρLβ+Ld−1Γ(Ld)

Γd(L)Γ( β+Ld−1
ρ )

(32)

Here Γd(L) is the same as that in Wishart model, see (22). The Wishart-Kotz distribution is a
generalization of the Wishart distribution, which reduces to the latter when ρ = 1 and β = 1.

4. Texture Model

The properties of the fully developed speckle are detailed in the previous section. This section
illustrates how to model the texture statistically. There are two main manners to manage this:
(1) consider the texture as a scalar random variable, or (2) consider it as a vector having the same
dimension as the speckle component. They lead to the so called scalar texture model and multi-texture
model, respectively. The texture random variable is generally assumed to be positive with unity
mean. Therefore, it models the variation of the radar cross section only, leaving the intensities to the
speckle component [7,42]. The statistical properties could be described by a certain distribution, or just
a stochastic process without a specific PDF.

4.1. Scalar Texture Model

The scalar texture model assumes that the texture component in the product model is a positive
scalar random variable. The scattering vector in this case can be written as [7,11,43,44]

k =
√

τz (33)

where τ is the texture parameter with mean value equal to 1, and z is the speckle vector, following a
multivariate Gaussian distribution (7). The scalar texture model is also referred to as scale mixture
of Gaussian [4], or Sphereically Invariant Random Vector (SIRV) [45–47]. For the multilook data, the
sample covariance matrix can be expressed as

CL =
1
L

L

∑
i=1

τiziz
†
i =

τ

L

L

∑
i=1

ziz
†
i (34)

under the assumption that the texture has a higher spatial correlation than the speckle and the texture
parameter is constant over the multilook processing window [13].

For a known τ, (33) implies that the scattering vector k follows a complex Gaussian distribution
(see Section 3.1) with PDF given by

p(k|τ; Σ) =
1

πd|Σ|
1
τd exp

(
−k†Σ−1k

τ

)
(35)
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And the distribution of the sample covariance matrix is given by

p(CL|τ; L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
1

τLd exp
(
− L Tr(Σ−1CL)

τ

)
(36)

which is known as the Wishart distribution detailed in Section 3.2.
If the PDF of the texture random variable is not explicitly specified, τ can be viewed as an unknown

deterministic parameter from pixel to pixel [47]. According to the concept of SIRV, an approximate
maximum likelihood estimator for the texture parameter of each pixel is found to be [45,47]

τ̂i =
k†

i Σ̂−1ki

d

Σ̂ =
1
N

N

∑
i=1

kik
†
i

τ̂i

(37)

where τ̂i is the texture parameter of the ith pixel, d is the dimension of the target vector, and N is the
number of pixels in the neighborhood. The estimators of the texture parameter and the covariance
matrix depend on each other. They can be decoupled using a recursive process. Inserting τ̂i into the
second line of the above equation, the covariance matrix in the (k + 1)th iteration can be estimated
by [45–47]

Σ̂k+1 =
d
N

N

∑
i=1

kik
†
i

k†
i Σ̂−1

k ki
(38)

The process can be initialized by any matrix, even an identity matrix [47], and it is stopped when
the Frobenius distance between two consecutive estimated matrices reaches some limit. More details
about the existence as well as the convergence can be found in [46]. This estimator is referred to as
fixed point estimator [47].

On the contrary, if the texture random variable is specified by a distribution, averaging all possible
τ gives the unconditional or marginal PDF of the scattering vector

p(k; Σ) =
∫ ∞

0
p(k|τ; Σ)p(τ)dτ (39)

which is analytically solvable for some choices of p(τ). The PDF of the sample covariance matrix can
be obtained similarly by

p(CL; L, Σ) =
∫ ∞

0
p(CL|τ; L, Σ)p(τ)dτ (40)

A number of models have been proposed in the literature by introducing different distributions
for the texture component, including the K distribution [13], the G0 distribution [14,15], the Kummer-U
distribution [16], the W , and the M distribution [48], to represent different scenes of PolSAR data.
They are explained in the following subsections.

4.1.1. K Distribution

The K distribution, assuming that the texture is gamma distributed, is widely used to model
forests and the sea surface, and it can be unarguably regarded as one of the most successful radars
models [4,10,12,13]. The gamma distribution is given by [35]

p(x; α, θ) =
1

Γ(α)θα
xα−1 exp

(
− x

θ

)
(41)
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with shape parameter α and scale parameter θ. The mean value is μ = αθ. Let τ = x
μ to ensure the

mean value of the texture is equal to 1, the distribution can be written as

p(τ; α) =
αα

Γ(α)
τα−1 exp(−ατ) (42)

The PDF of the scattering vector k can be obtained by substituting the texture distribution into (39)
and employing the integral equality (A1)

p(k; α, Σ) =
1

πd|Σ|
2α

α+d
2

Γ(α)
(k†Σ−1k)

α−d
2 Kα−d

(
2
√

αk†Σ−1k
)

(43)

By the same procedure, inserting (42) into (40), we have the PDF of the sample covariance matrix
as follows

p(CL; α, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
2α

α+Ld
2

Γ(α)

(
L Tr(Σ−1CL)

) α−Ld
2 Kα−Ld

(
2
√

αL Tr(Σ−1CL)

)
(44)

4.1.2. Normal Inverse Gaussian (NIG)

The Normal Inverse Gaussian (NIG) distribution assumes that the texture follows an inverse
Gaussian distribution [49,50]. The PDF of the inverse Gaussian distribution is given by

p(x; μ, γ) =
( γ

2πx3

)1/2
exp

(−γ(x − μ)2

2μ2x

)
(45)

where μ is the mean value. By letting μ equal to 1 and replacing the random variable x with τ, the
texture distribution becomes

p(τ; γ) =
( γ

2π

)1/2
τ−3/2eγ exp

(
−1

2

(γ

τ
+ γτ

))
(46)

Subsequently, the PDF of the scattering vector and the sample covariance matrix can be obtained
by following the integral Equation (A1), giving

p(k; γ, Σ) =
1

πd|Σ|
√

2γeγ

√
π

(
γ

2k†Σ−1k + γ

) 1+2d
4

Kd+ 1
2

(√
γ(γ + 2k†Σ−1k)

)
(47)

and

p(CL; γ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
√

2γeγ

√
π

(
γ

2L Tr(Σ−1CL + γ

) 1+2Ld
4

×KLd+ 1
2

(√
γ(γ + 2L Tr(Σ−1CL)

) (48)

The NIG distribution has strong theoretical grounds derived from Brownian motion theory.
Experiments demonstrate that it usually gives a better representation of the data than the Wishart
distribution or the K distribution does, because the inverse Gaussian distribution captures larger
distribution shape variations than the gamma distribution [50]. In addition, the NIG distribution has
less trouble at boundary mixtures than the K distribution [50].
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4.1.3. G and G0 Distributions

It is shown that the G distribution and the G0 distribution have a good representation of extremely
heterogeneous regions such as urban areas [15]. Especially, the G0 distribution has the same number of
parameters as the K distribution, but without complex special functions like the Bessel function which
requires intensive computations [14,15].

The G distribution assumes that the texture parameter obeys the Generalized Inverse Gaussian
(GIG) law which is characterized by the PDF [14,51]

p(x; a, b, p) =
1

2Kp(
√

ab)

( a
b

) p
2 xp−1 exp

(
−1

2

(
b
x
+ ax

))
(49)

where a > 0, b > 0 and p is a real parameter. The mean value of this distribution is μ =
√

b
a

Kp+1(
√

ab)
Kp(

√
ab)

.

Letting τ = x
μ gives

p(τ; a, b, p) =
1
2

Kp
p+1(

√
ab)

Kp+1
p (

√
ab)

τp−1 exp

(
−
√

ab
2

(
Kp(

√
ab)

Kp+1(
√

ab)
1
τ
+

Kp+1(
√

ab)

Kp(
√

ab)
τ

))
(50)

which can be further rewritten as follows by replacing
√

ab with ω to reduce the number of parameters

p(τ; ω, p) =
1
2

Kp
p+1(ω)

Kp+1
p (ω)

τp−1 exp

(
−ω

2

(
Kp(ω)

Kp+1(ω)

1
τ
+

Kp+1(ω)

Kp(ω)
τ

))
(51)

Substituting (51) into (39) and (40), and calculating the integral using (A1) leads to

p(k; ω, p, Σ) =
1

πd|Σ|
1

ηpKp(ω)

(
η2 +

2η

ω
k†Σ−1k

) p−d
2

Kp−d

(√
ω2 +

2ω

η
k†Σ−1k

)
(52)

and

p(CL; ω, p, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
1

ηpKp(ω)

(
η2 +

2η

ω
L Tr(Σ−1CL)

) p−Ld
2

× Kp−Ld

(√
ω2 +

2ω

η
L Tr(Σ−1CL)

) (53)

where η =
Kp(ω)

Kp+1(ω)
. The above expressions are the PDFs of the scattering vector and the sample

covariance matrix following G distributions [14,52].
The G0 distribution can be obtained from the G distribution by letting a → 0. Representing the

modified Bessel function Kv(z) using (A6), Equation (49) becomes

p(x; a, b, p) =
2p−1Γ

(
p + 1

2

)
bp√π

xp−1 exp
(
−1

2

(
b
x
+ ax

))
×
(∫ ∞

1
e−

√
abt(t2 − 1)p− 1

2 dt
)−1

(54)

If a → 0, p = −λ, b = 2β, then after calculating the integral via (A7), the PDF of the GIG
distribution is reduced to

p(x; λ, β) =
βλ

Γ(λ)
x−λ−1 exp

(
− β

x

)
(55)
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Equation (55) is known as the inverse gamma distribution, or the reciprocal of the gamma
distribution, with mean value μ = β

λ−1 . Let τ = x
μ to ensure the mean value of the texture τ is equal

to 1, the PDF becomes

p(τ; λ) =
(λ − 1)λ

Γ(λ)
τ−λ−1 exp

(
−λ − 1

τ

)
(56)

The PDFs of the scattering vector and the sample covariance matrix of the G0 distribution can
be obtained by plugging the texture distribution into (39) and (40) respectively, and calculating the
integral by (A9), giving

p(k; λ, Σ) =
1

πd|Σ|
Γ(λ + d)(λ − 1)λ

Γ(λ)

(
λ − 1 + k†Σ−1k

)−λ−d
(57)

and

p(CL; λ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(λ + Ld)(λ − 1)λ

Γ(λ)

(
λ − 1 + L Tr(Σ−1CL)

)−λ−Ld
(58)

Another extreme case of the GIG distribution is the gamma distribution when b → 0, which leads
to the K distribution [14].

4.1.4. Kummer-U Distribution

Assuming that the texture parameter follows a Fisher distribution, also known as the
F-distribution or the Fisher-Snedecor distribution, with PDF given by [35]

p(x; d1, d2) =
1

B( d1
2 , d2

2 )

(
d1

d2

) d1
2

x
d1
2 −1

(
1 +

d1

d2
x
)− d1+d2

2
(59)

where d1 > 0 and d2 > 0, the scattering vector or the sample covariance matrix are Kummer-U
distributed, with the ability to model different types of textures, because the Fisher distribution covers
a large range of distributions [16,53]. The mean value of the Fisher distribution is μ = d2

d2−2 . Let τ = x
μ

to ensure the mean value of the texture variable equal to 1, we have the distribution for the texture as

p(τ; ξ, ζ) =
Γ(ξ + ζ)

Γ(ξ)Γ(ζ)
ξ

ζ − 1

(
ξ

ζ − 1
τ

)ξ−1 ( ξ

ζ − 1
τ + 1

)−ξ−ζ

(60)

Here parameters d1 and d2 are replaced by ξ = d1/2 and ζ = d2/2 to make the expression more
concise. Inserting the texture distribution into (39), the PDF of the scattering vector can be calculated by

p(k; ξ, ζ, Σ) =
Γ(ξ + ζ)

Γ(ξ)Γ(ζ)πd|Σ|
(

ξ

ζ − 1

)ξ

×
∫ ∞

0
τξ−1−d

(
ξ

ζ − 1
τ + 1

)−ξ−ζ

exp
(
−k†Σ−1k

τ

)
dτ

(61)

Replacing τ by ζ−1
ξ t−1, and using (A10) to calculate the integral results into the distribution of

the scattering vector

p(k; ξ, ζ, Σ) =
1

πd|Σ|
Γ(ξ + ζ)Γ(ζ + d)

Γ(ξ)Γ(ζ)

(
ξ

ζ − 1

)d

× U
(

d + ζ, d − ξ + 1,
ξ

ζ − 1
k†Σ−1k

) (62)

where U(a, b, z) is the hyper-geometric function of the second kind [34]. By the same procedure, the
distribution of the sample covariance matrix can be obtained as
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p(CL; ξ, ζ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(ξ + ζ)Γ(ζ + Ld)

Γ(ξ)Γ(ζ)

(
ξ

ζ − 1

)Ld

× U
(

Ld + ζ, Ld − ξ + 1,
ξ

ζ − 1
L Tr(Σ−1CL)

) (63)

As a matter of fact, Fisher distributions are the Pearson VI solutions and cover a large range of
distributions. It is not only confined to urban scenes, but also fits reasonably in forest and agricultural
fields [16,53]. The behavior of the head and tail of the distribution can be controlled by the two
parameters ξ and ζ.

4.1.5. W Distribution

The W distribution assumes the texture to follow a beta distribution [48], which is given by [35]

p(x; α, β) =
1

B(α, β)
xα−1(1 − x)β−1, x ∈ [0, 1] (64)

The mean value of the beta distribution is μ = α
α+β . Let τ = x

μ , ξ = α, ζ = α + β, the distribution
of the normalized texture can be written as

p(τ; ξ, ζ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)

ξ

ζ

(
ξ

ζ
τ

)ξ−1 (
1 − ξ

ζ
τ

)ζ−ξ−1
, τ ∈ [0,

ζ

ξ
] (65)

The distribution of the scattering vector in this case can be calculated by

p(k; ξ, ζ, Σ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)πd|Σ|
(

ξ

ζ

)ζ−1
×

∫ ζ
ξ

0
τξ−1−d

(
ζ

ξ
− τ

)ζ−ξ−1
exp

(
−k†Σ−1k

τ

)
dτ

(66)

which leads to the following result according to the integral identity (A11)

p(k; ξ, ζ, Σ) =
1

πd|Σ|
Γ(ζ)
Γ(ξ)

(
ξ

ζ

) ξ+d−1
2 (

k†Σ−1k
) ξ−d−1

2 ×

exp
(
− ξ

2ζ
k†Σ−1k

)
Wd+1+ξ−2ζ

2 , ξ−d
2

(
ξ

ζ
k†Σ−1k

) (67)

where Wa,b(z) is Whittaker W function [34]. The distribution of the sample covariance matrix can be
obtained by the same way

p(CL; ξ, ζ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(ζ)
Γ(ξ)

(
ξ

ζ

) ξ+Ld−1
2 (

L Tr(Σ−1CL

) ξ−Ld−1
2 ×

exp
(
− ξ

2ζ
L Tr(Σ−1CL)

)
W Ld+1+ξ−2ζ

2 , ξ−Ld
2

(
ξ

ζ
L Tr(Σ−1CL)

) (68)

4.1.6. M Distribution

Another possible distribution for the texture is the beta prime distribution, also known as inverted
beta distribution, with PDF given by [35]

p(x; α, β) =
1

B(α, β)
xα−1(1 + x)−α−β, x > 0 (69)
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The mean value can be calculated by μ = α
β−1 . Again, scale the random variable to ensure the

mean value is equal to 1 by letting τ = β−1
α+β−1 (1 + x), the above distribution becomes

p(τ; ξ, ζ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)

ζ − 1
ξ − 1

(
ζ − 1
ξ − 1

τ

)−ζ ( ζ − 1
ξ − 1

τ − 1
)ζ−ξ−1

, τ >
ξ − 1
ζ − 1

(70)

where the parameters are changed to ζ = α + β, ξ = β to make the expression brief. Equation (70) is
the texture distribution of the M distribution [48]. According to the product model, the distribution of
the scattering vector can be calculated by

p(k; ξ, ζ, Σ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)πd|Σ|
(

ξ − 1
ζ − 1

)ξ

×
∫ ∞

ξ−1
ζ−1

τ−ζ−d
(

τ − ξ − 1
ζ − 1

)ζ−ξ−1
exp

(
−k†Σ−1k

τ

)
dτ

(71)

Employing the integral identity (A12), we have the PDF of the scattering vector as

p(k; ξ, ζ, Σ) =
1

πd|Σ|
Γ(ζ)Γ(ξ + d)
Γ(ξ)Γ(ζ + d)

(
ζ − 1
ξ − 1

)d
M
(

ξ + d, ζ + d,− ζ − 1
ξ − 1

k†Σ−1k

)
(72)

and the PDF of the sample covariance matrix as

p(CL; ξ, ζ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(ζ)Γ(ξ + Ld)
Γ(ξ)Γ(ζ + Ld)

(
ζ − 1
ξ − 1

)Ld

× M
(

ξ + Ld, ζ + Ld,− ζ − 1
ξ − 1

L Tr(Σ−1CL)

) (73)

Here M(a, b, z) is the confluent hypergeometric function of the first kind, also known as the
KummerM function [34]. The W distribution and the M distribution are able to model data with low
variance but extreme skewness, which is particularly relevant to data with textural variability after a
speckle filtering [48].

4.1.7. Wishart-Generalized Gamma Distribution

The Wishart-Generalized Gamma (WGΓ) distribution employs the generalized gamma
distribution to model the texture. The generalized gamma distribution has a more compact form
and a larger variety of alternative distributions, with the gamma, the Weibull, the Rayleigh, and
the exponential distributions being its special cases. Thus it is of greater flexibility in the statistical
modelling [54]. The PDF of the generalized gamma distribution is given by [35]

p(x; v, θ, k) =
v

θΓ(k)

( x
θ

)kv−1
exp

(
−
( x

θ

)v)
, v > 0, θ > 0, k > 0 (74)

which reduces to the gamma distribution (41) when v = 1. The mean value is given by
μ = θΓ(k + 1

v )/Γ(k). Scaling the mean value to 1, the PDF for the texture is obtained as

p(τ; v, k) =
vβkv

Γ(k)
τkv−1e−(βτ)v

(75)

where β = Γ(k + 1
v )/Γ(k). The distribution of the scattering vector k then can be calculated by

p(k; v, k, Σ) =
vβkv

Γ(k)πd|Σ|
∫ ∞

0
τkv−d−1 exp

(
−(βτ)v − k†Σ−1k

τ

)
dτ (76)
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There is no closed form expression for the above equation, but it can be solved numerically [54].
The distribution of the sample covariance matrix can be calculated by

p(CL; v, k, L, Σ) =
vβkvLLD|CL|L−d

Γ(k)I(L, d)|Σ|L
∫ ∞

0
τkv−Ld−1 exp

(
−(βτ)v − L Tr(Σ−1CL)

τ

)
dτ (77)

It is reported that the WGΓ distribution could provide better fitness than the K and Kummer-U
distributions for different land cover types of homogeneous, heterogeneous, and extremely
heterogeneous terrains [54].

4.1.8. Generalized K Distribution

The well-known gamma distribution sometimes cannot fit the texture distribution accurately
in very heterogeneous areas. In order to improve the flexibility of the model, it is assumed that the
texture follows a Laguerre expansion of the gamma distribution [55], with its PDF given by

p(τ; α, μ) =
τα−1

Γ(α)

(
α

μ

)
exp

(
−ατ

μ

) ∞

∑
u=0

ξu
Γ(α)u!

Γ(u + α)
Lα−1

u

(
ατ

μ

)
(78)

where μ, the mean value, is normally assumed to be equal to 1, and

ξu =
u

∑
k=0

(−1)k
(

u + α − 1
u − k

)
1
k!

(
α

μ

)k
E{xk} (79)

The Laguerre polynomial Lα−1
u (x) is given by

Lα−1
u (x) =

u

∑
k=0

(−1)k
(

u + α − 1
u − k

)
xk

k!
(80)

The PDF of the sample covariance matrix in this case can be expressed as [55]

p(CL; α, μ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
αα

Γ(α)μα
×

∞

∑
u=0

ξu
Γ(α)u!

Γ(u + α)

u

∑
k=0

(−1)k

2
k!

(u + α − 1)!
(u − k)!(α − 1 + k)!

(
α

μ

)k ( Lμ Tr(Σ−1CL)

α

) α+k−Ld
2

Kα+k−Ld

(
2
√

α

μ
L Tr(Σ−1CL)

)
(81)

which is a weighted combination of a series of K distributions based on a Laguerre polynomial
expansion. It shows that the generalized K distribution gives a better approximation than the K
distribution when there exist strong scatterers in the scene [55].

4.2. Multi-Texture Model

In the scalar texture model, different polarimetric channels are assumed to have a common texture
variable. However, if the electromagnetic wave sees different geometrical or dielectric properties of
the target, and if those properties are spatially modulated, then the texture of each channel should be
different [56]. For example, in scattering from forest areas, volume scattering will affect the cross-pol
component stronger than the co-pol channels, whereas surface scattering will have the opposite
effect [57]. The scalar texture model must, therefore, be extended to take into consideration the
different radar cross section modulations in polarimetric channels. One solution is to allow for a vector
component of the texture in the product model. This type of models are called multi-texture models.
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Under the assumption of reciprocity, there are only three independent complex coefficients
required to characterize the scatterer under observation. The multi-texture model then can be
formulated as [57–60]

k = Λ1/2z (82)

where z represents the speckle, following a multivariate Gaussian distribution (see Section 3.1), and
Λ is a diagonal matrix containing texture variables for each channel

Λ =

⎡⎢⎣τhh 0 0
0 τhv 0
0 0 τvv

⎤⎥⎦ (83)

The texture parameters are assumed to be positive, and we have E{Λ} equal to I, the identity
matrix. Assuming that the texture variables are constant on the scale of the multilook processing
window, the sample covariance matrix can be written as

CL =
1
L

L

∑
i=1

kik
T
i = Λ1/2WΛ1/2 (84)

where W is Wishart distributed, see Section 3.2.
Provided that the distributions of the texture variables are known, the PDF of the scattering vector

can be calculated using

p(k; Σ) =
∫

Ω+
p(k|Λ; Σ)p(Λ)dΛ (85)

where Ω+ is the set of all diagonal matrices with non-negative entries. After changing variable by
z = Λ−1/2k, the conditional distribution of k on Λ can be obtained from (7), giving

p(k|Λ; Σ) =
1

πd|Σ||Λ| exp
(
−k†Λ−1/2Σ−1Λ−1/2k

)
(86)

By the similar way, we have the distribution of the sample covariance matrix as [57,59]

p(CL; L, Σ) =
∫

Ω+
p(CL|Λ; L, Σ)p(Λ)dΛ (87)

where

p(CL|Λ; L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L|Λ|L exp
(
−L Tr(Σ−1Λ−1/2CLΛ−1/2)

)
(88)

Different texture variables for the multi-texture model can be: (1) totally dependent, in which
case it reduces to the scalar texture model, (2) independent from each other, that is, texture variables
follow different distributions with different parameters, or (3) partially correlated [58,61]. In many
cases, it is reasonable to assume co-pol channels have the same texture but different from that of
the cross-pol channels. This type of models is usually referred to as dual-texture model [57,59,62].
For reciprocal media with reflection symmetry for example, the PDF of the sample covariance matrix
can be expanded as [59]

p(CL; L, Σ) =
L3L|CL|L−3

I(L, 3)|Σ|L
∫ ∞

0
exp

(
−L

q22c22

Tx

)
p(Tx)

TL
x

dTx×∫ ∞

0
exp

(
−L

q11c11 + q13c31 + q31c13 + q33c33

Tco

)
p(Tco)

T2L
co

dTco

(89)
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where qij and cij denote the (i, j)th entry of matrix CL and Σ respectively. The texture of the co-pol
channels is represented by Tco and that of the cross-pol channel by Tx.

4.2.1. Correlated K Distribution

The correlated K distribution assumes that the texture variables of different polarimetric channels
are partially correlated, each following a gamma distribution [58,61]. Unfortunately, there is no explicit
expression for the joint distribution of the texture variables, or the correlated gamma distribution.
In this model, the texture of polarimetric channel i, specified by the PDF (42) with parameter α, is
given by [61]

τi =
1

2α

2α

∑
k=1

[g(k)i ]2 (90)

where g(k)i is the ith element of the vector g(k), k = 1, · · · , 2α, which is Gaussian distributed with zero
mean, variance one, and correlation matrix T. The correlation properties of the texture variables is also
specified by T. The characteristic function of the vector containing all texture variables is [61]

C(ω) =
1

|I + j(1/α)TW|α (91)

where W is a diagonal matrix having the entry (i, i) equal to the ith element of the characteristic
function variable ω. This model requires that all polarimetric channels have the same half-integer
distribution parameter α, e.g., 0.5, 1.5, 2.5 and so on.

4.2.2. Dual-Texture G Distribution

The dual-texture G distribution is derived by considering different texture variables for co-pol
and cross-pol channels. Both the co-pol and the cross-pol texture variables are modelled by the GIG
distributions (49), which yields a more flexible multivariate distribution [62]. Under the assumption
of reciprocity and reflection symmetry, the statistical properties of the single look complex data is
characterized by the distribution [62]

p(k; Σ, θ) =
1

πd|Σ|
2

∏
i=1

(η2
i + 2ηisi/ωi)

pi−d+i
2

η
pi
i Kpi (ωi)

Kpi−d+i

(√
ω2

i + 2ωisi/ηi

)
(92)

where θ = {ω, pi, ηi} consists of all parameters for the GIG texture distributions (see Section 4.1.3),
s1 = z11c11 + z13c31 + z31c13 + z33c33, and s2 = z22c22, with zij and cij indexing entries of Z = kk† and
Σ respectively.

5. Other Models

To model a complex scene using texture models, we often need to introduce complicated
distributions with many parameters to describe the statistical behavior of the texture component.
However, having more parameters requires a more complicated estimation process by considering
higher order statistics. In addition, higher order moment estimators are known to have higher
variance. With the limited sample sizes used in the modelling, such complicated modelling may be
very inefficient [50]. To overcome this problem, some researchers try to divide a complex model into
multiple simple components and then find a way to combine these components together. The finite
mixture model and copula based model detailed as follows are based on this idea.

5.1. Finite Mixture Model

The heterogeneity that appears in PolSAR data may result from the mixture of different targets.
For instance, from an urban area which usually consists of different objects like houses, trees and roads,
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the backscattering is a combination of different scattering mechanisms. The forest areas sometimes can
be treated as a mixture of bright clutters and dark ones, corresponding to the strong returns from the
crowns of trees and the shadows behind them. To represent this type of data, a simple model would be
inappropriate. Finite mixture models, instead, could achieve reasonable level of accuracy [17–19,63,64].

Assume that the region under analysis can be modeled by a mixture of K components, then the
overall PDF of the data can be written as a weighted sum of the probabilities of each component [65]

p(x; θ) =
K

∑
k=1

wk pk(x; θk) (93)

where θ is a vector containing all the parameters of the distribution and the mixing proportions obey

K

∑
k=1

wk = 1, wk ≥ 0 (94)

It has been shown that for complicated regions with more irregular histograms (multimodal,
spiky), the finite mixture model is more accurate than a single distribution [17–19].

There are many options for the distributions of the mixing components, but here we mainly focus
on the mixture of Wishart distributed components. For different mixing components, the number of
looks are the same. The PDF, therefore, can be written as

p(CL; L, θ) =
LLd|CL|L−d

Γd(L)

K

∑
k=1

wk exp(−L Tr(Σ−1
k CL))

|Σk|L
(95)

where θ = {Σk, k = 1, · · · , K} and Γd(L) is given by (22). The PDF of the ith channel intensity, which
is also a finite mixture, is found to be

p(Ii; L, θ) =
IL−1
i

Γ(L)

K

∑
k=1

(
L

σ2
k,i

)L

exp

(
− L

σ2
k,i

Ii

)
(96)

where σ2
k,i = [Σk]ii. The most interesting property of a mixture density is that the shape of the density

is extremely flexible. A mixture density may be multimodal, or even if it is unimodal, may exhibit
considerable skewness or additional humps. For this reason, finite mixture distributions offer a flexible
way to describe rather heterogeneous data by summarizing the characteristics of the data in terms of
the number and the spread of the mixture components [65].

5.2. Copula Based Model

Copulas are popular in high-dimensional statistical applications as they allow one to easily
model and estimate the distribution of random vectors by estimating marginals and dependence
separately [21]. They are of great interest for two main reasons: (1) as a way to study scale-free measures
of dependence; and (2) as a starting point for constructing families of multivariate distributions [21].
For the PolSAR data, we often have a much better idea about the marginal behaviour of individual
polarimetric channels than we do about their dependence structure. The copula approach allows us
to combine our more developed marginal models with a variety of possible dependence models to
investigate the statistical behavior of the data.

A d-dimensional copula, denoted by C(u) = C(u1, . . . , ud), is a joint Cumulative Distribution
Function (CDF) of a d-dimensional random vector on the unit hypercube [0, 1]d with uniform marginals.
More specifically, a copula is a function C from [0, 1]d to [0, 1] with the following properties [21,66]:
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1. C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, the copula is equal to 0 if at least one parameter is 0.
2. C(1, . . . , 1, ui, 1, . . . , 1) = ui, the copula is equal to ui if all parameters are 1 except ui.
3. For each hyperrectangle B = ∏d

i=1[xi, yi] ⊆ [0, 1]d where xi ≤ yi, the C-volume of B is
non-negative

∑
z∈×d

i=1{xi ,yi}
(−1)N(z)C(z) ≥ 0 (97)

where z represents the corners of the hyperrectangle, and N(z) = #{k : zk = xk} is the number of
elements in z reaching the lower bound of the hyperrectangle.

According to Sklar’s Theorem, any multivariate joint distribution can be written in terms of
univariate marginal distribution functions and a copula which describes the dependence structure
between the variables [21]

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (98)

where Fi is the continuous marginal CDF Fi(x) = P(Xi ≤ x). The copula C contains all information
about the dependence structure whereas the marginal cumulative distribution functions Fi contains all
information about an individual random variable.

There are many parametric copula families available, which usually have one or more parameters
controlling the strength of dependence. The most popular ones include the elliptical copulas (such as
the Gaussian copula and the student t copula), and the Archimedian copulas. In the context of PolSAR
data modeling, the Ali-Mikhail-Haq copula which belongs to the Archimedian family is demonstrated
to be appropriate [22,23,67]. The Gaussian copula is also found to be proper to model the wavelet
coefficients [68]. Though it is a hot topic, the study of copulas and the role they play in statistics and
stochastic processes is a subject still in its infancy. There are many open problems and much work to
be done.

6. Model Analysis

In the previous sections, the statistical models proposed for the PolSAR data are reviewed, with
an emphasis on the derivation of PDFs for the scattering vector and the sample covariance matrix.
The models are categorized into three groups: (1) Gaussian Models, (2) Texture Models, and (3) The
Others. Table 1 shows a summary of all these models. As we can see, texture models are still the
main focus in statistical modeling of PolSAR data. Several examples of the texture distributions with
different distribution parameters are plotted in Figure 1.

In the remaining of this section, we will show some experimental results on the applicability of
different statistical models.

First of all, two homogeneous Regions Of Interest (ROI) over the farmland of a RADARSAT-2
image are analyzed, as shown in Figure 2. The data, in single look complex format, has a spatial
resolution of 11.1 m × 7.6 m (Range × Azimuth). It was acquired over Flevoland (The Netherlands)
with the Fine Quad-Pol mode during the ESA-led AgriSAR 2009 campaign. Statistical properties
are analyzed separately by the histograms of the intensity, the product of amplitudes and the phase
difference between two polarimetric channels. To tell whether Gaussian distributions are proper or not,
the histograms are compared with the PDFs defined by (12), (18) and (20). The covariance matrices of
the Gaussian distributions are estimated using the simple mean estimator.

Figure 2 shows the fit of the HH intensity, and the fit of the product of HH Channel and HV
channel. It demonstrates that the histograms conform to the corresponding PDFs, implying that
Gaussian distributions are suitable for these crops areas. Though it could work, the comparison of
histogram and PDF is not visually effective, see Figure 2f,g for example. So in the next experiments we
will try different methods to validate the applicability of statistical models.

As mentioned in the previous sections, the spatial resolution of PolSAR images is one of the most
important factors that have strong impact on the data statistics. To demonstrate this, real SAR data
including a RADARSAT-2 Fine Quad-Pol data (RST2) as well as a F-SAR X-band full-pol data (FSAR)
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are analyzed. The two data have quite different spatial resolutions, 11.1 m × 7.6 m for the RST2 data,
and 0.25 m × 0.25 m for the FSAR data. Three ROIs over the crops area from each data are tested, see
Figure 3a,b. For the RST2 data, each ROI covers 50 × 50 pixels. The ROIs in the FSAR data are much
larger thanks to a higher spatial resolution, each covering 200 × 200 pixels. The Pauli decomposition
shows that the ROIs in both images are very homogeneous, no appreciable texture is observed.

Table 1. Summary of statistical PolSAR data models.

Category Model PDF References Summary

G
au

ss
ia

n

Gaussian (7) [31,33] Simple, high mathematical tractability, suitable for
data of low or moderate spatial resolution.Wishart (21) [31–33]

Relaxed Wishart (21) [39] More flexible than the Wishart distribution, but
assigning different values to the number of looks L
is not so convincing.

Wishart-Kotz (31) [40,41] With ability to model heavy tail behaviors,
computationally efficient and numerically stable,
but at the expense of adding two more parameters.

Te
xt

ur
e

M
od

el
s

K (43), (44) [4,7,10] Suitable for non-Gaussian data, widely used to
model forest, ocean and so on, strong physical
background.

NIG (47), (48) [49,50] Large shape variations, strong theoretical grounds
derived from Brownian motion.

G (52), (53) [14,15,52] Able to model different types of texture, but
requires more parameters (two parameters).

G0 (57), (58) [14,15] Suitable for extremely heterogeneous data, no
complex special function involved.

Kummer-U (62), (63) [16,53] Able to model different types of texture, but
requires more parameters (two parameters), texture
distribution belongs to Pearson family.

W (67), (68) [5] Able to model data with low variance but extreme
skewness, e.g., textured data after speckle filtering.M (72), (73) [5]

WGΓ No Explicit [54] Of great flexibility (generalization of many other
distributions), but the PDF needs to be calculated
numerically.

Generalized K (81) [55] Good approximation of data when there exist
strong scatterers, very complex PDF with
polynomial expansions.

Correlated K No Explicit [58,61] Able to model texture correlations of different
channels, no explicit expression for the texture
variables, distribution parameters are limited to
specific values.

Dual-Texture G (92) [62] Different texture distributions for the co-pol and
the cross-pol channels.

O
th

er
s

Finite Mixture (93) [17–19] Extremely flexible (covering both unimodal and
multimodal distributions), able to model data
with considerable skewness, suitable for rather
heterogeneous data.

Copula Based No Explicit [22,67] Divides complex multivariate distributions into
marginal distributions and dependence structure,
and analyze them separately, but it is not very
straightforward to choose the best copulas.

Normalized Intensity Moments (NIM) are employed to determine whether the Gaussian
distributions are suitable for the test ROIs or not [9,69]. Let I denote the intensity of a polarimetric
channel, the NIM of the vth order is defined as

NIMv =
E{Iv}
Ev{I} (99)

359



Remote Sens. 2017, 9, 348

For Gaussian distributed data, the intensity will follow an exponential distribution as defined
in (12). The NIMs in this case are independent of the data, which can be calculated by

NIM∗
v = Γ(v + 1) (100)

By comparing the estimated values from the data with those of Gaussian distributions, we can
easily make conclusions on the applicability of Gaussian distributions.

The HH channel is analyzed for both the RST2 data and the FSAR data. Results are shown in
Figure 3c,d, where black lines represent theoretical values of the exponential distribution and different
markers represent values estimated from the test ROIs. As it can be seen, the NIMs estimated from
the RST2 data fit those calculated from the exponential distribution very well. Same results can be
obtained for the HV channel and the VV channel. It is rational to conclude that these ROIs can be
modeled by Gaussian distributions. In contrast, the result on the FSAR data shows different behaviors.
There are large discrepancies between the estimated values and the theoretical values for all ROIs.
Apparently, Gaussian distributions are not accurate any more.

A further validation on the FSAR data is performed. Assuming that the intensity of each ROI can
be modeled by a Weibull distribution, then the distribution parameter, denoted by γ, can be estimated
using the first order moment. Furthermore, the NIM of the vth order can be computed by

NIM†
v =

Γ
(

1 + v
γ

)
Γv
(

1 + 1
γ

) (101)

In Figure 3e, the estimated NIMs (markers) and those calculated using the above equation
(lines) are plotted for each ROI. The Weibull distribution seems to be applicable in ROI 2 and ROI 3.
Compared with the exponential distribution, the Weibull distribution could capture larger variance by
introducing an additional distribution parameter. However, even the Weibull distribution could not
give an accurate representation for ROI 1. Complex distributions with more parameters may achieve
reasonable fit.

0 0.5 1 1.5 2 2.5 3 3.5

τ

0

0.5

1

1.5

2

2.5

p(
τ
)

gamma(6)
gamma(10)
inv gamma(6)
inv gamma(10)
gig(8, 10)
gig(16, 10)

(a)

0 0.5 1 1.5 2 2.5 3 3.5

τ

0

0.5

1

1.5

2

2.5

p(
τ
)

Fisher(10, 8)
Fisher(10, 16)
beta(10, 16)
inv beta(10, 16)
gen gamma(2, 6)
gen gamma(2, 10)

(b)

Figure 1. Examples of different texture distributions. (a) PDFs of the gamma (gamma(6) and gamma(10)),
the inverse gamma (inv gamma(6) and inv gamma(10)) and the GIG (gig(8, 10) and gig(16, 10))
distributions. (b) PDFs of the Fisher (Fisher(10, 8) and Fisher(10, 16)), the beta (beta(10, 16)),
the inverted beta (inv beta(10, 16)), and the generalized gamma (gen gamma(2, 6) and gen
gamma(2, 10)) distributions.
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Figure 2. Histograms of two homogeneous areas in a RADARSAT-2 image and the PDFs under
Gaussian assumption. Parameters of the Gaussian distributions are estimated using moments. (a) Pauli
decomposition of the RADARSAT-2 data and two ROIs. (b,c) Intensity of the Shh. (d,e) Amplitude of
ShhShv. (f,g) Phase of ShhShv.
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Figure 3. NIMs of the 2nd, the 3rd and the 4th order estimated from three crops areas in a RADARSAT-2
data and a F-SAR data. (a) Pauli decomposition and ROIs of the RADARSAT-2 image. (b) Pauli
decomposition and ROIs of the F-SAR image. (c) NIMs of the ROIs in the RADARSAT-2 data and the
exponential distribution. (d) NIMs of the ROIs in the F-SAR data and the exponential distribution.
(e) NIMs of the ROIs in the F-SAR data and Weibull distributions.

In general, the Weibull distribution is advisable to model the intensity of high resolution single
channel data. However, for PolSAR data, the correlations between different polarimetric channels
convey useful information, besides the intensities. In order to describe the statistical behavior correctly,
copulas (introduced in Section 5.2) can be adopted. By modeling the dependence structure between
polarimetric channels using copulas, and the intensities by Weibull distributions, a good approximation
of the data could be expected. However, how to choose the proper copulas needs to be investigated
intensively. We haven’t found a copula capturing the dependency properly for the testing ROIs.

Another aspect that causes non-gaussianity in PolSAR data is the fluctuation of radar cross section
due to the change of surface properties, e.g., height of the observing surface. Usually, this type of
data should be modeled using texture distributions. To validate the applicability of texture models,
two PolSAR images, the RADARSAT-2 Fine Quad-Pol data (RST2) and the ALOS-2 level 1.1 Full-Pol
data (ALOS2), are analyzed. Both images were acquired over Barcelona (Spain) with similar incidence
angles. The spatial resolution is different, 11.1 m × 7.6 m (Range × Azimuth) for the RST2 data
and 3.49 m × 3.84 m for the ALOS2 data, respectively. Original data are in the single look complex
format, from which the sample covariance matrices are obtained after applying a multilook processing.
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We have selected ROIs locating at similar positions in the urban area, in the agriculture area, in the sea
and the forest areas. Pauli decomposition of the test data and ROIs are shown in Figure 4.

Matrix variate log-cumulants [42] are used to examine the suitability of texture models. The matrix
variate log-cumulants are of great value for the analysis of sample covariance matrix, and that they
can be employed to derive estimators for the distribution parameters with low bias and variance [42].
Different from the NIMs, there is no need to study each polarimetric channel separately with matrix
variate log-cumulants. Define the Mellin kind matrix-variate characteristic function as the Mellin
Transform of the PDF

φ(s) =
∫

Ω+

|Z|s−d p(Z)dZ (102)

then, the vth-order log-cumulant, or Mellin kind cumulant, is given by

κv =
dv

dsv ln φ(s)
∣∣∣∣
s=d

(103)

Meanwhile, the sample log-cumulants can be estimated from the data using

κ̂v = μ̂v −
v−1

∑
i=1

(
v − 1
i − 1

)
κ̂iμ̂v−i (104)

where μ̂v is the estimated log-moments

μ̂v =
1
M

M

∑
i=1

(ln |Ci|)v (105)

with M denoting the number of samples and Ci the ith sample covariance matrix.
To see if a texture model is applicable, we can compare the log-cumulants calculated from the

PDF (κv) and those estimated from the sample data (κ̂v). In [42], a diagram is proposed to visualize
the comparison by plotting the second order log-cumulants κ2 against the third order log-cumulants
κ3 in a plane, where different distributions place in different regions, as shown in Figure 4c,d. In this
diagram, estimated log-cumulants are represented by the "+" markers (values from different ROIs
are distinguished by various colors), and theoretical values of different texture distributions are
represented by curves (the K and the G0 distributions) as well as regions (the Kummer-U , the M and
the W distributions).

From Figure 4, we can see that the urban areas (red and green rectangles) can be modeled by the
G0 or the Kummer-U distributions, which have the capability to model heterogeneous areas. The two
ROIs in urban area represent two different urban structures, one is of tall and densely distributed
apartments, the other is of short and sparse houses. This may be an explanation as to why different
statistics, the G0 vs the Kummer-U , are obtained. In agriculture areas (cyan and yellow rectangles),
K distribution is shown to be the most suitable model. The forest area (black rectangle) shows weak
texture in the RST2 data. In the ALOS2 data, there is a strong fluctuation in the backscattering due
to the radar foreshortening. To eliminate the effect of radar image distortions, another forest region
(purple rectangle) is analyzed, which is found to follow a K distribution. In most cases, texture is not
observed in the sea areas.

As explained in Section 5.1, the finite mixtures could also give rise to non-gaussian statistics.
To further distinguish textures from mixtures, higher order log-cumulants are required [70]. A large
number of samples are demanded in order to estimate the higher order log-cumulants correctly.
There are only 20 × 20 pixels in each of the previous ROIs, not enough to obtain a satisfying estimation
of the fourth order log-cumulants. So another experiment is carried out on an airborne SAR data,
a UAVSAR image.
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(a) (b)

(c) (d)

Figure 4. Matrix variate log-cumulants of the 2nd and the 3rd order estimated from a RADARSAT-2
data and an ALOS-2 data. Theoretical values calculated from the K, the G0, the Kummer-U , the W ,
the M and the Wishart distributions are also plotted as references. (a) ROIs of the RADARSAT-2 data.
(b) ROIs of the ALOS-2 data. (c) Matrix variate log-cumulants of the RADARSAT-2 data. (d) Matrix
variate log-cumulants of the ALOS-2 data.

The test site is in the West Panhandle of Florida (USA), and the data is in the multilook
cross-product slant range format, with number of looks in the range dimension and azimuth dimension
equal to 3 and 12 respectively. The ENL is estimated as 12.73 over a homogeneous sea area. Four ROIs
covering land types of ocean area (ROI 1), forest (ROI 2), wetland (ROI 3), and urban area (ROI 4), are
tested, see Figure 5. Thanks to a higher spatial resolution, 1.67 m × 0.8 m (Range × Azimuth), each
ROI contains 90 × 70 pixels, much more samples than those in the previous experiment.
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Figure 5. Test regions on the UAVSAR data. Four ROIs over different land types are tested, including
the sea, the forest, the wetland and the urban area.

The log-cumulants of the second order, the third order and the fourth order are calculated.
From the log-cumulant diagrams (Figure 6a,b), we can see that different ROIs show different statistical
behaviors. The ocean area can be modeled by a Wishart distribution, and the forest by a K distribution.
The wetland and the urban area are very heterogeneous, especially the urban area, which has a very
small κ3. The point clouds representing estimated statistics are less widely spread than those in
Figure 4c,d. This is because more samples are used to estimate the values.

The fourth order log-cumulant is considered to further discriminate the texture from mixture.
As shown in Figure 6c,d, the log-cumulants of major texture models can construct a smooth surface,
while those of the finite mixture model will lie below this surface. The results show that texture models
are proper for the sea area and forest area, while a finite mixture model make a better representation
than a texture model for the wetland area and the urban area, because the point clouds estimated from
ROI 1 and ROI 2 are on the product model surface, whereas those from ROI 3 and ROI 4 are below it.
Actually, the Pauli decomposition in Figure 5 shows that the first two ROIs are very homogeneous
and ROI 3 consists of different targets. Urban area, made up of distributed targets and point targets
usually, has very large variance. This can be verified by the log-cumulant cube in Figure 6d, where
both of the absolute values of κ3 and κ4 are very large. The estimation of the number as well as the
weights of mixing components needs to be further studied.

365



Remote Sens. 2017, 9, 348

-4 -3 -2 -1 0 1 2 3 4
κ

3

0

1

2

3

4

5

6

7

8

κ
2

K

G0

Wishart

1
2
3

4

(a)

-15 -10 -5 0
κ

3

0

1

2

3

4

5

6

7

8

κ
2

K

G0

Wishart

1
2
3

4

(b)

(c) (d)

Figure 6. Log-cumulants of the 2nd, the 3rd and the 4th orders on the UAVSAR data. The right column
and the left column are the same results but with different axes limits. (a,b) Log-cumulants of the 2nd
and the 3rd order. ROIs over different ground targets show different statistics. (c,d) Log-cumulant
up to the 4th order. It shows some ROIs can be modeled by texture models, while others should be
represented using finite mixture model.

At last, statistical properties of the sea area at two different conditions are examined. One is
with smooth surface, and the other with waves, as shown in Figure 7. Both data are acquired
by RADARSAT-2 at C-band, and they have similar spatial resolutions. To study the textures of
different polarimetric channels, the intensity of each channel is checked separately using the scalar
log-cumulants [42,71]. The second order and the third order log-cumulants are employed as before.
From Figure 7, we can see that in the first case, no texture is observed in all polarimetric channels. This can
be also validated by the Pauli decomposition. When there exist sea waves, however, the log-cumulants
are quite different. The HH channel and the VV channel have similar statistics, but different from those
of the HV channel. In other words, multi-texture is observed in the test area. The result supposes that
we can model the data using a dual-texture model in which the co-pol channels share a same texture
distribution and the cross-pol channel with another one. The correlation between different textures needs
to be further investigated to see if a partially correlated texture distribution is required.
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Figure 7. Scalar log-cumulants of different polarimetric channels (the HH, the HV and the VV channels)
over sea areas. (a) Test region over smooth sea surface. (b) Test region over sea surface with waves.
(c) Log-cumulants of the smooth sea surface. (d) Log-cumulants of the sea surface with waves.

7. Challenges

When the spatial resolution is not very high and the data is very homogeneous, the Gaussian
distributions could provide a good representation of the data. As the spatial resolution increases,
PolSAR data usually show non-Gaussian behaviour, e.g., exhibiting heavy tails. The texture models,
which adopt additional random variables to model the spatial variation of the radar cross section, are
found to be accurate for this kind of data. Texture models could model the non-Gaussian behavior
observed in high resolution data, and yet keep a compact mathematical form. However, to model
textures over complex scenes, sophisticated distributions are generally required. In addition, they are
known to present problems in estimating parameters accurately. General distributions that cover a
wide range of other distributions are suggested by many researchers. However, they usually have a
complex form. Using several simple distributions from a certain family, Pearson family for example,
could be a better idea. The distributions from a same family often have similar behaviors, but can be
further distinguished by statistics like higher order log-cumulants [70].

In the product model as shown in (33) or (34), positive random variable following any distribution
can be employed to model the texture. Additionally, PDFs of the scattering vector or the sample
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covariance matrix can be obtained subsequently after mathematical calculations. The PDFs, however,
give no information about why the data following a specific distribution is obtained. Most of the
texture models lack a physical explanation of the underlying scattering process. A possible way to
solve this problem could be the random walk model, which treats the received signal as an addition of
responses from all the scatterers in the same resolution cell [9,12,72]. The random walk model can be
interpreted as a discrete analog of the SAR focusing process.

Texture information has been used in optical image processing for a long time. In SAR or PolSAR
images, it is also found to be useful to distinguish different target types. For example, trees of different
heights can be distinguished by texture information [73]. However, currently the most common
way to make use of texture models is to design probability based algorithms (e.g., classification and
segmentation) by replacing the Gaussian distribution or the Wishart distribution [4–6]. How to extract
texture information and let PolSAR applications benefit from it is not involved. Apparently, combining
polarimetric information and texture information could improve the performance of applications since
more knowledge is introduced. Therefore, a further study in this aspect will be of great value.

Besides texture models, there are non-Gaussian models subdividing complicated distributions into
components, each with a simple distribution. For example, the finite mixture model treats a distribution
as a weighted sum of those of different target types. In addition, the copula based model divides a
multivariate distribution into marginal distributions and a general dependence structure. In the finite
mixture model, robust algorithms to estimate the mixing number and the mixing weights are in urgent
need. For the copula based method, we have many options for the marginal distributions. However,
for the dependence structure, not many experiments were implemented to show which copula is
the best. Additionally, it is a big challenge to extend the bivariate copulas which are intensively
investigated in the field of statistical analysis to multivariate ones to fit the PolSAR data.

The statistical properties of PolSAR data are characterized totally by the PDFs of the scattering
vectors or the sample covariance matrices. However, it is difficult to use these PDFs directly because
they are multivariate ones. Normally, the statistics of each polarimetric channel are studied separately,
and the correlation between different polarimetric channels are neglected. Another way is to analyze
the determinants of sample covariance matrices. The widely used matrix variate log-cumulant is an
example. However, we need to filter the data (the multilook process) to obtain the sample covariance
matrices, which could change the actual statistical properties of the data. To overcome these problems,
the l2-norms of the scattering vectors can be employed, and they are found to be a useful tool for
texture analysis of PolSAR data [73]. However, there are also limitations, e.g., the difference between
models are not very large.

In summary, statistical modeling and texture analysis of PolSAR data covers a wide range of
topics. To make a better understanding of texture and to make good use of it, there is still have a lot of
work to do.
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Abbreviations

The following abbreviations are used in this manuscript:

BSA Back Scattering Alignment
CDF Cumulative Distribution Function
CLT Central Limit Theorem
FSA Forward Scattering Alignment
GIG Generalized Inverse Gaussian
NIG Normal Inverse Gaussian
NIM Normalized Intensity Gaussian
PDF Probability Density Function
PolSAR Polarimetric SAR
ROI Region Of Interest
SAR Synthetic Aperture Radar
SIRV Spherically Invariant Random Vector

Appendix A

Some integral identities used in this paper are listed out here.

1. ([74] p. 368, Equation (3.471-9))

∫ ∞

0
xv−1 exp

(
− β

x
− αx

)
dx = 2

(
β

α

)v/2
Kv

(
2
√

βα
)

Re β > 0, Re α > 0

(A1)

Kv is the modified Bessel function of the second kind of order v.
2. ([74] p. 340, Equation (3.339)) ∫ π

0
exp(z cos x)dx = π I0(z) (A2)

I0(z) is the modified Bessel function of the first kind.
3. ([74] p. 702, Equation (6.624-1))∫ ∞

0
xe−αxK0(βx)dx =

1
α2 − β2

×
⎧⎨⎩ α√

α2 − β2
ln

⎛⎝ α

β
+

√(
α

β

)2
− 1

⎞⎠− 1

⎫⎬⎭
(A3)

4. ([74] p. 347, Equation (3.382-2))∫ ∞

u
(x − u)ve−μxdx = μ−v−1e−uμΓ(v + 1), u > 1, Re v > −1, Re μ > 0 (A4)

5. ([74] p. 700, Equation (6.621-3))

∫ ∞

0
xμ−1e−αxKv(βx)dx =

√
π(2β)v

(α + β)μ+v
Γ(μ + v)Γ(μ − v)

Γ(μ + 1/2)

× 2F1

(
μ + v, v +

1
2

; μ +
1
2

;
α − β

α + β

)
Re μ > |Re v|, Re (α + β) > 0

(A5)

2F1(a, b; c; z) is the Gauss hypergeometric function.
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6. ([74] p. 917, Equation (8.432-3))

Kv(z) =

( z
2
)v Γ

(
1
2

)
Γ
(

v + 1
2

) ∫ ∞

1
e−zt(t2 − 1)v− 1

2 dt, Re (v +
1
2
) > 0, |arg z| < π

2
(A6)

7. ([74] p. 325, Equation (3.252-3))

∫ ∞

1
xμ−1(xp − 1)v−1 =

1
p

B
(

1 − v − μ

p
, v
)

p > 0, Re v > 0, Re μ < p(1 − Re v)
(A7)

8. The gamma function is defined as

Γ(t) =
∫ ∞

0
xt−1e−xdx. (A8)

Let x = β
y where β > 0, we have the following equation after changing variables

∫ ∞

0
y−t−1 exp

(
− β

y

)
dy = Γ(t)β−t (A9)

9. ([34] p. 505, Equation (13.2.5))∫ ∞

0
e−ztta−1(1 + t)b−a−1dt = Γ(a)U(a, b, z) (A10)

U is the confluent hypergeometric function of the second kind, or KummerU function.
10. ([74] p. 367, Equation (3.471-2))

∫ u

0
xv−1(u − x)μ−1 exp

(
− β

x

)
dx =β

v−1
2 u

2μ+v−1
2 Γ(μ)

× exp
(
− β

2u

)
W1−2μ−v

2 , v
2

(
β

u

)
Re μ > 0, Re β > 0, μ > 0

(A11)

W is Whittaker W function.
11. ([74] p. 368, Equation (3.471-5))

∫ ∞

u
xv−1(x − u)μ−1 exp

(
β

x

)
dx =B(1 − μ − v, μ)uμ+v−1

× M
(

1 − μ − v, 1 − v,
β

u

)
0 < Re μ < Re (1 − v), u > 0

(A12)

M is the confluent hypergeometric function of the first kind, also known as the
KummerM function.
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Abstract: Segmentation techniques play an important role in understanding high-resolution
polarimetric synthetic aperture radar (PolSAR) images. PolSAR image segmentation is widely
used as a preprocessing step for subsequent classification, scene interpretation and extraction of
surface parameters. However, speckle noise and rich spatial features of heterogeneous regions
lead to blurred boundaries of high-resolution PolSAR image segmentation. A novel segmentation
algorithm is proposed in this study in order to address the problem and to obtain accurate and
precise segmentation results. This method integrates statistical features into a fractal net evolution
algorithm (FNEA) framework, and incorporates polarimetric features into a simple linear iterative
clustering (SLIC) superpixel generation algorithm. First, spectral heterogeneity in the traditional
FNEA is substituted by the G0 distribution statistical heterogeneity in order to combine the shape
and statistical features of PolSAR data. The statistical heterogeneity between two adjacent image
objects is measured using a log likelihood function. Second, a modified SLIC algorithm is utilized to
generate compact superpixels as the initial samples for the G0 statistical model, which substitutes the
polarimetric distance of the Pauli RGB composition for the CIELAB color distance. The segmentation
results were obtained by weighting the G0 statistical feature and the shape features, based on
the FNEA framework. The validity and applicability of the proposed method was verified with
extensive experiments on simulated data and three real-world high-resolution PolSAR images from
airborne multi-look ESAR, spaceborne single-look RADARSAT-2, and multi-look TerraSAR-X data
sets. The experimental results indicate that the proposed method obtains more accurate and precise
segmentation results than the other methods for high-resolution PolSAR images.

Keywords: polarimetric synthetic aperture radar (PolSAR); segmentation; high-resolution;
fractal net evolution approach (FNEA); G0 distribution; simple linear iterative clustering (SLIC);
multi-feature; superpixels

1. Introduction

1.1. Background

Synthetic aperture radar (SAR) has been widely accepted as an indispensable method for Earth
monitoring due to its all-day/all-weather capacity and penetration capability [1–4]. Fully polarimetric
SAR (PolSAR) emits or receives two orthogonal polarized radar waves, and allows the discrimination of
different scattering mechanisms. PolSAR image segmentation is able to obtain distinct and self-similar
pixel groups that depict homogeneous regions, with virtually no speckle noise [5]. Since accurate
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segmentation is important for subsequent classification and extraction of surface parameters [6,7],
PolSAR image segmentation has been increasingly used for land use and land cover classification [8],
land development detection [9], and oil seep detection [10].

With a new generation of advanced SAR sensors, higher-resolution PolSAR images of the Earth’s
surface have been acquired. In addition to being affected by speckle, the high-resolution PolSAR
images show the following characteristics:

(1) Spatial characteristics: The decrease in the resolution cell provides richer spatial details of ground
objects [11], such as significant geometric shape features and texture information.

(2) Statistical characteristics: The scattering vectors from the homogeneous regions of medium- or
low-resolution PolSAR data can be modeled using Gaussian distributions. The corresponding
coherency matrices have a complex Wishart distribution [12]. However, in high-resolution
PolSAR data, a significantly reduced number of sub-scatterers within a resolution cell leads to a
greater heterogeneity [13], particularly in urban areas, where clusters can no longer be modeled
using a Gaussian process.

In short, high-resolution PolSAR images usually contain speckle noise, and many heterogeneous
regions, with rich spatial features. The complexity makes segmentation of high-resolution PolSAR
images a very challenging task. In this paper, research on segmentation for high-resolution PolSAR
images is reported.

1.2. Related Work

Some classic segmentation algorithms for PolSAR images have been proposed, including the Markov
random field (MRF) [14,15], statistical region merging (SRM) [5], hierarchical segmentation [16,17], and
superpixel segmentation [18–20]. Liu et al. [15] proposed a spatially adaptive segmentation method to
keep each segment at an appropriate size and shape based on multiscale wedgelet analyses and Wishart
MRF (MW-WMRF). Lang et al. [5] utilized the generalized statistical region merging (GSRM) algorithm,
based on the product model, which shows improved robustness and anti-noise performance without
any assumption on PolSAR data distributions. Alonso-González et al. [17] used binary partition trees
(BPT) to develop a novel region-based and multi-scale PolSAR data representation for speckle noise
filtering and segmentation, on the basis of the Gaussian hypothesis. Liu et al. [18] oversegmented
PolSAR images into many local and coherent regions using the normalized cuts algorithm to improve
the classification accuracy by adding inherent statistical characteristics to the contour information.
Ersahin et al. [21] segmented PolSAR data with contour information and spatial proximity, based on
spectral graph partitioning for object oriented classification. In summary, an increasing number of
methods are combining spatial features and statistical properties of PolSAR images to obtain useful
segmentation results.

Segmentation using spatial features is a common method to model a labeling process as MRF [14,15],
which includes the spatial relationships between pixels. In contrast, the fractal net evolution algorithm
(FNEA) makes good use of the geometric shape features and spectral information of targets [22].
This was successfully used in high spatial resolution, optical image segmentation [23,24]. FNEA is a
bottom-up region merging technique with a fractal iterative heuristic optimization procedure. It starts
with a single pixel and a pairwise comparison of its neighbors, with the aim of minimizing the resulting
merged heterogeneity. The heterogeneity is determined using geometric shapes and the standard
deviation of spectral properties as its basis. By replacing spectral information with the parameters of
H/α/A decomposition [25], Freeman decomposition [26], or Pauli decomposition [8,9], researchers
have introduced FNEA into PolSAR image segmentation for object-oriented classification. Benz and
Pottier [25] first used FNEA to segment filtered PolSAR images by employing shape features, H/α/A,
and the total scattered power span. Qi et al. [8] implemented FNEA segmentation on a Pauli RGB
composition image of filtered PolSAR data, and successfully applied it to land-use and land-cover
classification. However, the segmentation results of these methods were easily influenced by speckle
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noise, and the results were too fragmented to represent unbroken land parcels [8] as the statistical
characteristics of PolSAR data were not used.

Segmentation, using statistical features uses the classical complex Wishart distribution, which
has been widely used with PolSAR data [15,17,19–21,27]. As the Gaussian or Wishart model does not
agree well with heterogeneous scenes of high-resolution images, heterogeneity is usually modeled as
the product of the square root of a textured random variable and an independent, zero-mean, complex
circular Gaussian speckle random vector [28]. If the random texture variable is Gamma, inverse
Gamma, or Fisher distributed, the target coherency matrices follow multivariate K distribution [29],
G0 distribution [30], or KummerU distribution [31], respectively. Beaulieu and Touzi [16] presented a
hierarchical segmentation method using the K-distribution model, and verified its effectiveness for
textured forested areas. Bombrun et al. [32] proposed a hierarchical maximum likelihood segmentation
for high-resolution PolSAR images using KummerU distribution heterogeneous clutter models, which
provided a better performance compared to the classical Gaussian criterion. However, it is essential
to robustly estimate the parameters of these multiplicative models with enough samples. Generally,
the segmentation results have obvious dentate boundaries, as the initial samples are usually collected
from image blocks within square windows [32]. Moreover, the accuracy of parameter estimation
decreases due to the differences between the square blocks and the actual boundaries of targets in
high-resolution PolSAR data.

1.3. The Proposed Approach

Superpixel algorithms group pixels into meaningful atomic regions, which are roughly
homogeneous in size and shape, and can be used to replace the rigid structure of the pixel grid or the
square block. Since the utilization of superpixels helps to overcome the influence of speckle noise and to
preserve statistical characteristics [19,33,34], it has gradually become an important preprocessing step
for segmentation or classification. Recently, Achanta et al. proposed a new superpixel algorithm, simple
linear iterative clustering (SLIC), which adapted a k-means clustering approach to efficiently generate
superpixels [35]. Considering the simplicity, fast processing and excellent boundary adherence of SLIC,
Qin et al. [19] introduced the superpixel algorithm into PolSAR image segmentation by combining it
with the Wishart hypothesis test distance and the spatial distance.

We propose a novel segmentation algorithm for high-resolution PolSAR data by combining
spatial, statistical, and polarimetric features; this algorithm integrates statistical features into a FNEA
framework, and the polarimetric features with SLIC, in order to generate pre-segments. Given that the
G0 distribution has been shown to be flexible, computationally inexpensive, and capable of modeling
varying degrees of texture [30,36], we substitute the G0 distribution of statistical heterogeneity for
the spectral heterogeneity in the traditional FNEA. Furthermore, we also utilize a modified SLIC
algorithm to generate compact, approximately homogeneous superpixels as initial samples for the
statistical model, which utilizes the polarimetric distance of Pauli RGB composition instead of the
CIELAB color distance.

The remainder of this paper is organized as follows; Section 2 describes the proposed segmentation
method for high-resolution PolSAR data. The employed PolSAR images and the experimental and
evaluation results are reported in Section 3. The discussion of the results is presented in Section 4.
Conclusions are given in Section 5.

2. Methodology

The proposed approach is based on the FNEA framework, and can be divided into three main
parts: (1) a statistical heterogeneity measure using the G0 distribution model for high-resolution
PolSAR data; (2) initial sample generation for the statistical model using the SLIC algorithm with
polarimetric features; and (3) segmentation with the G0 statistical and shape features, based on the
FNEA framework. The details of these are explained in subsequent subsections.
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2.1. FNEA

FNEA merges two adjacent objects with a fractal iterative heuristic optimization procedure,
which starts with single-pixel objects, and satisfies the condition of minimizing the resulting merged
heterogeneity [22,23].

The heterogeneity between two adjacent image objects is defined by integrating the change of
spectral heterogeneity Δhspc with the change of shape heterogeneity Δhshp in a virtual merge [22],
as follows:

Δh = wshpΔhshp +
(

1 − wshp

)
Δhspc (1)

where wshp is the weight of the shape feature, and wshpε[0, 1]. Adjacent objects i and j are merged
when the smallest growth in heterogeneity occurs.

For multispectral remote sensing images, Δhspc can be described by adding weight wc to image
channels c [22],

Δhspc = ∑
c

wc[(ni + nj)δ
i
⋃

j
c − (niδ

i
c + njδ

j
c)] (2)

where n denotes the objects size, which is the number of pixels in an image object; and δc denotes
the spectral heterogeneity of the image object, which is the standard deviation within the objects of
channel c.

The change of shape heterogeneity Δhshp can be expressed as

Δhshp = (ni + nj)h
i
⋃

j
shp − (nihi

shp + njh
j
shp) (3)

where hshp denotes the shape heterogeneity of the image object, which is described with regard to
smoothness and compactness. It is described by

hshp = wsmth
p
b
+ (1 − wsmth)

p√
n

(4)

where wsmth is the weight of smoothness, and wsmth ε [0, 1]. The smoothness heterogeneity is defined
as the ratio of factual edge length p and border length b; b is given by the bounding box of an image
object parallel to the raster while the compactness heterogeneity is defined as the ratio of factual edge
length p and the square root of n [22].

At each iteration in FNEA, an image object is merged into its adjacent image object with the
minimum heterogeneity, and when the heterogeneity is less than threshold t (i.e., scale parameter).
If all increases exceed the scale parameter, no further merging occurs and the segmentation stops. The
larger scale parameter t is, the more image objects can be merged and the larger the image objects grow.

2.2. Statistical Heterogeneity Measure by the G0 Model

PolSAR data are mainly provided in two forms: The single-look scattering matrix and the
multi-look polarimetric coherency (or covariance) matrix. Each pixel of PolSAR data can be described
by a 2 × 2 complex scattering matrix S [2]:

S =

[
SHH SHV
SVH SVV

]
(5)

where H and V represent the horizontal and vertical polarization directions, respectively.
In a reciprocal medium, SHV = SVH and S can be transformed into a three-dimensional single-look

scattering vector using the complex Pauli spin matrix basis set [2,27]:

k =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
(6)
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where [·]T denotes the matrix transpose. In this paper, the dimension of the scattering vector is denoted
by d (d = 3 for the reciprocal case).

Usually, L-look coherency matrix T is computed to suppress speckle using the average of k of the
surrounding pixels, as follows [2,27]:

T =
1
L

L

∑
i=1

kiki
H (7)

where ki
H is the conjugate transpose of scattering vector ki, and L is the number of looks.

2.2.1. G0 Model for High-Resolution PolSAR Data

High-resolution PolSAR images are greatly affected by heterogeneity due to the significantly
reduced number of scatterers within a resolution cell [11]. The heterogeneity is usually modeled with
the multiplicative models [28].

For single-look complex PolSAR data, the multiplicative model is given by

k =
√

τx (8)

where τ is a texture random variable, and x is a d-dimensional speckle vector, which follows an
independent zero-mean multivariate complex Gaussian distribution.

Assume that τ in Equation (8) obeys the inverse Gamma distribution, in which the probability
density function (PDF) is given by

pτ(τ) =
τα−1

(−α − 1)Γ(−α)
exp

(
α + 1

α

)
, −α, τ > 0 (9)

where α is the shape parameter and Γ(·) is the standard Euler Gamma function.
In this case, the target scattering vector k follows the G0 distribution, which is characterized by

the following PDF [37]:

pk(k) =
Γ(d − α)

πd|Σ|Γ(−α)Γ(−α − 1)α

(
kHΣ−1k − α − 1

)α−d
(10)

where Σ = E[kkH ] is the covariance matrix of k, E[·] denotes the mathematical expectation, and |·|
represents the determinant, while (·)−1 denotes the inverse.

For multi-look PolSAR data, coherency matrix T is modeled as the product of random variable τ

and independent random matrix X:
T = τX (11)

where X obeys a Wishart distribution.
For an inverse gamma distributed texture, target coherency matrix T follows the G0

distribution [30], which is characterized by the PDF, as follows:

pT(T) =
LLd|T|L−dΓ(Ld − α)

Γd(L)|Σ|LΓ(−α)Γ(−α − 1)α

(
Ltr

(
Σ−1T

)
− α − 1

)α−Ld
, α < −1 (12)

where Σ = E[T], tr(·) is the trace operator and L is number of looks. Γd(L) represents the multivariate
gamma function, defined as

Γd(L) = πd(d−1)/2
d−1

∏
i=0

Γ(L − i). (13)

The G0 model is particularly suitable for high-resolution PolSAR image description, which is a
flexible model for different texture classes of SAR images [30,36].
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2.2.2. Statistical Heterogeneity Measure

Since the log likelihood function can be used to measure the similarity between two segments in a
hierarchical segmentation of PolSAR Images [16,32], it is utilized to measure the statistical heterogeneity
between two image objects. At each iteration, merging two image objects using statistical features
yields a decrease in the log likelihood function. Thus, the two adjacent image objects, i and j, should
be merged to produce the smallest decrease of the log likelihood function. The change of statistical
heterogeneity Δhstt can be expressed as

Δhstt = hi
stt + hj

stt − hi
⋃

j
stt (14)

where hstt denotes the statistical heterogeneity of image object O, which is the maximum log likelihood
value of the image object.

For single-look complex PolSAR data, the statistical heterogeneity of image object O is given by

hO
stt = ∑

kεO
ln[pk(k)] (15)

where pixels in image object O are considered independent realizations, with respect to the assumed
PDF in Equation (10).

According to Equations (10), (14), and (15), the statistical heterogeneity of image object O can be
simplified to

hO
stt

∼= −n ln |Σ̂| − nα̂ ln (−α̂− 1)− n ln
[

Γ(−α̂)

Γ(d − α̂)

]
− (d − α̂) ∑

k∈O
ln (kHΣ̂−1 − α̂− 1) (16)

where n is the number of pixels in image object O, α̂, and Σ̂ are the best likelihood estimates of α, and
Σ for this image object.

For multi-look PolSAR data, with respect to the assumed PDF in Equation (12), the statistical
heterogeneity of image object O is

hO
stt = ∑

iεO
ln[pT(Ti)]. (17)

Similarly, the statistical heterogeneity of image object O can be simplified by Equations (12), (14),
and (17) to

hO
stt

∼= −nL ln |Σ̂| − nα̂ ln (−α̂− 1)− n ln
[

Γ(−α̂)

Γ(Ld − α̂)

]
− (Ld − α̂) ∑

i∈O
ln (Ltr(Σ̂−1Ti)− α̂− 1). (18)

It can be concluded that the statistical heterogeneity from Equation (18) is equivalent to
Equation (16) when L = 1, which means that the change in statistical heterogeneity can be computed
by Equations (14) and (18), for both single-look and multi-look data.

2.2.3. Parameter Estimation

The number of looks, L, is generally an integer provided by the SAR sensor. Statistical
heterogeneity measured by the G0 distribution model is parameterized by scale matrix Σ and shape
parameter α. The correct and reasonable merging objects are based on the proper estimation of the
involved parameters.

Scale matrix Σ is the mathematical expectation of the coherency matrix, which can be calculated
using the classical sample covariance matrix estimator [38], as follows:

Σ̂ = < T >N (19)

where 〈·〉 denotes sample averaging, and N is the number of samples.
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Shape parameter α can be estimated using the method of matrix log-cumulants, which has been
proposed in the literature [39]. However, given that this method is more complex, needing a large
amount of computation, and that this calculation is performed for each image object in each iteration
of the segmentation, we estimate shape parameter α using the method of Doulgeris, provided in the
literature [40]. This estimator is given by

α̂ =
2LVar{M}+ d(Ld − 1)

d − LVar{M} (20)

where M = tr(Σ̂−1T), and Var{·} is the statistical variance.

2.3. Initial Samples Generation for Statistical Model

Accurate and robust parameter estimation of the statistical models requires sufficient samples.
Since FNEA starts region merging from a single pixel, the number of samples (i.e., pixels in each image
object) is too small to accurately estimate parameters at the beginning of the iterations. Generally,
the image blocks within square windows are used as samples. However, there are obvious differences
between the square blocks and the actual boundaries of targets in high-resolution PolSAR data.
Therefore, in this work, the SLIC superpixel algorithm with polarimetric and spatial features was used
to produce suitable initial samples before the utilization of statistical heterogeneity.

The SLIC algorithm incorporates k-means clustering to efficiently produce superpixels for images
in the CIELAB color space [35]. It includes two main steps: Initializing m cluster centers and assigning
each pixel to the nearest cluster center in a local search region. This algorithm has a speed advantage
over traditional k-means clustering by limiting the size of the search area to reduce the number of
distance calculations. In general, a key parameter, m, is the desired size of the superpixels, with
approximately equal pixels [35].

Pauli RGB images can be obtained by using them as blue, red, and green channels, respectively.
This has become the standard display mode of PolSAR data [41]. Hence, the polarimetric feature
space of Pauli RGB composition was used to replace the CIELAB color space for the polarimetric
SAR images.

The method of initial samples generation for statistical model using SLIC algorithm includes the
following three main steps:

(1) Initializing cluster centers. The algorithm begins by initializing m cluster centers Cm =

[Rm Gm Bm xm ym]
T by sampling pixels in the Pauli RGB images at regular grid steps g, and the grid

interval is g =
√

N/m, where N is the number of pixels of the Pauli RGB image [35]. Then the centers
are adjusted to seed locations where the lowest gradient meets in a 3 × 3 neighborhood [42]. This
procedure is important as it avoids centering a superpixel on an edge, and reduces the probability of
seeding a superpixel with a noisy pixel.

(2) Associating each pixel with the nearest cluster center. The distance between the superpixel
center, Cm, and each pixel, i, is calculated in region 2g × 2g around the Cm [42]. Then, all the pixels
can be assigned to the nearest cluster center, and the superpixels with the approximate size of g × g
are finally obtained [35]. The distance measure D combines the polarimetric distance of the Pauli RGB
composition and the spatial distance and is described by

dp =
√
(Ri − Rm)

2 + (Gi − Gm)
2 + (Bi − Bm)

2

ds =
√
(xi − xm)

2 + (yi − ym)
2

D =

√(
dp

max(dp)

)2
+
(

ds
g

)2
(21)

where polarimetric distance dp and spatial distance ds are normalized by their respective maximum
distances within a cluster, max (dp) and g The equivalent weight between dp and ds is utilized to
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calculate final distance D [35,43]. Once each pixel has been associated to the nearest cluster center, the
cluster centers adjust to be the mean [R G B x y]T vector of all the pixels belonging to the cluster. This
step can be repeated for 10 iterations, which is enough for most images [35].

(3) In order to provide sufficient numbers of initial samples for the statistical model, the
superpixels, of which sizes are less than the specific threshold g2, are merged with the nearest neighbors
according to the distance measure. Then, the final superpixels of the PolSAR images are obtained.

2.4. Segmentation with Statistical and Shape Features

Traditional FNEA starts with single pixel objects and segments an image by integrating spectral
feature and shape features. It is difficult to use the statistical feature of PolSAR data based on pixels.
Therefore, based on the initial objects generated by SLIC, we substitute the G0 distribution statistical
heterogeneity for spectral heterogeneity in the original FNEA, and then combine the G0 statistical and
shape features to segment PolSAR data.

Similar to Equation (1), the change in total heterogeneity including the G0 statistical and shape
features can be obtained by weighting as follows:

Δh′ = wshpΔhshp +
(

1 − wshp

)
Δhstt (22)

where shape heterogeneity is calculated using Equation (4) by averaging the smoothness
and compactness.

Using Equations (3), (4), (14), (18), and (22), the proposed segmentation method starts from
superpixels with a fractal iterative procedure, and satisfies the condition of minimizing the resulting
merged heterogeneity.

The proposed method consists of two main procedures: Generating superpixels as initial objects
using SLIC and FNEA segmentation based on superpixels. The former utilizes Pauli RGB and spatial
information for segmentation, while the latter employs G0 statistics information and shape features.
The value of g2 is related to the start time using statistics information. A greater value of g2 delays the
use of statistical information.

Each iteration of superpixel-based FNEA needs to traverse all the objects, and then the object
information is updated after the iteration. In order to ensure the accuracy of the boundary, each object
is merged once, at most, in each iteration, similar to the region growing algorithm.

In summary, the details of proposed segmentation method are presented in Algorithm 1.

Algorithm 1. FNEA-based Multi-Feature PolSAR Segmentation.

1: INPUT: PolSAR data, samples number g2, shape weight wshp, scale parameter t.
2: OUTPUT: segmentation result.
3: Generate superpixels of PolSAR data using new SLIC algorithm by Equation (21).
4: Produce initial image objects with the superpixels.
5: do

6: Get the number of image objects NO, a = NO.
7: for each image object i do

8: for each adjacent object j of image object i do

9: Estimate scale matrix Σ, shape parameter α using pixels in object by Equations (19) and (20).
10: Compute the change of heterogeneity Δh′ by Equations (3), (4), (14), (18), and (22).
11: end for

12: Compare all the Δh′ to obtain the minimum and set it as Δhmin
13: if Δhmin ≤ t then

14: Merge image objects i and j, create a new image object i
⋃

j, and delete objects i, j.
15: a = a − 1.
16: end if

17: end for

18: while (a < NO)
19: Produce segmentation image and the vector of objects boundaries.
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3. Experiment and Results

To verify the proposed method, one simulated data set, and three different real-world PolSAR
data sets are used in the rest of this section. Moreover, different segmentation methods were adopted
for comparison. This section is divided into two subsections to describe the experimental data sets and
report on the experimental details of the simulated PolSAR data, RADARSAT-2 image, ESAR image,
and TerraSAR-X image.

3.1. Description of the Experimental Data Sets

The first data set is a simulated single-look PolSAR image, 400 × 400 pixels in size, and contains
eight different classes: Building areas, forest, bush land, grass land, two different types of crops, road,
and a water body. To better reflect the ground reality, the Wishart distribution was adopted to generate
the water body, while the G0 distribution data were adopted to generate the other classes. The initial
scattering vectors and distribution parameters were estimated from a real data set. The Pauli RGB
image is shown in Figure 1a, and the corresponding reference map is shown in Figure 1b. Figure 2
depicts the theoretical PDF of each class.

 

 
(a) (b)

Figure 1. Simulated single-look polarimetric synthetic aperture radar (PolSAR) data as the first data
set: (a) Pauli RGB image and (b) the object spatial distribution reference map of the simulated image.

Figure 2. The theoretical probability density function (PDF) of each simulated class.
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The second data set is a section of the single-look C-band RADARSAT-2 PolSAR image of
Northern Flevoland, Netherlands, and has a spatial resolution of 4.7 m × 4.8 m (range × azimuth).
The experimental image is 1400 × 1400 pixels in size and is shown in Figure 3a. The major land cover
classes include homogeneous areas (such as water bodies and farmlands), and heterogeneous areas
(such as forest and urban areas). A manual interpretation using nine categories was used as the ground
truth map, which is shown in Figure 3b.

The third data set is a section of the two-look processed L-band ESAR PolSAR image of
Oberpfaffenhofen, Germany, and has a spatial resolution of 1.5 m × 1.8 m (range × azimuth).
The experimental image is 800 × 800 pixels in size and is shown in Figure 4a. The major land cover
classes include homogeneous areas (such as roads, grasslands, and farmlands) and heterogeneous
areas (such as forests and urban areas). A manual interpretation using 16 categories was used as the
ground truth map, which is shown in Figure 4b.

   

 
(a) (b)
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Figure 3. C-band, single-look RADARSAT-2 PolSAR image in Flevoland as the second data set: (a) Pauli
RGB image and (b) the ground truth map of (a).
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Figure 4. L-band, two-look ESAR PolSAR image in Oberpfaffenhofen as the third data set: (a) Pauli
RGB image and (b) the ground truth map of (a).
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The fourth data set is obtained from a subset of an X-band TerraSAR-X PolSAR image of Deggendorf,
German, which is six-look, with a spatial resolution of about 5.0 m × 4.8 m (range × azimuth).
The experimental image, with a size of 541 × 541 pixels, is shown in Figure 5a. The major land
cover classes include homogeneous areas (such as river and farmlands) and heterogeneous areas (such
as forests and building areas). The corresponding optical image is shown in Figure 5b.
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Figure 5. X-band, six-look TerraSAR-X PolSAR image of Deggendorf as the fourth data set: (a) Pauli
RGB image and (b) the reference image from Google Earth.

3.2. Evaluation and Comparison

To verify the improvement in segmentation accuracy by integrating the G0 statistical features into
the FNEA framework and pre-segmenting using SLIC, segmentation experiments were performed
using different methods, namely: (a) FNEA segmentation based on Freeman decomposition
without SAR statistical features (FFD); (b) FNEA segmentation with Pauli RGB image without SAR
statistical features (FPD); (c) improved FNEA with G0 statistical features start from square blocks
(IFGB); (d) improved FNEA using Wishart statistical features with pre-segmenting by SLIC (IFWS);
(e) improved FNEA using K statistical features with pre-segmenting by SLIC (IFKS); (f) improved
FNEA using the G0 statistical features with pre-segmenting by SLIC (IFGS); and (g) segmentation
using the G0 statistical features without shape features based on SLIC pre-segmenting (IFGS-S).

In addition to qualitative visual assessment, the quality of segmentation results requires an
evaluation criterion. Various accuracy metrics describe the similar aspects of the correspondence
between reference objects and segments [44,45], such as the difference in area between reference objects
and the segments they intersect as well as the positional difference between reference objects and
segments. In this paper, area-based measures were used to evaluate the accuracy of the segmentation
results. Let R denote the reference segments that consists of regions representing ground objects, and
S denote segmentation result from the processed SAR image. Two area-based metrics are defined
as follows:

ρd =
R
⋂

S
R

, ρq =
R
⋂

S
R
⋃

S
(23)

where ρd is the area rate of correct segmentation, i.e., detection rate, and ρq is the degree of overlap
between R and S (i.e., quality rate), which takes the false positive rate into consideration. These metrics
are continuous in [0, 1], and the higher values of these metrics mean better segmentation results. Given
that serious over-segmentation may also result in a high segmentation accuracy, the total number of
objects (TN) was introduced as an auxiliary evaluation criterion. In general, the number of objects
should be as small as possible, in the case of satisfying accuracy requirements.
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The segmentation results and accuracy measures of the simulated images using the different
methods are shown in Figure 6 and Table 1, respectively. In Figure 6, the blue lines represent the
boundaries of the segmentation results, and the background is the Pauli RGB image. Figure 6d shows
the local details in the lower left part of the superpixel map, which was produced using SLIC with
4 × 4 pixels, in the desired size of the superpixel.

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 6. Segmentation results of the simulated image using different methods: (a) FNEA segmentation
based on Freeman decomposition without SAR statistical features (FFD); (b) FNEA segmentation
with Pauli RGB image without SAR statistical features (FPD); (c) improved FNEA with G0 statistical
features start from square blocks (IFGB); (d) improved FNEA using Wishart statistical features with
pre-segmenting by simple linear iterative clustering (SLIC) (IFWS); (e) improved FNEA using K
statistical features with pre-segmenting by SLIC (IFKS); (f) improved FNEA using the G0 statistical
features with pre-segmenting by SLIC (IFGS); (g) segmentation using the G0 statistical features without
shape features based on SLIC pre-segmenting (IFGS-S); and (h) SLIC (local enlarged drawing of
lower-left part of the superpixel map).

Table 1. Segmentation accuracy measures of the simulated image.

Method ρd (%) ρq (%) TN

FFD 94.33 89.27 26
FPD 98.22 96.50 26
IFGB 97.12 94.40 26
IFWS 98.47 96.98 26
IFKS 98.11 96.29 27
IFGS 98.77 97.57 25

IFGS-S 98.70 97.44 29

As shown in Table 1, the proposed IFGS method obtained the best detection and quality rates
with the least number of generated objects, while the FFD method had the worst segmentation results.
For the FFD method, inaccurate segmentation boundaries appeared, especially for classes with similar
polarimetric features (Figure 6a). The results of the Pauli-based FPD method is greatly affected by
speckle noise, which causes blurred segmentation boundaries between classes of crops, bush land,
forest, and building areas (Figure 6b). As shown in Figure 6c–f, the class boundaries became more
accurate when statistical information was utilized. However, the Wishart-based IFWS method is
not applicable to heterogeneous areas like forests and urban areas. The K-based IFKS method had
inaccurate segmentation results in extreme heterogeneous building areas, as shown in the bottom
part of Figure 6e. In contrast, the G0-based IFGS method obtained the best segmentation results for
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the areas with different degrees of heterogeneity, with a 98.77% detection rate and a 97.57% quality
rate. The contrast between Figure 6c,f demonstrates that dentate boundaries appear when square
blocks are taken as the initial samples for the statistical model. The boundaries of straight roads or
other regular areas deviated. Compared to the IFGS method, the IFGS-S method obtained the wrong
segmentation boundaries in partial regular building areas, due to the absence of utilizing the shape
features as shown in Figure 6g. In conclusion, the proposed superpixel-based IFGS method, utilizing
the G0 distribution and shape features, obtained accurate and precise segmentation boundaries for the
different areas.

The segmentation results and superpixel map of single-look RADARSAT-2 and two-look
ESAR PolSAR images, using these different methods are shown in Figures 7 and 8, respectively.
In Figures 7 and 8, the blue lines represent the boundaries of the segmentation results, and the
background is a Pauli RGB image. The superpixel maps of the RADARSAT-2 and ESAR images
were produced using SLIC, with 4 × 4 pixels, in the desired size of the superpixel. The segmentation
accuracies are presented in Tables 2 and 3, respectively.

 
(a) (b) (c) (d) 

 
(g) (f) (h) 

Figure 7. Segmentation results of the single-look RADARSAT-2 PolSAR image using different methods:
(a) FFD; (b) FPD; (c) IFGB; (d) IFWS; (e) IFKS; (f) IFGS; (g) IFGS-S; and (h) SLIC (local enlarged drawing
of central left part of the superpixel map). (a–e,g) show screenshots of the results in the red dashed
rectangle of (f).

Table 2. Segmentation accuracy measures of the single-look RADARSAT-2 image.

Method ρd (%) ρq (%) TN

FFD 89.30 78.26 558
FPD 88.49 77.07 553
IFGB 90.35 80.10 546
IFWS 89.14 78.17 564
IFKS 89.17 78.03 543
IFGS 91.33 81.53 541

IFGS-S 89.53 78.68 590
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For the single-look RADARSAT-2 image, the proposed IFGS method also obtained optimal
segmentation results. The contrast between Figure 7a,b and Figure 7c–f demonstrated that the
utilization of statistical information helped to suppress the influence of the speckle noise, and generated
accurate class boundaries. The segmentation results in Figure 7c,f certify that the superpixel-based
method could avoid serrated boundaries. Moreover, the detection rate and quality rate of the IFGS
method increased by approximately 1% and 1.4%, compared to the IFGB method, according to
Table 2, which validated the effectiveness of the superpixels. As shown in Figure 7d–f and Table 2,
the Wishart-based IFWS method obtained seriously fragmented results in areas of high heterogeneity,
like the city areas located in the upper right of Figure 7d, and the K-based IFKS method had difficulty
segmenting the small rivers accurately. Compared to the IFGS method, the IFGS-S method achieved
blurred segmentation boundaries in urban areas, forest, and water areas due to the absence the shape
feature. In summary, employing shape features and statistics information comprehensively contributed
to generating better segmentation results. According to Table 2, the proposed superpixel-based IFGS
method obtained the highest accuracy with the least number of segmentation objects, and the detection
rate and quality rate were 91.33% and 81.53%, respectively. The above-mentioned results indicate that
the proposed method is applicable to single-look high-resolution PolSAR images.

 
(a) (b) (c) (d) 

 
(g) (f) (h) 

Figure 8. Segmentation results of the two-look ESAR PolSAR image using different methods: (a) FFD;
(b) FPD; (c) IFGB; (d) IFWS; (e) IFKS; (f) IFGS; (g) IFGS-S; and (h) SLIC (local enlarged drawing of
central left part of the superpixel map). (a–e,g) show screenshots of the results in the red dashed
rectangle of (f).

For the multi-look ESAR image, the proposed IFGS method still obtained optimal segmentation
results. As shown in Figure 8a,b, the segmentation results of the FFD and FPD methods, which
utilized polarimetric decomposition features, were greatly affected by the speckle noise, resulting in
blurred segmentation boundaries. In contrast, the statistics-based segmentation method suppressed
the influence of speckle noise and achieved more accurate segmentation boundaries between the
different classes, as shown in Figure 8c–f. However, when the square blocks were taken as initial
samples for the statistical models, serrated and inaccurate segmentation boundaries occurred, as
shown in Figure 8c. The contrast between Figure 8d–f certifies that the G0-based IFGS method obtained
better segmentation results (such as for roads in the forest) than the Wishart-based IFWS or the
K-based IFKS method. For the IFGS-S method, the blurred segmentation boundaries occurred in areas
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with little change in statistics and polarimetric information, especially for the inner areas of forest,
urban, and farmland in Figure 8g. According to Table 3, the proposed IFGS method obtained the
highest accuracy with the least number of segmentation objects, similar to that of the single-look
RADARSAT-2 image. Specifically, the detection and quality rates of the IFGS method were 88.46%
and 72.07%, respectively. This demonstrates the effectiveness of the proposed method for multi-look
high-resolution PolSAR images.

In order to further validate the effectiveness of the proposed method, the segmentation results of
the third set of ESAR data, generated using the GSRM method [5] and the MW-WMRF method [15]
were used as comparison. Figure 9a,b demonstrates the representation maps of the GSRM method and
the MW-WMRF method, respectively. The Pauli RGB of each pixel was replaced by the average Pauli
RGB of the segment that the pixel belonged to. Similarly, Figure 9c,d gives the representation maps of
the proposed method at different scales. Specifically, a number of isolated small segments occurred in
heterogeneous areas like forest (area A of Figure 9a) and urban areas (area B of Figure 9a) for the GSRM
method, which decreased the visibility and accuracy of the representation map. As for the MW-WMRF
method, the segmentation results of urban areas were broken due to the utilization of the Wishart
distribution, which is shown in area B of Figure 9b. The boundaries between the different types of
farmlands for these two methods were inaccurate (area C of Figure 9a,b). The boundaries for forests of
different height were not accurate enough (area A of Figure 9a,b). In contrast, accurate boundaries
of farmlands and forest were obtained, with different segmentation scales, for the proposed method
(area A and area C of Figure 9c,d), and the urban areas were entirely segmented (area B of Figure 9c,d).
Furthermore, the detection rates of the GSRM, MW-WMRF, and IFGS (t = 13) method were 87.86%,
90.20%, and 90.60%, respectively. In summary, the proposed method obtained better segmentation
results compared to the GSRM method and the MW-WMRF method.

 
(a) (b)

 
(c) (d)

Figure 9. Representation maps (Pauli RGB images) of segmentation results for the ESAR data using
different methods: (a) GSRM; (b) MW-WMRF; (c) IFGS, t = 17, wshp = 0.05, g2 = 16; and (d) IFGS, t = 13,
wshp = 0.05, g2 = 16.
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Table 3. Segmentation accuracy measures of the two-look ESAR image.

Method ρd (%) ρq (%) TN

FFD 83.31 65.13 348
FPD 86.65 69.57 335
IFGB 87.90 71.29 335
IFWS 87.94 71.34 342
IFKS 87.57 70.82 334
IFGS 88.46 72.07 334

IFGS-S 85.38 67.85 343

For the X-band multi-look TerraSAR-X image, the proposed IFGS method also performed well.
As shown in Figure 10, the river, bridge, lakes, and building areas in the southeastern area of the river
were all accurately segmented. Accurate and delicate boundaries of different types of farmlands and
of the inner area of the forest were achieved. Compared to Figure 10a, the segmentation results in
Figure 10b were more precise and obtained a higher quantity of objects when the segmentation scale
decreased to 12. This experiment further demonstrated the applicability of the proposed method for
high-resolution PolSAR images.

 
(a) (b)

Figure 10. Segmentation results of the six-look TerraSAR-X PolSAR image using the proposed method:
(a) IFGS, t = 16, wshp = 0.05, g2 = 16; (b) IFGS, t = 12, wshp = 0.05, g2 = 16.

4. Discussion

4.1. Main Features of the Proposed Method

A superpixel-based FNEA segmentation method for high-resolution PolSAR data, using Pauli
polarimetric, spatial, and G0 distribution statistical features, is proposed. The proposed method was
successfully applied to simulated and real-world PolSAR data sets.

The main feature of the method is the comprehensive utilization of G0 distribution and shape
information, based on FNEA. In related studies, traditional FNEA used polarimetric and geometric
shape features for PolSAR image segmentation [8,9,25,26], which is easily influenced by speckle
noise. Given the absence of statistical characteristics for PolSAR data, the statistical feature is
introduced into the FNEA framework in the proposed approach. Many other methods use the classical
complex Wishart distribution in order to represent scattering matrix statistics for PolSAR image
segmentation [15,17,19–21,27]. Considering the ability to modeling varying degrees of texture [30,36],
G0 distribution is more suitable for heterogeneous or homogeneous areas in high-resolution PolSAR
data compared to the Wishart or K distribution. Thus, the proposed method adopts the G0 distribution
to suppress speckle noise and obtains consistent segmentation results compared with the traditional
FNEA method.
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Another feature of our method is adding pre-segmentation using SLIC with the polarimetric
features in order to generate initial samples for the application of the G0 statistical model. It is
essential to robustly estimate model parameters with enough samples. Most of the previous work
collected initial samples from image blocks within square windows [32], which led to segmentation
results with obvious dentate boundaries. To handle this problem, superpixels were introduced for
pre-segmentation in the proposed approach. Given the excellent boundary adherence, SLIC was used
in our approach, which combined the polarimetric distance of Pauli RGB compositions and spatial
distance. This approach is capable of achieving accurate segmentation results with precise boundaries
between the different areas.

4.2. Sensitivity Analysis of the Parameters

According to the experiments using simulated PolSAR data and real-world PolSAR images
(include RADARSAT-2 and ESAR data), the desired number of initial samples (g2), shape weight wshp,
and scale parameter t affected the segmentation accuracy; a detailed analysis is as follows.

4.2.1. Number of Initial Samples

As we know, an appropriate number of samples is essential for parameter estimation, namely,
the size of superpixels, g2, affects the use of the G0 distribution in our method. When the size
of the superpixels was too small, parameter estimation of the G0 distribution became unstable,
which made the calculation of statistical heterogeneity inaccurate. On the other hand, statistical
features were not adapted for superpixel generation. The time utilizing this statistic’s feature for the
superpixel-based FNEA can be delayed when the size of superpixels g2 become too big, which could
affect the subsequent segmentation accuracy. Therefore, the proper size of a superpixel is one of key
issues for the segmentation experiment.

An additional experiment was conducted to explore the minimum size of the superpixels.
Abstractly, enough samples ensure stable parameter estimation of the G0 distribution, and there
was little in terms of statistical heterogeneity differences between adjacent objects in one class. Three
different simulated PolSAR images were used in the experiment, which only contained forest, crops,
and roads, and is mentioned here in Section 3.1. The three simulated PolSAR images were divided
into different sizes of blocks to calculate the standard deviation of the normalized G0 heterogeneity
(Δhstt/g2) between adjacent objects [32]. Figure 11 shows the changes of Δhstt/g2 with different sizes
of blocks. As observed in Figure 11, the standard deviation became stable when the size of the blocks
was large enough. In contrast, the standard deviation increased sharply when the size of the blocks
was less than 16 pixels, which means that there were large statistical heterogeneity differences, due to
the unstable parameter estimation using a small number of samples. Consequently, the superpixels
should contain at least 16 pixels in order to ensure the stable calculation for G0 heterogeneity.
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Figure 11. Standard deviation of the normalized G0 heterogeneity, as a function of block size.
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Another experiment was conducted to analyze the effect of size of superpixels on the segmentation
accuracy. In the process of generating superpixels, different desired sizes of superpixels were set,
and the proposed IFGS method was used in the segmentation experiment. The changes in the
detection and quality rates using the different desired sizes of superpixels for the simulated data,
ESAR, and RADARSAT-2 images are shown in Figure 12. In practice, all the superpixels of a small
size were merged with neighboring, larger superpixels in the generation process. The initial sizes of
the superpixels were generally larger than the desired size of the superpixels. The desired sizes of the
superpixels were set from 3 pixels × 3 pixels to 10 pixels × 10 pixels in this experiment.
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Figure 12. Segmentation accuracy obtained using the IFGS method for the simulated data, ESAR, and
RADARSAT-2 data, with different desired sizes of superpixels: (a) detection rate; (b) quality rate.

As shown in Figure 12, the segmentation accuracy fluctuated and decreased slowly when
the desired size of the superpixels increased. For the simulated image, the detection rate and
quality rate decreased when the desired size of the superpixels increased from 4 pixels × 4 pixels
to 10 pixels × 10 pixels. Specifically, the larger superpixels lead to delayed utilization of statistical
information, and then caused a decrease in the segmentation accuracy. On the other hand, when the
desired size of the superpixels was 3 pixels × 3 pixels, the number of samples could not ensure stable
parameter estimation and generated inaccurate segmentation results. For the ESAR and RADARSAT-2
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images, the detection rate and quality rate fluctuated when the desired size of superpixels increased
due to the complexity of the real ground objects. Similarly, when the desired size of superpixels
was 4 pixels × 4 pixels, the segmentation of the ESAR and RADARSAT-2 image obtained the highest
detection and quality rates. Thus, superpixels were generated with a desired size of 4 pixels × 4 pixels
for these three images. Sixteen pixels were used for parameter estimation of the G0 distribution for the
proposed method.

4.2.2. Weight of Features

According to the previously presented segmentation experiments, shape features improved the
segmentation performance for the three different images. Shape weight wshp affected the use of
statistical and shape features, according to Equation (22). In order to set an appropriate feature weight,
the ratios of the average changes in shape heterogeneity and statistical heterogeneity (Δhshp/Δhstt)
were calculated for the simulated data, ESAR data and RADARSAT-2 date, when the shape feature
weight was 0 and 1, respectively. The ratios shown in Table 4 indicate that the shape heterogeneity was
apparently larger than the statistical heterogeneity in the proposed IFGS segmentation. A relatively
small shape weight should be set to balance the shape features and statistical features.

Table 4. Ratios (Δhshp/Δhstt) calculated for the simulated data, ESAR, and RADARSAT-2 image in
segmentation with the shape weight of 0 and 1.

PolSAR Data
Δhshp/Δhstt

wshp = 0 wshp = 1

Simulated image 1.48 2.07
ESAR image 2.09 2.25

RADARSAT-2 image 6.55 8.25

Further experiments were conducted to analyze the effects of weight of shape features on
segmentation accuracy. In the process of the proposed IFGS segmentation using the desired superpixel
size of 4 pixels × 4 pixels, different shape weights, in the 0–0.3 range, were set. The changes in detection
and quality rates, using different shape weights for the simulated data, ESAR, and RADARSAT-2
images, are shown in Figure 13.

As shown in Figure 13, the weight of the shape also had a significant effect on the proposed
IFGS segmentation method. For the simulated image, the detection rate and quality rate improved
when weight of shape features increased from 0 to 0.05, and decreased when the weight of the shape
features exceeded 0.05. Specifically, as the shape weight increased to more than 0.15, the relatively
small statistical heterogeneity was not fully utilized, and the segmentation accuracy sharply decreased.
When the shape weight varied from 0.02 to 0.08, the integrated utilization of the statistical features
and shape features obtained a higher accuracy than single use of the statistical features. For the ESAR
image, when the shape weight exceeded 0.1, the segmentation accuracy of the IFGS method was lower
than that of the IFGS-S method. However, the same situation occurred for the RADARSAT-2 image
when the shape weight exceeded 0.2, which coincided with the case where the ratios (Δhshp/Δhstt)
of RADARSAT-2 image were larger than those of the ESAR image. Similar to the simulated data,
when the weight of shape feature was 0.05, the segmentation of ESAR and RADARSAT-2 images
obtained the highest detection and quality rates. Shape features with a weight of 0.05 were used for
comprehensive utilization of shape and statistical features in the image segmentation experiment.
Moreover, the detection rate of the proposed IFGS method improved by approximately 1%, 3%, and
3% compared to the IFGS-S method and the quality rate improved by approximately 2%, 4%, and
4%, respectively.
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Figure 13. Segmentation accuracy obtained using the IFGS method for the simulated data, ESAR, and
RADARSAT-2 data with different shape weights: (a) detection rate; (b) quality rate.

4.2.3. Scale of Segmentation

Among the three main parameters of the proposed method, scale parameter t is a relative threshold
that determines the average size of objects, or the number of objects within a scene. It can be flexibly
adjusted, depending on the desired number of objects in the segmentation. An extra experiment was
conducted to analyze the effects of scale parameter on segmentation accuracy. In this segmentation
experiment, the desired superpixel size was set as 4 pixels × 4 pixels, and the shape weight was 0.05.
Different scales were set, and the detection rate and the number of result objects were calculated.
Figure 14 shows the changes in the detection rate and the number of result objects with different
segmentation scales for the simulated data, ESAR, and RADARSAT-2 images.

As shown in Figure 14, the scale had a consistent effect on the proposed IFGS segmentation
method for the three images. As the scale of the segmentation increased, more adjacent objects were
merged and the number of final objects became smaller. This means that adjacent objects with a
minimal feature difference were not reasonably divided, and resulted in a decrease in segmentation
accuracy. On the other hand, the number of objects and segmentation accuracy increased when the
scale became smaller. However, the increased number of objects resulted in broken segmentation
results. The appropriate number of objects should consider as the true application scene.
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For the single-look RADARSAT-2 image, the final segmentation results using four different
scales (scale = 12, 16, 20, 25) are shown in Figure 15. As the segmentation scale increased, the detail
boundary information decreased and the size of single object became larger. Moreover, targets with
larger areas were more intact when they were segmented. As shown in Figure 15a, the narrow
rivers and roads were segmented correctly, while the heterogeneous urban areas and larger water
bodies were over-segmented, causing broken segmentation results. In Figure 15d, the large water
bodies were entirely segmented, but the urban areas, forest areas, and farmland were under-segmented.
The boundaries of narrow roads, rivers, and small lakes were inaccurate. Incorrect boundaries occurred
between adjacent objects with minimal feature differences, especially for different types of farmlands
and forests. In summary, it is necessary to consider the practical use of scale-setting. Specifically,
a larger scale is essential for main category classification, and larger target detection. A small scale is
applicable to focusing on the details of ground objects.
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Figure 14. Segmentation accuracy obtained using the IFGS method for the simulated data, ESAR, and
RADARSAT-2 data with different scales: (a) detection rate; (b) the number of result objects.
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(a) (b)

(c) (d)

Figure 15. Segmentation results of the single-look RADARSAT-2 PolSAR image with different scales:
(a) scale = 12; (b) scale = 16; (c) scale = 20; (d) scale = 25.

4.3. Time Performance Analysis

The analysis of the proposed method consists two parts: Initial segmentation (SLIC) and
superpixel-based FNEA segmentation (SP-FNEA). The time complexity of SLIC and SP-FNEA are
O(10n) and O(kn), respectively, where n is the number of pixels and k is the number of iterations in
SP-FNEA. The time complexity of the proposed method is O(10n) + O(kn).

To further analyze the time efficiency of the algorithm, the runtime of SLIC and SP-FNEA for
the different PolSAR images with specific segmentation scales was calculated by averaging multiple
runtimes. A laptop using the 64-bit Windows 10 operating system, a quad-core Intel i5-4210U, 2.40 GHz,
and 8 GB memory was utilized for the segmentation experiments. Table 5 shows the runtimes of
the proposed algorithm for different PolSAR images. As shown in Table 5, the proposed algorithm
has a good time efficiency. Specifically, the runtime of SLIC is linear with data size, meaning that
SLIC has an excellent computational efficiency. For the SP-FNEA algorithm, its runtime efficiency is
associated with the number of iterations and the data size. Generally, the larger scale resulted in the
merger of adjacent objects, and increased the runtime. Moreover, the efficient SLIC avoids SP-FNEA
segmentation, starting from a single pixel, and saving considerable runtime.
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Table 5. Runtimes of the proposed algorithm for different PolSAR images.

PolSAR Data Size Scale t
Time (s)

SLIC SP-FNEA Total

Simulated Data 400 × 400 22 22.52 12.32 34.84
RADARSAT-2 1400 × 1400 16 267.85 238.60 506.45

ESAR 800 × 800 17 88.04 64.66 152.70
TerraSAR-X 541 × 541 16 40.07 27.20 67.27

4.4. Accuracies, Errors, and Uncertainties

We adopted the detection and quality rates to evaluate the performance of the proposed
segmentation, which were calculated according to the ground truth data. These two measures are
widely considered in the field of image segmentation of remote sensing. It is clear that our method
obtained more accurate segmentation results than the other methods, and this advantage was obtained
with the least number of result objects.

According to the previous experiments, several factors affect the segmentation accuracy of the
proposed method. The parameter estimation accuracy of the G0 distribution plays an important role
in the statistical feature-based segmentation method. For the proposed approach, measurement of
statistical heterogeneity and correct object merging depend on the proper estimation of the involved
parameters. The determination of the scale parameters is another factor that causes segmentation
errors for the proposed method. The scales of different types of targets exhibit differences due to
their inequitable heterogeneities. An inappropriate scale parameter leads to under-segmentation in
homogeneous regions or over-segmentation in heterogeneous regions, reducing the segmentation
accuracy of the target of interest. Future development of this approach should include an accurate
parameter estimation method of the G0 distribution and the determination of the segmentation scale.

The improvement of the proposed method was verified using simulated data, and real-world
RADARSAT-2, ESAR, TerraSAR-X images, which mainly cover farmlands, forests, and urban areas.
The experimental results show that the proposed method performed well for targets in these images.
However, the segmentation results may vary for other application scenarios. In-depth experiments
and analyses for other application scenarios, such as forest species classification, building collapse
assessment, and oil spill extraction, have not been conducted in the present study. The applicability of
the proposed method for specific applications of high-resolution PolSAR image remains uncertain.

5. Conclusions

In high-resolution fully polarimetric Synthetic Aperture Radar (PolSAR) images, speckle noise and
heterogeneous regions with rich spatial features makes segmentation a challenging task. In this study,
a novel segmentation algorithm for high-resolution PolSAR data has been developed by combining
spatial, statistical, and polarimetric features. This integrates the statistical features into a fractal
net evolution algorithm (FNEA) framework, and polarimetric features into simple linear iterative
clustering (SLIC) for generating pre-segments. The main improvements are as follows: First, spectral
heterogeneity in the traditional FNEA was substituted by the G0 distribution statistical heterogeneity
to combine shape features and statistical features of PolSAR data. Second, a modified SLIC algorithm
was utilized to generate compact, approximately homogeneous superpixels as the initial samples for
the G0 statistical model, which substituted the polarimetric distance of Pauli RGB composition for the
CIELAB color distance.

Several datasets were utilized in the experiments to verify the validity and applicability of the
proposed method, including a simulated PolSAR data, a spaceborne single-look RADARSAT-2 image,
an airborne multi-look ESAR image, and a spaceborne multi-look TerraSAR-X image. The highest
accuracy for each data set was obtained using the proposed approach with the least number of
generated objects, i.e., 98.77% on simulated data, 88.46% on ESAR image, and 91.33% on RADARSAT-2
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image, respectively. It can thus be concluded that the proposed method achieved accurate and precise
segmentation results for high-resolution PolSAR images.

Nevertheless, the performance of the proposed method could be further improved. For instance,
the parameter estimation of the statistical model, the initial sample generation, the setting of
the weight of features, and the strategy of determining the segmentation scale can be optimized.
Moreover, the information included in the polarimetric decomposition parameters was not fully
utilized in our method, except in the SLIC pre-segmentation. Hence, combining polarimetric features
adequately in the superpixel-based FNEA to improve the performance of high-resolution PolSAR
image segmentation is a promising prospect.
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Abstract: Land cover classification is an important application for polarimetric synthetic aperture
radar (PolSAR). Target polarimetric response is strongly dependent on its orientation. Backscattering
responses of the same target with different orientations to the SAR flight path may be quite different.
This target orientation diversity effect hinders PolSAR image understanding and interpretation.
Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering
power are independent of the target orientation and are commonly adopted for PolSAR image
classification. On the other aspect, target orientation diversity also contains rich information which
may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant
polarimetric features may limit the final classification accuracy. To address this problem, this work
uses the recently reported uniform polarimetric matrix rotation theory and a visualization and
characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features
in the rotation domain along the radar line of sight. Then, a feature selection scheme is established
and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification
method is developed using the complementary information between roll-invariant and selected
hidden polarimetric features with a support vector machine (SVM)/decision tree (DT) classifier.
Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR
data. For AIRSAR data, the overall classification accuracy of the proposed classification method is
95.37% (with SVM)/96.38% (with DT), while that of the conventional classification method is 93.87%
(with SVM)/94.12% (with DT), respectively. Meanwhile, for multi-temporal UAVSAR data, the mean
overall classification accuracy of the proposed method is up to 97.47% (with SVM)/99.39% (with
DT), which is also higher than the mean accuracy of 89.59% (with SVM)/97.55% (with DT) from the
conventional method. The comparison studies clearly demonstrate the efficiency and advantage of
the proposed classification methodology. In addition, the proposed classification method achieves
better robustness for the multi-temporal PolSAR data. This work also further validates that added
benefits can be gained for PolSAR data investigation by mining and utilization of hidden polarimetric
information in the rotation domain.

Keywords: polarimetric synthetic aperture radar (PolSAR); polarimetric feature; polarimetric matrix
rotation; polarimetric coherence pattern; rotation domain; feature selection; classification

1. Introduction

With the ability to work day and night under almost all weather conditions and to acquire full
polarization information, polarimetric synthetic aperture radar (PolSAR) has become one of the most
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important microwave remote sensors [1]. Plenty of successful applications have been developed [1–5].
Among them, land cover classification is an important application for PolSAR data utilization. It is able
to provide information support to many fields such as general survey of crops, appraisal of cultivated
and urban land occupation, environment monitoring, etc.

Plenty of approaches have been proposed to enhance the classification performance from aspects
of polarimetric features, classifiers, and both. On one hand, some approaches focused on polarimetric
features with better discriminate performance among different land covers through target scattering
mechanism understanding and interpretation. The commonly used polarimetric target decomposition
techniques can be divided into two categories: eigenvalue-eigenvector-based decomposition and
model-based decomposition [5,6]. For eigenvalue-eigenvector-based decomposition, entropy H,
anisotropy Ani, and mean alpha angle α derived from Cloude-Pottier decomposition are frequently
used and an entropy based PolSAR land classification scheme was established thereafter [7]. Lee et al.
also used Cloude-Pottier decomposition with Wishart classifier to PolSAR image classification [8].
For model-based decomposition, the derived polarimetric features are the energy contributions of
some typical scattering mechanisms from Freeman-Durden three-component decomposition [9],
Yamaguchi four-component decomposition [10], and the recently reported generalized model-based
decomposition techniques [11,12]. Lee et al. applied Freeman-Durden three-component decomposition
with the Wishart classifier to classify PolSAR data [13]. Wang et al. adopted the non-negative
eigenvalue decomposition for terrain and land-use classification [14]. Hong et al. proposed a
four-component decomposition and applied it to classify wetland vegetation types [15].

On the other hand, other approaches to improve PolSAR classification accuracy aim at designing
or choosing the classifier with the better classification performance to take full advantage of the
available polarimetric features. Specifically, Pajares et al. proposed an optimization relaxation approach
based on the analogue Hopfield Neural Network for cluster refinement of pre-classified results from
the Wishart classification [16]. Attarchi and Gloaguen compared the performances of the support
vector machine (SVM) classifier, neural networks classifier, and random forest classifier for classifying
complex mountainous forests with SAR and other source data [17]. Zhou et al. applied the deep
convolutional neural networks (CNN) classifier for PolSAR classification and obtained improved
results [18]. In addition, considering both polarimetric feature and classifier at the same time is also an
effective way to improve the classification accuracy. Deng et al. used both polarimetric decomposition
and time-frequency decomposition to mine the hidden information of objects in PolSAR images and
applied a C5.0 decision tree (DT) algorithm for optimal feature selection and final classification [19].
They also proposed an approach to classify the PolSAR data by integrating polarimetric decomposition,
sub-aperture decomposition, and DT algorithm [20]. Cheng et al. designed and implemented a
segmentation-based PolSAR image classification method incorporating texture features, color features
and SVM classifier [21]. Wang et al. proposed a PolSAR classification method based on the generalized
polarimetric decomposition of the Mueller matrix and SVM classifier [22].

Among the aforementioned PolSAR classification methods based on polarimetric features,
roll-invariant polarimetric features are commonly adopted. An important reason is that polarimetric
response of a target is strongly dependent on its orientation [23]. On one hand, the backscattering
responses of the same target with different orientations to the PolSAR flight path are significantly
various. On the other hand, the backscattering responses of different targets with some specific
orientations to the flight path may be similar to each other. This target orientation diversity
effect frequently induces scattering mechanism ambiguity and hinders the correct understanding
and interpretation of PolSAR data [23]. As a result, roll-invariant polarimetric features which
are independent of the target orientation diversity are preferred in many applications. However,
roll-invariant polarimetric features may not completely represent target scattering properties. Target
orientation diversity also contains rich information which is not sensed by roll-invariant polarimetric
features [23]. To further improve the PolSAR classification accuracy, proper exploration of the target
orientation diversity is an effective way and is able to provide valuable hidden information for physical
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parameter retrieval. In this vein, uniform polarimetric matrix rotation theory [23] and a visualization
and characterization tool of polarimetric coherence pattern [24] were respectively proposed to extract
the hidden polarimetric features in the rotation domain along the radar line of sight for hidden
scattering information mining. Parts of these new features achieved successful applications including
crop discrimination [25], target enhancement [23], and manmade target extraction [26], etc.

Since these hidden polarimetric features contain rich hidden scattering information of targets in the
rotation domain, this work aims to utilize them to enhance PolSAR classification accuracy. Specifically,
we firstly propose a polarimetric feature selection scheme to select suitable hidden polarimetric features
derived from the rotation domain. Then, the selected hidden polarimetric features and the commonly
used roll-invariant polarimetric features of H/Ani/α/Span are combined as the discriminant feature
set. Finally, a classification method using the combined feature set and the SVM/DT classifier [27,28]
is developed.

This work is organized as follows. In Section 2, the two novel schemes for hidden polarimetric
information mining in the rotation domain and their corresponding hidden polarimetric features are
reviewed. The proposed polarimetric feature selection scheme and classification method are described
in Section 3. Comparison experiments with NASA/JPL AIRSAR and multi-temporal UAVSAR datasets
are carried out and investigated in Section 4. Section 5 provides the final conclusions and outlook for
future work.

2. Hidden Polarimetric Feature Extraction in the Rotation Domain

2.1. Polarimetric Matrices and Their Rotation

For PolSAR, in the horizontal and vertical polarization basis (H, V), the acquired full polarization
information can form a scattering matrix S with the representation as

S =

[
SHH SHV
SVH SVV

]
(1)

where SHV is the backscattered coefficient from vertical transmitting and horizontal receiving
polarization. Other terms in S are defined similarly.

Subject to the reciprocity condition (SHV = SVH), the coherency matrix T is

T =
〈

kPkH
P

〉
=

⎡⎢⎣ T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤⎥⎦ (2)

where kP = 1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
is the Pauli scattering vector, 〈·〉 denotes the

sample average, the superscript T and H denote the transpose and conjugate transpose respectively,
and Tij is the (i, j) entry of the coherency matrix T.

With a rotation angle θ along the radar line of sight, the rotated scattering matrix S(θ) and
coherency matrix T(θ) respectively become

S(θ) = R2(θ)SRH
2 (θ) (3)

T(θ) = kP(θ)k
H
P (θ) = R3(θ)TRH

3 (θ) (4)

where the rotation matrixes are R2(θ) =

[
cos θ sin θ

− sin θ cos θ

]
, R3(θ) =

⎡⎢⎣ 1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

⎤⎥⎦.
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2.2. Polarimetric Features Derived from Uniform Polarimetric Matrix Rotation Theory

In order to explore the target orientation diversity and mine embedded hidden information,
uniform polarimetric matrix rotation theory was proposed [23]. It rotates the acquired polarimetric
matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the
matrix. Taking the coherency matrix for example, with mathematic transformations, all the elements
and powers of the off-diagonal terms of a rotated coherency matrix T(θ) can be represented as a
uniform sinusoidal function [23]

f (θ) = A sin[ω(θ + θ0)] + B (5)

where A is the oscillation amplitude, B is the oscillation center, ω is the angular frequency, and θ0

is the initial angle. Therefore, the new polarimetric feature parameter set {A, B, ω, θ0} named as the
oscillation parameter set is able to completely characterize the rotation properties of all the elements
and powers of the off-diagonal terms of T(θ).

Series of new polarimetric features are derived in [23] to describe the hidden scattering information
of the target in the rotation domain. Among them, there are eleven independent hidden features
as: θ0_Re[T12(θ)], θ0_Im[T12(θ)], θ0_Re[T23(θ)], θ0_|T12(θ)|2, θ0_|T23(θ)|2, A_Re[T12(θ)], A_Im[T12(θ)],
A_|T12(θ)|2, A_|T23(θ)|2, B_T22(θ), and B_|T23(θ)|2. where Re

[
Tij
]

and Im
[
Tij
]

are the real and
imaginary parts of Tij respectively, and θ0_Tij(θ) denotes the initial angle θ0 of Tij(θ). The other
terms of A_Tij(θ) and B_Tij(θ) are defined similarly.

2.3. Polarimetric Features Derived from Polarimetric Coherence Pattern

Polarimetric coherence between two polarization channels s1 and s2 is also used for target
detection and classification. It can be estimated in practice with the sample average of sufficient
samples with similar properties [29] as

|γ1−2| = |〈s1s∗2〉|√〈
|s1|2

〉〈
|s2|2

〉 (6)

where the superscript ∗ denotes the conjugate, and the value of |γ1−2| is within the range of [0, 1].
Due to the sensitivity of polarimetric coherence to the target’s orientation to the PolSAR flight

path, a visualization and characterization tool of polarimetric coherence pattern [24] was proposed
to extend the original polarimetric coherence at a given rotation angle (θ = 0) to the whole rotation
domain. It covers all rotation angles (θ ∈ [−π, π)) along the radar line of sight for the exploration of
complete interpretation of the target’s polarimetric coherence as

|γ1−2(θ)| = |〈s1(θ)s∗2(θ)〉|√〈
|s1(θ)|2

〉〈
|s2(θ)|2

〉 (7)

With this approach, a set of new polarimetric features were proposed to quantitatively characterize
a polarimetric coherence pattern’s variation along the radar line of sight [24]. These derived
polarimetric features include: original coherence γ−org, coherence degree γ−mean, coherence fluctuation
γ−std, maximum and minimum coherences γ−max and γ−min, coherence contrast γ−contrast, coherence
beamwidth γ−bw, maximum and minimum rotation angles θγ−max and θγ−min. The detailed definitions
are given in [24].

With (H, V) polarization basis, four independent polarimetric coherence patterns can be
obtained [24] as |γHH−VV(θ)|, |γHH−HV(θ)|,

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, and

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣. For each of

them, the aforementioned nine hidden polarimetric features can be extracted. Therefore, there are a
total of thirty-six hidden features derived from the polarimetric coherence patterns.
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3. Proposed Polarimetric Feature Selection Scheme and Classification Method

3.1. Proposed Polarimetric Feature Selection Scheme

Based on the aforementioned hidden polarimetric features derived in the rotation domain, there
are eleven features derived from the uniform polarimetric matrix rotation theory and thirty-six features
derived from the polarimetric coherence pattern. So we need to select suitable features among them to
avoid information redundancy which may decrease the accuracy of the final land cover classification.
Since γ−bw of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣ is almost invariant for different land covers [24], it is not considered.

Then, a polarimetric feature selection scheme is proposed for the other forty-six hidden polarimetric
features. The flowchart of it is shown in Figure 1.

Polarimetric Features 
Extraction & Normalization

Pre-Removal Based on 
Within-Class Distance

Selection Based on the Class 
Separation Distance

Post-Refinement

PolSAR Data

Taking the Union for Multi-
Temporal/Band Data

Final Selection Results

Multi Data ?

Yes

No

Figure 1. Flowchart of the proposed polarimetric feature selection scheme.

The steps of the proposed polarimetric feature selection scheme are as follow:

(1) The first step is polarimetric features extraction and normalization. Based on the filtered PolSAR
data, independent hidden polarimetric features are extracted and normalized to the range of
[0, 1]. The total normalized feature set is Fall = { fi, i = 1, ..., I}, I is the number of hidden
polarimetric features.

(2) Pre-removal is done to the Fall based on the within-class distance, which is a measure of the
disperse degree of samples within the same class. From ground-truth map, there are X known
land covers Cx, x = 1, ..., X. For feature fi, the samples from each land cover Cx can be represented
as Ci

x =
{

f (x,k)
i , k = 1, 2, ..., Nx

}
. Where f (x,k)

i is the feature value of the kth sample in land cover
Cx, Nx is the total sample number of land cover Cx. The within-class distance of land cover Cx

with feature fi is dwithin
(
Ci

x
)

as

dwithin

(
Ci

x

)
=

√√√√ 1
Nx

Nx

∑
k=1

(
f (x,k)
i − centeri

x

)2
(8)

where centerx is the center of land cover Cx. With feature fi, centeri
x = 1

Nx

Nx
∑

k=1
f (x,k)
i . Based

on different features, the within-class distances of land cover Ci are dwithin
(
Ci

x
)
, i = 1, ..., I.

The three largest within-class distances of each land covers are all chosen. The features which
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produce them form the removal feature set Fremoval which needs to be removed from Fall as
Fpreremoval = Fall − Fremoval . Fpreremoval =

{
f̃ j, j = 1, ..., J

}
, J is the feature number of Fpreremoval

and J ≤ I.
(3) The preliminary selection is carried out based on the class separation distance defined as the

distance between two classes plus the distance between two class centers. A corresponding
amount of land cover pairs are constructed by combining each two land covers. There are Y land
cover pairs as Py, y = 1, ..., Y. For each land cover pair Py, two land covers of it are Cy1 and Cy2 ,
where y1 and y2 are the land cover labels. With feature f̃ j, the samples of land covers Cy1 and

Cy2 can be represented as Cj
y1 =

{
f̃ (y1,l)
j , l = 1, 2, ..., Ny1

}
and Cj

y2 =
{

f̃ (y2,m)
j , m = 1, 2, ..., Ny2

}
,

respectively. The distance between land covers Cy1 and Cy2 with feature f̃ j dclass

(
Cj

y1 , Cj
y2

)
and

the distance between their centers centery1 and centery2 with feature f̃ j dcenter

(
centerj

y1 , centerj
y2

)
are respectively as

dclass

(
Cj

y1 , Cj
y2

)
=

√√√√ 1
Ny1 Ny2

Ny1

∑
l=1

Ny2

∑
m=1

(
f̃ (y1,l)
j − f̃ (y2,m)

j

)2
(9)

dcenter

(
centerj

y1 , centerj
y2

)
=

∣∣∣∣∣∣ 1
Ny1

Ny1

∑
l=1

f̃ (y1,l)
j − 1

Ny2

Ny2

∑
m=1

f̃ (y2,m)
j

∣∣∣∣∣∣ (10)

The class separation distance of land cover pair Py with feature f̃ j is proposed as dseparation

(
Pj

y

)
=

dclass

(
Cj

y1 , Cj
y2

)
+ dcenter

(
centerj

y1 , centerj
y2

)
and is able to measure the land cover separation of

land cover pair Py. Based on different features of Fpreremoval , the class separation distances of

land cover pair Py are dseparation

(
Pj

y

)
, j = 1, ..., J. The selected hidden polarimetric feature of land

cover pair Py is f ss
y = argmax

f̃ j∈Fpreremoval

{
dseparation

(
Pj

y

)}
. The preliminary selected feature set for all the

land cover pairs is Fpreselection = f ss
1 ∪ f ss

2 ∪...∪ f ss
Y .

(4) After the preliminary selection, post-refinement is implemented. The idea of post-refinement is
to determine the features with relatively higher discriminant performance in Fpreselection. For each
land cover pairs, the features which lead to the maximum class separation distances are recorded
and accounted. Features with appearance higher than a predefined threshold r are all determined
as the optimal feature candidates. Then, the final selected feature set can be formed as Fselection

with these optimal features from Fpreselection.
(5) Finally, if the PolSAR data is a single-temporal/band, the Fselection will be the final selection

results direct. Or, if it is one of the multi-temporal/band PolSAR data, the union for all the
Fselection of different temporal/band data will be the final selection results.

This work uses the basic and commonly adopted criterions of within-class distance, distance
between two classes, and distance between two class centers to select suitable hidden polarimetric
features derived in the rotation domain. Certainly, other feature selection schemes can also be suitable.

3.2. Proposed Classification Method

The main idea of the proposed classification method is to utilize the complementary information
between the roll-invariant polarimetric features and the selected hidden polarimetric features in the
rotation domain. The combination of them will be used as the classifier input. In order to validate the
performance of the proposed classification method, both the SVM and DT classifiers [27,28] are used
in this work. The flowchart of the proposed classification method is illustrated in Figure 2 and the
corresponding steps are as follows.
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(1) In order to extract the roll-invariant polarimetric features of H/Ani/α, the original PolSAR data
is speckle filtered. The recently reported adaptive SimiTest speckle filter [29] is adopted.

(2) Based on the filtered coherency matrix, total scattering power Span can be calculated by
Span = T11 + T22 + T33.

(3) Roll-invariant polarimetric features of entropy H, mean alpha angle α and anisotropy Ani can be
extracted by Cloude-Pottier decomposition [6].

(4) The selected hidden polarimetric features are extracted using the uniform polarimetric matrix
rotation theory [23] and the visualization and characterization tool of polarimetric coherence
pattern [24].

(5) Each of these polarimetric features is normalized to the range of [0, 1]. And the combination of
these normalized features is formed as the classifier input.

(6) Through training and validation processing of the SVM/DT classifier, the final classification
results and corresponding accuracies of each land cover and the overall can be obtained.

PolSAR Data

Adaptive SimiTest 
speckle filtering

Selected hidden polarimetric 
features in rotation domain 

Cloude-Pottier 
decomposition

Span

Normalized features combination

SVM/DT classifier

Classification results

H/Ani/alpha

 

Figure 2. Flowchart of the proposed classification method.

4. Comparison Experiments

4.1. Data Description

First, NASA/JPL AIRSAR L-band PolSAR data collected over Flevoland, the Netherlands, is
adopted. The range and azimuth pixel resolutions are 6.6 m and 12.1 m respectively. The data is
speckle filtered by the adaptive SimiTest approach with a 15 × 15 sliding window [29] and is shown in
Figure 3a. The filter sliding window size of 15 × 15 is recommended in [29], which makes a tradeoff
for the filter performance and computational cost. Besides, the filter sliding window size effect will be
investigated in Section 4.3. This study area contains various land covers and a ground-truth map for
eleven known land covers (including water, rapeseed, grasses, bare soil, potatoes, beet, wheat, lucerne,
forest, peas, and stembeans) is shown in Figure 3b.
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(a) 

 
(b) 

Figure 3. Study area. (a) RGB composite image of the filtered AIRSAR data with Pauli basis;
(b) Ground-truth map for eleven known land covers.

Secondly, NASA/JPL UAVSAR L-band multi-temporal PolSAR data collected over Manitoba,
Canada, are also adopted. The range and azimuth pixel resolutions are 5 m and 7 m respectively.
Four temporal data are used in the comparison. The acquisition dates are 17 June, 22 June, 5 July,
and 17 July in 2012, respectively. With Pauli basis, the RGB composite images of the filtered
multi-temporal UAVSAR data are shown in Figure 4a–d. Also, the adaptive SimiTest speckle filter
with the recommended 15 × 15 sliding window [29] is adopted. This study area also contains various
land covers and a ground-truth map for seven known land covers (including oats, rapeseed, wheat,
corn, soybeans, forage crops, and broadleaf) is shown in Figure 4e.

 
(a) 

 
(b) 

 
(c) 

 
(d) (e) 

Figure 4. Study area. (a–d) RGB composite images of the filtered multi-temporal UAVSAR data
(17 June, 22 June, 5 July, and 17 July in 2012 respectively) with Pauli basis; (e) Ground-truth map for
seven known land covers.

4.2. Selected Hidden Polarimetric Features of Different PolSAR Data

For each land cover class, 1000 random samples are used to represent the class in the feature
selection processing. For the AIRSAR data, X = 11 denotes eleven known land covers and the
corresponding number of land cover pairs is Y = 55. Meanwhile, for the multi-temporal UAVSAR
data, X = 7 and Y = 21. The preliminary selected feature sets Fpreselection for different PolSAR data are
shown in Table 1. The numbers in brackets indicate the appearance number that this feature leads to
the maximum class separation distances. For example, the selected hidden polarimetric feature γ−min

of |γHH−VV(θ)| can maximize the class separation distances within fourteen land cover pairs of the
fifty-five pairs of the filtered AIRSAR data.
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Table 1. Preliminary selected feature sets for different polarimetric synthetic aperture radar
(PolSAR) data.

PolSAR Data Preliminary Selected Feature Set

AIRSAR

γ−min of |γHH−VV(θ)| (14), γ−max of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (11), θ0_Re[T12(θ)] (9),

θ0_Im[T12(θ)] (6), γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (3), γ−contrast of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣
(3), γ−max of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣ (2), γ−org of |γHH−HV(θ)| (2), γ−org of |γHH−VV(θ)|

(2), γ−max of |γHH−VV(θ)| (2), γ−max of |γHH−HV(θ)| (1)

UAVSAR

17 June

θ0_Im[T12(θ)] (9), γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (4), θ0_Re[T12(θ)] (2), γ−max of∣∣∣γ(HH−VV)−HV(θ)
∣∣∣ (2), γ−mean of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣ (1), γ−contrast of∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1), γ−min of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (1), γ−org of |γHH−VV(θ)| (1)

22 June

θ0_Im[T12(θ)] (9), γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (4), γ−min of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (3),

θ0_Re[T12(θ)] (1), γ−mean of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1), γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1),
γ−org of |γHH−VV(θ)| (1), γ−min of |γHH−VV(θ)| (1)

5 July
θ0_Im[T12(θ)] (7), θ0_Re[T12(θ)] (6), γ−min of |γHH−VV(θ)| (3), γ−org of∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (3), γ−contrast of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1), γ−org of |γHH−VV(θ)| (1)

17 July

θ0_Im[T12(θ)] (6), θ0_Re[T12(θ)] (3), γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (3), γ−min of

|γHH−VV(θ)| (3), γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (2), γ−max of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (1),

γ−org of |γHH−HV(θ)| (1), γ−max of |γHH−HV(θ)| (1), γ−max of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1)

Based on the preliminary selected feature sets in Table 1, we set r = 3 in the followed refinement
processing. In this vein, features which have only one or two corresponding land cover pairs
are not taken into consideration. As a result, for AIRSAR data, the final selected features are
θ0_Re[T12(θ)], θ0_Im[T12(θ)], γ−org of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, γ−max of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣, γ−contrast of∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ and γ−min of |γHH−VV(θ)|. For multi-temporal UAVSAR data, the union of the
selected features of different temporal data are the final selection results, which include θ0_Re[T12(θ)],
θ0_Im[T12(θ)], γ−org of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, γ−org of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣, γ−min of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣

and γ−min of |γHH−VV(θ)|.
For AIRSAR data, four commonly adopted roll-invariant polarimetric features of H/Ani/α/Span

are calculated and shown in Figure 5a–d. Then, the six selected hidden polarimetric features derived
in the rotation domain are also calculated and shown in Figure 5e–j. In order to compare the land cover
discrimination abilities of the six selected hidden polarimetric features and the four roll-invariant
polarimetric features, means and standard deviations of different features in terms of each known land
covers are shown in Figure 6. Based on the four roll-invariant polarimetric features of H/Ani/α/Span
only, land cover 3 (grasses) and 7 (wheat) cannot be successfully discriminated. The discriminations
between land cover 3 (grasses) and 8 (lucerne), and land cover 5 (potatoes) and 9 (forest) are also
limited. In comparison, with θ0_Re[T12(θ)], land cover 3 (grasses) and 7 (wheat) can be discriminated
successfully. Furthermore, with γ−min of |γHH−VV(θ)|, better discriminations are achieved for land
cover 3 (grasses) and 8 (lucerne), and land cover 5 (potatoes) and 9 (forest). Other selected hidden
polarimetric features are also able to enhance the discriminations for some land cover pairs. Thereby,
selected hidden polarimetric features can further enhance the land cover discrimination abilities and
have the potentials to improve the land cover classification accuracy.
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Figure 5. Roll-invariant polarimetric features and selected hidden polarimetric features for AIRSAR

data. (a) H; (b) Ani; (c) α; (d) Span; (e) θ0_Re[T12(θ)]; (f) θ0_Im[T12(θ)]; (g) γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣;
(h) γ−max of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (i) γ−contrast of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (j) γ−min of |γHH−VV(θ)|.
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Figure 6. Means and standard deviations comparison for AIRSAR data. Land cover 1–11 indicate water,
rapeseed, grasses, bare soil, potatoes, beet, wheat, lucerne, forest, peas, and stembeans respectively.

(a) H; (b) Ani; (c) α; (d) Span; (e) θ0_Re[T12(θ)]; (f) θ0_Im[T12(θ)]; (g) γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣;
(h) γ−max of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (i) γ−contrast of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (j) γ−min of |γHH−VV(θ)|.

Similarly, for UAVSAR data (data of 17 June 2012 is used as an example), the four roll-invariant
polarimetric features and the six selected hidden polarimetric features are calculated and shown in
Figure 7. Means and standard deviations of these features for known land covers are shown in Figure 8.
Using H/Ani/α/Span only, land cover 1 (oats) and 2 (rapeseed), land cover 1 (oats) and 3 (wheat),
land cover 1 (oats) and 5 (soybeans), and land cover 3 (wheat) and 5 (soybeans) may not be successfully
discriminated. While they can be discriminated by each hidden polarimetric features of θ0_Im[T12(θ)],
γ−org of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, γ−min of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣, and θ0_Re[T12(θ)]. This further verifies that

combining the selected hidden and roll-invariant polarimetric features has better potential to enhance
PolSAR classification performance.
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Figure 7. Roll-invariant polarimetric features and selected hidden polarimetric features for UAVSAR
data acquired on 17 June 2012. (a) H; (b) Ani; (c) α; (d) Span; (e) θ0_Re[T12(θ)]; (f) θ0_Im[T12(θ)];

(g) γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣; (h) γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣; (i) γ−min of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣;
(j) γ−min of |γHH−VV(θ)|.
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Figure 8. Cont.
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Figure 8. Means and standard deviations comparison for UAVSAR data acquired on 17 June 2012.
Land cover 1–7 indicate oats, rapeseed, wheat, corn, soybeans, forage crops, and broadleaf respectively.

(a) H; (b) Ani; (c) α; (d) Span; (e) θ0_Re[T12(θ)]; (f) θ0_Im[T12(θ)]; (g) γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣;
(h) γ−org of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (i) γ−min of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (j) γ−min of |γHH−VV(θ)|.

4.3. Classification Comparison with AIRSAR Data

In order to demonstrate the added benefits from hidden polarimetric features, the proposed
classification method is compared with the conventional classification method which only uses the
roll-invariant polarimetric features of H/Ani/α/Span. For each known land cover in the different
PolSAR data, a half of the known samples are randomly selected and used for training the SVM/DT
classifier, and the other half of the known samples are used for validation.

First, the AIRSAR data is adopted to compare the classification performance of the conventional
and proposed classification methods. Using the SVM classifier, the classification results for the AIRSAR
data over eleven known land covers are shown in Figure 9. The classification accuracies are listed in
Table 2. It can be observed that the performance of the proposed classification method outperforms
that of the conventional one. The overall classification accuracy of the proposed classification method
is 95.37%, while that of the conventional classification method is 93.87%. Moreover, for nine of these
eleven land covers, the classification accuracies of the proposed classification method are higher than
those of the conventional classification method. Especially for grasses, the classification accuracy
increase is up to 14.35%, from 66.99% of the conventional method to 81.34% of the proposed method.
Besides, the computational costs of the training and validation processing are listed in Table 3. The
computational costs are comparable. Finally, the classification results over the full-scene area of this
AIRSAR data with the conventional and proposed classification methods respectively are shown in
Figure 10.
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Figure 9. Classification results for AIRSAR data over eleven known land covers using support vector
machine (SVM) classifier. (a) Conventional classification method; (b) Proposed classification method.
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Table 2. Classification accuracies (%) for AIRSAR data using support vector machine (SVM) classifier.

Classification
Method

Water Rapeseed Grasses
Bare
Soil

Potatoes Beet Wheat Lucerne Forest Peas Stembeans Overall

Conventional 97.65 94.89 66.99 95.84 92.81 94.89 96.12 95.89 92.53 97.85 98.07 93.87

Proposed 98.39 95.38 81.34 96.75 93.42 95.76 97.58 96.33 94.08 97.76 97.44 95.37

Table 3. Computational costs (s) of the training and validation processing for AIRSAR data using
SVM classifier.

Classification Method Training Validation

Conventional 14.3 38.1
Proposed 13.2 39.7
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Figure 10. Classification results over the full-scene area of AIRSAR data using SVM classifier.
(a) Conventional classification method; (b) Proposed classification method.

In addition, the DT classifier is used. With the conventional and proposed classification methods,
the classification results are shown in Figure 11. The classification accuracies are listed in Table 4.
The performance of the proposed classification method still outperforms that of the conventional
one. The overall classification accuracy of the proposed classification method is 96.38%, which is
higher than the 94.12% of the conventional one. Moreover, for ten of these eleven land covers, the
classification accuracies of the proposed classification method are higher than those of the conventional
one. Besides, the computational costs of the training and validation processing are listed in Table 5.
The computational costs are also comparable. Finally, the classification results over the full-scene area
of this AIRSAR data with the conventional and proposed classification methods respectively are shown
in Figure 12. The conventional and proposed classification methods both belong to the pixel-based
classification methods which are used to deal with the pixels one by one. Besides, in order to compare
the performances of the conventional and proposed classification methods, no post-processing is used.
Since the misclassification rate is about 5%, these misclassified pixels produce the noisy appearance.
Because the DT classifier has a better performance than the SVM classifier and misclassifies less pixels
in the full-scene area, the classification results using the DT classifier in Figure 12 look less noisy than
those using the SVM classifier in Figure 10. Indeed, some region-based classification methods are
suitable to reduce these noisy effects and will be considered in future.

Besides, based on the original AIRSAR data, the overall classification accuracies with different
filter sliding window sizes (7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, and 25 × 25) are examined and
listed in Table 6. It is clear that with the same classification method, the larger the filter window size,
the higher is the followed classification accuracy. However, the filter window size of 15 × 15 is chosen
based on the tradeoff for both classification accuracy and filter computational cost. In addition, with
the same filter window size, the performance of the proposed classification method is still better than
that of the conventional one. It verifies the advantage of the proposed classification method further.
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Figure 11. Classification results for AIRSAR data over eleven known land covers using decision tree
(DT) classifier. (a) Conventional classification method; (b) Proposed classification method.

Table 4. Classification accuracies (%) for AIRSAR data using decision tree (DT) classifier.

Classification
Method

Water Rapeseed Grasses
Bare
Soil

Potatoes Beet Wheat Lucerne Forest Peas Stembeans Overall

Conventional 99.44 94.66 84.56 97.08 91.49 95.64 93.78 94.01 92.16 96.95 96.56 94.12
Proposed 99.39 96.04 93.94 97.09 93.68 96.64 97.49 97.47 94.40 97.52 96.89 96.38

Table 5. Computational costs (s) of the training and validation processing for AIRSAR data using
DT classifier.

Classification Method Training Validation

Conventional 1.10 0.05
Proposed 2.07 0.04
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Figure 12. Classification results over the full-scene area of AIRSAR data using DT classifier. (a)
Conventional classification method; (b) Proposed classification method.

Table 6. Overall classification accuracies (%) for AIRSAR data with different filter sliding window sizes.

7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 25 × 25

Conventional (SVM) 89.07 91.17 92.43 93.21 93.87 95.17
Proposed (SVM) 91.93 93.53 94.41 94.86 95.37 96.63

Conventional (DT) 88.66 91.04 92.39 93.50 94.12 95.57
Proposed (DT) 93.06 94.58 95.32 96.22 96.38 97.28

4.4. Classification Comparison with Multi-Temporal UAVSAR Data

Using the SVM classifier, with the conventional and proposed classification methods, the
classification results for the filtered multi-temporal UAVSAR data over seven known land covers are
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shown in Figure 13. The classification accuracies are listed in Table 7. It is clear that the performance
of the proposed classification method is much better than that of the conventional one. The mean
overall classification accuracy for four temporal data of the proposed classification method is 97.47%,
which is much higher than the 89.59% of the conventional one. Additionally, the overall classification
accuracy increments for the four temporal data are 6.45% (17 June: from 90.19% to 96.64%), 6.30%
(22 June: from 90.75% to 97.05%), 10.24% (5 July: from 88.03% to 98.27%), and 8.54% (17 July: from
89.39% to 97.93%), respectively. Moreover, the proposed classification method has better robustness
for the different temporal PolSAR data. Especially for oats, wheat, and forage crops, the classification
accuracy ranges for the four temporal data of the conventional classification method are 77.29–94.61%,
76.85–97.89%, and 56.36–64.51%, while those of the proposed classification method are 94.09–97.39%,
97.79–98.88%, and 83.77–94.16%, respectively. Besides, the computational costs of the training and
validation processing are listed in Table 8. It can be seen that the computational costs of the training
and validation processing with the proposed classification method are mainly comparable to or less
than those with the conventional one. Since the total known samples of each UAVSAR data are about
four times as many as those of AIRSAR data, the computational costs with each UAVSAR data are
much more than those with AIRSAR data. Finally, the classification results over the full-scene area
of these four temporal UAVSAR data with the conventional and proposed classification methods are
shown in Figure 14.
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Figure 13. Classification results for multi-temporal UAVSAR data over seven known land covers
using SVM classifier. (a1–d1) are 17 June, 22 June, 5 July, and 17 July in 2012 with the conventional
classification method respectively; (a2–d2) are 17 June, 22 June, 5 July, and 17 July in 2012 with the
proposed classification method respectively.

In addition, with the DT classifier, the classification results for the multi-temporal UAVSAR data
over seven known land covers are shown in Figure 15. The classification accuracies are listed in Table 9.
We can see that the performance of the proposed classification method is still better than that of the
conventional one. The mean overall classification accuracy for four temporal data of the proposed
classification method is 99.39%, which is still higher than the 97.55% of the conventional classification
method. In addition, the overall classification accuracy enhancements for the four temporal data are
1.79% (17 June: from 97.48% to 99.27%), 1.65% (22 June: from 97.63% to 99.28%), 1.91% (5 July: from
97.65% to 99.56%), and 2.00% (17 July: from 97.45% to 99.45%), respectively. Moreover, the proposed
classification method still has better robustness for the different temporal PolSAR data especially
in the areas of oats, rapeseed, and forage crops. Besides, the computational costs of the training
and validation processing are listed in Table 10. From it, the computational costs of the validation
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processing are comparable. Finally, the classification results over the full-scene area of these four
temporal UAVSAR data with the conventional and proposed classification methods are shown in
Figure 16.

Table 7. Classification accuracies (%) for multi-temporal UAVSAR data using SVM classifier.

Classification
Method

Oats Rapeseed Wheat Corn Soybeans
Forage
Crops

Broadleaf Overall

17 June
Conventional 86.37 91.70 93.63 96.12 92.64 62.24 98.47 90.19

Proposed 96.72 96.60 98.06 98.58 96.59 88.92 98.49 96.64

22 June
Conventional 77.29 93.82 97.89 97.30 94.14 61.38 98.05 90.75

Proposed 97.21 97.76 98.88 98.93 97.68 83.77 97.75 97.05

5 July Conventional 94.61 99.24 76.85 99.55 92.31 56.36 98.63 88.03
Proposed 97.39 99.26 98.58 99.45 99.35 90.87 98.60 98.27

17 July Conventional 82.98 92.19 84.76 99.78 97.38 64.51 96.86 89.39
Proposed 94.09 99.74 97.79 99.75 99.47 94.16 97.20 97.93

Mean
Conventional 85.31 94.24 88.28 98.19 94.12 61.12 98.00 89.59

Proposed 96.35 98.34 98.33 99.18 98.27 89.43 98.01 97.47

Table 8. Computational costs (s) of the training and validation processing for multi-temporal UAVSAR
data using SVM classifier.

Dates Classification Method Training Validation

17 June
Conventional 610.3 558.0

Proposed 699.6 407.4

22 June
Conventional 957.0 594.7

Proposed 520.1 410.5

5 July Conventional 784.7 578.6
Proposed 633.9 285.8

17 July Conventional 764.7 435.4
Proposed 591.5 291.5
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Figure 14. Classification results over the full-scene area of multi-temporal UAVSAR data using SVM
classifier. (a1–d1) are 17 June, 22 June, 5 July, and 17 July in 2012 with the conventional classification
method respectively; (a2–d2) are 17 June, 22 June, 5 July, and 17 July in 2012 with the proposed
classification method respectively.
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Figure 15. Classification results for multi-temporal UAVSAR data over seven known land covers
using DT classifier. (a1–d1) are 17 June, 22 June, 5 July, and 17 July in 2012 with the conventional
classification method respectively; (a2–d2) are 17 June, 22 June, 5 July, and 17 July in 2012 with the
proposed classification method respectively.

Table 9. Classification accuracies (%) for multi-temporal UAVSAR data using DT classifier.

Classification
Method

Oats Rapeseed Wheat Corn Soybeans
Forage
Crops

Broadleaf Overall

17 June
Conventional 98.98 95.79 98.59 98.28 97.09 94.42 98.71 97.48

Proposed 99.56 98.72 99.55 99.55 99.25 98.68 99.12 99.27

22 June
Conventional 97.66 97.45 97.87 99.00 98.24 92.72 98.46 97.63

Proposed 99.55 99.02 99.47 99.47 99.46 97.82 98.97 99.28

5 July Conventional 98.39 99.46 97.16 99.80 97.64 91.62 98.64 97.65
Proposed 99.46 99.59 99.66 99.81 99.78 98.46 98.77 99.56

17 July Conventional 94.88 97.77 97.06 99.78 98.61 95.74 97.94 97.45
Proposed 99.23 99.53 99.34 99.85 99.83 98.47 98.47 99.45

Mean
Conventional 97.48 97.62 97.67 99.22 97.90 93.63 98.44 97.55

Proposed 99.45 99.22 99.51 99.67 99.58 98.36 98.83 99.39

Table 10. Computational costs (s) of the training and validation processing for multi-temporal UAVSAR
data using DT classifier.

Dates Classification Method Training Validation

17 June
Conventional 3.89 0.13

Proposed 7.21 0.12

22 June
Conventional 3.67 0.13

Proposed 7.37 0.12

5 July Conventional 3.33 0.13
Proposed 7.06 0.12

17 July Conventional 3.17 0.13
Proposed 6.54 0.11
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Figure 16. Classification results over the full-scene area of multi-temporal UAVSAR data using DT
classifier. (a1–d1) are 17 June, 22 June, 5 July, and 17 July in 2012 with the conventional classification
method respectively; (a2–d2) are 17 June, 22 June, 5 July, and 17 July in 2012 with the proposed
classification method respectively.

Besides, based on the original UAVSAR data acquired on June 17, 2012, the overall classification
accuracies with different filter sliding window sizes (7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, and
25 × 25) are investigated and listed in Table 11. Similar conclusion can be obtained as that obtained
from AIRSAR data.

Table 11. Overall classification accuracies (%) for UAVSAR data acquired on June 17, 2012 with different
filter sliding window sizes.

7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 25 × 25

Conventional (SVM) 88.23 88.95 89.46 89.86 90.19 91.49
Proposed (SVM) 94.88 95.57 96.06 96.38 96.64 97.31

Conventional (DT) 95.17 96.16 96.76 97.18 97.48 98.04
Proposed (DT) 98.44 98.84 99.06 99.16 99.27 99.44

5. Conclusions and Outlook

This work validates that added benefits can be gained for PolSAR data investigation by mining
and utilization of hidden polarimetric information in the rotation domain along the radar line of
sight. A PolSAR land cover classification method by combining roll-invariant features and selected
hidden features is established. With the added benefits, the land cover discrimination ability is
enhanced and the followed classification accuracies are improved significantly. The comparison
experiments based on NASA/JPL AIRSAR and multi-temporal UAVSAR data respectively clearly
demonstrate the efficiency and advantage of the proposed classification methodology. Moreover, the
proposed classification method is also able to achieve better robustness for multi-temporal PolSAR
data. Besides, with the SVM/DT classifier, the computational costs of the proposed classification
method are always comparable to those of the conventional one. These added benefits are general for
the PolSAR land cover classification and the proposed classification technique can be suitable for other
kinds of PolSAR data.

This work provides a new vision for PolSAR image interpretation and application. Moreover,
other better feature selection schemes, some region-based classification methods, and more advanced
classifiers such as CNN classifier are all worth conducting in future.
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Abstract: Change detection is one of the main applications in earth observation but currently there are
only a few approaches based on radar imagery. Available techniques strongly focus on optical data.
These techniques are often limited to static analyses of image pairs and are frequently lacking
results which address the requirements of the user. Some of these shortcomings include integration
of user’s expertise, transparency of methods, and communication of results in a comprehensive
understandable way. This study introduces an index describing changes in the savanna ecosystem
around the refugee camp Djabal, Eastern Chad, based on a time-series of ALOS PALSAR data
between 2007 and 2017. Texture based land-use/land cover classifications are transferred to values of
natural resources which include comprehensive pertinent expert knowledge about the contributions
of the classes to environmental integrity and human security. Changes between the images are
analyzed, within grid cells of one kilometer diameter, according to changes of natural resources and
the variability of these changes. Our results show the highest resource availability for the year of
2008 but no general decline in natural resources. Largest loss of resources occurred between 2010 and
2011 but regeneration could be observed in the following years. Neither the settlements nor the wadi
areas of high ecologic importance underwent significant changes during the last decade.

Keywords: ALOS PALSAR; multi-temporal analysis; resource monitoring; refugee camps; synthetic
aperture radar (SAR)

1. Introduction

Detecting and understanding processes at the earth’s surface are among the key tasks of spaceborne
remote sensing. Thousands of images stored in archives allow for the analysis of dense time-series of
nearly every region of the earth. In particular is the Landsat continuity mission, delivering valuable data
since the 1970s, which provides an excellent foundation of long-term observations [1,2]. Their potential
for the mapping of land-use and land cover (LULC) has been demonstrated in numerous studies which
exploit the temporal variability of the image information in different methodological frameworks [3–10].
Among others, Song et al. portray the problems regarding atmospheric disturbances in the data and
raise the question to what extent these applications are affected by cloud cover [11]. Of primary
concern is large-scaled classification of LULC often being constrained by cloud cover. According to the
US Department of Energy, about 52% of global land surfaces are covered by clouds on average [12].
In particular, regions within the intertropical convergence zone (ITC) are highly affected by seasonal
or full-year cloud coverage [13–15] which hinders proper analysis of LULC based on series of optical
satellite imagery [16–18].

To overcome this dependency upon favorable atmospheric conditions, satellites with synthetic
aperture radar (SAR), operating at wavelengths which can penetrate cloud cover, are employed.
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Their reliability in acquiring usable imagery is one of the main reasons to utilize them in LULC
applications. Accordingly, the long-term missions of ERS-1/2 [19] and RADARSAT-1/2 [20], plus the
relatively recent Sentinel-1 constellation [21] which was launched in 2014, show high potential for the
investigation of changes in land cover over decades. They also serve well as complementary sources
when operating at the same wavelength [22,23].

The use of SAR imagery has proven effective for LULC classification in many cases. Early studies
mostly applied knowledge-based methods on SAR backscatter in order to separate different classes
of land cover [24–26]. In fact, the first article published in Remote Sensing of Environment, back in
1969, was an interpretation key for SAR backscatter at the landscape level [27]. These studies require
detailed a-priori knowledge about the study area but offer a high degree of control to the user.
Additional features were used to further increase the classification quality in later approaches,
mainly interferometric parameters such as coherence [28–30], but also textural information within
the intensity values at different levels [31–33]. Besides these technological advances, new methods
of supervised classification were developed to assign classes based on sample data. These were required
because, in contrast to optical image information, SAR parameters are not necessarily of consistent
units and value ranges. Among the most popular methods are Bayesian classifiers [34–36], neural
networks [37–39] and random forest classifiers [40–42]. These developments targeting LULC classifications
were complemented by progress in SAR polarimetry. Deeper knowledge of the backscattering behavior
of surfaces and decompositions into different scattering mechanisms additionally increased the quality of
analyses related to land cover [43–46].

Utilizing SAR imagery in a multi-temporal context to monitor changes in land-use or land cover
requires particular attention because of the characteristics of image acquisition and signal propagation.
While the very identification of areas of change is scientifically well-proven and widely-used [47–49],
quantitative and long-term monitoring of distinct classes requires accurate calibration and a robust
handling of speckle [50,51].

Studies investigating landscape sensitivity, the severity of disturbances and human impact based
on SAR data are rare: Townsend and Foster proposed a statistical indicator for the intensity of flooding
for the Roanoke River floodplain (United States) based on eleven RADARSAT-1 scenes acquired
over a period of seventeen months [52]. They used the distinctive signature of water in SAR images
expressed in usually very low backscatter values. They achieved overall model accuracies of 87.8%,
however they only looked at two classes (flooded and non-flooded). Beisl et al. followed a similar
approach for the estimation of landscape sensitivity towards floods based on two JERS-1 mosaics in
Western Arizona [53]. Their study targeted four LULC classes and five levels of flood hazards but only
compared two images (pre- and post-flooding).

Hoffmann et al. derived forest fire damage in East Kalimantan, Indonesia, based on 56 scenes
of ERS-2 from 1997 [54]. They discriminated three different classes of burn severity and additionally
derived a LULC classification. This study is one of the few making full use of large SAR archives for
the assessment of impacts of disturbances on landscapes.

As well, human impacts upon forest systems deforestation of the Amazon rainforests is of special
interest in remote sensing studies. Saatchi et al. made use of the polarimetric covariance between
channels of SIR-C [55], comparing an intra-annual pair of images—interferometric signatures and
coherence [56]. L-band data have been found to be of special importance due to its pronounced
interaction with vegetation volumes such as canopy structures [57–59]. Most of the studies, however,
do not make use of large sets of SAR images provided by the JAXA archives.

For the African continent, Mitchard et al. have found a robust relationship for the estimation
of biomass changes in savanna ecosystems [60,61]. They derived change maps based on 7 biomass
classes for an image pair from 1997 (JERS-1) and 2007 (ALOS PALSAR).

Shen et al. used polarimetric RADARSAT-2 data to derive landscape metrics from eight LULC
classes in the Nanjishan Wetland Nature Reserve, PR China [62]. Although this approach aims at a deeper
understanding of the classified landscape it doesn’t make allowance to investigate temporal changes.
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Based on the prior developments and findings we identified the following research deficits.
While indices of spatial change based on optical data are numerous, there is almost no SAR-based
methodology for long-term analysis of landscape developments at a class level. Pixel-based approaches
developed for optical data are not applicable for SAR data as they do not allow for smaller
misclassifications or isolated pixels arising from speckle effects. Additionally, most studies strongly
focus on a stepwise comparison of image pairs without considering the total variation along the full
time-series [63]. This is especially a problem in landscapes with high dynamics due to wild-fires,
land degradation, vegetation encroachment or strong human impact. For those situations, distinct
indices have to be developed, especially when dealing with SAR or very high resolution (VHR)
optical data [64]. Other indices are highly elaborate but hard to read for people from outside the
field of research. Accordingly, Walker and Peters argue that findings of multi-temporal remote
sensing products are often complicated to read or even misleading and susceptible to making false
conclusions [65].

In order to perform long-term analyses of landscape change independently from cloud cover,
a robust and transparent approach based on radar data has to be developed. As a result, an integrative
index should explain both the location and intensity of changes, as well as their implications for
environmental integrity and human well-being. This index must be reproducible and adjustable to
different needs of the users according to the significance of the targeted classes. Still, it has to be easy
to interpret for anyone, especially because stakeholders and decision-makers are often not familiar
with or interested in the technical background [66–68].

In this paper, we propose an approach challenging these requirements. For this purpose,
we investigate landscape changes in a savannah ecosystem in Eastern Chad. As it is located at
the southern border of the Sahel, desertification, impacts of climate change, and limited resources are
of main concern [69,70]. These types of savannas are observed to show significant changes regarding
vegetation persistence during the last two decades, both positive and negative [71]. The study is
used to answer the following questions: How, where, and how much did the semi-arid landscape
change during the last ten years? Can an overall decrease of natural resources, such as the availability
of fire wood, be observed and to what extent? Do the LULC types show different developments
regarding dynamics and variability? Can land degradation be observed in the direct surroundings
of the settlements as an indicator of human impact? And finally, can these aspects be visualized
in an output map which is easy to read and still includes the severity of changes during the entire
period investigated?

2. Materials and Methods

2.1. Study Area

The study area is located in the center of the Sila region of Eastern Chad (Figure 1, upper right map).
It hosts a total population of about 470,000 inhabitants, resulting in a moderately low population
density of 12.5 inhabitants per square kilometer [72]. It includes the town of Goz Beïda and the refugee
camp of Djabal which was opened to Sudanese refugees in 2004 as a consequence of the large influx
of people seeking shelter from the Darfur crisis [73]. Djabal is one of numerous refugee settlements
(both temporary and permanent) along the 500 km long Sudanese border within Chad’s territory
which were established for people fleeing from civil war and environmental degradation [74,75].

The region lies at the southern border of the Sahel and is regularly affected by droughts [76] but
receives more than 600 mm of annual precipitation on average, allowing for small-scaled agricultural
use [77]. A decrease of summer rains and an increase of temperatures by 0.8◦ Celsius for the past
25 years have been reported, leading to both stronger dependency on crop yields and higher pressure
on usable land [78]. Precipitation is mainly limited to the rainy season between June and September
while the rest of the year is considered as highly arid. Climate can therefore be described as BSh
(Hot semi-arid climate), referring to the Köppen-Geiger scheme.
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The area is dominated by Precambrian bedrock and Tertiary sediments as it lies at the transition
between the geological Sud province and the Nubian Shield within the Chad Basin [79]. Both camp
Djabal and Goz Beïda are located at around 575 m above sea level but they are framed by the Hadjer
Arkop massif in the south and northwest reaching up to 900 m [80]. Due to its location at the transition
from desert to savannas most of the study area is covered by edaphic grassland, rupicolous shrubs,
and scattered dry forest. Generally, tree cover is sparse in this area and mainly consists of single
deciduous trees of the Combretaceae family [81]. The ridges of the Hadjer Arkop massif are sparsely
covered by various Boswellia trees and shrubs [82]. Wadi Aouada, ranging from West to North across
the study area, is accompanied by smaller semi-deciduous riparian forests (Figure 1, main map).
Agricultural use of this land lies at around 30% and mainly concentrates around the few settlements.
It is composed of small-scaled semi-permanent cultivation and bush fallow.

Goz Beïda lies along an important transport axis of Eastern Chad which connects the large cities
of the North (Fada) with the ones in the South (Sarh). A Dutch military base (Ciara) under the mandate
of the European Union was temporarily established between 2008 and 2009 as an additional peace
force in the region [83]. Today, only the Goz Beïda airport remains at this location.

Figure 1. Location and landscape characteristics of the study area.

2.2. Data and Pre-Processing

2.2.1. Satellite Imagery

As the investigated ecosystem shows strong seasonal dynamics, the data to be used should be
selected carefully. Therefore, all investigated data were acquired during the dry season which extends
from November until March where rainfall below 5 mm is expected. These conditions are favorable
because SAR backscatter strongly varies with changing soil moisture. This could cause temporally
misleading signatures during the rainy season, e.g., high values at smooth and non-vegetated bare soil.
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Additionally, overall vegetation dynamics are smaller during the dry season which increases the
inter-annual comparability of the images despite smaller temporal differences.

Table 1 lists all satellite images used in this study. Considering its temporal coverage, wavelength,
and high spatial resolution, ALOS PALSAR has been chosen as a main input. Landsat data was
additionally used for the collection of reference data. For each year analyzed, a pair of ALOS and
Landsat imagery has been found with a temporal difference Δt between 0 and 30 days. There is a gap of
observation between 2012 and 2015 because the ALOS PALSAR archive only features data between 2006
and 2011 and ALOS-2 (Daichi) was launched in May 2014. Landsat ETM+ data experienced a failure
of its Scan Line Corrector mechanism in May 2003 causing striped gaps in the data (SLC-off) [84].
However, our study area lies in the center of the scene where this effect is minimal, since 2015 data
from Landsat 8 (OLI/TIRS) could be used instead.

Table 1. Satellite imagery used in this study.

Year/Δt Date Sensor Comment

2007/18 days 24 December 2006 ALOS PALSAR SLC-off
11 January 2007 Landsat ETM+

2008/2 days 27 December 2007 ALOS PALSAR SLC-off
29 December 2007 Landsat ETM+

2009/18 days 29 December 2008 ALOS PALSAR SLC-off
16 January 2009 Landsat ETM+

2010/30 days 2 December 2009 Landsat ETM+ SLC-off
1 January 2010 ALOS PALSAR

2011/20 days 19 February 2011 ALOS PALSAR SLC-off
11 March 2011 Landsat ETM+

2015/0 days 23 January 2015 ALOS-2
23 January 2015 Landsat OLI/TIRS

2016/6 days 22 January 2016 ALOS-2
28 January 2016 Landsat OLI/TIRS

2017/15 days 2 March 2017 ALOS-2
15 February 2017 Landsat OLI/TIRS

2.2.2. Pre-Processing and Collection of Samples

ALOS data was obtained as Level 1.1 products in Slant Range Complex format [85,86]. Pre-processing
included radiometric calibration to radar brightness (Beta Naught, β◦ [87]), multi-looking (n = 2), terrain
flattening to normalize radiometric effects caused by different incidence angles (Flattened Gamma Naught,
γ◦ [88]) and Range-Doppler terrain correction to adjust topographic distortions using a digital elevation
model (1 Arc-Second SRTM) [89]. All rasters were resampled to a common ground resolution of 30 m.
No speckle filtering was applied in order to conserve image texture as accuracies of classifications based
on SAR texture alone are reported to decrease when speckle was removed [90,91].

In order to derive additional information layers we derived image textures based on the
concept of Grey-Level Co-Occurrence Matrix (GLCM) [92] consisting of Cluster Prominence, Cluster
Shade, Correlation, Difference Of Entropies, Difference Of Variances, Energy, Entropy, Grey-Level
Nonuniformity, HT10, Haralick Correlation, High Grey-Level Run Emphasis, IC1, IC2, Inertia,
Inverse Difference Moment, Long Run Low Grey-Level Emphasis, Low Grey-Level Run Emphasis,
Mean, Run Length Non-uniformity, Run Percentage, Short Run High Grey-Level Emphasis, Short Run
Low Grey-Level Emphasis, Sum Entropy, Sum Variance, and Variance. Each of these 25 textures was
calculated for kernels of 3, 9, and 15 pixels in order to extract patterns emerging at different spatial
scales, leading to a total of 75 SAR texture layers per analyzed year.
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Landsat data was obtained as Level-1T (terrain corrected) products. All rasters were radiometrically
corrected by applying conversion top of atmosphere (TOA) reflectance and dark object subtraction
(DOS) [93,94].

Six LULC classes were defined for the analysis: (1) urban areas, (2) bare soil, (3) bare rock, (4) grassland,
(5) shrubland, and (6) forest. We did not include water as a separate class since the study area does not
feature any permanent water bodies and the few remaining temporary flooded areas are covered by the
forests of Wadi Aouada.

Each class is represented by training areas which were automatically derived from the
Landsat scenes. We utilized indices and threshold values from several studies to define areas which
characterize the corresponding class to a best possible degree in each scene. These are listed in Table 2.
The selection of training samples underlies two steps. First, representative areas for every class are
derived in each year observed (see Table 1). Areas which are assigned to the same class throughout all
scenes were then considered as stable over time and transparent according to the corresponding LULC.
For example, a Normalized Difference Vegetation Index (NDVI) value greater than 0.2 is reported as
high for the dry season in Sudanian savanna as found in the study area [95]. If a pixel fulfills this
criterion throughout all images it was considered as forest. Information from near infrared (NIR) and
short wave infrared (SWIR) bands was used for criteria of the classes grassland and shrubland but also
for thresholds for the abiotic surfaces of bare rock and soil. As reference for urban areas, the extent of
camp Djabal in the year 2007 was digitized from the Landsat image. These areas are observed to be
stable over time as the camp reached a stable phase.

To prevent misclassifications, we removed areas smaller than 500,000 m2 from the identified
sample areas. Recognizing the these kinds of savanna ecosystems are highly affected by wildfires [96],
we calculated the Normalized Burn Ratio (NBR [97]) for all years and scenes. This characterizes burnt
areas which were excluded from the identification of sample areas because they no longer reveal
which land cover was present before the fire. Furthermore, clouded areas were excluded throughout
all scenes.

In a second step, a number of 1600 random points was generated within the remaining areas as
sample locations for the SAR classification (see Section 2.3). This technique guarantees that the sample
points were chosen both stratified and random while partially respecting the spatial occurrence of each
class within the study area. Table 2 lists the criteria used for their identification of the sample areas
and the final number of samples per class.

Table 2. Land-use and land cover (LULC) classes and identification of sample areas in the study area.

Class Samples Criterion Source

Urban area 161 (7.2%) Area of the camp in 2007 -
Bare soil 390 (17.6%) Red < 0.25 & SWIR1 > 0.35 Drury (2001) [98]
Bare rock 352 (15.9%) SWIR1/SWIR2 > 1.5 Drury (2001) [98]
Grassland 374 (15.6%) NDVI > 0.15 & NDVI < 0.25 Forkuor et al. (2012) [95]
Shrubland 126 (5.6%) Red < 0.2 & NIR > 0.3 & SWIR < 0.3 Liu et al. (2016) [99]

Forest 172 (7.8%) NDVI > 0.2 Forkuor et al. (2012) [95]
Burnt areas 0 (0%) NBR > 0.15 López-García & Caselles (1991) [97]

Figure 2 shows the remaining areas which were used for the stratified random sampling. It shows
the result of the criteria given in Table 2 which helped to identify stable LULC areas over the
investigated period. Clearly visible are camp Djabal in the middle, surrounded by mostly bare
soil resulting from less vegetation cover and agricultural use, the bare rocks of Hadjer Arkop and the
denser forests of Wadi Aouada in the Northwest. As indicated in Figure 1 grassland and shrubland
cover the wide plains in the North and East.
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Figure 2. Identified areas used for the stratified random sampling.

2.3. Image Classification

Image classification was performed for each SAR image in Table 1 in order to analyze the temporal
developments in the study area. However, as a huge number of SAR textures are used covering many
different value ranges in various units, traditional classifiers for pixel-based approaches—such as
k-means clustering [100] or Maximum Likelihood estimation [101]—are not suitable. We therefore
chose a Random Forest classifier (RF [102]) for our study. It is based on the concept of classification
and regression trees (CARTs [103]) and repeatedly uses random subsets of the training data for the
modeling of target classes. This automatically makes the best use of the feature data (texture layers in
our case) with the best prediction ability to make LULC estimations for the full scene. For each year,
we calculated a number of n = 500 classification trees based on random subsets of

√
n = 22 features.

Figure 3 shows the outcomes of the classification as an intermediate product of the analysis.
An accuracy assessment has been performed by manually collected sampling points. These points

were visually placed on the Landsat image of each year independently from the sampling areas
described in Section 2.2 so they represent the real occurrence of each LULC during each time step.
A number of 150 points was collected per class and year which were then compared with the results
from the SAR classification for the generation of a confusion matrix.

We achieved overall accuracies of 84.4% (2007), 83.3% (2008), 85.7% (2009), 85.0% (2010),
84.0% (2011), 80.3% (2015), 82.3% (2016) and 81.47% (2017) with respective Kappa values of 0.81 (2007),
0.80 (2008), 0.83 (2009), 0.81 (2010), 0.81 (2011), 0.76 (2015), 0.78 (2016) and 0.77 (2017). These may
appear low for change detection approaches at first sight, but the proposed evaluation of changes by
an aggregated index (see Section 2.4) is not pixel-based and compensates smaller misclassifications.
As shown in Tables 3 and 4, urban areas and bare rock show the highest accuracies due to their clear
signal in both the optical and the radar images. Bare soil areas also show high accuracies because of its
distinct backscatter characteristics during the dry season, but were misclassified as grassland in some
areas of transition. The tables also show that grassland was over-estimated throughout all images
(low user’s accuracies) while shrubland and forest reveal the lowest producer’s accuracies due to their
similar signature in the SAR data.

427



Remote Sens. 2017, 9, 359

Table 3. Producer’s accuracy for the texture-based classification of SAR images using the Random
Forest classifier.

2007 2008 2009 2010 2011 2015 2016 2017

Urban area 89.3% 91.3% 90.7% 92.0% 89.3% 86.0% 90.7% 70.53%
Bare soil 92.0% 90.7% 92.0% 93.3% 92.0% 89.3% 86.7% 77.88%
Bare rock 96.0% 95.3% 96.0% 94.0% 96.0% 94.0% 93.3% 90.91%
Grassland 83.3% 80.7% 88.7% 83.3% 82.0% 94.0% 76.7% 82.23%
Shrubland 75.3% 70.7% 76.0% 77.3% 75.3% 68.7% 76.7% 82.64%

Forest 70.7% 71.3% 70.7% 70.0% 69.3% 67.3% 64.0% 66.92%

Table 4. User’s accuracy for the texture-based classification of SAR images using the Random
Forest classifier.

2007 2008 2009 2010 2011 2015 2016 2017

Urban area 100.0% 100.0% 100.0% 100.0% 98.5% 99.2% 100.0% 100.0%
Bare soil 82.6% 84.5% 84.7% 85.4% 82.1% 76.1% 79.3% 82.5%
Bare rock 97.3% 95.3% 99.3% 97.2% 94.1% 95.9% 94.0% 95.9%
Grassland 63.1% 61.4% 64.6% 62.8% 64.7% 57.8% 59.3% 57.6%
Shrubland 83.7% 84.8% 85.7% 82.3% 82.5% 80.5% 80.5% 78.4%

Forest 89.8% 82.3% 90.6% 92.9% 89.7% 84.2% 93.2% 87.3%

2.4. Index of Landscape Change

As described in the previous section, pixel-based image classifications based on SAR data can
reveal smaller misclassifications due to the lack of spectral diversity. These can, of course, lead to false
conclusions in multi-temporal approaches when wrongly classified pixels may appear as change in
land-use or land cover. Furthermore, changes from one class into another within single pixels do not
allow for implications on the state of the environment, nor do they reveal the consequences of these
changes for man. For this reason, Hagenlocher et al. proposed a weighted index which estimates the
impact of LULC changes within larger aggregated units in terms of environmental integrity and human
security [104]. It is uses expert-based weightings which determine its ecologic and social-economic
value of each LULC class so that changes can directly be interpreted as a percentage of resource
depletion for different sectors in the study area. This weighted natural resource depletion index
(NRDw) was originally designed for very high-resolution data which needed to be aggregated at
a larger level in order to overcome the limitations of pixel-based approaches for change detection.
We transferred this concept on to the SAR data to compensate the deficiencies of our classification
resulting from lack of spectral diversity, as reported in Section 2.3.

The weights were defined by two regional experts with ecological and humanitarian background
as shown in Table 5. They refer to environmental integrity (EnvInt) and human security (HumSec)
which were then averaged to a mean value of abundant natural resources (NR) of each pixel. As our
study addresses the human-related aspects of landscape change, we used a ratio of 0.35/0.65 for the
calculation of NR to place emphasis on their socio-economic impact.

Table 5. Importance of the analyzed land-use and land cover classes on environmental integrity (EnvInt)
and human security (HumSec) for the calculations of an integrated value of natural resources (NR).

Class EnvInt 35% HumSec 65% NR 100%

Urban area 0.00 0.50 0.313
Bare soil 0.30 0.35 0.331
Bare rock 0.20 0.25 0.231
Grassland 0.50 0.45 0.469
Shrubland 0.70 0.75 0.731

Forest 0.95 0.90 0.919
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We chose a hexagon grid with a diameter of 1 km as a unit of analysis which aggregates the NR
values of inherent LULC classes according to their spatial proportions within the grid cells. We chose
hexagons as spatial units because they are suitable to represent nearest neighbor areas in a regular
structure and, compared to rectangles, reduce sampling bias at their edges. Additionally, they are
reported to support visual inspection of spatial patterns [105]. These NR values can then pairwise be
compared per grid cell in order to retrieve its percentage increase or decrease of resources for different
time increments. An example for the calculation of the NRDw is given in Figure 3.

Figure 4 shows the design of the study: Based on the eight SAR images eight LULC classifications
have been derived. The weighted index for Natural Resource Depletion is then calculated per
image pair. The result is shown as an example for the first image pair of 2007 and 2008. This map
indicates the spatial distribution of changes as well as their estimated impact on natural environment.

Figure 3. Calculation of the weighted Natural Resource Depletion Index (NRDw).

Figure 4. Left: Design of the approach: Each classified image delivers aggregated values of natural
resources. Right: Changes between the years are expressed as weighted Natural Resource Depletion
(NRDw), demonstrated for the period between 2007 and 2008.
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2.5. Index of Landscape Variability

Besides observing inter-annual changes, general conclusions about developments within an area
can be derived best based on direct comparisons of conditions at the beginning and the end of the
investigated time. However, this excludes two major points in change detection.

Firstly, savanna ecosystems are subject of large biotic and abiotic variation at multiple
spatiotemporal scales [106]. It is a key task of remote sensing to reveal these variations to an adequate
degree [107]. Besides simply comparing the intensity of changes, information on the temporal variability
of regions—or in other words, the sum of all changes along the investigated period—has to be
communicated as well. Surely, some areas remain stable after the transition of one LULC class into
another while others tend to underlie regular variations. Analyzing changes over multiple images,
especially in a region at the border between two ecosystems, surely should include the aspect of
resilience towards long-term exterior influences.

Secondly, class-based measurements are always subject to smaller misclassifications, especially
if the data source is challenging. It is still widely reported that classifications based on SAR data
alone are outperformed by approaches using multispectral optical data [108–110]. Similarly, single
misclassifications within a time-series can distort the results towards changes which did not happen.
In addition to that, the dates of image acquisitions are highly sensitive towards seasonal variations.
Even if all images were taken at the same date of the year, inter-annual shifts in phenology of even
a few weeks could cause the erroneous detection of ‘pseudo changes’.

Consequently, a second indicator is needed which spatially allocates high temporal variation
within the study area and simultaneously quantifies the number of smaller changes which might only
be subject to seasonal shifts in phenology.

We therefore decided to apply a post-classification change vector analysis. Vector-based approaches
make use of a feature space consisting of spectral or classified information and the temporal
dimension [111,112]. In our case, the variable determining the value of each hexagon grid cell is
its weighted sum of natural resources as described in the previous section. These values are then plotted
against the temporal period which is analyzed as exemplified in Figure 5: In a first step, the length
of the vector describing overall change (Co) is calculated based on the NR values of 2007 and 2017.
As a second variable contributing to the variability of an area, the length of the change vectors between
each chronological image pairs are summed up to create the sum of annual changes (Ca). For reasons
of normalization, a factor of 10 has been applied to NR values for the calculation of vector lengths
(e.g., a NR decrease of 0.55 to 0.40 during one year leads to a x-distance of 1.5 instead of 0.15. This is
done because the y-distance is 1 except for 2011–2015). The ratio of Co and Ca is then calculated and
describes the variability (v) of the corresponding hexagon cell throughout the observed period. If Co

and Ca are of same length, v gets the value of 1. The longer the vectors of annual changes in relation to
the overall change, the higher is the calculated variability v which is therefore a dimensionless value
between 0 and 7, as the sum of the maximum NR value of 1 for a period of seven investigated years.
This information can then be included in the discussion of the results as an indicator of variability and
instability of an area.
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Figure 5. Calculation of the variability v of an area.

3. Results

3.1. Annual Changes

3.1.1. Natural Resources

The results gathered based on the LULC classifications were transferred into NR for a hexagon
grid as described in Section 2.4. A summary of different statistics over all 1793 grid cells is given in
Table 6. It shows that overall resources did not significantly decline within the study area during the
investigated period. Neither their mean (NRmean) nor their median (NRmedian) shows significant trends.
A smaller drop of NRmedian can be observed for 2015. This indicates that natural resources were
slightly the lowest in that year or at least at the time of image acquisition. This is supported by the
value of the overall sum of all Natural Resources (NRsum). However, the percentiles of 95% and 5%
(NR95% and NR5%) indicate that this could also have been caused by a smaller proportion of outliers
for the year 2015.

Table 6. Development of Natural Resources (NR) and weighted Natural Resource Depletion (NRDw).

2007 2008 2009 2010 2011 2015 2016 2017

NRmax 91.9% 91.5% 90.7% 90.1% 91.4% 91.7% 89.5% 88.6%
NR95% 73.5% 76.2% 74.7% 74.3% 74.6% 73.9% 73.1% 73.3%
NRmean 46.9% 47.1% 47.0% 47.1% 46.9% 46.5% 46.8% 47.0%

NRmedian 45.7% 45.4% 45.9% 45.9% 45.8% 44.3% 45.6% 45.1%
NR5% 24.8% 24.4% 25.0% 24.9% 24.2% 25.0% 25.4% 25.6%
NRmin 23.1% 23.1% 23.1% 23.1% 23.1% 23.1% 23.1% 23.1%
NRsum 840.8 844.6 843.5 843.8 840.7 833.1 839.9 842.8

NRDw mean 0.187% −0.037% 0.016% −0.175% −0.421% 0.379% 0.158%
NRDw net 3.36 −0.65 0.28 −3.14 −7.55 6.79 2.83

A small decline in the maximum NR value (NRmax) reached can be observed as it decreases
from 91.9% to 88.6% over the investigated period. The minimum (NRmin) was constant each year as
it represents cells which are completely covered by bare rock—this being the class with the lowest
attributed importance (see Table 5).

Overall, no significant change can be observed for the investigated area. A spatially explicit
description of changes based on the weighted Natural Resource Depletion is presented in Section 3.1.2.
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3.1.2. Natural Resource Depletion

Based on the derivation of NR values for each grid cell their impact upon environmental integrity
(EnvInt, 35%) and human security (HumSec, 65%) can be estimated. Their summarized temporal
development is demonstrated in Table 6: The mean change of resources (NRDw mean) ranges between
+0.379% (2015–2016) and −0.421% (2011–2015). This means that positive and negative changes widely
balance within the study area. At no time are changes dominated in one direction only. This is even
more clearly shown by the median, which is not given in the table, as it levels at 0.0 throughout
all years. Still, there are some years which show a slightly higher impact than others. If the NRDw

values of all grid cells are added together per year (NRDw net), values between 6.79 and −7.55 emerge.
These reveal a more distinct view on the impact of changes over time. While the overall changes in the
study area are around ±3, a more pronounced impact of −7.55 can be assigned to the period between
2011 and 2015 as a consequence of missing data for an annual change detection.

However, the large increase between 2015 and 2016 (+6.79) indicates that the remarkably low
value in 2015 of (−7.55) is not only caused by the longer time span but also depicts a local negative
peak which needs to be discussed in Section 4.

The main advantage of the NRDw is that a value of percentaged increase or decrease of landscape
quality can be assigned to each grid cell. This allows for the spatial characterization of landscape
changes and their impacts. The results are provided as maps for the image pairs throughout the
investigated period as demonstrated in Figure 6. It shows where the environment within the study
area changed during the investigated years and in which directions changes occured regarding the
expert-based weights shown in Table 5. At a first impression, no clear trends can be recognized in
the maps. In particular, the regions around Camp Djabal and Goz Beïda show no considerable decrease
in environmental resources during the last ten years. Also, the Hadjer Arkop massif is predominantly
stable during the investigated period. Variations in NR can well be observed around Wadi Aouada
and its areas of higher and more developed vegetation. Whether these are just of seasonal nature or
a steady development cannot be clarified by comparing single conditions within time-series. This will
be addressed more specifically in Section 3.2. In general, the areas of strongest developments are
shrubland in the Southeast of the study area and grassland-covered plains in the North.

Figure 6. Weighted Natural Resource Depletion Index (NRDw) for the study area during the
investigated period. Note that, due to lack of available L-band SAR data, an annual investigation
was not possible between 2011 and 2015.

432



Remote Sens. 2017, 9, 359

3.2. Overall Change and Variability of Natural Resources

As indicated in Section 2.5, attentive interpretation of change intensities requires information
on the variability of the different grid cells. If an area shows moderate change between 2007 and
2017, but a high variability, as derived according to Figure 5, this area is either subject to higher
intra-annual or inter-annual seasonal changes or to generally observable instabilities regarding the
interrelations between related types of land cover (such as shrubland or grassland). In turn, if a low
variability (smaller than 1.5) can be observed, changes are rather of long-term nature, such as trends in
vegetation cover or transitions between types of land-use (bare soil to built-up areas). Figure 7 shows
the changes as assessed by the NRDw between 2007 and 2017 in combination with the variability v
per grid cell. While colors indicate the direction and severity of changes, line signatures within the
grid cells indicate their variability. Developments can now be interpreted regarding their long-term
information content and the affinity of an area towards changes. The indications from Section 3.1.2 can
be affirmed and specified: There is no general loss of natural resources in the study area but certain
areas are more prone to change than others. Areas around the settlements are almost stable whereas
grids of both positive and negative development are accumulated at the South East of the study area.
These result from the transition between forest and shrubland. Variability values of mostly above 2.00
indicate that this area is not gradually changing but generally prone to changes. Similar developments
can be attached to Wadi Aouada where forest, shrubland, and grassland underlie both seasonal and
inter-annual changes.

Figure 7. Weighted Natural Resource Depletion Index (NRDw) and variability for the study area
between 2007 and 2017.

General conclusions about the study area can be drawn based on the statistical distribution
of the different variability values compared to their NRDw value as shown in Figure 8. It clearly
demonstrates that areas of smaller variability (v < 2.00) form the majority in the study area whereas
areas with distinctively high variability (v > 4.00) are very rare. It furthermore shows that areas
with slight changes (±2%) are more frequent than areas with no change at all, especially for higher
variabilities. This indicates that many areas within the study area are affected by smaller changes

433



Remote Sens. 2017, 9, 359

and show a relatively unsteady development. It is additionally interesting that areas of highest
positive development (>8%) increase with larger variability. This leads to the conclusion that some
of them may also result from misclassifications as the classes of high variability no longer show an
equal distribution.

Figure 8. Frequency distribution of the variability of grid cells within the study area compared to their
NRDw index for the time between 2007 and 2017. Note the logarithmic scaling of the y-axis.

4. Discussion

Altogether, the proposed approach allows the derivation of detailed change maps along a series
of SAR images which exceed the information content of standard transition matrices between classes.
However, there are things to notice in both the ecologic and methodic domain. This section aggregates
our findings in the perspective of landscape development and according to the requirements defined
in the introduction.

4.1. Landscape Changes

One main point to report is that the landscape in the study area did not underlie large-scale
changes, neither positively nor negatively. As shown in Figure 6, there in fact are certain hot spots of
accumulated change over the investigated period, however, these did not add up to a gradual overall
increase or decrease of landscape quality for larger areas.

Addressing anthropogenic impact on the investigated landscape, neither of the two main
settlements of camp Djabal and the city of Goz Beïda, nor the plains within the Hadjer Arkop massif,
had noticeable impact on their surrounding landscapes. These findings were expected in terms of
no reported growth of these settlements during the investigated period [113–115]. It is still notable
that this landscape did not negatively respond to the direct presence of human activities as arid
savannas are often observed to be susceptible towards anthropogenic pressure [116]. One reason for
the described stability within this area is the high amount of bare soil as a consequence of the relatively
intensive agricultural use. Accordingly, their NR values were already quite low and only expansion
of human settlements—or the transition from soil areas to bare rock—would have caused negative
NRDw developments. In addition to that, no source of land degradation or desertification, as it might
be indicated by transitions from vegetation to bare soil or soil to rock, could be observed among the
bare rock areas of the Hadjer Arkop massif.

One region which was prone to many changes during the investigated period is Wadi Aouada,
reaching from the West to the North of the study area. As it is the only area with vital vegetation
of higher orders during the whole year, it is particularly prone to changes in external circumstances.
A direct comparison of the NR of 2007 with 2017 (Figure 7) does not depict a clear image on which
parts of the wadi underlay significant positive or negative developments. It can, however, be stated
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that the core area of the wadi did not change in a critical degree—for example, due to erosion
or lesser subsurface drainage. Looking at the annual changes in Figure 6 indicates that there are
some years where the wadi is subject to larger changes, notably 2008–2009 (positive) and 2010–2011
(negative). These observations could be linked to climatic variations. However, comparison to records
of temperature and precipitation provided by the Climatic Research Unit (CRU) of University of East
Anglia (UEA) [117] does not confirm these trends. As Figure 9 shows, the contrary could have been
expected as a considerable decrease in precipitation occurred between 2008 and 2009, which in turn
shows the most visible positive development within Wadi Aouada. So it can be concluded that climatic
variations are most likely not responsible for the smaller changes within the wadi. We expect them to
result from overall variation in the vegetation signature within the SAR data.

Figure 9. Monthly precipitation and temperature for the study area.

Another mentionable point is the striking accumulation of negative NRDw values in for 2011–2015
in the North of the Hadjer Arkop massif near the center of the study area. However, the fact that
this area is again strikingly positive for the subsequent image pair from 2015–2016 indicates that
this anomaly is rather the outcome of a wrong classification. The low variability values in this area
(Figure 7) furthermore support this indication and lead to the conclusion that this area is in fact stable
regarding LULC and the assessed changes are wrong. Nevertheless, many larger changes for the
period from 2011–2015 are realistic results obtained by the observed increment of 4 years instead of one.
But this is one example of how investigating variabilities along a time-series can help to detect errors
and check the results for plausibility.

To further test the overall condition of the landscape for interrelations with climatic conditions,
we compared the sum of all NRDw values per year, (NRDw net), with the corresponding change in
annual precipitation (Δprec) as shown in Table 7. We found a Pearson correlation coefficient of r = 0.47
between both variables which affirms that overall sum of natural resources could in fact fluctuate to
a certain degree according to the water availability in the study area. A correlation of r = −0.61 was
found for the relationship between NRDw net and the temporal baseline between the respective SAR
images (SAR Δd), defined as the absolute difference in days from an optimum temporal difference
between two images of 365 days. It seems obvious that potential changes increase if both images are
not taken on the same day of the year. The larger the difference of two images regarding their time of
acquisition (see Table 1), the higher is the risk of identifying changes related to phenology instead of
identifying changes to overall development of a landscape.
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Table 7. NRDw net values for the investigated time-steps compared to trends in precipitation (Δprec)
and temporal baselines of the used SAR images (SAR Δd).

2007–2008 2008–2009 2009–2010 2010–2011 2011–2015 2015–2016 2016–2017 r (NRDw)

NRDw net 3.36 −0.66 0.28 −3.14 −7.55 6.80 2.833 1.00
Δprec −37.7 −55.7 97.7 −49.9 −74.6 15.8 - * 0.47

SAR Δd 12 12 18 88 1078 ** 8 12 −0.61

* Changes in precipitation could not be assessed between 2016 and 2017 as no all-season records were available at
the time of the study. ** In order to not distort the statistics, the temporal baseline of four years was excluded from
the calculation of r.

Lastly, the histogram in Figure 8 demonstrates how changes in the image can be interpreted
regarding their long-term predication. Overall changes with low variabilities (between 1.00 and 1.50)
make up 72% in our study. If frequencies are not equally distributed in both positive and negative
directions, trends can be evaluated regarding their variability. We found that high variability values
either indicate single misclassifications between scenes or, when spatially aggregated, characterize
areas of constant change. In the latter case, intensities of changes should be interpreted with more care.

4.2. Methods

On the technical side the following points can be highlighted. As the first findings made by
Braun et al. [23] indicated, the application of the NRDw concept from Hagenlocher et al. [104] is
transferable to radar imagery of medium spatial resolution. This study was able to provide a framework
more robust towards smaller misclassifications as they often occur in SAR data which is still flexible
enough to be based on different sensors or to be transferred to other regions. The results created reflect
different aspects of landscape changes: namely environmental integrity and human security which can
be weighted according to the expertise and the needs of the user. The final maps include information
on both spatial and temporal variation of landscape changes but are still easy to read and interpret.
These maps highlight regions which require special attention and allow a more differentiated dealing
with the outcomes.

ALOS PALSAR proved to be suitable for long-term landscape monitoring due to its long
wavelength interaction with volume scatterers for the discrimination of different types of vegetation.
It would have been interesting to observe how the study area changed annually in this perspective
between 2011 and 2015 but no accessible L-band data is available for this period. It is however expected
that other SAR sensors with similar archives such as ERS, Radarsat, and Envisat bear the same potential,
especially at the temporal scale. Regarding seasonality, additional data at the middle or end of the
rainy season would surely have substantially increased the validity of the approach as it could have
been used to depict a clearer image of each year’s resources. However, this data was not available for
all the investigated years. Future approaches surely should consider using a combination of several
scenes at crucial points in the study area’s phenology which can be determined by the variation of
NDVI, for example [118–120]. This would also decrease the weight of textural information in favor of
additional seasonal effects.

However, the used textures were able to discriminate all selected LULC classes to a sufficient degree.
As Tables 3 and 4 demonstrate, Grassland was the class with lowest accuracies due to its indifferent
degree of coverage in the study area and comparably low interaction with the L-band signal. Using
these large numbers of input rasters surely requires classifiers based on machine-learning which extract
the most valuable information. The random forest classifier performed efficient but other approaches,
such as support vector machines (SVM) or artificial neuronal networks (ANN), can be employed as
well for these kinds of analyses, especially when phenological variation is additionally introduced as
suggested above [121,122].

The automatic and literature-based selection of training areas proved to increase the study’s
credibility as it reduces the possible bias of manual sampling collection. In our case, field investigations
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were not possible due to security reasons but using optical data from Landsat grants for independency
of the training and validation process from the actual image classification was possible. Also worth
noting, optical data does not have to be complete or cloud free. As only the areas which consistently
fulfilled the criteria listed in Table 2 throughout all images were used for possible locations of the
randomized samples, we could flexibly deal with cloud coverage, burnt areas and missing scan lines
in Landsat ETM+ products.

Smaller misclassifications occurred between classes with similar response to the radar signal as
shown in Tables 3 and 4. These could, however, be compensated by the creation of hexagon grid
cells as a main unit of analysis. Each of them aggregates information of 1280 pixels and represents
their percentaged share as one value of natural resources. This reduces the effect of ambiguities at the
transition between two LULC classes and facilitates both the visual inspection and interpretation of
results. Detailed changes at borders between two classes are no longer visible in this approach but
since the fact that savanna ecosystems often consist of a mosaic of continuous LULC this is neither
possible nor considered as reasonable. Shifts in phenology could, however, been better handled with
an investigation over a longer time span. The longer the time-series of images, the more stable is the
approach as it more clearly reveals outliers along the investigated period. ESA’s Sentinel-1 mission lays
a solid foundation for multi-decade investigations as it was designed to continue the archived data of
ERS and Envisat. All of them operate at C-band wavelengths and a comparable spatial resolution.

One crucial point is the definition of investigated LULC classes and their corresponding
contribution to both environmental integrity and human security (see Table 5). As this has to be done
at the beginning of the study, changes in the numbers of investigated classes can, of course, strongly
affect the later results. If interest is placed on the change of a certain type of LULC, the definition of
classes should be appropriate and respectively balanced in this context. Also, the expert-based weights
have large influence on the evaluation of the changes. It is therefore advisable to include the expertise
of as many people as possible, preferably from different domains (local population, humanitarian
units, authorities, and other stakeholders). This not only provides for a balanced assessment of weights
but also prevents the abuse of weights to intentionally target desired results. As Laczko & Aghazarm
argue, research on the impacts of refugee camps upon their environment is needed but cannot act as
the only argument for repatriation in political debates [123].

Lastly, the proposed variability can be a valuable measure for both the quality and the long-term
information content of results. However, a way of normalization has to be performed when comparing
index values along a temporal sequence. We used a rather basic model of change vectors as it met our
requirements for the comparison of eight images. If longer or more detailed time-series are employed,
the concept of variability has to be refined according to variation at different temporal scales—such as
the differentiation between seasonal, inter-annual, and overall variation of a grid cell.

5. Conclusions

Our study showed that landscape changes can be analyzed by radar imagery in a transparent and
adaptive way. It is not limited to certain landscape types or specific sensors, but requires a minimum
number of consecutive images from the same time of the year. The proposed approach substantially
contributes to field of post-classification change analysis as it overcomes limitations regarding the
number of investigated scenes, the variation within the investigated time, and the occasionally
criticized complexity of high-level approaches which cannot be adapted by users with limited technical
or scientific background. It therefore serves as an ideal intermediate between innovative analyses and
user-friendly, adaptable frameworks. These will gain further importance with the growing availability
of archived and newly acquired SAR data for scientific, organizational, and commercial operational use.

The integration of user expertise about the relevance of land-use and land cover classes hinders
the automation of the process but clearly improves the validity of the results. Attaching weights to
the selected classes allows for the generation of an index which refines the results according to the
knowledge of the user and the information he requires.
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Although it did not reveal large scale trends in our study area, the proposed index is a good
approach for a semi-automated evaluation of changes over long time spans and within greater regions.
The use of radar data additionally reduces the dependency from atmospherically undisturbed
conditions. All parts of the study were performed on free and open source tools (QGIS, ESA SNAP,
OTB, Python) which allows for a transfer of the method onto other case areas. We encourage readers to
implement and further improve the proposed approach in order to increase the quality of time-series
analyses of radar data. This work is a first step towards new standards in change detection applications
which are comprehensible and still specified to the users’ needs.
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Abstract: In this study, a new method is proposed for semi-automated surface water detection using
synthetic aperture radar data via a combination of radiometric thresholding and image segmentation
based on the simple linear iterative clustering superpixel algorithm. Consistent intensity thresholds
are selected by assessing the statistical distribution of backscatter values applied to the mean of
each superpixel. Higher-order texture measures, such as variance, are used to improve accuracy by
removing false positives via an additional thresholding process used to identify the boundaries of
water bodies. Results applied to quad-polarized RADARSAT-2 data show that the threshold value for
the variance texture measure can be approximated using a constant value for different scenes, and thus
it can be used in a fully automated cleanup procedure. Compared to similar approaches, errors of
omission and commission are improved with the proposed method. For example, we observed that a
threshold-only approach consistently tends to underestimate the extent of water bodies compared to
combined thresholding and segmentation, mainly due to the poor performance of the former at the
edges of water bodies. The proposed method can be used for monitoring changes in surface water
extent within wetlands or other areas, and while presented for use with radar data, it can also be
used to detect surface water in optical images.

Keywords: water mapping; surface water; wetland; SAR; RADARSAT-2; histogram; threshold;
segmentation; superpixel

1. Introduction

Wetlands provide a range of ecosystem services, including several that are vital to the health
of the environment. Many species rely on wetlands, for example, to provide critical habitat used
for procuring food and shelter. Wetlands also improve water quality by naturally filtering toxic
substances and sediments. Unfortunately, these qualities were not well recognized in Canada until
relatively recently, resulting in numerous wetlands in the south being filled or drained for other uses,
including agricultural production [1]. Today, greater efforts are being made to protect these sensitive
ecosystems. However, many are still threatened by the effects of anthropogenic disturbance [2], and of
particular relevance to this study, climate change [3].
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Increased variability and changes to ambient temperature, precipitation, and flow regimes are
anticipated [3], and will likely adversely impact wetland ecosystems, which are especially sensitive to
changes in the duration of flooding and depth of water [4,5]. Changes in the stability of flow regimes
specifically may lead to the loss of suitable habitat for species that are adapted to certain levels of
variation, and could lead to increased numbers of invasive and or generalist species [6]. In light of this,
there is need for regional monitoring of changes in the extent of surface water within wetlands as this
will help identify those areas that are changing. Not only would this inform management strategies,
but it would also focus conservation efforts, which would be especially beneficial to those for which
wetlands provide habitat and who are already at risk of extinction.

Surface water detection (SWD) using synthetic aperture radar (SAR) data has been the subject of
study for many research groups [7–10]. SAR data is a reliable source of information for operational
monitoring of water resources since, in contrast to optical data, images can be acquired regardless
of cloud cover and haze. Further, due to predominant specular reflection, radar backscatter
over non-disturbed water bodies is low relative to most surrounding land and other non-water
features. This results in contrasting dark and bright pixels (between water and non-water features),
a characteristic that can be used to discriminate both land cover types in SAR images.

Due to their simplicity, threshold-based procedures are widely used for operational SWD,
particularly for large datasets [7,8]. Several techniques exist for finding an appropriate threshold value,
the simplest of which includes scene-based visual investigation of histograms [11]. This approach is
not practical for operational mapping however, as the threshold value differs under different incident
angles, wind, and terrain conditions; thus, there is a need for human intervention on a scene-by-scene
basis. Alternatively, Bolanos et al. [7] proposed using a normalized threshold value applied to energy
texture images to extract surface water extents from RADARSAT-2 images (i.e., Te =

te−μe
σe

where Te is
a non-dimensional threshold value standardized by the mean: μe, and standard deviation: σe, of the
energy texture image, and te is the threshold value before being normalized).

Statistical modeling of histograms has also been used in several cases to estimate a threshold
value for automatic SWD. Matgen et al. [9] estimated the probability density function (PDF) of
backscatter values for water using a gamma distribution and adapted an iterative procedure to define
an optimal threshold value to separate water and non-water pixels while limiting over-estimation.
Schumann et al. [12] computed threshold values for histograms using Otsu’s method [13] by applying a
criterion to evaluate the between-class variance calculated from a normalized histogram. Notably, one of
the limitations of Otsu’s method is that when the bimodality of histograms is unbalanced, the threshold
value can over or underestimate the extent of water bodies as a result of the dominant mode having a
greater effect on the between-class variance, thus resulting in the threshold being drawn closer to its
mean [14,15].

To address this, Li and Wang [10] applied a modified version of Otsu’s thresholding algorithm
to a subset of SAR-based texture (entropy) images. This modified version, called “valley emphasis”,
attempts to select a threshold that is closer to the valley between the two modes. Li and Wang also
subset images so that each contained between 10% and 90% water to ensure that the water and
non-water modes of the histogram were more balanced. To do this, an initial water body mask is
generated using K-means clustering applied to the SAR intensity image. Despite these advances
however, the limitation of Otsu’s method remains, especially in cases where the population of water
pixels is much lower than the population of non-water pixels.

It is notable that in the literature most SWD methods lack an ancillary process to reinforce the
grouping of water pixels, especially along local boundaries between water and non-water features.
Attempts to address this common deficiency have focused primarily on making slight adjustments
to the threshold value in order to compensate for over or underestimation [9]. As an alternative,
we propose the use of image segmentation via the simple linear iterative clustering (SLIC) superpixel
method for improved SWD.
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Image segmentation has increasingly become a key preprocessing step for computer
vision applications such as object class recognition and image segmentation [16,17]. In general,
existing algorithms are broadly categorized as graph- or gradient ascent-based approaches [18].
The former are useful for capturing image boundaries, while the latter are beneficial when a regular
lattice is required. Achanta et al. [19] suggested three important properties for a desirable segmentation
algorithm, including the fact that they are fast and easy to use while maintaining the quality of the
results, and also that they adhere to image boundaries. The authors compared five types of superpixel
algorithms (two graph-based and three gradient-ascent-based), including their newly developed SLIC
superpixel algorithm. Their in-depth comparison showed that their proposed method, which is a
gradient-ascent approach based on k-means clustering, outperformed other algorithms on all three
aspects (i.e., speed, ease of use, and boundary adherence).

In light of these developments, we have developed a new method for SWD with SAR data that
uses both thresholding and image segmentation based on the SLIC superpixel method. In this paper,
the method is described in detail and results are demonstrated for multiple RADARSAT-2 images
acquired over two study areas. The new thresholding method is based on the statistical characteristics
of image histograms (or probability density functions), and select thresholds are applied to image
objects. In contrast to previous SWD methods in which the cleanup procedure was implemented
implicitly, we also describe a separate and fully-automated cleanup procedure and evaluate its impact
on the accuracy of the algorithm.

This paper begins with this introduction followed by the a description of the study area and the
methodology. The results are then presented and discussed followed by the conclusion.

2. Study Areas and Data Acquisition

Two study areas with temporally and spatially variable open water bodies are considered in
this research (Figure 1). The first site (Figure 1b; referred to hereafter as the Prairie Pothole Region)
was also evaluated by Bolanos et al. [7], and thus our newly proposed method was compared to
their SWD method. For this site, a Radasat-2 Fine Quad Pol (FQ19) mode image with a nominal
ground range resolution of 8.4 m (near-range) covering approximately 25 × 25 km2 was acquired on
8 September 2012. A same-day, cloud-free RapidEye image (5-m resolution) over Elk Island National
Park, Alberta, was used to extract water polygons for comparison purposes using both methods
(Figure 1a). Readers are referred to Bolanos et al. [7] for additional information on this site and dataset,
which has not been repeated here for brevity.

The second study area covers the entirety of Prince Edward County and the Bay of Quinte,
Ontario (Figure 1c; referred to hereafter as the Bay of Quinte site). This region is located on the
Canadian side of Lake Ontario, falling completely within the Mixedwood Plains Ecozone [20].
Here, rainfall generally peaks in September around 90 mm, and temperatures peak in July at around
21 ◦C (1981 to 2010 Canadian Climate Normals [21]).

With an abundance of fertile soils, the majority of land is used for agricultural production.
Wetlands (marsh and swamp) are numerous, and the extent of water bodies varies extensively
on an inter and intra-annual basis, both as a result of water level changes, and the emergence
of vegetation from the water surface as the growing season progresses. For this site, 11 sets of
images of RADARSAT-2 Wide Fine Quad Pol (FQ5W and FQ17W) were acquired between 7 April
and 22 September 2016. Each scene covers approximately 50 × 50 km2, with a nominal ground
range resolution of about 14 (FQ5) and 9 (FQ17) m (Table 1). For accuracy assessment of this site,
concurrent and cloud-free WorldView-2 (WVII) images are analyzed. Note that for a meaningful
comparison between the results from the two data frames and all dates, we have only focused on
analyzing the area covered by all image acquisitions for the Bay of Quinte (see Figure 1c).
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Figure 1. (a) Study areas located in Canada, including (b) the Prairie Potholes Region in Alberta,
and (c) the Bay of Quinte in Ontario. Both study areas are covered by concurrent RADARSAT-2 images
and high-resolution optical images. The red polygon represents the overlap for two image frames
available over the Bay of Quinte site. For the Alberta site only one RADARSAT-2 image was available.

Table 1. RADARSAT-2 images acquired over the Bay of Quinte.

Beam Incident Angle (◦) Resolution (m) Orbit Direction Acquisition Dates in 2016

FQ5W 22.5–26.0 13.6–11.9 Des.
7 April, 1 and 25 May,

18 June, 12 July, 22 September
FQ17W 35.7–38.6 8.9–8.3 Asc. 3 and 27 April, 14 June, 8 July, 25 August

3. Methodology

3.1. Image Processing

Figure 2 summarizes the processing steps applied to available RADARSAT-2 imagery.
Image calibration was performed via the extraction of Sigma Nought (σ◦) values using the
Constant-Beta look-up tables provided with each scene. A polarimetric Lee filter was then applied
to compensate for the effects of speckle. Bolanos et al. [7] discuss the advantages of this filter
over others due to its ability to adapt to homogeneous and heterogeneous areas, and its ability
to preserve edges. This, in addition to the fact that we wanted to make direct comparison between
our method and the method proposed by Bolanos et al., is why we also used the Lee filter in this
study. All RADARSAT-2 images were then orthorectified using the rational polynomial coefficients
provided with the images and a Shuttle RADAR Topography Mission (SRTM) digital elevation
model (DEM). Afterward, all orthorectified images were co-registered using a fast Fourier transform
phase matching algorithm with a minimum match score of 0.9 set for automatically selected ground
control points (GCPs). These image processing steps were implemented using PCI Geomatics software.
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After orthorectification, the calibrated intensity values were then converted to decibels to pronounce
the tails of each image’s histogram.

Figure 2. The proposed workflow for preparation of RADARSAT-2 imagery. Note that the method
could also be adapted to different processing methodologies, SAR data types, and optical imagery.
SAR: synthetic aperture radar; DEM: digital elevation model; dB: Decibel.

3.2. Threshold Selection

With the proposed method, two sets of thresholds are extracted from the SAR images for two
different purposes: (a) surface water detection; and (b) water boundary detection. For the former,
histograms of either HH (Horizontal transmit and Horizontal receive) or HV (Horizontal transmit
and Vertical receive) polarizations are used to select a statistically consistent threshold, while for
the latter, higher-order texture images, such as variance, are used to select a threshold to detect the
boundaries of water bodies. This latter step provides products for an additional cleanup process for
the removal of false positives, or areas identified as water bodies, but which are not in fact water
bodies. Each threshold type is described in detail in the subsequent section.

3.2.1. Surface Water Detection

Previous studies such as those of Brisco el al. [8] and Manjusree et al. [22] discuss the advantages
of using the HH polarization for mapping flooded vegetation due to better canopy penetration,
resulting in better contrast between flooded and non-flooded forests (e.g., compared to HV).
Over non-disturbed water bodies, co-polarized channels are also used for discriminating land and
water, though it is notable that at steep angles backscatter in the HH polarization can be equivalent to
the values observed for land, and increased surface roughness (e.g., waves) reduces the separability
between water and land [23]. Alternatively, several studies have shown that backscatter values of
the cross-polarized channels HV and VH (Vertical transmit and Horizontal receive), are less affected
by wind than the co-polarized channels [24,25]. In this study, we are interested in detecting water
regardless of the roughness conditions; thus, have chosen to use the HV polarization. Note that this
method could be adapted to use any polarization, as it relies solely on the fact that the distribution of
values is bimodal (referring to the fact that image histograms show separate modes: one representing
water, and one or more others representing non-water pixels).

Bimodality of image pixel values is typically achieved with a sufficient number of water bodies,
with low backscatter values, relative to all non-water pixel values. Note that preliminary testing
has demonstrated that bimodality can be achieved with as few as 2% of the total pixel population
representing water. To define the threshold values, the values are first represented in decibel format
(Figure 3a) as this representation is commonly used, and thus users can associate a given value with
typically observed responses. This format also reduces noise and improves contrast [7]. In order to
better visualize the low probability mode in the histogram, log scaling is applied to the vertical axis
(Figure 3b). Then, a high-order polynomial is fitted to the dataset (Figure 3b), and the threshold is found
at the local minimum, or valley, between the two modes (i.e., between the first mode, representing
lower backscatter values, which typically represent water, and the second mode(s), representing higher
backscatter values, which typically represent non-water pixels).
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Figure 3. Image histograms generated from the HV intensity values for a Wide Fine Quad Pol
image acquired over the Prairie Pothole Region, including (a) histogram of backscattering intensity
values in dB; (b) the same histogram as (a) with logarithmic scaling applied to the vertical axis
(solid black line represents a 55-order fitted polynomial with its corresponding vertical axis in an
arbitrary unit); (c) histograms that resulted from applying different window sizes of the polarimetric
Lee filter; and (d) the same histogram as (c) with the vertical axis in logarithmic scale (histograms are
plotted using 1000 bins).

Figure 3c,d show the effect of applying speckle filtering with different window sizes on the shape
of the image distribution. Speckle filtering consists of reducing the variance of a speckled image
to improve the estimation of its mean [26]. In particular, the Lee filter requires the calculation of
an adaptive filtering coefficient based on the local statistics defined by a sliding window of N × N
pixels, in which homogeneous areas are low-pass filtered but heterogeneous areas that include texture
information, such as sharp edges and isolated point targets, are preserved [27]. Table A1 shows
threshold values identified via the approach described previously for the image in Figure 4a after
having been filtered using various window sizes. Note that the threshold value increases as the window
size increases (Table A1). This is mainly due to the average (low-pass) filter that causes an increase in
the population of pixels identified as non-water while sliding over regions that are close to water edges.
Thus, the thresholds calculated from images filtered with a larger window size can potentially lead to
underestimation of the extent of water bodies as a result of increased mixing of land and water pixels.
This is also reflected in the number of pixels selected as water, which are listed in Table A1. As such,
for all images the polarimetric Lee filter with a 5 × 5 window size is used in this study.
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Figure 4. (a) HV polarization image from the Fine Quad Pol mode 19 (FQ19) scene acquired over
the Prairie Pothole Region; (b) variance texture image; (c) extracted water boundaries by applying a
pixel-based threshold (1.1) on the variance image; (d) segmented image generated using the simple
linear iterative clustering (SLIC) superpixel algorithm; (e) water bodies generated using thresholding
and superpixel segmentation; and (f) final water bodies after topological intersection of detected water
bodies and water boundaries.

3.2.2. Surface Water Boundary

Smooth features such as roads, as well as areas that are affected by shadow, tend to exhibit low
backscattering returns, and thus are potentially falsely identified as water via simple thresholding
processes. Therefore, we apply a cleanup procedure following the detection of surface water. To do this,
we use the boundaries of water bodies that are detected via high-order texture images, specifically the
variance of the HV intensity image. Variance is used in this case because backscatter values observed
for smooth water bodies are relatively low, and show high homogeneity, whereas backscatter values
for land are generally higher. Thus, high variance values are expected when the sliding window within
which they are calculated includes both values for water and non-water features (i.e., at the boundary
of water bodies).
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Variance images were therefore generated from the same cross-polarized channel (i.e., HV) and
were similarly log-transformed to pronounce the rare events at the high tail (Figure 5a–c). Given that
the histogram of variance image values similarly exhibited a bimodal distribution (Figure 5d) we use
the same procedure as described in Section 3.2.1 to define the threshold value (i.e., 1.1) at the local
minimum between the two modes. Note that in this case, the mean and standard deviation of the total
pixel population are μv = −0.06 and σv = 0.37, respectively, and thus the threshold value (tv = 1.1)
is approximately three standard deviations from the mean, i.e., tv − μv ≈ 3σv (or Tv ≈ 3). Given
the availability of a temporal stack of SAR images over the same area acquired at the same incident
angle, the variance values of water pixels (and therefore all non-water pixels as well) are expected to
be within the same range. Thus, we theorized that a constant value could be used for thresholding
variance images at different times, and in cases where histograms of variance image values exhibit
weak bimodality (i.e., we theorized that not all variance images need to exhibit strong bimodality to be
used in this automated cleanup procedure). We investigated this hypothesis further in the results and
discussion section.

Figure 5. (a) Histogram of the variance texture image from the Prairie pothole site, calculated using the
HV polarization image from the Wide Fine Quad 19 scene; (b) the same histogram with the vertical axis
in logarithmic scale; (c) log-transformed histogram of the variance image and (d) the same histogram
as (c) with the vertical axis in logarithmic scale (histograms are plotted using 1000 bins, and colors as
in Figure 3).

3.3. Superpixel Segmentation

The SLIC superpixel algorithm was used to group adjacent pixels with similar characteristics.
Via trial and error, it was found that splitting the image into 1000 × 1000 pixels blocks with
3600 superpixels in each block worked best for identifying potential water bodies, regardless of
their size. In this study, the SLIC superpixel algorithm is implemented using the open-source “skimage”
Python package applied to the HV intensity image. The “compactness” and “sigma” parameters in
all cases were set to 1, since this tended to produce the best results, and permitted detection of water
bodies as small as 25 m2. The former parameter balances the color and space proximity, with high
values giving more weight to the former, resulting in superpixels that are more square. The latter
parameter, sigma, is the width of Gaussian smoothing kernel, where a value of zero does not apply
any smoothing and higher values apply more smoothing.
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3.4. Surface Water Extraction

To generate final surface water products, first, the intensity image is segmented and pixel values
are averaged over each superpixel. Then, the mean value is compared with the threshold value defined
previously in Section 3.2.1 (to identify surface water). Superpixels with mean values lower than
the threshold are selected as water. At this stage, the selection of water pixels is reinforced through
two mechanisms: (a) by grouping pixels through the SLIC algorithm to ensure adherence to local
boundaries; and (b) by applying the threshold on the average of grouped pixels (i.e., superpixels).

Subsequently, to improve accuracy, water boundaries extracted from thresholding of the variance
image are intersected with features identified as water bodies (Figure 4e), and only those that are
adjacent to boundaries are included in the final surface water product. In this research, this step is
referred to as the cleanup procedure. Figure 4e,f exemplify this process, showing where some of
the polygons incorrectly identified as water over a road are excluded from the final surface water
product. Figure 6 summarizes the processing steps of the entire SWD workflow. It consists of two
separate sub-workflows: the first one (the top line in Figure 6) is the thresholding and segmentation
process which results in the generation of water objects; the second one is a boundary detection process
(the bottom line in Figure 6) which results in the generation of water boundary objects. The cleanup
process is the last step in which a topological intersection between the water objects and boundary
objects is performed to remove false positives. In the rest of this paper, the cleanup process is referred
to as the process of generating boundary objects and the topological intersection between boundaries
and water objects. It is notable that the energy texture image [7] can also be used instead of HH
or HV images as an input to the algorithm. Note that that there is no user intervention required in
the workflow in Figure 6 since the all workflow can be automated, including the threshold selection
process for both surface water and boundary objects. The only user intervention required in the present
method is the separation between the single mode and bimodal (or multi-modal) histograms which
has to be done after preparation of SAR imagery (i.e., after the process outlined in Figure 2 and before
the workflow in Figure 6). As mentioned in Section 3.2.1, a biomodal distribution can be achieved with
as few as 2% water pixels in the SAR imagery.

To assess the accuracy of the proposed method, water bodies were manually digitized from
a WVII image collected on the same date as one of the RADARSAT-2 scenes (i.e., 27 April 2016).
We believe these results to be the most accurate estimate of the true areal extent of surface water and
thus results from the proposed method were compared to those values.
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4. Results and Discussion

4.1. Bay of Quinte

As described previously, the proposed SWD method is a two-step process. First, thresholds for
each frame are determined, and second, thresholds are applied to segmented images. The results of
the first step, including the normalized threshold values (THV), are shown in Table 2 and Figure 7 for
each frame for the Bay of Quinte. It is notable that in Table 3 the threshold values are quite different
from one frame to another, demonstrating that a constant (normalized) threshold value is perhaps less
suitable for analysis of temporal data. It is also interesting to note that in Figure 7, the histograms in
May and June have an extra mode between water and the dominant non-water mode. This extra mode
peaks at approximately at −20 dB, and represents emerging vegetation. Note that this observation
was validated via available WorldView data collected throughout the 2016 growing season.

The histograms of the variance texture measure of all frames are plotted in Figure 8. Note that there
are many cases in which the distribution of the variance image is not bimodal due to a low population
of boundary pixels. Based on these results we investigated whether a constant threshold value could be
used for all variance images, given the homogeneity of water bodies and their low backscatter values,
relative to the high backscatter from non-water features around water bodies. Four different threshold
values were applied on the variance images. Based on the results of the Section 3.2.2 (in which tv was
found 1.1) and the visual investigation of the plots in Figure 8, threshold values of tv = 1.0, 1.1, 1.2,
and 1.3 were evaluated.

Figure 7. The distribution in log scale of HV backscatter values over the Bay of Quinte on different
dates and for each frame for the FQ5 (a,b) and FQ17 (c,d) modes. Dotted lines represent the local
minimum value of the polynomial curve, representing individual threshold values. The threshold
values are also listed in Table 2.
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Table 2 shows the areal extent of water calculated before and after applying the cleanup procedure.
Note that before applying the cleanup procedure, the areal extent of water calculated for each image
does not show a trend that is consistent with water level gauge information collected at several sites
throughout the study area. Water heights increased throughout April, then mostly decreased until
reaching September climate normals (ECCC, 2017). This discrepancy is a result of the true extent
of surface water being masked by false positives. After applying the cleanup procedure however,
accuracy is improved as demonstrated by the fact that the extent of surface water is closer to the values
from the manually digitized surface water product, which we believe to be the most accurate estimate
of the true areal extent of water. The results of the cleanup procedure are discussed later in this section.

Table 3 shows the percentage of falsely detected water bodies relative to the areal extent of water
calculated via manually cleaned up products. For comparison, we use the non-dimensionalized
variable A − Am

Am
, where A is area in km2 and Am is the best approximation of the true areal extent of

water based on thresholding/segmentation, as well as manual cleanup procedures based on visual
comparison to the WorldView image acquired on the same day (see Table 2 for Am values). These false
positives are usually generated because of the presence of permanent or non-permanent smooth
features (such as roads, airports, agricultural lands, etc.). The results in Table 3 show that by increasing
the value of the threshold, the total area of detected water bodies after the automated cleanup procedure
is closest to the Am. However, this improvement comes at the expense of losing some water bodies
that were correctly identified. In other words, as we decrease the variance threshold, false positives
increase, but if the boundary conditions are too relaxed (i.e., as we increase the variance threshold
value) water bodies that do not have very distinct boundaries are also not detected.

Figure 8. The distribution of variance texture images over the Bay of Quinte at different dates at
two different incident angles. (a) Wide Fine Quad mode 5; (b) the same histogram as (a) in log scale;
(c) Wide Fine Quad mode 17; and (d) the same histogram as (c) in log scale (dotted lines represent the
place of threshold for variance texture images, tv = 1.1).

To determine the appropriate threshold value, we calculated the percent of water losses using
a variable Am |tv − Am

Am
, where Am|tv represents our most accurate estimate of the areal extent of water

based on the automated cleanup at tv, plus a manual cleanup procedure based on visual comparison
of the WorldView image acquired on the same day. The difference between the two variables Am|tv

and Am represents the area of real water polygons lost due to the cleanup procedure. These results
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show that the real water extent losses due to an increase in tv value, for example at tv = 1.3, are as
low as 0.03% (Table 4). For a better comparison, the percentage of false positives A − Am

Am
and the

percentage of real water losses Am |tv − Am
Am

are plotted vs. the different variance threshold values in
Figure 9. The plot suggests that the slight variation of the threshold value has only a minor effect
on removing correctly detected water extents. On the other hand, it illustrates that a slight increase
in the value of variance threshold value tv (as small as 0.1) removes additional false positives at a
much greater rate. Thus, this demonstrates that using a constant threshold value for image variance
is justifiable for SWD using SAR data, as the increase in the value of the variance threshold removes
more false positives, but relatively few correctly-identified water bodies. More details on the accuracy
of these results are discussed in the next subsection.

Finally, it is notable that the areal extent of water extracted after the manual cleanup from the
two frames shows a less than 0.4% difference for the two different incident angles at different dates
(Table 2). This is a satisfactory result that suggests the SWD method proposed in this study can produce
accurate and reliable results for images acquired at different incidence angles.

Table 3. Difference in the areal extent of water bodies, in percent, after applying the cleanup procedure
and using different variance threshold values. Am is the area of water extracted following a manual
cleanup of results for each date.

A − Am
Am

× 100

Frame No. Acquisition Date 3 April 27 April 14 June 8 July 25 August

thr. and seg.; no cleanup 1.7 4.3 3.9 9.1 7.1
thr. and seg.; cleanup, tv = 1.0 0.9 1.5 1.3 5.6 4.1

Frame 1 thr. and seg.; cleanup, tv = 1.1 0.8 0.9 1.1 3.8 3.0
thr. and seg.; cleanup, tv = 1.2 0.7 0.5 0.6 2.3 1.9
thr. and seg.; cleanup, tv = 1.3 0.5 0.2 0.3 1.3 0.8

thr. and seg.; no cleanup 5.7 4.9 12.7
thr. and seg.; cleanup, tv = 1.0 1.7 2.0 8.9

Frame 2 thr. and seg.; cleanup, tv = 1.1 1.1 1.6 6.8
thr. and seg.; cleanup, tv = 1.2 0.4 1.0 3.8
thr. and seg.; cleanup, tv = 1.3 0.03 0.6 2.4

It is worth mentioning that after visually inspecting WVII images acquired in April, May, June
and July, it was observed that floating and/or emerging vegetation was present at several sites
beginning in May, but was not detected until June. This is because these features were much smaller in
size than the incident microwaves and did not affect backscatter intensity. On 27 April specifically,
these features were not visible, and thus did not affect the accuracy assessment completed in this study.
Further discussion on floating and or emerging vegetation and its effects on SWD in the context of this
study are presented in Section 4.3.

The accuracy of water bodies extracted after the thresholding/segmentation step is affected by
two types of errors: false positives and overestimation (or underestimation). The suggested cleanup
process was used to improve accuracy by removing false positives. The overall effects of different
(variance) thresholds on the removal of false positives have been evaluated and quantified in terms
of the percentage of false positives that were detected versus losses of correctly-identified water
bodies (see Tables 3 and 4 and Figure 9). To further investigate the details of such losses during the
cleanup process, we have listed the number of true water bodies and the area of the largest one lost
among those in Table 5. The number of lost polygons consistently increases as the variance threshold
increases, but all of the lost polygons are very small water bodies. In many cases, these small water
bodies did not exhibit distinct land/water contrast (for SAR data, speckle filtering can reduce the
contrast between bright and dark features, especially if they are relatively small in size) and as a result
their boundaries were not detected by the variance image. Given the accuracies of water products
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presented in Tables 3 and 4 and Figure 9, we conclude that a threshold value between 1.1 and 1.2
offers a reasonable balance between the removal of false positives and the loss of real water polygons.
However, this can be adjusted for specific applications by users; for example, those that are interested
in minimizing the loss of small water bodies can use a lower variance threshold value around 1.0
(though this would be at the expense of more false positives). It is notable that the removal of the
false positives, in general, is an easier task to deal with as other ancillary data can be used to mask
permanent features (e.g., roads).

Table 4. The variation of the detected area, in percent, after cleanup procedure using different thresholds.

Frame No. Acquisition Date (27 April)
No. of

Am|tv (km2) Am|tv − Am
Am

× 100
Largest Lost

Polygons Polyg. (m2)

Frame 1

thr. and seg.; manual cleanup 81 78.602275 0.0000
thr. and seg.; cleanup, tv = 1.0 78 78.601957 −0.0004 149
thr. and seg.; cleanup, tv = 1.1 75 78.600120 −0.0027 1077
thr. and seg.; cleanup, tv = 1.2 71 78.593149 −0.0116 6232
thr. and seg.; cleanup, tv = 1.3 66 78.576692 −0.0325 11809
thr. ; manual cleanup 72 78.052080 −0.7000 1288

Figure 9. The percentage of false positives (blue diamonds) that were removed and the percentage
of true water polygons (red rectangles) that were removed for different variance threshold values.
Solid lines represent fitted curves to the data.

Table 4 provides the number of water bodies that were detected after the manual cleanup of the
water product generated for the scene acquired on 27 April. Interestingly, the number of detected
polygons using thresholding is lower than those detected using thresholding/segmentation (72 and 81,
respectively). This is an important observation, as it shows that the thresholding of segmented
SAR images improved the number of correctly detected water bodies. Another observation is that
the total area of detected water bodies using only thresholding is lower than that detected using
thresholding/segmentation. This is in addition to the fact that the largest polygon lost in thresholding
had a relatively small area (1288 m2) and the percentage of difference (i.e., Am |tv−Am

Am
× 100) between

the area of the manually cleaned up products from thresholding and thresholding/segmentation
approaches is the highest percentage (−0.7) in Table 4.

This clearly suggests that the accuracy of water products generated using thresholding
(but not segmentation) is further affected by underestimation of water extents compared to the
products generated from thresholding/segmentation. As an example, we have calculated over and
underestimated water extents on Fish Lake in the Bay of Quinte (see Figure 10, right). The areal extent
of water found using the two approaches are listed in Table 5. The results show that the total area
estimated from either approach is less than the true water extent, and that the detected water extent by
thresholding is less than that of the thresholding/segmentation approach. We consistently observed
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this improved performance of the thresholding/segmentation approach compared to the thresholding
only approach. The main reason for this improvement is the segmentation process, which is better
able to detect the edges of water extents, and which rarely misclassifies the center of water bodies or
the edges of scenes which may be noisy or represent slightly higher intensities from waves.

We have also plotted the distribution of the areas of detected water bodies in Figure 11 for the three
cases listed in Table 5. These histograms show that both thresholding and thresholding/segmentation
approaches are less accurate in detecting water bodies with areal extents between 100 and 1000 m2,
but perform well in detecting water bodies larger than 10,000 m2. Given the resolution of these data,
and the requirement for speckle filtering, this observation is sensible. Specifically, it is reasonable that
smaller water bodies cannot be detected as often the filtering processes result in the mixing of adjacent
land and water pixels, thus reducing the difference between values, and subsequently the ability to
differentiate them.

Esri, HERE, DeLorme, MapmyIndia, '
OpenStreetMap contributors, and the GIS user
community
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77 10’0"W
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0 5 10 15 202.5
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detected water bodies using RADARSAT-2, HV channel

Fish Lake

Figure 10. An example of floating and or emerging vegetation from the WorldView-2 (WVII) image
acquired on 22 May 2016; the red line represents surface water extent detected using the RADARSAT-2
image acquired on 14 June 2016.

Figure 11. Area distribution of water bodies within the overlap area for the Bay of Quinte site. The total
number of polygons for the digitized water extent (blue) is 225, for thresholding and segmentation
(red) it is 75, and for threshold only (green) it is 72.
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Table 5. Overestimated and underestimated water extents over Fish Lake. All area estimates are in
given in square meters.

Frame No.
Fish Lake

Total Area
Underestimated Overestimated

Acquisition Date (27 April) Area Area

digitized water extent 1,608,511 0 0
Frame 1 thresholding and segmentation 1,574,172 38,447 4192

thresholding 1,553,469 56,220 1261

4.2. Prairie Pothole Region

Table 6 and Figure 12 summarize results for the Prairie Pothole Region. Similar to what was
observed for the Bay of Quinte, the results in Table 6 suggest that the extent of water detected using
only thresholding is an underestimation (by about 5% � 20.07−19.04

20.07 × 100) compared to the products
extracted from thresholding and segmentation. As an example, the areas of open water calculated
over Astotin lake using thresholding and thresholding/segmentation methods are 3.70 and 3.76 km2,
respectively. This 1.6% underestimation with thresholding only is again due to the poorer performance
along the edges of water bodies, and the misclassification of pixels within the center of water bodies
(Figure 13).

Table 6. The number of polygons and detected surface water area over the the Prairie Pothole Region
using the HV channel.

Region Acquisition Date (8 September 2012)
No. of Detected Surface

Polygons Water (km2)

Prairie Potholes

thr. and seg.; no cleanup 785 20.168476
thr. and seg.; manual cleanup 698 20.100138
thr. and seg.; cleanup tv = 1.1 669 20.073126
thr. and seg.; cleanup tv = 1.1 and manual cleanup 662 20.065713
thr.; manual cleanup 755 19.044606

Figure 12. Area distribution of the detected water extents over the Prairie Pothole Region.

In this case, the automated cleanup procedure improved the removal of false positives with the loss
of very few true water polygons (29), which were all less than 1000 m2; making up less than 0.15% of
the areal extent of all water bodies. The numbers and sizes of water polygons found using the proposed
method are provided in Table 6 and plotted in Figure 12. Two points can be highlighted regarding the
histograms in Figure 12. First, the difference between the number of detected water polygons after
applying the automated cleanup and automated/manual cleanup is very small, demonstrating that
after the automated cleanup most false positives are removed. Second, the thresholding method in
this scene shows a slightly better performance for water bodies in the range between 100 and 1000 m2

compared to thresholding/segmentation method. As mentioned previously, it is also possible to

460



Remote Sens. 2017, 9, 1209

improve the accuracy for these small water bodies by decreasing the variance threshold, though at the
cost of an increased number of false positives.

It is notable that the total surface water extent extracted by Bolonos et al. [7] is greater than the
one calculated here (�23 km2). This difference is a result of Bolanos et al. [7] using a threshold value
that is lower (note that the pixel values are all positive in energy texture image; a lower threshold in
the energy image is the equivalent of stating a higher threshold in HV channel) than the value at the
valley between the two modes of the energy image histogram. Further, the threshold values in their
study were normalized values (i.e., subtracted from the mean and divided by standard deviation of
the total pixel population), thus a small variation in the normalized threshold value (Te) is translated
to a greater change in non-normalized values (te).

Figure 13. Water extents from the RapidEye image; colored lines represent water extents generated
using thresholding and thresholding/segmentation over Astotin lake.

4.3. Limitations and Future Work

The SWD method proposed in this study can be used to generate seasonal, annual, or long-term
permanent and non-permanent water masks using SAR data. However, one notable limitation is the
inability to detect vegetation in standing water that is much shorter and thinner than the wavelength
of incident microwaves. For the Bay of Quinte site specifically, it was observed that when floating
and/or emergent vegetation first appears at the beginning of the growing season, it was sometimes still
detected as water with the proposed method (Figure 10); however, as both the density and height of
features increased through time, they were eventually classified as non-water pixels. Characterization
of this type of temporal inaccuracy is complicated using SAR data as the roughness, height, and volume
of this floating and/or emerging vegetation vary spatially, especially among different species.
We propose that further improvements to this method can be achieved by incorporating information
from high-resolution optical images. However, collecting coincident cloud-free imagery may not be
possible in all cases.

5. Conclusions

In this study, a new method for semi-automated SWD using SAR data has been described
and evaluated. The approach focuses on automatically defining threshold values, identifying water
bodies and edge features on a per-object basis, and implementing an automated cleanup procedure
which has been demonstrated to improve accuracy compared to thresholding only. This approach is
adaptive to images acquired at different incidence angles and dates, removing the need for human
intervention on a scene-by-scene basis. Additionally, an independent cleanup procedure is proposed
to remove features falsely identified as water. The cleanup procedure is based on the detection of
water boundaries extracted by thresholding images generated from high-order texture measures such
as variance. The results showed that a constant threshold value can be used for extracting boundaries,
thus it can be used in a fully automated cleanup procedure. This method, despite its current and
relatively minor limitations, remains an attractive option in cases where there is need for surface water
information for a specific time period (e.g., to determine available waterfowl habitat in spring), and for
mapping large geographical areas, because results can be generated automatically, and SAR data can
be acquired regardless of cloud cover and haze. Environment and Climate Change Canada expects to
implement this approach operationally for spatial and temporal detection and monitoring of surface
water within wetlands.
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Abbreviations

The following abbreviations are used in this manuscript:

DEM Digital Elevation Model
ECCC Environment and Climate Change Canada
GCP Ground Control Point
PDF Probability Density Function
RGB Red, Green, Blue
SAR Synthetic Aperture Radar
SLIC Simple Linear Iterative Clustering
SRTM Shuttle RADAR Topography Mission
SWD Surface Water Detection
WVII WorldView-2

Appendix A. Lee Filter and Window Size Effects on Threshold Values

Table A1. Threshold values in dB for the HV polarization of the RADARSAT-2 image acquired over
the Prairie Pothole Region filtered using a polarimetric Lee filter with different window sizes.

Window Size Threshold Value (dB) Number of Pixels Selected as Water

5 × 5 −26.25 861,052
7 × 7 −26.02 844,465
9 × 9 −25.97 806,704

11 × 11 −25.98 770,204
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Abstract: Rapid, reliable, and continuous information is an essential component in disaster
monitoring and management. Remote sensing data could be a solution, but often cannot provide
continuous data due to an absence of global coverage and weather and daylight dependency.
To overcome these challenges, this study makes use of weather and day/light independent Sentinel-1
data with a global coverage to monitor localized effects of different types of disasters using the
Coherence Change-Detection (CCD) technique. Coherence maps were generated from Synthetic
Aperture Radar (SAR) images and used to classify areas of change and no change in six study areas.
These sites are located in Syria, Puerto Rico, California, and Iran. The study areas were divided into
street blocks, and the standard deviation was calculated for the coherence images for each street
block over entire image stacks. The study areas were classified by land-use type to reveal the spatial
variation in coherence loss after a disaster. While temporal decorrelation exhibits a general loss in
coherence over time, disaster occurrence, however, indicates a significant loss in coherence after an
event. The variations of each street block from the average coherence for the entire image stack,
as measured by a high standard deviation after a particular disaster, is an indication of disaster
induced building damage.
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1. Introduction

Remote sensing data provides a solution for rapid data acquisition during disaster
scenarios as well as post disaster information needed for recovery monitoring and management.
High-resolution imagery is particularly well suited for identifying changes in landscapes using various
change-detection techniques. Moreover, the vast array of techniques that remote sensing technology
offers when used alongside Geographical Information System (GIS) software, can reduce uncertainty
and serve as a catalyzing agent for analyzing and sharing information [1]. In addition, inaccessible
areas can be monitored through remote sensing technologies; for example, areas affected by forest fires
can be mapped and monitored, even though they may be difficult to access physically. Efforts have
been made to monitor areas affected by disasters using Synthetic Aperture Radar (SAR) imagery [2–6].
These approaches, however, have not considered the globally available data products now realized by
the Sentinel-1 mission. The global availability of these data permits disaster monitoring anywhere on
the planet, even in areas that lack other types of remote sensing data.

This study demonstrates how changes resulting from anthropogenic and natural disasters in
urban areas can be monitored using Sentinel-1 imagery and the Coherence Change-Detection (CCD)
technique. Furthermore, this study makes a quantitative comparison of CCD results from several
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case studies to evaluate the applicability of this approach in varying scenarios. These comparative
case studies demonstrate both the efficiency and inefficiencies of remote sensing techniques. There
are precedents: Gähler [7] presents remote sensing applications for numerous case studies; flooding
in Germany 2013, the Nepal earthquake in 2015, forest fires in Russia 2015, and the search for the
missing Malaysian aircraft in 2014. Our study presents a fresh perspective on disaster monitoring,
exploring the utility of the recently introduced, globally available Sentinel-1 archive data for detection
and quantitative comparison of changes resulting from different disaster scenarios.

1.1. Monitoring Disasters: Anthropogenic and Natural Disasters with Remote Sensing Imagery

In disaster management and monitoring, high-resolution satellite imagery from different dates is
especially useful for change-detection [8,9]. Change-detection is defined as a process of identifying
differences in the state of an object by observing the pre- and post-event data [10]. Hoque et al. [11]
reviewed the various change-detection techniques suitable for the management of tropical cyclone
disasters. These events often have devastating impacts on coastal areas across the world. In 2005,
Hurricane Katrina wreaked havoc in New Orleans, destroyed critical infrastructure, and damaged the
natural environment [12]. Monitoring the recovery of New Orleans using remote sensing techniques,
showed that even 10 years after this tropical cyclone, the average vegetation in the affected areas had
not fully recovered [13]. In 2017, four major hurricanes—category three or greater—were recorded in
the Atlantic by September. These included Irma, Harvey, Jose, and Maria; Maria being regarded as the
worst natural disaster in the history of Puerto Rico.

Also, in 2017, California experienced its worst and most expensive wildfire season on record.
There were close to 9000 wildfires tearing through the state, burning 1.2 million acres of land, destroying
more than 10,800 structures and killing at least 46 people. Forest fires have become a major concern
in various areas worldwide. The major fires occurring in the El-Nino year of 1997/1998 burned
25 million hectares of forest area worldwide [14]. Consequently, first responders and decision makers
seek to detect and monitor forest fires in a timely way. Optical imagery, such as Landsat imagery,
is intuitively understood multispectral data in the visible range of the electromagnetic spectrum, and
often employed in land-use classification and disaster monitoring [15]. Landsat imagery has been
successfully used to measure fire-induced deforestation and produce burned area maps [15] that
support decision-making processes.

Since 2008, the National Aeronautics and Space Administration (NASA) and the United States
Geological Survey (USGS) have freely provided an archive of publicly available Landsat imagery data
spanning four decades; this data has been used for various applications [16]. This rich body of archival
data allows researchers to compare images from different periods to identify and extract areas of
changes to understand variations in landscapes over time. Landsat imagery was used to detect urban
destruction related to the Syrian conflict [16], as the archive of past images has a temporal fidelity as
short as eight days, at high radiometric consistency, with excellent ortho-rectification [17]. However,
optical data relies on a passive sensor and, hence, is affected by bad weather conditions; but all-day
and all-weather SAR can provide useful information for disaster assessment even under bad weather
conditions [3].

Synthetic Aperture Radar (SAR) imagery can detect, extract, and assess disaster-induced damage,
such as the destruction caused by earthquakes. SAR is an active sensing system and can overcome
the drawbacks of optical imagery [3–6]. The effects of earthquakes can be devastating and may
cause significant loss of life and property damage, especially in urban regions. The 2008 Wenchuan
earthquake devastated cities in Sichuan province, claiming at least 69,000 lives, and was the most
destructive earthquake in China over the last 50 years [18]. In 2017, a magnitude-7.3 earthquake hit the
northern border region between Iran and Iraq, the hardest hit town was Sarpol-e Zahab, about 10 miles
from the Iraq border [19]. Although TerraSAR-X imagery has been used to detect and assess building
damage after an earthquake, this data is sometimes not available for some areas in post-disaster
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situations. The Sentinel-1 system is a SAR system that, through large-scale mapping capability and
high revisiting frequency [20], provides solutions to this drawback.

The Sentinel-1 mission is seen as a potential game changer in operational SAR missions for
decades to come [20]. The mission is the first of six Sentinel dedicated missions, introduced as part of
the European Copernicus program under the domain of the European Space Agency. The Sentinel-1
system is currently based on a constellation of two SAR satellites (Sentinel-1A and Sentinel-1B) that
have on-board C-band sensors. Sentinel-1A was launched on 3 April 2014; the second Sentinel-1
satellite, Sentinel-1B, was launched on 25 April 2016. With a 12-day revisit time, Sentinel-1 operates
in four exclusive acquisition modes: Stripmap (SM), Interferometric Wide swath (IW), Extra-Wide
swath (EW), and Wave (WV). The introduction of the Sentinel-1 constellation now ensures the timely
availability of data through global coverage and the day and night, all-weather availability of data.

1.2. SAR Coherence and Change-Detection

This study employed data products from the Sentinel-1 SAR system with a C-band sensor.
Synthetic Aperture Radar (SAR) is a coherent active microwave imaging method in remote sensing
used for mapping the scattering properties of the Earth’s surface [21]. Unlike down-looking optical
sensors, SAR systems are side-looking in nature. This side-looking attribute is responsible for the
three main effects inherent in all SAR images: shadow, layover, and foreshortening [22]. Layover
occurs when tall objects are displaced towards the sensor when the signal reaches the top before the
bottom. Foreshortening is a form of layover where the signal of an illuminated slope is compressed;
subsequently appearing shorter in the SAR image than it is in reality. The shadow effect results when
a steep slope or a vertical object, like a tall building, causes a radar shadow that appears black in an
image. Besides the geometry, SAR signals are affected by a target object, specifically, the dielectric
constant and surface roughness and the incident angle of these objects [23]. Buildings are usually
structures with rectangular corners made of concrete, stone, metal, and glass where the signal may
bounce from the ground to the façade then back to the sensor or from the façade to the ground and
back to the sensor. Because of this so-called double-bounce effect, buildings and general infrastructure
often appear bright in SAR images, and, therefore, urban built areas are usually represented by bright
pixels [24]. Consequently, this study focuses on urban, built-up areas as case studies as they can be
detected easily in SAR imagery.

Unlike other SAR techniques that rely on information from a single image, Interferometric
Synthetic Aperture Radar (InSAR) exploits the phase differences of at least two complex-valued SAR
images acquired from different orbit positions and/or at different times [21]. In addition, unlike SAR,
which utilizes the amplitude information of a complex SAR signal, InSAR utilizes phase information.
This phase information is used for interferometric products, like coherence images, and permits
measurements of change between two images. When interferometric SAR images are not acquired
simultaneously, they are affected by different types of noise: atmospheric conditions such as humidity,
temperature, and pressure; and change in scatterers, for example, water body scatterers change in
just milliseconds. Perpendicular baselines and volume scattering also add noise. The effect of such
contributions affects both altitude and terrain deformation measurements [25]. These, therefore,
influence the similarity or coherence of the phase signals.

Two waves with a phase difference that remains constant over time are said to be coherent,
therefore, the higher the coherence of two waves, the easier it is to predict the properties of one of
those waves given knowledge of the other [22]. In this case, coherence estimation becomes essential in
generating Digital Elevation Models and measuring deformation [26,27]. Coherence is thus defined as
the amplitude of the complex correlation coefficient between two SAR images [28]. The coherence is
estimated on a given window size, using Equation (1) below:

γ =

∣∣∣∣∣∣
1
N ΣN

i=0MiS∗
i√

1
N ΣN

i=0Mi M∗
i

1
N ΣN

i=0SiS∗
i

∣∣∣∣∣∣ (1)

467



Remote Sens. 2018, 10, 1026

where N is the number of neighboring pixels to be estimated, M and S are the complex master and
slave images, respectively, and * denotes the complex conjugate. γ is the resulting coherence [29].
The magnitude used in the equation is so that the values of γ range from 0 (incoherent) to 1 (coherent).
The coherence is only equal to 1 when M = S, which means the observation is identical in the two images
because of stable objects like buildings in the scene. In reality, though, remote sensing measurements
cannot be identical over time [22], as a result, values are normally below 1 and often distributed
between 0.5 and 0.7, as in the case of urban built-up areas in our study. The high coherence value
exhibited by built-up areas is essential as it makes them easy to identify on a coherence image.
Therefore, it is essential to exploit the advantages of built-up zones in urban areas (high pixel values
and high coherence values) in SAR and coherence images, taking into account the vulnerability of
these areas to disasters due to population clustering.

SAR coherence has been used in various applications over the years. Prati and Rocca [30] produced
coherence maps for target classification, while Bruzzone et al. [31] proposed a novel system for the
classification of SAR images based on concepts of long-term coherence and backscattering temporal
variability. Additionally, one well-established application of SAR is the detection of temporal changes
in a scene through the Coherence Change-Detection (CCD) [32].

Coherence and intensity characteristics of SAR images have been exploited in techniques to
monitor urban activities and changes. Unsupervised thresholding techniques for change-detection
using the coherence and intensity characteristics of SAR imagery have been proposed in previous
studies [33]. Jendryke et al. [34] combined social media messages with SAR images to express human
activities and urban changes in Shanghai. The coherence characteristics of SAR images identified
urban areas and the changes occurring therein; linking these data to social media messages permitted
the identification of human activity occurring in those areas. However, the SAR coherence techniques
applied in these studies face the following setbacks: false positives resulting from the low coherence of
vegetation and water bodies and unavailability of post-disaster data.

This study, therefore, sets to solve these problems by using Sentinel-1 imagery, which is globally
available, to calculate coherence before and after a disaster and improve the overall accuracy and
reduce false positives by calculating the standard deviation of coherence over time and aggregate this
into street blocks. Further, the study uses land use classes to measure coherence loss over time and
after a disaster.

2. Materials and Methods

2.1. Data Used

Sentinel-1 C band data with VV polarization and baselines of <100 days (temporal) and <150 m
(perpendicular) between master and slave images for the six study areas (Aleppo, Damascus, Raqqa,
Sarpol Zahab, Santa Rosa, and San Juan) were processed using the SarProZ software [35] for coherence
map generation. For Aleppo, 18 Sentinel-1 SLC images were selected. We selected one image as the
master image and co-registered it to subsequent slave images, with an image baseline separation of
<250 days (temporal) and <100 m perpendicular, and eight coherence maps were generated. The same
technique was applied to the other study areas with variations only in the number of images used,
the temporal and perpendicular baselines, and the coherence maps generated. For Damascus, 14 images
were selected and 13 coherence images produced. For Raqqa, 17 images were selected and 12 coherence
maps generated. In the study areas affected by natural disasters, 15 images were selected for Sarpol
Zahab and 14 coherence maps generated, for San Juan, Puerto Rico, 13 images were selected and 12
coherence maps generated, and for Santa Rosa, 21 images were selected and 20 coherence maps were
generated. The coherence images were integrated to street blocks and land use class polygons.

In this study, the street block was taken as the smallest element in an urban area surrounded by
a road at any level of the road hierarchy. Street blocks were generated based on Open Street Map
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(OSM) data, which is a form of volunteered geographic information [36]. Street blocks may vary in
size, for example, from a block of a few residential apartments to a whole university campus.

Landsat-5 and Landsat-8 images were classified using the supervised classification technique
and built-up, vegetated, water bodies, and bare soil were identified as the land-use types in the six
study areas using ENVI Software (ENVI, Melbourne, FL, USA). Classification of the optical imagery
distinguishes classes in the study areas and permits analysis of the ways in which different disasters
affected coherence in the different areas.

2.2. Workflow

The methodology is divided into two parts, which can be broadly categorized as image processing
and image analysis (refer to Figure 1). The image processing involves coherence image generation to
identify areas and the changes that have taken place therein. The process of coherence map generation
included the following steps: image stacking, slave and master selection and extraction, sub-setting the
study area, downloading the external Digital Elevation Model (DEM), image filtering, interferogram
generation, coherence map generation, and exporting the orthorectified coherence maps in TIFF format.
The coherence images were then classified into areas of change and no-change. ArcGIS/ArcMAP
software (ArcGIS 10.5, Redlands, CA, USA) was used to perform this task. The images were divided
into two classes, and a threshold of 0.6 was applied. The threshold can be calculated using the
Renyi’s entropy to convert the image into a binary image showing areas of change and no change [33].
However, for urban areas, the 0.6 threshold is considered optimal when identifying built up areas
in coherence images [24]. This threshold may vary when longer temporal baselines are considered
and also depends on regional factors. In our study, areas with a coherence below the threshold were
considered as changed areas and those above were considered as unchanged areas. The results are
threshold-based maps classified into change (0) and no change (1) areas.

The study areas were extracted from the coherence images using the shape files to mask out the
study area, this was done in order for us to focus on the urban area of the affected regions. The resulting
masked coherence images were then converted into point data. This was done to enable the integration
of the coherence values to street blocks, which are polygons. The point data was then integrated
into the street blocks and the average coherence value per street block was calculated for each image.
Standard deviation was then calculated to show which street block deviated from the average over
time, indicating change. Standard deviation is, however, not a measure of instability, but a measure of
change. For example, coherence in vegetation exhibits instability due to constant de-correlation but
has a low standard deviation. A sudden change in a building, however, will result in a high standard
deviation as this will show a huge shift from the norm; thus, indicating a change in coherence for
buildings. Other types of polygons, for example, grids or hexagons, can be used for this purpose;
however, street blocks are more appropriate in an urban set-up as they are relatable objects in the
real world [34]. The same technique was applied to the classified polygons by joining them to the
coherence point data and calculating the average coherence over time.

To make a comparison of the change-detection results for the different disasters, we extracted the
built-up area and vegetation from the land-use classes (a built-up area is less sensitive to coherence loss,
thus indicating the coherence loss resulting from a disaster). After calculating the average coherence
for the urban classes in the coherence image immediately before a disaster and the image immediately
after a disaster, we applied the following change-detection formulae [37]:

A =
(T1 − T2)

T2
∗ 100% (2)

where A is the percentage of change, T1 is the average coherence for the coherence image before the
disaster, T2 is the average coherence of the image after the disaster, and A is the percentage of change.
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Figure 1. Methodology workflow.

2.3. Study Areas

The study focuses on the following areas affected by different types of disasters (both natural
and anthropogenic). For the natural disasters, we selected San Juan, Sarpol Zahab, and Santa Rosa
(San Juan) as shown in Figure 2. On 20 September 2017, Hurricane Maria struck Puerto Rico and
caused catastrophic damage, which triggered a major humanitarian crisis in San Juan, the capital,
and most populous municipality of Puerto Rico. In November 2017, an earthquake measuring 7.3 in
magnitude devastated the Iran-Iraq border. It was the strongest on record in the region since 1967.
The damage was extensive, and one of the most affected cities was Sarpol Zahab. Another notable
natural disaster was the Tubbes fire of October 2017; the fire caused damage estimated at $1.2 billion
US dollars, with five percent of Santa Rosa’s housing stock destroyed [38].

For anthropogenic disasters, we selected the Civil War in Syria, (focusing on Aleppo, Damascus,
and Raqqa) sparked by demonstrations motivated by demands for democratic reforms and release
of political prisoners. The Syrian government’s response escalated the tensions, which led to the
demonstration shifting from their original demands to a demand for the removal of the Assad
government [39]; the result was death and destruction in the country’s big cities like Aleppo,
Raqqa, and Damascus. In 2016, the Syrian Government embarked on a campaign to take back
Aleppo city that was in the hands of the Rebels, which resulted in the devastation of the city.
In Damascus, war intensified in July 2012 but did not last long as the city became a Syrian government
stronghold and witnessed isolated cases of rebel attacks and suicide bombings. In Raqqa, the United
States-backed Syrian Defense forces launched an operation in October 2017, which left 80% of the city
uninhabitable [39].
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(a) 

(b) 

Santa Rosa 

Damascus 

San Juan Sarpol Zahab 

Raqqa Aleppo 

Figure 2. Study areas: (a) Areas affected by natural disasters; (b) Areas affected by
anthropogenic disasters.
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3. Results

3.1. Case Studies for Detecting Changes Using CCD

This section presents the results of an analysis of averaging and standard deviation values
calculated from the coherence images generated to detect changes in the six study areas. In addition,
the supervised classification results permitted an investigation of the response of various land-use
classes to coherence loss in the face of disasters.

In general, the results exhibit loss of coherence over time. However, by selecting the image in
the middle of the image stack timeline as the master image, coherence matching is done to ensure
that coherence loss is distributed evenly in both temporal directions (i.e., pre-master slave images and
post-master slave images). For a better visual impression on the coherence images, classification is
done on the images into areas of change and no change by applying a threshold of >0.6 [24].

3.1.1. Natural Disasters

Sarpol Zahab, San Juan, and Santa Rosa results are presented in this section. The Sarpol Zahab
results visualized in Figure 3 show a substantial loss of coherence in the post-disaster coherence maps
compared to the pre-disaster coherence maps. The pre-disaster image immediately before the disaster
event (7 November 2017) exhibits coherence loss of 37.8% in the entire area. The post-earthquake
image, on the other hand, exhibits a coherence loss of 70.3%. The loss of coherence can be attributed to
the destruction of infrastructure (building, roads etc.) by the earthquake, which occurred in November
2017 [40]. However, the southern part of the city also seems to be experiencing coherence loss in both
pre- and post-disaster coherence maps, this can be attributed to vegetation, which is highly sensitive to
coherence loss as it is constantly changing.

Figure 3. Sarpol Zahab coherence image classified into change and no change showing period before
(7 November 2017, left) and after (1 December 2017, right) the earthquake.

In San Juan, Puerto Rico (Figure 4), results show massive decorrelation, which is an indication
of hurricane-induced damages, due to the strong sensibility of interferometric coherence to water
and humidity changes. For the pre-disaster coherence map, coherence loss is low but not absent,
the results show areas in red (representing coherence loss) that can be attributed to lagoons, rivers,
and temporal decorrelation from vegetation. The pre-hurricane coherence image (11 August 2017)
shows a coherence loss of 41% while the post-hurricane coherence image (28 September 2017) shows a
coherence loss of 64.4%.

In Santa Rosa (Figure 5), the post-fire disaster coherence map shows decorrelation in some parts
of the city, especially in the northern part, which is the part of the city that experienced the disaster
first. This may be an indication of the route taken by the fire during the disaster [41]. In the southern
part, decorrelation can be seen in both pre- and post-fire disaster images. The pre-disaster image
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(22 August 2017) shows that the area experienced a coherence loss of 66% while the post-fire coherence
image (14 November 2017) shows that the area experienced a total coherence loss of 82%.

Figure 4. San Juan, Puerto Rico Coherence image classified into change and no change showing images
before (11 August 2017, left) and after (28 September 2017, right) hurricane Maria.

Figure 5. Santa Rosa Coherence image classified into change and no change showing images before
(22 August 2017, left) and after (14 November 2017, right) the fire disaster event.

Natural disasters are usually one-time events that may occur in an area over a short period of
time (minutes to hours). Wars and conflicts, on the other hand, involve a series of prolonged events
occurring over many months to many years. Areas affected by the war in Syria, therefore, exhibited
coherence loss differently from those affected by natural disasters.

3.1.2. Anthropogenic Disasters

For Aleppo, results show that although there was substantial coherence loss in the southeastern
part of the city, in the coherence image (30 April 2017), high coherence is generally maintained
in the northwestern part of the city (see Figure 6). This can be attributed to the intensification of
fighting between the Syrian Government and the rebels between September and December in 2016 [42].
The coherence image (30 April 2017) is from the period after conflict intensification. It shows a 65%
loss in total coherence for the city, compared to only 16% loss of coherence in the image for 4 July 2016,
collected before the conflict intensified.

In Raqqa, the results in Figure 7 show a significant loss of coherence in the coherence image
for 27 September 2017. This loss of coherence can be attributed to the operation launched by the
U.S.-backed Syrian Democratic Forces (SDF) to capture Raqqa from the Islamic State of Iraq and
Syria (ISIS) [43]. This operation lasted for several months, ending in October 2017. The coherence
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image representing the period after this operation indicates a loss of 82.5% coherence. In contrast,
the coherence image collected before this operation shows a 47.2 loss in coherence.

Figure 6. Aleppo Coherence image classified into change and no change showing images before and
after the Syrian Government operation. Images before conflict intensification (4 July 2016, left) and
after conflict intensification (30 April 2017, right).

Figure 7. Raqqa Coherence image classified into change and no change showing coherence images of
before (14 October 2016, left) and after (27 September 2017, right) the US-led forces operation against
the Islamic State of Iraq and Syria (ISIS).

Considering Damascus, the results in Figure 8 show that towards the northeastern part of the
city, a red spot is visible in both coherence maps, this area is a vegetated open space area, which is
sensitive to coherence loss and is, therefore, unstable. Furthermore, coherence loss can be seen in the
eastern part of the city in coherence maps on 5 April 2017 and is not visible on 31 October 2016, this
movement from stability to instability can be an indication of building destruction in the area resulting
from intense fighting between Syrian Government forces and rebels [44].
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Figure 8. Damascus coherence images classified into change and no change (31 October 2016 on the
left and 05 April 2017 on the right).

3.2. Analysis

3.2.1. Coherence Response to Different Land-Use Classes

Supervised classification results were used for further analysis to get an idea of how each disaster
affects each land-use class.

In the study areas, areas classified as built-up, on average, show high coherence as compared to
areas classified as vegetation and bare soil. Raqqa was chosen to represent the areas affected by war
as it contains the most land use classes of all the war areas in the study, i.e., built-up, vegetated, and
bare soil. However, there is a significant drop in built up coherence on 29 July 2017 to the extent that
average coherence for the built area almost equals vegetation and bare soil (see Figure 9). This may be
a direct result of the Syrian Defense Force (SDF) operation against Islamic State militants (ISIS) in the
city around the same period.

For the earthquake disaster, a significant drop in coherence for all classes is observed between
7 November 2017 and 1 December 2017, which is the period after the occurrence of the earthquake.
The fire disaster graph shows a dip to an average coherence of below 0.5 for all classes on 14 November
2017, which is after the fire disaster occurred, after that, average coherence remains steady for all
three classes although built-up remains slightly above vegetation and bare soil. On the hurricane
graph, the average coherence drops to 0.5 for built-up areas below 0.5 for vegetation and water
bodies. Throughout the period, the average coherence for water bodies was under 0.5 and was only
slightly affected by the hurricane as compared to vegetation and built-up areas. The average coherence
increases on 10 October 2017; this could be a result of coherence recovery after floodwater evaporated
weeks after the hurricane (see Figure 9).

 

Figure 9. Cont.
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Figure 9. Average coherence graphs for different classes for each disaster.

Comparison of Disasters

Change-detection calculated for the built-up class shows that the war in Raqqa created the highest
amount of change (55%) followed by the Sarpol Zahab earthquake (40.5%), which is an indication
of significant infrastructure damage. Conversely, change-detection on the built-up classes in the fire
and hurricane disaster do not exhibit high levels of change, implying minimal damage on building
infrastructure (with 26.4% and 22.3% respectively) as compared to the earthquake and war disasters.
The vegetation class, on the other hand, was less affected by the four disasters as compared to the
built-up class. In the war disaster, the vegetation class experienced a 14.3% change, in the hurricane
disaster, 18% change, and fire and earthquake disasters 23% and 37% change, respectively. The results,
as shown in the Figure 10 radar graph, indicate that the war and earthquake disasters have a greater
impact on the built-up classes and the hurricane and fire affect the vegetation class more intensely.

 

Figure 10. A comparison of built up vegetation land-use class responses to the four disasters.

3.2.2. Standard Deviation Analysis

To understand the way in which coherence in different parts of each study area responds to the
various disasters and to reduce false positives from the vegetation and water bodies land use classes,
we calculated the standard deviation for every street block over the study periods in the coherence
maps. The standard deviation is not a measure of instability, but instead a measure of change. In the
standard deviation results, the maps show changes in street blocks. Blocks with a low standard
deviation are in light brown, indicating little change, while those that have experienced change (high
standard deviation) are in dark brown. The study areas exhibited the following results after standard
deviation calculation.

The results in Sarpol Zahab show street blocks with high standard deviation in various parts
of the city. A standard deviation map of coherence images before the earthquake shows most of the
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city with low standard deviation (light brown), however, a comparison with the standard deviation
map of all coherence maps (pre- and post-disaster) shows that many street blocks were affected by
the earthquake, especially in the northwestern part of the city (refer to Figure 11). This is verified by
United Nations Institute for Training and Research (UNITR) that produced a detailed map of damaged
structures and a related density map for Sarpol Zahab, seen in Figure 12 [45]. The southern part of the
city shows evidence of change indicated by a high standard deviation in the map shown in Figure 11b.
Satellite imagery shows this area as agriculture, and the change can be explained by change from
different stages of the agricultural season, defined as planting and harvesting times.

 

(a) (b) 

Figure 11. Sarpol Zahab standard deviation maps, (a) shows a lower standard deviation calculated
with lighter colored street blocks before the earthquake disaster and (b) shows a higher standard
deviation calculated with darker street blocks after the earthquake disaster.

 

Figure 12. Damage map for Sarpol Zahab. Source: (UNITR) [45].
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In San Juan, Puerto Rico, the standard deviation is high throughout the city (see Figure 13).
Comparison between the pre- and post-disaster standard deviation maps shows change from light
brown street blocks in the pre-disaster map to dark brown street blocks in the post disaster map. This
could be an indication of the trail of disaster left by Hurricane Maria. Furthermore, it is interesting to
notice that the only parts of the city showing very low standard deviations, or no change, are lagoons
and water bodies. In coherence maps, these water bodies and lagoons would normally appear black
all the time, indicating instability; this remains the case in the event of a Hurricane.

(a) (b) 

Figure 13. San Juan, Puerto Rico standard deviation map (a) shows lower standard deviation on street
blocks before the hurricane and (b) shows higher standard deviation calculated after.

In Santa Rosa, California, the northern part of the city, predominantly residential, shows dark
brown street blocks in the post disaster map, which implies change occurring in residential buildings.
This area is Coffey Park, and media reports indicate that the fire destroyed many houses in this area [46].
This also shows that the fire came from the north of the city and destroyed houses in the north before it
was contained, as shown in Figure 14. Figure 15 shows the fire route according to the New York times.

Figure 14. Santa Rosa standard deviation map indicating lower standard deviations on some street
blocks in the north before the fire.
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Figure 15. Santa Rosa fire route. Source: New York Times [46].

For areas affected by war, the standard deviation represents changes that occurred at different
points in time on different street blocks. This means that the dark brown colors on street blocks
represent changes, captured as snapshots of conflict-induced building damages, resulting from
airstrikes, suicide bombings, barrel bombings, etc.

In the standard deviation map of Aleppo, the results show that street blocks located at the western
side of the city exhibit a low standard deviation (light brown color), an indicator of little to no change.
The eastern part of the city, however, shows a high standard deviation showing moderate to extreme
change, which may be an indication of building destruction during the war. Maps from the Aljazeera
news agency hint this by showing maps of the Syrian government moving to control the eastern part
of Aleppo (see Figure 16). The maps show how control of the city in the eastern part changed from
rebel to government control, this change indicates that conflict occurred as the government took over
from the rebels. Therefore, conflict induced damages resulted in changes in these areas, hence a high
standard deviation. A sample of street blocks from Karm Al-Myassar, affected by the civil conflict in
the city [47], is shown in the standard deviation map in Figure 17.

 
(a) (b) 

Figure 16. Aleppo Territories. Before Government offensive (a) and after Government offensive (b).
Source: Aljazeera [47].
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Figure 17. Aleppo standard deviation map shows higher standard deviation on street blocks in the
eastern side.

In Raqqa, analysis of the standard deviation map reveals severe change (dark brown) on street
blocks in the Central Business District (CBD) (Figure 18a). The high standard deviation may be a result
of an offensive assault by the United States backed Syrian Democratic Forces (SDF) [43]. The outskirts
of the city, however, have a low standard deviation, hence the street blocks on the fringes of the city
experienced less change as compared to the CBD. This was hinted at in maps, indicating how the SDF
launched their operation through airstrikes (Figure 18b).

(a) 

Figure 18. Cont.
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(b) 

Figure 18. Comparison of Raqqa standard deviation map (a) and territory map (b) produced by
Aljazeera [43].

The standard deviation map for Damascus shown in Figure 19a generally shows low levels of
change for most street blocks in the city. The city has been known to be stable and conflict free for
most of the civil war period [48], hence most street blocks in the city reflect this by showing little to no
change (light brown color). However, the eastern part seems to show street blocks with a very high
standard deviation, signifying an extreme change in the area this may have resulted from destruction
from air strikes on the rebel-held Jobar district [49]. The northeastern neighborhoods of Jobar and
Abbaisid Square are said to have experienced the most intense fighting [50], as illustrated in Figure 19.

(a) 

Figure 19. Cont.
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(b) 

Figure 19. Comparison of Damascus standard deviation map (a) and territory map (b) produced by
Aljazeera [50].

4. Discussion

Apart from the CCD technique, other SAR techniques have been used for change-detection in
disaster situations, for example, damage detection techniques based on time-series SAR imagery [4,51].
These methods make use of amplitude and rely on backscatter information from SAR images;
in this case, building damage resulting from disaster occurrences can be detected by comparing
the backscatter information exhibited by the pre-disaster and post-disaster images [52]. However,
since backscatter information is reliant on the dielectric constant, surface roughness, and the incident
angle of an object, coherence information becomes essential to detect damage, especially when the
backscattering characteristics remain the same between two images. As we have seen from the results,
the coherence value does not rely on the backscattering characteristics of the SAR images but instead
the similarity/difference of the phase properties of two SAR images. However, other interferometric
SAR techniques have been used for damage detection [53]; in this case, the coherence images obtained
by interferometric processing are used for damage detection and assessment, as in this study.

The pre-event and post event results in the experiments show rapid changes that occur between
these periods, which is indicated by massive loss of coherence, for example, the city of Raqqa shows
an 82.5% loss in coherence that is close to the 80% destruction of the city as reported by the media.
The CCD technique thus becomes suitable for detection of such changes. In addition to this, we see
from the classification results that coherence images can be divided into different classes based on
how each class responds to coherence loss. For example, urban areas exhibit predominantly high
coherence and generally experience lower coherence loss over time as compared to vegetation and
water bodies. This knowledge can be used for classification of SAR images [54], while it is not possible
to use amplitude information alone.

The CCD technique is not new and has been widely employed in various remote sensing
applications and highlights the capabilities of Sentinel-1 data. This emerging remote sensing resource
provides global coverage and archival data, making it ideally suited to support decision-making
tasks during and after disaster events. Despite these benefits, however, the Sentinel-1 mission only
started in 2014, and as a result, it does not have an archive of images prior to 2014. This is particularly
challenging when monitoring the effects of long-term disasters like wars if the period being investigated

482



Remote Sens. 2018, 10, 1026

commenced before the mission began. Processing Sentinel-1 data is also time consuming and user
intensive, therefore, limiting the applicability of the CCD technique.

In future work, we will develop an automated CCD technique for global background observation
using Sentinel-1 imagery. CCD must be automated for use in urban planning, vegetation monitoring,
and forest cover management applications if Sentinel-1 is to be fully exploited [54]. Methods
for automatic/unsupervised change-detection using SAR data have been proposed in previous
studies [33,35]. An Automatic CCD technique can also provide information on areas affected by a
disaster. However, coherence matching requires two images acquired with the same looking angle, and
thus a 6 to 12-day revisit time of the Sentinel-1 satellites may not be adequate for immediate intervention
and response to disasters. With larger constellations, like the COSMO SkyMed constellation, faster
revisit times are possible. However, for the quickest possible response times, images are acquired from
different angles, rendering our method unusable under such circumstances. Nevertheless, considering
the advantages of Sentinel-1 data, new automatic change-detection methods would facilitate the use of
CCD in a wider range of contexts.

As seen from the results, temporal coherence is a product created from repeat-pass InSAR
observations and, thus, is susceptible to changes in the scene during the two acquisitions. The effects
of temporal decorrelation are evident in the time-series coherence images shown in Figures 3–8 and the
classification graphs in Figure 9. Decorrelation increases as temporal distances between the slave and
master image increase. In this study, a single master image, selected from the middle of the timeline,
was co-registered to subsequent slave images, ensuring that the temporal baseline is minimized by
distributing decorrelation in both temporal directions and at the same time maintaining the time
separation between pre-event and post-event periods.

In vegetated areas like forests, however, this method may not be effective as coherence is highly
sensitive to change. Therefore, Coherence Change-Detection (CCD) is not as effective in highly
vegetated areas as it is in urban areas [24]. A possible solution to low coherence resulting from
temporal decorrelation would be to apply the short baseline approach that separates the master and
slave images by short periods, for example, separating the two images by a period of 12 days to a
month, so that high coherence is maintained in each coherence image. This, however, is not very useful
for analyzing the effects of disaster events over time. Nevertheless, built up areas in urban settings are
generally stable over time. Therefore, temporal decorrelation has little effect on the coherence values
representing the built-up area. As a result, selecting one single master image is a more appropriate
technique in urban areas. Additionally, the comparative results shown in Figure 10 indicate that as
compared to vegetated areas, built up areas are affected more by war and earthquakes. Vegetated
areas, however, are more affected by hurricanes and fire disasters. The reasons for this may be that
during wartime, infrastructure is targeted for destruction. Earthquakes, however, are characterized by
shaking of the ground and result in infrastructure instability leading to destruction. Consequently,
the CCD technique may be more useful if applied to areas affected by war and earthquakes rather than
by fire and hurricane disasters, as it is a more reliable technique for built-up areas.

Although the standard deviation method, applied in the study, reveals areas that have experienced
the most change, it is not effective when quantifying the intensity of damage. Furthermore, coherence is
affected by small changes in a scene, hence, at times, it is difficult to distinguish small changes from big
changes. This is also problematic when selecting an ideal threshold, especially since a variety of factors
might be responsible for coherence loss, for example, new built-up areas cannot be distinguished
from some vegetated areas [33]. It is essential, therefore, to find methods to improve detection and
assessment of the intensity of damage.

5. Conclusions

This study demonstrates the ability of Sentinel-1 C-band imagery to provide information for
disaster monitoring and management. Unlike most imaging remote sensing systems, the Sentinel-1
mission provides continuous, reliable global data, which makes it ideal for monitoring any type of
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disaster anywhere in the world. Sentinel-1 data from Aleppo, Damascus, and Raqqa in Syria, Sarpol
Zahab in Iran, and Puerto Rico, and Santa Rosa CA, USA, were used to generate coherence maps for
each of the areas in the periods before, during, and after disasters.

Classifying coherence maps into areas of change and no-change, then applying a threshold of 0.6
and comparing the time series for each period, shows the coherence loss after a particular damaging
event. However, differentiating disaster induced coherence loss and temporal coherence loss is not easy
on coherence maps; hence, standard deviation analysis was used in combination with street-blocks
to identify which street blocks in the areas experienced a sudden loss in coherence, which may be an
indication of disaster effects.

Classifying images into built-up, vegetation, bare soil, and water bodies and integrating these
land-use classes with the coherence images helped show the effects of coherence loss on each class
after each disaster. For future studies, coherence can be used not only as a measure of change in CCD
but also for classification, as the study showed that different classes exhibited dissimilar coherence
loss over time. Furthermore, future studies will focus on automating the CCD method for global
disaster monitoring.
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Abstract: A multi-layer classification approach based on multi-scales and multi-features (ML–MFM)
for synthetic aperture radar (SAR) images is proposed in this paper. Firstly, the SAR image
is partitioned into superpixels, which are local, coherent regions that preserve most of the
characteristics necessary for extracting image information. Following this, a new sparse
representation-based classification is used to express sparse multiple features of the superpixels.
Moreover, a multi-scale fusion strategy is introduced into ML–MFM to construct the dictionary, which
allows complementation between sample information. Finally, the multi-layer operation is used to
refine the classification results of superpixels by adding a threshold decision condition to sparse
representation classification (SRC) in an iterative way. Compared with traditional SRC and other
existing methods, the experimental results of both synthetic and real SAR images have shown that
the proposed method not only shows good performance in quantitative evaluation, but can also
obtain satisfactory and cogent visualization of classification results.

Keywords: sparse representation classification (SRC); multi-layer structure; multi-feature fusion;
multi-scale; SAR image

1. Introduction

Synthetic aperture radars (SAR) can obtain stable image data as we are observing the planet Earth.
It is not affected by light conditions and can be used day and night under various conditions [1,2].
In recent years, SAR image classification has received more attention as an important part of image
understanding and interpretation. A considerable number of image classification algorithms have been
proposed, such as support vector machine (SVM) [3], neural network (NN) [4], wavelet decomposition,
and sparse representation classification (SRC) [5], etc. Among these existing methods, the traditional
SVM and NN methods show high reliability in pattern recognition. However, the relevant computation
cost is expensive, and they are easily affected by the selection of features. SRC, which is based on sparse
representation and was proposed by Mallat and Zhang [6], has been proven to be an extremely powerful
tool in image processing and can obtain good performance in the final processing results [7–15].

The basic ideas of SRC are the linear description hypothesis and spatial joint representation
mechanism. This is based on the minimum residual between the original and the reconstruction signal.
The sparse coefficients associated with the different classes are selected to reconstruct the original signal.
Actually, SRC cannot be directly applied to SAR image classification due to the imaging mechanisms
of SAR being different to those of nature imagery. However, if an SAR image is transformed into a
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specific feature space, the SRC can be efficiently used in SAR image classification. A joint sparsity
model (JSRM) is proposed based on SRC [16], in which the small neighborhood around the test
pixel are represented by linear combinations of a few common training samples. Furthermore, the
features cannot be represented well on a single scale, which results in the low accuracy of classification
results. Neighboring regions of different scales correspond to the same test pixel and they should
offer complementary and correlated information for classification. Different sizes of textures in an
image have different performance in different scales. The hierarchical sparse representation-based
classification (HSRC) [17] can solve the problem in a previous reference [16] to a certain extent, but the
HSRC belongs to classification based on each pixel, which only depends on the selection of features in
the spatial domain and the selected scale for each layer. This may lead to a loss or misrepresentation of
information, resulting in poor classification accuracy and time-consuming training requirements.

In this paper, aiming to overcome the above-mentioned problems, we proposed a novel approach,
which is called the multi-layer with multi-scale and multi-feature fusion model (ML–MFM), for SAR
image classification. This maintains high accuracy and robustness in addition to having reduced time
requirements. Firstly, in order to fix the deficiency of using a single feature and to provide more textural
and gray statistical level information [5,12,16], we extracted three types of features of a SAR image
for different classes and different scales, which are respectively the gray-level histogram, gray-level
co-occurrence matrix (GLCM), and Gabor filter [18–21]. In other words, a discriminative feature vector
is composed of the gray-level histogram, GLCM and Gabor filter for each class, while the feature
matrix is constructed by the column vector composed of discriminative feature vectors of all classes
and row vectors composed of discriminative feature vectors of all scales. Moreover, motivated by the
fusion of characteristics from multiple frames in reference [22], a multi-scale fusion strategy was used
to construct the dictionary. Thus, the extracted features under different scales can be merged together
to construct the column vectors of the dictionary (see Figure 1), which can allow complementation
between sample information and reduce the time complexity. Following this, we should segment an
SAR image into a host of homogeneous regions called superpixels, with the structural information
captured by a discriminative feature vector extraction for each superpixel. Finally, inspired by the
idea of layers in the spatial pyramid in reference [21], the multi-layer operation is utilized to refine
the classification results by adding a threshold decision condition to SRC in an iterative way. If a
superpixel meets the condition as the new atoms in the dictionary, the category is recorded. Otherwise,
it will be used as the testing sample for the next layer (Figure 3 depicts the above-mentioned basic
framework). Compared with other methods, the final classification results of the proposed method
have higher accuracy.

Figure 1. The model of multi-scale fusion strategy.

The remainder of this paper is organized as follows. In Section 2, we briefly review the SRC,
while the procedure of our novel model regarding the use of ML–MFM for SAR image classification is
explored. The experimental results for synthetic and real SAR images are presented and compared
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with others in Section 3. Comparison with the HSRC [17] and the major innovation points are provided
in Section 4. Finally, conclusions are drawn and future research directions are described in Section 5.

2. Materials and Methods

2.1. SRC

We assume an SAR image contains K classes. DK is the kth class of the sub-dictionary constructed
by concatenating feature vectors of the kth class. We can define a dictionary D constructed by
[D1, D2, . . . , DK] for an SAR image. The testing sample y can be formulated by a series of training
samples as follows:

y = ψ(y) = Dx ∈ RM (1)

where ψ(·) is an Eigen function which can be used to realize the transformation from pixel to feature
space and x = [0, . . . , 0, xi,1, . . . , xi,ni , 0, . . . , 0] ∈ Rn is a sparse coefficient vector whose entries are
zeros except those associated with the ith class. A sparse coefficient x indicates that it will be easier
to estimate the identity of the testing sample y. A sparse coefficient x can be obtained by solving the
following error-constrained Equation (2) or the sparsity-constrained Equation (3):

x̂ = argmin‖x‖0 subject to ‖y − Dx‖2 ≤ σ (2)

x̂ = argmin‖y − Dx‖2 subject to ‖x‖0 ≤ sl (3)

where σ is the error tolerant limit and sl is the sparsity level which can represent the maximum number
of selected atoms in the dictionary. Moreover, ‖ · ‖0 and ‖ · ‖2 denote l0 and l2 norms, respectively.
Usually, the problem of solving sparse coefficients can be performed using the orthogonal matching
pursuit (OMP) method [23].

After obtaining the sparse coefficient x̂, the class label k̂ of the test pixel y can be determined by
the minimal error between y and its approximation from the sub-dictionary of each class:

k̂ = argmin
k

‖y − Dx̂k‖2, k = 1, . . . , K (4)

where x̂k represents the coefficients in x̂ belonging to the kth class. In order to demonstrate the
drawback of the SRC algorithm clearly, a simple experiment was performed on two real SAR images
(the original SAR image is in Figures 10a and 12a), observed in Figure 2. We can see that the final SRC
results are unacceptable from Figure 2a,b. This is mainly because the SRC algorithm extracts features of
SAR images only by using the pixel-by-pixel method, resulting in a lack of complementation between
sample information. Therefore, to solve this problem, superpixels and more complete features need to
be taken into account.

 
(a) (b) 

Figure 2. Classification results with the sparse representation classification (SRC) algorithm of a
previous study [5] on (a) SAR1 and (b) SAR2.
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2.2. Proposed Multi-Layer and Multi-Feature Model (ML–MFM)

In this section, the multi-layers and multi-feature model (ML–MFM) based on the SRC algorithm
is proposed. The basic framework of the proposed method is shown in Figure 3.

Figure 3. The basic framework of multi-layers and multi-feature model (ML–MFM).

Figure 3 can be understood in four parts: superpixel generation, multi-feature extraction,
multi-scale with fusion strategy and multi-layer sparse representation classification. In the first
stage, the over-segment algorithm is used. The initialization dictionary is subsequently used in
different scales, before being fused by the fusion strategy, which is introduced in Section 2.2.2. The first
classification is performed using the initialization dictionary and the superpixels. Finally, SRC is used
in multi-layers through iterations to obtain the final result.

2.2.1. Multilayer SRC

There are some difference between SAR image classification and face recognition, the training
samples of which can be controlled by a human in a standard data set. SAR images contain various
complex terrains. It is difficult to guarantee enough training samples to represent each pixel. To deal
with the challenge, reference [17] developed a hierarchical sparse representation classifier to improve
the classification of the SAR image, which we called the multi-layer SRC.

In this classifier, h (1 ≤ h ≤ H) represents the layer of classification. Sparse representation is
used for each layer. Thus, we performed sparse representation h times. As the number of layers
h (1 ≤ h ≤ H) increases, the classification map becomes closer to the final result. Finally, the number
of h is analyzed in Section 3.1.

2.2.2. Multiscale Fusion-Based Dictionary

In the application of sparse representation, a dictionary is first constructed. To counter the
existence of speckle and the complex appearance in the SAR image, we transform the pixel value space
into a feature space, which reduces the computational complexity and extracts the discriminative
features from the SAR image. The gray-level histogram, GLCM and Gabor filter features are extracted
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to capture statistical properties in the SAR image. We concentrated on these three types of features to
form a feature vector for representing each pixel or superpixel. This non-linear feature will provide
competitive performance by representing statistical information and capturing texture information in
adjacent areas.

Moreover, different texture features of images show different performances in different scales [24].
In the classification of the image, many experiments have proved that different scales correspond to
the same test sample y. The information from different scales complements each other, which is useful
to classify each pixel.

We selected ni vectors of the lth scale training samples from the ith class in the hth layer as
columns to construct a matrix Ah

i,l = [ f h
i,l,1, f h

i,l,2, . . . , f h
i,l,ni

] ∈ Rm×ni , where m denotes the dimension of
the extracted feature vector. Scale l means the scale sizes (2l + 1)× (2l + 1) of the extracted features.
Therefore, l = 1 is the finest scale and l = L is coarsest scale, which depends on the resolution of
the image. This can be calculated by L = f loor(resolution ∗ 3/2). We constructed a matrix by the
concatenation of the ni training sample vectors of all K defined classes and all L scales in the fixed hth
layer as follows:

Ah =

⎡⎢⎢⎢⎢⎣
Ah

1,1 Ah
1,2 · · · Ah

1,L
Ah

2,1 Ah
2,2 · · · Ah

2,L
...

... · · · ...
Ah

K,1 Ah
K,2 · · · Ah

K,L

⎤⎥⎥⎥⎥⎦ (5)

Following the dictionary Dh in the fixed hth layer is defined by row element using the average
fusion strategy in matrix Ah. This is shown as follows:

Dh =

⎡⎢⎢⎢⎢⎣
Dh

1, f usion
Dh

2, f usion
...

Dh
K, f usion

⎤⎥⎥⎥⎥⎦
Dh

i, f usion=
1

n1+n2+···+nL

L
∑

l=1

nL
∑

j=1
f h
i,l,j

←−−−−−−−−−−−−−−−−−−

⎡⎢⎢⎢⎢⎣
Ah

1,1 Ah
1,2 · · · Ah

1,L
Ah

2,1 Ah
2,2 · · · Ah

2,L
...

... · · · ...
Ah

K,1 Ah
K,2 · · · Ah

K,L

⎤⎥⎥⎥⎥⎦ = Ah (6)

2.2.3. Multi-Layer and Multi-Feature Model

It is well-known that pixels are not natural entities but a result of the discrete representation
of an image, with structural information captured in a region rather than a pixel. Furthermore,
the computational complexity increases rapidly with an increase in the scale of pixels used. Therefore,
we first divided the SAR image into superpixels to integrate the contextual information of neighboring
pixels and to reduce computational complexity. In our method, the operation of superpixel
generation uses the TurboPixel algorithm [25]. Furthermore, in order to encode gray, textural and
spatial information into superpixels, we described each superpixel spt ∈ sp = {spt|1 ≤ t ≤ N }
by a m dimensional feature vector fspt = [ ft,1, ft,2, . . . , ft,m], in which N is the maximum number
of superpixels.

Unlike other recognition methods, SAR image classification lacks training samples to effectively
represent each pixel. To deal with the challenge, inspired by the idea of the hierarchical sparse
representation [17], we proposed a multi-layer operation based on SRC and the multi-fusion scale
dictionary for SAR image classification.

Based on dictionary construction and the superpixel spt, we used Equation (2) with the l0 norm
to ensure a sparse solution. The sparse coefficient can be solved by OMP to obtain x̂. We define the hth
layer of the minimum residual error and class as Equations (7) and (8), respectively.

rh = resh
min(ψ(spt)) = min

i=1,...,K
resh

i (ψ(spt)) (7)

k̂h = argmin
i
‖ψ(spt)− Dhx̂i‖2, i = 1, 2, . . . , K (8)
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where the resh
i (ψ(spt)) is the residual error in the hth layer under the fusion scale; rh is the minimum

residual error; and ch is the category of spt. Different from Equation (4), we introduce a parameter ΔT
as the threshold value to limit the superpixel and judge whether it belongs to this class instead. If
the rh is within the specified tolerance limit, the pixel belongs to the current class i. Otherwise, the
uncertain samples are classified again in the next layer. Following this, the class of superpixels in hth
(1 ≤ h < H − 1, where H is layer number) layer are expressed as:

label(spt) =

{
argmin

i
‖ψ(spt)− Dhx̂i‖2, i = 1, 2, . . . , K; rh ≤ ΔT

uncertain, otherwise
(9)

where rh ≤ ΔT is a restricted condition to ensure that the superpixel belongs to the category. In fact,
the choice of the threshold value ΔT will influence our final results to some extent and it will be further
discussed in Section 3.1.

The uncertain superpixels in the (h + 1)th Ah
i = [ f h

i,1, f h
i,2, . . . , f h

i,ni
] ∈ Rm×ni (1 ≤ h < H) layer will

be classified by Equations (7)–(9). We selected superpixels from each class, which are labeled as the
new training samples in the hth layer. Following this, we extract the feature vector at the hth layer.
Arranging these vectors as the columns vector Ah

sp = [Ah
1, Ah

2, . . . , Ah
K], we define the dictionary D(h+1)

in the fixed (h + 1)th layer based on the dictionary Dh in the fixed hth layer.

D(h+1) =

⎡⎢⎢⎢⎢⎢⎣
D(h+1)

1, f usion

D(h+1)
2, f usion

...

D(h+1)
K, f usion

⎤⎥⎥⎥⎥⎥⎦ = Average

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

Dh
1, f usion

Dh
2, f usion

...
Dh

K, f usion

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
Ah

1
Ah

2
...

Ah
K

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ = Average(Dh, Ah

sp) (10)

In fact, the uncertain superpixels decrease with an increase of layers. When h = H, there is still
a small number of uncertain points (marked by yellow in Figure 3). However, the dictionary DH

is modified by Equation (10), before the remaining pixels will be classified by a traditional sparse
repreentation classifier until it outputs the final result. The whole ML–MFM for the SAR image
classification Algorithm is summarized as follows:

Algorithm 1. ML–MFM for synthetic aperture radar (SAR) Image Classification

Input: SAR image, threshold ΔT, class number K, layer H.
Output: classification map.
1. Segment the SAR image into superpixels by [25].
2. Construct the initial fusion dictionary D1 by Equations (5) and (6), while the fusion dictionary contains K
class, D1 = [D1

1, f usion, D1
2, f usion, . . . , D1

K, f usion]. Choosing a specified number of pixels ni from the original SAR
image as the samples, each sample can be represented by the m dimension extracted variety of features.
3. Multi-layer SRC and dictionary in layers are constructed.

• Classify all superpixels in the first layer by Equations (7) and (8) with orthogonal matching
pursuit (OMP);

• Find the best representative atom’s label by Equation (9);

while 1 ≤ h ≤ H
if rh ≤ ΔT

min
i

resh
i (ψ(spt));

label(spt) ← i;
updating dictionary by (10)
D(h+1) = Average(Dh, Asp);

else uncertain(spt
h) ← spt = ψ(spt);

h ← h + 1 ;
end while
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3. Results

In this section, the proposed model is now applied in the classification of synthetic and real
SAR images. To validate the performance of the proposed method, we use both types of images in
quantitative evaluation and visualization results. We mainly compare our results with the results of
previous studies [3,5,16,17], in which their parameters are tuned to obtain the best results. Figures 8a,
9a and 10a are the synthetic SAR images, which are from the Brodatz database. These synthetic SAR
images have three, four and five types of different textural regions, while the size of each image is
512 × 512, 335 × 335, and 512 × 512, respectively. The test images are named Syn1, Syn2 and Syn3,
respectively. In addition, three real SAR images (SAR1, SAR2 and SAR3) were tested in experiments.
SAR1 has a size of 256 × 256, which covers the China Lake Airport, California, with a Ku-Band radar
with a 3-m resolution. SAR2 has a size of 321 × 258, which covers the pipeline over the Rio Grande
river near Albuquerque, New Mexico, with a Ku-Band radar with 1-m resolution. SAR3 has a size of
284 × 284, which covers the X-Band radar with 3-m resolution. The central processing unit time was
obtained by running the Matlab code on a DELL computer with Inter (R) Core (TM) i7CPU, 3.4 GHz,
16 GB RAM with MATLAB 2014(a) on Windows 10 (64-bit operating system) in our experiment.

3.1. Experimental Settings

In the experiment, we used the TurboPixel [25] algorithm to over-segment the original image
into homogeneous regions and to obtain the superpixels. As each superpixel has different sizes,
the features of each superpixel need to be processed so that the fusion features of all superpixels
have the same dimensions (i.e., m = 60 in our method). Sixteen effective distribution features and
four statistical features suggested by a previous study [17] were used. Thus, the features extracted
by gray-level histogram and GLCM have 16 dimensions and four dimensions for each superpixel,
respectively. After calculating the convolution of the initial bank of Gabor filters, which consists of 40
filters with five scales and eight orientations, the mean value of the filter response corresponding to
each superpixel was computed for every filter. Therefore, the Gabor feature of each superpixel was a
40-dimension vector corresponding to 40 Gabor filters with the total number of dimensions being 60.
In addition, the ranges of the radial basis function kernel width and penalty coefficients are (0.0001,
0.001, 0.01, 0.1, 1, 10) and (0.1, 1, 10, 100, 500, 1000) respectively.

3.1.1. Influence of Parameters

It is necessary to set ideal parameters to obtain satisfactory results. There are two main parameters
that need to be set in our model, namely H and ΔT (threshold). Based on plenty of experimental
data and the analysis of results, each parameter should satisfy the following condition: 1 ≤ H ≤ 6,
0.07 ≤ ΔT ≤ 0.24. We noted that the parameter H is influenced by the resolution of the SAR images
(similar to a previous reference [17]), as mentioned in Section 2.2. We used an experiment to show
the influence of H, which is depicted in Figure 4. The horizontal axis represents the layer h, while
the vertical axis represents a certain superpixel number. Here, we artificially set the total superpixel
number to 1000 of SAR1. From Figure 4, it is more intuitive to find the most suitable layer range.
This is because when H > 6, the speed of the growth of certain points slow significantly in histogram
and line chart. In many experiments, if we set H = 6 as the maximum number of layers, it is the best
choice with regards to time and precision. In addition, it is worth noting that ΔT is the threshold to
control the categories of accuracy (blue solid line) and the kappa coefficient (green dotted line) with
our proposed method. From Figure 5, we can see that when ΔT is too small, there are many uncertain
superpixels until h = H. However, when ΔT is too large, the finer areas cannot be placed into classes.
Therefore, appropriate parameter selection is very important.
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Figure 4. Illustration of certain and uncertain superpixels with different layers corresponding to SAR1
(Figure 7a) in our method (the total number of superpixels is 1000).

Figure 5. Influence of threshold ΔT in classification accuracy (blue solid line) and Kappa coefficient
(green dotted line) corresponding to SAR1 (Figure 7a).

3.1.2. Analysis of Multi-Feature Fusion and Multi-Scale Fusion

Multi-Feature Fusion

In this part, the multi-feature fusion is analyzed to verify its effectiveness in obtaining satisfactory
results. In our paper, the fusion strategy is introduced to construct the dictionary. We perform an
experiment on the original SAR1 (Figure 6a) to show the influence of multi-feature fusion on the
dictionary and the impact of classification results. The rectangular areas of Figure 6a–e are marked
by red, yellow and green, respectively. Figure 6b shows the results of the method with the gray-level
histogram; Figure 6c shows the results of the GLCM; Figure 6d shows the results of the Gabor method;
and Figure 6e shows the results of the multi-features method. We can see that Figure 6e has fewer
miscellaneous points than Figure 6b–d. The reason is that the fusion features includes distribution
features and four statistical features. Therefore, the dictionary Dh includes more information to obtain
better results, which is an advantage that is absent in the method with single features. Therefore,
the multi-feature fusion strategy is important.
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(a) (b) 

(c) (d) 

(e) 

Figure 6. Comparison of (a) the original SAR1 with (b) gray-level histogram; (c) gray-level
co-occurrence matrix (GLCM); (d) with Gabor; (e) with multi-features.

Multi-Scale Fusion

In this part, multi-scale fusion is analyzed to verify its effectiveness in obtaining satisfactory
results. In our paper, the fusion strategy is introduced to construct the dictionary. We perform an
experiment on the original SAR1 (Figure 7a) to show the influence of the fusion strategy on the
dictionary after merging features under different scales. The rectangular areas of Figure 7b,c are
both marked by red, yellow and green. Figure 7b shows the results method with the fusion strategy;
Figure 7c shows the results method without the fusion strategy. We can see that Figure 7b has fewer
miscellaneous points than Figure 7c. The reason for this is that the fusion dictionary Dh includes each
scale information (homogeneous and marginal regions). This has similar effects on the dictionary
under multi-scales, which are absent in the method without the fusion dictionary and are important to
SAR image processing. Therefore, the multi-scale fusion strategy is important.

  
(a) (b) (c) 

Figure 7. Comparison of (a) the original SAR1 (b) with fusion strategy; and (c) without fusion strategy.
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3.2. Results on Synthetic SAR Images

In this section, we test the capability of the proposed algorithm by applying it to the synthetic
SAR images Syn1, Syn2, and Syn3. The superpixels of Syn1, Syn2, and Syn3 are 2800, 1500 and 2800,
respectively. In our method, H = 6 and ΔT is 0.221. The scale (patch) size in the support vector
machine (SVM) [3], SRC [5] and JSRM [16] is fixed and we set it to be 3 × 3. The ground truth
was used to calculate the accuracy of the classification results to evaluate the contrast algorithms.
We can see that the proposed method can obtain a higher accuracy of classification than the results
of previous studies [3,5,16] and can reduce the processing time found in reference [17]. Moreover,
as shown Figures 8–10, as well as Table 1, the proposed method can keep the details (edges) in a
similar way to reference [17] in the visual representation. However, the results of the other methods in
finer textural regions (marked with pink and yellow), such as Figure 9e–g, have significantly different
degrees of error, which is caused by the lack of samples. Although our method has no significant
improvement in accuracy compared to the method in reference [17], there are benefits to not requiring
an extensive amount of time in pixel-by-pixel training and having less miscellaneous points existing in
the final classification.

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 8. Results of different methods in Syn1: (a) Synthetic SAR images; (b) Ground truth;
(c) Superpixels map; (d) Proposed method; (e) support vector machine (SVM) [3]; (f) SRC [5]; (g) joint
sparsity model (JSRM) [16]; (h) hierarchical sparse representation-based classification (HSRC) [17].

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 9. Results of different methods in Syn2: (a) Synthetic SAR images; (b) Ground truth;
(c) Superpixels map; (d) Proposed method; (e) support vector machine (SVM) [3]; (f) SRC [5]; (g) joint
sparsity model (JSRM) [16]; (h) hierarchical sparse representation-based classification (HSRC) [17].
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 10. Results of different methods in Syn3: (a) Synthetic SAR images; (b) Ground truth;
(c) Superpixels map; (d) Proposed method; (e) support vector machine (SVM) [3]; (f) SRC [5]; (g) joint
sparsity model (JSRM) [16]; (h) hierarchical sparse representation-based classification (HSRC) [17].

Table 1. Comparison of the run times (s) and classification accuracy (%) of different methods.

Proposed Method SVM [3] SRC [5] JSRM [16] HSRC [17]

SAR Image Accuracy Time Accuracy Time Accuracy Time (s) Accuracy Time Accuracy Time

Syn1 98.79 120.32 80.35 51.88 76.38 101.37 91.73 161.37 98.89 230.59
Syn2 97.76 103.96 88.73 54.89 80.83 85.74 94.78 137.49 98.12 201.14
Syn3 96.04 124.48 73.29 48.14 70.86 106.84 89.14 153.26 96.24 243.32

3.3. Results of Real SAR Images

In this section, three real SAR images are used for further analysis. The compared methods are
the same as those used on synthetic SAR images. The results are shown in Figures 11–13. These
original real images have three, three and four types of different regions as shown in Figures 11b, 12b
and 13b, respectively. The superpixels of SAR1, SAR2 and SAR3 are 1000, 1200 and 1100 as shown
in Figures 11b, 12b and 13b, respectively. The evaluation of the classification method is based on
the visual inspection of the classification and the run time, accuracy, as well as the kappa coefficient.
The scale in SVM, SRC and JSRM is set to 7 × 7, which represents the best result in the experiments.

From Figure 11c–g, we can see that the proposed method can achieve the classification in different
areas and eliminate the influence of shadows, which always leads to categories by mistake. However,
when we compare Figure 11c with 11g, it is difficult to know whether our proposed method is better,
as it seems that Figure 11g [17] has better visualization results, albeit with some miscellaneous points.
Therefore, the accuracy of the quantitative analysis is required for further analysis. From Table 2, it can
be seen that the accuracy of the previous study [17] is only slightly higher than our proposed method,
but the required running time is too long, as previously seen with synthetic SAR images.
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(a) (b) (c) 

(d) (e) (f) (g) 

Figure 11. Results of different methods in real SAR1: (a) Real SAR images; (b) Superpixels map;
(c) Proposed method; (d) support vector machine (SVM) [3]; (e) SRC [5]; (f) joint sparsity model
(JSRM) [16]; and (g) hierarchical sparse representation-based classification (HSRC) [17].

From Figure 12c–g, we can see the classification results of different methods, especially in the
yellow and red rectangle regions. The yellow and red rectangles of the proposed method in Figure 12c
have less miscellaneous points than Figure 12d–f. In general, a smaller number of miscellaneous points
indicates a more complete extraction of information and a more stable performance of the algorithm.
The different rectangle regions highlight the superiority of the proposed algorithm. However, when we
compare Figure 12c with 12g, it is difficult to know whether our proposed method is better, as it seems
that Figure 12g [17] has better visualization results, albeit with some miscellaneous points. Therefore,
data analysis was used (accuracy, run time and kappa coefficient) for further analysis. From Table 2,
it can be seen that the accuracy of the previous method [17] is only slightly higher than our proposed
method, but the required running time was too long, as previously seen with synthetic SAR images.

 
(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 12. Results of different methods in real SAR2: (a) Real SAR images; (b) Superpixels map;
(c) Proposed method; (d) support vector machine (SVM) [3]; (e) SRC [5]; (f) joint sparsity model
(JSRM) [16]; and (g) hierarchical sparse representation-based classification (HSRC) [17].
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The analysis of Figure 13 is similar to Figures 11 and 12. From Figures 11–13, the proposed
method is shown to be suitable for the SAR image classification and obtains the optimal results.
Table 2 provides the quantitative evaluation of different methods. Although the HSRC obtains higher
classification accuracy compared with the others, the running time is too long among the different
methods. Our method has the absolute advantage in the running time, with competitive accuracy that
is only slightly lower than HSRC. Moreover, our method gets the highest robustness, which is reflected
by the kappa coefficient. Above all, our method outperforms the others in terms of time consumption
and robustness.

 
(a) (b) (c) 

(d) (e) (f) (g) 

Figure 13. Results of different methods in real SAR3: (a) Real SAR images; (b) Superpixels map;
(c) Proposed method; (d) support vector machine (SVM) [3]; (e) SRC [5]; (f) joint sparsity model
(JSRM) [16]; and (g) hierarchical sparse representation-based classification (HSRC) [17].

Table 2. Comparison of the average criteria and accuracy (%) of different methods.

Proposed Method SVM [3] SRC [5] JSRM [16] HSRC [17]

SAR Image Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

SAR1 96.18 102.38 89.79 48.68 85.38 98.67 93.67 147.73 96.20 238.95
SAR2 97.57 121.35 87.68 43.19 87.33 99.24 92.48 139.58 97.62 253.48
SAR3 97.52 124.41 83.59 51.94 79.96 102.68 91.04 160.36 96.74 258.72
AA 1 97.42 87.02 84.22 92.40 97.83
K 2 0.961 0.713 0.806 0.941 0.959

1 AA is average accuracy; 2 K is kappa coefficient.

4. Discussion

Traditional SVM [3] is limited by lacking samples, which results in low classification accuracy.
For instance, the number of training samples is 300, which is 0.46% of the total samples. Fewer samples
affect the selection of optimal parameters by SVM for the testing samples, which will decrease the
classification accuracy. In the sparse representation method, the HSRC [13] can solve the problem of
reference [16] to a certain extent. It introduces the hierarchical concept and multi-size patch feature
to solve the problem of lacking samples. Using SRC in SAR classification for both these methods
improves the accuracy and stability. However, HSRC classifies images based on each pixel, which
only depends on the selection of features in the spatial domain and the selected scale for each layer.
This may lead to the loss or misrepresentation of information, which requires a long time for training.
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In our paper, we inherit the advantages of reference [17], such as multi-layer. However, the
difference is the multi-scale and multi-feature fusion. In the multi-feature fusion stage, we take three
different methods to extract the gray and texture characteristics, which are stable in the presence of
noise and changes in view, and can enrich the information of images. Moreover, the strategy of the
multi-feature fusion was inspired by [23], which fused the different features from multiple layers. We
fused the different features from different scales. This reduces the computational time and ensures a
rich amount of information. Furthermore, classification based on superpixels can improve the speed of
algorithms effectively. Three evaluation metrics (i.e., run time (time), average accuracy (AA) and the
Kappa coefficient (K)) are adopted in these experiments to evaluate the quality of classification results.
AA represents the mean of the percentage of correctly classified pixels for each class. K estimates the
percentage of classified pixels corrected by the number of agreements. We performed comparative
experiments with four other methods. The proposed method can solve the time redundancy problem
of HSRC, but has its uncertainties. For instance, the uncertain points are always in the process of the
algorithm until h = H. That is the reason we use the traditional SRC (this step is same as reference [17])
in the last step.

5. Conclusions

In this paper, based on superpixels, we presented a new model of classification of SAR images.
It validates that adding multiple features, scales and layers can benefit the results of SRC classification
and enrich the information of the images. Furthermore, using multiple layers can decrease the
computational time due to the use of superpixels. The fusion strategy was introduced to merge each
scale together to form a multi-fusion dictionary. With the added benefits, robustness was enhanced
and the classification accuracy was improved significantly. The comparison experiments based on
synthetic SAR images and real SAR images clearly demonstrate the efficiency and advantages of the
proposed classification method. Moreover, the proposed classification method is also able to achieve
lower computational costs. These added benefits are general for SAR image classification, and can be
suitable for utility in more applications in the area of SAR image classification, as well as in other areas
where the SRC method could be applied.

This method provides a slight improvement in calculation time for SAR image classification and
application. Moreover, future research will focus on developing more efficient algorithms to cope with
the large-scale SAR images.
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Abstract: Interferometric synthetic aperture radar (InSAR) provides the capability to detect surface
deformation. Numerous processing approaches have been developed to improve InSAR results
and overcome its limitations. Regardless of the processing methodology, however, temporal
decorrelation is a major obstacle for all InSAR applications, especially over vegetated areas and
dynamic environments, such as Interior Alaska. Temporal coherence is usually modeled as a
univariate exponential function of temporal baseline. It has been, however, documented that temporal
variations in surface backscattering due to the change in surface parameters, i.e., dielectric constant,
roughness, and the geometry of scatterers, can result in gradual, seasonal, or sudden decorrelations
and loss of InSAR coherence. The coherence models introduced so far have largely neglected the
effect of the temporal change in backscattering on InSAR coherence. Here, we introduce a new
temporal decorrelation model that considers changes in surface backscattering by utilizing the
relative change in SAR intensity between two images as a proxy for the change in surface scattering
parameters. The model also takes into account the decorrelation due to the change in snow depth
between two images. Using the L-band Advanced Land Observation Satellite (ALOS-2) Phased
Array type L-band Synthetic Aperture Radar (PALSAR-2) data, the model has been assessed over
forested and shrub landscapes in Delta Junction, Interior Alaska. The model decreases the RMS
error of temporal coherence estimation from 0.18 to 0.09 on average. The improvements made by the
model have been statistically proved to be significant at the 99% confidence level. Additionally, the
model shows that the coherence of forested areas are more prone to changes in backscattering than
shrub landscape. The model is based on L-band data and may not be expanded to C-band or X-band
InSAR observations.

Keywords: InSAR; temporal coherence modeling; L-band; Interior Alaska

1. Introduction

Interferometric synthetic aperture radar (InSAR) provides an all-weather, day-or-night capability
to remotely sense mm to cm scale surface deformation with a high spatial resolution of tens of
meters or better (e.g., [1–4]). InSAR has been successfully used to detect surface deformation due
to various mechanisms, such as volcanism, subsidence, permafrost, and landslides [5–9]. So far
numerous methods and approaches have been developed to improve InSAR performance. However,
temporal decorrelation, regardless of the processing methodology, is one of the major obstacles for
all InSAR applications, especially over vegetated areas. The main sources of the loss of coherence,
i.e., decorrelation, are temporal decorrelation, spatial decorrelation, volume decorrelation, thermal
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decorrelation, and processing errors (e.g., [10,11]). Generally, InSAR coherence decreases with
increasing spatial and temporal baselines between two images.

InSAR coherence is sensitive to the changes in surface backscattering, which is dominated by the
surface dielectric constant and roughness on the scale of the radar wavelength [12–14]. It has been
documented that temporal coherence can be influenced by temporal variations of surface backscattering
due to changes in soil moisture, snow depth, surface roughness, and vegetation biomass [12–22].
Simard et al. [12] found precipitation events to be the main cause of temporal decorrelation using
fully-polarimetric airborne L-band acquisitions over forested landscapes with up to nine-day temporal
baselines. Additionally, they argued that correlation decreases with increasing canopy height regardless
of forest type and polarization. Zwieback et al. [15] evaluated soil moisture effects on L-band InSAR
and revealed that the phase difference between two SAR images increased with increasing soil moisture
difference, whereas the coherence decreased at the same time. Zhang et al. [20], in a case study using
C-band ERS SAR data, assessed the relationship between InSAR coherence and soil moisture and
inferred that the relation between the two may satisfy an exponential distribution.

Although the effect of the changes in surface backscattering on InSAR coherence has been
documented (e.g., [12,16,18]), it has been largely neglected in the coherence models introduced
so far. Temporal coherence, in general, is modeled as a univariate exponential function of the
temporal baseline [10] with the assumption that the change in the position of scatterers, i.e., mutual
displacements of scatterers, is the source of decorrelation [23]. However, we argue that other variables,
in addition to the temporal baseline, should be added to the coherence function to compensate for the
effect of the temporal variation of surface backscattering on InSAR coherence. In this paper, using
ALOS-2 PALSAR-2 images, we analyzed the temporal decorrelation of forested and shrub landscapes
in Delta Junction, Alaska, and introduced a new InSAR coherence model, which takes into account the
effects of the temporal variations of surface backscattering on InSAR coherence. The model considers
the changes in the geometry and dielectric constant of scatterers to be the main sources of decorrelations.
The effect of the gradual and natural change in scatterers’ geometry has been modeled as a decaying
exponential function, which is equivalent to the exponential function of temporal coherence found in
the literature [10,13]. The effect of the change in the surface backscattering, mainly due to the change
in the dielectric constant of scatterers on InSAR coherence, has been modeled by utilizing the change
in InSAR intensity as a proxy for it. The model also takes into account the decorrelation due to the
change in snow depth between two images, which induces reversible and seasonal decorrelations.
The model, in general, and with different constants, is applicable to model L-band InSAR coherence in
other environments and may not be expanded to X-band or C-band SAR observations.

The importance of temporal decorrelation models and their practical use can be better understood
by considering the following reasons. Basically, temporal changes of surface parameters describe
processes occurring on time scales of the orbit repeat time. In other words, modeling temporal
decorrelations provides a means to understand and remotely estimate a wide variety of surficial
processes, such as vegetation growth, permafrost freezing and thawing, and soil moisture and
vegetation layer induced effects [12].

For instance, it has been shown that both phase and coherence can be used to retrieve soil moisture
(e.g., [15]). The coherence, being generally independent of deformation, provides a better means to
estimate soil moisture. However, to retrieve soil moisture using temporal coherence, a decorrelation
model should be implemented to separate the soil moisture-induced decorrelation, i.e., the change in
the dielectric constant, from other decorrelation contributions, such as the decorrelation due to the
change in the geometry of scatterers.

The second area of interest is in the design of orbit repeat for new satellite missions, which is
driven by considering some important factors, such as tolerable error levels, the attainable baseline,
and the expected decorrelation with the time of signals from the regions of interest to be mapped [12].
In this case, temporal decorrelation models can facilitate a priori assessment of the expected coherence
levels of interferograms for a new satellite mission designed for a specific application.
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Finally, temporal decorrelation models can help better estimate vegetation layer parameters.
The total InSAR coherence is the product of spatial, temporal, thermal, volume, and processing
coherences (e.g., [23]). Most models used to invert vegetation layer parameters (in PolInSAR studies)
only consider the volume decorrelation contribution of the interferometric coherence and ignore other
decorrelation contributions. However, leaving non-volumetric decorrelations uncompensated leads to
a less accurate parameter estimation. In repeat-pass InSAR systems, the most critical non-volumetric
decorrelation contribution is the temporal decorrelation caused by the change of the geometric and/or
dielectric properties of the scatterers [23] and its contribution to decorrelation can be quantified using
temporal decorrelation models.

The rest of this paper is organized as follows: in Section 2, InSAR coherence estimates are presented
over the study area, Delta Junction, Alaska, the temporal decorrelation model and evaluation with real
data are described in Section 3, followed by discussions and conclusions in Sections 4 and 5, respectively.

2. Study Area and Data

Our test site, illustrated in Figure 1, is located in Delta Junction, interior Alaska. The area is
mostly covered by forest and shrub landscapes [24] and underlain by dis-continuous permafrost.
The Alaskan interior between the Alaska and Brooks Mountain Ranges has a strong continental climate
with moderate temperatures and precipitation in summer and exceedingly cold and dry weather in
winter [25]. The average minimum and maximum annual temperatures in Big Delta station (1937–2005),
which is located in the study area, are −6.9 ◦C and −2.7 ◦C, respectively. The lowest and highest
temperatures occur in January (−23.7 ◦C) and July (20.8 ◦C). Average total precipitation, average total
snow-fall, and average snow depth are, respectively, about 29, 111.25, and 10.2 centimeters (National
Weather Service (http://www.wrcc.dri.edu)).

Figure 1. Land cover map of the study area (National Land Cover Database 2011 (NLCD 2011)) [24].
The orbit- frames covering the study area are shown with different colors (explained in Table 1).
The black rectangle box shows the overlapping area. The forested and shrub patches are boxed in red
and blue, respectively. The location of Snow Telemetry (SNOTEL) site, Granite Creek (963) (Natural
Water and Climate Center (https://wcc.sc.egov.usda.gov)), is shown by a white star.

To study the temporal evolution of InSAR coherence, 32 single look complex (SLC) SAR images
of L-band ALOS-2 (23.6 cm wavelength) from three ascending and three descending orbital paths in
the fine beam and horizontal-horizontal (HH) polarization mode have been used. The data span from
August 2014 to March 2017. Each group of the SLC SAR images have been co-registered based on a
single master image, which optimizes the geometric and temporal coherence of the interferogram stack.
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The SLC images were then used to generate interferograms with a pixel size of about 30 m × 30 m.
After removing topographic phase, simulated using the National Elevation Dataset (NED) DEM,
and applying range spectral shift and azimuth common band filters, and a linear weighting window
size of 5 × 5 (in pixels) was used to estimate correlation. Then, interferograms affected by ionospheric
artifacts were excluded and a total number of 75 interferograms with no or very limited effects of
ionospheric artifacts have been selected to analyze temporal coherence. Table 1 gives the information
of the data and interferograms used in this study.

Table 1. Data used in this study. The letters A and D denote ascending and descending, respectively.

Path-Frame Orbit Direction Number of Interferograms Color of Frame on Figure 1

0040-2330 D 4 Yellow
0041-2330 D 16 Blue
0042-2320 D 10 Green
0137-1280 A 10 Magenta
0138-1280 A 29 Red
0139-1270 A 6 Cyan

For each of the two major land cover types in the study area, forest and shrub, three patches
within flat areas with a total number of 1963 and 1729 pixels, respectively, on geo-referenced coherence
images that are fully overlapped with all ALOS-2 observations have been selected. Figure 1 shows
the selected patches in red (forest) and blue (shrub) boxes. For each of the interferograms, average
coherence values of the selected pixels of each of the land cover types have been calculated. Therefore,
each interferogram has two coherence values, one for each of the land cover types, evergreen forest
and shrub. Figure 2 illustrates the scatter plot of the average coherence versus temporal baseline for
the selected patches.

Figure 2. Scatter plots of observations and model A for forested (a) and shrub (c) land cover types. Scatter
plots of residual coherences (observation—model A) for forested (b) and shrub (d) land cover types.
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3. Methods

3.1. InSAR Coherence

An InSAR coherence estimation image is a cross-correlation product of two co-registered
complex-valued SAR images (e.g., [10,26,27]) which quantifies radar wavelength-scale changes
in backscattering characteristics. Decorrelation, i.e., loss of coherence, is generally increased by
increasing spatial and temporal baselines between two image acquisitions [10,27,28]. InSAR coherence
assesses the accuracy of the estimated deformation and depends on the amount of phase error in an
interferogram [28–30]. Over a small window of pixels, InSAR coherence is estimated by:

γ =

∣∣∣∣∣∣ ∑ C1 C∗
2 e−j∅√

∑|C1|2 ∑|C2|2

∣∣∣∣∣∣ (1)

where C1 and C2 are complex-valued backscattering coefficients, C2* is the complex conjugate of
C2, Ø is the deterministic phase due to baseline error, topography, or large deformation in the
correlation window.

The total InSAR coherence is the product of spatial (γspatial), temporal (γtemporal), thermal (γthermal),
volume (γvolume), and processing (γprocessing) coherences [4,10,28]:

γ = γspatial × γvolume × γtemporal × γthermal × γprocessing. (2)

The spatial (perpendicular) baselines of our dataset, except for two interferograms with spatial
baselines of 308 and 347 m, are smaller than 284 m with a mean of ~108 m, whereas the critical baseline
of the data is about 11 km. Therefore, a perpendicular baseline of 108 m, i.e., the mean value of the
perpendicular baselines, will decrease the coherence by the value of ~0.01 which is negligible. In long
wavelength (L-band) SAR sensors, such as ALOS-2 PALSAR-2, the small perpendicular baseline
will not affect the variation of spatial decorrelation much. Therefore, we assumed that the spatial
decorrelation from the small range of change in the perpendicular baseline is constant. Additionally,
with such small perpendicular baselines, the volumetric decorrelation is negligible (e.g., [12]). Here, we
focus only on temporal decorrelation by assuming that other decorrelation terms are constant or
relatively not significant.

3.2. Temporal Coherence Modeling

The temporal coherence is usually considered as a univariate exponential function of time
(e.g., [13,31]) by taking the random motion of scatterers in the resolution cell to be the main source of
decorrelation:

γA = γ0e−
t
τ (3)

where subscript A denotes model A, γ0 is initial coherence, t is the time separation between two SAR
images, and 1/τ is its decorrelation rate and is mainly dependent on the wavelength of the radar.
Based on model A, the exponential decay of coherence values is expected in general by increasing the
temporal baselines. However, the scatter plots of the observed coherence versus temporal baseline and
the scatter plots of the residual coherence, i.e., observation—model A, versus the temporal baseline,
illustrated in Figure 2, feature strong undulation with local peaks at temporal baselines around one
and two years. Model A takes into account decorrelations due to long-term variations of the scatterers’
geometry. In the real world, however, in addition to the natural and gradual long-term changes in the
scatterers’ geometry, seasonal and/or sudden changes in surface backscattering parameters may also
contribute to temporal decorrelation. Generally, backscattering is dominated by the surface dielectric
constant and roughness among other surface characteristics. Surface parameters, such as soil moisture,
vegetation, and temperature alter dielectric constant and roughness and, consequently, backscattering
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coefficients (e.g., [17,22,32]). Therefore, other term(s) should be added to the temporal coherence
function to compensate the effects of changes in surface backscattering between two image acquisitions.

In this paper, we have modified the coherence model to accommodate decorrelations due to the
change in surface backscattering parameters. Since the SAR backscatter coefficient and, consequently,
SAR intensity, varies as a function of the changes in surface parameters (e.g., [19,33]), here, we use
the change in SAR intensity as a proxy for the changes in surface backscattering. Figure 3 shows a
semi-logarithmic scatter plot of the coherence ratio, i.e., observation/model A, versus the relative
intensity change between two images. Relative intensity is calculated by r = |10 log(i2/i1)|, which
i2 and i1 are SAR intensities of the first and second images, respectively. Considering the linear
trend fitted to the semi-logarithmic scatter plots (note R2 value and very small p-value of the linear
regressions), model B is postulated to be:

γB = γ0 e−( t
τ +

r
ρ ) (4)

where r is the relative change in SAR intensity, i.e., the backscattering baseline, and 1/ρ is its
decorrelation rate. For each of the fitted linear trend, R2 and p-value of the regression are calculated
and shown on the plots. Note that if the p-value of a t-test is smaller than the common alpha values of
0.1, 0.05, and 0.01 (the confidence level of 90, 95, and 99%, respectively), the null-hypothesis is rejected.
This means that the additional term related to the relative change in SAR intensity is likely correlated
with temporal correlation.

Figure 3. Semi-logarithmic scatter plot of coherence ratio, i.e., observation/model A, versus the relative
intensity changes for forested (a) and shrub (b) land cover types.

The unknown parameters in models A and B, i.e., γ0, τ, and ρ, can be estimated by solving the
equations using known variables, i.e., γ, t, and r. The coherence, γ, is estimated using Equation (1).
The temporal baseline of the interferograms, t, ranges between 14 and 840 days. Figure 4 illustrates the
scatter plots of model B, observed coherence, and residual coherence values (observation—model B)
for the two landscapes. For comparison, the scatter plot of water body’s coherence is also shown in the
figure. Additionally, Table 2 exhibits the model parameters and RMS error for each model. The RMS
error values of model B for the both land cover types are smaller than those of model A, indicating
that model B estimates more accurate coherence values. A detailed discussion of how significant the
improvement is has been provided in Section 4.

Different snow depths between two images of an interferometric pair is one of the factors that
can induce variations in surface scattering behavior, which, in turn, leads to decorrelation. Basically,
between two winter images in stable frozen conditions with no change in soil moisture, the change
in the dielectric constant is negligible and high coherence values can be expected for open areas [34].
However, the change in snow depth between the two images may change the surface scattering

507



Remote Sens. 2018, 10, 150

behavior, which, in turn, causes decorrelation. Here, we intend to modify our coherence model by
adding the decorrelation term of snow depth changes. The basic assumption here is that the intensity
and snow depth changes are independent parameters, i.e., a systematic snow depth change does not
produce a systematic intensity change. Figure 5, illustrating the scatter plot of the intensity change
versus snow depth changes, shows no trend and indicates that the two parameters are independent.

Figure 4. Scatter plots of observations and model B for forested (a) and shrub (c) land cover types.
Scatter plots of residual coherences (observation—model B) for forested (b) and shrub (d) land cover
types. Plot of model A and the scatter plot of coherence of water body are shown for comparison.

Table 2. Model parameters of the two land cover types. Cf is the critical f -value.

Model Land Cover γ0 τ (Day) ρ σ RMS f -Test Cf (α = 0.01)

A
Forest 0.37824 616.49 - - 0.180 - -
Shrub 0.444 629.53 - - 0.186 - -

B
Forest 0.68885 861.07 2.5406 - 0.092 205.84 6.99
Shrub 0.74482 879.27 2.5467 - 0.121 102.38 6.99

C
Forest 0.73842 903.7 3.3464 0.62062 0.083 16.23 7.00
Shrub 0.79153 913.47 5.6462 0.37348 0.101 29.64 7.00
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Figure 5. Scatter plot of model intensity changes (dB) versus snow depth changes (meter) for forested
(a) and shrub (b) land cover types.

Figure 6 shows semi-logarithmic scatter plot of coherence ratio, i.e., observation/model B, versus
the snow depth change between two images. Considering the linear trend fitted to the semi-logarithmic
scatter plots, model C is postulated to be:

γC = γ0 e−( t
τ +

r
ρ +

s
σ ) (5)

where s is the snow depth change between images and 1/σ is its decorrelation rate. The unknown
parameters in model C is estimated by solving the equations using known variables. The snow depth
values are acquired from SMAP level 4 data (National Snow and Ice Data Center (http://nsidc.org))
and the measurements at the SNOTEL Site Granite Creek (963) (Natural Water and Climate
Center (https://wcc.sc.egov.usda.gov)), which is located in our study area (white star in Figure 1).
Figure 7 illustrates the scatter plots of model C, observed coherence, and residual coherence values
(observation—model C) for the two landscapes. For comparison, the scatter plot of a water body’s
coherence is also shown. Additionally, Table 2 exhibits the model parameters and RMS error for
each model. The RMS error values of model C for the two land cover types are smaller than those of
model B. This means that the change in snow depth leads to decorrelation and, taking into account its
effect on InSAR coherence improves the model’s performance. A statistical analysis of how significant
the improvement is has been provided in the next section.

 

Figure 6. Semi-logarithmic scatter plot of the coherence ratio, i.e., observation/model B, versus snow
depth changes (meter) for forested (a) and shrub (b) land cover types.
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Figure 7. Scatter plots of observations and model C for forested (a) and shrub (c) land cover types.
Scatter plots of residual coherences (observation—model C) for forested (b) and shrub (d) land cover
types. Plot of model A and the scatter plot of coherence of water body are shown for comparison.

4. Discussion

4.1. Scatterers’ Type and Decorrelation Sources

Model C has three terms. The first term, exp (−t/τ), is the long-term irreversible decorrelation due
to the temporal change in scatterers’ geometry. The second term, exp (−r/ρ), is the decorrelation due
to the changes in backscattering between two images. As stated earlier, the change in SAR intensity
was used as a proxy for the change in the surface backscattering. Figure 8 shows the plot of SAR
intensity (dB) over forest and shrub landscapes versus the soil moisture measured at the SNOTEL
Site Granite Creek (963) (Natural Water and Climate Center (https://wcc.sc.egov.usda.gov)) which
is located in our study area and is 12 km away on average from the patches (see Figure 1). The plots
demonstrate a general correlation between soil moisture and SAR intensity, indicating that the change
in backscattering and SAR intensity is most likely dominated by the change in dielectric constant of
scatterers induced by the change in soil and biomass water content.
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Figure 8. Plot of the change in SAR intensity for forested (a) and shrub (b) land cover types versus the
change in soil moisture measured at the SNOTEL Site Granite Creek (963) (Natural Water and Climate
Center (https://wcc.sc.egov.usda.gov)). Data under frozen and unfrozen conditions are included.

The third term, exp (−s/σ), is the decorrelation due to the change in snow depth between two
images. The scatterplot of InSAR intensity change (dB) versus snow depth change for soil moisture-free,
i.e., winter-winter, interferograms (Figure 5) show no correlation between the SAR intensity change and
the snow depth change over forested and shrub landscapes, indicating that snow depth change-induced
decorrelation is most likely dominated by the change in the scatterers’ geometry. In Section 4.3, we will
perform a statistical assessment to show that the improvement made by considering the snow depth
change in the model is statistically significant.

In the case where the temporal evolution of surface parameters such as soil moisture, vegetation
layer parameters, and snow depth are known, the general coherence is postulated to be:

γ = γ0 e−( t
τ +∑n

i=1
pi
μi
) (6)

where 1/μi is the decorrelation rate of the parameter pi, which is the change in the surface parameters
between two images.

In general, shrub landscape is more stable as changes happen in the scatterers’ geometry and
dielectric constant. Except the decorrelation rate of the change in snow depth, which is lower for forest,
the decorrelation rates of long-term and backscattering are lower, i.e., higher τ and ρ values, for shrub
landscape compared to the forested landscape (Table 2). The scatterers within a resolution cell are of
two types: scatterers associated with the ground surface and scatterers associated with the vegetation
layer. Forested landscape (coniferous in this research) possess more backscattering contribution from
the vegetation layer compared to the shrub landscape. Since the mutual position of scatterers within a
vegetation layer, i.e., the geometry of scatterers, is more likely subject to change than the geometry of
the scatterers within a non-vegetated surface, forested areas in the long-term decorrelate faster than
non-forested areas as time lapses. Therefore, shrubland is expected to have a lower decorrelation
rate associated with the long-term change in the scatterer’s mutual position (Table 2). Additionally,
the observed higher backscattering decorrelation rate of the forested area is associated, in part, with
dielectric variation within the vegetation layer due to, for example, changing water content within the
trees. Similarly, the observed higher snow depth decorrelation rate in shrubland is associated with the
type of scatterers within each landscape. The lower proportion of snow-covered scatterers within the
vegetation layer causes the forested landscape to lose coherence with a lower rate compared to the
non-forested landscape as the change in snow depth increases.

The long-term decorrelation rate of the forest is slightly higher than the one of the shrub landscape,
whereas the backscattering decorrelation rate of the forest is almost two times greater than that of the
shrub landscape. This infers that, with short-baseline datasets, the difference between the temporal
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decorrelation of snow-free forested and non-forested areas is dominated by the decorrelation induced
by the change in the dielectric constant of scatterers within the vegetation layer and not by the change
in the geometry of scatterers within the vegetation layer.

4.2. The Effect of Seasonality on Temporal Coherence

Figure 9 depicts coherence as a 3D surface and provides a visual comparison of coherence
evolutions of the two land cover types: forested and shrub. The x-axis of the plot is the relative
change in SAR intensity and ranges between 0 and 0.65, i.e., the maximum measured relative intensity
change, whereas the y-axis is the change in snow depth and ranges between 0 and 0.65 m. It is
shown that both land cover types, even with the short temporal baselines, can lose coherence due to
the changes in the dielectric constant and snow depth. Additionally, it is illustrated that the forest
loses coherence with a higher rate than the shrub landscape with changing backscattering (dielectric
constant), whereas the shrub landscape is more prone to decorrelation as the change in snow depth
between two images increases.

Table 3 shows statistical properties of the observed coherence values of the two land cover types.
The interferograms of each land cover type are subdivided into three sub-groups: summer, winter, and
cross-season interferogram categories. It is shown that the shrub landscape has a higher coherence
value than forest. Additionally, winter and cross-season interferogram categories possess the highest
and lowest coherence values in general.

Figure 9. Coherence curves of forested (a); and shrub (b) land cover types.

Table 3. Statistical properties, i.e., mean and standard deviation (SD), of interferogram categories.
The letters S, W, and C denote summer-summer, winter-winter, and cross-season interferogram groups.

Land Cover Group Mean SD SD/Mean

Forest
S 0.3433 0.0711 0.2070
W 0.3703 0.0680 0.1835
C 0.0896 0.0407 0.4546

Shrub
S 0.3905 0.0974 0.2495
W 0.4074 0.0836 0.2052
C 0.1522 0.0566 0.3720

Basically, the different scatterers’ type and structure within the forested and non-forested
resolution cells may result in different decorrelation processes when seasonal or sudden variations
in surface parameters and meteorological conditions occur. During a frozen season, a decreased
dielectric constant leads to reduced attenuation and a deeper penetration of electromagnetic waves
into the forest canopy [34–36]. Consequently, this will cause a decrease in backscatter and influence the
polarimetric signature and InSAR coherence [34–38]. In terms of coherence, between two winter images
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under stable frozen conditions, water content (soil moisture) changes do not occur, leading to low
temporal decorrelation for open areas [34]. This means that higher InSAR coherence is expected for
winter interferograms. Basically, over frozen forests, compared to the unfrozen condition, more
volumetric decorrelation is expected to occur as the perpendicular baseline increases, owing to
deeper penetration of electromagnetic waves into the frozen forest canopy [34]. However, with
the short-baseline interferograms of L-band ALOS-2 and future datasets with narrower orbital tubes,
the volumetric decorrelation induced by the deeper penetration of electromagnetic waves into the
frozen soil and the frozen forest canopy become low, resulting in higher winter coherences.

During the unfrozen condition, changing soil moisture, variable water content within the trees,
growth-related changes, and wind are among the major sources of temporal decorrelation [39,40].
The variation of the aforementioned surface parameters and meteorological conditions, in turn, results
in decreased temporal coherence of the unfrozen condition compared to the frozen condition [34].

4.3. Statistical Assessment on Models’ Performance

To statistically assess the improvements of models B and C, which have, respectively, one and two
more parameters compared to model A, we used F-test (explained, for example, in Davis, 2002 [41]):

F =
SSR1 − SSR2

SSR2

n − P2

P2 − P1
(7)

where SSR is the sum of squared residuals of the model, P is the number of free model parameters,
and n is the number of observations. If the calculated F-test value is greater than the upper-tailed
critical value of the F-distribution, FP2−P1,n-P2,α, then, with a 1 − α percentage confidence, the null
hypothesis is rejected, i.e., the improvement is statistically significant. The calculated F-test values and
critical F-distribution values with 99% confidence level (probability level of 0.01) have been presented
in Table 2. All the calculated F-test values are greater than the critical values at a 99% confidence level,
indicating that the improvements made by the new models are statistically significant.

5. Conclusions

Model C takes into account the long-term irreversible/long-term changes in scatterers’ geometry,
reversible/seasonal changes in scatterers’ dielectric constant, induced mainly by the change in soil
and biomass water content, and reversible/seasonal changes in scatterers’ geometry, i.e., the third
term, due to the change in snow depth. Shrub, in general is more stable than forest, as time lapses
and variations happen in the surface backscattering properties. Additionally, the results show high
coherence values for winter interferograms compared to summer ones owing to the stable condition
of the frozen season. Our model illustrates that snow depth difference between interferogram pairs
causes decorrelation, which is shown to mainly result from the change in the scatterers’ geometry.

This paper argues that with short-baseline interferograms of L-band ALOS-2 and future data
sets with narrower orbital tubes, the differences between temporal decorrelation rates of forest and
non-forested areas, in snow-free condition, is dominated by the change in the dielectric constant of
scatterers and not by the change in their geometry. It should be noted that the model introduced here is
based on L-band data and, therefore, might not be expanded to C-band or X-band InSAR observations.
The model provides accurate estimation of InSAR coherence for coniferous forested and shrub land
cover types. However, its accuracy over other terrain types should be assessed.
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